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Preface

Fuzzy logic and its applications are now well-established and arguments for and
against it have reached a steady state. There is an overwhelming volume of literature
on the topic making it a difficult task for a practicing engineer, beginner researcher,
or an advanced student to grasp the topic and then apply the acquired knowledge with
only a small investment of time and money. This book is intended to present fuzzy
logic and its applications for embedded systems succinctly yet comprehensively, with
a self-contained, simple, readable approach. Simplicity here means the omission of
extraneous sentences and phrases, and the exclusion of non-applied mathematical and
research-oriented details. It is intended for the intelligent reader with an alert mind.
The approach, the organization, and the presentation of this book are also hoped to
enhance the accessibility to existing knowledge beyond its contents. An extensive
bibliography not only of printed material but also of annotated Web links is provided
at the end of each chapter.

The book is divided into nine chapters in addition to a set of quizzes, an appen-
dix, a list of symbols and acronyms, and a glossary. Chapter 1 gives an overview of
embedded systems and their implementation techniques. The chapter introduces the
wide scope of embedded systems. The relationship between fuzzy logic and embed-
ded systems is also outlined.

Chapters 2 and 3 introduce succinctly the concepts of fuzzy sets, fuzzy opera-
tions, and fuzzy relations with illustrative examples. The discussion is geared toward
what would be needed in order to design fuzzy embedded systems.

In Chapter 4, embedded fuzzy logic applications are introduced with simplified
case studies. Contrasting fuzzy logic control with conventional control is empha-
sized. It is hoped that by the end of this chapter that the reader would be able to
apply fuzzy logic to the design of an embedded system of interest. The reader may
wish to consult Chapter 8, Fuzzy Software Tools, select a few tools and start experi-
menting with fuzzy systems design and simulation.

A critique of fuzzy logic is presented in Chapter 5, a topic that is not commonly
discussed in the engineering literature on fuzzy logic. It is, however, important for
engineers to understand the limitations and implications of any methodology they
intend to use. No tool is suitable for everything; it must be used skillfully within its
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bounds of applicability. Moreover, most engineers are interested in intellectual
discussions relevant to the topic at hand as long as the ideas are communicated
properly and to the point. The discussion in this chapter is brief, but with an exten-
sive bibliography provided for those who may like to further research any of the
points discussed.

Chapter 6 presents the fundamentals of artificial neural networks, which are
closely related to fuzzy logic but with fundamentally different concepts.  The chapter
introduces basic structures and learning algorithms of neural networks.

Hardware realizations are outlined in Chapter 8, which discusses both analog and
digital implementations. Chapter 9 provides the reader with an opportunity to gain
hands-on experience with a minimum investment of time and money. The chapter
gives an overview of numerous software tools for fuzzy logic systems, neural net-
works, and neuro-fuzzy systems. The software reviewed includes C, C++, and Java
source codes, in addition to M-files for MATLAB. Design and analysis software tools
with graphical user interfaces are also discussed, as well as software that is meant to
demonstrate fundamental concepts. All software tools, or working demos of them,
are available for downloading through the Web along with documentation and
examples in most cases.

Since most of the ideas presented are now well established there are no references
given within the chapter text. However, further reading and expansion on the infor-
mation presented is facilitated by the selected bibliography provided at the end of
each chapter. The Web resources selected are those available at no charge, relevant to
the topics discussed, and expected to be reliable.

The idea of citing references from the Web does not yet hold wide acceptance in
some academic circles. The major argument against the idea is the questionable
reliability of the content and its sustained availability. It should be remembered that
content does not become reliable just because it is printed on paper, and unreliable
when it is posted freely on the Web. Nevertheless, many of the resources cited as
accessible through the Web are documents that were published on paper as well, and
the Web simply enhances their availability. The use of the Web is essential for some
of the resources such as interactive demos. It should also be remembered that books
are known to go out of print and many may not be physically accessible with ease.
Of course, an available, well written book constitutes a better and more convenient
source of knowledge. Accessibility through the Web would be the next best thing, but
it requires guidance, as provided here, to make the most out of it.

The set of quizzes with answers provided is meant to help the reader ponder
about the subjects introduced without being side-tracked from the final goal that
could be better reached by  using the resources of chapter 9; thus learning through
practice.

Preface
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The appendix introduces the fundamental concepts of Genetic Algorithms (GAs).
It is an optimization technique sometimes used in conjunction with the design of
fuzzy and neural systems. A classified, annotated Web bibliography is provided for
the reader who may wish to study the topic further.

A list of symbols and acronyms is provided along with the circuit symbols of
MOSFETs that appear in literature on fuzzy logic embedded implementations to help
the reader avoid possible confusion when consulting the resources.

A glossary of terms related to embedded systems, fuzzy logic and neural net-
works is provided. Although it refers to terms used in the various chapters of the
book, it also introduces some terms to expand the coverage and provoke further
interest in the general topic.

If an instructor is to use this book as a teaching resource, numerous application-
oriented exercises and mini-projects can be assigned to the students if the instructor
wishes to do so.  For example:

■ The quizzes provided could be the basis for class discussion on the funda-
mentals of fuzzy logic and neural networks.

■ An item from the numerous Web resources provided could be selected and
students asked to research it further and expand on the short review given.

■ Students could be asked to research entries from the glossary further.

■ Students could be asked to run a selected demo simulation or Java applet
from the resources provided in Chapter 9, observe its action, document their
observations, and relate it to the theory.

■ Students could be assigned a system of interest such as a refrigerator,
vacuum cleaner, auto-focus, level control, speed control, etc. They could
identify the inputs and outputs, design a linguistic model, then simulate it
using one of the tools discussed.

■ Students could be also asked to produce their own source code and execut-
able file to solve one of the above problems.

■ A topic from Chapter 5, Fuzzy Logic Critique, could be selected for further
research and discussion.

Preface
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It is hoped that through this book the reader will:

■ Gain an understanding of the wide range of embedded systems and their
future trend.

■ Be able to use fuzzy sets and fuzzy logic algebra.

■ Recognize when and why it would be advantageous to use fuzzy logic.

■ Understand the fundamentals of neural networks and recognize when it is
advantageous to use them.

■ Gain familiarity with the hardware implementation approaches of fuzzy logic
for embedded systems applications.

■ Be able to experiment with the design of fuzzy systems for embedded
systems applications.

■ Be able to pursue further details of a  topic within fuzzy logic embedded
systems applications with relative ease.

I would like to express my gratitude to Dr. Alexander Berezin, McMaster University,
Hamilton, Ontario, Canada for his encouragement and useful discussions. I would
also like to thank Dr. Lawrence Hulsman, University of Arizona, Tucson, USA for
his continuous encouragement and inspiration. The comments provided by Mahmoud
Gadala, Senior Engineer, Pratt & Whitney Canada Inc, Montreal, Quebec, Canada
are highly appreciated. I would also like to thank Dr. Ahmed Hussein, University of
Northern British Columbia, Prince George, British Columbia, Canada, Dr. Erol
Inelmen, Bogazici University, Istanbul, Turkey, Prof. Predrag Pesikan, DeVry,
Mississauga, Ontario, Canada, and Dr. Aleksander Malinowski, Bradley University,
Peoria, Illinois, USA; their interest and input are particularly valued.
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1

C H A P T E R  1
Embedded Systems: An Overview

1.1 Definition and Examples
A system whose principal function is not computational but is controlled by a
computational system embedded within it is referred to as a computational embedded
system, which is usually shortened to embedded system.

The word embedded implies that the computational system lies within an overall
system. The user of the overall system may not even be aware of the computational
system’s existence. The phrase “computational system” refers to computers, micro-
processors, microcontrollers, DSP chips, or custom-made hardware along with the
software that may be associated with them. Desktop or laptop computers, although
they contain microprocessors, are not considered embedded systems since their
principal function is computational. If such a computer is customized and built
permanently into an identifiable system with the sole purpose of controlling that
particular system, then one can refer to it as part of an embedded system.

Embedded systems are used in a wide range of applications. They can be loosely
categorized as:

■ Consumer Electronics including digital cameras, televisions, cell phones,
and camcorders.

■ Home Appliances including microwave ovens, rice cookers, thermostats,
washing machines, and drying machines.

■ Business and Office Equipment including alarm systems, card readers,
product scanners, cash registers, fax machines, and copiers.

■ Transportation Systems including automobiles (transmission control, fuel
injection, antilock brakes, and cruise control), train systems, and avionic
systems.

■ Factory Control including machine control, instrumentation, and robotics.

■ Medical Systems including life-support systems, testing systems, and
diagnostic systems.

The list of embedded system applications is growing continuously and is almost
endless.
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1.2 Further Features of Embedded Systems
Embedded systems share common features that include the following:

■ Hardware and software

An embedded computing system typically employs both software and
hardware components. The emphasis in the design varies depending on the
constraints of the design specifications. The capabilities of integrated circuit
(IC) chips have been following the so-called Moore’s law, which predicts
that IC technology will double its performance every 18 months. Figure 1.1
gives an illustration of Moore’s Law, showing the increase in the number of
transistors in processors over time.

Figure 1.1: The increase in the number of
transistors in processors over the years.

There is, of course, a physical limitation on the dimensions of a transistor
which, when reached, means different physical laws become applicable. This
may lead to practical application of quantum computing and a new meaning to
embedded systems. It appears that the amount of software used per consumer
product is doubling roughly every two years. The trend appears to be con-
tinuing and the number of familiar and new consumer products using all the
capabilities of IC technology is increasing as prices become suitable for
consumers. One has to be careful, however, when talking about the amount
of software. The number of lines of code and their rate of execution would
not be enough to evaluate the performance of a system independent of what
a code instruction can do.

Manufacturers appear to depend on software to improve the user inter-
face of products. They also depend more and more on software in
introducing the product diversity needed in the market while maintaining the
minimum hardware variety to ensure economical mass production. Some of
the features of embedded computing systems include:
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■ Tightly-Constrained Specifications

Embedded computing systems typically have particularly tight design
specifications. The physical dimensions of the system usually need to be
small, requiring the system to fit on a single chip. The cost is required to be
low as well. In most cases, the system must continually react to changes in
its environment and to process the data fast enough as the changes occur
(real-time operation).

■ Reliability

Bugs in embedded computing systems cannot be tolerated, as opposed to
personal computing where software bugs are mere inconveniences. Rigorous
systematic testing and commissioning are required. Implementing an embed-
ded system with hardware or software problems could lead to serious
consequences. For example, one significant software error in a life-support
system or a transportation system could be fatal.

The need for assured reliability becomes increasingly demanding consid-
ering the fact that numerous products with embedded systems have a
relatively short life cycle. They tend to become obsolete due to technological
changes.

■ Networked Processors

Some embedded computing systems may require the use of more than one
processor, each to control one subsystem. These processors need to be
networked to share data and to meet the needs of the overall system. For
example, an automobile has subsystems that require electronic control. These
include fuel injection and ignition, automatic transmissions, air-conditioning
systems, shock absorbers, anti-lock braking systems, and air bags. A network
of inexpensive processors could lead to a cheaper and simpler system imple-
mentation than a single processor performing all the tasks.

■ Internet-enabled

The increased popularity of the internet and multimedia has created a demand
for embedded consumer product networking. It is predicted that the traditionally
separated worlds of entertainment (audio/video equipment), communication
(telephone and e-mail), and computing will become inseparable. All, in
addition to home appliances (washing machines and refrigerators), would
need to be linked to the internet or its successor. Table 1.1 gives a summary
of major applications and initiatives of embedded internet application areas.
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Table 1.1: Summary of major applications and initiatives
of embedded inherent application areas.

Category Examples of Commercial Applications

Home Appliances Equipment diagnostics and service,
and Consumer Web-based content distribution
Electronics

Office Systems Copier, printer, and fax machine
configuration and system management

Factory Control Machine controller configuration and
diagnostics

Medical Systems Diagnosis, treatment, and data
communications

Communications Switch and network router configuration
and management PDAs, cellphones, and
pagers for Web-based content distribution

Automotive Systems GPS and traffic reports Maintenance and
diagnostics Entertainment

1.3 Design Metrics
Design metrics are measurable features of the implemented systems. They are useful
in characterizing and comparing various implementations of embedded systems.
They include:

■ Safety

This feature overrides any other. A system that is not safe is not useful. The
system needs to be guaranteed that it causes no harm to the individuals using
it, the environment, or other systems it may come in contact with.

■ Cost

The overall cost includes the cost of designing, testing the prototype, and the
cost of manufacturing each unit.

■ Time-to-market

This is the time it takes to develop a system and make it available on the
market. It includes the time needed to design and test a prototype and the
manufacturing time. Time-to-market needs to be much shorter than the life-
time of the product in the market before consumers consider it to be
obsolete. This time will have a direct impact on the expected revenues from
marketing the product.



Embedded Systems: An Overview

5

■ Size

In numerous embedded systems the physical size and weight of the system
are important. They are related in many cases to the hardware and software
used. Software size is measured in bytes and number of instructions of the
code used. The number of gates or transistors are used to measure the size of
the hardware.

■ Performance

Performance of an embedded system typically refers to the time the system
takes to perform key tasks. This would include the response time, i.e. the
time between the start of execution of a task and its finish, and the number of
tasks performed per unit time. Sometimes the performance of a processor is
cited in instructions per unit time; one has to be careful when comparing
processors on such a basis to consider what an instruction can do.

■ Power Consumption

Power consumption is an important feature. The power consumed by the
embedded system determines the lifetime of the system’s battery, the cooling
requirements of the hardware, and reliability. Figure 1.2 shows that dissi-
pated power has increased over the years as the number of integrated
transistors has increased.

Figure 1.2: Trend of power dissipation over the years. (Source: Intel)
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■ Design Modification Flexibility

This feature refers to the level of ease with which the functionality of the
system can be modified with minimum cost to produce a new prototype.
Well-documented systems enable designers, even those who were not
involved in the initial design, to maintain and modify a given system
economically.
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■ Bench Marking

The EDN Embedded Microprocessor Benchmark Consortium (EEMBC,
pronounced “embassy”) was formed in 1997 to develop performance bench-
marks for processors for embedded applications. EEMBC’s benchmarks are
meant to address real-world applications in areas such as automotive/indus-
trial/consumer, networking, telecommunications, and office automation. This
would provide designers with a certified method of comparing and judging
performance.

It is important to observe that the metrics are typically correlated, either
positively or negatively. Challenges occur and hence there is a need to
compromise when the correlation is negative—i.e., improving one feature
often leads to degrading another.

1.4 Implementation
Embedded systems implementation relates to three general sets of technologies;
processor, hardware and software technologies; IC chip technologies; and design and
test technologies. The following sections give a short overview of these categories.

1.4.1 Processor Technologies

General-Purpose Processors
A general-purpose processor, or a microprocessor, is a predesigned program-
mable digital system that can be used for numerous diverse applications. It is
used in embedded systems by programming its memory to execute the
required operations.

Such an approach to embedded system design has the advantage of
design modification flexibility through program modification. It also has the
advantage of a lower prototype development cost and hence a lower cost for
the production of a small number of units. In addition, the development time
is relatively short. However, the cost is higher than custom-designed proces-
sors if the number of units required to be manufactured is large. The size and
power consumption could be larger than necessary because of the existence
of unneeded processor hardware.

Several software tools are typically available for programming a chosen
general-purpose processor. The existence of an Integrated Development
Environment (IDE) simplifies the design process further since it enables
writing of the source code, its compilation, and linking it into an executable
file on the intended microprocessor, all from within a single application

A microcontroller is a special type of microprocessor, designed for
embedded applications. It usually features on-chip program and data memory
to enable single-chip design solutions.
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Limited-Purpose Processors
Limited purpose processors include single-purpose and special-purpose
processors. A single-purpose processor is a digital circuit designed to execute
one particular program. Other terms used include coprocessor, accelerator,
and peripheral. A special-purpose processor is a digital circuit that can
execute numerous programs, but its design is optimized for a particular
application area, for example digital signal processing (DSP).

The performance of such processors is typically faster than that of
general-purpose processors. Also, they are smaller and their power consump-
tion is lower. However, they are less flexible. The unit cost for small
quantities and the nonrecurring engineering costs are also higher.

1.4.2 Integrated Circuit Technologies
Processors are implemented using integrated circuit technologies. Integrated circuits
(ICs) are sometimes referred to as chips. They are typically classified based on the
number of transistors with which the chip is built:

SSI (Small-Scale Integration): up to 100 per chip; for example, logic gate chips.

MSI (Medium-Scale Integration): from 100 to 3000; for example, flip-flops and
counters chips.

LSI (Large-Scale Integration): from 3000 to 100,000; for example, peripheral
interface chips.

VLSI (Very Large-Scale Integration): from 100,000 to 1,000,000; for example,
microprocessors, and memory chips.

ULSI (Ultra Large-Scale Integration): more than 1 million.
The line between VLSI and ULSI is vague, and the term ULSI is most
commonly used in Japanese literature.

Silicon (Si), and gallium arsenide (GaAs), are semiconductor materials used for
IC fabrication. The physical properties of GaAs lead to inherently faster devices, but
it is more expensive than Si.

Two technologies are used for silicon-based ICs: Bipolar Junction Transistors
(BJT), and Metal-Oxide-Semiconductor Field Effect Transistors (MOSFET). Bipolar
technology leads to device families such as TTL (transistor-transistor logic) and I2L
(integrated injection logic). The bipolar technology offers high speed and high
current drive, but leads to higher power dissipation and lower circuit complexity.

The MOSFET technology offers low power dissipation, a very high level of
integration, and better electrical characteristics. Circuit realization techniques may
utilize:
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■ Enhancement type n-channel (EnMOS)

■ Both enhancement and depletion type n-channel (EDnMOS)

■ Both p-channel and n-channel enhancement MOSFET, which is known as
CMOS (complementary metal-oxide semiconductor). CMOS-based imple-
mentation is becoming the standard process for all but the highest speed
devices. It offers lower power dissipation but the circuit complexity for
realization is lower compared to those which may be realized with
EDnMOS.

■ BiCMOS devices are based on both bipolar and CMOS technologies. They
give the best of the two technologies, but lead to increased cost and fabrica-
tion complexity.

An IC is fabricated by creating several layers of different characteristics in a Si
wafer. Such layers can be created by depositing photosensitive chemicals on the
surface of a silicon wafer and shining light through masks to change the properties of
the chemicals. An etching process follows to remove parts of the chemicals as
required to expose the surface according to a given pattern and make the required
changes in the properties as needed. The layers are thus built using an appropriately
designed set of masks (referred to as a layout).  Figure 1.3 shows current and future
CMOS structures.

Figure 1.3: Intel CMOS current and future structure. (Source: Intel)
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The top illustration of Figure 1.3 shows the basic structure of a CMOS transistor
currently in use (year 2003). All CMOS circuits are built with transistors such as this,
and connected to each other according to the circuit design. The Pentium® 4 proces-
sor has 42 million such transistors integrated on a piece of silicon as small as a
fingernail. The lower part of Figure 1.3 illustrates the structure of the new TeraHertz
transistor that is expected to be in use within a few years. Its goal is to maintain the
level of power consumption of present day microprocessors, although the future ones
will be built with many more transistors.

Technology generation has been defined by the feature size, λ, which is the
smallest feature on an IC—for example, the length of the transistor channel. Current
feature size is in the submicron range. Figure 1.4 shows the trend in feature size over
the years.

Figure 1.4: Feature size of Intel microprocessors over the years.
(Source: Intel)
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Field Programmable Device, FPD
FPD is a general term that refers to any type of integrated circuit used for
implementing hardware by user programming. These devices are also
referred to as Programmable Logic Devices, PLDs. They are similar in
principle to the EPROM (Electrically Programmable Read Only Memory),
but they have many more potential applications. SPLD refers to simple PLD,
and CPLD refers to complex PLD. A CPLD consists of several intercon-
nected programmable SPLD-like blocks on a single chip. CPLDs feature
logic resources with a large number of inputs. A Field Programmable Gate
Array (FPGA), is an FPD with a general structure that allows very high logic
capacity. It offers fewer logic resources and a higher ratio of flip-flops to
logic resources than a CPLD.

Gate Array, GA
Design implementation with a GA is done with mask design and processing,
not by user programming. The manufacturing process has two phases. The
first is based on generic masks, or standard masks, and results in an array of
uncommitted transistors on the GA IC chip. These chips are later customized
as the need arises by defining the metal interconnects between the transistors
of the array.

Standard-Cells Based Integrated Circuits, CBIC
In standard-cells based design, all of the commonly used logic cells are
designed, characterized, and stored in a standard cell library in a computer. A
typical library may consist of a few hundred cells for inverters, NAND gates,
NOR gates, latches, flip-flops, etc. Multiple implementation technologies
may be used for each cell to provide an adequate choice of electrical charac-
teristics as they may be needed in the design. The characterization of each
cell is done for several different categories, including delay-time vs. load
capacitance, timing simulation model, circuit simulation model, fault simula-
tion model, cell data for place-and-route, and mask data.

CBIC based design is highly flexible in allowing cells to be placed,
modified and connected with a chip area typically 10–15% smaller compared
to gate arrays. Each design requires the production of a unique full mask set
leading to longer time-to-market and higher non-recurring engineering costs
making it a more suitable deign style at high volumes. This design style is
sometimes referred to as full-custom design, but in a strict sense it is less
than full custom because the cells used are pre-designed and may be utilized
in numerous varied chip designs.

Full-Custom Design
In a full-custom design, all the layers of a particular embedded system design
are optimized; the optimization includes interconnect lengths and transistor
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sizes. The design productivity is relatively low, the cost is high, and the time-
to-market is long, but excellent performance with optimum size and power
consumption can be achieved.

A comparison between the characteristics of various implementation
styles is given in Table 1.2.

Table 1.2: Summary of selection criteria for various technology
implementation styles.

Criterion Semicustom Full Custom

PLDs GAs CBICs

Time to market Short Medium Medium Long

Performance High High High Very high

Architectural Medium High Higher Highest
flexibility to High

Volume Low High High High
dependence

Solution Low High High Very high
efficiency

Application Much Some Some None
support

Design change Medium High High Very high
cost

Development Low Medium Medium Very high
cost to high to high

1.4.3 Design Technologies
A top-down design process comprises progressively refined abstraction levels that
include:

■ System Specification

At this level, the designer describes the functionality of the system.

■ Behavioral Specifications

The designer refines the system specifications by assigning them to proces-
sors; this leads to behavioral specifications for each processor.
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■ Register Transfer Specifications

Behavior specification is further refined by converting the processor behav-
ioral specifications to a set of register transfer (RT), and state machines.

■ Logic Specifications

The RT level is further refined into logic specifications expressed through
Boolean equations.

A machine code for general-purpose processors and gate-level netlists for
single-purpose processors is then reached.

The design process can be optimized by using appropriate software tools to
progress through the levels described. Using libraries of existing implementations
could enhance productivity. Such libraries exist at all of the levels, including system-
level libraries that might consist of complete systems solving particular problems.
Testing correct functionality to prevent time-consuming debugging is most commonly
achieved through simulations. At the logic level, gate-level simulators provide output
timing waveforms for given input waveforms. General-purpose processor simulators
execute machine codes, and hardware description language (HDL) simulators execute
RT-level description and provide output timing waveforms for given input waveforms.
At the behavioral level, HDL simulators enable hardware/software verification.
Model checkers verify the completeness and correctness of the specifications.

1.5 Fuzzy Logic and Embedded Systems
An objective of fuzzy logic has been to make computers think like people. Fuzzy
logic can deal with the vagueness intrinsic to human thinking and natural language
and recognizes that its nature is different from randomness. Using fuzzy logic
algorithms could enable machines to understand and respond to vague human
concepts such as hot, cold, large, small, etc. It also could provide a relatively simple
approach to reach definite conclusions from imprecise information.

Almost every application, including embedded control applications, could reap
some benefits from fuzzy logic. Its incorporation in embedded systems could lead to
enhanced performance, increased simplicity and productivity, reduced cost and time-
to-market, along with other benefits. Fuzzy logic has the advantage of modeling
complex, nonlinear problems linguistically rather than mathematically and using
natural language processing (computing with words). The use of fuzzy logic requires,
however, the knowledge of a human expert to create an algorithm that mimics his/her
expertise and thinking. Also, studying the stability of a fuzzy system is a demanding
task.

Numerous applications, including embedded ones, combine the use of fuzzy
logic and neural networks. Neurofuzzy techniques take advantage of both fuzzy logic
and neural networks, leading to systems that can:
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■ Mimic the human decision-making process

■ Handle imprecise or vague information

■ Learn by example and hence do not require the knowledge of a human expert

■ Self-learn and self-organize.

■ Process numeric, linguistic, or logical information

Concluding Remarks
Embedded systems have become a ubiquitous part of our daily life at work and play.
They have gained importance for productivity and convenience. Industrial control
systems, medical instruments, transportation vehicles, bank machines, washing
machines, vacuum cleaners, and many other devices now depend on embedded
systems. It appears as if our current civilization is built around embedded systems.
The demand for higher performance and sophistication of embedded systems is
increasing.

Increased market demands require embedded systems to be developed even
further at a rapid pace. Fuzzy logic and neural approaches can provide a mechanism
for getting the most out of embedded system capabilities and making them more
intelligent. They can also accelerate the development cycle and reduce the time-to-
market of new products to meet ever-increasing demands. It is important for
engineers to know about the capabilities of fuzzy logic and neural networks as
possible design approaches from which one may select the most suitable for the
problem at hand.
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Web Resources
1. EETimes

www.eet.com/

This is the Web site of EETimes, a leading weekly newspaper for the Electronics
Industry. It provides a section for embedded systems (www.embedded.com/)
with news, editorials, articles and downloadable items.

2. Interactive Week
www.zdnet.com/intweek/

This the Web site of ZDNet News, a site devoted to the electronics industry. It
provides news, technology updates, reviews, downloads and prices. The site is
searchable.

3. Embedded Technology
www.embeddedtechnology.com/

A site devoted to embedded technology. It provides links to reviews, services and
downloads. It enables buying and selling online and gives access to free newslet-
ters and trade publications. The site is searchable.

4. Embedded Systems References
www.microcontroller.com/

A Web site intended to provide resources to the professional embedded systems
developer. The main categories include: Microcontrollers, Semiconductors,
News, Embedded Marketplace, and more. The site is searchable.

5. Programmable Logic Software
www.optimagic.com/software.html

This site provides links to sites related to design software for programmable
Logic (FPGA, CPLD, and PLD), both free and commercial. They include:
Schematic-Based Tools such as:
VIEWlogic, Mentor Graphics, Cadence Design Systems, OrCAD, ALDEC
Active-HDL, Capilano Computing Systems’ Design Works, VeriBest, Protel,
Tanner Research, Morphologic rapid-development system, MyCAD Logic
Synthesis and Optimization including: FPGA Express, FPGA Compiler, Exem-
plar Logic, Synplicity, VIEWlogic, Cadence Design Systems, Accolade Design
Automation, Compass Design Automation Design Verification, Programmable
Logic Vendor Software including: Xilinx, Altera, Vantis, Lattice, Lucent, Actel,
Cypress Warp2, Atmel FPGA, and University or Research Languages.



Embedded Systems: An Overview

17

6. Compact HTML for Small Appliances
www.w3.org/TR/1998/NOTE-compactHTML-19980209/

An article in HTML format about compact HTML for small appliances by
Tomihisa Kamada, ACCESS Co.,Ltd, Japan. The Compact HTML proposed in
the document defines a subset of HTML for small information appliances such as
smart phones, smart communicators, mobile PDAs, etc.

7. Real Time, Embedded and Specialized Systems
www.omg.org/realtime/

This is the Web site of the Real-time, Embedded, and Specialized Systems
Platform Task Force (RTESS PTF). It relates to systems that have one or more of
the following characteristics: real-time, embedded, fault tolerant, highly avail-
able, high performance, and safety critical. It provides industry links and
presentations, and plans to provide white papers on relevant issues.

8. Embedded Microprocessor Benchmark Consortium (EEMBC)
www.eembc.org

The Embedded Microprocessor Benchmark Consortium develops and certifies
benchmarks and benchmark scores to help designers select embedded processors.
EEMBC was formed in 1997, its membership includes more than 45 leading
companies.

According to the statement made on the Web site, every processor submitted for
bench marking is tested for up to 46 different parameters, each representing a
different workload and capability in telecom, networking, consumer, office
automation, and automotive industrial applications. Some sections of the Web
site require membership.

9. Bluetooth SIG
www.bluetooth.com/

A searchable Web site dedicated to Bluetooth technology, which is a worldwide
specification for low-power, low-cost, short-range wireless networking that
provides links between mobile computers, mobile phones, other portable
handheld devices, and connectivity to the internet.

10. Windows NT Embedded Web Site
www.microsoft.com/windows/embedded/nt

Microsoft Windows embedded systems Web site. It provides information, news,
products, etc. It is searchable.
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11. Analog Devices
www.analog.com/

This is the Web site of Analog Devices. It provides specifications and application
notes related to embedded systems and devices, among other information. The
site is searchable.

12. Intel
www.intel.com/research/silicon

This Web page provides links to Intel’s research activities in areas such as nano
technology, microprocessors, human computer interface and more. The figures of
Chapter 1 were obtained from this Web site.

13. Sun Microsystems
www.javasoft.com

This site describes itself as the source for Java Technology. It provides links to
information about Java technologies, downloading software tools, solutions,
tutorials, and more.

14. Texas Instruments
http://focus.ti.com/docs/apps/appshomepage.jhtml

This is the Texas Instruments web page for semiconductor applications including:
Audio systems, Broadband Solutions, Digital Control, Video and Imaging,
Optical Networking, and Wireless Communications.

15. Free On-line Dictionary of Computing
www.instantweb.com/~foldoc/

The On-line Dictionary of Computing, FOLDOC, is a searchable dictionary of
acronyms, jargon, programming languages, tools, architecture, operating sys-
tems, networking, theory, conventions, standards, mathematics, telecoms,
electronics, institutions, companies, projects, products, history; in fact, anything
to do with computing. The editor is Denis Howe.

16. Microcontrollers craft a networked future
www.eetimes.com/story/OEG20010521S0061

An article by Bernard Cole that appeared in EE Times May 21, 2001.
The article indicated that activity is increasing in 8- and 16-bit, and 16- and 32-
bit deeply embedded microcontrollers. Even as market attention fixates on 32-bit
embedded RISC and DSP in everything from set-top boxes and cell phones to
internet-enabled personal digital assistants, the deeply embedded microcontroller
space is gaining acreage as opportunities open up. In communications and
networking, these parts are playing roles as ancillary processors as they expand
the capabilities of existing embedded systems by adding internet ability.
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17. Intel MCS 96 Microcontrollers
www.intel.com/design/mcs96/saback.htm

Information on the Intel MCS 96 16-bit microcontroller family. It discusses
Intel expanding its popular MCS® 96 microcontroller family with the next
generation of 16-bit microcontroller architecture.

18. Fujitsu Microcontrollers
www.fme.fujitsu.com/products/micro/16bit/

Information from Fujitsu about its spectrum of 16 bit microcontrollers, covering
general-purpose and application-specific types with a rich variety of features,
including the latest technologies such as on-chip Flash ROM.

19. National Semiconductor Microcontrollers News
www.national.com/news/0,1737,2000+39,00.html

This provides news from National Semiconductor about microcontrollers. The
site has an archive that is searchable by date and by category.

20. The McClean Report
www.icinsights.com/prodsrvs/mcclean/mcclean_section10.html

This is an abstract of Section 10 (Microcontrollers and Digital Signal Processors)
of the McClean report, which provided analysis and forecasts for the Integrated
Circuit industry.

21. Trends in Embedded Microprocessors Design
www.realtime-info.be/magazine/98q4/1998q4_p014.pdf

An article by M. Schlett, Hitachi Europe. It appeared in IEEE Computer, 31, 8,
44–49, 1998.

22. Serial Communications Systems in the Automobile
www.mcjournal.com/articles/arc100/article4.htm

An article by Ross Bannatyne, Transportation Systems Group, Motorola Inc. It
relates to vehicles, electronic systems architecture, which has become a network
of real-time distributed control systems.

23. Aptronix
www.aptronix.com/tech/

The Web site of Aptronix, a company specializing in fuzzy logic, expert systems,
data mining and neural networks as applied to automation and controls. The page
provides links to numerous fuzzy embedded applications.
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24. InterScience
www.intersci.com/projects/fuzzy.html

According to the the information provided, the compnay has been processing
real-time video with the use of Field Programmable Gate Arrays (FPGAs) since
1992. Applications implemented include frame subtraction, convolutions, image-
based triggering and compression engines. The page has information about fuzzy
logic and links to information on embedded signal processing, automated sys-
tems for testing EEPROMs, automated testers, and more.

25. Omron
http://oeiweb.omron.com/oei/index.htm

A company specializing in industrial automation and electronic control compo-
nents. The site is searchable and provides links to information about numerous
applications of fuzzy logic in embedded systems applications.

26. Byte Craft Limited Publishing
www.bytecraft.com/publishing.html

Two books are available for free in PDF format:
First Steps with Embedded Systems, and Fuzzy Logic in Embedded
Microcomputers and Control Systems.

27. Getting Started with Programmable Logic
http://tutor.al-williams.com/pld-1.htm

A tutorial on programmable logic from AWS Electronics, League City, Texas, USA.
It is presented in HTML format.

28. Links to VLSI Information
www.mrc.uidaho.edu/vlsi/

Web links related to VLSI provided by the Microelectronics and Communications
Institute, University of Idaho, USA.

29. CPU Info Center
http://bwrc.eecs.berkeley.edu/CIC/

A site maintained by Berkeley Wireless Research Center. It provides links to
information related to microprocessors, for example: Online Technical Docu-
ments, CPU & System, Performance Information, Embedded Microprocessor
Information, History of CPUs, and Processor Road-maps.

30. Microelectronics A Tool for Innovation
www.madess.cnr.it/pubblicazioni/microelectronics_2001.pdf

A report on the National Italian Project MADESS II. It has extensive reviews and
statistics on microelectronics and its applications globally.
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31. Conference Proceedings
http://jamaica.ee.pitt.edu/Archives/ProceedingArchives/

This site provides links to archives of numerous conferences related to the design
of embedded systems, including: Hardware/software Codesign Conference,
Design Automation Conference, Design, Automation & Test in Europe Confer-
ence, International Conference on Computer Aided Design.

The proceedings are searchable by author and topic and complete papers are
available in PDF format.
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C H A P T E R  2
Fuzzy Sets

2.1 Introduction
One can view fuzzy sets as a generalization of classical sets, or crisp sets as they are
sometimes called. Classical sets and their operations are particularly useful in
expressing classical logic and they lead to Boolean logic and its applications in
digital systems. Fuzzy sets and fuzzy operations, on the other hand, are useful in
expressing the ideas of fuzzy logic leading to applications such as fuzzy controllers.

The following sections start with a short review of classical sets: their notations
and operations. This is followed by fuzzy sets and their operations.

2.2 Classical Sets
A set is defined as a collection of objects that may share certain characteristics. For
example, one may define a set of positive integers, a set of students with passing
grades, and a set of honest politicians. Each individual object is referred to as an
element or member of the set. In a classical set an object x is either a member of a
given set A (expressed as x ∈ A) or not a member (expressed as x ∉ A); partial
membership is not allowed.

There are numerous ways to define a set:

■ One may specify the properties of its elements. For example,

A = {x|x is an odd number <10}

■ One may list all the members of the set. For example,

A = {1, 3, 5, 7, 9}

■ One may use a formula to define the set. For example,

A = {xi = xi + 1, i = 1,...,5, where xi = 1}

■ The set could also be defined as the result of a logical operation. For example,

A = {x|x is an element that belongs to B OR C}
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■ A membership function, µ, can be used to define a set.

µA(x) = 1 if x ∈ A, and

µA(x) = 0 if x ∉ A for all values of x.

Example
Let all the numbers under consideration, i.e. the universe of discourse, be defined
as

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

Then, the set of odd numbers can be expressed as

{(1,1), (2,0), (3,1), (4,0), (5,1), (6,0), (7,1), (8,0), (9,1), (10,0)}.

Where each member of the universe of discourse is associated with a member-
ship value in the form (#, µ). The numbers 1, 3, 5, 7, and 9 are associated with
µ = 1 because they form the set of odd numbers extracted from the universe of
discourse.

This method of defining a set can be easily extended to define a fuzzy set by
allowing partial membership.

Universal Set
The set that consists of all the elements of interest for a particular application (the
universe of discourse) is referred to as the universal set. It is the mother of all sets;
any set that is not a universal set is a subset. One may write A ⊂ I to mean that a set
A (any set) is actually a subset of the universal set I.

Empty Set
A set that has no elements is referred to as an empty set and is denoted by the symbol
∅. It is a shell that represents a description that does not happen to fit anything.
(Contrary to what some may think, the set of “Honest Politicians” is not an example
of an empty set!) An empty set is a subset of any other set, i.e. ∅ ⊆ A ⊆ I.

Power Set
The set which consists of all possible subsets of a given set A is called a power set
and is denoted as P(A) = {x|x ⊆ A}

Example
If A = {1, 2, 3}, then

P(A) = {∅, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1, 2, 3}}
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Cardinality
The number of elements of a given set is called the cardinality of the set. The cardi-
nality of a set A is denoted by # A or |A|. The cardinality is a finite number for finite
sets.

Example
If A = {1, 2, 3, 5, 7}, then # A = 5.

2.3 Set Operations
Sets can be manipulated through numerous operations such as  the complement,
union, intersection, subtraction, and cartesian product. These will be defined and
explained in the following sections.

COMPLEMENT

The COMPLEMENT, or ABSOLUTE COMPLEMENT of a given set A is denoted by A . It is
defined by

A = { x x I∈  and x A∉ }.

It is demonstrated graphically in Figure 2.1.

Figure 2.1: The complement of set A.

If the membership function of set A is ( )A xµ  and that of A  is ( )A xµ , then one can
write

( )A xµ  = 1 – ( )A xµ .

This is illustrated graphically in Figure 2.2.

A

A

I



Chapter 2

26

Example
Let I = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

If A = {(1,1), (2,1), (3,1), (4,1), (5,1), (6,0), (7,0), (8,0), (9,0), 10,0)}

       = {1, 2, 3, 4, 5}

Then, A = {(1,0), (2,0), (3,0), (4,0), (5,0), (6,1), (7,1), (8,1), (9,1), (10,1)}

        = {6,7,8,9,10}.

Example
If I = {0, 1} and A = {1}, then

A = {0}

The complement of the complement of A is A itself. This property is known as
involution, which is similar to the logical double negation.

Figure 2.2: Complement in terms of membership function.
a) the universe of discourse
b) set A
c) the complement of A
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UNION

The UNION of sets A and B is defined by

A B =∪ { x x A∈ or x B∈ }.

It is illustrated graphically in Figure 2.3.

Figure 2.3: The union of two sets.

If the membership function of set A is ( )A xµ and that of set B is ( )B xµ , then the
membership of the set resulting from A B∪  can be represented graphically as shown
in Figure 2.4.

Figure 2.4: Union in terms of membership function.
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Example
Let A = {1, 2, 3, 4, 5, 6} and B = {3, 5, 7, 8}, then

A B∪ = {1, 2, 3, 4, 5, 6, 7, 8}.

Example
If A = {1}, B = {0}, and I = {0,1}, then

A B I=∪

INTERSECTION

The INTERSECTION of sets A and B is defined by

A B =∩ { x x A∈ and x B∈ }.

It is illustrated graphically in Figure 2.5, and in terms of the membership func-
tion Figure 2.6.

Figure 2.5: Intersection of two sets.

Figure 2.6: Intersection in terms of membership function.
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Example
Let A = {1, 2, 3, 4, 5, 6} and B = {2, 4, 6, 8,10}, then

A B =∩  {2, 4, 6}.

Example
Let A = {1} and B = {0}, then

A B = ∅∩ .

SUBTRACTION

The difference of sets A and B is a set that consists of all the elements which belong
to A, but do not belong to B. It can be expressed as

A B A A B− = − ∩

          = { x x A∈ and x B∉ }.

The operation is illustrated in Figure 2.7.

a)

b)

Figure 2.7: Subtraction of two sets.
a)  A – B
b)  B – A

A B

A B
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Cartesian Product
The Cartesian product of sets A and B is defined as A × B {(a,b)| a ∈ A, b ∈ B}.

Example
Let A = {1,2} and B = {3, 4, 5}, then

A × B = {(1,3), (1,4), (1,5), (2,3), (2,4), (2,5)}, and

B × A = {(3,1), (3,2), (4,1), (4,2), (5,1), (5,2)}.

Table 2.1 summarizes some basic properties of classical set operations. It useful
to observe the duality some properties exhibit by replacing , ,∅ ∪ ∩  with , ,I ∩ ∪ ,
respectively. It is also useful to remember that the law of contradiction and the law of
excluded middle are fundamental to classical logic (and our way of thinking) to
contrast with fuzzy logic later.

Table 2.1: Some basic properties of classical set operations.

(note that the negation operation can be expresses as A  or A′ )

Law of contradiction A A = ∅∩

Law of excluded middle A A I=∪

De Morgan’s laws ( )A B A B′ ′ ′=∩ ∪

( )A B A B′ ′ ′=∪ ∩

Involution (Double negation) A A=

Commutative A B B A=∩ ∩

A B B A=∪ ∪

Associative ( ) ( )A A B A B C=∩ ∩ ∩ ∩

( ) ( )A B C A B C=∪ ∪ ∪ ∪

Distributive ( ) ( ) ( )A B C A B A C=∩ ∪ ∩ ∪ ∩

( ) ( ) ( )A B C A B A C=∪ ∩ ∪ ∩ ∪
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2.4 Boolean Logic
The basic building blocks of digital systems, including computers and embedded
systems, are electronic switching devices, such as transistors,  or algorithms. Since
such devices assume two conditions: ON or OFF, the universe of discourse can be
represented by {0, 1}. A set with one element {0}, referred to as a singleton, can
represent the OFF condition, another singleton{1}can represent the ON condition.
Operations on such sets are special cases of the general set operations, they are
referred to as binary or Boolean operations. The correspondence between basic set
operations and binary logic operations are outlined in Table 2.2.

Table 2.2: Basic binary operations.

Operation Symbol Corresponding Set Operation

NEGATION      ¬ COMPLEMENT

OR    +, ∨ INTERSECTION

AND     ⋅ , ∧ UNION

The circuits that perform the AND, OR, and NEGATION operations are referred to as
logic gates. They are available as IC chips. Numerous circuits built using such gates
are also available as IC chips, the number of gates per chip defines the level of
integration as discussed in Chapter 1.

2.5 Basic Concepts of Fuzzy Sets
A fuzzy set is a set where degrees of membership between 1 and 0 are allowed; it
allows partial membership. Fuzzy sets can thus better reflect the way intelligent
people think. For example, an intelligent person will not classify people as either
friends or enemies; there is a range between these two extremes. Not recognizing that
there are degrees in every trait can lead to erroneous decisions.

