


First Course on Fuzzy Theory and Applications 



Advances in Soft Computing

Editor-in-chief
Prof. Janusz Kacprzyk
Systems Research Institute
Polish Academy of Sciences
ul. Newelska 6
01-447 Warsaw, Poland
E-mail: kacprzyk@ibspan.waw.pl

Rainer Hampel, Michael Wagenknecht,
Nasredin Chaker (Eds.)
Fuzzy Control
2000. ISBN 3-7908-1327-3

Henrik Larsen, Janusz Kacprzyk,
Sławomir Zadrozny, Troels Andreasen,
Henning Christiansen (Eds.)
Flexible Query Answering Systems
2000. ISBN 3-7908-1347-8

Robert John and Ralph Birkenhead (Eds.)
Developments in Soft Computing
2001. ISBN 3-7908-1361-3

Mieczysław Kłopotek, Maciej Michalewicz
and Sławomir T. Wierzchoń (Eds.)
Intelligent Information Systems 2001
2001. ISBN 3-7908-1407-5

Antonio Di Nola and Giangiacomo Gerla (Eds.)
Lectures on Soft Computing and Fuzzy Logic
2001. ISBN 3-7908-1396-6

Tadeusz Trzaskalik and Jerzy Michnik (Eds.)
Multiple Objective and Goal Programming
2002. ISBN 3-7908-1409-1

James J. Buckley and Esfandiar Eslami
An Introduction to Fuzzy Logic and Fuzzy Sets
2002. ISBN 3-7908-1447-4

Ajith Abraham and Mario Köppen (Eds.)
Hybrid Information Systems«
2002. ISBN 3-7908-1480-6

Przemysław Grzegorzewski, Olgierd Hryniewicz,
María ç . Gil (Eds.)
Soft Methods in Probability, Statistics 
and Data Analysis
2002. ISBN 3-7908-1526-8

Lech Polkowski
Rough Sets
2002. ISBN 3-7908-1510-1

Mieczysław Kłopotek, Maciej Michalewicz
and Sławomir T. Wierzchoń (Eds.)
Intelligent Information Systems 2002
2002. ISBN 3-7908-1509-8

Andrea Bonarini, Francesco Masulli
and Gabriella Pasi (Eds.)
Soft Computing Applications
2002. ISBN 3-7908-1544-6

Leszek Rutkowski, Janusz Kacprzyk (Eds.)
Neural Networks and Soft Computing
2003. ISBN 3-7908-0005-8

Jürgen Franke, Gholamreza Nakhaeizadeh,
Ingrid Renz (Eds.)
Text Mining
2003. ISBN 3-7908-0041-4

Tetsuzo Tanino, Tamaki Tanaka,
Masahiro Inuiguchi
Multi-Objective Programming and Goal
Programming
2003. ISBN 3-540-00653-2

Mieczysław Kłopotek, Sławomir T. Wierzchoń,
Krzysztof Trojanowski (Eds.)
Intelligent Information Processing and Web Mining
2003. ISBN 3-540-00843-8

Ahmad Lotfi, Jonathan M. Garibaldi (Eds.)
Applications and Science in Soft-Computing
2004. ISBN 3-540-40856-8

Mieczysław Kłopotek, Sławomir T. Wierzchoń,
Krzysztof Trojanowski (Eds.)
Intellligent Information Processing and 
Web Mining
2004. ISBN 3-540-21331-7

Miguel López-Díaz, María ç . Gil, Przemysław
Grzegorzewski, Olgierd Hryniewicz, Jonathan
Lawry
Soft Methodology and Random Information
Systems
2004. ISBN 3-540-22264-2

Kwang H. Lee
First Course on Fuzzy Theory and Applications
2005. ISBN 3-540-22988-4

Further books of this series can be found on our homepage: springeronline.com



Kwang H. Lee 

First Course 
on Fuzzy Theory 
and Applications 

With 149 Figures 



Dr. Kwang H. Lee 

Advanced Institute of Science and Technology, KAIST 
Kusong-dong 373-1 

305-701 Taejon 
Republic of South Korea 

Library of Congress Control Number: 2004112297 

ISSN 16-15-3871 

ISBN 3-540-22988-4 Springer Berlin Heidelberg NewYork 

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is 
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, 
broadcasting, reproduction on microfilms or in any other way, and storage in data banks. Duplication 
of this publication or parts thereof is permitted only under the provisions of the German Copyright 
Law of September 9,1965, in its current version, and permission for use must always be obtained from 
Springer.Violations are liable to Prosecution under the German Copyright Law. 

Springer is a part of Springer Science+Business Media 

springeronline.com 

© Springer-Verlag Berlin Heidelberg 2005 

Printed in Germany 

The use of general descriptive names, registered names, etc. in this publication does not imply, even 
in the absence of a specific statement, that such names are exempt from the relevant protective laws 
and regulations and free for general use. 

Cover design: Erich Kirchner, Heidelberg 
Typesetting: Digital data supplied by the authors 

Printed on acid-free paper 62/3020Rw-5 43210 



Preface

Fuzzy theory has become a subject that generates much interest among 

the courses for graduate students. However, it was not easy to find a 

suitable textbook to use in the introductory course and to recommend to 

the students who want to self-study. The main purpose of this book is just 

to meet that need. 

The author has given lectures on the fuzzy theory and its applications 

for ten years and continuously developed lecture notes on the subject. This 

book is a publication of the modification and summary of the lecture notes. 

The fundamental idea of the book is to provide basic and concrete 

concepts of the fuzzy theory and its applications, and thus the author 

focused on easy illustrations of the basic concepts. There are numerous 

examples and figures to help readers to understand and also added 

exercises at the end of each chapter. 

This book consists of two parts: a theory part and an application part. 

The first part (theory part) includes chapters from 1 to 8. Chapters 1 and 2 

introduce basic concepts of fuzzy sets and operations, and Chapters 3 and 

4 deal with the multi-dimensional fuzzy sets. Chapters 5 and 6 are 

extensions of the fuzzy theory to the number and function, and Chapters 7 

and 8 are developments of fuzzy properties on the probability and logic 

theories.

The second part is for applications. Chapter 9 introduces fuzzy inference 

techniques which can be used in uncertain situations, and Chapter 10 is for 

the application of the inference to the control problems and expert systems. 

Chapters 11 and 12 provide possible hybrid combinations with other 

intelligent algorithms, especially neural network and genetic algorithms. 

Special acknowledgements are due to my students who gave me 

suggestions and feedback on the lecture notes. I am also indebted to a 

series of grants from the Korea Foundation of Science and Technology, the 

Mirae Company, and the CHUNG Moon Soul BioInformation and 

BioElectronics Center. 

Kwang H. LEE 

KAIST (Korea Advanced Institute of Science and Technology) 
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Chapter 1. FUZZY SETS 

This chapter reviews the concepts and notations of sets (crisp sets), and 

then introduces the concepts of fuzzy sets. The concept of fuzzy sets is a 

generalization of the crisp sets. Convex set,  - cut operation, cardinality 

of fuzzy set and fuzzy number are also introduced. 

1.1 Sets 

1.1.1 Elements of Sets 

An universal set X is defined in the universe of discourse and it includes all 

possible elements related with the given problem. If we define a set A in

the universal set X, we see the following relationships 

A  X. 

In this case, we say a set A is included in the universal set X. If A is not 

included in X, this relationship is represented as follows. 

XA .

If an element x is included in the set A, this element is called as a 

member of the set and the following notation is used. 

x  A. 
If the element x is not included in the set A, we use the following 

notation.

x  A.
In general, we represent a set by enumerating its elements. For example, 

elements a1, a2, a3,  , an are the elements of set A, it is represented as 

follows.

A = {a1, a2,  , an }. 

Another representing method of sets is given by specifying the 

conditions of elements. For example, if the elements of set B should satisfy 

the conditions P1, P2,  , Pn, then the set B is defined by the following. 

B = {b | b satisfies p1, p 2,  , pn }. 

In this case the symbol “|” implies the meaning of “such that”. 
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In order to represent the size of N-dimension Euclidean set, the number 

of elements is used and this number is called cardinality. The cardinality of 

set A is denoted by |A|. If the cardinality |A| is a finite number, the set A is 

a finite set. If |A| is infinite, A is an infinite set. In general, all the points in 

N-dimensional Euclidean vector space are the elements of the universal set 

X.

1.1.2 Relation between Sets 

A set consists of sets is called a family of sets. For example, a family set 

containing sets A1, A2, is represented by  

{Ai | i I}
where i is a set identifier and I is an identification set. If all the elements in 

set A are also elements of set B, A is a subset of B.

A  B  iff (if and only if)  x  A  x  B.
The symbol  means  “implication”. If the following relation is 

satisfied,

A  B  and B  A
A and B have the same elements and thus they are the same sets. This 

relation is denoted by 

A = B
If the following relations are satisfied between two sets A and B,

A  B  and A  B
then B has elements which is not involved in A. In this case, A is called a 

proper subset of B and  this relation is denoted by  

A B
A set that has no element is called an empty set . An empty set can be a 

subset of any set. 

1.1.3 Membership 

If we use membership function (characteristic function or discrimination 

function), we can represent whether an element x is involved in a set A or 

not.

Definition (Membership function) For a set A, we define a membership 

function A such as 

A(x)= 1  if and only if  x  A
 0 if and only if  x  A.

We can say that the function A maps the elements in the universal set X
to the set {0,1}.

A : X {0,1}.
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As we know, the number of elements in a set A is denoted by the 

cardinality |A|. A power set P(A) is a family set containing the subsets of 

set A. Therefore the number of elements in the power set P(A) is 

represented by 

|P(A)| = 2|A|.

Example 1.1 If A = {a, b, c}, then |A| = 3
P(A) = { , {a}, {b}, {a, b}, {a, c}, {b, c}, {a, b, c}}

|P(A)| =23 = 8.  

1.2 Operation of Sets 

1.2.1 Complement 

The relative complement set of set A to set B consists of the elements 

which are in B but not in A. The complement set can be defined by the 

following formula. 

B – A = {x | x  B, x A}.

If the set B is the universal set X, then this kind of complement is an 

absolute complement set A . That is, A  = X – A
In general, a complement set means the absolute complement set. The 

complement set is always involutive  

AA .

The complement of an empty set is the universal set, and vice versa. 

X
X .

1.2.2 Union 

The union of sets A and B is defined by the collection of whole elements of 

A and B.

A B = {x | x A or x B}.

The union might be defined among multiple sets. For example, the 

union of the sets in the following family can be defined as follows. 

}somefor|{ IiAxxA i
Ii

 where the family of sets is {Ai | i I}.

The union of certain set A and universal set X is reduced to the universal 

set.

A  X = X
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The union of certain set A and empty set  is A.

A  = A
The union of set A and its complement set is the universal set 

A A = X. 

1.2.3 Intersection

The intersection A B consists of whose elements are commonly included 

in both sets A and B.
A B = {x | x A and x B}.

The Intersection can be generalized between the sets in a family of sets 

},|{ IiAxxA i
Ii

i  where {Ai | i I} is a family of sets. 

The intersection between set A and universal set X is A.
A  X = A.

The intersection of A and empty set is empty set 

A  = .

The intersection of A and its complement is all the time empty set 

A A = .

When two sets A and B have nothing in common, the relation is called 

as disjoint. Namely, it is when the intersection of A and B is empty set 

A  B = .

1.2.4 Partition of Set 

Definition (Partition) A decomposition of set A into disjoint subsets 

whose union builds the set A is referred to a partition. Suppose a partition 

of A is ,

(A)= {Ai | i I, Ai A}

then Ai satisfies following three conditions. 

i) iA
ii) ji AA , ji , Iji,

iii) AA
Ii

i

If there is no condition of (2), (A) becomes a cover or covering of the set 

A.
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1.3 Characteristics of Crisp Set 

1.3.1 Ordinary Characteristics 

Let us look over the operational characteristics of union, intersection, and 

complement set [Table 1.1]. Commutativity of union and intersection is 

satisfied as follows 

A  B = B A
A  B = B  A.

The operations of intersection and union follows the associativity
A  B C = (A  B) C = A  (B  C)
A  B C = (A  B) C = A  (B  C).

Union or intersection between itselves is reduced to the set itself. This 

is ‘idempotency’.

A  A = A
A  A = A.

In addition, for union and intersection, the distributivity is held. 

A  (B  C) = (A  B)  (A  C)
A  (B  C) = (A  B)  (A  C).

De Morgan’s law is satisfied with the union, intersection and 

complement operation. 

BABA

BABA .

Table 1.1. Features of Crisp Set 

(1) Involution AA

(2) Commutativity 
A  B = B  A 

A  B = B  A 

(3) Associativity 
(A  B)  C = A  (B  C) 

(A  B)  C = A  (B  C) 

(4) distributivity 
A  (B  C) = (A  B)  (A  C) 

A  (B  C) = (A  B)  (A  C) 
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Table 1.1. (cont’) 

(5) Idempotency 

(6) Absorption 

A  A = A 

A  A = A 

A  (A  B) = A 

A  (A  B) = A 

(7) Absorption by X and 
A  X = X 

A  = 

(8) Identity 
A  = A 

A  X = A 

(9) De Morgan’s law 
BABA

BABA

(10) Absorption of complement 

BABAA )(

BABAA )(

(11) Law of contradiction AA

(12) Law of excluded middle XAA

1.3.2 Convex Set 

Definition (Convex set) The term convex is applicable to a set A in Rn (n-

dimensional Euclidian vector space) if the followings are satisfied. 

i) Two arbitrary points s and r are defined in A.

)|(),|( nini NissNirr .

(N is a set of positive integers) 

ii) For arbitrary real number between 0 and 1, point t is involved in A
where t is 

)|)1(( nii Nisrt .
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Fig. 1.1. Convex sets A1, A2, A3 and non-convex sets A4, A5, A6 in |R2

In other wads, if every point on the line connecting two points s and r in 

A is also in A. (Fig 1.1) shows some examples of convex and non-convex 

sets

1.4 Definition of Fuzzy Set 

1.4.1 Expression for Fuzzy Set 

Membership function A in crisp set maps whole members in universal set 

X to set {0,1}. 

A : X {0, 1}.

Definition (Membership function of fuzzy set) In fuzzy sets, each 

elements is mapped to [0,1] by membership function. 

A : X [0, 1]

where [0,1] means real numbers between 0 and 1 (including 0,1).  

Consequently, fuzzy set is ‘vague boundary set’ comparing with crisp 

set.

Example 1.2 (see Fig 1.2 and 1.3) show the difference between the crisp 

and fuzzy sets represented by membership functions, respectively.    

A1 A2 A3

A4 A5 A6

x

y
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Example 1.3 Consider fuzzy set ‘two or so’. In this instance, universal set 

X are the positive real numbers. 

X = {1, 2, 3, 4, 5, 6, }

Membership function for A =’two or so’ in this universal set X is given 

as follows: 

A(1) = 0, A(2) = 1, A(3) = 0.5, A(4) = 0…

Fig. 1.2. Graphical representation of crisp set 

A

c

d

a b

A

a b c d
x

1
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Fig. 1.3. Graphical representation of fuzzy set 

Usually, if elements are discrete as the above, it is possible to have 

membership degree or grade as 

A = {(2, 1.0), (3, 0.5)}

or

A = 1.0/2 + 0.5/3
be sure to notice that the symbol ‘+’ implies not addition but union. More 

generally, we use 

A = {(x, A(x))}

or
n

i
iiA xxA

1

/)( .

Suppose elements are continuous, then the set can be represented as 

follows:

xxA A /)( .

For the discrimination of fuzzy set with crisp set, the symbol A~  is 

frequently used. However in this book, just notation A is used for it. 

A

d

a

b

X

c

1

A

a b c d
x

0.5
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1.4.2 Examples of Fuzzy Set 

Example 1.4 We consider statement "Jenny is young". At this time, the 

term "young" is vague. To represent the meaning of "vague" exactly, it 

would be necessary to define its membership function as in Fig 1.4. When 

we refer "young", there might be age which lies in the range [0,80] and we 

can account these "young age" in these scope as a continuous set.  

The horizontal axis shows age and the vertical one means the numerical 

value of membership function. The line shows possibility (value of 

membership function) of being contained in the fuzzy set "young".  

For example, if we follow the definition of "young" as in the figure, ten 

year-old boy may well be young. So the possibility for the "age ten” to join 

the fuzzy set of "young is 1. Also that of "age twenty seven" is 0.9. But we 

might not say young to a person who is over sixty and the possibility of 

this case is 0.  

Now we can manipulate our last sentence to "Jenny is very young". In 

order to be included in the set of "very young", the age should be lowered 

and let us think the line is moved leftward as in the figure. If we define 

fuzzy set as such, only the person who is under forty years old can be 

included in the set of "very young". Now the possibility of twenty-seven 

year old man to be included in this set is 0.5. 

That is, if we denote A= "young" and B="very young",  

9.0)27(A , 5.0)27(B .

Example 1.5 Let’s define a fuzzy set A ={real number near 0}. The 

boundary for set “real number near 0” is pretty ambiguous. The possibility 

of real number x to be a member of prescribed set can be defined by the 

following membership function.   

10 20 30 40 50 6027

0.3

0.5

0.9

1.0

youngvery young

age

membership

        Fig. 1.4. Fuzzy sets representing “young” and “very young”   



§1.4 Definition of Fuzzy Set                                                 11 

Fig. 1.5. Membership function of fuzzy set “real number near 0” 

A(x) =
21

1

x
.

Fig 1.5 shows this membership function. We can also write the fuzzy set 

with the function. 

xxA A )(     where A(x) =
21

1

x
.

The membership degree of 1 is 

5.0
11

1
2

the possibility of 2 is 0.2 and that of 3 is 0.1.  

Example 1.6 Another fuzzy set A ={real number very near 0} can be 

defined and its membership function is 

B(x) =
2

21

1

x
the possibility of 1 is 0.25, that of 2 is 0.04 and of 3 is 0.01 (Fig 1.6). 

By modifying the above function, it is able to denote membership 

function of fuzzy set A = {real number near a} as, 

A(x) =
2)(1

1

ax
.

(x)

1

0.5

-3 -2 -1 0 1 2 3 
x
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Fig. 1.6. Membership function for “real number very near to 0” 

1.4.3 Expansion of Fuzzy Set 

Definition (Type-n Fuzzy Set) The value of membership degree might 

include uncertainty. If the value of membership function is given by a 

fuzzy set, it is a type-2 fuzzy set. This concept can be extended up to Type-

n fuzzy set.  

Example 1.7 Consider set A= “adult”. The membership function of this set 

maps whole age to “youth”, “manhood” and “senior”(Fig 1.7). For 

instance, for any person x, y, and z,

A(x) = “youth”
A(y) = “manhood”
A(z) = .

The values of membership for “youth” and “manhood” are also fuzzy sets , 

and thus the set “adult” is a type-2 fuzzy set. 

The sets “youth” and “manhood” are type-1 fuzzy sets. In the same 

manner, if the values of membership function of “youth” and “manhood” 

are type-2, the set “adult” is type-3.  

Definition (Level-k fuzzy set) The term “level-2 set” indicates fuzzy sets 

whose elements are fuzzy sets (Fig 1.8). The term “level-1 set” is 

applicable to fuzzy sets whose elements are no fuzzy sets ordinary 

elements. In the same way, we can derive up to level-k fuzzy set. 

1

0

- - - 0 1 2 3
x

0.2

(x)

1

0.5

-3 -2 -1 0 1 2 3
x

0.25
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Fig. 1.7. Fuzzy Set of Type-2 

Fig. 1.8. Level-2 Fuzzy Set 

Example 1.8 In the figure, there are 3 fuzzy set elements. 

A(A1) = 0.5 

A(A2) = 1.0 

A(A3) = 0.5.  

A

A(x) 

A(x) 

x

(b) elements of level-2 fuzzy set,  A1, A2, 

A11.0
A2 A3

A2 A1 A3

1.0

0.5

(a) level-2 fuzzy set 
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1.4.4 Relation between Universal Set and Fuzzy Set 

If there are a universal set and a crisp set, we consider the set as a subset of 

the universal set. In the same way, we regard a fuzzy set A as a subset of 

universal set X.

Example 1.9 Let X = {a, b, c} be a universal set. 

A1 = {(a, 0.5), (b, 1.0), (c, 0.5)} and A2 = {(a, 1.0), (b, 1.0), (c, 0.5)} 

would be subsets of X.

A1  X ,  A2  X.
The collection of these subsets of X (including fuzzy set) is called power

set P(X).

1.5 Expanding Concepts of Fuzzy Set 

1.5.1 Example of Fuzzy Set 

Example 1.10 Consider a universal set X which is defined on the age 

domain. 

X = {5, 15, 25, 35, 45, 55, 65, 75, 85}

Table 1.2. Example of fuzzy set 

age(element) infant young adult senior 

5 0 0 0 0 

15 0 0.2 0.1 0 

25 0 1 0.9 0 

35 0 0.8 1 0 

45 0 0.4 1 0.1 

55 0 0.1 1 0.2 

65 0 0 1 0.6 

75 0 0 1 1 

85 0 0 1 1 

We can define fuzzy sets such as “infant”, “young”, “adult” and 

“senior” in X. The possibilities of each element of x to be in those four 

fuzzy sets are in Table 1.2 

We can think of a set that is made up of elements contained in A. This 

set is called “support” of A.

Support(A) = {x X | A(x) > 0}.

The support of fuzzy set “young” is,
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Fig. 1.9. Non-Normalized Fuzzy Set and Normalized Fuzzy Set 

Support(youth) = {15, 25, 35, 45, 55}

and it is a crisp set. Certainly, the support of “infant” is empty set. 

The maximum value of the membership is called “height”. Suppose this 

“height” of some fuzzy sets is 1, this fuzzy set is “normalized”. The sets 

“young”, “adult” and “senior” are normalized (Fig 1.9).  

Let’s consider crisp set “teenager”. This crisp set is clearly defined 

having elements only 10-19 in the universal set X. As you shall notice this 

set is a restricted set comparing with X. Similarly fuzzy set “young” is also 

a restricted set. When we apply a “fuzzy restriction” to universal set X in 

certain manner, we get a fuzzy set 

1.5.2 -Cut Set 

Definition ( -cut set) The -cut set A  is made up of members whose 

membership is not less than .

A = {x  X | A(x) }

note that  is arbitrary. This -cut set is a crisp set (Fig 1.10).  

Example 1.11 The -cut set is derived from fuzzy set “young” by giving 

0.2 to 

Young0.2 = {12, 25, 35, 45}

this means “the age that we can say youth with possibility not less than 

0.2”.

If =0.4, Young0.4 = {25, 35, 45}

If =0.8, Young0.8 = {25, 35}.

When two cut sets A  and A ’ exist and if '  for them, then 

'AA
the relation Young0.2  Young0.8, for example, holds. 

1.0
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Fig. 1.10. -cut set 

Definition (Level set) The value  which explicitly shows the value of the 

membership function, is in the range of [0,1]. The “level set” is obtained 

by the ’s. That is, 

A = {  | A(x) = ,  0, x  X}.

The level set of the above fuzzy set “young” is, 

x

x

1

’

A : fuzzy set 

)( xA

x

1
A : -cut set

A A

)( xA

1
A : -cut set

)( xA
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A = {0, 0.1, 0.2, 0.4, 0.8, 1.0}.

1.5.3 Convex Fuzzy Set 

Definition (Convex fuzzy set) Assuming universal set X is defined in n-

dimensional Euclidean Vector space n. If all the - cut sets are convex, 

the fuzzy set with these - cut sets is convex(Fig 1.11). In other words, if a 

relation

)](),([Min)( srt AAA

where srt )1( r, s n, [0,1]

holds, the fuzzy set A is convex.  

Fig 1.12 shows a convex fuzzy set and Fig 1.13 describes a non-convex 

set.

Fig. 1.11. Convex Fuzzy Set 

r t s

A(r)

A(t)

A(s)

Fig. 1.12. Convex Fuzzy Set A(t) A(r)

 = 0.4
 = 0.2

 = 0 

 = 0.8 = 1 

A = {0, 0.2, 0.4, 0.8, 1} 
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Fig. 1.13. Non-Convex Fuzzy Set  )(tA )(rA

1.5.4 Fuzzy Number 

“Real number” implies a set containing whole real numbers and “Positive 

number” implies a set holding numbers excluding negative numbers. 

“Positive number less than equal to 10 (including 0)” suggests us a set 

having numbers from 0 to 10. So 

A = “positive number less than equal to 10 (including 0)” = {x | 0  x 
10, x }

or

A(x) = 1 if 0 x 10, x
           = 0 if x < 0 or x > 10

since the crisp boundary is involved, the outcome of membership function 

is 1 or 0. 

Definition (Fuzzy number) If a fuzzy set is convex and normalized, and 

its membership function is defined in  and piecewise continuous, it is 

called as “fuzzy number”. So fuzzy number (fuzzy set) represents a real 

number interval whose boundary is fuzzy(Fig 1.14).   

1.5.5 The Magnitude of Fuzzy Set 

In order to show the magnitude of fuzzy set, there are three ways of 

measuring the cardinality of fuzzy set. First, we can derive magnitude by 

summing up the membership degrees. It is “scalar cardinality”.

|A| =
Xx

A x)( .

A(s) 

 t 

A(r) 

A(t) 

sr
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Fig. 1.14. Sets denoting intervals and fuzzy numbers 

Following this method, the magnitude of fuzzy set “senior” (in the 

previous example) is, 

|senior| = 0.1 + 0.2 + 0.6 + 1 + 1 = 2.9
Second, comparing the magnitude of fuzzy set A with that of universal set 

X can be an idea. 

||A|| =
||

||

X
A

This is called “relative cardinality”. In the case of “senior”,  

|senior| = 2.9, |X| = 9
||senior|| = 2.9/9 = 0.32

Third method expresses the cardinality as fuzzy set. 

Definition (Fuzzy cardinality) Let’s try to get -cut set (crisp set) A  , of 

A. The number of elements is |A |. In other words, the possibility for 

number of elements in A to be |A | is . Then the membership degree of 

fuzzy cardinality |A| is defined as, 

,|)(||| AA A

where A  is a -cut set and A is a level set.  

x0

1
A(x)

100

1

set “positive number” set “positive number not exceeding

fuzzy set “number near 0” fuzzy set “number near 10” 

0

1

10

1
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Example 1.12 If we cut fuzzy set “senior” at =0.1, there are 5 elements 

in the -cut set. senior0.1 = {45, 55, 65, 75, 85}, |senior0.1| = 5. In the same 

manner, there are 4 elements at =0.2, there are 3 at =0.6, there are 2 at 

=1. Therefore the fuzzy cardinality of “senior” is 

|senior| = {(5, 0.1), (4, 0.2), (3, 0.6), (2,1)}.  

1.5.6 Subset of fuzzy set 

Suppose there are two fuzzy sets A and B. When their degrees of 

membership are same, we say “A and B are equivalent”. That is, 

A = B  iff A(x) = B(x), x  X
If A(x) B(x) for any element, then A  B. If the following relation is 

satisfied in the fuzzy set A and B, A is a subset of B(Fig 1.15). 

A(x) B(x), x  X
This relation is expressed as A  B. We call that A is a subset of B. In 

addition, if the next relation holds, A is a proper subset of B.

A(x) B(x), x  X
This relation can be written as 

A  B   iff  A  B and A  B.

Fig. 1.15. Subset A  B 

BA1.0

A

B
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1.6 Standard Operation of Fuzzy Set 

1.6.1 Complement 

We can find complement set of fuzzy set A likewise in crisp set. We 

denote the complement set of A as A . Membership degree can be 

calculated as following. 

)(1)( xx AA , x  X.

If we calculate the complement set of “adult” as A , we may have 

A = {(5, 1), (15, 0.9), (25, 0.1)}.

1.6.2 Union 

Membership value of member x in the union takes the greater value of 

membership between A and B
)](),([Max)( xxx BABA , x  X.

Of course, A and B are subsets of A  B, and union of “young” and 

“adult” is (Table 1.2), 

“young” “adult” = {(15,0.2), (25,1), (35,1), (45,1), (55,1), (65,1), 

(75,1), (85,1)}. 

1.6.3 Intersection 

Intersection of fuzzy sets A and B takes smaller value of membership 

function between A and B.

)](),([Min)( xxx BABA , x  X.
Intersection A  B is a subset of A or B. For instance, the intersection of 

“young” and “adult” is (Table 1.2), 

”young”  “adult” = {(15, 0.1), (25, 0.9), (35, 0.8), (45, 0.4), (55, 0.1)}.

We have seen that complement set, union and intersection sets are 

applicable even if membership function is restricted to 0 or 1 (i.e. crisp 

set). We will see more about fuzzy operations in the next chapter. 
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[SUMMARY]

Operation of crisp set 

Complement set 

Union set 

Intersection set 

Convex set 

At  where 

10,)1( srt
,r As

Expression of membership degree of fuzzy set A
Membership function 1)(0),( xx AA

Expression of fuzzy set 

))}(,{( xxA A

2211 /)(/)( xxxxA AA

ni iiA xxA
,1

/)(

xxA A /)(

Extension of fuzzy set 

Type-n fuzzy set 

Level-k fuzzy set 

-cut set 

Crisp set whose elements have at least  degree of membership in 

fuzzy set A
})(|{ xXxA A

Level set 

Set gathered degrees of fuzzy set 

},0,)(|{ XxxA

Convex fuzzy set 

For
nsr,

)](),([)( srMint AAA
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where srt )1( ,0[ ]1

Fuzzy number 

Convex fuzzy set. 

Normalized set. 

Continuous membership function 

Cardinality of fuzzy set 

Scalar cardinality 

)(|| xA A

Relative cardinality 

||/|||||| XAA
Fuzzy cardinality : denote the size of fuzzy set as |A|.

|)(||| AA

A (level set), A  is -cut set 

Fuzzy subset A  B
Xxxx BA ),()(

Fuzzy proper subset A  B
Xxxx BA ),()(
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[EXERCISES]

1.1 Show that the following sets satisfy the law of contradiction and law of 

excluded middle. 

X = {a, b, c, d, e, f, g}

A = {a, b, c, d}

1.2 A =
ni iiA xx

,1
/)( is an another form of representation of fuzzy set. 

Represent the following fuzzy sets by this form. 

a) A = {(2, 1.0), (3, 0.4), (4, 0.5)}  

b) ))}(,()),(,()),(,()),(,{( ddccbbaaB BBBB

1.3 Consider the fuzzy sets : short, middle, tall 

cm short middle tall 

140 1 0 0 

150 1 0 0 

160 0.9 0.1 0 

170 0.7 1 0 

180 0.3 0.8 0.3 

190 0 0 1 

a) Compare the support of each set. 

b) What is the normalized fuzzy set? 

c) Find the level set of each set. 

d) Compare -cut set of each set where =0.5 and =0.3.

1.4 Determine whether the following fuzzy sets are convex or not. 

a) xxA A /)(  where )1/(1)( 2xxA

b) xxB B /)(  where 
2/1)101/(1)( xxB

1.5 Prove that all the –cuts of any fuzzy set A defined on Rn are convex if 

and only if 

)](),([))1(( srMinsr AAA

such that r, s n, [0,1]

1.6 Compute the scalar cardinality and the fuzzy cardinality for each of the 

following fuzzy set. 
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a) A = {(x, 0.4), (y, 0.5), (z, 0.9), (w, 1)} 

b) B = {0.5/u + 0.8/v + 0.9/w + 0.1/x} 

c) C= xxC /)(  where }10,2,1,0{))1/(()( 2 xxxxC

1.7 Show the following set is convex. 

10))10(1(

100
)(

12 xx
x

xA

1.8 Determine -cut sets of the above set for =0.5, 0.8 and 0.9.



Chapter 2. THE OPERATION OF FUZZY SET 

In the previous section, we have studied complement, union and 

intersection operations of fuzzy sets. In this chapter various operations of 

fuzzy sets are introduced more formally. The concepts of disjunctive sum, 

distance, difference, conorm and t – conorm operators are also given.  

2.1 Standard Operations of Fuzzy Set 

Complement set A , union A  B, and intersection A B represent the 

standard operations of fuzzy theory and are arranged as, 

)(1)( xx AA

)](),([Max)( xxx BABA

)](),([Min)( xxx BABA

We can find out that the above three operations are generalizations of 

those in crisp set. In the next sections, we’ll see variety of proposed 

operators besides these operations. These various operators must satisfy 

necessary conditions, and they are put into use in diverse application 

fields.

Among numerous operators, since complement, Max and Min operators 

are fundamental and simple, many fuzzy theories are develop based upon 

these operators. Table 2.1 includes characteristics of the standard 

operators. Note that the following two characteristics of crisp set operators 

does not hold here. 

law of contradiction AA

law of excluded middle XAA
The reason for this occurrence is that the boundary of complement of A

is ambiguous. 
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2.2 Fuzzy Complement 

2.2.1 Requirements for Complement Function 

Complement set A  of set A carries the sense of negation. Complement 

set may be defined by the following function C.

Table 2.1. Characteristics of standard fuzzy set operators 

(1) Involution AA

(2) Commutativity A  B = B  A 

A  B = B  A 

(3) Associativity (A  B)  C = A  (B  C) 

(4) Distributivity 
(A  B)  C = A  (B  C) 

A  (B  C) = (A  B)  (A  C) 

A  (B  C) = (A  B)  (A  C) 

(5) Idempotency A  A = A 

A  A = A 

(6) Absorption A  (A  B) = A 

A  (A  B) = A 

(7) Absorption by X and A  X = X 

A  = 

(8) Identity A  = A 

A  X = A 

(9) De Morgan’s law BABA
BABA

(10) Equivalence formula 

)()()()( BABABABA
(11) Symmetrical difference formula 

)()()()( BABABABA

C : [0,1]  [0,1]

Complement function C is designed to map membership function A(x)
of fuzzy set A to [0,1] and the mapped value is written as C( A(x)). To be a 

fuzzy complement function, two axioms should be satisfied. 

(Axiom C1) C(0) = 1, C(1) = 0 (boundary condition) 
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(Axiom C2) a,b  [0,1]

 if a  b, then C(a)  C(b) (monotonic nonincreasing) 

Symbols a and b stand for membership value of member x in A. For 

example, when A(x) = a, A(y) = b, x, y  X, if A(x) < A(y), C( A(x))
C( A(y)).

C1 and C2 are fundamental requisites to be a complement function. 

These two axioms are called “axiomatic skeleton”. For particular purposes, 

we can insert additional requirements. 

(Axiom C3) C is a continuous function. 

(Axiom C4) C is involutive. 

      C(C(a)) = a for all a  [0,1]

2.2.2 Example of Complement Function 

Above four axioms hold in standard complement operator 

C( A(x)) = 1 - A(x) or )(xA  = 1 - A(x)

this standard function is shown in Fig 2.1, and it’s visual representation is 

given in (Fig 2.2.) 

The following is a complement function satisfying only the axiomatic 

skeleton (Fig 2.3). 

ta
ta

aC
for0

for1
)(

Fig. 2.1. Standard complement set function 

C(a) = 1 - a

a1

C(a)

1
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Fig. 2.2. Illustration of standard complement set function 

Fig. 2.3. Example of complement set function 

Note that it does not hold C3 and C4. Again, the following complement 

function is continuous (C3) but not holds C4 (Fig 2.4). 

C(a) = 0.5(1+cos a)

When a = 0.33, C(0.33) = 0.75 in this function. However since C(0.75) 
= 0.15  0.33, C4 does not hold now. One of the popular complement 

functions, is Yager’s function as in the following :  

ww
w aaC /1)1()(  where ),1(w

The shape of the function is dependent on parameter (Fig 2.5). When w
= 1, the Yager’s function becomes the standard complement function C(a)
= 1 - a.

x1

1
A

)(xA

x1

1
A

)(xA

a1

C(a)

1

t

ta
ta

aC
for0

for1
)(
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Fig.2.4. Continuous fuzzy complement function C(a) = 1/2(1+cos a) 

Fig. 2.5. Yager complement function 

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Cw(a) 

w=0.5

w=1

w=2

w=5

a

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

C(a) 
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2.2.3 Fuzzy Partition 

Let A be a crisp set in universal set X and A  be a complement set of A.

The conditions A  and A  result in couple ( A , A ) which 

decomposes X into 2 subsets. 

Definition (Fuzzy partition) In the same manner, consider a fuzzy set 

satisfying A  and A . The pair ( A , A ) is defined as fuzzy 

partition. Usually, if m subsets are defined in X, m-tuple (A1,A2,…,An)

holding the following conditions is called a fuzzy partition. 

i) iAi,
ii) ji AA  for ji

iii)
m

i
A xXx

i
1

1)(,

2.3 Fuzzy Union 

2.3.1 Axioms for Union Function 

In general sense, union of A and B is specified by a function of the form. 

U:[0,1]  [0,1]  [0,1] 

this union function calculates the membership degree of union A
from those of A and B.

A B(x) = U[ A(x), B(x)] 

this union function should obey next axioms. 

(Axiom U1) U(0,0) = 0, U(0,1) = 1, U(1,0) = 1, U(1,1) = 1 
so this union function follows properties of union 

operation of crisp sets (boundary condition). 

(Axiom U2) U(a,b) = U(b,a) Commutativity holds. 

(Axiom U3)  If a  a’ and b  b’, U(a, b)  U(a’, b’) Function U is a 

monotonic function. 

(Axiom U4) U(U(a, b), c) = U(a, U(b, c)) Associativity holds. 

the above four statements are called as “axiomatic 

skeleton”. It is often to restrict the class of fuzzy unions 

by adding the following axioms. 

(Axiom U5) Function U is continuous.
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(Axiom U6) U(a, a) = a (idempotency) 

Fig. 2.6. Visualization of standard union operation 

2.3.2 Examples of Union Function 

The standard operator Max is treading on those six axioms. 

U[ A(x), B(x)] = Max[ A(x), B(x)]
or

A B(x) = Max[ A(x), B(x)]
visualizing the standard union operation leads to Fig 2.7. 

Yager’s union function holds all axioms except U6. 

])(,1[Min),( /1 www
w babaU , where ),0(w

the shape of Yager function varies with parameter w. For instance, 

w = 1 leads to 

U1(a, b) = Min[1, a+b]

w = 2 leads to 

U2(a, b) = Min[1, 22 ba ]

What if w increases? Supposing w , Yager union function is 

transformed into the standard union function. 

),(Max])(,1[Minlim /1 baba www

w

there are some examples of Yager function for w =1, 2 and  in (Fig 2.7). 

We know that the union operation of crisp sets is identical to the OR logic. 

It is easy to see the relation is also preserved here. For example, let’s 

reconsider the example in the previous chapter. If set A be “young” and B

A
1

X

B
1

X
A B1

X
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 0 0.25 0.5  

1 1 1 1 U1(a,b) = Min[1, a+b] 

0.75 0.75 1 1  

0.25 0.25 0.5 0.75 w = 1 

 0 0.25 0.5  

1 1 1 1 U2(a,b) = Min[1, 22 ba ]

0.75 0.75 0.79 0.9  

0.25 0.25 0.35 0.55 w = 2 

 0 0.25 0.5  

1 1 1 1 U (a,b) = Max[ a, b] 

0.75 0.75 0.75 0.75  

0.25 0.25 0.25 0.5 w

Fig. 2.7. Yager’s union function 

“senior”, the union of A and B is “young or senior”. In the sense of 

meaning, the union and OR logic are completely identical. 

2.3.3 Other Union Operations 

(1) Probabilistic sum BA ˆ  (Algebraic sum) 

Fuzzy union BA ˆ  is defined as, 

)()()()()(, ˆ xxxxxXx BABABA

It follows commutativity, associativity, identity, and De Morgan’s law. 

This operator holds also the following : 

XXA ˆ

(2) Bounded sum A  B (Bold union) 

)]()(,1[Min)(, xxxXx BABA

This operator is identical to Yager function at w = 1. Commutativity, 

associativity, identity, and De Morgan’s Law are perfected, and it has 

relations,

a b

a b

a b
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A  X = X
A A = X

but it does not idempotency and distributivity at absorption. 

(3) Drastic sum BA
Drastic sum is defined as follows : 

othersfor,1

0)(when),(

0)(when),(

)(, xx
xx

xXx AB

BA

BA

(4) Hamacher’s sum A  B

0,
)()()1(1

)()()2()()(
)(,

xx
xxxxxXx

BA

BABA
BA

2.4 Fuzzy Intersection 

2.4.1 Axioms for Intersection Function 

In general sense, intersection A  B is defined by the function I.
I:[0,1]  [0,1]  [0,1]

The argument of this function shows possibility for element x to be 

involved in both fuzzy sets A and B.

)](),([)( xxIx BABA

intersection function holds the following axioms . 

(Axiom I1)   I(1, 1) = 1, I(1, 0) = 0, I(0, 1) = 0, I(0, 0) = 0 

Function I follows the intersection operation of crisp set 

(boundary condition). 

(Axiom I2)   I(a, b) = I(b, a), Commutativity holds. 

(Axiom I3) If a  a’ and b  b’, I(a, b)  I(a’, b’), Function I is a 

monotonic function. 

(Axiom I4)   I(I(a, b), c) = I(a, I(b, c)), Associativity holds. 

Just like in the union function, these four axioms are the 

axiomatic skeleton, and the following two axioms can 

be added. 
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(Axiom I5) I is a continuous function 

(Axiom I6) I(a, a) = a, I is idempotency. 

2.4.2 Examples of Intersection 

Standard fuzzy intersection completes the above 6 axioms. 

I[ A(x), B(x)] = Min[ A(x), B(x)]
or

A B(x) = Min[ A(x), B(x)]
Visualizing this standard intersection results Fig 2.8 using fuzzy sets A

and B in (Fig 2.6.) 

Considering Yager function as we did in union function, it steps on all 

axioms but for I6. 

]))1()1((,1[Min1),( /1 www
w babaI ,

where w  (0, )

The shape varies depending on w,

if w = 1 

I1(a, b) = 1-Min[1, 2-a-b]

if w = 2 

I2(a, b) = 1-Min[1, 22 )1()1( ba ]

and so forth. 

What if w approaches infinity (w )? The answer to this question is 

‘Yager function converges to the standard intersection function’. 

),(Min])))1()1((,1[Min1(lim /1 baba www

w

Note that intersection and AND logic are equivalent. For instance, 

consider two fuzzy sets “young” and “senior”. Intersection for these is 

“person who is at once young and senior”.  

Fig. 2.8. Visualization of standard fuzzy intersection set 

A B
1

X
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Example 2.1 Take Yager function at w = 1 for example. Providing a = 0.4 

and b = 0.6, then  

I1 = 1 – Min[1, 2-(a+b)] = 1 – Min[1, 2-1] = 1 – 1 = 0 

this time let a = 0.5 and b = 0.6, then a+b=1.1

I1 = 1 – Min[1, 2-1.1] = 1 – Min[1, 0.9] = 1 – 0.9 = 0.1 

take a = 0.3 and b = 0.6 for example. If w , the intersection is reduced 

to,

I (a, b) = Min[0.3, 0.6] = 0.3 

but when w = 1, a + b = 0.9; hence, 

I1(a, b) = 1 – Min[1, 2 - 0.9] = 1 – Min[1, 1.1] = 1 – 1 = 0

There are some more examples of  Yager function in (Fig2.9)  

  b 0 0.25 0.5  

1 0 0.25 0.5 I1(a,b) =1-Min[1, 2-a-b] 

0.75 0 0 0.25  

0.25 0 0 0 w = 1 

  b 0 0.25 0.5  

1 0 0.25 0.5 

I2(a,b) = 1- 

Min[1, 22 )1()1( ba ]

0.75 0 0.21 0.44  

0.25 0 0 0.1 w = 2 

    b 0 0.25 0.5  

1 0 0.25 0.5 I (a,b) = Min[ a, b] 

0.75 0 0.25 0.5  

0.25 0 0.25 0.25 w

Fig. 2.9. Yager’s intersection function 

a

a

a
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2.4.3 Other Intersection Operations 

(1) Algebraic product A  B (probabilistic product) 

x X, A B (x) = A(x) B(x)
Operator  is obedient to rules of commutativity, associativity, identity, 

and De Morgan’s law. 

(2) Bounded product BA  (Bold intersection) 

This operator is defined as, 

]1)()(,0[Max)(, xxxXx BABA

and is identical to Yager intersection function with w = 1,

I1(a, b) = 1 – Min[1, 2 - a – b] 

commutativity, associativity, identity, and De Morgan’s law hold in this 

operator . The following relations 

A

AA
are also satisfied, but not idempotency, distributability, and absorption. 

(3) Drastic product BA

x X ,    

1)(),(when,0

1)(when),(

1)(when),(

)(

xx
xx
xx

x

BA

BB

AA

BA

(4) Hamacher’s intersection  A B
x X,

0,
))()()()()(1(

)()(
)(

xxxx
xxx

BABA

BA
BA

2.5 Other Operations in Fuzzy Set 

2.5.1 Disjunctive Sum 

Disjunctive sum is the name of operation corresponding “exclusive OR” 

logic. And it is expressed as the following (Fig 2.10) 

)()( BABABA
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Fig. 2.10. Disjunctive sum of two sets 

Definition (Simple disjunctive sum) By means of fuzzy union and fuzzy 

intersection, definition of the disjunctive sum in fuzzy set is allowed just 

like in crisp set.  

)(xA  = 1 - A(x) , )(xB  = 1 - B(x)

),([)( xMinx ABA )](1 xB

)(1[)( xMinx ABA , )](xB

A  B = ),()( BABA  then 

),([{)( xMinMaxx ABA )](1 xB , )(1[ xMin A , )]}(xB

Example 2.2 Here goes procedures obtaining disjunctive sum of A and B
(Fig 2.12). 

A = {(x1, 0.2), (x2, 0.7), (x3, 1), (x4, 0)}

B = {(x1, 0.5), (x2, 0.3), (x3, 1), (x4, 0.1)}

A = {(x1, 0.8), (x2, 0.3), (x3, 0), (x4, 1)}

B = {(x1, 0.5), (x2, 0.7), (x3, 0), (x4, 0.9)}

A B = {(x1, 0.2), (x2, 0.7), (x3, 0), (x4, 0)}

A B = {(x1, 0.5), (x2, 0.3), (x3, 0), (x4, 0.1)}

and as a consequence, 

A  B = )()( BABA {(x1, 0.5), (x2, 0.7), (x3, 0), (x4, 0.1)}

Definition (Disjoint sum) The key idea of “exclusive OR” is elimination 

of common area from the union of A and B. With this idea, we can define 

an operator for the exclusive OR disjoint sum as follows. 

