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PREFACE

This volume provides an up-to-date picture of the current status of
theoretical and empirical developments in the application of fuzzy sets in
psychology; and will be of interest both to the advanced student in the field as
well as to anyone possessing a basic scientific background.

There is little doubt that psychology requires formal, even mathematical
frameworks for handling graded categories with blurried boundaries. it is
believed that not only are the phenomena of human thought and behavior
inherently fuzzy, but researchers in this field must also use concepts and
theoretical schemata which themselves are fuzzy. Most verbally expressed
hypotheses in psychology contain fuzzy nouns, predicates, modifiers and
comparatives. The problem of fuzziness in general is of afundamental nature,
and suggests that we should treat human(istic) systems in terms of fuzzy logic
based linguistics calculus rather than using discrete numerical language.

Lofti A. Zadeh {1965) was the first to formalize the idea by defining
characteristic functions for sets which map onto the closed interval zero and
one, ratherthan onto the conventional set of values zero and one. Since then,
there have been many contributions to fuzzy set theories of various kinds, and
some of them enjoy wide application in engineering and applied science.
Zadeh attempted to develop a linguistic calculus "fuzzy calculus" that should
be applicable to variuos sorts of systems. This present volume is concerned
with many facets of fuzzy sets in psychological systems in this genuine sense.

Fuzzy settheory could benefit researchers in at least two ways: first, as a
metaphoror modelforordinarythought, and secondly as an aid to data analysis
and theory construction. One can find examples for both kinds in the volume.

The dialogue between fuzzy set theory and psychology has just begunto
addressthese possibitities, butthe area has developed so rapidly during recent
years that | felt there was a need to put together a volume which covered the
newest contemporary issues. This work will serve as a resource for scholars
who have beeninterested infuzzylogic and to providethemwith an up-to-date
survey of contemporary work in the field.
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Fuzzy Sets in Psychology
T. Zétényi {Editor)
© Elsevier Science Publishers B.V. (North-Holtand), 1988 1

POSSIBILITY THEORY, FUZZY LOGIC, AND PSYCHOLOGICAL
EXPLANATION

Michael SMITHSON

Behavioural Sciences Department
James Cook University,
Queensiand 4811 Australia

Psychologisthave reiled almost exclusively on statistical models and methods
for the quantitative analysis of human behavior. Because they invoke
stochastic determinism, such models are incapable of incorporating human
intentionality, purposive choice, or agency along with constraints and
influences on behavior. However, many psychologicalaccounts and theories
mix voluntarism with constraint, and those theories are not adequately
translated by conventional statistical models. Fuzzy logic and possibility
theory offer an alternative framework which is compatibel with psychological
explanations that permit choice under partial and uncertain constraints.

This paper outlines that framework and demonstrates its application to
research and theory construction in psychology. The main components of
the framework are "weak " prediction and entailment models provided by fuzzy
logic, and the modeling of domains of choice via possibility theory.
Accordingly, the conceptual foundations of fuzzy logic and possibility theory
are outlined from the standpoint of psychological theory and explanation.
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Applications include models of preference ana freedom of choice, a calculus
of freedom, fuzzy predictive models, and possibilistic theories of human
behavior.

Has Psychology Inherited the Wrong Mathematics?

This paper proposes possibility theory as a basis for an alternative to the
conventional statistical paradigm employed by researchers in psychology.
Before a case may be made for possibility theory, we must have a motivating
argument for alternatives inthe first place. Accordingly, this section presents
several criticisms of the statistical tradition in psychology which are more
radicalthanthe usual corrections of technical misuse and abuse. The principal
claim here is that both psychological theory and data analysis have been
needlessly constrained and distorted by the widely held assumption that a
peculiar dialect of mathematics (the Neyman-Pearson-Fisher statistical
framework, hereafter denoted by NPF) is the only one suited to quantitative
data analysis inthe human sciences.

The mathematicallegacy bequeathed to psychology isdominated bythe NPF,
which in turn bears recognizable traces of its origins in military strategic and
decision analysis, industrial quality control, and agricultural experimentation.
The NPF was designed to solve the problems posed in those fields, not the
human sciences, and yet it has been adopted almost without modification by
psychologists. So widespread is its influence that often debates over
quantitative versus qualitative research styles, critiques of positivism, and the
development of innovative approaches to psychological research have rested
on the assumption that mathematical or quantitative analysis is synonymous
with the NPF. Furthermore, the NPF has pervaded the very design of
psychological studies as well as theory construction itself. After all, the nature
of researchability is linked to the descriptive, expressive, and analytical
capabilities of the mathematical language within which "data analysis"' is
couched. On a more mundane level, it is highly likely that many fledgling



Possibility Theory, Fuzzy Logic, and Psychological Explanation 3

researchers have madetheir choicesforand against whole schools of research
methods partly on the basis of this assumption.

That assumption is mistaken in principle, of course, since mathematics
encompasses far more than the NPF and even probability theory boasts
several schools of thought and practice. But does it matter? If exclusive
reliance on the NPF prohibits mathematization or systematic investigation of
key thearetical concepts in psychology, thenthe answerto this question must
be yes. To assess whether this is the case, we must analyze how the NPF
translates psychological theories into statistical models and tests. Without
much loss of generality | shall take the general linear model (GLM) as the
primary object of discussion. Notonly does the GLM include the most prized
data analytic techniques in psychology (the varieties of ANOVA, linearizable
regression models, log-linear analysis, discriminant analysis, factor analysis,
and their progeny), but it also embadies the properties most sought-after in
most nonparametrictechniques.

The GLM cleaves variation in human behavior into two components; That
predicted by the instrumental variabie(s), and the unpredicted component
which is treated as arising from either unobserved influences or random
processes. The predictions aliowed inthe GLM are necessarily one-to-one by
virtue of their restriction to a linearizable model. This constraint entails
translating any psychological prediction into a one-to-one relation between
states or values on the independent variables and those on the outcome
variable. Human agents, therefore, are not permitted a range of alternative
outcomes inthese models. The sole source of unpredict ability allowed these
actors by the GLM lies in the random processes responsible for that part of
the unpredicted component of variation not eventually explicated interms of
additional predictors. A literal reading of the GLM yields a stochastically
deterministic view of human behavior. Insofar as people are not behaving in
accordance with a one-to-one prediction, they are behaving randomty.

Modern currents in many fields of psychological research, however, are not
confluent with the GLM translation of theories into its stochastically
deterministic terms. Indeed, several prominent schools of thought have
explicitly rejected that viewpoint while nevertheless continuingto usethe GLM
and NPF in research. Cognitively oriented psychologists long ago rejected
simple S-R accounts, for instance, in favor of a view in which behavior is
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understood in relation tothe actor’s mental images of the world and his or her
plans, intentions, or strategies (cf. Miller, Galanter, & Pribram, 1960).
Cognitivism virtually requires concepts like intentionality, purposiveness,
choiceordecision, and agency, whichhave noplace ina one-to-one predictive
model with randomicity as the sole source of uncertainty.

Perhaps the most obvious examples of theories embodying this view come
from social psychology. Classic examples include cognitive dissonance theory
andattributiontheory, both of whose original formulations portrayed people as
mindful actors whose choices are only partly constrained by situational or
structural influences and not even strictly determined by motivations. The
subsequent development of those theoretical frameworks became
increasingly tainted by the GLM requirement (often confused with an
imperative of the experimental method itself) that an identical response be
predicted for all subjects under the same experimental conditions, despite the
factthat this was never necessitated by the theories themselves.

This trend has been echoed in several psychological research areas, and it
directly opposesthe paradigmatic shift in social psychology duringthe last 25
yearswhich, asGinsburg (1979, p. 2) points out, istowards the view that people
areactive agents, "capable of making plans and pursuing objectives, of acting
as well as reacting, of doing things for reasons as well as having been forced
to do them by causes"'. Rule-following or rule-using behavior, for instance,
necessitates a model that allows for multiple possible responses to a situation.
Likewise, a skills-oriented or competence and performance model of behavior
finds explanations in "enabling conditions" rather than causes in the old sense.
Thefocus onenablingor empowering has characterized a number of modern
therapedutic schools in clinical psychology as well. Unfortunately, the GLM
cannot tell the clinician whether the treatment was sufficient but not
necessary, necessary but not sufficient, or weakly contributing to
improvement in the clients. A "statistically significant" difference between the
means oftreatmentand control groups could arise from any ofthose outcomes.

These shortcomings are not in any waytied tothe experimental method itself.
Survey researchers are no better off. Coleman’s recent critique of survey
methods pinpoints a key missing ingredient in statistical survey research as
“an explicit purposive or intentional orientation" and remarks that "..the
statistical association basis for inference in survey analysis seemed to havelittle
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natural affinity forthe intentions or purposes of individuals' (1986, p. 1314). But
Caleman strays wide of the mark when he recommends replacing statistical
association with "meaningful connections" between variables. The difficulty
lies not in the use of associations per se, but in the GLM assumption that it
must be one-to-one. Weaker models of association might be more compatible
with concepts like purpose, intention, or choice because they could permit a
range of possible outcomes for actors under identical conditions.

Adefenderofthe NPF or GLM might object that these problems can be handled
by using confidence intervalsto expressthe range of likely responses, andthat
the bounds of those intervals could be the subject of theoretical predictions.
After all, what the GLM really amounts to is a "moving average' model that
predicts the central tendency of actors’ responses conditional on the values
of various instrumental variables. A "dual" GLM approach that explicitly
accounts for conditional central tendency and dispersion should capably
represent the variability in actors’ responses. | raise this argument in
anticipation, since it comprises the heart of Cheeseman’s (1985) defense of
probability against nonprobabilistic alternatives for representing uncertainty in
the antificial intelligence literature. 1t also highlights the most fundamental
timitation of the NPF, and that is the assumption that probability is capable of
representing any form of uncertainty in human thought or behavior.

The NPF (and, for that matter, any other statistical paradigm such as the
Bayesian approach) utilizes probability to handle two kinds of uncertainty.
Oneis directly attached tothe model of behavior and constitutes uncertainty
about what the actor(s) will do. The second kind concerns the state of our own
orothers’ knowledge about what the actor(s) may do. Prabability is incapable
of entirely capturing the first kind of uncertainty because it deals only in
likelihood or relative frequency of occurrence rather than in concepts such as
potentiality, possibility, or necessity. That | can ride my bicycle to work (but
may or may notj is not representable in probabilistic terms. Nor is the datum
that 43% ofthe employed adults in mysuburb could ride their bicyclestowork.
Nonprobabilistic kinds of uncertainty have a central role in many psychological
theories, especially where counter factuals form part of the basis for explaining
behavior. In askills model of behavior, for instance, Clarke (1983, p. 202-203)
points out that what an actor does is limited mainly by what she or he can do
or knows how to do. A similar argument could be advanced for a host of
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perspectives in psychology that are guided by concepts such as competence,
resources, potential, decision making, strategic behavior, and reftexivity.

Incomplete knowledge is not satisfactorily captured by probability either. Both
normative and psychological arguments supportthis claim. Giventhe simplest
case of a binary outcome setup (A and B, say), probability fails to distinguish
uncertainty about whether A will occur from ignorance about whether A will
occur. The proposition that P(A) = 1/2 could mean that we know A and B
areequallylikely, or it could meanthat we are utterly ignorant of the likelihood
of A or B. This argument has recurred in several contexts - see Shafer (1976)
for a phitosophical account, and Cohen (1977) for a discussion of legal
uncertainty. Likewise, probability is incapable of capturing any ambiguity,
vagueness, orfuzziness inthe nature of Aand B - as Zadeh (1980) has forcefully
argued.

Giventhe limitations of the NPF and its faulty translation of essential elements
in modern psychological theories, it is no accident that many of the more
sophisticated and innovative paradigms in recent psychology are
fundamentally innumerate. Nor is it always the prospect of quantification itself
that puts their adherents off statistical methods (cf. Collins, 1984). Clearly we
requireaformal framework that is capable of handling quantitative data without
excluding agency and choice on the one hand, but which incorporates
constraint, entailment, and prediction, on the other. This framework can be
nothing otherthanformal or mathematical atleast in part, since we are dealing
with quantification. Before moving on to outline a candidate for such a
framework, | should like to argue that it is possible to construct one without
violating any known rules of evidence for imputing voluntarism, determinism,
or randomicity. These arguments are well-known, but they bear repeating in
this context.

First, it should be obvious that there is no incompatibility between predictability
and voluntarism or agency. People may choose to behave predictably.
Conversely, unpredictability is no evidence forindeterminacy. The algorithms
for generating so-called nonrepeating decimals are deterministic, but their
output not only is unpredictable to a remote observer but passes tests for
randomicity as well. Likewise, there is no litmus test for randomicity. The
empirical demonstrationthat events fit a particular distribution is not sufficient
to imply an underlying random process. What is plausible for dice (sincethey
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have no preferences) is not so for people (who do have preferences and may
exercisethem).

The conclusion following from these arguments is that the decision to use
statistical models for analyzing quantitative data rests on interpretive and
theoretical, rather than logical or empirical, grounds. Figure 1 displays two
scatterplots whose patterns are nearly identical. Inboth piots mere inspection
reveals that high X is sufficient but not necessary to produce high Y. Are these
causal relationships, or do they reflect choice under partial restriction? Is the
variationinthe uppertriangle of each plot generated randomly, or does it reflect
individual choices made underweak constraints? The uppermost plotis taken
from a study of attitudes towards the use of violence for politica! ends (Muller,
1972). Xrefersto intention to engage in violence for political ends (IPV) and
Y to approval of the use of violence for such ends (APV). The cases in this plot
are individual responses. The second plot is adapted from a study of national
breast cancer death-rates as a function of per-capita consumption of animal
fat (Carroll, 1974). The cases in this plot are nations.

Most medical modelswould hold that the relationship between animal fat intake
and risk of cancer is causal, while some social scientists might hesitate on
whether approval of violence is causally related to intention to engage in it.
Likewise, while it might make sense to most social scientists to conclude from
Figure 1 that people who approve of violence may choose to engage in it or
not, most medical researchers would not wish to claim that countries in which
people do not eat much animal fat may choose whether to have high
death-rates from breast cancer. The data in these plots say the same things
logically and empirically. The only reasons for assigning causality or
intentionality to one or the other stem from one's interpretive or theoretical
perspective. Therefore, the framework proposed in this paper should not be
construed as a replacement for statistical models in all circumstances, but
instead as permitting the articulation and investigation of interpretations that
cannot be handled by the statistical perspective.
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Our framework involves the analysis of domains of possibiity for action
under constraints induced by "weak" models of entailement or prediction.
One-to-many and other weak entailement models combine possibilistic and
statistical concepts and, unlike their one-to-one counterparts, permit a range
of options for human choice or intention. Why possibility? First, choices may
be madeonlywhen possibilities exist. Secondly, structural or other constraints
may be thought of as restrictions on the domain of conceivable possibilities.
Third, within a range of possible actions, behavioral variation need not be
dismissed as erroneous or random. Instead, it may be intepreted by
motivational or other theories of choice: "An action is the outcome of a choice
within constraints" (Elster, 1983 p. vii).

The Nature of Possibility

Althoughthe concept of possibility often is implicitly referred to intheories of
action, possibility itself is rarely explicated. Until recently there was no
analytic framework for possibility ona par with the well-developed calculus of
probabitity. | will introduce a framework based on developments by Zadeh
(1978) and his colleagues which enables sensible definitions of graded
possibility, as well as joint, conditional, and marginal possibility. First,
however, we require some clarification of the concept of possibility.

Broadly speaking, an event is possible if it could happen. It need not have
happened yet, nor need its occurrence be probable or inevitable. Onthe other
hand, if an event is impossible then it would seem to have a probability of 0 as
well. Beyond these general remarks, at least three questions need to be
addressed:

(1) Arethere distinct kinds of possibility?
(2) How is possibility related to probabitity or necessity?

(3) How may possibility be quantified and measured?
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Several modern writers have decided that there are different kinds of
possibility, and have made two kinds of distinction: semanticand ontological.
Elster (1978) and Lukes (1978) both emphasize the difference between “real"
and "abstract’ possibility in social theory. The former refers to real situations,
while the latter is essentially a logical device. Wilkinson (1981), influenced by
the possibilistic psychology of G.Kelly (1955, 1969) as well as modal logic,
proposes a three-level hierarchy which includes the linguistic theoretic sense
of possibility as opposition, the more commonsensical notion of possibility as
a range of alternatives, and the general concept from modal logic of "possible
worlds".

Hacking (1975) and Zadeh (1978) have pointed out that there are at least two
semanticallydistinct usages ofthetermin ordinarylanguage. InZadeh'sterms,
possibility may bethought of as either compatibility orfeasibility. The statement
“Johnistall' maybeviewed asarestrictiononJohn’s possible height, whereby
in a Western context 6'2" is more compatible (possible) with the statement
than5'2". Feasibility or ease of accomplishment does not apply to intransitive
concepts such as tallness , but it does to events or actions (e.g., "it is almost
impossible to find a needle in a haystack"). A related sense is possibility as
availability or accessibility (e.g., "it is possiblefor Lisa to have cake"). Hacking's
major distinction is between " possible for' and "possible that". The former
refers to feasibility or avaitability, while the latter denotes a state of knowledge
(e.g., "itis possible that George may have changed his mind"). Hacking calls
the first kind of possibility "de re" and the second "de dicto".

These latter distinctions have a history that can be traced directly to the origins
of probability. As Hacking persuasively argues (1975, ch. 14), the definition of
probability itself was initially couched interms of "equipossibility’ and "grades
of possibility". Not only did 17th and 18th century mathematicians such as
Leibniz, Jacques Bernoulli, and Laplace hold by this conception, but so did
modern classicists such as Borel and von Mises. Events were recognized as
being possible in degree, and von Mises makes the case in 1928 for grades of
possibility using exactlythe same inteliectual weapons as Zadeh does 50 years
later. Furthermore, several of the early probabilists distinguished between de
re and de dicto possibility as a basis for a similar distinction between physical
and epistemic probabitity. Of course, identifying probability with possibility is
a conceptual error, and as mathematicians and philosophers found better
foundations for probability theory possibility was abandoned and ignored.
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The distinction between de re and de dicto possibility points to two arguments
for possibility as a graded concept. Zadeh's (1978) proposal focuses on the
de dicto when he argues on intuitive grounds that some actions may be more
difficult, hence less possible, than others. A ‘frequentist' case may be made
for degrees of de re possibility as well. If, say, 90% of the people in suburb A
own cars but only 45% of the people in suburb B do, then private automotive
transport is twice as possible for the suburbanites in A as for those in B. Both
the subjectivist and frequentist cases support Zadeh's proposal that possibility
be measured on a scale fromQto 1ina manner similar to probability, with 0
indicating entire impossibility and 1 entire possibility.

Clearly possibility is not a kind of probability, nor can probability represent
possibilistic uncertainty. A phenomenological case for this rests on the
observation that some kinds of uncertainty are nonprobabilistic; they do not
involve references to likelihood or chance. That an option is possible says
nothing about the likelihood that it will be chosen. A frequentist argument is
that a grade of possibility puts an upper limit on probability. If 45% of a given
population own cars, then at most 45% could possibly use them for
transportation. The actual percentage of people using private automotive
transport might well be less than 45% but it cannot be any greater. Likewise,
the necessity of a given option places a lower bound on probability. If, say,
15% of the population have no other option than driving their own cars, then
at least 15% must necessarily use private automotive transport. Formally, if
we denote the possibility of the ith option by po;, its probability by pri, and its
necessity by ne;j, then

negg < Ppfi < Ppoi (1)

The simple relationship in (1) immediately suggests two useful tools in a
possibilistic calculus: the measurement of freedom of action, and the
measurement of relative preference. Insofar as an action is possible but not
necessary, then people are free to perform it or not. A natural definition of
freedom of action for the ith option, then, is
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Fi = poi - ne;, (2)

"Preference" in many surveys is measured simply by the percentage of people
who select a given option. But this practice assumes that all options have a
possibility of 1 and a necessity of 0. True preference is indicated by the extent
towhich people select an optionwhenthey arefreeto doso, and a valid relative
preference measure may be defined by

Si = (pri - nei) / (poi - ne). (3

This definition hintsthat theorists may well find it profitable to consider two sets
of influences on human behavior: Those influencing the po; and those
influencing the ne;.

By way of illustration, consider a survey (Smithson, 1983) of elderly citizens’
preference patternsfortransportation ina northern Australian community. For
those eldedy who could not drive a car, there were four conceivable
transportation options: (1) being driven by afriend or relative, (2) taking a taxi,
() taking a bus, and (4) self-locomotion (bicycling, walking, etc.). The eiderly
were asked questions that determined whether each of these options was
possible, necessary, and which actually were used. Table 1 displays the
portions of the sample for whom these options were possible, necessary, or
used on various occasions. While 32% of the elderly used buses and 32%
were driven by someone for shopping, we cannot concludethat these two op
tions were equally preferred because they were not equally possible. From (3)
we have S = (0.32-0.02) / (0.42-0.02) = 0.75, while 83 = (0.32-0.12) /
(0.72-0.12) = 0.43. Theelderiy prefer being driven by afriend or relative almost
twice as much as they do taking the bus, when it is possible.
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TABLE 1
Transport Options for Elderty

Transport Chosen for

Mode Shopping  Possible Necessary
Beingdriven 32% 42% 2%

Taxi 21% 70% 0%

Buses 32% 72% 12%
Other 20% 93% 8%

An intuitively plausible candidate for negation in possibility theory would be
1-poi, but before welcoming this as our definition we must distinguish between
the'impossibility" of the ith option and the "possibitity of not-i*. Conventionally
the possibility of not-i is called "internal' negation, while the term for the
impossibility of i is "external" negation. Elster (1983) provides an example of
this distinction from Zinoviev’s account of the Soviet government’s tendency
to replace internal with external negation. Thus, while for a time it became
possible nottoquote Stalinthe government responded by making it impossible
to quote him. Here 1-poi referstothe impossibility of the ith option, while poi,
the possibility of not-i, is measured by the degree to which the ith option is not
necessary:

1-poi = nei, and (4)

po = 1 - nei. (5)
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For instance, the portion of elderly who could take the bus is poi = 72 s0 1-poi
= 0.28. Onthe other hand, since the portion who must take the bus is nej =
0.12, poi' = 0.88.

Given measuresfor possibility, necessity, negation, and freedom, a calculus of
possibility may be constructed along the lines of the standard theory of
probability. | will do so here using a frequentist approach, delaying the
discussion of a basis for subjective or epistemic possibility until the next
section. This perspective differs somewhat from Zadeh (1978), whose
framework does not often distinguish physical from epistemic possibility. The
resulting definitions of joint and conditional possibility not only differ from their
probabilistic counterparts, butthey also have arather different epistemological
status.

Supposethat the portions of people in a given population forwhomthe ith and
jthoptions are possible are poi and poj respectively. What isthe joint possibility
po(iandj) of having boththe ithand jth options available? Infrequentist terms,
for what portion of people could options i and j both be possible? The smallest
value po(iand j) could takeis 0 if poj + poj < 1, but if this sum exceeds 1 then
po(iand j) must be at least poi + poj-1. Thelargest value for po(i and j) occurs
when the portions poi and poj entirely overlap one another (i.e., when one
includes the other). Hence, the range of values for joint possibility is

max (0, poi + poj-1) < po(iandj) < min (poi, po)). (6)

In the absence of empirical information about po(i and j), there are two
definitions one could adopt. One is a "pointwise” definition that stipulates a
single valuefor po(iandj). Giventhat our definition of possibility connotes the
most that could happen, our pointwise candidate would be po(i and j) =
min(poi, poj), which is Zadeh's definition. The second definition is "intervalic",
and requires usto view po(i and j) as a "fuzzy number" by virtue of the fact that
inthe absence of further info rmation no single value in the interval specified
by (6) is any more plausible than any other value. Hence the definition of po(i
andj) is expressed by (6) itself. Forthe time being, suffice it to say that there
are occasionsfavoringeach approach, and under some conditionsthe choice
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between them boils down to what the researcher means specifically by
possibility. Inthe frequentist paradigm there is no intervalic definition for joint
necessity, since the ith and jth options are assumed exclusive. Given that ne;
+ nej <1,ne(iandj) = 0. There are, however, some subjectivist arguments
for nonzero values of ne(i and j).

Inthe frequentist paradigm, the value of po(i and j) reflects the extent to which
the availability of the ith and jth options are related to one another. If the
possibility of i excludes the possibility of j, then po(i and j) = max(0, poi +
poj-1). If everyone who has access to option i also has access to j (or vice
versa), then po(iandj} = min(poj, poj). Statistical independence between the
availability of options i and j implies that po(i and j) = poipo;.

By a similar argument to the one just given, we may establish that the relevant
interval for po(i orj) is

max(poi, poj) < po(iorj) < min{poi + poj, 1). (7)

Ifthe pointwise definition of po(iand j) = min(poi, poj) is adopted, then we are
forced to conclude po(i or j) = max(poi, poj). Otherwise the intervalic
expressionin (7) becomes the definition. Inthe event that we know the value
of po(i and j), we have

po(i orj) = poi + poj- po(iandj). (8)

From the data in Table 1, for instance, we may conclude that the portion of
elderly forwhom bothtaking ataxi and being driven by someone are possible
options is not greater than min(0.42, 0.70) = 0.42 and not less than max(0,
0.42 + 0.70-1) = 0.12. Inthis particular survey, crosstabulation revealed that
the joint possibility is po(1 and 2) = 0.34. Nearly all the elderly who can be
driven by a friend or relative could alsotake ataxi. Likewise, from (8) we know
that po(1or2) = 0.42 + 0.70-0.34 = 0.78.
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Turning now to the concept of conditional possibility, there are at least two
senses in which we may speak of possibility being "conditioned". Oneisa very
general notion of influence, whereby a grade of possibility may change with
some event or circumstance. Thus, the possibility that Dr. Gorgonzola may
obtain a position at a university in Carbuncle is 0 if no university exists there
in the first place, but rises conditional on a university being built there, a
suitable position becoming available, Gorgonzota applyingfor it, being offered
the job, and so forth. Examples abound in everyday life of individuals and
institutions altering possibility distributions, and in some ways the concept is
at the center of many psychological theoretical concerns.

The second sense of a conditional possibility, however, is formally defined
in terms of joint and simple possibilities:

po(j/i) = pofi and j)/por, (9)

where po(j/i} denotes the possibility of j given i. In frequentist terms, po(j/i) is
the portion of the people for whom option i is possible who also have access
to optionj. In set theoretic terms, it measures the degree to which option i is
included by option j. Returning to the example above, given that 0.42 of the
elderly can be driven by someone and that the portion who have that option
andthetaxiavailableis 0.34, the possibility of taking ataxi conditional on having
afriend or refative to drive is po(2/1) = 0.34/0.42 = 0.81.

Definitions of joint and conditional possibility enablethe multivariate analysis
of possibility data. In conjunction with the definition of relative freedom of
actiongiven in (2), this basic calculus opensthe wayfor a multivariate calculus
of freedom and constraint which will be outlined in a section to come. First,
however, | will discuss some critical issues in the measurement of epistemic
and physical possibility that do not fall within the frequentist paradigm.

The distinction between objective and subjective possibility implies that at
least two kinds of measurement foundations are required, somewhat
analogoustothose found in probability and statistics. Epistemic possibilities
pose some of the same questions haunting subjective probability: What rating
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tasks are valid for human judges, how reliable are the judges, and what
heuristics do (or should) people adopt in making possibility judgments?
Research programs along the lines of Wallsten, Zwick, Budescu, and their
colleagues (e.g., Wallsten et. al., 1986; Zwick & Wallsten, 1987) show
considerable promise in providing useful answers for psychologists who wish
to scale subjective judgments of possibilistic uncertainty.

To what extent can existing "possibilistic" instruments be analyzed in a
readymade fashion using possibilistic techniques? Some practical
suggestions are available in Smithson (1987). To begin with, negation, joint,
and even conditional possibility may be defined on any bounded scale in an
interval, say, [a,b]. The impossibility of the ith option becomes a + b - po;,
which amounts to "reverse coding" the scale. If the subjective scale has a
0-point corresponding to absolute impossibility and the scale points are
numerical, then convertingthat interval to [0,1] istrivial. Likewise, the min-max
pair of operators for joint possibilities po(iand j) and po(iorj) use only ordinal
information, and so may be applied to even ordinal judgment scales.

Less intuitively, we may incorporate certain kinds of unbounded subjective
scalesintothe possibility calculus describedthusfar. Undersome conditions,
possibility rating scales may not have apparent upper or lower bounds. Some
concepts of "ease", "difticulty”, "ability", and "power" are possibilistic but do not
seemto have absolute anchoring points at eitherend of the scale. If, however,
they have a single midpoint as an anchor, then they pose no difficulty for our
calculus. An example is a judgment or rating that refers to a norm (e.g.,
"abnormally difficult", “unusual ability", or z-scores). Let q be the midpoint.
Then the impossibility of the ith point or option is 2g-poi, and the min-max
operators for joint possibility are again entirely appropriate.

Turning now to physical possibility, the same remarks that have been made
regarding subjective rating scales apply to scales measuring difficulty, ease,
costliness, ability, or availability from which possibility scales are derived by
definitionalarguments. Furthermore, the direct estimation of possibilities from
either proportions of people for whom options are possible or various rating
scales designed to measure possibility directly may be handled by standard
measurement theory. A distinction must be made, however, between
possibilities arising from restrictions at the individual level and those derived
from group-level constraints. Thatis, poi = 0.73 could arise because each of
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27% of a group does not have the ith option available, or it could reflect a
constraint that specifies only up to 73% of the group may exercise that option.
Examples of the latter kind of possibility include the utilization of any limited
resource, asingrazingcattle ona commons, withdrawing money from a bank,
or distributing 73 cookies among 100 children. This distinction has
consequences for the measurement of relative freedom or constraint.

The greatest difficulties for inferring degrees of possibility arise, however,
whenthereis no basisfordoing so otherthan sample observations of behavior
orotherevents. Such observations yield point-estimates of probability, which
in turn place s a lower bound on possibility. Usually, there is no way of
obtaining a pointwise estimate of possibility under these conditions. Some
investigators have gone as far as to propose explicit greatest lower bound
(glb) estimates for poi as a function of sample estimates of pr; (cf. Civanlar &
Trussell, 1985). These glb candidates have the form

glb(poi) = pri + f(si.c) (10)

where s;j is the sample standard deviation of pri and ¢ is the confidence level
desired.

These gib proposals lead, however, to some intepretive problems. First, we
must ask exactly what is implied about possibility by a probability of any kind.
The strict answer is only that the true possibility must equal or exceed that
probability. Hence, glb’s of the form shown in (10) assert, paradoxically, that
the higherthe confidence interval the higherthe imputed value for glb(poi). The
true state of affairs, unfortunately, is that while we might be 95% confident that
pri lies between two bounds, we cannot be 95% confident that poilies outside
those bounds. Thereis aloose sense in which one may claimthat such data
provides information about whether people are behaving "as if' certain options
were possible, but the researcher is merely using a probability distribution to
model possibility.
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Measuring Freedom and Constraint

The characterization of uncertainty in possibilistic terms motivates a
measure of how relatively free the actors in a system are to make choices,
given the constraints of that system. Our initial definition in (2) serves as a
starting point for a more general measure, capable of assessing the collective
freedom of individuals on the basis of their relative access to the set of
conceivable choices.

It is beyond the scope of a single article to fully elaborate a calculus of
freedom and constraint. | shall outline the beginnings of one such calculus
from a frequentist standpoint. Let N individuals each have possibility values
poij and necessity values nejj (for the ith individual on the jth option) for each
of r conceivable options. Let the values of poij and nejj be either 0 or 1.
Obviously, neik = 1 only if pojj = 0 for all but the kth option. Then the relative
amount of freedom enjoyed by the ith individual is r

r (11)
Fi = 2 (poij - nej)/r.
j=1

We may recover the marginal possibility and necessity distributions over the r
optionsby N

N
poj = Z poi/N,and

i=1

N (12)
nej
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The relative freedom for (portion of people free to choose) the jth option is then
measured by

Fi = poj- nej, (13)

which is a recovery of the definition given by (2). Likewise, relative preference
for the jth option, Sj, may be defined as in (3).

Now, if we movetothe group level and wish to measure the freedom available
to the entire collection of N individuals, there are three definitions that could
be adopted. One is simply to measure the average F; or Fj, which clearly may
be done whether possibilities have been defined at the individual or only at the
group level. But this definition ignores both partitions and permutations. The
method of permutations leads us to define system freedom F* by

F* = TIrFi/rN,
j

=0 onlyifall Fi=0, (14)

where only nonzero Fj are multiplied together. The Nth root of F* is of course
the geometric mean of the nonzero Fi. As in probabitity, the permutations
approach to measuring freedom involves dividing the freedom accorded alt
permissible permutations by the freedom accorded all conceivable
permutations.

The third definition ignores permutations and considers only partitions.
There are several situations where this might be desirable. One is where the
system or group distinguishes only among different partitions rather than
among permutations (akin to the Bose-Einstein statistics for photons), so that
each permutationis considered equipossible. Another such condition iswhen
only marginal possibilities are known, as with the imposition of constraints at
the group level. Group constraints are constraints onthe margins (partitions)
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only, and do not yield deterministic estimates of simple individual possibility. |
shall briefly outline the calculus of relative freedom using the method of
partitions.

Given r alternatives with equipossible partitions, there are two kinds of
constraint that must he taken into account when calculating relative group
freedom. One is the constraints on possibility and necessity for each of the
alternatives. The second constraint is that the partitions themselves must
always add to 1, even though the poj and nej need not. This latter restriction
impliesthat roptions may be representedinr-1dimensions (or, in conventional
statistical terms, "degrees of freedom"). Figure 2 shows the geometry of
freedom domains for r=2 and 3. In the case where r=2 the domain is a
segment onthe line defined by p1 + pz = 1 whose endpoints are determined
by po1, poz, net, and nez. This line haslength /2. Forr=3, the domain
is an area inside the equilateral triangle defined by p1 + p2 + p3 = 1, whose
edges have length /" 2. Forr=4the domain is a volume inside a reguiar
tetrahedron, and so on.

Conceptually, the computation of the relative group freedom is simple. One
computes the portion of length, area, volume, etc. that is left over once
possibility and necessity constraints have been taken into account. The
precise nature of these computations will be elaborated shortly. For now,
suffice it to say that freedom is decremented interms of (1-po,')"1 and ne,-"’.
Thus, in the first example provided in Figure 2, if po1 = 0.75, po2 = 0.80, net
= 0. 10, and ne2 = 0.15, thenthe relative group freedom (FG) is

FG = [1-(1-po1) - (1-po2)] v/ 2/ /" 2

= 1-(1-po1) - (1-po2) = 0.55. (15)

In the second example, if po1
= 0,and ne3z = 0.15, then

Il

0.75, po2 = 0.80, po3 = 0.56, ne1 = 0, ne2
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FG = (1-nea)?- (1-poa)? - (1-poz-nes)® = 0.52 (16)

Of course, these examples have been made straightforward.

FIGURE 2
Relative Freedom for 2 and 3 Dimensions
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Even simple examples, however, may be intuitively interesting. Consider a
teacher who gives students some choice on how they weight three pieces of
assessment. Which is the more flexible: (1) A rule that specifies no piece of
assessment gets less than a 20% weight, or (2) a rule that no piece of
assessment gets more than 60%? Under rule (1), FG = (1 -3(0.20))2 = 0.16,
while under rule (2} FG = 1 -3(1-0.60)2 = 0.52. Rule (2) therefore gives 3.25
times the relative freedom of rule (1) . How low would the maximum weight
restriction in rule (2) have to be before its FG equals that of rule (1)? The
required equation is 0.16 = 1 - 3(1—poi)2, and the solution is poi = 0.47, or a
47% upper weight limit.

Let us move toward the general (r-option) case. Given equipossible
partitions, and the constraint that the partitions must sumto 1, the space for r
alternatives may always be represented as an r-1 dimensional
hypertetrahedron. The relative freedom of a collectivity that has possibilistic
constraints imposed on the availability of the r options is simply a
hypersubvolume inside that space, and therefore FG may be defined as the
ratio of that subvolume to the volume of the hypertetrahedron. The
computation of FG consists entirely of subtracting terms in poj and nej and
adding back those portions that have been subtracted twice. Theseterms are
always taken to the r-1 power. The result is a sum of groups of terms that
alternate intheir signs.

For the 2-option case,

FG = (1-nei-nez2) - max(0,1-po1-nez) - max(0.1-poz-nes). (17)

The 3-option model yields

FG = (1-ne1-ne;_>-ne3)2-max(0.1-po1-ne2.ne3)2
- max(0,1 -poz-ne1-ne3)2 - max(0,1-p03-ne1-ne2)2
+ max(0,1-p01-p02-ne3)2 + m:~.1x(0,1-p01-p03-ne2)2

+ max(0,1 -p02-p03-ne1)2. (18)
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and the 4-option model gives

FG = (1 - ney -nez—nea-ne4)3 - max(0,1 - po1-nez-ne3-ne4)3

- max(0,1 - poz-ne1-nea-ne4)3 - max(0,1 - poa-ne1-nez-ne4)3

- max(0,1 - p04-ne1-ne2-ne3)3 + max{G,1 - po -poz-nea-ne‘z)3

+ max(0,1 - p01-poa-ne2-ne4)3 + max(0,1 - p01-p04-nez-ne3)3
+ max(0,1 - poa-poa-ne1-ne4)3 + max(0,1 - poa-p04-ne1-ne:<1)3
+ max{0,1 - poa-p04-ne1-nez)3 -max(0,1 - p01-poz-p03-ne4)3
- max(0,1 - pox-p02-p04-ne3)3 -max(0,1 - p01-p03-p04-ne2)3

- max(0,1 - poz-poa-poa-nes)®.
The general equation for the r-option model may be expressed by

r r
FG = (1- S ne)™' - Smax(0,1-poi- £ ngj)"’
i=1 i=1 jei

r
+ % X max(0,1-poi-po- X nek)"1
i=1 j>i k=i

r
w+ () S max(0,1-ne- £ pop)
i=1 j=i

(19)

(20)
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Thus, returning once again to the survey on transportation for the elderly,
we may compute the relative freedom of our sample from the data supplied in
Table 1. There are 4 options, so from (19) we have

FG = (1-.02-.12-.08)3- (1-.42-.12-.08)°

-(1-.70-.02-.12-.08)- (1-.72-.02-.08)% = 0.41. (21)

These, however, are the most straightforward constraint models for
categorical data. Cross-classified systems are considerably more
complicated, and mixed systems with constraints on sums across several
categories more so again. Nevertheless, they are not incomputable and both
classical and Monte Carlo algorithms have been proposed for evaluating the
volumes ofthe required polytopes (e.g., Cohen & Hickey, 1979). Within reason,
it is feasible to compute FG for cross-classified systems of options under a
variety of assumption about (non)independence.

We are now ready to move to the case where N individuals are assigned
possibilities over a range of values on a continuous variable rather than over
discrete options. For the most part, this is a simple generalization of the
schemediscussed above. Let X be a continuous variable with range [d,u], and
let X the ith individual be assigned a possibility poi(x) =1 for all x in some
subrange [ai,bi] and 0 for all y outside this subrange. Then F; is defined as

Fi = (bj - aj)/(u-d) (22)

The average Fi and F* are defined as above, with u-d replacing rin (14).
More generally, let poi(x) and nei(x) take values from the [0,1) interval. Then
(22) is generalized to

u
Fi = § (poi(x) - nei(x))dx/(u-d) (23)
d
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A somewhat different but widely useful case is where each state x of X is
assigned a possibility and/or necesssity value: po(x) and ne(x). Most likely
these possibilities would be epistemic, buttheimportantissue here isthat po(x)
and ne(x) do not refer to individuals. They may refer, for instance, tothe ease
with which x is attainable. if the researcher wishes to compute the relative
freedom for each individual, then in this instance Fiis identical for all i, and it
is defined by (23) without the use of subscripts in the right-hand terms.

The reader may have noticed that | have been silent on the issue of
evaluating FG in systems characterized by constraints on probability density
functions over interval-level (continuous) variables. The reason forthis is that
thereis, to my knowledge, no satisfactory framework available for defining FG
in such systems. For practical purposes in some instances, we may
approximate the continuous case via the standard ploy of dividing the
appropriate range of the variable into r equal intervals and t reating it as an
r-option system. However, the limiting behavior of (20) is unknown at present,
and of course inthe vast majority of practical problems (20) cannot be applied
and we have no explicit expression for the general case. We are teft with
computational approaches along the lines suggested by Cohen and Hickey
(1979).

Finally, there is a class of situations in which the density functions
constrained by possibility and necessity need not accumulate to 1. Instead,
t becomes merely a limit on their accumulation value. Consider a
Commons-type setup in which M shareholders may use a resource up to a
limit, L. Each shareholder's usage of the resource also is limited by his or her
share ofthe holdings, hi. Let H denote the sum of the holdings h;, withe amount
actually used bythe ith shareholder, bi = wi/H, and B the sum of the bi. Then
po(bi) = min(hi/H,L/H) and po(B) = min(lL/H,1). Cleary if HL then the
shareholdersface a Commons dilemma, since they are less than perfectly free
to use as much of their holdings as it is possible for them to do. There are
meny Commons situations in the real world, but perhaps the one familiar to
most people isa bank. Iftoo many people withdraw their savings from a bank
in a too short time, the bank fails. Furthermore, the relative freedom for any
individual to withdraw money hinges on how much others have withdrawn
recently.



Possibility Theory, Fuzzy Logic, and Psychological Explanation 27

In these problems, FG may be calculated as a subvolume of an
M-dimensional rectrangular solid. The case for M =2 is shown in Figure 3
below. Were L =H then shareholders would be free to maximize their b;.
Hence, FG is the proportion of the area po(b1)po(b2) that is bounded by the
lineby + b2 = UH:

FG = [1/2po(b1)po(b2)]

[(L/H)2- max(0,L/H-po(b1))? - max(0,L/H-po(b2))?) (24)

For these general case, we have M "sharehoiders" each with a share h;,
which inturn sumto H, the total holdings. Each user may make a withdrawal
wi subjectto the collective limitation that the sum, W, of the wi may not exceed
L. This scheme may be translated into possibilisitic terms by setting bi = wi/H
and B equal tothe sum of the bj. Then as before, po(bi) = hi/H, and po(B) =
min(L/H,1). FG isthen evaluated as the portion of the hyper-rectangular solid
defined by the po(bi) bounded by the constraint po(B) = L/H. ForM =2, FG
is defined as in (24). ForM =3,

FG = [1/(6po(b1)po(b2)po(ba))]
[(L/H)® - max(0,L/H-po(b1))® - max(0,L/H-po(bz))° -
max(0,L/H-po(ba)) - max(0,L/H-po(b1)-po(b2)* -

max(0,L/H-po(b1)-po(ba))® + max(0,L/H-po(b2)-po(ba))’) (25)

and forthe general case M =r,
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r r
FG = [1/(M 11 po(bi))][(L/H)" - & max(0,L/H-po(bi))’

i=1 i=1

r
+ ¥ ¥ max(0.L/H-po(b)-po(bi))’ - ..
i=1j>i

r
o+ () max)O,UH- ¥ po(t)T.
i=1 j=i

(26)
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FIGURE 3
Two-dimensional Commons Setup
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Before moving onto consequences of our definitions, several issues remain
to be discussed. One of them is the relationship between the "freedom"
measures proposed here andtraditional notions such as "degrees of freedom’.
In both the strongly and weakly constrained r-option systems, the statistical
concept of degrees of freedom corresponds with the dimensionality of the
space in which the FG are computed. In this formalism, then, freedom has
two components: dimensionality and magnitude. One consequence is that
directcomparisons offreedomacross systems having different dimensionality
is not straightforward. Can FG = 0.4 be directly compared with FG = 0.3, if
the former system has 3 options and the latter has 107?

This last consideration raises the possibility of norming FG with respect to
its exponent. Consider a strictly sum-constrained M-option system, and let us
add K more options onto it. If we assume that the sum of the poifori=1,...M
exceeds 1 and that the addition of these options does not alter the po; or ne;,
then for all j > M we have the following limits:

M
poj <1- 2 nejand
i=1

nej > 0. (27)

These new options could be said to add no more freedom to the system
since they do not alter the limits on the old. If nej and poj are minimal and
maximal respectively in terms of the limits imposed by (27), then it would be
reasonable to conclude that the freedom available in the new system should
equal that available inthe old.

But from (20) we know this is not the case. Letting N=M+K, it is clear
that FGN < FGwm, entirely because of the higher exponent in FGN. A partial
correctionforthis may be achieved by usingthe M-1th and N-1th roots of FGm
and FGnrespectively. Equality is attained by this measure onlywhen aliterms
in (20) that include any poi equal 0, so that the first term is all that is left.
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There is a rough analogy between this norming procedure and the
computation ofthe geometric mean, since for systems with no constraints on
the pithe resulting measure is almost identical to the geometric mean. This
measure may be intuitively thought of as a "mean” or "normed" measure of
relativefreedom. Forconvenience, let usdenotethe M-1th (or Mth, inthe case
of FGm as defined by (26) or the unconstrained case) root of FGm by S(FGwm)
andcallitthe "standardized freed om" measure. Its main applications probably
will arise in problems where researchers wish to directly compare freedom
measures between systems of unequal dimensionality.

A somewhat related issue concerns the meaningfulness of computing
freedom coefficients for systems that have an indefinite (unknown) number of
options. The case of interest is when some finite subset of those options is
knownand the poi and nei bounds ontheir respective pi have been established.
Call this a "finite subset" (FS) case. For all FS of dimension M-1, a freedom
coefficient may be defined by treating the FS as a subsystem and creating
dummy pom and nem for the remaining unknown options, but with nem and
pom set according to the limits prescribed in (27).

This procedure amounts to assuming that these unknown options are not
any more restricted than their complementary (known) counterparts.
However, it does permit knowledge engineers and expert systems builders, for
instance, to retax the assumption of “logical omniscience" (cf. Horvitz et. al.,
1986) which requiresthat all conceivable options be known before evaluating
belief, likelihood, or uncertainty of a proposition. The relaxation of that
assumption notonly accords with many real-world situations, but alsowith the
spirit of Shackle’s (1969) rationale for surprise measures and Zadeh's
arguments for possibility theory.

Beforeleavingthesetopics, letus consider an example. Inapilot empirical
study of possibility (Smithson, 1987, p. 18-22), | had subjects rate the
possibility that “several" and "few" could refer to various integers. Table 2
displays some hypothetical possibility ratings for the integers. Is the
distribution for "severaly" or "several2" looser (freer) than that for "a few'? On
what basis could we compare them; should we use FGm or S(FGm)?
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TABLE 2
Possibility Distributions for "Several" and "A Few"

Integer A Few Severali Several2
0 0.00 0.00 0.00
1 0.00 0.00 0.00
2 0.50 0.00 0.00
3 1.00 0.10 0.31
4 1.00 0.40 0.31
5 0.40 0.80 0.50
6 0.00 1.00 1.00
7 0.00 1.00 1.00
8 0.00 1.00 0.40
9 0.00 0.80 0.31
10 0.00 0.20 0.31
11 0.00 0.00 0.00

Aconventional approachto comparing these possibility distributions would
be to assess their "heights", perhaps by taking the arithmetic mean. In our
calculus, the geometric mean would be appropriate as long as the pi for these
distributions did not have any further constraints placed on them. The
geometric mean for the possibility distribution of "a few" is 0.669, while for
"severali"itis 0.517 and for "several2"it is 0.455. The possibility distribution of
"afew" is freer than that for "severals", which inturn is slightly less constrained
than"severalz".

However, if we view the possibility distributions as upper bounds on
subjective probabilities that must sum to 1 and hence impose the strict
summation constraint on the pi, a rather different picture emerges. Clearly
we may use (20) to compute freedom coefficients for these distributions, and
forthe distributionin"afew" FG4 = 0.660, whilefor "severali" FGg = 0.376 and
for"several2' FGs = 0.666. According tothe measure defined in (20), “a few"
and “several2" have nearly the same amount of relative freedom, whie
"severalq"is substantially more constrained. Ifwewishto use the standardized
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freedom measure, then S(FGa) = 0.871, for "severali" S(FGg) = 0.870, and
S(FGg) = 0.94 4for"several2". The standardized measure indicatesthat, when
the number of integers is adjusted for, "afew" and "severali"are nearly identical
in their amounts of freedom. The obvious lesson here is that the rank order of
freedom in sys tems may be altered depending onthe measure adopted, and
so the choice of a measure of relative freedom is not trivial in its impact.

A number of formal consequences flow from these definitions of relative
freedom. | shall mention only one of them, namely the issue of whether
necessity constrains more than impossibility. This issue has already been
raised in an earlier example. In unconstrained systems where FG is defined
simply by an appropriate version of (14), necessity decrements FG as much
asanequivalentamountofimpossibitity. For sum-constrained systems where
FG is defined by (20) or (26), however, thisis not the case. Details and proofs
of the theorems described below may be found in Smithson (1988).

Theorem 1

Let FG bedefined asin (26) but with an appropriate extension to incorporate
nei constraints. For any set B contained in i:i=1,2,...,r let poi and ne;j be
assigned in any manner that befits their definitions. Now, let poj be chosen for
alljin B'and nej = 0, and denote the freedom of this system by FGp. Likewise,
let ngj = 1-poj, then define all poj = 1, and denotethe freedom ofthis alternative
system by FGn. Then FGp > FGn.

This theorem stipulates that necessity constrains freedom more than an
equivalent amount of impossibility, in systems modeled by (26). For systems
modeled by (20) the picture is not quite so simple. Necessity constrains more
than impossibility except under the conditions specified in the following
theorem:

Theorem 2

Let FG be defined as in (20), and consider FGp and FGn as defined in
Theorem 1. Then FGp< FGn if and only if:
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(1) B’ consists of only one j; and

(2) X ne 1- X poi
ie B ieB

This case-by-case discussion is intended to give the reader a feeling for the
overall approach to a calculus of relative freedom rather than a rigorous
introduction. A full elaboration of freedom measures must await another
occasion. More important is an introductionto weak predictionand entailment
models, which is the final primary component of our alternative framework for
quantitative analysis.

Weak Entailmentand Prediction

Conventional statistical models are designed to make pointwise predictions
or to test for one-to-one associations. The exceptions to this tendency are
scattered throughout the literature and rarely articulated for what they are.
Although the conceptual and mathematical machinery of statistics is
sophisticated and powerful, itis inappropriate for modeling systems in which
people have a range of alternatives or choices. This section presents several
models of entailment, prediction, and association based on (fuzzy) set
inclusion, overlap, andlogic which are compatible withthe concept of partialty
restricted choice.

Starting with the 2x2 setup, as various authors have pointed out (e.g.,
Hildebrand, Laing, & Rosenthal, 1977, in an oddly unfashionable and
neglected book), there are two fundamentally different kinds of "pure”
relationship between two binary variable's. One is the "perfect" association in
which all the observations fall in the diagonal cells, as shown in the first part of
Figure 4. This is the 2x2 analog to complete correlation, and in an entailment
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or prediction scheme constitutes perfect prediction. The otheris the so-called
“weak perfect'association showninthe secondtwo parts of Figure 4, in which
observations may fall in three of the four cells. This is, of course, not a
one-to-one associationand does not yield perfect predictability. Actors inthis
scheme are restricted but still have options.

X
! 1
2 0 Pri,  Pry
Y -
2 prl.z. 0 prz,
Pry Prl
X
1! 1
2 Prig Prip P
Y -
2 prl.z. 0 prz.
prll prl
X
1! 1
2 0 Pri, Pro
Y

2I pr1|2| prlzl pr2|

pryc pry

FIGURE 4
Weak and Perfect Association
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The traditional armory of measures of association and prediction for 2x2
tablesis oriented primarily toward the "perfect association" model. Chi-square
based measures (e.g., phi) and proportional reduction of error (PRE) measures
such as Goodman and Kruskal's lambda achieve their maximum values only
under perfect assocation. The odds ratio is sensitive to imperfect association
butitdoes not provide an interpretive framework that is congruent withtheories
of action under partial constraint. There are alternatives, some of which lead
to useful characterizations of weak prediction and entailment in contingency
tables.

There are two direct, simple interpretations for weak perfect associations
between two variables. Thefirst one is based on set inclusion. Let the options
on X1 beindexed by 1 and 1’, and the options on X2by 2and 2'. If pry and prt’
= 1-pry are the marginal portions for X1 and pr2 and pr2 = 1-prz are the
marginals for X2, then the middle part of Figure 4 corresponds to the inclusion
of option 1 by option 2, while the third part shows the inclusion of option 2 by
option 1. From the definition of joint possibiity we know that poi2 =
min(pr1,pr2), and a measure of set inclusion is

l1/2 = priz2/pri, and

lo;1 = priz/pra. (28)

The greatest possible association that can occur between two binary
variables is a strict inclusion relationship between them. The only
circumstance underwhich"perfect' association (in settheoreticterms, setwise
equivalence) can possibly occuriswhenthe marginals of the twovariables are
identical. Therefore, the corresponding measure of association that we require
is the extent to which one variable inctudes or is included by the other, which
shall be called set overlap:

OL12 = max(l/1,11/2) = pri2/posz. {29)
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Applications of these inclusion and overiap measures have been detailed
in Smithson (1987).

A PRE measure may be developed using l2/1, 112, or OL12to compare the
observed degree of inclusion or overlap with that expected when X1 and X2are
statistically independent:

PRE12 = 1-(1-l12) / [1-(pripr2/pri)],

PRE2/1

1- (1-l2n) / [1-(pripra/prz)], and

PRE12 = 1- (1-OL12)/ [1-(pr1ipra/po12). (30)

Booleanlogic also may be used to characterize weak perfect associations
between two binary variables. The middie part of Figure 4 corresponds to the
proposition that option 1 implies option 2, while the third part represents the
proposition that option 2 implies option 1. Unlike set inclusion, standard logic
counts "nonblack noncrows" as evidence for the claim "all crows are black".
Hence only one cell contains counterindicative observations for a simple
"if-then" hypothesis, as Hildebrand et. al., (1977) explain. They developa PRE
measure, del, of the extent to which the number of expected counterindicative
observations under statistical independence between X and Y is reduced by
the actual data. Inthe scheme shown in Figure 4,

dely2 = 1 - (pri2/(pripr2)), and

del2in = 1- (pri:2/(pripra)). (31)

This measure also may be described in terms of a priori conditional
possibilities. If the proposition that 1 implies 2 is true, then the conditional
possibilities of the four cells are po(2/1) =1, po(2/1’)=1, po(2'/1’) =1, and
po(2'/1)=0. Thus, delij2 compares the observed with the expected
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conditional impossibilities, which are 0 for all but 1-po(2°/1) = 1. Anidentical
argument connects delz/1 withappropriate conditional possibility.

A less intuitively accessible but important framework comes from
information theory via “proportional reduction of uncernainty" (PRU)
coefficients of association proposed by Kullback (1959), Theil (1972), and Kim
(1984). Instead of either a set theoretic or logical interpretation, the PRU
framework focuses on the amount of "surprise value' that data have, given an
hypothesized relationship between the variables. |will not present it here, but
the interested reader may find a development of this approach for numerical
and fuzzy variables in Gaines and Shaw (1986) and an extension and
comparison betweenthe PRU and PRE frameworks in Smithson (1987, ch.7).

Theimportant pointtothese measures of association and prediction isthat
they operationalize one-to-many predictions or entaiiments, which are
compatible with a possibilistic approach to data analysis. The simple "if-then"
proposition, in a sense, constrains people in one column of the 2x2 table but
permits them choice in the other. The generalization of either PRE or del to
larger bivariate or multivariate tables is not difficult, and will not be elaborated
here. Instead, | shall briefly discuss its generalization to numerical variables.

Thescatterpiotsin Figure 1 are both examples of simple “if-then" entailments
involving numerical variables, in the sense that they conform to the statement
"if Xis highthenY is high." The sets "high X" and "high Y" are fuzzy sets because
"high" is a graded concept, and the key to developing a PRE type measure of
association to test weak predictions such as these is inducing either a fuzzy
set membership scale or possibility scale (in the sense of "possible that this
value of the scale could be referred to by the term *high’) from the raw scales
for Xand Y. This may be done absolutely or by using z-scores. Having done
this, then 11,2, del1/2, and the rest may be defined using definitions for fuzzy set
inclusion and fuzzy logical implication (for details on these see Smithson &
Knibb, 1986; and Smithson, 1987, ch.1,3, and 7). The same mathematical
tools may be used to operationalize other kinds of weak entailment models
(WEMs) whose predictive regionsarealso regions of conditional possibility for
free choice.

Let a bivariate WEM be represented by a simple region in XxY, with X
entailing Y. Many such regions may be described by lower and upper bound
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functions L(X) < Y andY < U(X), respectively, as shown in Figure 5. Then
the characterization of the conditional possibility distribution po(Y/X) is
deducible from the fuzzy logical operationalization of the statement "L(X) <Y
andY < (X)"

po(Yi/Xi) = min[po(Yi/L(Xi) <Y),po(Yi/Y < (Xi))]. (32)

Given a form and parameters for the functions U and L, numerical methods
may beemployedto specify them by optimizing on del and precision measures
as defined in Smithson (1987). It is not difficult to generalize this scheme to
multiple region WEMs or models involving multiple constraining variables
which inturn also constrain one another.

Thefuzzysettheoretic, fuzzylogical, and information theoretic frameworks
are not the only formal models that could be used to characterize
one-to-many entailments such asthose in Figure 1. Itis quite possible to use
rather conventional statistical tools to do the same job, namely the "dual
equation" approach referred to at the beginning of this paper. The main
advantage of the dual-equation approach over the fuzzy set, logical, or
information theoretic approaches is its use of conventional and rather
generalized concepts, albeit in a slightly deviant guise. The dual-equation
models can easily capture a wide variety of relationships, while the other
approaches require more computingtime in orderto performthe same feats.
Its primary disadvantage, however, isthat itdoes not connect particularly well
withthe possibilistic framework, whereas fuzzy set and possibility theory are
intimately related. Fuzzy set theory has been used to provide a mathematical
measure theoretic basis for possibit ity theory, and they share a "natural" link.
Asyet, thereis noanticulated linkage between possibility theory and constraints
onvariance.
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u(y)

L(Y)

FIGURES
Regional Prediction of Y

Weak, one-to-many, or regional prediction models are not new. They are
at least embedded in formatisms such as mathematical decision theory with
ts characterization of "admissible solutions’, (non)linear programming, and in
social and economic perspectives such as Simon'’s "satisficing" economic
individual. However, the material introduced here refers to the first serious
attempts to ground them in a statistical association framework that also can
incorporate the concepts of possibility and choice.
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The combination of possibilistic and weak predictive models opens a
potentially valuable toolbox for data analysis in an agentive mode. The
possibilistic calculus enables us to compute the relative loss of freedom
imposed bya particularstructural, predictive, or entailing restriction on action.
The fuzzy logic and inclusion basis for weak prediction permits the
operationalization of a wide variety of structural, psychological, or material
constraints in possibilistic terms. The two immediately suggest ways of
modeling possibilistic and weakly constrained dynamic systems whose states
dependonchoicesordecisions made at various points intime. It is not difficult
toimagine pseudo-Markovian models using "transition possibilities" or models
inwhich possibilities and/or constraints are choice-dependent.

Possibilismin Psychological Theory and Research

In several areas of psychology, the elaboration of possibility compels a
rereading and, to some extent, a reconstruction of theory. All that can be
provided here, however, is an illustrated outline of that reconstruction. | shall
focus mainly on social psychological examples. A considerable proportion of
psychologists utilize possibility in an implicit, perhaps even unconscious
manner, although it is seldom carried into the level of research. One of the
first tasks in putting possibility to work is to uncover its role(s) in theoretical
perspectives and disentangle it from related concepts.

Many researchers, for instance, confuse possibility with conceivability,
whichleadstothe objectionthat "any conceivable outcome is possible’, or "the
possibilities are endless'. However, that often is not the case in either the de
re or de dicto senses of possibility. Many conceivablethings are not physically
orsocially possible. Furthermore, people are literally forced by the limitations
of their minds and the finitistic nature of the social stock of knowledge to make
decisions or choices from a finite field of subjective possibilities. In practical
social action, the field of possibilities usually is a finite, small subset of the field
of conceivable alternatives.
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Possibility plays perhaps its most important role in hidden counterfactuals
that formthe backdropto psychological accounts and theories. Virtually any
account of strategic, purposive, or intentional action requires an account of
possibilities. Game and decision theory are the most obvious examples in
which such accounts are explicit, but even these prescriptive frameworks
have failed to take into account that relative freedom itself could be a
quasi-(dis)utility. This seemsthe gist of Schwartz’ (1986, p. 155-159) criticisms
of the classic economic assumptions about preferences. He points out that
economists (among others) have utterly neglected the manner inwhich choice
is influenced by how people perceive, categorize, and act on possibilities. The
measures of freedom defined in this paper could be employed in the
development of a decision theory that includes relative freedom as not only a
descriptor but as a criterion measure for preferences. There is considerable
prima facie evidence that ordinary decision makers often take perceived
freedom (or roomto move) into account when making choices. Indeed, it could
be justly claimed that the choices of greatest import to decision makers are
those that involve creating or closing off possibilities.

The evidence for these claims arises in both normative and explanatory
research on decision making. Collingridge (1980, 1982) deviates from the
mainstreamdecision theoretic literature in his criteria for good decisions under
“ignorance’ (rather than uncertainty). He recommends that decisions in the
absence of complete and certain information should be revocable, corrigible,
and should keep as many options for alternative courses of action open as
possible. March and Olsen’s (1979, p. 72-73) account of organizational
decision making indicates that decision making often is as much a process of
creating or maintaining possible goals and outcomes as pursuing or actingon
them. They claim that members of organizations attempt to maximize
possibilities (in terms of their available choices) when uncertainty is high.
Tversky and Kahneman (1981), on the other hand, find that people may try to
reduce uncertainty by selecting an option that narrows the range of future
possible outcomes, even at the cost of foregoing their most preferred
outcome.

These are not necessarily contradictory findings. A simple but plausible
hypothesis is that while people generally abhor “freedom" in terms of an
uncentain or incomplete state of knowledge, they positively regard “freedom"
of action. De re possibility is preferred, and de dicto is avoided, because both
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actions enhancethe sense of controllability. There are considerable prospects
for a research program investigating this hypothesis in conjunction with a
comparison of people’s perceptions of freedom and "objective" measures of
freedom. At least one current project on decision making concerns
techniques for increasingthe number of alternative possibilities perceived by
decision makers prior to the actual decision process (Guerin, personal
communication 1987).

The widely used concept of "rule" in social psychology also requires
possibility as a component. Constitutive aspects of rules delineate the realms
of possible meanings or interpretations for social conduct, while regulatory
aspects describe realms of possible behaviors. These realms usually are not
totally constraining; nor do ruies normally have one uncontested
interpretation. Social rules are only weakly constraining and permit (or even
invite) strategic manipulation and reinterpretation, as is evident in everyday
concepts like the "letter’ and "spirit" of a law or "bending" rules. A great deal of
strategic social interaction is made possible by the nature of social rules.

By distinguishing possibility from probability, necessity, and
conceivability, some major psychological concepts may be enhanced.
Power, for example, haslong proved difficult to define and use in social
psychological theories, despite a considerable literature on the psychology of
control. Should power be defined as a potential or an actuality? Does it have
three aspects (Lukes, 1977) ortwo (Layder, 1985)? Our concepts may clarify
at least some of the problematic aspects of power by focusing at tention on
whethera giventype of powerinfluencesthe distribution of possible, probable,
or necessary actions. Power that decreases or increases a possibiity
distribution is akin to a potential, since it does not determine what people will
dobutinstead what people can do. Power that alters a necessity distribution,
ontheotherhand, influenceswhat people mustdo and is closerto an actuality.
Power that influences what people prefer or are likely to do is akin to
persuasion, since it does not involve altering actual constraints on action.

In most real-world situations, the exercise of power will not correspond
precisely to these "pure" types but will involve mixtures of them. But the
analytical advantage of these three distinctions is that unlike most other
typologies of power, they enable us to differentiate among several common
strategies used by wielders of power. Consider, for instance, the plight of an
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academic withdwindling enrolments in herthird year subject. She may attempt
toincreasethelikelihood, pri, that students will select hers out of the range of
elective subjects, or even try to decrease their preference for other subjects,
thereby lowering pri' (persuasion). On the other hand, she may opt for altering
the freedom allowed forthird year students. One strategy is to try to make her
class required for third year psychology students (increasing nei, which
increases coercion). A second alternative would be to decrease nej’ (thereby
increasing poi), which amounts to making some other currently required third
year subjects nonrequired. Third, she might try to reduce the range of third
year options offered in psychology without eliminating her subject, thereby
decreasing poi' and hence increasing ne; indirectly. Academics anywhere wil!
recognize all of these power strategies, and also know the distinctive
advantages, costs, and political roles involved in each of them.

Possibility enters into accounts and theories as an ingredient of meaning.
Many psychologists have recognized this at least implicitly. Social
comparison and judgment, the perception of relative deprivation, reference
group processes, reactance, self-enhancement (including several varieties of
therapy), and skills acquisition are examples of processes that inciude a
possibilistic component. Taylor's (1983) account of how cancer patients cope
by using downward comparison (i.e., "things could be worse — on is worse
offthan | am") is one of the most explicit demonstrations that possibility plays
a crucial role inthe construction of meanings and the assertion of control.

Finally, possibility may constitute an explanatory component in a theory.
Some allusions to this have already been made in the remarks concerning
decision processes earlier in this section. Clearly either de dicto or de re
possibility could be used in an explanatory capacity. Examples of de re
possibilistic explanations are plentiful in everyday life: the wealthy and poor
approach the same problems of living in dramatically different ways because
they also differ widely on what is possible and necessary; transportation
strategies adopted by youth alter suddenly because they become legally old
enough to get driver's licenses; and so on. Likewise, actions whose
explanations depend onan appealto what could happen, what could be done
instead, what someone else might do, or what consequences might follow,
often invoke a de dicto passibilistic account. The Prisoner’s Dilemma and the
arms race share this property, among others.
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A good example of the systematic (albeit qualitative) use of de re
possibitistic concepts in a middle-range theory of strategic behavior is Mars’
account of workplace crime (1982, ch.1). He begins with Douglas’ (1978) grid
and group constructs as a way of classifying occupations, but his purpose is
to explain the rise of characteristic patterns of workplace extralegal activities.
Accordingly, he points out that weak grid workplaces exert weak constraints,
permit greaterfreedoms, and thereby allow more scope for extralegal activities
onthe part ofthe individual worker. Weak group occupations also involve fewer
constraints on the individual from his or her work-group, but strong
work-groups also have the potential for exercising teamwork in the service of
group-level pilferage. Mars’ explanatory typology involves possibility
dimensions at boththe individual and group levels.

The explanatory linkages among possibility, choice, and constraint may
best be appreciated by examining those aspects of the human condition that
are making the transition from a deterministic/probabilistic process t0 a
psychological and social process involving possibility and choice. Consider,
for instance, the determination of a baby's gender. Unti recently the
underlying process was best modeled as a simple binomial distribution with
a probability of nearly 1/2for a girl or boy. Sociobiologists have been fond of
adding deterministic refinements to this probabilistic model, whereby more
boys are produced when food is scarce and more gins whenfood is plentiful.
This process does not involve possibility or choice, but social constraint also
is absent. If we adopt the sociobiological model, the possibility, probability,
and necessity of having a girl (or boy) are identical; and the constraints are
biological.

Enter choice of gendertechnotogy, in which claims are made that parents
may reliably choose whether or not to have a boy or girl. The question of
whether such technology is available now is the center of some controversy,
andtheactual reliability for current practices is unknown. But suppose awidely
available technique were to be created that had a reliability of 0.9. In other
words, the expected po(boy) = po(girl) = 0.9, while the expected ne(boy) =
ne(girl) = 0.1. Clearly the process for determining the gender of the newborn
would then shift from a probabilistic biological to a possibilistic social process,
with preference patterns initially influencing the female/male ratio of the
newborn.
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These preference patternswould suddenly assumethe status of influencing
factors. Some studies indicate that not only does a majority of parents prefer
boy babiesto girl babies {this tendency is stronger among menthan women),
but an overwhelming percentage (91% of the men and 84% of the women, in
a study referred to by Fraser, 1986) prefer the firstbornto be a boy. How far
away from the nearly even boy-girl split might such preferences take us? Let
us conservatively assume that 16% of the women would try for firstborn giris.
Taking these preferences on face value, the expected ratio of firstborn boys
to girls would be at minimum [(.84)(.9) + (.16)(.1)]/[(.16)(.9) + (.84)(.1)] =
3.386. Ifthe 16% who do not insist that a boy be the firstborn include some
uncommitted women, then the ratio would be higher. The 84% preference
figure also is a least upper bound:; to the extent that couples’ decisions on the
firstborn’s gender were made jointly or dominated by men, the ratio could be
higher.