Vague human expressions such as tall, hot, cold, etc. can be expressed by fuzzy
sets of the form

A = { ( , ( ))Ax x x Xµ ∈ }

where X represents the universe of discourse and µA(x) assumes values in the range
from 1 to 0.
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Example
Let the values of temperature in °C under consideration be

T = {0, 5, 10, 15, 20, 25, 30, 35, 40}.

Then, the term hot can be defined by a fuzzy set as follows

HOT = {(0,0), (5,0.1), (10,0.3), (15,0.5), (20,0.6), (25,0.7), (30,0.8), (35,0.9), (40,1.0)}.

This fuzzy set reflects the point of view that 0 °C is not hot at all, 5, 10, and
15 °C are somewhat hot, and 40 °C is indeed hot. Another person could have
defined the set differently.

2.6 Other Representations of Fuzzy Sets
Fuzzy sets can be described in numerous ways; all of them allow partial membership
to be expressed. The ordered pair method introduced in the previous section appears
in a different format as follows

1 1 2 2 3 3 ...A x x x= µ + µ + µ +

The symbol  /  here does not denote division, nor does the symbol + denote
summation. The summation symbol is used to connect the terms and thus it means a
union of single-term subsets.

Example
Let X = { 1 2 3 4, , ,x x x x }. One can define a fuzzy set as:

1 2 3 40.8 0.4 0.1 0.9A x x x x= + + + .

Fuzzy sets can also be defined by assigning a continuous function to describe the
membership either analytically or graphically. Some commonly used membership
functions are illustrated in Figure 2.8. The triangular membership function in Figure
2.8-a can also be expressed as

( )xµ = a (b-x)/(b-c) ;       b ≥ x ≤ c

              = a (d-x)/(d-c) ; c ≥ x ≤ d

              = 0 ; otherwise

The trapezoidal function shown in Figure 2.8-b can be expressed as:

( )xµ = a (b-x)/(b-c) ; b ≥ x ≤ c

        = a ; c ≥ x ≤ d

         = a (e-x)/(e-d) ; d ≥ x ≤ e

        = 0 ; otherwise
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The Gaussian function of Figure 2.8-c can be expressed as:

µ(x) = a exp(- x-b)2/2σ2)

Figure 2.8: Common membership functions.
a) Triangular
b) Trapezoidal
c) Gaussian

a

b c d

µ(x)

x

a

b c d

µ(x)

xe

a

b

µ(x)

x

σ

a)

b)

c)
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Example
Figure 2.9 shows three sets defined graphically to represent the fuzzy sets SLOW,
MEDIUM, and FAST to reflect a way of thinking about values of speed in the range
of 0 to 40 km/hr.

Figure 2.9: Possible graphical representation of fuzzy sets.

Example
The vague expression around ten can be expressed as a fuzzy set graphically as
shown in Figure 2.10.

Figure 2.10: Around ten expressed as a fuzzy set graphically.

1

µ(x)

15 20 25 30 35 40

slow medium fast

Speed

1

10

µ(x)

x8 12
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2.7 Determination of Membership Functions
Discrete and continuous membership functions of a fuzzy set are intended to capture
a person’s thinking. The fuzzy set in the example of Section 2.5 was defined based
on one’s thinking of what coldness is. Fuzzy membership functions can still be
determined subjectively in practical problems based on an expert’s opinion. In such a
situation one can think of membership functions as a technique to formalize empiri-
cal problem solving that is based on experience rather than the knowledge of theory.
The expert’s way of thinking can be captured either directly or through a special
algorithm. Such determination could become more focused by physical measure-
ments if the need arises. Available frequency histograms and other probability data
can also help in constructing the membership function. It is important, however, to
note that membership function values, or grades of membership, are not probabilities
and they do not have to add to 1. Membership construction can be further simplified
by selecting their form from the smaller family of the commonly used ones, such as
those shown in Figure 2.8.

2.8 Fuzzy Sets Properties
Empty fuzzy set
A fuzzy set is referred to as empty if and only if the value of the membership func-
tion is zero for all possible members under consideration. In a short hand form this
statement would read

A = ∅  iff ( ) 0A xµ = x X∀ ∈ . (iff and ∀ are short hand forms for if and only
if and for all values of, respectively).

Universal fuzzy Set
A fuzzy set is universal if and only if the value of the membership function is one for
all members under consideration.

Equal fuzzy sets
Two fuzzy sets A and B are said to be equal iff ( ) ( )A Bx xµ = µ  for all x X∈ .

α α α α α -cuts
A fuzzy set may be completely characterized by its α-cuts, defined as follows

strong α-cuts: Aα = { ( )Ax xµ > α }; [0,1]α∈

weak α-cuts: Aα = { ( )Ax xµ ≥ α }; [0,1]α∈
Thus, an α-cut is a crisp set that consists of all the elements of a fuzzy set whose
membership functions have values greater than a specified value α, or greater than or
equal to a specified value; the first condition leads to strong α-cuts and the second to
weak α-cuts. All the cuts of a fuzzy set form a family of crisp sets.
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Example

Let 0.2 1 0.5 2 0.6 3 1 4 0.7 5 0.3 6 0.1 7A = + + + + + + .

Then, the weak α-cuts for [0,1]α∈  from 0.1 to 1 with step width of 0.1 are as
follows

0.1A = {1, 2, 3, 4, 5, 6, 7}

0.2 0.3A A= = {1, 2, 3, 4, 5, 6}

0.4 0.5A A= = {2, 3, 4, 5}

0.6A = {3, 4, 5}

0.7A = {4, 5}

0.8 0.9 1.0A A A= = = {4}

Support
The support of a fuzzy set A is a crisp set supp(A) of all x X∈  such that ( ) 0A xµ > .
It is a strong α-cut for α = 0. The element x X∈  at which ( ) 0.5A xµ =  is referred to
as the cross-over point. A fuzzy set whose support is a single element in X with

( ) 1A xµ =  is referred to as a fuzzy singleton.

Core
The core of a fuzzy set A is a crisp set core(A) of all x X∈  such that ( ) 1A xµ = . The
core of a fuzzy set may be an empty set.

Height
The height, h(A) of a fuzzy set A is the largest value of µA for which the α-cut is not
empty. In other words, it is the largest value of the membership function attained by
an element in the set. A fuzzy set with h(A) = 1 is referred to as normal, otherwise it
will be referred to as sub-normal.

The concepts of α-cuts, support, core, and height are illustrated in Figure 2.11.
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Figure 2.11: A graphical illustration of ααααα-cuts, support, core, and height.

2.9 Operations on Fuzzy Sets
2.9.1 Logic Operations
The three basic logic operations on classical (crisp) sets were introduced in Section
2.2. The definitions of sets were generalized in Section 2.5 leading to fuzzy sets upon
which similar operations can be performed. The generalizations of operations on sets
to operations on fuzzy sets are not unique. The ones introduced here are referred to as
the standard fuzzy set operations. They are the operations most commonly used in
engineering applications.

1.0

µA(x)

xcore

support

am

Aαm 
(x)

h(A) =1
A is normal

1.0

0.8

µA(x)

xcore (A) = ∅

h(A)<1
A is 
sub-normal
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COMPLEMENT

The absolute complement of a fuzzy set A is denoted by A  and its membership
function is defined by

( ) 1 ( )AA x xµ = − µ  for all x X∈

Example
Let 0.7 1 1 1 0.6 3 0.2 4 0 5A = + + + + .

Then, 0.3 1 0 2 0.4 3 0.8 4 1 5A = + + + + .

UNION

The union of two fuzzy sets A and B is a fuzzy set whose membership function is
defined by

( )A B xµ =
∪ max [ ( ), ( )A Bx xµ µ ]

Example
Let 0.3 1 0 2 0.4 3 0.8 4 1 5A = + + + + , and

      0.2 1 0.3 2 0.1 3 0.2 4 0.4 5B = + + + + .

Then,

      0.3 1 0.3 2 0.4 3 0.8 4 1 5A B = + + + +∪

INTERSECTION
The intersection of two fuzzy sets A and B is a fuzzy set whose membership function
is defined by

( ) min[ ( ), ( )].A B A Bx x xµ = µ µ
∩

Example
Let 0.3 1 0 2 0.4 3 0.8 4 1 5A = + + + + , and

      0.2 1 0.3 2 0.1 3 0.2 4 0.4 5B = + + + +

Then,

0.2 1 0 2 0.1 3 0.2 4 0.4 5A B = + + + +∩

Some properties of fuzzy set operations are given in Table 2.3. It is particularly
important to observe that the laws of contradiction and excluded middle are not
applicable. How far a set deviates from such laws can be a measure of fuzziness. A
graphical illustration of basic fuzzy sets operations is presented in Figure 2.12.
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Table 2.3  Some  properties of fuzzy sets operations

Law of contradiction A A ≠ ∅∩

Law of excluded middle A A I≠∪

De Morgan’s laws
( )
( )

A B A B

A B A B

′ ′ ′=

′ ′ ′=

∩ ∪

∪ ∩

Involution (Double negation) A A=

Commutative
A B B A

A B B A

=
=

∩ ∩

∪ ∪

Associative
( ) ( )
( ) ( )

A A B A B C

A B C A B C

=

=

∩ ∩ ∩ ∩

∪ ∪ ∪ ∪

Distributive
( ) ( ) ( )
( ) ( ) ( )

A B C A B A C

A B C A B A C

=

=

∩ ∪ ∩ ∪ ∩

∪ ∩ ∪ ∩ ∪
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Figure 2.12: Graphical illustration of basic fuzzy sets operations
a) Set A b) Set B
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Figure 2.12: Graphical illustration of basic fuzzy sets operations
(cont.)

c) A B∩ d) A B∪

e) A
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2.9.2 Algebraic Operations on Fuzzy Sets

Cartesian multiplication
The Cartesian multiplication of two sets A and B is a fuzzy set C such that

C = A × B

   ( ) ( ) ( ) ( ) ( ){ }/ , , , min ,C C A Bx a b a A b B c a b = µ ∈ ∈ µ = µ µ 

Example
Let A = 0.2/3 + 1/5 + 0.5/7, and

B = 0.8/2 + 0.3/6.

Then, 

A × B = min[0.2,0.8]/(3,2) + min[0.2,0.3]/(3,6)

         + min[1,0.8]/(5,2) + min[1,0.3]/(5,6)

         + min[0.5,0.8]/(7,2) + min[0.5,0.3]/(7,6)

           = 0.2/(3,2) + 0.2/(3,6) + 0.8/(5,2) + 0.3/(5,6)

        + 0.5/(7,2) + 0.3/(7,6).

Algebraic multiplication
The algebraic product of two fuzzy sets A and B leads to a fuzzy set C such that

( ) ( ){ }/ ,A BAB a b x x A x B= µ µ ∈ ∈ .

Example
Let A = 0.2/3 + 1/5 + 0.5/7, and

B = 0.1/3 + 0.3/7 + 0.2/8.

Then, AB = (0.2)(0.1)/3 + (1)(0)/5 + (0.5)(0.3)/7 + (0)(0.2)/8

          = 0.02/3 + 0.15/7

Exponent
Raising a set A to the power of α is a special case of algebraic multiplication. It is
defined by

( )( ){ }/AA x x x A
αα = µ ∈ .
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Example
Let A = 0.5/4 + 1/5 + 0.4/6.

Then,  A2 = (0.25)2/4 + (1)2/5 + (0.4)2/6

          = 0.25/4 + 1/5 + 0.16/6, and

   A0.5 = (0.5)0.5/4 + (1)0.5/5 + (0.4)0.5/6

         = 0.7/4 + 1/5 + 0.63/6.

As pointed out earlier, a fuzzy set A can be expressed as a linguistic concept such as
hot, cold, young, old, etc. The result of using nested linguistic modifiers such as very,
very very, etc. can be expressed using Aα.

Example
Let the range of temperature under consideration be 5, 10, 20, 30, and 40°C. Let
also the set A represent the concept “hot” from a given point of view:

A = 0.1/5 + 0.2/10 + 0.4/20 + 0.6/30 + 0.7/40.

Then, very hot could be expressed by

A2 = 0.01/5 + 0.04/10 + 0.16/20 + 0.36/30 + 0.49/40.

It follows that very very hot can be expressed by (A2)2 = A4.

Concentration and Dilation
These two operations are unique to fuzzy sets; they do not have counterparts in
classical sets. The concentration operation is defined as:

CON (A) = A2

The dilation process is defined as:

DIL (A) = A0.5

Example
Let A = 0.5/4 + 1/5 + 0.4/6.

Then, CON (A) = 0.25/4 + 1/5 + 0.16/6, and

     DIL (A) = 0.7/4 + 1/5 + 0.63/6.

The operations concentration and dilation could be composed with themselves, eg,
CON2 (A) = A4,

and DIL2 (A) = 
1
4A . In general one can write

CONα (A) = A2α, and

DILα (A) = A0.5α.

with α being an integer ≥ 2.
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The CON operation reduces the value of µA(x) except for µA(x) = 1. As α → ∞, the
membership function becomes two-valued: 1 and 0. On the other hand, the DIL

operation increases the value of µA(x) except for µA(x) = 1. As α → ∞, µA(x) → 1.

The effect of the CON operation on the membership function is illustrated graphi-
cally in Figure 2.13.

Figure 2.13: Graphical illustration of the effect of the CON operation
on the membership function.

µA(x)

x

α2>α1

α1(A)CON

α2(A)CON

A

Algebraic sum
The algebraic sum of two sets A and B is a fuzzy set with a membership function
given by:

( ) ( ) ( ) ( )A B A Bx x x xµ + µ − µ µ

where the symbol + here denotes algebraic summation.

Example
Let C be the algebraic summation of two fuzzy sets A and B expressed by:

C = A + B,

A = 0.2/1 + 1/2 + 0.4/3, and

B = 0.3/1 + 0.4/2 + 0.2/7.

Then, the set C would consist of four members: 1, 2, 3, and 7 with membership
functions ( ) ( ) ( ) ( )1 2 3 4, , ,C C C Cx x x xµ µ µ µ  respectively. They can be determined
as follows:
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µC (x1) = 0.2 + 0.3 – (0.2)(0.3)

= 0.44

µC (x2) = 1 + 0.4 – (1)(0.4)

= 1

µC (x3) = 0.4 + 0 + (0)(0.4)

= 0.4

µC (x4) = 0.2 + 0 + (0)(0.2)

= 0.2

Accordingly, C = 0.44/1 + 1/2 + 0.4/3 + 0.2/7.

(One should remember that the symbol + here is not algebraic summation.)

Bounded sum
The symbol ⊕ denotes the bounded sum of two fuzzy sets. The operation leads to a
fuzzy set with a membership function defined by:

( ) ( ) ( )( )min 1,A B A Bx x x⊕  µ = µ + µ 

Example
Let A = 0.5/3 + 1/4 + 0.8/5, and

      B = 0.2/3 + 0.4/5.

Then, A ⊕ B = 0.7/3 + 1/4 + 1/5.

Bounded difference

The symbol �  denotes the bounded difference of two fuzzy sets. The operation leads
to a fuzzy set with a membership defined by:

( ) ( ) ( )( )min 1,A B A Bx x x µ = µ + µ �

Example
Let A = 0.5/3 + 0.3/5 + 0.7/8, and

            B = 0.4/3 + 0.1/5.

Then, A �B = µ(x1)/3 + µ(x2)/5 + µ(x3)/8

where µ(x1) = min[1,(0.5 – 0.4)] = 0.1,

µ(x2) = min[1,(0.3 – 0.1)] = 0.2, and

µ(x3) = min[1,(0.7 – 0.0)] = 0.7.

hence,        A �B = 0.1/3 + 0.2/5 + 0.6/8.  
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Some identities that relate sets and  algebraic operations are given in Table 2.4.
They will be of particular importance when discussing some of the embedded
applications of fuzzy sets.

Table 2.4: Identities relating sets and algebraic operations.

    ( ) ( ) ( ) ( ) ( )( )A B B B Ax x x x xµ ∧ µ = µ µ µ� �

    ( ) ( ) ( ) ( ) ( )( )A B A B Ax x x x xµ ∨ µ = µ + µ µ�

        ( ) ( ) ( ) ( )( ) ( ) ( )( )A B A B B Ax x x x x xµ − µ = µ µ + µ µ� �

Fuzzification
Fuzzification is the operation of transforming a crisp set to a fuzzy set, or a fuzzy set
to a fuzzier set. The operation translates crisp input or measured values into linguistic
concepts. This, in a way, is similar to what people may do in numerous situations to
reach a decision. For example, if one is told that the temperature is going to be 10 °C,
one translates this crisp input value into a linguistic concept such as mild, cold, or
warm according to one’s inclination, then reaches a decision about the need to wear a
jacket or not. If one fails to fuzzify (for example, due to lack of familiarity with the
Celsius temperature scale) then the decision process cannot continue or a possibly
erroneous decision would be reached. So, you have been fuzzifying all along (with-
out knowing it) whenever you made correct decisions.

A common fuzzification algorithm of a set { }i
i

i
A x Xx

µ= ∈  is performed by

keeping µi constant and transforming xi to a fuzzy set that depicts the expression
about xi, K(xi). The fuzzy set K(xi) is referred to as the kernel of fuzzification.
Fuzzified set A is expressed as

~ A = µ1K(x1) + µ2K(x2) + ... + µnK(xn)

where the symbol ~ means fuzzified.

The method is referred to sometimes as support fuzzification (s-fuzzification) in
order  to distinguish it from another possible fuzzification method referred to as
grade fuzzification (g-fuzzification) in which xi is kept constant and µi is expressed as
a fuzzy set.

It is interesting to observe that both the dilation and fuzzification operations lead
to a fuzzier set. However, dilation of a crisp set yields the same crisp set, which is not
typically the case with the fuzzification operation.
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It is useful to devise a measurement to determine how fuzzy a set is. All sets that
allow partial membership are fuzzy, but some are fuzzier or can be made fuzzier than
others. One can intuitively suggest that the sharper the boundaries, i.e. the closer the
values of the membership to 1 or 0, the less fuzzy a set is.  A more formal measure of
fuzziness could be desirable to define. A possible measure of fuzziness can be put

forward by evaluating the deviation of a set from its complement, i.e. ( ) ( )A Ax xµ − µ .

Such a difference can be expressed as

( ) ( ( ) ( )1 2 1A A Ax x xµ − −µ = µ −

The largest difference occurs when µ(x) is at its largest value, which is 1, implying
that the largest difference would be 1. The degree of the lack of distinction between a
fuzzy set and its complement can then be expressed by ( )1 2 1A x− µ − .

A fuzzy measure f(A) for a finite set can then be defined by

( ) ( )( )1 2 1A
x X

f A x
∈

= − µ −∑
Note that f(A) ≥ 0 for all fuzzy sets and f(A) = 0 for all crisp sets. Also f(A) is at its
maximum when µ(x) = 0.5 since this is where the membership function is farthest
away from both 1 and 0.

Concluding Remarks
Fuzzy sets are the tools which convert the concepts of fuzzy logic into algorithms
leading to applications. They are used to express precisely what one means by vague
expressions such as hot, cold, tall, and short. By allowing partial membership, fuzzy
sets can provide computers with algorithms that extend their binary logic and enable
them to make human-like decisions. The term fuzzy in this context does not mean
imprecise, but exactly the opposite.

It may appear difficult to reconcile the claim that the objective of fuzzy sets is to
enable computing with words with the fact that fuzzy sets are of a mathematical
nature. Do humans think in terms of triangular membership functions, Cartesian
multiplications, etc.? Certainly not, but one may think of fuzzy sets and the associ-
ated mathematics as the media through which the way we think is transferred to a
computer, rather than trying to accommodate our thinking to the computer needs. Of
course, it would have been more efficient to have a means for direct transfer of
thoughts without the intermediate stage of mathematics. The avoidance of mathemat-
ics occurs in the way to describe a system.

Attempting to transfer our way of thinking into fuzzy set formulation could have
an interesting side effect. It gives us an opportunity to ponder about our own thoughts
and actions and reflect on the wisdom of our choices and judgements.
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Web Resources
1. Notes on Set Theory

www.math.csusb.edu/notes/sets/sets.html

A set of notes presented in HTML format by Nikos Drakos, Computer Based
Learning Unit, University of Leeds. It discusses basic topics related to Set
Theory including: notations and terminology, set operations, and Venn diagrams.

2. Set Theory
www.math.niu.edu/~rusin/known-math/index/03EXX.html

An article from the  Mathematical Atlas which evolved from a much more
informal collection of mathematical pointers collected by Prof. Dave Rusin of
Northern Illinois University. It provides extensive Web links to topics such as the
history of set theory, applications and related fields, an annotated list of text-
books, and a list of software and tables. It also provides links to Web sites with
similar interests.

3. Sets, Logic and Foundations and Philosophy of Mathematics
www.mathlinks.info/em035_set_log_foun_philo.htm

A collection of Web links from Math.Links maintained by Ronald N. Gibson.
The links are classified into categories that include: Academic Programs in Logic
and Mathematical Foundations, Articles, Courses, Lectures, Texts, Tutorials,
Journals, Organizations, and more.

4. Set Theory Page
www.cis.syr.edu/~sanchis/setory.html

A collection of links to Web sites by Prof. Luis Sanchis, Syracuse University.

Web sites listed include:

Situated Set Theory, Set Theory,  Bounded Set Theory, Holmes: New Founda-
tions Home Page, Constructive Set Theory, Programming with Sets, Forster
Bibliography, E-mail Addresses of Set Theorists, Homepages of Set Theorists,
Beginnings of Set Theory, Logic Eprints, Fixed Point Theory, and much more.

5. Java Set Theory Machine
www.jaytomlin.com/music/settheory/

A page maintained by Jay Tomlin. It provides an interactive Java applet related to
the Musical Set Theory. It also provides a short tutorial about the topic. The
source code is available for downloading.
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6. Logic and Set Theory
www.humboldt.edu/~mef2/logicsites.html

An extensive collection of web links maintained by Professor Martin Flashman,
Department of Mathematics, Humboldt State University, Arcata, California,
USA. The links are organized in categories including: Logic, Set Theory, Turing
Machine, History, and Major References.

7. The Mathematics of Set Theory
www.jboden.demon.co.uk/SetTheory/

This Web site declares that its aim is to cover a wide range of topics from ZFC
Set Theory. Topics include: A brief History of Axiomatic Set Theory, Some
Logical Paradoxes, The axioms of ZFC ,Order Relations,  Equivalence Relations
& Equipollence, Number Systems, Ordinals & Cardinals , and  Glossary. Exten-
sive hyperlinks are provided.

8. A History of Set Theory
www-history.mcs.st-and.ac.uk/history/HistTopics/Beginnings_of_set_theory.html

An article by J. J. O’Connor and E. F. Robertson. It discusses the history of Set
Theory. It provides extensive hyperlinks. It has 25 references.

9. Boolean Logic
www.howstuffworks.com/boolean.htm

A tutorial in HTML format by Marshall Brain. Topics covered include: Introduc-
tory Information, Simple Gates, Flip-flops, and more.

10. Logic Gates and Boolean Logic
educ.queensu.ca/~compsci/units/BoolLogic/titlepage.html

A collection of annotated resources by Mark Mamo and Shane Bauman. Topics
include:

■ Introduction to Boolean Logic

■ Black Box Circuits

■ Summary of Logic Gates

■ Sample Questions on Logic Gates, Circuits and Truth Tables

■ Discovering the Rules of Boolean Algebra

■ Simplifying Boolean Expressions
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11. George Boole
www.digitalcentury.com/encyclo/update/boole.html

An article in HTML format by Natalie Voss. It provides information about
George Boole and his work in addition to numerous related Web Links.

12. Max Black
www-gap.dcs.st-and.ac.uk/~history/Mathematicians/Black.html

An article in HTML format by J. J. O’Connor and E. F. Robertson with
hyperlinks and seven references.

13. Lotfi Zadeh
www.cs.berkeley.edu/~zadeh

This site provides a bibliography of Lotfi Zadeh, who is considered the creator of
fuzzy logic with his seminal paper published in 1965.

14. Fuzzy Logic Tutorial
www.seattlerobotics.org/encoder/mar98/fuz/flindex.html

A tutorial by Steven Kaehler that covers topics including:
■ Introduction to Fuzzy Logic
■ Why Use Fuzzy Logic
■ The Rule Matrix
■ Membership Functions
■ Putting It All Together
■ A Set of Sample Cases

15. Introduction to Fuzzy Logic
www.dementia.org/~julied/logic/index.html

A page maintained by Julie Grosman. It provides an introduction to fuzzy logic,
its history, an overview of sets & operations, and its applications. It also has an
interactive ten-question quiz.

16. Fuzzy Calculator
http://home.planet.nl/~n.dubois/FzCalc/Fcalc.htm

An interactive calculator for fuzzy operations by Nico du Bois. The calculator
has a  graphical interface through which one can define two three-element fuzzy
sets by entering a number as an element and the corresponding membership
function. The desired operation is performed by clicking on the related button of
the calculator. The result is a three element set defined by the value of its ele-
ments and their  corresponding membership values.
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17. Fuzzy Sets and Systems Links
www.abo.fi/~rfuller/fuzs.html

A collection of Web links by Robert Fullér. It provides links to

Personal Home Pages of Fuzzy Researchers, Who is Who in Fuzzy Database,
Fuzzy-Mail Archives, Fuzzy Logic Sources of Information, Fuzzy logic at
Webopedia, Computational, Conferences and Workshops on Fuzzy Systems,
Professional Organizations,  Journals & Books, Research groups, and more.
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C H A P T E R  3
Fuzzy Relations

3.1 Introduction
Relationships among objects are fundamental to decision making and dynamic
systems applications. A classical (crisp) relation represents the presence or absence of
a connection or association among elements of two or more sets. Fuzzy relations, on
the other hand, allow degrees of strength to such connections and associations.

This chapter gives a brief overview of classical relations: basic concepts, presen-
tation, and operations to pave the way to the introduction of fuzzy relations along the
same lines. The chapter ends with a discussion of fuzzy reasoning.

3.2 Classical Relations
A binary relation associates elements of only two sets to each other. A relation R
from set A to set B is a subset of the Cartesian product of the two: R ⊆ A × B. The
relation can be represented by the notation aRb. Relations may also be defined
among three sets (ternary relations), four sets (quaternary relations), five sets
(quinary relations), and so on.

Presentation of relations
A relation can be defined by listing all the member pairs (a,b) ∈ R. It can also be
expressed using a coordinate diagram, a matrix, a mapping diagram, or an arrow
diagram.

Example
Let A = {desk, bag, book}, and B = {wood, plastic, paper}.

The Cartesian product of these two sets leads to
A × B = {(wood,desk), (wood,bag), (wood,book), (plastic,desk), (plastic,bag),

(plastic,book), (paper,desk), (paper,bag), (paper,book)}.
From this set one may select a subset such that
R = {(wood,desk), (plastic,bag), ((paper,bag), (paper,book)}.

The subset R can be represented using a coordinate diagram as shown in Figure 3.1.
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The relation could equivalently be represented using a matrix as shown below.

R wood plastic paper

desk 1 0 0

bag 0 1 1

book 0 0 1

The mapping representation is yet another method of defining the relation
between two sets. It is illustrated in Figure 3.2.

Figure 3.1: The coordinate diagram of a relation.

Figure 3.2: Mapping representation of a relation.

desk

bag

book

wood plastic paper

desk

bag

book

wood

plastic

paper
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A binary relation in which each element from the first set is not mapped to more
than one element in the second is referred to as a function and is expressed by

R : A → B

Example
Figure 3.3 gives illustrations of R : A → B.

a)

b)

The mapping can be arranged differently, leading to an arrow diagram.

Example
Let A = {1, 2, 3, 4, 5, 6}, and let R be a relation on A defined as
R = {(1,1), (1,2), (1,6), (3,2), (3,4), (4,5), (5,5), (5,6)}.
The relation can be represented by the arrow diagram shown in Figure 3.4.

pine

gold

eagle

tree

bird

metal

A B

eagle

pine

cedar

gold

cuckoo

silver

tree

bird

metal

A B

Figure 3.3: Illustrations of R : A →→→→→ B
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Operations on relations
a) Inverse of a relation

Let R = {(a,b)|(a,b) ∈ A × B}, then the inverse, R–1, is defined as

R–1 = {(b,a)|(a,b) ∈ R}.  It follows that bR–1a iff aRb, and (R–1)–1.

If A = B and R = R–1, the relation is referred to as involuntary, self-inverse, or
symmetric.

If R is represented by a matrix MR, then the matrix 1R
M −  representing R–1 is

the transpose of 1
T
RR

M M− = . The transpose of a matrix is obtained by writing
the rows, in order, as columns.

Example

Let 

1 1 0

0 0 0

1 0 0
RM

 
 =  
  

,    then 1

1 0 1

1 0 0

0 0 0
R

M −

 
 =  
  

.

b) Composition

Composition is an operation on two compatible binary relations and results
in a single binary relation. Two binary relations P and Q are compatible for
composition iff

P ⊆ A × B, and
Q ⊆ B × C.

In other words, the second set in P must be the same as the first set in Q.

The composition of the two sets is denoted by P ° Q. It can be determined
graphically or using matrix representation where

1

2

3

4

5

6

Figure 3.4:
An arrow diagram representation of R.
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MR°Q = MRMQ

Some properties of the composition operation are summarized in Table 3.1.

Table 3.1: Some properties of the composition operation.

Associative (P ° Q) ° R = P ° (Q ° R)

Not commutative P ° Q ≠ Q ° P 

Inverse (P ° Q)–1 = Q–1 ° P–1

Example
Let A = {a1,a2,a3}, B = {b1,b2,b3}, and C = {c1,c2,c3}.

Let P = {(a1,b1), (a1,b2), (a2,b3), (a3,b3)}, and

Q = {(b1,c1), (b2,c3), (b3,c1)}.

The relations P and Q are illustrated in Figure 3.5. From the illustration one may
infer that:

P ° Q = {(a1,c1), (a1,c3), (a2,c1), (a3,c1)}.

Figure 3.5: Illustration of the relation P and Q.

One can reach similar conclusions using the matrix representation as follows:

1 2 3

1

2

3

1 1 0

0 0 1

0 0 1
P

b b b

a

M a

a

 
 =  
  

, and

P Q

a1

a2

a3

b1

b2

b3

c1

c2

c3
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1 2 3

1

2

3

1 0 0

0 0 1

1 0 0
Q

c c c

b

M b

b

 
 =  
  

Then, 

1 2 3

1

2

3

1 0 1

1 0 0

1 0 0
P Q

c c c

a

M a

a

 
 =  
  

�

This matrix leads to

P ° Q = {(a1,c1), (a1,c3), (a2,c1), (a3,c1)}.

as expected.

3.3 Classical Reasoning
In classical binary logic, reasoning is based on two complementary mechanisms:
deduction (modus ponens) and induction (modus tollens). Deduction is used to
obtain conclusions by means of forward inference and induction is used to deduce
causes by means of backward inference. The two mechanisms are contrasted in Table
3.2. In that table A and B are crisp sets and the symbol → means implies.

Table 3.2: Deduction and Induction.

Deduction Induction

Rule IF x is A → y is B IF x is A → y is B

Premise x is A y is not B

Conclusion y is B x is not A

In other words, given the rule: :IF x is A, THEN y is B and the observation that “x is
A”, one concludes by deduction that : “y is B” . In a mathematical shorthand:

( )( )p p q q∧ → →

Given the same rule but the observation that “y is not B”, one concludes by induction
that: “x is not A”. In a mathematical shorthand:

( )( )q p q p∧ → →
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3.4 Fundamentals of Fuzzy Relations
Fuzzy relations are fuzzy sets defined on universal sets which are Cartesian products.
They capture the strength of association among elements of two or more sets, not just
whether such an association exists or not.

Example
Let A = {a1,a2,a2} and b = {b1,b2,b3}.

Let R be a relation from A to B given by

R = 0.1/(a1,b3) + 0.5/(a1,b2) + 0.3/(a2,b1)
+ 0.4/(A2,B3) + 1.0/(A3,B3) + 0.1/(A3,B1)

The corresponding fuzzy matrix would be

1 2 3

1

2

3

0 0.3 0.1

0.5 0 0

0.1 0.4 1
R

a a a

b

M b

b

 
 =  
  

The corresponding graph is shown in Figure 3.6.

3.5 Operations on Binary Fuzzy Relations
Inverse of a fuzzy relation
The inverse of a fuzzy relation R on A × B is denoted by R–1. It is a relation on B × A
defined by R–1 (b,a) = R(a,b) for all pairs (b,a) ∈ B × A.

Figure 3.6:
Illustration of a fuzzy relation.

a1 b1

b2

b3

a2

a3

0.5 0.3

0.1

0.1

0.4

1.0
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Example

If 

0.3 1.0 0

1.0 0.5 0.3

0.0 0.0 0.8
RM

 
 =  
  

 , then

1

0.3 1.0 0.0

1.0 0.5 0.0

0.0 0.3 0.8
R

M −

 
 =  
  

.

Composition of fuzzy relations
As explained in Section 3.2, the composition of two crisp binary relations P and Q
requires that the relations be compatible—i.e., A × B and B × C share the set B. The
composition R = P ° Q consists of pairs (a,b) from A × C that are connected through
at least one element in B. In fuzzy relations, the connections have degrees of strength
stemming from the fact P and Q are fuzzy sets.

There are several types of fuzzy relations compositions. The most common in
engineering applications is the max-min composition. In this composition scheme the
strength of the connection is determined by the smaller strength connection of the
two in a chain that connects a to c. Among the chains that connect the two elements,
the one with the largest strength is the one that is selected to characterize the relation.
In mathematical shorthand, we can write

P ° Q = {max min[µP (a,b), µQ (b,c)]/(a,c)|  a ∈ A,b ∈ B,c ∈ C}

The properties of crisp relations given in Table 3.1 are valid for fuzzy relations
composition as well.

Example
Let A = {a1,a2},

B = {b1,b2}, and

C = {c1,c2}.

Let P be a relation from A to B defined by:

1 2

1

2

0.4 0.2

0.8 0.3P

b b

a
M

a

 
=  

 
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Let Q be a relation from B to C defined by:

1 2

1

2

0.3 0.1

0.4 0.9Q

c c

b
M

b

 
=  

 
Then, 

           1 2

3 4

0.4 0.2 0.3 0.1

0.8 0.3 0.4 0.9
P Q

r r

r r

   
=    

   
 

=  
 

� �

where r1,r2,r3, and r3 are calculated as follows:

r1 = max[min(0.4,0.3), min(0.2,0.4)]
= max[0.3,0.2]
= 0.3

r2 = max[min(0.4,0.1), min(0.2,0.9)]
= max[0.1,0.2]
= 0.2

r3 = max[min(0.8,0.3), min(0.3,0.4)]
= max[0.3,0.3]
= 0.3

r4 = max[min(0.8,0.1), min(0.3,0.9)]
= max[0.1,0.3]
= 0.3

Hence,
0.3 0.2

0.3 0.3P QM
 

=  
 

�

The same result could be obtained graphically by using an arrow diagram and
applying the max-min rule of composition outlined earlier. This is illustrated in
Figure 3.7.
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As mentioned previously, other types of composition of fuzzy relations could be
defined. For example:

■ min-max composition (sometimes denoted by P Q� ) which is the dual of the
max-min composition.

■ max-star composition where multiplication, summation, or some other
binary operation is denoted by ★ in place of the min operation in the max-
min composition.

Two special cases of max-star composition are the max-product (max-prod) and
the max-average (max-av) compositions.

3.6 Types of Fuzzy Relations
If R is a fuzzy relation on A × A, and x ∈ A, y ∈ A, and z ∈ A,  then the relation R can
be classified as summarized in Table 3.3.

Figure 3.7: Illustration of the max-min composition.
a) The relations P and Q
b) The relation P ° Q

P o Q

a1

a2

c1

c2

0.3

0.2

0.3

0.3

A C

P Q

a1

a2

b1

b2

c1

c2

0.4

0.8

0.2

0.9

0.1

0.4

0.3

0.3

A B Ca)

b)
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Table 3.3: Summary of fuzzy relations types.

Reflexive µR (x,x) = 1 and µR (x,y) < 1, x ≠ y

Anti-reflexive µR (x,x) = 0 and µR (x,y) < 1, x ≠ y

Symmetric µR (x,y) = µR (y,x)

Anti-symmetric µR (x,y) ≠ µR (y,x)

max-min transitive µR (x,z) ≥ max min[µ (x,y), µ (x,z)]

Identity relation Diagonal elements of MR are all ones

Zero relation All elements of MR are zeros

Universal All elements of MR are ones

Examples
The following are examples of MR matrices for reflexive, anti-reflexive, symmet-
ric and antisymmetric relations, respectively:

1.0 0.2 0.7 0.0 0.2 0.8 0.3 0.7 0.5

0.3 1.0 0.5 , 0.5 0.0 0.7 , 0.7 0.8 0.2

0.4 0.6 1.0 0.2 0.3 0.0 0.5 0.2 0.4

     
     
     
          

, and

0.3 0.5 0.8

0.2 1.0 0.5

0.4 0.6 0.2

 
 
 
  

.

3.7 Fuzzy Reasoning
Fuzzy reasoning is based on inference rules of the form

IF <premise>, THEN <consequence>

as is the case in classical logic, but fuzzy sets, rather than crisp sets, are used. Fuzzy
sets define linguistic variables and hence fuzzy inference rules can model a system
linguistically. Fuzzy algorithms are mathematically equivalent to fuzzy relations and
fuzzy inference is equivalent to fuzzy composition.

There are numerous ways that have been put forward to express an inference rule.
A direct, simple inference rule takes the form:

IF x is A, THEN y is B

where A and B are fuzzy sets.
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If the number of rules is large it becomes more convenient to employ a fuzzy
relations approach. The IF/THEN rules are converted to fuzzy relations, then fuzzy
composition is used to infer conclusions. The conversion from IF/THEN rules to fuzzy
relations could be defined in more than one way. A simple method is given by:

R = A → B = A × B

An inference rule could have more than one proposition. For example, a rule of
inference with two propositions would take the form:

if x is A, and y is B, then z is C

where A, B, and C are fuzzy subsets of X, Y, and Z, respectively.

The rule may be written as:

A and B → C

Since A and B are subsets of different sets X and Y, respectively, it would be
inaccurate to write A B C→∩ . The situation is illustrated in Figure 3.8, from which
one concludes that

“x is A and y is B” is  ( ) ( ) ( )
( )

, is

,

x y A Y X B

x y is A B

⇔ × ×

×

∩

Hence, the proposition “A and B” can be expressed as

A and B = A × B

Then the relation R can be expressed as

R = A and B → C
   = A × B × C

Figure 3.8: A∩ B with A and B being subsets of different sets X and Y.

(A×Y) ∩ (B×X)A×Y

B×X

XA

B

Y



Fuzzy Relations

65

A fuzzy algorithm has several rules, such as

Rule 1: IF x is A1, THEN y is B1

Rule 2: IF x is A2, THEN y is B2

   .

   .

   .

Rule n: IF x is An, THEN y is Bn

The rules can be also written as

A1 → B1

A2 → B2

 .

 .

 .

An → Bn

This n-rule system can be converted to n relations: R1,R2,...,Rn. These relations
can be combined into one relation, R, using fuzzy intersection operations or fuzzy
union operations depending on how the rules are perceived to be connected.

1 2

1 2

, orn

n

R R R R

R R R R

=
=

∪ …∪

∩ …∩

The difference in the way the rules are perceived to be related would obviously
lead to different results.

Concluding Remarks
A crisp relation represents the presence or absence of association or interaction
between the elements of two or more sets. As the concept of crisp sets was general-
ized to allow degrees of membership, so was the concept of relations. Fuzzy relations
allow degrees of association or interaction between elements to better reflect one’s
way of thinking and decision making. They may be thought of as fuzzy sets defined
over multidimensional universes of discourse. Fuzzy relations play a central role in
fuzzy algorithms, which are collections of fuzzy rules of the form of IF/THEN.  Such
rules are  nothing other than fuzzy relations in disguise. Embedded fuzzy system
applications are based on hardware and software implementations of fuzzy algo-
rithms using embedded technology approaches.
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C H A P T E R  4
Embedded Fuzzy Applications

4.1 Introduction
As outlined in Chapter 1, there are various definitions of an embedded system. An
embedded system involves computing, but not as its main purpose. Fuzzy logic has a
wide range of applications in such systems. The common thread that links all these
applications is that an expert (a human operator) can, at least in principle, perform the
task required. However, the mathematical model is too complicated to be of practical
use, and therefore a linguistic model becomes advantageous. In some cases where
mathematical models do exist and lead to satisfactory results, fuzzy logic may still be
used either to improve or simplify the process or to compare with a benchmark. There
are numerous embedded applications of fuzzy logic such as fuzzy control, fuzzy signal
processing, and fuzzy image processing. The discussion here will concentrate on fuzzy
control. Analysis and design of conventional control systems are overviewed first, to be
contrasted afterwards with fuzzy logic control analysis and design.

4.2 Conventional Control Systems
4.2.1 Description
A typical block diagram of a feedback control system is shown in Figure 4.1.

Figure 4.1: A typical block diagram of a feedback control system.

m(t) c(t)e(t)r(t)

+–

Controller Process

Measurement
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The system consists of three main blocks: the process to be controlled, measure-
ment, and the controller. The output of the process is measured and converted to an
equivalent electrical signal using suitable sensor circuitry. The signal that represents
the output, c(t), is then compared with an input reference signal, r(t), resulting in an
error signal, e(t). This error signal actuates the controller to generate the control
action signal, m(t).

The signals mentioned in the above descriptions are expressed as functions of
time—i.e., the description is in the time domain. The system is described using a
differential equation with the time-derivative operator d/dt being the basic operator
used. The system could have been equivalently described in the frequency domain, or
the s-domain. The Laplace operator, s, is the basic operator used in the s-domain
description of the system. It is equivalent to the time-derivative operator in the time
domain (with the initial conditions being zero). The derivative operator is also
equivalent to the jω operator for sinusoidal signals, which is used in the frequency
domain description of a system. The ratio of the output to the input signals expressed
in the s-domain is the transfer function of the system, G(s), with s being, in general,
a complex number expressed by s j= σ + ω . The basic forms of the transfer function
include:

■ Gain, G(s) = K

■ Differentiator, first-order lead, ( )G s s= τ
■ Integrator, first-order lag, ( ) ( ) 1

G s s
−= τ

■ Second-order lag, ( ) ( ) 12 22 n nG s s s
−

= + ζω + ω

where K is a constant (gain factor), τ  is the time-constant, ζ  is the damping factor,
and nω is the natural frequency.

The transfer function of a system is, in general, composed of such basic transfer
functions. It can then be expressed in one of two equivalent forms:

■ Pole-zero form:

( ) ( )( )( )
( )( )( )

1 2 3

1 2 3

...

...

K s z s z s z
G s

s p s p s p

+ + +
=

+ + +

where –z1, –z2, –z3,… and –p1, –p2, –p3,… are the zeros and poles of the
system, respectively.

■ Time-Constant form:

( ) ( )( )( )
( )( )( )

1 2 31 1 1 ...