)()()( xxx BABA

A B
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0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

x2x1 x3 x4

0.2

0.5

0.3

0.7

1.0

0.1

0

Set A
Set B
Set A B

Fig. 2.11. Example of simple disjunctive sum 

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

x2x1 x3 x4

0.2

0.5

0.3

0.7

1.0

0.1

0

Set A
Set B
Set A B shaded area

Fig. 2.12. Example of disjoint sum (exclusive OR sum) 

Example 2.3 If we reconsider the previous example, we have (Fig 2.13) 

A = {(x1, 0.2), (x2, 0.7), (x3, 1), (x4, 0)}  

B = {(x1, 0.5), (x2, 0.3), (x3, 1), (x4, 0.1)}  

A B = {(x1, 0.3), (x2, 0.4), (x3, 0), (x4, 0.1)}  
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2.5.2 Difference in Fuzzy Set 

The difference in crisp set is defined as follows (Fig 2.13.) 

A B = A B
In fuzzy set, there are two means of obtaining the difference 

(1) Simple difference 

Example 2.4 By using standard complement and intersection operations, 

the difference operation would be simple. If we reconsider the previews 

example, A – B would be, (Fig 2.14) 

A = {(x1, 0.2), (x2, 0.7), (x3, 1), (x4, 0)}

B = {(x1, 0.5), (x2, 0.3), (x3, 1), (x4, 0.1)}

B = {(x1, 0.5), (x2, 0.7), (x3, 0), (x4, 0.9)}

A – B = A B = {(x1, 0.2), (x2, 0.7), (x3, 0), (x4, 0)}

Fig. 2.13. Difference A – B 

Fig. 2.14. Simple difference A – B

A

B
0.7

0.2

1

0.7

0.5

0.3
0.2
0.1

x1 x2 x3 x4

Set A 

Set B 

Simple difference A-B :  
shaded area 

A B
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Fig. 2.15. Bounded difference A  B

(2) Bounded difference  

Definition(Bounded difference)  For novice-operator , we define the 

membership function as,  

A B(x) = Max[0, A(x) - B(x)]  

By this definition , bounded difference of preceeding two fuzzy sets is 

as follows (Fig 2.15). 

A  B = {(x1, 0), (x2, 0.4), (x3, 0), (x4, 0)}

2.5.3 Distance in Fuzzy Set 

The concept ‘distance’ is designated to describe the difference. But it has 

different mathematical measure from the ‘difference’ introduced in the 

previews section (Fig 2.16). Measures for distance are defined in the 

following.

(1) Hamming distance 

This concept is marked as, 

d(A, B) =
n

Xxi
iBiA

i

xx
,1

)()(

Example 2.5 Following A and B for instance, 

A = {(x1, 0.4), (x2, 0.8), (x3, 1), (x4, 0)}

B = {(x1, 0.4), (x2, 0.3), (x3, 0), (x4, 0)}

Hamming distance; d(A, B),
d(A, B) = |0| + |0.5| + |1| + |0| = 1.5  

1

0.7

0.5

0.3
0.2
0.1

x1 x2 x3 x4

Set A 
Set B 
Bounded difference : shaded area 

A

B 0.4
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Hamming distance contains usual mathematical senses of ‘distance’. 

(1) d(A, B)  0
(2) d(A, B) = d(B, A)  commutativity 

(3) d(A, C)  d(A, B) + d(B, C) transitivity 

(4) d(A, A) = 0
Assuming n elements in universal set X;  i.e., |X| = n, the relative 

Hamming distance is, 

(A, B) =
n
1

d(A, B)

might rename Hamming distance as ‘symmetrical distance’ and written as 

below by using operator ,

|)()(|)(, xxxXx BABA

This operator doesn’t hold distributivity. In addition, ‘disjoint sum’ 

using operator  introduced in section 2.5.1 may be applied to this 

symmetrical distance. 

(2) Euclidean distance 

This novel term is arranged as, 

Fig. 2.16. Distance and difference of fuzzy set 

A

x

1
A(x)

B

x

1
B(x)

B

A

x

1
B(x)
A(x)

B

A

x

1 B(x)
A(x)

distance between A, B difference A- B 
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e(A, B) =
n

i
BA xx

1

2))()((

Example 2.6 Euclidean distance between sets A and B used for the 

previous Hamming distance is 

e(A, B) = 2222 015.00 = 25.1  = 1.12

and relative Euclidean distance is 

(A, B) =
n
BAe ),(

(3) Minkowski distance 

dw(A, B) =
w

Xx

w
BA xx

/1

)()( , w [1, ]

Generalizing Hamming distance and Euclidean distance results in 

Minkowski distance. It becomes the Hamming distance for w = 1 while the 

Euclidean distance for w = 2.

2.5.4 Cartesian Product of Fuzzy Set 

Definition (Power of fuzzy set ) Second power of fuzzy set A is defined 

as follows :  

Xxxx AA ,)]([)( 2
2

Similarly mth power of fuzzy set Am may be computed as, 

Xxxx m
AAm ,)]([)(

This operator is frequently applied when dealing with the linguistic 

hedge in expression of fuzzy set in chapter 8. 

Definition (Cartesian product) Cartesian product applied to multiple 

fuzzy sets can be defined as follws.  

Denoting ),(
1

xA ),(
2

xA , )(x
nA as membership functions of 

A1, A2, , An for ,11 Ax ,22 Ax nn Ax, .

then, the probability for n-tuple (x1,x2, ,xn) to be involved in fuzzy set 

A1 A2 An is, 

)](,),([Min),,,( 121 121 nAAnAAA xxxxx
nn
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2.6 t-norms and t-conorms 

There are two types of operators in fuzzy sets: t-norms and t-conorms. 

They are often called as triangular-norm and triangular-conorm 

respectively. 

2.6.1 Definitions for t-norms and t-conorms 

Definition (t-norm) 

T : [0,1] [0,1] [0,1]

x, y, x’, y’, z [0,1]

i) T(x, 0) = 0, T(x, 1) = x  : boundary condition 

ii) T(x, y) = T(y, x)   : commutativity 

iii) (x  x’, y  y’)  T(x, y)  T(x’, y’) : monotonicity 

iv) T(T(x, y), z) = T(x, T(y, z))  : associativity  

Now we can easily recognize that the following operators hold 

conditions for t-norm. 

(1) Intersection operator (  ) 

(2) Algebraic product operator (  ) 

(3) Bounded product operator (  ) 

(4) Drastic product operator (  ) 

Definition (t-conorm (s-norm)) 

T : [0,1] [0,1] [0,1]

x, y, x’, y’, z [0,1]

i) T(x, 0) = x, T(x, 1) = 1  : boundary condition 

ii) T(x, y) = T(y, x)   : commutativity 

iii) (x  x’, y  y’)  T(x, y)  T(x’, y’) : monotonicity 

iv) T(T(x, y), z) = T(x, T(y, z))  : associativity  

There are examples of t-conorm operators 

(1) Union operator (  ) 

(2) Algebraic sum operator ( ˆ )

(3) Bounded sum operator (  ) 

(4) Drastic sum operator (  ) 

(5) Disjoint sum operator (  ) 

When computing the t-norm and t-conorm, operands in most cases are 

values of membership functions A(x). An alternative symbol for these 

functions is *. And in other cases symbol is used for t-norm, while 

symbol  for t-conorm,  

x y : t-norm,  x y : t-conorm 
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t-norm is sometimes called s-norm. In practical applications, sometimes 

we could not determine which operator is appropriate to the application. In 

that case, we put the symbol * as a tentative operator. When we know that 

a t-norm operator can be used without selecting a specific operator, we put 

the symbol . In this manner we can refine a system step by step. All t-

norm and t-conorm functions follow these relations. 

(a, b)  Min[a, b]

(a, b)  Max[a, b]

 Let’s see some operators following the above properties. 

(1)  : minimum 

Instead of *, if  is applied 

x  1 = x 
Since this operator meets the previous conditions, it is a t-norm. 

(2)  : maximum 

If  is applied instead of *,

x  0 = x
then this becomes a t-conorm. 

2.6.2 Duality of t-norms and t-conorms 

We can see that duality exists between t-norm and t-conorm. Let function 

represent a t-norm operator. If we define ’s as 

’(x, y) = 1 – (1-x, 1-y)
it becomes a t-conorm. That is , ),(1),( yxyx
and again for x, y  [0,1], presume complements of x and y as

xx 1

yy 1

and complement of result from operation as,  

yx = 1 –  (x, y)

then following relations are held, and they can be apprehended by De 

Morgan’s law. 

yxyx
yxyx
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[SUMMARY]

Standard operation of fuzzy set 

Complement set : A
)(1)( xx AA

Union set : A  B
)](),([)( xxMaxx BABA

Intersection set : A B
)](),([)( xxMinx BABA

Difference of operation of crisp set and fuzzy set 

No law of contradiction in fuzzy set 

AA
No law of exclude middle in fuzzy set 

XAA

Restriction for complement function 

(C1) boundary condition 

(C2) monotonic nonincreasing 

(C3) continuous 

(C4) involutive 

Example of fuzzy complement set 

Yager complement set 

),1(,)1()( /1 waaC ww
w

Condition for fuzzy union fuction 

(U1) boundary condition 

(U2) commutativity 

(U3) monotonic function 

(U4) associativity 

(U5) continuous 

Example of fuzzy union function 

Yager union function 

),0(],)(,1[),( /1 wbaMinbaU www
w
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Other union operators 

Probabilistic sum of algebraic sum 

)()()()()(, ˆ xxxxxXx BABABA

Bounded sum or bold union 

)]()(,1[)(, xxMinxXx BABA

Drastic sum 

others
xwhenx
xwhenx

xXx AB

BA

BA

,1

0)(),(

0)(),(

)(,

Hamacher union function 

0,
)()()1(1

)()()2()()(
)(,

xx
xxxxxXx

BA

BABA
BA

Conditions for fuzzy intersection function 

Boundary condition 

Commutativity 

Monotonic function 

Associativity 

Continuous

Example of intersection function 

Yager’s intersection 

),0(]))1()1((,1[1),( /1 wwherebaMinbaI www
w

Other intersection operators 

Algebraic product or probabilistic product 

)()()(, xxxXx BABA

Bounded product 

]1)()(,0[)(, xxMaxxXx BABA

Drastic product 

1)(),(,0

1)(),(

1)(),(

)(,

xxwhen
xwhenx
xwhenx

xXx

AA

AB

BA

BA

Hamacher intersection 
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0,
))()()()()(1(

)()(
)(,

xxxx
xxxXx

BABA

BA
BA

Other operations of fuzzy set 

Disjunctive sum 

)()( BABABA
Simple disjunctive sum and disjoint sum 

Difference

     simple difference 

BABA
     bounded difference 

)]()(,0[)( xxMaxx BABA

Distance of fuzzy set 

Hamming distance 
n

Xx
i

iBiA

i

xxBAd
1

|)()(|),(

   relative hamming distance 

),(
1

),( BAd
n

BA

   symmetrical difference 

|)()(|)(, xxxXx BABA

Euclidean distance 

n

i BA xxBAe
1

2))()((),(

Minkowsk distance 

],1[,)|)()(|(),( /1 wxxBAd w

Xx

w
BAw

Product of fuzzy set  

Second power of fuzzy set : AAA2

Xxxx AA ,)]([)( 2
2

Cartesian prduct : nAAA 21

)](,),(),([),,,(
2121 21 xxxMinxxx

nn AAAnAAA
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t-norms operator 

Intersection product ( )

Algebraic product ( )

Bounded product (  ) 

Drastic product (  ) 

t-conorms(s-norms) operator 

Union ( )

Algebraic sum ( ˆ )

Bounded sum ( )

Drastic sum (  ) 

Disjoint sum ( )
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[EXERCISES]

2.1 Let sets A, B, and C be fuzzy sets defined on real numbers by the 

membership functions 

A(x) =
1x

x
, B(x) =

10

1
2x

, C(x) = x10

1

Determine mathematical membership functions and graphs of each of 

the followings : 

a) ,BA ,CB
b) ,CBA CBA
c) ,CA CB
d) ,BA BA

2.2 Show the two fuzzy sets satisfy the De Morgan’s Law. 

A(x) =
)10(1

1

x

B(x) =
21

1

x

2.3 Show that the following sets don’t satisfy the law of contradiction and 

the law of excluded middle. 

a) A(x) =
x1

1

b) A = {(a, 0.4), (b, 0.5), (c, 0.9), (d, 1)}

2.4 Determine complements, unions, and intersections of the following 

sets by using Yager’s operators for  = 1, 2 

a) A = {(a, 0.5), (b, 0.9), (c, 0.1), (d, 0.5)} 

b) A(x) =
x1

1

2.5 Compute the complements of the following sets by Yager’s 

complements w = 1, 2. 

a) A = {(a, 0.5), (b, 0.9), (c, 0.3)}

b) A(x) =
)1(1

1

x



52                                               2. The Operation of Fuzzy Set 

2.6 Compute the complements of the following sets by using Probabilistic, 

Bounded, Drastic, and Hamacher product. 

a) A(x) =
21

1

x
b) A(x) = 2-x

c) A = {(a, 0.4), (b, 0.5), (c, 0.9)}

2.7 Compute the simple disjunctive sum, disjoint sum, simple difference, 

and bounded difference of the sets 

A = {(x, 0.5), (y, 0.4), (z, 0.9), (w, 0.1)}

B = {(x, 0.4), (y, 0.8), (z, 0.1), (w, 1)}

2.8 Determine the distances (Hamming, Euclidean and Minkowski for  = 
2) between the following sets 

A = {(x, 0.5), (y, 0.4), (z, 0.9), (w, 0.1)}

B = {(x, 0.1), (y, 0.9), (z, 0.1), (w, 0.9)}

2.9 Prove the following properties. 

a) Let function a t-norm operation. 

The following is a t-conorm operation. 

 (x, y) = 1 – ´(1-x, 1-y)
b) yxyx  and yxyx

where xx 1 , yy 1  and ),(1 yxyx
where  represents t-conorm operator. 

2.10 Determine the closet pair of sets among the following sets 

A = {(x1, 0.4), (x2, 0.4), (x3, 0.9), (x4, 0.5)}

B = {(x1, 0.1), (x2, 0.0), (x3, 0.9)}

C = {(x1, 0.5), (x2, 0.5), (x3, 0.9)}

2.11 Show the Max operator satisfies the properties boundary condition, 

commutativity, associativity, continuity, and idempotency.  

2.12 Prove the following equation. 

5.0)(0 xBA

where )()( BABABA
that is,  is simple disjunctive sum operator. 



Chapter 3. FUZZY RELATION AND COMPOSITION 

The concept of fuzzy set as a generalization of crisp set has been 

introduced in the previous chapter. Relations between elements of crisp 

sets can be extended to fuzzy relations, and the relations will be considered 

as fuzzy sets. In this chapter, we should be familiar with the proper 

meanings of the two terms: crisp relation and fuzzy relation. Various 

operations on the fuzzy relations will be introduced. 

3.1 Crisp Relation 

3.1.1 Product Set 

Assume that an order between elements x and y exists, the pair made of 

these two elements is called an ordered pair. An ordered pair is usually 

denoted by (x, y).

Definition (Product set) Let A and B be two non-empty sets, the product 

set or Cartesian product A B is defined as follows, 

A B  {(a, b) | a A, b B } 

The concept of Cartesian product can be extended to n sets. For an 

arbitrary number of sets A1, A2, ... , An, the set of all n-tuples (a1, ... , an)

such that a1 A1, a2 A2,  ... , an An, is called the Cartesian product 

and is written as A1 A2  ... An  or 

Instead of A  A and A  A  A  ...  A, we use the notations A2 and An

respectively. The product is used for the “composition” of sets and 

relations in the later sections. For example, a relation is a product space 

obtained from two sets A and B. 3 denotes the 3-dimens- 

ional space of real numbers.

n

i
iA

1
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Fig. 3.1. Product set A  B

Example 3.1 When A  {a1, a2, a3}, B  {b1, b2} the Cartesian product 

yields (Fig 3.1) 

A B  {(a1, b1), (a1, b2), (a2, b1), (a2, b2), (a3, b1), (a3, b2)}

The Cartesian product A  A is in the following and is also shown in 

(Fig 3.2) 

A A  {(a1, a1), (a1, a2), (a1, a3), (a2, a1), (a2, a2), (a2, a3),

(a3, a1), (a3, a2), (a3, a3)}

3.1.2 Definition of Relation 

Definition (Binary Relation) If A and B are two sets and there is a 

specific property between elements x of A and y of B, this property can be 

described using the ordered pair (x, y). A set of such (x, y) pairs, x  A and 

y  B, is called a relation R.

R = { (x,y) | x A, y B } 

R is a binary relation and a subset of A B.

The term “x is in relation R with y” is denoted as  

(x, y) R or x R y with R A B.

If (x, y) R, x is not in relation R with y. If A B or R is a relation from 

A to A, it is written  

(x, x) R or x R x for R A A.

(a1, b2) (a2, b2)

(a1, b1)

(a3, b2)

(a2, b1) (a3, b1)

b2

a1

b1

a3a2
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Fig. 3.2. Cartesian product A  A

Definition (n-ary relation) For sets A1, A2, A3, ..., An, the relation among 

elements x1 A1, x2 A2, x3 A3, ..., xn An  can be described by n-

tuple (x1, x2, ..., xn). A collection of such n-tuples (x1, x2, x3, ..., xn) is a 

relation R among A1, A2, A3, ..., An. That is 

(x1, x2, x3, … , xn) R
R A1 A2 A3  … An

Definition (Domain and range) Let R stand for a relation between A and 

B. The domain and range of this relation are defined as follows (Fig. 3.3) : 

dom(R) = { x | x A, (x, y) R for some y B } 

  ran(R) = { y | y B, (x, y) R for some x A }  

Here we call set A as support of dom(R) and B as support of ran(R).

dom(R) A results in completely specified and dom(R) A incompletely 

specified. The relation R A B is a set of ordered pairs (x, y). Thus, if 

we have a certain element x in A, we can find y of B, i.e., the mapped 

image of A. We say "y is the mapping of x" (Fig 3.4). 

If we express this mapping as f, y is called the image of x which is 

denoted as f(x)

R  {(x, y) | x A, y B, y f(x)} or f : A B

So we might say ran(R) is the set gathering of these f(x)

ran(R) f(A)  {f(x) | x A}

(a1, a2) (a2, a2)

(a1, a1)

(a3, a2)

(a2, a1) (a3, a1)

a2

a1

a1

a3a2

(a1, a3) (a2, a3) (a3, a3)
a3
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Fig. 3.3. Domain and range 

Fig. 3.4. Mapping y f(x)

3.1.3 Characteristics of Relation 

We can summarize the properties of relation as follows : 

(1) One-to-many (Fig. 3.5)
R is said to be one-to-many if  

x A, y1, y2 B  (x, y1) R, (x, y2) R

(2) Surjection (may-to-one)
R is said to be a surjection if f(A) B or ran(R) B.

y B, x A, y f(x)

R
dom(R) ran(R)

A B

fx1

x2

x3

A B

y1

y2

y3
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Thus, even if x1  x2, f(x1)  f(x2) can hold. 

(3) Injection (into, one-to-one) 

R is said to be an injection if for all x1, x2  A, 

if  x1  x2 ,  f(x1)  f(x2).

Therefore, if R is an injection, (x1, y) R and (x2, y) R then x1 x2.

(4) Bijection (one-to-one correspondence) 

R is said to be a bijection if it is both a surjection and an injection. 

Assuming A and B are in bijection, this is an equivalence relation 

holds, i.e. the elements and the number of the elements correspond.  

If each member of the domain appears exactly once in R, the relation R
is called a mapping or a function. When at least one member of the domain 

is related to more than one element of the range, the relation is not a 

mapping and is instead called one-to-many relation. Therefore surjection, 

injection and bijection are functions, and thus an element x in dom(R) is 

mapped to only one element y in ran(R) by them. 

Fig. 3.5. One-to-many relation (not a function)

fx1

x2

A B

y

(a) Surjection 

Fig. 3.6. Functions (surjection, injection and bijection)
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fx1

A B

y1

x2 y2

x3 y3

y4

(b) Injection 

fx1

x2

A B

y1

y2

x3 y3

x4 y4

(c) Bijection 

Fig. 3.6. (cont’) 

Fig. 3.7. Binary relation from A to B

A B

a1 b1

a2

b2

a3

b3a4



§3.1 Crisp Relation                                                        59

Fig. 3.8. Relation of x2 + y2  4 

3.1.4 Representation Methods of Relations 

There are four methods of expressing the relation between sets A and B.

(1) Bipartigraph

The first is by illustrating A and B in a figure and representing the 

relation by drawing arcs or edges (Fig 3.7). 

(2) Coordinate diagram 

The second is to use a coordinate diagram by plotting members of A
on x axis and that of B on y axis, and then the members of A B lie on 

the space. Fig 3.8 shows this type of representation for the relation R,

namely x2 + y2  4 where x A and y B.

(3) Matrix

The third method is by manipulating relation matrix. Let A and B be 

finite sets having m and n elements respectively. Assuming R is a 

relation between A and B, we may represent the relation by matrix MR
(mij) which is defined as follows  

MR  (mij)

i  1, 2, 3, …, m
j  1, 2, 3, …, n

Rba

Rba
m

ji

ji
ij

),(,0

),(,1

4

-4

-4 4
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Such matrix is called a relation matrix, and that of the relation in (Fig. 

3.7) is given in the following. 

R
b1 b2 b3

a1 1 0 0

a2 0 1 0

a3 0 1 0

a4 0 0 1

Fig. 3.9. Directed graph 

(4) Digraph

The fourth method is the directed graph or digraph method. Elements 

are represented as nodes, and relations between elements as directed 

edges.

A  {1, 2, 3, 4} and R  {(1, 1), (1, 2), (2, 1), (2, 2), (1, 3), (2, 4), (4, 

1)} for instance. (Fig 3.9) shows the directed graph corresponding to 

this relation. When a relation is symmetric, an undirected graph can be 

used instead of the directed graph. 

3.1.5 Operations on Relations 

In the previous section, relation R was defined as a set. That is, R is a set 

containing ordered pairs (x, y) for x A, y B. If we assume R and S are 

relations defined on the same space A B, these relations might have 

operations of union, intersection, inverse and composition.  

2 3

4

1
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(1) Union of relation 

T R S is said to be the union of R and S.

If (x, y) R or (x, y) S, then (x, y) T

(2) Intersection of relation 

T R S is said to be the intersection of R and S.

If (x, y) R and (x, y) S, then (x, y) T.

(3) Complement of relation 

A B represents all possible relations that can occur between two sets. 

That means it is equivalent to the concept of universal set. Now 

RyxBAyxR ,|,

That is, 

if (x, y) R, then (x, y) R

R  is said to be the complement of the relation R.

(4) Inverse relation 

Let R be a relation from A to B. The inverse R-1 is defined as, 

R-1  {(y, x) B A | (x, y) R, x A, y B}

(5) Composition 

Let R and S be two relations defined on sets A, B and C. T is said to be 

a composition of R and S.

R A B, S B C
T S R A C
T  {(x, z) | x A, y B, z C, (x, y) R, (y, z) S}

Let R be a relation characterizing the set A. The composition of R and 

R is written as R R or R2. Rn is the n-th composition of R.

3.1.6 Path and Connectivity in Graph 

Path of length n in the graph defined by a relation R A A is a finite 

series of p a, x1, x2, ..., xn-1, b where each element should be a R x1, x1 R
x2, ..., xn-1 R b. Besides, when n refers to a positive integer, 

(1) Relation Rn on A is defined, x Rn y means there exists a path from x to 

y whose length is n.

(2) Relation R  on A is defined, x R y means there exists a path from x
to y. That is, there exists x

R y or x R2 y or x R3 y ...  and. This relation R  is the reachability 

relation, and denoted as xR y
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(3) The reachability relation R  can be interpreted as connectivity 

relation of A.

3.2 Properties of Relation on A Single Set 

Now we shall see the fundamental properties of relation defined on a set, 

that is, R A A. We will review the properties such as reflexive relation, 

symmetric relation, transitive relation, closure, equivalence relation, 

compatibility relation, pre-order relation and order relation in detail. 

3.2.1 Fundamental Properties 

(1) Reflexive relation 

If for all x A, the relation xRx or (x, x) R is established, we call it 

reflexive relation. The reflexive relation might be denoted as  

x A  (x, x) R or R(x, x) = 1, x A
where the symbol “ ” means “implication” 

If it is not satisfied for some x A, the relation is called “irreflexive”. 

if it is not satisfied for all x A, the relation is “antireflexive”. 

When you convert a reflexive relation into the corresponding relation 

matrix, you will easily notice that every diagonal member is set to 1. A 

reflexive relation is often denoted by D.   

(2) Symmetric relation 

For all x, y A, if xRy yRx, R is said to be a symmetric relation and 

expressed as 

(x, y) R  (y, x) R or

R(x, y) = R(y, x), x, y A
The relation is “asymmetric” or “nonsymmetric” when for some x, y
A, (x, y) R and (y, x) R. It is an “antisymmetric” relation if for all 

x, y A, (x, y) R and (y, x) R

(3) Transitive relation 

This concept is achieved when a relation defined on A verifies the 

following property.  

For all x, y, z A
(x, y) R, (y, z) R  (x, z) R

(4) Closure

When relation R is defined in A, the requisites for closure are,
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1)  Set A should satisfy a certain specific property. 
2)  Intersection between A's subsets should satisfy the relation R.
 The smallest relation R' containing the specific property is called 
closure of R. 

Example 3.2 If R is defined on A, assuming R is not a reflexive relation, 
then R' D R contains R and reflexive relation. At this time, R' is said to 
be the reflexive closure of R.

Example 3.3 If R is defined on A, transitive closure of R is as follows(Fig 
3.10), which is the same as R  (reachability relation). 

R R R2 R3  … 

The transitive closure R  of R for A  {1, 2, 3, 4} and R  {(1, 2), (2, 3), 
(3, 4), (2, 1)} is, 

R  {(1, 1), (1, 2), (1, 3), (1,4), (2,1), (2,2), (2, 3), (2, 4), (3, 4)}.  
(Fig 3.10) explains this example 

(a) R (b) R

Fig. 3.10. Transitive closure 

3.2.2 Equivalence Relation 

Definition (Equivalence relation) Relation R A A is an equivalence 
relation if the following conditions are satisfied. 

i).    Reflexive relation 
x A  (x, x) R

ii). Symmetric relation 
(x, y) R  (y, x) R

iii). Transitive relation 
(x, y) R, (y, z) R  (x, z) R

1 3

4

2
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If an equivalence relation R is applied to a set A, we can perform a 

partition of A into n disjoint subsets A1, A2, ... which are equivalence 

classes of R. At this time in each equivalence class, the above three 

conditions are verified. Assuming equivalence relation R in A is given, 

equivalence classes are obtained. The set of these classes is a partition of A

(a) Expression by set 

(b) Expression by undirected graph 

Fig. 3.11. Partition by equivalence relation 

by R and denoted as (A/R). Fig 3.11 shows the equivalence relation 

verified in A1 and A2.

(A/R)  {A1, A2}  {{a, b, c}, {d, e}}

3.2.3 Compatibility Relation (Tolerance Relation) 

Definition (Compatibility relation) If a relation satisfies the following 

conditions for every x, y A, the relation is called compatibility relation. 

i)  Reflexive relation 

x A  (x, x) R
ii)  Symmetric relation 

(x, y) R  (y, x) R

b

a

c

d e

A1 A2

A

b

a
d

c

e
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If a compatibility relation R is applied to set A, we can decompose the 

set A into disjoint subsets which are compatibility classes. In each 

compatibility class, the above two conditions are satisfied. Therefore, a 

compatibility relation on a set A gives a partition. But the only difference 

from the equivalence relation is that transitive relation is not completed in 

the compatibility relation. 

(a) Expression by set 

(b) Expression by undirected graph 

Fig. 3.12. Partition by compatibility relation 

(Fig.3.12) describes a partition of set A by a compatibility relation. 

Here, compatibility classes are {a, b, c} and {d, e}.

3.2.4 Pre-order Relation 

Definition (Pre-order relation) For any x, y, z A, if a relation R A A
obeys these two conditions, it is called pre-order relation.  

i)  Reflexive relation 

x A  (x, x) R
ii)  Transitive relation 

(x, y) R, (y, z) R  (x, z) R

Unlike for the equivalence relation, no symmetric relation exists here. 

That is, whether elements in A are symmetric or not is not our concern 

b

a

c

d e

A1 A2

A

b

a
d

c

e
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here. Fig 3.13 is an example of pre-order for given relation R on A. Edges 

(b, d) and (f, h) are symmetric and others are non-symmetric. Looking over 

(b, d) and (f, h), you shall notice that an equivalence relation holds. So 

these members can be tided up as the same classes as in the figure.  

Consequently we can assure that if a pre-order exists, it implies that an 

order exists between classes, and that the number of members in a class 

can be more than 1. If the property of antisymmetric relation is added to 

the pre-order, the number of member in a class should be 1 and it becomes 

an order relation. 

 (a) Pre-order relation 

(b) Pre-order 

Fig. 3.13. Pre-order relation 

3.2.5 Order Relation 

Definition (Order relation) If a binary relation R A A satisfies the 

followings for any x, y, z A, it is called order relation (or partial order 

relation).

i)  Reflexive relation 

x A  (x, x) R
ii)  Antisymmetric relation 

(x, y)  R  (y, x) R
iii) Transitive relation 

(x, y) R, (y, z) R  (x, z) R

h g

f
d

b

c

e

a

A

a

c

b, d

e

f, h g
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When relation R is given to an arbitrary set A, an order according to R is 

defined among the elements of A (Fig. 3.14). If the condition (1) is 

replaced by  

(i’) Antireflexive relation 

x A  (x, x) R

we apply the term “strict order relation” for it.  

Since the order is determined in (b, a) and (d, g) in the figure, they can 

be compared. In this case we say “comparable”. But a and c are 

“incomparable”. Comparable pair (x, y) is denoted as x y.

In the order relation, when the following condition (4) is added, we call 

this relation a “total order” or “linear order” relation.   

iv) x, y A, (x, y) R or (y, x) R
The total order is also termed as a “chain” since it can be drawn in a 

line. Comparing to the total order, the order following only conditions 

(1) ,(2) and (3) is called a “partial order”, and a set defining the partial 

order is called “partial order set”. 

Definition (Ordinal function) For all x, y A (x y),

i)  If (x, y) R, xRy or x > y,

f(x) f(y) + 1 

ii)  If reachability relation exists in x and y, i.e. if xR y,

          f(x) > f(y)               

The pair (x, y) can be written as x y. Applying the ordinal function into 

the order relation in (Fig. 3.14(a)), yields (Fig. 3.14(b).) 

Now we can summarize as follows : 

(1) In the pre-order, the symmetry or nonsymmetry is allowed. But in the 

case of order, only the antisymmetry is allowed. In other words, adding 

the antisymmetry to the pre-order, we get an order. 

(2) A pre-order is said to be an order between classes. In other words, an 

order is a pre-order restricting that the number of class is 1.  

(3) An equivalence relation has symmetry, so it can be obtained by 

adding the symmetry to the pre-order relation.  

Characteristics so far discussed are summaried in Table 3.4. 
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(a) Order relation 

(b) Ordinal function 

Fig. 3.14. Order relation and ordinal function 

3.3 Fuzzy Relation 

3.3.1 Definition of Fuzzy Relation  

If a crisp relation R represents that of from sets A to B, for x A and y
B, its membership function R(x, y) is, 

R (x, y) = 
1 iff (x, y) R
0 iff (x, y) R

This membership function maps A B to set {0, 1}. 

R : A B  {0, 1} 

b

a

d

c
e

f

g

a

d

e
b

c f g
1

2

3
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Table 3.1 Comparison of relations 

Property 

Relation

Refle

xive

Antirefl

exive

Symme

tric

Antisym

metric

Transit

ive

Equivale

nce

Compatib

ility 
   

Pre-order    

Order 

Strict

order 

This membership function maps A B to set {0, 1}. 

R : A B  {0, 1} 

We know that the relation R is considered as a set. Recalling the 

previous fuzzy concept, we can define ambiguous relation.  

Definiton (Fuzzy relation) Fuzzy relation has degree of membership 

whose value lies in [0, 1].  

R : A B  [0, 1] 

R = {((x, y), R(x, y))| R(x, y)  0 ,  x A, y B}

Here R(x, y) is interpreted as strength of relation between x and y.

When R(x, y) R(x', y'), (x, y) is more strongly related than (x', y'). 

When a fuzzy relation R A B is given, this relation R can be thought 

as a fuzzy set in the space A B. Fig 3.15 illustrates that the fuzzy relation 

R is a fuzzy set of pairs (a, b) of elements where ai A, bi B.

Let’s assume a Cartesian product space X1 X2 composed of two sets X1

and X2. This space makes a set of pairs (x1, x2) for all x1 X1, x2 X2.

Given a fuzzy relation R between two sets X1 and X2, this relation is a set 

of pairs (x1, x2) R. Consequently, this fuzzy relation can be presumed to 

be a fuzzy restriction to the set X1 X2. Therefore, R X1 X2

Fuzzy binary relation can be extended to n-ary relation. If we assume 

X1, X2, ..., Xn to be fuzzy sets, fuzzy relation R X1 X2  ... Xn can be 

said to be a fuzzy set of tuple elements (x1, x2, ..., xn), where x1 X1,

x2 X2, ... , xn Xn.
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Fig. 3.15. Fuzzy relation as a fuzzy set A B

3.3.2 Examples of Fuzzy Relation   

Example 3.3 (Fig 3.16) for instance, crisp relation R in the figure (a) 

reflects a relation in A A. Expressing this by membership function, R(a,

c)  1, R(b, a)  1, R(c, b)  1 and R(c, d)  1. 

If this relation is given as the value between 0 and 1 as in the figure (b), 

this relation becomes a fuzzy relation. Expressing this fuzzy relation by 

membership function yields, 

R(a, c)  0.8, R(b, a)  1.0, R(c, b)  0.9, R(c, d)  1.0 

(a) Crisp relation   (b) Fuzzy relation 

Fig. 3.16. Crisp and Fuzzy relations 

(a1, b1) ...(a1, b2) (a2, b1)

0.5

1

R

R A B

a

b

c

d

a

b

c

d

0.8

1.0

0.9 1.0
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It’s corresponding fuzzy matrix is as follows. 

A

a b c d 

a 0.0 0.0 0.8 0.0

b 1.0 0.0 0.0 0.0

c 0.0 0.9 0.0 1.0

d 0.0 0.0 0.0 0.0

Fuzzy relation is mainly useful when expressing knowledge. Generally, 

the knowledge is composed of rules and facts. A rule can contain the 

concept of possibility of event b after event a has occurred. For instance, 

let us assume that set A is a set of events and R is a rule. Then by the rule 

R, the possibility for the occurrence of event c after event a occurred is 0.8 

in the previous fuzzy relation. 

When crisp relation R represents the relation from crisp sets A to B, its 

domain and range can be defined as, 

dom(R)  {x | x A, y A, R(x, y)  1} 

ran(R)  {y | x A, y A, R(x, y)  1} 

Definition (Domain and range of fuzzy relation) When fuzzy relation R
is defined in crisp sets A and B, the domain and range of this relation are 

defined as :  

dom(R)(x) max R(x, y)
   y B

ran(R)(y) max R(x, y)
  x A

Set A becomes the support of dom(R) and dom(R) A. Set B is the support 

of ran(R) and   

ran(R) B.

3.3.3 Fuzzy Matrix  

Given a certain vector, if an element of this vector has its value between 0 

and 1, we call this vector a fuzzy vector. Fuzzy matrix is a gathering of 
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such vectors. Given a fuzzy matrix A  (aij) and B  (bij), we can perform 

operations on these fuzzy matrices. 

(1) Sum 

A + B  Max [aij, bij]

(2) Max product 

A B AB  Max [ Min (aik, bkj) ] 
k

(3) Scalar product 

A where 0  1 

Example 3.4 The followings are examples of sum and max product on 

fuzzy sets A and B.

a b c a b c 
a 0.2 0.5 0.0 a 1.0 0.1 0.0 

b 0.4 1.0 0.1 b 0.0 0.0 0.5 
A = 

c 0.0 1.0 0.0

B = 

c 0.0 1.0 0.1 

a b c a b c 
a 1.0 0.5 0.0 a 0.2 0.1 0.5 

b 0.4 1.0 0.5 b 0.4 0.1 0.5 
A + B = 

c 0.0 1.0 0.1

A B

c 0.0 0.0 0.5 

Here let's have a closer look at the product A B of A and B. For 

instance, in the first row and second column of the matrix C A B, the 

value 0.1 (C12  0.1) is calculated by applying the Max-Min operation to 

the values of the first row (0.2, 0.5 and 0.0) of A, and those of the second 

column (0.1 , 0.0 and 1.0) of B.

 0.2 0.5 0.0 

 0.1 0.0 1.0 

Min
 0.1 0.0 0.0  0.1 

    Max

In the same manner C13  0.5 is obtained by applying the same 

procedure of calculation to the first row (0.2, 0.5, 0.0) of A and the third 

column of B (0.0, 0.5, 0.1). 
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 0.2 0.5 0.0 

 0.0 0.5 0.1 

Min
 0.0 0.5 0.0  0.5     

           Max            

And for all i and j, if aij bij holds, matrix B is bigger than A.

aij bij A B
Also when A B for arbitrary fuzzy matrices S and T, the following 

relation holds from the Max-Product operation.  

A B SA SB,AT BT

Definition (Fuzzy relation matrix) If a fuzzy relation R is given in the 

form of fuzzy matrix, its elements represent the membership values of this 

relation. That is, if the matrix is denoted by MR, and membership values by 

R (i, j), then  MR  ( R (i, j))

3.3.4 Operation of Fuzzy Relation   

We know now a relation is one kind of sets. Therefore we can apply 

operations of fuzzy set to the relation. We assume R A B and 

S A B.

(1) Union relation 

Union of two relations R and S is defined as follows : 

 (x, y) A B
R S (x, y)  Max [ R (x, y), S (x, y)] 

R (x, y) S (x, y)

We generally use the sign  for Max operation. For n relations, we 

extend it to the following. 

If expressing the fuzzy relation by fuzzy matrices, i.e. MR and MS,

matrix MR S concerning the union is obtained from the sum of two 

matrices MR + MS.

MR S MR + MS

(2) Intersection relation 

The intersection relation R S of set A and B is defined by the 

following membership function. 

yxyx Ri
R

RRRR
i

n
,,

321
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R  S (x) =Min [ R (x, y), S (x, y)] 

    = R (x, y) S (x, y) 

The symbol  is for the Min operation. In the same manner, the 

intersection relation for n relations is defined by 

(3) Complement relation 

Complement relation R  for fuzzy relation R shall be defined by the 

following membership function. 

 (x, y) A B R (x, y)  1 - R (x, y)

Example 3.5 Two fuzzy relation matrices MR and MS are given. 

MR a b c MS a b c 

1 0.3 0.2 1.0 1 0.3 0.0 0.1 

2 0.8 1.0 1.0 2 0.1 0.8 1.0 

3 0.0 1.0 0.0 3 0.6 0.9 0.3 

Fuzzy relation matrices M R S and M R  S corresponding R  S and R  S 

yield the followings. 

MR S a b c MR S a b c 

1 0.3 0.2 1.0 1 0.3 0.0 0.1 

2 0.8 1.0 1.0 2 0.1 0.8 1.0 

3 0.6 1.0 0.3 3 0.0 0.9 0.0 

Also complement relation of fuzzy relation R shall be 

M R  a b c 

1 0.7 0.8 0.0 

2 0.2 0.0 0.0 

3 1.0 0.0 1.0 

(4) Inverse relation 

When a fuzzy relation R A B is given, the inverse relation of R-1 is 

defined by the following membership function.   

For all (x, y) A B,           R
-1 (y, x) R (x, y)

yxyx Ri
R

RRRR
i

n
,,

321
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3.3.5 Composition of Fuzzy Relation   

Definition (Composition of fuzzy relation) Two fuzzy relations R and S
are defined on sets A, B and C.  That is, R A B, S B C. The

composition S R SR of two relations R and S is expressed by the 

relation from A to C, and this composition is defined by the following. 

For (x, y) A B,  (y, z) B C,

s R (x, z) =Max[Min ( R (x, y), S (y, z))]
y

      = [ R (x, y) S (y, z)]    

        y

S R from this elaboration is a subset of A C. That is, S R A C.
If the relations R and S are represented by matrices MR and MS, the 

matrix MS  R corresponding to S R is obtained from the product of MR
and MS.

MS  R  MR  MS

Example 3.6 Consider fuzzy relations R A B, S B C. The sets A, B
and C shall be the sets of events. By the relation R, we can see the 

possibility of occurrence of B after A, and by S, that of C after B. For 

example, by MR, the possibility of a B after 1 A is 0.1. By MS, the 

possibility of occurrence of  after a is 0.9. 

R a b c d S 

1 0.1 0.2 0.0 1.0 a 0.9 0.0 0.3  

2 0.3 0.3 0.0 0.2 b 0.2 1.0 0.8  

3 0.8 0.9 1.0 0.4 c 0.8 0.0 0.7  

     d 0.4 0.2 0.3  

Here, we can not guess the possibility of C when A is occurred. So our 

main job now will be the obtaining the composition S R A C. The 

following matrix MS  R represents this composition and it is also given in 

(Fig 3.17). 

Now we see the possibility of occurrence of C after event 1 A is 

0.4, and that for C after event 2 A is 0.3.etc...  

Presuming that the relations R and S are the expressions of rules that 

guide the occurrence of event or fact. Then the possibility of occurrence of 

event B when event A is happened is guided by the rule R. And rule S
indicates the possibility of C when B is existing. For further cases, the 

possibility of C when A has occurred can be induced from the composition 

rule S R. This manner is named as an “inference” which is a process 

producing new information. 
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S R

1 0.4 0.2 0.3 

2 0.3 0.3 0.3 

3 0.8 0.9 0.8 

Fig. 3.17. Composition of fuzzy relation 

3.3.6 -cut of Fuzzy Relation 

We have learned about -cut for fuzzy sets, and we know a fuzzy relation 

is one kind of fuzzy sets. Therefore, we can apply the -cut to the fuzzy 

relation.

Definition ( -cut relation) We can obtain -cut relation from a fuzzy 

relation by taking the pairs which have membership degrees no less than 

. Assume R A B, and R  is a -cut relation. Then 

R  = {(x, y) | R(x, y) , x A, y B}

Note that R  is a crisp relation.   

Example 3.7 For example, we have a fuzzy relation R. 

S R

1

2

3

0.4

0.2

0.3

0.3

0.3

0.3

0.8

0.9

0.8

a

b

c

d

0.1

1

0.2

0.3

R

1
0.3

0.2
0.9

0.8

0.9

0.3

1

0.4

0.2

0.2

0.8

0.4

0.7
0.8

1

2

3 0.3

S
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 0.9 0.4 0.0

 0.2 1.0 0.4

 0.0 0.7 1.0

MR = 

 0.4 0.2 0.0

Now the level set with degrees of membership function is, 

 {0, 0.2, 0.4, 0.7, 0.9, 1.0} 

then we can have some -cut relations in the following. 

 1 1 0 

 0 1 1 

 0 1 1 

MR 0.4 =

 1 0 0 

 1 0 0 

 0 1 0 

 0 1 1 

MR 0.7 =

 0 0 0 

 1 0 0 

 0 1 0 

 0 0 1 

MR 0.9 =

 0 0 0 

 0 0 0 

 0 1 0 

 0 0 1 

MR 1.0 =

 0 0 0 

3.3.7 Projection and Cylindrical Extension 

Definition (Decomposition of relation) Fuzzy relation can be said to be 

composed of several R ’s as following. 
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R = R

Here  is a value in the level set; R  is a -cut relation; R  is a fuzzy 

relation. The membership function of R  is defined as, 

          ,  for (x, y) A B

Thus we can decompose a fuzzy relation R into several R .

Example 3.8 The relation R in the previous example can be decomposed 

as following. 

1 1 0 1 0 0 1 0 1 0 0 0 

0 1 1 0 1 0 0 1 0 0 1 0 

0 1 1 0 1 1 0 0 1 0 0 1 
MR  0.4 

1 0 0 

 0.7 

0 0 0

 0.9 

0 0 0

 1.0 

0 0 0 

Definition (Projection) We can project a fuzzy relation R A B with 

respect to A or B as in the following manner.  

For all x A, y B,

yxMaxx RyRA
,  : projection to A 

yxMaxy RxRB
,  : projection to B 

Here the projected relation of R to A is denoted by RA, and to B is by RB.

Example 3.9 There is a relation R A B. The projection with respect to 

A or B shall be, 

B
A b1 b2 b3

a1 0.1 0.2 1.0 

a2 0.6 0.8 0.0 
MR

a3 0.0 1.0 0.3 

      

a1 1.0  b1 b2 b3

a2 0.8  0.6 1.0 1.0 ARM

a3 1.0 

BRM

    

yxyx RR ,,
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In the projection to A, the strongest degree of relation concerning a1 is 1.0, 

that for a2 is 0.8 and that for a3 is 1.0.  

Definition (Projection in n dimension) So far has been the projection in 

2-dimensions relation. Extending it to n-dimensional fuzzy set, assume 

relation R is defined in the space of X1  X2  ...  Xn. Projecting this 

relation to subspace of Xi1  Xi2  ...  Xik, gives a projected relation :  

ikii XXXR
21

Here Xj1, Xj2, ..., Xjm represent the omitted dimensions, and Xi1, Xi2, ..., 

Xik the remained dimensions, and thus  

{X1, X2, ... , Xn}  {Xi1, Xi2, ... , Xik}  {Xj1, Xj2, ... , Xjm}

Definition (Cylindrical extension) As the opposite concept of projection, 

cylindrical extension is possible. If a fuzzy set or fuzzy relation R is 

defined in space A B, this relation can be extended to A B C and we 

can obtain a new fuzzy set. This fuzzy set is written as C(R).    

