


Alpha Science International Ltd.
Oxford, U.K.

α

D. S. Hooda
Vivek Raich

Fuzzy Logic Models 
and Fuzzy Control

An Introduction



D. S. Hooda
Former PVC, Kurukshetra Univesity 
Honorary Professor (Mathematics) 
GJ University of Science & Technology Hisar
and adviser (R) to ABV university Bhopal

Vivek Raich
Department of Mathematics
Govt. Holkar Science College
Indore

Copyright © 2017 

ALPHA SCIENCE INTERNATIONAL LTD.

7200 The Quorum, Oxford Business Park North
Garsington Road, Oxford OX4 2JZ, U.K.

www.alphasci.com

ISBN  978-1-78332-281-7

Printed from the camera-ready copy provided by the Author.

All rights reserved. No part of this publication may be reproduced, stored in 
a retrieval system, or transmitted in any form or by any means, electronic,  
mechanical, photocopying, recording or otherwise, without prior written  
permission of the publisher.

Fuzzy Logic Models and Fuzzy Control
An Introduction

408 pgs.

ajay
Typewritten Text
E-ISBN 978-1-78332-326-5



Fuzzy control has increased tremendous interest in applications over the past few years and 
also among control equipment. The present book titled “Fuzzy Logic Models and Fuzzy Con-
trol: An Introduction” has been written to meet these inspirations. It consists of total nine chap-
ters: First three chapters are related to fuzzy set theory, fuzzy logic, fuzzy systems and models, 
while next six chapters deal with design and analysis methodology of fuzzy control. However, 
it should be clear that such a universal theory does not exist for conventional control engineer-
ing either, so we have to proceed from a few isolated spots where we already know exactly how 
to design a fuzzy control algorithm to clusters of problems and related design methodologies.

Thus, we have tried to structure this book to make it a text book for control engineering cover-
ing just the relevant part of the theory and focussing on the principles of fuzzy control rather 
than particular applications or tools. Starting with relevant mathematics including fuzzy set 
theory, fuzzy logic and models, we go to design parameters and choices and discuss fuzzy 
control in control engineering terms such as linear, non-linear, adaptive control and stability 
criteria. 

The book explicitly aimed at readers from B. Tech./ M.Tech  engineering students who want 
to study fuzzy control as elective course. It contains the following nine chapters:  Chapter 1 
Fuzzy Set and Fuzzy Numbers; Chapter 2 Fuzzy logic and Fuzzy Systems; Chapter 3 Fuzzy 
System Models; Chapter 4 Fuzzy Control; Chapter 5 Fuzzy Knowledge Base Control (KFBC);  
Chapter 6 Adaptive Fuzzy Control; Chapter 7 Non-linear Fuzzy Control; Chapter-8 Stability of 
Fuzzy Control Systems, and Chaper 9 Fuzzy Control System Model.

D. S. Hooda
Vivek Raich
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Chapter-1 

Fuzzy Sets and Fuzzy Numbers 

1.1 BASIC CONCEPTS AND DEFINITIONS 

Only in 20th century, mathematicians defined the concepts of sets and functions to represent 

problems. In many circumstances the solution using this concept are meaningless. This 

difficulty was overcome by the fuzzy concept. Almost all mathematical, engineering, 

medicine etc. concepts have been redefined using fuzzy set. It essentially prepares the teacher 

as well as student in the use of fuzzy sets. Basic definition of crisp sets properties of α-cuts, 

representation of fuzzy sets, operations on fuzzy sets. These help in providing a more general 

appreciation of what has been done with fuzzy sets and applied in problems related to various 

areas. It also helps in providing an integrated view of extension principle for fuzzy sets. In 

this chapter we are going to introduce the Basic Definition of Fuzzy set, types of Fuzzy sets 

and Notation, Operations on Fuzzy sets, α-Cuts and Properties, Interval valued Fuzzy Set and 

Arithmetic of Fuzzy numbers for more details refer to [Klier and Yuan (1995) and Lee 

(2005)].  

In real world, the complexity generally arises from uncertainty in the form of ambiguity. The 

probability theory has been an old age and effective tool to handle uncertainty, but it can be 

applied only to situations whose characteristics are based on random processes, i.e., processes 

in which the occurrence of events is strictly determined by chance. Uncertainty may arise due 

to partial information about the problem, or due to information which is not fully reliable, or 

due to inherent imprecision in the language with which the problem is defined or due to 

receipt of information from more than one source. Fuzzy set theory is an excellent 

mathematical tool to handle the uncertainty arising due to vagueness. In 1965, Lotfi A. Zadeh 

propounded the fuzzy set theory in his paper. 

A set A can be equivalently represented by its characteristic function i.e. A mapping A  from 

the universe of discourse (i.e. region of consideration is a large set) containing A to the set

 0,1 ; equivalently, x A  iff ( )A x  = 1. 