What social responses might we expect tothis (even prospectively)? Some
people might see this as a classic Commons dilemma, in which individual
preferences exercised collectively endanger the collectivity as a whole.
Spokespeople from several interest groups already have commented
unfavorably onthe prospect of awidespread pattern of "big brotherism" by birth
order (cf. Fraser, 1986). The Luddite option (banning the technology) seems
unlikely. More likely are various attempts to socially "regulat e" gender choice,
orto narrow the range between possibility and necessity. Here, then, is a
concrete realization of the oft-repeated refrain in sociological theory that
freedom and constraint go hand-in-glove, but with the roles of possiblility,
choice, and constraint made more explicit and analyzable. Rather than
Zinoviev's vision of a replacement of "possible not to" by "not possible to", we
should expect that a sudden increase in "possible not to" would be
counteracted with acorresponding increase in'necessary to"via social or even
legal regulations. Exit a strictly probabilistic biological explanation. Enter
moral choice, the imposition of social constraints, and a possibilistic theoretical
and gquantitative framework. As Hacking (1981, p. 26) so aptly puts it, “The
less determinism, the more the possibilities for constraint."

in summary, possibility plays a part in several crucial aspects of
psychological theories: (1) As a backgrounding for counterfactuals in
hypotheses, prescriptions, and measurement; (2) As an ingredient in
meanings; and (3) As an explanatory or analytic variable. A well-formed
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conceptual and mathematical basis for possibility should enable theorists and
researchers alike to amplify each of these capacities. Likewise, the advent of
a mathematical framework for possibility improves our ability to address
central questions concerning person-situation research, the nature of freedom
and control, the operation of power and domination, and how people make
decisions or exercise preferences. It does not, of course, solve fundamental
phiosophical problems associated with the free will versus determinism
debate. No simple appeals to language can do that, although at least
distinctions such as subjective and objective possibility enable theorists to
avoid the pitfalls pointed out by writers like Skinner (e.g., 1978, p. 31) in
confusing the feeling of freedom with "real" fredom.

While it is far too early to assess the payoffs from a theory of possibility and
weak entailment framework at the theoretical and conceptual level, some
immediate cltaims can be made for benefits at the level of research design and
dataanalysis. Nolonger need quantitative researchersresortto deterministic
statistical mathematics by default, and moderntheorists need not inevitably
turn knowledgeable, intentional actors into judgmental dopes wheneverthey
quantitatively operationalize any component of their theories. Furthermore,
weak entallment models offer a badly needed alternative to "causal analyses"
in which a dozen or so ill-defined variables are inappropriately laundered
throughthe GLMto"explain' minute portions of variance in outcome variables.
It places the burden of proof, for once, on the determinists.

Although the framework presented here is incomplete and tentative, it
clarifies one of the most difficult problems in the human sciences: the
conceptual rift between modern psychological theory and quantitative
methods. It also offers some foundational concepts and methods which may
point away out of this difficulty, by applying fuzzy logic and possibility theory
to models of prediction that allow choice under partial restriction. Finally,
those foundations suggest a method for measuring the relative freedom of
choice accorded either inviduals or groups which in turn may prove valuable
in both normative and explanatory paradigms of decision making and choice
behavior.
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QUANTIFIERS AS FUZZY CONCEPTS

Stephen E. NEWSTEAD

Department of Psychology, Plymouth Polytechnic
Drake Circus, Plymouth PL4 8AA, England

As their name suggests, quantifiers are used to indicate quantities along
certain dimensions, whether of amount (e.g., all, some) or frequency (e.g.,
never, often). Such terms are among the most commonly used in English
and other languages. Thorndike and Lorge (1944) in their list of the 500 most
common words in English include more than a dozen such terms, including
the four examples given in the previous sentence.

Some writers have assumed that the quantities expressed can be precisely
determined. For example, according to logic all means every single member
of a set, and some means at least one and possibly all members of a set.
Similarly the query languages developed by computer programmers give
precfse definitions to the quantifiers used in searching through a database.
It will be argued in this chapter, however, that outside such artificial
languages quantifiers are inherently fuzzy concepts. Furthermore itwill also
be argued that their meaning is variable depending on the situation in which
the words are used.

Previous research on quantifiers has taken place within a variety of different
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frameworks. Logicians and reasoning researchers have investigated the
interpretation of quantifiers as a possible explanation for errors in
syllogistic reasoning; applied psychologists have studied the scale values
of quantifiers used in rating scales; and psycholinguists have investigated
the representations of quantifiers in both comprehension and memory.
Each of these areas of research has its own focus of interest and its
own methods of investigation. In this chapter an attempt will be made to
review this work and to synthesise the findings from the disparate areas.

QUANTIFIERSAND SYLLOGISTIC REASONING

According to the Greek philosopher Aristotle, syllogisms are the
essence of human rational thought. Syllogisms consist of two premises and
aconclusion, each of which contains one of the quantifiers all, no, some, and
some ... not. An example would be:

All men are mortat
No men are women
Therefore some women are mortal

All syllogisms are like this in that they contain a conclusion consisting
of two terms (women, mortal) which are linked in the premises by a common
middle term (men). Since any one of the quantifiers can be used in each
premise and the conclusion, and since the end and middle terms can be
ordered in different ways, there are a large number of possible syllogisms.
Only a small number of conclusions are valid (the one given above is not)
and people are knownto make a large number of errors when they attempt
to solve syllogisms (see Evans, 1982, for a review).

The errorsthat people make in syllogistic reasoning could occur at any one
of a number of different stages. They could occur at the encoding stage;
they could occur when the information fromthe two premises is combined;
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ortheycould arise atthe decision stage. Researchto date hasfailedto provide
any conclusive evidence as to which of these stages is the source of errors,
and indeed it is possiblethat all might contribute (Fisher, 1981). However, for
the present purposes we shall concentrate on interpretational explanations,
i.e.those alleging that the premises are misinterpreted.

Two main errors have been indicated intheliterature, conversion errors
and incomplete representations. Conversion errors involve interpreting
the quantifiers a/l and some...not as if they implied their converses, for
example, believing that All As are Bs implies All Bs are As. That this is not
the case can be easily seen by using the real-life example All dogs are
animals. Conversion errors could explain a number (though not alt) of the
errors that are typically made (Dickstein, 1981). Incomplete representations
arise when premises are represented in such a way that some logical
possibilities are excluded. For example, Some As are Bs does not logically
preclude all As being Bs, but subjects might represent this premise in such
away that this possibility is precluded.

Thefactthatthese misinterpretations can explain many ofthe errors made
does not, of course, mean that this explanation is correct, since other
explanations might fare equally well. Independent evidence that such
interpretational errors occuris needed. Suchevidence as exists comes from
two main experimental methods, Euler diagrams and immediate inferences,
and the findings fromthese two tasks will be considered in turn.

Euler diagrams (frequently confused with Venn diagrams) depict the
possible relationships betweenthe two sets mentioned in the proposition. The
five possibilities are presented in Figure 1, ranging from identity (diagram 1)
toexclusion (diagram5). Inthe bottom partof Figure 1 isan indication of which
quantified statements are true of which Euler diagrams. In a typical
experimental task, subjects would be askedto indicate which statements can
be paired with which diagrams, and their performancecompared to the
logically correct answers given in this figure.
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All As are Bs v v X X X
No As are Bs X X X X v
Some As are Bs v v v v X
Some As are not Bs X X v v v

Note: A'v"idicates that a diagram is true with respect to the quantified
statement on the left, an "x" that it is false.

FIGURE 1
Euler diagrams
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If subjects are making conversion errors with the quantifier a/l, then they
should presumably select only diagram 1 (the identity relationship, for which
conversion is valid) and not diagram 2 (in which As are a subset of B and
conversion isinvalid). Unfortunately for conversiontheorists, such errors are
rare. Griggs and Warner (1982) found only one response out of 32 which
came into this category, and unpublished research by the present author
confirms the rarity of this choice. If subjects are converting some...notthen
they should choose diagrams 4 and 5, for which both Some As are not Bs and
Some Bs are not As are true, but not diagram 3 which is true for Some As are
not Bs but not its converse. Once again, however, choice of just these two
diagrams is rare (<5% in the unpublished study by the present author).
Subjects commonty select just diagram 4, but omit both diagrams 3 and 5.
it must be concluded from research on Euler diagrams that conversion is not
common.

The evidence for incomplete representations is much stronger, since
subjects frequently indicate fewer diagrams than they should. More
importantly, there is a pattern to these omissions. Errors with some
frequently involve omitting diagrams 1 and 2 and errors with some...not
frequently involve omitting diagram 5 (Neimark & Chapman, 1975). These are
preciselythose diagrams whichare true only because some does not preclude
all, and some...not does not preclude no; in other words these diagrams are
true for the universal relationships (a// and no). Hence this finding would
suggest that subjects interpret some as meaning some but not all.

According to conversational implicatures (Grice, 1975), this is precisely
what one would expect, since it would be misleading to use the term some if
one believed allto bethe case. The evidence strongly suggests, then, that
subjects underinterpret some and some...not in predictable ways (see Begg
& Harris, 1982). Such a finding is alittle surprising since subjects are usually
specifically instructed to give the quantifiers their logical interpretations.

The second major way of iooking at the interpretation of syllogistic
quantifiers is the immediate inference task, in which subjects are asked to
indicate which statements are logically implied by a given quantified
statement. For example, subjects might be giventhe statement A/l As are Bs
and asked if a statement such as Some As are Bs logically follows from this
(Begg & Harris, 1982; Newstead & Griggs, 1983). Conversion &rrors would
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be demonstrated if subjects believed that all and some...notstatements
implied the truth of their converses. There is evidence that a significant
minority of subjects (30-40%) believe thatall is convertible, and an even greater
number believe some...not to be so (Newstead & Griggs, 1983).

There is also significant evidence immediate inference task for
incomplete representations. As inthe Euler diagram task, many subjects
believe that particular statements (i.e., those using some and some...not) are
not consistent with their universal counterparts. One example will serve to
ilustrate this point; of the subjects given the statement A/l As are Bs, only about
70% believed that Some As are Bs was definitely true, despite the fact that the
truth of this statement is implied by logic. Further, a significant number of
subjects (morethan 20% in each ofthree separate studies) believedthat the
some statement was definitely false (Newstead & Griggs, 1983).

Within the context of syllogistic reasoning, it is also relevant to mention
extended syliogisms or set inclusions. These are chained premises of the kind
All As are Bs, All Bs are Cs, All Cs are Ds. Subjects find such relationships
extraordinarily difficult, possibly because they make conversion errors and
failtorealise the transivity of the relationship (Griggs, 1976). Newstead and
Griggs (1984) have suggested that errors might be caused by subjects
interpreting all fuzzily, in order words treat ing it as if it meant aimost all. They
attempted todemonstrate suchfuzzy interpretations by asking subjects torate
the appropriateness of all when there were just a few exceptions to a general
rule. Anexample would be if subjects were asked to rate the appropriateness
ofthe quantified sentence All the people are aged under 100 wheninfactthere
was one person (out of several thousand) aged over 100. The authors obtained
moderately highappropriateness rating for such items.

In itself this evidence is far from conclusive. There are obvious demand
characteristics in atask such asthat used so that subjects might feel obliged
to give non-minimal appropriateness ratings when there are just a few
exceptions. Fortunately forthe authors, there was one aspect of their results
which serendipitously supported their hypothesis. In addition to asking
subjects to rate all they also asked themto rate other quantifiers, including no.
Presumably the same demand characteristics apply to ratings of a/l and no,
and yet all was rated significantly more appropriate than no when there were
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just one or two exceptions to a general rule. Hence at the very least we can
conclude that all is interpreted more fuzzily than no.

The research on syllogistic reasoning has produced conflicting resuits, but
some general conclusions can still be drawn.

(a) Conversion errors probably do occur, despite the fact that they do not
show up in Euler diagram tasks. However, they are manifested only by a
minority of subjects.

(b) Incomplete representations occur frequently. An especially
prevalent error is that of adopting the everyday interpretation of particutar
quantifiers rather than that dictated by logic.

(c) There issome preliminary evidence thatall may be interpreted fuzzily.

(d) There are large individual differences in the interpretation of
quantifiers.

QUANTIFIERS AND RATING SCALES

If syllogistic reasoning is historically the most important context in which
quantifiers have been studied, the most important in terms of weight of recent
research isthe use of quantifiers in rating scales. In rating scales, people are
askedtoassess somebodyorsomething alonga labelled dimension. In many
cases this dimension involves frequency or amount and the labels used are
quantifiers. As an example, people might be asked in a questionnaire whether
they enjoy parties always, often, occasionally, seldom or never.

It is normal practice to convert responses on such scales into numbers, for
instance assigning 5 to a response of always, 4 to often, and so on. In this
way the results from different questions can be pooled and compared.
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However, this conversion assumes that the responses are intervally scaled,
such that the distance between any two adjacent responses is the same;
thus in the above example the distance between always and often should be
the same as that between seldom and never. Unless these responses
achieveinterval scalingit is inadmissibie to convertthem into numbers (which
are, of course, intervally scaled). Hence one of the principal aims of
research in this area has beento find quantifiers which possess interval scaling
properties. One of the best known studies here is that of Bass, Cascio and
O'Connor (1974). They used the scaling method of magnitude estimation
(Stevens, 1971) to assess the scale values of 44 quantifiers of amount and
39 of frequency. Onthe basis of their findings they were able to list optimum
sets of quantifiers, depending uponthe number required for a particular scale.
They claimed that these scate values were relatively robust since they were
unaffected by the importance of the topic described (the War in Vietnam vs
rainfall in Nepal). Some researchers have suggested minor alterationstothe
proposed optimum lists (e.g., Schriesheim & Schriesheim, 1978; Pohl, 1981)
but in general they have stood the test of time.

Despite the relative stability of these scale values, there is a growing
body of evidence that they can be substantially affected by a number of
factors. Perhapsthe best documented of these is the expected frequency of
the event described. Pepper and Prytulak (1974) found that quantifiers were
interpreted as indicating higher frequencies in contexts which were
themselves of high expected frequency. To ilustrate, frequently wastaken
to mean approximately 70% of the time when used to describe the frequency
with which Miss Sweden was found attractive (high expected frequency) but
only about 20% of the time when describing the frequency of air crashes (low
expected frequency). These results have been replicated on a number of
occasions (eg. Newstead & Collis, 1987; Wallsten, Fillenbaum & Cox, 1986).
Each of these studies also found that the effects of expected frequency were
much more marked with high than with low frequency quantifiers. Indeed
quantifiers denotingless than half seemed unaffected by base rate.

There is also some evidence that attitudes and experience can influence
interpretation of quantifiers. Goocher (1965) asked subjects to assign
quantifiersto various activities (such as going dancing) which occurred with
specified frequencies. Their experience and liking of such activities was also
assessed. Subjectswhodisliked orhad little experience of an activity tended
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to assign higher frequency quantifiers than subjects with greater liking or
experience. Thus a subject who disliked dancing might think going dancing
three times a month to be "often" whereas a keen dancer might call this
“seldom". It is possible that this finding is a special case of the expected
frequency effect, sincethose wholike an activity orindulge in it regularly might
have a higher expected frequency for such an event.

There is also evidence that type of activity or object being descrined can
influence the interpretation of quantifiers. As has already been mentioned,
Bassetal.,found no differences in scale values dependent onthe importance
of the activity described. Similarly, Newstead and Collis (1987) found that
scale values showed littie variation over avariety of different activities, ranging
from emotional feelings to overseas visits. However subjects seemed less
inclined to use the extreme ends of the scales when emotions were being
described; for example a/ways feeling happy is interpreted as implying being
happy little more than 90% of the time. But perhaps the most impressive
evidence comes from an interesting series of experiments reported by
Hormann (1983). He found that each of the following factors could influence
the amount indicated by a quantifier:

(a) Object described: a few crumbs means more than 8, whereas a few
shirts means approximately 4.

(b) Size of object: a few large cars suggests a smaller number than a few
cars.

(c) Spatial location: a few people standing in front of a hut is not as many
as afew people standing in front of a building.

(d) Size offield of vision: afew people seenthrough a peephole indicates
asmaller number than a few people seen through a window.

It is possible once again that these findings are related to expected
frequency since one might expectto see fewer large objects than smal!
ones, or to see more objects through a window than a peephole.

Another factor which has been claimed by some to affect interpretation is
the set size that is being described. The first study to investigate this was
carried out by Borges and Sawyers (1974}, who asked subjects to choose
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the appropriate number of marbles suggested by a quantitier. They varied
the size ofthe set of marbles and were thus able to compare for example the
proportions indicated by some with set sizes of 12 and 108. They reported
no effects of set size, though this may be because they used an insensitive
statistical technique. Intwo replications of their study, Newstead, Pollard and
Riezebos (1987) were able to demonstrate significant effects, such that low
magnitude quantifiers (e.g., few) indicated largerproportions with small set
sizes than they did with large set sizes. However Newstead and Collis (1987)
found much smaller (and nonsignificant) effects when quantifiers of
frequency rather than amount were used. It would appear that set size is
animportant but somewhat unpredictable determinant of interpretation.

The final factor which seemsto affect scale values is the range of other
qualifiers available. Chase (1969) found that ocassionally was assumed to
indicate a higher frequency when presented in the context of low frequency
quantifiers (se/dom, rarely) thanwhenembedded in high frequency quantifiers
(usually, often). Similarly Newstead and Griggs (1984) found that some was
rated as more appropriate with proportions between 50%-100% when it was
the only quantifier available than whenthe quantifiermostwas also available.
However there is evidencethat the number of other quantifiers has little effect
providing that the quantifiers there are give a reasonable spread across the
dimension (Newstead & Collis, 1987).

It should be clear from the work on rating scales that the interpretation
of quantifiers is very much affected by context, the expected frequency of
the event, the type of activity, the set size described and the range of
alternative quantifiers available can all affect scale values. What this implies,
of course, is that we must not look for the meaning of a quantifier; rather we
must acknowledge that there is a range of meanings and the problem thus
becomes one of characterizingthis variable meaning. Some possible ways of
doing this are indicated in the final section.

A further point to note is the considerable variability inthe interpretation
of quantifiers. This can be readily detected in those experiments in which
subjects have been asked to indicate ranges for quantifiers (e.g., Wallsten,
Fillenbaum & Cox, 19 86; Newstead & Collis, 1987). Interestingly, Wallsten et
al., found that quantifiers in the middle of the range were most variable,
followed by high frequency quantifiers and then low frequency terms.
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Another aspect of variability can be seen in the large individual differences
that emerge in many of these studies. That these are not simply attributable
to experimental error has been shown by Budescu and Wallsten (1985)
who found that individual subjects were consistent over time but significantly
different to other subjects.

Psycholinguistic studies of quantifiers

The comprehension and representation of quantifiers have challenged
psychologists for many years, but despite extensive research and theorizing
there is still little consensus inthe area. A number of different approaches
have figured in the literature, and this chapter will briefly summarise four of
the more influential ofthese: the featural theory of Just {1974): the analogue
theory of Holyoak and Glass (1978): the propositional theory of Anderson
(1981); and fuzzy set theory.

Featural theories are based on the assumption that words can be
analysed into unique combinations of features. A commonly-cited textbook
example is the word bachelor, which can be defined in terms of possessing
the feature "male" on the male/female dimension and the feature
"unmarried" on the married/unmarried dimension. With respect to
quantifiers, dimensions such as universal/particular, large/small and
negative/posttive can be used to categorise quantifiers. In a series of
experiments involving sentence-picture verification, Just (1974) was able to
provide evidence in favour of such a featural analysis. It is worth noting,
however, thatthese results were obtained with highty-practised subjects who
showed a consistency and accuracy that would probably not be found with
naive subjects. In addition it is now generally accepted that feature theories
are oversimplistic; while certain core aspects of meaning can be represented
inthis way for some words, some of the subtleties and variations of meaning
cannot be captured.
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Accordingtotheorists such as Holyoak and Glass (1978), quantifiers can
be characterised as points along an analogue scale. This can be visualised
as a line with all at one end and no at the other, with each quantifier
occupying a location between these two extremes. The experiment
carried out by Holyoak and Glass (1978) indicated that quantifiers located
closetogether onthis scale were morelikely to be confused with each other
in memory thanwere more distantterms. This is strong evidence to support
the analogue theory but, as the authors themselves point out, would also
be predicted by certain featural theories and, indeed, other theoretical
apporaches.

The propositional theory of Anderson (1981) claims that quantifiers are
given abstract representations in the form of propositions. Inthe particular
version of the theory espoused by Anderson, quantifiers have an effect on
whole sentences, altering the type and number of propositions into which
they can be analysed. Quantifiers which produce similar propositional
analyses (e.g. all and some) should be prone to confusions in memory, and
this is precisely the result obtained by Anderson. However, it must be noted
once againthat such a result could also be predicted by feature theories (a//
and some are both positive) and by certain versions of the analogue theory.

Fuzzy set theory has been investigated only recently in psycholinguistic
research on quantifiers. According to this theory, quantified terms can be
represented as membership functions overthe rangefrom 0 to 1. For any
quanrtifier there will be some values that are definitely outside the
membership function (to which a value of 0 is assigned), others that are
definitely within it (which receive a value of 1), and others which have
intermediate values. Consider for example the quantifier some; the value of
0% would certainly be outside the membership function for this term; 30%
would definitely be in it; but values suchas 90% might be regarded as having
intermediate values, not being definitely within or definitely outside the
meaning. Some preliminary work has suggested that this approach may
be fruitful (e.g., Wallsten, Budescu, Rapaport, Zwick & Forsyth, 1986; Farkas
& Englander, 1987; Ekberg & Lopes, 1980), but as yet little work has been done
totest the predictions of this theory against those of other approaches.

Perhaps the only certain conclusion that can be drawn from this
psycholinguistic research is that no certain conclusion can be drawn. The
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empirical evidencethat has been accumulated can be adduced ta support any
ofthe theories but to disprove none ofthem. The predictions of several of the
theories are a little obscure and it is difficult to be optimistic of an early
resolution of the conflicting views.

Overview and Synthesis

To a certain extent, the division of research on quantifiers into three areas
- syllogistic reasoning, rating scales and psycholinguistics - is arbitrary. To
give just one example, Hérmann's (1983) study was included in the section
onrating scales because it related so closely to work onthe effects of context
on interpretation; in realty, the research was motivated more by
psycholinguistic considerations. Despite such cross-references, in general
researchersineach area have pursued their enquiries independently of each
other. Nevertheless there are important and illuminating links that can be
made, and in this section an attempt will be made to draw some general
conclusions about the interpretation of quantifiers.

(1) Quantifiers are Fuzzy

The conclusion that quantifiers are best regarded as fuzzy concepts
seems inescapable. Attempts to determine the meaning of a quantifier have
been noticeably unsuccessful in all areas of research. Clearly quantifiers have
arange of meanings and the re are no clear-cut boundaries between one term
and another; it is difficult to see how this could be captured other than by
notions such as those derived from fuzzy set theory. One aim of future
research should clearly be to determine membership functions for each
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quantifier. Some studies of rating scales have provided useful information
here since subjects have been asked to give maximum and minimum values
for quantifiers. However much the most sophisticated work in this area so
far has been carried out by Wallsten et al., (1986) who have empirically
obtained membership functions for frequency and probability terms. The
experimental test they used involved choosing which of two terms best
described the proportions indicated on a pie-chart. It would be interesting to
know if similar results can be obtained using different methods; although
they were used in rather different paradigms, the techniques of allocating
100 points between different quantifiers (Begg & Harris, 1982), or giving
appropriateness ratings to quantifiers (Newstead & Griggs, 1984) might both
be adaptable to investigating this question.

It is perhaps not too surprising that quantifiers such as some have
meanings covering a fairly wide range. However it has also been claimed
that universal quantifiers might be fuzzy in nature. Clearly the range of end
terms such as all and always is much more restricted than for intermediate
terms; Budescu and Wallsten (1985) found interquartile ranges close to zero
for end terms but in excess of 20% for other terms. However, Newstead and
Griggs (1984) provided evidencethat al/l is sometimes seen as appropriate even
when there are one ortwo exceptions. Furthermore, an incidental finding
of Newstead and Colis (1987) was that always, when appliedto statements
concerning emotional states, may mean littte more than 90% of the time.
Hencethereis evidencethatall and always can be interpreted fuzzily, though
interestingly there islittle evidence for fuzziness inthe interpretation of no and
never.

(2) Meaning is context dependent

Once again, the conclusion that the meaning of quantifiers varies
depending upon the context in which they occur is totally inescapable. It
emerges most clearly in work on rating scales but is evident also in other
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research areas. The most widely researched type of context is base rate or
expected frequency. Pepper and Prytulak (1974) have shown quite clearly
that terms such as often suggest a higher frequency when applied to
expected or common events ratherthan unexpected ones. What is more, a
number of other context effects can be explained using this concept.
Effects of liking and familiarity (Goocher, 1965) can be explained in terms of
famitiar or enjoyable events having a higher expected frequency. Simitarly,
effects of size of object or size of field of vision (Hérmann, 1983) may be due
to anexpectancy of seeing fewer large objects or fewer objects in a restricted
field of vision.

Another aspect of contextthat can influence interpretation is the size of the
set described. Although the effect is somewhat variable, it does apear that
at the very least the proportion signified by low frequency quantifiers of
amount decreases as set size is increased.

One finding to emerge in both studies of expected frequency and of set
size is that low frequency quantifiers are more fixed and less variable in their
meaning than high frequency quantifiers. The effects of expected frequency
have repeatedly been found to be more marked with high frequency terms,
and it is actually disputable whether any effect exists with low frequency
terms (Wallsten, Fillenbaum & Cox, 1986). At first sight the effects of set size
contradict this, since it is the proportion signified by /low frequency terms
that varies with set size. However, this contradiction is more apparent
than real. Low frequency terms signify a greater proportion with small set
sizes than with large set sizes, and hence the actual amount suggested by
the quantifier varies less than with high magnitude quantifiers. Thusfew might
suggest 4 out of 10 and 10 out of 100, a relatively small difference, while many
might signify 7 out of 10 and 70 out of 100, a proportionally greater difference.
It is interesting to recall that terms at the bottom extreme of the scale (no,
never) also seemto be less variable (fuzzy) than their counterparts at the top
end of the scale (@/l, always).

Another aspect of context which seems to affect interpretation is the
number of other quantifiers available. Chase (1969) has shown that
occassionally means rather more when embedded in fow magnitude
quantifiers than when embedded in high magnitude ones. Similarly, in an
experiment partly reported by Newstead and Griggs (1984), it was found that
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some wasregarded as highly appropriate for any proportion between 10% and
90% when the only other quantifiers available were al/l and none; but when
most was addedto the list, the appropriateness of some between 50% - 100%
declined markedly. Itwould appearthat quantifiers can expand or contract to
fill the available semantic space; they will be interpreted narrowly if many
other quantifiers are avaitable, but much more broadly if there are few other
quantifiers.

It was concluded in the previous section that quantifiers are best
characteristed as fuzzy concepts. In view of the marked effects of context,
this conclusion needsto be reviewed. Since the scale value of quantifiers
can be influenced by context, t hen presumably each quantifier can be
characterised by a whole range of fuzzy sets, the appropriate one being
determined by context. However, this is a rather unsatisfactory state of
affairs since it implies an essentially infinite number of fuzzy sets a ssociated
with each quantifier. The issue is complicated even further by the finding
that meaning depends on the other quantifiers available. Not only does the
scale value around which the set is centred vary, but also the size of the set
itself; the spread will be large when only a few other quantifiers are available,
but smaller when there are more available.

Clearly a straightforward fuzzy set approach is too simplistic. The
complexity of quantifiers can perhaps be captured by assuming that they can
be represented as fuzzy sets which can vary along an analogue scale. To
ilustrate this, in the absence of context, often might have a membership
function correspondingto a normal curve with a mean of 65% and a standard
deviation of £10%. The effect of context would be to alter the mean value,
but the membership function itself might be relatively unchanged .

This is an improvement, but there are still problems. As quantifiers get
pushed towards the extremes of the scale, the set must be compressed to
prevent it going beyond the end-points. In addition, some quantifiers (the low
magnitude ones) are more fixed than others, and hencetheir corresponding
sets cannot be moved up and down the scale inthe same way. And finally,
as we have seen, the range of quantifiers is determined by what other
quantifiers are available; hencethe sets indicated by quantifiers must be able
toexpand and contract accordingtothe context in whichthey occur. Hence
the analogue scale must make provision for some quantifiers being more
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fixed than others in their position on the scale, and for the sets themselves
being variable in range depending on their position inthe scale and on which
other quantifiers are represented on the scale.

Thusfarthe picture that has been painted might appear to be one of almost
unlimited variability. Fortunately, there are a number of aspects of meaning
that do not change; in particular the rank order of quantifiers seemsto remain
virtually constant (Pepper, 1981). There are sometermsthatare synonymous
(e.g. seldom and rarely), and the rank order of these can vary from study to
study; but ifthese special cases are ignored, rank order correlations approach
unity. Thus the meaning of a quantifier such as few can vary so that it means
as much as 50%; but there seems to be no way in which it can mean more
than some does inthe same context, even though the meaning of this latter,
out of context, is only about 30%.

. Hencethere is here animportant regularity that can be built in to a model
of quantifiers. We are left with a complex but coherent conceptualisation:
quantifiers can be characterised as fuzzy sets located in fixed order along an
analogue scale. The size ofthe sets is variable, and some quantifiers are more
mobile than others in their position along this scale.

Itwould be pretentious to elevate these ideas into a "theory" of quantifiers;
rather they provide a framework for summarising existing research findings.
Nevertheless the conclusions, drawn from existing data, are all open to
empirical disproof. More importantly, the ideas might indicate where future
researchers should look for lawful relationships. Itislikelythat the meaning of
quantifiers varies regularly with expected frequency and set size; and the
range of quantifiers probably varies in a predictable way with the number
of other quantifiers available and proximity to the end-points of the scale.
There are hints of such relationships in the literature, but only a richer poo!
of experimental data could confirm or disprove their existence.
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(3) There are large individual differences in interpretation

Research on syllogistic reasoning and rating scales has revealed marked
individual differences in interpretation. Some subjects (approximately 40%)
regard all as convertible, the remainder do not; some subjects adopt the
interpretation dictated by logic, others are swayed by conversational
implicatures; and there are substantial individual differences inthe scale values
given to frequency terms. These individual differences are not due simply to
experimental errors since both Newstead and Griggs (1984) and Budescu
and Wallsten (1985) have, in very different paradigms, shown consistency
insubjects’ interpretations.

There are presumably a number of different sources for individual
differences, and some possibilities areraised by the literature reviewed inthis
chapter. It has been shown that quantifiers can expand or contract to fill the
available semantic space. It follows from this that someone with a large
vocabulary of quantifiers will assign rather more specific meanings to these
terms than someone withaless rich vocabulary. Inaddition, there are aimost
certainly differences in subjects’ willingness to adopt fuzzy interpretations of
universal quantifiers, and it has been found that fuzzy interpreters are more
likely to make conversion errors (Newstead & Griggs, 1984). Perhaps some
subjects are simply less precise in their use of terms, and allow for a certain
amount of flexibility in meaning. It would be interesting to know if these
subjects are the same ones as those who respond in experiments as
predicted by conversational implicatures, refusing to be tied down to the
highly specific meanings prescribed by logic.

SUMMARY AND CONCLUSIONS

This chapter has reviewed research on quantifiers from three quite
distinct areas: syllogistic reasoning, rating scales and psycholinguistics. It is
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quite clear that such terms are imprecise and ill-defined, and mean rather
different things to different people. It is also true that their meaning varies
markedly from one context to another, depending on such factors as
expected frequency, size of set described and range of other quantifiers
available. However, the order of quantifiers seems to be fixed. These
properties are captured if quantifiers are visualised as fuzzy sets of variable
size which are in fixed order relative to each other but which can be moved up
and down a continuous scale.
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A COMMON FRAMEWORK FOR COLLOQUIAL
QUANTIFIERS AND PROBABILITY TERMS

A. C. ZIMMER

University of Regensburg,FRG

The importance of modal qualifiers for argumentative reasoning is
investigated and it is shown that colloquial quantifiers and uncertainty
expressions can be interpreted as fuzzy numbers in the interval [0,1].
Empirical procedures are suggested for the determination of these fuzzy
numbers.

The empirical results reveal that for propositions on a defined level of
abstraction colloquial quantifiers and probability terms can not only be
expressed as fuzzy numbers but furthermore can be used in according to the
rules for fuzzy combination numbers.

For specific areas of content well defined scope functions can be
empirically determined. These influence the meaning of colloquial
quantifiers systematically, that is, they catch the contextual meaning. A
somewhat related effect is observed in probability terms for conditional
propositions.
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1. INTRODUCTION: Schemes for Reasoning and Argumentation

In the history of Western thought, starting with Aristotles Organon,
mechanical procedures for reasoning have been devised serving as normative
theories for human reasoning and at the same time as tools for the processing
of evidence. The rise of psychological investigations of thought processes
has debunked the notion of logic as an - albeit normative - theory of human
reasoning. The question, however, ifand howformal approaches of reasoning
and human reasoning can be broughttogether, remains open. The approach
proposed here is intended to close the gap somewhat by proposing what
could be termedan approachtoaformal theory of informal reasoning (Zimmer
1984a).

In order to make more specific what such an approach is intended to
achieve, it seems appropriatetocompare classical formal approaches, thatis,
predicate calculus and probability theory, withwhat is knownabout everyday
reasoning. In Table 1 the positions of predicate calculus, probabilitytheory,
and everyday reasoning regarding central problems of reasoning are
compared.

The inspection of Table 1 highlights the fact that, in general, predicate
calculus and probability theory take very similar approaches towards
problems and modes of reasoning despite their different structure. Exceptions,
however, are the evaluation of partial or circumstantial evidence and inthe
weighing of evidence by probabilities or by divers colloquial qualifiers; here
probabiity theory and everyday reasoning take similar positions. What
distinguishes these points fromthe rest of Table 1? They apply to situations
where only approximate solutions are possible, where the reasoning is
invalid or does not lead eitherto the alternative "true/false", but where only
degrees of plausibility or veridicality can be reached.

As Toulmin (1964) observes, standard logic has been developed with an
eye on mathematics where such ambiguous situations are to be avoided at
nearly any cost (but see, for instance, Kline, 1980). In order to liberate logic
from this Procrustean bed, Toulmin suggests the reconstruction of logic
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TABLE 1
Modes of reasoning

75

|Predicate |Probability |Everyday
jcalculus |Theory |Reasoning
| | I

law of the ex- |valid without |valid in the jusually not

cluded middle

|specification
|
I
l
I

|definition of

|the event space

|
|
I

|valid exept
|for easily
|enumerable

|emsembles

Modes of reasoning:

- deduction |valid without |valid without |valid but the
jexception |exception |result looses
| | |plausibility
| | [with the length
| | |of the deductive
| | |chain
| | I
- induction |not valid |not valid in clas-|valid if many
| {(the method of |sical approaches |convincing ana-
|proof by complete|v. Mises, Popper) |logies can be
linduction is a |valid with re- |brought forward
|deductive method) |striction in non- |
| |standard appro- |
| jaches |
! f [
evaluation of |not possible |pessible by means ]gossible but
partial or |except for non- |of Bayesian or |biased because
circumstantial |standard appro- |information-theo- |of heuristic

evidence

jaches (non-mono-
|tonic reasoning,
|default reason-
|ing

!

|retic schemes

I
I
I
I

|and/or charac-
|teristic of me-
|mory (primacy

|and recency

use of qualifiers

|only standard
|quantifier (all,
|some, not all,

|none)

|not defined except|applicable

|for weighing by
|probability

|without

|restrictions




76 A.C. Zimmer

according to the mode! of legal argumentation. He suggests a scheme of
syllogistic reasoning with the following components:

(i) claims propositions that are supposed to be true or to be at least
plausible to a certain degree

(i) grounds or reasons for believing the claims to be valid (the usual form
is that of explicitly or implicitly quantified statements)

(i) warrants, statements about the relations between grounds and
claims{e.g. causality, necessity, sufficiency, contingency)

(iv) backing commonly shared knowledge (Smith, 1982) which provides
the ruies for a combination of grounds and warrants in order to
justify the claims (e.g., rutes of syllogistic reasoning or statistical
inference)

(v) modal qualifications general quantifiers and uncertainty
expressions, such as possibly, usually, necessarily. Theyapplytoto
the propositions and to the inferential process.

(vi) rebuttals alternative claims which can also be inferred from the
grounds, warrants, and the backing because of the modal
quantification of propositions and inferential rules. Rebuttals can
be overcome by either showing that they imply a smaller set of
consistent propasitions than the claim or by comparing the overall
modal qualification of the rebuttals with the evaluation of the claims.

These components are combined as shown in Figure 1 (Toulmin, 1964, p.
104; the figure has been slightly changed in order to avoid inconsistencies).

DATA & (CLAIM)} QUALIFIER)
+
Since
|
| unless
{ (WARRANT) qualifier) :
[} |
e e e e e e e - _J
evaluation
on account of/ REBUTTAL
because
because
L—BACKING
FIGURE 1

A modified version of Toulmin’s (1964) model for syllogisms in
argumentation. Toulmin’s original model is indicated by upper-case letters
and bold lines.
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An example for this kind of syllogistic reasoning using an analysis of the
chains of arguments in the determination of the probable price of a used
book (see Figure 2).

x 1s a book T——‘
&
X 1s used g —>/ the book
& is very probably
x is damaged J dL »| inexpensiv ‘
L | unless
since 1‘since :
ottt @ T _]x is a
"used books "damaged books : ( e b )
are inexpensive" are _ - JI ERREReet
} inexpensive” not the case
on account on account because
of of % 1s a textbook
texebooks ar
(not rare E)
\
Va book 1s a Rule 1 about Rule 2 about Rule 3 about
commodity" commodities:.... commodities:.... commodities: ....
"if used, they "1f damaged, "“if not rare, they
loose value” they loose value"| are comparatively
inexpensive”

FIGURE 2
The application of the modified Toulmin model.
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Figure 2 especially reveals the importance of implictt (...) or explicit
(usually, always etc.) quantifiers, for the evaluation (qualification) of the
claim. In order to develop a formalized version of Toulmins approach to
plausible reasoning, itis necessary to develop a common framework for the
interpretation of explicit and implicit quantifiers and furthermore an
algorithm for their concatenation. Zadeh (1983) has suggested the
interpretation of quantifiers as fuzzy numbers inthe [0,1] interval and the use
of the operations of fuzzy numbers (Dubois & Prade, 1980) as the algorithm
fortheir concatenation.

2.FUZZY NUMBERS AND QUALIFIERS

The meaning of quantities like "about 50 %" or "slightly below 0.3"
(Smithson, 1987) and adding "about 50 %" and "a bit more than 10 %" with
the result "probably somewhat more than 60 %" seem to make sense
immediately. However, it is not clear how this intuitive meaning is reflected
in the formal definitions of fuzzy numbers and their rules of concatenation
(Dubois & Prade, 1980). The formal definitions allow for the proving of
abstract theorems in fuzzy number theory and for checks of consistency but
these formal definitions do not provide any guidelines for the mapping of
imprecise observable quantities into the different types of fuzzy numbers (11 ,
s, 2, s/z, or z\s numbers) and for the setting of parameters. On the other
hand, Smithsons (1987) and others purely empirical approach characterizing
afuzzy number by a listing of relative frequencies is not sufficient either,
because he does not propose empirically testable rules for the concatenation
of these numbers. Such rules however can be derived from results on
approximate calculation in the areas of foreign exchange (Zimmer, 1984b)
and of the stock market (Zimmer, in preparation). For merely itlustrative
purposes, let us start with fuzzy numbers of the form "standard number +
qualification" (e.g. "approximately 0.7").
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Figure 3(aand b) representsthis fuzzy number where the core (0.7), and
thefuzzy upperand lower boundaries, (the fuzziness due tothe qualification)
can be discriminated. The fuzzy number can now be represented by the
following triple: lower boundary relative to the core, core, upper boundary
relative tothe core (0.1/0.7,0.7, 0.15/0.7).

.

(@
~—er R
N fuz ziness
14 o
:
I
]
]
]
1
]
(b) ! R
R
FIGURE3

Fuzzy numbers consisting of a core (or prototypical) meaning of 0.7 and
fuzzy upper and lower boundaries.(a) is a fuzzy number with core interval,
{b) is afuzzy number with a point-wise core.

Any two fuzzy numbers can be concatenated following these steps: (i)
calculating the resuiting core by means of standard arithmetics, by (ii)
averaging the respective upper and lower boundaries, and by (iii)
determining the resulting boundaries from the a veraged boundaries in
relation to the resulting core. The operations with fuzzy numbers
corresponding to the standard operations in arithmetics are illustrated in
Figure 4(a-d).
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FIGURE 4
Operations withfuzzy numbers
a/ fuzzy addition @
b/fuzzy multiplication ®
¢/ fuzzy substraction ©
d/fuzzy division &
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The described approach of handlingthe core and the fuzziness seperately
has been established empirically. Specifically, the think-aloud protocols of the
subjects reflectthis procedure. Forfuzzy numberslike several, most orlikely
the same procedure can be applied provided the core has been determined
empirically.

3. FUZZY ARITHMETIC AS A MODEL FOR REASONING

Starting with the experimental studies by Zimmer (1982, 1984a, 1984b)
empirical evidence has been amassed for Yagers (1980) and Zadehs’
(1983ab, (1984) claimthat fuzzy numbers can be used for the representation of
generalized quantifiers (Barwise & Cooper, 1981; Peterson, 1979) and
furthermore that human reasoning with these quantifiers can be modelled
according to the operations with fuzzy numbers. As noted above, further
experiméntal studies have led to modifications in the definition of fuzzy num
bers aswell as of operations withthem. These modifications, however, are not
crucial for the general claim.

From aformal point of view, quantifiers expressed as fuzzy numbers inthe
interval [0,1] and uncertainty expressions represented as fuzzy probabilities
are comperable. Furthermore, in chains of argumentation (see Figure 2) both
kinds of quatification can be found and should therefore be representedin a
common framework for the use in intelligent or expert systems (Zadeh,
1983c). Empirical analyses of uncertainty expressions (Zimmer, 1983, 1986a;
Wallsten, Budescu, Rapoport, Zwick, & Forsyth 1986; Zwick & Wallsten,
1987) have consistently shownthat verbal expressions|like "probable", "likely",
or "toss-up" can be expressed as fuzzy numbers. Different experimental
techniques (e.g. pair comparison vs. staircase estimation), different forms
of display s (e.g. circle segments vs. random dots), and different samples of
uncertainty expressions (all expressions of a language community vs. only
those expressions that a subject has in his/her personal active vocabulary)
have led to seemingly conflicting results about the consistency of estimates



82 A.C. Zimmer

andthereforethe applicability of verbal uncertainty expressions in decision
support or expert systems. There are two solutions for this problem: One
consists in the Wallsten et al., (1986) approach of determining the fuzzy
numbers for a complete lexicon of uncertainty expressions. This leads to
averaged meanings that can be assumed to be valid for an entire language
community. By means of iterative methods (Zimmer, 1986b), ambiguous
meanings (fuzzy numbers with more than one peak) can be resolved. The
problem with this approach is that the individuals lexicon of uncertainty
expressions might differ from that of the language community. The important
advantage of this approach, however, is its generality. The other solution for
the problem consists in concentrating onthe individual’s lexicon of uncertainty
expressions.

Calibrating individual vocabularies of uncertainty expressions by means of
staircase methods with random-dot displays Zimmer and Koérndle (1987) has
resulted in fuzzy numbers that can be represented by (i) single-peaked
membership functions, (ii} of compar able shape and (iii) with the tendency
towards a proportional relation between the value of the core and the
fuzziness. To be more precise: in contrast to fuzzy numbers without
interval bounds, the fuzziness in the closed interval [0,1] is relative to the
smaller distance of each core from the upper or lower {imit. These qualitative
aspects of the fuzzy numbers are consistent with the model described in
Part 2 above. It should be kept in mind that (jii) contradicts one of the
theoretical assumptions of Zimmer (1982, 1983), namely the assumption of
equal informativeness on the entire scale of judgment, and therefore equal
fuzziness for all uncertainty expressions in an individual active vocabulary.
However, the consequence of the unequal informativeness (low inthe central
part and high in the extremes) is in accordance to the results reported by
Wallsten and his group (Walisten et al., 1986).

The major disadvantage ofthis individualisticapproach, specificalty its lack
of generalizability, can be overcome by the procedure described in Zimmer
(1986b). Starting with the individuals expressions butthen mapping them
intothe generallexicon. Ifa mappingdoes not result ina single-peaked fuzzy
number or if the fuzziness is excessive, it is iteratively searched for the
non-degenerate expression which captures best the initially intended
meaning.
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FIGURE5
Interactive detemnination of unambiguous uncertainty expressions
(Zimmer 1986b).

During and by the interaction with this computer-controlled procedure,
subjectslearnto use only those expressions which have a meaning meaning
in accordance with that of the language community. However, this method
restricts the expressive power of the indivial lexicon.

The common framework for quantifiers and uncertainty expressions as
established by the assignation of fuzzy numbers in [0,1] has to be
complemented by a comparison of the algorithms of inference. The standard
algorithms, that is, syllogistic resolution and Bayesian weighing of evidence
are seemingly incomparable. However, since Zadeh (1983a) has shownthat
any form of syllogistic resolution can be modelled by fuzzy quantifiers and
fuzzyoperators (addition, multiplication, and conjunction), itis possible to use
the same operators for Bayesian inference. There is only one additional
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operator necessatry, division, needed for working with conditional probabilities.
Onthe first glance this operator does not fit into the reasoning with quantitiers.
However, as Hormann (1983) and Zimmer (1986a) have shown, inthe colloquial
usage of quantifiers these are quite often conditioned on the background
knowledge about the situation. For instance, the utterance "many of the
convertibles’ can only be properly modelled if the general meaning of many is
taken into account as well as the fact that convertibles form a very small
subset of all cars. The implicit reasoning runs as follows: if the cars in question
are convertibles, then even a small proportion of all cars fulfills the condition
of applying "many'. This construction of a conditional quantifier is
completely compatible with the notion of conditional probabitities. Using this
result, it is now possible not only to assign fuzzy numbers to the qualifiers in
Toulmin’s model (Figure 1 and 2) but also to interp and their combination
as fuzzy evaluations of operators (e.g. @ means fuzzy multiplication).
Furthermore, the relations between the backing and the warrants becomes
straightforward fuzzy arithmetic.

4. CONTEXT SPECIFICITY OF QUALIFIERS

Yagers (1980) as well as Zadehs (1983a) models for the interpretation of
quantifiers in natural language as fuzzy numbers assume implicitly thatthere
isa one-to-one relation betweenquantifiersand fuzzy numbers (for redundant
sets of guantifiers the relation might be many to one). One major
experimental result of Zimmer (1982, 1984b) was that for sufficiently rich
contexts (natural sciences vs. social sciences and everyday events) this
simplifyingassumption does not hold. Inthese contexts the standard meaning
of quantifiers (see Figure 6) is modified by the subjects knowledge about the
normal scope of discourse in these contexts, specifically, how often events
are mentioned with an occurrence rate of x %. It has been shown that the
scope functions for contexts can be determined independently from the
quantifiers (Figure 7a) and that the context-denedant quantifiers (Figure 7b)
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result from the fuzzy conjunction of the standard quantifiers and of the
respective scope functions (the MIN-operator).

almo
none

FIGURE 6
Standard meaning of colloquial quantifiers (Zimmer, 1984b).

Slightly different is the situation for conditional quantifiers (see above)
where the background knowledge is taken care of by dividing the fuzzy,
number for the standard meaning of the quantifier question by the fuzzy
munber for occurence rate for the eve nt in question. As mentioned above,
the notion of conditional quantifiers bridges the gap between the apparently
disjoint types of modal qualifiers, namely, quantifiers and uncertainty
expressions or qualitative fuzzy probabilities. The context dependability of
explicit orimplicit conditioning. The procedures of Wallsten et al., (1986) as
well as of Zimmer (1983) and Zimmer and Koérndle (1987) assume implicitly
that uncertainty and frequency expressions can be estimated independently
from contextual influences. This is apparently true for impoed contexts like
circle segments and random dots but remains - atleast - questionable for more
realistic situations.
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FIGURE7
Context dependability of quantifiers: (a) scope functions for contexts /from
above: everyday events, natural sciences, social sciences/ (b) resulting
context-dependent quantifiers /contexts as above/
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From Hérmann s (1983) results one might conjecture that in situations
where the individuals have background knowledge, the meaning of their
observable lexicon is the result of conditioning the observable frequency on
the possiblefrequency. Despite the factthatthe operators are different (fuzzy
conjunction vs. fuzzy division) the result for quantifiers and uncertainty
expressions is comparable: The observable usage of modal qualifiers can be
deducedfroma fuzzyoperationon the standard meaningand the occurrance
rate ofthe background knowledge. In Figure 1 this context dependability is
indicated by the arrow from DATA to BACKING which results in
data-dependent constraints on the background knowledge (e.g. the rules for
commodities).

5.CONCLUSIONS

The common framework for the two major kinds of modal qualification
allows fora modelling of intricate nets of arguments (see Figure 2) by means
of fuzzy arithmetics. Furthermore, the variability of meaning caused by
individual differences and different context can be taken care of by the
generalization of this framework. This consists in a decomposition of the
observable meaning intothe standard meaning and into the contextual or
individual constraints.
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In many situations we use the probabilistic judgments and forecasts of
external agents in forming our own opinions or reaching decisions. For
example, we depend onforecasts of financial experts regarding interest rates
and market fluctuations when selecting among investments and on
physicians' forecasts of prognosis when choosing treatments for a given
disease. Thus our own decisions and choices are affected by the ability of
others to properly express and communicate their beliefs, and of ourselves
to understand and use them. A well-known phenomenon in the forecasting
literature (e.g. Beyth-Marom, 1982) is that many experts, like laypeople,
prefer to communicate their opinions by means of verbal probabilistic
phrases rather than numbers. Typically, this preference for words over
numbers is linked to the vagueness these studies are that most probabilistic
phrases cover large ranges of probabilities and overlap to a considerable
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degree, and that there exist consistent individual differences in the us Beyth
Marom, 1982, Nakao & Axelrod, 1983). Recently, Wallsten, Budescu,
Rapoport, Zwick and Forsyth (1986) and Rapoport, Wallsten and Cox (1987)
have shown that the vaque meanings of probability phrases can be captured
anddescribedreliably by means of membership functions overthe 0, 1interval.
Inthe presentinvestigation we propose to employ the methodology used by
Rapoport, etal. (1987) and the theoretical framework of fuzzy set theory with
regardtothe various aggregation connectives (e.q., Dubois and Prade, 1985)
to understand how people combine and aggregate a number of vague
probability judgments. For example, what does the patient think when one
physician says that it is "likely" that the pain will disappear, and another
considers this eventuality "highly probable"? More specifically, we are
interested in how subjects combine the opinions of two observers with regard
to the possibility of an event. These opinions are expressed linguistically and
are independent (in the sense that there is no communication between the
observers priorto their expressing their opinions). Further, there is noreason
for the receiver to believe that one observer is more reliable than another.
This situation was study extensively from a prescriptive point of view (e.g.
Winkler & Makridakis, 1983; Cholewa, 1985) but little is known about the
descriptive power of the aggregation models and even less about the case
when the opinions themselves are expressed in an inexactlinguistic manner.
In the next section we describe the various theoretical models which have
beenproposed in the fuzzy set literature for the aggregation operations, and
review the empirical work in this area. Finally, we describe an experiment in
which subjects were required to consider simultaneously two vague
probabilistic judgments and we compare their responses with predictions
generated by fuzzy set theory.

Fuzzy Set Aggregation Connectives

Given a generalized concept of membership, operations on sets are no
longer restricted to the boolean binary algebra, with the result that a much
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largerand richer class of operations can be defined. This richness has caused
some confusion about which arethe "correct’ operators for fuzzy sets. Alarge
variety of definitions have been suggested in the literature (see Czogala &
Zimmermann, 1984; Smithson, 1984, 1987; and Dubois and Prade, 1985) on
the basis of various normative, empirical, or purely mathematical
considerations for the logical operators "and" and "or'. A large number of
functions can be considered proper, inthat they all yield the correct results
for classical crisp sets as a special case. However, it is logically and
mathematically impossible to determine the appropriate "general" rule on the
basis of a special case, central asit maybe. Indeed, since fuzzy settheory was
offered as a more flexible model that is better suited for "humanistic systems"
(e.g. Zadeh, 1974), which are affected by human judgment, perception and
emotion, it is a mistake to search for a single best set of definitions of the
"and" and "or" operations. Infact, Zadeh's (e.g., 1976) position has atways
beenthat the choice ofthese definitions should be left tothe users so that they
best reflect the unique characteristics of the particular situation on hand.
However, this position should not be interpreted as a callto cease research on
the different operators. Itis important for future applications, and theoretical
developmentsto identify individual and situational factors that are associated
with the choice of a given class of operators. Obviously, experimental
psychologists and psychometricians can, and should, play a major role inthis
research by developing measurement methods and appropriate experimental
procedures.

As mentioned by Dubois and Prade (1985), a consensus has formed inthe
literature that the concept of triangular norms and conorms proposed by
Menger (1942) is appropriate for rep resenting the logical operators "and" and
"or' (respectively) applied tofuzzy sets (Weber, 1983).

Definition 1. At-norm is a binary operator

T:[0,1] x [0,1] — [0.1]
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suchthat

= 0andT(a,1) = a (boundary conditions);
< T(c,d)ifa < cand b < d (monotonicity),
= T(b,a) (symmetry),

b,c)) = T(T(a,b),c) (associativity).

Astrict t-normisa continuoust-normwhich is increasing in botharguments.

Definition 2. A co-t-norm S is a binary operator

S:[0.1] x [0,1]— [0,1]

suchthat
(1)8(1,1) = 1and $(a,0) = a(boundary condition),
(2) S(a,b) < S(c d) ifa < cand b < d (monotonicity),
(3) S(a,b) = S(b,a) (symmetry)
(4)S(a,8(b,c)) = S(S(a,b),c) (associativity).

A strict co-t-normis a continuous co-t-norm which is increasing in both
arguments. Associated with every t-norm T there exists a co-t-norm S, called
its dual, suchthatS(a,b) = 1-T(1-a, 1-b). Examples oft-norms and their duals
that have been proposed in the literature to represent the pointwise fuzzy
set-theoretic intersection or union are:
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T = min (a,b) S/ = max (a,b) (Zadeh, 1965) (1)
7@ = ab S® = a+b-ab (Bellman and Zadeh, 1970) (2)

T® = max(0,a +b-1), $® = min(1,a + b) (Bellman and Zadeh,1977) (3)

Smithson (1984, 1985) pointed ouit that these three classes can be thought
of representing various degrees of extremity since for all (a,b) e [0,1]x[0,1]

M5 1@ 5 10

s®.

@
"
@
»
IA

It was therefore suggested that al! three classes can be incorporated into
one general family of connectives with one or more free parameters. For an
excellent review of the class of fuzzy set aggregation connectives based on
triangular norms see Duboisand Prade (1982, 1985) and for specific examples
of general rules see Czogala and Zimmerman (1984), Smithson (1984, 1985),
andYager (1980).

From a psychological perspective, littie, if any understanding of the
parameters can be claimed. tis not clear whether they depend on individual
and/orsituationatfactors, how stable and reliable they are, or what other factors
may affect them. inshort, it is not clear what usage could be made once the
parameters are estimated. In fact, estimation procedures for most of the
parameters have not been developed. Smithson (1984, 1985) presented a
least-squares approach to estimate a linear transform of the free parameter
that can sometimes yield values outside the admissible range (i.e., smaller
than 0 orlargerthan 1). Forexample, when this technique was applied to
our data 20% of the estimates were inadmissible. However the experimental
significance of this approach is that one can test simultaneously the
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appropriateness of a large class of possible dual connective operators by
testing the requirements that must hold ifthe dual rules arethe t-norm and the
corresponding co-t-norm (see definitions 1 and 2).

Another class of connectiveness is based on the notion that in everyday
lite people rarely use"and"and "or" intheir respective strict noncompensatory
and fully compensatory senses. Rather, people’s judgments are based on a
partially compensatory interpretation, represented by a free parameter, q,
which can be called "grade of compensation.” The first to introduce this idea
were Zimmerman and Zysno (1980) who suggested a weighted geometric
mean:;

wage(X) =[na N8 Y [ausk)]” . (4)

Here (A&B) denotes the generalized compensating connective, which
varies between the regular "or" when y =1 and the regular "and" when y =0.
Note,that this approach does not eliminate the need to decide on a definition
ofthestrict"or"and "and", forwhich any of the operations described earliercan
be used. In a similar fashion Luchandjula (1982), and Smithson (1984)
proposeddifferentforms of generalized connectives that include the pure union
and intersection formulas as special cases. Finally, in a recent development
Dyckhoff and Pedrycz (1984) suggest use of generatized means to model the
compensatory connective:

1A&B(X) = [1 pAK) + wap "B)] (5

where w1 and w2areweights whichaddto 1, and r can be any real non-zero
number. Avariety of special cases can be considered. Taking yieldsr— * «
the minimum and maximum, respectively, r = 1 gives a weighted mean of the
membership functions, r — 0 produces their weighted geometric mean, and r
= -1 their harmonic mean.
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The interesting novelty of this approach is that it offers a definition of a
compensatory connective without explicitly adopting a set of definitions for
the strict "and" and "or." Rather the (A&B) operator is defined as a direct
function of the individual memberships pA(x) and wB(x). Although this
approach simplifies the situation conceptually and facilitates calculations and
estimation, it is questionable whether the Dyckhoff and Pedrycz model is
comparabletothe others. It is possible to apply monotonic transformationsto
the exponent, r, to obtain a bounded compensation parameter (e.g. y=
[1+]r]/(1+))/2) but this obviously does not represent a compensation
between "and" and "or." It appears that this model should be considered a
general model of combination and aggregation of levels of membership.

it is also possible to consider other forms of averaging of the two individual
membership functions as models of aggregation. In particular, we would like
to emphasize one possibility that turns out to be consistent with some of our
data - the mean of two fuzzy numbers - "the fuzzy mean." Dubois and Prade
(1980) define a real fuzzy number as a fuzzy subset with a continuous
membership function satisfying some mild regularity conditions. The mean of
two fuzzy numbers (A and B) is defined as:

uMean(A,B)(X) =  max [min(uA(y), nB(2))]
x=(y+2)/2 (6)

Previous Empirical Results

In reviewing this literature, it is important to focus on two issues:
measurement of the membership functions, and experimental designs used
to test the various models for operators on fuzzy sets. In the past, two
methods have been used to quantify degrees of membership. Hersh and
Caramazza (1976) and Hersh, Caramazza and Brownell (1979) used what
Hillsdal (1985) labelted the "yes-no" paradigm, in which x, an element of E, is
presented to the subject and he/she has to decide whether the element is a
member of A, the supposedly fuzzy subset. The fraction of positive responses
across replications (within or across subjects) is considered a measure of
pA(x). Rubin (1979) has pointed out the main problems of this method, that it
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confounds fuzziness with response variability and that it can be interpreted as
indicative that words have various, but nevertheless precise, meanings to
different people and/or at different times. The other standard paradigm has
been direct estimation. Oden (1977a) used direct scaling along a scale with
verbally anchored end points and Théhle, Zimmerman and Zysno (1979) and
Zimmerman and Zysno (1980) employed a similar procedure, but with
numerically anchored ends. However, these procedures lack solid
foundations, andtheirresults are difficult to interpret unlessthey are embedded
withinafirmtheoretical structure.

Such a framework was outlined by Norwich and Turksen (1982, 1984), by
Wallsten, et al. (1986) and by Zwick (1987), and by Wallsten, et al. (1986), who
pointed out the relationships between the axiomatic formulation of the
algebraic difference (ratio) structure (e.g. Krantz, Luce, Suppes, & Tversky,
1971) and the measurement of memberships functions. This approach was
recently refined and successfully tested by Wallsten, et al. (1986) who
developed a graded pair-comparisons procedure (similartothe one used by
Oden 1977b), which allows simultaneous testing of the necessary axioms,
scaling of the responses in order to obtain memberships, and tests of
goodness of fit of the scale values. In a subsequent study Rapoport, Wallsten
and Cox (1987) demonstrated a high level of similarity between membership
values determined through graded pair comparison and direct magnitude
estimation. Thus, a sound theoretical justification was established for the
quantification of the vague meanings of inexact linguistic terms by means of
directscaling.

We turn now to tests of the combination rules. Hersch and Caramazza
(1976) tested the max rule (Equation 1) for the union operator. Subjects had
to judge whether squares of various sizes qualified as "either small or large."
Both group and individual analyses indicated that the shape of the “or"
membership function resembled the max prediction, but was consistently
lower. Oden (1977a, 1979) contrasted the min-max and sum-product
operators for the two connective. His subjects were presented with pairs of
statements such as "A chair is a furniture” and “A robin is a bird" and asked to
performseveraljudgments. Forthe conjunctiontasktheywere askedtojudge
the "degree to which both statements were true" and for the disjunction task
they judged "the degree to which one statement or the other was true." Note
that these instructions could be easily interpreted as referringto an “exclusive
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or,"i.e. one of the statements is true, but not both. It is also interesting to note
that half ofthe comparisons involved pairs of statements pertaining to two sets
(e.g. birds and furniture), so the union/intersection instructions called for
judgment of joint/disjoint membership inthefuzzy set of "true" statements, and
not in the fuzzy sets of "birds" or "furnitures.” Group and individual analyses
based on mean deviations from the predicted rules, and a functionat
measurement analysis (Anderson, 1981, 1982) indicated that both classes of
operators fit the data quite well, but that the sum-product connectives clearly
outperformed the min-max rules.

Théleetal. (1979) studied the intersection operators. Sixty subjectsjudged
the degree to which various objects were "containers", "metallic objects", and
"metallic containers." The assumption was that this latter judgment would
necessarily reflect an intersection of the two others, i.e. the degree to which
anobject is a metallic container is solely a function of the degree to which it is
metallicandthe degreetowhichitisa container. The analyses were performed
atthe group level and slightly favored the min rule over the product operator.
It is important to note that the subjects did not actually see the objects, but
were presented with cards containing their names. It is possible that such a
procedure induces an additional source of (unintended) fuzziness, i.e. the
vagueness associated withthe definition of such classes of objects as bag, car,
fridge, etc.

Zimmermannand Zysno's study (1980) has the distinction of beingthe most
realistic. Sixty subjects were presented with 24 exemplars of fire resistant tiles
and wereinstructed that their quality is judged according totwo criteria; solidity
(reflected in their grayness) and dovetailing (reflected in the correspondence
between their shape and a standard shape). Using direct scaling methods
group membershipfunctions were obtained for "solidity", "dovetailing" and also
for “ideal tile." The authors showed that in such a situation the subjects’
judgments of "ideal" are best represented as a combination of the two
membership functions that does not fit any of the rules proposed for
conjunctions and disjunction. They ended up advocating the generalized
v- operator described earlier (Equation 4).

To summarize, the evidence regarding the and/or operations is
inconclusive. Oden (1977a, 1979) advocates the sum-product rule, Thole et
al. (1979) favor the min rule for "and", and Hersh and Caramazza report
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(atleastweak) support forthe max rulefor "or'. Furthermore, giventhe various
methods used to quantify the degrees of membership and the variety of
experimental procedures used to elicit the two types of judgments, it is
impossible to determine whetherthe different results are really contradictory,
or just reflect the use of different methodologies and different situations.
Finally, Zimmermannand Zysno's (1980) workclearly illustrates that in real life
situations information is sometimes combined accordingto an averaging rule
that altows for compensation between the extreme alternatives. This result is
consistent with a large class of empirical studies conducted by Anderson and
his associates (e.g. 1981, 1982) which singles out the averaging combination
rule as the preferred mode of information integration.

Zimmermann and Zysno's results are important since they illustrate that
although the duality between the union and intersection operations, and the
corresponding "or' and "and," may reflect a nice mathematical normative
structure (imposed by DeMorgan's theorem), they do not necessarily reftect
a psychological reality. It is one major purpose of this work to further
investigate this possibility. This was achieved by considering a series of
testable requirements which must hold if the dual rules for intersection and
union are based on t-norm and the corresponding co-t-norm respectively.
Under any of the dual rules

(i) T(a,b) < min (a,b) = max (a,b) < S(a,b),

(i) The boundary conditions for both T and S must hold (see definitions 1
and2).

(iiiy The monotonicity conditions of both T and S must hold. Under any
strict dual rules.

(iv) Tand S are strictly increasing in both arguments.
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And finally if T belongs to the Frank family1 (Frank, 1979) and S is its dual
then:

(v)T(a,b) + S(a,b) = a+b.

The last condition is interesting since many of the "classical" definitions of
intersection such asthe min the product and the bounded sum are included in
thisfamily.

The second stage in our analysis, as in most previous studies, was an
attempttoidentify the best fitting model forthe data, restricting ourselves, quite
arbitrarily, to tests of simple models which do not require estimation of free
parameters. This was done in order to avoid problems related to parameter
estimation and interpretation, and comparison of goodness-of-fit of models
involving different numbers of parameters estimated by various methods.
Thus, only the three basic dual models (min-max, sum-product and bounded
sums) and simple parameter-free compensatory rules (pointwise mean,
pointwise geometric mean, and fuzzy mean) were examined.

The methodology used is derived from our previous work on probability
phrases and fuzzy sets (Wallsten et al., 1986; Rapoport et al., 1987). First,
individualized membership functions for the various phrases were obtained
by a direct magnitude procedure. The novelty of the present design is the
simultaneous presentation of two phrases (supposedly generated by two
sources) and a given probabilistic display, so that the subject could judge the
degreetowhichboth phrases, orat/east one phrasedescribethe probabilistic
display.

1The Frank family (Frank, 1979)

Ts(@b) = Logs [1 + (s2-1)(s°-1)]

Ts-1 §>0

Tsis a strict t-norm for @ s>0. TQ = min; T1 = product, and Feo + = bounded -sum.
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METHOD

Subjects: Sixteen graduate students in social sciences and business were
recruited by piacing notices advertising the experiment in the departmental
mailboxes. They received $20 for participation in all three sessions of the
experiment.

General Procedure: All subjects participated in one practice session and
two actual data collection sessions, and performed four judgmental tasks:
direct estimation of membership functions of individual probability phrases,
judgment of pairs of phrases connected by "and," judgment of intersection of
pairs of phrases connected by "or,” and judgment of simitarity of phrases. The
experiment was controlled by an IBM/PC computer.

Membership Estimation: The instructions for this task read in part:

You aretoimaginethat you areto predict whethera spinner you cannot
see will land on white on the next random spin. A friend of yours can
see the spinner, although not too well, because it is rotating at a
moderate rate. Your friend will use a non-numerical probability phrase
to give you his or her best opinion about the chances of the spinner
landing on white. This gives you some basis for judging the probability
of that event.

Thus a phrase (from your friend), a spinner, and a response line will
come onthe screenfor asingle trial. You areto indicate how close the
displayed probability of landing on white is to the judgment you would
form upon hearing the particular phrase. if the displayed probability is
not at all close to your judgment, move the arrow all the way to the left.
if it is a close as possible to your judgment, move the arrow all the way
tothe left. If itis a close as possible to your judgment, move the arrow
all the way 1o the right. If the displayed probability matches your
judgment to some degree, then place the arrow accordingly.

Thetop panel of Figure 1 presents one ofthe displays used in this task. This
example shows a spinnerwith Pr(white) = 0.15, presented in conjunction with
the word doubtful and is used to quantify doubtful(0.15). Subjects responded
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by moving the arrow by means of a joystick. The precision of the response
was determined by the resolution of the monitor, and allowed for almost 200
locations anchored by two verbal labels; "absolutely" and "not at all".