C(R) (a, b, c) R (a, b)

a A, b B, c C

Example 3.10 In the previous example, relation RA is the projection of R to 

direction A. If we extend it again to direction B, we can have an extended 

relation C(RA). For example 

0.1, 111 aba
AA RRC

0.1, 121 aba
AA RRC

8.0, 212 aba
AA RRC

 b1 b2 b3

a1 1.0 1.0 1.0 

a2 0.8 0.8 0.8 
ARCM

a3 1.0 1.0 1.0 

The new relation C(RA) is now in A B.

Let two fuzzy relations be defined as follows: 

R X1 X2, S X2 X3

Even though we want to apply the intersection operation between R and 

S, it is not possible because the domains of R and S are different each 

nR
XXX

ikiiR xxxxxx Max
jmjj

ikXiXiX
,,,,,, 21

,,,
21

21
21
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other. If we obtain cylindrical extensions C(R) and C(S) to space of X1 X2

X3, and then C(R) and C(S) have the same domain. We can now apply 

operations on the two extended sets C(R) and C(S). Therefore join (or 

intersection) of R and S can be calculated by the intersection of C(R) and 

C(S).

join (R, S) C(R) C(S)

The projection and cylindrical extension are often used to make domains 

same for more than one fuzzy sets. 

3.4 Extension of Fuzzy Set 

3.4.1 Extension by Relation   

Definition (Extension of fuzzy set) Let A and B be fuzzy sets and R
denote the relation from A to B. This relation can be expressed by a 

function f ,

x A, y B
y f(x)  or x yf 1

Here we used the term “function” without considering the strict 

condition for being a function. Then we can obtain make fuzzy set B' in B
by R and A.

for y B,

xy A
yfx

B Max
1

  if  yf 1

Example 3.11 Let fuzzy set A be "the set of people with an infectious 

disease" and the crisp set B be "the set of people having been in contact 

with the infected people". The contact relation is given by R in Fig 3.18 

A  {(a1, 0.4), (a2, 0.5), (a3, 0.9), (a4, 0.6)} 

B  {b1, b2, b3}

Fig. 3.18. Extension of a fuzzy relation

b1

b2

b3

a1

a2

a4

a3

0.4

0.5

0.6

0.9
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For example, by A, the possibility of person a1 is 0.4, and by relation R,

a1 has been in contact with b. With such a set A and relation R, the 

infectious set B' in B can be obtained as follows :  

First for b1,
1f  (b1)  {(a1, 0.4), (a3, 0.9)}, Max [0.4, 0.9]  0.9 

B' (b1)  0.9 

Now for b1,
1f  (b2)  {(a2, 0.5), (a4, 0.6)}, Max [0.5, 0.6]  0.6 

     B' (b2)  0.6 

Similarly for b2,
1f  (b3)  {(a4, 0.6)} 

B' (b3)  0.6 

Arranging all, 

B'  {(b1, 0.9), (b2, 0.6), (b3, 0.6)}, It is the result of inference.

3.4.2 Extension Principle 

Definition (Extension principle) We can generalize the pre-explained 

extension of fuzzy set. Let X be Cartesian product of universal set X X1

X2  ... Xr and A1, A2, ... , Ar be r fuzzy sets in the universal set. 

Cartesian product of fuzzy sets A1, A2, ... , Ar yields a fuzzy set A1 A2

 ... Ar defined as 

A
1

A
2

 ... Ar
 ( x1 x2  ... xr )   Min [ A

1
 (x1), ... , Ar

(xr) ] 

Let function  f be from space X to Y,

f(x1, x2, ... , xr)  : X Y
Then fuzzy set B in Y can be obtained by function f and fuzzy sets A1,

A2, ... , Ar as follows: 

Here, f-1(y) is the inverse image of y. B(y) is the membership of y = (x1, ..., 

xr) whose membership function is A
1

A
2

 ... Ar
 (x1, ..., xr).

If f is a one-to-one correspondence function, B (y) A (f-1(y)), when  

f-1(y) .

otherwise,,,

if,0

1
,,,

1

1
21

rAAxxxfy

B

xxMinMax

yf
y

r
r
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3.4.3 Extension by Fuzzy Relation 

Definition (Extension of fuzzy relation) For given fuzzy set A, crisp set B
and fuzzy relation R A B, there might be a mapping function 

expressing the fuzzy relation R. Membership function of fuzzy set B' in B
is defined as follows : 

For x A, y B, and B  B 

B' (y)  Max[Min ( A (x), R (x, y))]
x  f-1(y) 

Example 3.12 Fig 3.19 shows a further generalization of the example in 

the previous section. The fuzzy set A stands for the infectious patients, and 

the set B for the people who have been in contact with those patients. The 

contact degree is given by the relation R. To determine the fuzzy set B', we 

need a process of inference. In this inference, note that Max-Min operation 

is used just as in the composition of two fuzzy relations. 

The following shows examples of calculation for the membership of B’. 

For b1,

Min [ A (a1), R (a1, b1)]  Min [0.4, 0.8]  0.4 

Min [ A (a3), R (a3, b1)]  Min [0.9, 0.3]  0.3 

Max [0.4, 0.3]  0.4 

B' (b1)  0.4 

For b2,

Min [ A (a2), R (a2, b2)]  Min [0.5, 0.2]  0.2 

Min [ A (a4), R (a4, b2)]  Min [0.6, 0.7]  0.6 

Max [0.2, 0.6]  0.6 

B' (b2)  0.6 

Fig. 3.19. Extension by fuzzy relation 

b1

b2

b3

a1

a2

a4

a3

0.4

0.5

0.6

0.9

0.8

0.2

0.3

0.7

0.4
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For b3,

Max Min [ A (a4), R (a4, b3)]  Max Min [0.6, 0.4]  0.4 

B' (b3)  0.4 

So fuzzy set B' obtained by fuzzy set A and fuzzy relation R is, 

B'  {(b1, 0.4), (b2, 0.6), (b3, 0.4)}  

Extension of fuzzy set and fuzzy relation is also possible among the 

several relations and sets. That is, the fuzziness in fuzzy set A can be 

propagated through more than one relations and sets.  

Example 3.13 Fuzzy set A can make a fuzzy set B' in crisp set B by fuzzy 

relation R1 A B, and B' again can make a fuzzy set C' from fuzzy 

relation R2 B C.

A  {(a1, 0.8), (a2, 0.3)} 

B  {b1, b2, b3}

C  {c1, c2, c3}

 b1 b2 b3  c1 c2 c3

a1
0.3 1.0 0.0 b1 0.7 0.4 1.0 

a2 0.8 0.0 0.0 b2 0.2 0.0 0.8 
MR1

M
2

b3 0.0 0.3 0.9 

By fuzzy set A and fuzzy relation R1, we get the following B'.  

B'  {(b1, 0.3), (b2, 0.8), (b3, 0)} 

Again by B' and R2, we get C’
C'  {(c1, 0.3), (c2, 0.3), (c3, 0.8)} 

The original fuzziness in the set A was propagated to C' through B, C, R1

and R2

3.4.4 Fuzzy Distance between Fuzzy Sets 

Let the universal set X be a certain space where pseudo-metric distance d is 

applied, and then following characteristics are satisfied. 

Definition (pseudo-metric distance) If d is a mapping function from 

space X2 to + (positive real numbers) and holds the following properties, 

it is called pseudo-metric distance   

i)  d(x, x)  0, x  X
ii)  d(x1, x2) d(x2, x1), x1, x2  X
iii) d(x1, x3) d(x1, x2) d(x2, x3), x1, x2, x3  X   
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If the following condition (4) is added to the pseudo-metric distance, it 

becomes a metric distance. 

iv) if d(x1, x2)=0, then x1 = x2.

Definition (Distance between fuzzy sets) In space X, pseudo-metric 

distance d(A, B) between fuzzy sets A and B can be defined by extension 

principle. The distance d(A, B) is given as a fuzzy set.   

, d(A, B)( )  Max[Min ( A(a), B(b))]   
d(a, b)

Example 3.14 (Fig 3.20) shows the fuzzy distance between the fuzzy sets 

A  {(1, 0.5), (2, 1), (3, 0.3)} and B  {(2, 0.4), (3, 0.4), (4, 1)}. (Table 

3.2) shows the calculation procedure for d(A,B) from A and B.

Table 3.2. Calculation of fuzzy set d(A,B) 

 d(A, B) a  A b  B A(a) B(b) Min Max, ( ),

d(A, B) 

0 2 

3

2

3

1.0

0.3

0.4

0.4

0.4

0.3

0.4

1 1 

2

3

3

2

3

2

4

0.5

1.0

0.3

0.3

0.4

0.4

0.4

1.0

0.4

0.4

0.3

0.3

0.4

2 1 

2

3

4

0.5

1.0

0.4

1.0

0.4

1.0

1.0

3 1 4 0.5 1.0 0.5 0.5 

(a) Fuzzy sets A and B

Fig. 3.20. Fuzzy distance set 

0 1 2 3 4 5

0.3

0.4

0.5

1

a, b

µ

BA
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(b) Fuzzy set d(A, B)

Fig. 3.20. (cont’) 

0 1 2 3 4

0.4

0.5

1

d(A, B)
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[SUMMARY]

Cartesian product 

A B  {(a, b) | a A, b B}

Characteristics of a relation 

One-to-many relation 

Surjection (onto) 

Injection (into, one-to-one) 

Bijection (one-to-one correspondence) 

Operations on relations R, S A B
Union of relations 

Intersection of relations 

Complement of a relation 

Inverse of a relation 

Composition of relations 

Path and connectivity relation 

Path of length n
Reachability 

Connectivity 

Properties of relation R A A
Reflexive relation, irreflexive relation, antireflexive 

Symmetric relation, antisysmmetric relation, asymmetric  

relation

Transitive relation 

Equivalence relation 

Reflexive relation 

Symmetric relation 

Binary relation 

Compatible relation 

Reflexive relation 

Symmetric relation 

Pre-order relation 

Reflexive relation 
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Symmetric relation 

Order relation 

Reflexive relation 

Non Symmetric relation 

Binary relation 

Fuzzy relation 

Fuzzy relation is a kind of fuzzy set 

Fuzzy relation is given by a fuzzy restriction to a crisp relation 

Fuzzy matrix 

One representation of fuzzy relation 

Operations of sum, max product and scalar product 

Operation of fuzzy relation 

Fuzzy union relation 

Fuzzy intersection relation 

Fuzzy complement relation 

Fuzzy inverse 

Composition of fuzzy relation 

Composition of fuzzy relation 

S R where R A B, S B C
Max-min operation is popular 

One kind of inference 

-cut relation 

Because relation is a fuzzy set 

It gives a crisp relation 

Projection and cylindrical extension 

Reducing and increasing the number of dimension 

Useful for coinciding the domains of two sets 

Extension principle 

Propagation of fuzziness by fuzzy relation 

Extension by fuzzy set and fuzzy relation 

Fuzzy distance 

Distance between fuzzy sets represented by a fuzzy set 

One kind of extension of fuzziness
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[EXERCISES]

3.1 Find the transitive closure for A  {a, b, c, d} and R  {(a, b), (b, c), (c,

d), (d, b)}.

3.2 Obtain a partition of the set A  {a, b, c, d, e} by the equivalence 

relation R.

R a b c d e 

a 1 1   1 

b 1 1   1 

c   1 1  

d   1 1  

e 1 1   1 

3.3 Compute the complements, intersection and union of the following 

fuzzy relations R and S.

R a b c d  S a b c d 

a
1.

0

0.

2

0.

4

0.

0

a 1.

0

0.

0

0.

0

0.

4

b
0.

0

0.

1

0.

0

0.

9

b 0.

0

0.

0

0.

4

0.

9

c
0.

1

0.

0

1.

0

0.

0

c 0.

4

0.

0

0.

1

0.

0

d
0.

0

0.

4

0.

0

1.

0

d 0.

5

1.

0

0.

0

0.

0

3.4 Determine the composition relation S R A C where R A B
and S B C are defined as follows 

R a b c d  S a b c 

1
0.

4

0.

0

0.

0

1.

0

a 0.

4

0.

1

0.

0

2
0.

5

0.

4

0.

9

0.

0

b 0.

2

0.

0

0.

9

3
0.

2

0.

1

1.

0

0.

4

c 0.

2

0.

0

0.

5

4
0.

0

0.

2

0.

0

1.

0

d 0.

1

0.

0

0.

9
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3.5 Determine the -cut relation for the following fuzzy relation where 

0.4 and 0.8. 

R 1 2 3 4 

a
0.

4

0.

0

0.

5

0.

8

b
0.

4

0.

0

0.

9

0.

1

c
0.

0

0.

4

0.

0

0.

2

d
0.

0

0.

8

0.

0

1.

0

3.6 Consider a fuzzy set A and a crisp set B 

A  {(x, 0.4), (y, 0.9), (z, 1.0), (w, 0.1)}  

B  {a, b, c}

Determine a fuzzy set B’ B induced by A and the relation R A B.

R a b c 

x 0.

0

0.

4

0.

8

y 0.

9

0.

9

0.

7

z 1.

0

0.

0

0.

5

w 0.

0

0.

1

0.

8

3.7 Consider a fuzzy relation R A A where A = {a, b, c}.

R a b c d e 

a 1 1 0 0 1 

b 0  1 1 0 0 

c 0 0 1 0 0 

d 0 0 0 1 0 

e 0 0 1 1 1 

a) Determine the characteristic of this relation. 

b) Show an ordinal function of the relation if it is an order relation. 

3.8 Determine the fuzzy set B induced by A and f(x) x2

A  {(-2, 0.8), (-5, 0.5), (0, 0.8), (1, 1.0), (2, 0.4), (3, 0.1)} 
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)()(),(|
)(:

xMaxyxfyyB AxfyxB

3.9 There are fuzzy set A, crisp set B and fuzzy relation R

A  {(x, A(x)) | 0 x  1, A(x) x2}

B  {(y, B(y)) | 0 y  1} 

R  {((x, y), R(x, y)) | 0 x + y  1, x A, y B}

where R(x, y)  min[x2, y2]

Determine the fuzzy set B’ B induced by A, B and R

3.10 There is a relation R123.  R123 X1 X2 X3  0.9 / (x, a, )  0.4 / (x,

b, )  1.0 / (y, a, )  0.7 / (y, a, )

R123 X1 X2 X3 where X1  {x, y}, X2  {a, b}, X3  { , }

a) Determine R12 X1 X2 and R23 X2 X3 by projection. 

b) Obtain R123 by cylindrical extension of R12 and R23.

c) Obtain R1234  X1 X2 X3 X4 by cylindrical extension where X4 =

{p,q}



Chapter 4. FUZZY GRAPH AND RELATION 

Based on the concepts of fuzzy relation described in the previous chapter, 

we introduce fuzzy graph and it’s related topics. We will also develop 

characteristics of fuzzy relation and study various types of fuzzy relations. 

The concepts of fuzzy homomorphism and strong homomorphism are also 

introduced.

4.1 Fuzzy Graph 

4.1.1 Graph and Fuzzy Graph 

Definition (Graph) A graph G is defined as follows. 

G  (V, E)

V : Set of vertices. A vertex is also called a node or element. 

E : Set of edges. An edge is pair (x, y) of vertices in V.  

A graph is a data structure expressing relation R  V  V. When order in 

pair (x, y) is defined, the pair is called edge with direction and we call such 

graph directed graph. When order is not allowed, we call it undirected 

graph.

Path from x to y is a set of edges when continuous edges of (x, a1),

(a1, a2), (a2, a3), ... , (an, y) are existing. Length of path is a the number of 

edges in this path. When there exists a path from node a to b in G, a and b
are said to be connected. If all a, b  V in graph G are connected, this 

graph is said to be a connected graph. 

When sets A and B are given (including the case A B), let’s define a 

crisp relation R A B. For x A, y B, if (x, y) R, there exists an 

edge between x and y. In other words,  

 (x, y)  R R(x, y) G(x, y)  1



92                                                4. Fuzzy Graph and Relation 

Here given the relation R is a fuzzy relation, and the membership 

function R(x, y) enables G(x, y) value to be between 0 and 1. Such graph 

is called a fuzzy graph. 

Definition (Fuzzy graph) 

V : set of vertices 

    : fuzzy set of edges between vertices  

We can think of set V which is a fuzzy set. In this case, we say this 

graph represents fuzzy relation of fuzzy nodes , and can be defined as foll- 

owing.

In this book, we replace                 with G  (V, E) for convenience. 

4.1.2 Fuzzy Graph and Fuzzy Relation 

Fuzzy graph is an expression of fuzzy relation and thus the fuzzy graph is 

frequently expressed as fuzzy matrix. 

Example 4.1 Fig 4.1 shows an example of fuzzy graph represented as fuz- 

zy relation matrix MG.

MG b1 b2

a1 0.8 0.2 

a2 0.3 0.0 

a3 0.7 0.4 

 Fig. 4.1. Fuzzy graph 

Example 4.2 For instance, let  be nonnegative real numbers. For x
and y , a relation R is defined as,  

E~ V~

EVG ~
,

~

EVG ~
,

~

EVG ~
,

~~

b1

b2

a1

a2

a3

0.8

0.2

0.3

0.7

0.4

E
~
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Fig. 4.2. Fuzzy graph y x

R  {(x, y) | x y}, R .

The symbol  represents “ close to ”(Fig 4.2).    

Example 4.3 Assume that there is a set A  {a1, a2, a3}, and fuzzy relation

R is defined in A A. The fuzzy relation R is illustrated in Fig 4.3(a). In 

the figure, the darkness of color stands for the strength of relation. Relation 

(a, b) is stronger than that of relation (a, c). The corresp-onding fuzzy 

graph is shown in Fig 4.3(b). Here the strength of relation is marked by the 

thickness of line.  

(a) Fuzzy relation R

Fig. 4.3. Fuzzy relation and fuzzy graph 

y

x

a b c

a

b

c
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a

b c

(b) Fuzzy graph 

Fig. 4.3. (cont’) 

Example 4.4 When a fuzzy relation is defined by the following fuzzy 

matrix, this corresponding fuzzy graph can be depicted in Fig 4.4. Note the 

thickness of edge represents strength of relation.  

 b1 b2 b3

a1 0.5 1.0 0.0

a2 0.0 0.0 0.5

a3 1.0 1.0 0.0

a1

a2

a3

b1

b2

b3

Fig. 4.4. Fuzzy graph 

If we make mapping function (A) represent the corresponding set of A,

we get the following fuzzy sets from this fuzzy relation. That is, we obtain 

new fuzzy set in the set B by the set A and fuzzy relation R.

{a1}  {(b1, 0.5), (b2, 1.0)} 

{a2}  {(b3, 0.5)} 

{a3}  {(b1, 1.0), (b2, 1.0)} 

{a1, a2}  {(b1, 0.5), (b2, 1.0), (b3, 0.5)}  

Example 4.5 Fig 4.5 might be thought to be a picture received by a cam- 

era. This picture is drawn on two dimensional coordinates. If we associate 
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Fig. 4.5. Fuzzy graph (picture) 

fuzzy relation R(x, y) with each coordinate's darkness, this figure can be 

equivalent to a fuzzy graph. Also Fig 4.6 is for two-dimensional coordinat-

es and we can also associate membership degree R(x, y) to the darkness of 

each point(x, y).

Fig. 4.6. Fuzzy graph ( by coordinates) 

Example 4.6 When  is the real number, let R  is defined as 

follows, for x , y ,

R(x, y) x2 + y2  1 

This relation is expressed by the ordinary figure in (Fig 4.7(a)). And if  

R(x, y) x2 + y2  1 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

-3 -2 -1 1 2 3

3

2

1

-1

-2

-3

0

y

x
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the relation is represented by the graph as Fig 4.7(b). The intensity of 

relation (x, y) is represented by darkness of color.  

(a) Graph R(x, y) x2 + y2  1 

(b) Graph R (x, y) x2 + y2  1 

Fig. 4.7. Fuzzy graph 

4.1.3 -cut of Fuzzy Graph  

In the previous chapter, we learned about the a-cut fuzzy relation . It is 

natural to extend this concept to the fuzzy graph.

Example 4.7 For example, for A  {a, b, c}, R  A  A is defined as 

follows.

 a b c 

a 1.0 0.8 0.4

b 0.0 0.4 0.0
MR

c 0.8 1.0 0.0

1

-1

1

1

y

x

1

-1

-1

1

x

y
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For level set {0, 0.4, 0.8, 1}, if we apply the -cut operation, we also get 

crisp relations and corresponding graphs in Fig 4.8.    

If we denote the graph from -cut as G , the following relation between 

 and G  holds. 

1 2 R
1

R
2

   G
1

G
2

 a b c 

a 1.0 0.8 0.4

b 0.0 0.4 0.0
MR

c 0.8 1.0 0.0

 a b c

a 1.0 1.0 1.0

b 0.0 1.0 0.0
MR.

0.4

c 1.0 1.0 0.0

 a b c 

a 1.0 1.0 0.0

b 0.0 0.0 0.0
MR

0.8

c 1.0 1.0 0.0

 a b c 

a 1.0 0.0 0.0

b 0.0 0.0 0.0
MR

1.0

c 0.0 1.0 0.0

   

Fig. 4.8. -cut of fuzzy graph 

Example 4.8 There is a relation defined as follows: 

R(x, y) = x/2 + y  1. 

Show graphical representations of R and its -cut relation R0.5 at =0.5

Figs 4.9 and 4.10 show R and R0.5 . The density of darkness represents the 

membership degrees 

b

a

c

b

a

c

b

a

c

b

a

c
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2
0

1

1

x

0.5

y

Fig. 4.9. Graphical form of R 

21

1

x0

0.5

y

Fig. 4.10. Graphical representation of R0.5

Example 4.9 Show the following set A and relation R. 

i) A(x) = x

ii) R(x,y) = x+y  1,   x  A,  0 y  1. 

The set A and R are shown in Figs 4.11, 4.12, respectively. 

Example 4.10 There is a set A  where  is the set of real numbers and 

x . A={ x | x close to 2k , k = -1,0, 1,2,….}. The membership function 

of the set A is formally defined as A(x) = Max[0, cosx]. 

i) Show the graphical representation of A (Fig 4.13). 

ii) Show the -cut set of A at =0.5 (Fig 4.14). 

iii) Show the relation defined as follows:  
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1

A(x)

x0

1

Fig. 4.11. Set A(x)= x 

1

y

x0

1

Fig. 4.12. Relation A(x,y)= x+y  1 , x A.

iv) Show the relation defined as follows:  

R={(x,y) | y=cos x  0,  x  A} (Fig 4.15). 

v) Show the -cut relation of R at =0.5 (Fig 4.16). 

vi) Show the set defined by B(y)= cosx, x  A. This set B is a set ind 

 uced by R and A. (Fig 4.17). 

vii) Show the relation defined as follows: R(x,y)=Max[0, sinx] , x  A 

 (Fig 4.18). 

The solutions are given in Figs 4.13 – 4.18. In the figures, the membership 

degrees are represented by the density of darkness. 
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x

A(x)

0
3 232 2

3

3

5

3

7

2

52

1

0 3 232 2

3

3

5

3

7
2

52

)(
5.0

xA

0
3

232 2

3

3

5

3

7

2

52

Fig. 4.13. Set  A(x)=cosx 0

Fig. 4.14. -cut set A0.5

Fig. 4.15. Relation R(x,y)=cosx.

x

y

x



§4.1 Fuzzy Graph                                                        101 

0
3

232 2

3

3

5

3

7

2

52
x

0 3
232

2

3

3

5

3

7

2

52

Fig. 4.16. -cut relation R0.5

B(x) 

1 x0

1

Fig. 4.17. B(y)=cos x, x  A. 

Fig. 4.18. R (x,y)=max[0, sinx]

0 5

y

x

1

y
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4.1.4 Fuzzy Network 

Generally the connected directed graph is named as network. This network 

may well be fuzzified just as the fuzzy graph did. It can be done by giving 

fuzzy restriction to edges and nodes (Fig. 4.19).

Definition (Path with fuzzy edge) Let V be a crisp set of nodes and R be a 

relation defined on the set V. Denote the path from node xi
1
to xir by Ci.

Ci  (xi
1
, xi

2
, ... , xir), xik V, k  1, 2, ... , r

where

(xik, xik 1
), R(xik, xik 1

)  0, k  1, 2, ... , r-1

We define fuzzy value l for path Ci with  

l(xi
1
, xi

2
, ... , xir) R(xi

1
, xi

2
) R(xi

2
, xi

3
)  ... R(xir-1

 , xir)

This value is for the minimum possibility of connecting from xi
1
 to xir.

If there lie several paths from xi
1
 to xir, then possible set of paths is  

C(xi, xj)  {c(xi, xj) | c(xi, xj)  (xi
1

xi, xi
2
, ... , xir xj)}

among the possible paths, value of maximum intensity path l* is gathered 

as,

l* (xi, xj) l (xi
1

xi, xi
2
, ... , xir xj)

                               C(x
i
, x

j
)

Definition (Path with fuzzy node and fuzzy edge) Consider fuzzy set V 
of nodes and that of edge R. Then the path Ci from xi

1
 to xir is,  

Ci  (xi
1
, xi

2
, ... , xir), xik V, k  1, 2, ... , r

where,

( xik, xik 1
), R(xik, xik 1

)  0, k  1, 2, ... , r-1

xik, V(xik)  0, k  1, 2, ... , r
Value of this path is  

l(xi
1
, xi

2
, ... , xir) R(xi

1
, xi

2
) R(xi

2
, xi

3
)  ... R(xir 1

, xir) V(xi
1
) V(xi

2
)

 ... V(xir)

If there are more than one paths form xi
1
to xi

r
, we can get the set of paths 

and the maximum intensity path on the same way.  
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4.2 Characteristics of Fuzzy Relation 

In the previous chapter, we have seen reflexive, symmetric and transitive 

relations. Our main goal is to develop such features for the fuzzy relation. 

We assume that fuzzy relation R is defined on A A.

4.2.1 Reflexive Relation 

For all x A, if R(x, x)  1, we call this relation reflexive. 

Example 4.8 For instance, for set A  {2, 3, 4, 5} there is a relation such 

that : 

For x, y A, “x is close to y”

Concerning this relation, when x y, the relation is perfectly satisfied 

and thus R(x, x)  1. Let’s denote this reflexive one in a matrix as in the 

following.

(a) Fuzzy network (edge) 

(b) Fuzzy network (node, edge) 

Fig. 4.19. Fuzzy network 

ba c

d

0.4

0.5

0.5 0.7

(b, 0.5)(a, 0.8) (c, 0.5)

(d, 0.9)

0.4

0.5

0.5 0.7
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If x A, R(x, y) 1, then the relation is called “ irreflexive ”  

and if  x A, R(x, y) 1, then it is called “ antireflexive ”. 

A

A
2 3 4 5 

2 1.0 0.9 0.8 0.7

3 0.9 1.0 0.9 0.8

4 0.8 0.9 1.0 0.9

5 0.7 0.8 0.9 1.0

4.2.2 Symmetric Relation 

When fuzzy relation R is defined on A A, it is called symmetric if it 

satisfies the following condition. 

(x, y) A A

R(x, y) R(y, x) = 

If we express this symmetric relation as a matrix, we get a symmetric 

matrix. So we easily see that our previous relation “x is close to y” is a 

symmetric relation. 

We say “ antisymmetric ” for the following case. 

(x, y) A A, x y

R(x, y) R(y, x) or R(x, y) R(y, x)  0 

We can also define the concept of “ asymmetric ” or  “ nonsymmetic ” 

as follows.  

(x, y) A A, x y

R(x, y) R(y, x)

“Perfect antisymmetry” can be thought to be the special case of antisymm- 

etry satisfying : 

 (x, y) A A, x y

R(x, y)  0 R(y, x)  0 

Example 4.9 This is an example of perfect antisymmetric relation. 
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A

A
a b c d 

a 0.0 0.8 0.4 0.6

b 0.0 0.3 0.0 0.6

c 0.0 0.3 1.0 0.2

d 0.0 0.0 0.0 0.8

4.2.3 Transitive Relation  

Transitive relation is defined as,  

(x, y), (y, x), (x, z)  A  A

R(x, z)  Max[Min( R(x, y), R(y, z))] 
                               y 

If we use the symbol  for Max and  for Min, the last condition 

becomes. 

R(x, z) [ R(x, y) R(y, z)] 
                                     y 

If the fuzzy relation R is represented by fuzzy matrix MR, we know that 

left side in the above formula corresponds to MR and right one to MR2. That 

is, the right side is identical to the composition of relation R itself. So the 

previous condition becomes,  

MR MR2 or R R2

Example 4.10 Let's have a look at the relation by fuzzy matrix MR and it’s 

MR2 obtained by Max-Min composition operation(Fig 4.20).  

 a b c 

a 0.2 1.0 0.4

b 0.0 0.6 0.3
MR

c 0.0 1.0 0.3

 a b c 

a 0.2 0.6 0.3

b 0.0 0.6 0.3

MR2

c 0.0 0.6 0.3
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Fig. 4.20. Fuzzy relation (transitive relation) 

To investigate whether this is a transitive relation or not, we have to 

check all elements in MR and MR2.

For example, 

for (a, a), we have R (a, a) R2(a, a)

for (a, b),  R (a, b) R2(a, b)

we see MR MR2 or R R2.  Therefore, this fuzzy relation R has the 

transitive characteristic. 

4.2.4 Transitive Closure  

As we have referred the expression of fuzzy relation by matrix MR, fuzzy 

matrix MR2 corresponding composition R2 shall be calculated by the multi- 

plication of  MR.

R2(x, z) MR MR Max[Min( R(x, y), R(y, z))]
                 y 

Transitive relation was referred to as R R2 and thus the relation 

between MR and MR2 holds 

MR MR2

then again, the relation R R3 may well be satisfied, and by the method of 

generalization we know 

R Rk k  1, 2, 3 ... 

from the property of closure, the transitive closure of R shall be, 

R  = R R2 R3

Generally, if we go on multiplying fuzzy matrices(i.e, composition of r- 

elation), the following equation is held.  

Rk = Rk+1 ,   k  n 

0.2
1

0.4
1 0.3

0.3

0.6

a

c

b
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where R A A and the cardinality of A is n.
so, R  is easily obtained 

R  = R R2 R3 Rk ,  k n

Example 4.11 There are R , R2 , R3 represented by matrices in the 

following.

 a b c 

a 0.2 1.0 0.4

b 0.0 0.6 0.3
MR

c 0.0 1.0 0.3

 a b c 

a 0.2 0.6 0.3

b 0.0 0.6 0.3
MR2

c 0.0 0.6 0.3

 a b c 

a 0.2 0.6 0.3

b 0.0 0.6 0.3
MR3

c 0.0 0.6 0.3

Here MR MR2 so R R2 and transitive relation is verified. Since MR2

MR3, we know MR2 MR3 Therefore, the transitive closure shall be, 

R R  R2 or MR MR + MR2. Note that the sum operation  “+” 

implies Max operator introduced in (sec 3.3.3). 

 a b c  a b c 

a 0.2 1.0 0.4 a 0.2 0.6 0.3

b 0.0 0.6 0.3 b 0.0 0.6 0.3

c 0.0 1.0 0.3 c 0.0 0.6 0.3

 a b c 

a 0.2 1.0 0.4

b 0.0 0.6 0.3
=

c 0.0 1.0 0.3

RM
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4.3 Classification of Fuzzy Relation 

We gcneralize here the concepts of equivalence, compatibility, pre-order 

and order relations of crisp relations to those of fuzzy relations.  We 

assume relation R is defined on A  A.

4.3.1 Fuzzy Equivalence Relation 

Definition (Fuzzy equivalence relation) If a fuzzy relation R  A  A 
satisfies the following conditions, we call it a “fuzzy equivalence relation” 

or “similarity relation.” 

i)  Reflexive relation 

x  A R(x, x)  1 

ii)  Symmetric relation 

 (x, y)  A A, R(x, y) R(y, x)

iii) Transitive relation 

 (x, y), (y, z), (x, z)  A A
R(x, z)  Max[Min[ R(x, y), R(y, z)]]  

y

Example 4.12 Let’s consider a fuzzy relation expressed in the following 

matrix. Since this relation is reflexive, symmetric and transitive, we see 

that it is a fuzzy equivalence relation (Fig 4.21).  

 a b c d 

a 1.0 0.8 0.7 1.0

b 0.8 1.0 0.7 0.8

c 0.7 0.7 1.0 0.7

d 1.0 0.8 0.7 1.0

Fig. 4.21. Graph of fuzzy equivalence relation. 

10.8

1

a

c

bd1

1

0.81

0.7

0.70.7
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Using this similarity relation, we can perform the following three 

applications.

(1) Partition of sets  

Just like crisp set A is done partition into subsets A1, A2, .... by the 

equivalence relation, fuzzy set A also can be performed partition.  

Example 4.13 (Fig 4.22) shows a partition of A by the given relation R. At 

this point, fuzzy equivalence relation holds in class A1 and A2, but not 

between A1 and A2.

 a b c d e 

a 1.0 0.5 1.0 0.0 0.0

b 0.5 1.0 0.5 0.0 0.0

c 1.0 0.5 1.0 0.0 0.0

d 0.0 0.0 0.0 1.0 0.5

e 0.0 0.0 0.0 0.5 1.0

a

bc ed

A1
A2

A

Fig. 4.22. Partition by fuzzy equivalence relation 

(2) Partition by -cut

If -cut is done on a fuzzy relation, we get crisp relations. By performing 

-cut on fuzzy equivalence relation, we get crisp equivalence relations and 

thus the set A can be partitioned. For instance, if a partition is done on set

A into subsets A1, A2, A3, .... , the similarity among elements in Ai is no less 

than  . The -cut equivalence relation R is defined by  

R(x, y) = 1 if  R(x, y) , x, y Ai
= 0 otherwise 

If we apply -cut according to 1 in level set { 1, 2, ... }, the partition 

by this procedure is denoted by (R
1
) or  (A/R

1
). In the same manner, 

we get (R
2
) by the procedure of 2-cut.  Then, we know 
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if 1 2, R 1  R 2 and we can say that (R
1
) is more refined than 

(R
2
).

Example 4.13 Partition tree shows the multiple partitions by  (Fig 4.23).  

For instance, if we apply  0.5, similarity classes are obtained as {a,

b}, {d}, {c, e, f} whose elements have degrees no less than 0.5.  

(A/R0.5)  {{a, b}, {d}, {c, e, f}}

 a b c d e f 

a 1.0 0.8 0.0 0.4 0.0 0.0

b 0.8 1.0 0.0 0.4 0.0 0.0

c 0.0 0.0 1.0 0.0 1.0 0.5

d 0.4 0.4 0.0 1.0 0.0 0.0

e 0.0 0.0 1.0 0.0 1.0 0.5

f 0.0 0.0 0.5 0.0 0.5 1.0

Fig. 4.23. Partition tree 

(3) Set similar to element x
If similarity relation R is defined on set A, elements related to arbitrary 

member x  A can make up "set similar to x". Certainly this set shall be 

fuzzy one.  

Example 4.14 Let's have a look at the member d in the fuzzy similarity 

relation which is previously introduced. Elements making similarity relati- 

onn with d shall be a, b and d itself. If these members are expressed accor- 

ding to the degree of similarity with d, we can get a similarity class of d.

{(a, 0.4), (b, 0.4), (d, 1)} 

 0.0

 0.4

 0.5

 0.8

 1.0

a b c d e f

a b d c e f

da b

da b

dba

c e f

c e f

c e f
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In the same manner, marking the elements similar to element e as a fuz-

zy set, the similarity class yields. 

{(c, 1), (e, 1), (f, 0.5)}  

4.3.2 Fuzzy Compatibility Relation 

Definition (Fuzzy compatibility relation) If fuzzy relation R in set A 
satisfies the following conditions, we call it "fuzzy compatibility relation" 

or "resemblance relation".  

i) Reflexive relation 

x A R(x, x)  1 

ii) Symmetric relation 

 (x, y) A A
R(x, y) R(y, x)

If fuzzy compatibility relation is given on set A, a partition can be 

processed into several subsets. Subsets from this partition are called the 

"fuzzy compatibility classes" and if we apply -cut to the fuzzy 

compatibility relation, we get -cut crisp compatibility relation R . A 

compatibility class Ai in this relation is defined by, 

1),( yxR   if  R(x, y) x, y Ai

  = 0  otherwise 

the collection of all compatibility classes from a -cut is called complete 

-cover. Note the differences of the cover and partition.  

Example 4.15 (Fig 4.24.) is a description of covers made by -cut and 

expression by undirected graph. Here by the help of  0.7 cut, we get 

compatibility class {a, b}, {c, d, e}, {d, e, f} and these compatibility 

classes cover the set A. Note that elements d and e are far from partition 

since they appear in dual subsets. The sequence of such compatibility 

classes constructs a compatibility covering tree as shown in (Fig 4.25) 

 a b c d e f 

a 1.0 0.8 0.0 0.0 0.0 0.0

b 0.8 1.0 0.0 0.0 0.0 0.0

c 0.0 0.0 1.0 1.0 0.8 0.0

d 0.0 0.0 1.0 1.0 0.8 0.7

e 0.0 0.0 0.8 0.8 1.0 0.7

f 0.0 0.0 0.0 0.7 0.7 1.0

Fig. 4.24. Compatibility relation graph 
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Fig. 4.24. (cont’) 

Fig. 4.25. Compatibility covering tree 

4.3.3 Fuzzy Pre-order Relation 

Definition (Fuzzy pre-order relation) Given fuzzy relation R in set A, if 

the followings are well kept for all x, y, z A, this relation is called pre-

order relation. 

i) Reflexive relation 

x A R(x, x)  1 

ii) Transitive relation 

 (x, y), (y, z), (x, z) A A
R(x, z)  Max[Min( R(x, y), R(y, z))]

                                y

a 0.8

0.8

0.70.8c

d

b

f

e
0.7

a b c d e f

a b c d e d e f

a b fc d e

fba c d e

0.0

0.7

0.8

1.0
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Also if certain relation is transitive but not reflexive, this relation is 

called "semi-pre-order" or "nonreflexive fuzzy pre-order".  

Example 4.16 Here goes a semi-pre-order relation. 

 a b c 

a 0.2 1.0 0.4

b 0.0 0.6 0.3

c 0.0 1.0 0.3

If the membership function follows the relation R(x, x)  0 for all x, we 

use the term "anti-reflexive fuzzy pre-order". 

Example 4.17 The following matrix shows an anti-reflexive fuzzy pre-

order relation. 

 a b c 

a 0.0 1.0 0.4

b 0.0 0.0 0.3

c 0.0 1.0 0.0

4.3.4 Fuzzy Order Relation 

Definition (Fuzzy order relation) If relation R satisfies the followings for 

all x, y, z A, it is called fuzzy order relation.  

i) Reflexive relation  

x A R(x, x )  1 

ii) Antisymmetric relation 

 (x, y) A A
R(x, y) R(y, x) or R(x, y) R(y, x)  0 

iii) Transitive relation 

 (x, y), (y, z), (x, z) A A
R(x, z)   Max[Min( R(x, y), R(y, z))]  

                                y 

Example 4.18 For example, the relation shown in (Fig 4.26.) is a fuzzy 

order relation. 

Definition (Corresponding crisp order) We can get a corresponding 

crisp relation R1 from given fuzzy order relation R by arranging the value 

of membership function as follows.  
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Fig. 4.26. Fuzzy order relation 

i) if R(x, y) R(y, x) then  1),(
1

yxR 0),(
1

xyR

ii) if R(x, y) R(y, x)then 
0),(),(

11
xyyx RR

Example 4.19 There is the corresponding crisp relation obtained from 

fuzzy order relation introduced in the previous example (Fig 4.27).  

 a b c d

a 1 1 0 0

b 0 1 0 0

c 1 1 1 1

d 0 0 0 1

Fig. 4.27. Crisp order relation obtained from fuzzy order relation 

If the corresponding order relation of a fuzzy order relation is total order 

or linear order, this fuzzy relation is named as "fuzzy total order", and if 

not, it is called "fuzzy partial order".  

When the second condition of the fuzzy order relation is transformed to 

"perfect antisymmetric", the fuzzy order relation becomes a perfect fuzzy 

order.

(2') Perfect antisymmetric 

 (x, y) A A, x y
R(x, y)  0 R(y, x)  0 

0.3

1

0.4

0.8
0.2

0.1

a

c

bd1 1

1

a

c

bd
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When the first condition (reflexivity) does not exist, the fuzzy order 

relation is called "fuzzy strict order". 

Definition (Dominating and dominated class) In the fuzzy order relation, 

if R (x, y)  0 holds, let us say that x dominates y and denote x y.  With 

this concept, two fuzzy sets are associated. 

i) The one is dominating class of element x. Dominating class R [x]

which dominates x is defined as,  

R
[x]

(y) R(y, x)

ii) The other is dominated class. Dominated class R [x] with elements 

dominated by x is defined as,  

R
[x]

(y) R(x, y)

Example 4.20 Let's consider the following relation in (Fig 4.28.) 

Dominating class of element a and b shall be,  

R [a]  {(a, 1.0), (b, 0.7), (d, 1.0)} 

R [b]  {(b, 1.0), (d, 0.9)} 

and dominated class by a is, 

R [a]  {(a, 1.0), (c, 0.5)} 

 a b c d 

a 1.0 0.0 0.5 0.0

b 0.7 1.0 0.7 0.0

c 0.0 0.0 1.0 0.0

d 1.0 0.9 1.0 1.0

Fig. 4.28. Example for dominating relation 

0.7

1

0.7

0.5 0.9

a

cb

d1

11

1

1
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If such fuzzy order relation is given, fuzzy upper bound of subset 'A =

{x, y} can be obtained by fuzzy intersection or Min operation of the 

dominating class.  

][
'

xAx
R

Example 4.21 If 'A = {a, b} in the above example, the fuzzy upper bound 

shall be. 

R [a] R [b] = {(a, 1.0), (b, 0.7), (d, 1.0)}  {(b, 1.0), (d, 0.9)}  {(b, 0.7), 

(d, 0.9)}  

In the fuzzy set describing the upper bound of {a, b}, since b is itself, d
may well be the only least upper bound.    

4.4 Other Fuzzy Relations 

4.4.1 Fuzzy Ordinal Relation  

Definition (Fuzzy ordinal relation) If fuzzy relation R is defined in A and

the following is appreciated for all x, y  A, its corresponding crisp order 

relation is defined as fuzzy ordinal relation. 

i) Reflexive relation  

x A R(x, x)  1 

ii) Antisymmetric relation 

 (x, y) A A
R(x, y) R(y, x) or R(x, y) R(y, x)  0 

iii) Let graph GR represent the corresponding crisp order relation 

obtained by arranging the membership as in sec 4.3.4.  

- if R(x, y) > R(y, x) then 1),( yx
RG

         0),( xy
RG

- if R(x, y) R(y, x) then 0),(),( xyyx
RR GG

then, such obtained graph GR does not bear any circuit.  

Example 4.22 In fuzzy relation R in (Fig 4.29.), we see that there exist c -

ircuits. From this relation, if we arrange the membership degrees by the a- 

bove procedure, the circuits were disappeared as shown in (Fig 4.30.)  
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 a b c d e 

a 1.0 0.9 0.0 0.0 0.8

b 0.4 1.0 0.5 1.0 0.3

c 0.9 0.8 1.0 0.0 0.0

d 0.0 0.0 0.0 1.0 0.0

e 0.2 0.0 0.0 0.0 1.0

Fig. 4.29. Fuzzy graph 

a b c d e

a 1 1 0 0 1

b 0 1 0 1 1

c 1 1 1 0 0

d 0 0 0 1 0

e 0 0 0 0 1

Fig. 4.30. Graph corresponding to fuzzy graph in (Fig 4.29.) 

c

e

ba

d

1

1

1

1

1

0.50.80.9

0.9

0.4

0.8 0.30.2 1

c

e

ba

d
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Example 4.23 Applying the ordinal function described in section 3.2.5 to 

the relation R in the previous example, we get an order like in (Fig 4.31.) 

f(d) f(e)  0 

f(b)  1 

f(a)  2 

f(c)  3  

Fig. 4.31. Ordinal function 

4.4.2 Dissimilitude Relation 

We have seen the three conditions for the similarity relation.  

(1)  Reflexive relation  

(2)  Symmetric relation 

(3)  Transitive relation(Max - Min transitivity)  

Especially, we write the transitivity as follows, for (x, y), (y, z), (x, z)

A  A  
R(x, z)  Max[Min[ R(x, y), R(y, z)]] 

                              y 

or

R(x, z) [ R(x, y) R(y, z)] 
                                      y 

Dissimilitude relation maintains the opposite position in the concept of 

similarity relation. As a result applying the complement relation      instead 

of relation R, we can think of the transitivity of   .  
R

R

a

de

b

c

1

2

3

0
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For any (x, y)  A A, since                                   , transitivity of R 
shall be, 

the right part of this relation can be transformed by                           ,  

consequently, 

so this property is called transitivity of Min - Max operation.  

Definition (Dissimilitude relation) We can define dissimilitude relation 

for fuzzy relation R  A A,

i)  Antiflexive relation 

x A R(x, x)  0 

ii)  Symmetric relation 

for  (x, y)  A A, R(x, y) = R(y, x)

iii) Min - Max transitive relation 

  for  (x, y), (y, z), (x, z)  A  A  R(x, z) [ R(x, y) R(y, z)]  
                                                      y 

Example 4.24 Let’s consider a relation R in the following.  

 a b c d 

a 0.0 0.2 0.3 0.0

b 0.2 0.0 0.3 0.2

c 0.3 0.3 0.0 0.3

d 0.0 0.2 0.3 0.0

In this relation R, we can easily see it is an antiflexive and symmetric 

relation. To understand the transitive relation of Min - Max operation, 

investigate the pair of (a, b).

First,  for (a, b)  0.2, we check paths with length 2 

(a, a) (a, b)  0.0  0.2  0.2 

(a, b) (b, b)  0.2  0.0  0.2 

(a, c) (c, b)  0.3  0.3  0.3 

(a, d) (d, b)  0.0  0.2  0.2 

)],(),([),(

))],(),((1[),(

zyyxzx

zyyxzx

RRyR

RR
y

R

)),(),((1)),(1()),((1 zyyxzyyx RRRR

),(1),( yxyx RR

))],(1()),(1[(),( zyyxzx RR
y

R

BABA
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the minimum of these values is 0.2, consequently (a, b)  0.2 for the pair 

(a, b), the Min-Max transitivity is maintained. In the same manner, we can 

see, for all pairs, this transitivity holds.  