In “fuzzy” case “belonging to” relation ( )A x between x and A is no longer “0 or 1” But it 

has a degree of “belonging to” i.e. membership degree such as 0.6. Therefore, the range has 

to extend from set {0, 1} to interval [0, 1]. 
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1.1.1 Crisp Set 

The study of sets and their use in the foundation of mathematics was just begun before the 

turn of the century by Cantor (1845-1918), Russel, Frege and others. The theory of sets 

developed by Cantor has not only influenced and enriched almost every branch of 

mathematics but also has helped to clarify the relation between mathematics and philosophy. 

The basic idea of a set is the origin point in the study of modern algebra. 

Well-defined and distinct collection of objects is called Set. 

The words aggregate, class or collection are also used in place of the word “set”. But the use 

of the word set is common. In general capital letters like A, B, C, D…….etc are used to 

denote the sets and lower letters a, b, c, d………to denote the objects or elements belonging 

to these sets. We express the relation between an object and a set to which it belongs by 

writing, a  A. There are three basic methods by which sets can be represented. 

(i) List method-   1 2 3, , ,...., nA a a a a . 

(ii) Set builder form (Rule method)-  

 A = {x | P(x)}, where P(x) means “x has the property P” 

(iii) A characteristic function ( )A x  that declares which elements of X  are members of 

the set and which are not and that is represented as follows: 

 
1, when

( )
0, when ,

A

x A
x

x A



 


 

which is formally expressed by ( ) : [0,1]A x X  . 

1.1.2 Operations on Crisp Set. 
Union – If A and B are two non-empty sets then A  B defined as 

 A  B = {x  X | x  A or x  B}. 

 For a family of sets {Ai | iN}, this is defined as 

 Ai = {x | x  Ai for some i N}. 

Intersection - If A and B are two non-empty sets then A  B defined as 

A  B = {x  X | x A and x  B}. 

 For a family of sets {Ai | iN} is defined as 

  Ai = {x | xAi for all i N}. 

Complement of A- It is denoted by Ac and defined as 

 Ac = {x  X | x  A}. 

(i) (Ac)c =A (ii) c = X (iii) Xc =  



Fuzzy Sets and Fuzzy Numbers | 1.3 

 

1.1.3  Properties of operations on Crisp Set 

Basic properties of union, intersection and complements are summarizing in the table-1.1, if 

A, B, C  P(X) 

Table-1.1 Properties of operations on Crisp set 

1. Involution (Ac)c =A 

2. Commutative property AB = BA; AB = BA 

3. Associative, property (AB) C= A( BC) 

  (AB) C = A(BC) 

4. Distributive, property A(B C) = (AB)  ( AC) 

  A(B C) = (AB)  (AC) 

5. Idempotent, property AA = A , A  A = A 

6. Absorption, property A(A B) = A, A (AB) = A 

7. Absorption by, X and  AX = X, A =  

8. Identity  A = A, Ax = A 

9. Law of contradiction A Ac =  

10. Law of excluded  A  Ac = X 

11. De-Morgan’s law (A B)c = AcBc, (A B)c = AcBc 

 

1.1.4  Convex Set 

Definition. The term convex is applicable to a set A in 
n (n – dimensional Euclidian vector 

space) if the followings are satisfied. 

 

 

 

Figure 1.1: Convex sets 1 2 3, ,A A A  and non-convex sets 4 5 6, ,A A A  in 
2  
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(i) Two arbitrary points s  and r  are defined in A  

   : : .i n i nr r i N s s i N     ( N  is a set of positive integers) 

(ii) For arbitrary real number   between 0  and 1 , point t  is involved in A , where t  

is  (1 ) : .i i nt r s i N       

In other words, if every point on the line connecting two point’s s and r in A is also in A. 

(Fig.1.1) shows some examples of convex and non-convex sets. 

1.1.5  Sets as Points in Hypercubes 

There is an interesting geometric analog for illustrating the idea of set membership (Kosko, 

1992). Heretofore we have described a fuzzy set A  defined on a universe X. For a universe 

with only one element, the membership function is defined on the unit interval [0, 1]; for a 

two-element universe, the membership function is defined on the unit square; and for a three-

element universe, the membership function is defined on the unit cube. All of these situations 

are shown in Fig. 1.2. For a universe of n elements we define the membership on the unit 

hypercube,  0, 1 .
nnI   

The endpoints on the unit interval in Fig. 1.2(a), and the vertices of the unit square and the 

unit cube in Figs. 1.2(b) and 1.2(c), respectively, represent the possible crisp subsets, or 

collections, of the elements of the universe in each figure. This collection of possible crisp 

(non-fuzzy) subsets of elements in a universe constitutes the power set of the universe. For 

example, in Fig. 1.2(c) the universe comprises three elements,  1 2 3, , .X x x x  The point (0, 

0, 1) represents the crisp subset in 3-space, where 1x  and 2x  have no membership and 

element 3x  has full membership, i.e., the subset { 2x }; the point (1, 1, 0) is the crisp subset 

where 1x  and 2x  have full membership and element 3x  has no membership, i.e., the subset {

1x , 2x }; and so on for the other six vertices in Fig. 1.2(c). In general, there are 2n subsets in 

the power set of a universe with n elements; geometrically, this universe is represented by a 

hypercube in n-space, where 2n vertices represent the collection of sets constituting the 

power set. Two points in the diagrams bear special note, as illustrated in Fig. 1.2(c). In this 

figure the point (1, 1, 1), where all elements in the universe have full membership, is called 

the whole set, X, and the point (0, 0, 0), where all elements in the universe have no 

membership, is called the null set,  . 
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Figure 1.2: Sets as points 

The centroids of each of the diagrams in Fig. 1.2 represent single points where the 

membership value for each element in the universe equals. For example, the point in Fig. 