1 1 1 ...a b c

K s s s
G s

s s s

τ + τ + τ +
=

τ + τ + τ +
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4.2.2 Analysis
The objectives of analyzing a given feedback system are mainly to determine:

■ the stability of the system and its extent
■ the transient response
■ the steady-state response

A system is said to be stable when its output does not increase without bound or
oscillate with time. The steady-state and transient response parameters are defined in
Figure 4.2.

To analyze a feedback control system one needs to:

■ Determine a mathematical model for each of the system building units.
Transfer functions are the most convenient to use for that purpose.

■ Represent the system using a block diagram and determine its overall
transfer function.

■ Determine the characteristics by means of a step-response, pole-zero map,
root-locus, Bode plot, Nyquist diagram, or Nicols Chart.

Simply from the transfer function point of view, the stability of a single-input,
single-output system can be determined based on the location of the poles in the
complex plane (s–plane): the left half of the complex plane is the stable region.

Figure 4.2: A possible step response of a stable system with the
steady-state and transient response parameters defined.
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Dead time: the time elapsed between the application of an input signal and the start of an output signal.
Rise time: the time the output takes to increase from 10% to 90% of the final value.
Overshoot: the maximum difference between the transient and steady-state values.
Settling time: the time for the response to become within 5% of the final value.
Steady-state error: the value of e(t) as t → ∞ .
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4.2.3 Design
The objective of the design of a feedback control system is to meet a set of given
performance specifications. They are usually given in the time-domain or the fre-
quency domain.

The time-domain specifications have two components:

■ Transient performance, which could be given in terms of overshoot
percentage, rise time, settling time, and the predominant time constant.

■ Steady-state performance, which is given in terms of steady-state error.

The frequency-domain specifications are usually given in terms of gain and phase
margins, cut-off rate, and resonance peak and frequency.

4.2.4 PID Control
A commonly used control scheme is known as the three-term PID controller, where
PID stands for Proportional Integral Derivative. It is also used as a benchmark
against which any other control scheme is compared. The concept of a PID controller
is illustrated in Figure 4.3.

Figure 4.3: PID controller concept.

KDdt
d

dtKI

KP

m(t)e(t)
∫ +

+
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The control action signal of a PID controller is composed of three components:

■ Proportional action, p(t), where the signal is proportional to the error signal
at the present moment.

( ) ( )pp t K e t=
■ Integral action, i(t), where the signal is proportional to the commutative

values of the error signal up to the present moment.

( ) ( )
0

t

ii t K e t dt= ∫
■ Derivative action, d(t), which is proportional to the rate of change of the error

signal at the present moment.

( ) ( )d

d
d t K e t

dt
=

where Kp, Ki, Kd and are constants.

The overall control action, m(t), can be expressed as:

( ) ( ) ( ) ( )
0

t

p i d

d
m t K e t K e t dt K e t

dt
= + +∫

In the s-domain, this can be expressed as:

( ) ( )1
p D

K
M s K K s E s

s
 = + + ⋅  

As Kp is increased, the system speed increases (with a tendency to overshoot),
and the steady-state error decreases, but is not eliminated. As Kd is increased, the
damping factor increases, thereby reducing the overshoot. The derivative control is
susceptible to noise and it is never used alone. As Ki is increased, the steady-state
error goes to zero and the system tends towards instability. Integral control is also
never used alone.

4.3 Fuzzy Logic Controller (FLC)
4.3.1 Description
The block diagram shown in Figure 4.1 is still applicable in fuzzy applications, but
the controller is a fuzzy controller rather than a PID controller. Figure 4.4 shows the
basic structure of a fuzzy logic controller.

The main building units of an FLC are a fuzzification unit, a fuzzy logic reason-
ing unit, a knowledge base, and a defuzzification unit. Defuzzification is the process
of converting inferred fuzzy control actions into a crisp control action.
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The fuzzy knowledge-base has a rule-base that maps a fuzzy input variable, E,
into a fuzzy output, U. This can be expressed by a linguistic statement such as:

E U→  (condition E implies condition U)

which may be written as:

IF E THEN U.

There is an equivalency between the above expression and the relation obtained
by Cartesian multiplication, as explained in Chapter 3—i.e.,

R E U= × ≡ IF E THEN U.

The fuzzy knowledge-base also has a database defining the variables. A fuzzy
variable is defined by a fuzzy set, which in turn is defined by a membership function.

Fuzzy reasoning is used to infer the output contributed from each rule. The fuzzy
outputs reached from each rule are aggregated and defuzzified to generate a crisp
output.

The essence of a fuzzy logic controller is thus based on a linguistic model (rule-
base and the defined membership functions) as opposed to a mathematical model, as
is the case with a PID controller. Fuzzy logic controllers are used to reduce the
development time or to improve the performance of an existing PID controller. In the
case of highly complex systems, fuzzy logic could be the only solution.

4.3.2 Design
In the design of an FLC system it is assumed that:

■ A solution exists.

■ The input and output variables can be observed and measured.

■ An adequate solution (not necessarily an optimum one) is acceptable.

■ A linguistic model can be created based on the knowledge of a human
expert.

Figure 4.4: Basic structure of a fuzzy logic controller.
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In order to model a system linguistically, one needs to:

■ Identify the input and output variables of the process to be controlled (the
plant). For example: speed, temperature, humidity, etc.

■ Define subsets that cover the universe of discourse of each variable and
assign a linguistic label to each one. For example, the linguistic variable
speed may be defined as three fuzzy subsets: slow, medium, and fast as
shown in Figure 2.9.

■ Form a rule-base by assigning relationships between inputs and outputs.

■ Determine a fuzzification method.

■ Determine a defuzzification method to be used to generate a crisp output
from the fuzzy outputs generated from the rule-base. The section to follow
elaborates on the process of defuzzification and its numerous methods.

4.3.3 Defuzzification
For a given input, several IF/THEN rules could be launched at the same time. Each rule
would have a different strength, because a given input may belong to more than one
fuzzy set, but with different membership values. For example, an input temperature
of 80 °C may belong to the fuzzy subset very_high with 0.8µ =  and to the fuzzy
subset medium with 0.3µ = . Thus, when this temperature occurs two, rules will fire:

IF very_high THEN action-1

IF medium THEN action-2

If action-1 is defined by fuzzy set F1 and action-2 is defined by fuzzy set F2, then
the two sets are aggregated (commonly using the UNION operation) leading to the
fuzzy set F, as illustrated in Figure 4.5.

In general, the output of the fuzzy reasoning would involve more than two fuzzy
sets; therefore, one can write:

1

k

i
i

F F
=

=∪

Assuming the support of F is X = {x1, x2, x3,…} then for ix X∈ , F(xi) = wi

indicates the degree to which each is suggested by the rule-base as a good output for
the given input. The defuzzification operation is applied on F to determine the best
crisp output.
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Numerous defuzzification methods have been suggested in the literature; how-
ever, sometimes different authors name the same method differently. No method has
proved to be always more advantageous than the others. The selection of which
method to use depends primarily on the experience of the designer. One may take
into consideration the computational complexity involved, applicability to all situa-
tions considered, and plausibility of the results from an engineering point of view.
Defuzzification methods include the following:

Centroid method
This method is also known as the center of mass, or center of gravity method. It is
probably the most commonly used defuzzification method. The defuzzified output, x*

is defined by

( )
( )

* F

F

x xdx
x

x dx

µ ⋅
=

µ
∫
∫

where the symbol ∫  denotes algebraic integration.

Figure 4.5: Two rules firing at the same time leads to fuzzy sets
that could be aggregated and result in a fuzzy set F.
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Center of largest area
This method is applicable when the output consists of at least two convex fuzzy
subsets which do not overlap. The result is biased towards a side of one membership
function.

First maxima
This method is applicable when the output is peaked; the smallest value of the
domain with maximum membership is selected.

Max-membership
This method is also known as the height method. The output is defined by:

( ) ( )*
F Fx xµ ≥ µ , for all x X∈

Weighted average method
This method is valid for symmetrical output membership functions. Each member-
ship function is weighted by its maximum membership value. The output is defined by:

( )
( )

* F i i

F i

x x
x

x

µ ⋅
=

µ
∑
∑

where ∑  denotes algebraic summation, and ix  is the maximum of the ith member-
ship function.

The method is illustrated in Figure 4.6 where two fuzzy subsets are considered.
In that figure, the defuzzified output would be

( ) ( )* 0.4 0.8

0.4 0.8

a b
x

+
=

+

Figure 4.6: Two symmetrical membership functions.
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Mean-max membership
The method is also known as the middle of the maxima. The output is defined by:

* 1

n

i
i

x
x

n
==
∑

In Figure 4.6, the defuzzified output would be:

*

2

a b
x

+=

Center of sums
This method uses the algebraic sum of the individual fuzzy subsets instead of their
union. Although the calculations become faster, this method leads to adding the
intersecting areas twice.

4.3.4 Analysis
As discussed earlier, fuzzy logic is particularly useful in the control of highly nonlin-
ear processes difficult to control by conventional methods. The central idea is to use
the knowledge of an expert (human operator) to create a linguistic model. However,
conventional analysis techniques of control systems are based on mathematical
models and hence cannot be used for the analysis of a fuzzy logic control system.
One may argue that if the model is based on the knowledge of an expert then the
analysis is not needed. However, one must realize that human knowledge could be
incomplete. In addition, fidelity of the mapping using rule-base, inference rules, and
defuzzification methods needs to be assured. Extensive simulations, in general,
would be required to establish confidence in the reliability of the system. One should
examine the static properties of a designed FLC system and observe aspects such as:

■ The consistency of the IF/THEN rules. Inconsistencies could occur due to an
attempt to accommodate contradictory design criteria or simply due to faulty
formulation of the rules.

■ The existence of enough rules to assure smooth control action, but not too
many to slow the operation.

■ A proper control action should be inferable for every state of the process.

■ Fuzzy sets are properly assigned in the defined universe of discourse. Over-
lapping of neighboring membership functions ensures completeness and
robustness, but may lead to distortions in the output.

■ The defuzzification method used is suitable to ensure correct and smooth
control action.
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As for the dynamic properties, numerous techniques have been put forward
for the analysis of the stability of an FLC system. They can be categorized
into two groups:

■ The first group consists of methods that require a mathematical model of the
process to be controlled (the plant). This category includes the cases of linear
and nonlinear plants. The describing function technique and the circle
criterion are example of the first. The invariance principle and Lyapunov
function are examples of the second.

■ The second group consists of methods that do not require a mathematical
model. They include  phase plane trajectory, energetistic stability, and
linguistic stability methods.

Energetistic Stability Criterion
The energetistic stability criterion involves time-consuming calculations; however, it
provides an intuitive method to analyze the stability of a fuzzy dynamic system. It is
based on the general physical law that any dynamic system is stable if its total energy
decreases with time until it reaches a steady state. Various authors have suggested
algorithms based on this idea. The approach of Kiszka et al. is summarized here. It
starts with the basic equation of a simple dynamic system,

1 , 1,2,3,k k kX X U R k+ = =� � …

where Xk and Xk+1 are fuzzy sets at the kth and (k+1)th time instants, respectively, and
R is a fuzzy relation describing the fuzzy control system.

If there is no input, the system is said to be free or unforced. This occurs when Uk

= zero for all values of k, where zero is a fuzzy singleton as illustrated in Figure 4.7
and is described by

( ) ( )11 =
zero

0 otherwisekU

u u k
u


µ = = 

 for all values of k

Figure 4.7: Illustration of the fuzzy singleton, Uk = zero.
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Let , kP U R= � then 1k kX X P+ = � ,        k = 0,1,2,3,…

A state is an equilibrium state if 1k k SX X X+ = =  for all k. This leads to:

S SX X P= �

The energy of a fuzzy relation P is defined by Kiszca et al. by:

( ) ( ) ( )( )
1 1

1
, ,

n m

n m

i j P i j
i j

E P w x y f x y
= =

= ⋅ µ
⋅ ∑∑

where ( ),i jw x y  is the Cartesian product of the ith element in the support of the fuzzy
set X in the universe of discourse WX, the jth element in the support of fuzzy set Y in
the universe of discourse ( )( ), ,Y P i jW f x yµ , is the corresponding value of the mem-

bership in the normalized fuzzy relation matrix MP, and n and m are the cardinalities
of the support sets for fuzzy sets X and Y, respectively.

Example
Let WX = [2,4,6], WY = [1,3,5], and P is a relation from X to Y defined by

0.2 0.3 0.1

0.1 0.4 0.3

0.5 0.1 0.2
PM

 
 =  
  

Then, the energy would be:

( ) ( )( ){

}

1
2 1 0.2 2 3 0.1 2 5 0.5

3 3

4 1 0.3 4 3 0.4 4 5 0.1

6 1 0.1 6 3 0.3 6 5 0.2

2.89

E P = × × + × × + × ×

+ × × + × × + × ×
+ × × + × × + × ×

=
The energy expression for a free fuzzy dynamic system would be:

( ) ( )1k kE X E X P+ = �

But, 1 0X X P= � ,

       2
2 1 0 0X X P X P P X P= = =� � � � ,

         .

         .

         .

        0
k

kX X P= �

where X0 is the initial fuzzy system state and kP P P P P= � � … (k times).
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Then, the energy expression can be written as:

( ) ( )1
1 0

k
kE X E X P +

+ = �

The change in energy, E∆ , between two consecutive states would be:

( ) ( )1
0 0

k kE E X P E X P −∆ = −� �

Since E(X0) is a constant, E∆ does not depend on the initial conditions. Therefore,
the rational characteristic energy function, ( ),CE P k∆ , can be expressed as

( ) ( ) ( )1, k k
CE P k E P E P −∆ = −

This expression could be used to determine the stability as follows:

a) The system is stable if ( ), 0CE P k∆ ≤ for k → ∞ .

b) The system is unstable if ( ), 0CE P k∆ ≥ for k → ∞ .

c) The system is oscillatory with a period T, if

( ) ( ), ,C CE P k E P k T∆ = ∆ + for k → ∞ .

The following is a simple illustrative example of the energetistic stability crite-
rion as put forward by Kiszka et al.

Example
Let the universe of discourse be X = Y =[1,2]. Determine the stability of the
system if the fuzzy relation P is given by:

a)   
0.1 0.5

0.3 0.2
P

 
=  

 
        b)     

0.1 0.3

0.7 1.0
P

 
=  

 
To determine the stability of a system, one starts by calculating several consecu-

tive values of E(Pk) using the max-min composition rule discussed in Chapter 3. This
gives

11 12 11 12 11 12

21 22 21 22 21 22

a a b b c c

a a b b c c

     
=     

     
�

with

( ) ( )
( ) ( )
( ) ( )
( ) ( )

11 11 11 12 21

12 11 12 12 22

21 21 11 22 21

22 21 12 22 22

max min , ,min ,

max min , ,min ,

max min , ,min ,

max min , ,min ,

c a b a b

c a b a b

c a b a b

c a b a b

 =  
 =  
 =  
 =  
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Then for the first system:

2 0.1 0.5 0.1 0.5

0.3 0.2 0.3 0.2

0.3 0.2

0.2 0.3

P P P
   

= =    
   

 
=  

 

� �

3 2 0.3 0.2 0.1 0.5

0.2 0.3 0.3 0.2

0.2 0.3

0.3 0.2

P P P
   

= =    
   
 

=  
 

� �

4 3 0.2 0.3 0.1 0.5

0.3 0.2 0.3 0.2

0.3 0.2

0.2 0.3

P P P
   

= =    
   
 

=  
 

� �

One can then use the definition of energy

( ) ( ) ( )( )
1 1

1
, ,

n m

n m

i j P i j
i j

E P w x y f x y
= =

= ⋅ µ
⋅ ∑∑  to calculate

( ) ( ) ( ) ( )2 3 4, , , .E P E P E P E P …

( ) 1

2 2
E P =

×
{1 × 1 × 0.1 + 1× 2 × 0.5 + 2 × 1 × 0.3 + 2 × 2 × 0.2}

   ( )1
2.5

4
=

Similar calculations yield:

( ) ( )2 1
2.3

4
E P = , ( ) ( )3 1

2.2
4

E P = , and ( ) ( )4 1
2.2 .

4
E P =

One may conclude that the system is oscillatory.
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For the second system:

2

3

4 5

0.1 0.3 0.1 0.3 0.3 0.3

0.7 1.0 0.7 1.0 0.7 1.0

0.3 0.3 0.1 0.3 0.3 0.3

0.7 1.0 0.7 1.0 0.7 1.0

0.3 0.3

0.7 1.0

P

P

P P

     
= =     

     
     

= =     
     

 
= =  

 

�

�

One may then conclude that this system is stable.

4.4 Simplified Examples of Applications
Two examples are given here of fuzzy logic control in embedded systems: a washing
machine and a vacuum cleaner. The objective is to illustrate how to start thinking
about designing a practical fuzzy logic system, the core of which is the definition of
the inputs, outputs and fuzzy control rules. The two examples presented do not
require extensive knowledge. Hence, the rules, the fuzzy subsets, and the correspond-
ing results of simulation are easily understood. By relating them to each other and
reflecting on how to enhance their operation, they should provide an insight into the
operation of more complex systems that may require specialized knowledge. No
calculation details are given here. Usually such design and analysis is carried out
with the help of a software tool. Some of the software tools available will be dis-
cussed in Chapter 9. Web links to some fuzzy embedded systems, including washing
machines, vacuum cleaners, and car anti-lock brake systems are provided at the end
of the chapter.

4.4.1 Washing machine
There are several washing machines on the market that use fuzzy logic. The discus-
sion here, however, does not refer to any particular washing machine; it is rather
concerned with a hypothetical washing machine. The objective is to provide a simple
example of the initial stages of designing a fuzzy control for a washing machine.

Ease of use is a desirable feature, along with ability to set the washing parameters
based on the laundry load characteristics. The characteristics of the laundry load
(inputs) include: the actual weight, fabric types, and amount of dirt. The washing
parameters (outputs) include: amount of detergent, washing time, agitation, water
level, and temperature. Controlling these parameters could lead to a cleaner laundry,
conserve water, save detergent, electricity, time, and money.
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The design of a machine to meet such specifications could be a demanding task.
It is obvious that there is no simple mathematical model that could be of practical use
to relate the inputs to the outputs, but a knowledgeable operator could do the task
manually. This is where fuzzy logic comes in. A rule-base could be created based on
the knowledge of the operator to control the process. Analysis would still be neces-
sary to assure that plausible results are reached.

Consider, for simplicity, a machine with two inputs and one output, the inputs
being:

■ The dirtiness of the load as measured by the opacity of the washing water
using an optical sensor system.

■ The weight of the laundry load as measured by a pressure sensor system.

The output is the amount of detergent dispensed.

The dirtiness is defined in the range from 0 to 100, by defined fuzzy subsets:
Almost_Clean, Dirty, Soiled, and Filthy as shown in Figure 4.8. The weight of the
laundry is defined in the range from 0 to 100 by fuzzy sets: Very_Light, Light, Heavy,
and Very_Heavy as shown in Figure 4.9. The output, for simplicity, is defined by the
singleton subsets  shown in Figure 4.10.

Figure 4.8: Subsets defining Dirtiness.
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Figure 4.9: Subsets defining Weight.

Figure 4.10: The Detergent subsets.
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if DIRTINESS is ALMOST_CLEAN and WEIGHT is VERY_LIGHT then DETERGENT is VERY_LITTLE
if DIRTINESS is DIRTY and WEIGHT is VERY_LIGHT then DETERGENT is LITTLE
if DIRTINESS is SOILED and WEIGHT is VERY_LIGHT then DETERGENT is MUCH
if DIRTINESS is FILTHY and WEIGHT is VERY_LIGHT then DETERGENT is VERY MUCH
if DIRTINESS is ALMOST_CLEAN and WEIGHT is LIGHT then DETERGENT is VERY_LITTLE
if DIRTINESS is DIRTY and WEIGHT is LIGHT then DETERGENT is LITTLE
if DIRTINESS is SOILED and WEIGHT is LIGHT then DETERGENT is MUCH
if DIRTINESS is FILTHY and WEIGHT is LIGHT then DETERGENT is MUCH
if DIRTINESS is ALMOST_CLEAN and WEIGHT is HEAVY then DETERGENT is MUCH
if DIRTINESS is DIRTY and WEIGHT is HEAVY then DETERGENT is MUCH
if DIRTINESS is SOILED and WEIGHT is VERY_HEAVY then DETERGENT is VERY_MUCH
if DIRTINESS is FILTHY and WEIGHT is HEAVY then DETERGENT is MAXIMUM
if DIRTINESS is ALMOST_CLEAN and WEIGHT is VERY_HEAVY then DETERGENT is MUCH
if DIRTINESS is DIRTY and WEIGHT is VERY_HEAVY then DETERGENT is VERY_MUCH
if DIRTINESS is SOILED and WEIGHT is VERY_HEAVY then DETERGENT is MAXIMUM
if DIRTINESS is FILTHY and WEIGHT is VERY_HEAVY then DETERGENT is MAXIMUM

Suggested control rules are given below, and summarized in Table 4.1.
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Table 4.1: Fuzzy control rules for a washing machine.

Weight → Very_Light  Light  Heavy  Very_Heavy
Dirtiness ↓

Almost_Clean  Very_Little  Little  Much  Much

Dirty  Little  Little  Much  Very_Much

Soiled  Much  Much  Very_Much  Maximum

Filthy  Very_Much  Much  Very_much  Maximum

The definition of the input sets, output sets, and the control rules reflect a particular
point of view. If the analysis results shown in Figures 4.10 and 4.11 are not accept-
able then the rules, or even the definition of the fuzzy subsets could be modified. More
rules could be used for smoother operation, as well as more complex rules that include
operations other than AND. The design could be expanded to include more inputs.

The diagrams for this example were generated using Fuzzy Logic Designer
software developed by Byte Dynamics, Inc. Detailed discussion of software tools is
presented in Chapter 9.

Figure 4.11: Detergent vs. Dirtiness.
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If different rules were used, different results would be obtained. For example, if
the rules used are:

if DIRTINESS is ALMOST_CLEAN or WEIGHT is VERY_LIGHT then DETERGENT is VERY_LITTLE
if DIRTINESS is FILTHY or WEIGHT is VERY_HEAVY then DETERGENT is VERY_MUCH
if DIRTINESS is DIRTY or WEIGHT is HEAVY then DETERGENT is MUCH
if DIRTINESS is FILTHY and WEIGHT is VERY_HEAVY then DETERGENT is MAXIMUM

The results of the simulations would be as shown in Figures 4.13 and 4.14. One
may find them objectionable (do you agree?).

Figure 4.12: Detergent vs. Weight.
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Figure 4.13: Detergent vs. Dirtiness, objectionable results.

Figure 4.14: Detergent vs. Weight, objectionable results.
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4.4.2 Vacuum cleaner
Once again, there are several vacuum cleaners on the market that use fuzzy logic.
Links to a few of them are provided in the Web resources section at the end of this
chapter. The objective of the discussion here is to highlight that the initial design
steps follow the same line of reasoning as that of the washing machine. All fuzzy
control applications follow a similar approach. First you need to identify the inputs
and the outputs, then relate them through IF/THEN rules. The inputs here could be
dirtiness, type of surface, and type of dirt, and the output could be the force of
vacuuming.

One can define fuzzy subsets for the Surface such as : Wood, Curtain, and
Carpet, and for Dirtiness as: Almost_Clean, Dirty, Soiled, and Filthy. The strength of
vacuuming could be defined by the fuzzy subsets: Very_Weak, Weak, Normal, Strong,
and Very_Strong. Rules relating the inputs and the output could be as summarized in
Table 4.2. Simulation analysis could be carried out on the rules, and set definitions
could be modified to make it satisfactory if it is not.

Table 4.2: Fuzzy control rules for a vacuum cleaner.

Dirtiness →  Almost_Clean  Dirty  Soiled  Filthy
Surface ↓

Wood  Very_Week  Week  Normal  Strong

Curtain  Very_Week  Normal  Strong  Very_Strong

Carpet  Week  Normal  Strong  Very_Strong

Concluding Remarks
The application of fuzzy logic principles enables solving  problems that would have
been difficult or even impossible to solve if mathematical models were used. Fuzzy
logic, however, would not create a solution if one did not exist in the first place
through the knowledge of an expert; such knowledge is the basis of a fuzzy algo-
rithm. To learn how to solve a problem is the domain of neural networks, discussed
in Chapter 6. It is also important to realize that what is reached through fuzzy
algorithms is a solution, but not necessarily the optimum one. An optimum solution
could be reached from a pool of solutions using genetic algorithms. This topic is
introduced in the Appendix.
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Web Resources
1. A Demonstration of Real-time Control of an Inverted Pendulum

www.aptronix.com/fuzzynet/java/pend/pendjava.htm

This is a demonstration of a one-stage inverted pendulum with a fuzzy Java
controller provided by FuzzyNet OnLine.

2. Simulation of the Problem Fuzzy Control of a Pendulum
www.erudit.de/erudit/demos/cartball/

This Web site is maintained by the  European Network for Fuzzy Logic and
Uncertainty Modeling in Information Technology, ERUDIT. It provides a
demo to illustrate the fuzzy control of an inverted pendulum. The demo can
run through the Web or can be downloaded as a standalone version.

3. Fuzzy Logic On-Line Demos
www.emsl.pnl.gov:2080/proj/neuron/fuzzy/demos.html

This Web site provides links to numerous fuzzy demos including:

■ The Fuzzy Truck Simulator (Auburn University)

■ Fuzzy Logic Overview (Battelle Memorial Institute)

■ Amplitude Control Broom Balancing (Cambridge University)

■ Demo of Fuzzy Furnace Controller (Rick Hillegas), and more.

The site is provided by Pacific Northwest National Laboratory, USA.

4. Fuzzy Truck Parking
www.iit.nrc.ca/IR_public/fuzzy/FuzzyTruck.html

The demo shows an application of fuzzy logic to park a truck by backing it
up to a loading platform. It was created by the Integrated Reasoning Group
of the Institute for Information Technology of the National Research Council
of Canada.

5. Fuzzy Truck Simulator
www.vgt.bme.hu/okt/tananyag/fuzzy/fuzzy12/home.html

The simulation goal is to design a fuzzy system to back up to a truck so that
it arrives at a loading dock at a right angle (relative to the horizontal axis).
The applet shows that through direct manipulation of the fuzzy set rules, the
system is dynamic enough to compensate to a certain degree. The source
code is also provided. The site is maintained by Christopher Britton,
Budapest University of Technology and Economics.
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6. Tuning of Fuzzy PID Controllers
www.iau.dtu.dk/~jj/pubs/fpid.pdf

This is a PDF file of a 22-page paper with 10 references with the above title
by Jan Jantzen, Technical University of Denmark.

7. About robustness of Fuzzy PD and PID
www.erudit.de/erudit/events/esit2000/proceedings/BB-02-2-P.pdf

A paper by B. Butkiewicz, Warsaw University of Technology. The main idea
of the paper is to show that the behavior of a fuzzy controller depends mainly
on the rules and plant parameters, not on the reasoning and defuzzification
methods. The paper appeared in the Proceedings of the European Sympo-
sium on Intelligent Techniques, 2000, Aachen, Germany, September 14–15,
2000, pp. 350–356.

8. Online Papers and Reports
www.angelfire.com/me/pcominos/paperlink.htm

About a hundred papers and reports related to control systems available in
zipped PS format or PDF format. Among them some are related to fuzzy PID
control including:

“Fuzzy-PID Controllers vs. Fuzzy-PI Controllers” by Matilde Santos,
J. M. de la Cruz, S. Dormido, and  “Between Fuzzy-PID and PID-
Conventional Controllers: a Good Choice” by Matilde Santos, J. M.
de la Cruz, S. Dormido, A. P. de Madrid

9. Fuzzy Systems for Control Applications
www.site.uottawa.ca/~petriu/Fuzzy-tutor.PDF

A 30-page tutorial available in PDF format. It is authored by E. M. Petriu,
University of Ottawa. The tutorial is easy to follow, very well illustrated, and
provides bibliographical references.

10. Fuzzy Control Methods and their Real System Applications
www.ic-tech.com/Fuzzy%20Logic/

A report consisting of 67 slides presented in HTML format by IC Tech, Inc.,
April 2000. Topics include:

■ Fuzzy Control Methods and their Real System Applications
■ Data Acquisition and Knowledge Acquisition
■ Learning in Neural Networks
■ Boolean Logic and Fuzzy Logic
■ Fuzzy Systems
■ Design of a Fuzzy Controller
■ Automotive Applications of Fuzzy Control
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11. Stability Analysis and Controller Design for Dynamic Fuzzy Systems Based
on New Fuzzy Inference Approach.
www.ubka.uni-karlsruhe.de/vvv/1997/elektrotechnik/3/3.pdf

A paper from the Elektronische Volltextarchiv, EVA (the archives of scien-
tific publications written by members of the University of Karlsruhe). It is
authored by E. Schäfers and V. Krebs. It presents a new inference method
with interpolating rules as a basis for the analysis of dynamic fuzzy systems.

12. Fuzzy Logic in Embedded Microcomputers and Control Systems
www.bytecraft.com/fuzlogic.pdf

A 48-page report by W. Banks and G. Hayward, published by Byte Craft
Limited, Waterloo, Ontario, Canada and reprinted in April, 2001. The report
gives a short tutorial on fuzzy logic, then discusses fuzzy logic implementa-
tion on embedded microcomputers. It also provides bibliographical
references.

13. Application of Fuzzy Logic to Multimedia Technology
www.sys.uea.ac.uk/~king/restricted/

A report in HTML format authored by M. Razaz, J. R. King, A. Duke, and
A. Rogers in collaboration with BT Laboratories. The paper describes the
application of fuzzy logic to determine the availability of a person within a
multi-user virtual environment system. The collected information is then
used to determine whether a user is there and the level of busyness of such a
user. Availability is defined using fuzzy logic concepts. The paper then
reports on a new fuzzy software system that has been designed and imple-
mented to be used to determine a user’s availability within the described
environment.

14. A Laboratory Course on Fuzzy Control
http://eewww.eng.ohio-state.edu/~passino/PapersToPost/FC-lab-course.pdf

A paper available in PDF format authored by S. Yurkovich and K. Passino
appeared in the IEEE Transactions on Education, 42,1, 15–21, 1999. The
authors describe a control laboratory course offered at the Ohio State Univer-
sity for senior undergraduates and graduate students.

15. Fuzzy Control of a DC Motor
http://alds.stts.edu/APPNOTE/Fuzzy/2359.PDF

A 14-page application note in PDF format provided by STMicroelectronics.
It details all aspects of a fuzzy control system for a DC motor.
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16. An Approach to Motor Control with Fuzzy Logic
http://alds.stts.edu/APPNOTE/Fuzzy/2077.PDF

Another 14-page application note in PDF format provided by
STMicroelectronics, discussing motor control using fuzzy logic.

17. Fuzzy Systems for Control Applications: the fuzzy backer-upper
www.mathematica-journal.com/issue/v4i1/columns/freeman/
64-69_Jim41.mj.pdf

A report in PDF format by J. A. Freeman, Loral Space Information Systems.
The report appeared in The Mathematica Journal, 4, 1, 64–69, 1994. The
report introduces the fuzzy logic tool from the automation toolbox. A fuzzy
control system is developed that automatically backs up a truck to a specified
point on a loading dock.

18. Fuzzy Tracking Control Design for Nonlinear Dynamic Systems
www.ee.nthu.edu.tw/bschen/papers/c080-fuzzy.pdf

A paper by C.-S. Tseng, B.-S. Chen, and H.-J. Uang appeared in the IEEE
Transactions on Fuzzy Systems, 9, 3, 381–392, 2001.

19. Texas Instruments Fuzzy Logic Control
www-s.ti.com/sc/psheets/spra028/spra028.pdf

A 48-page report in pdf format provided by Texas Instruments, 1993.

20. Enhanced Control of an Alternating Current Motor using Fuzzy Logic and a
TMS320 Digital Signal Processor
http://alds.stts.edu/APPNOTE/Fuzzy/SPRA057.PDF

A 66-page application report in PDF format, provided by Texas Instruments,
1995.

21. Vacuum Cleaner Refernce Platform
http://e-www.motorola.com/brdata/PDFDB/docs/AN1843.pdf

A 40-page Motorola Semiconductor Application Note authored by K.
Berringer, published in the year 2000.

22. LG Electronics Fuzzy Washing Machine
www.dreamlg.com/en/lgewasher/index.jsp

Announcements and technical data from LG Electronics.

23. Samsung Fuzzy Washing Machine
www.samsungelectronics.com.my/washing_machine/tech_info/index.html

Announcements and technical data from Samsung.
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24. Hitachi Microwave Oven Control
www.has.hitachi.com.sg/grp3/sicd/application/appl-pdf/28-h012.pdf

Technical information about using fuzzy logic for microwave oven control.

25. Intel Fuzzy Control Anti-lock Brakes
www.intel.com/design/mcs96/designex/2351.htm

A report in HTML format authored by D. Elting, M. Fennich, R. Kowalczyk
and B. Hellenthal. Topics covered include: Fuzzy Logic Overview, Fuzzy
ABS, Model BUILDER, fuzzyTECH 3.0, and Intel Fuzzy ABS Features.

26. Aptronix Fuzzy Design Notes
www.aptronix.com/fuzzynet/index.htm

These design notes include the design of a washing machine, camera auto
focus, air conditioner control, and car automatic transmission.

27. fuzzyTECH Application Library/Technical
www.fuzzytech.com/

This is the Web site of fuzzyTech. It has links to: News, Products, Fuzzy
Application Library,  Demo, and more. The Application Library includes
topics such as:  What is Fuzzy Logic, Technical Applications, Business and
Finance Applications, and more. The Technical Applications include: Indus-
trial Automation, Fuzzy in Appliances, Automotive Engineering, Antilock
Braking System, and more.

28. A Practical Study on the Implementation of Fuzzy Logic Controllers
http://citeseer.nj.nec.com/cordon98practical.html

A 26-page technical report with 33 references authored by O. Cordón, F.
Herrera and A. Peregrín, Universidad de Granada, Spain, July 1998. Topics
covered include: Fuzzy Logic Controllers, Design of Fuzzy Logic Control-
lers, Framework of Implementing Fuzzy Logic Controllers, Software
Implementing Fuzzy Logic Controllers, and Comparative Study of Approxi-
mate and Exact Methods.

29. HP Technical Reports

A Fuzzy Inference Design on Hewlett-Packard Logic Synthesis System
by R. L. Chen
www.hpl.hp.com/techreports/93/HPL-93-70.html

Cochannel Interference in Wireless LANS and Fuzzy Clustering
by P. Golding and A. E.Jones
www.hpl.hp.com/techreports/97/HPL-97-95.html
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30. Fuzzy Filtering
www.innovatia.com/software/papers/fuzzy.htm

An article by Dan Simon, Innovatia Software. The paper discusses fuzzy
logic, a more heuristic approach to filtering. The application is fuzzy filtering
for phase-locked loops; the approach can be applied to most estimation
problems.

31. International Journal of Fuzzy Systems, IJFS
www.fuzzy.org.tw/English/default.htm

This is a publication of the Chinese Fuzzy Systems Association. All articles
are in PDF format and available for free downloading. The first issue ap-
peared in September 1999.
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C H A P T E R  5
Critique of Fuzzy Logic

5.1 Introduction
Most introductory writings about fuzzy logic mention that it was surrounded with
controversy since its inception, then typically give no details. Critical discussions of
fuzzy logic are scattered over literature that may not be accessible to practicing
engineers. The limitations of fuzzy logic applications are not typically discussed
either. It is, however, important for engineers to recognize and understand, to some
degree, the issues that surround fuzzy logic. Here, some critical views and limitations
of fuzzy logic in engineering applications are outlined in a relatively easy-to-follow
approach. An extensive selected bibliography that relates to the issues discussed is
provided for readers who may wish to pursue any of the issues in more depth.

5.2 Objectives of Fuzzy Logic
Numerous individuals have taken extreme positions supporting or opposing the
concepts put forward by Lotfi Zadeh regarding fuzzy sets and fuzzy logic. Some
maintain that probability theory can handle any kind of uncertainty; others think that
fuzziness is probability in disguise, or that probability is the only sensible way to
deal with uncertainty. Some found that the term fuzzy suits the innumerate rather than
the educated. Even stronger oppositions were expressed in statements such as: Fuzzy
logic is the cocaine of science (attributed to William Kahan), and Fuzzification is a
kind of scientific permissiveness ... I cannot conceive of fuzzification as a viable
alternative to scientific method (attributed to Rudolff Kalman). On the other extreme,
some became highly enthusiastic and put forward claims that surround fuzzy logic
with an aura of mystique. Some even claim that the concepts of fuzzy set theory and
fuzzy logic are changing the world.

And so these men of Hindostan
Disputed loud and long,
Each of his own opinion
Exceeding stiff and strong,
Though each was partly in the right,
And all were in the wrong!

— John Godfrey Saxe (1816–1887)
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Perhaps the most reasonable critique of fuzzy logic should focus on the objec-
tives of fuzzy logic as stated by its founder, Lotfi Zadeh, and ask: have these
objectives been achieved? The objectives were to make computers think like people
and to enable computing with words. When asked about the future of fuzzy logic,
Professor Zadeh supposedly answered: my crystal ball is fuzzy. No claims about
mystical nature or changing the world were made, but a distinction between vague-
ness and probability was emphasized.

It is obvious that computers are not yet thinking like people. Nor are we computing
with words, but we are closer to achieving these objectives than ever before. Numerous
embedded systems use fuzzy logic, alone or with other techniques, and as a result, new
devices and systems have thus been enabled. One can state that, from an engineering
point of view, fuzzy logic is quite successful, but like any other methodology it has its
limitations. It is important for engineers to understand fuzzy logic and its limitations to
get the maximum out of this important design methodology and apply it when it is
advantageous, or seek an alternative otherwise. It is good to remember that:

Engineering is the art of doing that well with one dollar, which any
bungler can do with two dollars after a fashion.

— Arthur M. Wellington [1847-1895], the Economic Theory of
the Locomotion of Railways, Wiley, New York, 1900.

5.3 What’s in a Name?
We had a funny discussion over the term fuzzy. The company is highly
respected and asked us to find another name.

— Jens-Jorgen Østergaard

It is amazing to observe that because the term fuzzy was coined for the new concepts
that were introduced, it caused strong reaction, both favorable and unfavorable. It is
actually fortunate that Lotfi Zadeh coined the term fuzzy rather than using a less
exotic term such as Empirical Computer Aided Design Methodology. There would
have been less opposition, but also greatly lessened enthusiasm and interest in
investigating potential applications.

One should realize that the term fuzzy is used as a designation for a different
class of sets and a different approach to reasoning. There is nothing fuzzy about
fuzzy logic. It is the logic of fuzziness, not being fuzzy itself. On the contrary, a
detailed expert knowledge of the system is usually needed. It could be helpful to
draw a parallel with the term imaginary. Rene Descartes introduced the term imagi-
nary to designate a new class of numbers. He argued that although one can imagine
that every nth degree equation had n roots, there were no real numbers for some of
these imagined roots. Electronics engineers realize that imaginary numbers have
nothing to do with mysticism or mythology. They have real applications; imaginary
is just a term that designates a different class of numbers.
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5.4 Fuzziness vs. Probability
Debate began with the argument that probability theory cannot capture all aspects of
uncertainty—for example, the uncertainty stemming from the intrinsic vagueness
associated with human natural language. Probabilitists disagree; for example,
Lavriolette and Seaman explain:

Probability should be conceived as a measure of an individual’s uncertainty
about an event or object. Probability does not exist, just as pounds or
kilograms do not exist. Probability is a measure of personal uncertainty,
which does exist. We contend that the adherents of FST [Fuzzy Set
Theory] have failed to demonstrate that their approach solves problems
which are insoluble probabilistically. FST has certainly been used to solve
problems, but the fuzzy set theorists have failed to prove the existence of
uncertain events which cannot be represented probabilistically. This failure
coupled with their disdain for operational measures of efficacy, has led
them to employ “if it works, it is good”  as a measure of success. It has
also led them to claim that “since probabilitists cannot solve this problem,
it cannot be solved with probability.” ... the need for expediency does not
preclude the development of other, superior solutions.

Lindley supported that view and added:

Probability is the only satisfactory measure of one’s personal uncer-
tainty about the world and I put forward the challenge that anything
that can be done by alternatives to probability can be better done by
probability.

One should observe, however, that even if it is true that probability could be used
to formulate human knowledge and experiences, the details have never been devel-
oped to the extent reached by fuzzy logic theory. One should also observe that fuzzy
logic has a relatively  short history compared to probability theory.

Fuzziness supporters point out that probability and fuzziness are related and may
be complementary, but are two different concepts.  Fuzziness measures the degree to
which an event occurs, not whether it occurs or not as is the case with probability.
Probability assumes that the event class is crisply defined and that the laws of
noncontradiction ( )A A = ∅∩  and the law of excluded middle ( )A A I=∪  hold.
Fuzziness occurs when these laws are violated.

Bertrand Russell pointed out much earlier that these two laws can be violated by
introducing what became known as Russell’s Paradox.  An army barber was ordered
to shave a man if and only if he does not shave himself. Who shaves the barber?

The most misleading similarity between fuzziness and probability is that both
systems quantify uncertainty with numerical values in the interval [1,0]. However, it
is important to note that membership values of various elements in a given fuzzy set
do not have to add up to one. Another misleading similarity stems from the fact that
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the two systems algebraically manipulate sets and prepositions associatively,
commutatively, and distributively. These similarities are misleading because a key
distinction comes from the systems they are attempting to describe. For example, the
uncertainty of tomorrow’s weather could be stated by saying that the probability that
it will rain tomorrow is 70%; by tomorrow this uncertainty changes to certainty. On
the other hand, the membership value one may assign to a chair in the set COMFORT-
ABLE would remain the same tomorrow. The way one thinks about the degree of
comfort experienced by a given chair will not change.

The term fuzzy probability has been introduced in the fuzzy logic literature to
describe two conceptually distinct hybrid fuzzy-probabilistic theories. The two
theories have common features such as:

■ they are based on and extend the classical probability theory.

■ they use fuzzy numbers to quantify the probability of occurrence of an event.

■ they follow almost the same probability calculus.

The two differ, however, in the assumptions they make about the origin of the
uncertainty regarding the probability of a given event. The first assumes  fuzziness to
occur in probabilities due to fuzziness in the definition of the event in question. The
second assumes fuzziness in probabilities as a way of modeling vagueness in subjec-
tive linguistic probability assignments; it could rather be referred to as linguistic
probability.

5.5 Fuzzy Logic vs. Multiple-Valued Logic
Multiple-valued logics are non-classical logics; they do not restrict the number of
truth values to only two. They can be categorized into families that comprise uni-
formly defined finite-valued and infinite-valued systems. They include:

■ Lukasiewicz logics

■ Gödel logics

■ t-Norm related systems

■ Dunn/Belnap’s 4-valued system

■ Product systems

Multiple-valued logic, MVL, was created as a separate subject by Jan
Lukasiewicz in the 1920s. One of the main motivations of developing Lukasiewicz
MVL was to create a logical system that is free of some of the paradoxes in the two-
valued Boolean logic. The Lukasiewicz logic with [0,1] as the truth value set could
be viewed as a starting point for fuzzy logic. Fuzzy logic can be viewed as a generali-
zation of MVL. In fuzzy logic, one infers new facts along with their truth values. In
MVL, one infers only those facts that have truth values of 1 (absolutely true). Fuzzy
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set theory is application oriented. It went beyond Lukasiewicz MLV by developing
linguistic semantics for logic using fuzzy hedges. This led to a multitude of practical
applications.