4.4.3 Fuzzy Morphism 

Definition (Homomorphism) Given multiple crisp relations R  A  A 
and S  B B, homomorphism from (A, R) to (B, S) is for the function 

h : A B having the characteristics as, 

for x1, x2 A
(x1, x2) R  (h(x1), h(x2)) S

In other words, if two elements x1 and x2 are related by R, their images 

h(x1) and h(x2) are also related by S.

Definition (Strong homomorphism) Given two crisp relations R  A  A 
and S  B B, if the function h : A  B satisfies the followings, it is 

called strong homomorphism from (A, R) to (B, S).

i) For all x1, x2 A,

(x1, x2) R  (h(x1), h(x2)) S
ii) For all y1, y2 B,

if x1 h 1(y1), x2 h 1(y2)  then (y1, y2) S  (x1, x2) R
In other words, the inverse image (x1, x2) R of (y1, y2) S always 

stands for the homomorphism related by R. Here h, we see, is a many-to-

one mapping function.  

Definition (Fuzzy homomorphism) If the relations R  A  A and S  B 
 B are fuzzy relations, the above morphism is extended to a fuzzy 

homomorphism as follows. 

For all x1, x2  A and their images h(x1), h(x2) B,

R(x1, x2) S[h(x1), h(x2)]

in other words, the strength of the relation S for (h(x1), h(x2)) is stronger 

than or equal to the that of R for (x1, x2).

If a homomophism exists between fuzzy relations (A, R) and (B, S), the 

homomorphism h partitions A into subsets A1, A2, ... An because it is a 

many-to-one mapping 

xi Aj  ,  i = 1, 2, … n         h(xi) = y B

so to speak, image h(xi) of elements xi in Aj is identical to element y in B.

In this manner, every element in A shall be mapped to one of B. If the 
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strength between Aj and Ak gets the maximum strength between xj Aj,

and xk Ak, this morphism is replaced with fuzzy strong homomorphism.  

Definition (Fuzzy strong homomorphism) Given the fuzzy relations R 
and S, if h satisfies the followings, h is a fuzzy strong homomorphism.  

For all xj Aj, xk Ak, Aj, Ak A
y1=h(xj), y2= h(xk)

 y1, y2 B, (y1, y2) S,

        Max R(xj, xk) = S(y1, y2)
                                  x

j
, x

k

4.4.4 Examples of Fuzzy Morphism 

Example 4.25 Consider the relations R  A A and S B  B in the 

following

R a b c d      

a 0.0 0.6 0.0 0.0  S

b 0.0 0.0 0.8 0.0  0.6 0.8 0.0 

c 1.0 0.0 0.0 0.0  1.0 0.0 0.6 

d 0.0 0.6 0.0 0.0  0.6 0.0 0.0 

we apply the mapping function h from A to B as follows.  

h : a, b
            c

        d    

Here all (x1, x2)  R of A has the relation (h(x1), h(x2)) S in B.

Furthermore R(x1, x2) S(h(x1), h(x2)) holds. For example, h(c) =  , h(d)

=  , R (c, d) = 0 S (  , ) = 0.6 

As a consequence, this morphism is a fuzzy homomorphism (Fig 4.32). 

We know S(  , )  0.6, but we are not able to find its corresponding pair 

in R. Therefore it is not a fuzzy strong homomorphism.      

Example 4.26 We have two relations R  A A and S B  B. 

R a b c d e      

a 0.5 0.5 0.0 0.0 0.0  S 

b 1.0 0.0 0.5 0.0 0.0  0.5 0.5 0.0 

c 0.0 0.0 0.0 1.0 0.5  1.0 0.5 1.0 

d 0.0 0.0 0.9 0.0 0.0  0.0 0.9 1.0 

e 0.0 0.0 0.0 1.0 0.0      
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a

d

c

b

1

0.6

0.8
0.6

1

0.6

0.8

0.6

0.6

h : A B

Fig. 4.32. Fuzzy homomorphism 

1

0.5

0.5

h : A B

a

d

c

b

1 0.5

0.5

0.9

e

0.51

1

0.5

1

0.9

0.5

1

R A A S B B

Fig. 4.33. Fuzzy strong homomorphism 

We have also a function from A to B as follows. 

 h : a      
b, c

       d, e
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Here for all (x1, x2)  R, (h(x1), h(x2)) S in B and inversely, for all (y1,

y2) S, (h 1(y1), h 1(y2))  R in A. Thus h completes the conditions for 

fuzzy homomorphism. Now, let’s consider the conditions for the fuzzy 

strong homomorphism. 

For example, (  , ) S, S(  , ) = 1,  

h 1( ) = {b, c}, h 1 ( ) = {d, e}

Max [ R (c, d), R (c, e)] = Max [ 1, 0.5] = 1 = S (  , )

in the same manner,we can verify for other pairs and then we see  the 

morphism h is a fuzzy strong homomorphism (Fig 4.33).    
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[SUMMARY]

Fuzzy graph  

G  (V, E)

V : set of elements, nodes or vertices. 

E : set of pairs of nodes.  

A fuzzy graph represents a fuzzy relation 

-cut of a fuzzy relation  

1 2 R
1

R
2

G
1

G
2

Characteristics of a fuzzy relation 

Assume R is a fuzzy relation defined on A,

Reflexive relation 

if, for all x A, R(x, x)  1, then R is said to be reflexive.

Symmetric relation 

if  (x, y) A A, R(x, y) R(y, x) ,

then R is said to be symmetric.

if  (x, y) A A with x  y, R(x, y) R(y, x)

   or  R(x, y) R(y, x)  0, 

then R is said to be antisymmetric

if  (x, y) A A with x  y, such that R(x, y) R(y, x),

then R is said to be asymmetric.

if  (x, y) A A with x  y, R(x, y)  0 R(y, x)  0,  

then R is said to be perfectly antisymmetric.

Transitive relation 

if  (x, y), (y, z), (x, z) A A R(x, z) Max[Min( R(x, y)

R(y, z))]               y

then R is said to be transitive.

Fuzzy equivalence relation, similarity relation 

Reflexive relation 

Symmetric relation 
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Transitive relation 

Partition, similarity class 

Fuzzy compatibility relation 

Reflexive relation 

Symmetric relation 

Fuzzy compatibility class 

Fuzzy pre-order relation 

Reflexive relation 

Transitive relation 

Fuzzy order relation 

Reflexive relation 

Symmetric relation 

Transitive relation 

Total order, partial order 

Fuzzy strict order, perfect fuzzy order 

Dominating class, dominated class 

Fuzzy ordinal relation 

Reflexive relation 

Antisymmetric relation 

Dissimilitude relation 

Reflexive relation 

Symmetric relation 

Transitive relation (Max-Min transitivity) 

Fuzzy homomorphism : h
R(x1, x2) S[h(x1), h(x2)]

x1, x2 A
h(x1), h(x2) B

Fuzzy strong homomorphism : h
x1, x2 A, y1 h(x1), y2 h(x2)

y1, y2 B, (y1, y2) S
 Max R(x1, x2) S(y1, y2)
 x

1
, x

2
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[EXERCISES]

4.1 There is a fuzzy relation R  {(x, y) | y  x2, x , y }. The 

symbol  means “close to”. Show the graphical representation of this 

relation.

4.2 Let R be a fuzzy relation defined on 2, where x + and y +,

R(x, y)  1 - | x- y |  if  0  | x- y |  1 

 0   otherwise 

Show the fuzzy graph representing the relation. 

4.3 Consider two fuzzy relations R and S defined on 2 such that, for x, y
,

R represents “| y – x | close to ”

S represents “| y – x | close to ”

Show the graphical form of R and S.

4.4 Show the graphical representations of the following relations. 

a) R(x, y)  e-(x-y)2

, x, y
b) R(x, y)  e-k(x-y)2

, k  1,  x, y

4.5 Consider two fuzzy sets A and B defined in the real numbers.  

A = {x | x is close to 2 }

B( y)  cos x, x A

Show the graphical representations of A and B. 

4.6 Show the graphical representation of the relation R
R(x, y)  1 - (x2 y2)1/2  1  where x  and y .

4.7 Determine whether the following fuzzy relation is an equivalence 

relation.
 a b c d 

a 1.0 0.8 0.4 0.1

b 0.8 1.0 0.0 0.0

c 0.4 0.0 1.0 0.5

d 0.1 0.0 0.5 1.0
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4.8 Discuss the properties of the following morphism h.

h :a, b
  c    
 d, e

where A  {a, b, c, d, e},

 B  { , , },  

 R A A,

 S B B

R a b c d e      

a 1.0 0.0 0.0 1.0 0.1  S 

b 1.0 0.4 0.0 0.0 1.0  1.0 0.0 1.0 

c 0.4 0.0 0.0 0.9 0.0  0.4 0.0 0.9 

d 0.8 0.0 0.6 0.8 0.0  0.8 0.8 1.0 

e 0.0 0.6 0.8 0.4 1.0      

4.9 Consider a fuzzy relation R such that 

a) Show the graphical form of this relation 

b) Determine the -cut relation for  0.3 

c) Determine the sub-relation of R with R  0.5. 

4.10. Determine whether the following relations R  A  A is an 

equivalence relation and construct a partition tree of the set A = {a,

b, c, d, e}

a b c d e 

a 1.0 0.7 0 0.4 0 

b 0.7 1.0 0 0.4 0 

c 0 0 1.0 0 1.0

d 0.4 0.4 0 1.0 0 

e 0 0 1.0 0 1.0

4.11. Consider a perfect antisymmetric relation R. Determine the following 

statement is true or not :  R R-1

a) When R is a crisp relation 

221

1

yx
R



128                                               4. Fuzzy Graph and Relation 

b) When R is a fuzzy relation  

4.12. Show the following statement are true or not. 

a) When fuzzy relation R A A is Max-Min transitive, then  

R2 R
b) When fuzzy relation R A A is Min-Max transitive, then  

R R2

4.13 Consider a fuzzy relation R A A where A = {a, b, c}.

R a b c 

a 1.0 0.8 0.7

b 0.8 1.0 0.7

c 0.7 0.7 1.0

a) Show the relation is an equivalence relatio 

b) Determine the partition tree of the set A = {a, b, c} by using R

4.14 There is a set A where is the set of real numbers and x .
A = {x | x is close to (4k +1) /2, k= -2, -1, 0, 1, 2 }

a) Show the graphical representation of the set A. 

b) Show the graphical representation relation R defined as follows 

R(x, y) = sin x  where x  A , y 
c) Show the graphical representation of set B defined as follows 

B( y) = sin x  where x  A , y 



Chapter 5. FUZZY NUMBER 

This chapter describes fuzzy numbers. First of all, we’ll look into interval, 

the fundamental concept of fuzzy number, and then operation of fuzzy 

numbers. In addition, we’ll introduce special kind of fuzzy number such as 

triangular fuzzy number and trapezoidal fuzzy number. 

5.1 Concept of Fuzzy Number 

5.1.1 Interval  

When interval is defined on real number , this interval is said to be a 

subset of . For instance, if interval is denoted as A = [a1, a3] a1, a3 ,

a1 < a3, we may regard this as one kind of sets. Expressing the interval as 

membership function is shown in the following (Fig 5.1) : 

3

31

1

,0

,1

,0

)(

ax
axa

ax
xA

If a1 = a3, this interval indicates a point. That is,  [a1, a1] = a1

Fig. 5.1. Interval A = [a1, a3]

a1 a3

A(x)

x

1
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5.1.2 Fuzzy Number 

Fuzzy number is expressed as a fuzzy set defining a fuzzy interval in the 

real number . Since the boundary of this interval is ambiguous, the 

interval is also a fuzzy set. Generally a fuzzy interval is represented by two 

end points a1 and a3 and a peak point a2 as [a1, a2, a3 ] (Fig 5.2). The a-cut

operation can be also applied to the fuzzy number. If we denote a-cut

interval for fuzzy number A as A , the obtained interval A is defined as 

A  = [a1
( ), a3

( )]

We can also know that it is an ordinary crisp interval (Fig 5.3). We 

review here the definition of fuzzy number given in section 1.5.4.  

Definition (Fuzzy number) It is a fuzzy set the following conditions :  

convex fuzzy set 

normalized fuzzy set 

it’s membership function is piecewise continuous. 

It is defined in the real number.  

Fuzzy number should be normalized and convex. Here the condition of 

normalization implies that maximum membership value is 1. 

x , A(x) = 1 

The convex condition is that the line by -cut is continuous and -cut 

interval satisfies the following relation. 

A  = [a1
( ), a3

( )]

(  < )  (a1
( ) a1

( ), a3
( ) a3

( ))

Fig. 5.2. Fuzzy Number A = [a1, a2, a3]

a1 a3

A(x)

x

1

a2
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Fig. 5.3. -cut of fuzzy number ( ’ < )  (A A )

The convex condition may also be written as, 

(  < )  (A A )

5.1.3 Operation of Interval 

Operation of fuzzy number can be generalized from that of crisp interval. 

Let’s have a look at the operations of interval. 

a1, a3, b1, b3

A = [a1, a3], B = [b1, b3]

Assuming A and B as numbers expressed as interval, main operations of 

interval are 

(1) Addition

[a1, a3] (+) [b1, b3] = [a1 + b1, a3 + b3]

(2) Subtraction

[a1, a3] (–) [b1, b3] = [a1 – b3, a3 – b1]

(3) Multiplication

[a1, a3] ( ) [b1, b3] = [a1 b1 a1 b3 a3 b1 a3 b3, a1 b1 a1 b3

a3 b1 a3 b3]

(4) Division

[a1, a3] (/) [b1, b3] = [a1 / b1 a1 / b3 a3 / b1 a3 / b3, a1 / b1 a1 / b3

a3 / b1 a3 / b3]

excluding the case b1 = 0 or b3 = 0 

(5) Inverse interval

a1
(0)

A(x)

x

1

a1
( ) a1

( ) a3
( ) a3

( ) a3
(0)

A

A  = [a1
( ), a3

( )]

A  = [a1
( ), a3

( )]
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[a1, a3]
–1 = [1 / a1  1 / a3, 1 / a1  1 / a3]

excluding the case a1 = 0 or a3 = 0 

When previous sets A and B is defined in the positive real number +,

the operations of multiplication, division, and inverse interval are written 

as,

(3’)  Multiplication 

[a1, a3] ( ) [b1, b3] = [a1 b1, a3 b3]

(4’)  Division 

[a1, a3] (/) [b1, b3] = [a1 / b3, a3 / b1]

(5’)  Inverse Interval 

[a1, a3]
–1 = [1 / a3, 1 / a1]

(6) Minimum 

[a1, a3] ( ) [b1, b3] = [a1 b1, a3 b3]

(7) Maximum 

[a1, a3] ( ) [b1, b3] = [a1 b1, a3 b3]

Example 5.1 There are two intervals A and B,  

A = [3, 5], B = [–2, 7] 

then following operation might be set. 
]12,1[]75,23[)( BA

]7,4[])2(5,73[)( BA

]35,10[

])2(3,75)2(573)2(3[)( BA

]7/5,5.2[

])2/(3,7/5)2/(57/3)2/(3[(/)BA

7

1
,

2

1

7

1

)2(

1
,

7

1

)2(

1
]7,2[ 11B

5.2 Operation of Fuzzy Number 

5.2.1 Operation of -cut Interval 

We referred to -cut interval of fuzzy number A = [a1, a3] as crisp set 

A  = [a1
( ), a3

( )],  [0, 1], a1, a3, a1
( ), a3

( )

so A  is a crisp interval. As a result, the operations of interval reviewed in 

the previous section can be applied to the -cut interval A .

If -cut interval B of fuzzy number B is given 



§5.2 Operation of Fuzzy Number                                           133 

B = [b1, b3],  b1, b3,

B  = [b1
( ), b3

( )],  [0, 1], b1
( ), b3

( ) ,

operations between A  and B  can be described as follows : 

[a1
( ), a3

( )] (+) [b1
( ), b3

( )] = [a1
( ) + b1

( ), a3
( ) + b3

( )]

[a1
( ), a3

( )] (–) [b1
( ), b3

( )] = [a1
( ) – b3

( ), a3
( ) – b1

( )]

these operations can be also applicable to multiplication and division in the 

same manner. 

5.2.2 Operation of Fuzzy Number 

Previous operations of interval are also applicable to fuzzy number. Since 

outcome of fuzzy number (fuzzy set) is in the shape of fuzzy set, the result 

is expressed in membership function. 

x, y, z
(1) Addition: A (+) B

))()(()()( yxz BAyxzBA

(2) Subtraction: A (–) B
))()(()()( yxz BAyxzBA

(3) Multiplication: A ( ) B
))()(()()( yxz BAyxzBA

(4) Division: A (/) B
))()(()(

/
(/) yxz BAyxzBA

(5) Minimum: A ( ) B
))()(()()( yxz BAyxzBA

(6) Maximum: A ( ) B
))()(()()( yxz BAyxzBA

We can multiply a scalar value to the interval. For instance, multiplying 

a ,

a[b1, b3] = [a b1 a b3, a b1 a b3]

Example 5.2 There is a scalar multiplication to interval. Note the scalar 

value is negative. 

–4.15 [–3.55, 0.21] = [(–4.15)  (–3.55)  (–4.15)  0.21, (–4.15)  (–3.55) 

 (–4.15)  0.21] 

= [14.73  –0.87, 14.73  –0.87] 

= [–0.87, 14.73]  

We can also multiply scalar value to -cut interval of fuzzy number. 

 [0, 1], b1
( ), b3

( )

a[b1
( ), b3

( )] = [a b1
( )  a b3

( ), a b1
( )  a b3

( )]
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5.2.3 Examples of Fuzzy Number Operation 

Example 5.3 Addition A(+)B 

For further understanding of fuzzy number operation, let us consider two 

fuzzy sets A and B. Note that these fuzzy sets are defined on discrete 

numbers for simplicity. 

A = {(2, 1), (3, 0.5)}, B = {(3, 1), (4, 0.5)} 

First of all, our concern is addition between A and B. To induce A(+)B, for 

all x A, y B, z A(+)B, we check each case as follows(Fig 5.4) : 

i)  for z < 5, 

A(+)B(z) = 0 

ii) z = 5 

results from x + y = 2 + 3 

A(2) B(3) = 1  1 = 1 
1)1()5(

325
)( BA

iii) z = 6 

results from x + y = 3 + 3 or x + y = 2 + 4 

A(3) B(3) = 0.5  1 = 0.5 

A(2) B(4) = 1  0.5 = 0.5 
5.0)5.0,5.0()6(

426

336)( BA

iv) z = 7 

results from x + y = 3 + 4 

A(3) B(4) = 0.5  0.5 = 0.5 
5.0)5.0()7(

437
)( BA

v)  for z > 7 

A(+)B(z) = 0 

so A(+)B can be written as 

A(+)B = {(5, 1), (6, 0.5), (7, 0.5)}  

(a) Fuzzy set A

Fig. 5.4. Add operation of fuzzy set 

A(x)

1

3

0.5

2
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(b) Fuzzy number B

(c) Fuzzy set A (+) B

Fig. 5.4. (cont’) 

Example 5.5 Subtraction A( )B
Let’s manipulate A( )B between our previously defined fuzzy set A and B.

For x A, y B, z A( )B, fuzzy set A( )B is defined as follows (Fig5. 

5).

i) For z < 2,

A( )B(z) = 0 

ii) z = 2

results from x y = 2  4 

A(2) B(4) = 1  0.5 = 0.5 
5.0)2()( BA

iii) z = 1

results from x y = 2  3 or x y = 3  4 

B(x)

1

3

0.5

4

A (+) B(x)

1

6

0.5

5 7
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A(2) B(3) = 1  1 = 1 

A(3) B(4) = 0.5  0.5 = 0.5 
1)5.0,1()1(

431

321
)( BA

iv) z = 0 

results from x y = 3  3 

A(3) B(3) = 0.5  1 = 0.5 

A( )B(0) = 0.5 

v) For z  1 

A( )B(z) = 0 

so A( )B is expressed as 

A( )B = {(-2, 0.5), (-1, 1), (0, 0.5)}  

Fig. 5.5. Fuzzy number A ( ) B

Example 5.6 Max operation A( )B
Let’s deal with the operation Max A( )B between A and B
for x A, y B, z A( )B, fuzzy set A( )B is defined by A( )B (z).

i) z  2 

A( )B(z) = 0 

ii) z = 3 

from x y = 2  3 and x y = 3  3 

A(2) B(3) = 1  1 = 1 

A(3) B(3) = 0.5  1 = 0.5 
1)5.0,1()3(

333

323
)( BA

iii) z = 4 

from x y = 2  4 and x y = 3  4 

A(2) B(4) = 1  0.5 = 0.5

A ( ) B(x)

1

1

0.5

2 0
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A(3) B(4) = 0.5  0.5 = 0.5 
5.0)5.0,5.0()4(

434

424
)( BA

v) z > 5 

impossible A( )B(z) = 0 

so A( )B is defined to be 

A( )B = {(3, 1), (4, 0.5)}  

so far we have seen the results of operations are fuzzy sets, and thus we 

come to realize that the extension principle is applied to the operation of 

fuzzy number. 

5.3 Triangular Fuzzy Number 

5.3.1 Definition of Triangular Fuzzy Number 

Among the various shapes of fuzzy number, triangular fuzzy 

number(TFN) is the most popular one. 

Definition (Triangular fuzzy number) It is a fuzzy number represented 

with three points as follows :  

A = (a1, a2, a3)

this representation is interpreted as membership functions (Fig5.6). 

,0

,

,

,0

)(

3

32

23

3

21

12

1

1

)(

ax

axa
aa
xa

axa
aa
ax

ax

xA

Now if you get crisp interval by -cut operation, interval Aa shall be 

obtained as follows  [0, 1] 

from 

12

1

)(

1

aa
aa ,

23

)(

33

aa
aa
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Fig. 5.6. Triangular fuzzy number A = (a1, a2, a3)

we get 

a1
( ) = (a2 – a1)  + a1

a3
( ) = (a3 a2)  + a3

thus

A = [a1
( ), a3

( )]

= [(a2 a1)  + a1, (a3 a2)  + a3]

Example 5.7 In the case of the triangular fuzzy number A = ( 5, 1, 1) 

(Fig 5.7), the membership function value will be, 

1,0

11
,

2

1

15
,

4

5

5,0

)()(

x

xx

xx

x

xA

Fig. 5.7.  = 0.5 cut of triangular fuzzy number A = ( 5, 1, 1) 

a1 a3

A(x)

x

1

a2

6 5 4 3 2 1 0 1 2 

1

0.5

A0.5
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-cut interval from this fuzzy number is 

12
2

1

54
4

5

xx

xx

A  = [a1
( ), a3

( )] = [4  5, 2  + 1] 

if  = 0.5, substituting 0.5 for , we get A0.5

A0.5 = [a1
(0.5), a3

(0.5)] = [ 3, 0]  

5.3.2 Operation of Triangular Fuzzy Number 

Same important properties of operations on triangular fuzzy number are 

summarized 

(1) The results from addition or subtraction between triangular fuzzy 

numbers result also triangular fuzzy numbers. 

(2) The results from multiplication or division are not triangular fuzzy 

numbers. 

(3) Max or min operation does not give triangular fuzzy number. 

but we often assume that the operational results of multiplication or 

division to be TFNs as approximation values. 

1) Operation of triangular fuzzy number 

first, consider addition and subtraction. Here we need not use 

membership function. Suppose triangular fuzzy numbers A and B are 

defined as, 

A = (a1, a2, a3), B = (b1, b2, b3)

i) Addition 

),,(

),,)()(,,()(

332211

321321

bababa
bbbaaaBA   : triangular fuzzy number 

ii) Subtraction 

),,(

),,)()(,,()(

132231

321321

bababa
bbbaaaBA   : triangular fuzzy number 

iii) Symmetric image 

(A) = ( a3, a2, a1)  : triangular fuzzy number 

Example 5.8 Let’s consider operation of fuzzy number A, B(Fig 5.8). 

A = ( 3, 2, 4), B = ( 1, 0, 6) 

A (+) B = ( 4, 2, 10) 

A ( ) B = ( 9, 2, 5)  
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2) Operations with -cut

Example 5.9 -level intervals from -cut operation in the above two 

triangular fuzzy numbers A and B are 

(a) Triangular fuzzy number A, B

(b) A (+) B of triangular fuzzy numbers 

(c) A ( ) B triangular fuzzy numbers 

Fig. 5.8. A (+) B and A ( ) B of triangular fuzzy numbers 

3 1 0 2 4 

1

0.5

6

A

B

4 0 2 

1

0.5

10

A (+) B 

9 0 2 

1

0.5

5

A ( ) B 
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]66,1[

])(,)[(],[

]42,35[

])(,)[(],[

323112

)(

3

)(

1

323112

)(

3

)(

1

bbbbbbbbB

aaaaaaaaA

performing the addition of two -cut intervals A  and B ,

A  (+) B  = [6  4, 8  + 10] 

especially for  = 0 and  = 1, 

A0 (+) B0 = [ 4, 10] 

A1 (+) B1 = [2, 2] = 2 

three points from this procedure coincide with the three points of triangular 

fuzzy number (-4, 2, 10) from the result A(+)B given in the previous 

example. 

Likewise, after obtaining A ( )B , let’s think of the case when  = 0 

and  = 1 

A  ( ) B  = [11  9, 3  + 5] 

substituting  = 0 and  = 1 for this equation, 

A0 ( ) B0 = [ 9, 5] 

A1 ( ) B1 = [2, 2] = 2 

these also coincide with the three points of A( )B = ( 9, 2, 5).  

Consequently, we know that we can perform operations between fuzzy 

number using -cut interval. 

5.3.3 Operation of General Fuzzy Numbers 

Up to now, we have considered the simplified procedure of addition and 

subtraction using three points of triangular fuzzy number. However, fuzzy 

numbers may have general form, and thus we have to deal the operations 

with their membership functions.  

Example 5.10 Addition A ( ) B
Here we have two triangular fuzzy numbers and will calculate the addition 

operation using their membership functions 

A = ( 3, 2, 4), B = ( 1, 0, 6) 

4,0

42
,

24

4

23
,

32

3

3,0

)()(

x

xx

xx

x

xA
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6,0

60
,

06

6

01
,

10

1

1,0

)()(

y

yy

yy

y

yB

for the two fuzzy number x A and y B, z A ( ) B shall be obtained 

by their membership functions. 

Let’s think when z = 8. Addition to make z = 8 is possible for following 

cases :  

2 + 6, 3 + 5, 3.5 + 4.5, 

so

],25.0,6/1,0[

],25.025.0,6/15.0,01[

]),5.4()5.3(),5()3(),6()2([
8

)( BABABAyxBA

If we go on these kinds of operations for all z A ( ) B, we come to the 

following membership functions, and these are identical to the three point 

expression for triangular fuzzy number A = ( 4, 2, 10). 

10,0

102
,

8

10

24
,

6

4

4,0

)()(

z

zz

zz

z

zBA

There in no simple method using there point expression for 

multiplication or division operation. So it is necessary to use membership 

functions.

Example 5.11 Multiplication A ( ) B
Let triangular fuzzy numbers A and B be 

A = (1, 2, 4), B = (2, 4, 6) 

4,0

42
,2

2

1

21,1

1,0

)()(

x

xx

xx

x

xA
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6,0

64
,3

2

1

42
,1

2

1

2,0

)()(

y

yy

yy

y

yB

calculating multiplication A ( ) B of A and B, z = x y = 8 is possible when 

z = 2  4 or z = 4  2 

1

],00,11[

]),2()4(),4()2([
8

)( BABAyxBA

also when z = x y = 12, 3  4, 4  3, 2.5  4.8, … are possible. 

6.0

],6.0,0,5.0[

],6.075.0,5.00,15.0[

]),8.4()5.2(),3()4(),4()3([
12

)( BABABAyxBA

From this kind of method, if we come by membership function for all z
A ( ) B, we see fuzzy number as in Fig 5.9. However, since this shape is 

in curve, it is not a triangular fuzzy number. For convenience, we can 

express it as a triangular fuzzy number by approximating A ( ) B
)24,8,2()( BA

we can wee that two end points and one peak point are used in this 

approximation.  

Fig. 5.9. Multiplication A ( ) B of triangular fuzzy number 

0

A ( ) B 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 

0.5

1
A B 
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5.3.4 Approximation of Triangular Fuzzy Number 

Since it is possible to express approximated values of multiplication and 

division as triangular fuzzy numbers, we are now up to the fact that how to 

get this approximated value easily.  

Example 5.12 Approximation of multiplication 

First, -cuts of two fuzzy numbers are our main concern. 

A = (1, 2, 4), B=(2, 4, 6) 

]62,22[

]6)46(,2)24([

]42,1[

]4)24(,1)12([

B

A

For all  [0, 1], multiply A  with B  which are two crisp intervals. 

Now in  [0, 1], we see that elements of each interval are positive 

numbers. So multiplication operation of the two intervals is simple. 

]24204,242[

])62)(42(),22)(1([

]62,22)[](42,1[)(

22

BA

when  = 0, 
]24,2[)( 00 BA

when  = 1, 

A0( )B1 = [2+4+2, 4-20+24] = [8, 8] = 8 

we obtain a triangular fuzzy number which is an approximation of A ( ) B
(Fig 5.9). 

)24,8,2()( BA

Example 5.13 Approximation of division 

In the similar way, let’s express approximated value of A ( ) B in a 

triangular fuzzy number. First, divide interval A  by B . We reconsider the 

sets A and B in the previous example. For  [0, 1], since element in each 

interval has positive number, we get A  ( ) B  as follows. 
])22/()62(),62/()1([(/)BA

when  = 0, 

]2,17.0[

]2/4,6/1[(/) 00 BA

when  = 1, 

5.0

]4/2,4/2[

])22/()42(),62/()11([(/) 11 BA

so the approximated value of A ( ) B will be 

)2,5.0,17.0((/)BA
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5.4 Other Types of Fuzzy Number 

5.4.1 Trapezoidal Fuzzy Number 

Another shape of fuzzy number is trapezoidal fuzzy number. This shape is 

originated from the fact that there are several points whose membership 

degree is maximum (  = 1).  

Definition (Trapezoidal fuzzy number) We can define trapezoidal fuzzy 

number A as 

A = (a1, a2, a3, a4)

the membership function of this fuzzy number will be interpreted as 

follows(Fig 5.10). 

4
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1
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Fig. 5.10. Trapezoidal fuzzy number A = (a1, a2, a3, a4)

-cut interval for this shape is written below. 

 [0, 1] 

A  = [(a2 – a1)  + a1,  –(a4 – a3)  + a4]

when a2 = a3, the trapezoidal fuzzy number coincides with triangular one. 

a1 a4

A(x)

x

1

a2 a3
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5.4.2 Operations of Trapezoidal Fuzzy Number 

Let’s talk about the operations of trapezoidal fuzzy number as in the 

triangular fuzzy number, 

(1) Addition and subtraction between fuzzy numbers become trapezoidal 

fuzzy number. 

(2) Multiplication, division, and inverse need not be trapezoidal fuzzy 

number. 

(3) Max and Min of fuzzy number is not always in the form of 

trapezoidal fuzzy number. 

But in many cases, the operation results from multiplication or division 

are approximated trapezoidal shape. As in triangular fuzzy number, 

addition and subtraction are simply defined, and multiplication and 

division operations should be done by using membership functions. 

(1) Addition

),,,(

),,,)()(,,,()(

44332211

43214321

babababa
bbbbaaaaBA

(2) Subtraction
),,,()( 14233241 babababaBA

Example 5.14  Multiplication 

Multiply two trapezoidal fuzzy numbers as following: 

A = (1, 5, 6, 9) 

B = (2, 3, 5, 8) 

For exact value of the calculation, the membership functions shall be 

used and the result is described in (Fig. 5.11) For the approximation of 

operation results, we use -cut interval 

A  = [4  + 1, –3  + 9] 

B  = [  + 2, –3  + 8] 

since, for all  [0, 1], each element for each interval is positive, 

multiplication between -cut intervals will be 

]72519,294[

])83)(93(),2)(14([)(
22

BA

if  = 0, 
]72,2[)( 00 BA

if  = 1, 

]30,15[

]72519,294[)( 11 BA

so using four points in  = 0 and  = 1, we can visualize the approximated 

value as trapezoidal fuzzy number as (Fig. 5.11) 
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]72,30,15,2[)( BA

Fig. 5.11. Multiplication of trapezoidal fuzzy number A ( ) B

Generalizing trapezoidal fuzzy number, we can get flat fuzzy number. In 

other words, flat fuzzy number is for fuzzy number A satisfying following 

m1, m2 , m1 < m2

A(x) = 1, m1 x m2

In this case, not like trapezoidal form, membership function in x < m1

and x < m2 need not be a line as shown in (Fig 5.12.) 

5.4.3 Bell Shape Fuzzy Number 

Bell shape fuzzy number is often used in practical applications and its 

function is defined as follows(Fig 5.13) 

Fig. 5.12. Flat fuzzy number 
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where f  is the mean of the function, f  is the standard deviation.

`

Fig. 5.13. Bell shape fuzzy number 
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[SUMMARY]

Interval and Fuzzy number 

Interval is a crisp set of continuous numbers  

Fuzzy number is an interval whose boundary is ambiguous 

Operations of interval and fuzzy number 

Operation of interval  

-cut of fuzzy number becomes an interval 

Operation of fuzzy number 

By using -cut

By using membership function  

Triangular fuzzy number 

Three point expression  (a1, a2, a3)

-cut of triangular fuzzy number [(a2 – a1)  + a1, (a3 – a2)  + a3]

Operation of triangular fuzzy number 

Addition and subtraction between triangular fuzzy numbers result 

triangular numbers. 

Multiplication and division do not give triangular number. 

Approximation of multiplication 

Trapezoidal fuzzy number 

Four point expression (a1, a2, a3, a4)

-cut of trapezoidal fuzzy number 

Operation of trapezoidal number 

Approximation of multiplication 

Bell shape fuzzy number 

Bell shape membership function  

2

2

2

)(
exp)(

f

f
f

mx
x

fm  : mean of the function 

f  : standard deviation 
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[EXERCISES]

5.1 Calculate the following operations of intervals 

a) [5, 8] ( ) [-1, 3] 

b) [5, 9] (-) [5, 10] 

c) [6, 10] ( )[-1, 5] 

d) [3, 7] ( ) [-3, -1] 

e) [5, 8] –1

5.2 Calculate the operations of fuzzy sets A={(5, 0.5), (6, 1.0)}, B ={(2, 

1.0), (3, 0.4), (4, 0.8)} 

a) A ( ) B 

b) A ( ) B 

c) A ( ) B 

d) A ( ) B 

e) A( ) B 

5.3 Calculate -cut interval of triangular fuzzy number  

A = (-4, 2, 5) 

5.4 Calculate the following operations of triangular fuzzy sets by using -

cut operation 

   A = (1, 3, 8), B (2, 4, 5) 

a) A ( ) B 

b) A ( ) B 

c) A ( ) B 

d) A( ) B 

e) A-1

f) A ( ) B 

g) A ( ) B 

5.5 Show -cut of trapezoidal fuzzy number A = (-4, -1, 2, 5) 

5.6 Calculate the operations of trapezoidal fuzzy number by using -cut

operation

a) A ( ) B 

b) A ( ) B 

c) A ( ) B 

d) A( ) B 
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e) A-1

f) A ( ) B 

g) A ( ) B 



Chapter 6. FUZZY FUNCTION 

We introduce the concept of fuzzy function. Fuzzy functions consist of 

crisp function with fuzzy constraint and fuzzifying function. Maximizing 

set and minimizing set are also introduced and applied to find the 

maximum value with fuzzy domain of crisp function. In the later part, 

fuzzy integration and differentiation are discussed with examples. 

6.1 Kinds of Fuzzy Function 

Fuzzy function can be classified into following three groups according to 

which aspect of the crisp function the fuzzy concept was applied. 

(1) Crisp function with fuzzy constraint. 

(2) Crisp function which propagates the fuzziness of independent 

variable to dependent variable. 

(3) Function that is itself fuzzy. This fuzzifying function blurs the image 

of a crisp independent variable. 

6.1.1 Function with Fuzzy Constraint 

Definition (Function with fuzzy constraint) Let X and Y be crisp sets, 

and f  be a crisp function. A and B are fuzzy sets defined on universal 

sets X and Y respectively. Then the function satisfying the condition 

A(x) B(f(x)) is called a function with constraints on fuzzy domain A and 

fuzzy range B.

f : X Y.      

Example 6.1 There is a function    y = f(x)

Assume that the function f has fuzzy constraint like this, 

“If x is a member of A, then y is a member in B”

“The membership degree A(x) of x for A is less than that B(y) of y for B”

or

“ A(x) B(y)”.

The previous fuzzy constraints denote the sufficient fuzzy condition for 

y to be a member of B.
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“If membership degree of x for A is , then that of y for B would be no less 

than ”

Example 6.2 Consider two fuzzy sets, 

A = {(1, 0.5), (2, 0.8)},  B = {(2, 0.7), (4, 0.9)} 

and a function  

y = f(x) =2x,  for  x A,  y 
We see the function f satisfies the condition, A(x) B(y).      

Example 6.3 We shall investigate a function with the following statement. 

“ A competent salesman gets higher income” 

Let X and Y be sets of salesmen and of monthly income [0, ]

respectively. And A and B are fuzzy sets of “competent salesmen” and 

“high income”. In this case, the functions  f
f : A B

satisfies the following for all x  A and y= f(x)
A(x) B(f(x)).

Consider a function satisfying fuzzy constraint  f : A B, g : B C
(A, B and C denote fuzzy sets defined on X, Y and Z). The composition of 

these two functions yields fuzzy function with fuzzy constraint. 

g f : A C.
That is due to the conditions A(x) B(f(x)), B(y) C(g(y)) and y = 

f(x), z=g(y). The following holds.  

A(x) C(g(f(x)).

6.1.2 Propagation of Fuzziness by Crisp Function 

Definition (Fuzzy extension function) Fuzzy extension function propaga- 

tetes the ambiguity of independent variables to dependent variables.  

when f is a crisp function from X to Y, the fuzzy extension function f
defines the image )

~
(Xf  of fuzzy set X~ . That is, the extension principle 

is applied(see section 3.4). 

)(,0

)(),(max
)(

1

1
~

)(
)~(

1

yfif

yfifx
y x

yfxxf

where, )(1 yf is inverse image of y.
In this section, we use the sign ~ for the emphasis of fuzzy variable.  

Example 6.4 There is a crisp function, 
1~3)( xxf

where its domain is A = {(0, 0.9), (1, 0.8), (2, 0.7), (3, 0.6), (4, 0.5)} 

and its range is B = [ 0, 20 ] 

The independent variables have ambiguity and the fuzziness is propaga- 

ted to the crisp set B. Then, we can obtain a fuzzy set B  in B
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B  = {(1,0.9), (4, 0.8), (7, 0.7), (10, 0.6), (13, 0.5)}.    

There are another examples of the fuzzy extension function. 
2~~~ xbxay
bxay ~cos~

6.1.3 Fuzzifying Function of Crisp Variable 

Fuzzifying function of crisp variable is a function which produces image 

of crisp domain in a fuzzy set. 

Definition (Single fuzzifying fuction) Fuzzifying function from X to Y is 

the mapping of X in fuzzy power set )(
~ YP .

)(
~

:
~ YPXf

That is to say, the fuzzifying function is a mapping from domain to 

fuzzy set of range. Fuzzifying function and the fuzzy relation coincides 

with each other in the mathematical manner. So to speak, fuzzifying 

function can be interpreted as fuzzy relation R defined as following: 
YXyx ),(

),()(
)(

~ yxy Rxf

Example 6.5 Consider two crisp sets A = {2, 3, 4} and B = {2, 3, 4, 6, 8, 9, 

12}

A fuzzifying function f~ maps the elemets in A to power set P~ (B) in 

the following manner. 

f~ (2) = B1,   f~ (3) = B2,   f~ (4) = B3

where P~ (B) = {B1, B2, B3}

B1 = {(2, 0.5), (4, 1), (6. 0.5)}  B2 = {(3. 0.5), (6,1), (9, 0.5),  B3 ={(4,

0.5), (8, 1), (12, 0.5)} 

If we look at the mapping in detail, we can see the relationship as shown 

in (Fig 6.1) 

The function f~  maps element 2 A to element 2 B1 with degree 0.5, 

to element 4  B1 with 0.1, and to element 6  B1 with 0.5. Now we apply 

a-cut operation to the fuzzifying function. 

f : 2  {2, 4, 6}  for   = 0.5 

f : 2  {4}      for   = 1.0 

In the same manner 

+f : 3  {3, 6, 9}  for   = 0.5 

f : 3  {6}      for   = 1.0 

again

f : 4  {4, 8, 12}  for   = 0.5 

    f : 4  {8}       for   = 1.0    
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2 3 4 6 8 9 12

0.5

1
B1

12:
~ Bf

2 3 4 6 8 9 12

0.5

1
B2

23:
~ Bf

2 3 4 6 8 9 12

0.5

1
B3

34:
~ Bf

Fig. 6.1. Fuzzifying function 

Definition (Fuzzy bunch of functions) Fuzzy bunch of crisp functions 

from X to Y is defined with fuzzy set of crisp function fi (i = 1, …, n) and it 

is denoted as 
},:|))(,{(

~
~ iYXffff iifi

)(xffi , Xx
This function produces fuzzy set as its outcome. 

Example 6.6 In the case of crisp sets f1, f2 and f3, the bunch will be,  

for example, 

X = {1, 2, 3} 

f~  = {(f1, 0.4), (f2, 0.7), (f3, 0.5)}

  f1(x) = x,  f2(x) = x2 , f3(x) = –x +1 

By  f1 ,              we get f~  = {(1, 0.4), (2, 0.4), (3, 0.4)} 

By  f2 ,               
2

~f  = {(1, 0.7), (4, 0.7), (9, 0.7)} 

By  f3 ,               
3

~f  = {(0, 0.5), (-1, 0.5), (-2, 0.5)} 

then, we can summarize the outputs as follows :  

)1(
~f  = {(1, 0.4), (1, 0.7), (0, 0.5)} = {(0, 0.5), (1, 0.7)} 

)2(
~f  = {(2, 0.4), (4, 0.7), (-1, 0.5)} = {(-1, 0.5), (2, 0.4), (4, 0.7)} 

)3(
~f  = {(3, 0.4), (9, 0.7), (-2, 0.5)} = {(-2, 0.5), (3, 0.4), (9, 0.7)} 
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We can see that the fuzzy function maps 2 to 2 with possibility 0.4 

through f1, to 4 with 0.7 through  f2  and to -1 with 0.5 through f3. This 

result is represented by the above 
2

~f (2).

Example 6.7 There is a fuzzy bunch of continuous functions (Fig 6.2). 

f~  = {( f1, 0.4), (f2, 0.7), (f3, 0.5)} 

X = [1, 2] 

f1(x) = x,  f2(x) = x2, f3(x) = x2+1

This fuzzy function maps 1.5 to 1.5 with possibility 0.4 through f1 , to 

2.25 with 0.7 through f2 , and to 3.25 with 0.5 through f3 .

that is f~ (1.5) = {(1.5, 0.4), (2.25, 0.7), (3.25, 0.5)}   

1 1.5 2

1

0

1.5

2

2.25

3

3.25

4

5

(f1, 0.4)

(f2, 0.7)

(f3, 0.5)

Fig. 6.2. Fuzzy bunch of function 
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6.2 Fuzzy Extrema of Function 

6.2.1 Maximizing and Minimizing Set 

Definition (Maximizing set) Let  f  be the function having real values in 

X and the highest and the lowest value of f  be sup(f) and inf(f)
respectively. At this time, the maximizing set M is defined as a fuzzy set. 

)inf()sup(

)inf()(
)(,

ff
fxfxXx M

That is, the maximizing set M is a fuzzy set and defined by the 

possibility of x to make the maximum value sup(f). The possibility of x to 

be in the range of M is defined from the relative normalized position in the 

interval [inf(f), sup(f)]. Here the interval [inf(f), sup(f)] denotes the 

possible range of f(x) to have some values. Minimizing set of f is defined 

as the maximizing set of –f.

Example 6.8 Let’s have a look at f(x) of (Fig 6.3.) The interval of values is 

as follows :             

[inf(f), sup(f)] = [10, 20], 1 x  10 

and when x = 5, f(x) = 15. Then the possibility of x = 5 to be in the 

maximizing set M is calculated as follows : 

M(5) = (15 – 10) / (20 – 10) = 5 / 10 = 0.5 

also if when x = 8, f(x) = 19, 

M(8) = (19 – 10) / (20 – 10) = 9 / 10 = 0.9 

M(x) denotes the possibility of x to make maximum value of f. Here, we 

might say that two independent variables  x = 5 and x = 8 make the maxi- 

mum value of f(x) =20 with the possibilities 0.5 and 0.9, respectively  

1 x  10 

10 f(x)  20 

Fig. 6.3. Example of maximizing set

1 5 8 10 

10

15

19

20

inf(f)

sup(f)



§6.2 Fuzzy Extrema of Function                                            159 

Example 6.9 Following example is to obtain the maximizing set M of f(x)

= sin x (0 x  2 ) (Fig. 6.4). 

2

1
sin

2

1
2

1sin

)1(1

)1(sin

)inf(sin)sup(sin

)inf(sinsin
)(

x

x

x
xx

xxxM

If x =  for example, f(x) = sin  = 0. The possibility for f(x) = 0 to be 

the maximum value of sin function is 1/2.    

6.2.2 Maximum Value of Crisp Function  

(1) Crisp Domain 

Assume x0 is the independent variable which makes function f be the 

maximum value in crisp domain D. We might utilize the maximizing set M
to find the value x0 .That is, x0 shall be the element that enables M(x) to be 

the maximum value. 

(a) f(x) = sinx

(b) Maximizing set M 

Fig. 6.4. Maximizing set of sin function 

f(x)

x

2

1

1

sin x 

M(x)

x2

1
M
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)(max)( 0 xx MDxM

M(x) is the membership function of maximizing set. At this time, 

maximum value of f will be f(x0). M(x0) can be written as in the following, 

denoting domain D as a crisp set. 