FIGURE1
Three experimentaltasks

Direct estimation task
Doubtul

l ' ,

[ i
Not at Absolutely
all close close

"AND" task
Doubtful and Likely

@

{ ]
Not at Absolutely
all close close

"OR" task
Doubtful or Likely

.

| 1
Not at Absolutely
all close close
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"And" Judgment: The instructions for this task read in part:

"Two friends have viewed the rotating spinner. They have not spoken
to each other, so neither knows what the other thinks, but each uses a
non-numerical phrase to tell you his or her opinion about the chances
of the spinner landing on white. They may use the same or different
phrases. Now, we are interested in the judgment you form about the
probability of the spinner landing on white on the basis of the reports
youreceive from bothof yourfriends. Thus, two phrases (onefromeach
friend), aspinner, and aresponse line will come onthe screenforasingle
trial. Onthe basis of the two phrases, you can form some judgment
aboutthe probability of landing on white forthe spinner yourfriends saw.
The question is, how close does the displayed probability of tanding on
white come to the judgment you form based on the two phrases? As
before, move the arrow on the line all the way to the left for probabilities
that are not at all close to your judgment, and all the way to the right for
probabilities that are as close as possible to your judgment. |f the
displayed probability matches your judgment to some degree, then
placethe arrow accordingly."

An example is presented in the middle panel of Figure 1 with the words
doubtful and likely connected by "and".

"Or'Judgment: The display and instructions for this task were identical to
the ones for the intersection task, except for the key sentence describing the
judgment required. In this case it read: "Now we are interested in your
judgment of how well atieast one of the two people described the probability
of the spinner landing on white." The bottom panel of Figure 1 presents an
example of this display.

“Similarity" Judgment: These data were analyzed and reported elsewhere
(2wick, Carlstein & Budescu, 1987) and will not be described here.

Stimuli: Six probability phrases and 11 probabilities were used inthis study.
Al combinations are presented in Table 1. Half the phrases represented
probabilities generally judged to be Higher than 0.5 (H), and the remaining
described probabilities usually judged to be Lower than 0.5 (L). The
probabilities were equally spaced acrossthe 0.02-0.98 range. All(11x6 =)
66 combinations were judged in the estimation task. However, only 5
probabilities (see Table 1) were used in the other tasks. They were presented
with each of the (6x6 =) 36 pairs of words for a total of 180 judgments in each
of the two tasks.
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TABLE 1
Expressions and Probability Values Used in the Design

Probability of the Spinner

Phrase .02 12 21 31 40 50 .60 .69 79 .88 .98
Doubtful - X - X - X - X - X -
L Slight Chance - X - X - X - X - X -
Improbable - X - X - X - X = X -
Likely - X - X - X - X - X -
H Good Chance - X = X - X = X = X -
Fairly Certain - - - X - - X -

Note: "' Combination used only in the estimation task.
“x" Combination used in all three tasks.

Procedure: The practice session consisted of a full set of 66 estimation
judgments followed by short versions of the union and intersection tasks.
Each of the 36 pairs of words was presented only once, in conjunction with
a display randomly selected fromthe relevant 5 probabilities. Each of the two
data collection sessions consisted of a full set of 66 estimation judgments
followed by afull se of 180 union or intersection judgments. Half the subjects
judged unions on the first data session and intersections on the second
session. The other haff performedthe judgments in reversed order. The order
of stimuli presentationwithineachtask and sessionwas randomly determined
by the computer program. Also, in all union/intersection judgments the
left/right location of the two target words was randomly counterbalanced for
each subject. All subjects completed the three sessions and were paid at the
conclusions of the last one. Because of a computer malfunction all 180 union
judgments of one subject, and 30 intersection judgments of a different subject
were lost.
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Results

DirectEstimation:This task was replicated by each subject in each of the
data collection sessions. Prior to finding the membership functions the two
sets of responses were correlated to yield measures of reliability. The results
are displayed in the first column of Table 2 and reflect a high level of stability
-- 13 of the 16 subjects have reliabilities above .85. No consistent differences
between the reliabilities of the responses to the six words were found.

TABLE 2
Reliabilities of Judgments inthe Three Tasks

Task
Subject Estimation Union  Intersection
1. 981 914 937
2 .925 .884 .606
3 .934 .847 .787
4 .894 918 .802
5 .960 .960 .902
6 .903 .863 .730
7 .936 .931 791
8 972 .973 .965
9 979 .981
10 .783 942 .851
11 .930 .956 .894
12 912 .923 .683
13 .908 952 971
14 .837 .608 581
15 .801 314 519
16 .880 .878 .800
Mean .928 903 857

Note: "---" Subject did not perform this task
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The actual membership functions were obtained by rescaling to the 0-1
range the average response across the two sessions. Values of 0 and 1
represent cases in which the arrow was moved to the extremes of the
response line on both sessions. Most subjects display reasonable
membershipfunctionsthatwithinasubject are similarfor allthree Hwords and
for allthree L words. The most dominant feature is the distinction betweenthe
membership values of the H and L words which display generally increasing
and decreasing patterns, respectively. This result is best illustrated in Table 3
which shows very high correlations between the membership values of the 3
H words and the 3 L words, and high negative correlations inthe LH pairs for
all subjects. (These correlations were computed pointwise along the 11
common spinner probabilities in the estimationtask.)

TABLE 3
Mean Correlations Between Membership Functions in Pairs of Words

Pair
Subject HH LL HL
1 .929 967 -.954
2 .976 .967 -.965
3 .884 .939 -932
4 .923 .956 -.857
5 .740 .934 -.828
6 562 .953 -.793
7 .924 .979 -929
8 .990 .972 -.920
9 .981 .989 -.932
10 .899 .880 -.523
11 .905 929 -915
12 .793 .930 -.865
13 959 873 -.833
14 735 .881 -.680
15 922 .860 -.904
16 444 .801 -.547

Mean .805 942 -.874
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Union and Intersection Judgments: Since the order of presentation of the
two words was reversed in the two replications, the mean difference in the
replicated responses for each subject across all pairs of words and
probabilities was computed andtested againstthe assumption thatthe means
do not equal zero. No significant violations of the prediction were recorded,
i.e. the judgments appear to be reliable and unaffected by the order of
presentation of the stimuli.

The last two columns of Table 2 present the correlations between the
replicated judgments of these tasks. Note, that unlike the resuits for the
direct estimation task, these values are based on within-session replications.
in general these reliabilities are satisfactory, and are higher for the union
judgments (only 3 of the 15 subjects have higher reliabilities for the
intersectionjudgments). A closer examination of the reliabilities indicates that
in practically all cases judgments involving two H or two L words were less
reliable than those involving one H and one L word. (Only one subject had a
reliability under 0.8 for the union task and only four subjects had reliabilities
lower than this value for the intersection judgments when all H-L judgments
were excluded fromthe calculations.)

Tests of the Duality Predictions: We turn now to tests of the five conditions
foranydual union/intersection rule based onthet-normandthe corresponding
t-co-norm respectively. The first condition requires that the two individual
membership functions be at least as large as their intersection, but not larger
than their union. Table 4 presents mean differences between the relevant
membership functions for each subject across all pairs of words and
probabilities. A negative entry in the table identifies a violation of the
prediction, and the number in parentheses indicates the proportion of violations
(of a total of 105 judgments) for each subject. In order to control the
hypothesis error rate at « = 0.05, the resuits of the individual t-tests were
declared significant at «* = 0.05/15 = 0.003. The results are clear and
consistent -- all subjects judge the intersection to be larger than the smaller of
the two memberships functions (see the first column in Table 4). All subjects
judge unions to be at least as large as the intersection (column three), and,
withtwo exceptions, the union does not appearto be significantly different from
the larger of the two membership functions (column two).
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TABLE 4
Mean Differences Between Membership Functions (and Proportion of
Violation of Expected Order)

Inequality
Min(ua(x),wB8(X))-w AN B (X)
kAN B(xX)-Max(n A(x), 1 8 (x)
B AUB(X)-w AN B (X)

1 -.201%(.78) -.037%(.54) .091 (.37)
2 -077°(.71) -.012 (.56) .149"( 30)
3 -184%(.71) 012 (.44) 1217 (.30)
4 -.099" (.66) .007 (.60) 229" (.31)
5 -148"(.67) -.018 (.60) 144" (.29)
6 -.208* (.75) -.018 (.57) .031 (.43)
7 -163%(.70) -.055%(.58) .080 (.45)
8 -150% (.74) -.005 (.44) 154" (.30)
9 -143%(60) - () - (=)
10 -135* (.84) -.007 (.57) 115 (.36)
11 -100" (.68) -.013 (.55) 167" (.22)
12 -.263% (.84) -.027 (.46) .014 (.43)
13 -101"(66) -.003 (.50) 153" (.30)
14 -137%(.84) -.023 (.55) .061 (.43)
15 -181%(.79) -.017 (.58) .037 (.49)
16 -1477(.85) 026 (.42) 1217 (.39)
Mean -152x(.73) -.013 (.53) 110 (.36)

Not: "-" Subject did not perform union task
"x" Significant at a = 0.05/15 " 0.003 (two tailed tests)

The same data can be used to evaluate thefifth condition, namely that the
sum of the union and intersection judgments equal the sum of the individual
membership values. The mean difference for each subject can be obtained
by subtracting the first column in Table 4 from the second one. Tests of these
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differences show that for all subjects the sum ofthe conjunction and disjunction
judgments is significantly larger (p < 0.001) than the sum of the individual
memberships. This result is due largely to the high responses for the
intersections.

Next we tested the monotonicity requirement of the union/intersection
membership functionsineach ofthe individual functions by examining whether
the union/intersection memberships are monotonical non-decreasing
functions of the six individual membership functions for each of the five fixed
probabilities. inTable 5the percentage of violations of weak orderis presented
for each subject and task. For each task, an average of 27% of the cases
violate the requirement. However, this number is misleading since it is based
on the extremely stringent requirement that the order of judgments in the "or"
and "and" tasks duplicate exactly the order of the individual term judgment,
with precision implied from a response scale of almost 200 values. A weaker,
and more reasonable test of the requirement is obtained by relaxing the
definition of a violation. Thus, any palr of judgments was considered to be in
the required order when the violations of the order were smaller than a
predetermined "unit of measurement error." This unit was calculated for each
subject by calculating the mean absolute deviation between the two
replications of each of the three tasks. Across subjects, this unit of error varies
between 0.062 (subject 9) to 0.209 (Subject 15) with a mean of 0.108. When
violations of order are recalculated, under this "approximate" definition of
equality, their overalllevel dropsto 6% for the "or' and 11% for the "and" tasks.
Thus, the requirement is satisfied at an acceptable level, particularly for the
"or'judgments. It isalsointeresting to notethat whenjudgments are averaged
across subjects a consistent pattern emerges. The highestlevels of violations
arerecorded around probabilities of 0.5, the degree of violation decreases for
more extreme probabilities, and the degree of violation is consistently higher
for"and" than for “or"' judgments.
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TABLES
Percent of Weak Order Violations Under Strict and Approximate Equality

Union intersection
Strict  Approximate  Strict  Approximate
Subject Equality Equality Equatity Equality

1 18 6 23 11
2 32 5 27 8
3 27 6 28 13
4 32 7 40 23
5 24 5 27 15
6 25 6 24 5
7 26 5 23 10
8 22 6 21 12
9 - - 32 8
10 33 2 30 11
11 24 5 22 13
12 22 4 26 14
13 24 6 21 9
14 32 7 33 12
15 38 11 27 6
16 24 5 24 9
Mean 27 6 27 11

Note: "-" Subject did not perform task

The monotonicity condition for strict t and co-t-norms requires the judged
union and intersection memberships of a given word with itself (e.g. likely
and/or likely) to be a strictly increasing function of its individual membership
function. Table 6 presents the mean (across words) rank correlations
(Kendall’s Tb) between the individual membership functions and the
appropriate union/intersection judgments.
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TABLE®6
Mean Rank Order Correlations Between Individual, Union and Intersection
Membership Functions for a Given Word and Itself (Proportion of Violations
of Strong Monotonicity)

Subject  Intersection Union intersection x Union

1 .925(.12) .967 (.04) .958
2 .858(.10) .967(.02) .891
3 .867(.14) .867 (.08) 933
4 .606 (.29) .779(.26) 708
5 .891(.12) .900 (.06) .858
6 933 (.12) 967 (.02) .900
7 .940 (.16) .904(.10) .892
8 .974(.18) 991 (.02) .983
9 .862(.13) - (=)
10 600 (.24) .833(.10) 567
1 967 (.02) .967(.02) 933
12 .512(.38) .850(.12) 558
13 867 (.10) .867 (.08) 1.000
14 767 (.14) 656 (.22) 690
15 .733(.16) .700(.18) 633
16 .833(.14) .739(.20) .706

Mean .821 (.16) 872(.10) .826

Note: "---" Subject did not perform union task

Also presented in the same table is the proportion of cases (out of 50) in
which the strict monotonicity assumption was violated. With a few notable
exceptions the rank correlations are high (11 subjects have rank correlations
above .8 for eachtask), and the proportion of order violations is low. In most
casestheviolations canbelinked eithertoties, orto a single unusual response.



The Integration of Linguistic Probabilities 113

Again note that the data from the union task are more consistent with the
requirement. Finally, sincethe unionand intersections of aterm with itself are
monotonically increasing under any strict dual rules then the union and
intersection judgments should also be monotonically related. The third
column of Table 6 presents the rank correlations between the judgments of
the corresponding union and intersection (i.e., "likely and tikely" with "tikely or
likely"). This requirement is strongly satisfied in all cases.

Next we focus on the boundary conditions, i.e., cases where at least one
of the individual membership functions is 0 or 1. This condition cannot be
tested for all subjects since not everyone recorded such extreme responses
forthe probabilities involved in union/intersection judgments. Table 7 presents
the mean deviation from the expected response for each of the four relevant
conditionsonlyforthose subjects whose individual memberships allowed test.

TABLE 7
Mean Deviation from Expected Judgments in Boundary Conditions

Zero Membership Unit Membership
Subject n Intersection Union n Intersection Union
1 17 .060* -.047* 12. 08g. 000
4 0 e e 12 .183 -111
6 17 317* -016 0 smem e
7 6 105 .084 6 A7 -.089
8 6 117 .006 11 112 .004
1 [ 6 .023 025
12 15 .216 -123 0 e
15 [ 6 136 .000
Mean 61 .180 .039 52 121 -.035

Note: *Significantly different from zeroata = 0.05/22 : 0.0025
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These mean differences were tested for departure from 0 by means of
t-tests, with a hypothesis error rate of « = .05, (o* = 0.05/22:0.0025). In 19
of the 22 cases the null hypothesis could not be rejected. Note that in general
the departure from the expected results is much larger for the intersection
judgments.

TABLE 8
Goodness of Fit of Best Model for the Intersection Task

Criterion of fit

Subject Model Root Mean Mean Absolute
Square Deviation

1 FuzzyM 130 103

2 GeometricM 135 A17

3 Mean 242 183

4 Geometric M .163 131

5 FuzzyM 194 144

6 Mean 192 167

7 FuzzyM .188 154

8 FuzzyM .263 A9

9 Mean .359 331

10 FuzzyM 314 .239*

11 FuzzyM 160 17

12 FuzzyM .310* .238

13 FuzzyM 149 113

14 Geometric M 149 A17

15 Mean 91 153

16 FuzzyM 159 132

Note: *Not the best fitting model by this criterion
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Metric Comparisons of the Various Model: In comparing the fits of the
various theoretical models to the data we focus onthe union and intersection
judgments involving one L and one H phrase. As shown in Table 3,
membership functions within each class of phrases are very similar to each
other. Therefore, the predictions of the various theoretical models for unionor
intersection of two H or two L phrases are highly correlated, so it would be
impossible to reach any general conclusions about the relative merit of the

TABLE S
Goodness of Fit of Best Model for the Union Task

Criterion of fit
Subject Model Root Mean Mean Absolute
Square Deviation

1 Max a4 .083

2 Max .091 .072

3 SumProduct 176 118

4 Max .208* 141

5 Max 109 .080

6 Max 118 .097

7 Max 195 144

8 Max .087 .061

9 ——- ——— —_——
10 Max 159 109
11 Max .059 .074
12 Max 193 .140
13 Max .098 .065
14 Max 158 122
15 Max .216 178
16 Max 122 .090

Note: Subject 9did not perform this task. *Not the best fitting model by this
criterion
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various models on the basis of these data. Two criteria were used to
determine the goodness-of-fit of the various models, the root mean square
deviation (RMS), and the mean absolute deviation (MAD). Tables 8 and 9
identify the best fitting modet for any given task for each of the subjects. In
most cases the two criteria identified the same "best" model (they correlate
0.97) and inthe three cases where slightly different results were obtained, the
determination of the "best" model was based onthe magnitude of the badness
of fit of the various models according to the two criteria.

The results are clear and consistent -- the max rule best describes the union
judgmentsforall subjects, but one, and some"averaging” model yields always
the best description ofthe intersection judgments. Thejudgments of a majority
of subjects (3 of 16) are best captured by the fuzzy mean model and the
remaining are better described by simple pointwise arithmetic or geometric
means models. The variety of shapes of union/intersection memberships is
ilustrated in figures 2, 3 and 4, which present selected empirical results and
best fitting models from 3 different subjects.

Subject 1 (Figure 2), who has single peaked individual membership
functions displays single peakedness for the "and" judgments and multiple
peaks for the “or' judgments. Note the close similarity between the "or"
judgments and the maximal value of either phrase, and the obvious departure
of the "and"” judgments from the two functions. Obviously, two different types
of judgments are involved in the two tasks. Subject 2 (Figure 3) has strictly
monotonic functions for bothwords. Asa result his "or" judgments are single
dipped, inclose correspondence with the max rule. His "and" judgments, best
captured by the pointwise geometric mean, represent a clear compromise
betweenthe two individual functions.

Subject 6 is slightly less predictable than 1 and 2. The judgments for the
two pairs of words displayed in Figure 4 are of interest for two reasons. First,
note the similarity in the shape of his union and intersection data, which,
suggests that he was using similar decision processes in both tasks. The
judgments for the pair "improbable/fairly certain” in both tasks are essentially
monotonically decreasing and appear to be mainly influenced by the
characteristics of "improbable.” This subject’s data could be better fitted by a
weighted average model in which "improbable" is overweighted.
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DISCUSSION

In previous research (Hersh & Caramazza, 1976; Hersh et al., 1979;
Zimmermann and Zysnho, 1980; Théle et al., 1979; Oden, 1977a,b, 1979; and
Kulka & Novak, 1984) it was found that the logical (fully noncompensatory)
"and" operator does not describethelinguistic "and"as appliedtotwolinguistic
categories referring to different scales (e.g., a high brewing speed and low
capacity coffeemaker). Inthese cases "not only are the idempotent intersection
and union not a good model, but one may drift out of the domain of triangular
normsand conorms, and get operations such asthe arithmetic orthe geometric
means as proper models" (Dubois & Prade, 1985 p.97). We also found this
phenomenon, althoughthistimethe twolinguistic categories refer tothe same
scale (i.e., probability). We have shown, by testing several requirements that
any such dual should fulfill, that no dual t-and co-t-norm can simultaneously
fit our data. Most of these requirements were severely violated in our data.
Furthermore, analysis of the two tasks ("and" and "or") independently reveals
that the violations are due mainly to the compensatory nature of the linguistic
"and" operator.

Summarizingthe overall results, judgment in the "or" task is well described
bythe max rule. Judgment inthe more common "and"task is best described
by some sort of a compensatory averaging model. The fuzzy mean model is
best for nine subjects, the arithmetic mean for four, and the geometric mean
forthree.

The implications of the present data are very interesting. First, when
subjects judge whether a probability value is well described by at least one
expert (the "or' task), they effectively decide which person had come closest
and then ignore the input from the other person. Although the task was
somewhat contrived, this kind of thinking may occasionally occur when an
individual is being especially risk adverse and wishes to focus only on the
maximum possibility of extreme probabilities describing an event.

The morecommon situation occurs when anindividual integrates the verbal
probabilistic inputs of two judges to form a single overall judgment. The
present results suggest that this occurs according to an averaging process,
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by which the resulting judgment may be very different from either of the two
inputs. This result is clearly reminiscent of the many other situations in which
an averagingrule has been demonstrated (e.g., Anderson, 1981, 1982}, butan
important difference must be noted. Namely, previous investigations have
assumed precise underlying values, whereas vague judgments are at the core
of the present research.

The"and" responses of a majority of the present subjects are well described
byanoperationthattakesthe mean of twofuzzy numbers. it may bethatthese
subjects actually engaged in information processing analogous to this
operation, or it may be that they engaged in rather different processing that
nevertheless yielded similar results. These distinctions can only be explored
after alternative models are developed, and then only if the alternative and
the fuzzy mean models differ in some testable ways.

We are currently running an additional experiment involving only the "and"
task, in which a greater number of replications is being obtained in order to
achieve more reliable estimates. We hopeto confirminthis studythat the "and"
operation is indeed described by an averaging operation, and i so, to
determine which operation is taking place.
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National Science Foundationand in part by contract MDA 903-83-K-0347 from
the U.S. Army Research Institute. The views, opinions, and findings contained
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A FUZZY PROPOSITIONAL ACCOUNT OF CONTEXTUAL
EFFECTS ON WORD RECOGNITION

Jay RUECKL
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A longstanding issue in cognitive psychology concerns the nature of
contextual effects in word identification paradigms. While some theorists
have seen these effects as reflecting the influence of contextual information
on the identification process itself, other theorists have argued that word
identification occurs independently of contextual information, and that the
contextual effects usually observed are brought about by processes that
occur after the word identification process has been completed. The
conception of the word identification process offered by the fuzzy
propositional framework suggests a new experimental paradigm for studying
contextual effects. The results of experiments within this paradigm strongly
suggest that contextual information does influence the word identification
process. These results are consistent with the predictions of the fuzzy
propositional model of word identification, which explicitly describes how
visual and contextual information can be integrated in the process of
identitying a word.
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It is commonly agreed that understanding a written sentence or passage
involves processesthat apply orthographic, syntactic, semantic and pragmatic
knowledge tothe analysis of the visual input. One can think of this analysis as
occuring inaseries of stages, witheach successive stage interpretingthe input
at a "higher" level of analysis. For example, at an early stage of processing
orthographic knowiedgewould be used to identify each individual word inthe
input. The resulting word identity information would then be passed onto a
processthat constructs as interpretation of the syntactic structure of the input,
and in turn the output of the syntactic process would serve as input for a
process concerned with understanding the meaning of the input.

Althoughthereisgeneral agreement thatlanguage comprehension involves
processes at a number of levels of analysis, there is sharp disagreement about
thestructure ofthe processing systemthat supportsthis analysis. Onthe other
hand, a number of theorists, including Forster (1979, 1981) and others (e.g.,
Seidenberg, Tanenhaus, Leitman, & Bienkowski, 1982; Stanovich & Wets,
1983), have argued that the language comprehension system consists of a
hierarchy of processing stages, with informationflowing only upwards through
the system. Thus, in this view language comprehension is seen as a series of
discrete decisions. The decision made at a given level depends only on the
results of processes atlower levels of the hierarchy, and cannot be influenced
by processes that occurfarther up inthe system.

On the other hand, other theorists, including Morton (1979), Rumelhart
(1977), and Marslen-Wilson and Welsh (1978), have argued in favor of a
different conception of the language processing system. In theinteractive
processing framework proposed by these theorists, processing is again
assumed to occur at a number of levels of analysis. Incontrastto the above
autonomous framework, however, in the interactive framework it is assumed
that there is both a bottom-up and a top-down flow of information. The
top-downflow of information allows initial results at higherlevels of processing
to influence decisions made at lower levels of analysis. !t is argued that a
top-down flow of information allows for more informed interpretations of what
can often be ambiguous bottom-up information (Rumelhart, 1977; McClelland
& Rumelhart, 1981).

Thus, the interactive and autonomous views make different predictions
about situations in which the role of top-down information is explored. The
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autonomous view predicts that top-down information will have little impact on
the outcome of language comprehension processes, whilethe interactive view
suggests that the outcome of these processes will be influenced by top-down
information.

CONTEXTUAL EFFECTS ONWORD IDENTIFICATION

Although the interactive and autonomous models make conflicting
predictions about top-down effects across a variety of processes, these
predictions have been put to the test most often in experiments studying the
word identification process. In the most common paradigm for studying
top-down effects onword identification, subjects read a context sentence and
then either name a target word or make a lexical decision about it. The
influence of higher-level context on the word identification process is studied
by manipulating the semantic relationship between the target and its context
sentence. Forexample, the target word "desk" might appear in the context of
a sentence with which it is congruent, such as "Mary's books were piled up
onher...... “, orinthe context of a sentence with which it is incongruent, such
as "last night Mary read a good ...... “. The results of studies employing this
paradigm are consistent and robust. Words are identified more accurately
(Morton, 1964; Tulving & Gold, 1963) and responses are made more quickly
(Fischler & Bloom, 1979; Forster, 1981; Stanovich & Wets, 1981) when the
target is congruent with the context than when it is not.

At the first glance, this pattern of results seems to support the intercative
view at the expense of the autonomous framework. The finding that semantic
context can influence performance on word identification tasks is precisely
what one should expect if there is a top-down flow of information within the
language processing system. On the other hand, # it is assumed that
information has a purely bottom-up flow, then contextual information should
not influence the duration or outcome of the word identification process, as
the results cited seem to suggest.
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However, itisoftenthe case thatthe obvious interpretation is not necessarily
the correct one. In this particular case the reported contextual effects can be
takento be consistent with the autonomous framework if it is assumed that the
locus of the contextual effects is not the word identification process itself, but
instead some other process that occurs after the word identification process
has been completed. For example, one might suppose that the detection of
semantic incongruity triggers an error-checking mechanism. {f this were the
case, response times might be slower in the incongruent condition even
though the duration of the word identification process itself was the same
across conditions. Thus, both the interactive and autonomous frameworks
can account for the finding that responses occur more quickly for congruent
targets thanfor incongruent targets.

In order to tease apart these competing accounts, response times for
congruent and incongruent targets can be compared to response times for
words that occur in neutral contexts. Inthis case, the aiternative accounts
make clear and contradictory predictions. In the interactive framework it is
assumed that atop-down flow of information facilitates the word identification
process. Thus, according to this view word identification should occur more
quickly forwords that appearina congruent semantic context than for words
that appear in a neutral context. On the other hand, according to the
autonomous framework contextual information has no influence on the word
identification process. Under this account, response times in the congruent
condition should be nofasterthan responsetimes for neutral targets. The only
contextual effect consistent with the autonomous view is a slowing down of
responses for incongruent targets brought about by post-identification
error-checking mechanisms.

Unfortunately, although thelogic underlyingthis method for testing between
theinteractive and autonomous models is straightforward, the implementation
of this method has provento be anything but straightforward. The problem is
thattheterm'neutral context' can be construed in several ways. For example,
Stanovich and West (1981,1983) used the word strings 'They said it was the
...... "and ‘thethethe...... "astheir neutral contexts, and found that responses
were made more quickly for wordsthat appeared in a congruent contextthan
for words that appeared in these neutra! contexts. However, Forster (1981,
Experiment 1), using a random word list as the neutral context, found only
an inhibitory effect on response latencies for words appearing in incongruent
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contexts. To resolve the conflict between the results of these studies, Forster
(1981, Experiment 5) directly comparedthe “itwasthe ...... "and randomword
listcontexts. Forster found thatthe congruenttargets were named significantly
faster than words appearing in the "It was the ...... " neutral context, but that
whenarandomwordlist was used as neutral context, the contextual effect was
inhibitory.

Clearly, then, the interpretation of these depends on which neutral condition
is accepted as truly "neutral'. On the one hand, it can be argued that if neither
condition provides information about the identity of the target, the faster one
(the random word list) should be chosen. Onthe other hand, if sentence-level
processing is both obligatory and resource demanding, thenthe random word
list, not being as resource demanding as sentence contexts, would be
artificially fast, and the "It was the ... " condition would be the more
appropriate choice. Thus, althoughthereis atleast some reasonto suppose
that either sort of neutral context would serve as the appropriate baseline,
neither choice is obviously a better choice than its alternative. Given this
problemin identifying the appropriate baseline, the results of the reaction time
studies discussed above remain ambiguous. Although these results can be
taken as supportingthe hypothesis that contextual information facilitates word
identification, they can also be taken as supporting the claim that the locus of
the contextual effect is an error-checking mechanism that operates after the
word identification process has been completed.

ANALTERNATIVE PARADIGM

There are two aspects of the reaction time paradigm discussed above that
make the results of experiments using that paradigm difficult to interpret. The
problem brought out inthe previous section is that different baseline contexts
allow for different conclusions to be drawn, and there are reasonable
arguments for assuming that each of these different baselines is the
appropriate one. A second problem is that, in the face of the lack of an
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appropriate neutral condition, both the autonomous and interactive
frameworks can account for the finding that responses are faster in a
congruent context than inan incongruent context. Thus, in order to test
between the alternative hypotheses about the role of contextual information
inword identification, one must either resolve the baseline issue or manipulate
the context in such a way that the autonomous and interactive frameworks
make different predictions.

Gregg Oden and | (Rueckl & Oden, 1986) performed a sequence of
experiments in which we took the latter route. The fundamental assumption
underlying these experiments is the claim that the congruity of a word with its
context is not an all-or-none thing, but is instead a matter of degree. For
example, consider the sentence frame "The ...... had a pair in his hand". This
sentence frame can be sensibly completed by a number of words, including
“cardplayer'and arthritic". Note, however, that although either word sensibly
completes the sentence, it seem intuitively obvious that the sentence is more
sensible when completed by the word "cardplayer'. That is, it is more likely
that a cardplayer would have a pair in his hand than an arthritic would have a
pair in his, even though it is perfectly possible for an arthritic to be holding a
pair.

By making the assumption that aword can be more orless sensible with
agiven context, it is possible to create an experimental situation in which the
autonomous and interactive frameworks make different predictions. In
particular, ftheword identification process is influenced by the degreetowhich
atarget word is congruent with its context, as might be expected within the
interactive framework, then performance in an identification task should differ
with differences in the degree to which a target word is a sensible completion
of its sentence context. Onthe other hand, if the only effect of target/context
sensibleness istotrigger an error-checking mechanism when the target word
is incongruent with its context, as is posited by the autonom ous framework,
then differences in target/context sensibleness should have no effect on word
identification, provided that the target is a sensible completion of the context
sentence.

in the experiments Oden and | conducted, contextual information was
manipulated by creating a set of sentence contexts that differed in the degree
to whichthey were sensibly completed by either of two orthographically similar
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target words. Forexample, inthe sentence frame "The ...... had a (pair/pain)
in his hand", the blank was replaced by “cardplayer’, "shoemaker", "piano
player', and "arthritic". Note that the relative sensibleness of the alternative
target words ("pair' and ‘'pain') differs across these context. In the
"cardplayer' context, “pair' is the more sensible target, while in the "arthritic"
context, "pain” is the more sensible target. The other contexts, "shoemaker"
and “piano player”, are less strongly biased in either direction.

In addition to the contextual manipulation, the physical characteristics of
the target words were also manipulated. In particular, pairs of target words
were chosen so that these words differed by a single letter feature. For
example, the words "pair' and "pain" differ physically solely inthe length of the
line that distinguishes "r from “n". The lenght of this line was systematically
varied, resulting in a series of stimulithat differ systematically in the degree to
which they resemble the alternative target words (see Figure 1). Previous
research has found that letter and word identification is a consistent and
systematic function of this type of manipulation (Massaro, 1979; Oden, 1979,
1984).

The interactive and autonomous frameworks make clear and distinct
predictions about the effects of these manipulations on the outcome of the
word identification process. Both views agree that manipulating the physical
characteristics of the stimulus will influence the outcome of this process.
However, only the interactive view predicts that the contextual manipulation
will also influence the outcome of the word identification process. Because
the contextual manipulation described above does not produce any sentences
that would trigger a post-identification error-checking mechanism, the
autonomous view must predict that word identification will not be influenced
bythat contextual manipulation.
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pair bears car

pair bears car

pain bears ear

pain beans ear

pain beans ear
FIGURE 1

Thefeature manipulations used in Experiment 1.

EXPERIMENT 1

Two experiments were conducted, each invoiving the featural and
contextual manipulations described above. Inthefirst experiment, the subject
was presented with a series of sentences, and was asked to choose which
oftwotest words was in each sentence. Each sentence was briefly presented
onavideo monitor, and was replaced by a display containing the two response
alternatives. The subject was then asked to push a button corresponding to
the test word that had appeared in the sentence.

The sentences used in this experiment were drawn from three stimulus
matrices that were constructed by combining five levels of a feature
manipulation with four different sentence contexts. One matrix was the
pair/pain matrix described above. For this matrix, the response aiternatives
offered the subject were the words "pair' and "pain". The second stimulus
matrix was the bear/bean matrix. The featural manipulation for this matrix
involved the same r/n continuum used in the pair/pain martix. Inthis case, the
r/n characters were embedded in the letter string "bea_s", resulting in word
stimuli that varied in the degree to which they resembled the words "bears"
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and “beans". The contextual manipulation for this matrix was produced by
replacing the blank in the sentence frame 'The ....... raised (bears/beans) to
supplement his income" with "lion tamer", "zookeper", "botanist", and "dairy
farmer'. Again, these words differ in the degree to which they support the
alternative interpretations of the target word. The third matrix was the
car/ear matrix. Forthis matrix, the featural manipulation involved changes
inthe length of the horizontal bar that distinguishes "¢’ fromthe “e". For
the contextual manipulation, the words "rusty","dented","bleeding ", and
"deformed" were embedded in the sentence frame "The detective carefully
watched the manwiththe ...... (car/ear)".

There were three blocks of trials. Within each block, all 60 test sentences
(20 feature X context combinations from each of the three matrices) were
presented, as were 15 filler sentences. Some of these filler sentences were
closely related to the test sentences. In particular, the filler sentences were
based on the sentence frames used to generate the stimulus matrices.
However, in the filler sentences the blanks in the sentence frames were filled
by context words other than used in the test sentences, and the target word
was also changed. (For example, one filler senetence "The old ballplayer had
a pain in (his/her) hand".) The purpose of these filler sentences was to
discourage the subject from adopting a strategy of only looking at the target
, rather than reading the entire sentence.

Results of Experiment 1

Theresults ofthe first experiment indicated that both semantic and featural
information influenced the outcome of the word identification process. For
all three matrices the probability of a given response was a systematic
function of both the semantic featural support for that interpretation.

Theresultsforthe pair/pain matrix are presented in Figure 2. Onthe vertical
axis isthe proportion oftrials onwhichthe target word was identified as "pain"”.
The levels of the featural manipulation run along the horizontal axis. The
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individual curves in the figure correspond to the different semantic contexts.
As can be seen in the figure, the feature manipulation produced a large and
systematic effect, with the probability of the target word being identified as
“pain"increasing as a direct function of the fength of the manipulated feature,

J. Rueck/

F(4,92) = 133.79, p <.001.

The effect of the contextual manipultion was relatively small, but it was also
reliable and systematic, F (3,69) =3.22, p <.05. Ateach level of the featural
dimension, the target word was more likely to be identified as "pain" in the
arthritic context than inthe card player context, while responses in the other
contexts, which seem intuitively 1o be less biased in either direction, fell in

between.

Proportion of 'pain’ responses

The portion of *pain” responses for the pair / pain matrix as a function of
sentence context and featural information.

1.0

The --- had a ( pain/pair )
in his hand

Context

L SEEERED ¥ arthritic
: FSEREET 4 piano player
X & ————a shoemaker
....... e——s card player

r r r n n

Feature Level

FIGURE 2
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Thus, theresultsfromthe pair/pain matrix indicate that featural and semantic
information jointly determined word identification. The influence of these
factors was systematic, in that the probability that the target was identified as
"pain" increased with increases in either the featural or semantic support for
thatinterpretation. Finally, althoughthefeatural and contextual manipulations

had significant effects, the interaction of these factors was not significant.

Proportion of ‘bears’ responses

1.0

The --- raised ( bears/beans )
to supplement his income

Context

X:--+---¥lion tamer
A--oeee -Azookeeper
&————&botanist
e——edairy farmer

n n r r r

Feature Level

FIGURE3

The portion of "bears" responses for the bears / beans matrix as a function

of sentence context and featural information.
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The detective carefully watched
the man with the --- ( car/ear )
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FIGURE 4
The portion of "car" responses for the car / ear matrix as a function of
sentence context and featural information.
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The resuits for the other matrices are presented in Figure 3 and 4. The
results forthese matrices followthe same patternaswas found forthe pair/pain
matrix. For each matrix, there was alarge and systematic effect of the featural
manipulation (F (4,92) = 210.76, 103.93, p <.001. for the bears/beans and
car/ear matrices, respectively). In addition, for each matrix the effect of the
contextual manipulationwas both significant (F (3,69) = 4.58,4.92, p< .05for
the bears/beans and car/ear matrices, respectively) and sensible. For the
bears/beans matrix, responses inthe lion tamer context were biased towards
the "bears" response, responses in the dairy farmer context were biased
towards the "beans" response, and responses in the other context fell in
between. Forthe car/ear matrix, the"rusty" and "dented" contexts were biased
towardsthe"car' response, whilethe "deformed" and "bleeding" contexts were
biased towards "ear'. For neither matrix was the interaction of the effects of
the context and feature manipulations significant.

EXPERIMENT 2

The results of the first experiment suggest that contextual information
influences the word identification process. The results of the second
experiment support this conclusion. Although Experiment 2 involved the same
semanticandfeatural manipulations used in Experiment 1, boththe designand
the procedure of the second experiment differed somewhat from that of
Experiment 1. Sixteen stimulus matrices were constructed for Experiment 2,
thus allowing usto study featural and contextual effects word identification over
a wider variety of materials. In constrast to the increase in the number of
matrices, the number of cells within each matrix was reduced: there werethree
leves of the feature manipulation and two leves of context per matrix. The
designof Experiments t and 2 thus have a complementary nature. The design
of Experiment 1 allowed for a fine-grained examination of the influence of
contextual and featural information on word identification in a task involving a
‘small number of stimuli. Incontrast, the examination of the role of featural and
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semantic informationwaslessfine-grained withineach matrix of Experiment 2,
butthe effect of these factors was studied across a greater variety of materials.

The stimulus matrices forthis experiment were constructed sothat the three
levels of the feature manipulation included two intact letters that differed along
a singie dimension (e.g. "r" and "n"}) as well as an intermediate stimulus that
partially resembled each of the intatct letters (see Figure 5). The two context
sentences were chosen so that each interpretation of the target word was the
more sensible completion of one of the two contexts. For example, for the
tan/fan matrix, the two conte sentences were "They drove to Florida to get a
«(fan/tan)" and "On these hot days it helps to have a (tan/fan)". Although both
“tan" and "fan" sensibly complete either sentence, "tan" is the more sensible
completion ofthe former sentence, while "fan" is the more sensible completion
of the latter.

In addition to testing the generality of the results of Experiment 1, the
inclusion of more stimulus matrices allowsfor a betterassessment of the actual
size of the context effect. In the first experiment the subjects were repeatedly
exposed to each of the different contexts for each of the stimulus matrices. It
is not unreasonable to suppose that the repeated occurence of each context
in Experiment 1 may have reduced effects of diferences in the relative
sensibleness of each interpretation of the target word in a given context by
making eachinterpretation highly familiar. Thus, in Experiment 2 each subject
was presented with only one ofthe test sentences from each of the 16 matrices.
(Inaddition, each subject was presented with 32 unrelated filler sentences. Of
the filler sentences, 16 were sensible, and 16 were semantically anomalous.)

The task used in Experiment 2 was also different from that used in
Experiment 1. Rather than performing what amounted to a forced-choice
recognitiontask, subjects inthe secondtask were askedtoread each sentence
aloud, and then decide whether or not the sentence made sense. There were
three reasons for altering the task inthis way. First, this task emphasizes the
semantic properties of the sentence. If semantic context does influence word
identification, as suggested bythe resuits of Experiment 1, then increasing the
degreetowhichthe subjectfocuses onthe semantic properties of the sentence
should increase the size of the context effect.
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FIGURES
The expected and observed values (curves and points, respectively) of the
responses for each stimulus matrix. The values for the "shoemaker",
"botanist", and " deformed" contexts have been displaced upwards by .15
units. The values for the other contexts were also displaced upwards, by
equal increments.( Adapted from Ruecki & Oden, 1986.)
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Secondly, having the subject rate the sensibleness of each sentence gives
us an independent measure of the congruity between each context and each
interpretation of the target word. Althoughthe pattern of results in Experiment
1 followed our intuitions about the relative sensiblieness of each target
interpretation in a given context, having the subjects make sensibleness
judgments about target/context pairs gives us an objective measure of this
relationship. If one interpretation of atarget really is more sensible with a given
context, thenthat sentence should have been morelikelyto be judged sensible
whenthe target word was given that interpretation.

Finally, the use of this new task allows us to test an account of the resuits
of Experiment 1 that is consistent with the autonomous framework. Recall that
autonomous models could account for contextual effects in reaction time
studies by positing that responses to semantically incongruent target words
are slowed by anerror-checkingmechanismtriggered by semantic incongruity.
The results of Experiment 1 can not be accounted for in this way, however,
because in that experiment both interpretations of the target word were
congruentwith each context. Thus, the error-checking mechanism should not
have been triggered, and contextual information should not have influenced
the outcome of the word identification process.

However, there is another account of the resuits of the first experiment that
isconsistentwiththe autonomous framework. It might be argued that, because
each sentence was presented for a brief amount of time, there may have been
a number of trials on which the subject was not able to identify the target word
before it was removed from the screen. Onthese trials the subject’s response
would be nothing more that a guess about the target word’s identity. If the
subject had some information about the rest of the sentence, and if this
contextual information influenced the subject’'s guessing strategy on these
trials, then it would have been possibleto find a contextual effect on the actual
responses made, even though contextual information does not influence the
word identification process itself. If context influences word identification in
Experiment 2, this account can also be ruled out. By simply askingthe subject
to read asentence aloud, the possibility that the subject is guessing about the
identity of the target word has been removed.

Tosummarize, in Experiment 2 subjects were presented with one sentence
from each of 16 2X3 stimulus matrices, along with 32 filler sentences. The
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presentation of the test sentences was counterbalanced in such a way that
each subject saw approximately the same number of sentences from each
combination of feature level and context level (collapsed across matrices).
Furthermore, each sentencefrom each matrix was presented an equal number
of times across subjects. The subject’s task was to read each sentence aloud
asitwas presented, andthento push one ofthe two buttons, indicatingwhether
ornotthesentence made sense. The experimental session wastape-recorded,
sothat the subject’s identifications of the target words could be determined.

Results of Experiment 2

In Experiment 1, the data for each matrix were analyzed separately.
Because there was far less data per matrix in Experiment 2, the data were
collapsed across stimulus matrices. In order to do this, the alternative
interpretations of the target word for each matrix were arbitrarily labelled
“Word 1" and "Word 2" responses. Each context can then be denoted with
referencetothe response alternative that was most sensible giventhat context.
Forexample, in the fan/tan matrix "tan" was assigned label "Word 1", and "fan"
was labelled "Word 2". "Tan" is the most sensible completion of the sentence
"During spring break they drove to Fioridato geta ....... “. Thus, this context
was labelled "Context 1”. Conversely, the context supporting "fan" ("Onthese
hot days it helps to have a ...... ") was labelled "Context 2*. Finally, the levels
of the feature manipulation were also labelled in a similar manner. The level of
the feature manipulations corresponding to an intact "Word 2" stimulus was
labelled | evel "F1", while the feature level corresponding to an intact "Word 2"
stimulus was labelled "F2". The intermediate level along the feature dimension
was labelled "FA" ("A" for "ambiguous").

Labelling the tevels of the feature and context manipulations in this way
identifies the cells that correspond to each other across the stimulus matrices.
Thus, the number of Word 1 responses for a given cell in a given matrix can be
added to the number of Word 1 responses for that same cell in all the other
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The feature manipulations used in Experiment 2.

matrices. The result of this process is shown in Figure 6. In this figure, the
vertical axis represents the proportion of Word 1 responses. The levels of the
feature manipulation run along the horizontal axis, and the separate curves
correspond to the different contexts. As can be seen inthe figure, the feature
manipulation again had a large effect on the outcome of the identification
process. The contextual effect was quite smalfl when the feature levels
corresponded to intact letters (levels F1 and F2), but was quite smatl when the
physical stimulus was an ambigous letter form (level FA). An analysis of
variance found significant effects for both the feature manipulation, F (2,118)
= B877.93. p <.001, and the contextual manipulation, F (1,59) = 80.22,
p <.001. In addition, the interaction of the contextual and featural
manipulations was also significant, F (2,118) = 42.31, p <.001, indicating that
the contextual effect was largest when the featural information was least
informative.

The results of the sensibleness decision were also analyzed. Accordingto
the experimental logic, each interpretation of the target word was relatively
more sensible with one of the sentence contexts. If this was the case, then
Context t sentences should be more likely to be judged sensible when the
target word was interpreted as Word 1 than when it was interpreted as Word
2, and vice versa for Context 2 sentences. This predicted pattern of results did
obtain. In 28 of the 32 sentence contexts, the sentence was judged as being
sensible more often when the target was identified as the interpretation
hypothesized to be more sensible in that context, p<.001, by sign test.
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Futhermore, in only one of the 32 contexts was the biased against
interpretation not judged as sensible by any of the subjects. Thus, the
contextual manipulation did not result in one sensible sentence and one
anomalous sentence. Instead, the contextual manipulation resulted in two
sensible sentences that differed in their degree of sensibleness.

GENERAL DISCUSSION

The results of these experiments are consistent with the interactive view of
the language processing system, which assumes that decisions made at a
given level of analysis can be influenced by information derived by processes
at a higher level of analysis. Inthe present case, the identification of a target
word was systematicallyinfluenced by the context in whichthat word appeared.
Itis difficult to see how this effect could have been produced by the factors that
exert their influence after the word identification process has been completed.
ldentification differs across sentence contexts that were sensibly completed by
either interpretation of the target word, thus precluding the possibility that the
context effect was brought about by a post-identification error-checking
mechanism. Futhermore, because the task used in Experiment 2 involved
simply reading each sentence aloud, it is highly unlikely that the context
effect found in that experiment could be the result of the context-sensitive
guessing strategy. Thus, it is difficult to escape the conclusion that the locus
of the context effect is the word identification process itself.

Giventhis conclusion, we can now turnto an account of the resuit reported
here. What is needed is an account of the process that takes as input visual
and contextual information and yields as output a representation ofthe identity
of the word being processed. In fact, a variety of accounts of this process
have been suggested (Morton, 1979; Marslen-Wilson & Welsh, 1978;
Rumelhart, 1977). These alternative accounts share the property that they
allow contextual information to influence the processing of visual information.
For example, in Morton’s model, contextual information lowers the threshold
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of word detectorsthatare congruentwiththat context, causing aword detector
toreachthreshold more quickly whenthe context supports that interpretation
of the input that when it does not.

However, although these models account for the general finding that word
identification is influenced by contextual information, they cannot explicitly
account for the kind of contextual and featural manipulations used in these
experiments. That is, these accounts lack the conceptual apparatus needed
tounderstand howthe featural and contextual support for a given interpretation
of a word can vary sytematically and continuously, as was the case in the
presentexperiments.

One account that does provide the needed conceptual apparatus is the
fuzzy propositional framework (Oden, 1979, 1984; Massaro, 1979; Massaro &
Oden, 1980). This framework has been successfully applied to a variety of
psycholinguisticdomains, including letter (Oden, 1979), word (Massaro, 1979;
Oden, 1984), and speech sound identification (Massaro & Oden, 1980; Oden
& Massaro, 1978), and syntactic ambiguity resolution (Oden, 1978, 1983). In
the fuzzy propositional framework, concepts are represented by propositions
that cantake on continuoustruth values. Complex propositions are construed
by conjoining simpler propositions withfuzzy connectives (e.g. AND, OR). The
truthvalue of a complex proposition is a systematic function of the truth values
of its component propositions (Oden, 1977).

In the fuzzy propositional model of word identification, it is assumed that
eachword isrepresented by afuzzy proposition composed of more elementary
propositions. These component propositions represent the letters that make
up the word. For example, the word "pain" would be represented by the
proposition"p1 & a2 & i3 & ne", where "p1" stands for the proposition that the
first letter is a"p", and "&" stands for the fuzzy logical "AND" operator. Letter
propositions are also complex propositions composed of more elementary
propositions. For example, the letter "p' might be represented by the
proposition"f1 &f2 &3 ... ", where each "' represents a specific letter feature,
such as aline or curve segment or a relation between segments.

It is assumed that the truth values of these feature propositions can be
determined by low-level perceptual processes. That is, upon the
representation of a visual stimulus, low-level perceptual processes determine
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the degree to which each feature is present in the stimulus. This featural
information can then be used to compare the stimulus to lexical
representations stored in long-term memory. In order to perform this
comparison process, information about the presence of each of the
elementary features specified in a word’s proposition is integrated according
to the rules of fuzzy logic (Oden, 1977). The result of this comparison
process is a fuzzy truth value corresponding to the degree to which the
stimulus matches the lexical representation. This value will be a systematic
function of the degree to which each of the elementary features was present in
the stimulus.

According to the model, the stimulus is compared to the proposition
representing each word in the reader’s vocabulary in parallel. The result of
this process is a set of fuzzy truth values corresponding to the degree to which
the stimulus matches each word pattern. If the stimulus is an isolated word
(that is, if it is not encountered in the context of other words), the probability
of identifying the stimulus as a given word is taken to be a direct function of the
associated truth value. Thus, the stimulus is most likely to be identified as the
word withthe highest truth value, and hence the best match with the stimulus.

Onthe other hand, if the stimulus appears ina context that constraints the
likelihood of a given word's occurence, the model will take this source of
information into account.  Of particular relevance here as a source of
information is the sentence context in which a word appears. Because
different interpretations of a stimulus word will be more or iess sensible given
a particular sentence context, this context can serve as a value source of
information in choosing the best interpretation of the stimulus. Inordertotake
this information account, it is assumed that in addiditon to computing the
degree towhichthe stimulus matches each lexical representation, the reader
concurrently computes the degree to which each meaning of a word makes
sense given the context. (See Oden, 1983, for an explanation of how these
sensibleness values are determined.)

Thus, in identifying a word in the context of a sentence, it is assumed that
the reader has available information about both the degree to which the
stimulus matches each alternative interpretation and the degreeto which each
interpretation makes sense given the context. The overall support for each
interpretation is given by the fuzzy conjunction of these two values. The
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probability of selecting a particular interpretation of the stimulus is a function
ofthe degree of support for that interpretation relative to the degree of support
for other interpretations. In particular, it is assumed that response selection
follows the equation

R1=(F1&S1)/(F1&S1) + (F2&S2) + ...... (Fn&Sn)

where R1 isthe relative degree of support forWord 1, F1 is the featural support
forWord 1, S1 is the sensibleness of Word 1 given the context, and soon. In
this equation, both featural and semantic information influence the word
identification decision. Thus, the identification process is able to take
advantage of both sources of information, and need not be completely
dependent on either source alone.

An account of the experimental results. The fuzzy propositional model
givesa clearand natural account ofthe experimental results reported above.
Consider, for example, the results for the pair/pain matrix in Experiment 1
(Figure 2). Note first that, disregarding the contextual manipulation, the
proportion of "pain" responses increased steadily as the length of the feature
distinguishing “r' and "n" inthe last letter increased. According tothe model,
increasingthe length of this feature will increase the featural support for "pain”
and decreasethe featural support for"pair". Increases inthe featural support
for "pain” will inturniead to increases inthe size of the numerator (relative to
the denominator) in the equation for the relative degree of support for "pain".
Thus, the probability of a "pain" response will increase as the featural support
for“pain"increases.

Ontheotherhand, disregardingthe featural manipulation, the value forthe
sensibleness of "pain" should be greater in the "arthritic' context than in the
"card player’ context, and this difference teads to a greater relative degree of
support for "pain" in the arthritic context. This difference is again reflected in
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the data, in that the proportion of "pain" responses is higher in the "arthritic"
context at each level of the feature manipulation. A similar account can be
given for the results for each of the other matrices in Experiment 1 and 2.

in addition to giving a qualitative account of the effects of both the featural
and contextual manipulations, the fuzzy propositional model can be used to
derive a quantitative account of the joint influence of these manipulations. In
order to provide this account, the iterative model-fitting routine BESTFIT
(Wilkinson, 1982) was used tofitthe model tothe data from Experiment 1 using
aleastsquares criterion of fit. Of the nine parameters of the model (five for the
featural dimension and four for the different contexts) eight were free to vary
and one was set arbitrarily to establish the scale.
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The resulting parameters were then used to estimate the expected values
for each of the 20 data points for each matrix. In general, these expected
values were reasonably close to the actual data - the root mean squared
derivations between the expected and observed values of the means of the
responses were 0.019, 0.020, and 0.027 for the pair/pain, bears/beans, and
car/ear matrices, respectively. These values are comparable to results obtained
in previous work of this sort.

Figure 7 presents the expected and observed values (curves and points,
respectively) for each of the matrices in Experiment 1. In order to clearly
depict the relationships between the observed and expected values for each
context, successive curves have been displaced upwards by a fixed amount.
(For example, in the pair/pain matrix, the values for the "shoemaker", "piano
player', and "card player' contexts have beendisplaced upward by 0.15,0.30
and 0.45 units, respectively.) This figure illustrat es the goodness of the fit
between the values produced by the model and the data actually obtained.
The deviations are quite small, and do not follow any systematic pattern.
Thus, the fuzzy propositional model gives a good quantitative account of the
results reported above.

CONCLUSION

The results reported here demonstrate that both featural and contextual
information influencetheword identification process. inboth experiments, the
probability that a target word was assigned a given interpretation was a
systematic function of both the featural and semantic support for that
interpretation. These results are consistent with the assumption that the
language processing system is designed to operate in an environment that
often provides the systemwith noisy and somewhat ambiguous input. Insuch
an environment, a system will be best off if takes into account a variety of
different, partially redundant sources of information. A corollary ofthis view is
the principlethatthe influence of one source of information should be greatest
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when the information provided by the other sources is most ambiguous. This
principle is exemplified by the resuits of Experiment 2, where the effect of the
contextual manipulation was greatest when the featural information was most
ambigous.

The conclusion that contextual information plays a role in the word
identification process is consistent with the interactive processing framework,
and in particular, with thefuzzy propositional model of word identification. This
model assumes that both semantic and featural information are continuous in
nature, and that information of both sors are integrated during the word
identification process. Itwas argued abovethatthe fuzzy propositional model
can account for the present results both qualitatively and quantitatively.

Finally, it should be noted that the experimental paradigm used in the
present study differed in several ways fromthe sort of paradigms more typically
used to study contextual effects on word identification. Rather than studying
the influence of contextual information on the time needed to make a decision
about the identity of a word, we examined the effect of context onthe outcome
of that process. Futhermore, the experimental logic depended on the
assumption that semantic congruity is a matter of degree, and not an
all-or-none thing. This fundamental insight of the fuzzy propositional
approach played a key role inthe development of a contextual manipulation
capable of teasing apart the predictions of the intercative and autonomous
frameworks.
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Fuzzy sets are argued to be useful though not sufficient for models of
concepts: Continuous membership seems essential though fuzzy sets are
definedonsets, i.e., onaninherently contradiction-free domain (by the axioms
of set theory). Thus any accountfor the contradictions experimentally proved
on conceptual categories inevitably requires a generalization of fuzzy sets.
Therefore modified fuzzy sets (m-fuzzy sets, for short) defined on classes (in
the sense of settheory) are proposed. The hierarchy of elements in a category
is modelled by a structure of classes, m-fuzzy sets, sets, and finite subsets,
suchthat each item represents the preceding one, and the last consists of the
prototypes. The hierarchy of the categories is modeled by m-fuzzy grammars
which are pure and regulated (in the sense of formal language theory). A
related neural network is also explained. In this, the collective induced states
of the functional units, called modules, represent concepts (like in Hebbs
cell-assemblies). Both the encoding and the drawing of inference are
distributed and parallel. Formally, they constitute residue number systems and
a kind of syntactic pattern recongition, respectively.



156 G. Fuhrmann

INTRODUCTION

Concepts are fuzzy. As Miller and Johnson-Laird (1976, p.697) put it:
“Concepts are invisible, impalpable, ill-defined abstractions that have a nasty
way of being whatever a theorist needs them to be at the moment".

In spite of this simple and well-know fact, fuzzy-set theory has not found
much fruitful apptications in modelling concepts. Although fuzzy sets were
originally defined by Zadeh (1965) as atool toformalize concepts, their possible
use inthe cognitive sciences is still a vexing question {Cohen & Murphy, 1984).
Moreover, there has been a highly influential point of view, proposed by
Osherson and Smith (1981), claiming that fuzzy set theory is inherently
inadequate for modelling concepts. All this, however, by no means indicates
that fuzzy-set theory has been unsuccesful. Indeed, dozens of books and
thousands of articles have been published in this field, in other than the full
length journal Fuzzy Sets and Systems devoted entirely to it. In this enormous
literature, however, a relatively small portion is directed towards the original
aim, i.e., toformalize the cognitive sciences. Fuzzy set theory, practically as a
whole, developed in areas that had already been formalized, i.e., in
mathematics, systemtheory, computer science, etc.

The present paper departs from these apparent contradictions. First some
causes, both virtual and real, that have prevented a fruitful application of
fuzzy-set theory in the cognitive science are briefly discussed. Then, by a
generalization of the underlying domain, modified fuzzy sets (m-fuzzy sets, for
short) are defined.

For modelling the hierarchy of elements in a conceptual category, a formal
structure of concepts in their generality (classes, in the sense of axiomatic set
theory), m-fuzzy sets, conceptcores (sets, inthe above sense), and prototypes
{finite subsets) is developed suchthat each item representsthe precedingone.
Inthis structure the possible occurence of contradictions proved inevitable in
the logic of concepts (e.g., the famous Russel’s antinomy cited in section 1.2)
is localized to the first two items. Not only fuzzy sets, but also prototypes, are
defined in a modified way; as the elements maximizing the mutual
representativeness betweenthe element and the category.
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For modelling the hierarchy in representativeness of the categories
comprising a given element, m-fuzzy grammars are defined. These are pure,
i.e., no distinction is made between nonterminal and terminal symbols, and
regulated, i.e., differentlevels inthe rewriting involve different collections of the
rules. According to this formal linguistic approach, category identification
appears as a kind of syntactic pattern recognition.

Since the rewriting rules operate on confined information only, they can be
implemented by units of local arborization, e.g., by formalized neurons. Onthis
basis a related network of (a new type of) formalized neurons is proposed. The
functional units are called modules referring to the experimentally found
neuron-modules (Szentagothai, 1975, 1978; Mountcastle, 1978). Collective
induced states ofthe (formalized) modules are assumed to represent concepts,
like Hebb's (1949) cell-assemblies. Since these modular states directly referto
the representation including the learning and recognition of concepts, the
proposed approach sharply contrasts with Fodor's (1983) theory on the
modular organization inthe mind/brain.

Finally some basic properties of m-fuzzy relations, also referring to
operations, are briefly discussed. The possible genaralizations of classical set
theoretical and logical relations as well as some specific m-fuzzy relations are
considered.

1. THE CONCEPTION OF M FUZZINESS

Fuzzy sets (Zadeh, 1965) manifest a substantial step from (classical) sets
towards concepts by abolishing the constraints imposed by the law of the
excluded middle oncategory membership. This has generally been recognized
in the cognitive sciences so long as membership itself is considered only.
Observations on more intricate phenomena, e.g. conceptual combination
(Osherson&Smith, 1981), or extension and intension (Cohen & Murphy, 1984),
have resulted, however, in serious objections against the acceptance of fuzzy
sets as a model of concepts. Although these considerations are criticized
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below, their conclusion will be shared as the result of basically different
observations.

Havingexplainedthatthe inherentlogic of fuzzy sets is not that of concepts,
a modified approach to “fuzziness", in the intuitive sense, is proposed for a
mathematical model of the hierarchies of concepts.

1.1. Intuitive and mathematical senses of "fuzziness'.

The contradiction between the inherent fuzziness of concepts and the
tenuous utilization of fuzzy-settheory inthe cognitive sciences is apparent only
since "fuzziness" is meant in different senses in the two areas. Concepts are
certainly fuzzy in the everyday sense of the word as a synonim of "vague",
“ambiguous", or the adjectives in the quotation at the beginning of the present
paper. Onthe other hand, fuzzinessinfuzzy-set theory is a rigorously defined
mathematical property, viz. the continuous variability of the characteristic
function over the real interval [0,1]. Such incongruities often occur between
theeverydayandthe mathematical senses ofthe sameterms, e.g. gametheory
does not apply to (most) games, measure theory does not apply to (most)
measures, probability theory does not apply to (most) probabilities, etc. Or in
the other way round: most games, measures, probabilities, etc. meant in the
everyday sense do not satisfy the respective definitions in the corresponding
mathematical theories, i.e., they are not games, measures, probabilities, etc.
inthe sense of these theories.

This situation is well-known in the fields where mathematical techniques
have traditionally been used. Accordingly, inthese fields fuzzy-set theory has
been applied to a large extent (Kandel, 1986). In the cognitive sciences,
however, where mathematical methods are not common, the above two senses
of “fuzziness " are not clearly distinguished. What is more, they are often
confused not only with each other but also with further distinct ideas.
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The most curious as well as most influential notion on fuzziness in the
cognitive sciencesisthe one proposed by Oshersonand Smith (1981). Tostart
with, they identify the fuzzy characteristic function with category-
representativeness (ortypicality) as used in prototype theory (Mervis & Rosch,
1981). Certainly, both fuzzy-set theory and prototype theory address the
nonequivalent status of category members, however, their respective
approachesarediametrically opposite. One oftheir main differences is directly
related to the above two senses of fuzziness: prototype theory has been
basicallyinformal, thus evenif it used "fuzziness", that idea could not be a priori
identified withthe 'fuzziness" in fuzzy-settheory. Furthermore, prototypetheory
does not use'fuzziness" inany sense. (Technically: Oshersonand Smith (1981)
failed to referto any item inthe literature which mentions both “prototype" and
“fuzziness".) Another inherent inconsistency of the integrated “fuzzy typicality”
originates from the fact that the characteristic function (whether fuzzy or not)
is essentially an element-to-category relation while representativeness is
concieved in prototype theory as an increasing, otherwise not specified
function of the similarity between the given element and the prototypes of the
given category, thus it is basically reduced to an element-to-element relation.
(Incidentally, the Osherson and Smith (1981) notions allows only for one
prototype in each category, which directly contradicts prototype theory itself.)
Furthermore, not only element-to-element and element-to-category relations
are confused in the "fuzzy typicality" but also category-to-category relations,
since Osherson and Smith (1981) probe their notion on "conceptual
combination”. Here again they mix up the mathematical and intuitive
approaches: they confront some formal expresssions taken from Zadeh's
(1965) paper with their own "strong intuitions". What is the most curious in all
this notionisthatthe actual "strong intuitions” rerpesent nothing but Aristotelian
logic (viz. the classical AND, OR, and NOT operations, and INCLUSION
relation). Thus the criteria for the adequacy of an amalgam of fuzzy-set theory
and prototype theory is eventually the law of the excluded middle whose own
inadequacy is the very starting point of both "constituent" theories.

In spite of the above shortcomings, Osherson and Smith’s (1981) notion
has exerted a heavy influence on subsequent approaches to fuzziness in the
cognitive sciences (Roth & Mervis, 1983; Armstrong, Gleitman, & Gleitman,
1983; Johnson-Laird, 1983; Cohen & Murphy, 1984; Medin & Smith, 1984). This



160 G. Fuhrmann

fact justifies a detailed analysis which is attempted in Fuhrmann (forthcoming
d).

Cohen and Murphy (1984) seem to realize that Osherson and Smith’s
objections are due to their confusion of the intuitive and the mathematical
approaches, however, they try to clarify the situation by getting rid of sets
altogether whether fuzzy or not. Nevertheless, categories and thus also
categorization can hardly be studied without considering sets since “set" inthe
classical sense used inthe cognitive sciences, including Cohen and Murhpy's
(1984) approach, is a synonim of "category" {this will be discussed in Section
1.2).

Further confusion about "fuzziness" in the cognitive sciences originates
from its comparison to probabilistic modelling. In the intuitive sense the fuzzy
and the probabilistic approaches can be identified since both deny the law of
the excluded middle.

If, however, probability is mentioned without any specification, it shouid
certainly beassumed inthe sense of probability theory and inthis mathematical
sense, thetwo approaches are not identical at all: probability theory obeys the
strict axioms of measure theory (Halmos, 1950) while fuzzy-set theory has not
been developed to an axiomatic theory (in spite of axiomatizing attempts, e.g.
Gougen, 1974), thus it can be used without any prescribed mathematical
constraint. The two senses are often confused by both proponents and
opponents of fuzziness in the cognitive sciences. For example, McClosky and
Glucksberg {(1979) propose "fuzziness" arguing that human categorization is
probabilistic. On the other hand, for example, Johnson-Laird (1983) opposes
“fuzziness" in favor of a probabilistic description while, however, he rejects
probability theory as the means of calculating joint “probabilities". These and
some other curious notions on fuzziness are discussed in more details in
Fuhrmann (forthcoming a).

One of the fundamental differences between the intuitive and the
mathematical senses of ‘fuzziness" lies in their respective novelty. That of the
latter, i.e. of the generalization of set membership from dichotomous to
continuous, is enormous. Indeed, since "set' is an essential idea in
mathematics, the abolition of a stringent constraint (i.e. the law of the excluded
middie) on set membership obviously provides for various generalizations in
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practically all fields of pure and applied mathematics. (This is by no means to
say, however, that fuzzy sets mark a new era of mathematics. "Fuzzification"
may be quite unimportant and uninteresting in many areas, nevetheless it is
possible, which means a lot of work whether significant or not.) On the other
hand, "set" in the intuitive sense is only a synonym of "category" and studies
on both the inherent logic and the practical applications of categories have
long been revealed as having graded membership (Rescher, 1969; Simpson,
1961, respectively).

Accordingly, to find the appropriate approach to sets is certainly a crucial
point in an understanding of fuzzy sets and alf the more for their possibie
utilization in modelling concepts (or categories). Cohen and Murphy (1984)
apparentty realizedthisfact, however, their proposition to omit sets altogether,
both classical and fuzzy, cannot be accepted: "Set" has two aspects, one of
which is inherently related to "category" (or "concept"). Since the two aspects
are also inherently related (to each other), an analysis of their various
relationships appears useful. This is attempted in the next section.

1.2 Concepts, sets, fuzzy sets

The question whether sets can be used as a model of concepts, as raised
by Cohenand Murphy (1984), should not be seen as a starting point to discuss
the relationship between concepts (or categories) and sets. In fact, sets were
introduced as a model of concepts by Frege's Axiom of Comprehension (or of
Abstraction):

dyVxxey<dx)] (1)
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That is, given a predicate ¢ (x), there is a set y to which any given entity x
belongs (as an element) if and only if & (x) holds true. Evidently, this classical
idea of sets differs fromthat of category or concept in denotation only. It is also
evidentthataxiom (1) does not specify set membership apart from its reduction
tothe truth of predicates: If the latter is dichotomous, then so is the former, if
thelatterisgraded or continuous, then soistheformer. It is only a consequence
of the general assumption of Aristotelian logic (particularly the law of the
excluded middle) on predicates that set membership became also generally
assumed to be dichotomous. The introduction of the classical, bivalued
characteristic function was based onthis mechanically adopted assumption:

1,ifxey

wy(x) =
0,ifx ¢y (2)

Making use of the original meaning of set membership, expressed by
equation (1), we may write:

pov(u:U®V--{01} (3)

where U and V denote the set of all (real or imaginary) entities and that of
all possible predicates inany given (practically natural though possibly artificial)
language. The characteristic function mapsthe Cartesian product ofthese sets
(i.e. the set of pairs (u,v) where u € U, v € V) into the set {0,1}:

wv(u) = 1< [v(u) holds true ].

Natural languages, however, are not free of contradictions, people often
accept, or make, category statements in spite of being aware of counter
examples (Hampton, 1982). Therefore classical (or "naive") set theory based
eventually on naturallanguages cannot be contradiciton-free, either. The most
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famous contradictionis Russel’s antinomy:let H denote the set of all sets which
are not elements of themselves. (Evidently, a set may belong to itself, like the
set of all sets defined in this paper, or may not do so, like the set of all people
livingatthis moment.) Now, let us consider if H belongs to itself. It isimmediately
clear that it belongs to H if and only if it does not do so. To illustrate that the
use of mathematical ideas (set, set membeship) plays no role here, let us cite
another, called Grelling's antinomy: Some English adjectives have the property
that they denote, e.g. "English", "polysyllabic’, while others do not, e.g.
"French", "monosyllabic'. Calling the latters heterological, it is evident that
"heterological" is heterological if and only if it is not heterological.