5.6 Philosophical Issues
No theory can ever be proven by experiment to be ‘the correct’ theory.
However, a theory is ‘falsified’, when it is shown that its predictions do
not agree with some experiment.

— K. R. Poper

The above statement seems to be widely accepted in engineering and philosophy.
Theories, however, have their limitations and domain of applicability. The fact that a
theory does not apply under certain conditions does not imply that it is not valid, but
rather it is not the correct theory.

It is conceivable that there exists for any theory an experiment that can falsify it.
But, if a theory can lead to a valid solution, it can be used for engineering purposes.

As far as the laws of mathematics refer to reality, they are not certain;
and as far as they are certain, they do not refer to reality.

— Albert Einstein
       Quoted in J R Newman, The World of Mathematics, 1956.

It is a fundamental engineering concept to recognize the domain of applicability
of any given theory. Logic will not be deemed invalid just because the following
experimental observations have been confirmed over and over again:

I returned, and saw under the sun, that the race is not to the swift, nor
the battle to the strong, neither yet bread to the wise, nor yet riches to
men of understanding, nor yet favour to men of skill; but time and
chance happeneth to them all.

— Ecclesiastes, Chapter 9

Ellen Hisdal wrote a series of wonderful papers detailing various difficulties with
fuzzy set theory. Some of them are mentioned briefly here. The details of the argu-
ments are provided in the papers cited in the bibliography. The discussion included:

■ The possibility-certainty difficulty.

According to the theory of fuzzy sets, the numerical values of membership
functions are equal to those of the possibilities for a given label.  The possi-
bility xπ  is defined to be numerically equal to the membership function of F
when we are given the proposition “x is F”, e.g. “John is young”. But when
we know that the possibility of an event is equal to 1, we do not know
whether this event is certain or only a possibility.
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■ The depression of the inclusive OR curve.

The max operator is supposed to represent the inclusive OR, not the exclusive
one. The depression in the resultant curve of Figure 5.1 should not be there.

Figure 5.1: The depression in the curve for the inclusive OR

a) Fuzzy sets defining the labels tall and medium
b) The resultant of tall OR medium using the max operation
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x
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A   B

⊃

■ The VERY operator

The membership value of  “VERY λ ” is defined to be equal to the square of
λ  for a given value of µ . It would have been more intuitive if the definition
led to an increase in the membership values resulting in an upward shift of
the membership graph.

µ(x)

x

A=Tall B=Medium
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■ There is a lack of distinction between the result of AND and OR at a common
crossover point.

■ There are too many postulates and undefined concepts.

■ The shapes of the membership functions have no theoretical basis.

■ The union of a fuzzy set and its complement is, in general, not equal to the
attributes of the universe.

Susan Haack addressed other philosophically-oriented aspects of fuzzy logic. She
criticized it directly by asking: do we need fuzzy logic? and reaching the conclusion
that we do not. She also criticized fuzzy logic indirectly by asking: is truth flat or
bumpy? and supported the argument that describing p as one-third true is sheer
nonsense. She concluded that truth does not come in degrees and that fuzzy logic is
not a viable competitor of classical logic.

She explained that the term fuzzy logic may refer to two related, but distinct,
enterprises:

■ The interpretation of many-valued logics in terms of fuzzy set theory. She
refers to it as base logics of fuzzy logic and accepts it.

■ New logical systems in which the truth values are themselves fuzzy sets. She
pointed out that this does not only challenge classical logic, but also the
classical conception of what logic is; she refuses that.

She suggested that it is base logics that have been given practical applications.
Based on her views and arguments, we may summarize that what is useful in fuzzy
logic theory is not particularly new and what is new is not particularly useful. We
might then ask, why did  the creation of so many useful applications have to wait
until fuzzy logic appeared? What a coincidence! How do classical logic and reason-
ing explain it?

5.7 Engineering Applications Issues
Fuzzy logic, like any other methodology or theory, has its limitations and domains of
applicability. The solution it provides may not be always the best solution for any
problem. It is important for individuals who are interested in using fuzzy logic for
practical applications to recognize that and use fuzzy logic methodology only when it
is advantageous.

Limitations
Limitations of  fuzzy logic from an engineering point of view include:

■ Fuzzy logic cannot solve problems that have no known solution; it requires
the knowledge of an expert. It is particularly useful when there is an expert
who can solve the problem, but there is no mathematical model to follow. If
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no one knows how to solve the problem, then it follows that no rules can be
devised and fuzzy logic principles cannot be applied.

■ Fuzzy logic algorithms do not have the ability to learn membership functions
or rules  during or after problem solving.

■ Extensive verification and validation are required, especially where safety is
a key factor.

■ Assessing the stability of a fuzzy system before testing it is complicated and
there is no standard, straightforward technique for stability determination.

Fuzzy control vs. PID control
Now it is the turn of engineers to make claims similar to those put forward by some
mathematicians, scientists, and philosophers: some other technique could have been
used for a better result. This time it is op-amps, resistors, and capacitors. National
Semiconductor engineer and author Bob Pease explained that Mamdani’s PID
controller was said to give poor performance because it was misapplied. He also
explained that, in general, literature that reports superior results of FLC over PID
could be due to poor design of the PID.

It could have been interesting in the early days of fuzzy logic applications to
compare FLC performance results with those of PID to gain confidence that FLC can
work. It would still have been a useful finding if FLC was not reported to be superior
to PID.  But the main strength after the the technique gained some acceptance, is not
in competing with PID when PID could be used satisfactorily. The aim is to design a
controller where PID cannot be used because there is no simple, accurate mathemati-
cal model of the system.

Mathematical complexity
An appealing aspect of fuzzy logic from an engineering applications point of view is
its stated objective of making computers think like people (not necessarily intelligent
people, but those whose expertise needs to be modeled for computational purposes
regardless of their intelligence level). Its approach is to model with words systems
that cannot be modeled mathematically, or mathematical models that are not of
practical use. It appears that fuzzy logic applications depend on common sense and
modernize the old engineering methodology of design based on experience rather
than theoretical analysis only: the empirical design.

Fuzzy logic, as it appears now in some literature, is quite complicated. The
mathematics involved could be even more challenging than the typical mathematics
needed for other engineering problem-solving methodologies. Fuzzy logic could
become more complicated than it should be and more difficult to understand.
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Since the mathematicians have invaded the theory of relativity, I do not
understand it myself anymore.

— Albert Einstein
       Quoted in P A Schilpp, Albert Einstein,

       Philosopher-Scientist , Evanston ,1949.

Concluding Remarks
Fuzzy logic theory was criticized since its inception. However, its applications,
particularly in embedded systems, have achieved success and increased in number
over the years. This observation prompted some critiques to quip: Fuzzy logic works
in practice but not in theory!  Some over-enthusiastic supporters of the theory
promote it as the answer to all problems. For engineers, it is fundamental to under-
stand all approaches available to solve a problem, to know their merits and recognize
their limitations. Only then can they make educated and practical choices regarding
the optimum solution of the problem at hand. In engineering, the concern is not with
a particular philosophical dogma, but with a working model. The model would be
satisfactory if all observations indicate that it achieves its objectives within set limits.
Practice, guided by theory, is the domain of engineering.
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C H A P T E R  6
Neural Networks

6.1 Introduction
Both fuzzy logic and electronic (or artificial) neural networks are inspired by aspects
of the computational power of humans. Fuzzy logic, as explained earlier, provides
mechanisms for inference under cognitive uncertainty. It attempts to make computers
think like people. Artificial neural networks, on the other hand, provide the means for
pattern classification. They attempt to mimic the biological sensory system. The two
fields developed independently, but they can complement each other in numerous
applications. This chapter introduces fundamental ideas of neural networks. The
following chapter complements this introduction by presenting neurofuzzy systems
and their applications.

6.2 Background
Since artificial neural networks (neural networks for short) are inspired by biological
systems, it is useful to give a short account of these biological systems and provide
an explanation of some of the commonly used terminology. It is useful to note that
the term connectionism appears in some relevant literature. It has its roots in an early
movement in cognitive science to model the brain based on interconnection of many
simple units forming a network—i.e., a neural network.

The biological neuron is the basic building unit of the nervous system. The
human brain is estimated to have billions of neurons, each with thousands of connec-
tions to other neurons. It is a living cell that does not duplicate itself, yet it can
develop more connections with other neurons as the individual learns more.

The main features of neurons are:

■ The dendrites, which are branch-like structures that receive input signals to
be processed by the cell body.

■ The cell body (soma), which performs the central functions of the cell.
■ The axon, which carries the output signals. It is terminated with the so-called

terminal buttons. The point at which two or more neurons interact is known
as the synapse. The synaptic cleft is the area between the terminal buttons of
one neuron and the dendritic ends of another. The signal is transmitted across
by chemicals known as neurotransmitters.
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Models of biological neural networks are built around nodes (or processing units)
that simulate the action of a neuron. Input and output links to these nodes simulate
synapses. Weights are assigned to the input links to simulate the action of the neu-
rotransmitters. An algorithm is then used to adjust the weights of the input links so
that the neurons produce the desired output, thus simulating the process of learning.
Such algorithms are therefore referred to as learning or training algorithms.

6.3 Learning
Learning, rather than being programmed, is an important feature of human computa-
tional abilities. Learning may be viewed as the change in behavior acquired due to
practice or experience, and it lasts for a relatively long time. As it occurs, the effec-
tive coupling between the neurons is modified. Assessment of learning should not be
limited to measuring the relatively permanent change in behavior that occurs or what
the learner can do. This would be a limited view of learning. Learning may occur
without any immediate measurable change in behavior. Such learning acts as a
catalyst for measurable learning later. The first type of learning could be better
described as training, which is usually what one hope to achieve by training an
artificial  neural network. The second type is the one that provides humans with the
efficiency for further learning, the ability to reason, and leads to transferable skills.
Both types complement each other and require time to achieve.

Learning can occur in two modes: supervised and unsupervised. In supervised
learning, examples (training sets of data) are required. Unsupervised learning does
not require examples; it is adaptive or self-organizing. Unsupervised learning is very
common in biological systems. It is also important for artificial neural networks;
training data are not always available for the intended application of the neural
network.

6.4 The Basic Neuron Model
As outlined in the previous section, the biological neuron is the basic building unit of
the nervous system. Similarly, the artificial neuron is the basic building unit of the
artificial neural network.

It is thus important to model mathematically, and hence computationally, or
using VLSI, the features of the neuron described in the previous sections. The basic
features may be outlined as:

■ the output from a neuron is either ON or OFF.

■ the output depends on the weighted sum of the inputs. A certain threshold
must be reached to make the neuron fire.

■ The weights associated with the inputs model the efficiency of the synapses,
coupling. A more efficient synapse will have a larger weight. The neuron is
trained by adjusting these weights.
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These features are summarized in Figure 6.1 depicting the basic neuron model.

Figure 6.1: Basic neuron model. The inputs are x1, x2,...xn and the output
is y. The body adds the weighted inputs then compares this sum
against the threshold.

From Figure 6.1 one can write:

Total weighted input 1 1 2 2 3 3
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n n

n

i i
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w x w x w x w x

w x
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= + + + +
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…

If this sum exceeds the neuron’s threshold value then the neuron fires (the output
is ON; otherwise it stays OFF). This is illustrated in Figure 6.2

Figure 6.2: The thresholding function.

a) Thresholding at θ .
b) Thresholding at 0.
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The output of the neuron can be expressed by:

( )
1

n

h i i
i

y f w x
=

 = − 
 
∑ θ

where fh is a step function (commonly known as the Heaviside function) defined by:

( ) 1, 0

0, 0
hf x x

x

= >

= ≤

The bias, or offset , θ  could be introduced as one of the inputs with a permanent
weight of 1, leading to a simpler expression:

( )
0

n

h i i
i

y f w x
=

 =  
 
∑

The lower limit in the above equation is from 0 rather than 1. The value of input
x0 is always set to 1.

Using the Heaviside function leads to hard threshold. This neuron model was
introduced by Warren McCulloch and Walter Pitts in the 1940’s. The model is
sometimes referred to as the McCulloch-Pitts neuron or MP neuron. Other functions
with softer transitions are commonly used. These include the ramp and sigmoid
functions. The sigmoid function can be expressed as:

1

1 kx
y

e−=
+

where y is the output, x is the total input and k is a gain factor that controls the
sharpness of the transition from 1 to 0, as illustrated in Figure 6.3.

The sigmoid function is particularly useful because its derivative is easy to
compute:

If 
1

1 kx
y

e−=
+

, then ( )1
dy

ky y
dx

= − .

This feature could save computational time executing training algorithms.

Example

The AND Problem

Suppose the neuron is to be trained to respond to the patterns 00, 01 and 10 by
an output of 0, and to the pattern 11 by an output of 1. This is the operation of a
Boolean AND. The problem is illustrated in Figure 6.4. The solution is presented
by the line L separating the two classes of patterns. Other lines could have been
drawn to separate the patterns, i.e. there are numerous possible solutions to the
problem.
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Figure 6.3: The sigmoid function.

Figure 6.4: A graphical illustration of the AND problem.

A possible neuron specification to solve the problem is given in Figure 6.5. In that
figure, when the input is 11 the weighted sum exceeds the threshold, leading to an
output of one. It is obvious again that there are several other specifications that could
have led to the same result.
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More complicated pattern recognition problems require more than one neuron.
These interconnected neurons form a neural network.

6.5 The Perceptron
The perceptron is the simplest neural network. It has the structure shown in Figure
6.6. Several neurons are arranged in one layer with the inputs connected to every
neuron. Learning occurs by adjusting the weights associated with the inputs so that
the network can classify the input patterns. In this case a training algorithm would be
necessary.

Figure 6.5: Possible specifications of a neuron to solve the AND problem.
The numbers on the input arrows are weights associated with the
inputs and the number inside the circle is the threshold value.

Figure 6.6: The perceptron.
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The highlights of such an algorithm are:

■ Initialize weights and thresholds by assigning random values.

■ Present a training pattern—i.e., an input and the desired output.

■ Calculate the actual output:

( ) ( )
0

n

i i
i

y f w t x t
=

 = ⋅ 
 
∑

■ Adapt weights:

If correct, then ( ) ( )1 .i iw t w t+ =

If output 0 should be 1 (class A), then ( ) ( ) ( )1 .i i iw t w t x t+ = + α

If output 1 should be 0 (class B), then ( ) ( ) ( )1 .i i iw t w t x t+ = − α

where 0 1≤ α ≤  is a constant that controls the adaptation rate.

Other methods to adapt weights have been used. The Widrow-Hoff delta rule
calculates the difference between the weighted sum and the desired output. This
difference is called the error and given the designation, ∆ . It is defined by:

( ) ( )d t y t∆ = −

where d(t) is the desired response and y(t) is the actual response.

Then ( ) ( ) ( )1i i iw t w t x t+ = + α∆

( ) 1d t = +  if input is from class A, and

( ) 0d t =  if input is from class B.

Widrow called networks using this algorithm Adaptive Linear Neurons,
ADALINES. Connecting many of them together leads to a structure referred to as
many-ADALINES, MADALINES. The training algorithm of the perceptron attempts
to determine the straight line that separates classes, but there are numerous cases
where the classes are not linearly separable. The simplest example is the case of the
exclusive-OR (XOR) problem. For input patterns 00 and 11, the output is to be 0 and
for input patterns 01 and 10, the output is to be 1. The problem is illustrated in
Figure 6.7. From that figure one can see that there is no one single line that separates
the patterns. Such patterns are referred to as linearly inseparable. A single-layer
perceptron cannot solve any problem where the patterns are not linearly separable.
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6.6 The Multilayer Perceptron
To overcome the difficulty of classifying linearly inseparable patterns, a multilayer
perceptron is used. A nonlinear thresholding function is also used—e.g., a sigmoid,
not a step function. Layers of perceptrons with linear functions would not be more
capable than a suitably chosen single layer.

A typical architecture of a multilayer perceptron is illustrated in Figure 6.8.

Figure 6.7: Illustration of the XOR problem.

Figure 6.8: A typical architecture of a multilayer perceptron.
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It is a feedforward network that consists of three layers. An input layer is directly
connected to the input and an output layer is directly connected to the output. In
addition, there is a layer that is not directly connected to either the input or the output
and hence is referred to as the hidden layer. The hidden and output layers have a
perceptron-like structure, but with the threshold function of the neurons being
sigmoid rather than a step function. From this point of view, the network shown in
Figure 6.8 could be referred to as a two-layer network.

The multilayer perceptron was introduced to solve the problem of linearly non-
separable patterns.

Considering the XOR problem as a benchmark, it is worth investigating if a
multilayer perceptron could indeed solve that problem.

Example
A possible multilayer perceptron solution to the XOR problem is shown in Figure
6.9. For input 00, the weighted sum for neuron A or neuron B is 0, the output is
thus 0 and hence the weighted sum for neuron C is 0 leading to y = 0. For input
01, the weighted sum for neuron A is 1, and its output is 1. The weighted sum for
neuron B is 1 which is less than the threshold of 1.5, thus the output is 0. The
weighted sum for neuron C would be 1, leading to an output of 1. Similar
reasoning applies to the input 10. For input 11, the weighted sum for neurons A
and B would be 2, and hence the output of both would be 1. The weighted sum
for neuron C, however, would be 0, leading to y = 0.

Figure 6.9: A possible solution to the XOR problem using
a multilayer perceptron.

In summary, for patterns 00 and 11 the networks respond with an output of 0, and
for patterns 01 and 10 the networks respond with an output of 1, thus solving the XOR

problem.
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One would expect that the learning rule for multilayer perceptrons would be
different from that of the perceptron. The new rule is called the generalized delta
rule, or the backpropagation rule. It was put forward by Rumelhart, McClelland and
Williams in the 1980s. An input pattern is provided and the output is calculated and
then compared with the desired output. The weights are altered accordingly so that
the network produces fewer errors the next time. The use of a sigmoid function is
essential so that enough information concerning the output  is available to neurons in
the earlier layers. This enables these neurons to get their corresponding weights
adapted in order to reduce the error next time.

This type of learning is called supervised learning since a training set (input
patterns and the corresponding desired output) is required. The weights of each
neuron are adjusted in direct proportion to the error in the neuron to which it is
connected. Backpropagating these errors through the network enables all of the
weights to be correctly adapted, and thus the network learns the patterns of the
training set.

The multilayer perceptron learning algorithm can be presented as follows:

■ Weights and threshold are initialized by assigning to them small random
values.

■ A training pattern is presented consisting of an input: 0 1 2 1, , , , nx x x x −… and a
target (desired) output: 0 1 2 1, , , , .mt t t t −…

■ The actual output of each layer is then calculated by:

( )
1

0

n

pj i i
i

y f w x
−

=

 =  
 
∑

where ypj is the output from layer j and f(.) is the sigmoid function.

The output is passed to the next layer until the final output Opj  is reached.

■ Weights are adapted starting from the output layer and moving backwards:

( ) ( )1ij ij pj pjw t w t O+ = + αδ

where wij are the weights from neuron i to neuron j at time t, α  is a
gain factor, and pjδ  is the error for pattern p on neuron j.

For the output neurons:

( )( )1pj pj pj pj pjkO O t Oδ = − −

For the hidden neurons:

( ) ( )1pj pj pj pk jk
k

kO O wδ = − δ∑
where

k
∑   represents summation over the k neurons in the layer above neuron j.
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The steps are repeated until a pattern is learned. Then a new pattern is presented
and so on, until all the patterns of the training set are learned.

It is useful to note that numerous variations of this algorithm have been put
forward by various authors.

The training time of the network depends on the convergence rate, i.e. the speed
with which the network error approaches zero. To visualize the network behavior and
the possible learning difficulty one may consider the energy function defined by:

( )21

2 pj pjE t O= −

This represents the amount by which the output deviates from the target (desired)
output. Now consider a network in which only one weight is being adjusted. A
possible energy function vs. weight graph is illustrated in Figure 6.10. In general, n
adjustable weights lead to an n-dimensional surface. The objective of the training
algorithm is to adjust the weights so that E is minimized. Each minimum (called a
basin of attraction in an n-dimensional surface) represents a solution. A difficulty
occurs if the network settles into a local minimum rather than a global one (B, for
example, rather than A in Figure 6.10). If this occurs, the network stops learning.

Figure 6.10: One-dimensional energy function.

A local minimum occurs when two or more disjoint classes are categorized as
being the same. This difficulty could be avoided by using a training set with clearly
distinguishable training examples. Adding more hidden layers reduces the occurrence
of local minima. Random values may be added to the weights to make the network
escape settling in a local minimum. Before using a training algorithm for the multi-
layer perceptron, one has to decide the network configuration: the number of layers
and the number of neurons per layer. In general, not more than two hidden layers
should be needed, given enough neurons per layer. A network with the fewest pos-
sible number of neurons is an optimum network. It leads to better performance, e.g.
reduction in training time, computational cost, and improved generalization capabil-
ity. To reach an optimum network, there are two approaches:

A

B

E

w
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■ Trimming Concept

Start with a network that has an excess of neurons and then trim it, or

■ Construction Concept

Start with a network that has a few neurons and then add more as needed.

There are several approaches to implement the trimming and construction con-
cepts. One can examine a trained network and remove neurons with minimal
contributions. One can also modify the training algorithm so that each weight is
allowed to decay to zero, hence the network optimizes itself during training by
removing unnecessary connections and unneeded neurons can also be removed. As
well, there are algorithms that build the networks by starting with several neurons at
the bottom of the architecture and then adding layers. Each added layer has fewer
neurons than the previous one until the process comes to an end with a single output
neuron. Other algorithms that add layers as needed have been put forward in the
literature.

6.7  Recurrent Network
Learning with multilayer perceptrons discussed in the previous section is an example
of supervised learning in feedforward networks—i.e., networks that allow bilateral
connections between neurons. Examples of such networks are Hopfield networks and
Boltzmann networks.

6.7.1 Hopfield Networks
A Hopfield network consists of a number of neurons that are fully connected. That is,
every neuron is connected to every other neuron. A possible arrangement is shown in
Figure 6.11. The weights are symmetrical; the weight wij connecting neuron i to
neuron j is equal to wji, the weight connecting neuron  j to unit i. In this model,
neurons use the hard threshold function of the  McCulloch-Pitts neuron. All neurons
are equal in this network, but some become more equal after training!

The inputs to the network are applied to all neurons at the same time. The
network is then given time to cycle through a succession of states until it converges
to a stable solution. The stable, steady-state values of the neurons would be the
output of the network.

The operation can thus be summarized as:

■ All the nodes are assigned a starting value.

■ An unknown input pattern is applied to all neurons.

■ The network iterates to convergence.
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6.11: The architecture of a Hopfield network in two different
arrangements.

This architecture is most suitable when exact binary (1 and –1 or 1 and 0) repre-
sentations are possible such as in the case of black and white images (where input
elements are pixel values), or with coded text (where input values are sets of bits). A
network trained to recognize a set of patterns will be able to do so when presented
with them again. Recognition will occur with the patterns even if corrupted, i.e. with
the appearance not identical to that of the training set. The number of patterns such a
network can memorize and remember accurately is about 15% of the number of the
neurons in the network.

wij = wji

w1n

wij = wji

wii = 0

x1 x2 xn

w12

w11

w2n

w22

w21

wn2

wn1

wnn
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A possible learning algorithm for the Hopfield network can be described as
follows:

■ Weights are assigned to all connections such that:

1

0

M
s s

ij i j
s

w x x
−

=

= ∑   for i j≠ , and

0ijw =  for i j=

    0 , 1i j M≤ ≤ −

where 1s
ix = ±  is element i in the training set for class s, and the training sets

have M patterns.

■ An unknown pattern is introduced, then

( )0i ixµ = , 0 1i N≤ ≤ −

where ( )i tµ  is the output of neuron i at time t.

■ Iteration continues until steady-state is reached. The iteration is governed by,

( ) ( )( )
1

0

1
N

i ij i
i

t f w t
−

=

 µ + = ⋅ µ 
 
∑ , 1 1j N≤ ≤ −

■ The process is repeated with other patterns in the training set.

6.7.2 Boltzmann Machine Networks
A Boltzmann machine network could be viewed as a modification of a Hopfield
network. It provides a mechanism for the network to escape from local minima and
move to a global minimum in the energy landscape. The idea parallels that of metal-
lurgical annealing. In that process, a metal is heated close to its melting point then
allowed to cool slowly down to room temperature. The process leads to the removal
of crystal defects such as dislocations and hence allows the metal to reach a stable
low-energy configuration.

In thermodynamics, the probability of a system being in state A or B follows the
Boltzmann probability distribution:

( )
( )

Prob
exp

Prob

A E

B T

∆ = −  

where ( ) ( )E E B E B∆ = − , ( )E A and ( )E B are energies corresponding to the two
states, and T is the temperature.

The Boltzmann machine network is fully connected like the Hopfield network,
but unlike the Hopfield network, neurons are randomly divided into three groups.
Some are chosen to be input neurons, some to be output neurons, and the rest are not
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connected directly to either the input or the output, i.e. they are hidden. Learning
occurs in two phases: incremental and decremental.

Incremental (reinforcement)
The input and output neurons are clamped to their correct values. The network is
then allowed to cycle through its states. Suppose it is the turn of the ith neuron,
selected randomly, to evaluate its input and determine its next state. For that
purpose a probabilistic rule is used. Such a method would allow transition from a
higher to a lower energy state as well as a transition from a lower to a higher
energy state, to allow the network to escape local minima. The probabilistic rule
determines, regardless of the current state of the neuron, the next state to be 1 (or
ON) with a probability, p, given by:

1

1 exp

p
E

T

=
 ∆ + −    

The probability of the next state being 0 (OFF) would be, of course, 1 – p.

T is a positive number that plays the role of temperature. It can be adjusted to
have different values at various stages of converging to a steady state. E∆  is the
energy of the system if the neuron is OFF and the negative value of the energy if
the neuron is ON. It plays the role of activation energy. If E∆  is a positive
number, then the energy of the system is higher if the neuron is OFF (at 0). Thus
to minimize the energy, having the neuron ON (at 1) is preferable. Similarly, E∆
if is a negative number, then having the neuron OFF (at 0 or –1) would be the
preferable state. The temperature parameter, T, is decremented until the output
reaches a steady state. The weight between two neurons is incremented if they
are both ON.

Decremental (forget bad associations)
In this phase, only the input neurons are clamped. The network is then given time
to reach thermal equilibrium again. The weights between two neurons that are
both ON are decremented. The process is repeated until the weights reach a
steady-state.

6.8  Kohonen Self-Organizing Networks
6.8.1 Background
The neural networks discussed in the previous section require training patterns—that
is, they have to be told the desired response for a given input and feedback obtained
on their performance until they learn the patterns. Difficulty occurs if there is no
training pattern or historical data for the problem the network is required to solve. A
different class of networks is needed: networks that do not need examples to learn.
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Such networks undergo both self-organizing and unsupervised learning. They modify
the weights associated with the neural connections based on the characteristics of the
input patterns. A Kohonen network is an example of such a network.

6.8.2 Description
A typical Kohonen network consists of a two-dimensional layer (or grid) of intercon-
nected neurons (plus an input layer). All inputs are connected to every neuron and all
neurons are connected to each other. The network starts with small random values
assigned to the weights. All neurons receive an input pattern. Then, the winner
(capitalistic neuron) takes all. Thus, neuron with the largest output and its neighbors
are allowed to learn (to adapt their weights). The output of each neuron acts as an
inhibitory input to other neurons but acts as an excitory in its neighborhood. This
process is known as lateral inhibition. The inhibitory effect of a neuron decreases
with distance from the winning neuron. This process assumes the appearance of a
Mexican hat function as shown in Figure 6.12.

Figure 6.12: The Mexican hat function describes the relationship
between the distance from the winning neuron and the connection
strength.

Repetition of the process reduces the neighborhood of the winning neuron to a
predetermined size. Thus, a cluster of neurons that respond to a particular pattern is
formed. Repeating the process leads to converting the random set of neurons into
clusters or subsets, each recognizing an input pattern.

Distance  from
winning neuron

Distance  from
winning neuron

Excitory
Effect

Inhibitory
Effect

Inhibitory
Effect
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6.8.3  Determining the winning neuron
In general, an input can be expressed as a vector with N components. It can then be
normalized by dividing each of its components by the length of the vector, leading to

( )
1

2 2 2 2
1 2

i

N

x

x x x+ +…

All normalized vectors have a distance of one unit from the origin, but in differ-
ent directions. Vectors with two components will be on a unit circle. Those with three
components will be on a unit sphere. Vectors with N components will be on a
hypersphere of N dimensions.

Example
Suppose an input pattern A has normalized components x1 and x2. The input
vector is compared with each of the weight vectors to find the nearest distance.
The square of the distance between points (x1,x2) and (w11,w21) is

( ) ( )
( ) ( ) ( )

( )
( )

2 2

1 11 2 21

2 2 2 2
11 21 1 2 11 1 21 22

2 2 net weighted input

2 1– net weighted input

d x w x w

w w x x w x w x

= − + −

= + + + − +

= −

=

The input vector and weight vector are the same when d = 0, i.e. when the net
weighted input = 1. Thus, finding the nearest vector is the same as finding the
neuron with the largest net input and hence the largest output.

6.8.4 Learning algorithm
The previous discussion of a Kohonen network can be summarized as follows,
leading to an algorithm for self-organizing:

■ weights are initialized by setting them to small random values

■ a new input is presented

■ the input vector xi(t) is compared with each of the weight vectors to deter-
mine which is nearest the distance dj between the input and each output
neuron j where the distance is

( ) ( )( )
1 2

0

n

j i ij
i

d x t w t
−

=

= −∑
where xi(t) is the input neuron i at time t and wij(t) is the weight from input
neuron to output neuron j at time t.
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■ The output neuron,  j*, with minimum distance is selected.

■ The output neuron  j*  and neighbors are updated

( ) ( ) ( ) ( ) ( )( )1ij ij i ijw t w t t x t w t+ = + η −

for ( )NE *j j t∈

where ( )tη is a gain term that decreases with time and ( )NE *j t  is the
neighborhood of the winning neuron at time t.

■ The steps are repeated by presenting a new pattern.

6.9 Adaptive Resonance Theory, ART

6.9.1  Background
Adaptive resonance theory, ART, refers to a class of self-organizing neural architec-
tures. They include ART1, ART2, ART3, and ARTMAP. ART1 is concerned with
classification of Boolean pattern sets. ART2 extends the classification to analog
patterns. ART3 allows any number of ART2 modules to be concentrated into a process-
ing hierarchy.

ART networks were introduced to solve the so-called plasticity-stability problem.
It is commonly expected that people should be able to add more to what they have
already learned. However, in artificial neural networks a catastrophic failure of
memory may occur if we try to add more patterns to a stable, trained network. The
ART networks product could be stable, yet have the ability to learn more, which is
referred to as plasticity.

ARTMAP is a supervised version that can rapidly self-organize stable categorical
mappings between n-dimensional inputs of m-dimensional output vectors. The key
idea is to spare some output neurons for new patterns to be learned. If an input
pattern and a stored pattern are sufficiently similar, they are said to be resonating and
hence recognized. If they are too dissimilar, the unused output neurons are utilized to
form a cluster for a new class of patterns. The network gives no response if all
neurons are used.

The fundamental features of the ART network are presented in the following
sections through ART1,  which is historically the first (and simplest) member of the
ART family.

6.9.2 ART
As opposed to the networks discussed in the previous sections, the ART network
layers are not homogenous. An ART network has two layers that perform different
functions. In addition, there are external parts to the layers that control the flow of
the data through the network. The structure of the network is shown in Figure 6.13.
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The first layer is the input/comparison layer and the second is the output/recognition
layer. The neurons in the output layer are connected so that lateral inhibition can
occur; that is, it uses the winner-take-all principle. Feedback and feedforward con-
nections exist between every neuron in the input and output layers. Each layer has
logic controls designated CONTROL-1 and CONTROL-2 connected to each neuron in
layers F1 and F2, respectively.

Figure 6.13: ART1 architecture.

A vigilance test evaluates the similarity of an input pattern to a stored pattern
(exemplar) or template. It uses Boolean templates; each 1 in a template is referred to
as a “feature”. Similarities are measured by the ratio S, of the number of features
common between the pattern and the template to the number of features in the input
pattern, where 0 1S≤ ≤ . For similarity to be declared: S > ρ , where ρ  is a pre-
scribed value referred to as the vigilance threshold. It is used to inform the network
how to determine whether or not an input pattern is similar to an existing stored
pattern. The value ascribed to it determines the resolution of the classification. The
operation of the network can be summarized as follows:
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1. Initialization

■ The feedback weights are set to 1, ( )0 1ijt = .

■ The feedforward weights are set such that ( ) 1
0

1ijw
N

=
+

,

0 i N≤ ≤ , and 0 1j M≤ ≤ −

where N is the number of input neurons and M is the number of
output neurons.

■ The vigilance threshold, ρ , is assigned a value such that 0 1< ρ < .

2. The Recognition Phase

■ An input pattern is applied.

■ The similarity is computed:

( )( )
1

0

N

i ij i
i

w t x
−

=

µ = ∑
where jµ  is the output of neuron j in the output layer and xi is the
input of neuron i in the input layer, which can be either 1 or 0.

■ The best matching exemplar is selected:

* maxj j µ = µ 

3. The Comparison Phase

■ The winning neurons feedback their pattern by adjusting the weights Tij to
the input.

■ The ratio S is calculated:

ij

i

t x
S

x
= ∑

∑
If S ≥ ρ , then the classification is complete.

If S < ρ , then a search phase starts.

4. The Search Phase

■ All outputs are reset (set to ZERO).

■ The input is reapplied.

■ The recognition and comparison phases are repeated.

■ The process is repeated until S ≥ ρ .

■ If no classification is possible, the input is declared unknown and is allocated
to a previously unassigned set of neurons in the output layer.
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Concluding Remarks
In this chapter neural networks were introduced, and the concept of learning was
discussed. Although there are numerous architectures and training algorithms for
neural networks, it is important to observe that they all share some general features,
including:

■ Neural networks are trained, not programmed. Training is the process of
adjusting the weights throughout the network so that it responds correctly to
input patterns.

■ Training may be supervised or unsupervised. Supervised training requires a
training set or historical data.

■ The computation depends on parallel processing. This leads to fault tolerance
and graceful degradation, as opposed to catastrophic failure. The memory is
not localized, but rather distributed.

■ A trained network can generalize. It can classify patterns that it has not seen
before; for example, a distorted input from the training set.

■ The network may not always learn—i.e., the error may not approach zero.

■ Time is needed for the network to learn; a network with complex functions
would take longer to learn. The learning time also depends on the architec-
ture and learning algorithm used.

■ The network may over-learn, or learn the noise associated with input
patterns.

■ The capacity of the network is, in general, dependent on the number of
neurons used.
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Web Resources
1. Artificial Neural Networks Tutorial

www.gc.ssr.upm.es/inves/neural/ann1/anntutorial.html

A tutorial provided in three languages by Dr. Fuente and presented in html
format. It covers basic concepts of neural networks, supervised and unsuper-
vised models. It also provides examples and a bibliography.

2. Neural Networks Tutorial with Java Applets
diwww.epfl.ch/mantra/tutorial/english/

An excellent tutorial of neural networks through Java applets. It is provided
by Laboratoire de Microelectronique, École Polytechnique Fédérale de
Lausanne. The topics include:

■ Single Neurons
– Artificial Neuron
– McCulloch-Pitts Neuron
– Spiking Neuron. (Requires Swing)
– Hodgkin-Huxley Model
– Axons and Action Potential Propagation

■ Supervised Learning
■ Single-layer networks
■ Multi-layer networks
■ Density Estimation and Interpolation
■ Unsupervised Learning
■ Reinforcement Learning
■ Network Dynamics

– Hopfield Network.
– Pseudoinverse Network.
– Network of spiking neurons. (Requires Swing).
– Retina Simulation. (Runs very slow with some Netscape versions).

3. The Basics of Neural Networks Demystified
www.contingencies.org/novdec01/workshop.pdf

An essay with eight references by Louise Francis. The essay appeared in
Contingencies, Nov/Dec, pp. 56–61, 2001.
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4. Neural Networks Report
www.doc.ic.ac.uk/~nd/surprise_96/journal/vol4/cs11/report.html

An introductory report on Neural Networks by Christo Stergiou and
Dimitrios Siganos, Department of Computing, Imperial College, London. It
has seventeen references, five of which are Web accessible. The report topics
include: neuron models, the architecture of neural networks, the learning
process, and applications of neural networks.

5. Neural Nets
www.shef.ac.uk/psychology/gurney/notes/index.html

A book-size tutorial by Kevin Gurney, Department of Psychology, University
of Sheffield, UK. It is available in HTML and PS formats. Topics covered
include:

Computers and Symbols versus Nets and Neurons, Learning Rules, The
Delta Rule, Multilayer Nets and Backpropagation, Hopfield Network,
Competition and Self-organization, and more.

6. An Introduction to Neural Networks
www.cs.stir.ac.uk/~lss/NNIntro/InvSlides.html

This is an introduction to neural networks in HTML format based on a talk
given by Prof. Leslie Smith, Centre for Cognitive and Computational Neuro-
science, Department of Computing and Mathematics, University of Stirling,
UK.  It provides a very useful overview of neural networks, reviews some
algorithms and architectures, and discusses their past applications and likely
new applications.

7. Connectionism
plato.stanford.edu/entries/connectionism/

An essay from the Stanford Encyclopedia of Philosophy. It defines the term
and discusses related topics. They include:

■ A Description of Neural Networks,
■ Neural Network Learning and Backpropagation,
■ Samples of What Neural Networks Can Do,
■ Strengths and Weaknesses of Neural Network Models,
■ Connectionist Representation,
■ The Shape of the Controversy between Connectionists and Classicists,
■ The Systematicity Debate,
■ Connectionism and Semantic Similarity, and
■ Connectionism and the Elimination of Folk Psychology.

A bibliography and Internet resources are available.
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8. Lecture on Connectionism
yoda.cis.temple.edu:8080/UGAIWWW/lectures95/meeden/nnet/nnet.html

Lecture note on Connectionism by Nikos Drakos of the Computer Based
Learning Unit, University of Leeds. Topics covered include: an  introduction
to connectionism, learning to read with NETtalk, and suggestions for labora-
tory experiments.  It also provides ten references.

9. Connectionism, Confusion, and Cognitive Science
www.bcp.psych.ualberta.ca/~mike/Pearl_Street/ Papers/Confuse/
confuse.html

An HTML version of a paper by  Michael R.W. Dawson (Biological Compu-
tation Project, Department of Psychology, University of Alberta, Edmonton,
Canada) and  Kevin S. Shamanski that appeared in The Journal Of Intelligent
Systems, 1994. It discusses the topic from a non-engineering point of view.
It concludes that connectionism produces systems that generate interesting
and sophisticated behaviors. However, connectionism has little to offer in
terms of theoretical accounts of the internal structures, procedures, and
representations that produce this behavior. It leads to the possibility of
constructing intelligence without first understanding it.

10. Neural Networks Papers
www.dsp.pub.ro/articles/articles.htm

A collection of Web links to presentations on topics that include:

■ History of neural networks
■ The connectionist paradigm
■ Logic function modelling using neural networks
■ Continuous function approximation
■ Neural networks learning methods and algorithms
■ Neural networks back propagation algorithm
■ Neural networks competitive learning
■ Self organizing feature maps
■ Neural networks learning transformations. Reinforcement learning
■ Neural networks knowledge extraction
■ Networks of spiking neurons
■ Boltzmann machines
■ Belief networks
■ Radial basis functions

The site is maintained by the DSP Laboratory, Department of Electrical
Engineering, University of Politechnica, of Bucharest, Romania.
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11. Artificial Neural Networks Technology
www.dacs.dtic.mil/techs/neural/neural_ToC.html

A report on neural networks by Dave Anderson and George McNeil, Data &
Analysis Center for Software, New York, USA. It is available in HTML,
PDF, PS, and text formats. Topics presented include:

■ Operations
■ Training an Artificial Neural Network
■ How Neural Networks Differ from Traditional Computing

and Expert Systems
■ History of Neural Networks
■ Detailed Description of Neural Network Components and

How They Work
■ Network Selection:

– Networks for Prediction
– Networks for Classification
– Networks for Data Association
– Networks for Data Conceptualization

■ Networks for Data Filtering
■ How Artificial Neural Networks Are Being Used
■ Emerging Technologies

12. Neural Networks Glossary
rfhs8012.fh-regensburg.de/~saj39122/jfroehl/diplom/e-glossary.html

A small glossary on neural network terms. Entries are accessible alphabeti-
cally, and some have hyperlinks. It is maintained by Joehen Fröhlich,
Farchhochschule Regensburg, Germany.

13. Glossary of Neural Computing
www.brainstorm.co.uk/NCTT/portfolo/part06/welcome.htm

A list of about 70 terms related to neural computing, maintained by DTI
NeuroComputing Web.

14. Pictures of the Biological Neurons
glinda.lrsm.upenn.edu/~weeks/neurons.html

A collection of pictures of biological neurons provided by Eric Weeks,
Emory University, Atlanta, GA, USA.
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15. Neurons Gallery
faculty.washington.edu/chudler/gall1.html

A collection of neurons in colour with information provided about each. The
page is maintained by Eric Chudler, Department of Anesthesiology, Univer-
sity of Washington, USA.

16. Freeware Tools for Neural Networks
vortex.cs.wayne.edu/NeuralNets/freelist.htm

This site provides a list of software related to neural networks. Some are free,
others are not. The list includes:

@BRAIN, 1st Class, Adaptive Logic Network Educational Kit, AIM Estima-
tor , AIM Problem Solver, The ART Gallery, Aspirin/Migraines, Baysian
learning for neural networks, BrainMaker, CAD/Chem-Customer Formula-
tion System, Cascade Neural Network Simulator, Cascor, Fuzzy ART, Neural
Networks at your Fingertips, NeuralShell,  and much more.

17. Neural Networks Software
www.ncrg.aston.ac.uk/NN/software.html

A big list of software related to neural networks with short descriptions. The
list is provided by the Neural Computing Reseach Group, NCRG, Aston
University, Birmingham, UK.

18. Neural Networks Warehouse
neuralnetworks.ai-depot.com/Applications.html

This site provides links under numerous categories including: books, tutori-
als, libraries, software, programs, research, and applications. The site is
owned and maintained by Alex J. Champandard, Artificial Intelligence
Depot.