)](),(min[max

)(max)( 0

xx
xx

DMxx

MDxM

Note that domain D is replaced by universal set X in the above formula. 

We expressed the possibility of x to be in D as D(x).

Example 6.10 There is a function (F.g. 6.5) and its domain. 

f(x) = cos x, x D = [0, 2 ]

2

1
cos

2

1

)1(1

)1(cos

)inf(cos)sup(cos

)inf(coscos
)( xx

xx
xxxM

1)(xD  for 20 x ,

              = 0  otherwise 

Maximum value f(x0) is obtained at x0

where

)( 0xM  = )](),([ xxMinMax DM

=
20 x

Max ),(xM

       =  1  when  x0 =  0  and 2

Therefore, the maximum value  

f(x0)  =  1  is obtained when  x0 =  0  and 2

(2) Fuzzy Domain 

Now getting the maximum value f(x0) when domain is expressed in fuzzy 

set. To make f be the maximum value by x0, following two conditions 

should be met. 

1

2

M(x)

D(x)

0

Fig. 6.5. Maximum value with crisp domain 
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Set M(x) as maximum 

Set D(x) as maximum 

For arbitrary element x1 corresponding to the maximum f, it is necessary 

to satisfy the above two conditions on M(x) and D(x). The possibility of 

x1 to make the maxim value of f is determined by the minimum of M(x1)

and D(x1), that is,  

Min[ M(x1), D(x1)]. 

Therefore, the point x0 which enables the function f to be the maximum 

is defined as follows.  
)()](),([ 0xxxMinMax DMXx

At this time, the maximum value is f(x0). Here M(x) is membership 

function of maximizing set and D(x) is that of fuzzy domain(Fig 6.6). 

Comparing x0 with x1 in the figure, x1 enables f to be maximum rather than 

x0.

f(x1) > f(x0) or M(x1) > M(x0)

but since D(x1) is very much smaller than D(x0), f(x0) is selected as the 

maximum value. 

Example 6.11 There are a function and a fuzzy domain(Fig 6.7).
,2)( xxf Dx

2)( xxD  for 10 x
          = 0  otherwise 

We can get the maximizing function. 

1
12

12
)( xxxM

From the following equation, 

Fig. 6.6. Maximum value as scalar 

f(x0)

1

f(x)

MD

xx0 x1

f(x1)
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)( 0xf  Max Min )([ xM , )](xD

the point x0 is obtained when 

)()( xx DM  for 10 x
21 xx , 6.0x

Therefore, we have the maximum value 
4.1)( 0xf

 when 
6.00x

Example 6.12 We have a crisp function f and its fuzzy domain D. Let’s 

find the maximum value of f with D.

xxf cos)( , Dx

],1[)(
xMinxD

 for 20 x

       = 0           otherwise 

2

1
cos

2

1
)( xxM

In (Fig 6.8.) 

Max Min ),([ xM )](xD  is obtained when 20x
then 1)( 0xf

1)()( 00 xx DM

1

1

2

f(x)

f(x0)

x0

M(x)

D(x)

0

Fig. 6.7. Maximum value of example f(x) = -x+2 with fuzzy domain 
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1

2

D(x)M(x)

Fig. 6.8. Maximum value f(x) = cos(x) with fuzzy domain 

6.3 Integration and Differenciation of Fuzzy Function 

6.3.1 Integration 

In this section, we are up to the task of integration of fuzzifying function in 

non-fuzzy interval and that of such function in fuzzy interval. 

(1) Integration of fuzzifying function in crisp interval 

Definition (Integration of fuzzying function) In non-fuzzy interval [a, b]

, let the fuzzifying function have fuzzy value )(
~ xf  for x  [a, b]. 

Integration ),(
~ baI  of the fuzzifying function in [a, b] is defined as 

follows:

]}1,0[|),)()({(),(
~

b

a

b

a

dxxfdxxfbaI

Here f  and f  are -cut functions of )(
~ xf . Note that the plus 

sign(+) in the above formula is to express enumeration in fuzzy set but not 

addition. Therefore, the total integration is obtained by aggregating 

integrations of each -cut function. 

If we apply the a-cut operation to the fuzzifying function, we can get 

f  or f  which are -cut functions. We can calculate the integration of 

each function :  
b

a
a dxxfI )(

~
 and 

b

a
a dxxfI .)(

~
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Now we can say that the possibility of aI~  or aI~  to be a member of 

total integration ),(
~ baI  is . Recall the principle in calculating the fuzzy 

cardinality in sec 1.5.5. 

Example 6.13 There is a fuzzy bunch of functions and we want to get 

integration in [1, 2](Fig 6.9). 

f~  = {(f1, 0.4), (f2, 0.7), (f3, 0.4)} 

X  = [1, 2] 

f1(x) = x, f2(x) = x2,    f3(x) = x+1 

i) Integration at = 0.7,  

    f  =  f2(x) = x2

3

7
]

3

1
)2,1( 2

1

3

2

1

2 xdxxI a

The integration result is 
3

7  with possibility 0.7 

Therefore ,           )}7.0,
3

7
{()2,1(

~
7.0I

ii) = 0.4, there are two functions 

f+ =  f1(x) =  x
 f - = f3(x) =  x+1

2

1

)2,1( xIa 2

3
]

2

1 2

1

2xdx

2

5
]

2

1
)1()2,1( 2

1

2

2

1

xxdxxIa

The integration results are 
2

3  with possibility 0.4 and 
2

5  with 0.4. 

then,               )}4.0,
2

5
(),4.0,

2

3
{()2,1(

~
4.0I

Finally, we have the total integration. 

)7.0,
3

7
{()2,1(

~I , )4.0,
2

3
( , )}4.0,

2

5
(

(2) Integration crisp function in fuzzy interval 

In this part, we shall deal with the integration of non-fuzzy function in 

fuzzy interval [A, B] of which the boundaries are determined by two fuzzy 

sets A and B.(Fig 6.10) 

Definition (Integration in fuzzy interval) Integration I(A, B) of non-

fuzzy function f in fuzzy interval [A, B] is defined as, 

)](),([)(

)(

,),( xxMinMaxz BA

duufz

yxbaI
y

x
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f1

f2

f3

1 2

1

0

2

3

4

5

Fig. 6.9. Integration of fuzzy function with crisp interval 

Fig. 6.10. Fuzzy interval 

Example 6.14 Following shows the integration of function f(x) = 2 in 

fuzzy interval [A, B]. 

A = {(4, .8), (5, 1), (6, .4)} 

B = {(6, .7), (7, 1), (8 .2)} 

f(x) = 2, x  [4, 8] 

0

1

A B 
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I~ (A, B) = 
B

A

dxxf )(  = 
B

A

dx2

Like (Table 7.1.), we shall get the integration value I(A, B). 

I~ (A, B) = {(0, .4), (2, .7), (4, 1), (6, .8), (8, .2)} 

For instance, integrating in [6, 6], we get 0 as the integration value. The 

possibility of this case is 0.4. And in the interval of [5, 6] and [6, 7], we get 

the integration value 2 whose possibilities are 0.7 and 0.4 . So the 

possibility for the integration value to be 2 is max[0.7, 0.4] = 0.7.    

6.3.2 Differentiation 

Here we meet the differentiation of non-fuzzy function in fuzzy interval 

and that of fuzzifying function in non-fuzzy points. 

(1) Differentiation of crisp function on fuzzy points 

Definition (Differentiation at fuzzy point) By the extension principle, 

differentiation f  (A) of non-fuzzy function f at fuzzy point or fuzzy set 

A is defined as 

)()(
)(

)(' xMaxy AyxfAf

Example 6.15 For example, when differentiating function f(x) = x3 at 

fuzzy point A,

A = {(-1, 0.4), (0, 1), (1, 0.6)} 

from    f (x) = 3x2,

f (A) = {(3, 0.4), (0, 1), (3, 0.6)} 

      = {(0, 1), (3, 0.6)}        

Example 6.16 There is a fuzzifying fuction  

f~= {(f1, 0.4), (f2, 0.7), (f3, 0.4)} 

f1(x) = x,  f2(x) = x2,  f3(x) = x3+1

First, we have 
'

1f (x) = 1  '

2f (x) = 2x, '

3f (x) = 3x2

'

1f (0. 5) = 1     when   = 0.4 

'

2f (0. 5) = 1     when   = 0.7 
'

3f (0. 5) = 0.75   when   = 0.4 

)(

~

0x
dx
fd  = {(1, 0.4), (1, 0.7), (0.75, 0.4)} 

 = {(1, 0.7), (0.75, 0.4)}    
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Table 6.1. Fuzzy Integration 

[a, b] b

a
dx2 min[ A(a), B(b)] 

[4, 6] 

[4, 7] 

[4, 8] 

[5, 6] 

[5, 7] 

[5, 8] 

[6, 6] 

[6, 7] 

[6, 8] 

4

6

8

2

4

6

0

2

4

.7

.8

.2

.7

1.0

.2

.4

.4

.2
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[SUMMARY]

Kinds of fuzzy function 

Crisp function with fuzzy constraint 

Crisp function reflects fuzziness of independent variable to dependent 

one

Fuzzifying function  

Fuzzifying function 

Function giving ambiguous image of crisp independent variable  

a-cut operation of fuzzifying function 

Fuzzy extreme of function 

Maximizing fuzzy set 

Minimizing fuzzy set 

Maximum value of crisp function

Crisp domain 

Fuzzy domain 

Integration

Integration of fuzzifyng function in non-fuzzy interval 

Integration of non-fuzzy function in fuzzy interval  

Differentiation 

Differentiation of crisp function at fuzzy points 

Differentiation of fuzzifying function at non-fuzzy points 
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[EXERCISES]

6.1 Show the following function satisfies the conditions. 

Condition : )()( yx BA

Function : y = f(x) = 3x2, x A, y B
A = { (2, 0.5), (3, 0.4)} 

     B = {(4, 0.4), (12, 0.5), (27, 0.5)} 

6.2 Show the following function is a fuzzifying function. 

f~  : A p~ (B)

f~ (1) = B1

f~ (2) = B2

f~  (3) = B3

where A = {1, 2, 3}  B = {1, 2, 3, 4, 6} 

p~ (B) = (B1 , B2, B3)

B1 = {(1, 0.9), (2, 0.5)} 

B2 = {(2, 0.5), (4, 0.9)}

B3 = {(3, 1.0), (6, 0.5)}

6.3 There in a fuzzy bunch of function 

X = {2, 3, 4} 

f1(x) = x+1, f2(x) = x2, f3(x) = x2+1

f~ = {( f1, 0.4), (f2, 0.5), (f3, 0.9)} 

Finds f~ (2), f~ (3) and f~ (4).

6.4 There is a function f3(x) = x3, x D = [-1, 3] 

Define its maximizing fuzzy set and minimizing fuzzy set. 

Calculate the possibilities of  x = 0 in each set. 

6.5 Find maximizing set and minimizing set of f(x) = cos x
Calculate the possibilities of 

2
 and 2 making the maximum and 

minimum values. 

6.6 Find the maximum value of the following function 

2

1
)(

x
xf

a) where x D = [0, 1], )(xD 1.0
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b) where x D = [0, 1], xxD )(

6.7 Integrate the function between A and B
f(x) = x2+1

A = {(1, 0.5), (2. 0.9)}  B = {(8. 0.1), (9. 0.5)} 

6.8 Differentiate the function at fuzzy point A
f(x) = 5 x2+1

A = {(-2, 0.5), (-1, 0.9), (0, 1.0)} 

6.9 There is a fuzzy bunch of functions. 

           f~ = {( f1, 0.4), (f2, 0.9), (f3, 0.5), (f4, 0.4)}

x D = [1, 3] 

f1(x) = x+1

f2(x) = x2+1

x
xf 1

)(3

5
1

)(4 x
xf

Find fuzzy sets f~ (2) and f~ (3).

6.10 Find fuzzy maximizing set M and maximum value of the following 

function.

f1(x) = sin x+1, x D

2
)(

xxD
 for 20 x

  = 0    otherwise 

6.11 There is a fuzzy function 

f~ = {( f1, 0.4), (f2, 0.5), (f3, 0.4), (f4, 0.9)},  x D = [1, 3] 

f1(x) = x+1

f2(x) = x 1

f3(x) = x2+1

f4x) = x2 1

Find integration result of the function in [1, 3]. 

6.12 There is a fuzzifying function  

f~ = {( f1, 0.5), (f2, 0.9), (f3, 0.5)}, 

f1(x) = x2+1

f2(x) = x3+ x2+1

f3(x) = x

Differentiate the function at x0 = 2. 



Chapter 7. PROBABILISY AND UNCERTAINTY 

In this chapter, we will compare the fuzzy theory with the probability 

theory which is also used to express uncertainty. First, we briefly review 

the probability theory. The concept of fuzzy event is also described and 

then we study the characteristics of uncertainty. The concept of fuzziness 

is introduced in order to measure the uncertainty of fuzzy set. 

7.1 Probability and Possibility 

Since Zadeh proposed the fuzzy concept in 1965, there have been many 

discussions about the relationship between the fuzzy theory and probability 

theory. Both theories express uncertainty, have their values in the range of 

[0, 1], and have similarities in many aspects. In this section, we review the 

definitions of the two theories and compare them. 

7.1.1 Probability Theory 

Probability theory deals with the probability for an element to occur in 

universal set. We call the element as event and the set of possible events as 

sample space. In the sample space, the elements, i.e., events are mutually

exclusive.

Example 7.1 When we play a six-side-dice, the sample space is  S={1, 2, 

3, 4, 5, 6}. Among these six events, only one event can occur. The 

probability for any of these six events is 1/6. 

An event might contain multiple elements. Consider two events A and B 

as follows. 

}531{ ,,A , }321{ ,,B .

The union and the intersection of these two events are,  

}5321{ ,,,BA , }31{ ,BA
and the complement of the event A is 

}642{ ,,A .
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Definition (Probability distribution) To express the probability of events 

to occur in the sample space, we can define the probability distribution as 

follows.

The probability distrivution P is a numerically valued function that 

assigns a number P(A) to  event A so that the following axioms hold. In 

the axioms, S denotes the sample space. 

i) 1)(0 AP ,

ii) 1)(SP ,

iii) For the mutually exclusive events A1, A2, … (that is, for any i j,
Ai Aj = )

1
1

)()(
i

iii
APAP .

In the definition, P(A) is the probability of an event A and the sample 

space S is the domain of probability distribution function. In the example 

of a six-side-dice, the probability P is, 

6

1
)(iP , 6,...,2,1i .

If the probability distribution is defined, the following properties are 

satisfied.

(1) )()()()( BAPBPAPBAP .

(2) )()()( BPAPBAP , if BA .

(3) 1)()( APAP .

Now assume that there are two sample spaces S and S’, and an event A
can occur in S and B in S’. When these events can occur in the mutually 

independent manner, the joint probability P(AB) for both A and B to occur 

is

)()()( BPAPABP .

The conditional probability )|( BAP  for A provided that the event B has 

occurred is 

)(

)(
)|(

BP
ABPBAP .

7.1.2 Possibility Distribution 

Fuzzy set A is defined on an universal set X and each element in the 

universal set has its membership degree in [0, 1] for the set A.

0)(xA  for Ax
0  otherwise. 
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The membership function A can be defined as a possibility 

distribution function for the set A on the universal set X. The possibility of 

element x is denoted as A(x) and these possibilities define the fuzzy set 

A.

We know the probability distribution P is defined on a sample space S
and the sum of these probabilities should be equal to 1. Meanwhile, the 

possibility distribution is defined on an universal set X but there is not limit 

for the sum.  

Example 7.2 Suppose the following proposition : 

“ Sophie has x sisters. ” 

x N ={1, 2, 3, 4, … 10}. 

Both probability distribution and possibility distribution can be used to 

define the variable x in N (Table 7.1). If we use the probability distribution 

P, the probability of having x sister(s) is defined by P(x).  By the 

possibility distribution , we define the possibility with x sisters as 

A(x). The set N is considered as a sample space in the probability 

distribution and as a universal set in the possibility distribution.

Table 7.1. Possibility and Probability 

x 1 2 3 4 5 6 7 8 9 10 

P(x) 0.4 0.3 0.2 0.1 0 0 0 0 0 0 

(x) 0.9 1.0 1.0 0.7 0.5 0.2 0.1 0 0 0 

We see that the sum of the probabilitis is equel to 1 but that of the 

possibilities is greater than 1. In (Table 7.1.), we can see that higher 

possibility does not always means higher probability. But lower possibility 

leads to lower probability. So we can say that the possibility is the upper 

bound of the probability.    

7.1.3 Comparison of Probability and Possibility 

Probability and possibility have something in common: they both describe 

uncertainty.  The possibility can be regarded as the upper bound of proba- 

bility value. That is, the possibility )(A  and probability P(A) of an 

event A have the following relation.
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)()( APA .

If the events A1, A2, …, An are mutually exclusive, the probability of 

union of these events is equivalent to the sum of the probabilities of each 

event, and that of intersection is equivalent to the multiplication. 

i
iii

APAP )()(

)(...)()()( 21 nii
APAPAPAP .

The possibility for union of those events has the maximum value and that 

for intersection has the minimum. (Table 7.2) compares the characteristics 

of possibility with those of probability. 

)(Max)( iiii
AA

)(Min)( iiii
AA .

Table 7.2. Comparison of Possibility and Probability 

 Possibility Probability 

Domain Universal set X Sample space S 

Range [0,1] [0,1] 

Constraints none 

1)(
i

iAP

Union
)(Max)( iiii

AA
i

iii
APAP )()(

Intersection
)(Min)( iiii

AA )(...)()()( 21 nii
APAPAPAP

7.2 Fuzzy Event 

When dealing with the ordinary probability theory, an event has its precise 

boundary. For instance, if an event is A={1,3,5}, its boundary is sharp and 

thus it can be represented as a crisp set. When we deal an event whose 

boundary is not sharp, it can be considered as a fuzzy set, that is, a fuzzy 

event. For example, 

B = “ small integer ” = {(1, 0.9), (2, 0.5), (3, 0.3)} 

How would we deal with the probability of such fuzzy events? We can 

identify the probability in two manners. One is dealing with the probability 
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as a crisp value(crisp probability) and the other as a fuzzy set(fuzzy 

probability). 

7.2.1 Crisp Probability of Fuzzy Event 

Let a crisp event A be defined in the space 
n
.  All events in the space 

n
 are mutually exclusive and the probability of each event is, 

A

dPAP )(

and for discrete event in the space 
n
,

Ax
xPAP )()( .

Let )(xA  be the membership function of the event(set) A and the 

expectation of )(xA  be )( APE . Then the following relationship is 

satisfied.

A
APA EdPAP )()(

for discrete elements, 

Ax
A xPxAP )()()( .

Definition (Crisp probability of fuzzy event) Let event A be a fuzzy 
event or a fuzzy set considered in the space 

n
:

}|))(,{( n
A xxxA

The probability for this fuzzy set is defined as follows: 

)()( AP
A

A EdPAP

and alternatively, 

Ax
A xPxAP )()()( .

Example 7.3 Assume that the sample space S={a,b,c,d} is given as in (Fig 

7.1.) Each element is mutually exclusive, and each probability is given as, 

P(a) = 0.2, P(b) = 0.5, P(c) = 0.2, P(d) = 0.1. 

Think about a crisp event A={a,b,c} in the sample space S with its 

characteristic function given as (Fig 7.2), 

1)()()( cba AAA , 0)(dA

the probability of the crisp event A can be calculated from the following 

procedure.

9.02.015.012.01)(AP .
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1

0.1
0.2

0.5

a b c d

Fig. 7.1. Sample space S and Probability 

0.1
0.2

0.5

a b c d

A(x)

Fig. 7.2. Crisp event A

0.5

1.0

0.1

1

0.1
0.2

0.5

a b c d

A(x)

Fig. 7.3. Fuzzy event A

now consider the event A as a fuzzy event (Fig 7.3). That is, 

0.2

0.5

0.2
0.1
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)}1.0,(),1,(),5.0,{( cbaA .

The crisp probability for the fuzzy event A is, 

62.02.01.05.012.05.0)(AP .

7.2.2 Fuzzy Probability of Fuzzy Event 

Given the following fuzzy event in the sample space S,

}|))(,{( SxxxA A .

The -cut set of the event(set) A is given as the following crisp set. 

})(|{ xxA A .

The probability of the -cut event is as following: 

Ax
xPAP )()( .

Here, A  is the union of mutually exclusive events. The probability of 

A  is the sum of the probability of each event in the -cut set A . For the 

probability of the -cut event, we can say that 

“The possibility of the probability of set A to be P(A  is ”

taking this interpretation, there are multiple cases for the fuzzy probability 

P(A) according to the value .

Definition (Fuzzy probability of fuzzy event) Fuzzy event A, its -cut 

event A  and the probability P(A ) are provided from the above procedure. 

The fuzzy probability P(A) is defined as follows: 

]}1,0[|)),({()( APAP .

Of course, the value of  is an element in the level set of fuzzy set A. We 

used the same kind of interpretation when we discussed about the fuzzy 

cardinality of fuzzy set in chapter 1. 

Example 7.4 Assume the probability of each element in the sample space 

S={a,b,c,d} as shown in (Fig 7.4.) 

P(a) = 0.2, P(b) = 0.3, P(c) = 0.4, P(d) = 0.1 

A fuzzy event A is given in (Fig 7.5.) 

)}3.0,(),5.0,(),8.0,(),1,{( dcbaA
taking the -cut event A ,  we get crisp events. 

},,,{3.0 dcbaA
},,{5.0 cbaA

},{8.0 baA .
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}{1 aA
since these are crisp events, we can easily calculate the probabilities of 

each -cut event. 

11.04.03.02.0)( 3.0AP
9.04.03.02.0)( 5.0AP

5.03.02.0)( 8.0AP
2.0)( 1AP .

Now, the possibility for this fuzzy event A to be P(A is , and the 

probability of the fuzzy event A is given as follows (Fig7.6): 

)}1,2.0(),8.0,5.0(),5.0,9.0(),3.0,1{()(AP .

1

0.1
0.2

0.5

a b c d

P(x)

0.4
0.3

x

Fig. 7.4. Sample space },,,{ dcbaS

1

0.8

0.5

a b c d

0.3

x

A(x)

Fig. 7.5. Fuzzy event A

0.1

0.4
0.3

0.2

1.0

0.8

0.5

0.3
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1

0.8

0.5

0.2 0.5 0.9 1

0.3

P(A )

Fig. 7.6. Fuzzy probability 

7.3 Uncertainty 

7.3.1 Uncertainty Level of Element  

Suppose students a, b, c and d take the entrance examination for college A.

The possibility for each student to enter the college is 0.2, 0.5, 0.9 and 1 

respectively. At this point, the possibilities can be identified as a fuzzy set. 

That is, let the college be a fuzzy set A and a, b, c and d be the elements of 

A. The possibilities to be contained in A can be expressed as the values of 

membership function (Fig 7.7). 

2.0)(aA , 5.0)(bA , 9.0)(cA , 1)(dA .

When discussing the possibilities to be in A, which of these elements a, 
b, c and d has the largest uncertainty?  

First, the element d has the concrete possibility, we say it has the least 

uncertainty. The element a, on the other hand, has almost no possibility to 

pass the examination. This student doesn’t expect too much for his success 

and we might say he has relatively less uncertainty. However, the student b
might have the most uncertainty since he has the possibility 0.5. 

When the possibility is near to 0.5, the uncertainty gets the highest. As 

the possibility approaches 0 or 1, the uncertainty decreases. 

1.0

0.8

0.5

0.3



180                                              7. Probability and Uncertainty 

1
0.9

0.5

a b c d

0.2

x

A(x)

Fig. 7.7. Fuzzy set A

7.3.2 Fuzziness of Fuzzy Set 

Suppose students a, b, c and d apply to B college and consider B as a fuzzy 

set, the possibilities for those students to succeed in the entrance 

examination are shown in the following membership functions (Fig 7.8). 

4.0)(aB , 7.0)(bB , 6.0)(cB , 5.0)(dB .

Comparing the fuzzy sets A and B, which one is more uncertain? 

Comparisons element by element, the elements of B are more uncertain 

(the values of membership functions are closer to 0.5). So, the fuzzy set B
has more uncertain states comparing with A. So as to speak, B is relatively 

more fuzzy. 

If we consider another fuzzy set C, each element of which having its 

membership degree 0.5, the fuzzy set C has the largest degree of fuzziness 

(uncertainty). 

1

0.7

0.5

a b c d x

A(x)

0.6

0.4

Fig. 7.8. Fuzzy set B
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7.4 Measure of Fuzziness 

7.4.1 Definition 

Fuzziness is termed for the case when representation of uncertainty level is 

needed. The function for this fuzziness is called measure of fuzziness. The 

function f denoting the measure of fuzziness is 

f : P(X)  R. 

In the function, P(X) is the power set gathering all subsets of the 

universal set X, and R is the real number domain. The function f grants the 

real value f(A) to the subset A of X, and the value indicates the fuzziness of 

set A, there are three conditions for the measures to observe.  

(Axiom F1) f(A) = 0 iff A is a crisp set. 

The fuzziness should have the value 0 when the set is crisp (Fig 7.9). 

(Axiom F2) When the uncertainty of A is less than that of B , the 

measured value f(A) should be less than f(B). When we denote it by A
< B and say that A is sharper than B, the following relation should be 

satisfied.

f(A) f(B).

The relation implies the monotonicity property. 

1

A

x

A(x)

Fig. 7.9. Fuzziness of crisp set f(A) = 0 (minimum uncertainty).
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1 :A

x

A(x)

0.5

:B

Fig. 7.10. When A is sharper than B, f(A) f(B).

Example 7.5 When two fuzzy sets A and B are presented (Fig 7.10), the 

fact that A is sharper than B is defined as following. That is, if A < B
holds, then the followings are satisfied. 

i)  when 
2
1)(x , )()( xx BA

ii)  when 
2
1)(x , )()( xx BA

By the axiom F2, the relation )()( BfAf  should be satisfied.    

(Axiom F3) If the fuzziness is the maximum, the measure f(B) should 

have the maximum value. 

Example 7.6 For the deep understanding of the axiom F3, think of the case 

that the uncertainty is the maximum. If the membership degree of each 

element x in fuzzy set A is 0.5, the uncertainty has the maximum. That is, 

for all elements x A, A(x)=0.5, and then the fuzziness measure f(A) is 

also the maximum (Fig 7.11).    

1

0.5

A(x)

Fig. 7.11. Maximum uncertainty f(A).
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7.4.2 Measure using Entropy 

In this section, a fuzziness measure based on Shannon’s entropy is 

explained.  Shannon’s entropy is widely used in measuring the amount of 

uncertainty or information, and is considered as the fundamental theory in 

the information theory. 

Definition (Shannon’s entropy) 

Xx
xPxPxPH )(log)())(( 2 , Xx .

In the rest of the section, P(x) denotes the probability distribution in the 

universal set X for all x X.

Example 7.7 To know more about the entropy, consider the following 

examples with two probability distributions P and P’.

i) Probability distribution P
For the universal set X={a,b,c}, the probability distribution P is given 

as,

3/1)(aP , 3/1)(bP , 3/1)(cP ,

1)()()( cPbPaP .

The probabilities of all elements in X are equal to each other, and the 

sum of the probabilities is 1. The uncertainty of one element’s 

occurrence is measured by the Shannon’s entropy. 

3
1

23
1

3
1

23
1

3
1

23
1 logloglog)(PH

6.13loglog 23
1

2 .

ii) Probability distribution P’
Assume there is a probability distribution P’ for X as follows. 

2/1)(aP , 2/1)(bP , 0)(cP

The uncertainty is,  

0loglog)(
2
1

22
1

2
1

22
1PH

12loglog 22
1

2 .

The uncertainty for P is greater than that of P’ (Fig 7.12).    
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1

a b c

0.5

1/3

probability distribution P

1

a b c

0.5

probability distribution P’

6.1)(PH  > )(1 PH

Fig. 7.12. Shannon’s entropy in probability distribution 

In the above example, when the probability distribution is P’, the 

possibility for the element c to occur is 0. So we do not need to consider c.

But in the probability distribution P, we need to consider the three 

elements, a,b,c. So the uncertainty H(P) is greater than H(P’). When there 

are only two events and the probability of each event is 0.5, the amount of 

information is the maximum at 1 as in the case P’
Since the Shannon’s entropy is based on the probability distribution, the 

total probabilities of all elements is 1. 

X
xP 1)( .

But for fuzzy sets, this restriction is unnecessary. If a fuzzy set A is 

defined in the universal set X by a membership function A(x), the 

following restriction is not required. 

X
A x 1)(   (not necessary). 

Now referring to what we have seen, define a measure of fuzziness 

f(A)of a fuzzy set A.

Definition (measure of fuzziness) 

Xx
AAAA xxxxAf ))(1(log))(1()(log)()( 22 .
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This is the sum of the uncertainties of a fuzzy set A defined by the 

membership function A(x) and its complement A  defined by[1- A(x)] 

The normalized measure )(ˆ Af of the measure f(A) is defined as the 

following

X
AfAf )(

)(ˆ .

In the above,|X| denotes the cardinality of the universal set X and the 

normalized measure observes this relation 

1)(ˆ0 Af
this measure satisfies the axiom (F1) and (F2).  

Example 7.8 Suppose that there are two fuzzy sets A and A’ in X={a,b,c}

(Fig 7.13). 

i) Assume that a fuzzy set A is given as 

)}1,(),2.0,(),5.0,{( cbaA .

The fuzziness of the fuzzy set A is, 

)01log18.0log8.02.0log2.05.0log5.05.0log5.0()( 22222Af

)
5

4
log

5

4

5

1
log

5

1

2

1
(log 222

4

5
log

5

4
5log

5

1
2log 222

7.16.05log2 .

and the normalized measure yields, 

57.0
3

7.1)(
)(ˆ

X
AfAf .

ii) The fuzzy set A’ is given as follows. 

)}5.0,(),5.0,(),5.0,{( cbaA
The fuzziness for the fuzzy set A’ is, 

5.0log5.05.0log5.05.0log5.0()( 222Af
)5.0log5.05.0log5.05.0log5.0 222

32log3)5.0log3( 22 ,

and the normalized measure is,  

1
3

3)(
)(ˆ

X
AfAf .
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The membership degrees of all elements in A’ are 0.5. So the 

uncertainty of the fuzzy set A’ is larger. Consequently, the fuzziness of A’
is greater than that of A

)()( AfAf .

We state that the uncertainty is the largest when the membership 

degrees are all 0.5. And the normalized fuzziness of such fuzzy set is 1. 

7.4.3 Measure using Metric Distance 

Another measure of fuzziness is the one that is based on the concept of 

metric distance. We talked about Hamming distance and Euclidean 

distance in sec 2.5. A crisp set C that corresponds to a fuzzy set A is 

introduced for the distance measure (Fig 7.14). 

0)(xC  if 
2

1
)(xA

1)(xC  if 
2

1
)(xA

1

a b c

0.5

0.3
0.2
0.1

0.4

fuzzy set A

1

a b c

0.5

fuzzy set A
Fig. 7.13. Measure of fuzziness for A and A’
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0.5

1

0.5

1

a b c

a b c

A

C

Fig. 7.14. Fuzzy set A and its corresponding Crisp set C 

If the set C is defined as such, the measure of fuzziness is the distance 

between the fuzzy set A and the crisp set C. For the measure of distance, 

we can use Hamming distance or Euclidean distance (see sec 2.5.3). 

Definition (Hamming distance) The measure of fuzziness f(A) is 

expressed as, 

Xx
CA xxAf )()()( .

Definition (Euclidean distance) The measure of fuzziness f(A) is, 

2

1

2
)()()(

Xx
CA xxAf .

The closer to 0.5 the values of membership function are, the larger the 

fuzziness is measured.   

Definition (Minkowski distance) Generalizing Hamming distance and 

Euclidean distance, the following Minkowski's measure yields 

w

Xx

w
CAw xxAf

1

)()()( .
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The Minkowski’s measure holds for w [1, . When w=1, it becomes 

Hamming distance, and when w=2, it is Euclidean distance. We easily see 

that the previously introduced measures of fuzziness also satisfy the 

axioms (F1) and (F2). 

Example 7.9 Consider the sets A  and A in (Fig 7.13.) Hamming 

distances )(Af  and )(Af  can be calculated as in the following. 

1102.005.0)(Af
7.002.05.0

05.005.005.0)(Af
5.15.05.05.0 .

The relation )()( AfAf  holds in the above. The Hamming 

measure of fuzziness can be normalized like this. 

X
AfAf

5.0

)(
)(ˆ

1)(ˆ0 Af .

The symbol |X| denotes the cardinality of the universal set X. The 

normalized measure of the previous example is 

47.0
35.0

7.0
)(ˆ Af .      
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[SUMMARY]

Probability theory 

Sample space, event, mutually exclusive event 

Conditional probability : )|( BAP
Joint probability : )(ABP

Discrimination of possibility and probability 

Restriction : whether 1)(AP  or not 

Set operations of union and intersection : Max, Min operation 

Fuzzy event 

Crisp probability 

Fuzzy probability 

Conditions for the measure of the degree of fuzziness 

In a crisp set A , 0)(Af
Monotonicity 

In the maximum fuzziness, )(Af  is the maximum 

Measure of the fuzziness using entropy 

Xx
AAAA xxxxAf )(1log)(1)(log)()( 22 .

Measure of the fuzziness using metric distance 

Hamming distance 

Xx
CA xxAf )()()( .

Eclidiean distance 

2

1

2
)()()(

Xx
CA xxAf .
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[EXERCISES]

7.1 Show operations of the following formulas in the possibility theory  

a) )( ii
A

b) )( ii
A

7.2 Show operations of the formulas in the probability theory. 

a) )( ii
Ap

b) )( ii
Ap

7.3 There is a fuzzy event A
A = {(1, 0.8), (2, 0.8), (3, 0.5), (4, 0.3), (5. 0.1)} 

Apply -cut operations to the fuzzy event. 

7.4 There is a probability distribution P(x), and two events A and B. 
  P(a) = 0.2, P(b)=0.5, P(c)=0.2, P(d) =0.1 

A = {a, b, c} 

B = {(a, 0.5), (b, 0.9)m (c, 0.7), (d, 0.1)} 

a) Find the probability of event A 

b) Fine the crisp probability of fuzzy event B
c) Find the fuzzy probability of fuzzy event B

7.5 Consider a probability distribution P(x) on an sample space S = {1, 2, 

3, 4, 5, 6}. 

P(1) = 0.2, P(2) = 0.1, P(3) = 0.1), P(4) = 0.2, P(5) = 0.1 , P(6) = 0.3 

Compare probabilities of the following two fuzzy events : 

A = { (1, 0.5), (2, 0.5), (3, 0.5), (4, 0.5)} 

B = {(1, 0.9), (2, 0.1), (3, 0.2), (4, 0.8)} 

7.6 consider a probability distribution P(x) on a sample space 

S = {a, b, c, d} 

4

1
)(ap ,

4

1
)(bp ,

4

1
)(cp ,

4

1
)(dp

Find the Shannan’s entropy in the probability distribution. 

7.7 There is a fuzzy set A defined on the universal set 

X = {a, b, c, d} 

A = {(a, 0.5), (b, 0.2), (c, 0.8), (d, 0.1)} 
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Find the fuzziness of the set A by using the concept of Shannon ‘s 

entropy. 

7.8 There is a fuzzy set A = {(1, 0.4), (2, 0.8), (3, 0.4), (4, 0.1)} 

a) Fined the fuzziness of A using Hanming distance 

b) Fined the fuzziness of A using Euclidean distance 



Chapter 8. FUZZY LOGIC 

Formal language is a language in which the syntax is precisely given and 

thus is different from informal language like English and French.  The 

study of the formal languages is the content of mathematics known as 

mathematical logic.  The mathematical logic is called classical logic in 

this chapter. The classical logic considers the binary logic which consists 

of truth and false.  The fuzzy logic is a generalization of the classical 

logic and deals with the ambiguity in the logic.  In this chapter, we 

summarize the classical logic and then study the fuzzy logic. 

8.1 Classical Logic 

8.1.1 Proposition Logic 

Definition (Proposition) As in our ordinary informal language, “senten- 

ce” is used in the logic.  Especially, a sentance having only “true (1)” or 

“false (0)” as its truth value is called “proposition”. 

Example 8.1 The following sentences are propositions. 

Smith hits 30 home runs in one season.       (true) 

2 + 4 = 7     (false) 

For every x, if f(x) = sin x, then f (x) = cos x. (true) 

It rains now.    (true)    

Example 8.2. The followings are not propositions. 

Why are you interested in the fuzzy theory? 

He hits 5 home runs in one season. 

x + 5 = 0 

x + y = z 

In the second example, we do not know who is “He” and thus cannot 

determine whether the sentence is true (1) or false (0).  If “He” is 

replaced by “Tom”, we have 

Tom hits 5 home runs in one season. 

Now we can evaluate the truth value of the above sentence.  In the 

same way, 
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x + 5 = 0 

is not a proposition.  If the variable x is replaced by –5, then the sentence 

5 + 5 = 0 

has its value “true”.  A variable is used as a symbol representing an 

element in a universal set.    

Definition (Logic variable) As we know now, a proposition has its value 

(true or false).  If we represent a proposition as a variable, the variable 

can have the value true or false.  This type of variable is called as a 

“proposition variable” or “logic variable”.    

We can combine prepositional variables by using “connectives”.  The 

basic connectives are negation, conjunction, disjunction, and implication. 

(1) Negation

Let’s assume that prepositional variable P represents the following 

sentence.

P: 2 is rational. 

In this case, the true value of P is true. 

P = true 

but its negation is false and represents as follows. 

P = false 

The truth table representing the values of negation is given in (Table 

8.1.)

(2) Conjunction

If a and b are prepositional variables, their conjunction is represented as 

follows and is interpreted as “a AND b”. 

a  b 

The truth value of the above conjunction is determined according to 

the values of a and b (Table 8.2). 

Example 8.3 Suppose there are two propositions a and b. We can see their 

conjunction is 0. 

a: 2 + 2 =4 

b: 3 + 2 = 7 

c: a  b 

then, a = 1, b = 0, and c = 0.    

Table 8.1. Truth table of negation 

a a
1 0 

0 1 
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Table 8.2. Truth table of conjunction 

a b a  b 

1 1 1 

1 0 0 

0 1 0 

0 0 0 

(3) Disjunction

The disjunction of two propositions a and b is represented as follows 

a  b 

The disjunction is interpreted as “a OR b”.  But it has two different 

meanings: “exclusive OR” and “inclusive OR”.  The exclusive OR is 

used in which two events could not happen simultaneously. 

Are you awake or asleep? 

The inclusive OR is used when two events can occur simultaneously. 

Are you wearing a shirt or sweater? 

in general, if we say the disjunction, we mean the “inclusive OR” (Table 

8.3).

(4) Implication 

The proposition “if a, then b.” is represented as follows. 

a  b 

Example 8.4 Consider the following propositions.  We study the truth 

value of each proposition in varying the value of propositional variables a 

and b. 

Table 8.3. Truth table of disjunction 

a b a  b 

1 1 1 

1 0 1 

0 1 1 

0 0 0 
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Table 8.4. Truth table of implication 

a b a  b 

1 1 1 

1 0 0 

0 1 1 

0 0 1 

i) a  b where a: 2 + 2 = 4, b: 3 + 3 = 6 

ii) a  b where a: 2 + 2 = 4, b: 3+3 = 7 

iii) a  b where a: 2 + 2 = 5, b: 3 + 3 = 6 

iv) a  b where a: 2 + 2 = 5, b: 3 + 3 = 7 

we can see that the above propositions are true except for the second.  

The truth values of implication are summarized in (Table 8.4.)  In the 

table we see that the value of implication can be represented by a  b. 

8.1.2 Logic Function 

The “logic function” is a combination of propositional variables by using 

connectives.  Values of the logic function can be evaluated according to 

the values of propositional variables and the truth values of connectives.  

As we know, a logic function having only one propositional variable has 

two kinds of values: true and false.  A logic function containing two 

variables has 4 (=22) different combinations of values: (true, true), (true, 

false), (false, true), (false, false).  Similarly a function having n variables 

can have 2n different combinations. 

If a logic function has one or two prepositional (logic) variables, it is 

called a “logic primitive”.  By using the logic primitive, we can represent 

an (algebraic) expression which is called a “logic formula”.   

Definition (Logic formula) The logic formula is defined as following : 

i)  Truth values 0 and 1 are logic formulas 

ii)  If v is a logic variable, v and are a logic formulas 

iii) If a and b represent a logic formulas, a  b and a  b are also logic 

formulas. 

iv) The expressions defined by the above (1), (2), and (3) are logic 

formulas.    
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Table 8.5. Properties of classical logic 

(1) Involution a = a 

(2) Commutativity a  b = b  a 

a  b = b  a 

(3) Associativity (a  b)  c = a  (b  c) 

(a  b)  c = a  (b  c) 

(4) Distributivity a  (b  c) = (a  b)  (a  c) 

a  (b  c) = (a  b)  (a  b) 

(5) Idempotency a  a = a 

a  a = a 

(6) Absorption a  (a  b) = a 

a  (a  b) = a 

(7) Absorption by 0 and 1 a  0 = 0 

a  1 = 1  

(8) Identity a  1 = a 

a  0 = a 

(9) De Morgan’s law baba

baba

(10) Absorption of complement a  ( a  b) = a  b 

a  ( a  b) = a  b 

(11) Law of contradiction a a = 0 

(12) Law of excluded middle a a = 1 

Any logic formula defines a logic function, and it has its truth value.  

Properties of logic formulas are summarized in (Table 8.5.) 

Some of important logic formulas and their values are given in the 

following:

(1) Negation a = 1 a
(2) Conjunction a b = Min (a, b)
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(3) Disjunction a b = Max (a, b)

(4) Implication a b = a b

8.1.3 Tautology and Inference Rule 

Definition (Tautology) A “tautology” is a logic formula whose value is 

always true regardless of its logic variables.  A “contradiction” is one 

which is always false.    

Example 8.5 Consider the following logic formula. 

bba )(

This proposition means that if the value of (a b) is false then b is 

false.  Let’s evaluate its value with different values of logic variables a
and b in (Table 8.6.) 

Table 8.6. Truth value of tautology bba )(

a b a  b )( ba b bba )(

1 1 1 0 0 1 

1 0 0 1 1 1 

0 1 1 0 0 1 

0 0 1 0 1 1 

in Table 8.6, we see that the logic formula is always true and thus it is a 

tautology.  That is, if )( ba is true, thenb is always true.   

Example 8.6 Let’s consider another example. 

(a  (a b)) b
The truth values of this proposition are evaluated in (Table 8.7.) 

we can see that this proposition has also true value regardless of the values 

of a and b. This tautology means that 

“If a is true and (a b) is true, then b is true.” or 

“If a exists and the relation (a b) is true, then b exists.”  

Table 8.7. Truth value of tautology (a  (a b)) b

a b (a  b) (a  (a  b)) (a  (a  b))  b 

1 1 1 1 1 

1 0 0 0 1 

0 1 1 0 1 

0 0 1 0 1 
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 The interpretations in the above example show a logic procedure of 

tautology, and thus we can obtain a correct conclusion when we follow the 

logic procedure.  Therefore, the tautology is used as a rule of “deductive 

inference”.  There are some important inference rules using tautologies. 

(a  (a b)) b   : modus ponens 

( b  (a b)) a   : modus tollens 

((a b)  (b c))  (a c) : hypothetical syllogism 

8.1.4 Predicate Logic 

A “predicate” is a group of words like 

“is a man” 

“is green” 

“is less than” 

“belongs to” 

They can be applied to one or more names of individuals (objects) to 

yield meaningful sentences; for example, 

 “Socrates is a man.” 

 “Two is less than four.” 

 “That hat belongs to me.” 

 “He is John.” 

the names of the individuals are called individual constants. 

Definition (Predicate logic) “Predicate logic” is a logic which represents 

a proposition with the predicate and individual (object).    

Example 8.7 The following propositions are “predicate propositions” and 

consist of predicates and objects. 

 “Socrates is a man” 

  predicate: “is a man” 

  object: “Socrates” 

 “Two is less than four” 

  predicate: “is less than” 

  object: “two” , “four” 

Sometimes, the objects can be represented by “variable”, and then, in 

that case, the “predicate proposition” can be evaluated if an element in the 

universal set is instantiated to the variable.    

Example8.8 Let’s consider the following examples. 

i) x is a man. 

ii) y is green. 

iii) z is less than w. 

iv) p belongs to q. 
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If an individual is mapped to a variable, the sentence can have its meaning 

and then we can evaluate the value of proposition.  There are examples of 

individual constants for the above propositions with variables. 

(1) Tom is a man. 

(2) His face is green. 

(3) Two is less than four.

(4) This hat belongs to me.

In the first sentence, Tom is an element in the universal set “man”.  

The element Tom is instantiated to the variable x, and then we know the 

value of the proposition is true.  In the second sentence, his face is an 

object (element) corresponded to the variable y, and we can evaluate the 

truth value of the proposition.    

In the formal language of this chapter, we denote predicates by letters. 

For example, the sentence “x satisfies P” can be written by P(x). 

Example 8.9 For example, the above predicate propositions can be 

represented in the following way. 

 is_a_man(x),  is_a_man(Tom) 

 is_green(y),  is_green(his face) 

 is_less_than(z, w),  is_less_than(two, four) 

 belongs_to(p, q),  belongs_to(this hat, me)    

The number of individual constants to which a given predicate is called 

number of places of the predicate.  For instance, “is a man” is a one-place 

predicate, and “is less than” is a two-place predicate. 

A one-place predicate determines a set of things: namely those things 

for which it is true.  Similarly, a two-place predicate determines a set of 

pairs of things; that is, a two-place “relation”.  In general, an n-place 

predicate determines an n-place relation.  We may think of the predicate 

as denoting the relation.  

Example 8.10 For example, the predicate “is man” determines the set of 

men, and the predicated “is south of” determines the set of pairs (x, y) of 

cities such that x is south of y.  For instance, the relation holds when x = 

Sydney and y = Tokyo, but not when x = New York and y = Seoul.  

Different predicates may determine the same relation.  For example, “x is 

south of y” and “y is north of x”.    

8.1.5 Quantifier 

The phrase “for all” is called the “universal quantifier” and is denoted 

symbolically by .  The phrase “there exists”, “there is a”, or “for some” 

is called the “existential quantifier” and is denoted symbolically by .