A mathematical theory cannot lead to contradictions, therefore the
discovery of antinomies in naive set theory resulted in the rejection of axiom
(1). In the new version, called axiomatic set theory, axiom (1) is replaced by
the following Theorem Schema of Separation (or of Subset):

Vz3y¥x[xeyoexez n o X)) (4)

That is, the statement in Equation 1 does not apply to every entity, only to
those belonging to a discretionary set z. What makes a coilection of entities a
setis uniquelyand contradiction-freely defined in axiomatic settheory, seee.g.,
Fraenkel, Bar-Hillel and Levy (1973). What is important here is only that a set
cannot belong to itself (nor to a set which belongs to a set ... which belongs to
the ariginal one) any more. The collections which do not satisfy the new axioms
thus are not sets in the new, more rigorous sense, and are termed proper
classes. (Theterm "class" was introduced to replace "set" in the original, naive
sense. Thus each set, in the sense of axiomatic set theory, is a class as well,
and classes which are not sets are proper classes.)

The above U does belong to itself. Thus, in light of axiomatic set theory, it
cannot be used to define the characteristic function of sets like it used to in
Equation 3. It has to be replaced by a set z:
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wy():z®V{01} (5)

Evidently, thisis the point where concepts and sets became separated. After
this point no operation or generalization possibly leading to contradiciton is
allowed for sets. Concepts, however do lead to contradictions, thus if sets are
to be drawn closer to concepts, it should be done before Equations 1 an 3 are
replaced by Equations 4 and 5.

The definition of fuzzy sets does not do so. It generalizes the values in
Euations 4 and 5 by allowing for fractions in the truth of predicate ¢ (x) and in
the characteristic function p y(x) while, however, it maintains the restricitons
onthe domain, viz. it rests on sets. This is the formal basis of the widespread
use of fuzzy sets in mathematical fieids and is of little use in the cognitive
sciences. Equation 4 is a fundamental point in ("real", i.e. contradiction-free)
mathematics, thus any of its genaralization may have consequences inall fields
using mathematics (as noted in Section 1.1). Equation 4 is in fact the definition
of subsets, this is the root of the notion that fuzzy sets are generalized subsets
(Kaufmann, 1975). On the other hand, since Equation 4 lies within the border
of ("real") mathematics, any generalization it aliows, including "fuzzification",
lies there too. Consequently, it can not bridge the gap between sets and
concepts.

The next section attempts to bridge this gap by generalzing not only the
values, but also the domain in Equations 4 and 5. Thus, conceptually we turn
back to Equatin 1 and formally introduce continuous variability not only in
Equations 4 and 5 but also in Equations 1 - 3.

1.3 M-fuzzy sets

As we have seen, no mathematical model is possible for concepts in their
genrality since such a mathematical model should be free of contradictions,
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while concepts are exposed to produce contradictions. Accordingly, itis a
reasonable aim to define a model addressing concepts in general and being
mathematical to the greates possible extent.

To approach this aim, let us first define a fuzzy rerpesentation R by a
generalization of Equation 3:

R: W — [0,1] (6)
WCU®V

Here, as above, U and V denote the classes of all (real orimaginary) entities
and of all possible predicates (in a given language}), repectively. The elements
of afuzzy representation are triplets: a = (u,v, ) € R,whereue U,ve V, pn
€[0,1], suchthat p denotes the degree to which the predicate v holds true for
the entity u.

At the second step, let us replace the set z by the fuzzy representation R in
Equation 4:

VR3IAVa[acAaecR A V() (7)

Thatis, ifa=(u,v, p) € R, where R denotes afuzzy representation, and V¥
(a) denotes a predicate, thenthere is a class Asuchthat a A iff ¥ (a) holds true.

Let A™ denotethe subclass, calied the core, of A consisting of its elements
with full membership:

AT ={a=(uv.p)lacA p=1} (8
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Theclass A is called a modified fuzzy set (m-fuzzy set, for short) if and only
ifits coreA™ is a set. (Itis not necessary to explicitly prescribe that A * should
be a set, in a mathematical treatment (Fuhrmann, forthcoming c) it can be
obtained as a theorem from a more general definition of m-fuzzy sets.)

In this general way an m-fuzzy set connects a concept (a class) which, in
general, does not satisfy the axioms imposed on sets, with a set (its core), which
can be the subject of a mathematical (thus necessarily contradiciton-free)
theory. Since the core, in a sense, represents the underlying class, such a
theory may have inherent relations with concepts in their generality.

The condition that A* should be a set connects the intuitive and the
mathematical senses of membership. The full membership inthe intuitive sense
does not necessarily require maximal membership inthe mathematical sense.
Formally, the former means . y(x) 1 while the latter means exact equality:
wy(x) =1. Thus the above restriction is fairly mild in its (mathematical) sense:
Let us suppose that an element has practically full membership while its
inclusion in the core would ren der the core not to be a set. Then a value of
w=1- € can be attributed to the degree of its membership such that e should
beless than any prescribed positive threshold, however, greater than zero.

it is clear that m-fuzzy sets are a generalization of (traditional) fuzzy sets.
Let At denote a special m-fuzzy set whose domain of entities:

Ur={u{3v,pa=(uvu)eAr} (9)

isa set, and forwhich the predicate ¥ t(a) defined in Equation 7 requires only
that its domain of predicates:

Vi={v|3up:a=(uv,p) e At} (10)
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should contain a single element only, say v*:

vr@ =(uv,n) ev=yv* (11)

Evidently, Atis a (traditional) fuzzy set defined on the set Ut by the continuous
valued application (. ) of the predicted v*.

1.4 M-fuzzy sets and concepts

The principal target of m-fuzzines is the hierachical organization of
concepts. Since the same phenomenon led to prototype theory (Mervis &
Rosch, 1981), a comparison of the two approaches may be fruitful. As
mentioned in Section 1.1., the central idea in prototype theory is not
membership but representativeness and most criticism of thistheory reston a
confusion of membership and representativeness (or typicality). Thus, a
discussion on the relation between these phenomena appears to be an
appropriate starting point.

Thetradition of identifying membershipwith representativeness is extremly
heavy among the opponents of prototype theory. For example, Armstrong,
Gleitmanand Gleitman (1983) insist on it in spite of their own experiments where
the subjects responded quite differently when asked about membership and
representativeness, respectively. This tradition has some terminologica!
preliminaries. Prototype theory deals principally with representativeness and
most key publications in its development (Posner & Keele, 1968; Reed, 1972;
Rosch, 1975a,b; Rosch & Lloyd, 1978; Mervis & Rosch, 1981) use strictly this
term. Others use the term "typicality" though in a purely technical way defined
clearly in each experiment (Rosch, Simpson, & Miller, 1976). In contrast,
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criticisms of prototype theory (Loftus, 1975; Osherson & Smith, 1981) use
‘typicality" as a central term without clarifying its meaning.

"Representativeness" and "typicality" seem to have a difference which may
be crucial in their relation to "membership". Within the limits of the intuitive
approach, where both are used, "representativeness" implies more definitely
an underlying existence of membership than "typicality" does. For example, a
“typical Swede" is tall and has light hair and skin, blue eyes, an athletic build
and Scandinavian attitudes. What make someone a"Swede", however, are the
place of birth, nationality of parents, citizenship, and residence. Thus, it may
be atrue characterization for someonethat 'he is a typical Swede except he is
not Swede at all".

Accordingly, in a mathematical approach "membership",
“representativeness", and typicality" cannot be described with asingle variable.
The above example also suggests that typicality can be seem as membership
though not inthe original category, say "A" but in an other one, viz. "typical A".
Thusintheapplication of m-fuzzy sets to concepts we should primarily address
"membership" while regarding "typicality" as membership in another category
and "representativeness” as a distinct kind of variable.

Assuming this explanation to be valid, m-fuzzy sets appear to be in
accordance with prototype theory in that the domain of both typicality and
membership is an unrestricted concept (a class in th sense of settheory), and
bothattribute continuous valued membership tothe category elements, which
also specifies a core consisting of those elements with maximal membership.
(Although"maximal" is meant intuitively in prototype theory and mathematically
in m-fuzzy sets, at this point these senses are easy to connect, as noted in
Section1.3)

What has not been connected from prototype theory to m-fuzzy sets are
the prototypesthemselves. Forthis, let us considerthethird ofthe above terms,
"representativeness”. The studies on representativeness that led to prototype
theory revealed no n-equivalence not only between the elements in a given
category, but vice versa; between the categories comprising a given element.
Just like the maximally representative elements for a given category, called
prototypes, there is a maximally representative category for a given element,
called basic level category (Mervis & Rosch, 1981). This indicates a symmetric
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aspect of the representativeness between elements and categories. Indeed,
consideringsome prototypes themselves, it can be immediately seenthat most
oftheirfeatures can best be characterized by referringtothe category in which
they are prototypes. For example, the shape, the color, the size, as well asthe
taste, the touch, and the smell of a prototypical apple can be simply and
precisely characterized as "(just) apple-like".

Thus, we consider both the representativeness of an element for a category
and that of a category for an element. The former can be identified with
membership or, atleast, assumed 1o be proportional with it. The latter can be
assumed in the above sense, i.e. how efficient the membership in the given
category is in characterizing different features of the given element. In this
setting prototypes are defined as the elements holding maximal mutual
representativeness, i.e. maximizing both of the above variables. Since these
are defined over two arguments each, the element p is a prototype in the
category A if and only if two double criteria are simultaneousty met: 1. p is
maximally representativefor A, i.e. « . there is no element more representative
for Athan p is, and B . there is no category for which p is more representative
than for A. 2. A is maximally representative for p, i.e. « . there is no category
more representative for p than A is, and 8 . there is no element for which A is
more representative than for p.

Evenwithout a rigorous proof, the collection of prototypes can be assumed
to be finite for each category. R regarding the categories like "A" and “typical
A" as different (as explained above), we also may assume the collections of
prototypes to be contradiciton-free, i.e. to be sets. On this basis, the finite
subsets of prototypes denoted by AP is defined withinthe coreA ™ ofan m-fuzzy
set A as:

AP = {a=(v.u) aeA All@) (12)

HereaA™ guarantees the maximal representativeness of p for A (inthe sense
explained above) while the predicate Il (a) denotes the maximal
representativeness of A for p.
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The role of A” in representating the actual m-fuzzy set and, accordingly,
alsothe underlying concept, isfundamental. The core A * cannot playthisrole,
in general, since it is not necessarily finite or even enumerable. Furthermore,
the elements of the core are not equally representative inthe everydays, i.e., the
mutual sense (though their membership is equal and maximal, and thus,
according to the above assumption, their representativeness is "one-sided").
Therefore a randomly chosen subset of the core may be irrefevant or even
misleading in characterizing (or representing) the underlying m-fuzzy set (or
concept).

Based on all this, a formal scheme of recursive representation is proposed
for modelling the internal hierarchy of concepts. The basic domain is an
unrestricted concept which corresponds to a class in the mathematical (more
perciselythe settheoretical) sense. Anm-fuzzysettransforms it into a category
furnished with a continuous valued membership function. The core of this
m-fuzzy set selects those elements posessing two important properties:
holding the maximal degree of membership, and forming a set. Finally, the
finte subset of prototypes provides a maximally representative (in the
appropriate, mutual sense, as explained above) and conveniently treatable
collection withinthe core. Inthis enumeration each element is to represent the
preceding one, and thus indirectly all of the ones before it.

Afundamental property of the above recursive scheme of representation is
that it localizes the possible occurrence of contradictions. As explained in
Section 1.2., such a possibility cannot be ruled out in the logic of concepts in
general (Hampton, 1982). Inthe above scheme, however, contradictions may
occur inthe first two items only (classes and m-fuzzy sets) while they really are
ruled out fromthe other two (sets and finite subsets). Thus, concept cores and
prototypes can feasibly be the subject of mathematical theories in which
concepts in their generality can also be directly involved as represented by
these two ideas. (The relation between prototypes and m-fuzziness is
discussed more in details in Fuhrmann, forthcoming b.)
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1.5 M-fuzzy grammars and the hierarchy of concepts

As noted inthe preceding section, not only the elements in a given category
but also the categories comprisinga given element have been found unequal.
Like the prototypes among the former, the basic level among the latter has a
distinguished, viz. the most representative, status (Mervis & Rosch, 1981).
Having reviewed the m-fuzzy approach to the intra-categorial hierarchies, let
us turn to the inter-categorial ones. Since the latter rest on the relations of a
givenentity (orelement) to different categories, a study onthis hierarchy shoutd
centainly involve the act of categorization.

"Categorization" or “category identification" as used in the cognitive
sciences is very close in meaning to "pattern recognition” as used in Antificial
Inteliigence. Thus, methodsthat have proved fruitful inthe latter may be utilized
in modelling the former. Pattern recognition has basically two apaproaches.
Statistical pattern recognition (Chen, 1973) regardsthe entities (or patterns) as
points in a metric space of the underlying features. Here the categories are
manifestin clusters within this space. Although the implementation of statistical
patternrecognitionmay require several steps (feature extraction, determination
ofthe optimal metric, analysis of topological relations, learning the categories,
etc.),theactual recognition takes place principally in a single step: a given point
in the (original or transformed) space of features is attached to one (possibly
to afewto none) of the clusters. The methods of statistical pattern recognition
have also been applied to the psychic process of categorization (Reed, 1973)
yet the other kind of methods where the act of recognition itself is, in general,
inherently hierarchical seems more adequate in this field.

The latter approach originates fromthe idae of formal languages, therefore
it is called syntetctic pattern recognition (Fu, 1982). A traditional formal
language is based on a generative grammar G = (VN,VT,P,S), where VN and
VT D are the alphabet of nonterminal and terminal symbols, respectively, P is
a set of production rules, and S is a distinguished element of VN called
“sentence’ symbol. Each production rule connects two strings of symbols by
an arrow such that each symbol belongs either to Vn or VT and the arrow
denotes that the string before it can be freely replaced by the one after it. The
words of the underlying language are those strings consisting of terminal
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symbols only and possibly produced by successive applications of the rules in
P beginning with S. When applied to pattern recognition, S corresponds to a
category, V1 consists of the features, and an entity (or pattern) is regarded as
the word (i.e string) of its features. Thus a pattern belongs to a given category
if and only if the word representing it belongs to the corresponding language.

This conceptual framework appears suitable for modelling concepts: an
entity (or pattern) belongs to a category if and only if it can be "produced” by
appropriate rules of alogical nature operating, feasibly in parallel, on confined
information (selection of features).

Thereare, however, also some important differences betweenthe twofields.
Informalized pattern recognition, different categories (different grammars and
languages) are considered as separate (either serial or parallel) processes.
Futhermore the categories are usually preclusive inthe practical sense, i.e. an
entity (or pattern) belongs to one category only. Inthe psychic case, however,
many categories are inclusive (inthe intuitive sense, not confined to anyformal
operation). Thus the entity under consideration, in general, belongsto several
categories and the task is to identify not one (i.e. any one) nor all ones but the
optimal one in a sense to be specified (below).

Accordingly, all categories ('sentence" symbols) should appear as words
in the same formal language. Such a situation can be achieved by abolishing
the traditional distinction between nonterminal and terminal symbols.
Grammars andlanguages where this distinction is not made are known as pure
ones (Maurer, Salomaa, & Wood, 1980; Gabrielian, 1981). Here each string
generated bytherules belongsto the underlying language thus the production
of any string from any other can be considered as principally equal.

The appropriate pure atphabet for the proposed model is a fuzzy
representation R. The production rules may connect any pair of strings justlike
in pure grammars in general. This expresses in our case that any concept (or
category) may occuras (a part of) any step inthe chain of production, including
the beginning and the concluding steps. In other words, any concept can be
regarded initself, or as a constituent of another concept, or as a compound of
other concepts. Possible "sentence’ symbols are all of those elements in R
belongingto an m-fuzzy set, i.e. satisfying a predicate ¥ (a) which defines an
m-fuzzy set (according to Equation 7). Thus formally, an m-fuzzy grammar is
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the unification of as many pure grammars as is the number of such elements
inR.The alphabets, as well asthe sets of production rules inthese "constituent"
grammars, are parts or the whole of those in the resulting m-fuzzy grammar.
The strength, or reliability, of the recognition (or category identification) is
shown by the third element (i) in the actual "sentence" symbol a= (u,v, )
eR.

The production rules decompose the members of the alphabet (individual
or in strings) either logically, e.g.

(u, woman, p) — (13)
(u, human, u 1), (u,female, . 2), (u, adutt,  3);
w=min( w1, p2, u3) mi, w2, p3/3

or physically, e.g.

(u triangle, ) — (14)
(3 staightlines, pairwise intersecting,such as )

itisfundamental inthe proposed approachthat a fuzzy representation, thus
also an m-fuzzy grammar, refer to one, definite mental representation (or a
"subjective lexicon"). For example, the production ruie:

(u,woman,1) — (u, capable of giving birth, 1) (15)

may be either included or excluded depending on personal factors.

Instead of the organizing principlelost by not distinguishing nonterminal or
terminal symbols, another is offered by the structure of subordinate /
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superordinate categories. According to this relation the categories within a
given m-fuzzy grammar can be ordered into series. it may be usefu in
organizingthe acts of production (or of recognition) to assume that categories
related as subordinate/superordinate may occur at different sides of a
production rule only ifthey are adjacent in the corresponding series. Thus the
rewriting (i.e. the steps inthe production and recognition) becomes regulated,
which is familiar in the theory of formal languages (Salomaa, 1973).

It seems necessary to propose explicitely two basic assumptions aboutthe
subordinate/superordinate relation, noted above. One is that this relation may
vary over different m-fuzzy grammars (reffering to different mental
representations). The other is that even within a single m-fuzzy grammar this
relationis intuttive (a special case of "conceptual inclusion”). Consequently, this
relation, according to the proposed approach, cannot be confined to any of
the accustomed formal operations, e.g. inclusion as used in Aristotelian logic
and in settheory, or any of its specific generalization to (traditional) fuzzy-set
theory. Thus, none of the usual operations (addition, muttiptication, "min" and
"max" rules, etc.) applies universally to the calculation of strengths (or
reliabilities) betweenthetwo sidesof anm-fuzzy productionrule (e.g. Equation
13).

Let us return to the question of "optimal* category, i.e., if a pattern (a sring)
can be producedfromdifferent "sentence" symbols within an m-fuzzy grammar
(itbelongstodifferent categories), as isthe case in general, then which of these
shouid bedistinguished as "optimal“. (Obviously this "optimal" category should
also be identified as the result of the corresponding act of recognition.) It is
plausible to choose the category into which the given pattern "best fits". Here
againwe are confronted by the incongruity of intuitive and formal senses. The
first obvious idea to formalize the "best fit" is certainly maximal membership.
This, however, cannot be accepted since, in general, several categories can
be found for a given pattern comprising it at the same, maximal degree of
membership. Another choice is the "‘most informative" category. This can
reasonably be identified with the choice maximizing the "mutual
representativeness" as defined in Section 1.4. The latter includes "maximal
membership"thus it does not contradictthe "best fit' choice but renders it more
rigorous (maximal membership becomes only a necessary but not sufficient
condition). This, more stringent condition also prevents the miscategorization
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of elements belonging to a category "typical A" only, to the category "A" (as
exemplified in Section 1.4. by "typical Swede"and "Swede").

2. POSSIBLE IMPLEMENTATION IN THE BRAIN

An essential property of syntactic pattern recognition, as mentioned in
Section 1.5, isthat the rules of rewriting do not involve all symbols in the actual
string. This is crucial intwo respects: One is that the rules operate on confined
information only, thus their implementation requires relatively simple devices.
The other is that these devices may work largely in parallel on different
selections of symbols in the same string.

Although various techniques have been developed to implement syntactic
pattern recognition (Fu, 1982), these hardly utitize the above property. This is
not surprising since the means of implementation, the traditional computer, is
inherently a serial device. Nevertheless, the situation is quite the opposite in
the brain where the psychic act of category identification presumably takes
place.

The idea that a concept should be assumed as represented by a collective
induced state of a group, or an assembly of neurons was proposed by Hebb
(1949). From another approach, Piaget (1962) also argued that psychological
phenomena should be explained in terms referring to neural activity while he
also emphasized the possibly crucial role of abstract, mathematical
considerationinsuch explanations.

The above abstract (viz. m-fuzzy) approach to concepts can feasibly be
coupled to some fundamental new results on neural functioning and brain
organization. This is explained as follows.
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2.1. Onthe organization and communication inthe brain

Hebb (1949) assumed his "assemblies" of neurons to be self-organized by
synaptic communication. That is, 1. The assembiies have no well-defined
boundaries, individual neurons may either join (e.g. by developing new
synapses) ordrop (e.g. by misfunction); 2. The sole cohesive agent is classical,
i.e. digital, synaptic interaction: each cell inthe assembly has postsynaptic sites
(i.e. may receive synapticinput) fromone or more other cell(s) in the assembly,
withasufficientlylowthreshold. This also means that the cells have two possible
states only: steady state (inthe absence of incoming signals) and excited state.
Consequently: 3. The assembly as a whole has also two possible states only.
Since the occurrence of a concept is attributed to the excited state of a
cell-assembly, concepts also obey, according to this approach, classical,
bivalued logic, i.e. they either do or do not occur without any intermediate (or
fuzzy) possibility.

Somefundamental results of the neurosciences obtained in recent decades
suggest a thorough revision of the above ideas. Concerning the functional
organization of neurons, the existence of well-defined units, called
neuron-modules, has been firmly established (Szentagothai, 1975, 1978;
Mountcastle, 1978) in brain sections involved in detailed information procesing
(as opposed to general regulatory functions), i.e., where the manifestation of
concepts seems most feasible. Accepting Hebb's (1949) idea on the direct
relation between concepts and excited states of neural structures, which is
certainly justified in any monistic view, it is plausible to identify his
cell-assemblies withthe experimentally revealed neuron-modules (Fuhrmann,
1985¢).

Concerning interneuronal communication, the situation, in a sense, is just
the opposite. The possible variety of the functional units is severely reduced
by replacing Hebb's (1949) loose cell-assemblies by the much more definite
neuron-modules. In contrast, the mode of interaction between neurons has
been revealed to be much more variable than assummed earlier. The simple,
digital synaptic contact is now generally seenas only one kind of interneuronal
communication. It has been firmly established that the synapses can be
modulated (Karczmar, 1987), furthermore that neurons can also interact
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without synapses (Vizi, 1984). Interneuronal connections can also be
categorized according to the chemical nature of the involved compounds
(Iversen, 1984). Furthermore, even "simple", classical synaptic signals may
interact in complex, nonlinear ways (Koch, Poggio, & Torre, 1983).

The organization of information processing in single neurons turned out to
be as complex and sophisticated as previously thought about networks of
neuronsonly (Lewis, 1983). This also impliesthat the neurons, and allthe more
the structures of neurons, e.g., the modules, have various induced (or excited)
statestoo. Different kinds of induced states inthe modules (or assemblies) may
refer to different kinds of concepts. It seems plausible that some collective
induced states are known to the system (the actually involved modules) from
experience, these may represent clearly recognized concepts. Other such
states, possibly similar to several known ones may represent ambiguous (or
vague, orfuzzy) concepts.

Since the collective induced states develop on the basis of local
(interneuronal) communication, various concepts appearing in various parts of
the same system (the same brain) may not belogically consistent . Accordingly,
the organization of the concepts represented may not be adequately described
by any mathematical (i.e. contradicition-free) theory whie the setting of
m-fuzziness may be useful. (Incidentally, the surge of fuzzification also
penetrated intothe mathematical modelling of neural activity, viz. afuzzification
ofthe classical (McCulloch-Pitts type) formal neuronwas proposed (Lee & Lee,
1974). Inthisfield, however, the (traditional) fuzzy approach has been evenless
successful than in the cognitive sciences.)

2.2 Neuronal interactions, states, and encoding

To develop a formal description of the collective induced states of the
neuron-modaules (the "modular states") which can feasibly be assumed as the
manifestationof concepts, let usfirst consider the neurons, the elementary units
in the underlying system. Experimental studies on neuronal functions form a
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rapidly growingfield of research. As noted inthe preceding section, the number
of revealed types of interneuronal communication is alsogrowing. Forthetime
being it seems justified to divide the set types into two groups: classical and
nonclassical, in the following way (Fuhrmann, 1982). The former is assumed
asfastand not entirely reliable, which involves an individual threshold function
at each cell. The latter is assumed as siower and not only reliable but also
capable of correcting errors made by the former. This, latter one. involves a
collective function of the cells connected by neighbouring relations. This
function operates not only onthe actual input but also on previous experience.
In terms of information processing, the former, called o-function, is the
encoding while the latter, called ¢-function, is the evaluation of the encoded
information also making use of memory.

According to this double function the model-neurons in the proposed
system have two kinds of input and output, denoted by | ¢ ,I¢ and Oo, O,
respectively. Since lo and Oy belong to the "first" (o) kind of communication,
theyrefertoclassical synaptic signals, i.e. close sequences of uniform impulses
("spikes"). Og also belongs to this type of classical synaptic signal because it
will serve as a constituent of 1o at the next stage in information processing. It
is l¢ only whose manifestation has not been specified uniquely. This, as
mentioned above, is assumed as a "nonclassical' complex of modulated
synaptic, nonsynaptic, and possibly other constituents.

In the model, each neuron has a finite ordered set of (individual) states
denoted by <0 >, <1>, ..., <m-1> , where the value of m refers to the
individual thermodynamic propenrties of the actual cell. The steady state is
denated by <0> , and thelarger the number in the bracket,, the more distant
the underlying state fromthe steady one. Informal functioning each neuron is
in its steady state when a signal of | may arrive. Since the impulses (spikes) are
uniform, the reception of each elevates the cell's state one step farther from the
steady state. Thus, having received s spikes of io , a neuron is in its s-th state,
i.e.in <s> providedthe s < m.Ingeneral, however, the number of spikes, say
n, in a signal of o exceeds (m-1) for the receiving cells, i.e., the stepwise
departure from the steady state cannot continue until all spikes have arrived.
(This refers to the thermodynamic constraints on the possible excitation.) if a
neuron is in its highest possible excited state, m-1 , when another spike in lo
arrives, the cell fires a spike of Oc and thus resets its steady state <0> . Then
it continues the reception of the impulses. This act of resetting,
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<m-1> — <0>, may take place several times during the reception of lg.
Accordingly, after all n spikes of lo have arrived, the cell is in its k-th state, <k >
, suchthat k is the residue number of the division of n by m as a moduius, i.e.,

k=n-[n/m]. m (16)

where [ ] denotes integer part.

Although the above process ( a-function) is accomplished by the actual
neuron individually, the cells are not isolated. As mentioned in Section 2.1, the
basicfunctional unitinthe model isthe (neuron) module. Most cells ina module
receive identical o - input (lo ). Owing to their different values of modulus (m),
referringtotheir different thermodynamic properties, the reception of the same
number of lo spikes (n} brings them into states of different serial numbers in
their respective scales of states. These neurons, called receptor cells, send
their Oo signals to each of the other neurons, called control cells, in the same
module. In this way, after all spikes in an actua! signal of la have arrived at the
receptor cells, the actual (individual) state of each neuron inthe module reflects
a part of the information received by the module.

For the recpetor cells, this part of the information is simply the residue of
the number of received spikes after division by the cell’s modulus. From a
collection of such residue numbers the original integer can be uniquety
reconstructed provided th at it does not exceed the least common multiple of
the moduli (Ore, 1952). Thus the system of residue numbers (as states of the
receptor cells) reflects all the information arrived at the module in a distributed
form whose constituents have been generated in parallel. (As mentioned
above, the spikes are uniform, thus it is evident that only their number conveys
information. The role of control cells lies in error correction outlined below.)

The residue numbers can be not only generated but also processed in
parallel sofar as addition, subtraction, and multiplication are involved only:
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|X1 + X2|modm = | |X1|mod m=+ |X2|modm| modm

[X1*X2| modm= |[X1] modm*|X2| modm | mod m (17)

These are just the operates which can most easily be implemented by
chemical concentrations or electrical potentials, i.e., by the most common
agents in the nervous system.

Although this parallel, distributed mode of information storage and
processing may be fruitful in the computer sciences, too, most studies on
residue number systems deal with the very special case of pairwise relative
prime modulionly (Szab6 & Tanaka, 1967; Fuhrmann, 1986). This restriction is
extremely strict not only on the choice of moduli but, consequently, also on
possible error correction in the system. Concerning the moduli themselves,
their presumable number in a feasible useful residue number system is only a
couple of hundred or a few thousand. The requirement that no pair among so
many integers should have any commondivisor seems impracticable even for
artificial systems. it isall the more soforthe formalized neuron module outlined
above since here, according to the model, the moduli reftect the individual
thermodynamic properties of the cells which evolved largely independently of
each other (i.e. how could and why would they avoid having any common
divisor with any of their fellows in the module).

Concerning error detection, identification, and correction, these faculties
originate from redundancy which is inherent in a residue number system only
in case of shared divisors: Ifthe moduli are pairwise relative primes, then each
possible collection of residue numbers correspondstoaninteger, i.e. formsan
admitted code-word. Consequently, redundancy can be introduced only by
attaching some extra variables to the system. Most classes of error correcting
codes defined on residue number system. Most classes of error correcting
codes defined on residue number systems follow this line (these are reviewed
in Furhmann, 1986). f, however, the moduli share some divisors, then
redundancy is inherent in the system, e.g. there is no integer X for which
[X|mod 6 =2, while {X|mod 4 =1 (the former renders X to be even while the
latterodd). Conditionsforerrordetection, identification, and correction onthis
basis have also been developed for single errors (Barsi & Maestrini, 1980) and
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belong either to the same or to different modules. The evaluation of the actual
states of neighbours (l¢) determines the ¢-output (O¢) of the considered ceill.
This output is a close sequence of uniform impulses (spikes) such that the
number of spikes shows how similar the actual state-configuration is to such
configurations known to the considered neuron from experience.

The similarity of state-configurations depends onthe difference betweenthe
respective neuronal states as well as on the strength of the involved
neighbouring relations. Formally, to each cell there belongs an antisymmetric
matrix & such that the absolute value of its element § jj shows the distance
betweenthei-thandthe j-th states (i.e. between <i> and <j>)forthe actual
cell. Thus the cells’ individual scales of states are nonlinear (| &ij+k| = |3l
+ | &jk|, ingeneral, does not hold) reflecting that the impact of the same spike
onthe thermodynamic milieu even in a given cell varies with the distance from
the equilibrium (the steady state). The number of elements in & is evidently
m*m, where m is the modulus belonging to the actual neuron. Also to each
cell, there belongs a vector v whose element y a showsthe strength of coupling
betweenthe considered neuron and its a-th neighbour (each cell is its own O-th
neighbour). The numbers of both the states and the neighbours are assumed
to be finite for every neuron. Accordingly, the number of state-configurations
is alsofinite for any given neuron, thus they can be ordered discretionarily and
referred to by their finite serial number. In such a (fixed) series the distance
between the p-th and g-th state-configurations is calculated as:

{pq =2ya & a(pq) (18)

where the summation covers all neighbours, and 8 « p.q) denotes the distance
between the two states of the « -th neighbour wich belongto the p-th and the
g-thstate-configuration, respectively.

According to the proposed model, some state-configurations are known,
assumed to be learned, others are unknown for the given neuron (as noted in
Section 2.1). If the actual state-configuration is known, the ¢ -output of the cell
(i.e.the number of spikes in Og) simply identifies it. If it is unknown, O refiects
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how similar it is to the known ones. In this aspect the proposed model is fairly
congruous with prototypetheory: Not all cases are presented inthe same way
butthere are distinguished ones, distinguished by their characteristic of being
known, while other cases are represented by their similarity to these ones.

Let < p| denote the p-th state-configuration if it is unknown (to the actual
neuron) and |q > denotethe g-thoneifitis known. Thenthe similarity between
<p| and |q> around the cell C is calculated as:

<piClg> =1-[¢ (p.a) { /L (p) (19)

where { (p) denotes the maximum of ¢ (p,r) overall |[r> 's.

As immediately seen from Equation 19, the degree of similarity between an
unknown and a known state-configuration is confined to the interval [0,1].
Making use of this propoerty an m-fuzzy set P is defined to represent the
unknown state-configurati on < p| in the functional sense: P has as many
elements as the number of known state-configurations around the givencell C
is, and its elements are triplets: (< p|, ke [r> ,< p|C|r> ). This P belongs
to a special type of m-fuzzy sets, in one respect similar to (traditional) fuzzy
sets while in another respect'contrary to those: As we have seen, in the case
of (traditional) fuzzy sets the underying (m-fuzzy) domain of predicates
(Equation 10) consists of a single element only. In the above special case of
m-fuzzy sets, e.g. in P, the other domain, that of the entities (Equation 9) is
confined to a single element (to < p| inthe above example).

Making use of the similarity to all known state-configurations we can
characterise how fuzzy (in the intuitive sense) a given unknown
state-configuration <p| is. Formally, for the above type of m-fuzzy sets the
degree of m-fuzziness is defined as:
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¥ <p|Clr>

|r>

max <p|C|r>
|r> (20)

Thus, the larger the number of known state-configurations to which <p]| is
similar to about the same extent, the greater the m-fuzziness of <p{, more
precisely of the underlying special m-fuzzy set P. (For traditional fuzzy sets
there have beenvarious "measures" of fuzziness proposed (Loo, 1977; Ebanks,
1983). Most of these share two properties: They explicitly use some "fuzzy
compiement”, and are not measures inthe mathematical sense (Halmos, 1950).
Owingtothe intricate role of contradictions, a ccordingly also of "negation" or
"complementation’ in the logic of concepts (noted in Section 1.2 and also
discussed in Section 3.1), no universal operation called "negation" or
"complementation" has been proposed on m-fuzzy sets. Formal
characterization of m-fuzziness has been defined for the above special type
only, and this is called a "degree" to avoid possible confusions with measure
theory.)

Equation 20 also offers a characterization of the underlying neural/mental
representation. As seen, even the known state-configurations are not free of
m-fuzziness except that they are "orthogonal" in the sense that they are not
similarto eachother accordingtothe definition in Equation 19. Thus, the more
"orthogonal” (i.e. the less m-fuzzy) the known state-configuration throughout
the network, the clearerthe underlying neural/mental representation.

The degrees of similarity and m-fuzziness (Equation 19 and 20) are
fundamental in the case of state-configurations, since, as mentioned above,
these determinate the ¢ - output ( O ¢) of the considered neuron, i.e. the
evalution of the encoded information at the given stage of processing. What is
more, however, these expressions also apply to the modular states which, as
also mentioned above, directly correspond to the concepts represented inthe
system.

The modular states develop on the basis of the state-configurations. A
modular state is called known if and only if each neuron in the given module is
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in a known intramodular state-configuration. The latter involves only those
neighbours belongingtothe same module. An intramodular state-configuration
is called known if and only if there exists (whether actually occurs or not) a
known state-configuration (with respecttoall neighbours) that comprises it. In
this way no direct intermodular condition applies to a modular state for being
known, however, intermodular organization still plays a role in determining
whether the actual intramodular state-configurations are known. This reflects
that the modules, as well as the concepts represented by their states, are
self-contained though interconnected units.

The above properties suggest, and formal theorems (Fuhrmann, 1985¢)
corroborate, that the organization plays the crucial role in the model. That is,
the relations (residue, distance, similarity, etc.) are much more important in
determinigthe emergent (collective) phenomenathanthe absolute numberand
values ofthevariables (number of cells, states, neighbours, etc.). This property
is also generaily assumedtocharacterize real neural and mental organization.

2.4 The act of recognition

According to the double function attributed to the neuron, there are two
kinds of module-to-module communication inthe model: through ¢-pathways
(bundles of axons of neurons) or ¢ - pathways (interneuronal neighbouring
relations).

The modules connected by & -pathways work successively (as mentioned
above, the network is synchronous, the neurons in a module work in parallel
with each other as well as with their intermodular neighbours). The output of a
module is the sum of the O ¢ signals from all of its cells, and this contributes
to the input of one or more other module(s), i.e. to the ! signals of ali receptor
cellsinthelatter(s). The bundles of axons conveying these signals may branch
or fuse, thus the output of a module is not necessarily identical with the input
of one or more other modules. Accordingly, the modules receiving their input
synchronously from one or more module(s) in one definite collection work in
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parralel. They are, in general, connected by ¢-pathways (more percisely they
may be connected by ¢ -pathways while they cannot be connected by ¢
ones), thus they also work collectively. Such a ( ¢ -connected) collection of
modules forms a higher unit called a functional layer. These units correspond
tothe levels inthe underlying mental representation, thus they also constitute
the stages in the act of recognition.

Formally, the actual states of modulesin afunctional tayer constitute aword
in the underlying m-fuzzy language. Accordingly, the syntactic rules of the
corresponding m-fuzzy grammar connect adjacent functional layers.

This also defines how the m-fuzzy grammars should be applied to the
consideredtype of recognition. As explained in Section 1.5, herethetask is not
to decide whether a given word belongs to a given language as in the case of
artificial systems but to select the language to which it "optimally" belongs. In
the former case the recognizer (human or machine) chooses fromthe rules in
the given grammar in trying to construct (or reconstruct) a production of the
given word. Thus, here the rules are the subject of the basic operation
(choosing). In contrast, inthe present case the rules are intrinsically manifest
by the function (more percisely by the ¢ -function) of the elements in the
recognizer (i.e., the neurons). Accordingly, no algorithm operatingonthe rules
is necessary {Fu, 1982) butthe rules themselves determine each step inthe act
of recognition. One technical operation is, of course, still necessary to apply
to the rules: They originally describe the production of words, thus when
applied to recognition their two sides must be interchanged.

The underlying syntactic rules can be formulated in various ways
corresponding to various levels of abstraction. The lowest level, within the
framework ofthe model, involves the (individual) states of the neurons. Inthese
termstherules describe howthe neuronal states inafunctionallayer determine
those in the next layer.

Let <rijk > denote the actual state of the k-th neuron in the j-th module of
the i-th functional layer (thus the cell is in its r-th induced state,
r = |n|mod mijk, where n is the number of spikes in its latest & -input (! 8) and
mijk is its modulus). Then the syntactic rules take the form:
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(<ri11>, <fi12> ..., <hzi1> ),
(<fiz1>, <riz2> .., <hzi2>),...,
(<fiwit>, <fg2> ..., <f2zsi2> ), ...,
(<ri+D)11> , <Ti+1)12> .0, <Ti+112(+ 1)1 >),
(<rg+n21>, <ri+1)22> ..., <fi+122(+1)2>),...,
(<rl+nywi+n1>, <ri+nwi+12> ...,

(<ri+1)wii+0)2Z+Nwi+1)>). (21)

where wi denotes the number of modules in the i-th functional layer and 3
denotes the number of neurons in the j-th module of the i-th functional layer.

Equation 21 is perfect in the operational sense: Given the states of all cells
in a functional layer (say, inthe i-th one), those in the next are completely and
uniquely determined. However, this expression operating only on neuronal
_states does not reveal much about the meaning of either the states at the two
sides or the connection between them. Somewhat more abstract form can be
obtained by making use of the modular states:

<M1 >git, <Miz>qi2,..., <Mizi >qizi —
< Mi+1)1>qi+1)1 <Mi+1)2>gi+1)2, ..

<M+ 1)z(i+1) > qf + 1)z +1) (22)

where < Mjj > gij denotes the state of the j-th module in the i-th functional layer,
i.e.,itisinits g-th state.
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Equations 21 and 22 are equivalent in the sense that either uniquely
determines the other provided that the underlying system is given. Yet,
Equation 22 is called more abstract because its actual determination involves
more directly the functional organization, viz. the interneuronal neighbouring
relations (¢ -pathways), of the system.

Not only can the functional organization be involved in the syntactic rules
(by replacing neuronal states by modular ones) but also the experience of the
system can be involved. In the simplest case we may note whether the actual
modular states are known or not. Thus, the rules take the form, e.g.:

[ Mi1>qi1, Mi2>gqi2, <Mi3 | qi3....., | Mizi>qizi —
C<Mi+lgi+ 1. | Mgen2>qi+ 12, | Mi+1)3>qi+1)3,.

< Mi+1)z(i+1) | qii+Dzi+1) (23)

Here, like above, < | denotes unknown states, while | > denotes known
states. Equation 23 shows the rate of known and unknown constituents in both
of the connected functional layers, and thus also characterizes, to an extent,
the expressed inference. It is possibie, for example, that all states at the left
hand side are known while none are known on the other side. This reflects that
clear-cut conceptual or physical constituents are coupled in a strange way (in
the original input). Vice versa, all states may be unknown at the left hand side
while none are known on the other side, reflecting that all constituents are
somewhat vague, distorted, fuzzy, etc., but onthe whole they uniquely identify
a (known) more comprehensive pattern (or category, or concept).

The unknown states are represented inthe system by their similarity to the
corresponding knownones (as mentioned insection 2.3). These similarities as
defined by Equation 19 can be utilized to represent the unknown states in the
syntactic rules too. Thus we obtaion expressions like:
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[Mi1>qi1, (< Q2|Mi2|1>, <qgi2|Mi2|2> ..., <g2|Mi2{Ki2>),...,
(< Qizi [Mizi 11>, <Gizi [Mizi |12> ..., <Gizi |Mizi | Kizi > )
= (<qi+n{Mi+n1|1>, <qi+n1|M+n1(2> ...,
<qi+1)1|Mi+ 1K+ 1)1}, | Mi+12> qi+1)2....,

| M+ 1z +1) > qli+1)z(i+1)

(24)

where Kij denotes the number of known states of the j-th module in the i-th
functionallayer.

Afurtherversion of the syntactic rules can be obtained by noting the degree
of m-fuzziness, as defined by Equation 20, at each unknown (modular) state.

Asmentioned above, the known states correspond to well-defined concepts
represented inthe system. Thus, the known modular states in Equation 24 can
be replaced by the corresponding predicates. Accordingly, the degree of
similarity between anunknownand aknownstatecan bereplaced by the same
degree atwhichthe predicate corresponding to the latter applies to the actual
situation expressed by the former. By such replacement the syntactic rules take
the form of Equations 13, 14, of course, with the two sides interchanged.
Evidently, these equations are very simple examples of what may occur at the
final steps of an actual pracess of recognition (or identification). In general,
many more terms (predicates or modular states) are contained in the rules.
Also the relationship between the strengths or reliabilities ( .'s ) to which the
predicates at the two sides apply (or between the respective similarities of the
involved modular states) are, in general, more complex. Regardless of these
technical details, however, the functional equivalence of rules operatingon the
residues ofthe number of spikes in interneuronal signals (like Equation 21) with
rules operating on predicates (like Equations 13 and 14) might be interesting.
Inthis way a syntactic model suited to the intrinsic structure of the system may
alsoaccount for semantic processes determined bythe actual as well as earlier
interactions between the system and its enviroment (Fuhrmann, 1984). As
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noted in Section 2.3, referring to atomic and cristalline structures, this is by no
means aimed ata reductioninthe philosophical sense. The principalaim ofthe
proposed approach is only to develop a feasible model for the emergence of
psychic acts (e.g. the inferences in Equations 13 and 14) from neural activity
(e.g. that described by equation 21). The crucial constituents for such an
emergence may be the individual organization of the given experience (as
expressed by Equation 23) and the relation between the actual situation and
these two phenomena (as expressed by Equation 24).

3. ON M-FUZZY RELATIONS

M-fuzzy sets and grammars have been defined for modelling concepts,
thus, at least in principle, they also have to account for the relations between
concepts. It seems inevitable to discuss explicitly, though briefly, this issue
here because most criticisms concerning the application of (traditional) fuzzy
sets in the cognitive sciences (Osherson & Smith 1981; Roth & Mervis, 1983;
Johnson-Laird, 1983; Smith & Osherson, 1984) stem from considerations on
some relations and operations of concepts. (Let us recall that "relation” is a
more general ideathan'operation". For example, any binary operationQ on a
domainD,Q:D ® D — D, can be substituted by a ternary relationRon D &
D & D such that R{d1,d2,da) holds if and only if Q(d1,d2) =ds, where d1,d2,d3
e D. Evidently, this also applies to any n-ary operation with the corresponding
(n+1)-aryrelation.)

Concerningthis issue, the standpoint of the proposed approach is that not
only are concepts themselves as intricate and versatile as noted by Miller and
Johnson-Laird (1976) cited at the beginnig of the present paper, but also the
relations between concepts are intricate. Forexample, Gleitman and Gleitman
(1970, p. 67) cite the compound concept: "volume feeding management
successformulaaward'standing for: "the award given for discoveringaformula
forsucceeding at managingthe feeding of people inlarge volumes"in a plaque
in a restaurant. Evidently, such complex relations (or operations) can be
defined (or modelled) on extremely general domains only. Furthermore, these
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relations can also lead to contradictions (think, e.g., of contradictory
evaluations of the same statement, situation, etc.). On this basis, m-fuzzy
variables appearto formthe narrowest domain which may be general enough
for modelling the relations of concepts.

This generality, however, has two aspects: While it allows for realistically
complex relations, it abolishes the universal validity of simple and well-known
relations. The latter aspect has been crtiticised sharply by the opponents of
(traditional) fuzzy aproaches referred to above. Since m-fuzziness takes amore
radical steptowards generality than (traditional} fuzziness, this aspect requires
some explanation.

3.1. Ontraditional relations

First, let us consider "contradiction”, a fundamental logica! relation which
appears in various respects in modelling concepts. As it is well-known,
(traditional) fuzzy, aswellas m-fuzzy, approaches denythelaw of the exctuded
middle, thus they allow for statements which are contradictory in the sense of
Aristotetian logic. The validity of Aristotelian logic on concepts is, however,
taken a priorifor granted by many workers inthe cognitive sciences, thus they
rejectfuzziness' byargumentslik e: "We are reluctantto argue atlength against
the truth of explicit contradictions" - Osherson and Smith (1982, p. 313}, or: "a
self-contradiction {of the form p and not p] surely merits a truth vatue of zero"
(Johnson-Laird, 1983, p. 199). Nonetheless, a huge amount of psychological
experiments that led to prototype theory (Mervis & Rosch, 1981) has proved
that concepts do not obey the law of the excluded middie. (The same fact
appearing in everyday experience led to (traditional) fuzzy-set theory.)

It is evident that concepts like "an apple which is not an apple" is not
"ogicallyempty', we maythink, e.g., of a plastic apple (Cohen & Murphy, 1984).
Thus, the factthat many-valued, e.g. (traditonal) fuzzy logics allow for this very
special, viz. Aristotelian type of contradiction argues obviously for and not
againts the adequacy of these logics in modelling concepts. What is more,
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concepts do produce contradictions in a much deeper logical sense too: As
mentioned in Section 1.2., explicitly and unambiguously defined concepts,
actually with dichotomous mermbership, may also lead to contradictions (e.g.
Russell’'s antinomy, Grelling’s antinomy). Accordingly, an adequate model for
concepts has not only to allow but even to account for contradictions, and not
only in the Aristotelian sense as (traditional) fuzziness does, but also in the
latter, deeper sense as m-fuzziness does.

The operation called "negation" or "complementation” corresponds to the
relation called "contradiction". Consequently, although this operation is unique
inthe highly specific, Aristotelian logic, it can be generalized in various ways
to traditional fuzzy logic and even more ways to m-fuzzy one. Concerning
traditional fuzziness, seven approachesto "negation" are cited by Dubois and
Prade (1985). Concerning m-fuzziness, the number of possible approaches
seems so largethat it may not be reasonable to define any universal operation
underthis name. Indeed, traditionalfuzzy sets do not have sharp borders, thus
they cannot be uniquely separated from their "complements". In the case of
m-fuzzy sets, not only is the actual determination of any border problematic,
but sois the principal definition of a border. Accordingly, m-fuzzy sets defined
informs like "not A" are considered in their own rights as different from others
including"A". No universal relation is assumed a priori. For example, an element
may belong not only to both "A" and "not A" (e.g. plastic apple) but also to both
“typical A" and "not A" (e.g. a typica! Swede who is not Swede at all).

The last remark above involves not only "negation" but also "inclusion": The
category "typical A" is usually assumed to be included by the category "A".
“Inclusion", as well as the correspondinglogical relation of “implication" is also
(like "negation") unique in Aristotelian logic, while it is feasibly generalized in
numerous ways to (traditional) fuzzylogic and more so generalized to m-fuzzy
logic. Aristotelian assumptions about one of the possibly many traditional
“fuzzy inclusions" also resulted in rejections of any fuzzy approaches
(Osherson & Smith, 1981; Roth & Mervis, 1983). Here again, the key is that
traditional fuzzy sets, just like concepts, do not have sharp borders, thus it is
not unique whether the border of one is inside or outside of that of the other.
As noted above, the borders of m-fuzzy sets are evenless unique. Thus, so are
their "inclusion”.
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The relation between subordinate/superordinate categories, usually
assumed as inclusion, is also adopted in m-fuzzy grammars for regulating
rewriting (Section 1.5). Nevertheless, thisisthe case inthe intuitive sense only.
In the formal sense, the rewriting including the prescribed stages in it is
determined by the underlying neuronal connections (Section 2.4). The
subordinate/superordinate concepts connected by the rewriting rules appear
inthis way as emerged from the formalized neuronal activity. Accordingly, no
universal "m-fuzzy inclusion" has been defined.

Like the above mentioned operations, set theoretical "union' and
“intersection” as well as the corresponding logical operations of AND and OR
are unique in an Aristotelian setting (more precisely if the law of the excluded
middle is assumed) whilecan be generalized in various ways totraditional fuzzy
setting (Dubois & Prade, 1985). Here again undue assumptions of some
properties of the former about one of the obviously multifarious, though equally
justified, latters has resulted in rejections of fuzzy approaches in general
(Osherson & Smith, 1981; Smith & Osherson, 1984) in spite of the fact that
these classical operations have no distinguished status among the numerous
kinds of "conceptual combination®, the favorite idea of these criticisms (Lees,
1960; Gleitman & Gleitman, 1970). Owingtothe inherent properties of different
(viz. Aristotelian, traditonal fuzzy, and m-fuzzy) borders, mentioned above, no
specific operations under the names of "union" and "intersection" have been
proposed on m-fuzzy sets.

3.2. Onspecifically m-fuzzy relations

Owing to the generality of the domain, the relations between m-fuzzy
variables are much more complex than those mentioned above. The m-fuzzy
relations have to show mathematicat rigor onthe sets of concept cores and on
the finite subsets of prototypes while they also have to involve the classes of
the corresponding concepts in an intuitively appropriate way. Accordingly,
relativelyfew and relatively complex relations have been defined using m-fuzzy
variables.
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The most important m-fuzzy relations are manifest in the rewriting rules of
m-fuzzy grammars. These rules, according to the model, describe the basic
steps in category identification, thus feasibly in a variety of cognitive activity,
e.g., decision making, opinion forming, aesthetic estimation, too (Fuhrmann,
1985b). Accord ingly, these syntactic rules reflecting the inherent complexity of
cognition cannot, in general, be decomposed into simple and universal
operations. Only one type of partial decomposition is proposed: The rewriting
is regulated, i.e. only specified concepts may appear on the two sides of such
a rule (as mentioned in Section 1.5). Although this specification refers to the
subordinate/superordinate relation of concepts, this is not a reduction of the
rewriting rules since this relation is not (uniquely) pre-defined, particularly not
as simple Aristotelian inclusion (as noted in the preceding section). Just the
other way round, an analysis of the rewriting rules as well as the underlying
neuronal structures may feasibly result in the definition of an appropriate
m-fuzzy inclusion. A special type of m-fuzzy inclusion is formed by concepts
like "A"and "typical A". As mentioned in Section 1.4., classical inclusion does
not apply to this type, either, nevertheless this type may be relatively easy to
study.

The rewriting rules of m-fuzzy grammars establish relations not only
between the variables appearing on their two sides but also between those
appearing at the same position in different versions of the given rule (viz. in
forms like Equations 13, 14, 21-24). This latter type of relations can be divided
into two groups: One group consists of relations between neuronal and
modular states (between expression like 21-24). These relations have been
uniquely defined by Equations 18-20, open qusetions concern the
neurophysiological manifestation of the different states and of the | ¢ signals.
The other group consists of the relations betwen modular states and concepts
(i.e., betweenexpressionslike 23, 24 onthe one hand, and 13, 14 onthe other).
The epistemological basis, i.e. whythese relations are not reductionistic in the
philosophical sense, was outlined in Section 2.3. A point of possible
misunderstanding, however, must be clarified here: The term "module" is used
in the proposed model as defined in the brain sciences (Szentagothai, 1975,
1978; Mountcastle, 1978). These neuronal structures are related to psychic
activity in the proposed model in the way introduced by Hebb (1949), viz.
collective induced states of such neuronal structures are assumedto represent
concepts (Fuhrmann, 1981, 1982). In the cognitive sciences, however,
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structures called "modules” as well as their relation to psychic functions have
become recently well-known in a fundamentally different meaning, viz. in that
of Fodor’s (1983) theory. Fodor associates his "modules" with fixed neuronal
architectures whose functions are fast, mandatory, and informationaily
encapsulated (among other properties). Accordingly, these modules are not
to account for inherently psychic functions, e.g. the learning and recognition
of concepts. Such higher functions take place, according to Fodor (1983),
elsewhere. (The"modules" are called "input systems" whilethe higherfunctions
are performed by ''central systems".) Althoughtwo similartypes of function are
distinguished inthe model explained above too, (as 5 -, and ¢-functions), here
both are performed by the same structures called ‘'modules".

Another idea (in addition to syntactic rule), which manifests some basic
m-fuzzy relations is prototype. As explained in Section 1.4., "prototypicality"
means, accordingtothe proposed model, not only maximal representativeness
of the element for the category but vice versa. Thus the element-to-category
relations appear in a new, symmetric aspect. This also involves some new
aspects of element-to-element relations, i.e. why and how the prototypes are
distinguished within a given category, as well as new aspects of category-
to-category relations. The latter is involved in two respects: One is similar to
the former, viz. why and how is the basic level category (usually defined as the
most representative forthe given element) distinguished. The other stemsfrom
the observation in Section 1.4. that most features of a prototype inthe category
"A" can be best characterized as "(just) A-like". Thus, the relation between "A"
and its constituent categories (features) appear as symmetric in some sense
(viz. in the case of prototype they reciprocally define each other). This also
involves some new apects of the subordinate/ superordinate relation since the
"features" (or "constituent categories') are certainly "subordinate" in some
meaningful sense.
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CONCLUDING REMARKS

Thelargest number of experiments thatled, separately, tothe development
of fuzzy-set theory and prototype theory firmly established that the members
of conceptual categories are not equal. Fuzzy-set theory deals with the
continuous nature of membership while prototype theory with that of
representativeness. Resulting from the confusion of the two, there has been a
heavy trend inthe cognitive sciences opposing the application of fuzzy sets to
modelling concepts (Osherson & Smith, 1981; Roth & Mervis, 1983;
Johnson-Laird, 1983; Cohen & Murphy, 1984; Smith & Medin, 1984; Smith &
Osherson, 1984). Representatives of this trend argue that fuzzy - set theory
takes too big a step from classical Aristotelian logic, and, therefore, although
it might be use ful in modelling the very act of categorization, certainly is not
useful in representing the inherent logic of concepts. In the present paper the
same conclusion was drawn from the diametrically opposite observation, viz.
arguingthe point that fuzzy-set theorytakestoolittle a step by generalizing the
value of the characteristic function from the set {0,1} to the real interval [0,1]
while, however, usingthe same domain (viz. sets). Based onthe contradictions
inthe inherentlogic of conceptsthat refuted classical, or naive set theory (e.g.,
Russell's antinomy, Grelling’s antinomy) as well as on those pointed out by
psychological experiments (Cohen, 1981; Hampton, 1982) a generalization of
the domain was proposed from sets to classes in the sense of axiomatic set
theory, i.e. from contradiction-free collection to possibly self-contradictory
ones.

The proposed, modifed fuzzy sets (m-fuzzy sets) were applied to model the
internal organization of concepts. A hierarchy of concepts as classes, m-fuzy
sets as alinkage, concept cores as sets, and prototypes as finite subsets was
constructed such th at each item represents the preceding one and thus
indirectly all ones before it, and that the inevitable possibility of contradictions
is localized to the first two items. Thus a mathematical (i.e. necessarily
contradiction-free) theory can be developed for the second pair of items also
involving the first pair as represented by the other one.

For modelling the (experimantally proved) inequality of categories that
comprise a given element (Mervis & Rosch, 1981) m-fuzzy grammars were
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proposed. Theseare pure, i.e., nodistinction is made between nonterminal and
terminal symbols (Maurer, Salomaa, & Wood, 1981; Gabrielian, 1982), and
regulated, i.e. different levels of the rewriting involve different collections of the
rules (Salomaa, 1973). Pureness provides that any category may occur at any
step in various chains of rewriting (i.e., that each concept can be considered
in itselt, or as a constituent for another concept, or as a compound of other
concepts). Regutatedness provides a direct account for the
subordinate/superordinate relation. It was also pointed out, however, that the
relations and operations on m-fuzzy sets and grammars are roughty as intricate
as those on concepts (Lees, 1960; Gleitman & Gleitman, 1970). Accordingly,
definite m-fuzzy setsand grammars refer to definite mental representations (or
“subjective lexicons").

This individuality atthe psychic level was united with that atthe neural level:
Psychicacts, e.g., category identification, was approached in an emergentist,
i.e. monistic though philosophicalty not reductionistic way. In this approach
concepts appeared as represented by collective induced states of specific
neural structures called modules, like Hebb's (1949) cell assemblies. The
organization, accordingly alsothe name, of these structures in the model refer
to the neuron-module found as the fun ctional unit in cerebral cortex
architecture (Szentagothai, 1975; 1978; Mountcastle, 1978). The formalized
modules in a distributed, paralle! way. Formally, different versions of a given
rewriting rule of an m-tuzzy grammar describe, accordingtothe model, agiven
step of the information processing at different levels from neuronal to psychic
(Equations 13-14,21-24).

Since the activity of the proposed modules is directly related to the
representation, including the learning and recognition, of concepts, they
sharplycontrastthe modules in Fodor’s (1983) theory, which is often regarded
as the exclusive conception of modular organization in the cognitive sciences.

» address: Pottyés utca 4. H - 1098 Budapest, Hungary
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THE WEIGHTED FUZZY EXPECTED VALUE AS AN
ACTIVATION FUNCTION FOR THE PARALLEL DISTRIBUTED
PROCESSING MODELS

David KUNCICKY and Abraham KANDEL
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The Florida State University,
Tallahassee, FL. 32306-4019, USA.

This research presents an alternate method for viewing the firing rules of
neural network models (more generally called parallel distributed
processing models, or PDP’s). The inputs to the processing unit are
considered to be elements of a fuzzy set and the firing rule is viewed as an
attempt to find a typical value among the inputs. Two such fuzzy measures
are analyzed - the fuzzy expected value (FEV), and the weighted fuzzy
expected value (WFEV). Simulations using simple one and two layer
networks are performed. The WFEV is shown to compare favorably with the
usual weighted sum firing rule when inputs are quasi-orthogonal and the
WFEV surpasses the latter when the mean orthogonality of the input patterns
decreases.
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1. INTRODUCTION

The subject of neural network modeling (or using the more general
terminology - modeling of parallel distributed processes or PDP modeling)
comprises the study of the emergent properties of collections of neuron-like
units. These processing units ope rate asynchronously and in parallel and
are bound generally, but not strictly, by neurophysiological principles.
Rumelhart and McClelland (1986) list some of the general findings of
neuroscience that are useful to neural modelers. These findings are
summarized in the paragraphs below. The same authors also point out that
not enough is known to seriously restrict theories about how the physiological
level and cognitive levels of the brain interact. It is interesting to contrast the
brain with the computer, and from this contrast it becomes clear that the
architecture of eachisvery different. They are so different that it is surprising
that we would expect a serial Von Neumann machine to exhibit human-like
intelligence. It is just as amazing that the serial computer demonstrates the
powerthat it does, surpassing human capabilities in speed, accuracy, and
computation in many areas. Below, we contrast some of the basic differences
between brainsand computers.

Neurons are slow, computers are fast. The processing unit in the brain is
the neuron and it operates with a processing speed on the order of 10
seconds. The upperlimit of the neural firing rate is a result of the refractory
period that is n ecessary for the neural membrane to recover to a resting
potential after it has fired. The processing rate of a single processorin a fast
computer, on the other hand, is about 1 gigaflop (1 billion floating point
operations persecond).

Brains perform distributed computations, computers are centralized.
Neuronscompute autonomously. Although some neurotransmitters may have
aglobal effect on large numbers of cells, they certainly do notact as a clock
or synchronizing device inthe short run. From studies of brain damage it
can be concluded that no one part of the brain acts as a central processor or
homonculus. The processing is distributed across a number of cells. Just
how distributedthe processingis has beenanissue of debate. Evenalocalized



Weighted Fuzzy Expected Value 205

computationin the brain, say involving 1% of the neurons, would involve many
millions of neurons (Anderson, 1983).

Computers, however, funnel all computation through a central processor.
(Newer parallel architectures such as hypercubes employ distributed
processing and are one of the devices on which to implement PDP modeis.)

The brain is massively paraliel, the traditional computer is a serial device.
It is the slowness of neurons that is the main argument for massive parallel
computation in the brain. There is no other concievable way to account for
the complex computations that occur in a few hundred milliseconds. As
Feldman and Ballard (1982) point out "entire behaviors are carried out in a
few hundred time steps". Imagine tryingto write a computer program that
could recognize aface in a few hundred operations. Recent advances in
computer computational speed have come from the introduction of parallel
processors rather than faster processors. This is because single processors
are constrained by a final limit of speed, the speed of light.

The abilities of brains degrade gracefully, the abilities of computers are
brittle in the face of damage. When faced with progressive ablation the brain
continues to function and its functioning gradually degrades with increasing
damage. Whenfaced withsuddenlocalized damagethe brain shows an ability
torecoverthelost functions overtime. Thousands of brain cells are irretrievably
lost every day, yet the computational capabilities of the brain increase with
time during much of our lifespan. The brain has an incredibly effective fault
tolerance system. Computers on the other hand, may be brought down by
the failure of a single element.

Brains store information in the connections between processors,
computers store data in memory cells. There is a large fan-in and fan-out of
connections between neurons. This is on the order of 10° up to 10° inthe
cerebral cortex. Furt hermore, learning is presumed to take place by
modifying the strengths of the connections. Computers store information as
discrete bits that are saved specific addressable locations.

A neural model (which is also called a parallel distributed processing mode!
or PDP model) willadhere more or less to the general principles listed above
without paying too much attention to physiological details. The goal is to
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produce interesting cognitive functions such as learning, memory, and
computation from the autonomous interaction of many simple processing
units.

The potential for application of PDP models lies primarily in the areas of
cognitive psychology, neurophysiology, and computer science. This research
is concerned with potential computer science applications which means that
adherence to physiological principles is less of a concern than in order
disciplines. In computer science, any probiem that has a large number of
simultaneous, weak constraints and that requires a good but not necessarily
optimal solutionis a candidate fora PDP solution. These include problems
in pattern recognition, scheduling atgorithms, robotics, and artificial
intelligence. Until recently, massively parallel processes could be simulted only
on serial machines. With the increasing availability of massively parallel
architectures such as connection machines, the opportunity to impiement PDP
solutions also increases.

The processing unit in most PDP models performs only one operation -
that is to assess constantly the status of its large number of inputs and make
a decision whether tofire or not. Ifthe unit represents a feature detector, for
instance, thenthe boolean output of the unit signifies the presence or absence
of that feature. f the output value is allowed to be a real value rather than a
boolean value, then the output denotes the amount of the feature that is
present. Ifthe real output value is limited to the unit interval [0,1], then the
output describesthe degree of confidencethatthe feature is present (Williams,
1986). The depiction ofthe degree of confidence asa conditional probability
has been treated thoroughly by Peretto and Niez (1986a,b). It has been
suggested in several places that the output of a unit might be perceived as a
fuzzy measure of truth (Kohonen, 1984; Williams, 1986; Zadeh, 1965). In
several papers, Leeand Lee (1974, 1975) described fuzzy neural networks and
applied themtothe synthesis of fuzzy finite automata, but their networks were
static and did not show the emergent properties described above.

The motivation for this research is that many elements of the subject of
cognition are vague. The microstructure of cognition is not well understood.
It deals with subjective phenomenon such as perceptions and memories.
The hardware of the brain is noisy and the functions driving it are imprecisely
defined. For these reasons a fuzzy PDP model is suggested in which the
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output of each processing unit represents a fuzzy level of confidence. The
activated inputs to a processing unit are to be treated as elements of a fuzzy
set. The justification for the development of a fuzzy neurat model is twofold.

One, the input set of a processing unit does not have sharply defined
boundaries. An incomingline toa processing unit is simultaneously an input
tomany otherunits. Thisis consistent with fuzzy pattern recognition schemes
where a feature has a grade of membership in more than one class (Hall,
1982). (Thefuzzy level of confidence that an incominglineis inany one input
setis called the grade of membership of thatline. The grade of membership
is consideredto bea valueinthe unitinterval [0,1]. A grade of membership
of ‘1" denotes complete confidence that membership exists and is
equivalent to boolean '1'. A grade of membership of ‘0" implies that the
incomingline is not a member of the input set).

Theother reasontouse afuzzy model isthat once a neural network islarger
than a few tens of units, it becomes exceedingly difficult to analyze
completely. Kandel (1986) states that

* ... fuzzines may be a concomitant of complexity. Systems of
high cardinality are rampant in real life and their computer
simulations require some kind of mathematical formulation to
deal with the imprecise descriptions.”

There are many PDP models in the literature. Kohonen (1984) gives a
thorough description of the subject. We have chosen to apply the notion of a
fuzzy networkto the dynamic neural network model of Hopfield (1982). Other
models could be used as wel | but the Hopfield mode! is widely cited and will
serve as a good starting point.

The elements of a PDP model will be defined in the next section. We will
describe several fuzzy measures of centraltendency and substitute them for
the activation function (firing rule), performing simufations with each (Section
3 and 4). In Section 5 several assumptions that limit the stochastic
interpretation of PDP’'s are described. Then, in Section 6, tests are performed
to see if the fuzzy model is resistant to one of these assumptions (the
orthogonality assumption). Finally, the conclusion and directions for further
research are discussed in Section 7.
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2. ACTIVATION FUNCTIONS

Our general framework for the description of parallel distribited models
is presented by Rumelhart and McClelland (1986). Other frameworks are
presented by Kohonen (1984). The commaon characteristics of a PDP model
are:

- one or more sets of processing units
- a set of weighted connections

- an activation function (or firing rule)
-alearningrule.

A set of processing units is usually denoted by a vector, and the value of
each element of the vector denotes the state of activation for that unit. In
some models the vector isa set of real values, in some the vector is a set of
values inthe closed unit interval [0,1], and in others it is a set of binary values.

The pattern of weighted connections among units iscommonly a complete
bipartite graph, and usually expressed as a matrix W where the value of a cell
wij representsthe strength of the connection between input unit v and out unit
ui. The value of a cell in the weight matrix may also have various ranges in
different models. The most common are a set of real values in the closed
interval [0,1], a set of real values in the range [-1,1], and a two point set { + ,-}.

The activation function for a unit determines the unit's activation vailue
based on the state of activation of the unit, the state of activation of its inputs,
and the weight of each input. The activation function combines the output
values of the incoming lines (vj) with the strength of each connection (wij) to
produceanetinput forthe current processing unit (u;). Thisvalue is frequently
expressed as a weighted sum of the products of each input value and its
associated weight:

Ui =2 wij * v
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In a linear model the value of ui is passed on as the output. A non-linear
function uses a threshold to produce an output in the two-point set {0,1}.
Other variants of the activation rule reduce the real-vatued output to the
closed unit interval [0,1] or some other bounded interval. (The latter are
sometimes called squashing functions). Ingeneral, ifthe units have activation
values from the set A, and there are n inputs to a particular unit, then the
activation function is a function a from A" to A (Williams, 1986):

a A" = A

The learningrule is a function that determines the value of the connection
weights and is usually based onlocally available information. Most learning
rules are some variant of the Hebbian rule for cellularlearning (Hebb, 1949):

When an axon of cell A is near enough to excite a cell B and
repeatedly or persistently takes part in firing it, some growth
process or metabolic change takes place in one or both cells
suchthat A’s efficiency as one of the cells firing B is increased.