19. Bibliographies on Neural Networks
liinwww.ira.uka.de/bibliography/Neural/index.html

A huge collection of papers related to neural networks. The collection is
searchable by title. It is also divided into sub-groups including:

■ Bibliography on the Self-Organizing Map (SOM) and Learning Vector
Quantization (LVQ)

■ Bibliography for the IEEE Transactions on Neural Networks
■ Bibliography for Advances in Neural Information Processing Systems
■ Bibliography for the journal: Neural Computation
■ Bibliography for the journal:  Neural Networks
■ Bibliography on Neurofuzzy Systems
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■ Bibliography on constructive algorithms for neural networks
■ Bibliography on Recurrent Neural Networks
■ Bibliography on Invariant Pattern Recognition with Neural Networks
■ Bibliography of Fault Tolerance related Neural Network literature
■ Bibliography on Adaptive Resonance Theory (ART)

and much more.
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C H A P T E R  7
Hybrid Systems

7.1 Introduction
Fuzzy logic systems and neural networks were inspired by human computational
abilities. Thus, they share some common ground. For example, they do not require
mathematical models and they work under imprecise, uncertain, and noisy environ-
ments. It is also interesting to observe that both are numerical in nature, although this
is not a human trait. They also have some complementary characteristics. Fuzzy logic
provides inference mechanisms under cognitive uncertainty; it enables computing
with words. Fuzzy logic systems require rules set by a human expert; they cannot
learn by example or on their own. In contrast, neural networks can learn, adapt, and
generalize. In addition, neural networks exhibit fault tolerance due to their distributed
structures.

Neural methods can be incorporated into fuzzy systems and fuzzy logic methods
can be introduced into neural networks to take advantage of their complementary
characteristics. Such combinations lead to what is referred to here as hybrid systems,
which are also called fuzzy-neural, neural-fuzzy, or fuzzy-neuro systems. Such
systems combine the merits of both fuzzy logic systems and neural networks;
namely, the explicit knowledge representation from fuzzy logic methods and the
learning ability of neural networks. Using this combination of methods, a more
versatile system with a human-like approach can be designed.

7.2 Fuzzy Neuron
There are numerous possible ways to introduce fuzzy logic methods into a neural
network. For example, the model of the neuron discussed in Section 6.1 could be
generalized to incorporate fuzziness leading to a fuzzy neuron. It is also possible to
introduce fuzziness in a network with non-fuzzy neurons by modifying the learning
algorithms to allow for membership functions. In this section the concept of fuzzy
neurons is illustrated.
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A possible model for a fuzzy neuron, FN, that can express and process fuzzy
information was put forward by Kwan and Cai. It is illustrated in Figure 7.1. The FN
has inputs xi associated with weights wi (i = 1 to n). It also has outputs yj (j = 1 to m);
all of the outputs have values in the interval [0, 1]. These could represent member-
ship values of a given pattern to a particular fuzzy set. The inputs may be thought of
as the representation of a linguistic variable and the output expresses the membership
values of assigned linguistic descriptions such as TALL, MEDIUM, SMALL, etc.  These
values could then be propagated to other neurons.

Figure 7.1: A possible model for a fuzzy neuron.

x1 w1
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In mathematical terms, the FN operation could be described by

( )( )1
n

j i i i iy g f h w x=
 = − − θ

where h is an aggregation function (such as MIN, MAX, etc.) that replaces the summa-
tion operation in a non-fuzzy neuron model, f is an activation function, θ  is the
activation threshold, and { }, 1,2, ,ig j m= … are m output functions that represent the
membership functions of the input pattern in all the m fuzzy sets.

Agregation Thresholding
Membership

Value
DeterminationInput

pattern

membership values
in fuzzy set j
(j = 1 to m)
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If z is the aggregated weighted input ( )1
n
i i ih w x= , then one could define:

■ INPUT-FN with which an input layer is composed such that z = x.

■ MAX-FN in which the aggregation function is a MAX operation, leading to

( )1maxn
i i iz w x==

Such a neuron could be referred to also as an OR-FN.

■ MIN-FN in which the aggregation function is a MIN function, leading to

( )1minn
i i iz w x==

Such a neuron could be referred to as an AND-FN.

■ COMP-FN (competitive FN) in which the activation threshold, θ , is a variable
and there is only one output such that

( ) 0,

= 1,

y g s s

s

= − = <

≥

θ θ

θ

( )s f z= − θ  defines the state of the FN, and

( )1 2, , , Kt c c c= …θ , t being the threshold function, and

( )1 tokc k K=  are competitive variables of the FN.

All these neurons could appear in one fuzzy neural network, FNN, leading to a
heterogeneously structured network as opposed to the homogeneous structures,
where all the neurons have similar definitions, as discussed in Chapter 6.

7.3 Multilayer FNN Architectures
A multilayer computational structure consisting of fuzzy neurons can be described as
a multilayer fuzzy neural network. Numerous architectures have been suggested in
the literature. The following two examples are provided to illustrate the concept.

Example

Pedrycz Structures
A simplified three-layer fuzzy neural network structure is shown in Figure 7.2.
Each layer consists of the same type of FNs, but different types are used for each
layer. The input layer consists of INPUT-FNs, the hidden layer of MAX-FNs, and
the output layer of a single MIN-FN. Figure 7.3 illustrates an alternative structure
where the hidden layer is composed  of MIN-FNs, and the output layer is a single
MAX-FN.
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Figure 7.3: A simplified three-layer fuzzy neural network with a hidden
layer composed of MAX-FNs.

Figure 7.2: A simplified three-layer fuzzy neural network with a hidden
layer composed of MIN-FNs.
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Example

Kwan-Cai Structure
A four-layer feedforward fuzzy neural network, FNN, for 2-D pattern processing
is shown in Figure 7.4. The first layer of the network accepts pixel values of an
input pattern and transfers them into normalized values in the interval [0, 1]. The
second layer fuzzifies the input pattern to an adjustable predetermined degree
such that all distinct training patterns can be separated by the network and it
produces an acceptable recognition rates. The mth output of this layer can be
thought of as expressing a fuzzy concept. The third layer gives similarity of the
input pattern to all learned patterns. The fourth layer is a defuzzier stage. It
chooses the maximum similarity as the activation threshold of all the COMP-FNs.

Figure 7.4: Kwan-Cai FNN structure.

7.4 Fuzzy ART

Adaptive Resonance Theory neural networks, ART, can be built on prior learning as
outlined in Chapter 6. They can create new categories to accommodate inputs that do
not belong to any of the categories learned before. Fuzzy ART generalizes ART1 to
incorporate fuzzy computations. The generalization to learning both analog and
binary input patterns is achieved by replacing the classical intersection operator in
ART1 calculations with the fuzzy AND operation—that is, the MIN operation. Fuzzy ART

still clusters patterns (vectors) by comparing an input pattern to existing ones, then
creating a new category if the need arises. The highlights of the model put forward by
Carpenter et al. are as follows:
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xi
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■ Three parameters that control the dynamics of the fuzzy ART are defined: the
choice parameter, 0α > , the learning rate parameter, [ ]0,1β∈ , and the
vigilance parameter, [ ]0,1ρ∈ .

■ For each M-dimensional input I ( )1 2, , , MI I I= … and cluster category j, a
choice function is defined by

( ) j

j

w

w
jT

∧
=

α +

I
I

where ( )1 2, , ,j j jMw w w=w …j  is the weight vector associated with category j.
The number of potential categories N is arbitrary. The fuzzy ART weight
vector wj represents the bottom-up and top-down weight vectors of ART1, the
operator ∧  denotes a fuzzy AND (i.e., MIN) operation, and the norm …  is
defined by:

1

M

i
i

x x
=

= ∑ .

( )jT I  is simply written as jT  when I is fixed.

■ The category choice is indexed by J, where:

max , 1,2, ,J jT T j N = = …

If more than one Tj is maximal, the category j with the smallest index J is
chosen so that neurons become committed in order j = 1,2,3,….

■ The matching function is defined by:

jI w

IjS
∧

=

If jS ≥ ρ , resonance occurs and the learning process starts.

If jS < ρ , mismatch reset occurs and Tj is reset to –1 for the duration of the
input presentation. A new index J is chosen, and the search continues until
resonance occurs.

■ Learning is achieved by updating the weight vector, wJ.

( ) ( )old oldw 1 wJ JI= β ∧ + − βnewwJ .

■ It was reported to be advantageous to normalize the inputs. This could be

achieved by processing each input vector a by setting = a
I

a
. An alternative

normalization rule known as complement coding could also be used. If a and
ac represent the ON the OFF responses, respectively, then 1c

i ia a≡ − . The
complement coded input I becomes a 2M-dimensional vector I = (a,ac).
Since
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( )

1 1

, c

M M

i i
i i

a a

a M a

M
= =

=

 = + − 
 

=

∑ ∑

I

then inputs that are complement coded are normalized.

7.6 Fuzzy ARTMAP

A fuzzy ARTMAP, as described by Carpenter et al., is a system that can learn to classify
inputs by a fuzzy set of features, or a pattern of fuzzy membership values expressing
the extent to which each feature is present.

An illustration of the system is shown in Figure 7.5. The system consists of two
fuzzy ART modules linked by an inter-ART module, called a map field, Fab. It is used to
form predictive associations between categories and carry out the match tracking
rule: the vigilance parameter of ART-a increases in response to predictive mismatch at
ART-b. Match tracking recognizes category structure so that predictive errors are not
repeated when the input is presented again.

Figure 7.5: Fuzzy ARTMAP architecture.
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The operational highlights of the network are as follows:

■ Fields a
0F  and b

0F  complement-code the Ma-dimensional vector a and the
Mb-dimensional vector b.

For ART-a: Ia = A = (a,ac), and for ART-b: Ib = B = (b,bc).

■ For ART-a, the output of the field a
1F  is denoted by ( )1 2 2, , ,a a a

Max x x≡ax … , the

output of field a
2F  is denoted by ( )1 2 2, , ,a a a

May y y≡ay … , and the jth ART-a

weight vectors are denoted by ( )1 2 2, , ,a a a
j j Maw w w≡

a

jw … .

■ For ART-b, ( )1 2 2, , ,b b b
Mbx x x≡bx …  denote the output vector of field b

1F , and

( )1 2, , ,b b b
Nby y y≡by … , and ( )1 2 2, , ,b b b

k k Mbw w w≡
b

kw … .

■ For the map field, ( )1 2, , ,ab ab ab
Nbx x x≡abx …  denote the Fab output vector,

( )1 2, , ,ab ab ab
j j jNbw w w≡

ab

jw …  denotes the weight vector from the jth a
2F neuron to

abF .

■ The map field is activated whenever one of the ART-a or ART-b categories is
active. If both ART-a and ART-b are active, then the field map becomes active
only if ART-a predicts the same category as ART-b.

■ At the start of each input presentation, the ART-a vigilance parameter aρ  is set

to a baseline value. If ab< ρab bx y , where abρ  is the map field vigilance

parameter, then aρ  is increased until jA A wa
aρ > ∧ , where A is the input

in complement form to a
2F  and J is the index of the active a

2F  neuron. When
this occurs, the ART-a search leads to either the activation of another a

2F  node
or the shutdown of a

2F  for the rest of the input presentation.

■ Learning rules determine how the map field weights ab
jkw  change.

7.7 Neural Fuzzy Systems
In fuzzy set theory, the universe of discourse needs to be divided into fuzzy subsets.
Each subset is defined by a membership function. This process requires the knowl-
edge of a human expert. On the other hand, neural networks perform conceptually
similar tasks. They can divide the data space into clusters based on certain features.
In a fuzzy system context, clustering multidimensional data could lead to:

■ One-dimensional membership functions based on a given metric, or

■ Multidimensional membership functions that model fuzzy relations—in
other words, fuzzy IF/THEN rules.

Thus, a neural network could identify and extract membership functions and
fuzzy rules without the knowledge of a human expert. One may ask: how this could
be useful?
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Recall that a basic idea of fuzzy logic is to map human thinking into a computer
algorithm. It is possible that the physical environment under consideration may
change over a period of time. Adapting of the fuzzy system through adjusting mem-
bership functions and fuzzy rules would be needed to better reflect the changes
occurring in the actual system.

Neural networks could also perform computationally intensive tasks, such as
fuzzy logic inference. Knowledge of the rules (the antecedent and consequent
clauses) is encoded in the network. Keller et al. suggested a four-layer network to do
that task. The first is an input layer, the second is for checking the antecedent clause,
the third is for clause combining, and the fourth layer is the output layer.

Various methods and algorithms have been suggested in the literature. The
following example illustrates an algorithm put forward by Adeli and Hung for
determining the membership function.

Example
Membership determination using the Adeli-Hung algorithm (AHA).

The neural network for this algorithm has a flat topology—i.e., two layers
including the input layer. The number of input neurons equals the number of
patterns, M, in each training instance. There are N training instances:
X1,X2,…,XN. The number of output neurons equals the number of clusters,
N.

The algorithm starts with M inputs and one output. The network can be
described in shorthand by NN(M,1); this reads as a neural network with m
inputs and one output. The final number of output neurons is yet to be
determined. The first training instance gets assigned to the first cluster. Then,
for the second instance:

– If it is classified to the first cluster, the output neuron representing
the first cluster becomes active.

– If it is classified as a new cluster, an additional output neuron is
added to the network.

The process continues until all training instances are classified.

The details of the AHA can be highlighted as follows:

■ The mean vector of the training instance is defined by:

N
=1

1
X

N

N

i
i

x= ∑ . It follows that for the (N + 1) training instance:

N 1 N N 1

N N
X X X

N 1 N 1+ += +
+ +

.
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■ A function giving the degree of difference is defined using Euclidean
distance as:

( ) ( )2

1

X,C
M

i j ij
j

diff x c
=

= −∑  .

It represents the difference between a training instance, X, and a cluster C
(mean of the patterns of the instances in the cluster) in an NN(M,P) network
(a neural network with M input neurons and P output neurons).

■ The cluster with the smallest degree of difference ( )min , idiff X C  is made
active.

( ){ }active iC C min X,C , 1,2, ,diff i p= = … .

■ If the clusters are completely disjoint, a binary matrix Z is used to record the
cluster of each instance:

1ijz = , if instance i belongs to cluster j, and
0ijz = , if instance i does not belong to cluster j.

■ If the clusters are partly overlapping, the boundaries of the clusters become
fuzzy. A binary matrix is still used. The degree of membership of each
instance in the cluster is based on the distance between the instance and the
prototype of the cluster. The prototype for each cluster is defined as the mean
of all instances in that cluster.

■ Assuming np instances in a cluster p, the pattern vector of the instance
number i in that cluster is

( )p
i 1 2X , , ,p p p

i i iMx x x= … , and

( )p 1 2

p
i

1

C , ,

1
X .

p

p p pM

n

ip

c c c

n =

=

= ∑

…

where 
1

1 pn
p

pi ij
ip

c x
n =

= ∑ , and j = 1,2,…,M.

■ Assuming triangular membership functions, the membership value of the
instance number i in the p cluster is defined by

( ) ( )p p
i i pX X ,Cw

p f D µ =  

If  ( )pX ,Cw p
iD > κ  , then ( )p

iX 1pµ =

If ( )pX ,Cw p
iD ≤ κ , then ( ) ( )p

i pp
i

X ,C
X 1

w

p

D
µ = −

κ
,

where κ is a predetermined overlapping threshold value.
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Concluding Remarks
Fuzzy logic and neural networks were inspired by human computational powers.
Both provide solutions that could be difficult to reach otherwise. However, the
solutions reached may not be the optimum solutions to the problems. Combining the
two techniques in a hybrid fuzzy and neural system enables enhanced performance.
The hybrid system exploits the merits of each technique. Still, the solution reached
may not be the optimum one. Genetic algorithms, GA (introduced in Appendix A),
can be employed for optimization purposes in fuzzy logic systems, neural networks,
and hybrid fuzzy-neural systems.
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Web Resources
1. First IF/THEN for neural systems

faculty.washington.edu/chudler/papy.html
www.eoa.org.eg/edwintxt.htm#TOP

These two sites provide a description of an ancient Egyptian papyrus that
contains a surgery database in the form of an if/then rule. The papyrus has
the first use of the neuro words recorded in history.

2. Neural Fuzzy Systems
citeseer.nj.nec.com/64350.html

A 1995, 250-page report by Robert Fullér on Neural Fuzzy Systems. The
report consists of three chapters and an appendix. The first chapter discusses
fuzzy systems, the second highlights basic concepts of neural networks, and
the third introduces some aspects of fuzzy neural networks. The appendix
provides a case study and exercise.

Also,

www.abo.fi/~rfuller/nfs.html

Lecture notes on neural fuzzy systems in both Web and PDF formats by the
same author.

3. Neural Networks and Fuzzy Systems
http://nn.uidaho.edu/pap/2002\Mechatronics%20Handbook.pdf

Chapter 32 authored by Bogdan Wilamowski in Mechatronics Handbook
edited by Robert R. Bishop, CRC Press, pp. 33–1 to 32–26, 2002.

4. Evolving Fuzzy Neural Networks
divcom.otago.ac.nz/infosci/kel/CBIIS/pubs/pdf/ajiips-si98.pdf

A paper that appeared in the Australian Journal of Intelligent Information
Processing Systems, 5,154-160,1998 by Nikola Kasabov, University of
Otage, New Zealand. It is a 6-page paper with 29 references available in PDF
format. The complete title is Evolving Fuzzy Neural Networks: Theory and
Applications for On-line Adaptive Prediction, Decision Making in Control.

citeseer.nj.nec.com/kasabov01evolving.html

A 67-page paper with 84 references by the same author. The full title is
Evolving Fuzzy Neural Networks for Supervised/unsupervised On-line
Knowledge-Based Learning. It appeared in IEEE Transactions of Systems
Man and Cybertics, 131, 6, 2001.
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5. Adaptive Neuro-Fuzzy Inference System, ANFIS
www.control.hut.fi/Kurssit/AS-74.115/Material/FVAnfis2.pdf

A 25-page tutorial by Heikki Koivo on the Adaptive Neuro-Fuzzy Inference
System. It has MATLAB examples, copyrighted 2000. Also, lecture notes on
Neuro Fuzzy Computing in Automation by Prof. Koivo, 2001, available at
www.control.hut.fi/Kurssit/AS-74.115/Material/

6. Neural Fuzzy Motion Estimation and Compensation
sipi.usc.edu/~kosko/MotionEstimation.pdf

A paper by Hyum Kim and Bart Kosko, IEEE Transactions on Signal
Processing, 45, 10, 2515-2532, 1997. Provided in PDF format. The paper
discusses the use of neural-fuzzy systems to improve motion estimation and
compensation for video compression, and  it has 29 references.

7. Soft Negotiation
www.iis.ee.ic.ac.uk/~frank/surp98/report/mgm1/

A report in Web format by Myles MacRae and Marcus Pickering, the Depart-
ment of Computing, Imperial College of Science, Technology and Medicine,
University of London. The report covers several topics including a simple,
short account of soft computing. The account addresses neural networks,
fuzzy logic, genetic algorithms and their combinations.

8. Neural Fuzzy Techniques
scholar.lib.vt.edu/theses/available/etd-5733142539751141/unrestricted/
ETD.PDF

A 187-page Ph.D. dissertation by Somkiat Sampan, Virginia Polytechnical
Institute and State University, 1997. It is provided in PDF format. The
dissertation discusses neural fuzzy techniques in vehicle acoustic signal
classification.

9. Neural Fuzzy Inference Network
www.di.uniba.it/~castella/papers/IJCNN2000.pdf

A paper by Castellano and Fanelli, Università degli Studi di Bari, Italy. It
presents a self-organizing neural fuzzy inference network. It is 6 pages long,
with 13 references. It is available in PDF format.

10. Fuzzy ARTMAP vs. MLP
www.cairo.utm.my/publications/yhtay_airtc97.pdf

A paper available in PDF format: Tay and Kalid, Comparison of fuzzy
ARTMAP and MLP Neural Networks for Handwritten Character Recogni-
tion, IFAC Symposium on AI in Real-Time Control, Kuala Lumpur,
Malaysia, 1997.
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The paper presents results of comparisons between Fuzzy ARTMAP and
backpropagation based multilayer perceptrons, MLP. Fuzzy ARTMAP out
performed MLP in both learning convergence and recognition accuracy.

11. Fuzzy ARTMAP Applications
www.cairo.utm.my/publications/ksyap_wec99.pdf

Slah et al., Vehicle Licence Plate Recognition by Fuzzy ARTMAP Neural
Network, World Engineering Congress, WEC’99, Universiti Putra Malaysia,
1999. It is a six page report with seven references available in PDF format. It
reports on the prototype of a system being developed at the Center for
Artifical Intelligence and Robotics in Cairo and the Universiti Teknologi
Malaysia.

12. Simplified Fuzzy ARTMAP Applications medusa.sdsu.edu/Robotics/
Neuromuscular%20Control/Fuzzy_ARTMAP.pdf

A paper by Sajasekarn and Pai, PSG College of Technology titled: Image
Recognition using Simplified Fuzzy ARTMAP, 15 pages, 12 references.

13. Combining Neural Networks and Fuzzy Controllers
citeseer.nj.nec.com/nauck93combining.html

A paper by Nauck, Klawonn, and Kruse that appeared in Fuzzy Logic in
Artificial Intelligence, FLAI93; it has 13 pages and 21 references, and is
available in PDF format.

14. Modified Fuzzy Neural Network Classifier
www.ee.iitb.ac.in/uma/~ncc2002/proc/NCC-2002/pdf/n010.pdf

This paper discusses neural networks based on modifying the Kwan-Cai
Networks.

Authored by Kularni and Sontakke, SGGS College of Engineering and
Technology, India.

15. Comparative Study of NN Structures
mecha.ee.boun.edu.tr/~efe/PDF/JMechatronics.pdf

Efe and Kayank of  Bogazci Univesity, Turkey present a 16-page report that
presents the results of investigating the identification of nonlinear systems by
neural networks. Feedforward Neural Networks, Radial Basis Function
Neural Networks, Rung-Kutta Neural Networks, and Adaptive Neuro Fuzzy
Inference Systems are evaluated and their performance compared.
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16. Soft Computing Resources
www.cs.nthu.edu.tw/~jang/nfsc.htm

A web site maintained by Prof. Jang, Computer Science Department, Tsing
Hua University, Taiwan. It provides Web links to numerous resources includ-
ing FTP sites, newsgroups, neurofuzzy research sites, journals, technical
reports, and more.

17. Computational Intelligence Links
www.emsl.pnl.gov:2080/proj/neuron/ci/what.html

This Web sites provides a large number of Web links to mainly introductory
information on Computational Intelligence (Neural, Fuzzy, and Genetic). It is
maintained by Pacific Northwest National Laboratory, operated by Battelle,
an industry located in Ohio, USA.

18. Neuro Fuzzy Resources
elve.le.ttu.ee/mesel_www_home/R&D/NEUROFUZ/Ressourc.htm

A large collection of Web links to resources including tutorials, courses,
journals, commercial companies, and much more. It is maintained by Martin
Brown, Department of Electronics, Tallinn Technical University, Estonia.

19. Neuro Fuzzy Systems: State-of-the-art Modeling Techniques
citeseer.nj.nec.com/abraham01neuro.html

A document from Lecture Notes in Computer Science by Ajith Abraham of
Monash University, Australia. It is an eight page paper with eleven references
that suggest a modeling approach for neuro-fuzzy systems.
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C H A P T E R  8
Hardware Implementations

8.1 Introduction
Embedded systems and their realizations were discussed in Chapter 1. The general
features, design metrics, processor technologies, and the IC technologies which were
discussed in general terms for embedded systems are applicable to embedded fuzzy
and neural systems. Specifically, the approaches that have been used to implement
embedded fuzzy logic systems and neural networks include:

■ Using general-purpose processors and depending fully on software in the
realization of the system. As discussed earlier, such an approach is relatively
easy and low-cost, but also leads to relatively slow operation.

■ Adapting a general-purpose processor to perform dedicated fuzzy instruc-
tions. The approach is a trade-off between speed and generality. Using a
coprocessor or exclusive hardware to perform the fuzzy operations is a
closely related approach, and  the speed is limited by the interfacing between
the processor and the co-processor.

■ Using dedicated fuzzy circuits or Application Specific Integrated Circuits, (ASICs).
The approach leads to relatively high-speed operation, but is more costly.

In Chapter 9, we will discuss software tools, including those for the implementa-
tion of fuzzy and neural systems on general-purpose processors. Also discussed are
software tools that enable the conversion of a given intuitively designed system to
code in a selected language such as C, C++, Java, etc., or to an assembly language of
a particular general-purpose, or dedicated, processor. The following sections discuss
the hardware aspect of the embedded-system implementation. The techniques used
for hardware implementation include:

■ Digital techniques

■ Continuous-time analog techniques including:

– Current mode circuits

– Voltage mode circuits

– Mixed mode (current and voltage) circuits
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■ Discrete-time analog techniques

■ Mixed signal (analog and digital) techniques

The discussion is meant to give the reader an overview of the basic ideas of
hardware implementation using digital and analog techniques. Since new ICs are
proposed, designed, and produced at a rapid pace, the reader is advised to refer to the
relevant parts of the Web resources section if specific up-to-date information is
needed.

8.2 Digital Techniques
Although fuzzy chips may have limited input/output capabilities, they have particu-
larly useful applications in real-time control systems. Analog fuzzy values must be
converted to binary digital signals. Analog-to-digital conversion can lead to quantiza-
tion errors in both input signals and membership values. Thus, a deterioration in the
fuzzy processing may occur if an  insufficient number of bits is used to represent the
analog signals. On the other hand, using a large number of bits can slow down the
process. This is the trade-off between precision and speed.

Fuzzy dedicated circuits are characterized by:

■ The number of inputs and outputs.

■ The number and shapes of membership functions.

■ Inference techniques including operators, consequences, and size of the
premises.

■ Defuzzification method.

■ The number of fuzzy logic inferences per second, FLIPS.

■ Physical size.

■ Power consumption.

■ Software available to support the design.

Numerous approaches to digital fuzzy ICs have been reported.

Example

First Digital Fuzzy IC
Togai et al. proposed the first fuzzy logic digital integrated circuit implementa-
tion in the mid-1980s. In the first prototype, they emphasized simplicity, making
it particularly useful as a starting point in understanding custom digital IC
implementation of fuzzy logic inference. The implementation is based on the
analysis summarized here.
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A fuzzy rule is defined by a relation between observation (or antecedent) and
action (or conclusion). For a given set of fuzzy rules, the action is inferred from
observation and a fuzzy relation. Now, suppose A1,A2,…,AN,  are fuzzy subsets of
a universe of discourse U, and B1,B2,…,BN are fuzzy subsets of the universe of
discourse V. A fuzzy relation is defined by rules such as

IF A1 THEN B1,

IF A2 THEN B2,

.

.

.

IF AN THEN BN.

All the rules are combined to give an overall fuzzy relation R. The fuzzy
relation Ri is constructed from Rule i and linguistic values Ai and Bi.

Consider the ith rule of a set of N rules. Given an observation A′  and a rule
Ri, the action iB′  is inferred by:

i iB A R′ ′= � ;     A U′∈ , iB V′∈ , and iR U V⊂ ×

( ) ( ) ( )( )
( ) ( )( ) ( )

( )( )

maxmin , ,

minmax min , ,

min ,

i i i

i i

i

B R A

A A B

i B

v u u v

u u v

v

′

′

µ = µ µ

 = µ µ µ 
= α µ

where ( ) ( )( )maxmin ,
ii A Au u′α = µ µ

Then, the maximum of B1,B2,…,BN  determines the overall resulting decision
(action) B′ , i.e. i

i

B B′ ′=∪ .

The inference mechanism analyzed lends itself to VLSI realization by a
logical architecture with two-level hierarchy using min and max operations.
Ordinary OR and AND gates were used and a custom CMOS technology was
employed. The prototype implemented 16 rules with one antecedent and one
consequent. It represented each fuzzy label by 31 elements with 16 possible
values of membership. The maximum inference speed was 80,000 FLIPS.
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8.3 Analog Techniques
The variables in fuzzy and neural systems are analog by nature. Thus, analog imple-
mentation eliminates the need for analog-to-digital and digital-to-analog conversions.
The systems also require massive parallelism, making analog circuits particularly
suited for their implementation. Further, the physical characteristics of transistors can
be utilized in realizing the nonlinear functions required, whether it is a fuzzy opera-
tion, a membership function, or a neuron activation function. Analog
implementations, however, have typically very restricted possibilities for programma-
bility. Analog implementation techniques include voltage mode and current mode
realizations, in addition to mixed mode (current and voltage) realizations.

8.3.1 Voltage mode
VLSI voltage-mode implementation has the merit of the simplicity of signal voltage
distribution in various parts of the circuit. However, the signals in the circuit are
sensitive to changes in supply voltages. Further, charge delays of various parasitic
capacitances limit the speed. Numerous circuits and architectures have been sug-
gested and implemented; some are listed in the bibliography and the Web resources
section. The following example illustrates the concept of repressing fuzzy operations
using hardware by giving simple circuit examples of fuzzy INVERTER, AND, and OR

operations.

Example

Fuzzy INVERTER

The standard fuzzy complement was defined in Chapter 2 by:

( ) ( )1 AA x xµ = − µ

This equation can be translated into a circuit with an input-output reaction given
by:

o ref iV V V= −

where Vref and Vi are a reference and input voltage, respectively.

The input-output relation can be expressed normalized, dividing by Vref, as:

1o iV V= −

Thus, ( )A xµ  is represented by Vo and ( )A xµ  is represented by Vi. The circuit
shown in Figure 8.1 can achieve the required input-output relation.
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In the circuit of Figure 8.1, we can write:

2 1 2 2

1 2 1 1
o ref i

R R R R
V V V

R R R R

    += −    +    
This leads to:

( )2

1
o ref i

R
V V V

R

 
= − 

 
Then, with Vref = 1, we obtain:

( )1o iV K V= −

where K is a constant.

Fuzzy OR

The standard fuzzy OR operation was also defined in Chapter 1 by:

( ) ( ) ( )max ,A B A Bx x x µ = µ µ ∪

This function can be realized by a circuit that has an output voltage, Vo, equal to
the value of the largest of the two input voltages. The circuit shown in Figure 8.2 is a
generalization from a simple realization of a Boolean OR.

Figure 8.1: A circuit to illustrate fuzzy INVERTER hardware
implementation.

R2

R2R1

R1

Vi

Vref
V0+

_
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In the circuit of Figure 8.2, the output voltage, Vo, is given by:

o AV V=  , if A BV V>

o AV V= , if B AV V>

In Boolean logic realization, the inputs and output may assume one of two
possible values—e.g., 0V and 5V. Diodes can be used without considering the
voltage needed to turn on the diode, VD, since it is about 0.7V. In fuzzy logic, the
inputs and outputs may assume any value in the range 0V to 5V,  or normalized range
0 to 1. A diode with VD = 0 (or close to zero) would be needed. This is the reason for
designating D1 and D2 as precision rectifiers in Figure 8.2.

Fuzzy AND

An expression for a fuzzy AND operation can be expressed using OR and INVERTER

operations through the applications of DeMorgan’s theorem as follows:

( )A B A B ′′ ′⋅ = +

Thus, a fuzzy AND can be implemented using inverting precision rectifier and
INVERTER circuits.

Pérez and Bañuelos presented the details and experimental results of implement-
ing basic fuzzy logic gates along similar lines to the above discussion (see Electronic
Models of Fuzzy Gates in the Web Resources section at the end of this chapter).

Figure 8.2: A circuit to illustrate fuzzy OR hardware implementation,
where D1 and D2 represent precision rectifier circuits.

RL

VA

D1

D2
VB

V0
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8.3.2 Current mode
This technique is becoming more and more popular in VLSI implementations
because of its numerous advantages. Current mode circuits do not require resistors in
their implementations. This is advantageous because integrated resistors are typically
inaccurate and involve a significant amount of parasitic capacitance. Furthermore,
numerous operations, including summation and subtraction, can be achieved easily
using current mode circuits. In addition, these circuits exhibit low sensitivity to
supply voltage variations and have lower power consumption compared to the
voltage mode circuits.

In the following discussion, some basic concepts and building blocks are pre-
sented. These should help visuale how fuzzy circuits can be implemented in current
mode. They should also help the reader to follow and appreciate the numerous
implementations cited at the end of the chapter.

8.3.2.1 Current mirrors
Current mirror circuits are used to distribute the signal current to various parts of
the circuit. They produce a copy, or copies, of a given current signal. They are
used in the design of current sources for biasing as well as operating as active
loads. Numerous current mirror circuit configurations that been suggested and
implemented in both MOS and bipolar technologies.

Example
Bipolar Junction Transistor, BJT, Current Mirror Circuit

The circuit shown in Figure 8.3 acts as a current mirror. It copies an input, or
reference current, Iref, to an output current, Io. It uses two matching transistors Q1

and Q2 which implies that they have the same vBE. Transistor Q1 is connected as a
diode by short-circuiting its collector to its base. In the circuit shown:

1o EI I
β=

β +
, and

2

1ref EI I
β +=
β +

leading to:

1
22 1

o ref refI I I
β= =

β + +
β
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Then, for 1, o refI Iβ >> =

Figure 8.3: A basic BJT current mirror circuit.

Q2Q1

IE

–vEE

IE

Io

Iref

IE

2IE

IE
β β

β + 1

IEβ
β + 1

IE
β

β + 1
β + 1

β + 1

=

The circuit discussed in this example can be generalized to become an N-output
current mirror as shown in Figure 8.4.

Figure 8.4: An N-output current mirror circuit.

Q2 Q3 QNQ1

–vEE

Io1 Io2
IoNIref
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Example
A Basic MOSFET Current Mirror Circuit

The basic MOSFET current mirror consists of two enhancement MOSFETs
as shown in Figure 8.5. For Q1, the input (reference) current is given by:

( )2

1ref GS thI K V V= −

The output current is given by:

( )2

2o GS thI K V V= −

where K1 and K2 are constants that depend on the geometry of the devices (the
ratio of the width of the channel to its length), and Vth is the threshold voltage.

The above equations lead to:

o refI KI= , where 1

2

K
K

K
=

Figure 8.5: A basic MOSFET current mirror circuit.
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Example
Improved MOSFET Current Mirror Circuit

An ideal current source has an infinite output resistance and the output
current is independent of the output voltage. Thus, increasing the output resis-
tance of a current mirror improves its performance. This could be achieved using
the so-called cascode mirror (stacked mirror) shown in Figure 8.6.

Figure 8.6: Cascode current mirror.

Q3Q4

Io
Iref

–VSS

Q2Q1

The output resistance of the basic current mirror is ro2 which is the output
resistance of transistor Q2. The output resistance of the cascode mirror can be
calculated using the equivalent circuit shown in Figure 8.7.
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Figure 8.7: Calculating the output resistance of the
cascode current mirror.
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The output resistance is given by

( )

3 2 3 2

3 3 2

x
o o m o o

x

m o o

v
r r g r r

i

g r r

= + +

≈

Thus, the output resistance in the cascode configuration is higher by a factor of
( )3m og r  over that of the basic current mirror.

Example
The Wilson Current Mirror Circuit

Another current mirror circuit configuration, referred to as the Wilson current
mirror, is shown in Figure 8.8. This configuration leads to increased output
resistance as in the cascode configuration. However, the drain voltages of the two
transistors are not equal, and hence their currents are not equal either. The
problem is overcome by the so-called Modified-Wilson circuit, where a diode-
connected transistor Q4 as shown in Figure 8.9.

Figure 8.8: Wilson current mirror.

Q3

Io
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–VSS

Q2Q1
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Example
BiCMOS Double Cascode Current Mirror

The current mirror circuit shown in Figure 8.10 is referred to as a double cascode
BiCMOS. It uses both bipolar and MOSFET transistors. The output resistance of
the circuit is given by ( )( )3 3 2 2o m o oR g r r= β , indicating that this current mirror has
extremely high output resistance.

Figure 8.9: Modified-Wilson current mirror.

Q3Q4
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Iref

–VSS

Q2Q1
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Figure 8.10: The circuit of a BiCMOS double cascode current mirror.

Q3Q6

Io
Iref

Q2

Q1

Q5

Q4

8.3.2.2 Fuzzy Operators

,

0,
A B A B

Z
A B

I I I I
I

I I

− ≥
=  <

Numerous bipolar and MOSFET-based circuits have been devised to implement
various fuzzy operations. The following are examples of circuit realizations of
some basic fuzzy logic functions.

Bounded Difference

The bounded difference operation may be defined by:

,

0,
A B A B

Z A B
A B

µ − µ µ ≥ µ
µ = µ µ =  µ < µ

�
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A bounded difference circuit suggested by Yamakawa is shown in Figure
8.11. The circuit consists of a current mirror and a diode. The currents IA, IB,
and IZ represent the membership values , andA B Zµ µ µ , respectively. The
current IB is applied to the current mirror, and the current IB is wire-sub-
tracted. Thus, the current at the anode of the anode of the diode is (IA + IB).
The output current , IZ, will be:

Figure 8.11: Yamakawa bipolar realization of a bounded difference
operation.

IA

IZ
IB

IB

IA–IB

β>>1

The bounded difference operation can also be realized using MOSFETs as
shown in Figure 8.12.

Figure 8.12: A MOSFET realization of the bounded difference operation.

IA

IZIB

If the circuit is cascaded by a current mirror, the diode-connected transistor
can be omitted. The input of the current mirror of the next stage achieve the
task of the diode.
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Fuzzy Inverter Circuit

A basic fuzzy complement operation is defined by

1Z AAµ = µ = − µ

The circuit shown in Figure 8.13 shows a possible realization of that
operation.

Figure 8.13: A possible bipolar realization of a fuzzy inverter; the
currents represent the membership values.

IA
IA

IZ

1

Fuzzy AND (MIN circuit)

The fuzzy AND operation can be defined as

( )
( )

,

,
B A B

Z A B
A A B

B B A

A A B

∩

µ µ ≥ µ
µ = µ = µ µ < µ

= µ µ µ

= µ µ µ

� �

� �

As before, the membership values are represented by current values and
hence the above description can be realized by cascading two bounded-
difference circuits as shown in Figure 8.14. The diode of the first stage is
omitted as mentioned earlier, since the input characteristics of the following
stage has rectification characteristics.
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Fuzzy Logic OR (MAX circuit)

The fuzzy logic OR may be expressed as:

( )
( )

,

,
A A B

Z A B
B A B

A B B

B A A

∪

µ µ ≥ µ
µ = µ = µ µ < µ

= µ ⊕ µ + µ

= µ ⊕ µ + µ

This description leads to the circuit realization shown in Figure 8.15.

Figure 8.14: A bipolar realization of a fuzzy AND.

IB IB

IA
IA
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Figure 8.15: A bipolar realization of a fuzzy OR.
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8.3.3 Mixed Mode
Both current-mode and voltage-mode circuits can be implemented on the same chip
in a hybrid configuration. Such a configuration takes advantage of the merits of the
two circuit types. A linear and accurate conversion between the two modes is essen-
tial in such implementations. One possible approach is to use Operational
Transconductance Amplifiers, OTAs. A differential input OTA is shown in Figure
8.16 along with its circuit implementation. The output current, Io, is related to the
input voltages by:

( )1 2o mI g V V= −

where gm is a gain parameter that represents the transfer conductance of the amplifier
(referred to as transconductance).

An ideal transconductance amplifier has an infinite input resistance and an
infinite output resistance.

a)

IO

Iss

vA

vB

gm

+

_

b)

IO

Iss

vA vB+ –
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Figure 8.16: An OTA and some possible implementations.
a) Circuit Symbol.
b) Circuit of a simple differential input OTA.
c) Circuit of a balanced OTA.

c)

An OTA-based bounded difference circuit is shown in Figure 8.17. The first OTA
has an output current of ( )m A Bg V V−  which realizes the bounded difference for

A Bµ ≥ µ , with the voltages VA and VB representing the membership functions Aµ and

Bµ . The unidirectional characteristic of the diode enforces the condition A Bµ < µ  as
well. The second OTA converts the current at its input into a proportional output
voltage, leading to a voltage-mode bounded difference.

Figure 8.17: OTA-based bounded difference.
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Once a bounded difference operation is realized, all fuzzy logic functions can be
implemented using the bounded-difference circuit as a building block. Examples of
fuzzy AND, fuzzy OR, and fuzzy NOT circuit realizations are shown in Figures 8.18,
8.19, and 8.20.

Figure 8.18: An OTA-based fuzzy AND circuit.
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Figure 8.19: An OTA-based fuzzy OR circuit.
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8.4 Fuzzy Analog Memory
One difficult aspect of analog circuit implementations is devising a reliable analog
memory module. There is no long-term accurate way to store analog fuzzy values.
Programmability and multistage sequential processing are thus relatively difficult
tasks in analog fuzzy processors. Hirota et al. have carried out extensive studies
presenting the concept of fuzzy logic flip-flops, then implementing them along with
fuzzy registers.

Example
Hirota et al. extended the binary J-K flip-flop to a fuzzy flip-flop, the operation
of which is described by:

( ) ( ){ }1 1Q t J K+ = ∨ − ( ) ( ) ( ){ }1 1J Q K K∧ ∨ ∧ − ∨ −

Based on the above description, a fuzzy flip-flop was implemented using fuzzy
gates (min, max, and inverter circuits).

Example
Hirota et al. explained that by using a fuzzy flip-flop circuit, one element of
fuzzy information can be stored. Thus, a membership function can be stored
using N fuzzy flip-flops and N fuzzy AND gates as illustrated in Figure 8.21. In
that circuit, the membership value ( )A xµ  is defined for x1,x2,…,xN. The opera-
tions of the control inputs are summarized as follows:

State

Control Input  Reset  Write  Shift

Reset  1  0  irrelevant

Shift  0  0  1

Figure 8.20: An OTA-based fuzzy INVERTER circuit.

VO

Vref2

Iss1
Iss2

vA
_

_

+
+

1



Chapter 8

182

Figure 8.21: Storing membership functions using fuzzy flip-flops.

8.5 Neurons
The discussion in the previous sections focused on the implementation of fuzzy logic
functions. Neural networks follow a similar path in their hardware implementations.
Digital and analog implementations including voltage and current mode are em-
ployed. A hardware implementation of a neural network would be ideal if it works
for any training algorithm, provides global interconnection with a large number of
neurons, and has programmable weights, in addition to modular structure, low power
consumption, and low price.

In this section only the concept of implementation of the neuron model using
operational amplifier based circuits is presented as an example of analog implemen-
tation.

Figure 8.22 shows a zero-bias configuration of the basic neuron model. The output,
Z, is given by:

( )
1

n

i f i
i

Z x R G
=

= −∑

where 
1

i
i

G
R

= ,

x1,x2,…,xn are inputs, with the associated weights wi given by wi = – RfGi.

µA(x1)

µA(x2)

µA(xn)

FF1

FF2

FFn

SHIFT RESET
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A bias can be introduced by connecting the non-inverting input terminal of the
op-amp to a bias voltage, or fixing one of the input voltages to a constant value.
Positive and negative weights can be implemented as shown in the circuit of Figure 8.23.