The universal quantifier is kind of an iterated conjunction.  Suppose 

there are only finitely-many individuals.  That is, the variable x takes only 
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the values a1, a2, … an.  Then the sentence xP(x) has the same meaning 

as the conjunction P(a1)  P(a2)  …  P(an).

The existential quantifier is kind of an iterated disjunction.  If there are 

only finitely-many individuals a1, a2, … an, then the sentence xP(x) has 

the same meaning as the disjunction P(a1)  P(a2)  …  P(an).

Of course, if the number of individuals is infinite, such an interpretation 

of the quantifier is not possible, since infinitely long sentences are not 

allowed.

According to De Morgan’s laws, P(a1)  P(a2)  …  P(an) is 

equivalent to ~ [ ~P(a1)  ~P(a2)  …  ~P(an) ] where the symbol ~ 

represents the negative operator.  This suggests the possibility of defining 

the existential quantifier from the universal quantifier.  We shall do this; 

xP(x) will be an abbreviation for ~ x~P(x).  Of course we could also 

define the universal quantifier from the existential quantifier; xP(x) has 

the same meaning as ~ x~P(x).

8.2 Fuzzy Logic 

8.2.1 Fuzzy Expression 

In the fuzzy expression(formula), a fuzzy proposition can have its truth 

value in the interval [0,1].  The fuzzy expression function is a mapping 

function from [0,1] to [0,1]. 

f : [0,1]  [0,1] 

If we generalize the domain in n-dimension, the function becomes as 

follows:

f : [0,1]n  [0,1] 

Therefore we can interpret the fuzzy expression as an n-ary relation 

from n fuzzy sets to [0,1].  In the fuzzy logic, the operations such as 

negation (~ or ), conjunction ( ) and disjunction ( ) are used as in the 

classical logic.   

Definition (Fuzzy logic) Then the fuzzy logic is a logic represented by the 

fuzzy expression (formula) which satisfies the followings. 

i) Truth values, 0 and 1, and variable xi ( [0,1], i = 1, 2, …, n) are fuzzy 

expressions.

ii) If f is a fuzzy expression, ~f is also a fuzzy expression. 

iii) If f and g are fuzzy expressions, f  g and f  g are also fuzzy 

expressions.
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8.2.2 Operators in Fuzzy Expression 

There are some operators in the fuzzy expression such as  (negation), 

(conjunction),  (disjunction), and  (implication).  However the 

meaning of operators may be different according to the literature.  If we 

follow Lukasiewicz’s definition, the operators are defined as follows for a, 

b  [0,1]. 

(1) Negation a  = 1 – a
(2) Conjunction a b = Min (a, b)

(3) Disjunction a b = Max (a, b)

(4) Implication a b = Min (1, 1+b a)

The properties of fuzzy operators are summarized in (Table 8.9.) 

Table 8.9. The properties of fuzzy logic operators 

(1) Involution a = a 

(2) Commutativity a  b = b  a 

a  b = b  a 

(3) Associativity (a  b)  c = a  (b  c) 

(a  b)  c = a  (b  c) 

(4) Distributivity a  (b  c) = (a  b)  (a  c) 

a  (b  c) = (a  b)  (a  c) 

(5) Idempotency a  a = a 

a  a = a 

(6) Absorption a  (a  b) = a 

a  (a  b) = a 

(7) Absorption by 0 and 1 a  0 = 0 

a  1 = 1  

(8) Identity a  1 = a 

a  0 = a 

(9) De Morgan’s law baba

baba



§8.2 Fuzzy Logic                                                        203

But we have to notice that the law of contradiction and law of excluded 

middle are not verified in the fuzzy logic.   

Example 8.11 We can see that the two properties are not satisfied in the 

following examples. 

i) Law of contradiction 

Assume a is in [0,1]. 

a a = Min[a, a ] = Min[a, 1 a]

  = {
15.01

5.00

aifa
aifa

 0 a a  0.5 

Then a a  0 

ii) Law of excluded middle 

Suppose a is in [0,1]. 

a a = Max[a, a ] = Max[a, 1 a]

  = {
5.001

15.0

aifa
aifa

 0.5 a a  1 

Then a a = 1 if a  0 or 1 

a a  1 otherwise    

8.2.3 Some Examples of Fuzzy Logic Operations 

In this section, we have two examples of classical logic operation and one 

example of fuzzy logic operation. In these examples, we will see that the 

fuzzy logic operation is a generalization of the classical one. 

Example 8.12 When a = 1, b = 0 

i) a = 0 

ii)  a b = Min(1, 0) = 0 

iii) a  b = Max(1, 0) = 1 

iv) a b = Min(1, 1 1+0) = 0   

Example 8.13 When a = 1, b = 1 

i) a = 0 

ii)  a b = Min(1,1) = 1 

iii) a b = Max(1,1) = 1 

iv) a b = Min(1, 1 1+1) = 1   

Example 8.14 When a = 0.6, b = 0.7 

i) a = 0.4 

ii)  a b = Min(0.6,0.7) = 0.6 

iii) a b = Max(0.6, 0.7) = 0.7 
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iv) a b = Min(1, 1 0.6+0.7) = Min(1, 1.1) = 1   

8.3 Linguistic Variable 

8.3.1 Definition of Linguistic Variable 

When we consider a variable, in general, it takes numbers as its value.  If 

the variable takes linguistic terms, it is called “linguistic variable”.   

Definition (Linguistic variable) The linguistic variable is defined by the 

following quintuple. 

Linguistic variable = (x, T(x), U, G, M) 

x: name of variable 

T(x): set of linguistic terms which can be a value of the variable 

U: set of universe of discourse which defines the characteristics of the 

variable

G: syntactic grammar which produces terms in T(x)

M: semantic rules which map terms in T(x) to fuzzy sets in U   

Example 8.15 Let’s consider a linguistic variable “X” whose name is 

“Age”.

 X = (Age, T(Age), U, G, M) 

    Age: name of the variable X 

    T(Age): {young, very young, very very young, …} 

        Set of terms used in the discussion of age 

    U: [0,100] universe of discourse 

    G(Age): Ti+1 = {young}  {very Ti}

    M(young) = {(u, young(u)) | u  [0,100]} 

young(u) = {
]100,25[)1(

]25,0[1

2

5

25 uif
uif

u

In the above example, the term “young” is used as a basis in the T(Age), 

and thus this kind of term is called a “primary term”.  When we add 

modifiers to the primary terms, we can define new terms (fuzzy terms).  

In many cases, when the modifier “very” is added, the membership is 

obtained by square operation.  For example, the membership function of 

the term “very young” is obtained from that of “young”. 

very young(u) = ( young(u))2

The fuzzy linguistic terms often consist of two parts: 

(1) Fuzzy predicate(primary term): expensive, old, rare, dangerous, good, 

etc
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(2) Fuzzy modifier: very, likely, almost impossible, extremely unlikely, 

etc

The modifier is used to change the meaning of predicate and it can be 

grouped into the following two classes: 

(3) Fuzzy truth qualifier: quite true, very true, more or less true, mostly 

false, etc 

(4) Fuzzy quantifier: many, few, almost, all, usually, etc 

In the following sections, we will introduce the fuzzy predicate, fuzzy 

modifier, and fuzzy truth quantifier. 

8.3.2 Fuzzy Predicate 

As we know now, a predicate proposition in the classical logic has the 

following form. 

“x is a man.” 

“y is P.” 

x and y are variables, and “man” and “P” are crisp sets.  The sets of 

individuals satisfying the predicates are written by “man(x)” and “P(y)”. 

Definition (Fuzzy predicate) .A fuzzy predicate is a predicate whose 

definition contains ambiguity     

Example 8.16 For example, 

“z is expensive.” 

“w is young.” 

The terms “expensive” and “young” are fuzzy terms.  Therefore the 

sets “expensive(z)” and “young(w)” are fuzzy sets.    

When a fuzzy predicate “x is P” is given, we can interpret it in two 

ways. 

(1) P(x) is a fuzzy set.  The membership degree of x in the set P is 

defined by the membership function P(x).

(2) P(x) is the satisfactory degree of x for the property P.  Therefore, the 

truth value of the fuzzy predicate is defined by the membership 

function.

Truth value = P(x)

8.3.3 Fuzzy Modifier 

As we know, a new term can be obtained when we add the modifier “very” 

to a primary term.  In this section we will see how semantic of the new 

term and membership function can be defined. 
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Fig. 8.1. Linguistic variable “Age” 

Example 8.17 Let’s consider a linguistic variable “Age” in (Fig 8.1.)  

Linguistic terms “young” and “very young” are defined in the universal set 

U.

U = {u | u  [0,100]} 

The variable Age takes a value in the set T(Age). 

 T(Age) = {young, very young, very very young, … } 

In the figure, the term “young” is represented by a membership function 

young(u).  When we represent the term “very young”, we can use the 

square of young(u) as follows. 

very young(u) = ( young(u))2

The graph of membership function of “very young” is given in the figure.

8.4 Fuzzy Truth Qualifier 

8.4.1 Fuzzy Truth Values 

Baldwin defined fuzzy truth qualifier in the universal set V = {  | 

[0,1]} as follows.

0
25 10050 75

u

very young 

young

0.5

1

base
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T = {true, very true, fairly true, absolutely true, … , absolutely false, fairly 

false, false} 

The qualifiers in T define “fuzzy truth values” and they can be defined 

by the membership functions. If we take baldwin’s membership function 

true(v), the truth qualifiers are represented by the followig membership 

functions(Fig 8.2). 

true( ) =     [0,1] 

very true( ) = ( true( ))2  [0,1] 

fairly true( ) = ( true( ))1/2  [0,1] 

false( ) = 1 true( )  [0,1] 

very false( ) = ( false( ))2  [0,1] 

fairly false( ) = ( false( ))1/2  [0,1] 

absolutely true( ) = {
otherwise

vfor
0

11

absolutely false( ) = {
otherwise

vfor
0

01

Example 8.18 Let’s consider a predicate using the primary term “young” 

and fuzzy truth qualifier “very false” 

P = “Tom is young is very false.” 

Suppose the term “young” is defined by the function young.

Fig. 8.2. Baldwin’s truth graph

undecided
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Abs.

false

fairly 

false
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very 

true

1

1
0



208                                                          8. Fuzzy Logic 

young(u) = {
]100,25[)1(

]25,0[1

2

5
25 u

u
u

The term “very false” can be defined by the following. 

very false = (1 true(u))2

  = (1 young(u))2

  = {
]100,25[))1(1(

]25,0[0

22

5
25 u

u
u

Therefore, if Tom has age less than 25, the truth value of the predicate P 

is 0.  If he is in [25,100], the truth value is calculated from very false.

8.4.2 Examples of Fuzzy Truth Qualifier 

Example 8.19 Let’s consider a predicate P in the following. 

 P = “20 is young.” 

Assume the terms “young” and “very young” are defined as shown in 

(Fig 8.3.) 

We see the membership degree of 20 in “young” is 0.9.  Therefore, the 

truth value of the predicate P is 0.9.  Now we can modify the predicate P 

by using fuzzy truth qualifiers as follows. 

Fig. 8.3. Fuzzy sets “young” and “very young” 

0
10 20 30 40 50 60

age

0.6

0.9

1

young
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P1 = “20 is young is true.” 

P2 = “20 is young is fairly true.” 

P3 = “20 is young is very true.” 

P4 = “20 is young is false.” 

The truth values are changed according to the qualifiers as shown in 

(Fig 8.4.) 

We know already young(20) is 0.9.  That is, the truth value of P is 0.9.  

For the predicate P1, we use the membership function “true” in the figure 

and obtain the truth value 0.9.  For P2, the membership function “fairly 

true” is used and 0.95 is obtained.  In the same way, we can calculate for 

P3 and P4 and summarize the truth values in the following. 

For P1: 0.9 

 For P2: 0.95 

 For P3: 0.81 

 For P4: 0.1    

Fig. 8.4. The truth values of fuzzy proposition 
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8.5 Representation of Fuzzy Rule 

8.5.1 Inference and Knowledge Representation 

In general, the “inference” is a process to obtain new information by using 

existing knowledge.  The representation of knowledge is an important 

issue in the inference.  When we consider the representation methods, the 

following rule type “if-then” is the most popular form. 

“If x is a, then y is b.” 

The rule is interpreted as an “implication” and consists of the 

“antecedent (if part)” and “consequent (then part)”.  If a rule is given in 

the above form and we have a fact in the following form, 

“x is a” 

then we can infer and obtain new result: 

“y is b” 

based on the above discussion, we can summarize two types of 

“reasoning”.

(1) Modus ponens 

Fact:  x is a 

Rule:  If x is a, then y is b 

Result: y is b 

(2) Modus tollens 

Fact:  y is b

Rule:  If x is a then y is b 

Result: x is a

The modus ponens is used in the forward inference and the modus 

tollens is in the backward one. 

8.5.2 Representation of Fuzzy Predicate by Fuzzy Relation 

We saw that a fuzzy predicate is considered as a fuzzy set.  In this 

section, we will see how the fuzzy predicate is used in fuzzy inference.  

When there is a fuzzy predicate proposition such that “x is P”, it is 

represented by fuzzy set P(x) and whose membership function is by 

P(x)(x).  We know also a fuzzy relation is one type of fuzzy sets, and thus 

we can represent a predicate by using a relation. 

 “R(x) = P” 

P is a fuzzy set and R(x) is a relation that consists of elements in P.  

The membership function of the predicate is represented by P(x)(x) which 

shows the membership degree of x in P.  The predicate represented by a 

relation will be used in the representation of fuzzy rule and premise.
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8.5.3 Representation of Fuzzy Rule 

When we consider fuzzy rules, the general form is given in the following. 

If x is A, then y is B. 

The fuzzy rule may include fuzzy predicates in the antecedent and 

consequent, and it can be rewritten as in the form. 

If A(x), then B(y)

This rule can be represented by a relation R(x, y).

R(x, y): If A(x), then B(y)

or

R(x, y): A(x)  B(y)

If there are a rule and facts involving fuzzy sets, we can execute two 

types of reasoning. 

(1) Generalized modus ponens (GMP) 

Fact: x is A    : R(x)

Rule:   If x is A then y is B  : R(x, y)

Result: y is B    : R(y) = R(x)  R(x, y)

(2) Generalized modus tollens (GMT) 

Fact: y is B    : R(y)

Rule:   If x is A then y is B  : R(x, y)

Result: x is A    : R(x) = R(y)  R(x, y)

In the above reasoning, we see that the facts (A  and B ) are not exactly 

same with the antecedents (A and B) in the rules; the results may be also 

different from the consequents.  Therefore, we call this kind of inference 

as “fuzzy (approximate) reasoning or inference”. 

In general, when we execute the fuzzy (approximate) reasoning, we 

apply the “compositional rule of inference”.  The operation used in the 

reasoning is denoted by the notation “ ”, and thus the result is represented 

by the output of the composition when we use the GMP. 

R(y) = R(x)  R(x, y)

Example 8.20  We have knowledge such as : 

If x is A then y is B 

x is A

From the above knowledge, how can we apply the inference procedure to 

get new information about y ? 

i) We apply the implication operator to get implication relation  

R(x,y) = A B.   Here, the cartesian product A B is used. 

  R(x, y): A(x)  B(y)

ii) We manipulate the fact into the form R(x)  and then apply the 

generalized modus ponens 
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R(y) = R(x)  R(x, y)

In this step, composition operator  “ ” is used.    

Therefore, there are two issues in the fuzzy reasoning: determination of 

the “implication relation” R(x,y) and selection of the “composition 

operatior”.  These issues will be discussed in the next chapter. 
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[SUMMARY]

Classical logic 

proposition: a sentence having truth value true (1) or false (0) 

truth value: proposition  {0, 1} 

logic variable: variable representing a proposition 

Logic operation 

negation (NOT): P

conjunction (AND): a  b 

disjunction (OR): a  b 

implication ( ): a  b 

Logic function 

logic function 

logic primitive 

logic formula 

Tautology 

tautology: logic formula whose value is always true 

inference: developing new facts by using the tautology 

Deductive inference 

modus ponens 

modus tollens 

hypothetical syllogism 

Predicate logic 

predicate

predicate logic 

predicate proposition: proposition consist of predicate and object 

evaluation of proposition 

Quantifier

universal quantifier:  (for all) 

existential quantifier:  (there exists) 

Fuzzy logic 

fuzzy logic formula 

fuzzy proposition 
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truth value: fuzzy proposition  [0, 1] 

Fuzzy logic operation 

negation (NOT): P

conjunction (AND): a  b 

disjunction (OR): a  b 

implication ( ): Min(1, 1 b a)

Linguistic variable 

linguistic variable 

linguistic terms (fuzzy sets) 

Fuzzy predicate 

fuzzy predicate: predicate represented by fuzzy sets 

fuzzy truth value [0, 1] 

fuzzy modifier 

Fuzzy truth qualifier 

fuzzy truth value: true, very true, fairly true, etc. 

very true(v) = (true(v))2

value of “P is very true” is 0.81 when value of P is 0.9 

Fuzzy rule 

rule representation: if A(x) then B(y) 

rule is a relation R(x, y) 

inference: R(y) = R(x)  R(x, y) 

Fuzzy reasoning (inference) 

approximate reasoning: facts may not equal to antecedents 

generalized modus ponens 

generalized modus tollens 
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[EXERCISES]

8.1 Evaluate the following propositions. 

a) 2 + 6 = 9 

b) 3 + 4 = 7 

c) x + 5 = 7 

d) Einstein is a man. 

e) The man has no head. 

8.2 Develop the truth value of “exclusive OR”. 

8.3 Evaluate the following implication propositions. 

a) a  b where a : 2  2 = 5,  b : 3 + 3 = 6 

b) a  b where a : 3 + 4 = 6,  b : 4 + 2 = 5 

8.4 Show truth values of the logic formula. 

 ( b  (a  b)) a

8.5 Evaluate the following predicate propositions. 

a) Sophie is a woman. 

b) x is greater than 5 where x = 6. 

c) y is green where y is a tree. 

d) p belongs to me where p is a bag. 

8.6 Evaluate the following fuzzy logic formulas where a = 0.5 and b = 0.7. 

a) a = 0.4 

b)  a  b 

c)  a  b 

d)  a  b 

8.7 Define components for the linguistic variable X whose name is 

Temperature. 

 X = (Temperature, T(Temperature), U, G, M) 

8.8 Determine the truth value of the following propositions P1 and P2. 

 P1 = “P is very true” 

 P2 = “P is false” 

 where  

  P = “30 is high”,  

  the truth value of P is 0.3,  

very true = ( true)
2
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8.9 Show the following rule and fact in the form of relation and 

generalized modus ponens. 

Rule:  If A(x) then B(y) : R(x, y) 

Fact:  x is A   : R(x) 

Result: y is B(y) : R(y) = R(x)  R(x, y) 



Chapter 9. FUZZY INFERENCE 

In this chapter, we review the concepts of the extension principle and 

fuzzy relations, which expand the notions and applicability of fuzzy sets.  

By interpreting fuzzy rules as appropriate fuzzy relations, we investigate 

different schemes of fuzzy reasoning.  The inference schemes are based 

on the compositional rule of inference, and the result is derived from a set 

of fuzzy rules and given inputs.  The two important issues (determination 

of implication relation and selection of composition operator) will be 

discussed and four different inference methods will be introduced. 

 9.1 Composition of Rules 

9.1.1 Extension Principle and Composition 

As we studied in chap 3, the extension principle is a basic concept of fuzzy 

set theory that provides a general procedure for extending crisp domains of 

mathematical expressions to fuzzy domains.  This procedure generalizes 

an ordinary mapping of a function f to a mapping between fuzzy sets.  

Suppose that g is a function from X to Y, and A is a fuzzy set on X defined 

as

A = {(x1, A(x1)), (x2, A(x2)), … , (xn, A(xn))}

then the extension principle states that the image of fuzzy set A under the 

mapping f can be expressed as a fuzzy set B  Y. 

B = f(A) = {(y, B(y))} where B(y) = 
)(1

max
yfx

A(x)

We know that composition of sets is obtained by the Cartesian product 

of the sets.  We can summarize various kinds of compositions discussed 

in chap 3. 

(1) Composition of crisp sets A and B.  It can represent a relation R be-

tween the sets A and B. 

R = {(x, y) | x  A, y  B}, R  A  B
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(2) Composition of fuzzy sets A and B.  It is a relation R between A and 

B

R = {((x, y), R(x, y)) | R(x, y) = min[ A(x), B(y)] 

or R(x, y) = A(x) B(y)}. 

(3) Composition of crisp relations R and S 

S  R = {(x, z) | (x, y)  R, (y, z)  S} 

    where R  A  B, S  B  C, and S  R  A  C. 

(4) Composition of fuzzy relations R and S 

SR = S  R = {((x, y), SR(x, z))}

where )]},(),,(min[max),( zyyxzx SRySR .

The composition of fuzzy sets and relations will be elaborated in more 

detail in the next sections. 

9.1.2 Composition of Fuzzy Sets 

Composition of fuzzy sets is obtained by Cartesian product of them.  For 

the product space on fuzzy sets X and Y, there are two types of operations: 

“fuzzy conjunction” and “fuzzy disjunction” 

(1) Fuzzy conjunction: the Cartesian product on X and Y is interpreted as 

a fuzzy conjunction defined by 

YX BA yxyxBA ),()()(

where  is an operator representing a t-norm (triangle-norm), x  X, y
Y, A  X, and B  Y. 

(2) Fuzzy disjunction: the Cartesian product on X  Y is interpreted as a 

disjunction defined by 

YX BA yxyxBA ),()()(

where is an operator representing a t-conorm (or s-norm), x  X, y
Y, A  X, and B  Y. 

The min and algebraic product operators are t-norm operators, and the 

max operator is a t-conorm one. 

9.1.3 Composition of Fuzzy Relations 

As we know, unary fuzzy relations are fuzzy sets with one-dimensional 

membership functions, and binary fuzzy relations are fuzzy sets with two-

dimensional membership functions.  Applications of the fuzzy relations 
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includes areas such as fuzzy control and decision making.  A fuzzy relati-

on R  X  Y defined in the Cartesian product space X  Y is determined 

by 

R = {((x, y), R(x, y)) | (x, y)  X  Y} 

Fuzzy relations in different product spaces can be combined through a 

“composition operation” denoted by the notation “ ”.  Different 

composition operations have been suggested for fuzzy relations; we 

introduce two well known operations. 

(1) The max-min composition is defined by 

R1  R2 = {((x, z), R1 R2(x, z))}

where R1 R2(x, z) = minmax
y

[ R1(x, y), R2(y, z)] 

    = 
y
V [ R1(x, y) R2(y, z)] 

               x  X, y  Y, z  Z 

               R1  X  Y, R2  Y  Z 

(2) The max-product composition is defined by 

R1  R2 = {((x, z), R1 R2(x, z))} 

where R1 R2(x, z) = 
y

max [ R1(x, y) R2(y, z)] 

            x  X, y  Y, z  Z 

            R1  X  Y, R2  Y  Z 

The operator “ ” represents an algebraic product operation. 

9.1.4 Example of Fuzzy Composition 

Example 9.1 Let’s consider a fuzzy rule in the following. 

“x and y are approximately equal.” 

For this rule, a premise is given like 

“x is small.” 

From the above facts, we want to know the knowledge about y.  First, 

we have to define the predicates included in the premise and rule. We 

know already relation R is a set and thus the premise can be represented by 

the form of relation R(x).  We assume that the variables x and y are 

positive integers in [1,4], and 

R(x, y) = Approximately_Equal(x, y)

R(x) = Small(x)

We also assume the membership degrees of R(x) and R(x, y) are given 

in (Tables 9.1, 9.2.) 

For the fuzzy reasoning, let’s use the max-min composition operator. 

R(y) = R(x)  R(x, y)

R(y) = 
x
V [ R(x) R(x, y)] 
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Table 9.1. Membership degrees of R(x)

x 1 2 3 4 

R(x) 1 0.6 0.2 0 

Table 9.2. Membership degrees of R(x, y)

 1 2 3 4 

1 1 0.5 0 0 

2 0.5 1 0.5 0 

3 0 0.5 1 0.5 

4 0 0 0.5 1 

Through the composition operations, we obtain the result R(y) as shown 

in (Table 9.3.)  This reasoning procedure is called the fuzzy interence by 

for the generalized modus ponens. 

That is, 

 Generalized modus ponens (GMP) 

 Input:  R(x) in  (Table 9.1.) 

 Rule:  R(x, y) in (Table 9.2.) 

 Result: R(y) in (Table 9.3.)    

    Table 9.3. Membership degrees of R(y) 

y 1 2 3 4 

R(y) 1 0.6 0.5 0.2 

Example 9.2 Suppose the membership degrees of R(x) is given as shown 

in (Table 9.4.)  That is, the input is in the form of singleton value, x = 2. 

The inference result is given in (Table 9.5.) when input is given as x = 2 

The result is obtained in the form of fuzzy set.  If there is a need to 

present the output as a form of linguistic term, we have to find a linguistic 

term which is the closest to the obtained fuzzy set.

y
x
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Table9.4. Singleton input value x = 2  

   Table 9.5. Inference result when x = 2 

To find the closest, we may use the measuring technique of distance 

between fuzzy sets, and this procedure is called the “linguistic 

approximation”.  In the linguistic approximation, we try to find a 

linguistic term which has the minimum distance from the given fuzzy set. 

9.2 Fuzzy Rules and Implication 

 9.2.1 Fuzzy if-then Rules 

A fuzzy rule generally assumes the form 

R: If x is A, then y is B. 

where A and B are linguistic values defined by fuzzy sets on universe of 

discourse X and Y, respectively.  The rule is also called a “fuzzy 

implication” or fuzzy conditional statement.  The part “x is A” is called 

the “antecedent” or “premise”, while “y is B” is called the “consequence” 

or “conclusion”.  In general, the antecedent and consequence are 

represented by the form of linguistic variables discussed in the previous 

chapter.

Before we employ fuzzy if-then rules to model and analyze a system, 

first we have to formalize what is meant by the expression 

R: “If x is A then y is B”, 

which is sometimes abbreviated as 

R: A  B 

In essence, the expression describes a relation between two variables x
and y.  This suggests that a fuzzy rule can be defined as a binary relation 

R on the product space X  Y. 

X 1 2 3 4 

R(x) 0 1 0 0 

y 1 2 3 4 

R(y) 0.5 1 0.5 0 
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9.2.2 Fuzzy Implications 

Based on the interpretations of the Cartesian product and various t-norm 

and t-conorm operators, a number of qualified methods can be formulated 

to calculate the fuzzy relation 

R = A  B 

R can be viewed as a fuzzy set with a two-dimensional membership 

function

R(x, y) = f( A(x), B(y))

where the function f, called the “fuzzy implication function”, performs the 

task of transforming the membership degrees of x in A and y in B into 

those of (x, y) in A  B.  We introduce here two well known fuzzy 

implication functions. 

(1) Min operation rule of fuzzy implication [Mamdani].  It interprets the 

fuzzy implication as the minimum operation. 

             RC = A  B 

= YX A(x) B(y) / (x, y)

where  is the min operator 

(2) Product operation rule of fuzzy implication [Larsen].  It implements 

the implication by the product operation. 

              RP = A  B 

= YX A(x) B(y) / (x, y)

where  is the algebraic product operator 

When we use the conjunction for the Cartesian product on X and Y, 

Mamdani’s min fuzzy implication RC is obtained if the minimum operator 

is used for the conjunction; Larsen’s product fuzzy implication RP is 

obtained if the algebraic product is used.  The two implication functions 

RC and RP are often adopted functions in the fuzzy reasoning. 

9.2.3 Example of Fuzzy Implications 

Example 9.3 There is a fuzzy rule in the following. 

If temperature is high, then humidity is fairly high. 

It is a fuzzy rule and a fuzzy relation.  We want to determine the 

membership function of the rule.  Let T and H be universe of discourse of 

temperature and humidity, respectively, and let’s define variables t  T 

and h  H.  We represent the fuzzy terms “high” and “fairly high” by A 

and B respectively: 

A = “high”, A  T 
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B = “fairly high”, B  H 

   Table 9.6. Membership of A in T (temperature) 

t 20 30 40 

A(t) 0.1 0.5 0.9 

Table 9.7. Membership degrees of B in H (humidity) 

h 20 50 70 90 

B(h) 0.2 0.6 0.7 1 

then the above rule can be rewritten as 

R(t, h): If t is A, then h is B. 

In the rule (relation), we can find two predicate propositions: 

R(t): t is A 

R(h): h is B 

the rule becomes 

R(t, h): R(t)  R(h) 

if we know membership functions of A and B, we can determine R(t, h) = A 

 B by using the fuzzy implication function where R(t, h)  T  H.  

Assume membership functions A(t) and B(h) are given in (Tables 9.6 , 

9.7) respectively. 

In order to get the relation for the implication in the above fuzzy rule, 

we have to select an implication function between A and B.  For 

simplicity, let’s take the min operation of Mamdani in the previous section. 

          RC(t, h) = A  B 

    = A(t) B(h) / (t, h) 

when we apply the min operation on the Cartesian product A  B, we 

obtain the relation RC as shown in (Table 9.8.)  This membership of RC

represents the fuzzy rule.  Note that 
CR (20, 50) = 0.1 is obtained by the 

min between A(20) = 0.1 and B(50) = 0.6.  Similarly, 
CR (30, 20) = 

0.2 from A(30) = 0.5 and B(20) = 0.2.    

Example 9.4 Now suppose, we want to get information about the humidity 

when there is the following premise about the temperature. 

“Temperature is fairly high” 

This fact is rewritten as 
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R(t): “t is A ” where A  = “fairly high” 

where the fuzzy term A  T is defined in (Table 9.9) 

Table 9.8. Membership of rule RC = A  B 

20 50 70 90 

20 0.1 0.1 0.1 0.1 

30 0.2 0.5 0.5 0.5 

40 0.2 0.6 0.7 0.9 

    Table 9.9. Membership function of A  in T (temperature) 

t 20 30 40 

A (t) 0.01 0.25 0.81 

As we can see, A  is not same with A and thus we apply the fuzzy 

inference method of generalized modus ponens.  We use the composition 

rule of inference with the max-min composition. 

 R(h) = R(t)  RC(t, h) 

where R(t) is in (Table 9.9.) and RC(t, h) in (Table 9.8.) 

If we denote the result of the inference as B , B  is the information about 

humidity when “temperature is fairly high” (Table 9.10).    

9.3 Inference Mechanism 

9.3.1 Decomposition of Rule Base 

When we model a knowledge system, it is often represented by the form of 

“fuzzy rule base”.  The fuzzy rule base consists of fuzzy if-then rules.  

In many cases, the fuzzy reasoning on the fuzzy rule base is based on one-

level forward data-driven inference (GNP: generalized modus ponens). 

The rule base has the form of a MIMO (multiple input multiple output) 

system. 

Table 9.10. Result of fuzzy inference 

h 20 50 70 90 

B (h) 0.2 0.6 0.7 0.81 

ht
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MIMOMIMOMIMO RRRR

where
i
MIMOR  represents the rule: 

If x is Ai and y is Bi, then z1 is Ci, …, zq is Di,

The antecedent of 
i
MIMOR  forms a fuzzy set Ai  …  Bi in the 

“product space” U  …  V.  The consequence is the “union” of q 

independent control actions (z1 + z2 + … + zq).  Thus the ith rule 
i
MIMOR

may be represented as a fuzzy implication. 
i
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In effect, the rule base R is composed of a set of sub-rule-bases k
MISORB

where k = 1, 2, … , q.  The sub-rule-base k
MISORB has “multiple input” 

variables and a “single control” variable.  Therefore the general rule 

structure of a MIMO fuzzy system can be represented as a collection of 

MISO fuzzy systems. 

 },,,,,{ 21 q
MISO

k
MISOMISOMISO RBRBRBRBR

where
k
MISORB represents the rule: 

If x is Ai and … , and y is Bi then zk is Ci,    for i = 1, 2, … , n 
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9.3.2 Two-Input/Single-Output Rule Base 

For simplicity, let’s consider the general form of MISO fuzzy control rules 

in the case of two-input/single-output systems. 

   Input: u is A  and v is B

     R1: if u is A1 and v is B1 then is w is C1

else R2: if u is A2 and v is B2 then is w is C2

   

   

else Rn: if u is An and v is Bn then is w is Cn

consequence: w is C

where u, v, and w are linguistic variables representing the process state 

variables and the control variables, respectively.  Ai, Bi, and Ci are 

linguistic values of the linguistic variables u, v, and w in the universe of 

discourse U, V, and W respectively for i=1, 2, … , n. 

The fuzzy control rule 

 Ri: If u is Ai and v is Bi then w is Ci

is implemented as a fuzzy implication relation Ri and is defined as 

 Ri: (Ai and Bi)  Ci or

)()]()([

),,()(

wvandu

wvu

iii

iiii

CBA

CBandAR

where “Ai and Bi” is a fuzzy set Ai  Bi in U  V. 

Ri: (Ai and Bi)  Ci is a fuzzy implication relation in U  V  W, and 

 denotes a fuzzy implication function. 

9.3.3 Compositional Rule of Inference 

Let’s consider a single fuzzy rule and its inference (GMP: generalized 

modus ponens). 

 R1: if v is A then w is C 

        Input: v is A

Result: C

A  U, C  W, v  U, and w  C.  The fuzzy rule is interpreted as an 

implication (A  C) and which is defined in the product space U  W. 

 R1 : A  C  or  R1 = A  C 

 R1  U  W 

When the input A  is given to the inference system, the output C  is 

obtained through the inference operation denoted by the composition 

operator “ ”.

 C  = A  R1
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This inference procedure is called as the “compositional rule of 

inference”.  Therefore in real systems, the inference is determined by two 

factors: the “implication operator” and “composition operator”.  As we 

saw in the previous section, for the implication in the Cartesian product 

space R = A  C, the two operators are often used: 

 Mamdani implication (RC): min operator 

 Larsen implication (RP): algebraic product operator 

for the composition, we have introduced also two operators. 

 Mamdani composition: max-min 

 Larsen composition: max-product 

The following lemmas will show the inference mechanism when a 

simple fuzzy rule is given. 

Lemma 1 (For 1 singleton input, result C  is obtained from C and 

matching degree 1, Fig 9.1) 

When a fuzzy rule R1 and singleton input u0 are given 

 R1: If u is A then w is C,

 Or  R1: A C
The inference result C  is defined by the membership function C (w)

C (w) = 1 C(w) for RC (Mamdani implication) 

C (w) = 1 C(w) for RP (Larsen implication) 

 where 1 = A(u0)

(Proof) )()(),(
1

wuwu CAR

By the compositional rule of inference, 

C  = A  (A C) = A  R1

In this case, A  = u0

C (w) = 0  ( A(u) C(w))

       = A(u0) C(w)

i) If we apply min operator for the implication, 

)()(

)](),(min[)(

011

0

uwherew
wuw

AC

CAC

ii) If we use Larsen’s product operator for the implication, 

)()(

)()(

)()()(

011

0

0

uuwherew
wu

wuw

AC

CA

CAC

The 1 is called the “matching degree”, “satisfaction degree”, or “firing 

strength”.

Lemma 2: (For 1 fuzzy input, result C  is obtained from C and matching 

degree 1, Fig 9.2) 

When a fuzzy rule R1: A C and input A  are given, the inference result 

C  is defined by the membership function C .
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A C

u wu0

1

A                    C 

C’

Fig. 9.1. Graphical representation of Lemma 1 with RC

(When a singleton input is given, C  is obtained from C and 1)

C (w) = 1 C(w)  for RC

C (w) = 1 C(w)  for RP

where 1 =
u

max [ A (u) A(u)]

(Proof) For RC, we apply the minimum operator for the implication and the 

max-min for the composition. 

C  = A  (A C)

   = A  (A C)

   = A  R1

 )]()([)](),(min[),(
1

wuwuwu CACAR

)]}()([)({max

)},()({max

)},()({))}()(()({)(

1

1

wuu

wuu

wuuwuuw

CAAu

RAu

RACAAC

As we know, the max and min operators are associative and thus 

)]()([max)(

)()]()([max

)}()]()({[max)(

11 uuwherew

wuu

wuuw

AAuC

CAAu

CAAuC

Similarly, we can apply the Larsen product RP and obtain the above 

result.

9.3.4 Fuzzy Inference with Rule Base 

In this section, we generalize the properties of compositional rule of 

inference discussed in the previous section to the case such as: 
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Fig. 9.2. Graphical representation of Lemma 2 with RC

(When a fuzzy set input is given, C  is obtained from C and 1)

R:
n

i
U

1
Ri

Ri: Ai  Ci

Note that there are connectives “also” or “else” between the rules.  

Let’s see how the connectives are interpreted when we consider the max-

min for the composition operator. 

We will see that the operators are commutative and thus the fuzzy 

control action is considered as the aggregated result derived from 

individual control rules.  That is, the connectives are implemented as max 

operations.  Furthermore, we shall also see the same properties even with 

the max-product operator for the composition. 

Lemma 3 (Total result C  is an aggregation of individual results iC , Fig 

9.3)

The result of inference C is an aggregation of result iC derived from 

individual rules. 

i
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The membership function C  of the fuzzy set C  is pointwise defined for 

all w  W by 

)],(,),,(),,([max)()(
21,

wuwuwuuw
nRRRwuAC

we replace the  operator by max-min operator, and then 

C

A C

u w

A C
1
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We saw that the result C  is an union (aggregation) of result Ci  from 

individual rules.  That is, 

iC

n

iC w
1

V)(

R1: A1 C1

Fig. 9.3. Lemma 3 (Total result C is a union of individual result Ci  ) 
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R2: A2 C2

Fig. 9.3. (cont’) 

Now, we generalize Lemma 3 to the case of multiple input variables 

such as 

 R:
n

i
U

1
Ri

 Ri: Ai and Bi  Ci

Colorally of Lemma 3: (Lemma 3 in the case of multiple inputs) 

The result of inference C is an aggregation of result iC derived from 

individual rules. 
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we replace the  operator by max-min operator, and then 
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Lemma 4: (Ri: (Ai Bi Ci) consists of Ri
1: (Ai Ci) and Ri

2: (Bi Ci),

Fig 9.4) 

When there is a rule Ri with two inputs variables Ai and Bi, the inference 

result Ci  is obtained from individual inferences of Ri
1: (Ai Ci) and Ri

2:

(Bi Ci).
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(Proof) We prove the lemma in the case of RC.
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If we replace  operator by the max-min operator, 
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Hence we have 
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This means that the inference result Ci  is obtained by the intersection 

between individual inferences  

A  (Ai  Ci) and B  (Bi  Ci).  Therefore, in the next lemma, we 

will show that we can apply min operator between )( 0u
iA  and )( 0v

iB

where there are two singleton inputs u0 and v0.

Lemma 5: (For singleton input, iC is determined by the minimum match- 

ing degree of Ai and Bi, Fig 9.5) 

If the inputs are fuzzy singletons, namely, A  = u0, B  = v0, the 

matching degree i is the minimum value between . Ai(u0) and Bi(v0)

from the lemma 1, the inference result can be derived by employing 

Mamdani’s minimum operation rule RC and Larsen’s product operation 

rule RP for the implication. 
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Ri: Ai Bi Ci

Ri
1: Ai Ci

Ri
2: Bi Ci

Fig. 9.4. Lemma 4 (Rule Ri can be decomposed into Ri
1 and Ri

2 and the result 

Ci  of Ri is an intersection of the results Ci
1 and Ci

2 of Ri
1 and Ri

2, respectively.) 
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1. If we use the Mamdani’s minimum operation for the implication, 
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2. If we use the Larsen’s product operator for the implication, 
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Lemma 6: (For fuzzy input, Ci  is determined by the minimum matching 

degree of (A  and Ai) and (B  and Bi), Fig 9.6) 

If the inputs are given as fuzzy sets A  and B , the matching degree i is 

determined by the minimum between (A  and Ai) and (B  and Bi).  From 

the lemma 2, the results can be derived by employing the min operation for 

RC and the product operation for RP.

Fig. 9.5. Lemma 5 ( i is the minimum matching degree between Ai(u0) and Bi(v0).) 
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If we apply the min for the implication (Cartesian product for RAC and 

RBC) and the max-min for the composition, from Lemma 2, we have 
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where

where

Similarly, we can prove the lemma when the product is used for the 

implication and the max-product for the composition (RP).

Therefore, from the lemmas, we can state 
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1

1

where the matching degree (weighting factor, satisfaction factor, firing 

strength) i is a measure of the contribution of the ith rule to the fuzzy 

control action.    

9.4 Inference Methods 

Based upon the previous lemmas, now we develop inference methods. 
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Fig. 9.6. Lemma 6 ( i is the minimum matching degree between 

 (A  and Ai) and (B  and Bi).) 

For example, we consider two fuzzy control rules. 

 R1: if u is A1 and v is B1 then w is C1

 R2: if u is A2 and v is B2 then w is C2

Ai, Bi, and Ci are defined in U,V, and W, respectively, for i = 1, 2, u  U, v
 V, and w  W. 

The inputs are usually measured by sensors and are crisp.  In some 

cases it may be expedient to convert the input data into fuzzy sets.  In 

general, however, a crisp value may be treated as a fuzzy singleton. 

(1) Singleton input 

If the input are given as singleton values, the matching degrees (firing 

strengths) 1 and 2 of the first and second rules may be expressed as 

)()(

)()(

002

001

22
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vu

vu

BA

BA

where )( 01
uA  and )( 02

vB  are the degrees of partial match between 

the user-supplied data (u0 and v0) and the data (Ai and Bi) in the rule base. 

(2) Fuzzy input 

If the input are given as fuzzy sets A  and B , the matching degrees i of 

rules are 

2,1

))]()((max)),()((maxmin[

ifor

vvuu
ii BBvAAui

We see that the matching degrees are obtained through the minimum 

operation in the Cartesian product.  These relations play a key role in the 

following four inference methods. 

Ai Bi Ci

u v w

min

i

A B
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9.4.1 Mamdani Method

This method uses the minimum operation RC as a fuzzy implication and 

the max-min operator for the composition.  Let’s suppose a rule base is 

given in the following form. 

Ri: if u is Ai and v is Bi then w is Ci,  i = 1, 2, …, n 

for u  U, v  V, and w  W. 

then, Ri = (Ai and Bi) Ci is defined by 

),,()( wvu
iiii CBandAR

(1) When input data are singleton u = u0, v = v0

)()]()([)( 00 wvanduw
iiii CBAC

The Mamdani method uses the minimum operation ( ) for the fuzzy 

implication ( ).  From lemma 5, 

)()( ww
ii CiC

)()( 00 vuwhere
ii BAi

From the previous Lemma 3, we know the membership function C of 

the inferred consequence C is given by the aggregated result derived from 

individual control rules.  Thus, when there are two rules R1 and R2,

)]([)]([

)(

21

21

21 ww

w

CC

CCC

The procedure of Mamdani fuzzy inference when the inputs are given as 

singletons is represented in (Fig 9.7). 

Fig. 9.7. Graphical representation of Mamdani method with singleton input 
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Therefore in general, from Lemma 3, 
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(2) When input data are fuzzy sets, A  and B
From Lemma 6, 
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From Lemma 3, we have the aggregated result 
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The graphical interpretation of this inference is given in Fig 9.8.  

Fig. 9.8. Graphical interpretation of Mamdani method with fuzzy set input 

The result C  is a fuzzy set and thus if we want to obtain a deterministic 

control action, a defuzzification method is used which will be discussed in 

the next chapter. 

Example 9.5 There is a fuzzy rulebase including one rule such as :  

  R: If u is A then v is B 

where A=(0, 2, 4) and B=(3, 4, 5) are triangular fuzzy sets. 

0
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If an input is given as singleton value u0=3, how can we calculate the 

output B  using the Mamdani method?   

We can see the matching degree between A and u0 is =0.5 Therefore 

the output B  is obtained by the intersection between B and =0.5. That is, 

B  is expressed by the lower area of 0.5 in B(Fig.9.9).  

Now, consider the case that input is given as a triangular set A =(0, 1, 

2) . That is,  

A (x) = x for 0 x 1

      = -x+2 for 1 x 2

     = 0  otherwise 

We can obtain the mathching degree =2/3 and then B  is the lower part 

of 2/3 in B (Fig 9.10).    

Fig. 9.9. Fuzzy inference with input u0=3

Fig. 9.10. Fuzzy inference with input A =(0, 1, 2). 
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9.4.2 Larsen Method 

This method uses the product operator RP for the fuzzy implication and the 

max-product operator for the composition.  For the following rule base, 

Ri: if u is Ai and v is Bi then w is Ci,  i = 1, 2, … , n 

then

iiii CBandAR )(  is defined by 

),,()( wvu
iiii CBandAR

(1) When the singleton input data are given as u = u0, v = v0, from 

Lemma 5 we have 
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From Lemma 3, 
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The graphical representation of this method with singleton input is given 

in (Fig 9.9) 

(2) When the input data are given as the form of fuzzy sets A  and B ,

from Lemma 6, we know 
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From Lemma 3, we have 
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The graphical interpretation of this inference is shown in (Fig 9.10.) 
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Fig. 9.11. Graphical representation of Larsen method with singleton input 

Fig. 9.12. Graphical representation of Larsen method with fuzzy set input 
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Example 9.6  There is a fuzzy rule  

  R : if u is A and v B then w is C 

  where  A=(0, 2, 4), B=(3, 4, 5) and C=(3, 4, 5) 

i) Find inference result C  when input is u0 =3, v0=4 by using Larsen 

method

ii) Find inference result C  when input is A=(0, 1, 2) and B=(2, 3, 4). 

The solutions are illustrated in (Figs 9.13 , 9.14), respectively. 

Fig. 9.13. Larsen method with input u0 =3, v0=4

Fig. 9.14. Larsen method with input A =(0, 1, 2), B =(2, 3, 4). 
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9.4.3 Tsukamoto Method 

In this method, the consequence of each fuzzy rule is represented by a 

fuzzy set with a monotonic membership function, as shown in (Fig 9.5.)  

The rule base has the form as: 

 Ri: if u is Ai and v is Bi, then w is Ci,  i = 1, 2, … , n 

where )(w
iC  is a monotonic function. 