This often quoted rule statesthat if aconnected pair of units are both highly
activated then the strength of the connection between them increases.
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FIGURE 1
Example of one unit and its inputs.
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The previous definitions may be understood more clearly by referring to
Figure 1 above.

Much ofthe current PDP reserachfocuses onvariations ofthe learningrule.
The learning rule determines the strength of the connections between units
and generally characterizes the capabilities of a particular model. This paper
focuses on a variation of the activation rule. An investigation is made into
the implications of thisvariation onthe storage characteritics of a single-layer
nonlinear model similar to that of Hoepfield (1982).

Fuzzy Measures as Activation Functions

The activationvalue of a unit as defined above signifies the amount of some
preferred feature that is present. As mentioned before, the activation value
may also beviewed as a conditional probability or as afuzzy measure oftruth.
Itis interestingto note that the weighted sum, which is frequently used inthe
activation function, is essentially equivalent to the mean of the non-zero
inputs. In the same vein, fuzzy measures of central tendency may be used to
find a typical value among the inputs to a unit. In what follows, the fuzzy
expected value (FEV) and the weighted fuzzy expected value (WFEV) are
explored as activationfunctions for PDP's.

3. THE FUZZY EXPECTED VALUE AS ACTIVATION FUNCTION

Thefuzzy expected value (FEV) is ameasure of central tendency forfuzzy
sets. The FEV depicts a ‘typical’ or ‘representative’ value, and is meant to
supplantthearithmetic mean and medianforfuzzy sets. The following definition
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ofthe FEVisdrawnfromKandel (1986), and Friedman, Schneider, and Kandel
(1987).

Let R be a fuzzy relation defined over the universe Y. For example, the
relation ‘much less than’ may be defined by the matrix

Al
R| 1 2 3 4
1 0 0 0 0
A2 2 04 O 0 0
3 08 0 0 0
4 1 08 04 O

inwhichthe fuzzy setsA1= A2 =1+ 2 + 3 + 4.

Let Xa be the membership function of A where

0 = Xaly) = 1, ye Y

Inour example Xa is defined by the relation matrix butthe relation "x is much
less than y" may be defined in many ways.

For example, Xa could also be defined by:

0, ifx-y =20
Xa(x.y) =
1+ 0.6(x-y)'1 ifx-y <0.
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Thefuzzy measure is defined over subsets of Y. The fuzzy measure is a set
functionthat is bounded, nonnegative, monotonic, and continuous.

The fuzzy expected value of Xa, over A, is defined by

FEV(Xa} = Sup {min[T,u(o1)]}
0=<=T=<1

where o1 = {y| Xaly) 2T}

andTisathreshold (0 < T < 1).

Now u (o 1) = fa(T)is afunction of T, sothe FEV may be represented
geometrically asthe intersection of the curves T =fa(T), which will be at vatue
T=H, sothatthe FEV{Xa} =H e [0,1]. Figure 2 depicts this procedure.

T

AT T

X —————

FIGURE2
A graphic representation of the FEV.
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The FEV can atso be defined for a finite set of data points, which is more

relevant to the application at hand. Let the universe Y be given by the finite
union

sothat

Xaly) =X,y eY;t1<i<sm
and the X;’s are ordered
D<Xi <Xz ... Xm =<1

Essentially, the grades of membership of the data points have been placed
inlike groups and the groups have been arranged in ascending order.

Define n;j to be the number of data points at level X;, and N to be the total
population. There are m-1 distinct levels of fuzzy measure

The FEV is the median of the set

X1, o Xy w1y, wmt )



214 D. Kuncicky and A. Kandel

Let us illustrate the definition with an example. Table 1 below shows the X
values of a population of 12 data points grouped into the 5 like categories Xi.

TABLE 1
Example of FEV computation.

0.40
0.50
0.55
0.60
1.00

O bW =
N DD B W=

Using the formula above we calculate the . i to be

w1 =11/12 = 0.92
uz = 8/12 = 0.67
w3 = 4/12 = 0.33

pa = 2/12 = 0.17

The FEV is the median of the set

{0.17,0.33,0.40,0.50,0.60,0.67,0.92,1.00}

which in this example is 0.55. Figure 3 graphically represents the discrete
case of the FEV.
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FIGURE3
A graphic representation of a discrete case of FEV.

First we will describe how the FEV fits into the PDP model, and then give
the results of a simulation. !f the activated inputs to a processing unit are
consideredto be afuzzy set of weak constraints on the unit, then the FEV may
be used to replace the weighted sum in the activation function. Inthe following
formulationthe weights (wij) aretakento symbolizethe ‘grade of membership’
inthe input set, orthe ‘degree of confidence’ thatthe input actually represents
a particular concept, event, or stimulfus. The FEV of the activated in puts then
representsthe ‘typical value’ ofthe weak constraintsimpingingonthe unit. The
output value is a function of the activation value and athreshold. The output
is a binary value that signifies whether the unit has autonomously decided to
fire or not.
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Simulation Using the FEV as an Activation Function

A simulation of the model using the FEV as the activation function was
performed using 10 random binary input vectors (n=100). The inputs were
paired withthemselves in an auto-associative state array. An auto-associative
model pairs an input pattern with itself as output. The model is useful for
retrievingwhole patternsfrom partial or distorted input. A hetero-associative
model pairs an input pattern with a different output pattern. The Hopfield
(1982) learning algorithm was used to assign weights to the connections
between the inputs and outputs. The algorithm used is

wij = 2 (24-1) (2ui-1).
k

expect that all weights (wij) were scaled to {0,1] instead of [-1,1] and the
threshold value was set to 0.5 instead of to zero. To test the graceful
degradation of the system in the face of partial inputs, the input vectors were
progressively distorted. The distortion was measured as distance in
Hamming units fromthe original stored pattern. The recalled vectors werethen
compared to the desired output vectors and recorded as percent correct.

The average results of many firings as the inputs are gradually distorted
is presented in Table 2.

TABLE 2
Average retrieval rate of mean and FEV as activation functions
(100trials foreach)Hamming distance).

HAMMING Dx 0 5 10 18 20

Mean 965 950 926 89.7 86.0
FEV 923 90.1 876 844 807
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It is clear that the FEV's performance is not satisfactory. This is partly due to
the FEV's insensitivity to the population density of the data set. Friedman
(1987) defines population sensitivity to be:

Let A be afuzzy set with populations n1and n2and membership
values X1 and Xzrespectively. If n1 > n2,thenthe typical value
should be "much closer" to X1 than to X2.

Another reason that the FEV fails in this application is that the decision to
fireis often made with results that are very closetothethreshold value. From
the graphical representation of the FEV in Figure 3 it is clear that if the
number of Xi's is small then the FEV is not sensitive to variations close to the
threshold. An example showing the calculation of the FEV for one firing from
the simulation is persented inthe Appendix.

4, THE WEIGHTED FUZZY EXPECTED VALUE AS ACTIVATION FUNCTION

The second quantity that we will use to find a ‘typical value’ for the inputs
to a processing unit is the weighted fuzzy expected value (WFEV). The
following definition of the WEFV is from Friedman, Schneider, and Kandel
(1987).

Letw(x) be a non-negative monotonically decreasingfunction defined over
the interval [0,1] and 7 a real number greater than zero. The solution s* of

Xiw(IX1-s])n1 7 + ... + Xmw(|Xm-S|)Nm 7

w(|X1-s])m1 + ... + w(|Xm-S]) im 7

is called the weighted fuzzy expected vatue of order =. The attached weight
function w is generally defined as:
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-Bx

w(x) = e

where 8 > 0,andthe parameters 1, 8 are found sufficient for determining the
'most typical value’ of Xa. In some instances the values of r and 8 are found
after the data set is known. It would certainly be desirable to determine the
values of the parameters a priori, using information known locally at the
processing unit.

Inthe next Section we will make an a prioridetermination of the + parameter
for each unit. Friedman suggests that s be solved iteratively starting with:

s = FEV or s = mean
B =1,and
T =2

The iterations are continued until a result of sufficient accuracy is found.
Inour simulations the first iteration produced satisfactory accuracy.

Simulation Using the WFEV as an Activation Function

The simulation comparing the WFEV and mean as activation functions is a
duplication of the simulation in Section 3 except that the WFEV is used in
instead ofthe FEV. After manytests the following conditions forthe WFEV were
found to produce the most satisfactory results:

s = mean of activated inputs,
B =1,and
T =05

Table 3 presents the results when the inputs are randomly chosen. It can
be seen that the retrieval rate for the WFEV compares favorably with that of
the mean.
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TABLE 3
Average retrieval rate of mean and and WFEV as activation functions
(100 trials for each Hamming distance).

HAMMING Dx 0 5 10 15 20
Mean 99.6% 99.2 98.6 97.5 95.7
WFEV 99.5% 98.8 97.9 96.0 94.0

5.DENSITY AND ORTHOGONALITY ASSUMPTION

There are several assumptions made about the input patterns of a single
layer or double layer PDP in the Hopfield model. One is the orthogonality
assumption. Non-orthogonal inputs interfere with one another as they are
stored in the state array (Stone, 1986). The resulting retrieval rate decreases
as the input patterns become less orthogonal (see Table 4). Another
assumption made in the Hopfield model is that the binary input vectors have
the same ratio of ones to zeros. This is called the density problem. Both of
these assumptions and their interaction are discussed below.

Density Assumption

The input patterns must be of similar density if the threshold value is to be
constant for all patterns. Density of a binary vector refersto the proportion of
onestothetotal number of elements. Storing patterns with half ones and half
zeros results in an optimum threshold of zero. Other densities result in the
optimumthreshold varying from zero, and a mixture of densities results in no
common threshold value for all patterns. The solution to this problem has
beento create patterns with the same density.This is based on the knowledge
that any input pattern can readily be mapped to another pattern with a given
density (Stiles & Deng, 1987). For example, the two state arrays below are
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storing a single pattern each. This is calculated using the Hopfield algorithm
described earlier. State array A is storing a pattern of density 2/3. State array
B is storing a pattern of density 1/3.

OUTPUT

0 1 1 0 0 1
I
N 0 - -1 -1 0 - 1 -1
P 1 -1 - 1 0 1 - -1
U 1 -1 1 - 1 -1 -1
T

State Array A State Array B

By usingthefiring rule described in Section 2, the following activation values
are achieved at the outputs:

Cell 1 Cell 2 Cell 3
State Array A -2 1 1
State Array B -1 -1 0

One can seethat athreshold of 0.5 would work for State Array A, but would
not be adequate for State Array B, which has an optimal threshold of -0.5. This
is a result of the difference in densities of the inputs. When multiple patterns of
different densities are stored in the same state array the problem is
exacerbated.
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Orthogonality Assumption

The pattern stored in a state array must be adequately dissimilar or the
recollectionsare confused. If several patterns are very similar thenthe minima
that represent memories become fused (Hopfield, 1982), and the inputs
produce indistinguishable outputs. Some models require that the input
patterns be orthogonal to effect maximum recollection. Others have the less
restricitive reqgirement that the input patterns be lineary independent.
Orthogonality means that the input vectors of size n are perpendicular in
n-dimensional space or, equivalently, that the dot product of all vector pairs
is zero. Linear independence means that the k input vectors span
k-dimensional space. This isthe same as saying that none of the vectors can
be written as a linear combination of the others. The impact of the
orthogonality assumption has been minimized in biological models by
assuming that preprocessing tends torandomize inputs. The preprocessed
material then becomes relatively orthogonal (Kohonen, 1984). Multi-layer
modelsthat employ hidden units overcome the assumption by redefiningthe
internal representations to be orthogonal.

TABLE 4
Effect of orthogonality on recall.

Mean dot Hamming distance from stored pattern
product 0 5 10 15 20 25
(dissimilar)
249 99.8 99.7 992 979 97.0 934
30.9 89.7 888 881 87.6 865 86.6
38.8 87.9 879 87.8 88.0 876 875
(similar)

Some learning rules, such as the generalized delta rule, require that the
input patterns be only linearly independent (Stone, 1986). However, single
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layer models that do not assume preprocessed input are severely restrictted
in the choice of input patterns. To illustrate the effects of this restriction a
simulation was performed that varied the orthogonality of the input patterns.
The effect on the ability of the system to recall stored patterns was then
measured. The simulation demonstrates the results (see Table 4).

Interaction of Density and Orthogonality

There is an interaction between the density and the orthogonality of a set
of input patterns. The mean density of the input patterns affects the maximum
number of orthogonal patternsthat can be stored. For example, assume a
set of binary vectors of size n and density d. There are n possible
orthogonal patterns of density 1/n, but only 2 possible orthogonat patterns of
density 1/2. To illustrate this, consider a binary vector of size 4. If patterns
arelimited to have a density of 1 then there is a maximum of 4 patterns where
all pairs of patterns are orthogonal;

Pattern1 - 1 0 0 0
Pattern2 - 0 1 0 0
Pattern3 - 0 0 1 0
Pattern4 - 0 0 0 1

If the patterns are limited to have a density of 2, however, then there is a
maximum of 2 patterns where all pairs of patterns are orthogonal. There is
more than one set of these. An example of a possible set is:

Pattern1 - 1 1 0 0

Pattern2 - 0 0 1 1



Weighted Fuzzy Expected Value 223

Effect of Orthogonality on Recollection

Thefollowing experiment demonstrates howthe stochastic model behaves
as the input patterns become less orthogonal. The orthogonality of a set of
patterns is measured asthe meandot product of all possible pairs of vectors.
One can see from Table 4 that the recall accuracy decreases asthe members
of a set of input patterns become more similar.

The search for aiternations or extensions to the model that would aliow a
relaxation of the above assumption is based onthe genuine robustness of the
Hopfield model. Various modifications of the basic Hebbianlerningrule have
been proposed that do not eradicate the favorable properties of a distributed,
associative system. These research efforts focus on what happens at the
synapse. Thereisless research being done onvariations of the activation rule,
even though recent studies have shown that classical conditioning may take
place by altering the cell body threshold (Tesauro, 1986).

Acriterionfor biological plausibility of aneural model is that the information
needed to execute a particular process is available locally at the site that the
process takes place. For example, the information needed for learning by
synaptic modification should be available at the synaptic junction. This may
include historical or time dependent data. Likewife, the information needed
to execute the neural firing should be available at the cell body at the time that
the decision to fire is made.

The restriction that information be availablelocally is important not only for
reasons of biological plausibility. As applications are developed using PDP
models, the intention is to implement them on machines with autonomous
and asynchronous processors suchas hypercubes or connection machines.
Any algorithm that increases locality of information and thus decreases the
quantity of message passing is favorable.

The information about the orthogonality of a set of input patterns is
available at the synaptic junction (or inthe case of an auto-associative model,
atthe neuronbody). To demonstrate this, recall thatthe Hopfield memorization
algorithm is stated as:
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wij = 2 (2v-1) (2ui-1).
k

where wij represents the synaptic junction of input cell vjand output cell ui. The
weight wij is summed over the k input patterns. The condition of interest is
when vi= 1 and ui= 1, because this is the condition that contributes to the
increase inthe dot product of any pair of the k input patterns.

For example, consider the vectors u and v:

n 1 2 3 4 5 6 7 8

©o 1+ 1 0o 1 0 1 0}
1t 0o o 1 1 0 0 1}

<
I

The only elements that contribute to the dot product u*v are the 5th elements
vsand us. The sumofvand uis:

t = {1 1 1 1 2 0 1 1}

It is clear that tj represents a measure of the contribution of thejth element
tothe dot product of vand u. The ith element of the sum of the k input vectors
is defined as j, the measure of similarity for input unitv;. This is a locat measure
ofsimilarity (or, non-orthogonality).

If one allows time dependent information, then knowledge about the
orthogonality of the input patterns is available locally for the use by the
processing unit. This information is available for use by both the learning
function and the activation function. It is debatable whether the computation
of is biologically ptausible or not. It is certainly realistic to assume that the
information is locally available to a processor in a computer application. This
is because there are other avenues of communication in the computer, for
example, message passing, a central processor, or shared memory. The
restriction onlocality of information is not as severe as in the biological model.
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6. COMPARISONS OF WEIGHTED MEAN AND WFEV

In the following experiment the WFEV is compared to the weighted sum as
the mean similarity of inputs Is varied. The parameter 1 is considered to be a
function of & (the local measure of similarity):

T =-0.02%(8 + 0.6).

Thefiringof a particular unitisthen dependent onthelocal similarity of each
unit of the input vector. The results of the preliminary linear function are
displayed below in Table 5. Note that in this example the WFEV appearsto be
resistant to less orthogonal input patterns, but as a trade off it shows a less
graceful degradation to altered inputs.

TABLE 5
Effects of orthogonality on recall for mean and WFEV.
The dot product is averaged for all (45) pairs of the stored input patterns.

Mean dot Hammingdistance from stored patterns
product 0 5 10 15 20 25

252 MEAN  100.0 999 997 992 965 944
WFEV 995 989 98.0 959 92.1 89.1

31.6 MEAN 88.5 879 870 881 876 873
WFEV 98.4 974 968 921 898 834

38.7 MEAN 874 874 874 87.1 875 86.8
WFEV 91.5 921 874 832 632 554
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When one looks closely at the auto-associative model it appears that using
b as a parameter gives unfair information to the processing unit. The
processing unit is supposed to find a typical value among the large number of
inputs. The memory is distributed across a !arge number of connections.
If, for example, §j= 10 over 10 input patterns then vj most certainly should
fire. Likewise, if§ j= 0then vjshould not fire. It appears that 5 alone is
driving the activation function. This is not the case however. To demonstrate
this, a simulation of a hetero-associative model was performed. The input
patterns were randomly paired with the output patterns so that information
aboutthe similarity ofthe inputstoa particular unitcould not directly influence
the output of thet unit. The results of this simulation are presented in Table
6. By comparing the resultsto those of Table 5, one can seethat the fuzzy
model is still resistant to the effect of less orthogonal inputs. The resdults in the
twotables vary becausethe input patterns are chosen randomly and the mean
dot products are therefore different. The general results of the hetero-
associative simulation are comparable to those of the auto-associative
simulation.

TABLE 6
Effect of orthogonality on recall for mean and WFEV, using a
hetero-associative network. The dot product is averaged for all (45) pairs of
the stored input patterns.

Mean dot Hammingdistance from stored patterns
product 0 5 10 15 20 25

246 MEAN  100.0 99.7 995 98.7 963 94.6
WFEV 99.7 991 987 971 934 91.0

29.6 MEAN 955 949 933 940 922 90.2
WFEV 994 984 962 948 909 885

36.0 MEAN 744 748 753 76.7 777 768
WFEV 96.8 960 939 914 883 822
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7. CONCLUSION

The injection of fuzzy techniques into the area of neural network modeling
demonstrates that the uncertainty inherent in these complex systems may
be interpreted in a non-probabilistic manner. The fuzzy interpretation retains
the favorable characteristics of the stochasticmodel-pattern retrieval from
partial inputs, graceful degradation during system damage, and the use of
autonomous, asynchronous processors that employ locally available
information to perform computations. |In addition, the fuzzy model offers a
satisfying approachto asubject that is too complex, toovague, and too noisy
to be described explicitly. Simulations show that the use of the WFEV as an
activation function demonstrates a resistance to interference from
non-orthogonal input patterns. The primary disadvantage of using the WFEV
in the activation function is the complexity of its computation. Since the
algorithm was not implemented on a parallel system, timing constraints are
difficult to judge at this point. The other result derived from this study is to
reinforce the view that the underlying PDP model is robust with respect to
changes in details.

There are many activation functions and many learning rules being
proposed for use in PDP models. The fact that they all work to a degree
demonstrates the robustness of the underlying model. This is a favorable
property of many physical systems and was noted by Hopfield (1982):

These properties follow from the nature of the ... processing
algorithm, which does not appear to be strongly dependent on
the precise details of the modeling.

What are some of the weaknesses in the presentation of a fuzzy activation
function? One, the choice of the population function
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was derived experimentally. This was done by searching for linear functions
that producedthe most accuratelevel of output. This approachis not unusual
in the history of neural network modeling. An algorithm that works is
developed heuristically, and then the mathematical basis for the algorithm is
derived. Further research should include the investigation of other population
functions, their effect on the model, and some rationale for the use of one
function over others.

Another problem isthe accessibility of information inthe hetero-associative
simulations. Itis stretchingthe point a bitto claim thatthe information needed
to compute is available locally at the output units. During learning, the input
pattern is presented to the input units and the output pattern is presented to
the output units. The strength of the connections between the units are
changed according to the learning algorithm.

P V1 1 o P
I A U A
N T wv3 uy T T
P T P T
U E . . U E
T R . B T R
N . . N
Vn un

It is reasonable to conjecture that input unit vi stores some sort of
summation of the values presented to it and thus computes 8 ;. But, itis
difficult to visualize how that information is available locally for use by the
corresponding output unit ui. This is not a fatal error. As was mentioned in
the introduction, the physiological constraints on PDP modeling are not very
constrictive at this time because of the general lack of knowledge about how
the brain actually inplements memory and learning.

There are other popular models (such as back-propagation learning) that
contain elements with no obvious physiological basis. In addition to solving
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these problems, there are several directions for future research inthe area of
fuzzy parallel distributed processing. These are described below.

Onetopic for further study is the extension of the fuzzy model to include
the learning rule. We have used Hopfield's algorithm for fixing the weights
as a starting point but, as we mentioned earier, the algorithm for the
spontaneous learning of proper weights is the most widely varied element of
PDP models. Which of the various rules that have been suggested are
compatible with the fuzzy model? Does fuzzy set theory have anything to
offer in the development of new learning rules?

Other areas of study are not limited to the fuzzy model but are topics for all
PDP reserach. Oneoftheseis the study of multilayer networks. The cerebral
cortex operates with approximately six layers of neurons. What implications
does this have for PDP networks? Another interesting topic is the interface
of PDP networks with other computational architectures. Can a PDP model
actasafrontend (orasideend)to anexpert system, for example? Of course,
as parallel machines become more available, the development of useful PDP
applications wilt become more of an issue for computer scientists. There is
potential for useful applications in many areas including robotics, pattern
recognition, chip design, meteorological forecasting, fault tolerance,
distributed operating systems, as well as cognitive and physiological modeling.

APPENDIX

Thefollowingis an example of the calculation ofthe mean, FEV, and WFEV
as activation functions for a single firing.

Carrect response is 0 (not firing)
Local similarity (8) = 2
Threshald (8) =0.5

Mean: 0.45

FEV: 0.46

WFEV. 0.45
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i n W X Min(p, i,Xi)

22 100 038 0.38
1 056 042 042
5 054 046 046 <FEV
044 050 044
7 020 054 020
0.06 058 0.06
1 002 062 002

N OO s NN~
-
nN

Total:50

There are 50 inputs in the table, representing the active units in the input
vector (n=100). The mean is equivalent to the usual weighted sum of inputs
and can be calculated from the table by summing the products of each njand
Xi:

Mean = 2 n* X
i

The FEV is calculated by finding the maximum of the minimums of each X,
p pair:

FEV = max [min(Xi, & i))
i

The WFEV is calculated as described in the Section 4 with the parameter =
defined as alinear function of 8, the local measure of similarity (see section
titled "'Effect of Orthogonality on Recall" in Section 5):

T=-002*8 + 06.
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The threshold is predefined to be 0.5. In this instance, all three measures
have compuetd the correct output response of 0 (or not firing) for this unit.

This research has been supported in part by NSF grant IST 8405953.

REFERENCES

Anderson, J. A. Cognitive and psychological computation with neural models.
IEEE Transactions on System, Man, and Cybernetics, 1983, SMC-13,
799-815.

Feldman, J. A., & Ballard, D. H. Connectionist models and their properties.
Cognitive Science, 1982, 6, 205-254.

Friedman, M., Schneider, M., & Kandel, A. The use of weighted fuzzy expected
vaule (WFEV) infuzzy expert system. Fuzzy Sets and Sytems, 1987, in press.

Hall, L. 0. Apossibilistic pattern recognition technique. Unpublished master’s
thesis. Tallahassee, FL: Florida State University, 1982.

Hebb, D. Q. The organization of behavior. New York: Wiley, 1949.

Hoepfield, J. J. Neural networks and physical systems withemergent collective
computational abilities. Proceedings of the National Academy of Sciences
USA, 1982, 79, 2554-2558.

Kandel, A. Fuzzy mathematical tecniques with applications. Reading, MA:
Addison-Wesley, 1986.

Kohonen, T. Self-organization and assocoative memory. Berlin: Springer,
1984.

Lee, S. C., & Lee, E. T. Fuzzy sets and neural networks. Journal of
Cybernetics, 1974, 4, 83-103.



232 D. Kuncicky and A. Kandel

Lee, S. C., & Lee, E. T. Fuzzy neural networks. Mathematical Biosciences,
1975, 23, 151-177.

Peretto, P., & Niez, J. Long term memory storage capacity of multiconnected
neural networks. Biological Cybernetics, 1986, 54, 53-63. (a)

Peretto, P., & Niez, J. Stochastic dynamics of neural networks. [EEE
Transactions on Systems, Man, and Cybernetics, 1986, SMC-16, 76-83. (b)

Rumethart, D. E., & McClelland, J. L. (Eds.) Parallel distributed processing:
Explorations inthe microstructure of cognition. Vol. 1. Cambridge, MA: MIT
Press, 1986.

Stiles, G. S., & Deng, D. A quantitative comparison of the performance of three
discrete distributed associative memory models. [EEE Transactions on
Computers, 1987, C-36, 257-263.

Stone, G. Ananalysis ofthe delta rule and the learning of statistical associations.
In D. E. Rumelhart and J. L. McClelland (Eds.) Paralle! distributed
processing: Explorations in the microstructure of cognition. Cambridge, MA:
MIT Press, 1986

Teasuro, G. Simple neural models of classical conditioning. Biological
Cybernetics, 1986, 55, 187-200.

Williams, R. J. The logic of activation functions. In D. E. Rumelhart and J. L.
McClelland (Eds.) Parallel distributed processing: Explorations in the
microstructure of cognition. Cambridge, MA: MIT Press, 1986.

Zadeh, L. A. Fuzzy sets. Information and Control, 1965, 8, 338-353.



Fuzzy Sets in Psychology
T. Zétényi (Editor)
© Elsevier Science Publishers B.V. (North-Hoiland), 1988 233

FUZZY LOGIC WITH LINGUISTIC QUANTIFIERS: A TOOL
FOR BETTER MODELING OF HUMAN EVIDENCE
AGGREGATION PROCESSES?

Janus KACPRZYK

System Research Institute, Polish Academy of Sciences
ul. Newelska 6, 01-447 Warsaw, Poland

Two fuzzy logic based calculi of linquistically quantified propositions are
presented. Basically, they are concerned with the calculation of the truth of
the linguistically quantified propositions generally written as "QY's are F"
and "QBY's are F', where Q is alinguistic quantifier, B is importance, Y is
a set of objects and F is aproperty. The first proposition is exemplified by
‘most experts are convinced"and the second one by "most of the important
experts are convinced". It is then advocated that the above calculi of
linguistically quantified propositions can provide means for more adequate
and consistent human evidence aggregation processes. This is based on
a positive experience Jfrom some new multiaspect decision making
models in which the aggregation of partial scores (related to the pa rticular
aspects) is crucial. In particular, there are considered new muitiobfective
decision making models seeking an optimal option which best satisfies
most (almost all, ... or another linguistic quantifier) of the important
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objectives, multistage decision making (control) models seeking an optimal
sequence of controls which best satisfies constraints and goals at, for
example, most of the earlier control stages, and new group decision making
modelsinwhichnew solution concepts have beenproposed based on afuzzy
mafjority given as a linguistic quantifier.

1.INTRODUCTION

Decision making - which is the essence of virtually all human activities
at all levels, those of an individual, a group and an organization - is
particularly difficult in the present world that is complex, competitive,
ill-structured, etc. This clearly calls for some (computer) support to help
make (better) decisions. Recent developments in computer technology
justify this. At present, and presumably in the foreseeable future, it seems
that the most efficient use of decision support systems (DSSs) will be to assist
and help humans arrive at a proper decision but by no means to replace
humans. The system should therefore carry out the tasks for which it is better
suited, such as the processing of well defined and structured information,
and provide the user with "good" solution guidelines leaving the user the final
choicethat involves more "delicate" aspects better hand led by the humans.

Toeffectively and efficiently arrive ata proper and welt timed decision within
the framework of DSS, some synergy between the human and "machine"
should exist. Since any change of human nature is rather difficult to obtain,
attemptsto makethe machine more"human consistent", which parallels what
is often termed in ergonomics (human factor engineering) "to fit the task to
the man", seemto be more promising.

The human consistency of DSSs have two main aspects. The first, which
might be called the input/output human consistency, is related to
communication (interface) between the user and system and is most often
considered. For instance, user friendly natural language based interfaces
have been proposed. The second, which might be termed the
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algorithmic/procedural human consistency (Kacprzyk, 1986b), is relatedtothe
algorithms and procedures used by the system to obtain a solution.
Basically, its essence is to try to make mathematical models, algorithms,
procedures, etc. somewhat parallel the way the human user perceives their
essence, intention and purpose. Therationale isthat, from a pragmatic point
of view, a "quality criterion" of any DSS is the implementability of its solution
proposals. Those procedures which do not depart too much from the user’s
experience, perception, commonsense, etc., should be easierto implement.

In this paper we are concerned with some aspects of that
algorithmic/procedural human consistency of the DSSs. We adopt here the
following perspective. A prerequisite for decision making is the
availability of a mechanism for evaluating the particular options in question;
we assume here for simplicity that this evaluation process yields a numerical
value for each option.

Dueto the complexity of the present world, any realistic decision making
problem should be considered in a multiaspect setting, i.e. accounting for
multiple decision makers. This does complicate to a large extent the
evaluation process of a particular option. The evaluation with respect to each
aspect results therefore in a partial score, and then these partial scores are
aggregated (pooled) to obtain the final score which is to be meant as the
intended evaluation.

Virtually all attempts to model this process of aggregating the partial
scores have been conventionally modeled as some manner of (weighted)
averaging which implicitly involves all the partial scores though with possibly
different importances. On the other hand, experience clearly indicates that
in many practical cases humans do not consider all the aspects, neglecting
some of them in the aggregation process. First, if the aspects represent life
quality indicators (objectives), then the human perception (evaluation) of life
quality can be satisfactory even if some indicators take on toolow values (say,
below aspiration levels) but the other ones take on satisfactory values. This
seems toclearly indicatethat some aspects are neglected in the aggregation
process. Second, in case of a socioeconomic development planning problem,
whichis an example of multistage decision making, the human evaluation
of a development trajectory is often satisfactory even if at some (sufficiently
few and, say, later) stages (say, years) the development indicators take ontoo
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low values. This also seemsto clearly indicate that some stages are neglected
in the aggregation process. Finally, in the case of multiperson decision
making, an analyis of human perception of how the individual testimonies
(e.g., utilities or preferences) are to be aggregated seems aiso to clearly
indicate that the testimonies of some individuals are neglected.

The above mentioned facts have led to attempts to reformulate some
multiaspect (multiobjective, multistage and group) decision making models
in which, roughly speaking, that process of neglecting some objectives,
stages and individuals be modeled in a possibly human consistent way.
Thus, first, new multiobjective decision making models have been proposed
(Yager, 1983b; Kacprzyk & Yager, 1984a, 1984b) in which an optimal option is
thought which best satisfies, say, most (almost all, much more than50%, ...)
of the important objectives. Second, new multistage decision making
(control) models appeared in Kacprzyk (1983c, 1984a) and Kacprzyk and
Iwanski (1987) which seek an optimal sequence of controls best satisfying
constraints and goals at, say, most of the earlier control stages. Third,
new group decision making models have been proposed in Kacprzyk (1984b,
1985b, 1985c, 1986a) where in the determination of solutions a fuzzy majority
represented by alinguistic quantifier (e.g., most, almostall, ... ) is considered,
i.e. the testimonies of, say, most individuals are accounted for.

In the above models the number of aspects to be considered is specified
by a fuzzy linguistic quantifier, and fuzzy logic based calculi of linguistic
quantified propositions are employed. A positive experience with those
models seems to suggest that fuzzy logic with linguistic quantifiers, in our
particularcase inthe formof a calculus oflinguistically quantified propositions,
can be an adequate and useful tool for modeling the human evidence
aggregation processes. This isthe main message expressed inthis atticle.
Evidently, this is not supported by any psychological investigations, and we
hope that this paper could trigger some research efforts in the scientific
communities involved in the study of human behavior and mental processes.

Section 2 presents a brief account of two fuzzy logic based calculi of
linguistically quantified propositions. Sections 3, 4 and 5 sketch the new
multiobjective, multistage and group decision making models. The last
section contains the concluding remarks and an extended list of literature.
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To makethe paperreadabletoalargeraudiencethe models are sometimes
presented in afess formal manner with mathematics and technical details
kept at minimum. The interested reader can find details inthe cited sources
as well as inthe author’s survey articles (Kacprzyk, 1984a, 1986d, 1987b).
Our notation onfuzzy sets is standard. Forfuther details see e.g. Dubois and
Prade (1980), Kacprzyk (1983b, 1986¢) or Zimmermann (1985).

2. ONSOME FUZZY LOGIC BASED CALCUL!I OF LINGUISTICALLY
QUANTIFIED PROPQOSITIONS

Alinguistically quantified proposition is exemplified by "most experts are
convinced" and may be generally written as

QY'sareF (1)

where Qis a linguistic quantifier (e.g. most), Y = {y} isa set of objects
(e.g. experts), and F is a property (e.g. convinced).

Importance, B, may also be added to (1) yielding

QBY'sare F (2)

thatis, say, "most of the important experst are convinced".

Basically, the problem is to find either truth (QY’s are F) in case of (1), or
truth (QBY's are F) in case of (2), knowing truth (y is F), foreach y Y.
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Itis easy to seethat the conventional logical calculi make it possible to find
thesetruthsfor crisp (precise) quantifiers only, mainlyfor“all" and "atleast one".
To deal with linguistic quantifiers exemplified by "most", "almost all", etc. a
fuzzy logic based calculus can be used, and two of them will be presented
below.

2.1. The algebraic or consensory method

In the classical method due to Zadeh (1983c) the (fuzzy) linguistic
quantifier Q is assumed to be a fuzzy setin {0,1], Q 2 [0,1]. For instance,
Q ="most" may be given as

w"most™) =1forx 20.8 (3)
=2x-0.6for< 0.3x <0.8
=0forx< 0.3

We only consider the proportional quantifiers (e.g., most, almost all, etc.)
as they are more important here than the absolute ones (e.g. about 5). The
reasoning for the absolute quantifier is however analogous (see, e.g.
Kacprzyk, 1985a).

Property F is defined as a fuzzy setinY, FCY. If
Y ={y1, ... ¥p}, thenitis assumed that truth(yiis F) = F(yi),i=1, ..., p.
Truth (QY's are F) is now calculated using the (nonfuzzy) cardinalities, the

so-called X Counts, of the respective fuzzy sets in the following two steps
(Zadeh, 1983c):
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Step 1: r= 2Count(F)/ ZCount(Y) =1/p X w F(vi) (4)

i=1

wa(r) (5

i

Step 2: truth(QY’s are F)

"important” C Y, and pg(yi)e[0,1] is a degree

In case of importance, B =
for definitely important to 0 for definitely

of importance of yi: from 1
unimportant, through all intermediate values.

We rewrite first "QBY’s are F" as Q(B and F)Y’s are B" which implies the
following counterparts of (4) and (5):

Step 1:r =2 Count(B and F)/ 2Count(B) =

p p
= X (p8lyi) A wriy)) 2 usly) (6)

i=1 i=1

Step 2: truth(QBY'sare F) = pq(r’) (7)

The minimumoperator ” A" can be replaced by any other suitable operator
as, say, at-norm (Kacprzyk & Yager, 1984b).

Example 1

LetY = "experts" = {X,V,Z} F = “convinced" = 0.1/X + 0.6/V + 0.8/Z,Q =
"most" be given by (3) and B = “important’ = 0.2/x + 0.5V + 0.6/2.
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Thenr=0.5 andr'=0.8and
truth ("most experts are convinced") = 0.4
truth (‘most of the important experts are convinced") = 1

The method presented may be viewed to provide a consensory like
aggregation of evidence. See Yager (1983b) or Kacprzyk and Yager (1984b).

2.2. The substitution or competitive method

The alternative method is developed by Yager (1983a, 1983b). As
previously,Y = {y1,...,yp} and F C Y. A proposition "y; is F* is denoted by P;,
andtruth P = truth(yiis F) =w r(y),i=1,...,p.

We introduce the setV ={v}= 2{P1"“'Pp}, where v is "Pk1, ... Pkm"
meant as the proposition "Px1 and ... and Pxm'"; v and "Pxs and ... and Pkm"
areused here interchangeably.

Eachv, or its corresponding "Pk1 and ... and Pxm",is seen to be true to the
degree

T(v) = truth(Px1and ... and Pkm) = truthPx1 A ... A truth Pkm =

m

= A truthPy1 = wrlyk1) A ...A W& Flykm) =
{=1

m
= AuF () ()
i=1

i.e. we obtainafuzzyset TCV.
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Example 2

For the same data as in Example 1., let Q ="most" be given by (9). Then

truth("most experts are convinced') = 0.6
truth("most of the important experts are convinced") =0.8

Notice that the method may yield different results than the algebraic one.

The substitution method may be viewed to provide a compatitive like
aggregation of evidence (see, e.qg., Yager, 1983b or Kacprzyk & Yager,
1984Db).

Finally, notice that Zadeh’s calculus is conceptually and numerically
simpler though some experience indicates that Yager's calculus is more
"adequate”.

3. MULTIOBJECTIVE DECISION MAKING MODELS BASED ON FUZZY
LOGICWITH LINGUISTIC QUANTIFIERS

For our purposes muitiobjective decision making under fuzziness may be
formalized as follows (Zimmermann, 1985 or Kacprzyk, 1983b, 1986¢). We
have a set of possible options (alternatives, variants, decisions, ...), A
={a} ={a,...,an}, and aset of objectives (criteria, constraints and/or goals,
.3, 0 ={0s, ..., Op}. These sets are assummed finite. A degree to which
option a € A satisfies objective Oj e Ois given by truth (Oi is satisfied (by a))
=pn Oi(@)e[0.1] , from w Oi(a) =1 for full satisfaction, to pOi(a) =0 for full
dissatisfaction, through all intermediate values.

it is commonly postulated - what has originated from the seminal (for
virtually all fuzzy approaches in decision making, optimization, control!) work
of Bellman and Zadeh (1970) - that option ae A satisfy "O1and Ozand ... and
Op", i.e. allthe fuzzy objectives; the degree of this satisfaction is expressed
by the so-called fuzzy decision
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wD(@"all") = truth(O1 and ... and Op are satisfied (by a)) =

= truth ("all' O's are satisfied) = truth (O is satisfied) A ...

. A truth (Op is satisfied) = O1(a) A ... A pOpfa)=

p
= Ap Oi(a)
i=1 (12)

and the problem is to find an optimal option a* A such that

wp(@*] "all"y = max wp(a |"all"}.
aehA (13)

specifically, such that it best satisfies (maximizes the membership
function of the fuzzy decision) all the fuzzy objectives.

Notice that . p(.|"all"), and related expressions mean only that “all"* the
elements (objectives) are accounted for; the same convention is used
throughoutthis paper.

As mentioned in Section 1, it is quite natural that in many practical cases
the requirementto satisfy "all" the fuzzy objectives may be too rigid, restrictive
and even counter-intuitive. More adequate could beto havea mechanismto
account for some objectives only, for instance "most", "almost all" of them.
An idea of replacing the conventional requirement to satisfy "all" the fuzzy
objectives by "most", "almost all’, "much more than 50%", etc. (in general, a
fuzzy linguisitc quantifier Q that is "milder" than "all") appeared in Yager
(1983b) and was then advanced in Kacprzyk & Yager (1984a, 1984b).

In this case the fuzzy decision may be written as

p
wo(a|Q) = truth(QO's are satisfied) = ( A | Q) Gi(a) (14)

i=1
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which means that in the calculation of uD(. .) only Q (e.g."mast") fuzzy
objectives areta be taken into account (but does notindicate how to dothis!).
We seek therefore an optimal option a*e A such that

wo@*| Q) =max up(a (Q) (15)
ae A

specifically, such that it best satisfies QO’s.

We can also introduce a varying importance of the particular fuzzy
objectives by a fuzzy set B in the set of objectives, BC O, such that .. B(Oi)e
[0.1] is the importance of objective O;: from O for definitely unimportant to 1
for de finitely important through all intermediate values. In case of importance
our multiobjective decision making problem formulation can be written as

p
wo(aQ,B) = truth(QBO's are satisfied) = (A {Q,B)w Oi(a) (16)
i=1

which means that only Q of the important objectives areto be taken into
account (but once again, does not say how to dothis), and we seek an optimal

optiona*e A such that

wp(a* Q,B) =maxp(a Q,B) (17)
aeA

specifically, suchthat it best satisfies Q of the important objectives.

The solution of both the above problems will be sketched using the
algebraic and substitution methods. A full exposition of the solution would
require too many technical details which are beyond the scope of this paper.



244 J. Kacprzyk

Thus, let us introduce a fuzzy set S = “satisfied"C O such that uS(Oi)
€[0,1] isthe degree to which objective Oj e O is satisfied (by optiona € A): from
Oforfull dissatisfaction to 1 for full satisfactionthrough alf intermediate values;
thus uS(O)) = truth (O is satisfied)(by a)) = wOi(d). i=1, ..., p; B =
"important* CO is importance and QC [0,1]iis afuzzy linguistic quantifier.

Then, if we use the substitution method, we obtain for the case without
importance

p
wb(a Q) =truth(QO’s are satisfied) = pa(1/p X 0Oi(a))
i

=1 (18)
and we seek an a*e A such that
po(a*| Q) =max upfa |Q)
ae A (19)
Inthe case with importance we obtain
wD(aQ,B) =truth(QBO's are satisfied) =
p < -
= na( X (pB@)A uOi(@) % us (G))
i=1 i=1 (20)

and we seek an a*e A such that
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wo(@* |Q,B) =max pp(a |Q,B)
(21)

ae A

Onthe aother hand, if we use the substitution method, we obtain in the case

withoutimportance

A A p Oki(a)
(22)

wp(a | Q) = max ( pa(v(a))
v(@)e V

and we seek an a*e A such that

mp(a* (Q) =max wp(a |Q)
(23)

ae V
Inthe case with importance, we obtain

wD(aQ,B) = truth(QBO's are satisfied (by a)) =

m
= max (wav@)A (A (u8(0ki) —~nOxi(a)))
(24)

v(a) eV i=

and we seek an a* e Asuch that

wo(a* |Q,B) = max pp(a |Q,B)
(25)

ae A
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The above problems, in particular (24) and (25), are analytically difficult in
the general case. Fortunately enough, and this is alsotrue for virtually allthe
problemsthrough this paper, under some mild and realistic assumptionsthe
solution becomes much simpler (Kacprzyk, 1985a, 1987b; Kacprzyk & Yager,
1984a, 1984b,; Yager, 1983b).

4. MULTISTAGE DECISION MAKING (CONTROL) MODELS BASED ON
FUZZY LOGICWITHLINGUISTIC QUANTIFIERS

Forthe purposes of this paper multistage decision making (control) under
fuzziness means as follows: A system under control S proceeds from an initial
state (output) xg under a control uoto a new state x1. Control u1 is applied and
state x2 is obtained. Finally, under control un.1 from state xn.1 state xn is
attained. Foreach control stage (time)t=0, 1, ..., N-1 its partial (stage) score
is evaluated as a cost/benefit relation (related to the control applied andtothe
state attained). The partial scores arethen aggregated to obtain atotal score.
We seek an optimal sequence of contral u*g, ..., u*N-1 which gives a best
total score.

Formally, at each control stage (time) t, the control ute U ={c1, ..., cm}
is subjected to a fuzzy constraint wCt(ut), and onthe state attained (att+1)
xt+1e€X = {s1, ..., sn} a fuzzy goal pGt+1(xt+1) is imposed. The state
transitions are governed by xt+1 =f(x,ut); xt, Xt+1e X, e U; xgis aninitial
state, N is a termination time (planning horizon), and t=0,1 ..., N-1.

It is commonly postulated (Bellman & Zadeh, 1970; Kacprzyk, 1983b) that
at eacht, utstatisfy the fuzzy constraint ' and the fuzzy goal G', written
asPi+1:"C'and G' ™' are satisfied (by utandthe resulting xt + 1, respectively)";
this satisfaction is to the degree

truthPt+1 = truth("Ct andG' " 'are satisfied") =
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= uct(ut)  pGt+1(xt+1) (26)

Traditionally, a sequence of controls uo, ..., Un-1 is required to satisfy the
fuzzy constraints and goals at all the subsequent control stages; this
satisfaction is to the degree expressed by the fuzzy decision

uD(Uo, ..., UN-1 xo"all” = truth(P1and...and Py |"all"=

N-1
= A |"all") truth Py + 1
t=0

P

-1

(“all")) pctw) pGt+1(¢+1))=
=0

1
——

N-1
(A (po{u) pg t+1(x+1))
t=0 (27)

I

and the problem is to find an optimal sequence of control u*o, ..., U*N-1 such
that

uD(U*o, ..., U*N-1 |0, "all"= max  wo(uo, ..., UN-1 |Xo,"all")
uo, ..., UN-1 (28)

Notice that, as in Section 3, "all" in the above only indicates that all the
control stages are taken into account.

Foradetailed anatysis of this class of problems, and its extensions - mainly
with respect to the termination time (fixed and specified in advance, implicitly
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given through atermination set of states, fuzzy and infinitive) and the system
under control (deterministic, stochastic, and fuzzy) - see Kacprzyk (1983b).

Since the new problem formulation to be presented here concerns some
more fundamental aspects, the material following concentrates on the basic
case, with fixed and specified terminationtime and the deterministic system
under control.

It is easy 0 see that the regirement to satisfy the fuzzy constraints and
fuzzy goals at all the control stages may often be too rigid and counter-intuitive
in practice. An approach of replacing "all' by some milder requirement
expressed by a fuzzy linguistic quantifier Q, such as "most", appeared in
Kacprzyk (1983c, 1984a) where ug, ..., un-1 was required to satisfy the fuzzy
constraints and fuzzy goals at Q (such as, most) control stages, that is

N-1
wD(ug, ..., UN-1x0,Q) = (A |Q)truthPy+1 =
t=0
N-1
= (A |Q)( pCr(u) A w6 +1(xt+1))
1=0 (29)

and we seek an u*g, ..., U*N-1 such that

po(U*g, ..., U*N-1 X0, Q)= max  wp(uo,....uN-1 [x0.Q)
ug,...,UN-1 (30)

The importance of the particular control stages can also be introduced.

The only practically relevant approach is to equate importance with
discounting that is commonly used in multistage decision making. In such a
case B ="earlier", that requires uo ,...,un-1 t0 satisfy the fuzzy constraints
and goals at Q (say, most) of the earlier control stages, that is
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N-1
wolug, ..., un-1 xo,Q "eartier) = (A |Qearlier') truthPr+1 =
1=0
N-1
= (A |Qearlier')( por(u) A pGt +1(xt+1))
t=0 (31)

and we seek an u*p, ..., U*N-1 such that

wD(u*g, ..., U*N-1 | X0, Qearlier’) = max wp(uo,....un-1 |x0,Q"earlier")
Uuo,...,UN-1 (32)

The solution of these problems will not be discussed since this is too
specific and technical, and not particularly illustrative. Basically, using the
algebraic method, the solution reduces to some set of dynamic programming
recurrence equations (cf. Kacprzyk, 1983c, 1984a) which is, at least
conceptually, relatively uncomplicated.

The use of the substitution method, which seems to be much more
promising in this case, results in problem formulations which are
conceptually and numerically much more difficult. The solution procedures
have been proposed by Kacprzyk (1983a) forthe problem without importance
(discounting) given by (29) and (30), and by Kacprzyk and iwanski (1987)
for the problem with importance (discourting) given by (31) and (32).
Basically, in both the papersthe problem is solved by an implicit enumeration
technique based on neglecting nonpromising partial solutions (sequences of
controls fromt=0tot=k < N-1).
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5. GROUP DECISION MAKING MODELS WITH A FUZZY MAJORITY
BASED ON FUZZY LOGIC WITH LINGUISTIC QUANTIFIERS

tn the context of this paper group decision making means as follows: We
have a set of n options, S = {s1,....sn} ,and m individuals. Each individual k,
k=1,...,m, provides his or her preferences over S. Asthese preferences may
not be clear-cut, their representation by individual fuzzy preference relations
is strongly advocated (Blin and Whinston, 1973; Nurmi, 1981).

An individual fuzzy preference relation of individual k, Rk, is characterized
by its membership function

wRk:SxS— [0,1] (33)

Ifcard Sis small, Rx maybe conveniently represented by an nx nmatrix
R =[rk il,ij=1,...nk=1,.,m whoseelements0 < rki,' < lare meantasthe
higher [rk ij] the higher the preference of individual k of s over s;: from 0 for a
definite preference of sj over si, to 1 for a definite preference of siover sj,
through all intermediate values, with 0.5 for indifference.

Now, given the idividual preference relations of the particular individuals,
R1, ... Rm, we seek an option (or a set of options) which is "best" acceptable by
the group of individuals as a whole.

Basically, in our context the two lines of reasoning may be followed:

{R1,...Am} — solution
and

{R1,....Am } = R — solution
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where R is a social fuzzy preference relation that is similarly defined as its
individual counterpart but concerns the preference ofthe whole group as to
the particular pairs of options (Blin and Whinston, 1973).

Thus, inthe first case we derive a solution just from the individual fuzzy
preference relations, while in the second case we derive first a fuzzy social
preference relation and then use it to derive a solution.

Asolution is here not clearly understood (Nurmi, 1981) for diverse solution
concepts. Basically, each solution contains options that are "best"
acceptable by some majority of individuals.

Usually, a majority (50%) is assumed to be a crisp threshold number of
individuals. This is certainly necessary and adequate in political or election
situations, however, inless formal settings and smaller groups an "adequate
majority”, on which decisions are to be made, is often perceived in aless
precise manner, suchas"most'or"almostall’. Evidently,these can be equated
with fuzzy linguistic quantifiers. Such an approach has been proposed in
Kacprzyk (1984b, 1985b, 1985d, 1986a), where some commonly used solution
concepts have been redefined: two of them - the core, and the consensus
winner will be considered below.

5.1.Fuzzycores

We follow the scheme {R1,...Rm} — solution, i.e. we determine a solution
just on the basis of the individual preference relations. Among many
solution concepts proposed in the literature the core is intuitively appealing
and often used. Conventionally, the core is defined as a set of undominated
options, those not defeated by a required majority r< m. Specifically

C={si € S: Asj €S suchthat H(ij > 0.5 for atleast r individuals}. (34)
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Nurmi (1981) extends the core to the fuzzy a-core defined as

Ca = {si €S: 3sj eS such that rk;j > « =0.5foratleast rindividuals}. (35)

i.e.,as a set of options not sufficiently (at least to degree 1-a) defeated by
the required majority.

Using afuzzy majority specified by afuzzylinguistic quantifier we deal with
the above cores.
First, one can use the algebraic method:

hkaj =1 if rkij >05

= 0 otherwise (36)

where, if not otherwise specified, i, j=1, ...,n; k=1, ..., m, throughout
the paper. Then

n
hkij = 1/n-1 b3 hkij
n=1,i=j (37)

is the extent to which individual k is not against options s;.

Next

k m k

hj=1m X hj
k=1 (38)
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is to what extent all the individuals are not against sj. And

via= na(h) (39)

is to what extent Q individuals are not against s;.

The fuzzy Q-core is now defined as a fuzzy set

Ca=v'alst + ... + V'alsn (40)

specifically, a fuzzy set of options that are not defeated by Q (for example,
"most" individuals. Analogously we can define the fuzzy /Q-core.First, we
denote

W @=1 if M <a<05

= 0 otherwise (41)

and then, in an analogous way we define the fuzzy /Q-core as a fuzzy set
of options that are not sufficiently (at least to degree 1-) defeated by Q
individuals. We can also explicitly introduce the strength of defeat and
definethe fuzzy s/Q-core. Namely,

hkij =2(0.5- rkij) if rkij <05

=0 otherwise (42)
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and then analogously define the fuzzy s/Q-core as a fuzzy set of options
that are not strongly defeated by Q individuals.

Using the substitution method, one can also start with (36), i.e. deriving
hkij,andthen deriving hkj which yields the extentto which individual k is not
against option s;.

Introducing the statements Pk,': "individual k is not against option s;j"which
aretrue tothe extent truth ij=hkj. Constructingthe setVj= {vj } = {pk'] and
...and Pkp,- }= 2P PIME hose generic element vj = p'”,- and ...and pkpj
is is meant as ‘individual k1 is not against option s;" and ... and
“individual kp is not against option sj".

One can introduce the statements

Poj: "Q individuals are not against option s;" (43)

whose degree of truth is

truth P} = max (u1(v)) A wai)
vj e Vj (44)

Finally, the fuzzy Q-core is defined as

Cq = truth PQ1/S1 + ... + truth PQn/sn (45)

i.e. as afuzzy set of options that are not defeated by Q individuals.

And analogously, if one uses {41), then the fuzzy «/Q-core can be defined
as a fuzzy set of options that are not sufficiently (at least to degree 1-a )
defeated by Q individuals.
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Moreover, if one uses (42), then the fuzzy s/Q-core can be defined as a
fuzzy set of options that are not strongly defeated by Q individuais.

5.2. Fuzzy consensus winners

Following the scheme {R1, ..., Rm} — R — solution, where R is a social
fuzzy preference relation, deriving a solution from the social fuzzy
preference relationwhich isinturn derived onthe basis ofthe set of individual
preference relations.

Here {R1, ..., Rm} — R will not be dealt with, and the assumption will be
madethat R = [ r;j ]is given by

m k
nj=1/m X aj if =
k=1
=0 if i=] (46)
where

akij =1 |if fkjj >05

=0 otherwise (47)

For other methods of determinig R, see. e.g., Blin and Whinston (1973).
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Below will be discussed the R — solution, how to derive a solution from the
socialfuzzy preferencerelation. Asolutionconceptwith much intuitive appeal
is the consensus winner (Nurmi, 1981), that is a set of options not dominated
by other options.

First, employingthe algebraic method:

gij=1 if rj>05

=0 otherwise (48)
then
n
g =1n1 2 g
j=1,=i (49)
and
Za = ualg) (50

and finally defining the fuzzy Q-consensus winner as

Wa = 2'alst + ... + 2"a/sn (51)

specifically, as a fuzzy set of options that are preferred over Q other options.
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Analogously,

gi(a) =1 if rj>a 205

= 0 otherwise (52)

can be used and thus define the fuzzy /Q-consensus winner as a fuzzy set
of options that are sufficiently (at least to degree ) preferred over Q other
options.

The strength of preference can also be explicitely introduced into (49) by

gij = 2(rij-0.5) ifnj > 0.5

=0 otherwise (52)

andthus definethefuzzy/Q-consensus winner as afuzzy set of options that
are strongly preferred over Q other options.

Usingthe substitution method, beginning with (48) and then, following the
reasoning in Subsection 5.1, obtaining:

Pl “option s; is preferred over aption §", | = |

truth Pl = gj (54)

Vi={v}={Pi' and..andPP} = 2T PN} pi (55)
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wT(vi) = truth (Paj1 and...and pijp)= truth PI" A ... A truth PP (56)

P& “option si is preferred over Q options" (57)

truth PC = max (w T(Vi) A pQ (M)
vie Vi (58)

Finally, defining the fuzzy Q-consensus winner as

Waq = truth P1°/s1 + ... + truth PnQ Isn (59)

specifically, as a fuzzy set of options that are preferred over Q other options.

Analogously, one can define the fuzzy « /Q-consensus winner as a fuzzy
set of options that are sufficiently (at least to degree «) preferred over Q other
options.

One can also define the fuzzy s/Q-consensus winner as a fuzzy set of
options that are strongly preferred over Q other options.

For details, some properties and examples see Kacprzyk (1984b, 1985b,
1985d, 1986a).

5.3. Remarks on degrees of consensus based on fuzzy logic with linguistic
quantifiers

An approach which is similar to that is Subsections 5.2 and 5.3 has been
also used to derive a new degree of consensus (Kacprzyk, 1987,
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Kacprzyk and Fedrizzi, 1986, 1988). Basically, it expresses the degree to
which, say, most of the important individuals agree as to their preferences
among almost all the relevant options. Consensus need not therefore be a
full and unanimous agreement which is conventionally assumed in spite of
the fact that this is often unrealistic, even utopian in practice.

6. CONCLUDING REMARKS

The main intended message in this paper is that fuzzy logic with
linguistic quantifiers seems to be a realistic and adequate tool for modeling
human evidence aggregation processes. This is supported by-a positive
experience gained from some nonconventiona!l multiaspect decision making
models, most of which have been written by this author, in which fuzzy logic
withlinguistic quantifiers is used to aggregate partial scores resulting from the
accounting of the particular aspects.

This message seems also to be supported by a positive experience from
the use of a nonconventional database querying system which makes it
possible to retrieve data concerning some vague concepts (e.g.. In which
towns is there a serious envorinmental pollution?) by allowing queries of the
type "Find all records in which most of the important attributes (poliution
indicators) considerably exceed some levels". For details, see Kacprzyk and
Ziolkowski (1986a, 1986b). It is hoped that the message of this paper will
stimulate some research in psychology and related fields to investigate
and clarify whether fuzzy logic with linguisitc quantifiers could be uselful and
adequate for the formalization of various human evidence aggregation
processes.
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ORIGIN, STRUCTURE AND FUNCTION OF FUZZY BELIEFS

Jozef CHWEDOROWICZ
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The term ‘“belief" has a number of meanings. Fora psychologistit is
important how the notion of belief denotes subjects’ relation with the
environment. In one of its current meanings "belief' denotes judgement
accepted by the subject, in another 'belief' is used as the name of
premises of action. The function of belief in human life resuits from these
meanings. Beliefs are determined by the existential dimension of human
life. Since beliefs are not isolated elements of reality they always serve some
purpose. They have determined functions in determined situations "here
and now" as rules and premises of actions. The paper provides an analysis
of beliefs about facts and phenomena, with no attention being payed to
beliefs aboutvalues. In order to examine beliefs from the psychological point
of view the following questions should be answered.

1. How are beliefs formed (what is the assertion)?
2. What is the structure of beliefs?
3. Whatis the measure of dissonance of beliefs?

In order to answer these questions and provide an operational definition
we begin with certain cognitive paradigms.
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A. Subjects’ cognitive representation results from subjective estimates of
the perceived world. This proposition is a generalization of the standpoint
of many researchers who deal with multidimensional scaling (Abelson &
Tukey, 1963; Borg & Lingoes, 1980, 1981; Coombs, 1964, 1976; Guttman,
1968; Lingoes, 1965, 1973; 1981; Lingoes &Borg, 1978, 1980; Kruskal, 1964;
Shepard, 1974).

B. Mental phenomena are treated as information processing in human
operational system. This direction of analysis is represented by such
researchers as Newell & Simon (1972), Lindsay & Norman (1972), Stachowski
(1973), Kozielecki (1977,1986), Bruner (1978) and Nosal (1979), who make use
of computer science, computer information processing, structural
linguistics and artificial intelligence.

These two approaches complement each other. Information processing
through realization of brain programs results in changes in the states of
subjects’ space of knowledge, inturnsthe values of these states may be input
data to the programs. Subjects’ space of knowledge consists of beliefs,
values, hypotheses, views, etc.

The subject, surrounded by the environment, forms a rerpesentation of the
surrounding reality. Reality is the set of those states and events of the world
wich the subject grants with existence independent of self will. This
representation may be of a linguistic or numeric nature. Every state of the
world can be described bya number of its features, each of whic can assume
various values on linguistic or numeric scales (Nowakowska, 1979). The set
of possible values does not say much about the given state of the world or
event. Pointing only to one particular feature or subset of features is what is
generally called the semantic element of a message or the elementary
message (Gackowski, 1979). What is a "message'? The definition of
message would haveto containa definiton of information. Instead of giving
adefiniton ofthese notions, whichwould inturn contain unprecise notions, we
assume that messages and information are undefinable elementary notions,
theapplication of whichis clarified by the context inwhichthey have been used
(Bauer & Goos, 1974). As Wiener (1971) said -* ... information is information;
it's neither matter nor energy". The same message may be interpreted
differently and convey different information for different people. Information
maythen be understood as a result of the interpretation of a message, i.e. a
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certaintransformation of a message into information, which symbolically can
be written as

From information which in turn comes from the environment and the
subject’'s own organism, the subject forms a certain space of knowledge.

The considerations in this paper do not concern all the elements of a
subject’s space of knowledge - they deal only with beliefs. Belief is the
judgment (in the logical sense) for which the subject accepts ownership,
because of the fulfillment of the contents of judgment in a given reality. Belief
can be expressed through utterances and actions.

Earlier works on beliefs concentrated on the relation between the
subject and the subject’s judgment in the logical sense, irrespective of the
actofthinking (Meinong, 1910; Witwicki,1980). Later works began to examine
the relation between acceptance of judgments and readiness to act (Arrow,
1971; Marciszewski, 1972; Shafer, 1976; Hempolinski, 1981;
Chwedorowicz, 1984, 1986; Chlewinski, 1984).

The formation of beliefs can be explained on the grounds of social
learning. In every situation individuals meet sequences of events in which the
two elements: action and reinforcement, always repeat. If an action, being
the consequence of an accepted belief, is reinforced, the reinforcement
is transferred to the belief. As a belief is subject to reinforcement, reward
increasesthe subject'stendency to use the given belief in a similar situation,
whereas punishment decreases it. The very reinforcement may be internal
or external, or maybe the fusion of both factors. In effect, a belief may be
verified, rejected or a new version of the same belief may be formed.

In the same situation different people may use different beliefs as
premises for actions. The theory of social learning explains these
differences in beliefs in terms of the different experiences of individuals.
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Subjects’ space of knowledge contains not only certain or highly
probable information, but also much which is not quite certain and which is
rather subject to conjectures.

Out of the general class of beliefs only these types, which concern people
andsituations, i.e., states and events inthe world about which only incomptete
information is avaliable, are the subject to analysis here.

An event is a set of such states of the world which fulfills a certain given
condition. States of the world are subject to conjectures rather than to
statements of certainty. The data about the world are represented in a
subject’s space of knowledge in the form of dimensions. The mechanism of
formation of such representations is, as it was said, described as mapping
ontolinguistic and numeric domains.

Since ranges of categories on linguistic scales are not sharp,
expressions formed ontheir basis are not sharpeither. The ‘fuzzy"approach
assumesthat decisions about the categorization of states of the world which
differ as to the degree of member ship (compatibility) in categories, are
partial. Ambiguity of boundary cases results in formation of boundaries
between categories which are not sharp. Categories as "fuzzy sets" are sets
without sharply defined boundaries (Zadeh, 1965; Kintsch, 1974; Lehrer,
1974). Beliefs which are logical expressions formed on the basis of fuzzy
categories have the characteristics of fuzziness.

Fuzzy beliefs differ from both deterministic, probabilistic and from
instrumental beliefs, which have been described in literature. As the basis
for the acceptance of fuzzy beliefs lies fuzzy acceptance; specifically, the
acceptance which takes place only when the motive of assenting to the
contents of judgment is in high compatibility with the contents of judgment
of determined reality (Chwedorowicz, 1984, 1986). This is in contrast to the
motive for accepting a probabilistic belief, which is the high probability of
the judgment, and to the motive for accepting a deterministic belief, which is
complete compatibility of the contents of judgment with determined reality.
Frequently, however, fuzzy and probabilistic beliefs are uttered categorically.
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The contents of fuzzy beliefs consists both of external, directly perceived
information and of information coming from the subject's own space of
knowledge. Both kinds of information are described linguisticalty.

The present knowiedge about beliefs, perception and human information
processing allows one to propose a model describing the formation of fuzzy
beliefs.

FORMATION OF FUZZY BELIEFS

Every stimulus S reaching the subject can be presented as a pair (M,)
where M denotes message and | the information which it conveys. The same
message, via various interpretations, can give various kinds of information
(judgments). The difference in interpretation results from the different
experience that different people have, and takes the form of the so called
"metabeliefs", beliefs about beliefs concerningthe world, oneself, and about
the relation between the two. Belief is, in the logical sense, a judgment
preceded by an assertion (Marciszewski, 1972). Rightness of belief may
be expressed by a condition weaker than assertion. The rightness of one’s
judgment may be expressed by one's expectation that a given judgment will
be right in the respective situation. This expectation is a function of two
variables: the subjective variable and the perspective variable.

It has been noted by Gestalt psychologists that ifthe amount of perceived
information is not sufficient to build a picture as a whole, the role of the
subjectivefactorincreases.

Actions are ascribed to respetive beliefs in the process of coding.
Reinforcement of action results in reinforcement of the respective belief. There
is a feedback between action and belief B which conveys the
reinforcement.



270 J. Chwedorowicz

The mechanism of formation of fuzzy beliefs is presented in the following
model.

where S-stimulus, p-perception, M-message, a -interpretation of
message, J-judgment, r-rating of judgment, i-inference, B-belief, c-coding
of belief, rf-reinforcement, A-action.

The given operations depend on metabeliefs about the word, about
oneself and about the relations between them.

Rating

Givenan emipirical relational system

v =<P,81,82,..5 > (2)

where P is a finite set of states of the world, and S+, S2, Sn are relations
on P (primary, secondary, ... etc.). Also, given a theoretical system

B= <p,R1,R2, ... Rn>, (3)

where p is the family of all fuzzy subsets of P representing categories on
linguistic scales, and where R1,Rz, ... Rnarerelations on (primary, secondary,
vy EIC.).
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If systems y and 8 are homomorphous then there is a mapping on P with
values within p.

‘YIP > p (4)

whereby the namef e p is ascribed to state of the worldx e P.

In terms of the theory of measurement (Roberst & Franke, 1976) and the
theory of fuzzy sets (Zadeh, 1965, 1971, 1975) the following theorems and
definitions can be given to subjects’ fuzzy beliefs about states of the world
(Chwedorowicz, 1984, 1986).

Definition 1
Afuzzy subset ofthe set P is any real function mapped upon P such that its

valuesfallwithinthe interval R <p,1>. Iffis a subset of this kind, then the value
f(x) is called degree of compatibility betweenx and f.

Definition 2
Fuzzy acceptance occurs only when the assent to a judgment is motivated by

a high degree of compatibility between the content of the judgment and the
reality in question.

Definition 3

The individual threshold of acceptance « varies from personto person, and
for any person, may vary from situation to situation over the interval R<0,1>.
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Theorem 1

A necessary condition for the subject to assent to the content of ajudgment
is that the degree of compatibility between the judgment and the respective
reality exceeds the individual threshold of acceptance.

Compatibility between x and fis checked on afinite set of criterial = {1,2,
... n }, some of which have various weights vi, whereas ratings of beliefs on
ani-th criterion are denoted wi. The degree of compatibility between x and f
(the strength of belief) is a function of two variables.

f(x) = max(min(vi,wi)), i € | (5
i

Theorem 2

Two beliefs concerning the same state of the world are dissonant if the
difference between them exceeds the individual threshold of acceptance.

If two beliefs are dissonant, then one of them contradicts the other, which

can be written as gj(x) =f and ¢j(x) =f'. Thenthe difference between beliefs
that are dissonant may be measured by Hamming's linear distance:

n (6)
S=1/n X |f(x)-f(xi)],

i=1

Definition 4

The threshold of tolerance to dissonance is the greates dissonance which
does not motivate the person experiencing it to change beliefs. The threshold
of tolerance to dissonance atvariesfrom person to personand forthe same
person may vary from situation to situation.
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Theorem 3

Fuzzy belief is in the logical sense the judgment to which the subject gives
assent if degree of compatibility between the judgment and the respective
reality exceeds the individual threshold of acceptance.

The following condition must be met:

fx) > aand @ >05 ae <0,1> (7)

LANGUAGEOFFUZZY BELIEFS

Belief may be uttered - expressed in words because of its linguistic
representation. Aset oflinguistic representations of beliefs in naturallanguage
makes a language of beliefs. The language of beliefs is a subset of all the
sentences which concern human beliefs directly or indirectly. By expressing
beliefs in linguistic categories itis possible to define operations of negation,
union, intersectionand semantic implication for beliefs.