Figure 8.22: An op-amp based implementation of the
basic neuron model.

x1 Z
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+

Figure 8.23: A circuit to implement both positive and
negative weights.
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Although the circuits of Figures 8.22 and 8.23 illustrate the basic concept of
neuron implementation, they are of limited practical significance. Such neurons
cannot learn, because the weights are fixed. Further, the modification possibilities of
the transfer function characteristics are limited. Also, the circuit size and its power
consumption are relatively large.
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MOSFETs can be used as voltage-controlled resistors to achieve weight control-
lability as illustrated in Figure 8.24. The resistance of the channel, Rds, between the
drain and the source of each transistor is controlled by the voltage between the gate
and the source, Vgs.

Figure 8.24: Neuron model implementation with
voltage-controlled weights.
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Weights can be stored using a capacitive circuit element. The elementary circuit
shown in Figure 8.25 illustrates the concept. A weight could be stored as a voltage
across the gate capacitance, since no current is needed to drive the gate. A capaci-
tance could be added to the circuit to enhance the storage capability of the intrinsic
gate capacitance. The weight control voltage, vc, is sampled through transistor QS/H

which provides the action of an on/off switch. The resistance of transistor Q1 is
controlled by the voltage Vgs1, as indicated earlier. The weights could, of course, be
stored digitally, in which case an analog-to-digital conversion would be required.
More elaborate implementations have been put forward by numerous researchers; for
example see the extensive work reported by Wilamowski et al. included in the Web
resources.



Hardware Implementations

185

Concluding Remarks
The increasing interest in embedded systems applications of fuzzy logic has led to a
growing interest in VLSI implementations of fuzzy logic functions, controllers, and
systems in general. Both analog and digital implementations have received attention;
each has its merits and demerits. Hybrid (analog/digital) systems have proven to be
useful as well. Researchers have put forward numerous techniques for analog imple-
mentations along with their hybridizations. The discussion in this chapter was meant
to introduce the reader to the fundamentals of a wide spectrum of hardware imple-
mentation techniques. This information provides the basic building blocks that
appear, as is or modified, in various VLSI realizations of fuzzy systems. The reader
may consult the available literature for implementation details of a specific system.
Fundamental circuits for VLSI implementation of neural models were presented as
well, the objective being the illustration of the way simple neuron models can be
implemented and to facilitate further exploration in that area.

Figure 8.25: Elementary analog weight storage.
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Web Resources

Tutorials and Lists
1. Principles of Semiconductor Devices

http://ece-www.colorado.edu/~bart/book/contents.htm

An e-book by B. Van Zeghbroeck, Electrical and Computer Engineering
Department, University of Colorado at Boulder, USA. Topics covered
include:

■ Review of Modern Physics
■ Semiconductor Fundamentals
■ Metal Semiconductor Junctions
■ p-n Junctions
■ Bipolar Transistor
■ MOS Capacitor
■ MOSFETs

2. Operational Transconductance Amplifiers, OTAs
http://amesp02.tamu.edu/~sanchez/689-Otas-Part1.PDF

A comprehensive introduction to Operational Transconductance Amplifiers
by E. Sánchez-Sinencio, Texas A&M University, Texas, USA. The author
introduces transconductance amplifiers and their IC implementation. De-
tailed circuit analysis and applications are also presented.

3. VLSI Systems: Fuzzy Logic
http://vlsi.wpi.edu/webcourse/fuzzy/fuzzy.html

This is Chapter 9, Fuzzy Logic Systems, of the excellent book titled Design
of VLSI Systems authored by D. Mlynek (Swiss Federal Institute of Technol-
ogy, Lausanne, Switzerland) and Y. Leblebici (Worcester Polytechnical
Institute, Worcester, MA, USA) The complete book is available on the Web.
Topics covered in this chapter include:

■ Systems Considerations
■ Fuzzy Logic Based Control Background
■ Integrated Implementations of Fuzzy Logic Circuits
■ Digital Implementations of Fuzzy Logic Circuits
■ Analog Implementations of Fuzzy Logic Circuits
■ Mixed Digital/Analog Implementations of Fuzzy Systems
■ CAD Automation for Fuzzy Logic Circuits Design
■ Neural Networks Implementing Fuzzy Systems
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4. Neural Networks Implementation
www.np.edu.sg/~yck/ANS_L8.pdf

A tutorial presentation by Yong Chaw Koh, NgeeAnn Polytechnic Singapore.
The tutorial explains the term neurocomputing, compares the complexity of
neural networks to RAM cells and CPUs, and provides neuron models based
on operational amplifiers. It also provides examples of commercial VLSI
neural processors and highlights some common applications.

5. Fuzzy Control Methods and their Real System Applications
www.ic-tech.com/Fuzzy%20Logic/tsld001.htm

A presentation by IC Tech, Inc. composed of 67 slides, among the topics
presented is: How to Select A Special Purpose IC for Fuzzy Control.

6. Computational Neuroscience: Neural circuits in silicon
www.nature.com/cgi-taf/DynaPage.taf?file=/nature/journal/

v405/n6789/full/405891a0_r.html

http://hebb.mit.edu/people/seung/papers/

news%20and%20views%20nature%20405.pdf

A two-page document authored by C. Diorioi and R. Rao, appeared in
Nature, 405, 891–892, 2000. It provides a simple discussion of the biological
origins of artificial neural networks. It provides 12 references, some of which
are Web-accessible.

7. Fuzzy and Neural Systems Implementation
http://polimage.polito.it/~lmr/raccolta.html

A collection of papers covering the various research activities on Neural
Networks and Fuzzy Systems carried out jointly at the Department of
Electronics of Politecnico di Torino, the Interdepartmental Mechatronics
Laboratory of Politecnico di Torino, the Department of Information Engi-
neering of Universita’ di Pisa, and at the PERCRO Lab of Scuola Superiore
Sant’Anna di Pisa from 1992 to1998. The categories include:

■ Hybrid Intelligent Control and Applications
■ Function Approximation and Applications
■ Neuro-Fuzzy Algorithms
■ Performance Analysis of Neuro-Fuzzy Algorithms
■ Hardware Implementations and Systems
■ Neuro-Fuzzy VLSI Chips
■ Pulse Stream Systems
■ Handwriting Recognition
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8. VLSI Architectures and Systems
www.madess.cnr.it/pubblicazioni/IMPAGINATO03.pdf

A section from the Italian National Project MADNESS II, 2002. It is com-
posed of several subsections, some related to Fuzzy logic VLSI
implementation, including:

■ A CAD environment for fuzzy systems development
■ VLSI architectures and devices for integrated neuro-fuzzy controllers
■ Fuzzy logic methodologies, devices and applications

9. Neural Networks in Hardware: Architectures, Products and Applications
www.particle.kth.se/~lindsey/HardwareNNWCourse/home.html

Lecture notes by Clark S. Lindsey available in zipped and HTML formats,
updated August, 2002. Topics include:

Overview, Why Hardware, NNs Applications, Hardware vs Software,
Designer’s Dilemma, User’s Dilemma, NNs Hardware, Case Studies, and
References and Links.

10. Commercially Available Hardware List
www.emsl.pnl.gov:2080/proj/neuron/fuzzy/systems/commercial.html

This Web site provides links to sources of commercially available hardware
for fuzzy logic and other computational intelligence applications.

11. Neural Chips
http://neuralnets.web.cern.ch/NeuralNets/nnwInHepHard.html

The site provides Web links to papers that review neural hardware and other
sites related to neural hardware. The categories include:

Commercially available NN Chips and Systems, NN PC accelerators and
other cards, and Non-Commercial or prototype NNW Chips and Systems.
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Digital Techniques
1. A Collection of Papers on VLSI Processors

www.bo.infn.it/fuzzy/papers.html

A set of papers discussing advances in digital implementation of fuzzy logic
for embedded systems applications from the Fuzzy Logic Research Group,
Physics Department, University of Bologna, Italy. Topics include:

■ Architecture of a 50 MFIPS Fuzzy Processor and the related 1 um VLSI
CMOS digital circuits

■ Design and realization of a 50 MFIPS fuzzy processor in 1.0 um CMOS
technology

■ Design of a 50 MFIPS digital fuzzy processor and preliminary results of
1.0 um CMOS VLSI MIN-MAX and defuzzifier circuits

■ Design of a VLSI very high speed reconfigurable digital fuzzy processor
■ Fuzzy Logic Oriented to Active Rule Selector and Membership Function

Generator for High Speed Digital Fuzzy Processor
■ Digital Membership Function Generators and No-contribute Rule

Eliminator for High Speed Fuzzy Architectures
■ High Speed Digital Fuzzy Processor for High Energy Physics

Experiment Triggers
■ Design of a Very High Speed Fuzzy Processor by VHDL Language
■ Very Fast VLSI Fuzzy Processor: 2 inputs 1 output
■ A two input fuzzy chip running at a processing rate of 30 ns realized in

0.35 um CMOS technology

2. Implementing Fuzzy Rule Based Systems on Silicon Chips
www.neuro.sfc.keio.ac.jp/publications/pdf/fuzzy.pdf

A paper authored by M.-H. Lim and Y. T. Takefuji, which appeared in IEEE
Expert, 31–45, February, 1990. The authors presented a general block
architecture for realizing the approximate reasoning processor. They also
showed that the reasoning system’s knowledge base is easily programmable
and independent of the fuzzy implication relation interpretation used for
inferencing.
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3. Hardware/Software Co-Design of RISC Processors
http://jamaica.ee.pitt.edu/Archives/ProceedingArchives/Date/Date98/papers/
1998/date98/pdffiles/11c_2.pdf

A paper by V. Salapura and M. Gschwind, Technische Universität Wien,
Austria. It appeared in the proceedings of the Design, Automation & Test in
Europe Conference, DATE98, Paris, France, February 23–26, 1998, pp. 875–
782. The authors explained as a case study the definition and evaluation of
instruction set extensions for fuzzy processing. The proposed instructions
were evaluated in software and hardware to reach a balanced view of the cost
and benefit of each instruction. The instruction set was added to a RISC
processor core. The core was described in VHDL to enable hardware imple-
mentation using logic synthesis.

4. Fast Digital Fuzzy Controller for an Active Magnetic Bearing
www.eek.ee.ethz.ch/publications/publication-10.html

A paper by W. Liebert, Electrical Engineering and Design Laboratory,
Department of Information Technology and Electrical Engineering of the
Swiss Federal Institute of Technology in Zürich, Switzerland. The author
presented the analysis and design of a controller consisting of PID and fuzzy
controller components. Both controllers were simulated using MATLAB and
implemented on board using the TMS320C50 fixed point DSP chip.

5. Intel MCS96 Microcontrollers: Fuzzy Logic Applications
www.mmx.com/design/mcs96/designex/2363.htm

An application report from Intel outlining the design of a fuzzy logic control-
ler using the MCS96 microcontroller.

6. Microprocessor Implementation of Fuzzy Logic and Neural Networks
http://nn.uidaho.edu/pap/2001/Microp_impl_IJCNN01.PDF

A paper by J. Binfet and B. Wilamowski appeared in the Proceedings of the
International Joint Conference on neural Networks, Washington DC, July
15–19, 2001, pp. 234–239. The authors present systems that were imple-
mented on the Motorola 68HC711E9.

7. Fuzzy Logic Control with the Intel 8XC196 Embedded Microcontroller
www.intel.com/design/mcs96/papers/esc_196.htm

An 11-page document in PDF format authored by N. Govind of Intel Corpo-
ration. It discusses the development of a fuzzy inference unit and algorithms
for fuzzification, rule evaluation and defuzzification of a fuzzy control
system. Methods to generate optimized fuzzy-based real-time code in
assembly and C are shown for the Intel 8XC196 microcontroller along with
discussion of performance and features for fuzzy-based control.
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8. A Practical Implementation of a Fuzzy Logic Controller with Motorola 68HC11
www.elia.ro/susnea/fuzzy.html

An HTML document authored by Ioan Susnea. The author presents a simple
implementation of a fuzzy temperature controller, built around a single chip
MC68HC11KA2 microcontroller. It is meant to be a resource for students
and designers.

9. Demonstration Model of fuzzyTECH Implementation on Motorola 68HC12 MCU
www.fuzzytech.com/e/e_a_mot.html

A report by Philip Drake and Jim Sibigtroth of Motorola, and Constantin von
Altrock and Ralph Konigbauer of Inform Software Corp. Inform Software
Corp. and Motorola created the fuzzyTECH MCU-HC12 Edition of Motorola
MCU-HC12 which supports both the HC12’s fuzzy logic instruction set and
the HC12 background debug mode. The authors demonstrate both the usage
of the fuzzy logic instruction set and the use of the background debug mode
with the fuzzyTECH development system. Inform and Motorola have de-
signed an autonomously guided tank as a demonstration model. The authors
discuss the fuzzy logic controller design for the tank and the fuzzyTECH
implementation on the HC12 MCU. More information about fuzzyTECH is
given in chapter 9.

10. Neuron
www.castle.uk.co/neuron/models.htm

This site provides information about embedded computers based on neural
networks provided by Castle Technology Ltd, Suffolk, UK. Systems pre-
sented include:

■ Neuron 100 – ARM7500 embedded computer built around ARM’s 64-
MHz 7500FE processor. It provides an  ARM 7 central core and supports
a wide range of industry standard storage and input/output computer
peripherals.

■ Neuron 200 – A StrongARM embedded computer built around the 233-
MHz StrongARM processor.

■ Cortex is an optional connector board for Neuron computers. It connects
to a Neuron embedded computer to provide connectivity to other devices
and can be fitted with a wide range of application-specific connectors
and extra circuitry.
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11. Neuro-Fuzzy Control and DSPs
http://polimage.polito.it/~marcello/articoli/microneuro.97.daniela.pdf

A paper by B. Bona et al., Politecnico di Torino, Italy. It appeared in the
Proceedings of the International Conference on Microelectronics for Neural
Networks and Fuzzy Systems, MICRONEURO’97, Dresden, September,
1997, pp. 113–120. The authors presented a hybrid control system that uses
neural and fuzzy techniques and DSP techniques. The TMS320C31 DSP was
used for hardware implementation.

12. Fuzzy Logic and PLCs
www.industrialtext.com/eBooks/Fuzzy_Logic.PDF

An 18-page e-book from the Industrial Text & Video Company. Topics
covered include: Introduction to Fuzzy Logic, Evolution of Fuzzy Logic
Control, Fuzzy Logic Principles, Fuzzy Logic Application Example, and
Guidelines for Controlling a Complex System.

13. Silicon Axon
http://citeseer.nj.nec.com/163659.html

An article authored by B. A. Minch. P. Hasler, and C. Mead. The authors
present an axon intended as a building block for pulse-based neural computa-
tions involving temporal and spatial correlations of pulses.

14. A Neuro-Fuzzy Real Time Controller for Low Power Embedded Systems
http://polimage.polito.it/~marcello/articoli/microneuro.94.cintia.pdf

A paper by L.M. Reyneri et al., which appeared in the Proceedings of the
International Conference on Microelectronics for Neural Networks and
Fuzzy Systems, MICRONEURO’94, Torino, Italy, September 1994, pp. 392–
404. The authors describe a neuro-fuzzy real-time controller based on Pulse
Stream techniques. The system discussed is a hybrid of two approaches:
Neuro-Fuzzy Controllers (implemented using a custom neural chip) and
Finite State Automata (implemented using 68Hc11 microcontroller).

15. A Neural Network chip Using CPWM Modulation
http://polimage.polito.it/~marcello/articoli/iwann.93.pdf

A paper by M. Chiaberge et al., appeared in the Proceedings of the Interna-
tional Workshop on Artificial Neural Networks, IWANN’93, Sitges (E), June
1993, pp. 420–425. The authors described  the development and testing of s
chip that implemented a neural network using the Coherent Pulse Width
Modulation, CPWM, technique.
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16. A Comparison between Analog and Pulse Stream VLSI Hardware for
Neural Networks and Fuzzy Systems
http://polimage.polito.it/~marcello/articoli/microneuro.94.comp.pdf

A Paper by L. M. Reyneri et al. This appeared in the Proceedings of the
International Conference on Microelectronics for Neural Networks and
Fuzzy Systems, Torino, Italy, September 1994, pp. 77–86. The authors used
Coherent Pulse Width Modulation, CPWM, as a computing technique to
implement neural systems. They compared its performance with systems
implemented using analog techniques. Both systems were designed using the
same 0.1 µm full custom, double metal, single poly CMOS technology. The
authors concluded that in general the two techniques have comparable
performance. They also pointed out that the design of CWPM is simpler and
multiplexing of CPWM systems is easier.
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Analog Techniques
1. Electronic Models of Fuzzy Gates

http://148.202.12.1/somi/REVISTA/Vol_III/No5/artic8.pdf

A paper authored by J. L. Pérez and M. A. Banuelos which appeared in the
Journal of Instrumentation and Development , October 2000, pp. 47–49. In
this paper, circuits using op-amps were suggested to implement the functions
of fuzzy AND, OR, and NOT. A suggestion for a fuzzy neuron is presented as
well.

2. Current Mode CMOS Implementation
http://nn.uidaho.edu/pap/1995/wcnn95_ota.pdf

A paper by Y. Ota and B. Wilamowski  which appeared in the Proceedings of
World Congress of Neural Networks, Washington DC, USA, July 17–21,
1995, pp. 480–483. The authors presented a programmable fuzzy system
built using current-mode CMOS circuits that implement a Gaussian-type
membership function, min-max operators, and a defuzzifier circuit. The
membership function is represented by the relation between an input voltage
and the output current. The appearance of the Gaussian membership function
and position can be controlled by adjusting a reference voltage.

3. Analog Fuzzy Inference Processor
http://members.fortunecity.com/scienziatopazzo/fuzzy.htm

A paper by C.T.P. Song, S.F. Quigley, and  S. Pammu, published at the IEEE
International Symposium for Circuits and Systems, Monterey, California,
USA, May 31–June 3, 1998, pp. 247–250. The authors presented a design
for an analog fuzzy inference processor. It was implemented using CMOS
technology.

4. Analog Processing Based on Fuzzy Algorithms
www.cinstrum.unam.mx/revista/pdfv4n5/art2.pdf

A paper by J. Castillo et al. This appeared in the Journal of the Mexican
Society of Instrumentation, 4, 5, 12–18, 2002. The authors presented a fuzzy
logic controller circuit on analog CMOS technology. They presented the
design and simulation of circuits for membership functions, fuzzy AND, fuzzy
OR, and defuzzification.
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5. VLSI Implementation of Neural Networks
http://nn.uidaho.edu/pap/2001/VLSIimpl.pdf

A paper authored by B. M. Wilamowski, J. Binfet, and M. O. Kaynak, which
appeared in

International Journal of Neural Systems, 3, 10, 191–197, 2000. The authors
presented the design and simulation results of two CMOS circuits that
implement neural networks. MATLAB was used to develop the training algo-
rithms. The circuits presented were two-input, but the authors indicated that
they could be generalized to multidimensional circuits.

6. VLSI Implementation of Fuzzy ART
http://bach.ece.jhu.edu/pub/papers/aicsp01.pdf

A paper authored by J. Lubin and G. Cauwenberghs, which appeared in
Analog Integrated Circuits and Signal Processing, 23, 1–10, 2001.The
authors presented a mixed-mode VLSI chip performing unsupervised cluster-
ing and classification, implementing models of fuzzy ART.

7. Analog Neuro-Fuzzy Networks  for System Modeling and Control
www.micro.ea.unian.it/Staff/sim/PAPERS/1997ISIS_%20fuzzy.pdf

M. Conti, S. Orcioni, C. Turchetti, Advances in Intelligent Systems, F. C.
Morabito (Ed.), IOS Press, Netherlands, 1997. The authors discussed a new
type of neural network based on the so-called approximate identities func-
tions. A fuzzy-neural architecture based on this neural network type is then
introduced. The authors explained further the reasons for the suitability of the
suggested architectures for analog CMOS implementation, along with its
SPICE simulations. The authors presented the circuit layout and more details in:

“A Current-Mode Neuro-Fuzzy Network,” IEEE International Conference on
Electronics Circuits and Systems ICECS98, Lisboa, September, 1998. This may
be viewed at: www.micro.ea.unian.it/Staff/sim/PAPERS/1999ISCASfuzzy.pdf

Implementation results and further details were given in:

“A Current-Mode Circuit for Fuzzy Partition Membership Functions,” IEEE
International Symposium on Circuits and Systems ISCAS99, Orlando, FL,
May 30–June 2, 1999. (www.micro.ea.unian.it/Staff/sim/PAPERS/
1999ISCASfuzzy.pdf)

Further implementation details are given in: “CMOS Analog Implementation
of Multidimensional Membership Functions of Neuro-Fuzzy Networks,”
IEEE European Conference on Circuit Theory and Design ECCTD99, Italy,
August 29–Sept. 2, 1999.

www.micro.ea.unian.it/Staff/sim/PAPERS/1997ISIS_%20fuzzy.pdf
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8. Adaptation, Learning and Storage in Analog VLSI
http://bach.ece.jhu.edu/gert/papers/asic96/ASIC96.html

A paper by Gert Cauwenberghs, Department of Electrical and Computer
Engineering, Johns Hopkins University, Baltimore, MD, USA. It appeared in
the Proceedings of the 9th Annual IEEE International ASIC Conference,
Rochester, NY, September 1996, pp. 237–278. The author presented circuit
modules for adaptation and memory, gradient descent learning, and stochas-
tic error-descent learning for analog VLSI implementations.
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Mixed Signal Techniques
1. On Designing Mixed Signal Programmable Fuzzy Logic Controllers as

Embedded Subsystems in Standard CMOS Technologies
www.dice.ucl.ac.be/~verleyse/papers/sbcci01cd.pdf

A paper by C. Dualibe, P. Jespers, and M. Verleysen which appeared in the
Proceedings of the  14th Symposium on Integrated Circuits and System
Design, Pirenopolis, Brazil, September 10–15, 2001, pp. 194–200. The
author presented a digitally-programmable analog fuzzy logic controller. It is
intended for low-power embedded subsystems for applications with band-
widths below 8 MHz.

2. A Mixed Signal Neuro-Fuzzy Processor for Embedded Applications
www.micro.ea.unian.it/Staff/sim/PAPERS/1999CSCCfuzzy.pdf

A paper by M. Conti, S. Orcioni, and C. Turchetti, appeared in the  Proceed-
ings of the IEEE Circuits, Systems, Communications and Computers, CSCC
’99, July 4–8, 1999, Athens. The authors presented a neuro-fuzzy controller
implemented using 0.8 µm CMOS analog technology. The architecture is
based on an analog device implementing fuzzy rules and a digital interface
that allows the device to work as an analog peripheral of a microcontroller.

3. CMOS Design of Adaptive Fuzzy ASICs Using Mixed-Signal Circuits
www.el.uma.es/RafaelNavas/pub_PDF/iscas96.pdf

F. Vidal-Verdú, R. Navas, and A. Rodríhuez-Vázquez which appeared in the
Proceedings of the IEEE International Symposium on Circuits and Systems,
Atlanta, USA, 1996, pp. 430–433. The authors present a methodology and
circuit blocks to realize fuzzy controllers in the form of analog CMOS chips.
The authors also provide measurements from a prototype of a fuzzy control-
ler chip.

4. Neuro-Fuzzy Architecture for CMOS Implementation
http://nn.uidaho.edu/pap/1999/TIE_neurofuzzy2.pdf

A paper by B. M. Wilamowski, R. C. Jaeger and M. O. Okyay which ap-
peared in the IEEE Transactions on Industrial Electronics, 46, 6, 1132–1136,
1999. A non-conventional structure for a fuzzy controller was proposed. It
combines fuzzification, MIN operators, normalization, and weighted sum
blocks. The structure was implemented as a VLSI chip using n-well CMOS
technology.
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5. A 5.26 Mflips Programmable Analogue Fuzzy Logic Controller
www.dice.ucl.ac.be/~verleyse/papers/iscas00cd.pdf

A paper by C. Dualibe, P. Jespers, and M. Verleysen which appeared in the
Proceedings of the IEEE Symposium on Circuits and Systems, Geneva,
Switzerland, May 28–31, 2000, 377–380. The authors presented circuit
design and simulation results of a digitally-programmable analog fuzzy logic
controller. A nine-rule, two-input, and one-output prototype was fabricated
and characterized.

6. On-Chip Fuzzy Temperature Control
www.ims.fhg.de/datenblaetter/fuzzy_systems/fuztem/fuztem_e.pdf

A two-page HTML document from Fraunhofer Institut Mikroelektronische
Schaltungen und Systeme. It outlines the characteristics of an on-chip fuzzy
temperature control that can be used in adaptive fuzzy microsystems.

7. A Modular Programmable CMOS Analog Fuzzy Controller Chip
www.el.uma.es/RafaelNavas/pub_PDF/tcas99.pdf

A paper by A. Rodríguez-Vázquez et al. This appeared in the IEEE Transac-
tions on Circuits and systems-II: Analog and Digital Signal Processing, 46,
3, 251–265, 1999. The authors presented a modular fuzzy inference analog
MOS chip architecture with on-chip digital programmability. The prototype
presented has 16 rules and an operation speed of 2.5 MFLIPS with power
consumption of 8.6 mW. It was fabricated using 1-µm CMOS technology.
The authors compared the characteristics of the reported prototype with those
reported in:

■ N. Manaresi et al., “A Silicon Compiler of Analog Fuzzy Controllers:
From Behavioral Specifications to Layout,” IEEE Transactions on Fuzzy
Systems, 4, 418–428, 1996, and

■ S. Guo et al., “Design and Applications of an Analog Fuzzy Logic
Controller,” IEEE Transactions on Fuzzy Systems, 4, 429–438, 1996.

8. On Designing Mixed-Signal Programmable Fuzzy Logic Controllers as
Embedded Subsystems in Standard CMOS Technologies
www.dice.ucl.ac.be/~verleyse/papers/sbcci01cd.pdf

A paper by C. Dualibe et al. This appeared in the Proceedings of the 14th

Symposium on Integrated Circuits and System Design, Pirenopolis, Brazil,
10–15 September, 2001, pp. 194–200. The authors presented a prototype of a
digitally-programmable analog fuzzy logic controller with a nine-rule, two-
input, and one output design. It was implemented using 2.4 µm CMOS
Technology with speed up to 5.26 MFLIP.
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C H A P T E R  9
Software Tools

9.1 Introduction
In this chapter, a selection of software tools for fuzzy systems, neural networks, and
neuro-fuzzy systems is presented. The selection can be loosely divided into the
following categories: executable files with graphical user interface, executable files
that have no graphical user interface, and source codes in C, C++, Java, MATLAB files,
etc. The software can also be divided into commercial, shareware, and public do-
main. They can be also categorized as educational or productivity tools.

The objectives of the software presented here differ. The tools meant for educa-
tional purposes illustrate the basic concepts of fuzzy logic and neural networks and
help in the visualization of the operation of simple systems. The ones for productiv-
ity are meant for system design and analysis. They are all included here since they
add educational value and enable the reader to experiment and make judgments based
on first-hand experience with a large number of software tools with minimum
investment of time and money.

The selection criteria of the software listed can be summarized as follows:

■ Relevance to fuzzy systems, neural networks, or both.

■ Availability of an English version.

■ Documentation is available, or the software can be used intuitively, or both.

■ The software is either free or a demo of educational value is available.

■ The software and documentation are available through the Web.

The tools are arranged alphabetically for ease of reference, but it would be useful
for the reader to examine them starting with the ones that demonstrate general
concepts followed by simple productivity tools such as FuzzGen. Fuzzy and neural
source codes do, of course, require some knowledge of MATLAB, C, Java, Perl, etc.
Commercial productivity tools, such as fuzzyTECH, FIDE and Neuro Solutions, can
be useful both for education and the design of large-scale projects.
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It goes without saying that the software selected here is believed to be reliable
and of value. However, inclusion here does not constitute an endorsement or a
guarantee for its fitness for a particular purpose.

9.2 Software Overview
1. C and  C++ Source Codes

The ART Gallery
cns-web.bu.edu/pub/laliden/WWW/nnet.frame.html

The ART Gallery is a free set of procedures developed by Lars Lidén to be used
within other code for implementing many of the ART style neural networks. It
supports C procedure calls on both the Unix and DOS platforms, as well as
compilation as a dynamic linked library for Windows environments such as
Visual Basic.

The Binary Hopfield Net
www.geocities.com/ResearchTriangle/Facility/7620/

The site provides a Java applet developed by Matt Hill. It demonstrates the
works of a Hopfield network and the source code is provided as public domain
software.

One may use the mouse to enter a pattern by clicking squares inside the rect-
angle shown. The network stores the pattern; up to approximately 33 random
patterns can be stored. After storing some patterns you can then try entering a
new pattern (one of the stored patterns, but slightly corrupted) to be recognized,
and then watch the network settle.

Neural Networks at your Fingertips
www.geocities.com/CapeCanaveral/1624/

The site provides software simulators developed by Karsten Kutza for eight of
the most popular neural network architectures, coded in portable, self-contained
ANSI C. The software available for free downloading include:

ADALINE
Simulation of the Adaline network, which is a single-layer backpropagation
network. It is trained on a pattern recognition task, to classify a bitmap
representation of the digits 0-9 into the corresponding classes. The network
recognizes only the exact training patterns. When the application is ported
into the multi-layer backpropagation network, fault-tolerance can be
achieved. Figure 9.1 shows an example of the patterns to be recognized.
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BPN (Backpropagation Network)
This is an implementation of a multi-layer backpropagation network with
bias terms and momentum. The network is used to detect structure in
time-series. It is presented to the network using a simple tapped delay-line
memory. The program can predict future sunspot activity by learning from
historical data collected over the past three centuries.

HOPFIELD
This program is based on the Hopfield model. It is used as an auto-associa-
tive memory to store and recall a set of bitmap images. Images are stored by
calculating a corresponding weight matrix. Then, on presentation of a
corrupted image, the network settles on a stored image which is nearest to
the input image in terms of Hamming distance.

BAM (Bidirectional Associative Memory)
The bidirectional associative memory allows for a heteroassociative memory
to be implemented. It can be viewed as a generalization of the Hopfield model.
The software gives, as an example, the association between names and
corresponding phone numbers. After training, the network is able to recall
the corresponding phone number when presented with a name and vice versa.
A degree of fault-tolerance in case of corrupted input patterns is allowed.

Figure 9.1: Patterns from 0 to 9 for the ADALINE network.
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BOLTZMAN (Boltzmann Machine)
This is a software implementation of the Boltzmann Machine network. It is
used to solve an optimization problem. The weight matrix is chosen such that
the global minimum of the energy function corresponds to a solution of a
particular instance of the traveling salesman problem.

CPN (Counterpropagation Network)
The counterpropagation network is a competitive network, designed to
function as a self-programming lookup table with the additional ability to
interpolate between entries. The application is to determine the angular
rotation of a  rocket-shaped object, images of which are presented to the
network as a bitmap pattern. The performance of the network is a little
limited due to the low resolution of the bitmap.

SOM (Self-Organizing Map)
In this program the network learns to balance a pole by applying forces at the
base of the pole. The behavior of the pole is simulated by numerically
integrating the differential equations for its law of motion using Euler’s
method. The task of the network is to establish a mapping between the state
variables of the pole and the optimal force to keep it balanced.

ART1
This program demonstrates the basic feature of the adaptive resonance theory
network, which is its ability to adapt when presented with new input patterns
while remaining stable at previously learned patterns.

Pittnet
www.pitt.edu/~aesmith/postscript/guide.pdf

Pittnet is a neural network program designed for educational purposes by Brian
Carnahan and Alice Smith of the University of Pittsburgh. The compiled C++
source code, the uncompiled C++ source code, and the User’s Guide are avail-
able for downloading. The software has the following neural network paradigms:
backpropagation, Kohonen self-organizing, ART1, and the radial basis function,
RBF. The input and output are files of Pittnet ASCII text files.

UNFuzzy
http://ohm.ingsala.unal.edu.co/ogduarte/Software.htm

A program developed by Oscar Duarte, Universidad National de Colombia. It is
available in several languages, including English and Spanish.

MS-DOS NN  freeware
www.simtel.net/pub/msdos/neurlnet/

This site provides description and links for free downloads of a large number of
programs for neural networks, which run under MS-DOS. Some of the programs
include:
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■ ann110; a multi-option NN training program
■ bam; a Bidirectional Associative Memory simulation
■ bpnn132; a backpropagation neural net with adaptive learning rate
■ bps100; a backpropagation simulator
■ brain12; a backpropagation neural net simulator
■ et; a perceptron simulator
■ nerves; Nervous System Construction Kit with C++ source code
■ neurfuzz; a program to train NN and fuzzy-engines and generate C source

code
■ nlmos; an educational simulation for perceptrons, backpropagation, and

self-organizing maps
■ nnutl101; a C-source code library and tutorial for neural networks.

StarFLIP++
www.dbai.tuwien.ac.at/proj/StarFLIP/

A reusable iterative optimization family of C++ libraries for combinatorial
problems with fuzzy constraints designed by the Database and Expert Systems
Group, Institute of Information Systems, Vienna University of Technology,
Austria. StarFLIP++ is progressing to include the following layered sub-libraries:

■ the fuzzy logic inference processor library, FLIP++
■ the fuzzy constraint library, ConFLIP++
■ the dynamic constraint generation library, DynaFLIP++
■ the domain knowledge representation library, DomFLIP++
■ several heuristic optimizing libraries, OptiFLIP++
■ the user interface, InterFLIP++
■ the HTML documentation, DocuFLIP++
■ the knowledge-change consistency checker library, CheckFLIP++
■ the version-control and test environment for the complete library set,

TestFLIP++
■ the simulation toolkit, SimFLIP++
■ the reactive optimizer, ReaFLIP++
■ the neural network extension that allows automatic tuning of fuzzy member-

ship functions, NeuroFLIP++ .
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2. A Collection of Fuzzy Logic Based Tools for Analog Circuits Design
www.gte.us.es/usr/chavez/collect.pdf

A paper authored by A. Chávez and L. G. Franquelo appeared in IEEE Micro,
60–68, August 1996. It presents a collection of fuzzy logic-based tools in the
three main phases of the analog design: topology selection, modeling and
optimization, and testing.

3. EazyNN
www.easynn.com/easynnbase.html

EasyNN is a shareware program provided by Stephen Wolstenholme. It can
generate multi-layer neural networks from text files or grids. The networks can
then be trained, validated and queried. Network diagrams, graphs, input/output
data and all the network details can be displayed and printed. Neurons (nodes)
can be added or deleted while the network is learning. The software has a step-
by-step tutorial, example files, and a help file. A screen shot from the software is
shown in Figure 9.2.

Figure 9.2: EasyNN Help file.
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4. FCM, Fuzzy Control Manager
www.transfertech.de/www/soft_e.htm

This is a Windows program that can be used intuitively to define fuzzy systems
of any complexity graphically. All relevant data can be displayed while develop-
ing, debugging, or optimizing the system. In constructing the system, there is no
limit on the number of variables or rules to be defined. The membership func-
tions can be defined by an unlimited number of inflection points (or Singletons
for outputs, if desired). Codes for implementing the constructed fuzzy controller
can be generated in C-language, assembler, or binary, depending on the FCM
version used. FCM versions include:

■ FCM-3000 which operates on an FP-3000 adapter board and generates
special  C code which performs an appropriate access to the FP-3000
processor

■ FCM-SOFT which supports the online operation of a VMEbus board
containing  an FP-3000 processor

■ FCM-TEAM which supports a microcontroller board with many analog and
digital I/O lines

■ FCM-SPS which is used for direct programming of a fuzzy module of a
programmable controller containing an FP-3000

■ The FCM-Modicon which supports fuzzy programming of an AEG-Modicon
FCM-I3HD-CINT which generates codes for the NEC 78K0,78K3, V series
microcontrollers

■ FCM-I3HD-75X which generates code for microcontrollers of the NEC 75X
family

■ FCM-I3HD-17K which generates code for microcontrollers of the NEC 17K
family

■ FCM-PX-1500 which generates code for the Panasonic MN1500
microcontroller family

■ FCM-HC11 which generates code for 68HC11 microcontrollers
■ FCM-8051 which generates code for microcontrollers of the 8051 family.

A demo with example files is available for downloading and screen shots are
available on the Web.
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5. FIDE, Fuzzy Inference Development Environment
www.aptronix.com/fide/

FIDE is a development environment for fuzzy logic systems from Aptronix, Inc.,
Santa Clara, USA. The software can automatically generate fuzzy algorithms in
Java, ANSI C, MATLAB M-file, and assembly code for a variety of
microcontrollers. Chips supported include: Motorola: 68HC05, 6805, 68HC08,
68HC11, 68HC12, 68HC33x, Intel 80C196 and 80C296 architectures, Siemens:
SAE81C99A, and Omron Electronics: FP-3000, FP-5000. A free demo of FIDE
and example files are available for downloading. The demo allows the creation
and simulation of fuzzy logic models and it helps to learn about the fuzzy
inference process. The demo is useful for educational purposes and as a preview
of the full version. It is, of course, not meant for use in a production environ-
ment; the compiler and code generator are disabled.

6. FLDE,  Fuzzy Logic Development Environment
www.flde.com/flde/index.htm

FLDE is a software tool for developing complex embedded control applications.
It produces C-code for various target hardware architectures from natural lan-
guage specifications of the behavior of the controller. Two examples are
provided.

The first is Building Embedded Automotive Applications with Fuzzy Logic: A
NiCd Battery Charger, by Stylianos S. Sbyrakis, Syndesis Ltd, Athens, Greece.
The second is Inverted Pendulum Fuzzy Control.

7. Fuzzy CLIPS
http://ai.iit.nrc.ca/IR_public/fuzzy/fuzzyClips/fuzzyCLIPSIndex.html

FuzzyCLIPS is an extension of the CLIPS (C-Language Integrated Production
System) expert system shell from NASA. It was developed by the Integrated
Reasoning Group of the Institute for Information Technology of the National
Research Council of Canada.

FuzzyCLIPS can deal with exact, fuzzy, and combined reasoning, allowing fuzzy
and normal terms to be freely mixed in the rules and facts of an expert system.
For non-commercial use, it is available for downloading free of charge, but a
licence is required for commercial use.

8. Fuzzy Control Demo
www.csee.wvu.edu/~esazonov/loadswayindex.htm

An interactive example provided by Eduard Sazonov, West Virginia University,
USA. It illustrates the use of fuzzy control of a loading crane. In this demonstra-
tion, the fuzzy rules controlling the crane can be changed at any time. Three
linguistic variables have been defined: angle, distance and power. The linguistic
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variables and membership functions cannot be changed interactively. The author
of the demo points out that unlike the FuzzyTech example, which works only in
one direction of motion, or the Omron example that utilizes complicated
anti-sway rules, the given model employs two very simple rules that compensate
load sway at the distances close to the destination. For each swing of the load,
the crane’s trolley is moved in the swing direction to reduce the amplitude. The
system’s behavior without the compensation for the load sway can be observed
by removing the last two rules in the set. A screenshot from the demo is shown
in Figure 9.3.

Figure 9.3: Prevention of load sway by a fuzzy controller.

9. FuzzyCOPE
http://kel.otago.ac.nz/software/FuzzyCOPE3/

FuzzyCOPE is a software provided by Knowledge Engineering Laboratory, KEL,
University of Otago, New Zealand. It is a hybrid connectionist software environ-
ment. It has a graphical user interface to the functionality of the system. The
Dynamic Link Libraries that form the core of the system may be used to develop
Windows based intelligent systems through the use of the provided programming
libraries. Command line tools allow for the creation, training and validation of
connectionist structures from the DOS prompt. The software is available for free
download. Figure 9.4 shows the contents of the help file in order to get an idea
about the potential of the software.
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10. Fuzzy Decision Tree, FID
www.cs.umsl.edu/~janikow/fid/

FID is a program developed by Cezary Janikow, Mathematics and Computer
Science, UMSL St. Louis, MO, USA. It generates a fuzzy logic based decision
tree from fuzzy data. The tree can then be used to classify data with unknown
classification using several different methods of inference. The ideas used were
partially described in a paper by the developer:  “Fuzzy Decision Trees:  Issues
and Methods,” IEEE Transactions on Systems, Man, and Cybernetics, Vol. 28,
Issue 1, pp 1–14, 1998.

11. FuzzGen
www.programmersheaven.com/zone22/cat167/1244.htm

This is a freeware program, and it is probably the earliest fuzzy logic code
generator. It allows the user to put together full fuzzy decision-making algo-
rithms graphically, then allows the user to generate code in Pascal, Basic, or C/
C++ that will implement the decision process. The software could be used
intuitively, but it also has a help file. Figures 9.5 to 9.9 give illustrations from the
program to show its capabilities and ease of use.

Figure 9.4: The components of the help file of FuzzyCOPE.
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Figure 9.5: FuzzGen opening screen.

Figure 9.6: Some of the FuzzGen menus.

Figure 9.7: Membership selection in FuzzGen.



Chapter 9

216

Figure 9.8: Graphical definition of membership functions in FuzzGen.

Figure 9.9: Editing fuzzy rules in FuzzGen.
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12. Fuzzy Logic Control in VHDL
www.ee.ualberta.ca/~elliott/ee552/studentAppNotes/2000f/vhdl/fuzzyController/

An article by Steve Dillen and Farrah Rashid presented by Duncan Elliott,
University of Alberta, Canada. The article is in HTML format with links to
source codes.

13. fuzzyTECH
www.fuzzytech.com/

fuzzyTECH is a leading family of software development tools for fuzzy logic and

and neural-fuzzy systems. The software supports both English and German
languages. Moreover, the documentation is available in the English, German, and
Mandarin Chinese languages. fuzzyTECH families of particular interest here
include:

■ fuzzyTECH Editions for General Target Hardware including fuzzyTECH
Professional and fuzzyTECH online editions.

■ fuzzyTECH MCU Editions for Embedded Control including:

– fuzzyTECH MCU-HC05/08 Edition which supports all Motorola
68HC05xx and 68HC08xx families of microcontrollers

– fuzzyTECH MCU-ST6 Edition which supports all STMicroelectronics
ST6 family microcontrollers

– fuzzyTECH MCU-MP Edition which supports all Microchip’s
microcontrollers

– fuzzyTECH MCU-51 Edition which supports all 8051 and 80251
microcontrollers

– fuzzyTECH MCU-374xx Edition which supports all 8-bit Mitsubishi
microcontrollers

– fuzzyTECH MCU-HC11/12 Edition which supports all Motorola
68HC11xx and  68HC12xx families of microcontrollers.

– fuzzyTECH MCU-96 Edition which supports all Intel MCS-96
microcontrollers

– fuzzyTECH MCU-320 Edition which supports Texas Instruments Digital
Signal  Processors

■ fuzzyTECH IA Editions for Industrial Automation including fuzzyTECH
IA-S5/7  Edition for Siemens SIMATIC Programmable Logic Controllers S5.