As a result, the inferred output of each rule is defined as a crisp value 

induced by the rule’s matching degree (firing strength).  The overall 

output is taken as the weighted average of each rule’s output. 

We suppose that the set Ci has a monotonic membership function 

)(w
iC  and that i is the matching degree of ith rule. 

(1) For the singleton input (u0, v0)

)()( 00 vu
ii BAi

(2) For the fuzzy set input (A , B )

))]()((max),()((maxmin[ vvuu
ii BBvAAui

Then the result of ith rule is obtained by 
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Fig. 9.15. Graphical representation of Tsukamoto method 
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)(
1

iCi
i

w

The final result is derived from the weighted average like in the 

following when there are two rules. 

21
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Since each rule infers a crisp result, the Tsukamoto fuzzy model 

aggregates each rule’s output by the weighted average method.  

Therefore, it avoids the time-consuming process of defuzzification. 

9.4.4 TSK Method 

This method was proposed by Takagi, Sugeno, and Kang.  A typical 

fuzzy rule in this model has the form 

If u is A and v is B then w = f(u, v),

A and B are fuzzy sets in the antecedent while w = f(u, v) is a crisp 

function in the consequent.  Usually f(u, v) is a polynomial in the input 

variable u and v, and thus this method works when inputs are given as 

singleton values (Fig 9.16). 

For simplicity, assume we have two fuzzy rules as follows. 

 R1: if u is A1 and v is B1 then w = f1(u, v) = p1u + q1v + r1

 R2: if u is A1 and v is B1 then w = f2(u, v) = p2u + q2v + r2

 where p1, p2, q1, and q2 are constant. 

The inferred value of the control action from the first rule is f1(u0, v0)

where u0 and v0 are singleton inputs, and 1 is the matching degree.  The 

inferred value from the second is f2(u, v) with the matching degree 2.

The matching degrees are obtained like in the previous methods. 

)()( 00 vu
ii BAi

They are all crisp values.  The aggregated result is given by the 

weighted average. 
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This method also saves the defuzzification time because the final result 

w0 is a crisp value. 
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Fig. 9.16. Graphical representation of TSK method 
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[SUMMARY]

Composition 

composition of crisp sets (Cartesian product) 

composition of fuzzy sets 

composition of crisp relations 

composition of fuzzy relations 

Composition of fuzzy sets (Fuzzy Cartesian product) 

Fuzzy conjunction 

Fuzzy disjunction 

Composition of fuzzy relations 

max-min compositions 

max-product composition 

Fuzzy rule 

Form: if x is A, then y is B 

Fuzzy implication: A  B 

Relation R(x, y): A  B 

Interpretation of fuzzy implication 

Min operation: RC

Product operation: RP

Decomposition of rule base 

Fuzzy rule base }RU{R i
MIMO

n

i 1

},,, 21

1

q
MISOMISOMISO

i
MIMO

n

i
RBRB{RB}RU{

)()(: 1 qii
i
MIMO zzBAR

kii
k
MISO zBAR )(:

Compositional rule of inference 

Implication R: A  B,  R = A  B 

Composition operator: B  = A  R 

Mamdani implication and composition 

Implication: min operator 
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Composition: max-min 

Larsen implication and composition 

Implication: algebraic product 

Composition: max-product 

Inference with fuzzy rule base 

Lemma 1: For 1 singleton input, result C  is obtained from C and 

matching degree 1.

)(

)()(

01

1

uwhere
ww

A

CC

Lemma 2: For 1 fuzzy input, result C  is obtained from C and 

matching degree 1.
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Lemma 3: Total result C  is an aggregation of individual result Ci .
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i
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Lemma 4: (Ai Bi Ci) consists of (Ai Ci) and (Bi Ci).
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Lemma 5: For singleton input, Ci  is from i and Ci.
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Lemma 6: For fuzzy input, Ci  is from i and Ci
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Inference method 

Mamdani method: RC

singleton input 

fuzzy set input 

Larsen method: RP

singleton input 

fuzzy set input 

Tsukamoto method 

The membership function of fuzzy set in the consequent is a 

monotonic function. 

Final result is a weighted average of individual rules’ outputs 
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TSK method 

The consequent part is a crisp function of input variables. 

Final result is a weighted average of individual rules’ outputs. 
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[EXERCISES]

9.1 Explain the following compositions with examples 

a) Composition of crisp sets 

b) Composition of fuzzy sets 

c) Composition of crisp relations 

d) Composition of fuzzy relations 

9.2 Enumerate and explain the operators for the composition of fuzzy 

relations

9.3 There is a fuzzy rule such as 

If x is A and y is B then z is C 

 Define the relation R(x, y, z) of the implication A  B  C with fuzzy 

implication operators (min and product operators).  You can define it 

by giving the membership function R(x, y, z) of the relation. 

9.4 There are a fuzzy rule and fuzzy sets. 

  R: If x is A then y is C.   

   or   R: A(x)  C(y)

A a1 a2 a3 a4

A 0.2 0.4 0.6 0.8

C y1 y2 y3

C 0.4 0.6 0.9

Calculate the implication relations R(x, y) by using the min and product 

operators.

9.5 There is a fact A  given for the rule in the above exercise. 

A a1 a2 a3 a4

A 0.5 0.6 0.7 1.0 

Calculate the output C  when you apply composition operations to the 

fact A  and the rule.R(x,y)

9.6 Prove the following equation and show its interpretation. 
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9.7 What is the compositional rule of inference? 

9.8 Introduce operators which you can apply for the compositional rule of 

inference.

9.9 Explain meanings of the 5 Lemmas in this chapter. 

9.10 What is the matching degree of inference?  Define the matching 

degree  in the following cases 

a) Ri: Ai  Ci; singleton input u0 is given. 

b) Ri: Ai  Ci; fuzzy set input A  is given. 

c) Ri: Ai  Bi  Ci; singleton inputs u0 and v0 are given. 

d) Ri: Ai  Bi  Ci; fuzzy set inputs A  and B  are given. 

9.11 There are the following rules and fuzzy set inputs A  and B .
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n

i

CBandAR

RUR

:

:
1

 Prove the following equation. 
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9.12 Show contributions of each Lemma in the chapter to the Mamdani 

inference method. 

9.13 What is the difference between Tsukamoto method and TSK method. 

9.14 Can we use the same matching degree i for Mamdani, Larsen, and 

Tsukamoto methods when there are same rule base and inputs? 

9.15 There is a fuzzy rulebase with only one rule: 

  R: if x is A and y is b then z is C,  

  where A=(0,1,2), B=(1,2,3) and C=(5,6,7). 

  are triangular fuzzy sets. 

a) Calculate the output fuzzy set when input is given as x0=1 and 

y0=1.5.



252                                                        9. Fuzzy Inference 

b) Find the output fuzzy set when input is given as  

A =(1,2,3)  and  B =(1.5,2.5,3.5) 



Chapter 10. FUZZY CONTROL AND FUZZY 

EXPERT SYSTEMS 

The fuzzy logic controller (FLC) is introduced in this chapter.  After 

introducing the architecture of the FLC, we study its components step by 

step and suggest a design procedure of the FLC.  An example of the 

design procedure is also given.  The structure and function of the fuzzy 

expert systems are similar to those of the FLC, and thus the design 

procedure of FLC can be used in the fuzzy expert systems. 

10.1 Fuzzy Logic Controller 

10.1.1 Advantage of Fuzzy Logic Controller 

Fuzzy logic is much closer in spirit to human thinking and natural 

language than the traditional (classical) logical systems.  Basically, it 

provides an effective means of capturing the approximate, inexact nature 

of the real world.  Therefore, the essential part of the fuzzy logic 

controller (FLC) is a set of linguistic control strategy based on expert 

knowledge into an automatic control strategy. 

The FLC is considered as a good methodology because it yields results 

superior to those obtained by conventional control algorithms.  In 

particular the FLC is useful in two cases. 

(1) The control processes are too complex to analyze by conventional 

quantitative techniques. 

(2) The available sources of information are interpreted qualitatively, 

inexactly, or uncertainly. 

Indeed, the advantage of FLC can be summarized as follows. 

(1) Parallel or distributed control: in the conventional control system, a 

control action is determined by single control strategy like  = f(x1, x2,

… , xn).  But in FLC, the control strategy is represented by multiple 

fuzzy rules, and thus it is easy to represent complex systems and 

nonlinear systems. 
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(2) Linguistic control: the control strategy is modeled by linguistic 

terms and thus it is easy to represent the human knowledge. 

(3) Robust control: there are more than one control rule and thus, in 

general, one error of a rule is not fatal for the whole system. 

10.1.2 Configuration of Fuzzy Logic Controller 

There is no systematic procedure for the design of an FLC.  However we 

can present here a basic configuration of FLC as shown in (Fig 10.1.).  

The configuration consists of four main components: fuzzification 

interface, knowledge base, decision-making logic, and defuzzification 

interface.

(1) The fuzzification interface transforms input crisp values into fuzzy 

values and it involves the following functions. 

Receives the input values 

Transforms the range of values of input variable into corresp-

onding universe of discourse 

Converts input data into suitable linguistic values (fuzzy sets). 

This component is necessary when input data are fuzzy sets in the fuzzy 

inference.

Fig. 10.1. Configuration of FLC 
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(2) The knowledge base contains a knowledge of the application 

domain and the control goals.  It consists of a data base and a 

linguistic rule base. 

The data base contains necessary definitions which are used in 

control rules and data manipulation. 

The linguistic rule base defines the control strategy and goals by 

means of linguistic control rules. 

(3) The decision-making logic performs the following functions 

simulates the human decision-making procedure based on fuzzy 

concepts

Infers fuzzy control actions employing fuzzy implication and 

linguistic rules. 

(4) The defuzzification interface the functions 

A scale mapping which converts the range of output values into 

corresponding universe of discourse 

Defuzzification which yields a nonfuzzy control action from an 

inferred fuzzy control action. 

In the following sections, the control components will be developed in 

detail.

10.1.3 Choice of State Variables and Control Variables 

Before starting the detailed procedure of the FLC design, we have to choo- 

se the variables.  A fuzzy control system is designed to control a pr ocess, 

and thus it is needed to determine state variables and control variables of 

the process.  The state variables become input variables of the fuzzy cont- 

rol system, and the control variables become output variables.  Selection 

of the variables depends on expert knowledge on the process.  In particul- 

ar, variables such as state, state error, state error deviation, and state error 

integral are often used. 

10.2 Fuzzification Interface Component 

In the fuzzification component, there are three main issues to be 

considered: scale mapping of input data, strategy for noise and selection of 

fuzzification functions. 

(1) Scale mapping of input data: We have to decide a strategy to convert 

the range of values of input variables into corresponding universe of 

discourse. When an input value is come through a measuring system, 

the values must be located in the range of input variables.  For 

example, if the range of input variables was normalized between –1 
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and +1, a procedure is needed which maps the observed input value 

into the normalized range. 

(2) Strategy for noise: When observed data are measured, we may often 

think that the data were disturbed by random noise.  In this case, a 

fuzzification operator should convert the probabilistic data into fuzzy 

numbers.  In this way, computational efficiency is enhanced since 

fuzzy numbers are much easier to manipulate than random variables.  

Otherwise, we assume that the observed data do not contain vagueness, 

and then we consider the observed data as a fuzzy singleton.  A fuzzy 

singleton is a precise value and hence no fuzziness is introduced by 

fuzzification in this case.  In control applications, the observed data 

are usually crisp and used as fuzzy singleton inputs in the fuzzy 

reasoning.

(3) Selection of fuzzification function: A fuzzification operator has the 

effect of transforming crisp data into fuzzy sets. 

x = fuzzifier (x0)

Where x0 is a observed crisp value and x is a fuzzy set, and fuzzifier 

represents a fuzzification operator. 

(Fig 10.1) shows a fuzzification function which transforms crisp data 

into a fuzzy singleton value. 

(Fig 10.2) shows a fuzzification function transforming a crisp value into 

a triangular fuzzy number.  The peak point of this triangle corresponds to 

the mean value of a data set, while the base is twice the standard deviation 

of the data set. 

Fig. 10.2. Fuzzification function for fuzzy singleton
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Fig. 10.3. Fuzzification function for fuzzy triangular number 

10.3 Knowledge Base Component 

10.3.1 Data Base 

The knowledge base of an FLC is comprised of two parts: a data base and 

a fuzzy control rule base.  We will discuss some issues relating to the data 

base in this section and the rule base in the next section. 

In the data base part, there are four principal design parameters for an 

FLC: discretization and normalization of universe of discourse, fuzzy 

partition of input and output spaces, and membership function of primary 

fuzzy set. 

(1) Discretization and normalization of universe of discourse 

The modeling of uncertain information with fuzzy sets raises the 

problem of quantifying such information for digital computers.  A 

universe of discourse in an FLC is either discrete or continuous.  If the 

universe is continuous, a discrete universe may be formed by a 

discretization procedure.  A data set may be also normalized into a 

certain range of data. 

1). Discretization of a universe of discourse: It is often referred to as 

quantization.  The quantization discretizes a universe into a certain 

number of segments.  Each segment is labeled as a generic element and 
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forms a discrete universe.  A fuzzy set is then defined on the discrete 

universe of discourse.  The number of quantization levels affects an 

important influence on the control performance, and thus it should be 

large enough to give adequate approximation.  That number should be 

determined in considering both the control quality and the memory 

storage in computer. 

For the discretization, we need a scale mapping, which serves to  

transform measured variables into values in the discretized universe.  

The mapping can be uniform (linear), nonuniform (nonlinear), or both. 

(Table 10.1) shows an example of discretization, where a universe of 

discourse is discretized into 13 levels (-6, -5, -4, … , 0, 1, … , 5, 6). 

2). Normalization of a universe of discourse: It is a discretization into 

a normalized universe.  The normalized universe consists of finite 

number of segments.  The scale mapping can be uniform, nonuniform, 

or both.  (Table 10.2) shows an example, where the universe of 

discourse [-6.9, +4.5] is transformed into the normalized closed interval 

[-1, 1]. 

Table 10.1 An example of discretization 

Range Level No. 

x 2.4 6

2.4  x 2.0 5

1.6  x 0.8 4

0.8  x 0.4 3

0.4  x 0.2 2

0.2  x 0.1 1

0.1  x  +0.1 0

0.1  x 0.2 1

0.2  x 0.4 2

0.4  x 0.8 3

0.8  x 1.1 4

1.1  x 1.4 5

1.4  x 6
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Table 10.2. An example of normalization 

Range Normalized 

segments 

Normalized 

universe

[ 6.9, 4.1] [ 1.0, 0.5] 

[ 4.1, 2.2] [ 0.5, 0.3] 

[ 2.2, 0.0] [ 0.3, 0.0] [ 1.0, 1.0] 

[ 0.0, 1.0] [0.0, 0.2] 

[ 1.0, 2.5] [ 0.2, 0.6] 

[ 2.5, 4.5] [ 0.6, 1.0] 

3). Normalization of a universe of discourse: It is a discretization into 

a normalized universe.  The normalized universe consists of finite 

number of segments.  The scale mapping can be uniform, nonuniform, 

or both.  (Table 10.2) shows an example, where the universe of 

discourse [-6.9, +4.5] is transformed into the normalized closed interval 

[-1, 1]. 

(2) Fuzzy partition of input and output spaces 

A linguistic variable in the antecedent of a rule forms a fuzzy input 

space, while that in the consequent of the rule forms a fuzzy output space.  

In general, a linguistic variable is associated with a term set.  A fuzzy 

partition of the space determines how many terms should exist in a term 

set.  This is the same problem to find the number of primary fuzzy sets 

(linguistic terms). 

There are seven linguistic terms often used in the fuzzy inference: 

NB: negative big 

NM: negative medium 

NS: negative small 

ZE: zero 

PS: positive small 

PM: positive medium 

PB: positive big 
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(a) N: negative, Z: zero, P: positive 

(b) NB, NM, NS, ZE, PS, PM, PB 

Fig. 10.3. Example of fuzzy partition with linguistic terms 

A typical example is given in (Fig 10.3) representing two fuzzy partition 

in the same normalized universe [ 1, 1].  Membership functions with 

triangle and trapezoid shapes are used here. 

The number of fuzzy terms in a input space determines the maximum 

number of fuzzy control rules.  Suppose a fuzzy control system with two 

input and one output variables. If the input variables have 5 and 4 terms, 

the maximum number of control rules that we can construct is 20 (5  4) as 

shown in (Fig 10.4.).  (Fig 10.5) shows an example of system having 3 

fuzzy rules. 

A fuzzy control system could always infer a proper control action for 

every state of process.  This property is concerned with the supports on 

which primary fuzzy sets are defined.  The union of these supports should 

cover the related universe of discourse in relation to some level.  For 

example, in (Fig 10.3), any input value is included to at least one linguistic 

term with membership value greater than 0.5. 

11 0

Z
PN

1 0 1

NM PS PM PBNS ZENB
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Fig. 10.4. A fuzzy partition in 2-dimension input space 

Fig. 10.5. A fuzzy partition having three rules 

(3) Membership function of primary fuzzy set 

There are various types of membership functions such as triangular, 

trapezoid, and bell shapes.  (Table 10.3) shows an example defining 

triangular membership functions on the discretized universe of discourse 

in (Table 10.1.)  For example, term NM is defined such as: 

NM( 6) = 0.3 

NM( 5) = 0.7 

NM( 4) = 1.0 

NM( 3) = 0.7 

NM( 2) = 0.3 

NB NS ZO PS PB

NB

NS

ZO

PS

x1

x2

x1

x2

big

small 

bigsmall
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Table 10.3. Definition of triangular membership function 

Level No. NB NM NS ZE PS PM PB

6 1.0 0.3 0.0 0.0 0.0 0.0 0.0

5 0.7 0.7 0.0 0.0 0.0 0.0 0.0

4 0.3 1.0 0.3 0.0 0.0 0.0 0.0

3 0.0 0.7 0.7 0.0 0.0 0.0 0.0

2 0.0 0.3 1.0 0.3 0.0 0.0 0.0

1 0.0 0.0 0.7 0.7 0.0 0.0 0.0

0 0.0 0.0 0.3 1.0 0.3 0.0 0.0

1 0.0 0.0 0.0 0.7 0.7 0.0 0.0

2 0.0 0.0 0.0 0.3 1.0 0.3 0.0

3 0.0 0.0 0.0 0.0 0.7 0.7 0.0

4 0.0 0.0 0.0 0.0 0.3 1.0 0.3

5 0.0 0.0 0.0 0.0 0.0 0.7 0.7

6 0.0 0.0 0.0 0.0 0.0 0.3 1.0

An example of bell shaped membership function is given in (Table 10.4) 

and (Fig 10.6), where fuzzy sets are defined on the normalized universe of 

discourse [ 1, 1] given in (Table 10.2.)  They have the shapes of functi- 

on of parameter mean mf and standard deviation f.

   }
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f

f
f
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10.3.2 Rule Base 

A fuzzy system is characterized by a set of linguistic statements usually 

represented by in the form of “if-then” rules.  In this section, we examine 

several topics related to fuzzy control rules. 
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Table 10.4. Definition of bell-shaped membership function 

Normalized 

universe

Normalized 

segments

mf f Fuzzy sets

[ 1.0, 0.5] 1.0 0.4 NB 

[ 0.5, 0.3] 0.5 0.2 NM 

[ 0.3, 0.0] 0.2 0.2 NM 

[ 1.0, 1.0] [ 0.0, 0.2] 0.0 0.2 ZE 

[ 0.2, 0.6] 0.2 0.2 PS 

[ 0.6, 0.8] 0.5 0.2 PM 

 [+0.8, +1.0] 1.0 0.4 PB 

Fig. 10.6. Example of bell-shaped membership function 

(1) Source of fuzzy control rules 

There are two principal approaches to the derivation of fuzzy control 

rules.  The first is a heuristic method in which rules are formed by 

analyzing the behavior of a controlled process.  The derivation relies on 

the qualitative knowledge of process behavior.  The second approach is 

basically a deterministic method which can systematically determine the 

linguistic structure of rules. 

We can use four modes of derivation of fuzzy control rules.  These 

four modes are not mutually exclusive, and it is necessary to combine them 

to obtain an effective system. 

Expert experience and control engineering knowledge: operating 

manual and questionnaire. 

Based on operators’ control actions: observation of human 

controller’s actions in terms of input-output operating data. 

Based on the fuzzy model of a process: linguistic description of the 

dynamic characteristics of a process. 

NS ZE

1 10

NM PS PM PBNB
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Based on learning: ability to modify control rules such as self-

organizing controller. 

(2) Types of fuzzy control rules 

There are two types of control rules: state evaluation control rules and 

object evaluation fuzzy control rules. 

1). State evaluation fuzzy control rules: State variables are in the 

antecedent part of rules and control variables are in the consequent 

part.  In the case of MISO (multiple input single output), they are 

characterized as a collection of rules of the form. 

R1: if x is A1, … and y is B1 then z is C1

R2: if x is A2, … and y is B2 then z is C2

…

Rn: if x is An, … and y is Bn then z is Cn

where x, … y and z are linguistic variables representing the process 

state variable and the control variable.  Ai, … Bi and Ci are linguistic 

values of the variables x, … y and z in the universe of discourse U, … 

V and W, respectively i = 1, 2, … , n.  That is, 

x  U, Ai  U 

…

y  V, Bi  V 

z  W, Ci  W 

In a more general version, the consequent part is represented as a 

function of the state variable x, … y.

Ri: if x is Ai, … and y is Bi then z = fi(x, … y)

The state evaluation rules evaluate the process state (e.g. state, 

state error, change of error) at time t and compute a fuzzy control 

action at time t.
In the previous section concerned with the fuzzy partition of input 

space, we said that the maximum number of control rules is defined 

by the partition.  In the input variable space, the combination of 

input linguistic term may give a fuzzy rule.  When there is a set of 

fuzzy rules as follows 

Ri: if x is Ai, and y is Bi then z is Ci

i = 1, 2, … , n 

the rules can be represented as the form of table in (Fig 10.7.) 

2). Object evaluation fuzzy control rules: It is also called predictive 

fuzzy control.  They predict present and future control acti -ons, 

and evaluate control objectives.  A typical rule is descri-bed as 
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Fig 10.7. Fuzzy rules represented by a rule table 

R1: if (z is C1  (x is A1 and y is B1)) then z is C1.

R2: if (z is C2  (x is A2 and y is B2)) then z is C2.

 … 

Rn: if (z is Cn  (x is An and y is Bn)) then z is Cn.

A control action is determined by an objective evaluation that 

satisfies the desired states and objectives.  x and y are 

performance indices for the evaluation and z is control command.  

Ai and Bi are fuzzy values such as NM and PS.  The most likely 

control rule is selected through predicting the results (x, y)

corresponding to every control command Ci, i = 1, 2, … , n. 

In linguistic terms, the rule is interpreted as: if the performance 

index x is Ai and index y is Bi when a control command zi is Ci,

then this rule is selected, and the control command Ci is taken to 

be the output of the controller. 

10.4 Inference (Decision Making Logic) 

In general, in decision making logic part, we use four inference methods 

described in the previous chapter: Mamdani method, Larsen method, 

Tsukamoto method, and TSK method. 

C1 C2 …

C3 C4 C4

Cn C5 C5

C6

A1 A2 … An

B1

B2

Bn

…

y

x

C7
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10.4.1 Mamdani Method 

This method uses minimum operator as a fuzzy implication operator, and 

max-min operator for the composition as shown in (sec 9.4.)  Suppose 

fuzzy rules are given in the following form. 

Ri: if x is Ai and y is Bi then z is Ci,

i = 1, 2, … , n 

x  U, Ai  U 

y  V, Bi  V 

z  W, Ci  W 

(1) When input data are singleton such as x = x0 and y = y0 (in this case, the 

input data are not fuzzified.), the matching degrees (firing strength) of 

Ai and Bi are )( 0x
iA and )( 0y

iB , respectively.  Therefore the 

matching degree of rule Ri is 

)()( 00 yx
ii BAi

then )()( zz
ii CiC where iC is the result of rule Ri.  The 

aggregated result C  derived from individual control rules is defined as 

follows:

i

n

i

Ci

n

iC

CUC

zz
i

1

1
)]([V)(

(2) When input data are fuzzy sets, A  and B

ni

zz

yyxx

ii CiC

BBvAAxi

,,2,1

)()(

))]()((max)),()((maxmin[

The aggregate result C  is defined by 

i

n

i

Ci

n

iC

CUC

zz
i

1

1
)]([V)(

10.4.2 Larsen Method 

This method uses the product operator ( ) for the fuzzy implication, and the 

max-product operator for the composition.  Suppose fuzzy rules are given 

in the following form. 

 Ri: if x is Ai and y is Bi then z is Ci,
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  i = 1, 2, … , n 

(1) When input data are singleton, x = x0 and y = y0.  The matching 

degrees is 

)()( 00 yx
ii BAi

the result iC of rule Ri is defined by 

)()( zz
ii CiC

the aggregated result C  is 

)]([V)(
1

zz
iCi

n

iC

or

i

n

i
CUC

1

(2) When input data are given as the form of fuzzy sets, A  and B , we have 

matching degrees as 

))]()((max)),()((maxmin[ yyxx BBvAAxi

The result iC  of rule Ri is defined by 

)()( zz
ii CiC

The aggregate result C  is 

)]([V)(
1

zz
iCi

n

iC

or

i

n

i
CUC

1

10.4.3 Tsukamoto Method 

This method is used when the consequent part of each rule is represented 

by fuzzy set with a monotonic membership function.  The inferred output 

of each rule is defined as a crisp value induced by the rule’s matching 

degree (firing strength). 

We suppose fuzzy rules are given in the following form and the set Ci

has a monotonic membership function )(z
iC

 Ri: if x is Ai and y is Bi then z is Ci,

i = 1, 2, … , n 

the matching degree i of each rule is defined like in the previous methods 

in the cases of both singleton input and fuzzy set input. 

The result of zi rule Ri is obtained by (Fig 10.8) 
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)(1

iCi i
z

The aggregated result z  is taken as the weighted average of each rule’s 

output

21

2211 zzz

This method gives a crisp value as an aggregated result and thus there is 

no need to defuzzify it. 

If x1     x2      then       y 

R1:

R2:

R3

R4:

Fig. 10.8. Example of Tsukamoto control rules 

If    x1,             x2           then        y 

R1:                           y1 = 1.0x1 + 0.5x2 + 1.0 

R2:                        y2 = 0.1x1 + 4.0x2 + 1.2 

R3:                        y3 = 0.9x1 + 0.7x2 + 9.0 

R4:                        y4 = 0.2x1 + 0.1x2 + 0.2 

Fig. 10.9. Example of TSK fuzzy control rules
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10.4.4 TSK Method 

This method is used when the consequent part is given as a function of 

input variables. 

Ri: if x is Ai and y is Bi then z is fi(x, y)

Where z = f(x, y) is a crisp function of input variables x and y.  Usually 

f(x, y) has a polynomial form (Fig 10.9). 

Suppose input data are singleton x0 and y0, then the inferred result of 

rule Ri is fi(x0, y0).  The matching degree i of Ri is same with the 

previous one.  Therefore the final aggregated result z  is the weighted 

average using the matching degree i

21

00220011 ),(),( yxfyxfz

The final result is a crisp value and thus there is no need to defuzzify it. 

10.5 Defuzzification 

In many practical applications, a control command is given as a crisp 

value.  Therefore it is needed to defuzzify the result of the fuzzy 

inference.  A defuzzification is a process to get a non-fuzzy control action 

that best represents the possibility distribution of an inferred fuzzy control 

action.  Unfortunately, we have no systematic procedure for choosing a 

good defuzzification strategy, and thus we have to select one in 

considering the properties of application case.  The three commonly used 

strategies are described in this section. 

10.5.1 Mean of Maximum Method (MOM) 

The MOM strategy generates a control action which represents the mean 

value of all control actions, whose membership functions reach the 

maximum (Fig 10.10).  In the case of a discrete universe, the control 

action may be expressed as 
k

j

j

k
z

z
1

0

zj: control action whose membership functions reach the 

maximum. 

k: number of such control actions. 
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10.5.2 Center of Area Method (COA) 

The widely used COA strategy generates the center of gravity of the 

possibility distribution of a fuzzy set C (Fig 10.11).  In the case of a 

discrete universe, thus method gives 

n

j
jC

n

j
jjC

z

zz
z

1

1

0

)(

)(

Fig. 10.10. Mean of maximum (MOM) 

Fig. 10.11. Center of area (COA) 

Where n is the number of quantization levels of the output, C is a fuzzy 

set defined on the output dimension (z).

z

(z)

z0

z

(z)

z0
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10.5.3 Bisector of Area (BOA) 

The BOA generates the action (z0) which partitions the area into two 

regions with the same area (Fig 10.12). 

0

0

)()(
z C

z

C dzzdzz

where  = min{z | z  W}  = max{z | z  W} 

10.5.4 Lookup Table 

Even with the many advantages, it is pointed out that the FLC has the 

problem of time complexity.  It takes much time to compute the fuzzy 

inference and defuzzification.  Therefore a lookup table is often used 

which simply shows relationships between input variables and control 

output actions.  But the lookup table can be constructed after making the 

FLC and identifying the relationships between the input and output 

variables.  In general, it is extremely difficult to get an acceptable lookup 

table of a nonlinear control system without constructing a corresponding 

FLC.E

Example 10.1 (Table 10.5.) shows an example of lookup table for the two 

input variables error (e) and change of error (ce), and control variable (v).

The variables are all discretized and normalized in the range [ 1, 1].  

For example, when e = 1.0 and ce = 0.5, we can obtain v = 0.5 by 

using the lookup table instead of by executing the full fuzzy controller.    

Fig. 10.12. Bisector of area (BOA) 
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Table 10.5. Example of lookup table 

ce

e
1.0 0.5 0 0.5 1.0 

1.0 1.0 0.5 0.5 0.5 0.5

0.5 1.0 1.0 0.5 0.5 0.5

0 1.0 1.0 0.5 0.5 0.5

0.5 0.5 0.5 1.0 1.0 1.0 

1.0 0.5 0.5 0.5 1.0 1.0 

10.6 Design Procedure of Fuzzy Logic Controller 

When we decided to design a fuzzy logic controller, we can follow the 

following design procedure 

(1)  Determination of state variables and control variables 

In general, the control variable is determined depending on the property 

of process to be controlled.  But we have to select the state variables.  

In general, state, state error and error difference are often used.  The 

state variables are input variables, and the control variables are output of 

our controller to be developed. 

(2)  Determination of inference method 

We select one method among four inference methods described in the 

previous section.  The decision is dependent upon the properties of 

process to be studied. 

(3)  Determination of fuzzification method 

It is necessary to study the property of measured data of state variables.  

If there is uncertainty in the data, the fuzzification is necessary, and we 

have to select a fuzzification method and membership functions of fuzzy 

sets.  If there is no uncertainty, we can use singleton state variables. 

(4)  Discretization and normalization of state variable space 

In general, it is useful to use discretized and normalized universe of 

discourse.  We have to decide whether it is necessary and how we can 

do.

(5)  Partition of variable space. 

The state variables are input variables of our controller and thus the 

partition is important for the structure of fuzzy rules.  At this step, 
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partition of control space (output space of the controller) is also 

necessary. 

(6)  Determination of the shapes of fuzzy sets 

It is necessary to determine the shapes of fuzzy sets and their 

membership functions for the partitioned input spaces and output 

spaces.

(7)  Construction of fuzzy rule base 

Now, we can build control rules.  We determined the variables and 

corresponding linguistic terms in antecedent part and consequent part of 

each rule.  The architecture of rules is dependent upon the inference 

method determined in step 2). 

(8)  Determination of defuzzification strategy 

In general, we use singleton control values and thus we have to 

determine the method. 

(9)  Test and tuning 

It is almost impossible to obtain a satisfactory fuzzy controller without 

tuning.  In general it is necessary to verify the controller and tune it 

until when we get satisfactory results. 

(10) Construction of lookup table 

If the controller shows satisfactory performance, we have to decide 

whether we use a lookup table instead of using the inference system.  

The lookup table is often used to save computing the time of the 

inference and defuzzification.  The lookup table shows the 

relationships between a combination of input variables and control 

actions.

10.7 Application Example of FLC Design 

Servomotors are used in many automatic system including drivers for 

printers, floppy disks, tape recorders, and robot manipulations.  The 

control of such servomotors is an important issue.  The servomotor 

process shows nonlinear properties, and thus we apply the fuzzy logic 

control to the motor control.  The task of the control is to rotate the shaft 

of the motor to a set point without overshout.  The set point and process 

output in measured in degree. 

(1)  Determination of state variables and control variable 

1) State variables (input variable of controller): 

Error equals the set point minus the process output (e). 
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Change of error (ce) equals the error from the process output minus 

the error from the last process output. 

2) Control variable (output variable of the controller): 

Control input (v) equals the voltage applied to the process. 

(2)  Determination of inference method 

The Mamdani inference method is selected because it is simple to 

explain.

(3)  Determination of fuzzification method 

We can measure the state variables without uncertainty and thus we use 

the measured singleton for the fuzzy inference 

(4)  Discretization and normalization 

The shaft encoder of the motor has a resolution of 1000.  The universes 

of discourse are as follows: 

1000  e  1000 

100  ce  100 

The servo amplifier has an output range of 30 V and thus the control 

variables (v) are in the range 

30 v  30 

We discretize and normalize the input variables in the range [ 1, 1] as 

shown in Table 10.6.  The control variable v is normalized in the range 

[ 1, 1] with the equation. 

vv
30

1

Table 10.6. Discretization and normalization 

error (e) error change (ce) quantized level 

1000  e 800 100  ce 80 1.0

800  e 600 80  ce 60 0.8

600  e 400 60  ce 40 0.6

400 e 200 40  ce 20 0.4

200  e 100 20  ce 10 0.2

100  e  100 10  ce  10 0

100  e  200 10  ce  20 0.2

200  e  400 20  ce  40 0.4

400  e  600 40  ce  60 0.6

600  e  800 60  ce  80 0.8

800  e  1000 80  ce  100 1.0
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(5)  Partition of input space and output space 

We partition space of each input and output variable into seven regions, 

and each region is associated with linguistic term as shown in (Fig 10.13.).  

Now we know the maximum number of possible fuzzy rules is 49. 

(6)  Determination of the shapes of fuzzy sets 

We normalized the input and output variables on the same interval [ 1,

1] and partitioned the region into seven subregions, and thus we define 

(7)  Partition of input space and output space 

We partition space of each input and output variable into seven regions, 

and each region is associated with linguistic term as shown in (Fig 10.13.).  

Now we know the maximum number of possible fuzzy rules is 49. 

Fig. 10.13. Partition of space 

(8)  Determination of the shapes of fuzzy sets 

We normalized the input and output variables on the same interval [ 1,

1] and partitioned the region into seven subregions, and thus we define 

the primary triangular fuzzy sets for the all variables as shown in (Table 

10.7.) and (Fig 10.14.) 

Table 10.7. Definition of primary fuzzy sets 

Level NB NM NS ZE PS PM PB 

1 1 0.5 0 0 0 0 0 

0.8 0 1 0 0 0 0 0 

0.6 0 0.5 0.5 0 0 0 0 

0.4 0 0 1 0 0 0 0 

0.2 0 0 0.5 0.5 0 0 0 

0 0 0 0 1 0 0 0 

0.2 0 0 0 0.5 0.5 0 0 

0.4 0 0 0 0 1 0 0 

0.6 0 0 0 0 0.5 0.5 0 

0.8 0 0 0 0 0 1 0 

1.0 0 0 0 0 0 0.5 1 

NM NS ZE PS PM PB

1

NB

0 1
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Fig. 10.14. Graphical representation of primary fuzzy sets 

(9)  Construction of fuzzy rules 

We interviewed with an expert of the servomotor control, and we collect 

knowledge such as: 

If the error is zero and the error change is positive small, then the 

control input is negative small. 

This type of rules are rewritten in the following form 

1) If e is PB and ce is any, then v is PB. 

2) If e is PM and ce is NB, NM, or NS, then v is PS. 

3) If e is ZE and ce is ZE, PS, or PM, then v is ZE. 

4) If e is PS and ce is NS, ZE, or PS, then v is ZE. 

5) If e is NS and ce is NS, ZE, PS, or PM, then v is NS 

6) If e is NS or ZE and ce is PB, then v is PS. 

The full set of fuzzy rules is summarized in the rule table in (Fig 10.15.) 

(10) Determination of defuzzification strategy 

We take the COA (center of area) method because it is most 

commonly used. 

(11) Test and tuning 

(12) Determination of defuzzification strategy 

We take the COA (center of area) method because it is most 

commonly used. 

(13) Test and tuning 

We checked the performance of the developed controller and refined 

some fuzzy rules. 

1 0.8 0.6 0.4 0.2 0 0.2 1.00.4 0.6 0.8

NB NM PBNS PMPSZE

0.5

1
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Fig. 10.15. Fuzzy rule table 

(14) Construction of lookup table 

After verifying the controller showing good performance, we decided to 

use a lookup table.  We extended the inference for every combination of 

discretized input variables c and ce.  For example, 

 for c = 0.2 and ce = 0, v is 0.4

 for c = 0.4 and ce = 0.4, v is 0.2 

The corresponding lookup table is given in Table 10.8.  Now we can 

use this lookup table in order to save the inference time and defuzzification 

time. 

10.8 Fuzzy Expert Systems 

An expert system is a program which contains human expert’s knowledge 

and gives answers to the user’s query by using an inference method. The 

knowledge is often stored in the form of rule base, and the most popular 

form is that of “if-then”. 

A fuzzy expert system is an expert system which can deal uncertain and 

fuzzy information.  In our real world, a human expert has his knowledge 

in the form of linguistic terms.  Therefore it is natural to represent the 

knowledge by fuzzy rules and thus to use fuzzy inference methods. 
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Table 10.8. Lookup table 

1.0 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1.0 

1.0 1.0 1.0 1.0 1.0 1.0 0.8 0.8 0.8 0.8 0.6 0.6

0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.6 0.6 0.6 0.6 0.6

0.6 0.6 0.6 0.6 0.6 0.4 0.4 0.4 0.4 0.4 0.2 0.2

0.4 0.2 0 0 0 0 0 0 0.2 0.2 0.2 0.2 

0.2 0.4 0.4 0.4 0.4 0.4 0.4 0 0 0 0 0 

0 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0 0 0 0 

0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.4 0.4 

0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.6 0.6 0.6 0.6 0.6 

0.6 0.6 0.6 0.4 0.4 0.4 0.4 0.8 0.8 0.8 0.8 0.8 

0.8 0.6 0.6 0.6 0.6 0.6 0.6 0.8 0.8 0.8 0.8 0.8 

1.0 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.8 0.8 0.8 

The structure of a fuzzy expert system is similar to that of the fuzzy 

logic controller.  It’s configuration is shown in (Fig 10.16.)  As in the 

fuzzy logic controller, there can be fuzzification interface, knowledge 

base, and inference engine (decision making logic).  Instead of the 

defuzzification module, there is the linguistic approximation module. 

10.8.1 Fuzzification Interface 

This module deals user’s request, and thus we have to determine the 

fuzzification strategy.  If we want to make the fuzzy expert system 

receive linguistic terms, this module has to have an ability to handle such 

fuzzy information.  The fuzzification strategy, if necessary, is similar to 

that of the fuzzy logic controller. 

Contrary to the fuzzy logic controller, it is not needed to consider the 

discretization or normalization.  But the fuzzy partition and assigning 

fuzzy linguistic terms to each subregion are necessary. 

The expert’s knowledge may be represented in the form of “if-then” by 

using fuzzy linguistic terms.  Each rule can have its certainty factor which 

represents the certainty level of the rule.  This certainty factor is used in 

the aggregation of the results from each rule. 

e

ce
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10.8.3 Inference Engine (Decision Making Logic) 

The fuzzy expert systems can use the inference methods of the fuzzy logic 

controller.  The system does not deal with a machine or process, and thus 

it is difficult to have a fuzzy set with monotonic membership function in 

the consequent part of a rule.  Therefore especially, Mamdani method and 

Larsen method are often used. 

10.8.4 Linguistic Approximation 

As we stated before, a fuzzy expert system does not control a machine nor 

a process, and thus, in general, the defuzzification is not necessary.  

Instead of the defuzzification module, sometimes we need a linguistic 

approximation module. 

This module finds a linguistic term which is closest to the obtained 

fuzzy set.  To do it, we may use a measuring technique of distance 

between fuzzy sets. 

10.8.5 Scheduler 

This module controls all the processes in the fuzzy expert system.  It 

determines the rules to be executed and sequence of their executions.  It 

may also provide an explanation function for the result.  For example, it 

can show the reason how the result was obtained. 

Fig. 10.16. Configuration of fuzzy expert system 

User

input

Knowledge

base

Inference 

engine

Fuzzification

interface

Linguistic

approximationScheduler
Outpu
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[SUMMARY]

The fuzzy logic controller (FLC) is good when 

the control process is too complex 

the information is qualitative 

Advantage of the fuzzy logic controller 

Parallel and distributed control 

Linguistic control 

Robust control 

Components of the FLC 

Fuzzification interface 

Knowledge base 

Decision-making logic 

Defuzzification interface 

Fuzzification interface components 

Scale mapping of input data 

Strategy of noise 

Selection of fuzzification function 

Data base components 

Discretization of universe of discourse 

Normalization of universe of discourse 

Fuzzy partition of input and output spaces 

Membership function of primary fuzzy set 

Rule base 

Choice of state variables and control variables 

Source of fuzzy control rules 

Type of fuzzy control rules: state evaluation rules and object 

evaluation rules. 

Decision making logic 

Mamdani inference method 

Larsen inference method 

Tsukamoto inference method 

TSK inference method 
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Defuzzification methods 

Mean of maximum method (MOM) 

Center of area method (COA) 

Bisector of area (BOA) 

Lookup table 

Disadvantage of the FLC is the high time complexity. 

Saving of computation time 

Direct relationship between input variable and control output actions 

Design procedure of the FLC 

Determination of variables 

Determination of inference method 

Determination of fuzzification method 

Discretization and normalization of variables 

Partition of space 

Determination of fuzzy sets 

Construction of fuzzy rule base 

Determination of defuzzification strategy 

Test and tuning 

Lookup table 
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[EXERCISES]

10.1 Describe advantage of the fuzzy logic controller (FLC). 

10.2 In which case the FLC is superior to the conventional control 

algorithm? 

10.3 Explain the followings: 

a) State variable 

b) Control output 

c) Control input 

d) Control variable 

10.4 Explain the following components in the FLC. 

a) Fuzzification interface 

b) Knowledge base 

c) Data base 

d) Decision-making logic 

e) Defuzzification interface 

10.5 Explain the three main issues in the fuzzification interface component 

10.6 Explain the three main issues in the data base. 

10.7 What is the difference between the discretization and normalization of 

universe of discourse. 

10.8 Explain the relationship between the fuzzy partition of input variable 

and the number of fuzzy rules. 

10.9 Why and how membership functions can be defined in a table when 

the universe of discourse is discretized? 

10.10 What is the objective of the normalization of universe of discourse? 

10.11 What are the main criteria to determine the state variables and 

control variables? 

10.12 Explain the two-types of control rules: 

a) State evaluation fuzzy control rules 

Ri: if x is Ai, … and y is Bi then z is Ci

b) Object evaluation fuzzy control rules 
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Ri: if (z is Ci  (x is Ai and y is Bi)) then z is Ci

10.13 Explain the four inference methods: 

a) Mamdani method 

b) Larsen method 

c) Tsukamoto method 

d) TSK method 

10.14 What is the property of the membership function in consequent part 

in Tsukamoto method? 

10.15 Explain the three defuzzification methods: 

a) Mean of maximum method 

b) Center of area method 

c) Bisector of area 

10.16 What is the lookup table?  Why is it often used? 

10.17 Show the design procedure of the FLC. 



Chapter11. FUSION OF FUZZY SYSTEM AND NE- 

URAL NETWORKS 

In this chapter, we study the fusion of fuzzy systems and neural networks. 

The two methods are complementary. The neural networks can learn from 

data while the fuzzy systems can not; the fuzzy systems are easy to 

comprehend because they use linguistic terms but the neural networks are 

not. Many researches have been devoted to the fusion of them in order to 

take their advantages. 

11.1 Neural Networks 

11.1.1 Basic Concepts of Neural Networks 

Neural networks(NN) are a computational model of the operation of 

human brain. A neural network is composed of a number of nodes 

connected by links. Each link has a numeric weight associated with it. 

Weights are the primary means of long-term storage in neural networks. 

One of the major features of the neural network is its learning capability. 

They can adjust the weights to improve the performance for a given task. 

Learning usually takes place by updating the weights. 

inputs outputs

node j

f( )

connection

strength

w1

w2

wn

… f

Fig. 11.1. Node of neural networks
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Outputs

Inputs

(b) a feedback neural network

Outputs

Inputs

(b) a feedback neural network

Outputs

Inputs

(a) a feedforward neural network

Outputs

Inputs

(a) a feedforward neural network

Fig. 11.2. Neural Networks 

A node has a set of input links from other nodes, a set of output links, 

and a nonlinear function called activation function. The output of a node is 

generated from the inputs, the weight of links, and activation function(Fig 

11.1.). So, the output of node j are as follows: 

)( jj netfo

where i
iijj ownet

, oi is the output of node i and an input to node j, wji
is the weight of the link between nodes j and i, and f is the activation 

function. Any nonlinear functions can be used as the activation function, 

but sigmoidal function is often used. 

11.1.2 Learning Algorithms 

Neural networks can be categorized into feedforward and feedback. The 

feedforward neural networks have only feedforward links, i.e. neural 

networks which do not have feedback cycle. The output of a node will not 

directly or indirectly be used as an input of that node. 

To the contrary, the feedback neural networks have feedback cycle. The 

output of a node may be used as an input of a node. (Figs 11.2(a), (b)) 

show the feedforward and feedback neural networks, respectively. In the 

case of the feedback neural network, there is no guarantee that the 

networks become stable because of the feedback cycle. Some of them 

converge to a stable point, some may have limit-cycle, or become chaotic 

or divergent. These are common characteristics of non-linear systems whi- 
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. . 

. . . .

. . 

Outputs

Inputs

Input layer

Hidden layer

Output layer

Fig. 11.3. Multilayer perceptrons 

ch have feedback. 