Atomic beliefs

The fundamental elements of the language of beliefs are atomic beliefs. An
expresion of the kind

(8)
pj(x) = f
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where: j is the considered attribute, is an atomic belief if the person
utteringthe belief understandsits contentsinthelogical sense, if the mapping
¢j is homomorphism, and if the person uttering the belief has decided to
assent to the content of the judgment. The degree of assent given to the
judgment is expressed in our model by the funtion of compatibility f(x),
while in colloquial language it is expressed by epistemic functors like "l
belive", "I reckon", "l am sure”, etc. To put it more formally:

@j(x) = f iff f(x) >aand a> 0.5 (9)

where is the individual threshold of acceptance.

Negation of beliefs

The functor of negation — p is a symbol of an operation of negation of an
uttered judgment. Ifthe person uttering ajudgment ofthe kind ¢j(x) = fdoes
not acceptit, then

(1) he or she is convinced that the judgment is false and accepts a
judgment contrarytoit.

(X)) =fifff(x) > a (10)

{2) he or she has not decided to accept the contents of a given
judgment
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fx) < aandf(x) < « (11)

Intersections of beliefs

If two judgments of the form ¢j(x) =f and ¢i(x) =g are linked by the
conjunction "and", there results a compound judgment of the kind

¢i(x) =fand ¢i(x) = g iff min(f(x),g(x)) > « (12)

Union of beliefs

If two judgments of the form ¢j(x) =f and ¢i(x) =g are linked by the
conjunction "or", there results a compound judgment of the form

¢j(x) =for ¢i(x) =g iff max(f(x).g(x)) > a (13)

Semantic implication

If ¢j(x) =fand «i(x) =g are patterns of judgments, then the relation of the
semantic implication
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gj(x) =t =qi(x) =g (14)

is defined by the demand that max(1-f{x), g{x)) > a.

The functor of semantic implication p == q is the pattern of real beliefs
formed on the basis of the expression "if ...then ... ". Semantic implication
p = qis interpreted as follows:

(a) Judgment p does not contradict judgment q,

(b) Judgment q is the conclusion drawn from judgment p. Semantic
implication p = q approximates material implication p — q defined by the
demandthat- p v q.

SYSTEMS OF FUZZY BELIEFS

Beliefs are never isolated in a person’s space of knowledge, they rather
combine and come together as systems. 11 is characteristic of those systems
that they have mechanisms protecting the cohesion of each system. One of
the well-known mechanisms is elimination of contradictory judgments from
the system, based on the phenomenon of dissonace. Another, less obvious
mechanism is that of sustaining beliefs in spite of the loss of their external
sources as comprised by events that had been indirect rea sons for their
formation. Yet another mechanism is the censorship of new beliefs
introduced into the system. All the mechanisms may be described logically
inthe form of axioms of a system of beliefs. The axioms are descriptions of
certain rules accordingtowhich the real system of beliefs works. Accordingly,
as these rules are fulfilled, information is accepted and interiorized, or
rejected, or may make the system change. The mechanism of eliminating
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contradictory judgments from asystem of fuzzy beliefs may be described as
follows:

(¢i(x) =f) = ~ (pj(x) =F) (15)

which reads: If a person uttering a judgment assents that "j-th feature x is
f', then he or she cannot assent the "j-th feature xis not f".

Before any state of the world becomes for some reason subject to a
particular belief, it has been subject to many earlier formed beliefs. These
very beliefs, together with the beliefs concerning the relations between states
of the world, are sort of censors on new beliefs and they even determine the
shape of possible beliefs.

In case the external source of a belief is no longer present, the very belief
may remain unchanged, being internally generated by the system. Both the
nature of these relations and the anticipation of possible beliefs is given in the
following pattern called the rule of Modus Ponens:

((¢itx) =f) and ((¢i() =1) = (9j(x) =g)) = (¢i(X) = @) (16)

Neither of the above mechanisms warrants that a fuzzy belief system will
be an approximation of reality perceived by the person uttering the beliefs.
In extreme situations a person may generate delusive judgments that make
up a coherent system. Therefore it is necessary to adopt an axiom stating
that a person’s conviction as to some judgment being true is not sufficient
evidence of its truth. One may be strongly convinced of the thruth of a false
judgment,

(( gilx) =f), thenx € f) (17)
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The three above axioms constitute a belief system based on fuzzy
acceptance (Chwedorowicz, 1986), which is parallel to other belief systems
based on deterministic or probabilistic acceptance (Marciszewski, 1972;
Pap, 1957; Shafer, 1976).

The axioms given above result in a number of new rules such as the rule of
simplification:

(¢i(0) = f& Q) = qi(x) =f (18)

(¢i(x) =f&g) = 4i(x)=g (19)

if both partial and non-partial probabilistic assent is used in the
description of one and the same reality, there may occur a conflict between
these twotypes of assent. Probabilistic acceptance may, in certain cases, fall
short of rationality axiom s constructed on the basis of non-partial assent, as
in the systems of Pap (1957) or Marciszewski (1972). The contradiction
results from the properties of subjective probability (Ramsey, 1931).
According to Ramsey subjective probability has the following properties:

(Ps.1) Ps(p) + Ps(-p) =1

(Ps.2) Ps(p/g) + Ps(-p/g) = 1

(Ps.3) Ps(p&g) = Ps(p) x Ps(g/p)

(Ps.4) Ps(p&g) + Ps(p& —~g) = Ps(p) (20)

If we assume that Ps(p) and Ps(— p) exceed the individual threshold of
acceptance k, i.e. that p and — p are both accepted at the same time, then
the axioms of cohesion in Pap’s and Marciszewski's system are not
fulfiled. Probabilistic acceptance do es not fulfill the axiom of consistency
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in assent of deterministic systems of beliefs (Pap, 1957; Marciszewski,
1972). This can be shown onthe basis of Suppes’ theorem (Suppes, 1968).

(Ps(p—>q)=r&(Ps(p)=s))— Ps(q) = r + s-1 (21)

It is possible to assent to p — g and assent to p, without assenting to the
inferenceq.

The conflict may be overcome by introducing the notion of fuzzy belief. It
results from the definiton of fuzzy belief that fuzzy beliefs fulfill the axiom of
cohesion of deterministic system of beliefs. It is ensured by the condition

gilx)=f iff f(x) >a & a >05 (22)

The axiom of cohesion of beliefs in Pap’s deterministic system of beliefs
takes the form

B(x, -~ p) = — Bxp) (23)

where B(x,p) reads: "x believesthat p". Interms of fuzzy beliefs the axiom
reads as follows:

(9ilx) =F) = = (gilx) =f) (24)

Let assumethatf'(x) > a > 0.5 (25)
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It results from the properties of semantic implication and negation that:

max(f(x),f () =f(x) > a (26)

This condition means that fuzzy beliefs fulfill the axiom of cohesion of the
deterministic system of beliefs.

ltis also possibletoshow thatfuzzy beliefs fulfillthe axiom of consistency
in the deterministic system of beliefs (see Pap, 1957).

B(x.p) & B(x.p— q) — B{x,p) (27)

In terms of fuzzy beliefs the axiom reads as follows:

((¢it) =) & ((¢ilx) =f) = ((¢j(x) =@)) = (4i(x) =9) (28)

Let us assumethatf(x) =a g(x) =b > « then

(1) max(1-min(f(x), max(1-f(x).g(x))),g(x))

= max(1-min(a,max(1-a,b)),b) = b > «

(2) Letassumethatg(x) =a f(x) =b>a

max(1-min(b,max(1-b,a)).a) = a > «
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Both of these conditions mean that fuzzy beliefs fulfil the axiom of
consistency of the deterministic system of beliefs.

Inference

Being elements of language, fuzzy beliefs form sentences which describe
states of the world and relations between them. States of the world which can
be observed indirectly may serve as permises concerning those states which
cannot be observed, which are subject to conjectures.

Thinking based on premises is called inferencing. According to
Ajdukiewicz inferencingis a kind of mental activity inwhich a judgment, made
with some degree of certainty, concerning sentences called premises, results
in ajudgment, made with an always greater degree of certainty, concerning
another sentence called conclusion (Ajdukiewicz, 1965).

Beliefs are formed directly and indirectly. A judgment "it is raining" is
assented to directly as compatible with reality if we are getting wet in rain or
see drops of rain on awindow pane. | assent indirectly to a judgment "My wife
needs money for a new car' only because | have assented to judgments: "My
wife has been very niceto me lately", "Our neighbour's wife has a new car", "My
wife delights inthat car","My wife reminds me about her coming birthday". The
latter sentences - judgments are assented to indirectly on the basis of my or
other people’s visual or audial perceptions which have beenfound compatible
with reality. These judgments as well as unuttered judgments about relations
between phenomenaare premises, while the judgment "My wife needs money
foranewcar'isthe conclusion of presented reasoning. Now | am more strongly
convinced of the rightness of the judgment | haven't taken into consideration
before. The presented reasoning was necessary for me to believe that my wife
needs money.
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Distance

Let pdenote the family of all fuzzy subsets (states of the world). A similarity
relation h is mapped on p (Zadeh, 1971), its values being

V(fvg)v (g'r)' (f)r) CpXxp X

there occurs

h(t.f) = 1 (29)
h(f.g) = h(g.f)
h(f,l') = max (h(f,g), h(g.r))

g

In terms of similarity relation we may speak of a distance between beliefs

¢(x)=f and ¢(x)=g

Let us denote that distance as d(f,q) (30)
d(f.g) = 1-h(f,g) = h(f.g)

Distance between beliefs has the following properties:

(1) d(f.h = 1-h{f) =0

(2) d(f.g) = d(@f
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From the transitivity of the similarity relation it follows that

h(f.r) max = (h(f.g), h(g.r)) (31)
g

h(f,r) < min (h(.g) + h(g.r) - hf.g) h(g.r)
g

(3) dt.r) = d(f.g) [1d(g.n)

Properties 1-3are satisfied by Hamming'stinear distance (Kaufmann, 1973).

n (32)
d(f.g) =1/n X |f(xi) - g(xi) |
i=1
If two beliefs are dissonant, then one of them contradicts the other, which
can be then written

n (33)
8= 1/n- I |f(xi) - f(xi)|
i=1

The distance between beliefs may be described with non-fuzzy notions. For
f,g.rep

= ag iff h(f.g) = a (34)

which defines non-fuzzy relation f=ag, called a -similarity. The relation
satisfies a condition weaker thantransitivity.
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Theorem 4

Iff=ag and g=or,then f=apr

Proof
fff=agthen d(f,g) =1-a
similarly

d(g.r) < 1-b

The thesis results from condition (3) for distance d. The theorem
describes the phenomenon of fuzziness of similarity of beliefs in a
sequence of similar beliefs.

For a= o/a ( -individual threshold of acceptance) relation = o generates
in the set of beliefs subsets of fuzzy beliets By called clusters such that for

f,g € Ba
there occurs

h{f.g) = «

Ba- is the set of beliefs considered by the subject as similar to degree a.
The hierarchy of fuzzy beliefs is formed by a clusters with aincreasing from
zero to one. This concept of hierarchy of fuzzy beliefs coincides with the
notion of a -level sets of fuzzy sets.
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STRUCTURE OF FUZZY BELIEFS

The structure of fuzzy beliefs may be described by the following formal
system

B = <P,|,p p >

where

P - finite set of states of the world,

| - finite set of scales (attributes) on which the states of the world
arerated,

p - famity of all fuzzy subsets of P, representing categories on
linguistic scales

p= U pi
iel

¢i - function ascribing categories to states of the world,

gi:p— i€l

The language of fuzzy beliefs based on the system of fuzzy beliefs B is the
set of all linguistic representations whichdirectiy or indirectly concern human
beliefs. The language consists of atomic beliefs of the form i(x) =f. Atomic
beliefs linked with logical functors: negation, intersection, union, and
semantic implication etc. form expressions of the language of beliefs, the
semantic correctness of whichis checked onthe basis of axioms of the system
of fuzzy beliefs.
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CONCLUSION

(1) The theory and definitions presented in this paper are concepts of a
theory which seems to explicate the formation and functioning of belief more
efficientlythan other approaches, and which has certain advantages.

(2) Application of the theory of fuzzy beliefs to the description of belief
formation makes it possible to overcome the difficulties which arise if a subject
describes the same realty with both detereministic and probabilistic
judgments, which resul tsin a contradiction of conclusions reached according
to the two different formalisms.

(8) The phenomenon of contradiction within subjects’ space of knowledge
is, on the grounds of the theory of fuzzy beliefs, explained as
contradiction of judgments which belong to his/her space of knowledge but
which have not become beliefs because the y have not satisfied the
necessary conditionthat:the degree of compatibility of each judgmentwiththe
respective reality exceeds the individual threshold of acceptance and the
threshold of acceptance is greater than 0.5.

f(x) > aand a > 0.5, a € <0,1>

(4) The theory of fuzzy beliefs explains relations between clusterike
structure and hierarchical structure of beliefs, which, for a =0 and
increasingorder fora € <0,1 >, form a hierarchy of beliefs built of a clusters.

(5) The language of fuzzy beliefs presented in the paper allows one to
formulate questions about the system of fuzzy beliefs, and to generate
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indirect conclusions which canthen be checked using the axioms of fuzzy
beliefs.

APPENDIX

Theindividualthreshold of acceptance avaries from personto person and
for any person may vary from situation to situation over the interval R<o,1>.
The individual threshold of acceptance equals the highest value f(x) - degree
of compatibility -, for which the subject does not decide to accept the
judgment.

External values can be omitted, because for @ =0 subjects would accept
allthe judgmentsandfora =1 no judgment would be accepted. In both these
situations these subject does not receive any information aboutthe world. The
following theorem determines the conditions of one's finding the contents
ofajudgment compatible withthe givenreality and assentingtoit asto his/her
own.

Theorem 1
A necessary condition for a subject to assent tothe content of a

judgment is that the degree of compatibility between the judgment and
the respective reality exceeds the individual threshold of acceptance.

Proof

Let there be an empirical relational system

v =<P,581,582,...8n >
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where P is a finite set of states of the world and $1,S2, ... Sn are relations
on P (unary, binary, ..., etc.).

There is also given a theoretical system

B = <D'R1,R2, ey Rn>

where p is the family of all subsets of P some of which represent
linguistic categories and R1,Rz, ..., Rn are relations on p (unary, binary, ..., etc.).
Ifthere is a homomorphism between systems a and Sthenthere is a mapping
on pwith values within (Roberts & Franki, 1976).

¢:P—p

whereby f e p is ascribed to the state of the world x € P.

Let g be a category to which a state of the world x really belongs "x is g,
while the subject’s belief is the judgment "x is f'. Let us denote the difference
between the belief and the real state of the world as A . The measure of
distance betweenthe belief 'x is f' and the real state of the world "x is g" is the
distance between the fuzzy subsets of p .

A fuzzy relation of similarity h is mapped on p (Zadeh, 1971). In terms of
the similarity relation we may speak of the distance between categories f and
g. Let us denote that distance as d(f,g).

d(t.g) = 1-h(f,g)
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This distance between two categories has the following properties:

it can be shown that properties 1-3 are satisfied by Hamming's linear
distance.

n
dif.g) = 1/n 2 |f(x) - g(xi)|
()

i=1

Thus the distance between a belief and the reality can be written as

n
A=1/n T |f(x)-9(xi)]
(ii)

i=1

where f(x;) is the degree of compatibility between x and f rated on the i-th
criterion, and g(xi) is the degree of compatibility between x and d rated on
the i-th criterion. Thefactthat "x is " implies that on any n-th criterion g(x;) =1

and so equation (i) assummes the following form:

n
fx) =1-a =1/n Z fxi)
(iii)

-
the latter being the individual threshold of

Let us denote 1 - Aas a ,
acceptance. The rating of f(x) is based on afinite setof criterial = {1,2, ..., n}

If the subject is to accept a judgment, then according to the definition
of the individual threshold of acceptance, the degree of compatibility of the
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contents of ajudgment with a given reality should be greater than the value of
anindividual threshold of acceptance

f(x) > aand a € (0,1) (iv)

Applying a modified procedure to rate a belief on a finite set of criteria
t={1,2, ... n} we define the following function of compatibility "x is f"

f(x) = me_lx(min(vi.wi))

i v)

where wi is afuzzy rating of a belief onthe i-th criterion v; is a fuzzy weight
of the i-th criterion.

All compatibility functions take values in the closed interval R(g,1).

Assenting the contents of a judgment as one’s own is not a sufficient
condition for the judgment to become the subject’s belief. One may be
strongly convinced about the rightness of false judgments. It may happen
that in case of a low threshold of acceptance two contradictory judgments
areaccepted.

This is why an additional condition is needed to warrant that
contradictory judgments are not accepted in the process of belief
formation.

Lemma

The necessary conditions for a subject not to accept contradictory
judgments is that subject’s individual threshold of acceptance is greater than
or equal than 1/2.
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Proof

If a subject accepts two contradictory judgments "x isf* and "x is " at the same
time, thenthe functions of compatibility of these judgments are greater than
the individual’s threshold of acceptance a, f(x) > ¢ andf'(x) > a. Ifso, then
f'(x) = 1-f(x) > a,Hence a < 1/2.

A subject accepts contradictory judgments if the individua!’s threshold of
acceptance isless than 1/2.

In order to satisfy the assumption of the lemma, the value of an individual
threshold of acceptance should be equal to or greater than 1/2.

Assumption

Understanding a judgment inthe logical sense means that the subject:

(1) Givesthe judgment thelogical value “true" if the degree of compatibility
of the judgment with a respective reality is found to be greater than the
individual’s threshold of acceptance, or suspends the decision of the
acceptance of the judgment.

(2) Respects the rule of non-contradiction, i.e. does not accept two
contradictory judgments atthe same time.

Notice: The subject describes reality withjudgments which are considered
true. Thus false judgments are not needed in the subject’s system of
knowledgeand are eliminated.
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Theorem 3

Fuzzy belief is in the logical sense the judgment to which the subject gives
assent if the degree of compatibility betweenthe judgment and the respective
reality exceeds the individual threshold of acceptancea = 1/2.

f(x) > aand a =2 1/2, a € (0,1)

Proof

The thesis results directly from the assumption, the lemma and theorem 1.

The formation of fuzzy beliefs is a process of successive verifications of
compatibility betweenthe contents of ajudgment and the respective reality.
In case the contents of a judgement is not accepted, the subject may reject
the judgment or modify its contensts. New versions of the same judgment
may occur, some of which may be accepted by the subject.
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BRAIN ACTIVITY AND FUZZY BELIEF
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13081 Campinas - Brasil

Brain activity was recorded during subjects listening to a text, and then
correlated with two different fuzzy measures of belief about the received
information. One of these measures (the degree of correlation) expresses
therelationship between each decoded piece of informationand the structure
of the text itself, the other (the degree of confidence) evaluates the individual
s confidence in the received information. Both measures depended on the
activity of many areas in both cerebral hemispheres.Additionally, the analysis
of this dependence confirmed that both measures may be accept as two
different psychological constructs.
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INTRODUCTION

Human languages, like all social actions, must perform two essential
functions simultaneously. They must be directed toward the problem of
survival, and they must also be directed toward making sense of existence
(Washabaugh, 1980). Onthe one side, languages must address the everyday
technical problems of getting food, shelter, etc. On the other side, they must
also contribute to interpreting and transmitting the emotional, cultural,
intellectual etc., experiences of the human being (Olson, 1980).

Centeringonhumans, we speak of universals, contex-free communication,
etc., whereas centering on society, we speak of actions, context dependent
meanings, and so on (Rocha & Rocha, 1985).

Human languages provide people with a core of common meanings
centered on the basic schema, scripts or frames related to survival both in
the physical word as well as within society. Inthis sense, the human utterances
form a closed system of self-referred meanings. However, people maodify the
meanings of the words to speak about individuatities, 10o. in this use, the
human utterances become an open system of meanings referred to each
individual context. Because of this, human languages are to be treated as
partially closed systems, where believes are always evaluated in respect tothe
language itself, and in respect to the context of the speaker and/or listener
(Rocha & Rocha, 1985).

The authors have been using Fuzzy Set Theory to study the commonalities
of speech understanding by groups of volunteers, while recording their EEG
activities to probe into the individual flavor of each decoding (Rocha &
Francozo, 1980; Rocha, 1987). Also, the authors have been using Fuzzy Logic
toinvestigated how people correlated each piece of verbal information to both
the speech context and their own contexts (Rocha & Greco, 1987; Theoto,
Santos, & Uchiyama, 1887; Rocha, Giorno, & Leao, 1987).

People associate a personal degree of confidence with each piece of
-information as they pick it up fromthe speech, but they have to wait until they
have at least a grasp of the subject or theme (Sgall, Hajicova, & Benesova,
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1973; Oleron, 1980) of the communication in order to assess the correlation
between each of these pieces of information and the speech itself (Rocha &
Greco, 1987). First of all, they must attempt to construct the scheme of the
speech, assembling all the pieces of information into a logical network of
meanings, guided by their confidence of the veracity of the received
information. Oncethe initial picture of the speech is thus formed, one may try
to verify the speech consistency through the evaluation of the correlation
between the accepted pieces of information and the theme or subject of the
communication (Rocha, 1982; Rocha & Greco, 1987).

Asaconsequence ofthis, the logical networks dealing with boththe degrees
of correlation and confidence processing during the speech decoding are
expected to be the same. However, since correlation - unlike confidence - is
sensitivetothe structureit helps build its actual values must depend on speech
cohesion - which is not the case for confidence (Rocha & Greco, 1987).

The difference between correlation and confidence have been analysed on
text recalling, by asking people to build the fuzzy graph of the text decoding
(Rocha & Greco, 1987; Theoto, etal., 1987). This graph describes the relations
shared by each piece of information used by the subject to conclude for the
theme and rhyme of the heard text. The subjects were also requested to
assign to each node of the graph either the degree of correlation shared by
that node with the theme, or the subject’s confidence of the information
represented by the node.

The correlation assigned to each node of the graph - unlike confidence -
decreased from the left to right nodes and from the root associated with the
chosen theme/rhyme to the terminal nodes where each piece of information
was represented - whereas confidence was not correlated with the node
position. Thelinear relation between correlation and node position presented
also a non-zero linear coefficient, what means that confidence at each node
may depend also on the overall text (graph) cohesion.

The logic network of the fuzzy text decoding was obtained by asking the
volunteers to assign a logical connective (AND, OR, IF) to each node of the
abovefuzzygraph. Confidence and correlation were then studied concerning
these connectives. Althoughsimilartinearfunctions were established between
the truth (confidence or correlation) value of the proposition and the truth of
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each argument, correlation depended once again on the text cohesion,
because the linear coefficients in this case were greater than zero, whereas
they were statistically null in the case of confidence. Finally, the truth value of
the proposition was equally dependent on each argument if confidence was
taken into account, whereas the truth value was mainly dependent on the first
argument if correlationwas considered.

This paper provides further evidence for the differentiation between
confidence and correlation by analysing brain activity recorded during the
subjects listening to text and studying the correlation between this activity
and the assigned values of confidence and correlation.

THE BRAIN ACTIVITY

The EEG activity evoked by sensory stimuli is considered as a complex
variable pattern of several distinct components. [t is also believed to correlate
with different and sequential stages of message processing. Early or
exogenous components have been assumedto reflect stimulus qualities rather
than personal evaluation of the sensory environment; whereas late or
endogenous components were considered to accompany task relevance
(e.g., Donchin, Ritter, & McCalium, 1978; Josiassen, Shagass, Roemer,
Ercegovac, & Straumai, 1982; McCallum, Curry, Pocock, & Papakostopoulos,
1983; Ritter, Simson, Vaughan, & Friedman, 1979; Squires, Donchin, Herning,
& McCarthy, 1977).

Averaged P300 was initially observed to vary with the reduction of
uncertainty about the stimulus, and later with task relevance; stimulus
evaluation time; sequential structure; incentive value; etc. This component of
the event related activity (ERA) was demonstrated to be concerned with future
events rather than to be stimulus bounded (e.g. Beigleter, Porjesz, Chon, &
Aunon, 1983); Courchesne, 1978; Ford, Pfefferbaum, & Kapell, 1982; Kutas,
McCarthy, & Donchin, 1977; McCallumet al., 1983; Ritteretal., 1979; Ruchkin,
Munson, & Sutton, 1982; Squires etal., 1977). Negative components peaking
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from 200 upto 400 ms (e.g., Na and N2), were observed to be affected by the
nature ofthe classification task and awareness, tovary withthe reaction time,
and to be inversely dependent on the stimulus probability (e.g. Ford et al.,
1982; Josiassen et al., 1982; Ritter et al., 1979; Ritter, Simson, Vaughan, &
Macht, 1982; Ritter, Simson, Vaughan, 1983; Squires et al., 1977). Later
components in the range of 500 up to 1000 ms were found to correlate with
unexpected stimulus attributes (e.g., Kutas & Hillyard, 1980}.

Early components (peaking as soon as 15ms and appearing upto 200 ms)
were assumed to be stimulus bounded, in the sense that they varied with the
physical characteristics of the stimulus. However, it is now observed that they
arealsoassociated withthe stimulus probability, time interval between stimuli,
conceptual informationchannels (e.g., stimulation offingervs hand), targetvs
non-target stimuli, etc. (Ford etal., 1982; Hansenand Hillyard, 1380; Josiassen
etal., 1982; McCallum et al., 1983}, thus associated to attention requirements,
too.

It is apparent that, when a task is relatively simple, important to look for
stimulus propertiesthat can be identified - and irrelevant properties filtered out
-by the brain substantially earlier than 100 ms. Whenthetask is more difficult,
a negative component peakingaround 100 ms seemsto represent the earliest
brain sign of target identification (McCallum et al., 1983). The rapid
differentiation of the relevant fromthe irrelevant is possibly more in keeping
with the notion of directed attention, that is to say with the presence of a
pre-existing bias or expectation toward a specified class of stimuli(e.g., Rocha,
1985; Rocha & Rocha, 1985).

Alongthisline of reasoning, itis possible to assume a sensory processing
model involving ditferent sequential and parallel stages, such that each stage
passes into the subsequent ones whatever information has reached criteria
for the encoding properties analysed at that stage (McCallum, et al., 1983;
Ritteretal., 1982). Which stages and criteriaareto be involved with a particular
stimulus at a particular situation, may be a matter of expectation generated by
the surrounding environment; previous individual histories; etc. (Rocha,
1985). The greater is the expectation or the smaller is the uncertanty about
the stimulus, the earlier may be its recognition, by adjusting information
processing at low stages to detect distinguishing properties of the incoming
stimulus (Rocha, 1985; Rocha & Rocha, 1985).
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Quite similar ERA has been recorded for verbal stimuli presented either
through auditory or visual channels {e.g., Brown, Marsh, & Smith, 1973, 1976,
1979; Johnston & Chesney, 1974; Kostandov & Arzumanov, 1977; Kutas and
Hillyard, 1980; Matsumyia, Tagliasco, Lombroso, & Goodglass, 1972; Neville,
Kutas, & Schmidt, 1982a,b; Roth, Kopell, & Bertozzi, 1970). Components
occuring earlier than 100 ms failed to be moditied by the use of verbal vs
non-verbal material (Matsumyia et al., 1972; Roth et al., 1970 ); instead they
seemed to be linked to the stimulus significance; task involvement; etc. ERA
differences reflecting discrimination between the noun vs verb meanings of
the same word, are encoded in components as early as N150 and may extend
uptoP230, N 400, etc. (Brownetal., 1976, 1979; Johnston & Chesney, 1974).

N150 and N400 have been shown to correlate with the semantic
processing of verbal material (Brown et al., 1976; Kutas and Hillyard, 1980;
Neville et al., 1982a). N400 appears predominantly over left and anterior
locations, whereas positive waves predominate over right and posterior sites
(Brownet al., 1879; Nevilleetal., 1982a). This electrophysiologica! asymmetry
was further stressed by its absence in congenitally deaf adults as accurate as
hearing subjects in visually identifying words (Neville et al., 1982b).

Verbal N400Othat seemssimilarto non-verbal N2 (seeRitter et al., 1982) may
constitute an important step in a semantic analysis performed throughout a
controlled process; the guidance at each processing stage provided by both
the results attained at the previous levels (e.g., those reflected by N150) and
previouslearning.

Verbal analysis built up on such an expectancy controlled process may
favor good semantic perception (McCallum et al., 1983; Rocha, 1985; Rocha
& Rocha, 1985) as soon as necessary to explain speech shadowing at very
short latencies (Marslen-Wilson, 1978), as well as to explain the agreement
between EEG activity despite visual or auditory presentation of verbal stimuli
(compare, e.g., the results of Brown et al., 1979 and Neville et al., 1982). It
must be remembered that in this late case, ERA components of important
semantic decisions may occur before the word end and that in many other
instances, semantic perception may occur even without full word recognition
(e.g. Kostandov & Arzumanov, 1977). The fact that late positive components
(latence greaterthan 700ms) are recorded for unexpected long words and late
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negative shifts inthe EEG activity appear for semantically inappropriate words
(Kutas & Hillyard, 1980) futher supports this line of reasoning.

The findings of Molfese {1978) about voice onset time (VOT) analysis point
also to the hypothesis of a progressive oriented processing of verbal
information, fromthe brainstemto cortical areas, parallelingthe analysis from
the phonological to the semantical levels. At the one side, Molfese (1978)
identified three distinct factors in the EEG activity (latencies ranging from 80
to 485 ms) related with VOT changes. Besidesthis, he observed anactive and
balanced involvement of both hemispheres, the right side also participating in
the distinction between voiced and unvoiced stimuli. At the other side, it is
possible to performe a suitable VOT analysis at subcortical (at least at the
thalamic) level. The recorded, well timed, cellular activity were different
between voiced and unvoiced sounds at different cells and at different stages
of processing. Many of the cells exhibited feature distinguishing patterns,
either responding only in case of voiced or unvoiced sound stimuli.

Itis assumed that speech perceptionisthe result of a progressive, oriented
process begining with a phonological analysis taking place at the brainstem
up to bilateral hemispheric areas. The phonological recognition prompts the
systemto both early and late semantic decisions based on predominantly left
hemisferic activity. Atlow levels phonological analysis is devoted to phonetic
pattern recognitionleadingtoword characterization, whereas at high levels,
it is related to the aspects of sentence intonation involved with given vs new
information decisions (Rocha & Francozo, 1980). At the cortical level, speech
processing progresses from words to phrases, and from phrases to text, as
analysis movesfromcentral to parietal, and from parietal tofrontal areas (Luria,
1974). Thus verbal perception starts with phonological recogniion, and
continuously moves to semantic analysis of words, sentences and texts,
passing at each subsequent stage whatever information has reached chosen
criteria; the choice being a matter of strategy and expectation (Rocha, 1985;
Rocha & Rocha,1985) guided by personal belief and the speech cohesion.

Up to now, the electrophysiological approach to such a process reached
justthe sentence level, because it devoted its aftention only to the EEG activity
related specifically to the word recognition in the context of the phrase. The
next necessary step is the study of the phrase recognition in the context of a
text or dialogue (Rocha, 1982; Rocha, 1985), and additionally the building up
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ofthe text level. The results presented in this paper are quite innovative in this
respect.

RECALLING THETEXT

Any text or dialogue has a theme or subject, and a rheme or what is said
about the theme (Sgall et al., 1973; Rocha, 1983; Rocha & Rocha, 1985). For
instance, the theme of the previos section text could be "Brain activity during
speech perception’, and its rheme accepted as "is founded over an
expectationguided process'. However, individual expectations flavors speech
decoding according to personal histories; conceptions; culture; etc.
(e.g.,Oleron, 1980; Otson, 1980). Because of this, the same text or dialogue
undergoes, in general, distinct decodings if manipulated by different people.
For example, this same text above could be understood as "Electrocortical
activity during speech perception" (Theme) "has definite components"
(Rheme). The first of the above decodings above could be performed by
people involved with expectancy studies, whereas the second one will arise
probablyfromthose researchers working with electrophysiology.

Each reader (speaker) organizes the incoming informations according to
his (her) expectation in orderto getthe subject (Theme) of the communication
andthe message (Rheme) aboutthis subject (Sgall, et al, 1973; Oteron, 1980).
This strategy privileges those phrases and words related with the presumed
Theme and Rheme. It expectation is initially low, the same strategy may take
place asthe reading (orlistening) and the build up of the text comprehension
progress (Luria,1974; Washabaugh, 1980; Rocha, 1985; Rocha & Rocha,
1985).

Although different people may have different understandings of the same
speech, their decodings must speek about some commonalities, unless the
communication is nonsense. The possible mean understandings of a given
speech (text) by a specific population of speakers (readers) may be obtained
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by calculating the possible mean graphs for the familly of fuzzy graphs of the
individual speech or text decodings.

Inthe case of the present research, atext about the country’s dependence
onforeigntechnology was taperecorded, and played to subjects having their
EEG recorded. After the recording session, the volunteers recalled the text by
writting; pointed outthe intended theme and rheme, and organized the recalled
textintoafuzzy graph according to the relations share by the recalled phrases
in defining the chosen text theme and rheme.

The statistical analysis of these fuzzy recalling graphs revealed 3 possible
mean decodings in our population of volunteers (Rocha & Greco, 1987). The
dominant decodings (by 65% ofthe subjects) were those defined by the phrase
1 and 2 speaking about the huge difference between the budget applied on
science andthe money spent onforeigntechnology purchase, and by phrases
5 and 6 claiming that science does not receive the backing required to avoid a
huge external dependence on technology. The third possible understanding
was that embeded in phrases 9 and 10 saying that Brazil faces the problems
imposed by a narrowed mind technocracy deciding on how to apply money
on science and technology research. Phrase 7 relating the necessity to fund
science according to the pressure put by foreign trade was never included in
the recalled text. Phrase 4 refering to the foreing technology used by the
Brazilian Oil Company in one of its most advertised product was recalled by
almost 70% of the people, however it was considered louselly connect with the
most frequent decoded themes and rhemes.

The brain activity recorded during the text hearing was highly correlated to
these mean decodings becausethe phrase probability inthe recalled texts was
linearly correlated to the EEG amplitude and variation recorded at frontal,
central and parietal sites (Rocha & Greco, 1988).

The volunteers were asked to assign the degree of correlation (Group A) or
confidence (Group B) that they judged the information at each node of the
fuzzy recalling graph might share with the decoded theme/rheme or may
receive from them. The purpose of the present paper is to investigate the
possible correlation between the brain activity during the text decodification
and the two fuzzy measure of uncertainty associated to the text
comprehension.
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METHODS

The text published by a newspaper was recorded by a Brazilian native
speaker. Then it was inspectedtodisclose any stuttering, hesitation, etc. This
inspection was based on both a careful listening of tape by different people,
as well a visual analysis of the oscillogram display of the text.

Thetext was played twice within 45 min. ina sound proof room, to university
students while their EEGs were recorded. The sound was delivered by two
loudspeakers placed two metersinfront of the volunteer; volume was adjusted
according to the subject’s preference. Ag-AgCl electrodes were placed over
eachhemispheres (atC4, P4, F4 and C3, P3, F3 respectively}, and were referred
to earlobes. Cut-off frequences were .1 and 50Hz, and the time constant was
0.3s. Impedance was kept below 5Kohm measured at 400Hz. The EEG
recordings were fed into the electroencephalograph together with a filtered
version of sound (cut-off frequency of 10Hz), usedtolocalize the EEG epochs
corresponding to each phrase heard. The EEG and phrase time marks
identifying the beginning of each phrase were stored in an Apple compatible
computerforfurther procesing. The storage was accomplished by ampilifying
the EEGtothe +2.5mV range and sampling it at 100Hz and 8 bits.

Betweenlistening sessions, individuals recalled the text and painted out its
theme and rheme. Then they were asked to put the phrase they judged to
belong to Theme(T) apart from those judged to relate with Rheme(R). Inthe
sequence, they joined the phrases according withthe best intended relations
to concludeforT or R. This allowed the construction of graph of the recalled
text (RT), describing those associations of information leading to the
conclusion ofthe ideas embodied inthe text understanding (Greco, Rocha, &
Rocha, 1984; Rocha & Greco, 1987).

The phrases of the recalled text were located at the terminal nodes of the
graph accordingtothe importance they were assumed to have defining T and
R. The relations between phrases judged as responsible for the deductions of
T or R were preserved by the relations between nodes expressed through the
arcs. The nodes between the root and the terminals are named 2nd, 3rd, etc.
order nodes, and represent the partial deductionsleadingtoTand R. The graph
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was construed by one of the authorsto express the relations disclosed by the
volunteer, and received the approval of the volunteer at each step of its
construction.

20 volunteers (Group A) assigned to each node the degree of correlation
between the information representated at that node and the text T/R. The
confidence degree associated with each node was studied using 20 other
subjects (Group B). Afterthe second listening session, subjects were permitted
to modify any of these early statements.

Thestatistical analysis of the data (Grecoet al., 1984; Rocha & Rocha, 1985)
disclosed the mean text decodifications by our population, the most frequent
themes and rhemes, as well as the most important associations between
phrases and T/R (Rocha & Greco, 1987).

The measure used to study the brain activity during listening the epoch of
each phrase wasthe area underthe corresponding EEG trace. This area was
calculated by rotating the EEG negative components around the EEG mean
value for the entire epoch, in order to allow the areas of the negative
components to be added to that of the positive waves. The rotation around the
mean value eliminated the influences of any very slow wave on the calculation
of the area.

The area under this rotated EEG trace was calculated by summing the
area between each two sampled points, and then divided this totally by the
epoch duration tofurnisha mean EEG area (A) for each phrase. This meas
area A measures the mean instantaneous variation of the EEG activity during
the entire epoch concerned with a given phrase. The variation coefficient (CV)
was calculated as the division of the standard deviation by the above mean.

Two coefficients, Ca and Cv, of asymmetry between the left and right
activities were calculated as

Ca = AL/AR

Cv = CVL/CVR
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that is, as relations between the mean areas and the coefficients of
variations for right and left recordings. These asymmetry coefficients may
disclose hemispheric dominances. Onthe one hand, a Ca greaterthan 1 may
imply a better performance of the left side, and Ca smaller than 1 may signify
a right dominance. On the other hand, Cv greater than 1 may imply an EEG
amplitude variation at the left side greater than at the right hemiphere. Similar
coefficientswere calculated between Frontal and Parietal, Frontal and Central,
and between Central and Parietal sites, for each hemisphere.

Any possible correlation between the above truth values (confidence and
correlation) and the EEG activity was studied using linear regression and
correlation analysis of the truth values and all these assimetry coefficients.

RESULTS

The statistical analysis of the data revealed that both the correlation (Cor)
as well as confidence (Con) degrees assigned to the recalled phrases were
linearly correlated with the brain activity associated with the phrase decoding
during the first listening session, but not with the same activity registered
during the second listening session. However, the volunters after the second
listening task modified the initial written recall only in some very excepcional
instances.

The general picture that has appeared in this kind of research (Greco &
Rocha, 1987; Theotoet al., 1987) is that the volunteer decided during the first
listening session, suchthat the second listening is used just as a confirmation
offirst expectations. Only onrare ocasions did the second listeningtask cause
changes in the volunteers mind, but provoked only minor adjustments of the
first decoding. This is true even in the case of very poor initial recalls. The
trend is forthe volunteerto continue to believe onthe first understanding even
if the text was badly understood.
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Correlating the phrases and the text

The degree of correlation (Cor) between the recalled phrases and the
theme/rheme decoding had its dependence on the hemispheric assimetry
coefficients calculated for both the Area (A) and Coefficient of Variation {CV)
obtained for the Frontal (AF, VF) , Central{AC, VC) and Parietal (AP, VP)
records, described by the following multiple regression equations:

Cor = 127-.25* AF -.87* AC-.17 * AP -8 * VC (1)
R =93%andP = 0%

Cor = 132-20*AF-99*AC-0.0*AP-8*VC 2)
R=74%andP = 11%

Cor=-89 +.70*AF +1.8*AC-21*AP-9*VC (3)
R = 26% and P = 84%

The correlation coefficient change from 26% to 93% and the probability for
the null hypothesis ranged from 84% to 0% from Equations 3to 1. Equation
2 was obtained when the all recalled phrases were taken into account for the
caculus. Equation 1 was obtained when phrase 4 - loosely connected to the
decoded themes/rhemes, but highly frequent in the written recall due to a
massive TV advertising - was disregarded in all the recalls in which it occured.
Finally, Equation 3 was calculated the same as Equation 2, but including also
a null correlation degree for the never occuring phrase 7, and for all recalled
phrases. These 3 different calculations were done to investigate the
interdependece between text cohesion, Cor and the brain activity. The
stepwise regression analysis confirmed the hypothosis that phrases 4 and 7
were not correlated to the correlation degree, since their values were the only
ones encounterd outside the confidence range.
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It is possible to conclude from the above results that Cor increased as the
dominance of the left hemisphere is reduced when the mean area of the EEG
was considered in the frontal, central and parietal areas and when the
coefficient of variation was taken into consideration at the central sites. Also,
this dependence did not occur if all recalled phrases were considered
(Equation 3), but only if those phrases highly correlated with the decoded
themes/rhemes were used inthe caculations (Equation 1). The Central Area
exercised the bigest influence on the final value of Cor (Equations 1 1o 3).

Confidence inthe received information

The same calculus above were done for the confidence degrees assigned
to the recalled phrases by people of the Group B:

Con = 326-74*AF +1.8*AC-0.0*AP-4.0 * VF (4)
R=.72andP = 13%

Con = 246-6.5*AF +25*AC-0.0*AP-4.2* VF (5)
R=.73andP = 12%

Con=292-59*AF +23*AC-00A*P-3.7*VF (6)
R=.74andP = .01%

Itis possible to conclude fromthese results, that confidence inthe received
information is enhanced when the hemispheric assimetry decreased at the
frontal areas and increased at the central sites. This dependence occured -
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contrary to the results obtained for Cor - no matter the correlation between
the recalled phrases and the decoded themes and rhemes (compare
Equations 4,5, and 6). Asa matter of fact, the best statistical results appeared
if all recalled phrases were used and a null confidence was assigned to the
nerver occuring phrase 7 (Equation 6). The Frontal Area exercized the bigest
influence on the fina! value of Con (Equations 4 to 6).

The dependence of confidence on the cerebral activity was fuzzier thanthe
dependence of the correlation degree with the EEG activity because the
correlation coefficients calculated for Equations 5 to 6 were smaller than that
obtained for Equation 1.

Correlation, confidence and activity inthe same hemisphere

Cor and Con were also correlated with the dominance coefficients
calculated between Frontal and Central (AF/C, VF/C), Frontal and Parietal
(AF/PVF/P), and Central and Parietal (AC/P, VC/P) areas at the same cerebral
hemisphere. The most striking difference was observed when Cor and Con
were compared; Cor depended on dominances established for areas located
at the right cerebral hemisphere - this is in accordance with its dependence
on a reduction of the dominance of the left over the right cerebral areas -
whereas Con depended on a reduction of the dominance of the left frontal area
over the central left sites - this may agree with the fact that confidence
augmented as dominance of the left hemisphere decreased over the right
frontal areas and increased at the central sites. Besides this, the dependence
of Con on the dominance of the left hemispheres was fuzzier than the
dependence of Cor on the right dominance if the correlation coefficients in
Equations 7 and 8 were compared.
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The multiple regressions of these dependences were :
Corand the right hemisphere:

Cor = 31-.55* AF/C +.36 * AF/P + .56AC/P +.10VF/C-38*VF/P  (7)
R =94%andP = 1%

Con and the left hemisphere:

Cor = 1586 -12 x AF/C +8 x AF/P -10 x AC/P (8)
R =55%andP = 6%

No correlation was found between confidence and correlation degrees
assignedto non-terminal nodes andthe EEG activity associated to the recalled
phrases.

DISCUSSION

The results described in the previous sections pointed to a linear
dependence of both the correlation and confidence on the brain activity
recorded duringthefirst - but not inthe second - text decodification, although
the volunteers were instructed about assigning these fuzzy measures to the
decoded information just after they had heard the text the first time, recalled it
inwritting and constructed itsfuzzy graph. Besides this, people changed their
minds after the second hearing session only on a very few and exceptional
occasions. Because of this, it is possible to state that the fuzzy measures of
the pertinence of the information to the language (correlation) and individual
(confidence) truth sets are real psychological entities having defined
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correlations with the brain activity during the processing of the information to
whichthey are assigned.

These observations constitute a very innovative electrophysiological
demonstration of a neural substrate of a very complex psychological construct.
The data presented here indicate that when very abstract concepts such as
fuzzy beliefs, are associated with the verbal processing, the well known left
hemispheredominance (see, e.g., Brownetal., 1976, 1978; Luria, 1974; Nevile
et al., 1982b; etc.) is reduced by the increase of the participation of the right
cerebral areas. This was the case for both correlation and confidence,
although correlation seemed to be more dependent on the right hemisphere
workingthan confidence.

Another important finding was that many different areas did participate in
the processing of the correlation degree, although central areas seemed to
play the most important role in the assessement of this judgement (see
Equations 1and 7). Central areas had always enjoyed a special status in the
language processing neural circuits since the pioneer observations made by
Wernicke. The involvement of the brain concerning the evaluation of
confidence was more restricted to the frontal areas (see Equations 6 and 8),
a region well known by its participation in many different types of intellectual
processing (Luria, 1974).

Besides this, the correlation degree depended on the activity recorded at
the central areas involved the verbal analysis at the word level, on the activity
of the parietal circuits involved in the phrase analysis and on frontal areas
aggregating phrases on the level of dialogue and/or text (Luria, 1974). Also,
the correlation degree depended almost totally on the brain activity related to
the phrases that had a high cohesionwiththe decoded theme and rheme. This
was not the case when confidence was considered. The dependence of the
confidence degreetothe brain activity did not change if different sets of phrases
were taken into account in the calculus.

This behavior stresses some important differences between the concepts
involved inthese two fuzzy measures. This behavior may also be considered
as supporting the idea that text decoding may begin with people using their
confidence in the information to guide the text deconding, and may then
procede, oriented bythe correlation betweenthe received pieces of information
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and the text itself, as soon as its inital structure is captured. This is inline with
the proposition that speech understanding is the result of a progressive
oriented process, begining with a phonological analysis, taking place at the
brainstem, toward a highly abstract semantic processing taking place in both
cerebral hemispheres, with guidance reflecting both personal beliefs and
speechcohesion (Luria, 1974; Ritter et al., 1982; Rocha, 1985; Rocha & Rocha,
1985).

Thefactthat nodependencewas established between brain activity related
tothe recalled phrases and the correlation and confidence degrees assigned
to non-terminat nodes may be understood as a consequence of this goal
oriented processing. Inthisline of reasoning, both confidence and correlation
forthese nodes areto be calculated asthefuzzylogic structure ofthe decoding
as it begins to be organised. Ifthis is true, this building-up process cannot be
timed during the acquisition of the data because of the EEG segmentation
required by the statiscal analysis. This could be the reason for the negative
results concerningthe non-terminal nodes.

The differences in the dependences established for confidence and
correlation stress the idea that these two measures are two different
psychological entities as indicated by other researches onlanguage decoding
in our group (Greco & Rocha, 1987; Rocha et al., 1984; Theoto et al., 1987).
The degree of correlation - but not confidence - depended on the structure of
the text decoding, its value increasing from the terminal nodes related to the
recalled phrases toward the root associated with the decoded theme and
rheme. Also, the correlations decreased from the left toward the right nodes
(Rocha&Greco, 1987). In addition, the correlation degree - but not confidence
- depended on a non-zero linear coefficient when its value for the proposition
was calculated from the values assigned to each argument (Grecoet al., 1984;
Rocha & Greco, 1987).

The conclusion that two fuzzy measures used on fuzzy logic have a real
pschological and physiological existence, has very important consequences
for the Fuzzy Set Theory by strengthening the proposition of Zadeh (1964)
that fuzzy measures are the theoretical constructs closest to the real way
humans reasons. Also the fact that confidence and correlation are two
different measures of the uncertainty associated to the processing of any
information by humans, have practical consequences for the development of
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any system trying to simulate the human reasoning as is the case with expert
systems.

Curently ‘Expert Systems’ use in general just one measure of uncertainty
(see e.g., Shortlife, 1976, Barr & Feigenbaum, 1982; Rocha et al., 1987) to
access the plausibility of the diagnosis, and the measure used by most of
them is similar to the correlation degree - correlation between the signal,
symptom, etc. and the diagnosis - investigated here. The personal belief in
the actual presence of the data is always disregarded in these systems,
althoughthis is one of the most important judgements perfomed by the expert
when solving any case.

Both fuzzy measures (correlation and confidence) must be taken into
account in any calculus of aggregation to be used on decision making
systems. We may accept the proposition of Yager (1987) about the use of
Ordered Weighted Averaging Aggregation Operators in Multi-criteria Decision
Making as an important step in this direction. The main idea here, is that
averaging one of these measures - say confidence - during the agregation
process (e.g., Rocha & Greco, 1987) may be guided by the strength of the other
measure - e.g. correlation.
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ACQUISITION OF MEMBERSHIP FUNCTIONS IN MENTAL
WORKLOAD EXPERIMENTS

1.B. TURKSEN, N. MORAY and E. KRUSHELNYCKY

Department of industrial Engineering, University of Toronto
Toronto, Ontario M5S 1A4, Canada

In a mental workload experiment, subjective measurements for linguistic
variables such as sfight, moderate, and difficult, are recorded to investigate
the predictability of the degree of difficulty associated with a task that
contained the skill-based, the rule-based, and the knowledge-based
components ofan operator’s behaviour. From the perspective of measurement
theory, it was found that the measurement data have the essential properties
of weak stochastic transitivity and weak stochastic monotonicity. From the
perspective of Rasmussen's taxonomy of human behavior, it was found that
the skill- based behavior would dominate while the rule and the
knowledge-based behaviours would moderately influence the degree of the
difficulty associated with a task.
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INTRODUCTION

Measurement of membership values was a controversial topic during the
first decade or so of fuzzy settheories. Even as late as 1978, some researchers
dared to state that " ... There is no way of determining values of membership
functions, either rationally or empirically ... (Watanabe, 1978)". At present,
among most fuzzy set researchers it is an accepted fact that membership
functions can be determined empirically and rationally (Turksen, 1986; Zysno,
1987; etc.). Based onthese previous experimental works, we have launched
the measurement experiments to be discussed in this paper for the
investigation of the degree of difficulty that would be subjectively associated
with atask that has three behavioura! components.

Mental workload

Mental workload appears to be an elusive concept. However, whenever we
wishto assessthedegreetowhich a person is affected inexecutinga particular
task, we need to determine a measure of the amount of physical effort being
exerted as well as the amount of mental effort required by an operator for a
task. In current literature one finds that many different measures have been
proposed and investigated in terms of physiological, secondary task, and
subjective measures (Weirwille, 1979; Ogden, Levine, & Eisner, 1979; Moray,
1982; Gopher & Browne, 1984). In our approach, we attempt to establish the
descriptive and predictive power of linguistic (fuzzy) variables for a given task
in mental workload experiments.

First, our earlier experiments inthe measurement of workload (Moray, King,
Waterton, & Turksen, 1987: Moray, Eisen, Money, & Turksen, 1987) clearly
indicated that linguistic variables such as “slight", "moderate", and "difficult"
used in describing components of a mental workload associated with a task
can be measured with an individual’'s membership rating.

Secondly, in his taxonomy of behaviour, Rasmussen (1983) defined three
generic classes of behaviour such as skill-based, rule-based, and
knowledge-based. It was suggested that skill-based behaviour would not
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impose any mental workload since the responses to a task were internalized
tothe pointwhere nothought would be involved in executing a particular action.
Real world examples of this accur in driving a car: e.g., one does not
consciously think about maintaining a given level of speed.

For rule-based behaviour, it was suggested that an operator would be
required to consult a collection of internalized “IF ... THEN ..." statements in
order to react to situations for which the operator had not developed any
automatic response patterns ; e.g., "IF fuel iow THEN go to gas station”.

For knowledge-based behaviour, it was suggested that an operator would
undertake a response to a task situation to which he had not been exposed.
This would involve an extrapolation of previously encountered situations to this
new scenario.

With such background knowledge about (i) the measurement of
membershipfunctions, and (ii) Rasmussen’s generic classification, we started
our investigation of skill-based, rule-based and knowledge-based behaviour
componenst of a NASA Hovercraft Simulator (Thornton, 1984). In simulation
experiments run with this simulator, it is required that an operator guide the
hovercraft along a track defined by its width and turbulence. The width
parameter adjusts the track width from one and haif to eight hovercraft width.
The turbulence parameter causes random disturbances in the movement of
the hovercraft. In addition, the track is generated from a series of sine waves.
There are nine checkpoints inthe course, inwhich rules may be executed. The
rules consist of incrementing the fuel level, oil level, and adjusting the oil
pressure, as well as a combinations of these three. These rules may only be
excuted at a checkpoint (Thornton, 1984). The rules are executed by a series
of key presses. The hovercraft is controlied by an operator via a joystick. The
furtheranoperator pushesthe joystickforward, thefasterthe hovercrafttravels
“up" the track. Side to side motion of the hovercraft is also controlled via a
joystick. Each time the hovercraft touches the edge of the track, an audible
click is heard and a "wall hit" is registered.

Forty-eight subjects were used in the experiment, none of whom had any
previous exposure to the NASA Hovercraft Simulator before the initial training
period. Subjects had an appropriate amount of training for the experimentally
required combination of skill-rule-knowlegde based behaviour components.
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STRUCTURE OF THE EXPERIMENT

We wil now briefly describe the skill-based, the rule-based and the
knowledge-based components of the tracking task.

(i) The skill-based behaviour is a continuous tracking task and requires
an operator to guide the hovercraft between two lines. Operators
are asked to do this with the minimum number of "wall hits" in the
fastest possible time. The skill-based behaviour is composed of
those actions performed by an operator which "evolve ... without
conscious attention or control" (Rasmussen, 1983). Three levels of
turbulence and three levels of track narrowness were considered in
skill-based behaviour.

(ii) The rule-based behaviour consists basically of three rules: (1) control
of the fuel level; (2) maintenance of the oil level; and (3) adjustment
of the oil pressure. The first two rules are four-step rules while the
fast is a five-step rule. The rules are further sub-divided by the
experimenter, not the subject, into three classes as "slight",
"moderate”, and "difficult" tasks. The slight, moderate, and difficult
tasks consist of one, two, and three rules being imposed on the
subjectduringthe course of a simulation run. Intotal, therefore, there
are seven possible rules, i.e., controls: (1) fuel level control, (2) oil
level control, (3) oil pressure control, (4) fuel and oil level controls,
(5) tuel level and oil pressure controls, (6) oil level and pressure
controls,(7) fuel and oit level, and oil pressure controls.

After an initial set of subjects experimented with the simulator, it became
apparent that rule 1 (fuel level control) would be sufficiently representative of
an easy rule that required a "slight" effort and rule 7 as a representative of a
moderate rule, and no rule would represent a difficult task when a rule-based
task was combined with a trivially easy skill-based task.

(iii) The knowledge-based runs involve the inclusion of an"abnormality"
inthe experimental run. The presence ofan abnormality is indicated
tothesubject by aflashing bar at the bottom right corner of the screen
during the run. Five knowledge-based runs are included in the
measurement of a subject’'s mental workload. The first type of
abnormality is defined by thelack ofa malfunctioninthe system. The
second and third types of malfunctions occur at times 80, 200, 320,
and 430 from the beginning of a run. The second type is a sudden
drop ot oil level to 2; the third type is a sudden drop of fuel fevel to



Membership Functions in Mental Workload Experiments

100; the fourth type is a drop of oil pressureto 0.6 at time 80, a false
warning triggered at time 200, and the fuel leve! drop to 100 at time
320, andfinally, another false warning at time 430. For the fifth type
of malfunction, the fuel valve and the ail valve are left open near the
beginning of a run without the subject’s knowing about it. The oil
level suddenly drops to 20 at time 15 Q; the fuel level suddenly
changesto 350 at time 210; and finally, the oil pressure drops t0 0.6

attime 330.

Two points should be noted here: (1) with the exception of the faise
warnings, the abnormalities have to be carefully monitored by a subject in
order for a task to be completed successfully; (2) in all cases, the only
indicationtoa subject that some thing is indeed not normat is the presence of
the flashing bar. 1t is up to the subject to determine the nature of the
abnormality. It should be recalled that subjects tearned to check and control

the oil and fuel levels during the rule-based tasks.

Levels of  Slight
Knowledge

TABLE 1
Knowledge-based Runs: Membership Estimates

Moderate

Mean SD NM Mean SD NM

1 0.80 0.09
2 043 0.30
3 043 0.23
4 0.53 0.27
5 049 021

1.00
0.00
0.00
0.27
0.16

0.36
0.53
0.76
0.44
0.65

0.20
0.18
0.10
0.10
0.09

0.00
0.43
1.00
0.20
0.73

Explanation: Means are average over six subjects

SD - Standard Deviation,

NM - Normalized Mean

Difficult

Mean SD NM

0.20
0.44
0.48
0.40
0.41

0.15
0.22
0.09
0.26
0.25

0.00
0.86
1.00
0.71
0.75
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Experimental design

No repetitions are possible for the knowledge-based task. The order of
experimental runs is based on three Youden Squares. [t consists of (i) 9
conditions by 18 subjects for the skill-knowledge matrix; (ii) 6 conditions by
12 subjects for the rule-knowledge matrix; (iii) 18 conditions by 12 subjects for
the skill-rule-knowledge matrix; (iv) 5 conditions by 6 subjects for the basic
knowledge-based matrix. The resuits of the subjective measurement data for
these experimental runs are shown in Table 1,2,3, and 4.

TABLE 2
Skill-Knowledge Runs: Membership Estimates

Levels of Slight Moderate Difficult
S-K
MeanSD NM Mean SD NM Mean SD NM

SKt 085 0.08 100 026 0.18 0.33 0.06 0.07 0.00
SK2  0.37 0.27 041 0.53 019 0.93 043 0.27 042
SK3 031 027 034 056 0.17 100 043 0.29 0.42
SK4 042 029 048 0.53 0.16 093 039 028 037
SK5 023 024 024 055 026 098 049 0.30 048
SK6 0.13 008 0.12 0.28 0.14 0.38 050 0.31 0.49
SK7 0.08 009 006 0.28 0.14 038 0.87 0.11 091
SK8 003 0.03 000 0.27 0.17 036 0.90 0.08 0.94
SK9 0.03 0.04 000 0.11 0.08 000 095 005 1.00

Explanation: Means are average over 18 subjects

SD - Standard Deviation, NM - Normalized Mean,

SK1 - Skillt with KNOW1, SK2 - Skili1 with KNOW3, SK3- Skill1 with KNOWS5,
SK4 - Skill4 with KNOW1, SKS5 - Skill4 with KNOW3, SK6- Skill4 with KNOWS,
SK7 - Skills with KNOW1, SK8 - Skill5 with KNOW3, SK9- Skill5 with KNOW5
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SCALE PROPERTIES OF DATA

The scale properties of the measurement data need to be analyzed from
the perspective of measurement theory before any other analysis of data could
begin.

Everyfundamental analysis of measurement theary includes definitions of
"weak order’ and "algebraic-difference structure" and theorems of "ordinal"
and’interval'scales. Theseessentials are briefly reviewed hereinthelanguage
of Krantz, Luce, Suppes, and Tversky (1971).

TABLE 3
Rule-Knowledge Runs: Membership Estimates

Levels of Slight Moderate Difficult
R-K
Mean SD NM Mean SD NM Mean SD NM

RK1 073 031 1.00 041 021 038 009 0.04 0.00
RK2 063 039 080 034 031 0.00 030 037 041
RK3 026 0.28 0.06 038 0.14 021 060 0.34 1.00
RK4 028 023 0.10 053 025 100 035 0.28 0.51
RK5 0.38 035 030 044 0.18 053 0.34 0.32 049
RK6 0.23 0.22 0.00 053 022 100 054 0.29 0.88

Explanation: Means are average over 12 subjects

SD - Standard Deviation, NM - Normalized Mean,
RK1 - Rulet with KNOW1, RK2 - Rule1 with KNOW3,
RK3- Rule1 with KNOWS, RK4 - Rule123 with KNOW1,

RKS5 - Rule123 with KNOW3, RK6- Rule123 with KNOWS,
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Levels of
S-R-K

Slight

Mean SD NM Mean SD NM

SRK1
SRK2
SRK3
SRK4
SRK5
SRK6
SRK7
SRK8 0.38
SRK9 0.13
SRK10 0.13
SRK11 0.30
SRK12 0.25
SRK13 0.25
SRK14 0.08
SRK15 0.05
SRK16 0.15
SRK17 0.05
SRK18 0.08

0.30
0.50
0.23
0.68
0.35
0.55
0.25

0.10
0.20
0.08
0.08
0.05
0.30
0.10
0.38
0.08
0.13
0.10
0.05
0.15
0.03
0.00
0.05
0.00
0.08

0.40
0.71
0.29
1.00
0.48
0.79
0.32
0.52
0.13
0.13
0.39
0.32
0.21
0.05
0.00
0.16
0.00
0.05

1.B. Turksen et al,

TABLE 4
Skill-Rule-Knowledge Runs: Membership Estimates

0.60
0.53
0.45
0.40
0.80
0.50
0.68
0.38
0.35
0.55
0.53
0.55
0.40
0.18
0.13
0.48
0.20
0.23

Moderate Difficult

Mean SD NM

0.00
0.03
0.05
0.00
0.05
0.05
0.18
0.23
0.25
0.25
0.08
0.05
0.20
0.13
0.03
0.18
0.05
0.23

0.20
0.23
0.33
0.23
0.28
0.33
0.45
0.40
0.58
0.50
0.55
0.18
0.68
0.75
0.75
0.83
0.93
0.85

0.70
0.60
0.48
0.40
1.00
0.55
0.32
0.37
0.33
0.63
0.60
0.63
0.40
0.07
0.00
0.52
0.10
0.156

0.10
0.08
0.18
0.08
0.03
0.18
0.00
0.30
0.03
0.30
0.25
0.08
0.23
0.15
0.05
0.03
0.03
0.15

0.03
0.29
0.20
0.07
0.07
0.20
0.36
0.29
0.58
0.43
0.49
0.00
0.67
0.76
0.76
0.87
1.00
0.89

Explanation: Means are average over 12 subjects

SD-Standard Deviation
SRK1-Skill1, RULE1,KNOW1
SRK3-Skill1, RULE1,KNOWS
SRK5-Skill1,RULE123,KNOW3
SRK7-Skill4, RULE123,KNOWS5
SRK9-Skill4,RULE1,KNOWS
SRK11-Skill4, RULE123,KNOW3
SRK13-Skill5,RULE1,KNOW1
SRK15-Skill5,RULE1,KNOW5
SRK17-Skill5,RULE 123, KNOW3

NM-Normalized Mean
SRK2-Skill1, RULE1,KNOWS,
SRK4-Skill1,RULE123,KNOW1
SRK6-Skill1, RULE123,KNOW5
SRK8-Skill4, RULE1,KNOW3
SRK10-Skill4, RULE123, KNOW1
SRK12-Skill4, RULE123,KNOWS5
SRK14-Skill5,RULE1,KNOW3
SRK16-Skill5,RULE123, KNOWA1
SRK18-Skill5,RULE123, KNOWS5
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Definition 1.

Let © be a set and be a binary relation on 0, i.e., is a subset of @' = 6x0.
The relational structure <0, = > Is a weak-order iff, for all 0;,0;, Ok, £ the
following two axioms are satisfied:

1. Weak connectedness: Either 8i20jor0 20 .

2. Weak transitivity:if®j =2 0j and®j =2 O then@i = 0.

Itis noted that this weak-order is reflexive and asymmetric.

Theorem 1

Supposethat O is afinite non-empty set. If <0 , > >isaweak-order,then
there exists a real-valued functionon © suchthatforall ©, 0, 0,0; = ©
jiff @ (©i) = ®(0 ;). Moreover,d ' is another real-valued function on 0 with
the same property iff there is a strictly increasing function f, with domain and
range equal to Re, such that for all ©;,:0,0 '(8)) = f[®(0))], i.e., ®is an ordinal
scale.

Definition 2

Suppose that © is a non-empty set and =’ is a quaniernary relationon @'.
The relational structure <©’, ='> is an algebraic-difference structure iff,
0i,0),04,01,0',0'},0%, and 0't0 the following five axioms are satisfied:

1. <@, 2'> isaweak order.

2. Sign Reversal: If 0j0; =’ 0|0, then k0| ='0;6);.
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3. Weak monotonicity: If ©j@i ='00'%, and 6k0; ='0«0’, then OkO;
>'00'.

4. Solvability: If 8;0; = '0/0k ='0;0;, thenthere exist ©',,0y ¢ © such that
0'10i = 010K = 00!

5. Archimedian Condition: If ©1,02,..., @i,...; is a strictly bounded standard
sequence (0 +10; = 0201 for every 0;,0i+1 In the sequence; not V201 =
0,0}, andthereexists ©0'0" ¢ © suchthat ©'0” =2 0;0| = 0"0’forall ©;inthe
sequence), then it is finite.

Theorem 2

if <@, ='> is an algebraic difference structure, then there exists a
real-valued function® on @ such that, for all ©;,0;,0x,0 ¢ 0, 0;0; = ', 08 iff
O(O})-d(Bi) = ¢(O1)-P(Bk).

Moreover, ® is unique up to a positive linear transformation, i.e., if &’ has
the same properties as @, thenthere are real constants o, 8, with a > 0, such
that ' = ad + B,i.e.,®is an interval scale.

Astochastic interpretation

The relational structure <®, = > is a weak-order and <®' ='> is an
algebraic-difference structure if our subjects behave ‘rationally’ and
deterministically. We knowfrom ourexperiments that human subjects behave
rather irrationally and nondeterministically (Norwich & Turksen, 1984; Turksen,
1986). Therefore, the "rationality’ and deterministic behaviour assumptions
must be put aside and all the axioms of measurement theory must be restated
in stochastic or possibilistic terms. We will give here a stochastic
interpretation.
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There are hints in Krantz et al. (1971), in Coombs, Dawes, and Tversky
(1970) and in Debrue (1958) for probabiiistic treatments. However, our
formulation is more general. This is done with the following definitions and
conjectures (Turksen, 1983).

Definition 1’

Let © be asetand = be a binary relationon ©, i.e., = is a subset of ©'.
Therelational structure < ©, =2 >pis aweak stochastic order if for all ©i,0;, O,
£ O, the following two axioms are satisfied stochastically above a probability
threshold p:

1.Weak Stochastic Connectedness:

Either P(®; = ©)) = porP(6j = 0i) = pwhere P(0; = ©j)isthe probability
that @; will be in relation = to 0;. It is defined as:

P{0i =2 g} =tlim(m(®i = &)/n), n— (1)

where n1 is the number of trials in which a subject states that ©; = ©jand n
is the total number of trials, i.e.,

n = ni{0; = 6))-n2(0) = 6.

Attimes itis clearly not possible to obtain a large number of observations.
fn such cases one hasto be satisfied with a small number of observations.
This is part of the reasons why we might have to resort to a possibilistic as
opposed to a probabilistic interpretation.
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2. Weak Stochastic Transitivity:

If P{Gi = 6} = pand P{B®; > Ok} = pthenP{6;i = &} = p.

Conjecture 1’

Supposethat @ is afinite nonemptyset. If < @, = > pis a weak stochastic
orderthenthere exists a randomvalued function dp on © suchthatfor all ©;,0;
> 0:P{0; = ©j} = p iff P {dp(6i) = ®p(6))} = p. Moreover, ¢'p is another
random valued function on with the same property iff there exists a strictly
increasing function f with domain and range equal to Re, such that for all ©
e O: P {®'p(0) =f[®p(0)]} = p, i.e., dpis a stochastic ordinal scale.

Definition 2’

Suppose O is a nonempty set and ='isaquaternaryrelationon 0, i.e., a
binary relation on ©’. The relational structure <®’, 2’> p is a stochastic
algebraic-difference structure if, 0;,0;,00,,0%,0',0%0 « © and for all
sequences ©1,02, ..., 6i,.. € O the following axioms are satisfied
stochastically above athreshold probability p:

1. < @', 2'>pisaweak stochastic order.

2. Stochastic Sign reversal:
IfP{©6i =' ©0} = p
thenP{OO| =’ ©0;} = p.

3. Weak Stochastic Monotonicity:
If P{@0; =’ 00"} = pand
P{OkBj 2 ©'kO’]} = p, then
P {O6k0Oi = B'«8'|} = p.

4. Stochastic Solvability:
IfP{0;0 =’ 010k =z’ ©i0i} = pthenthere exist ©',0") e @suchthat
P{0160; =2 &8k > 9;0"} = p.

5. Stochastic Archimedian Condition:
This means the probability that "no interval is infinitely large with
respect to any smaller one whose jnd, ‘just noticeable difference’, is
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not zero' is greater than or equal to a probability measure p. In other
words the imprecise concept in going from 0; to 0 can only be
exceeded by afinite number of successive jnd gains starting at ©; is
larger than or equal to a probability measure p.