Application examples are discussed in numerous reports by C. von Altrock
including:

■ Fuzzy Logic in Automotive Engineering, Circuit Cellar, 88, 1–9, 1997,
available at: www.circuitcellar.com/pastissues/articles/misc/88constantin.pdf
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■ Practical Fuzzy Logic Design, Circuit Cellar, 75, 1–5, 1996, available at:
www.circuitcellar.com/pastissues/articles/misc/75constantin1.pdf

■ A Fuzzy-Logic Thermostat, Circuit Cellar, 75, 1–5, 1996, available at:
www.circuitcellar.com/pastissues/articles/misc/75constantin2.pdf

A fuzzyTECH library of technical applications is also available online. It includes
reports on topics such as:

■ Practical Design, Industrial Automation, Coal Power Plant, Refuse Incinera-
tion Plant, Complex Chilling Systems, Water Treatment System, Monitoring
Glaucoma, AC Induction Motor, Truck Speed Limiter, Medical Shoe, Fuzzy
in Appliances, Automotive Engineering, Antilock Braking System, Aircraft
Flight Path, Nuclear Fusion, Motorola 68HC12 MCU, Traffic Control, Fuzzy
Logic Standardization, and Sonar Systems, and Fuzzy Logic Design: Meth-
odology, Standards, and Tools.

Further information, discussions and illustration of fuzzyTECH applications are
available at: www.neurotech.com.sg/html/archive/supply_archive_files/fuzzy.html

A demo of fuzzyTECH along with example files is available for downloading.
The following are some illustrative screen shots from fuzzyTECH.

Figure 9.10: Opening one of the fuzzyTECH example files.
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Figure 9.11: Defining inputs for the Container Crane Controller
example.
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Figure 9.12: Defining the output of the Container Crane Controller
example.

Figure 9.13: fuzzyTECH Fuzzy rules editor.
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14. havBpETT
www.hav.com/default.html

havBpETT demonstrates the use of a DLL version of the havBpNet++ C++
neural network class library. The demo allows the user to describe, train, and
save a simple feed-forward, recurrent or sequential neural network. The
downloadable demos are the same as the fully functional simulator except that
the network-save function is disabled. Screen-shots to illustrate the main user
interface screens of the havBpETT demo are also available on the Web site.

Figure 9.14: Some of the menus of fuzzyTECH showing important
features of the software.
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15. HyperLogic Demos
www.hyperlogic.com/demos.html

The site offers several demo programs, some of which run under Windows and
some under MS-DOS. The main software is CubiCalc. A complete working
model of that software is available with all project save and data export capabili-
ties disabled. The demo has several example files that can be opened and
examined as shown in Figure 9.15. The problems are described in detail and an
example of the results of running the simulation of driving in a circle is shown in
Figure 9.16.

Figure 9.15: Opening one of the examples provided with CubiCalc.
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The site also provides an MS-DOS file that explains how the OWL Neural
Network Library of C-subroutines works. It includes examples using
Backpropagation and Competitive Learning. The source code for a sample
program is also provided. In addition to Fuzzy Engineering Examples, numerous
MS-DOS and Windows files that illustrate some of the neural networks opera-
tions and fuzzy logic applications are provided, including a truck backer-upper.

16. Jan’s Fuzzy System, JFL
http://inet.uni2.dk/~jemor/jfs.htm

JFs is a development environment for the programming language JFL, presented
by Jan Mortensen, Frederiksberg, Denmark as freeware. The environment has
tools to compile, run, improve and convert JFL programs. JFL combines features
from traditional programming languages like fuzzy logic and machine learning.
A compiled JFs-program can be executed by a command line from C-programs,
or from a DLL. It can be converted to an HTML file with the program converted
to JavaScript. It can also be converted to a source code file and included in
C-programs.

Figure 9.16: Example of results that could be displayed using CubiCalc.
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17. Java Related

Joon NN
http://joone.sourceforge.net/

Joone is a free neural net framework to create, train and test neural nets. It is
based on Java technologies. Joon NN is composed by a central engine that is the
pivot of all existing applications and those that will be developed.

Applets for Neural Networks and Artificial Life
www.aist.go.jp/NIBH/~b0616/Lab/Links.html

A collection of Java applets provided by Akio Utsugi, National Institute of
Advanced Industrial Science and Technology, Japan. The applets are classified
into several categories, including:

■ Competitive Learning

– Vector Quantizer, VQ
– Gaussian Mixture Model
– Multinomial Mixture Model
– Several Self-Organizing Maps, SOM
– Interactive SOM
– Pattern Recognition using Kohonen Featuremap
– Several nets for TSP
– Neural Competitive Models Demo
– Comparison between various kinds of competitive learning with

topology reformation.
– Bayesian Self-Organizing Maps

■ Backpropagation Learning

– Learning of Function Approximation
– Interactive Tutorials on Artificial Neural Learning
– Animated Neural Network Learn 3-D plane
– Artificial Neural Network Handwriting Recognizer
– OCHRE - Optical Character Recognition

■ Neural Nets for Constraint Satisfaction and Optimization

– Hopfield Net
– 8-Queen Problem
– Boltzmann Machine
– Content Addressing Memory by Hopfield Net
– Brain Wave
– Pattern reconstruction
– and more.
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18. LabVIEW Related

LabVIEW is short for Laboratory Virtual Instrument Engineering Workbench. It
is a graphical program development application from National Instruments.
LabVIEW programs are called virtual instruments, VIs, because their appearance
and operation mimic actual instruments. A free evaluation version of LabVIEW
is available from National Instruments at: www.ni.com/downloads/

Useful LabVIEW resources are available at: www.ni.com/downloads/

A list of all off-the-shelf VIs for a specified purpose is available at:
www.mooregoodideas.com/FAVIs/

Free VIs are available from REAL Controls, Inc. at:
www.realcontrols.com/download.htm

Commercial fuzzy VIs are available at: www.dataengine.de/english/

A summary report of a PhD thesis titled “Control of a Pneumatic Servosystem
Using Fuzzy Logic” by H. M. Llagostera, UPC, Barcelona, Spain,where
LabVIEW is used in the fuzzy control scheme is available at:
http://fluid.power.net/techbriefs/papers/proc_moreno.pdf

ARGE Simulation News, ARGESIM, is a non-profit working group that provides
the infrastructure and administration for dissemination of information on model-
ing and simulation in Europe. It is located at Vienna University of Technology,
Simulation Department. Several comparisons have been defined in Simulation
News Europe. Comparison # 9 titled “Fuzzy Control of a Two Tank System”
includes the use of  LabVIEW. It is available at:
http://argesim.tuwien.ac.at/comparisons/

19. Linguistic Fuzzy Logic Controller, LFLC
http://ac030.osu.cz/irafm/lflc/lflc.html

Linguistic Fuzzy Logic Controller is provided by the Institute for Research and
Applications of Fuzzy Modeling, University of Ostrava, Czech Republic. The
software has two different basic inference methods: one based on the interpreta-
tion of the IF-THEN rules as linguistically described logical implications, and the
other is the standard max t-norm rule which is the interpolation of an unknown
function. A demo of the software is available for download. The demo has
example files and a detailed help file.
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20. Matlab Related

MATLAB is a commercially available (www.mathworks.com) interactive environ-
ment and programming language for scientific and technical computation; it also
has a student version at a reduced cost. It allows solution of many numeric
problems in much less time than it would have taken to write a program in C or
C++ (for example). MATLAB allows users to build their own reusable tools. One
can create one’s own special functions and programs to run in a  MATLAB environ-
ment; such programs are referred to as M-files. MATLAB functions created to deal
with a certain class of problems could be grouped together, leading to the con-
cept of a toolbox. A toolbox in this context refers to a specialized collection of
M-files for working on a particular class of problems. Numerous toolboxes are
available commercially, for example:

■ COMMUNICATIONS TOOLBOX, for the design and analysis of communication
systems

■ CONTROL SYSTEM TOOLBOX, for the design and analysis of feedback control
systems

■ CURVE FITTING TOOLBOX, for model fitting and analysis

■ DATA ACQUISITION TOOLBOX, for acquiring and sending out data from plug-in
data acquisition boards

■ DATABASE TOOLBOX, for exchanging data with relational databases

■ DATAFEED TOOLBOX, for acquiring real-time financial data from data service
providers

■ EXTENDED SYMBOLIC MATH TOOLBOX, for performing computations using
symbolic mathematics and variable precision arithmetic

■ FILTER DESIGN TOOLBOX, for the design and analysis of advanced
floating-point and fixed-point filters

■ FUZZY LOGIC TOOLBOX, to support the design and analysis of fuzzy logic
based systems. It supports all phases of the process, including development,
research, design, simulation, and real-time implementation. It uses graphical
user interfaces, GUIs, to provide an intuitive environment to guide the user
through the steps of fuzzy inference system design. Functions are provided
for many fuzzy logic methods, such as fuzzy clustering and adaptive
neuro-fuzzy learning. Demo tutorials are provided for: Fuzzy Logic Control-
ler in Simulink, Graphical Editors,  Noise Cancellation, and  Subtractive
Clustering. Tutorial information is provided by Albert Oller i Pujol, Escola
Tècnica Superior d’Enginyeria (ETSE) at:
www.etse.urv.es/~aoller/fuzzy/fuzzy_logic.htm#4.
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A tutorial based on the fuzzy logic toolbox is provided in PDF format by N.
H. Koivo, Systeemitekniikan laboratorion kurssit. It is available at:
www.control.hut.fi/Kurssit/AS-74.115/Material/fuzzy2.pdf

■ IMAGE PROCESSING TOOLBOX, for performing image processing, analysis, and
algorithm development

■ INSTRUMENT CONTROL TOOLBOX, to control and communicate with test and
measurement instruments

■ LMI CONTROL TOOLBOX,  to design robust controllers using convex optimiza-
tion techniques

■ MAPPING TOOLBOX,  to analyze and visualize geographically based information

■ MODEL PREDICTIVE CONTROL TOOLBOX,  to control large, multivariable pro-
cesses in the presence of constraints

■ MODEL-BASED CALIBRATION TOOLBOX,  to calibrate complex power-train
systems

■ µ-ANALYSIS AND SYNTHESIS TOOLBOX to design multivariable feedback control-
lers for systems with model uncertainty

■ NEURAL NETWORK TOOLBOX, to provide tools for the design, implementation,
visualization, and simulation of neural networks. It provides comprehensive
support for many proven network paradigms, as well as a graphical user
interface. Demo tutorials are available for Classification Using a Probabilis-
tic Neural Network, Function Approximation with Radial Basis Networks,
Introduction to the Neural Network Toolbox, and  Signal Prediction

■ OPTIMIZATION TOOLBOX,  to solve standard and large-scale optimization
problems

■ PARTIAL DIFFERENTIAL EQUATION TOOLBOX,  to solve and analyze partial
differential equations

■ ROBUST CONTROL TOOLBOX,  to design robust multivariable feedback control
systems

■ SIGNAL PROCESSING TOOLBOX, to perform signal processing, analysis, and
algorithm development

■ STATISTICS TOOLBOX, to apply statistical algorithms and probability models

■ SYMBOLIC MATH TOOLBOX, to perform computations using symbolic math-
ematics and variable precision arithmetic

■ SYSTEM IDENTIFICATION TOOLBOX, to create linear dynamic models from
measured input-output data
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■ VIRTUAL REALITY TOOLBOX, to animate and visualize Simulink systems in
three-dimensions

■ WAVELET TOOLBOX, to analyze, compress, and de-noise signals and images
using wavelet techniques.

There are even more commercially available toolboxes provided by a third party.
In addition, and most importantly, there are toolboxes and M-files developed by
top researchers and placed in the public domain. Moreover, an environment
similar to MATLAB has also been developed and placed in the public domain. The
following sections give a short overview of some of these public domain tools.

GNU Octave
www.octave.org/

GNU Octave is a high-level language similar to MATLAB but available freely. It
was written by John W. Eaton with contributions from numerous other individu-
als listed on the Web site. A GNU Octave Repository is accessible at:
http://octave.sourceforge.net/

It is a central location for custom scripts, functions and extensions for GNU
Octave.

Useful relevant files are also available from MatLinks/Chorus at:
http://sourceforge.net/projects/matlinks

This is an open source project that provides GNU Octave and MATLAB/Simulink
toolboxes available in the public domain.

NNSYSID Toolbox
http://kalman.iau.dtu.dk/research/control/nnsysid.html

This is a set of MATLAB tools for neural network based identification of nonlinear
dynamic systems. The set is composed of M- and MEX-files for training and
evaluation of multilayer perceptrons. There are functions for training of ordinary
feedforward networks as well as for identification of nonlinear dynamic systems
and for time-series analysis. The toolbox requires MATLAB 5.3 or higher, but it is
completely independent of the Neural Network Toolbox and the System Identifi-
cation Toolbox.

SOM Toolbox for MATLAB

www.cis.hut.fi/projects/somtoolbox/

SOM is a freeware package for the MATLAB environment. Numerous individuals
have contributed to the SOM Toolbox. They are or were employed by the Labo-
ratory of Information and Computer Science at the Helsinki University of
Technology. The toolbox comes with several demos, including:
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som_demo1   SOM Toolbox demo 1: basic properties
som_demo2   SOM Toolbox demo 2: basic usage
som_demo3   SOM Toolbox demo 3: visualization
som_demo4   SOM Toolbox demo 4: data analysis

To illustrate some of the capabilities of the toolbox, illustrations from parts of the
code provided in the first demo and the resulting output are shown in the follow-
ing.

som_demo1

A self-organized map, SOM, maps the training data. It consists of neurons
located on a regular map grid. The lattice of the grid can be either hexagonal or
rectangular. The diagram illustrated in Figure 9.17 results from running  the
following segment in the MATLAB environment:

subplot(1,2,1)
som_cplane(‘hexa’,[10 15],’none’)
title(‘Hexagonal SOM grid’)

subplot(1,2,2)
som_cplane(‘rect’,[10 15],’none’)
title(‘Rectangular SOM grid’)

Figure 9.17:  The generated SOM grid.

Then, running the segment:

subplot(1,3,1)
som_grid(sMap)
axis([0 11 0 11]), view(0,-90), title(‘Map in output space’)

subplot(1,3,2)
plot(D(:,1),D(:,2),’+r’), hold on
som_grid(sMap,’Coord’,sMap.codebook)
title(‘Map in input space’)

results in the arrangement shown in Figure 9.18.
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The training is based on:

■ competitive learning, where the prototype vector most similar to a data
vector is modified so that it becomes more similar to it, and

■ cooperative learning, where not only the most similar prototype vector, but
also its neighbors on the map are moved towards the data vector.

This leads to the results shown in Figure 9.19.

Figure 9.18: The black dots show positions of map units (neurons),
and the gray lines show the connections. The map was initialized
randomly and hence the positions in the input space are completely
disorganized. The crosses are training data.
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M-files for Fuzzy Membership Optimization
http://academic.csuohio.edu/simond/fuzzyopt/

This site makes available numerous M-files developed by Dan Simon, Depart-
ment of Electrical Engineering, Cleveland State University, USA. They
demonstrate fuzzy membership function optimization using gradient descent and
Kalman filters. The task which is considered by these M-files is an automotive
cruise control system. The M-files are downloadable in zip format. In addition,
the site provides links to references in the area of optimization of fuzzy logic
systems. The files include:

VehicleControl.m, a fuzzy vehicle cruise control program. Running this file
will simulate a fuzzy cruise controller for the situation where a vehicle
suddenly goes from a road grade of 0% to 10%. One can change any of the
details of the simulation (step size, simulation length, vehicle mass, road
grade, etc.). Most of the parameters in the file are self-explanatory. Figure
9.20 shows an example of the result of running the file.

Figure 9.19:  The map organizes and folds to the training data.
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FuzzCalc.m, a general-purpose fuzzy logic engine that computes defuzzified
outputs corresponding to fuzzy inputs. This file can also compute the deriva-
tives of the outputs with respect to the membership function parameters. This
routine uses triangular membership functions.

FuzzInit.m,  initializes the rule base and membership functions for a fuzzy
logic system.

GradeCalc.m, a general-purpose routine that computes the membership
grade of a number in a triangular fuzzy set.

PlotMem.m, plots triangular membership functions based on the member-
ship parameters stored in a file.

VehicleGrad.m, optimizes a fuzzy cruise control system using gradient
descent.

VehicleKalman.m, optimizes a fuzzy cruise control system using a Kalman
filter.

Dmatrix.m, is an auxiliary routine that creates a matrix that is used when the
optimization is carried out with some normal constraints.

Figure 9.20: An Example of the result obtained from running the file
VehicleControl.m.
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Engineering Applications of Soft Computing
www.fmt.vein.hu/softcomp/software.html

Numerous M-files provided by the Department of Process Engineering,
Folyamatmérnöki Tanszék. They relate to the work presented in:

■ J. Abonyi and J.A. Roubos, M. Oosterom, F. Szeifert, “Compact TS-Fuzzy
Models through Clustering and OLS plus FIS Model Reduction”,
FUZZ-IEEE’01, Sydney, Australia, 2001.

■ J. Abonyi, R. Babuska, F. Szeifert, “Fuzzy Modeling with Multidimensional
Membership Functions: Constrained Identification and Control Design”,
IEEE Systems, Man and Cybernetics, Part B, Oct, 2001.

■ J. Abonyi and R. Babuska and M. Ayala Botto and F. Szeifert and N. Lajos,
“Identification and Control of Nonlinear Systems Using Fuzzy Hammerstein
Models”, Industrial and Engineering Chemistry Research, 39, 4302-4314,
2000.

Type-2 Fuzzy Logic Software
http://sipi.usc.edu/~mendel/software/

This is a freeware collection of M-files provided by Nilesh N. Karnik, Qilian
Liang and Jerry M. Mendel, University of Southern California. The collection
has four sections: general type-2 fuzzy logic systems, interval type-2 fuzzy logic
systems, type-1 fuzzy logic systems, and NEW type-reduction.

NEFCON for MATLAB

http://fuzzy.cs.Uni-Magdeburg.de/nefcon/nef_mat.html

NEFCON is an implementation of a neural fuzzy controller based on a
neuro-fuzzy controller using a fuzzy-perceptron. It requires a MATLAB/Simulink
environment. NEFCON is able to learn fuzzy sets and rules by a reinforcement
learning algorithm. The model was developed by the Fuzzy Systems research
group at the Technical University of Braunschweig, Germany. The software is
free for non-commercial use. It has online documentation with screen shots.

MATLAB Software Tool for Neuro-Fuzzy Identification and Data Analysis
http://iridia.ulb.ac.be/~gbonte/software/Local/FIS.html

This software was developed by Gianluca Bontempi and Mauro Birattari,  ULB
Brussels, Belgium. The software trains a fuzzy architecture on the basis of a
training set of  N (single) output-(multi) input samples. The software is free.
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21. Motorola
Motorola Fuzzy logic engine for the 68HC11
www.programmersheaven.com/zone5/cat26/1288.htm

e-book from Motorola
http://faculty.petra.ac.id/resmana/private/fuzzy/

Screen shots from the Motorola e-book are shown in Figures 9.21 and 9.22.

Figure 9.21: Opening Screen of the Motorola Tutorial.



Software Tools

235

22. NEFCLASS, Neurofuzzy Classification
http://fuzzy.cs.uni-magdeburg.de/nefclass/nefclass.html

NEFCLASS is a software provided by Detlef Nauck, Chief Research Scientist
and Team Leader in the Intelligent Systems Lab of BTexact Technologies Ad-
vanced Research Department, Adastral Park, United Kingdom. It is freely
available for scientific and personal use. The software is intended to be used for
data analysis by neuro-fuzzy models. It can learn fuzzy rules and fuzzy sets by
supervised learning. It can represent a fuzzy classification system, learn fuzzy
classification rules incrementally, and learn fuzzy sets by using simple heuristics.

Figure 9.22: Menu selection of the Motorola Tutorial.
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23. Neural Networks and Fuzzy Systems Software
fuzzy.cs.uni-magdeburg.de/software.html

This site provides links to download numerous excellent software programs
developed by the research group on Neural Networks and Fuzzy Systems at the
Institute of Knowledge Processing and Language Engineering, Faculty of Com-
puter Science, University of Magdeburg, Germany. The programs available relate
to: Neuro-Fuzzy Control, Neuro-Fuzzy Function Approximation, Fuzzy Cluster-
ing, Neuro-Fuzzy Data Analysis, Multilayer Perceptron Training Visualization,
Learning Vector Quantization Visualization, and Self-Organizing Map Training
Visualization. For example, one of the available programs is the Multilayer
Perceptron Training Visualization, named XMLP. The software helps to visualize the
training process of a simple multi-layer perceptron for two logical and two simple
real value functions. Figures 9.23 and 9.24 show screen shots from that program.

Figure 9.23: Multilayer perceptron training.
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24. NeuroDesigner
www.neurodesigner.com/

NeuroDesigner is a comprehensive family of Java-based programs for neural
network applications. A trial version of NeuroDesigner Editor is available for
download. This version is operational for 30 days or 100 times, depending on
usage. Moreover, the trial version has limited capabilities such as: the network
cannot have more than 10 input and 25 output neurons, or have more than one
hidden layer with four hidden neurons. Among the software capabilities high-
lighted are: embedding neural networks into existing systems and fetching data
from various sources.

Figure 9.24: Illustration of some menu selections from XMLP.
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25. Neuro Solutions
www.nd.com/

NeuroSolutions is a graphical neural network development tool from
NeuroDimension in Gainesville, Florida, USA. The Web page has links to a free
trial version and a tour of the software complete with screen shots. The following
are highlights from the tour. NeuroSolutions enables the user to create a neural
network model for a given set of data. It supports numerous network architec-
tures including: CANFIS Network (Fuzzy Logic),  Multilayer Perceptron (MLP),
Self-Organizing Map Network (SOM), Generalized Feed Forward, Generalized
Recurrent Network , Learning Vector Quantization (LVQ), and more. The
software has two separate wizards that enable the user to automatically build a
neural network:

■ NeuralExpert, where the design specifications are centered on the type of
problem in which the user is interested, such as Classification, Prediction,
Function Approximation, or Clustering, and

■ NeuralBuilder, where the design specifications are centered on the specific
neural network architecture the user wishes to construct.

The software allows probes that provide real-time access to all internal network
parameters and data, including inputs/outputs, errors, gradients, weights, etc.

It also allows the user to optimize attributes such as the learning rates, weights,
number of hidden neurons, etc. The Professional and Developer levels of
NeuroSolutions allow the automatic generation of C++ source code for the neural
network designed.

26. NICO Artificial Neural Network Toolkit
www.speech.kth.se/NICO/index.html

The NICO (Neural Inference COmputation) toolkit was developed by Nikko
Ström at the Department for Speech, Music, and Hearing at KTH, Stockholm,
Sweden. It is a general purpose toolkit for constructing artificial neural networks
and training with the back-propagation learning algorithm. Units (neurons) are
organized in groups and the group is a hierarchical structure; groups can have
sub-groups or other objects as members. This makes it easy to specify
multi-layer networks with arbitrary connection structure and to build modular
networks. There is no support for viewing the networks graphically.
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27. Rigel Corporation
www.rigelcorp.com/8051soft.htm

This site provides a variety of 8051 software. The software, help files, examples,
and related text files are offered at no charge for non-commercial use. The
software available includes Reads51, which is an integrated application software
development system. It allows writing, compiling, assembling, debugging,
downloading, and running applications software in the MCS-51 language. It
contains a C-compiler, relative assembler, linker/locator, editor, chip simulator,
assembly language debugger, and host-to-board communications in a
menu-driven environment. Information about Fuzzy Logic LabPac is provided,
which is a package for fuzzy logic applications using the 8051 family of
microcontrollers.

28. Stuttgart Neural Network Simulator (SNNS)
www-ra.informatik.uni-tuebingen.de/SNNS/

Stuttgart Neural Network Simulator, SNNS is a software simulator for neural
networks on Unix workstations developed at the Institute for Parallel and Distrib-
uted High Performance Systems (IPVR) at the University of Stuttgart, Germany.
It consists of two main components: a simulator kernel written in C,  and a
graphical user interface.

The simulator kernel operates on the internal network data structures of the
neural nets and performs all learning and recall operations. It can also be used
without the other parts as a C program embedded in custom applications. The
network architectures and learning procedures supported include:
Backpropagation, Counterpropagation, Generalized Radial Basis Functions,
ART1, ART2, ARTMAP, and more.

29. WinNN
www.geocities.com/SiliconValley/Lab/9052/winnn.htm

This software incorporates a user friendly interface with a powerful computa-
tional engine. It can implement feedforward multi-layered NN and uses a
modified fast back-propagation for training and various neuron functions. It has
extensive online help, and various neuron functions. The software has some
example files. It is available for a free 60 day trial.
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30. Xfuzzy
www.imse.cnm.es/Xfuzzy/

Xfuzzy is an environment for the design, verification, and synthesis of fuzzy-
logic-based systems. It can be compiled and executed on Windows using:

■ Cygwin (http://sources.redhat.com/cygwin/)
■ XFree86 (http://sources.redhat.com/cygwin/xfree/)
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Quizzes

Conclude whether the statements in each of the following sections are true or false;
correct or explain the false ones.

Embedded Systems

1. Embedded computational systems are restricted to consumer electronics and
robotics.

2. Moore’s law is the reason that IC technology doubles its performance every
18 months.

3. Embedded systems’ design metrics are measurable features of the implemented
system.

4. Power consumption is one of the design metrics of embedded systems.

5. Design metrics are typically positively correlated.

6. Embedded systems can only be implemented using either microprocessors or
microcontrollers.

7. The physical properties of Gallium Arsenide lead to inherently faster devices
than those based on Silicon.

8. BiMOS devices are semiconductor devices that are biologically inspired.

9. Fuzzy logic would lead to smarter consumer products.

10. Using fuzzy logic in the design of an embedded system could reduce the
time-to-market of the product.

Answers:
False:

1 (there are numerous applications including communications, business, appliances, etc.),
2 (don’t confuse the moon with the finger that points to it),
5 (negatively; improving one feature could lead to worsening of another),
6 (other hardware can be used),
8 (based on bipolar and CMOS technologies).
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Fuzzy Sets & Relations

1. The membership function is another name for a probability distribution.

2. Membership values in a fuzzy set do not have to add up to one.

3. A classical set would have a Gaussian-type membership function.

4. DeMorhan’s theorems apply to both crisp and fuzzy sets.

5. The membership function of a crisp set cannot be defined.

6. The membership function of a fuzzy set has to be of a triangular shape.

7. The law of the excluded middle does not apply to fuzzy sets.

8. A fuzzy set is a collection of items about which nothing is known.

9. All defuzzification algorithms yield the same outcomes.

10. There is no measure of fuzziness.

11. The CON operation makes a fuzzy set less fuzzy.

12. There is no definition of the cardinality of a fuzzy set.

13. The order of operation of Cartesian multiplication is important in classical
sets only.

14. In general, the intersection of fuzzy sets results in a crisp set.

15. In general, the union of fuzzy sets results in a fuzzy set.

16. No two fuzzy sets can be equal.

17. A set and its complement have to be identical for a set to be defined as a
crisp set.

18. The support of a fuzzy set is a crisp set.
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Answers:
False:

1 (fuzziness is not probability)
3 (all elements in the universe of discourse will have a membership of either one or zero)
5 (see above)
6 (trapezoidal, Gaussian and discrete values are common)
8 (precise knowledge is needed to assign the appropriate membership value)
9 (different algorithms will not result in the same numerical values)
10 (there are several possible measures; one possibility relates to how far the deviation is

from the excluded middle)
12 (there is more than one possible definition)
13 (it is important in both classical and fuzzy sets)
14 (it results, in general, in another fuzzy set)
16 (they are equal when they have the same membership values for all their elements),
17 (this would be the fuzziest set)
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Embedded Fuzzy Applications

1. All fuzzy logic applications are embedded.

2. A unique feature of a fuzzy logic control system is that it uses an error signal
to correct the output.

3. Fuzzy control systems are always open-loop systems.

4. A fuzzy logic control system does not require a mathematical model.

5. Feedback could lead to instability.

6. The use of fuzzy logic always leads to superior performance characteristics
compared to those of a PID control.

7. Fuzzy logic systems are always stable.

8. IF/THEN rules are unique to fuzzy control systems.

9. Fuzzy logic can solve problems that have no known solutions.

10. Defuzzification is required to reach a crisp action.

11. Embedded systems can work without fuzzy logic.

12. Fuzzy logic could make embedded systems more efficient.

13. In general, the larger the number of rules for an embedded fuzzy control
system, the smoother the control surface.

14. The objective of fuzzy control is to replace PID control.

15. A system is stable when its free energy is maximized.

16. Fuzzy logic always leads to optimum solutions.

17. Fuzzy logic could be used for signal processing applications.

18. The step response of a fuzzy system can be measured.

19. Fuzzy control is the only possible embedded application of fuzzy logic.

20. Fuzzy logic = computing with words.
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Answers:
False:

1 (not only that, but also there are numerous non-engineering applications),
2 (all feedback control systems generate error signals),
3 (always feedback systems),
6 (not always),
7 (not always, stability needs to be tested and assured),
8 (for example, systems that use look-up tables. What is unique is the allowance and

making use of the firing of more than one rule at a time),
14 (fuzzy logic can fine tune PID systems and control systems that have no mathematical

model),
15 (when minimized),
16 (no mathematical solution, but an expert must know how to solve the problem so that

rules can be generated leading to a linguistic model),
19 (other applications are possible, e.g. signal processing).
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Neural Networks

1. Neural networks are distributed computational systems.

2. Neural systems don’t degrade gracefully as opposed to von Neumann com-
puting systems.

3. Learning in neural networks occurs by adjusting the synaptic weights.

4. Hebbian learning implies increasing the effectiveness of active connections.

5. All neural networks require training patterns.

6. The structure of neural networks, except ART networks, follows the von
Neumann architecture.

7. The XOR problem can be solved by a single neuron.

8. The AND problem can be solved by a single neuron.

9. A multi-layer perceptron is a self-organizing network.

10. Hopfield networks are not self-organizing.

11. Backpropagation is the training algorithm typically used for Kohonen
networks.

12. Over-learning leads to learning the noise associated with the input patterns.

13. The hidden layer in a multilayer perceptron represents its memory.

14. The multilayer perceptrons solved the stability-elasticity problem.

15. A hyper-cube is a cube in an n-dimensional space.

16. The stability-elasticity problem is particularly severe in ART networks.

17. The lowest three neurons in a multilayer perceptron are referred to as the
basins of attraction.

18. The synaptic weights are usually expressed in milligrams.

19. All neural networks have at least one hidden layer.

20. A Boltzmann network requires hardware systems that can operate at tem-
peratures above room-temperature.

21. Neural networks and fuzzy logic have some complementary characteristics.
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Answers:
False:

2 (they do because of the parallel multi-connection architecture)
5 (self-organizing networks do not)
5 (they are parallel processors, digital computers do)
7 (it is not a linearly separable problem)
11 (they are self-organizing)
13 (the synaptic weights represent a distributed memory)
14 (ART did)
16 (on the contrary!)
17 (they are minima in the energy landscape)
18 (that is silly!)
19 (for example, Kohonen networks do not have any),
20 (that is also silly!)
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Hybrid Systems

1. Fuzzy systems can learn by example.

2. Neural networks cannot interpret a linguistic statement.

3. There is nothing common between neural networks and fuzzy logic.

4. Neuro-fuzzy and fuzzy-neuro systems represent the zenith in computing
technology. No further advances are possible.

5. The aggregation process is a summation operation in the fuzzy neuron
model.

6. Fuzzy neural networks that use FNs are typically inhomogeneous networks.

7. ARTMAP is also known as predictive ART.

8. The generalization to learning both analog and binary input patterns is
achieved by replacing the classical INTERSECTION operation in ART1 by the
fuzzy MAX operation.

9. Fuzzy ARTMAP can operate on input patterns of continuous values whether or
not they represent fuzzy sets.

Answers:
False:

1 (neural networks can, fuzzy systems require rules),
3 (both are inspired by the human computational abilities),
4 (certainly not, progress goes on!),
5 (MIN or MAX operations),
8 (replaced by the fuzzy MIN).
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Hardware Realization

1. In general, hardware implementation of a fuzzy controller leads to faster
operation than implementation using software.

2. In digital implementation of fuzzy systems the term FLIPS refers to a
famous Dutch electronics manufacturer.

3. Analog VLSI circuits for fuzzy logic implementation are now obsolete.

4. An ideal current source has an infinite output resistance.

5. An ideal voltage source has an infinite output resistance.

6. Current mirrors are basic building blocks in current-mode circuit implemen-
tations.

7. Current mirrors could be used to increase the fan-out of a current-mode
circuit.

8. Voltage-mode implementations do not require resistors.

9. Current-mode implementations do not require resistors.

10. It is possible to implement VLSI mixed-mode circuits on the same chip.

11. A bounded difference operation can be implemented with a current mirror
and a diode.

12. Only bipolar technology can implement bounded difference operations.

13. Bounded difference circuits can be used to implement fuzzy AND and fuzzy
OR functions.

14. An ideal OTA has an infinite input resistance and an infinite output resis-
tance.

15. An ideal Op Amp has an infinite input resistance and zero output resistance.

16. There are numerous reliable analog memory modules.

17. A fuzzy flip-flop can be thought of as a basis for fuzzy memory modules.

18. OTAs cannot be used to implement the bounded difference operation.

19. An Op Amp summing amplifier circuit can implement the basic neuron
model.
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Answers:
False:

2 (refers to Fuzzy Logic Inferences per Second),
3 (on the contrary, it is gaining more popularity),
5 (an ideal voltage source has zero output resistance so that the load does not

affect the value of the output voltage),
8 (it does and hence more power consumption),
12 (CMOS technology also can be used),
16 (No, the lack of reliable analog memory modules is the main weak point of

analog implementation),
18 (they can, it is a basic building block of OTA-based implementation of

fuzzy logic operations).
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1. Introduction
Genetic algorithms, GAs, are general-purpose search and optimization procedures.
They were inspired by the biological evolution principle of survival of the fittest.
This led to the metaphoric use of terminology borrowed from the field of biological
evolution. For example, genes and chromosomes in the context of GAs refer to binary
strings of 1s and 0s (integer and real numbers are less commonly used) that represent
the data to be processed. GAs do not deal directly with the parameters of the problem
to be solved. They work with codes which represent the problem and produce codes
which represent the solution.

The fundamental idea is to maintain a population of individuals (knowledge
structures) that evolves over time through a process similar to birth and natural
selection, i.e., the generation of new individuals (children) by combining the struc-
tures of two individuals (parents). Each structure in the population represents a
potential solution to the problem at hand. Competition based on fitness leads to the
formation of new, fitter individuals. Genetic operators, such as crossover, and muta-
tion, are used to generate the new ones.

GAs were reported to have achieved great success because of their ability to
exploit accumulated information about an initially unknown search space leading to
moving subsequent searches into a more useful subspace. GAs are also flexible tools
and can be used in combination with other techniques including fuzzy logic and
neural networks. For example, fuzzy logic techniques lead to a solution to a control
system problem, but not necessarily the optimum solution. A fuzzy knowledge base
can be encoded as an individual in a genetic algorithm population. A GA can then be
used to produce the best knowledge base for the desired objectives. GAs have also
been applied to membership function adjustment. In section 2.8 of the appendix,
numerous sources are cited that detail applications that combine fuzzy logic and
genetic algorithms.

The main structure of a genetic algorithm is illustrated in the simplified flow
chart of Figure A.1.

A P P E N D I X

Genetic Algorithms
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Figure A.1: Simplified flow chart of a genetic algorithm.
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The steps of the flow chart could be briefly explained as follows:

Initial Population

The initial population is created randomly for problems about which no prior
knowledge exists. The population size has to be large enough to ensure sufficient
diversity to cover the possible solution space. Numerous problems start with 100
individual genes.

Evolution

The evolution of a population in genetic algorithms follows the Schema Theorem
put forward by Holland (J. H. Holland, Adaptation in Natural and Artificial
Systems, University of Michigan Press, 1975). A schema represents a subset of
the population composed of  individuals with similar bits in certain positions. A
schema is characterized by its defining length (number of bits between the first
and last bits with fixed values). The schema: 1*1*, for example, describes the set
of individuals whose first and third bits are 1s. The symbol * indicates that any
value, whether 1 or 0, is acceptable. Evolution proceeds as a result of applying a
number of, but not necessarily all of the genetic operators: SELECTION, CROSSOVER,
MUTATION, and INVERSION.

SELECTION

Selection is the process of extracting individuals from the existing population
whose fitness values are relatively higher than the rest. There are numerous
methods used for selection. Two commonly used methods are:

The so-called Roulette Selection (also known as stochastic or proportional
selection) where the weighting of the fitness value of each individual is
calculated as a percentage of the average fitness of the entire population. The
second is referred to as Tournament Selection where individuals are selected
randomly and then the ones with the highest fitness are chosen.

CROSSOVER

Crossover or recombination is a variation operator. It merges the genetic
information of two existing individuals (parents), picked up by the selection
operation, to create two new individuals (children). There are numerous ways
in which such an operation could be achieved. The simplest is the one-point
crossover where two selected individuals are cut at a randomly selected
point. The tails (the parts after the cutting point) are swapped, leading to two
new individuals. This is illustrated in Figure A.2.
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MUTATION

Mutation here means choosing at random bits in the knowledge structure and
flipping them according to a specified rate. The mutation operator forces the
algorithm to search new areas. It helps avoiding premature convergence and
finding the global optimal solution.

INVERSION

This operator is used in problems such as the traveling salesman problem and
layout problems. In that operation, two points are randomly selected from an
individual and the part of the string between them is inverted.

Termination

The objective is to test whether the optimization criteria are met or not. The point
at which the process terminates needs to be defined. Termination criteria set by
the user include:

■ Target fitness value

■ Maximum number of generations

■ Equal number of individuals

■ Maximum execution time

The next section provides a classified Web bibliography of genetic algorithms.
All cited work was made available by the authors through the Web at no charge. It is
hoped that the selection and the classification will save the readers time in exploring

Figure A.2: One-point crossover operation.
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the area of genetic algorithms. The bibliography starts with glossaries that are
authored by various sources. A few excellent tutorials with varied approaches are
cited next. They are followed by a small listing of research papers in the area. A
selection of interactive Java applets that can run through the Web is also presented.
The reader can experiment with them to gain further insight into genetic algorithms
operations. They are followed by a selection of sites that provide GA codes in
numerous languages including Java, MATLAB, C, C++, and Perl. The final section of
the bibliography provides links to references on the combination of fuzzy logic and
genetic algorithms.

2. Classified Annotated Web Bibliography
This section provides resources accessible freely through the Web. They are
classified  into eight groups: Glossaries, Introductions and  Tutorials, Research
Papers, Interactive Demos, Java, MATLAB, and other languages resources. The last
group provides resources for the applications of genetic algorithms combined
with fuzzy logic.

2.1 Glossaries
Glossary of Evolutionary Algorithms
http://ls11-www.cs.uni-dortmund.de/people/beyer/EA-glossary/
def-engl-html.html

An extensive stand-alone glossary in HTML format provided by Hans-Georg
Beyer (University of Dortmund, Dept. of Computer Science, Dortmund, Ger-
many), Eva Brucherseifer, Wilfried Jakob, Hartmut Pohlheim, Bernhard
Sendhoff, and Thanh Binh To. The glossary gives detailed definitions for numer-
ous terms, and the definitions have hypertext for ease of further referencing.

GA Glossary
www.santafe.edu/sfi/publications/Bookinforev/aiinep-gloss.html

A glossary from Adaptive Individuals in Evolving Populations: Models and
Algorithms edited by R. K. Belew and M. Mitchell,  Santa Fe Institute,
Addison-Wesley, Reading, MA, 1996. It also provides a set of references on the
topic.

A Short GA Glossary
www.cs.ucl.ac.uk/staff/W.Langdon/FOGP/glossary.html

A Glossary from Foundations of Genetic Programming by W. B. Langdon and R.
Poli, School of Computer Science, The University of Birmingham, Edgbaston,
Birmingham UK, Kluwer Academic Publishers, Boston,1998. It is a concise,
short glossary that defines about 45 terms.
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2.2 Introductions and Tutorials
Introduction to Genetic Algorithms
www.rabatin.com/papers/gaintro/ga_intro.html

A simple introduction to genetic algorithms by Arthur Rabatin, Structured
Derivatives Group of EdF Trading Ltd. Topics covered include:

Overview, Representation of the Problem Domain, Fitness Value,  Learning
Process Initialization and Evolving Structure, and Selecting GA Process Param-
eters.

GA Short Introduction
http://sun1000.pwr.wroc.pl/./AMIGA/ARTech/i002/GeneticAlgorithms_1.html

A short introduction by Marcel Offermans, Mechanical Engineering Department,
Delft University of Technology, The Netherlands. The main topics discussed
include:

■ What is a genetic algorithm?
■ What can you use it for?
■ How to create the chromosomes?
■ What does the genetic algorithm do?

How the Genetic Algorithm Works
www.pmsi.fr/gainita.htm

An HTML document that gives a brief description of how the Genetic Algorithm
works and some of its applications. It is provided by PMSI Saxon et Galvano.
Topics covered include:

What the Genetic Algorithm is useful for, How the Genetic Algorithm works,
Why the Genetic Algorithm is a good idea, The Genetic Algorithm and data
mining, and Why this technique is interesting.

Several software that demonstrate the operation of GAs  are available for down-
loading, they include:

■ FOOD, Robots learning to look for food
■ TSPGA, Travelling Salesman’s Problem solution
■ GAFUNC, various function optimization problems
■ TSPSA, simulated annealing (This freeware is dedicated to all humble, friendly

scientists and also to Professor Robert Azencott).
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Genetic Algorithms
www.ifs.tuwien.ac.at/~aschatt/info/ga/genetic.html

An introduction to Genetic Algorithms by Alexander Schatten, Institut für
Oftwaretechnik, Vienna University of Technology. The document is in HTML
format and it  gives a good introduction to the topic with an application example.

Genetic Algorithms
http://samizdat.mines.edu/ga_tutorial/

A tutorial by Darrell Whitley, Computer Science Department, Colorado State
University.

It covers the canonical genetic algorithm as well as more experimental forms of
genetic algorithms, including parallel island models and parallel cellular genetic
algorithms. It is available for downloading in postscript format (400Kb).

Genetic and Evolutionary Algorithms: Principles, Methods and Algorithms
www.geatbx.com/docu/algindex.html

A tutorial provided by GEA Toolbox. Topics include:

Selection: Rank-based fitness assignment, Roulette wheel selection, Stochastic
universal sampling, Local selection, Truncation selection, Tournament selection,
Comparison of selection schemes, Recombination: Real valued recombination,
Binary valued recombination (crossover), Mutation: Real valued mutation,
Binary mutation, Reinsertion: Global reinsertion, Local reinsertion, Parallel
implementations, and Migration: Global model, and Diffusion model.

Genetic Algorithms Applications
www.doc.ic.ac.uk/~nd/surprise_96/journal/vol4/tcw2/report.html

An introduction to genetic algorithms by Naranker Dulay, Department of Com-
puting, Imperial College, London. Topics include: Brief Overview, Who can
benefit from GA, Applications of Genetic Algorithms, and Artificial Life.