There are two types of learning algorithms in the neural networks. The 

first type is supervised learning. It uses a set of training data which consist 

of pairs of input and output. During learning, the weights of a neural 

network are changed so that the input-output mapping becomes more and 

more close to the training data. 

The second type is unsupervised learning. While the supervised learning 

presents target answers for each input to a neural network, the 

unsupervised learning has the target answers. It adjusts the weights of a 

neural network in response to only input patterns without the target 

answers. In the unsupervised learning, the network usually classifies the 

input patterns into similarity categories. 

11.1.3 Multilayer Perceptrons and Error Backpropagation 
Learning

Among the neural networks and learning algorithms, multiplayer 

perceptron network and its learning algorithm are widely used. This 

learning algorithm is called error backpropagation method. Multilayer 

perceptrons are layered feedforward neural networks. They consist of 

several layers. A layer is a set of nodes which do not have inter-connection 

links, i.e. the nodes in the same layer are not connected to each other. One 

more characteristic is that the nodes in a layer are connected to only the 

nodes in the neighboring layer. (Fig 11.3) shows a three layer perceptron 
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network. The first layer is the input layer, the second is the hidden layer 

and the third is the output layer. 

(1) Activation function 

In this kind of neural networks, mostly used activation function is the 

sigmoidal function defined as: 

xe
xf

1

1
)(

The reason is that their derivatives are simple as follows: 

))(1)(()( xfxfxf
If the derivative is simple, the error backpropagation algorithm can be 

simple. 

(2) Error backpropagation learning algorithm 

The error backpropagation algorithm iteratively changes the weights of 

links little by little. The weights are changed so that the error is 

minimized. The error is defined as: 

k
kk otE 2)(5.0

where tk is the expected output and ok is the actual outputs for node k in 

the output layer. In order to decide whether to increase or decrease 

weight wji, the algorithm evaluates the derivative of E with respect to 

wji, and then changes wji to the direction opposite to the derivation. That 

is,

jijiji www :

where

ji
ji w

Ew ,

 is a learning rate and wji is the weight of the connection between node 

j and node i. Value  is a pre-determined small real number. 

(3) Convergence problem 

Thus, if all weights of a neural networks are iteratively modified little 

by little in this manner, E will decrease and at last converge to a stable 

point. However it does not guarantee to converge to the global optimum 

because the method uses only derivations. So, in order to overcome this 

defect, some variations have been developed such as adding momentum 

term. 

One more question on this algorithms is about magnitude of . If  is 

a large value, the learning speed may be fast, but this may cause large 

oscillations. Small value will not cause the large oscillations, but the 
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learning speed is slow. Choosing the value of  depends on 

applications.

(4) Evaluation of change of weight 

In order to evaluate jiw , let us define 
j

j net
E

, then 

ij
ji

j

jji

o
w
net

net
E

w
E

because

i
ji

j o
w
net

.

thus,

ijji ow .

What remains to evaluate jiw  is to evaluate j .

If node j is an output node,  

)()( jjj
j

j
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If node j is a hidden node, 
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E
  by definition 
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j
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where node k is in the next layer, i.e. oj is one of inputs of node k. The 

j s of the hidden nodes are evaluated from the summation of k s of 

the neighboring layers.
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If the sigmoidal function is used as the activation functions, it’s 

derivative is 

)1())(1)(()( jjjjj oonetfnetfnetf
then the value of j  becomes for the output nodes 

)1()( jjjjj ooot
and for the hidden nodes 

k
kjkjjj woo )()1( .

11.2 Fusion with Neural Networks 

Neural networks and fuzzy systems are two complementary technologies. 

Neural networks can learn from data, but the knowledge represented by the 

neural networks is difficult to understand. In contrast, fuzzy systems are 

easy to comprehend because they use linguistic terms and if-then rules, but 

it does not have learning algorithms. So, many researches have been 

devoted to fusion of them. The researches on fusion of neural networks 

and fuzzy systems can be classified into four categories: 

(1) Modifying fuzzy systems with supervised neural network learning, 

(2) Building neural networks using fuzzy systems, 

(3) Making membership functions with neural networks, 

(4) Concatenating neural networks and fuzzy systems. 

11.2.1 Modifying Fuzzy Systems with Supervised Neural 
Network Learning 

Research in this category represents fuzzy systems with neural networks. 

These systems are called neuro fuzzy systems, and the neural networks are 

used to improve the performance of fuzzy systems. Neuro fuzzy systems 

have characteristics of both neural networks and fuzzy systems; they have 

learning capability like neural networks and can perform inference like 

fuzzy systems.  

In the ordinary neural networks, nodes have the same functionality and 

are fully connected to the nodes in the neighboring layers. But in a neuro 

fuzzy system, nodes have different functionalities and are not fully 

connected to the nodes in the neighboring layers. This differences come 

from the fact that the nodes and links in a neuro fuzzy system usually 

correspond to a specific component in a fuzzy system. That is, some nodes 

represent the linguistic terms of input variables, some nodes are for those 

of output variables, and some nodes and links are used for representing 
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Fig. 11.4. Structure of the neuro fuzzy system proposed by Kwak 

fuzzy rules. 

One merit of the neuro fuzzy systems over the ordinary neural networks 

is the easiness of adding the expert knowledge before learning. The neuro 

fuzzy systems are usually built from the given fuzzy systems which are 

based on the expert or prior knowledge. Thus, the neuro fuzzy systems can 

embed the knowledge at the beginning. For this reason, convergence to 

local minimum may not be so much serious as that in the ordinary neural 

networks.

For example, the neuro fuzzy system proposed by Kwak, Lee and Lee-

Kwang consists of five layers as shown in (Fig 11.4.). In the followings, 

the function of a node f is presented. Function 
k
jf  represents the f of node 

j of layer k.

(1) First layer of the network(Inputs) 

The nodes in the first layer takes inputs and just pass them to the second 

layer. 

xxf j )(1

(2) Second layer of the network(Input linguistic terms) 

A node in this layer represents a linguistic term of an input variable. It 

has parameters which represent the membership function of linguistic 

term. For example, in (Fig 11.4.). the input variable X1 is connected to 

three nodes in the second layer and X2 is connected to two nodes. It me- 

ans that there are three linguistic terms defined on X1 and two linguistic 

terms on X2. The node in the second layer outputs the members degree 
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Fig. 11.5. A triangular fuzzy number 

of input. For example, if a node represents a fuzzy set A, its output is 

)(xA .

)()(2 xxf
jAj

where Aj is the fuzzy set represented by the node. 

In this fuzzy neural network, only triangular fuzzy numbers are used 

to represent linguistic terms. A triangular fuzzy number Aj is defined 

with three parameters: the center 
jAc , the length of the left point from 

the center 
jAsl , and the length of the right point from the center 

jAsr
as shown in(Fig 11.5.). So, the membership function of Aj is as follows: 

otherwise
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(3) Third layer of the network(Antecedent parts) 

This layer corresponds to the antecedent parts of fuzzy rules. For 

example, in Fig. 11. the inputs of R1 are the outputs of I11, I21 and Im1. It 

represents the antecedent part of the rule such as : 

"   thenisandandisandisif 1212111 mm IXIXIX

The output of the node is the matching degree of given inputs to the 

antecedent part. When evaluating the matching degrees, the minimum or 

product operators can be used. The connection weights between the 

second and third layers are fixed to 1.0. 



§11.2 Fusion with Neural Networks                                         293 

usedproductif)(

usedminimumif)(min
),,,(

1

1

21

3
p

i i

i
p
i

pi x
x

xxxf

(4) Fourth layer of the network(Consequent parts) 

This layer represents the consequent parts of fuzzy rules. Like in the 

second layer, a node in this layer represents a linguistic term of output 

variable. For example, node Tt has two inputs from R2 and Rr. It 

represents two rules whose consequent part is Tt:

"is   thenispartantecedent  theif"and

"is   thenispartantecedent  theif" 2

tr

t

TYR
TYR

The output of the node is the maximum matching degree of an input to 

the rules which are represented by the node. For example, the output of 

the node Tt is the maximum output of nodes R2 and Rr. The weights 

between the third and fourth layers are used as the importance degree of 

rules, or fixed to 1.00. 

}{max),,,( 121

4

iji
q
iqj xwxxxf

where wji is the weight between node j in the fourth layer and node i in 

the third. 

(5) Fifth layer of the network(Defuzzification) 

A node in this layer gathers the outputs of all rules and defuzzifies them. 

A defuzzification method similar to the center of gravity method is used. 

The weight of links between it and the fourth layer is 1.00. 

t
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where Bi is the fuzzy set represented by the node j in the fourth layer 

and xi is the output of the node. If the output variable y is quantized 

with level n, Centroid(Bi, xi) and Area(Bi, xi)  are defined as follows: 

xi

Bi

Centroid(Bi,xi)

Fig. 11.6. Definition of Centroid(Bi, xi)
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)),(min(),( . That is, Centroid(Bi, xi)

is the centroid of the grey area in (Fig 11.6.). Thus, the output of this 

node can be rewritten as follows: 
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 (Fig 11.7.) shows the difference between the Kwak’s defuzzification 

method and the center of gravity method. If we have the output result of 

fuzzy inference as shown (Fig 11.7.(a)), the output of the center of 

gravity method is  

t
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and the output of the Kwak's method is 
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(a) output of fuzzy inference

(b) center of gravity method (c) used defuzzification method

Fig. 11.7. Defuzzification methods: the center of gravity method and the 

methods used by Kwak 
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The difference is the how many times the overlapped areas are 

evaluated. The center of gravity method evaluates those areas only one 

time, but the Kwak’s method may evaluate the overlapped area several 

times. One merit of the Kwak’s method is that the defuzzification may 

be done with simpler operations than the center of gravity. 

(6) Learning algorithm 

The learning algorithm of this model is based on the error 

backpropagation. During the learning process, the weights between the 

third and fourth layers, and the parameters representing membership 

functions in the nodes of the second and fourth layers are modified 

based on the error backpropagation method. 

11.2.2 Building Neural Networks using Fuzzy Systems 

In the neuro fuzzy systems, neural networks were used to improve the 

performance of fuzzy systems. But the methods in this category use fuzzy 

system or fuzzy-rule structure to design neural networks. This model is a 

kind of divide and conquer approaches. Instead of training a neural 

network for the whole given input-output data, this model builds several 

networks:

(1) Builds a fuzzy classifier which clusters the given input-output data into 

several classes, 

(2) Builds a neural network per class,  

Fig. 11.9. Building neural networks using fuzzy systems 
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Fig. 11.9. A fuzzy classifier 

(3) Trains the neural networks with the input-output data in the 

corresponding class. 

(Fig.11.8.) shows the schematic diagram of this model. A fuzzy 

classifier divides the given data into several classes whose boundary is 

fuzzy. For building fuzzy classifier, many kinds of methods can be used 

such as fuzzy c-means, neural networks, fuzzy rules, and so on. (Fig 11.9.) 

shows a fuzzy classifier of which outputs are the membership degrees of 

input to the classes. Thus, we can say that this model has the following 

fuzzy rules: 
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nn thenif
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That is, a class can correspond to a rule. The membership degree of x to 

class Ci is calculated by the fuzzy classifier instead of membership 

functions. The output for input x can be evaluate as follows: 

i C

i iC

x
xNNx

y
i

i

)(

)()(
.

Ci(x) is the membership degree of x to class Ci, which is evaluated by a 

fuzzy classifier, and NNi(x) is the output of neural network NNi for input x.

The complexity in each fuzzily partitioned input space is much less than 

that of whole given task. This approach is suitable to the problems which 

can be divided into small sub-problems. For example, developing 

recognizer of characters of multiple fonts can be achieved by developing 

several recognizers of each font. If there is a font classifier, we can classify 

characters into each font group and then recognize the characters in each 

font group with the recognizer specialized to the corresponding font. 
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With this method, we can use priori knowledge of the task to reduce the 

complexity and increase the performance of a system. The fuzzy rules 

describe the priori knowledge of the given task, which can be obtained by 

analyzing training data. 

An example of this model was proposed by Takagi and Hayashi. They 

used a neural network to build a fuzzy classifier, and proposed a method 

which could reduce the number of rules or redundant input variables. Their 

method is briefly summarized: 

(1) Data preparation 

The input/output data ),( ii yx  are divided into the training set and the 

testing set. The numbers of the training and the testing set are trn  and 

tsn , respectively. The training set is used for building a neural network 

and the testing set is used for reducing the number of input variables. 

Let the number of inputs be m, i.e. ),,,( 21 mi xxxx .

(2) Crisp partition of input space 

The data in the training set are grouped into r classes, Cs, s=1,2, , r,

by a crisp clustering method. In the training set, data belonging to Cs are 

denoted by ),( s
i

s
i yx , where 

s
trni ,,2,1 , and 

s
trn  is the number of 

data belonging to Cs in the training set.  

(3) Development of fuzzy classifier 

This step builds a fuzzy classifier by using a neural network. The 

classifier will be denoted by memNN  because it is a neural network 

which evaluates the membership degree of an input to each class. For 

training memNN , new data ),( s
iix  are generated as follows: 

rsni
C
C s

trs
i

s
is

i ,,1;,,1
,0

1

x

x

Here, s
i  is the membership degree of xi to Cs. memNN  will be 

conducted so that these ris
i ,,1,  can be inferred from the input xi.

Thus, the memNN  becomes capable of inferring the membership degree 

of an input to each class. )(xmemNN  will denote the output of memNN
for x.

Though the training data for memNN  have a sharp boundary between 

classes, memNN  will change these sharp boundaries into fuzzy ones. 

Usually neural networks perform generalization of given data, and thus 

they generate smooth boundaries. 
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(4) Development of neural networks 

This step is for building sNN  for Cs. The data s
i

s
i

s
i niy ,,2,1),,(x , are 

used for training sNN . This sNN  approximates the given data 

belonging to Cs. )(xsNN  will denote the output of sNN  for x. If this 

step is finished, the neural networks built in fuzzy-rule structure are 

obtained.

(5) Reduction of input variables 

This step is for reducing the number of used input variables. The first 

action of this step is the evaluation of sNN . In order to evaluate sNN ,

the data in test set, tsii niy ,,2,1),,(x , is applied to sNN , and the sum 

of error s
mE  is obtained as follows (m is the number of inputs): 

2

1

)}()({ i

n

i
memisi

s
m

ts

NNNNyE xx

Then, among the m input variables, an input variable xp is arbitrarily 

eliminated, and sNN  is trained by the data without xp in the training set 

as in the step 4. To evaluate the performance of the newly built neural 

network )( i
p
sNN x , sp

mE 1
 is evaluated with the data (including xp) in the 

test set as follows:  

2

1

1 )}()({ xx
tsn

i
memi

p
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m NNNNyE

By comparing s
mE  and sp

mE 1
, if  

sp
m

s
m EE 1

,

the significance of the network trained without xp can be considered 

minimal, so xp can be discarded. The same operations would hold for the 

remaining m-1 input variables. 

(Fig 11.10.) shows the fuzzy-rule-structured neural network proposed 

by Takagi and Hayashi. The extended method was proposed in Takagi, 

Suzuki, Kouda and Kojima. 

11.2.3 Making Membership Functions with Neural Networks 

This approach is very similar to the previous one. In the previous 

approach, fuzzy-rule structure was used to build neural network. But in 

this approach, a neural network is used to generate compact fuzzy rules. 

(1) Fuzzy partition of data 

An important element of fuzzy systems is the fuzzy partition of input 

space. So, if there are k inputs, the fuzzy rules generate k-dimensional 

fuzzy hypercubes in the input space. Even though we can easily underst- 
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Fig. 11.10. Neural networks built in a fuzzy-rule structure 

and these fuzzy hypercubes, it is not easy to get a flexible partition for 

nonlinear hypersurfaces. Since neural networks are proper to 

approximate nonlinear functions, they can be applied to construct a 

fuzzy partition. 

The idea of this model is to build a neural network whose outputs are 

degrees that an input belongs to each class. These degrees can be 

considered as the membership degrees to each class. That is, the neural 

network takes the role of membership functions. Thus the membership 

functions of this model can be non-linear and multi-dimensional unlike 

the conventional fuzzy systems. 

(2) Partition in a hyperspace 

For example, we have two input variables x and y, and we know that the 

input space can be partitioned into three fuzzy classes: C1, C2 and C3 as 

shown in Fig. 11.11. The gray boundary means that it is not clear so the 

points on the boundary could belong to all classes adjacent to the 

boundary. 

Let us suppose that we can easily make fuzzy rules as long as we can 

partition the input space into C1, C2 and C3. In this case, if we use fuzzy 
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C1

C2
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Input Space

R1: If (x,y) is C1 then Y=F1
R2: If (x,y) is C2 then Y=F2
R3: If (x,y) is C3 then Y=F3
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x
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R1: If (x,y) is C1 then Y=F1
R2: If (x,y) is C2 then Y=F2
R3: If (x,y) is C3 then Y=F3

+

x

y

Fig 11.11. Fuzzy rules on fuzzy hyperspaces 

hypercubes to partition the input space into the three classes, we need 

lots of fuzzy hypercubes and thus the number of fuzzy rules may 

increase. So, we need other method for partitioning. The neural network 

is a good candidate because they are proper to approximate nonlinear 

functions.

That is, we need only to construct a neural network that takes input 

variables of a fuzzy system as input and generates the degrees the input 

data belong to fuzzy regions. As shown in (Fig 11.11.) the fuzzy regions 

are fuzzy hypersurfaces. Due to the flexibility of these fuzzy 

hypersurfaces, the number of fuzzy rules in a fuzzy model can be 

reduced.

(3) Example of the rolling mill control 

This model has been used in the control of rolling mill. The purpose of 

the rolling mill is to make plates of iron, stainless, or aluminum by 

controlling 20 rolls. The controller will change system parameters if the  

Surface 

shape

time

NN

Matching degree to each rule

If scanned shape is Then control A

If scanned shape is Then control B

If scanned shape is Then control C

Surface 

shape

time

NN

Matching degree to each rule

If scanned shape is Then control A

If scanned shape is Then control B

If scanned shape is Then control C

If scanned shape is Then control A

If scanned shape is Then control B

If scanned shape is Then control C

Fig. 11.12. Fuzzy rules with fuzzy hyperspace 
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surface of plate is not flat. How to change the parameters is determined 

by the produced surface shape of plates. To do this, first fuzzy rules are 

generated for only 20 standard template surface shapes. Then, a neural 

network is constructed which generates the similarity degrees to which 

an arbitrary surface shape belongs to each standard template shape. 

The similarity degrees produced by the neural network are used as the 

matching degrees to the antecedent part of each rule. Since the 

antecedent parts of fuzzy control rules are standard template surface 

patterns, the output of the neural network corresponds to how much 

input surface pattern matches to each fuzzy rule. (Fig 11.12.) shows the 

structure of the system.  

11.2.4 Evaluation of Fuzzy Systems with Neural Networks 

When a fuzzy system is developed, we have to evaluate the system in 

order to tune it or know its performance. When it is not easy to apply the 

developed system to the real system, neural networks can be used as a 

simulator of the real system.  

Jung, Im, and Lee-Kwang developed a fuzzy control algorithm for shape 

control in cold rolling of a steel work. They modeled strip shapes and 

constructed a fuzzy rule base producing control actions for each irregular 

strip shape. They identified parameters 1, 2, 3 and 4 representing the 

cross sectional shapes(Fig 11.13.), and by using them, fuzzy rules are 

obtained such as: 

IF 2 is LPB THEN Fw is LPB, Fi is PB,

IF 2 is PB THEN Fw is PB, Fi is PM,

where Fw and Fi are changes of the work forces applied to the rolls. 

In order to evaluate the fuzzy rule base system before implement the 

system in the real field, they developed an emulator simulating the real 

cold rolling machine by using a neural network(Fig 11.14.). By using the 

neural network, they tuned the developed fuzzy system and then obtained 

desired results. 

11.2.5 Concatenating Neural Networks and Fuzzy Systems 

This category includes the methods equally using fuzzy systems and neural 

networks to improve system performance. 

(1) Parallel combination 

This combination is for correction of the output of a fuzzy system with 

the output of a neural network to increase the precision of the final 

system output. Fig. 11.(a) shows this combination. If a fuzzy system 

exists and an input-output data set is available, this model can be used to  
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Fig. 11.13. Representation of the shape parameters 
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Fig. 11.14. Structure of the emulator 
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(a) Parallel combination

(b) NN-FS cascade combination (c) FS-NN cascade combination 

Fig. 11.15. Possible concatenations of NNs and FSs 

improve the performance without modifying the existing fuzzy systems. 

For example, there is a fuzzy system working, but to improve its 

performance we need to incorporate more inputs to the fuzzy system. 

Usually designing a new fuzzy system is very costly. So, rather than 

redesigning the entire fuzzy systems to handle the extra inputs, a neural 

network is added that it manages the new input and corrects the output. 

Examples of this method can be found in consumer products. The 

consumer product companies usually upgrade their products by adding 

some functionality. Consequently, the controller of the upgraded 

product usually requires more inputs to deal with such new functions 

while it performs almost the same functions as the controller of the old 

model. 

In this case, modifying old one can be better than developing a totally 

new controller. Redesigning the fuzzy system is thus avoided, which 

causes a substantial saving in development time and cost, because 

redesigning the membership functions becomes more difficult as the 

number of inputs increases. 

(Fig 11.16.) shows the schematic underlying a Japanese washing 

machine. The fuzzy system is a part of the first model. Later in order to 

improve the performance, more inputs are added and a neural network is 

built to correct the output with the new inputs. The additional input fed 

only to the neural network is electrical conductivity, which is used to 

determine washing time, rinsing time and spinning time. To train the 

neural network, the desired correction is used. This value is the 

difference between the desired output and what the fuzzy system 

outputs.
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Fig. 11.16. Correcting mechanism of FS and NN for a washing machine 

Fig. 11.17. Cascade combination of FS and NN for a electric fan 

(2) Cascade combination 

The second is the cascade combination. It is a system where the output 

of the fuzzy system or neural network becomes the input of the other. 
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(Fig 11.15.(b)) shows the model where the output of a fuzzy system is 

inputted to a neural network and (Fig 11.15.(c)) shows the reverse 

model. 

An example of (Fig 11.15.(c)) can be found in Japanese electric fan. 

One of the requirement of it is to rotate toward the user by detecting the 

signal of remote controller. For the detection of the signal, three sensors 

are equipped on the fan body as shown in (Fig 11.17.(a)). In order to 

estimate the angle from the center of fan to the user, , a neural 

network and a fuzzy system are used. The fuzzy system estimates the 

distance from the fan to the user by using the sensors. Then, the 

estimated distance is used as an input of the neural network which 

estimates . (Fig 11.17.(b)) shows the configuration of this application. 
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[EXERCISE]

11.1 Why the fuzzy systems and neural networks are said to be 

complementary technologies? 

11.2 Explain the structure of multilayer perceptrons and their learning 

algorithm. 

11.3 What is the roles of the activation function and weights of links? 

11.4 What is the mechanism of learning in the backpropagation method? 

11.5 What is the convergence problem in the backpropagation learning 

algorithm? 

11.6 Explain the properties of the fusion method “modifying fuzzy systems 

with supervised neural network learning”. 

11.7 In which case, the fusion “building NN in fuzzy-rule structure” is 

useful?

11.8 Explain concatenating method of NN and fuzzy systems. 



Chapter 12. FUSION OF FUZZY SYSTEMS AND 

GENETIC ALGORITHMS 

The fuzzy systems and genetic algorithms are complementary techniques 

because the fuzzy systems are easy to understand but the genetic 

algorithms are not; the genetic algorithms have an ability of learning while 

the fuzzy systems have no. In this chapter, some researches on the fusion 

of the two techniques are introduced. 

12.1 Genetic Algorithms 

12.1.1 General Structure of Genetic Algorithms 

Genetic algorithms can be viewed as a general-purpose search method, an 

optimization method, or a learning mechanism. Their basic mechanisms 

are similar to Darwinian principles of biological evolution: reproduction 

and “survival of the fittest”. Genetic algorithms maintain a set of candidate 

solutions. The set is called a population and candidate solutions are called 

individuals or chromosomes. Chromosomes are usually represented in 

binary strings of a fixed length. Due to the set of candidate solutions, the 

genetic algorithms are inherently parallel. The genetic algorithms have 

been shown to be an effective search technique on a wide range of difficult 

optimization problems. 

(1) Operations in genetic algorithms 

A typical genetic algorithm performs a sequence of operations on a 

population as follows: 

1)  Initialize a population of chromosomes (population size = n).

2)  Evaluate the fitness of each chromosome in the population. 

3)  If the stop condition is satisfied, stop and return the best 

chromosome in the population 

4)  Select n/2 pairs of chromosomes from the population. 

Chromosomes can be selected several times. 

5)  Create new n chromosomes by mating the selected pairs by 

applying the crossover operator. 
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6)  Apply the mutation operator to the new chromosomes. 

7)  Replace the old population with the new chromosomes. 

8)  Goto (2). 

This cycle is largely divided into evaluation, selection and 

reproduction. Step 3 is for the evaluation, Step 4 for the selection, and 

Step 5 and 6 for the reproduction. This cycle terminates when an 

acceptable solution is found, when a convergence criterion is met, or 

when a predetermined limit on the number of iterations is reached. 

(2) Encoding scheme 

Encoding scheme is how to represent candidate solutions into binary 

strings. Since genetic algorithms manipulate binary strings, the 

candidate solutions are needed to be represented as binary strings. If the 

given problem is finding a point in a multi-dimensional space such as 

maximizing a function, then the candidate solutions can be simply 

encoded into binary strings.  

For example, if only integers greater than 0 and less than 255 are 

used, a triplet of (10,41,21) can be encoded as follows: 

00001010 00101001 00001101 

The first eight bits 00001010 are the binary representation of decimal 

10, the next eight bits 00101001 are that of 41, and the last eight are that 

of 21. 

However, if some structures such as trees or matrix are candidate 

solutions, we need to develop a way to encode them into binary strings. 

Since chromosomes represent the candidate solutions, the encoding 

scheme should be designed so that it can cover the possible solution 

space. Also, it should be designed so that a modification of 

chromosomes through genetic operators such as crossover and mutation, 

is easy and effective. Sometimes, the chromosomes are encoded into 

real value strings, or symbolic strings instead of binary strings.  

12.1.2 Evolution of Genetic Algorithms 

(1) Fitness function and evaluation 

We need a function to evaluate the fitness of candidate solutions during 

the operations. The fitness of chromosomes are the driving force of 

genetic algorithms. It represents how much good solution a chromosome 

is. Thus, the fitness function should be designed so that it gives higher 

fitness values to better solutions. If there is a function to be optimized, it 

is usually used as a fitness function. 

For example, if the maximum of  f(x)=-x2 +4x-1 on {x | 0 x  2 } 

are to be found and the value x is encoded, then the function f(x) can be 
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directly used as the fitness function. For instance, the fitness value of a 

chromosome representing 1 is f(1)=2.

However, if we do not have such functions, we need to devise one 

which properly evaluates the quality of the solution. For example, in the 

case of building a decision tree with given data, we should design a 

fitness function based on the variables which can reflect the quality of a 

decision tree such as the number of nodes, the correctness of output, and 

so on. 

(2) Selection

Selection is an operation which prepares reproductions. The selected 

chromosomes are called parents. For the selection, first the possibility 

for each chromosome to be selected is evaluated. This possibility largely 

depends on the fitness value; the higher fitness value, the higher 

selection possibility. The reason is that it is expected that better 

offspring can be generated from better parents. There are several 

selection methods. 

1) Roulette wheel selection 

The roulette wheel selection is a typical one. The selection probability 

of a chromosome is the ratio of its fitness value to the sum of those of 

all chromosomes. That is, this method gives the selection probability to 

individuals linearly proportional to their fitness values. For example, 

there are five chromosomes, I1, I2, I3, I4 and I5, and their fitness values 

are 1, 4, 3, 6, and 2, respectively. The summation of fitness is 16. Thus, 

the selection probability of I1 is 1/16=0.0625, I2 is 4/16=0.25, I3 is 

3/16=0.1875, I4 is 6/16=0.375 and I5 is 2/16=0.125. Each chromosome 

will be selected based on these probabilities. 

2)  Rank based selection 

The other selection method is the rank-based selection. In the roulette 

wheel method, the selection probability is linearly proportional to the 

fitness values, but in rank-based selection, the selection probability is 

fixed according to the rank of the fitness. For example, if the selection 

probabilities are given as follows: (0.3,0.25,0.2,0.15,…), the chromos- 

ome with the maximum fitness always has a selection probability of 0.3, 

the chromosome with the second largest has 0.25 and the others have 

the probability in this manner. 

One merit of this method over the roulette wheel method is 

preventing fast convergence to a local maximum. If a few chromosomes 

have a very high fitness, and others have very small. Then, if the 

roulette wheel method is used, the chromosomes with high fitness also 

have high selection probabilities while the others have very low. Thus, 

the chromosomes with high probability are almost always selected and 
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thus most offsprings are generated from them. It makes the variety of a 

population low, and thus all chromosomes are easy to stick to a local 

maximum. 

(3) Crossover

Crossover operators produce two new chromosomes by exchanging 

information of the selected chromosomes. This operator is the most 

essential in genetic algorithms. The most typical crossover operator is 

the one-point crossover. The selected chromosomes are cut on the 

randomly chosen point, and the cut parts are exchanged. It is shown in 

(Fig 12.1(a)). An extension is the multi-points crossover in which 

several points are chosen. (Fig 12.1(b)) shows the two points crossover. 

The crossover operations are not performed on every selected 

chromosome. Genetic algorithm decides, based on a given probability, 

whether it performs the crossover operation on the certain pair of 

chromosomes or not. It is called the crossover probability and given by 

users.

OffspringParents

Randomly selected
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Swap strings on the 

right of crossover 

point
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1 0 1 1 0 1 1

0 1 0 0 0 1 0
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1 0 1 1 0 1 11 0 1 1 0 1 11 0 1 1 0 1 1
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1 0 1 1 0 1 01 0 1 1 0 1 0

0 1 0 0 0 1 10 1 0 0 0 1 1
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(b) two point crossover
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(b) two point crossover

1 0 1 1 0 1 11 0 1 1 0 1 11 0 1 1 0 1 1

0 1 0 0 0 1 00 1 0 0 0 1 00 1 0 0 0 1 0

1 0 1 0 0 1 1

0 1 0 1 0 1 0

Fig. 12.1. Crossover operator
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Mutation point Change the bit on 

the mutation point
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Fig. 12.2. Mutation operator

(4) Mutation

Mutation operators change some randomly selected bits of 

chromosomes. If the chromosomes are binary strings, then ‘0’ are 

changed to ‘1’, and ‘1’ to ‘0’. It plays a secondary role after the 

crossover operator in genetic algorithms. The changing bits means 

making an offspring genetically different from its parents. Since the 

crossover operator mixes the information of only two parents, the 

information of offsprings may not be much different from that of its 

parents. Thus, applying only the crossover operator may make a 

population trapped in a local optimum. 

In order to escape from a local optimum, a kind of jump operation is 

needed. So, by using the mutation operator, we can get some offsprings 

different from their parents. That is, the genetic algorithms try to jump 

to other place. However, if the mutation operator is often applied to 

chromosomes, then most of newly created chromosomes are randomly 

different from their parents, so that the searching process may loss its 

direction. Thus, the mutation probability of a bit should be very low. 

Some best

chromosomes

Other

chromosomes

copy

reproduction

Old population New population

Copied

chromosomes

+

Newly created

chromosomes

Fig. 12.3. Elitist strategy

(5) Replacement

A typical genetic algorithm totally replaces the old population with the 

newly created chromosomes, but it is not mandatory. There could be 

many variations. For example, after reproduction, the old and new 
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populations are taken together, and among them the best n
chromosomes are selected as the next population. 

Among these variations, the elitist strategy is popular. The elitist 

strategy is an approach that copies the best k chromosomes into the next 

population. The other chromosomes of the new populations are 

reproduced from the old population. (Fig 12.3) graphically shows the 

elitist strategy. If the total replacement is performed, the chromosome of 

the best fitness in the new population may be worse than that in the old 

population. This is why the elitist strategy is useful. 

12.2 Fusion with Genetic Algorithms 

Like in the fuzzy systems and neural networks, the fuzzy systems and 

genetic algorithms can complement each other. Researches on their fusion 

of them can be classified into two categories: 

(1) Identifying fuzzy systems with genetic algorithms 

(2) Controlling parameters of genetic algorithms with fuzzy systems. 

As mentioned, the fuzzy systems do not have learning algorithms, so the 

genetic algorithms can be used as a learning algorithm of the fuzzy 

systems. Genetic algorithms have some parameters to be set, so fuzzy rules 

can be used to change these parameters during the searching process. 

12.2.1 Identifying Fuzzy Systems with Genetic Algorithms 

Although fuzzy systems have been used to control a number of systems, 

the selection of acceptable fuzzy membership functions has been a 

subjective and time-consuming task. When we build a fuzzy system, we 

should determine the number of the linguistic terms of input and output 

given data

or

real systems ...
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(encoded fuzzy systems)

applying
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1 1 0 0 1 0 11

1 0 0 1 1 0 10

0 0 1 0 0 1 01
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Fig. 12.4. Schematic diagram of identifying FSs with GAs 
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Although fuzzy systems have been used to control a number of systems, 

the selection of acceptable fuzzy membership functions has been a 

subjective and time-consuming task. When we build a fuzzy system, we 

should determine the number of the linguistic terms of input and output 

variables, their membership functions and the consequence parts of fuzzy 

rules.

The IF-THEN structure of fuzzy rules is easy to understand and to build 

with priori knowledge, but many parameters should be specified by 

experts. The identification of these parameters can be viewed as an 

optimization problem; finding parameters that optimize the performance of 

the model. Therefore, there have been many researches on applying the 

genetic algorithms to the identification of fuzzy systems. These researches 

encode the parameters of a fuzzy system into chromosomes, and these 

chromosomes are evolved to find parameters which make a fuzzy system 

fit to real systems or given data well. 

(Fig 12.4.) illustrates the evolving process, and the researches can be 

categorized into groups: 

(1) Tuning an existing fuzzy system 

The researches in the first category modify the parameters of an existing 

fuzzy system. The usually tuned parameters are the membership 

functions and/or fuzzy rules. Tuning the membership functions with 

genetic algorithms are analogue to neuro fuzzy systems. In these 

researches, the membership functions are encoded into chromosomes 

and better membership functions are searched by genetic algorithms. 

(Fig 12.5.) shows an example of encoded fuzzy sets into 

chromosomes. In this example, the center of triangular fuzzy set is 

fixed, and only the left and the right points of each fuzzy set are variable 

and thus encoded. To modify the fuzzy rules, their consequent parts are 

usually encoded. For example, there are four fuzzy rules: 

44

33

22

11

isTHENisIF

isTHENisIF

isTHENisIF

isTHENisIF

OYIX
OYIX
OYIX
OYIX



316                            12. Fusion of Fuzzy System and Genetic Algorithms 

a2 b2

a1 a3b1 b3

Encoding

a1 b1 a2 b2 a3 b3

a2 b2

a1 a3b1 b3
a2 b2

a1 a3b1 b3

Encoding

a1 b1 a2 b2 a3 b3a1 b1 a2 b2 a3 b3

Fig. 12.5. Example of encoding fuzzy sets 

then, these are encoded as a string of linguistic terms like O1O2O3O4 . 
The genetic operators will change the linguistic terms, but not their 

membership functions. For example O1O2O3O4 may be changed into 

O1O3O4O1 after genetic operations. This represents the following fuzzy 

rules:
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OYIX
OYIX
OYIX
OYIX

this approach is proper to rough tuning of fuzzy systems because 

changing rules may affect the fuzzy system. 

(2) Building a fuzzy system with genetic algorithm 

This method do not need an existing fuzzy system. This approach 

determines all the parameters of a fuzzy system by genetic algorithms 

without any priori knowledge. Thus, the chromosomes used in this 

method usually include most of the parameters such as the number and 

membership functions of linguistic terms. So, it is very important how 

to effectively represent those parameters because a long chromosome 

means a wide search space. 

If a search space is wide, we cannot expect a good optimization 

result. So, most researches make restrictions; for example, some fix the 

number of linguistic terms or restrict the shape and position of 

membership functions. 

In a sense that this approach does not use any priori knowledge, it is 

analogue to neural networks. One merit of this approach over neural 

networks is that we can easily extract knowledge on systems. This 

approach represents discovered knowledge with fuzzy rules and fuzzy 

sets. Thus, we can easily understand and extract the knowledge. In the 

case of neural networks, we cannot understand the knowledge 

represented inside the networks. 

1) Example 
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There is an example to build fuzzy systems by genetic algorithms. Lee 

and Lee-Kwang proposed a method which constructs a fuzzy system by 

using given input-output data. They assumed that no priori knowledge 

nor existing fuzzy system was given, and that only input-output data 

were available. Thus, all parameters of a fuzzy system needs to be 

identified.

If all fuzzy sets and rules are found by genetic algorithms, they need 

to be encoded into chromosomes. However, it would produce long bit 

strings. A long string leads to broadening the search space, and as the 

result, its searching performance may get bad effects. To cope with it, 

they encoded only fuzzy sets into chromosomes. When building a fuzzy 

system from a chromosome, fuzzy sets are decoded from the 

chromosome, and then fuzzy rules are generated based on the given data 

and the decoded fuzzy sets. They used the product operator for the 

evaluation of antecedent matching degree. 

2)   Encoding scheme of input variables 

To represent a fuzzy model by a binary string, an encoding scheme is 

needed. In this method, only the position of fuzzy sets of input variables 

are encoded which can be interpreted as a fuzzy partition. The encoding 

scheme is devised so that the number, the position and the size of fuzzy 

sets can evolve during the searching process. 

In this model, only triangular fuzzy sets are used. For a triangular 

fuzzy set, the specification with three points is needed: two base points 

and one center point. To easily handle the varying number of fuzzy sets 

and their positions, an encoding scheme for input variables is used as 

shown in (Fig 12.6.) The input domain is discretized into L points. Only 

the center point of a fuzzy set is represented by one of the L points. The 

“1” in a bit string indicates the center point of a fuzzy set. So the numb- 

1 0 0 1 0 1 11 0

b b’

a a’

p

L k

F1

Fig. 12.6. Encoding scheme of the method proposed by Lee and Lee-Kwang 
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er of the “1”s is equal to the number of fuzzy sets, and L is it’s 

maximum number in an input domain. 

A chromosome contains another parameter. That is the overlapping 

coefficient p. It takes k bits, and we get the value of p by decoding them. 

It is also used to determine the position of fuzzy sets. 

For example, the positions of fuzzy set F1 in (Fig 12.6) is determined 

as follows. We can get the position of the center point from the location 

of the “1” in chromosomes. Then, what remains is the position 

determination of the two other base points. These points are located 

dependently on the center point of the neighboring fuzzy sets. The left 

point is located at b = a x p off from the center where a is the distance 

between the centers of the fuzzy set F1 and the left neighboring fuzzy 

set. Similarly, the right point is at pab  plus to the center. Since 

kL  bits are needed for an input variable, in the case of n inputs, the 

length of chromosomes becomes )( kLn .

3)  Determination of consequent parts 

Since only the fuzzy partitions of each input space were encoded in the 

above, fuzzy rules should be generated now. To get the fuzzy rules from 

a chromosome, the basic form of fuzzy rules should be built from the 

cartesian product of the fuzzy partitions. 

For the specification of consequent part, the given data and the least 

square estimation method are used. The detail procedure is explained in 

the following: Let us assume that there are only two input variables. 

First, let's suppose we have nr incomplete rules with undefined 

consequent parts, Ci, i=1, , nr,

rrrr nnnn CyAxAxR

CyAxAxR
CyAxAxR

THENisandisIF:

THENisandisIF:

THENisandisIF:

2211

22222112

11221111

and ns  sample data 

),,(,),,,)(,,( 212222111211 sss nnn yxxyxxyxx
For the ith sample ),,( 21 iii yxx , the output 'iy  is obtained by the 

following way:  

r

r

n

k iik

n

k kiik
i

xx

Cxx
y

1 21

1 21

),(

),(
'

then, the above equation is 

rr niniii CaCaCay 2211'
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where

rn

k iik

iij
ji

xx
xx

a
1 21

21

),(

),(

for all samples, the outputs can be written like the followings. 

rsrsss

rr

rr

nnnnnn

nn

nn

CaCaCay

CaCaCay

CaCaCay

2211

22221122

12211111

'

'

'

In order to obtain the generated output iy  as close to iy  as 

possible, the least square method is used. That is, the sum of the squared 

error between the outputs and the given data should be minimized. The 

method gives the value of Ci, i=1, , nr, such that the sum is 

minimized  
sn

k kk yy
1

2)'( .

We can get those Ci, i=1, , nr, from some matrix manipulations. 

Through this way, for a given fuzzy partition, we can get the fuzzy rules 

which produce the output as close as the given data. 

4)  Cost function 

To evaluate the fuzzy model encoded in a chromosome, the number of 

fuzzy rules, the sum of error, the maximum of error and the number of 

sample data are considered. The error is defined as the absolute value of 

the difference between the output and expected value. 

Population state

FS

GA  parameters

evolution

Population

modificat ion

Fig. 12.7. Schematic diagram of controlling parameters of GAs with FSs 
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12.2.2 Controlling Parameters of Genetic Algorithms with Fuz- 
zy Systems 

Genetic algorithms need some parameters such as population size, and 

probabilities of crossover and mutation. These parameters are very 

important for the performance, and the interaction between them is known 

to be complex. Thus, there have been many researches on how these 

parameters effect on the performance and how to set them to improve the 

performance. 

However, the parameters setting is often left to the user and never 

changed during evolutions. There are some researches on dynamic control 

of parameters during evolutions by using fuzzy systems. The basic idea is 

simple; a fuzzy system observes the states of population during evolutions 

and changes the parameters to improve the performance. That is, genetic 

algorithms use a fuzzy knowledge-based system to dynamically control the 

parameters, such as population size, crossover rates, and mutation rates. 

(Fig 12.7.)shows the schematic diagram of this method. For example, 

fuzzy rules for those systems can be described as follows: 

IF average fitness is high THEN population size should be increased. 

IF best fitness is not improved THEN mutation rate should be 

increased.

One question of this approach is how to obtain the knowledge to build 

the fuzzy rules. It can be solved in the ways; an expert on genetic 

algorithms can describe his/her own knowledge or an automatic fuzzy 

design technique can be applied. 

(1) Example of DPGA 

An example of this approach is Dynamic Parametric Genetic 

Algorithms (DPGA) proposed by Lee and Takagi. The DPGA has a 

fuzzy system which controls the parameters of genetic algorithms 

according to the population state. At first, the fuzzy systems of the 

DPGA was manually built from empirical knowledge, but it did not 

show good performance. Thus an automated method to build fuzzy 

systems was used, which is similar to the method presented in the 

previous section. The fuzzy system was built by using genetic 

algorithms. 

(2) Encoding scheme 

To build a fuzzy system which can control the parameters of genetic 

algorithms well, parameters of the fuzzy systems are encoded into 

chromosomes. The inputs of the fuzzy system are (average fitness)/(best 

fitness), (worst fitness)/(average fitness) and the change of fitness since 

last control action. The outputs are the changes of population size,  
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C12 …. C32 R1 R2 .. R81C11

C11 C12

(a) encoding fuzzy sets

(b) a chromosome representing a fuzzy system

Input 1

C12C11

Cij: center point of the jth fuzzy set of Input I
Ri : the consequent part of ith rule(fuzzy set for output)

population
size

crossover
rate

mutation
rate

Fig. 12.8. Coding of a fuzzy set and a chromosome of the DPGA 

crossover probability, and mutation probability. All the input and output 

variables are represented by three fuzzy sets as shown in (Fig 12.8.(a)). 

To encode a fuzzy set, overlapped membership functions are used of 

which right and left end points are located at the center points of the 

right and left neighboring fuzzy sets, respectively. The center point of 

the left most set is fixed as shown in (Fig 12.8.(a)), so only two center 

points are variable and thus encoded. The total number of encoded 

parameters is 81(rules)iables)output varandinputperpointscenter(two12 .

 In addition, initial values for population size, crossover and mutation 

rates are included in the coding as shown in (Fig 12.9.(b)). 

(3) Evolution and evaluation 

For the evolutions of chromosomes, some heuristics are added; the 

fuzzy system cannot change the population size by more than half of the 

current population size and should keep it between 10 and 160. The 

crossover and mutation rates are also restricted to change at most by half 

of their current value and are bounded by [0.2,1.0] and [0.0001, 1.0] 

respectively. 

For the evaluation of chromosomes, DeJong's five functions are used. 

The fitness of a chromosome is evaluated based on how much DeJong's 

functions are optimized by the DPGA. The proposed DPGA has an 

initial population size of 13, crossover and mutation rates of 0.9 and 

0.08 respectively. This DPGA may not show a good performance in 

other applications because it is optimized with respect to only DeJong's 

functions. In order to test the generality of the DPGA, it was applied to 
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an inverted pendulum control task. It showed performance as good as 

the simple genetic algorithms. 
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[SUMMARY]

Fuzzy systems 

Easy to understand 

No ability of learning 

Genetic algorithms 

Not easy to understand 

Ability of search 

Operation in genetic algorithms 

Crossover

Mutation

Issues in genetic algorithms 

Encoding scheme 

Selection

Crossover rate 

Mutation rate 

Fitness function and evaluation 

Fusion of fuzzy systems and genetic algorithms 

Identifying fuzzy systems with genetic algorithms 

tuning an existing fuzzy system 

building a fuzzy system 

Controlling parameters of genetic algorithms with fuzzy 

systems 

Issues in building a fuzzy system with genetic algorithms 

Encoding scheme of input variables 

Determination of consequent parts 

Cost function 
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[EXERCISE]

12.1 Explain the advantages and disadvantages of the fuzzy system in 

comparing with the genetic algorithms. 

12.2 Show the typical operation procedure of the genetic algorithms. 

12.3 Explain the concepts and functions of the followings. 

a) Encoding scheme 

b) Crossover operation 

c) Mutation operation 

d) Fitness function 

e) Crossover rate 

f) Mutation rate 

12.4 Explain two fusion methods of fuzzy systems and genetic algorithms: 

identifying fuzzy systems with genetic algorithms and controlling 

parameters of genetic algorithms with fuzzy systems. 
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