Conjecture2’

If <®’, =2 > pisastochastic algebraic difference structure, thenthere exists
a random valued function ®p on O suchthat, for all ©;,0;,0«,6: € ©,P{0;0;
2’ 00k} = piff P{dp(0)-Dp(0i) = p(ON)-dp(6Gk)} = p. Moreover, dp is
unique uptoa stochastic positivelineartransformation, i.e., if &’ hasthe same
properties as ®p, then there are real constants a, 38, with @ > 0, such that
P{®p= adp +B} = p,ie., $pisastochastic interval scale.

It is to be noted that the computations of the left hand sides of all the
inequalities in Definitions 1', 2’ and Conjectures 1, 2’ are to be interpreted in
accordance with the probability calculus and the classical rules of inference.

Based on these definitions and conjectures, it could be further argued that

(i) the weak stochastic transitivity, and
(i) the weak stochastic monotonicity

are the essential minimal requirements for measurement data to have
stochasticinterval scale property. Underthese rather minimal conditions, ifthe
response data passes the weak stochastic transitivity test, then we can be
confident, at level p, that the data is at least on a stochastic ordinal scale. It
can be observed that the experimental data satisfies the weak stochastic
transitivity atthe minimailevel of p = 0.68 = 562/816. (See Table 5). As it can
be observed, the test is satisfied for the "slight" and "difficult" descriptors of the
behaviour components. The "moderate” descriptor is inferred from these.

Next, if the response data passes the weak stochastic monotonicity, then
we can be confident, at level p, that the data is at least on a stochastic interval
scale. It can be observed that the experimental data satisfies the weak
stochastic monotonicity at the minimal level of p = 0.5 (see Table 6).
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TABLE 5
Weak Stochastic Transitivity

Membership No. of 3-point Proportion of
Curves Ordered Combinations Satisfying Cases
Slight Knowledge 10 10/10
Difficult Knowledge 10 10/10
Slight S-K 83 81/83
Difficult S-K 83 81/83
Slight R-K 20 17/20
Difficult R-K 20 17/20
Slight S-R-K 816 562/816
Difficuft S-R-K 816 592/816
TABLE 6

Weak Stochastic Monotonicity

Membership No.of Test points ~ Proportion of
Curves SatistyingCases
Stight Knowledge 5 4/6
Difficult Knowledge 5 3/6
Slight S-K 5 12/18

5 9/18

5 10/18

5 10/18

5 11/18
Difficult S-K 5 13/18

5 7/18

5 10/18

5 10/18

5 9/18
Slight R-K 5 6/12

5 7/12
Difficult R-K 5 512

5 712
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These results, thus, suggest that we have a reasonable ground to proceed
with other analyses of data such as curve fitting at the confidence level of 0.5
as aminimum.

SIGNIFICANCETESTS

Analysis of variance (ANOVA) is used to investigate the significance of the
response data with respect to the test conditions, the subjects and the
interactions betweenthe two. For example, as for the knowledge-based runs,
a one-way ANOVA was evaluated for both the subjects and the experimental
conditions with respecttothethethree (slight, moderate, and difficult) leves of
knowledge-based behaviour.

The results show that the null hypothesis that "there are no differences in
responses due to individual subject differences" could not be rejected for the
first two levels of knowledge-based behaviour, i.e., forthe slight and moderate
tevels. However, the results of the third level, i.e., difficuit knowledge-based
behaviour, show that different subjects perceived the difficulty of this
knowledge-scenario quite differently (p < 0.05). This result may be explained
by the use of different strategies in the execution of the difficult knowledge-
based task by different subjects.

Onthe other hand, there seemsto be some difference inthe experimental
conditions with respect to the moderate knowledge-based task while there
appears to be nodifference forthe slight and difficult knowledge-based tasks.
This means that all subjects rated the five knowledge-based trials equally in
their assessment of slight and difficult knowledge-based tasks.

The interaction effects between the different parameters of the
experimental data are also investigated by the use of two-way ANOVA's. The
results of the interaction betweenthe skill and knowledge-based tasks indicate
thattheinteraction is higher for the easier levels of skill-knowledge combination
tasks and drops as the task gets more and more difficulit.
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Whereas the interaction effects between the rule and knowledge-based
tasks indicate that no interaction really occurs for the rule-knowledge
combination. Finally, a three way ANOVA test amongst subjects, tasks and
degree of membership types show that neither the subject-task nor the
subject-difficulty intercations are significant.

Curvefitting

We have investigated some simple models that are built with the inciusion
ofeitherthe union, orintersection of the behaviour components. These models
take the following forms:

(i) for skill-knowledge based combinations:
f(s.k) =a1s + azk +a3U(s.k) + ¢
f(s.k) =a1s+ azk +aasl(s,k) +¢

(ii) for rule-knowledge based combinations:
f(r.k) =air+azk+asu(r,k) +c
f(r.k) =a1r + a2k +aal{s.k) + ¢;and

(iii) for skill-ruie-knowledge based combinations:
f(s.r,.k) =ais +azr + azk +asU(s,r.k) +c
f(s,r,k) =ais +aar + azk + asl(s,r.k) +c

wheres, 1k, refertothe skill, rule, and knowledge based components of the
behaviour, U and | referto union and intersection operators, respectively, and
a1, az, as, a4 and c are parameters that are to be estimated by a regression
analysis.

All possible regression models were studied using the conjugate pairs of
the four well known t-norms and t-conorms, i.e.,
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(1) Max(a,b) = aVhb,
Min(a,b) = a A b;

(2) sum(a,b) = a + b,
Prod(a,b) =ab;

(3) Bold union (a,b) = aVb,
Bold intersection (a,b) =a A b;and

(4) Drastic union = aVbifa Ab=20
1 otherwise

Drastic intersection = a A bifaVb =1
0 otherwise

The results of the regression analysis can be summarized as follows:

(i) For the skill-knowledge based models, all of the ANOVA results give
F-values whichindicate that the regression equations are significant
beyond the p=0.005 level. The multiple linear correlation
coefficients indicate remarkably good fits. The drastic intersection
model seems slightly better than the rest of the models.

(if) For the rule-knowledge based models all of the ANOVA results are
insigniticant even at the p > 0.10 level. Multiple regression
coefficients are relatively low. This can be attributed to the number
of observations rather than a bad fit. Again, the drastic intersection
operator modef seem marginally better than the other models.

(iii) For the skill-rule-knowledge models all of the ANOVA results are
significant well over the p =0.005 level. All the multiple regression
coefficients are remarkably good. In this case there is no clear
indication for an operator to be a better fit.
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TABLE7
Linguistic Rules for the Prediction of the Mental Workload

Row Component of a task Mental Workload
# Skill Rule Knowledge Prediction
1 S - S S
2 S - M M
3 S - D M
4 M S M
5 M M M
6 M - D D
7 D - S D
8 D M D
9 D - D D
10 - S S S
" - S M S
12 - S D D
13 M S M
14 - M M M
15 - M D D
16 S S S S
17 S S M S
18 S S D M
19 S M S S
20 S M M M
21 S M D M
22 M S S M
23 M S M M
24 M S D D
25 M M S M
26 M M M M
27 M M D M
28 D S S D
29 D S M D
30 D S D D
31 D M S D
32 D M M D
33 D M D D

S =Slight, M = moderate, D =difficult
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LINGUISTICINTERPRETATION

Alinguistic interpretation ofthetask can be based uponthe resuits obtained
from the models and the accuracy of these models. One such interpretation
of the relationships found in this study is given in Table 7. The entries of Table
7 are based on the means of the raw data, combined over subjects for each of
the runs. The results listed agree with our common sense predictions based
directly on the observations of the raw data. The linguistic variables such as
slight (S}, moderate (M), and difficult (D), describe a state of the behaviour
components such as skill, rule, and knowledge-based depending onthe levels
of each as well as describing a state of the mental workload affecting a subject
operating under the combined set of task conditions. (Please note the
definitions of the terms stated at the end of Table 7.)

Each row of Table 7 should be read as a linguistic rule that predicts the
mental workload under a given set of task conditions. For example, rule 16,
i.e., row 16, should read as:

IF the predominant state of the skill-based component of a task is described
as SLIGHT,

AND the predominant state of the rule-based component of a task is described
as SLIGHT,

AND the predominant state of the knowledge-based component of a task is
described as SLIGHT,

THEN the predominant state of the mental workioad should be predicted as
SLIGHT.

Forthe second example, rule 33, i.e., the last row should be read as:

IF the predominant state of the skill-based component of a task is described
asDIFFICULT,

ANDthe predominant state of the rule-based component of a task is described
as MODERATE,

AND the predominant state of the knowledge-based component of a task is
described as DIFFICULT,

THEN the predominant state of the mental workload should be predicted as
DIFFICULT.
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A similar linguistic rule interpretation should be givento all the remaining 31
rules.

In reading these 33 rules, one needs to interpret the linguisitc connective
"AND" as the simultaneous occurence of the stated components of behaviour
for a giventask. A closerlook at 26 of these rules (excepting 3, 11,17, 18, 19,
21, and 27) however, reveals that the prediction of the mental workload can be
obtained by taking the linguistic descriptor which has the maximal linguistic
variable intheweak ordering oftheliguistic variables S,M,D, which are ordered
asS < M < S. Forexample, the outcome of rule 24 is:

D(Mental Workload)
= MAX {M(Skill), S(Rule), D(Knowledge)}

For these 26 rules, in general, we could state that

L(Mental Workload)
= MAX {L(Skill), L(Rule), L(Knowlegde)}

where L stands for the linguistic variable.

For the next 5 rules, i.e., rule 3, 11, 17, 19, and 27, the predicition of the
mental workload can be obtained by taking the linguistic descriptor which has
the minimal linguistic variable inthe weak order S < M < D. For example, the
prediction of the mental workioad for rule 27 can be found as:

M(Mental Workload)
= MIN {L(Skill), L(Rule), L(Knowledge)} .
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Forthese five rules, prediction can be found in general as:

L(Mental Workload)
= MIN {L(Skill}, L(Rule), L(Knowledge)} .

Finally, rules 18 and 21 require individual expressions as follows: For rule 18,
we can state:

M(Mental Workload)
= NEITHER [S] NOR [D].

For rule 21, we can state:

M(Mental Workload)
= MAX {M(Rule), MIN S(Skill), D(Knowledge)} .

CONCLUSIONS

In summary, therefore, the majority of predictions can be obtained with a
MAX selection operator and afew ofthem can be obtained with a MIN selection
operator while some predictors have rather particular and unique selection
operators that identify the dominant component inthe prediction of the mental

workload.

We can also observe that in twenty of the twenty-seven combinations of
rules that included the skili-based behaviour, i.e., rules 1, 4,5, 7,8, 8, 16, 17,



342 [.B. Turksen et al.

19,22, 23, 25, 26, 27, 28, 29, 30, 31, 32, and 33, the linguistic descriptor of the
skili-based behaviour also appears as the descriptor of the predicted mental
workload. It is inthis regard it can be stated that in Rasmussen’s taxonomy
of human behaviour, the skill-based behaviour would dominate while the rule
and knowledge-based behaviour components would moderately influencethe
degree of difficulty associated with a task.
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A FUZZY SET MODEL OF LEARNING DISABILITY:
IDENTIFICATION FROM CLINICAL DATA

J. M. HORVATH

Fort-Hayes State University, Kansas, USA

In the field of learning disabilty, mathematical modeling of individual
theoretical orientations has not been highly successful. Precise modeling of
internal structures is difficult because clinicians are more accustomed to
practicingtheir diagnostic and prescriptive skills rather than articulating their
thought processes. Until accurate models of learning disability can be
developed and debated intheliterature, consensus about what constitutes the
handicap will be delayed.

Another factor is that traditional mathematical techniques are usually the
tools of choice inthe attempts to quantify humanthought. Zadeh (1973, p. 28)
believes this is so because:

At present, most of the techniques employed for the analysis of
humanistic, i.e., human centered, systems are adaptations of the
methods that have been developed over a long period of time
for dealing with mechanistic systems, i.e., physical systems
governed in the main by -the laws of mechanics,
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electromagnetism, and thermodynamics. The remarkable
successes of these methods in unraveling the secrets of nature
and enabling us to build better and better machines have inspired
a widely held belief that the same or similar techniques can be
applied with comparable effectiveness to the analysis of
humanistic systems.

Pragmatism is one of the reasons that scientists, mathematicians, and
philosophers historically tried to explain human thought through the
mathematics of astronomy and physics. There are also philosophical
justifications. Rosenfield (1968, p. 205) states:

In the transition from animal to human automatism, we have
endeavored to show how the general mathematical mechanics
of the early seventeenth century passed into the Canesian
mechanistic physiology, and how that scientific principle in turn
penetrated the general thought of the eighteenth century until it
culminated in LaMettrie's total elimination of all non-mechanical
forces from his philosophic system. Psychology had become
physiology, and such it remains inthe behaviorist school of today.

Psychology was not the only discipline affected. George (1973, p. 1)
equates cybernetics with behaviorism, states that cybernetics regards human
beings and animals as essentially very complicated machines and declares:

The title of the book, The Brain as a Computer, is intended to
convey something of the methodology involved; the idea is to
regard the brain itself as if it were a computer type of control
system, inthe belief that by so doing we are making explicit what
for some time has been implicit in the biological and behavioral
sciences.

Another philosophical justification for mechanistic mathematical systems
hastodowiththe preference for objectivity over subjectivity. This preference
is supposed to be more in keeping with the tenets of "science." Given this
rationale, itis not hard to see that objectivity inthe form of empiricism became
paramount for any effort to be considered scholarly and thereby respected.
Subjectivism was relegated to virtual nonexistence. Consciousness had
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becomeanenigma. Intuitionand insight could be explained away immediately
as unscientific and not worthy of consideration, reason couid be explained as
nothing more than an "adding and subtracting of names for that which is
sensibly experienced," sense experience could be explained as "simply a
motion in the nerves," and the will as "simply the last phase, before overt
action, in any conflict of opposing incipient notions” (Hall, 1956). Even
consciousness has now been explained in mechanistic fashion. Asmonov
(1967) describes consciousness as attention generated by an amplified
stimulus in the form of electrical activity moving from one model to another in
the cortex. The "mind" construct of Descartes has been increasingly
superceded by the "body" entity. Thus, technical activity seemed to be come
anendinitself. Mumford (1970, p. 95) describes the climate by stating:

From Descartes’ time on until the present century, to all but the
most penetrating minds in science, a "mechanistic" explanation
of organic behavior was accepted as a sufficient one. And as
machines became more lifelike, Western man taught himself to
become in his daily behavior more machine-like. This shift was
recorded inthe changing meaning of the word "automaton"which
was used in English as early as 1611. At first this term was
employed to describe autonomous beings with the power to
move alone; but it soon came to mean just the opposite: a
contrivance that had exchanged autonomy for the powers of
motion "under conditions fixed for it, not by it" (New Oxford
Dictionary).

Anextlogical step isto equate quantification with analysis. Bergman (1957,
p. 67) states:

Initself quantification is of course no more a magic key or cure-all
than is axiomatization. ifthe material available warrants it, then
its advantages are indeed incomparable. To bring out clearly
why this is so is the task of the philosophical analyst. But how
much of it the material warrants is a question not of principle but
of strategy, on which the philosophical analyst of science cannot
advise its practitioners. The matter is one of tact and judgment,
the sort of thing one must have at his fingertips. Another cause
of all the stridency in favor of quantification lies, | think, inthe
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social climate, of late the behavior sciences have become the
basis, or the alleged basis, of professions whose numerous
members are rapidly acquiring managerial power and who, for
better or for worse, aspire to even more. Such aspiring groups
are in need of prestige symbols. The white coat of the medical
man is one; the mathematical formula is another.

DIFFICULTY WITH TRADITIONAL MATHEMATICS

Ifthe human brain mirrored mechanistic mathematics, articulation of human
thought would already have been accomplished. Systems which can predict
the motions of bodies, deal in nanoseconds, and analyze probabilities with an
accuracy and precision which once was considered to be just short of
miraculous should be expected to be sophisticated enough to deal with the
human brain. So far, mechanistic mathematical systems have proven
unsuitabletothetask. Zadeh (1973, p. 28) explains it in the following way:

The conventional quantitative techniques of system analysis are
intrinsically unsuited for dealing with humanistic systems or, for
that matter, any system whose complexity is comparable to that
of humanistic systems. The basis for this contention rests on
what may be called the principle of incompatibitity. Stated
informally, the essence of this principle is that as the complexity
of a system increases, our abilty to make precise and yet
significant statements about its behavior diminishes until a
threshold isreached beyond which precisionand significance (or
relevance) become almost mutually exclusive characteristics. It
is inthis sense that precise quantitative analysis of the behavior
of humanistic systems are not likely to have much relevanceto
the real world societal, political, economic, and other types of
problemswhichinvolve humans either as individuals or in groups.
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Zadeh (1975) later included human thought in his definition of humanistic
systems.

Precision is sacrificed for relevance in humanistic systems because the
complexity of the real world forces humans to think not in numbers or sets,
but by manipulating classes of objects inwhichthetransition from membership
tononmembership may be gradual ratherthan abrupt. Degree of membership
in the category learning disabled is one example. Instead of manipulating
numeric variables by precisely defined, sequential mathematical operations,
humans can manipulate both numeric and linguistic variables in parallel to
reducecomplex phenomena systematicallyto approximate characterizations.
Thissummarizing ability allows humanstowalk, understand distorted speech,
read, drive a car, play chess, decipher sloppy handwriting, search for lost
objects, exclude irrelevant information in making decisions, and give
weightingsto data in using it in meaningful ways. So instead of taking a mass
of preselected data, sequentially comparing each bit of datum against all the
others to make vyes/no decisions, and drawing precise, but possibly
insignificant answers as mechanistic systems such as computers do, the
human system selects the information it will use, reduces it to a trickle,
summarizesit, and manipulatesitto draw relevant, but not necessarily pre cise
conclusions.

Computer scientists and systems engineers have long recognized that
people can understand and operate upon vague, natural language concepts.
Computers, however, are extremely rigid and precise information-processing
systems. This inherent rigidity severelylimits a computer’s ability to abstract
and generalize fundamental conceptual functions when traditional
mathematical systems are used.

Real world considerations also force a reexamination of the objectivity
whichisthe sine qua nonof many sciences. While the importance of objectivity
cannot be denied, subjectivity is inherent in human thinking. It is what makes
us humanand should bevalued. Huchings (1964, p. 160) criticizes those who
would desireto eliminate subjectivity infavor of objectivity in the following way:

FrancisBacon (1561-1626), Lord Chancellor of England, was one
of the most influential writers of his day. He stressed the need
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for facts, which he thought could be coliected, then passed
through a sort of automatic logical mill to give the results. This is
anover-simplification of scientific inquiry since it takes no account
of what is, after all, the most important and most difficult part of
scientific investigation-use of judgment. How does the scientist
choose hisfactsinthe first place? Bacon's method simply cannot
be applied in practice since facts are infinite in number. Some
guidance can be obtained by those who follow in the footsteps
of others in observing the success or failure of previous acts of
choosing but, inthe last resort, the man of science must use his
ownjudgment.

Kaiser (1974, p. 3) puts it succinctly when he says: 'The 'objectivity’ of
science has led investigators away from a valuable source of knowledge and
has imposed the single dimension of objective data on man's epistemological
investigations."

Insum, traditional mathematicaltechniqueswere not developed to capture
the vagueness or fuzziness involved in human thought. Human thought is
characterized by both precisely definedlogic and variables whichmayor may
not be precisely defined. These variables may take a numeric or linguistic
form, depending on the complexity and the importance of the task involved.

THE SEARCH FOR MODELS

Two requirements for articulating human thought about learning disability
became apparent. The first is that the model had to have the capability of
capturing human thought. The second is that the model had to facilitate
articulation through an iterative process. Articulation is a process in which a
person "talks through" an orientation. Besides fuzzy set theory, Bayesian
revision of subjective probabilities and interpretive structural modeling were
considered.
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Bayesian Methodology

Kaiser (1974, p. 4) describes the method as follows:

Bayesian methodology provides a means of mathematically
incorporating the hunches of specialists into the probability of
agiven event. The statistics parallel closely the procedures man
uses intuitively in dealing with his milieu. Ratherthan sayingone
hypothesis is false and another is not false, Bayesian statistics
ask what are the probabilities of the alternate hypothesis. In
addition to the determination of the probabilities of the alternate
hypothesis, Bayesian statistical proceduresincorporatethe prior
information which is available to the specialist because of his
professional experience.

Novick (1975, p. 377-378) betieves that the Bayesian methodology is
superior to traditional statistical methods because two major problems are
solved. He states:

The major problem with both Neyman-Pearson and Fisherian
classical statistics is that neither system makes it possible to
construct direct probability statements about the parameter of
interest. Using classical statistics, we can talk about the
probability of a random interval coveringthe mean, but we cannot
talk about the probability of the mean being within a specified
interval. This seems very peculiar indeed. We are not to be
permitted to make statements about these things that are the
subject of our investigation. This is an unsatisfactory state of
affairs. What we want is a system that permits us to say: "The
probability that the unknown proportion is greater than &1 and
lessthand2is 1-d." Butto make probability statements about &,
we must have a probabiity distribution for ®. In Bayesian
statistics such a distribution is possible and meaningful and
indeed is the central objective of a statistical investigation.

A second problem with classical procedures is that they provide
no mechanism for incorporating into the statistical processing
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priorinformationwe may have about the parameter. Basicallywe
must ask whether it is reasonable to evaluate evidence from an
experiment while ignoring other available information extraneous
tothe particutar experiment. Upon reflection, this does not seem
unreasonable.

It isthe second problem which is of concern inthis consideration of human
thought or opinion. The Bayesian method may be thought of as a rule for
modifying or revising opinion expressed as probabilities in light of new
evidence. The process begins by having an expert witness estimate what he
considers to be the probabilities of a given set of events. These are known as
prior probabilities, i.e., the state of knowledge prior to observations of a specific
event or condition. The next step is to make an experimental observation and
to estimate its conditional probabilities. These conditiona! probabilities are
thencombined withthe prior probabilities to yield a posterior probability, which
may be thought of as a revised estimate after the observations have been
made. In tlight of new evidence, the posterior probability becomes the prior
probability and the process is repeated if the observations are independent.
This process may be repeated as long as new information is available.

An example may be illustrative. Assume that one wants to know the
probability that the condition of learning disability (LD) exists in a given child.
An expert believes that the prevalence of LD is five percent (5%). This five
percent is a prior probability. In his experience with the school-aged
population, the expertfinds that fifty percent (50%) of those labeled LD and ten
percent (10) of those labeled nonlearning disabled (NLD) exhibit a
characteristic called "A." These are the experimental observations or
conditiona! probabilities. What if the child under observation exhibits "A?" Is
that child LD? The Bayesian technique can give a probability estimate with
simple calculations. The formula is as follows:

P(LD|A) =P(A|LD) P(LD)/ {P(A|LD) P(LD)} + {P{A|NLD) P(NLD)}
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Where

P(LDA) is the posterior probability, i.e., the probability that the child is LD
when he exhibits "A"

P(LD) is the prior probability, i.e., the prevalence of LD in the school-aged
population

P(NLD) is another prior probability, i.e., the prevalence of NLD inthe school
population

P(ALD) is the conditional probability, i.e., the probabitity that "A" will be
exhibited if a child is, in fact, LD

P(ANLD) is another conditional probability, i.e., the probabitity that "A" will
be exhibited, given the fact that the child is NLD

P(LDA) =(.5) (.05) /{(.5) (.05)} + {(.1) (.95)} = .21

Now it can be stated that if a child exhibits "A," the probability that the child
is LD is .21 and the probability that the child isNLD is 1.00 minus .21 (1.00 - .21
=.79).

The expert next observesthatforty percent (40%) ofthose labeled LD exhibit
characteristic"B"andten percent (10%) ofthose labeled NLD exhibitthis same
characteristic. The previous posterior probability (assuming that "A" and "B"
are independent) obtained from the equation (.21) now becomes the prior
probability and the data is applied to the formula:

P(LD|A&B) =(.4) (.21)/ {(.4) (21) + (1) (.79)}

It can now be stated that if a child exhibits both "A" and "8," the probability
that the child is LD is .52 and the probability that the child is NLD is 1.00 minus
.52 (1.00-.52 = .48).

This process could go on indefinitely. As many characteristics as a
theoritician desired could be considered if the characteristics were
independent of each other. There is even some evidence (Lichtenstein, 1972)
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to show that the Bayesian methodology is robust enough to withstand
nonindependence.

It is reasonable to assume that the Bayesian method would be even more
useful if measures of the characteristics could be incorporated. Fortunately,
Bayesian methodology can be used with continuous (e.g., test score) data as
well asdiscrete data. Inthe example cited above, the method assumes discrete
data and makes no provision for degree of severity of each characteristic. If
each characteristic is continuous rather than discrete, consider Figure 1.

Characteristics"C"and"D"in Figure 1 have been measured by separate test
instruments. Each abscissa represents the scores on a measure ol one
characteristic and each ordinate representsthe frequencies of scores. Onthe
first graph in Figure 1, the distributions of scores for the hypothetical
characteristic "C" are plotted for both the LD and NLD sample. The shaded
area represents the area of overfap or commonality. The second graph is a
similar plot for the hypothetical characteristic "D." The question concerns a
child whose score places him in the shaded area. |sthat child LD or NLD?

If characteristics which an expert believes to be indicative of LD were
measured and their distributions for LD and NLD children were obtained, then
for each score of each characteristic, a likelihood ratio (LR) could be
established. Thiswould bethe ordinate ofthe score distributionfor LD children
divided by the ordinate of the distribution for NLD at the abscissa value forthe
score in question. Figure 2 presents a graphic representation of the likelihoad
ratio.

At the score of fifty (50) for characteristic "D," the likelihood ratio would be
calculated as follows:

LR =AT/ST

Foranyscore, alikelihood ratio greaterthan 1.00 indicates that LD chiidren
have that score more often than NLD children. If the likelihood ratio is less
than 1.00, NLD children havethatscore moreoftenthan LD children. To obtain
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Scores
Characteristic "C*

Scores
Characteristic "D"

FIGURE 1
Representative plots of continuous data for LD and LD on two different
measures
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0 50 100

Scores
Characteristic "p"

FIGURE 2
Graphic representation of fikelihood ratio.

a probability estimate for LD, the Bayesian technique dictates that one or
more scores be obtained for a child in question, the likelihood ratio for each
score be calculated, and these likelihood ratios be subjected to the following
formula:

P(LD(C,D,EF) =LRollI LR/ (LRo [T LR) +1

Where P(LD|C,D,E,F) is the probability of LD given the characteristics
CIDDEIF)

LRp is the prior odds ratio (in this example 5% of the school-aged
population is presumed to be LD and 95% is NLD, hence LRg =
.05/.95)

[ILR the product of the likelihood ratios--the likelihood ratio for the set
offourdata (C,D,E,F) observed (ifthe observations are statistically
independent)
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Then, if LRc = .07,LRp = 1.5, LRE = 10.2, and LRF = 4.5, the calculation
of the probability of LD for the child is as follows:

P(LD|C,D,E,F) = (.05/.95)(.07)(1.5)(10.2)(4.5)/
/(.05/.95)(.07)(1.5)(10.2) (4.5) + 1 =
=254/3.54 = 0.72

It can be said that a child who earned the scores depicted above on
instruments designed to measure hypothetical characteristics "C,""'D,""E,"and
"F* had a probability of .72 of being LD.

The above discussion illustrates the concept of applying Bayes’ rule to a
group of test scores. But before that can be done, certain mathematical
requirements must be satistied. The distributions must be standardized sothat
comparisons are compatible. One approach is to model the test score
distributions by the beta distribution. The steps are as follows:

1. Rescale the scores into the range 0--1

2. Usethose transformed scores to obtain the beta distributions, each
of which is assumed to have a beta density of:

1

fx) = 1/8(m.n) (™) (1-x)™
where n = (1-;()/5,(2 {;(1-;) -sxz}
m = xn/(1 -x)

and B (m,n) is the beta function

3. Calculate the likelihood ratios

LR(x) = f(x)Lp /f(x)NLD
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4. Apply the formula to obtain a probability

P(LD|C) = LRo 1 LR/(LRo T LR) + 1

When this standardization has been completed, one need only look in a
table to find the likelihood ratio for a score and then apply it in the formula
shown in step four above.

Whilethe Bayesiantechnique is useful for identification of learning disabled
children, a median estimate does not elicit the intuitive insights, wisdom, and
knowledge of each clinician. The method is not designed for articulation of
mental processes. Another problem with applying Bayesian methodology or
traditional mathematical methods tothe identification of children with fearning
disability isthat each child is presumed to be learning disabled or nonlearning
disabled. The Bayesiantheorem yields a probability estimate. What iflearning
disability were thought of as an entity in which the change from membership
to nonmembership was gradual rather than abrupt? In that case, any
characteristics and severity of those characteristics would interact to
determine the degree of handicap of each child. For purposes of illustration,
consider a continuum in which there are degrees of severity of neurological
dysfunction (LD is thought to be included in this group). One end of the
continuumcould belabeled “classic cases" and the other end could be labeled
"perfectly neurologically functional". Each child would then be placed at some
point on this continuum. Of course this example is only illustrative and
simplistic because other handicapping conditions are nottaken into account.
A continuum model may be more indicative of the understanding of learning
disability since clinicians appearto prefer different cut-off point would be those
called learning disabled; on the other side of the cut-off point would be those
who would be called normal, or something else. Because clinicians have
specified prevalence figures for learning disability from one percent to over
thirty percent (Lerner, 1985), credence is lent to the notion that learning
disability results from an interaction betweenthe number of characteristics and
the degree of severity of those characteristics. If learning disability is thought
of as a range of degrees of dysfunction, then probabilities become less useful
than a deception of a point onthe continuum where an individual falls.
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Mental Matrix Multilevel Interpretive
Model ! Model — Digraph  |— Structural
Model

Documenting

Feedback for Learning

FIGURE 3
Block diagram of interpretive structural modeling process, adopted from
Warfield (1974)
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Interpretive Structural Modeling

Another promising approachtothe question of interaction between number
of characteristics and degree of severity is interpretive structural modeling.
Farris and Sage (1975, p. 153) describe the technique as follows:

Interpretive structural modeling is a tool which permits
identification of structure within a system. The system may be
technical, social, medical, or any system which contains
identifiable elements which are related to one another in some
fashion. The system may be large or small interms of elements;
and it is in the larger, complex systems which benefit the most
frominterpretive structural modeling.

The characteristic whichthese complex systems have incommon
isthat each has a structure associated with it. Thatstructure may
be obvious as inthe managerial organization of a corporation, or
it may be much less obvious as in the value structure of the
decision maker. Inthe physical sciences, structure is most often
articulated in the form of mathematical equations. In the
behavioraland social sciences, structure is usually not articulated
insuch aclear fashion. Whether articulated or not, the structure
of a system must be dealt with by individuals and groups. The
interpretive structural modeling process transforms unclear,
poorly articulated mental models of systems into visible well -
defined models.

Because the human brain is severely limited in dealing with complexity
(problemsinvolving a significant number of elements and relations among the
elements), mental models of phenomena tend to be muddy and piecemeal
(Waller, 1975). In interpretive structural modeling, the term "mental model"
means the mental picture that a person holds regarding the relationships
among the elements of a system. Examples of interpretive structural models
(Warfield, 1974) are: block diagrams, flow charts, and the or ganization of
books such as Organizations (March and Simon, 1958). Because interactive
computer programs have been developed, it is possible to structure complex
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relationships so that mental models can be transformed into clear, precisely
defined, well-organized documentation.

The process is represented graphically in Figure 3. In this method, a
complete knowledge of content is not necessary. If a specialist knows the
relationships among the elements, structuring may take place.

Waller (1975) applied this process to the analysis of the learning disabled
child. The first step was to replace a mental model with a matrix model. A
specialist describes or is given the elements (content) of a system. The
specialistinthe Waller study was alearning disability teacher. She was given
as a system the thirteen categories (elements) of the Kirk and Kirk (1971)
psycholinguistic diagnostic paradigm. The thirteen categories were: (1)
auditory reception, (2) visual reception, (3) auditory association, (4) visual
association, (5) verbal expression, (6) manual expression, (7) grammatic
closure, (8) auditory closure, (9) sound blending, (10) visual closure, (11)
auditory sequential memory, (12) visual sequential memory, and (13) visual-
motor coordination.

The number assigned to each was used in the construction of a binary
matrix. Thiswas done by askingtheteacherto consider a particular child and
answer a series of questions until the relationships concerning the
psycholinguistic process of that child were completely specified. Examples
of questions were the following: Is the child weaker in auditory reception (1)
than visual reception (2)?; Is the child weaker in auditory reception (1) than
auditory association (3)?; Is the child weaker in auditory reception (1) than
visual association (4)?

Questions such as these were asked until the matrix was completed. An
affirmative answer on the part of the teacher was coded as 1 and a negative
answerwas coded as0 (hencetheterm binary matrix). The matrix for one child
is presented in Figure 4 .

From this matrix, a digraph (directed graph) was constructed. This is
showninFigure 5. Sinceelements 1,2, 4, 5,10, and 12 had an equal number
of negative responses, and more negative responses than any other elements,
it was concluded that the teacher believed that this particular child
demonstrated strengths to the same degree in elements 1, 2, 4,5, 10, and 12.
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1 ¢ 0o 0 0 O O o0 o0 O o] o] o] [¢]
2 ¢ o o0 0o O O o0 0 o [ <] [ [
3 1 1 o0 1 1 ¢ 1 1 o 1 1 1 1
4 o o 0 o O 0 0o o0 o o] [+] [ [*]
5 ¢ 0 0 o 0 0o 0 o0 o [¢] [ [ [¢]
6 1 1 1 1 1 ¢ 1 o 1 1 1 1 1
7 1 1 o 1 1 ¢ o0 o0 o 1 1 1 0
8 1 1 o0 1 1 ¢ 1 o o 1 1 1 1
9 1 1 1 1 1 ¢ 1 1 o 1 1 1 1
10 ¢ 0o 0 0o O 0 0 o0 o [ <] [ [
11 1 1 o0 1 1 ¢ o0 0 o 1 <] 1 [
12 o 0 0 0 O 0 o 0 o 0 0 0 [
13 1 1 0 1 1 O 1 o o 1 1 1 [
FIGURE 4

The matrix for one chitd.

Similarly, element 11 had the next highest number of negative responses,
element 7 was below that, and so on. The process is much more complicated
thanthis when the relationships among elements are more complex (Warfield,
1973). An example of what could happen, given complex relationships, is
shownin Figure 6.

The interpretive structural mode! is simply the substitution of written
statements orlabels for the number codes. This has been done in Figure 7 for
the Waller (1975) study.

This method can be usedto establish a profile of each child’s strengths and
weaknesses according to a particular theoretical framework. Data tempered
by experiential judgment may be inctuded in the model, leaving those who use
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FIGURES
Digraph of LD child.

the method to formulate a more precise personal mental model, ie.,
establish a more definite and complete set of relationships among the elements.

FIGURE 6
Example of a complex Digraph.
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Auditory Visual Visual Verbal visual vigual
Reception Reception Association Expression Closure Sequential
Memory
\ Auditory Sequential /

Memory

Grammatic Closure

I Visual-Motor Coordination l

i

Auditary Closure

| Auditory Association I
Sound Blending

i

FIGURE?7
An interpretive structural model from the Waller (1975) study.

Interpretive structural modeling seems to have value as a way to structure
relationships among theoretical elements for purposes of making general
diagnoses. Inthe Waller (1975) study, however, a glance at the test results
alone might have precluded the use of the interpretive structural modeling
technique. Itis atime consumingtechnique which is not designed for gaining
an understanding of the meaning of the content of a theory. In complex
systems, computer assistance is necessary. The method would be more
useful if diagnosis could be done directly instead of usingthe categories of a
diagnostic instrument. The diagnosis by‘interpretive structural modeling may
beless useful, however, than that by the instrument itself because the digraph
can not specify the quantitative relationships of the instrument. Interpretive
structural modeling allows one to structure complex relationships into a
computer program, but does not aid understanding of these relationships.
Nonclinicians without extensive theoretical background can successfully use
this technique in dealing with individual children, but the results are not
generalizable.
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Fuzzy Set Theory

Human thought processes can be captured and quantified, as stated by
Korner (1966, p. 35):

Classical elementary logic, ie., the logic of unanalyzed
propositions of quantification, rests on the requirement that all
classes definable within it be exact, i.e., do not admit of neutral
candidates for membership. This does not mean that inexact
classes are, therefore, incapable of precise logical treatment. An
impreciselogic would be a contradictioninterms. A preciselogic
of inexact classes is not. it is obvious that once we extend
elementary logic by allowing inexact classes, not only the
algebra of classes, but aiso its theory of quantification will be
affected.

For we then have to allow the quantifiers to range over inexact
extensions; and allow propositions which express that an object
is a neutral candidate for membership in a class.

Fuzzy settheory is a way to capture that uniquely human process. More
complete descriptions of the model may be found in Kaufmann (1975),
Bellman and Giertz (1973), Zadeh (1971), and Nowakowska (1982).

Fuzzy sets may be thought of as classes in which the boundaries are not
sharp. An example of such a class is age. At what age is one old rather than
young? If age is thought of as consisting of those two distinct periods in life,
one could picture these inthe classical dualistic sense as shown in Figure 8.

The problem is that humans don’'t operate under such precision. Sharp
boundaries do not exist between young and old. A person who is called old
by someone younger than himself may not be willing to apply that label to
himself. The transition between "young" and “old," then, can be said to be a
fuzzy boundary and could more appropriately be pictured as gradual as in
Figure 9, rather than abrupt as is pictured in Figure 8.
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Young old

] age

FIGURE 8
Young-old dichotomy.

The ordinate representsthe degree of membershipinaclass. The abscissa
istheageinquestion. Apersonafage"A" would be said to have .2 membership
inthe class "young." Linguistically, this might be described as being not very
young and notvery old.

rd
CIossover area age

FIGURE9
Age as afuzzy set.

In fuzzy set theory, both numerical variables and linguistic variables are
takeninto consideration. Linguistic variables are summarized descriptions of
fuzzy sets. Examples are the following terms (called hedges by Zadeh, 1975):
sort of, alittle, not very, extremely, a lot of, very very, afew, quite, and more or
less.
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Humans manipulate both linguistic and numerical variables in conditional
statements and algorithms. Three examples of conditional statements are:

lfx = .2,theny = .7
If x is small, then y is sort of large
Ifxisverylarge y = 4.

When the complexity of the relationships increase, algorithms are used to
define the functions. Zadeh (1973, p. 30) speaks of this when he says:

Essentially, a fuzzy algorithm is an ordered sequence of
instructions (like a computer program) in which some of the
instructions may contain labels or fuzzy sets, e.g.:

Reduce x slightly if y is very large
Increase x very slightly if y is not very large and not very small
If x is small then stop; otherwise increase x by 2.

Some other examples of fuzzy sets are baldness, height, size, and the
earth’s atmosphere. How many hairs does a man have to lose before he
becomes bald? How tall is tall in a person? By adding one stone at a time,
when does the size of a pile change from small to large? At what point is
something out, ratherthanin, the earth’s atmosphere? These questions may
be thought of as an extremely small sample of the problems that humans
encounter in trying to conceptualize the wortld. Zadeh (1965, p. 338)
summarizedthe dilemma by stating:

More oftenthan not, the classes of objects encountered inthe real
physical world do not have precisely defined criteria of
membership. For example, the class of animals clearly includes
dogs, horses, birds, etc., as its members, and clearly excludes
such objects as rocks, fluids, plants, etc. However, such objects
as starfish, bacteria, etc. have an ambiguous status with respect
to the class of animals. The same kind of ambiguity arises in the
case of a number such as 10 in relation to the "class" of all real
numbers which are greater than 1.
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Clearly, the “class of all real numbers which are much greaterthan
1," or “the class of beautiful women," or "the class of tall men,"
do not constitute classes or sets inthe usual mathematical sense
oftheseterms. Yetthefact remainsthat suchimprecisely defined
“classes" play animportant role in humanthinking, particularly in
the domains of pattern recognition, communication of
information, and abstraction.

Inexact classes may be quantified through use of fuzzy settheory (Goguen,
1969), ageneralization of the traditional theory of sets (Hersh and Caramazza,
1976).

LEARNING DISABILITY - AFUZZY SET

Learningdisability may be thought of as a phenomenon or construct which
does not have precisely defined criteria for membership. The heterogeneity
mentioned in the literature indicates a degree of complexity which defies
precise description. Instead of defining learning disability in opposition to
nonlearning disability as had been done in previous research (Kass, 1977),
the condition can be defined according to theorized boundaries, with
membership within those boundaries ranging from mildto severe. A portrayal
of learning disability as a fuzzy set is given in Figure 10.

The universe of discourse is the school-aged population, represented by
the rectangle. The concentric rings represent the condition of learning
disability, with the outer rings depicting the milder range and the inner rings
depictingthe more severe range. Fuzziness is shown bythe increasing number
of breaks in each circte as one moves fromthe center outward. The innermost
circle may be thought of as hard-core learning disabled children or "classic"
cases. Childrenwith mild learning problems would be placed inthe outermost
circle.
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FIGURE 10
Fuzzyset portrayal of learning disability.

If mental models of the construct called learning disability could be
accurately quantified, a basis for comparison and ultimate consensus about
what constitutes the handicap and how to identify it will exist. There would
be three advantages: (1) learning disabled children could be accurately
identified by persons other than clinicians, (2) resources could be allocated
proportionately to those most in need of services, and (3) scarce resources
would be conserved through increased efficiency.

Toillustratethe advantage of quantifying atheoretical model, a clinician was
asked to articulate her model. The Kass (1977) model was quantified because
of its value in the field of learning disability. If one model could be accurately
depicted, the value of using fuzzy set theory to quantify human thought in this
and other educational and psychological applications could be established.

THE PROCESS OF QUANTIFICATION

The process of quantification can be effectively accomplished with a
clinicianand twomodelers. First, the clinicianverbalizes her model by "talking
through" which data are needed for identification, the relationships among
these data, and the importance of each datum to the model. The modelers
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record this information and then ask the clinician to weight the importance of
thevarious data. Formulae are constructed accordingtothe specifications laid
down bytheclinician. The data and formulae are manipulated until the results
agree with the clinician’s verbal statements. These formulae are then placed
inseveral algorithms. Datafrom'live children" are used. Whenthe output from
the formulae agree with the clinician’s intuitive judgments, the value of the
membershipfunctionforthefuzzy set "learningdisabitity' foreach child whose
datawere used is confirmed. Learning disabled students canthen be identified
by someone other than the clinician by entering the pertinent data into the
formulae. Finally, a quantified model of the theory in the form of a computer
program is constructed. The complete mode! is available in Horvath (1978)
and further explanation is offered in Horvath, Kass, and Ferrell (1980).

Five specific procedures were followed in quantifying the theory:

1. Averbal statement of the theory was developed.

2. A quantified model of the verbal statment was established.

3. A questionnaire based on the quantified model was constructed.
4. Acomputer program was developed.

5. The quantified model was tested using cases.

Verbal Statement

The Kass model is a multidimensional age-related model of deviance in
learning which indicates learning disability. Kass (1977) defines learning
disability or dyssymbolia as being:

characterized by extreme deviance in the acquisition and use of
symbolsinreading, writing, computing, listening, or talking; which
deviance is due to an interaction between significant deficits in
develop- mental functions and environmental conditions which
make the individual vulnerable to those dysfunctions.
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Four criteria are necessaryforlearning disabilty: Thefirst is that the student
inquestion should have normat achievement potential as indicated by a normal
or nearly normal score on a standardized test of intelligence.

Secondly, thestudent must demonstrate behavior characteristics indicative
of learning disability. Five types of behaviors indicate learning disability as
follows: (1) an attending deficit is noted in confusion about the direction of
letters and numbers, inlack of eye-hand coordination, and in not focusing on
the task at hand; (2) a labeling deficit is noted in not remembering symbols,
remembering onedayand not another, exhibiting confusioninwhat things are
called, and in seeming not to have a technique for rehearsing what is to be
memorized; (3) an understandingdeficit is noted in not separatingfigurefrom
background, not learning more than one meaning per word, inaccurate
guessing from context, and not following directions; (4) an integrating deficit
is noted in inaccurate performance in skills such as spelling, writing, syntax,
and sometimes in word-calling to such a degree that remediation requires
getting rid of bad habits; and (5) an expressing deficit is noted in difficulty in
expressing ideas through reading, writing, and talking, not because of a lack
of intelligence, but because of inadequate basic skills which are ordinarily
acquired inthe first few grades.

The third criterion forlearning disability is low achievement. A student who
demonstrates low achievement earns a score at or below the sixteenth
percentile on at least one subtest of an achievement test which has been
standardized on a sample of the same age or grade placement. The fourth
criterion for learning disability is evidence of component deficits within
age-related functions. It is hypothesized that children pass through five
stages of development called functions. Eachfunction is qualitatively different
from th e others. This is similar to the stage theory posited by Piaget or
Erickson. The functions are as follows:

1. Sensory Orientation. This is the physiological or functional readiness
stage in which the child’s senses are activated. Dysfunctions in this period
occur through deficits in body balance, visual pursuit, and auditory
discrimination.
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2. Memory. Occuring from the end of Sensory Orientation through
approximately age eight, memory involves the ability to reproduce sensory
images whenthese are nolonger externally present. The young child imitates
models and later recalls those imitations. To illustrate this point, consider the
factthat children can readily learn morethan onelanguage before seven years
of age. Some of the deficits which may be noted during the development of
the Memory Function are hyper- or hypo-excitability, difficulty with rehearsal,
and poor short-term

3. Re-Cognition. This is the understanding of semantic meaning and
structural meanings. Sensory impressions are colored by concepts, thus
changingearlier cognition oftheworld. Children fromapproximately age eight
through eleven engage inword play, reflecting more flexibility in thinking than
during the memory function, which is highly literal in nature. Deficits include
difficulty in haptic discrimination, visual figure ground distinctions, and in
visualization.

4. Synthesis. This involves the habituation or automatization of previousty
learned modes of response to the environment. Observations made by the
individual duringthe previous functions become compacted into internalized
representations. Whereas sensory discriminations were learned previously,
sensory associations must be made in the age range of eleven to fourteen.
Deficits may appear as impairments in temporal sense, monitoring, and
auditory-visual-haptic coordination.

5.Communication. This is the process by which meanings are received
from others and expressed to others, either consciously or unconsciously.
Synthesized skills of speaking, writing, gestures, and reading now take on a
personalized style, and personal responsibility is taken for the consequences
of what is communicated. This is the most complex of the human functions
andinvolves processingwhat is received through one’s senses and awareness
of what one is transmitting to others. Deficits are manifested in mathematical
comprehension, reading comprehension, and in writing.

Fromthis base, statements of conditions and logical relations were obtained
in a series of interviews with the clinician. Throughout the procedure, it was
necessary for the clinician 1o take an active part so that her model could be
accurately captured. Sources of information and cut-off points were included.
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Through discussion and revision, these statements were reduced to linguistic
variables and logical relations in the context of fuzzy set theory. These
relationships were depictedthrough use oftheterms AND and OR inthe verbal
statement. Betweentwo characteristics or criteria, an AND indicated that both
charactreristics must be present for learning disability to be indicated and an
OR meant that only one characteristic was sufficient to indicate learning
disability. The process was iterative, intense, and depended on interaction
between the clinician and modelers. Modeling one's thought is a challenging
intellectual exercise.

An example of a portion of the process will be given to illustrate the
demands involved. The clinician stated that one characteristic of learning
disability inthe sensory orientation function included symptoms suggestive of
neurological disorder. After further discussion, the specific symptoms were
stated as: excessive crying as reported by a parent, supersensitivity to stimuli
as reported by a physician or parent, convulsions as reported by a parent or
physician or both, regidity of body as reported by a parent, screeching as
reported by a parent, lethargy as reported by a parent, premature birth as
reported by a physician, high feverfor several days as reported by a physician,
and reverse swallowing as reported by a physician. Any one of these
symptoms suggests a neurological disorder. Forthat reason, an OR was used
between each symptom to denote a suspected neurological disorder. These
symptoms were then grouped according to the structure of the clinician’s
theoretical orientation.

Quantified Model

This step involved having the clinician assign membership values for each
characteristic expressed in the verbal statement. Class membership for each
characteristic was assigned avalue onthe [0,1] continuum, which represents
the degreeto which a child would be said to display the characteristic. All the
input data were either judgments or specified test data, and the output was a
value of the membership for the fuzzy set of learning disability. For example,
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in the sensory orientation function example previously cited, the symptom of
convulsions reported by a parent was assigned a value of .3, convulsions
reported by aphysicianwas .5, convulsions reported by bothwas .6, premature
bithwas .1, and so on.

Inthose cases where age influenced the membership value, a graph was
drawn which reflected that influence. For example, delay in developmental
milestones must be evaluated month by month. The age at which the
milestone occured determined the membership value for learning disability.
Othervalueswhich depended on age or other functions also became apparent.
it was found that these values could be graphed as sigmoid curves or three
dimensional unit squarefunctions. Equations were fitted tothe graphs, which
made it easier to determine the membership function when given the score or
month or other appropriate variable. Functions other than sigmoid curves or
unit squares could also be used to depict representations of the clinician. The
quantified model for re-cognition appears as Table 1 (Horvath, Kass, and
Ferrell, 1980).

TABLE 1
The Quantified Model for Re-cognition

A child inthe re-cognition function would be said to have indicators of
learningdisability if he

ALLOF A. hasthetrait of normal achievement potential,
shown by the symptoms of

1. adequate intelligence, indicated by

a. 1Q score of 80 or above .8 OR
b. 1Q score of 75 to0 79 .5 OR
c. 1Q score of 50 to 74 A OR
d. 1Q score below 50 .0 OR
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2. adequate verbal behavior, indicated through

a. percentile (p) on a vocabulary test
1701 + e.2(p-25))

b. percentile (p) on a verbal opposites test
1701 + e42(p-25))

c. percentile (p) on a verbal absurdities test
1701 + elz(p-zs))

d. percentite (p) on a verbal analogies test
1(1 + e2P29)

B. has behaviorcharacteristics of LD, shown by

1. difficulty paying attention, indicated

in a clinical report 6
2. difficulty sitting still or lack of

perseverance, indicated ina

teacher/expert report 4
3. jerky, uncoordinated motor movements,

indicated ina report 3
4. difficulty working indicated

in ateacher report 4
5. notfollowing directions,

indicated in ateacher report 6
6. difficultywithfriendships,

indicated in a report 4
7. immaturity, indicated ina report 3
8. requiring continuing medication/special

diet, indicated by a medical report i

C. shows evidence of component deficits within

age-related functions, by

1.visualization problems, indicated ina
a. score at or below the 16th percentile
onthe Raven’s Coloured Progressive
Matrices Test .8
b. clinical report .8

OR

OR

OR

OR

OR

OR

OR

OR

OR
OR

OR
OR
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score at or below the 16th percentile
onthe WISC-R Mazes subtest .8

2. hapticdiscrimination problems, indicated by

a.

score at or below the 16th percentile on the
Ayres Tactile Discrimination Test 7
report 8
score at or below the 16th percentile

onthe Benton Finger AgnosiaTest .8

3. alackof connecting visual and auditory
symbols, indicated ina

a.
b.

report by an expert of a reading block .6
report by an expert of excessive

reliance on phonetic spelting 4
report of excessive reliance on

auditory memory for sequence of

letter names 3

4. report of alack of visual / auditory /
/haptic connections 4

D. hasthetrait of significantly low achievement,
shown by the symptoms of

1. difficultywith arithmetic, indicated in

a.

d.

score at or below the 16th percentile on a
standardized arithmetic computationtest .6
report of difficulty with arithmetic
computation 5
score at or below the 16th percentile on
standardized test of story problems .6
report of difficuity with story probiems .4

2. difficulty withreading, indicated in

a.

score at or below the 16th percentile on a
standardized reading test 5
report of difficulty in oral reading 5
score at or below the 16th percentile on a
standardized word discriminationtest .6
teacher report of poor word
discrimination 3

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR



A Fuzzy Set Model of Learning Disability 377

e. score at or below the 16th percentile
on a standardized test of reading

comprehension 3 OR
f.  teacherreport of difficulty with
word meaning 2 OR
g. clinical report of difficulty with
outlining skills 7 OR
3. difficultywith penmanship, indicatedina
a. teacherreport 5 OR

4. difficulty with spelling, indicated by
a. score at or below the 16th percentile
on a standardized spelling test 6 OR
b. teacher report of difficulty in spelling .6

With this quantified model, the membership value for re-cognition can be
determined. Each ofthe other functions was quantified in similarfashion. The
model had to be adjusted to the clinician’s theoretical viewpoint that learning
disability could not be diagnosed before the end of the sensory orientation
function. Another adjustment had to be made because of the fact that in the
memory function and re-cognition function, lack of data in case reports make
it practically impossible to differentiate behavioral characteristics and
component deficits. Because of this, OR instead of AND was placed between
these two criteria in the memory and re-cognition functions.

The clinician stated that learning disabllity is a lifelong handicap and
information from previous age-related functions must be included in the final
membership value. It was necessary, therefore, for her to specify a system
which mandated that if the areas of writing, reading, arithmetic, spelling,
communication, imagery, reading block, interpersonal relations, orimmaturity
were answered in the affirmative in a later age-related function, the area or
areas would automatically be affirmed in prior age-related functions. This
procedure was called cross-indexing. Another specification was that prior
information had to be included in the determination of the final overall
membership value. This was done by having the clinician specify a weighted
system which took the membership values of the prior age-related functions
into account.
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Questionnaire

A questionnaire was developed which fitted diagnostic indicators into the
four operational criteria of achievement potential, behavioral characteristics,
age-related deficits, and achievement. Forexample, inthesensory orientation
function, convulsions, premature birth, and high fever were grouped under
achievement potential; excessive crying, screeching, lethargy, and reverse
swallowing were grouped under behavioral characteristics; and so on. This
made it easier for the data collector to fill out the form. Although the
assumption is that all four criteria must be present for an at risk condition for
learning disability to exist, it was not necessary to place OR’s between each
characteristic and AND's between each set of criteria. By keeping the
questionnaire as simple as possible, data could be collected by relatively
unsophisticated personnel, coded, and fed into a computer program.

Computer Program

Acomputer programwas written fromthe verbal model, questionnaire, and
specifications elicited from the clinician. FORTRAN was the language of
choice, but any of several tanguages, including BASIC, would have sufficed.
The program hadto be able to accommodate assumptions about missing data.

A membership value for each age-related function is given by the program.
These values represent the degree to which a child could be classified as
learning disabled within each function. A single value is then generated which
is a summary indicator of the child’s membership in the class called learning
disabled.
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Testing The Model

The clinician was asked to look at either completed questionnaires or raw
data from a number of cases and assign a membership value for learning
disabilitytoeach. Working independently, one of the modelers took data from
each case and fed those into the computer program, which calculated a
membership value for each case. A comparison of the membership value
assigned bythe clinician and that assigned bythe computer revealed that the
quantified model matched the thought of the clinician to a high degree, i.e.,
beyond the .001 level of significance. The statistical technique used to test
the match was the Pearson product-moment correlation. These analyses
confirmed that it is possible to predict clinical classification of children who
arelearningdisabled with a computer programwhen fuzzy settheory is applied
as the methodology. Many cases had missing information, yet accuracy was
stillmaintained.

CONCLUSIONS

Fuzzy set theory is a useful too! which can be used and understood at
several levels. Because clinicians and modelers are less likely to have great
general mathematical expertise and be well grounded in fuzzy set theory, the
use of elementary principles of fuzzy set theory to model theoretical
orientations in education and psychology is recommended. Although deeper
understanding ofthe methodology may be morelikely tolead to more efficient
use ofthe technique and more accurate models, the increase intime may not
warrant the slight gain in accuracy. The process is iterative, active, intense,
and time-consuming.

Itis possible forlearning disability experts to quantify their theories through
use of fuzzy set theory. As these theories are quantified, comparison and
further refining would occur which coud lead to the development of a
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consensusdefinition about what constitutes the handicap of learning disability.
An identification procedure acceptable to a majority of the profession might
follow. Giventhis, the potential for developing remediation programs is much
higher. The whole approach to learning disability would become more
efficient and economical. Fuzzy settheory is not exclusive to education and
psychology. By demonstrating the utility of using fuzzy set theory, it is hoped
that researchers inthe other areas will also be encouraged to employ fuzzy set
theory in theirwork.
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TOWARDS A FUZZY THEORY OF BEHAVIOUR MANAGEMENT
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Toronto, Ontario, Canada.M6P 4B7

Behaviour management (BM) is identified as a set of procedures used by
managers, experimenters, therapists, businessmen, etc. modifying or
maintaining behaviour under given conditions. Modification is considered to
be achieved by learning processes in the targeted individuals generated by
BM . BM procedures are fuzzy in the sense that the particular actions to be
taken are specified only approximately and the results are quantified in terms
of fuzzy numbers. The theoretical conception of BM consists of fuzzy
algorithmic specifications of the main procedures to be executed by behaviour
managers to fuzzy criteria of behaviour change.

The main procedutes of BM described in terms of fuzzy algorithms are: 1.
Elicitation of a desired responses (generalized from classical conditioning
procedures):Learning and maintenance ofresponses undergiven conditions
with the help of promts, modeling, instructions, teaching aids, or aversive
stimuli (which generate defensive responses). 2. (a) Selection of a desired
response (generalized from operant procedures): Learning and maintenance
by reinforcement of responses from among those spontaneously emitted by
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the responding individual, or (b} elimination, by associating aversive, or
withdrawing positive stimulation, of a spontaneously occuring undesirable
response, usually combined with reinforcement of another, desirable
response.

The formalized procedures are quite general and are expected to be
applicable, at primary and secondary levels of learning with suitable physical
orsocial means, respectively.

INTRODUCTION

Behavioural methods are now applied inanextraordinary variety of human
activities: animal training (Breland & Breland, 1966), business (Cervin, Bonner,
Rae, & Kozeny, 1971), engineering psychology (Cervin, 1973; Pritchard,
Leonard, Von Bergen, & Krik, 1976), health (Bandura, 1969; Ladoucer,
Bouchard, & Granger, 1977, Wolpe & Lazarus, 1966), hypnotic memory
retrieval (Cervin, 1987), instruction and education (Plax & Lacks, 1976; Skinner,
1968; Walters & Grusec, 1977), management and personnel (Hinton & Barrow,
1975, Luthans & Kreitner, 1975; Watson & Tharp, 1972), sex therapy (Kolodny,
Masters & Johnson, 1979), sleep disorders, (Rathus & Nevid, 1977), social
learning (Bandura, 1977), sports (Suinn, 1979) etc. The purpose of these
applications is to achieve a change in human behaviour by developing new
desirable responses in familiar situations, eliminating undesirable responses,
or maintaining lagging behaviour. These general goals of behavioural
intervention are better subsumed under the heading Behaviour Management
(BM), rather than under the more restrictive term "behaviour modification’.

BM methods includethe use not only of "primary" physical or physiological
means (stimuli), but also "secondary" social, linguistic and cognitive ones.
Behaviour (responding) comprises not only physical performance but also
imagery and symbols (Ladoucer et al., 1977), overt (speaking) or covert
(imagining). For example, symbolic planning of an action is as much behaviour
as is its physical execution. The use of imagery supplements person-
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environment interaction by a sort of auto-interaction (Cervin, 1987; Ladoucer
etal., 1977, Watson & Tharp, 1972). In other words, BM is conceived in very
general terms. This paper is an attempt to subsume the variety of BM
procedures under one theoretical roof of fuzzy algorithms in order to increase
the effectiveness and "portability” of BM procedures. Two large classes of BM
methods can be distinguished.

Elicitation

These methods that started as classical conditioning using unconditioned
stimuli to elicit the to-be-conditioned responses to conditioned stimuli, have
developed by analogyand generalization into general elicitation methods that
subsume avariety oftechniques, e.g., social modeling (Bandura, 1969), verbal
prompting, or even algorithms involving complex cognitive-behavioural
operations (e.g., in sport), and of course, aversive techniques. Aversive
techniques (Ladouceretal., 1977, p. 91) are used to elicit, notto punish, target
responses that may be desirable because they compete with undesirable
responses, e.g. drinking alcohol. The function of all these interventions is to
elicit and establish, under specified conditions, a target response, be it at a
physical or a symbolic level.

Selection

The second class of behavioural methods that started as operant
conditioning is selection of responses for establishment or elimination, by
means of critical stimuli, such as rewards-punishments or friendiy-unfriendly
interventions. Unlikein elicitation, these stimuli are administered afterthe target
responsetoencourageor discourage its recurrence. Thetarget response either
occurs spontaneously or, if desirable but unavailable, is first elicited by one of
the elicitation methods, e.g., prompting. The responseto a reward is of interest
only from a motivational point of view, t must be compatible with and
contingent upon the target response, for example, playing well and receiving
a prize. The response to punishment is also contingent upon the target
response and may be incompatible with it, for example, quitting smoking and
smoking. (However, playing well and losing does happen too; this fact is a
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reason for establishing handicaps). The target response that is selected for
elimination is either not rewarded or is punished and an alternative (reciprocal)
response is rewarded. Both classes of BM methods - elicitation and selection
- can be used in the establishment and maintenance of responses and in
keeping out eliminated responses.

Motivation

BM interventions use the momentary motivation or arousal of the narrowly
defined as momentary readiness to respond to a particular stimulus. The
practitioner should know how and when his ctient gets motivated or how to
make him so. Arousal may be based on the physiology of the organism and
thus occur periodically without outside intervention: a person becomes hungry
and responds positively to food (approach, ingestion); most people would at
alltimes respond negativelyto a pain-producing stimulus (withdrawal, anxiety).
Primary positive stimuli induce approach in aroused people, but eventually
continued stimulationwill reduce arousal, e.g., in sex. Primary negative stimuli
inducearousal and defense reactions, but theirtermination reduces both. Thus
primary or unconditional stimuli can produce or reduce arousal and should be
handled accordingly.

Arousa!l may also result in response to previously learned (secondary)
stimuli called incentives and disincentives, which may be reproduced, withthe
practitioner’s help, in the environment or in the client’s imagination. Arousal
and positive reactions can be elicited by the presentation of incentives, even
without the physical presence of the associated primary stimuli, e.g., the
announcement that dinner is ready. Arousal and negative responses can be
elicited by disincentives, such as threats of pain or signals that pain may be
caused, e.g., the sight of a needle previousty associated directly or vicariously
witha painful injection. Incentives and disincentives canthus be usedtoinduce
arousaland positive or negative responses, respectively. In BM, incentives and
discincentives are often easierto handlethan the primary stimulithey stand for.
What function an incentive or primary stimulus will perform depends on the
circumstances. For example, the promise of money is a motivator, actuat
paymentis a reward; the threat of assault is a motivator, assault is punishment;
an invitation to dinner is a motivator, dinner itself a reward; the promise of a
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kickback is an elicitor, the kickback itself is a reward; a bribe is a motivator and
an elicitor. A stimulus may be used as a motivator and an elicitor depending
onthe target response desired. Atarget response in itself may be desirable or
undesirable. {f an undesirable response competes with an even more
undesirable response (as in some treatments of alcoholism), it is desirable;
deliberate relaxation is desirable and can also compete with undesirable
responses, as in reciprocal inhibition (Thomas, 1974). These relationships are
somewhat complicated and are not oftentreated in BMtexts, but it is useful for
a practitioner to have them sorted out.

Negative stimuli, by definition, can count onthe presence of an appropriate
motivation in the subject, viz. self-preservation, dislike, etc. and therefore are
often used and misused as punishers. Positive stimuli, on the other hand,
require the presence of relevant motivation to be reinforcing. Their
effectiveness,therefore has to be first ascertained or established: e.g., a client
must be hungry or "taste-hungry" to respond to the offer of food or a delicacy,
unemployed to respond to an offer of a job, etc. If motivation can be assumed,
e.g., in an employee or an athlete, he will be likely to respond positively to
modeling of skills by a supervisor or coach. It is important to recall that in
elicitation methods both negative and positive techniques are used to establish
the elicited target response. In selection methods, negative techniques are
used to eliminate undesirable responses, positive techniques to reinforce
acceptable responses.

Momentary treatment-related motivation as discussed above is only a
means to an end and should be distinguished from a client's long-term
BM-goal-related motivation, on which recovery depends. Recovery s perhaps
not the best word, because rather than being an illness treatment, BM is
basically a problem-solving proposition.

BM Procedures

A distinction should be made between !earning and BM. Learning and
memory are the results of BM (although BM of course is not the only reason
for them to occur). Historically, BM developed not from learning or cognitive
changes studied experimentally, but from scientific method and laboratory
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procedures used by experimenters in bringing about behavioural and cognitive
changes in animals and men (Ladoucer et al., 1977). This interaction was
described as a procedure-process relation betweenthe practitioner and client
respectively (Cervin & Lasker, 1979).

in the laboratory, a maximum of precision and control can be achieved in
setting up the conditions, defining the manipulations, and measuring the
responses of subjects. BM on the other hand, is attempting to use similar or
analogous methods under real-life or clinical conditions that introduce a great
deal of uncertainty and fuzziness into manipulation, instructions, and response
measurement. The laboratory environment is strictly controlled; stimuliare well
defined (e.g., syllable-pairs, lists of single words, lights and buttons, etc.), and
responses are exactly counted or measured (number of words recalled on
everytrial, number of buttons pressed, etc.), which allows the use of non-fuzzy
probabilities as response measures. Inthe clinic or in reallife this is not possible:
everyday conditions in homes or work places change, responses and
motivationare only approximately known and evenwiththe best of instructions
and client-therapist contracts, the goals are only roughly formulated and
manipulationsand interventions approximately executed. Moreover, variability
and fuzziness originate not only in the clients and the environment, but also in
thetherapists, supervisors, teachers, etc., who may givethe "same" instructions
in different ways on different occasions.

In order to increase the practical effectiveness of BM interventions, reduce
avoidable errors and "precisiate” uncertainty in explicitterms, it seems desirable
to pinpoint the essential general features and rationale of BM procedures and
specify as precisely and explicitly as possible even their fuzzy aspects. The
treatment of proceduresis intendedto be bothgeneral and practical. The basic
principles of the two classes of BM methods have been stated before (Cervin
& Jain, 1982). What follows are explicit descriptions of the structure of the two
BM procedures inthe form of fuzzy algorithms. They embody the essentials of
the main procedures and some of theirimportant subsidiary aspects. Butthey
do notdescribe particular BMtechniques, such as systematic desensitization,
(e.g.,Cautela & Kastenbaum, 1967, Rathus & Nevid, 1977), or general BM
methods, diagnoses, and treatments recommended for specific problems
(Thomas, 1974). These are described inthe relevantliterature (Bandura, 1977,
Kolodnyetal., 1979; Plax & Lacks, 1976; Wolpe & Lang, 1964; Wolpe & Lazarus,
1966). Although general, fuzzy algorithms of BM offer procedural precision and
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describe inthe explicit order of handling of fuzzy variables. One can be precise
inthe presence of fuzziness.

REFERENCE CASE

Before stating the algorithms, a reference example of BM will scribed in
orderto distil its important features.

A coach is trying to teach his motivated pupil how to strike a forehand in
tennis.

0. The coach is satisfied that the learner (a) wants to learn and (b) will
respond to his coaching, i.e., skill modeling and reinforcements. After
explanations about the grip onthe racquet, etc., the relevant stimuliare
given:

1. A ball is thrown,

2. The coach hits it himself in front of the learner, accompanying his
movements with suitable comments about the important features of the
flight ofthe ball, the racquet movements involved, distance fromthe ball,
the feedback that should be experienced, etc.

3. Thenthe learner tries to make the stroke himself.
2. The demonstration usually has to be repeated several times.

3. Thetrials by the learner, including his evaluation of the stimulus, i.e., the
oncoming ball, its speed, rotation, etc., are interpolated between
demonstrations. The learner gradually begins to hit the ball more and
more correctly, and the ball lands in the right court.