Evolutionary Algorithms Notes
www.arch.usyd.edu.au/~mike/GA/SLIDES/GA.htm

Introduction to evolutionary algorithms provided by Michael Rosenman, Depart-
ment of Architectural and Design Science, The University of Sydney. Topics
include: Evolutionary Algorithms, General Methodology, Nature of EAs, Termi-
nology and Comparison, Genotype Representation, Genetic Operators, Selection,
Fitness Function, Constraints, and Examples.
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The Genetic Programming Notebook
www.geneticprogramming.com/

This is a comprehensive site that provides a link to a concise clear tutorial on
GA, in addition to links to: Bibliographies, Books, Conferences, GA Courses,
GA FAQ, Research Groups, GA Journals, GA Papers, Repositories, and GA
related software.

Optimization of Structuring Elements by Genetic Algorithms
http://ltswww.epfl.ch/pub_files/brigger/thesis_html/node58.html

A section from a PhD thesis by Patrick Brigger, the Swiss Federal Institute of

Technology/Lausanne (EPFL). The thesis title is Morphological Shape Represen-
tation Using the Skeleton Decomposition: Application to Image Coding. The
section discusses:

■ Basic principles of the genetic algorithm
■ Transposition to the optimization of the structuring element
■ Reproduction plan

– Roulette-wheel reproduction

– Steady-state reproduction

– Simplex reproduction
■ Comparison of reproduction algorithms
■ Genetic operators
■ Evaluation of the importance of the genetic operators
■ Shape oriented crossover operator.

An Introduction to Genetic Algorithms for Numerical Optimization
www.hao.ucar.edu/public/research/si/pikaia/tutorial.html

This site gives access to an advanced tutorial by Paul Charbonneau and is
available in postscript format. The tutorial includes exercises that  require the use
of the genetic algorithm-based optimization subroutine PIKAIA, which is also
available for downloading.

Genetic Algorithms: Concepts and Designs
http://sant.bradley.edu/ienews/98_4/GENET2.pdf

An article that introduces GAs and their role in control systems. The article has
12 references and appeared in the IEEE Industrial Electronics News Letter, 45, 4,
1998.
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2.3 Research Papers
Genetic Algorithms
www.arch.columbia.edu/DDL/cad/A4513/S2001/r7/

A short treatise by John H. Holland that outlines the fundamental ideas of
genetic algorithms.

A New Schema Theory for Genetic Programming
http://cswww.essex.ac.uk/staff/poli/papers/Poli-GP1997.pdf

A paper by R. Poli and W. B. Langdon, The University of Birmingham. It
reviews the results obtained in the theory of schema in genetic programming. It
also proposes a new, simpler approach for genetic programming.

A List of Papers
http://citeseer.nj.nec.com/MachineLearning/GeneticAlgorithms/hubs.html

This site provides links to a large number of research papers related to GAs.

GA Archives
www.aic.nrl.navy.mil/galist/

The Genetic Algorithms Archive is a repository for information related to re-
search in genetic algorithms and other forms of evolutionary computation. It is
maintained by Alan Schultz, The Navy Center for Applied Research in Artificial
Intelligence, USA. Its contents include: Calendar of EC-related events, GA-List
Archive: back issues, source code, and information,  Links to other GA-related
information, Links to EC research groups’ home pages, and Dissertations on
Evolutionary Computation.

2.4 Interactive Demos
GA Interactive Experiment
www.oursland.net/projects/PopulationExperiment/

An applet designed by Allan Oursland, the University of Texas at Austin. This
applet demonstrates a continuous value genetic algorithm on a variety of problem
spaces with a variety of reproduction methods. Its objective is  to help visualize
the processes in a genetic algorithm. A detailed explanation along with the source
code is provided.

Test Environment
www.gawalk.com/

An applet for experimenting with GAs. Extensive documentation and the soft-
ware are available to the user.



Appendix

260

Interactive Genetic Algorithm Demonstrator
http://userweb.elec.gla.ac.uk/y/yunli/ga_demo/

A demo applet provided by Dr. Li, Department of Electronics and Electrical
Engineering, University of Glasgow, Glasgow, UK.

The GA Playground
www.aridolan.com/ga/gaa/gaa.html

The GA Playground is a general purpose genetic algorithm toolkit provided by
Ariel Dolan. It is implemented in Java. Extensive documentation along with
examples and test problems are provided.

Genetic Java
http://www4.ncsu.edu/eos/users/d/dhloughl/public/stable.htm

The site is provided by Dan Loughlin, Department of Civil Engineering, North
Carolina State University, USA.

GA Optimizer
http://ai.bpa.arizona.edu/~mramsey/ga.html

An interactive applet with documentation provided by Marshall Ramsey, Univer-
sity of Arizona, UAMIS AI Group. The  source code is available for download.

2.5 Java Related Resources
GA in Java
www.esatclear.ie/~rwallace/gp.html

The site enables the downloading, in zip format, of two public domain applica-
tions created by Russell Wallace to implement genetic programming.

ECJ, Evolutionary Computation in Java
www.cs.umd.edu/projects/plus/ec/ecj/

The site provides a research-oriented Evolutionary Computing Java program,
ECJ. It is authored by Sean Luke, Department of Computer Science, George
Mason University, USA. Documentation and source code are available for
download.

MathTools
www.mathtools.net/MATLAB/Genetic_algorithms/Java/

An annotated list of Java applets related to GA provided by MathWorks.
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2.6 Matlab Related Resources
GEATbx:
www.systemtechnik.tu-ilmenau.de/~pohlheim/GA_Toolbox/
www.geatbx.com/

Genetic and Evolutionary Algorithm Toolbox for use with MATLAB. The M-files
are not free, and the documentation is available for download along with tutorial
examples.

GA M-files
ftp://ftp.mathworks.com/pub/tech-support/solutions/s1248/genetic/

A collection of GA M-files, written by Andrew Potvin, the MathWorks, Inc. It is
available for free download.

MATLAB for solving GA problems
www.pmfst.hr/ceepus/radovi/Orlikova.pdf

A paper by Sona Orlikova, Brno University of Technology, Czech Republic. It
introduces GA and its implementation in MATLAB. It appeared in the Proceedings
of the Fifth Symposium on Intelligent Systems, Split, Croatia, 2002.

Relation of Fuzzy-Adaptive Genetic Algorithms in a MATLAB Environment
http://phobos.vscht.cz/matlab01/matousek.pdf

A paper by R. Matoušk, Institute of Automation and Computer Science, Brno
University of Technology, Czech Republic. It discusses integrating fuzzy logic
and genetic algorithms. MATLAB Fuzzy Logic Toolbox was used for the fuzzy
inference system part.

2.7 Other Languages Resources
GAlib
http://lancet.mit.edu/ga/

A free C++ Library of Genetic Algorithm Components developed by Matthew
Wall,

Massachusetts Institute of Technology. It includes tools for using genetic algo-
rithms to perform optimization in any C++ program using any representation and
genetic operators. Documentation is available, and it includes an explanation of
how to implement a genetic algorithm with examples.

GA Source Code Collection
www.aic.nrl.navy.mil/galist/src/

This site provides links to source code for implementations of genetic algorithms
and other EC methods. The software is listed alphabetically, and by language. It
is maintained by Alan Schultz, Naval Research Laboratory, USA.
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Lithos Evolutionary Computing
www.esatclear.ie/~rwallace/lithos.html

Lithos is an evolutionary computation system. It is provided in the public domain
by Russell Wallace. The C++ source code and Windows executable files are
provided along with detailed documentation.

Diophantine Equation Solver

www.generation5.org/diophantine_ga.shtml

A C++ program that solves a diophantine equation using genetic algorithms
provided by Generation5.org. Detailed explanations and examples of the code are
also provided.

Advanced Examples of Genetic Algorithms with Perl
www-106.ibm.com/developerworks/linux/library/l-genperl2/
?t=gr,lnxw961=nextgen

An article by Teodor Zlatanov, Gold Software Systems, that discusses advanced
aspects of GAs in Pearl. It builds on what was discussed in a previous article
titled “Genetic Algorithms Applied with Perl”, www-106.ibm.com/
developerworks/linux/library/l-genperl/

2.8 Fuzzy Logic and Genetic Algorithms
Genetic Algorithms and Fuzzy Logic in Control Processes
http://citeseer.nj.nec.com/cordon95genetic.html

A comprehensive discussion of the application of genetic algorithms in control
systems by O. Cordón, F. Herrera, and M. Lozano, Department of Computer
Science and A.I., University of Granada, Spain. The report reviews fuzzy logic
controller concepts and applications, discusses the fundamentals of genetic
algorithms, and details the design of fuzzy logic controller using genetic algo-
rithms. It also discusses learning classifier systems. References up to the year
1995 are included.

Combination Fuzzy Logic-Genetic Algorithms Bibliography
http://decsai.ugr.es/~herrera/fl-ga.html

An HTML document that presents a classified listing of papers on the combina-
tion of fuzzy logic and genetic algorithms with a bibliography by O. Cordón, F.
Herrera, and M. Lozano, Department of Computer Science and A.I., University
of Granada, Spain. It has over 500 references up to the year 1997, but the texts of
the papers are not accessible. The categories include: Fuzzy Genetic Algorithms,
Fuzzy Clustering, Fuzzy Optimization, Fuzzy Neural Networks, Fuzzy Rela-
tional Equations, Fuzzy Expert Systems, Fuzzy Classifier Systems,  Fuzzy
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Information Retrieval, Fuzzy Decision Making, Fuzzy Regression Analysis
Fuzzy Pattern Recognition and Image Processing, Fuzzy Classification – Con-
cept Learning Fuzzy Logic Controllers, Fuzzy Logic-Genetic Algorithms
Framework, and Fuzzy Logic Miscellaneous. See also by the same authors in pdf
format: A Classified Review On The Combination Fuzzy Logic-Genetic Algo-
rithms Bibliography: 1989-1995 at: http://citeseer.nj.nec.com/
cordon95classified.html

Fuzzy Logic and Genetic Algorithms for Intelligent Control
www.csu.edu.au/ci/vol02/mm94n2/mm94n2.html

A paper in HTML format by M. Mohammadian (Department of Computer
Science Edith Cowan University, Perth, Western Australia) and R. J. Stonier
(Department of Mathematics and Computing, Central Queensland University,
Rockhampton, Australia).

It presents the control of a mobile robot in the presence of an obstacle using a
system that integrates a fuzzy logic control system and genetic algorithms. The
paper appeared in Complexity International, 2, April, 1995.

Evolutionary Learning in Fuzzy Logic Control Systems
www.csu.edu.au/ci/vol03/stonier/stonier.html

A paper by R. Stonier and M. Mohammadian which appeared in Complexity
International, April 1996. It is available in HTML format. The authors discussed
the use of genetic algorithms to learn fuzzy rules in fuzzy logic control systems.
The system is applied to collision-avoidance problems and target-tracking for
mobile robots. Application to the control of traffic flow approaching a set of
intersections and interest rate prediction was also briefly discussed.

Dynamic Control of Genetic Algorithms using Fuzzy Logic Techniques
http://citeseer.nj.nec.com/lee93dynamic.html

A paper by M. A. Lee and H. Takagi, University of California (Davis and Berke-
ley), USA. It appeared in the  Proceedings of the Fifth International Conference
on Genetic Algorithms, ICGA’93, Urbana-Champaign, Il, 1993, pp. 1293-1296.
The authors proposed and experimented with using fuzzy logic techniques to
dynamically control parameter settings of genetic algorithms. They described a
Dynamic Parametric GA: a GA that uses a fuzzy knowledge-based system to
control GA parameters. They introduced a technique for automatically designing
and tuning the fuzzy knowledge-base system using GAs.
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Design of Sophisticated Fuzzy Logic Controllers using Genetic Algorithms
www.mech.gla.ac.uk/Research/Control/Publications/Rabstracts/abs94001.html

A paper by K.C. Ng and Y. Li, Faculty of Engineering, Glasgow University,
Scotland. It appeared in the Proceedings of the Third IEEE International Conference
on Fuzzy Systems, Orlando, FL, 1994, pp. 1708-1712. The authors developed
genetic algorithms for automatic design of high performance fuzzy logic control-
lers. The controller design space is coded in base-7 strings (chromosomes),
where each bit (gene) matches one of the 7 discrete fuzzy values. The developed
approach is subsequently applied to the design of a PI- type fuzzy controller for
a nonlinear water level control. The paper is available in PostScript format.

GA and Fuzzy Logic for Plant Control
www.supelec-rennes.fr/rennes/si/equipe/lme/PUBLI/ifsicc.pdf

A paper by N. Perrot et al. which appeared in the Proceedings of the Interna-
tional Conference on Fuzzy Systems and Intelligent Controls Conference,
IFSICC’96, Maui, Hawaii, April, 1996. The authors described a fuzzy controller
used for the automatic control of the crossflow microfiltration process of raw
cane sugar. The fuzzy controller was optimized off line using genetic algorithms
and neural networks.

Mixing Fuzzy, Neural and Genetic Algorithms
http://polimage.polito.it/~marcello/articoli/systems.man.pdf

A paper by M. Chiaberge, et al. It appeared in the Proceedings of the IEEE
Conference on Systems, Man and Cybernetics, Vancouver, B.C., October 1995,
pp. 2988--2993.  The authors outline the merits of hybrid neural and fuzzy
controllers and introduce the concept of Hierarchical Hybrid Fuzzy Controllers.
Genetic algorithms, role in control systems is explained and used for parameter
optimization.

Neural Chips and Evolvable Hardware
http://glendhu.com/ai/neuralchips/

This page provides links related to neural chips, including:

■ Vision Chips, Caltech: Chips modeled on the visual system of the fly. The
chip contains a  photosensitive array and processing circuitry all in one.

■ Morphing brains to silicon, University of Pennsylvania: neuromorphic
engineering techniques to build microprocessors closely modeled on biologi-
cal nervous systems.

■ ETL, Japan: A research group developing a self-reconfigurable neural
network chip.

■ The Learning Processor, Axeon Ltd: A company developing a microproces-
sor which contains 256 RISC-like processors in parallel on one chip.
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Symbols and Acronyms

{ }1 2 3, ,x x x … A set of elements 1 2 3, ,x x x …

( ){ }x p x A set determined by property p

ijx   Matrix

X Matrix

[ ],a b Closed interval of real numbers between a and b

[ ),a b Interval of real numbers, closed in a and open in b

[ ),a ∞ Set of real numbers greater than or equal to a

x X∈ Element x belongs to set X

x Y∉ Element x does not belong to set Y

A B⊂ A is a subset of B

A B⊄ A is not a subset of B

∅ Empty set

A Cardinality of set A

A B∪ Union of sets A and B

[ ]1 2max , ,x x … Maximum value of 1 2, ,x x …

∨ Maximum of

A B∩ Intersection of sets A and B

[ ]1 2min , ,x x … Minimum value of 1 2, ,x x …

∧ Minimum of

A¬ Complement of set A, also A

Aµ Membership function of fuzzy set A

Aµ Membership function of the complement of fuzzy set A
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Aα a-cut of set A

supp A Support of fuzzy set A

� Bounded difference

⊕ Bounded sum

A B→ A implies B

R Q� max-min composition of binary fuzzy relations P and Q

x y⇔ x if and only if y

iff if and only if

∀ For all

∃ There exists at least one

� Defined by

1

n

i
i

x
=
∑ Summation of 1 2 nx x x+ + +…

1

n

i
i

x
=

∏ Multiplication of 1 2 nx x x…

β Beta, common-emitter forward-current amplification factor

gm Transconductance

Op Amp Operational Amplifier

OTA Operational Transconductance Amplifier

BJT Bipolar Junction Transistor

MOS Metal Oxide Semiconductor

FET Field-Effect Transistor

MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor

CMOS Complementary symmetry MOS

BiMOS Bipolar-MOS

NMOS n-Channel MOS

IIL Current Injection Logic

TTL Transistor-Transistor Logic

PLC Programmable Logic Controller

PLD Programmable Logic Device
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CPLD Complex PLD

DSP Digital Signal Processing (Processor)

VLSI Very Large Scale Integration

IC Integrated Circuit

ASIC Application Specific Integrated Circuit

FPD Field Programmable Logic

GA Gate Array, Genetic Algorithm

CBIC Standard-Cells Based Integrated Circuits

FLC Fuzzy Logic Control (Controller)

FLIPS Fuzzy Logic Inferences Per Second

FF Flip-flop

ANN Artificial Neural Network (NN: Neural Network)

CAD Computer-Aided Design

D/A, DAC Digital-to-Analog Converter

A/D, ADC Analog-to-Digital Converter

ROM Read-Only Memory

RAM Random-Access Memory

SRAM Static Random Access Memory
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Circuit Symbols and MOSFETs

MOSFET is an acronym for Metal-Oxide-Semiconductor Field-Effect Transistor. These
devices are constructed with a semiconductor layer that is a wafer of a single crystal of
silicon, a layer of silicon dioxide, which is an insulator; and a metallic layer. An example of
a physical structure of a MOS transistor is shown in the figure below. The figure shows an
n-channel MOS, referred to as NMOS. It is common to use polycrystalline silicon instead
of the metal layer, yet the term MOS is still in use. A more general term that is sometimes
used is IGFET (insulated gate FET). The operation of the device is based on controlling the
conductance of the channel through the voltage applied at the gate. There are two types of
MOSFET: enhancement and deletion. In the enhancement-type, it is arranged that the gate
voltage can enhance the conductance by inducing more mobile charge carriers. In the
depletion-type it is arranged that the gate voltage can reduce the conductance by depleting
the channel of mobile charge carriers. These possible variations of the MOS devices have
led to a variety of circuit symbols being used. Furthermore, varied symbols are sometimes
used to mean the same thing contrary to the case of the BJT, where there are only two
symbols. This situation could confuse the uninitiated in trying to follow the various VLSI
schemes of implementing fuzzy logic and neural networks. Here, various symbols that
appeared in the cited literature are listed. Still, the reader may find some minor variations in
some of the literature. The following list is hoped to ease this difficulty.

Physical structure of enhancement-type NMOS transistor.

n+ n+
Channel region

p-type substrate
(Body)

Body (B)

Source (S) Gate (G) Drain (D)

Metal
Oxide
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n-Channel Enhancement Type

Standard

B

D

G

S

B

S

D

G

D

G

S

N

D

S

D

S

D

S

Simplified with substrate connected to source

Common for discrete circuits   Common for integrated circuits

Other symbols in use

G G

G
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p-Channel Enhancement Type

Standard

B

D
G

S

B

S

D

G

D

G

S

P

D

G

S

D

G

S

D

G

S

Simplified with substrate connected to source

Common for discrete circuits  Common for integrated circuits

Other symbols in use
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n-Channel Depletion Type

Standard

B

D

G

S

S

D

G

D

G

S

N

D

G

S

D

G

S

D

G

S

Other symbols in use

Simplified with substrate connected to source

Common for discrete circuits  Common for integrated circuits
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p-Channel Depletion Type

Standard

B

D

G

S

S

D

G

D

G

S

P

D

G

S

D

G

S

D

G

S

Other symbols in use

Simplified with substrate connected to source

Common for discrete circuits  Common for integrated circuits
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Glossary

ADALINE: An acronym for Adaptive Linear Element. An early neural network put
forward by Bernard Widrow and Ted Hoff in the 1960s. MADALINE is an
array of MANY ADALINE.

ADAPTIVE: A system that can be modified during operation to meet specified
criteria. Adaptation is sometimes used synonymously with learning.

ADAPTIVE FUZZY SYSTEM: A fuzzy system that does not require rules from a
human expert; it generates and tunes its own rules.

ALGORITHM (ALGORISM): A step-by-step procedure or a precisely defined set
of rules that provide a solution to a problem in a finite number of steps.
Alkhawarizmi (780-850 AD) wrote: with my two algorithms, one can solve
all problems – without error, if God will.

ANCIENT IF/THEN SYSTEM: A papyrus (~3000 BC ) purchased in a Luxor (Egypt)
antique shop by the Egyptologist Edwin Smith in 1882, that has 48 surgical
algorithms for the treatment of neural injuries. The algorithms have the form
of: symptom-diagnosis-treatment-prognosis expressed in IF/THEN format.

ANTECEDENT: The clause that implies the other clause in a conditional statement.
The initial, or the IF part of a fuzzy rule.

ARGUMENT: In logic, an argument is not a disagreement, but a piece of reasoning
with one or more premises and a conclusion. Arguments are usually divided
into two kinds, deductive and inductive.

An argument is sound iff it is valid and all of its premises are true. It is valid
iff it is not possible to have all true premisses and a false conclusion. Com-
mon valid arguments include:

MODUS PONENS

If p then q, p; therefore q.

MODUS TOLLENS

If p then q, not-p; therefore not-q.
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ART: Adaptive Resonance Theory: a self-organizing network. It was introduced
by Stephen Grossberg and Gail Carpenter. The first version, ART1, can
process only binary input patterns. The second version, ART2, can process
real input patterns. ART3 is an improved ART2 in which the processing is
more stable. ARTMAP is a supervised version of ART.

ARTIFICIAL NEURAL NETWORKS (ANN): A parallel distributed computing system
inspired by the human nervous system. They are referred to also as Elec-
tronic Neural Networks, or simply neural networks if there is no fear of
confusion with the biological one; the acronym NN is also commonly used.

ARTIFICIAL STUPIDITY: From a sociological point of view the term was defined by
T. R. Yong in his treatise: Structurally Stupid Societies: Exploration in
Artificial Stupidity, Red Feather Institute, No. 155, 1991. According to
Young, a society (and by extension a system) is naturally stupid when it
lacks the means to reflect on its own behavior and modify it in ways that
ensure the well-being of its members and the natural and social environment
upon which it depends for survival. A society is artificially stupid when it
has the means to reflect on its own behavior and ensure the well being of its
citizens, but fails to do so. In artificially stupid societies, the data are col-
lected, processed, and may even be used. However, such data are mediated
by structures that lead to stupidity. To be stupid, one must think locally and
act globally. Yong further defined a stupidity quotient, SQ test. He also
considered the advertising and public relations industries, where resources
are used to manufacture images in lieu of quality, to be the largest single
body of experts designing and promoting artificial stupidity. He also sug-
gested that ignorant systems do not have access to information; or having
access to information, do not have the means to process it. Dumb societies
are those in which most people are rendered silent. Young’s approach does
not lead to applications. One could say that, from an engineering point of
view, that artificial stupidity is the modeling of naturally or artificially stupid
systems (in Young’s sense) with the objective of predicting realistic out-
comes. For example, a system designed to emulate the behavior of a human
expert in a particular area could be used to predict the wrong decisions the
expert would make outside the field of expertise.

ASSEMBLER: A program that creates object code from a symbolic description of
instructions.

ASSOCIATIVE MEMORY: A system that stores data in parallel and recalls them
based on some feature of the data.

ASYNCHRONOUS: An event not coordinated with a clock.
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AXIOM: For mathematicians, an axiom is a statement or proposition that is
stipulated to be true and it is a convenient starting point. An assumption is a
statement that is taken to be true for the purpose of a particular argument, but
may not otherwise be accepted.

AXON: The output connection of the biological neuron over which signals are
sent to other neurons.

BACKPROPAGATION: A supervised learning algorithm for multilayer perceptrons. It
operates by calculating the value of the error function for a known input, then
backpropagating the error from one layer to the previous one. Each neuron
has its weights adjusted so that it reduces the value of the error function until
a stable state is reached.

BASINS OF ATTRACTION: The valleys of the energy surface of a neural network.
The energy surface is a graph of the energy function vs. weights, with the
energy function being a measure of the amount by which the input differs
from the desired output. Thus, the basins of attraction give all possible
solutions, i.e., values of weights that produce correct output for a given
input.

BIOS: Basic Input/Output System. Low-level operating software in a computer
system.

It is the first program that runs on a PC each time it is turned on. It first
determines which peripherals are in place and operational. Then it loads the
operating system or its crucial parts into RAM from the hard disk or disk
drive.

BOLTZMANN MACHINE: A neural network algorithm that is based on statistical
mechanics. It uses simulated annealing to reach stable states.

CACHE MEMORY: A small memory that holds copies of frequently-accessed
memory locations for fast access.

CARDINALITY: The cardinality of a set is the number of elements in the set,
intuitively the size or magnitude of the set.

CMOS: Complementary metal oxide semiconductor, commonly used in VLSI
(Very Large Scale Integration) technology. It is a combination of a n-channel
and a p-channel MOS in a single circuit. It has very low power consumption.

COMPARATOR: An electronic circuit that has two inputs and one output. The
output is zero, positive, or negative depending on whether the input is equal
to, greater than, or smaller than a reference input.
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COMPENSATORY OPERATORS: Non-Zadeh operators, i.e., operators not defined by
simple min-max rules. They fall into two general categories: the first encom-
passes operators based on simple arithmetic transformations, such as the
bounded sum and difference. The second encompasses operators based on
more complex functional transformations, such as Yager operators.

COMPETITIVE LEARNING: A learning algorithm that requires neurons to compete
with each other in adjusting their weights. The neuron with the maximum
output and its neighbors are allowed to adjust their weights. The concept is
sometimes referred to as winner take all.

COMPREHENSIVE INFORMATION THEORY: The traditional Information Theory
(Shannon Theory) is concerned with formal features of the stimulus, the
meaning and values are ignored. Information is defined in terms of negative
entropy that is purely statistical in nature. The Comprehensive Information
Theory, CIT, put forward by Y. X. Zhong in the 1990’s addresses this defi-
ciency in Shannon Theory. CIT is defined as being composed of three
factors: syntactic, semantic, and pragmatic. The syntactic information on the
stimulus is concerned with its formal factor, the semantic with the meaning
factor, and the pragmatic with the value factor. The syntactic information
could be either statistical or fuzzy depending on the stimulus considered. The
Comprehensive Information Theory can in general be expressed in a matrix
of the form: [X, C, T, U]. Shannon theory can be considered a special case of
CIT.

CONCLUSION: The result of an argument or inference.

CONNECTIONISM: Viewed by some as a movement in cognitive science to model
the brain based on interconnection of many simple units forming an artificial
neural network to produce complex behavior. The history of connectionism,
however, spans a wide range of disciplines over a number of centuries.
Modern philosophers are interested in connectionism because of its promise
to provide an alternative to the view that the mind is similar to a digital
computer processing symbolic language. However, dynamic systems theo-
rists and symbolicists have put forward numerous critiques of connectionism.
Landmarks in the modern history of connectionism include: the seminal
contribution by Waren McCulloch and Walter Pitts, A Logical Calculus of
Ideas Immanent in Nervous Activity published in 1943; the discovery of the
so-called perceptron convergence procedure to train a two-layer network by
Frank Rosenblatt in 1960’s; the critique of neural networks by Marvin
Minsky and Seymour Papert published in 1969 which is considered a major
cause for the decline in neural networks research during the 1970’s; the work
of Geoffrey Hinton, James McCelland, David Rumelhart, Paul Smolensky, and
other members of the parallel Distributed Processing Research Group in the
1980’s to which the revival of the popularity of neural networks is attributed.
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CONNECTION WEIGHT: In an artificial neural network the connection weight
simulates the strength of the synaptic connection to a neuron. Learning leads
to correctly adjusting the connection weights in the network.

CONSEQUENT (SUCCEDENT): The resultant clause in a conditional statement. The
final or the THEN part of a fuzzy rule.

CO-PROCESSOR: An optional unit added to a CPU that is responsible for execut-
ing some of the CPU’s instructions.

CRISP SET: A set that does not allow degrees of membership; an item is either a
member or not. It is also referred to as a classical set. All sets are subsets of
the universal set (mother of all sets).

DATA CLUSTERING: A technique in which objects that have similar characteristics
form a cluster. The criterion for determining similarity is implementation
dependent. Clustering is different from classification where objects are
assigned to pre-defined classes. In clustering, the classes are to be defined.
Data clustering could increase the efficiency of a database if the information
that is logically similar is physically stored together.

DATA MINING: The process of discovering meaningful and useful new correla-
tions, patterns, or trends in large amounts of data using pattern recognition
techniques including neural networks.

DEFUZZIFICATION: The process of determining the best crisp representation of a
given fuzzy set.

DEGREE OF MEMBERSHIP: An expression of the confidence or certainty that an
element belongs to a fuzzy set. It is a number that ranges from zero to one.
Membership degrees are not probabilities and they do not have to add up to one.

DIGITAL SIGNAL PROCESSOR (DSP): A microprocessor whose architecture is
optimized for digital signal processing applications.

DILEMMA: In logic, a dilemma is a choice in which there are only two options.
One can refute a dilemma by finding a third possibility.

EMBEDDED COMPUTER SYSTEM: A computing system used to implement some
functionality other than that of general-purpose computers, such as a laptop
or a desktop computer. A distributed embedded system is an embedded
system built around a network.

EPROM: Erasable PROM; a programmable read-only memory that can be
erased and reprogrammed.

EXCLUDED MIDDLE LAW: The principle that every proposition is either true or
false. The principle leads to classical set theory. Fuzzy logic and fuzzy sets
do not obey this law, since fuzzy sets allow partial membership.
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FIRING STRENGTH: The degree to which the antecedent of a particular fuzzy rule
is satisfied. It determines the degree to which the rule constitutes the net
outcome.

FPGA: Field-Programmable Gate Array. An integrated circuit that can be
programmed by the user and that provides multilevel logic.

FUZZIFICATION: The process of converting a crisp number or set to a fuzzy
number or set.

FUZZY CONTROL: A control system in which  the controller is based on an algo-
rithm composed of IF/THEN rules. Since more than one rule may fire (the
conditions for their applicability occurs) with varied strength at the same
time, a defuzzification process follows to generate a crisp control action.

FUZZY C-MEANS: A data clustering technique in which each data point belongs to
a cluster to a degree specified by a membership function.

FUZZY ENTROPY: A measure of the fuzziness of a set. The more a set resembles
its negation, the greater its fuzzy entropy, and the fuzzier it is.

FUZZY INFERENCE: The process of mapping an input space to an output space
using fuzzy reasoning. Various types of inference processing have been
suggested and used, including:

Mamdani-type inference in which the fuzzy sets from the consequent of
each rule are combined through the aggregation operator and the resulting
fuzzy set is defuzzified to yield the output of the system.

Sugeno-type inference (sometimes referred to as Takagi-Sugeno-Kang, TSK,
method) in which the consequent of each rule is a linear combination of the
inputs. The output is a weighted linear combination of the consequents. It
does not involve a defuzzification process.

FUZZY LOGIC: A scheme of systematic analysis that uses linguistic variables,
such as hot, cold, very, little, large, small, etc., as opposed to Boolean or
binary logic, which is restricted to true or false states. The objective of the
scheme is to enable the computer to make human-like decisions.

FUZZY MODIFIER: An added description of a fuzzy set, such as very, very very,
that leads to an operation that changes the shape (mainly the width and
position) of a membership function.

FUZZY OPERATORS: Operators that combine fuzzy antecedents to produce truth
values. Zadeh defined fuzzy operators in terms of min-max rules. Several
other methods of definition exist: the alternatively defined operators are
referred to as non-Zadeh operators or compensatory operators.
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FUZZY SET: A set that allows elements to have a degree of membership ranging
from one to zero. The objective is to define precisely what is intrinsically
vague. A crisp set allows only two values of membership, either one or zero.
An ultra-fuzzy set has its membership function itself as a fuzzy set.

GENERALIZATION: In neural networks, it is the ability of the network to respond
correctly to new input patterns to which the network was not trained, e.g.
corrupted patterns. The ability to generalize a feature that distinguishes
training from programming a system.

GÖDEL’S THEOREM: The crucial result of Gödel’s theorem (after Kurt Gödel
(1906-78)) is that within any given branch of mathematics there would
always be some propositions that couldn’t be proven either true or false using
the rules and axioms of that mathematical branch itself. The implication is
that all logical systems of any complexity are incomplete; each of them
contains more true statements than it can possibly prove according to its own
defining set of rules. An external audit is required! It also implies that the
logicist doctrine of the deductibility of all mathematics from the axioms of
logic is false. Gödel’s Theorem has been used to suggest that no computa-
tional machine can ever be as intelligent as humans because the extent of its
knowledge is limited by a fixed set of axioms. Humans, contrary to the
computational machines we envision now, can discover truths  previously
unknown to them. The theorem has been taken also to imply that one will
never entirely understand oneself, since one’s brain can only be sure of what
it knows about itself by relying on what it knows about itself.

HARDWARE\SOFTWARE CO-DESIGN: The simultaneous design of hardware and
software components to meet system requirements.

HARVARD ARCHITECTURE: A processor architecture in which program and data
storage address spaces are separate.

HEDGES: Linguistic terms that intensify, dilute, or complement a fuzzy set.

HOPFIELD NETWORK: A single-layer that consists of a number of neurons (nodes);
each is connected to every other neuron. The weights on the link from one
neuron to another are the same in both directions. The network takes only
two-state inputs.

HYPER- A prefix to indicate that the geometrical form to follow is multi-dimen-
sional.

HYPER-CUBE: A cube in an n-dimensional space. A crisp set defines a corner of a
unit hyper-cube, while a fuzzy set defines a point inside the hyper-cube.
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ISOTOPIC ENGINEERING: A concept put forward by A. A. Berezin in the 1980’s
that refers to purposefully redistributing the stable isotopes occurring natu-
rally in materials for information storage and processing.

JIT COMPILER: Just-In-Time compiler. Compiles program sections on demand
during execution.

KOHONEN NETWORK: A self-organizing neural network. All the neurons are in one
two-dimensional layer or grid with inputs connected to every neuron. Every
neuron is connected laterally to its immediate neighbours.

LATIN PHRASES & ABBREVIATIONS:

i.e. (id est): that is, in other words.
e.g. (exampli gratia): for example.
viz. (videlicet): namely
vs. (versus): against.
etc. (et cetera): and so forth.
et al. (et alii): and others.
N. B. (nota bene): note well.
cf. (conferre): compare.
q.v. (quod vide): see reference.
QED (quod erat demonstrandum): that which was to be proven.
ad hoc: arranged for this purpose.
ad infinitum: to infinity.
a posteriori: from effect to cause.
a priori: already known.
ab initio: from the beginning.
de facto: in reality.
ergo: therefore.
in situ: in its original place.
modus operandi: a characteristic method of work.
per se: in and by itself.
verbatim: word-for-word.

LEARNING LAW: The rule used during training of a neural network for systematic
updating of their weights.

LINGUISTIC VARIABLE: Common language expression used to describe a condition
or a situation, such as hot, cold, etc. It can be expressed using a fuzzy set
defined by the designer.

LOGIC: The investigation (and application) of correct and reliable reasoning and
inference.
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MANY-VALUED LOGIC: Many-valued logics are non-classical logics. They are
similar to classical logic in the sense that they employ the principle of truth
functionality. They differ from classical logic by allowing truth degrees.
Fuzzy logic is in a way a many-valued logic that, through the use of linguis-
tic modeling, led to industrial and business applications.

MEMBERSHIP FUNCTION: The mapping that associates each element in a set with
its degree of membership. It can be expressed as discrete values or as a
continuous function. Triangular and  trapezoidal membership functions are
commonly used for defining continuous membership functions.

MICROCONTROLLER: A microprocessor designed specifically for embedded
systems application. Microcontrollers typically include a CPU (central
processing unit), memory, and other peripherals on the same chip.

MOORE’S LAW: The gist of the so-called Moore’s law is that the number of
transistors in integrated circuits increases many times every year. There are
various versions and amendments to the actual statement put forward over
the years. The original statement was an observation made in 1965 in an
article for Electronics magazine by Gordon Moore to the effect that the
number of the transistors per square inch had doubled since the integrated
circuit was invented. He predicted that the trend would continue for the next
ten years. (At the time, he was the Head of R&D at Fairchild Semiconductor
Corp and in 1968 he and Robert Noyce founded Intel, then he became the
Chair Emeritus since 1997.) In 1975, Gordon Moore amended the statement
to say that the doubling would occur every two years. The present version is
that the data density doubles every 18 months. The statement has also been
expressed as: (bits per square inch) = 2(t–1962), where t is time in years. Some
view Moore’s law as a self-fulfilling prophecy.  It puts pressure on semicon-
ductor manufactures to strive to meet the predictions for fear that the
competition would do that first. One can think of it as a statement of mission
rather than a law of nature.

Increased density of transistors leads to increased processing speed, but also
results in increased power consumption and hence the generation of exces-
sive amounts of heat. Manufacturers may have to change circuit design to
reduce the standard voltage used, a task that is not simple.

A survey of the IEEE Fellow Members on Technology Trends that appeared
in the January 2003 issue of the IEEE Spectrum included the question: How
long do you think Moore’s law (doubling integrated circuit transistor density
every 18 months) will continue to hold true? About 52% of the respondents
selected 5-10 years, about 31% selected less than 5 years, and  the rest
selected more than 10 years. Since no technical reasons were given for such
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predictions nothing is confirmed, one can only muse at the results as is the
case in many surveys of similar nature. They, however, confirm and expand
on  Ernest Rutherford’s observation that the only possible conclusion the
social sciences can draw is: some do, some don’t.

There are, of course, physical limits on how small a transistor structure can
be without having to deal with quantum effects. Joel Birnhaum (Hewlett-
Packard senior vice president of R&D) was quoted to say: in 2010 we will
run into the physical limitation of having a fraction of an electron show up
at the gate to switch the state of the transistor. Nevertheless, it has been
argued that there are ways to increase the number of transistors without
reaching physical limits. Employing wider chips is one possibility, thicker
chips is another. On should expect, or even hope for our own progress, that
fundamentally new technologies will emerge changing the nature of comput-
ing and rendering Moore’s law irrelevant, just a historic curiosity. One
should remember that perfecting the fabrication of the vacuum tube was
interrupted by the invention of the transistor. The law would survive longer if
amended further to imply the doubling (or n-tupling, with the value of n to
be determined) of the computing device. Some believe that it is economy, not
physics or technology, that will invalidate Moore’s law in any of its forms.
The shrinking return on investment will reduce the commercial appeal of
technological advances.

NANO-TECHNOLOGY: Technology development at the atomic, molecular or
macromolecular levels, in the length scale of approximately 1-100 nanometer
range to create and use structures, devices and systems that have novel
properties and functions.

NEURON: The biological neuron is a basic cell of the nervous system. The den-
drites function as its inputs, the axon functions as its output, and the synapse
is the junction between the axon of one neuron and the dendrite of another.
When a neuron is stimulated at the dendrite, it sums up the incoming poten-
tials. If the sum is high enough, it sends an action potential down the axon.
The operation is modeled in an electronic neural network by a processing
element, PE, that performs a weighted summation and has a threshold and a
sigmoid-type transfer function. In an artificial neural network the processing
unit that models the biological neuron may be referred to as a node, neurode,
or simply a neuron if no confusion with the biological one is feared.

OBJECT CODE: A program in binary code.

PERCEPTRON: A single-layer neural network that performed the first training
algorithm. It can solve only linearly separable problems.
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PID CONTOLLER: A cascade control device inserted in the forward path of a
feedback control system. Its input is the error signal and its output is the
control action. It consists of three control terms: proportional, integral, and
derivative. Increasing the gain of the proportional term increases the speed of
the system’s response and reduces the steady state error, but tends to destabi-
lize the system. The integral term can remove the steady-state error, but tends
to destabilize the system because of the extra phase lag it introduces. The
derivative term speeds up the transient response; it introduces a phase-lead
and thus has a stabilizing effect.

PROCESSOR-INDEPENDENT: A piece of software that is independent of the processor
on which it will run. Software written in a high level-language such as C/
C++ can be made largely processor-independent, by rigorous design for
portability while software written in assembly language is processor-depen-
dent. Java is an example of a truly processor-independent language.

RAM: Random Access Memory. A broad classification of memory devices that
includes all devices in which individual memory locations are accessible for
reading and writing.

RISC: Reduced Instruction Set Computer. It describes the architecture of a
microprocessor family that generally features fixed-length op-codes, a load-
store memory architecture, and a large number of general-purpose registers.

ROM: Read Only Memory. A memory with fixed contents.

QUANTUM COMPUTING: A suggested mode of computing that is based on the
principles of quantum physics which allow a particle, e.g., an electron, to
exist in multiple states at the same time. The two most relevant aspects of
quantum physics are the principles of superposition and entanglement. If
quantum computing becomes practical, computing performance would
achieve billion-fold gains. Centers of research in this area include: Oxford
University, IBM, Los Alamos National Laboratory, and MIT.

SIMULATED ANNEALING: The process of introducing random noise to the weights
and inputs of a neural network then gradually reducing it. The concept is
similar to that of metallurgical annealing where the system starts with a high
temperature to avoid local energy minima, and then gradually the tempera-
ture is lowered according to a particular algorithm.

SINGLETON: A set that has only one member.

SMART MATERIALS & STRUCTURES: Smart, intelligent, active, or adaptive materi-
als are terms sometimes used interchangeably. They refer to materials that
can sense external stimuli and respond with active control to those stimuli in
real or near-real time. Smart materials are characterized by abrupt change
once the material reaches its transformation temperature. The so-called shape
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memory alloy has the ability to revert to its trained shape when heated to its
transformation temperature, the ability to be trained several times to different
shapes and the ability to recover completely from a plastic deformation.
Smart structural systems rely on embedded functions of sensors, actuators
and processors, that can automatically adjust structural characteristics in
response to the change in external disturbance and environments, thus giving
the structure a degree of autonomy. Smart structure actuators include shape
memory alloys, piezoelectric and electrostrictive ceramics, magnetostrictive
materials, and electro- and magneto-rheological fluids and elastomers.
Combining the concepts of smart structures, neural networks, and fuzzy
logic could lead to powerful applications.

SOFT COMPUTING: Computing that is tolerant of imprecision, uncertainty, partial
truth, and approximation. Its role model is the human mind. It includes fuzzy
logic, neural computing, evolutionary computing, machine learning, and
probabilistic reasoning.

SOS: System-On-Silicon. A single-chip system that includes computation,
memory, and I/O.

STABILITY-PLASTICITY PROBLEM: The situation when a neural network is not able
to learn new information without the destruction of previous learning; a time-
consuming retraining will be needed every time new information is to be
learned. ART networks solved this problem.

T-CONORM: It is also known as S-NORM. It is a two-input function that describes a
superset of fuzzy union operators, including maximum, and algebraic sum.

T-NORM: A two-input function that describes a superset of fuzzy intersection
operators, including minimum, and algebraic product.

TRUTH FUNCTIONALITY: The principle that the truth of a compound sentence is
determined by the truth values of its component sentences. Thus, it remains
unaffected when one of its component sentences is replaced by another that
has the same truth value.

TURING’S TEST: The Turing test (after Alan Turing (1912–54)) consists of a
human being, A,  with a typewriter-like or TV-like terminal with which A can
communicate with two sources unknown to him: B and C. One source is
controlled by a machine and the other by a human unknown to A. A has to
determine which of B and C is controlled by the machine and which is
controlled by the human. If A cannot distinguish one from the other with
accuracy significantly higher than 50%, and if the results persist regardless of
what individuals are involved in the experiment, then one can say that the
machine has simulated human intelligence.



Glossary

287

VON NEUMANN ARCHITECTURE: A processor architecture that stores instructions
and data in the same address space.
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Fuzzy Logic Designer software, 86
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71-72
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washing machine example, 83-88

control rules for, 86
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Wilamowski et al., 184
Wilson current mirror, 172
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