4. The coach estimates the various more or less correct aspects of the
strokes, as trials are repeated by the learner.

5. The coach praises acceptable strokes.

4. Gradually the more elementary aspects of strokes are no longer
commented upon and the definition of good strokes is tightened up.
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5. Only the better and better strokes are verbally rewarded and visually
confirmed. The coach is using the method of approximation.

6. Eventually the learner develops a good forehand. Thereupon this part of
coaching is stopped. The learner then needs only periodic checkups
(praise-correction) to maintain a good level of play.

Analysis: Inthe above example, elicitation (2) and selection (5) of responses
are used in tandem: the occurrence of the correct stroke is not left to chance
but is elicited by demonstration (modeling). "Correct" responses (4) are
estimated liberally at first, then the label is progressively restricted for better
strokes to be reinforced (5). This increases the quality of strokes.

Elicitation and selection are the two treatments administered (2 & 5) by the
practitioner. The practitioner observes th e learner’s behaviour and classifies
(4) it as more or less "correct" or "incorrect". This definition of “correct" (4) is
not only fuzzy but is changing as learning progresses: correct responses are
compared with a model on a scale and the more narrowly defined "correct"
ones chosen for praise. The definition becomes progressively less fuzzy, until
finally "correct’ strokes are those that go "in", incorrect those that go "out"*.

The number of correct responses (fuzzy and later non-fuzzy) is noted and
the relative frequency of correct forehand responses over all forehands in a
game, set, or match, is computed. This determines the level of play.

In order to describe these maniputations in an algorithmic form, they have
to be defined in terms of the most elementary actions of the practitioner, such
as"observeand classify", "compare and choose", "administer treatment”. These
actions will be stated in fuzzy algorithmic form.

*In "process control" used in industry, the good parts are considered to be those that are
"processed"” correctly during manufacturing: it processing is correct then the outputisgood (zero
rejects) andisnotmonitored. By analogy, those strokesthat are hit correctly ‘must' goin. Hence
the importance of correct technique.
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PRACTITIONER'S OPERATIONS

Elementary Operations

The practitioner will be called upon to use the following elementary
operations while dealing with stimuli (subject’s responses, events, symbols)
and responding to them. It should be noted that the practitioner’s responses
are stimuli to the subject and vice versa.

Observing, loaking, listening, perceiving, recognizing, naming, etc., an
event, and respondingto it, for example, the coach, seeing alearner respond,
might say, overtly or covertly, "He responded', or "She swung her racquet", or
"He didn't respond correctly'. Observation implies a response from the
observer on a nominal scale ; (0 and 1) =, which requires a one-one
correspondence between the event observed and its representation, e.g., its
name.

Classifying, testing, estimating, recording, etc., a subject’s observed
response, e.g., as correct, incorrect, or as a good approximationtothe correct
response. Aratingscale between [0 and 10] and subjective judgment are used,
for example, 0.0, 0.1, 0.2,...1.0 to evaluate a subject’s responses, somewhat
similarly to judging performance infigure skating, gymnastics, etc.

Comparing the representations of two (or more) events, for example, the
degree of compatibility of a subject's present responses with the uitimately-
desired responses, orthe present level of responding and that of the modeled
response, which may represent the goal of BM.

Choosing, selecting from a list or from a memory store of symbolic
representations of events, the coach’s action or response to be given to the
subject’sresponse, e.g., choosingverbal praise as a reinforcer for a responsive
learner, or choosing a live demonstration to satisfy a subject’s ambition. In a
sense, choice is the inverse of classification: given a class of representations,
choose an element with the help of some random or fuzzy device, such as an
algorithm.
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The Problem and its Solution

The treatment for solution of a behavioural problem used by a practitioner/
coachmainly consists ofthe definition of the situation, evaluation ofthe present
behaviour of the subject/learner (using observation, classification) and, (a)
demonstrating, as a prompt to the subject, the desirable behaviour (see
Reference Case) followed by subject’s/learner’s attempt to imitate or execute
the demonstrated response - hands-on learning (this part may involve
comparing (by the coach) the learner’s response with his own); and/or (b)
arranging 1o give the subject an appropriate stimulus after his response
(involving choice), for example, given a correct response by the learner
(stimulus to the coach), the coach saying "Correct", which is a reinforcing
stimulustothe learner. These actions constitute ordered pairs of fuzzy events,
that is, the pairs prompt-response or response-reinforcement.

EXPECTED SUBJECT EVENTS

The preceding sections dealt with BM procedures practioners may use. The
purpose of applyingthese procedures is of course to generate certain events
in the client. The procedures and subject events and their interrelation have
been studied inthelaboratory onanimals and humans, andinreal life" practice.
Thus subject events may be assumed to happen as expected, provided the
procedures are carefully applied.

The main result that we expect fromapplying BM methods is the generating
ofalearning process. By learning we mean associating responses with stimuli
with which they previously had not been associated: hitting a tennis ball
correctly, relaxing in the face of previously anxiety-producing stimuli,
abstaining from eating in the presence of previously "irresistible" foods,
following rules, responding positively to previously frightening social situations,
etc.
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Elicitation methods do not only generate reflexes, but also any old or new
responses that can be elicited by an unconditioned stimulus, a model, a
prompt, orinstructionsinthe presence of ato-be-conditioned stimulus that will
becomea‘cue’, atthe behavioural (i.e., reflexand instrumental responses) and
cognitive (e.g.,learninga poem) levels. Elicitation has beenapplied inthis way
aslong ago as the first decades of this century (e.g., Ivanov-Smolensky in the
USSR), and is in effect the ancestor of present cognitive methods. Restricting
elicitationto reflexes is entirely artificial and arbitrary.

Selection methods imply that their intended function is to "select" and
establish responses occurring spontaneously and randomly to a stimulus so
that thenceforth they occur regularly in the presence of that stimulus, which
then becomes a cue producing that response with a desired frequency.

Often the two methods are combined in tandem. it may be tedious to wait
for a desired response to occur spontaneously, as early attempts to train
pigeons showed. Elicitation is used to produce the desired responses initially,
so that they can be reinforced and taught in short order. Dramatic
demonstrations ofthe superiority of this technique over "pure" operant methods
exist in the literature and in practice. Unfortunately, many people, including
some psychologists and psychoanalysts, still clingto the ideathat the best way
to teach is to wait for, and then reinforce, a response; e.g., in order to teach
experimental techniques to a student, he should be allowed to potter about in
the laboratory on his own without any instruction; to help a mental patient, he
should be allowed to "find" his own solution to his problems, while the analyst
only listens and does not suggest anything; to teach a student, he should try
to discoverthe solutions himself and then be rewarded, however long it takes.
BM eliminates this nonsense and tries to produce results in a much shorter
time.

Anotherimportant already mentioned aspect of subject events is motivation.
Some basic arousal occurs in the subject spontaneously, e.g., hunger, sex,
etc. One of the ubiquitous motives is the search tor "personal comtort’, which
includes the basic elements of lifestyle. Other motives are more idiosyncratic,
e.g., not everyone interested in making money will take bribes or kickbacks,
not everyone wants to devote his life to helping others (altruism motive}. But
some motivation can be created, e.g., being wined and dined or given "gifts"
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creates some psychological indebtedness to the giver, which can later be
drawn upon.

There is confusion in thinking about the relation between reinforcement/
punishment and motivation. The two are not identical but are related by
learning. Certainstimulus conditions, including a client’s own target- response-
produced stimuli, through learning, become signals (cues) to him that
reinforcement or punishment is coming. The stimuli that precede the target
response and, ipso facto reinforcement or punishment, are also learned as
remote cues to reinforcers/punishers. These cues are incentives and
disincentives respectively. As mentioned above, secondary motivation created
inthe presence of incentives and disincentives is called expectation. Thus the
cuestoreinforcement and/or punishment, i.e., incentives, althoughlearned as
cues, can subsequently function as motivators in selection training. In this
respect they are different from other learned cues, which simply produce
responses. Reinforcers/punishers also produce responses, viz. satisfactionor
withdrawal, but these responses per se do not play any important role in
selection methods. In elicitation methods, however, conditioned elicitors can
function botha s incentivesfor, and as elicitors of, target responses; e.g., a call
for dinner may awaken appetite (motivation) and elicit a response to go and
get it (instrumental response), for which dinner is the reinforcement. These
relationships in a client’s behaviour may be part of his problem.

Algorithm PROBLEM

(1) A client comes to a coach with a request to be taught a forehand for a
fee.

(2) The coach gathers that: the client is motivated hence will follow
instructions and respondto reinforcement.

(3) The coach assesses the fuzzy grade of the quality of the client’s
stroke-making when thrown a ball, using a subjective scaie of the
features of good strokes (see Subalgorithm TARGET RESPONSE
Figure 3, and Figure 1).

(4) IF assessment shows low quality of strokes (few necessary features)
THEN the coach either
recalls and/or
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demonstrates
the features of correct high quality strokes which may
also be assessed on the above scale.

(5) The demonstrated strokes will serveas a model and a goal for the
client.

(6) The recalled model of good strokes will be a basis for the
reinforcement strategy of the coach.

(7) The problem is a large difference between the coach’s and the
learner’s quality of stroke-making, as quantified above.

(8) The task for BM is to reduce this difference as much as possible using
one or all the BM algorithms; end statement of problem.

(9) Out.

Subalgorithm ELICITATION

(1) The coach demonstrates correct stroke.

(2) The client observes the demonstration and tries to reproduce the
stroke when thrown a ball.

(3) The coach evaluates client’s stroke-making as in Subalgorithm
TARGET RESPONSE Figures 3, 4and 5.

(4) WHILE d istarge at first but decreasing over trials
DO (repeat (1)-(3)
END

WHEN d stops decreasing

(5) IF the difference d between coach's and client’s stroke quality
THEN goal achieved (6)
ELSE
IF d remains large over many trials
THEN goal elusive (6).

(6). Stop.
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Subalgorithm REINFORCEMENT AND PUNISHMENT

(1)The coach observes client hitting the ball on forehand, recognises
correct and incorrect aspects of the strokes,

a.) praises (reinforcement) the correct aspects of responses, and/or
b.) points out (punishment) the wrong aspects.

(2) The coach evaluates client’s stroke-making as in Subalgorithm
TARGET RESPONSE Figures 3,6 and 7.

(3) WHILE d is large at first but
decreasing over trials
DO repeat (1)-(2)
END

WHEN d stops decreasing.

(4) IF the difference d between coach’s and client's stroke
quality closeto 0
THEN goal achieved (5)
ELSE
IF d remains large over many trials
THEN goal elusive (5).

(5) Stop.

Algorithm EXTINCT!ON 1

(1) The coach observes and recognizes client’s bad habits and wrong
aspects ofhis stroke-making when hitting a ball, which interfere with
good playing, and.

a) points them out to the client

b) demonstrates stroke-making inthe
absence of these habits using
Algorithm ELICITATION.

(2) The coach evaluates client’s stroke-making as in Subalgorithm
TARGET RESPONSE Fig. 3, and Fig. 8.

(3) WHILE d is decreasing over trials
DO repeat (1)-(2)
END

WHEN d stops decreasing.
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(4) IF the difference d between coach’sand client’s stroke
quality is close to 0
THEN (goal achieved) (5)
ELSE
IF d remains large over many trials
THEN goal elusive (5).

(5) Stop.

Algorithm EXTINCTION 2

(1) The coach observes and recognizes some of the client’s bad moves
instroke-making
a) shows the consequences of these moves
b) but ignores the moves themselves.

(2) The coach evaluates client’s stroke-making as in Subatgorithm
TARGET RESPONSE Fig. 3.

(3) WHILE d is decreasing over trials
DO (repeat) (1)-(2)
END
WHEN d stops decreasing.

(4) IF the difference d between coach’s and client’s stroke
quality is closeto 0
THEN (goal achieved) (5)
ELSE
IF d remains large over many trials
THEN goal elusive (5).

5) Stop.
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Number of correct response skill features

FIGURE1
BM problem definition: an example

The learner has few skills at the start, the coach many (x-axis).

The problem is to teach the learner many or all of the coach’s skills.

The m curve describes the expected gradual improvement of the
beginner's initially low, unsatisfactory proficiency as new skills are
acquired.

The coach’s proficieny is high and satisfactory on account of many skills
already acquired.
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FIGURE3J
Subalgorithm TARGET RESPONSE: recognition and assessment
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DEFINE, LIST
MOTIVES AND ELICITORS/REINFORCERS

: CHOGCSE
¢ ONE ELICITGQR/REINFORCER

H ! ADMINISTER (OR LET HAPPEN}
' i ELICITOR/REINFORCER

DOES IT

NO- PRODUCE DESIRED -YES

' RESPONSE? + ;

v v
' TAKE NEXT | + SELECT THAT ELICITQR/ !
i ELICITOR/REINFORCER ! REINFORCER }

ARE THEY
EXHAUSTED?

FIGURE 4
Subalgorithm ELICITORS AND REINFORCERS

* Note: Elicitor is to produce target response, reinforcer satisfaction.
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! WAIT FOR TARGET RESPONSE
' TO RELEVANT STIMULI

t GIVEN RELEVANT STIMULI AND TARGET RESPONSE,
ADMINISTER REINFORCEMENT WITH PROBABILITY ¢

IS THERE
IMPROVEMENT IN
JARGET RESPONSE?

_NO_ IS IT HIGH _YES

' ENQUGH? :

' '

v v
i GDAL ) ¢ B0AL !
} ELUSIVE §----=-=- 29¢=~mmmmnm ! ACHIEVED !
_________ : e

! REPORT i
FIGURE 6

Subalgorithm REINFORCEMENT

* Note: Cues are to be conditioned to target response, incentives to
reinforcement.
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] ENOUGH? |
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FIGURE 7

Subalgorithm PUNISHMENT

* Note: Cues are to be conditioned to target response, disincentives to
punishment.
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SYMBOLIC STATEMENT OF FUZZY ALGORITHMS

Fuzzy Algorithms (FA), which describe treatment events, use "if-then, else-"
statements where client’s performance and his goal; else-" statements where

* the "if" part, in selection methods, depends on the observation and
classification of the subject's response, for example, "fairty good stroke"; in
elicitation methods the "if* part is the coach’s demonstration chosen from his
repertoire; inthe algorithmsthe "if* part is based on the difference betweenthe
client’s performance and his goal;

* the "then" part depends, in selection methods, on the choice of an
appropriate response from the coach’s resources, for example, praise
(reinforcement) ofthelearner’s response. Inthe elicitation case, the “then" pan
is the observed and classified response of the learner to the (coach's)
demonstration (the learner's response, however, underlies the "if* part of the
selection method); in the algorithms the "then" part implies "stop" if the goal
has been achieved;

* the relation between "if* and "then" depends on the coach's knowledge of,
and experience with, for example, what constitutes a "good" stroke, "good"
demonstrations, effective methods of teaching andlearning;

* the “else” part implies, inthe algorithms, “do the next indicated step" if the
goal has not been achieved.

* the "while" part means "do the loop', i.e., "repeat treatment”, if the goal is
not achieved but there has been some improvement in the target response;
“else" is not specified beyond "do the next step" in the algorithm, e.g., stop, if
the goal is elusive.

It should be noted that the "if-then, else" statements can be extended to
include more complex cases (Cervin & Jain, 1982), for example, inthe elicitation
procedure, the 'then" partdepends not only onthe coach’s demonstration, but
also onthe learner's motivation: "if* the learner is motivated, “and if’ he sees a
demonstration, "then" he will execute the response in question. In selection
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procedures, reinforcement depends on the client’s response, motivation, etc.
Other extended conditional statements can be written as required.

FA have proven useful in summarising and ordering the instructions for
practitioners who are trying to solve (behavioural) problems for their clients.
FA can be defined as "an ordered set of fuzzy instructions, which, upon
execution, yield an approximate solution to a specified problem... The
theoretical foundation of /fuzzy theory/ is actually quite precise and rather
mathematical in spirit... the source of imprecision is not the underlying theory
but the manner in which linguistic variables and fuzzy algorithms are applied
to the formulation and solution of real-world problems" Generalizing from the
above discussion, verbalized algorithms and flow charts of BM, symboglic
statements of the operations entering into these algorithms will be given
explicitly with examples.

Observe, classify, assess:

A client’s response occurs and the practitioner receives a stimulus s?
producedbythe client's response AC B (Aisfuzzy subset of client’s Behaviour
in a BM situation). The practitioner’'s observation may be a simple “client
responded” which may be assessed as (see Notation in the Appendix)

m(s®eS) = 1

wherem’ e M' = {0,1} aset of only two elements, S C C set of all the stimuli
in a BM situation, and S afuzzy subset of "correct" response stimuli. This type
of rating is known as the rating on the nominal scale {0,1} and is little more
thanlabeling.

In a BM situation, the practitioner then proceeds to classify and assess the
client’s responses "a" generating stimuli s S he receives, comparing s® to x
on the scale of ratings Sc of skill features Sc = { 1,2,...10 } = and obtaining
an associa ted membership grade m(s® C S? ) for subset $* ~ X, the fuzzy
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subset of correct features on the scale correspondingto A, X C Sc. This gives
the compatibiity of the fuzzy subset A of observed responses with the
statement "client is proficient". He obtains, e.g., m(s? € S?) = 0.2, where now
m e M = [0,1], is the proficiency grade associated with the number of the
corresponding satisfactoryfeatures onthe scale. Classification is thus done by
recognizing correct features of responses by comparison with a reference
scale. Assessment means determiningthe number of correct features of S*and
its grade m as a satisfactory response. In response acquisition, the grade is
initially low if only a few features of a good response are in evidence, but later
increases as the number of correct features goes up. In response elimination
the converse is true. Examples of empirical determination of the membership
grade m in two fuzzy subsets are shown in Tables 1 and 2. The influence on
the ratings of "own behaviour" of the raters is very much in evidence.

More generally, degrees of membership in fuzzy subsets of "good"
behaviour or compatibility of observations with the linguistic or humerical
description of satisfactory behaviour, in psychology, have been estimated by
three main methods:

a) Method of comparative judgment, where the rater is given a standard,
sayacircle of a certain size, and then is asked to guess if each of subsequently
singly presented circles is bigger, smaller, or the same, and how many times
bigger or smaller. The standard may be removed during judgments.

b) Ratings: the rater may be given a visual, auditory, or other scale with
which to compare the stimulus received. Some scales are multi-dimensional,
suchasthose used ingymnastics, mental healthassessment, etc. Some scales
are ordinal and some have been refined into interval scales.

¢) Method of absolute judgment: the rater is shown a figure or presented
with a tone, hue, weight, a speeding object etc., without any standard, and is
asked to call the stimuli presented as large,heavy, b-flat, loud, soft, fast, slow,
etc. Inthis casethejudging is also done by comparison, as inthe above cases,
but the judge supplies his own private standard or scale.

Therating's quality, i.e., reliability and validity, depends onthe object rated,
the rater, and his familiarity with the object rated. Alarge part of psychology is
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TABLE 1

CompatibilitywValues of Statement:
"X sleeps too much'" with actual amount slept.

Av. Hours Slept

by"Judge" 6 7 75 8 85 9

Hours Slept by "X"
6.0 5 3 3 3 A 2
7.0 B 4 4 35 2 3
7.5 v 5 45 45 3 4
8.0 9 55 5 5 4 5
8.5 1.0 6 6 B 5 7
9.0 1.0 7 .8 8 6 8
10.0 1.0 9 10 10 9 9
11.0 10 10 10 10 10 10

TABLE 2

Compatibility Values of Statement:
vX drinks too much coffee" with actual amount drurnk.

Av. No. Cups of Coffee
DrunkbyJdudge 1 2 3 5§ 7 11 12

No. of Cups of
Coffee Drunk by "X"

1 A 0 4 0 A 0 0
3 .6 2 5 4 3 A 0
5 8 .6 6 5 5 2 5
7 .9 6 7 6 7 4 8
8 1.0 .6 7 .6 7 5 1.0
10 1.0 8 8 9 8 7 1.0
12 1.0 8 10 10 9 9 10
15 1.0 10 10 1.0 9 10 10
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devoted to the study of measurement procedures under the term Theory of
Measurement.

Compare:

This operation first occurs in attempts to recognize correct or desired
teatures of aclient’s responses. This can be done by taking pointsfromascale,
such as Sc = {1,2,3,...n} = given in Figure 1, or recalling a model of the
response, and juxtaposing the observed response features with those of the
model, much like in comparative judgment. If the response features are more
orless independent, comparison of the response and scale can be done in a
one-to-one correspondence, feature by feature, and the result quantified by a
cardinal number of the subset of desired features obtained (see Figure 1).
However, if the response features are not independent but form an integrated
pattern or cluster of ordered elements, e.g., holding a racquet and swinging it,
concentrating on a mantra and relaxing, then such a pattern must be
determined and recognized as a unit. For example, a person might be rated for
education level and experience: the two rated traits of the same person form
intersecting fuzzy subsets A1 & Az. Infuzzy settheorythis is described astaking
the MINimum of the two sets.

Another comparison occurs when two (or more) people are assigned
natural numbersfortheir comparabletraits, or skills, e.g., acoach and his pupil
may be rated one 8 and the other 2 on the skill feature scale; the comparison
done by subtraction gives the result as 6 additional skill features to be learned
by the pupil, if he aspires to reach the coach’s level by learning. Assuming a
situation similartothat described in Figure 1, the result of suchlearning will be
described by the associated improvement in proficiency ms(2) — ms(8), i.e.,
thedifference inthe two fuzzy subsets SP - §? (forcoach and pupil respectively),
whichis (Kaufmann, 1975)

SP-s? = sP & (-89
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For example, let the number and ratings of skills be

S% = 0.0/1 +0.3/2 + 0.1/3 (M(x C X) >3 being all 0)
SP =0.9/7 + 1/8 + 0.9/9 (mM(xCX) <7 beingall1)

i.e.,fuzzy numbers centered on 2 and 8 for pupil and coach respectively, and
other corresponding numbers in the two sets being 1 — 7, 3 — 9. Then
subtracting the two sets (taking the minima of sets SP and (-S*) where (-S%) =
(1-5%), we get

SP & (-Sa) = 0.9/7 + 0.7/8 + 0.9/9

whichcanbeinterpreted asthe expected improvement in proficiency the pupil
will have to get if he wants to reach the fuzzy level centered on 8 skills (coach’s
level). A similar result would be obtained (Kaufmann, 1975) by getting a
Hamming distance (for the pupil "to go") between the two fuzzy subsets.

Choose

Choice is closely related to decision-making, but does not necessarily
requireconsideration of utility of the alternatives involved. Choice may be made
relativeto some preset requirements, as shown by Yager (1980), who analyses
several methods of making achoice under various scenarios. One in particular
is simple and suitable for BM.

Letthree attributes (A1, A2, A3) of two people (Y1 and Y2) be rated interms
of their compatibility with job requirements:
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A1:(0.9/Y10.5/Y2) (Y1 is young, Y2 not so young)
A2: (0.2/Y10.4/Y2) (Y1 is not experienced, Y2 has some experience)
A3: (0.6/Y10.8/Y2) (Y1is O.K., Y2is well-spoken)

Suppose you want to decide between the two subjects which is a better
candidate for a job you have to offer. You set up a fuzzy decision function (the
simplest one among many) as a choice of the person having the largest of the
smallest attribute m grades:

Drequired = (Ai1 &Aig&Aig),i =12

which is read: 'The candidate chosen should have ali three attributes (& =
and) as far as possible”. The solution is: "My choice {Decision) will go to the
one who has the largest of the smallest m grades on all three attributes.” The
minimaare:

D'min = (0.2/Y10.4/Y2) (both connected with experience,
the other two attributes being balanced)

Dmaximin = (0.4/Y2) Y2z is your choice.

Choice is involved in BM when one tries to decide between different
methods with restrictions imposed on each of them by the lifestyles or clinical
settings in question. There is considerable literature on the topic of fuzzy
decision making {Dubois & Prade, 1980; Yager, 1980; Zadeh, 1973).
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Inference

Most fuzzy algorithms above have IF-THEN or IF-THEN, ELSE statements.
Following Zadeh (1973) one should first distinguish between propositional and
set-theoretical interpretation of fuzzy conditional statements |F ATHEN B. He
opts for the latter, which also seems more appropriate for BM purposes.
Second, a distinction should be made between fuzzy conditional statements
with and without specification of the operative ELSE. If the alternative is not
specified, it can be any fuzzy subset of the universe of discourse; then a fuzzy
conditional statement can be defined as "afuzzy set of ordered pairs (u,v)u e
U, v e V, with the grade of membership of (u, v) in Ax B, given by uA(u) & uB(v)"
(& = A = and = minimum).

In elicitation methods the membership grade of ordered pairs (€%, s%), e e
U, s e Cinthefuzzy set E x S is (see Appendix) m(e® € E) & m(s® € S). This
may be read "IF prompt e THEN response a, which produces stimulus st e
S". Here the alternative ELSE is of no interest because the operation is under
the practitioner’s control. If he forgot to give a prompt, perhaps he should not
be doing BM.

There are, however, at least two other IF conditons which are important: a
to-be-conditioned stimulus, s¢ € C, must always be present in acquisition BM
(or conversely, the already conditioned stimulus in elimination BM); and
motivationshould also be secured. The conditioned stimuli are not necessarily
fuzzy, but motivation may be, and it may also be more difficult to ascertain or
arrange. Forexample, in sexual relations alover would normally observe his/her
partner's receptivity 1o sex, or else would arrange for getting her "in the mood"
for sex (rapists bypass this phase).

In the elicitation cases, the expression for compatibiity grade of the
compound R "motivation and prompt and the client’s response and stimulus
sa" would be of the form

ma(mot.,e,a,s?) = MIN(m(mot. e MOT.).m(e® € E), m(a e A), m(s® € S))
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i.e., if prompt is administered and if motivation is present and if the client
responds, he will produce a stimulus to the practitioner. This assumes that the
conditioned stimulus is present as usual.

The IF-THEN, ELSE compositional rule of inference is used in several
algorithms. Algorithm ELICITATION, Step 4, has such an inference: "If the
behavioural difference between amodeland clientis notlarge, thendo 6, ELSE
do 5". For example, we have these elements in the situation: if the difference
setisD = {1,2,...9} =, then fuzzy subset

"Difference notlarge", df = 1/1 + 0.9/2 + 0.2/3 + 0/4 ()
Step"THEN 6", df = 1/6 + 0/5 (1)
i.e.,do6, not5.

Difference large, df = (1 - not large)
=0/1+0.1/2 +08/3 + 1/4 (i)
Step "ELSE 5", df = 0/6 + 1/5 (IV)

i.e., do5 not 6.

The conditional rule defines the THEN and the ELSE. The first applies if the
differenceis nolongerlarge, the secondifit is still large. The definition of "large"
and "not large" are subjectively rated. The practitioner’s rating of the size of
difference aslarge or notlarge may depend onthe ability and motivation of the
client. If he/she shows promise, one can aim at a very small difference, if not,
one may decide that a fairly large difference is "not large", in order to terminate
BM. To make the adjustment without new ratings, Zadeh proposed a simple
technique of dealing with such problems: raising the m'’s to a higher power.
Thus inorderto make the "not large" into "not at all large", to a desired degree,
one canraise a "large" differenceto, say, a second (or higher) power, making:
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verylarge = 0/1 + 0.01/2 + 0.64/3 + 1/4

i.e., the power narrows down the fuzziness.

Zadeh's (1973) conditional expression for the above inference is,

IFATHENBELSEC, df. = AxB + (-AxC)

In our Algorithm ELICITATION, Step 4, this means

A = notlarge as defined above
B = “THEN do 6" in algorithm
C = "ELSEdo5"""

A =1-A=large

Using numerical definitions we get (taking the minima first)

415

Vi)

Algorithmic Steps
R'" |6 5
1 1 0
Differences 2 09 0 {F d "not large” THEN do 6
3 0.2 0
4 0 0
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R? | 6 5

1 0 0

2 0 0.1 | ELSE:itd'large",do5
3 0 0.8

4 (0] 1

Combining R1 + R2 = R gives

Algorithmic Steps

R 6 5

1 1 0 (Vi)
Differences 2 0.9 0.1

3 0.2 0.8

4 0 1

Using the definition of the difference "not large" (NL) and Zadeh’s (1973,
sect. 5.16) we get for

IFATHEN B ELSE C for the D as above

MaximindNLoR =
Minima Steps
R 6 5
dnL 1 0 1 0
09 041 09 041
= [1 09 02 0] o 02 08 = 02 02
0 1 0 0

Maxima [ 0.2
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which may be read:the grade of doing step 6 is 1 and, because of fuzziness,
thereis a possibility 0.2 of doing step 5 in spite of small (i.e., notlarge) distance
fromthe goal. If the difference isfarge, in other words, the client is far from the
goal, then a similar calculation with d. gives:

Maximind_ o R = [0.2 1.0]

for steps 6 and 5 respectively, which means that that grade of membership of
doing step 5 is 1, but again there is a possibility 0.2 of doing step 6, i.e.,
terminating BM rightthere. In other algorithms, the final steps and calculations
are the same as above.

in Algorithm ELICITATION, step 5, we have aloop "WHILE-DO". The "ELSE"
pantinthis step is not specified, i.e., in the negative case one simply should do
the next step 6 (stop). This inference can be described by fuzzy conditional
IF-THEN, without specified ELSE-C, which is simplythe Ax B part of the above,
and is calculated in a similar way.

CONCLUDING REMARKS

Intheface of the diversity of applications of behavioural methods in various
fields by people with different professional backgrounds, it is natural totry and
spell out some psychotogical elements common to all the procedures used.
This paper is an attempt to do this in afuzzy form, while keeping a vigilant eye
onapplications.

Within the scope of this paper it was possible to analyze to a degree only
the main features of some of the algorithms, such as determination of the
membership functions (which is an old concept in psychology that was in



418 V.B. Cervin and J.C. Cervin

search of precisiation), if-then inference, loops, linguistic variables, and
structure of the algorithms. Some of the algorithmic features remain
unanalyzed, for example, the "decreasing" response function. Other forms of
the if-then analysis that exist have not been tried out in our behavioural
algorithms. These analyses will have to await another opportunity.

However, what s offered in this paper should help in clarifying the distinction
betweenfuzzy dataand sloppythinking. As Zadeh pointed out, the contribution
of the fuzzy set theory is to make it possible to think precisely about vague or
uncertain variables. One can be clear about what can or should be done, even
inthe absence of precise measurements and instructions.

An instruction "do this exercise five times at 6 o'clock” is to be executed
exactly and does not say anything about deviations. An instruction "do it four
to six times between 5 and 6 o'clock" allows a certain amount of leeway, but
does not say anything about how to decide what actually should be done, and
atwhattime. Afuzzy instruction "dothe exercise preferably five tim es, as close
to 6 o’'clock as possible”, given with compatibility functions, not only specifies
the quantities but alsothe deviationsfromthe prescription. It is neither rigid nor
indeterminate, and not only instructs the client what to do and when, but also
allows for weighted deviations from, and subjective interpretations of, the
instructions. Inthat sense, such an instruction is both more realistic and more
precise than the other two.

Inaddition, such instructions usually contain fuzzy conditions under which
they are to be executed: e.g., the fuzzy statement "if it is not too hot", with a
compatibility function, which can be varied individually, to help the client decide
whenitis "too hot". Thus we have a complete, flexible, and realistic instruction;
unlike the other two types, of which one is unrealistic and other indeterminate:
both generate uncertainty rather than help overcome it, and we all know what
uncertainty mayleadtofromthe psychological point of view. The effect of fuzzy
instructions is much sounder, in the sense that they take from the client the
burden of dealing with uncertainty. From the point of view of applicability,
instructions infuzzyform, with their approximate nature but precise and explicit
structure, should allow a much easier "portability" from field to field. They are
more robust, in the sense of being less vulnerabe to distortion in attempts to
adapt them to different environments. In this sense, fuzzy behavioural
instructions are fairly foolproof, and may allow people who have less
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preparationfor behaviour management than professional practitioners to apply
them to others and especially to themseives. The fuzzy form of behaviour
management may contribute to making it a part of everyone’s daily life.

APPENDIX

Notation.

BM is usually applied in some given situation, such as the family, sexual
scene, home, office, or market place. There is usually a certain aspect of the
situationthat is associated with a particular behaviour that needs changing or
strengthening. The practitioner, after an analysis of the situation and the client’s
behaviourin it, triesto change the situation physically (e.g., "take atrip", "avoid
John Brown"), cognitively (imagine that you are divorced - is it the end of the
line?"), or behaviourally (e.q., systematic desensitization of the client to the
particular situation, stopping smoking, etc.). Thetoolsthe practitioner uses are
measurement scales, elicitors, reinforcers, punishers, the ctient’s motives, and
previous learning, i.e., existing stimulus-response associations and cognitive
structures. The notation to be used is an attempt to approximate the structure
and contemplated restructuring of the situation at hand, the client’s behaviour
as viewed by the practitioner.

Thus we have:

C = conditions describingthe situation at hand (universe of discourse);

S = fuzzy subset of stimuli relevant to the client’s target behaviour
SCC;

s = generic element of the conditions (stimuli), s € C;

S°=subset of conditioned stimuli to client's responses (behaviour
triggers, not explicitly used in this paper);
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m = numberinthe membership compatibility function (uin Zadeh (1973)
characterizing C: mg : C — [0,1], which attaches to each element
s in Ca number ms (s) = m(s € S) inthe interval [0,1];

S = Ei mi/ si where + denotes the union, not the sum;

B = client’s behaviour in C;

A = fuzzy subset of responses under analysis A C B;

a = generic element (response) of behaviour a e B;

s? = stimulustothe practitioner produced by client’sresponse, e.g., his
observation of client’s target response s* € S;

ms(s®) = m(s® e S)fromthe practitioner’s point of view where a is the
client’s target response to some aspect of C;

U = practitioner’s resources for intervention;

E = fuzzy subset of resources used in the situation EC U ;

e = generic element e € U of resouces used: reinforcers, elicitors,
punishers, models, prompts, which depend on the client's
motivationfor effectiveness, to be ascertained bytrial and choice.

Sc = scale of items used to ascertain client’s target responses in terms
of compatibility with a model or criterion; assessment is done by
comparative judgment, or (informally) by absolute judgment;

X = fuzzy subset of the correct scale items x, corresponding to the
subset S? of observed response features, with the associated
number mto be assigned to the client’s response: mx(X ™~ a);

X C Sc scale items, x € Sc;

SaX = corresponding subsets of client’s responses (in terms of stimuli)
and scale items;

& = ampersand = = and = minimum (set intersection);
+ =V = or = maximum (set union);

(-Y) = complementof Y ; f m(x X) = 1-m(yY), (-Y) = X,

MOT = fuzzy subset of client’s motivational states in a situation, used
onlyfor illustration in this paper;

mot = generic state of arousal.
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Although fuzzy set theory is becoming a well recognized field of
mathematical enquiry it has "'no well established method for assigning degrees
ofmembership, either ona mathematical or empirical basis" (Smithson, 1987,
p. 15). Hisdal (1986a) points out that this has inhibited the development and
application of fuzzy sets. The lack of ameasurement basis for fuzzy set theory
may account in part for its limited application in psychology. By adapting
traditional psychological measurement to deal with fuzzy concepts, new
possibilities are open to both fields of enquiry. The first part of this chapter
outlines the need for fuzzy measurementin manyfields of psychology. A Fuzzy
Graphic Rating Scale and its validation, is then described, and ways in which
the scale can be used in various fields are outlined.
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THE NEED FOR FUZZY MEASUREMENT IN PSYCHOLOGY

Fuzzy logic defines concepts and techniques which provide a
mathematical method able to deal with thought processes which are too
impreciseto bedealt with by classical mathematical techniques (Zadeh, 1973).
There are many areas of psychology where traditional mathematical
approaches have forced a higher degree of precision than is perhaps
warranted.

Individual differences.

A perennial issue in psychological assessment has been the extent to
which differences in psychological test scores are a function of genuine
individual differences rather than differences imposed (or obscured) by the
constraints of the measurement procedures. Typically, normative
psychological tests restrict the test-taker's responses both in content and
process; in content, by specifying a set of dimensions to be measured; in
process, by limiting responses to a single choice along a given continuum .
A variety of psychologists (e.g. Bannister & Fransella, 1985; Guilford, 1975;
Tyler, 1978; Viney, 1986) have suggested that these restraints may
deleteriously affect the assessment of human individuality. The imprecision
of human cognition, according to Neisser (1967), results from the fact that
althoughthe central meaning of concepts remains comparatively stable and is
shared across individuals, the boundaries of these concepts are typically
ill-defined or fuzzy.

Polkinghorne(1984), writing for counselling psychologists, describes the
problem for psychological measurement in the foltowing way,
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"When we counseling psychologists impose a matrix of
operationally closed sets over human experience, we often
reproducethe ‘precisionfallacy’. The precision of the measuring
instrument is more exact than the precision of the experience
itself." (p.425).

Fuzzy set theory provides a possible solution to this methodological
problem. it takes account of the reality of imprecision of human thought by
allowing ranges of scores to be measured and translated into a single score.
Although further development work is needed, it is possible that fuzzy variables
will be ableto be used in standard statistical analyses inthe traditional manner.
This meansthataccepted psychometric standards of validity and reliability can
be used to evaluate the potential of this application.

State-trait debate in personality theory.

Within psychology a debate has raged for atleast 50 years about whether,
orto whatextent, itis possible to generalise about behaviour across particular
contexts (Bowers, 1973; Ekehammer, 1974; Epstein & O’Brien, 1985,
Magnusson & Endler, 1977; Valentine, 1982). "Situationists" such as Mische!
(1968) have maintained that, because the correlations between self-report
measures and behaviour in specific contexts rarely exceed a modest 0.30,
situational rather than personal influences are paramount in accounting for
human action.

Epstein and O'Brien (1985) note that Mischel’s (1968) book occasioned a
‘paradigm crisis’ in personality theory and assessment. While the debate
continues unabated (e.g. Staw & Ross, 1985), one factor that has not been
mentioned is Polkinhorne’s (1984) "precisions fallacy." That is, no-one has
considered that the apparent contextual instabilty of many assessed
psychological traits in the non-cognitive domain, may be a consequence of
imposing upon them a level of precision that they do not, in fact, have.
Centainly worth consideration is the possibility that many of these attributes
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may be stable across contexts but only within particular ranges of values.
Current assessment methods would interpret such variability as either
measurement error or situational effects. Fuzzified measurements of these
ranges of scores may promote a methodological resolution of this
longstanding debate, by providing a wayto validly and reliably measure the
range within which an attribute is stable attribute across different situations.

Theories of career development and choice.

Inthefield of career development mosttheoretical approaches presuppose
amatch betweenthe individual’s self-view and the perceived characteristics of
occupations (Zytowski & Borgen, 1983; Dawis & Lofquist, 1984). Super (1963),
forexample, presented a self-concept theory which suggested that satisfaction
and work adjustment involve being able to implement one’s self-conceptinan
occupation. Testing such a proposition requires measuring concepts of self
and occupational stereotypes, and assessing whether satisfaction relates to
the degree of match between the two. Most often this is achieved through
the use of standardised tests or questionnaires which, as indicated above,
specify both the content and the process (rating procedure) of participant
responses. Whetherthe investigator’s specifications correspond closely with
the participants’ own concepts of self remains a moot point. The repertory
grid approach (Bannister & Fransella, 1985) does allow individuality in the
content of measurement, but the analysis of grouped data with this technique
is difficult (Brook, 1986).

Nurius (1986) suggests that advances in cognitive psychology provide a
basis forimproved measures ofthe self-concept, but again it would seemthat
the suggestions offered are more interms of the content ratherthanthe process
of measurement. The graphic rating scale outlined inthis chapter, overcomes
these difficulties as it includes individual flexibility inthe measurement process
itself. Such an approach will greatly facilitate testing vocational theories.
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Measurement of attitudes in social psychology

Perhaps the strongest case forthe need for fuzzy measurement arises from
the arguments put forward by earlier social psychologists in relation to the
measurement of attitudes. Attitudes are a central concept in social
psychology, and, according to Sherif (1976) they are the "stuff of which the
self-system is formed" (p. 239).

Self-concepts referred to above, are infact attitudes towards oneself. While
the issue of self-esteem and other evaluative attitudes applied to the self have
traditionally been studied by psychologists in the field of personality theory,
Sherif reminds us that "the psychological principles governing the formation
of attitudes and their incorporation in the self-system cannot be altogether
different merely because some psychologists call themselves social
psychologists and others call themselves personality psychologists” (p. 240).
Hence comments made about the measurement of attitudes are fundamental
to the assessment of individual differences and self-concepts.

Traditional approaches to the measurement of attitudes have involved
methods such as the semantic differential (Osgood, Suci, & Tannenbaum
(1957). The semantic differential approach to measurement requires an
individual to describe a concept (e.g. men) in terms of where it falls between
bi-polar adjective descriptions such as the one given below:

Also widely used is the Likert scale which requires respondents to indicate
the extent to which they agree or disagree with statements. For example,
respondents may be asked to respond to a statement: 'l want a job which
allows me to work at my own pace." using the categories "Strongly Agree,
Agree, Indifferent, Disagree, Strongly Disagree".



430 B. Hesketh et al.

The adequacy of these and other attitude measures depend upon two
important features:

1) the adequacy of the belief statements or bi-polar anchors.
2)how well responses reflect the attitudes of those being questioned.

Inallofthese approaches, responsestoseveral items ina particutar domain
are summed to provide a single score for the attitude in question. However,
individuals may obtainthe same score for very different reasons. One individual
may simply respond with the midpoint for all items, while another individual
may provide a wide diversity of ratings on either side of the midpoint, but
whichwhensummed, resultin a similar total. individual difference information
is often lost, in traditional attitude measurement as was highlighted by
Thurstone (1927) and Sherif & Sherif (1970).

As early as 1927 Thurstone, in a theoretical discussion on the meaning of
attitudes, portrayed .individual differences graphically. Figure 1 illustrates how
he did this for attitudes in relation to pacificism and militarism.

f d e b ca
EXTREME NEUTRAL EXTREME
PACIFICISM MILITARISM
FIGURE1

Attitude variable, militarism - pacificism

Oneindividual (e.g. a) might hold a very militaristic attitude, other individuals
(e.g. band c) might be slightlyless extreme. More importantly, from the point
of view of our current interest in fuzzy ratings, Thurstone suggested that the
range of opinions which a particular person is willing to endorse could also be
represented graphically (sayfrom dtoe).
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Using this graphic representation, Thurstone demonstrated that an
individual’s opinion could be characterised in terms of three different
measures, the range of opinionsthe individual is willing to endorse, their mean
positiononthescale, andthe one opinion selected which besi represented an
attitude.

Althoughthese insights into the complex nature of attitudes were identified
early in the development of attitude measurement, the subsequent methods
used failed to capture this complexity, no doubt because traditional
mathematics was not welt developed for dealing with ranges and assymetries.

More recently Sherif and Sherif (1970) discussed the notion of latitudes of
acceptance and rejection in attitude measurement. They define thelatitude of
acceptance as the "most acceptable position plus other positions the
individual also finds accep table". The latitude of rejection is defined as “the
position most objectionable to the individual, the thing he most detests in a
particular domain, plus other positions also objectionable" (p. 300).
Conceptually, these ideas demand fuzzy measurement, yet no such
developmentstook place.

The fuzzy graphic rating scale described below offers a direct way of
addressing these notions of ranges within the domain of attitude
measurement. In particular, the widely used semantic differential (Osgood,
Suci, & Tannenbaum, 1957; Heise, 1969; Hesketh & Roche, 1986) has been
adaptedto provide afuzzy rating scale which may be represented graphically.

This rating scale allows for assymetries, and overcomes the problem,
identified by Smithson (1987, p. 19), of researchers arbitrarily decidingon a
most representative value in ranges of scores. This rating scale, which allows
respondents to identify a preferred point and to extend the rating in either
direction, does not require such assumptions on the part of the researcher.
However, it achieves simplicity of presentationto a respondent at the price of
anassumption about the shape of the fuzzy function generated (see Hesketh,
Pryor, & Hesketh, 1987 for further discussion on this point.)
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FUZZY GRAPHICRATING SCALE.

The fuzzy graphic rating scale presents respondents with the option of
indicating a preferred point (indicated by the V pointer inthe figure below) and
then asks them to extend the rating to the left or right if they wish (indicated by
thelines drawntotheleft and right of the pointer). Although afuzzy rating can
be elicited using a simple pencit and paper technique, analysis is greatly
facilitated through obtaining the rating in a computerised form.

A program FUZRATE, written in Turbo Pascal (Borland International Inc,
1985) for an IBM PC orcompatible, elicits interactively afuzzy graphic rating.
Atter preliminary instructions and tuition inthe use of the computerised fuzzy
graphic rating scale, the program presents onthe screena modified semantic
differential. This is done as follows:

GENERALLY V- GENERALLY
CONSIDERED | | CONSIDERED
MEN’S WORK WOMEN'S WORK

The respondent is first asked to rate the particular concept (e.g. whether
they think the job ‘psychiatrist’ is generally considered men’s or women'’s
work) by moving the V pointer using the left and right arrow keys on the
key-board (or a mouse if available), and to press the return key when the V
pointer reaches the point which best represents their rating. The first phase
may result in a rating such as is illustrated below:

GENERALLY -V- GENERALLY
CONSIDERED | | CONSIDERED
MEN’S WORK WOMEN'S WORK
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Next, the respondent is asked to indicate how far to the left the rating could
possibly go by extending or removing the left extension using the left and right
arrow keys.

GENERALLY V- GENERALLY
CONSIDERED | | CONSIDERED
MEN’S WORK WOMEN'S WORK

And finally, the respondent is asked how farto the right the extension could
possibly go.

GENERALLY A At GENERALLY
CONSIDERED | | CONSIDERED
MEN’S WORK WOMEN'S WORK

The V pointer can be seen to represent a rater’s perception of how others
generallyview a particularoccupation, such as psychiatrist. Interms of Hisdal's
TEE model, it can belikened to a respondent’s best estimate of the probability
of the outcome of a poll in which others are required to sex-type the
occupation. The fuzzy extensions on either side of the V pointer represent
uncertainty inherent in this estimate (Hesketh, Pryor, & Hesketh, 1987).

By making certain simplifying assumptions, not uncommon within Fuzzy
SetTheory, this graphic rating can be viewed as afuzzyvariable, hence making
possiblethe use of fuzzy settheoretic operations. The simplifying assumptions
are:

1) The global set is represented along the horizontal axis.

2) The fuzzy membership function takes its maximum value (1) at the
pointon the fuzzy support represented by the V pointer.

3) The extent of the fuzzy support is represented by the horizontal lines
to either side of the V pointer.
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4)Thefuzzy membership functiontapers uniformiy from its value of 1 at
the V pointer to a value of 0 beyond the fuzzy support or the left and
right extensions. 5) The unign of two or more fuzzy ratings will have
a convex membership function. A uniformly tapering membership
function may not be appropriate for some applications. Hisdal
(1986a) suggests that suitable membership functions might have
continuous derivatives (i.e. be smooth).

Union of two fuzzy variables

An example can be used to illustrate the union between a pair of fuzzy
variables. The combination of fuzzy variables was performed as follows:

clzy — Alzzy OR B gychthat

fe(Ci) = max(max(fa(Ai), fb(Bi)), min(fe(Ci-1), fe(Ci+1))) (1)

Evaluated recursively, this ensures that the resulting membership function
is convex. Insome applications a concave function may be appropriate but in
the data reported in this chapter the convex function was more appropriate
(Hesketh, Pryor, & Hesketh, 1987). The way inwhichtwo or more fuzzy ratings
can be combined via the fuzzy set theoretic Union procedure is itlustrated
graphicallyin Figure 2.
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f(x)

Membership
function

(%)

Union of two
furzy ratings

FIGURE 2

Membershipfunction and their union

435
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Expected Value

In calculating an expected value the "average weighting" procedure
introduced by Baas and Kwakernaak (1977) was used. Justification for this
liesinthelink betweenfuzzy set theory and probability theory (Hisdal, 1986b).
Toillustrate this let us assume that Fuzzy-Z is a fuzzy rating of some attribute,
and that u® is a "correct” measure of the same attribute elicited under exact
conditions of observation. Hisdal (1986b) interprets possibilities as P(Fuzzy_Z
| ue"), {the probability that Fuzzy Z would be obtained when the exact
measure is a priori known to be u®), and probabilities as P(u®*| Fuzzy 2) (the
probability that u®*is the exact score given an a priori Fuzzy Z). The position
of the subject’s response on the x-axis corresponds to the u®* of the TEE
model. As an estimate of u®™ is required, given Fuzzy Z, a reasonable
approachistorescale each ordinate of the rating function (the fx (x;) values) so
thatallthe ordinates sumto 1 (2fx = 1), asrequired of a probability distribution),
andto calculate the expected value of the resulting distribution. This assumes
a uniform prior p(u®), a reasonable application of Bayes’ postulate. The
expected value was calculated as follows:

X =2uX ((X)/ Zut(X) (2)

where fx(Xi) / £ y fx(Xi) is the rescaled ordinate of each point Xi, and the
outer summation of all X multiplied by their respective probabilities gives the
expected value of the distribution. The procedure used to calculate the
expected value is illustrated graphicaily with an exampile in Figure 3.

The caiculations required to form the union of fuzzy ratings, and the
expected value are performed within the program FUZRATE which is
described more fully in Hesketh, Pryor, Gleitzman, and Hesketh (1987). The
graphic scale discussed above allows a fuzzy rating to be elicited from
respondents who have no knowledge of the mathematics underpinning fuzzy
variables.
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EXPECTED VALUE OF A FUZZY VARIABLE
Takea fuzzy variable represented by the foilowing membership function:

T 1.0 10 _
f(x) 07

0.0 0 Il o

D f(x) = 02+04+07+10+04 =27
Rescale so that > (x) = 1.0

(Divide each f(x) vaiue by 2.7).

1.0 127 = 037 ,
1(x) T 0.26.
0.15 " 015
0.07." I
0.0 I | : l L |
0 5 10
X —>»
Expected X value = 7 {q.(X).x
= 0.07x4 + 015x5 + 026x6 + 036x7
+ 0.15x8
= £5.38
FIGURE 3

Example illustrating calculation of expected value
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EVALUATION OF THE FUZZY GRAPHIC RATING SCALE

Although the fuzzy graphic rating scale can be adapted for use in many
areas we chose to validate it in relation to Gottfredson’s (1981) map of
occupations. Wewere particularly interested inthis application because of the
need to develop a measure of social space totest Gottfredson’s (1981) theory
of careercircumscription and compromise. Gottfredson introduces for the first
time, a spatial account of "the person-occupation matching paradigm.” The
theory states that an individual's "social space" (the zone of acceptable
occupational alternatives) is successively restricted in terms of sex-type,
perceived prestige level of occupations and occupational interests.
Compromise in career choice follows a reverse order, with interests
compromised most easily, followed by prestige while preference for sex-type
of occupations is most resistant to change. The concept of measuring a
spacefits more easily withafuzzyrating scalethan with traditional approaches
to psychological measurement.

Two studies have been undertaken within the context of Gottfredson’s
occupational map. Asthese studies provide reliability and validity data for the
fuzzy rating scale, they are reviewed briefly below.

Study One

The subjects for the first study were 10 males and 10 females aged 18to
45 with an average age of 29 years. These respondents used the fuzzy
graphic rating scale with five prestige andthree sex-type anchors to rate nine
occupations. The nine occupations, carefully chosento representthreelevels
of prestige based on Daniel's (1983) scale and three levels of sex-type based
onShinar’s (1975) scalearegivenin Table 1. AlsogiveninTable 1 isanexample
of a sex-type and a prestige anchor used with the fuzzy graphic rating scale
described earlier. Although no numbers appeared onthe screen, for analysis
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the responses were converted to the scale [0,99] with each arrow key press
representing one point. Ratings can also be elicited with a mouse. The
presentationofthe eight scales was randomized as were the nine occupational
stimuli.

TABLE 1
Occupations and sample anchors used in Study One.

Occupation Daniel (1983) Shinar (1975)
(Prestige) (Sex-type)
Engineer 26 1.9
Motor Mechanic 4.7 1.5
Groundskeeper 5.2 2.0
Psychiatrist 1.9 3.7
Real Estate Agent 4.3 34
Cook 4.6 4.2
Primary Teacher 3.8 56
Registered Nurse 3.8 6.6
Receptionist 4.6 6.3

Prestige ratings from 1 (high) to 7 (low).
Sex-type ratings from 1 (mascutine) to 7 (feminine).

Sample Prestige Anchor:

NOT VERY VERY
WELL PAID | | WELL PAID
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Sample Sex-type Anchor:

MEN USUALLY WOMEN USUALLY
CHOOSE THIS | | CHOOSE THIS
OCCUPATION OCCUPATION
0 99
Left Right

[0.99] scale used for analysis only!

The computerized graphic rating procedure was explained to respondents
using a trial occupation not included in the nine stimuli. Various possible
manipulations were demonstrated, including ratings with no spread on either
side, one with spread onty onthe one side, a rating with one end hard against
the upper or lower end of the scale and other variations. Instructions on the
screen also explained to respondents how to use the arrow keys for rating the
occupations.

RESULTS

Forthe purposes of comparison with the a priori ratings obtained by Daniel
(1983) for the prestige of the nine occupations and by Shinar (1975) for the
sex-type of the occupations, it was necessary to calculate the expected value
for individual scales and for various combination of prestige and sex-type
scales.

Intercorrelations between the graphic ratings of the nine occupations on
the eight scales and the a priori Shinar and Daniel scale values for the same
nine occupations were obtained for each of the 20 subjects. These
correlations were then averaged across the 20 subjects. Analyses were



Applications and Evaluation of a Computerized Fuzzy Graphic Rating 441

undertaken using Gauss Version 1.49B (Ediefsen & Jones, 1986). Although
Fisher’s z-transformation is often used before averaging, Hunter, Schmidt &
Jackson (1982, p. 42) have recently noted that the use of this procedure may
bias the averaging of correlations, with larger r values, receiving larger z
scores. Sincethe effect of using Fisher’s z-transformation on the present data
was found to be relatively small, only untransformed correlation averages
which probably represent conservative estimates are reported.

Validities for the five prestige scales ranged from -0.74 to -0.88, while the
three sex-type scales had validities of 0.86, 0.91 and 0.93. Of particular interest
were the low correlations between the prestige ratings of the nine occupations
usingthe Fuzzy Rating scales and Shinar's sex-type ratings (0.02t00.25), and
also between the sex-type ratings using the fuzzy scales and Daniel's prestige
ratings (0.03to-.1). This provides a measure of construct validity forthe scales.

Combining Scales.

The expected values, calculated after various composite combinations of
fuzzy ratings, were correlated with the a priori scale values for the nine
occupations obtained by Daniel and Shinar, and the correlations averaged
across the 20 subjects. These data provided a basis for eliminating from the
union any scale(s) which diminished the match between the composite fuzzy
ratings and the a priori values for the occupations. Optimum criteria
correlations were found by combining three of the fuzzy ratings for prestige (r
= 0.90) and two of the fuzzy ratings for sex-type (r = 0.94).

The results from the first study were encouraging, and provided adequate
justification for extending the fuzzy graphic rating scale to obtain measures of
preferences on dimensions of prestige and sex-type.
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Study Two

Studytwo aimed to examine both the reliability and the validity of four of the
prestige scales and two of the sex-type scales from study one, but applied to
the rating of a preferred position on the scale. Asthe data were collected with
a viewtotesting Gottfredson’s (1981)theory, respondents also provided fuzzy
ratings of their occupational interests. Participants were 15 males and 15
females aged between 21 and 57 years, with a mean age of 34 years and 9
months. Foliow up data were not available for 2 participants. Based on the
findingsfrom Study One, four anchors were usedto measure prestige (money,
education, status and power), and two to measure sex-type (women’s and
men’s work, and jobs women and men choose). As well, six interest scales
based on the Holland categories (Realistic, Investigative, Artistic, Social,
Enterprising and Conventional) were used with the anchors "extremely
unattractive' and "extremely attractive". Anexample of a prestige, sex-type and
interest anchor is given in Figure 4.

In addition to using the fuzzy rating scale with the interest, sex-type and
prestige anchors, respondents completed a computerised paired
comparisons expercise using the nine occupations from Study One. The
Vocational Preference Inventory, (Holland, 1978) was also completed.

The computerised paired comparisons exercise required respondents to
rate their preference for the nine occupations in Table 1 presented two at a
time. The output from this exercise ranked the occupations in order of
preference. The most preferred occupation for each subject was then scored
interms of its a priori prestige score (Daniel, 1983) and sex-type score (Shinar,
1975).

The VP{ was scored 1o provide information on the six interest categories in
Holland's theory (Realistic, Investigative, Artistic, Social, Enterprising and
Conventional.)

Subjects were interviewed twice. At the first interview they completed the
fuzzy ratings, the paired comparisons exercise and the VPI. At the follow-up
interviewtwoweeks later respondents again provided fuzzy ratings of the same
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FUZZY GRAPHIC RATING SCALE

HAS Low ——‘7—1 V| | HASHIGH
STATUS | MEDIUM —  STATUS
STATUS
GENERALLY —\— GENERALLY
CONSIDERED | —+—t— 11—+ 1| CONSIDERED
MEN’S WORK WOMEN'S WORK

How attractive do you find REALISTIC type
occupations which involve manipulating
objects, tools, machines or animals?

EXTREMELY | ., . . L EXTREMELY
UNATTRACTIVE ' | ATTRACTIVE
QUESTIONS

1) What type of occupation would you prefer?
One which is

2) How far would you be willing to move to
the left?

3) How far would you be willing to move to
the right?

FIGURE 4
Example of prestige, sex-type and interest scales
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prestige, sex-type and interest scales. After giving their ratings two forms of
feedback were provided. First, the fuzzy rating provided on each individual
scale was fed-back to the respondent and they were asked to describe what
they meant by the rating they gave. Following this, the union was formed for
the four prestige scales and the two sex-type scales, and this was reproduced
inthe form of a two dimensional map representing Gottfredson’s social space
concept. An example is given in Figure 4.

The expected value was calculated for combined fuzzy prestige scales and
sex-type scales and these were correlated with the Daniel (1983) and Shinar
(1975) ratings for prestige and sex-type of the most preferred occupation from
the paired comparisons exercise. The correlations were 0.415 for prestige and
0.579 for sex-type, both of which were significant (p < .01).

The expected value for the Fuzzy ratings of interests were correlated with
the VPIscoreforeach ofthe six Holland dimensions. The obtained correlations
of each Holland graphic rating scale with its corresponding Vocational
Preference Inventory scale for the sample were all significant (p < .05). The
correlations ranged from 0.37 for Social to 0.63 for Investigative. Considering
the differences in the context presented to the participants by these two
procedures and the differences in scoringthe participants’ responses, these
results suggest that the fuzzy graphic rating scales are quite adequate single
item representations of the Holland vocational scales. In addition, the scales
provide a measure of flexibility on each of the dimensions, a feature not
available with more traditional approaches to measurement.

The test-retest reliability data for the left extension, right extension, and
most preferred position, and expected values derived from the fuzzy ratings
on individual prestige, sex-type and interest scales are given in Table 2. The
expected value reliabilities vary from 0.62 to 0.87.

Test-retest reliabilities for various combinations of the prestige scales
yielded the highest reliability when three of the four status anchors were
combined (0.78). The two sex-type scales give a high test retest reliability of
0.92. Extensive reliability and validity data from both studies are reported in
Hesketh, Pryor, Gleitzman & Hesketh (1987).
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TABLE 2
Test-Retest Reliability coefficients for single prestige,sex-type and interest
scales.
Most
Left Preferred  Right Expected
SCALES Extension Point Extension Values
Prestige:
Pay 74 .54 .76 71
Education .67 .62 77 74
Status .76 .57 .68 .62
Power 71 .59 77 .70
Sex-type:
Choose 41 73 57 .82
Work .66 .78 .62 .85
Interest:
Reatistic 77 72 77 77
investigative .76 .61 .51 .67
Artistic .73 .90 .86 .87
Social 72 75 .70 .76
Enterprising .85 .61 .69 74
Conventional .63 .66 .53 74

POTENTIAL APPLICATIONS

The computerised fuzzy graphic rating scale proved to be an unexpected
aid to vocational counselling. The program FUZRATE feeds back to
participants their fuzzy ratings on individual prestige, sex-type and interest
scales, and then presents the results of forming the union for the prestige and
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sex-type scales. As part of the validation process, respondents in the second
study were asked what they meant by their fuzzy ratings. The resultant
discussion about the factors influencing preferences allowed the exploration
of issues in greater depth than is usually possible without such a graphic aid
or stimulus. Pryor, Gleitzman & Hesketh (1987) summarise several examples
of the descriptions given by respondents of what they meant by their ratings.

Within the vocational psychology literature there is considerable concern
about sex-typing of preferences, and the resistance of these preferences to
attempts to encourage both males and females to consider a wider range of
occupations. It is important that young people are helped to become aware
ofthe underlying influences ontheir occupational preferences. Completinga
program such as FUZRATE in discussion with a counsellor, helps clients to
make more concrete the influences of prestige and sex-type on preferences.
Although research has clearly shown these to be two of the most important
factors affecting choice (Gottfredson, 1981), they are seldom discussed
directly in career education and guidance interventions. Through the use of
the Fuzzy Graphic-Rating Scale in the FUZRATE program these latent
influences can be made more manifest.

The application of fuzzy graphic rating scales to computerized vocational
counselling systems more generally needsto be explored. Watts (1986) warns
would-be users of computers in careers guidance of the potential abuse of this
technology. According to Watts, computerised guidance may foster a
"pigeon-hole" approach to clients by conveying a spurious impression of
precision. Since the fuzzy rating procedure takes more cognizance of
individual differences than traditional self-estimate measures and stresses
scoreranges ratherthansingle points, it may offer some safeguard against this
technologicaltendency. Infact, anytechniquethat allows counsellors to more
accurately and more wholistically understand the complexity of a person’s
attitudes deserves to be fully investigated and evaluated. Fuzzysettheory and
fuzzy graphic rating scales hold just such promise.

Moreover, fuzzy measures may in the longer term allow the assessment of
greater human individuality since fuzzy variables applied to attitude
measurement can be interpreted as indicating not only intensity of the attribute
but tolerable ranges of the attribute. In traditional affective psychological
measures tolerable range has not been measured. That such measurement
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would represent an important breakthrough for psychometrics can be
illustrated by reference to two major empirical problems drawn from career
developmenttheory.

First, several writers (Gotttfredson, 1981; Tversky, 1972; Zytowski, 1965)
have noted the disproportionate effect in decision making of "avoiding the
negative" in comparison with "obtaining the positive’. That is, there are some
alternatives and outcomes from decisions that people will not tolerate and
which influence decision making before one will consider choosing among
desirable outcomes and alternatives. Until the present time the possibility of
accurately measuring these tolerable boundaries and being able to use them
for theoretical purposes has proved elusive. Similady, Hilton's (1962)
cognitive dissonance model of decision making drawsthe distinction between
"maximising" and "satisficing" as choice outcomes. The crucial difference is
whether people choose the very best option or simply an acceptable one.
Hilton and probably most vocational development theorists would see
"satisficing" as the more realistic conceptualisation. The concept, however
implies the notion of tolerable range as in the Gotttredson formulation, which
has proved difficult to operationalise. Fuzzy set theory may provide a
mathematical basis on which to establish the delineation of individuals’
"satisficing" range of occupational alternatives.

Second, a number of recent theories related to career development have
incorporated notions of ranges of aftributes, for example, Gottfredson’s
"social space” (a set of occupational alternatives ratherthan a single choice)
and Dawis and Lofquist's (1984) "flexibility" in work adjustment. To date the
measurement of these conceptualisations has remained unsatisfactory. So
much so, that Gottfredson (1985) for example, observes that this inability to
measures ranges isthe single biggest drawback tothe proper evaluation of her
theory. Research is currently underway using the program FUZRATE to test
Gottfredson's (1981) theory of career compromise.

It is possible that the use of fuzzy measurement, particularly in relation to
determining areas of intolerance, may help to improve the predictive validity
of instruments. Itis commontofind that the hit rate of interest inventories in
predicting occupational choice is usually quitelow, inthe region of 30% to 40%
(Holland, 1978). By examining the zones of intolerance in terms of interests
and work adjustment (the areas of the scale outside the person’s fuzzy rating
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of liking or preference), it may be possible to develop a new understanding of
predictive validity in terms of forecasting the negative.

Further areas where fuzzy measurement may be applicabie can be found
outside the immediate context of vocational psychology. Firstly, the
evaluation of many psychological interventions could be made more accurate
if the evaluation measures were fuzzified. For example, large sums of money
have been spent in the last two decades in many different countries on
programmes aimed at altering sex-role stereotyping in a wide range of
contexts. Fuzzified evaluation measures may be able to provide more sensitive
indications of the intervention impact by providing not only an absolute rating
of attitude butalso a rating of response range. This may be extremely important
since a programme’s effect might not be on participants’ most preferred point
ona sex-type continuum but rather onthe tolerable range of responses. Thus
aprimary education teaching programme designed to encourage girlsto play
with nontraditional objects such as trucks, may not alter the girls’ preference
for dolls as the most desirable toy but may broaden their willingness to spend
at least some time playing with nontraditional objects. Without a measure of
range this important outcome could be obscured and the programme
evaluated too unfavourably.

in addition fuzzy set theory and fuzzy logic through conceptualisation of
grades of membership provides a set of mathematical relations which much
more closely approximate recent formulations of human thought in terms of
paradigms and deviations (Hunt, 1982; Neisser, 1967). Lohaus (1986) has
both observed and provided evidence onthe crucial effects of experimenters’
predecisions on the validity and ultimate interpretability of any empirical
findings. Inparticular he pointstothe importance of establishing experimental
procedures, including variable measures which are congruent with the nature
of the phenomena being studied. In terms of human cognition fuzzy
measurement may take us one step closer to fulfilling this experimental ideal.

The state-trait debate in personality theory offers yet another application of
the fuzzy graphic rating scale. Mood states are known to have a more stable
trait component upon which situational variables have their effect. It might be
possible to represent traits in terms of ranges with states being reflected in the
most preferred position. A similar analysis can be appliedto the measurement
of attitudes more generally. For example, Staw & Ross (1985) have
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demonstrated that job satisfaction has a stable component, related more to
individual differences than to features of the job itself. While personality
theorists can be accused of neglecting situational influences, the job
satisfaction literature over the past half century has failed to acknowledge the
obvious contribution of more stable affective orientations in individuals. The
prospect of measuring stability through ranges with situational influences
reflecting more specific responses offers exciting opportunities for resolving
thedebate. Intraditional affective psychological measures, tolerable range has
not been measured. Early social psychologists recognised the importance of
this concept in attitude measurement, but the empirical measures capable of
supporting the idea were not available. The Fuzzy Rating Scale offers a way
of applying earlier ideas about attitude measurement.

Finally, Hisdal (1986b) has highlighted the need to expiore further which
factors contribute to fuzziness. For example, fuzziness may be inherent in a
particutar situation, it may arise due to perceptions of an observer, or it may
be afunction of definition or measurement. In practice, it remains difficult to
determine how much of the fuzziness is due to each of these sources,
although psychometric reliability analyses may help determine some
contributions to fuzziness. Test-retest reliabilities over a two week period,
reported in this chapter, were in the order of .61 to .87 for individual scales
which shows that a proportion of the fuzziness is due to lack of stability over
such a period. Further research examining reliabilities over varying in tervals
and with variations of the scale presentation is needed to explore the different
contributions to lack of reliability in the fuzzy graphic rating scale. Such
analysis may help to throw light on sources of fuzziness.

The procedure of asking respondents what they understood by their fuzzy
ratings is another important way of increasing our understanding of fuzziness.
Respondents found it easy to describe the components that went into making
a fuzzy rating after having provided the rating. The graphic representation
appearstoactasastimulustorespondentstorecreatetheir thought processes
while providing the rating. As such, the scale provides an opportunity for
intensive exploration of meanings of fuzziness ina wider range of applications.

Future research is needed to explore the best way in which to present the
scale graphically. The two studies reported briefly in this chapter did not use
numbers under the graphic scale, but these could easily be included. Other
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issues which have not yet been addressed relate to the dimensionality of
anchors. For example, should "masculing” and "feminine" concepts be
opposite ends of the same scale, or do they require two separate scales?
Answers to this question would be of considerable theoretical interest in the
androgyny literature.

Although the idea of using extensions to a semantic differential rating scale
is quite simple, without computerised data collection, analysis is extremely
tedious. The combination of computerised data collection and fuzzy set
theory offers anopportunity for new and creative approachesto measurement
ofindividual differences.
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