1.2(b) is in the midpoint of the square. This midpoint in each of the three figures is a special 

point – it is the set of maximum ‘‘fuzziness.’’ A membership value of indicates that the 

element belongs to the fuzzy set as much as it does not – that is, it holds equal membership in 

both the fuzzy set and its complement. In a geometric sense, this point is the location in the 

space that is farthest from any of the vertices and yet equidistant from all of them. In fact, all 

points interior to the vertices of the spaces represented in below Figure represent fuzzy sets, 

where the membership value of each variable is a number between 0 and 1. For example, in 
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Fig. 1.2(b), the point represents a fuzzy set where variable 1x  has a 0.25 degree of 

membership in the set and variable 2x  has a 0.75 degree of membership in the set. It is 

obvious by inspection of the diagrams in Figure 1.2 that although the number of subsets in a 

power set is enumerated by 2n vertices, yet the number of fuzzy sets on the universe is 

infinite as represented by the infinite number of points on the interior of each space. 

The concept of a fuzzy set is an extension of the concept of a crisp set. Just as a crisp set on a 

universal set X is defined by its characteristic function while X to {0, 1}, while a fuzzy set on 

a domain X is defined by its membership function from X to [0, 1]. 

Definition1. Let X  be a non-empty set (called the universal set or the universe of discourse 

or simply domain). A fuzzy set 𝐴 is a subset of X  and is defined as 

 
      ( ) : 0,1 ;i A i A i iA x x x x X      , 

where ( )A ix represents the degree of membership and is defined as 

𝜇𝐴 (𝑥𝑖) = {

0, 𝑖𝑓 𝑥𝑖 ∈ 𝐴 𝑎𝑛𝑑 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑛𝑜 𝑎𝑚𝑏𝑖𝑔𝑢𝑖𝑡𝑦
1  𝑖𝑓 𝑥𝑖 ∈ 𝐴 𝑎𝑛𝑑 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑛𝑜 𝑎𝑚𝑏𝑖𝑔𝑢𝑖𝑡𝑦

0.5, 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑎𝑚𝑏𝑖𝑔𝑢𝑖𝑡𝑦 𝑤ℎ𝑒𝑡ℎ𝑒𝑟  𝑥𝑖 ∈ 𝐴 𝑜𝑟  𝑥𝑖 ∈ 𝐴  
 

 

Important Remark: Generally to distinguish Crisp set and Fuzzy set A is used in place of A. 

But for the simplicity of typing throughout the text we shall use A in place of Ã to represent 

fuzzy set. 

Definition2. Let X  be a domain. The set of all fuzzy sets on X denoted by FS (x) is called 

Fuzzy power set of X.  

1.1.6 Representation of a Fuzzy Set 

A fuzzy set can be represented by the following ways  

(A) Fuzzy set A on X can be represented by, set of ordered pair as follow. 

 A = {(x, μÃ (x)) : x  X} 

(B) In case if the domain is finite fuzzy set A =  μA (xi) / xi. 

For example if A (a) = 0, A (b) = 0.7, A (c) = 0.4 and A (d) = 1. Then, fuzzy set A can be 

written as A= {(a, 0), {(b, 0.7), (c, 0.4), (d, 1)}  

 or A = 0/a + 0.7/b + 0.4/c + 1/d.  

The symbol  and the symbol + in the above notation stand for union of all μA (x) / x 

(C) In case the domain is continuous A=  A(X) / x. 

(D) A   “real numbers close to 10” 
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     
1

2, ( ) : ( ) 1 ( 10)A AA x x x x 


    .  

As shown in fig. 1.3. 

 

 

Figure 1.3: Real numbers close to 10 

Example 1.1.1 Consider fuzzy set ‘two or so’. In this instance, universal set X is the positive 

real numbers. 

  , , , , , ,....X a b c d e f  

Membership function for A =’two or so’ in this universal set X is given as follows: 

 ( ) 1, ( ) 1, ( ) 0.5, ( ) 0....A A A Aa b c d         

 

   

Figure 1.4: Graphical representation of crisp set 
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Figure 1.5: Graphical representation of fuzzy set 

Usually, if elements are discrete as the above, it is possible to have membership degree or 

grade as 

  ( ,1.0), ( ,1.0), ( ,0.5)A a b c  or 1.0 1.0 0.5.A a b c    

Example1.1.2 Let’s define a fuzzy set A = {real number near 0}. The boundary for set “real 

number near 0” is pretty ambiguous. The possibility of real number x to be a member of 

prescribed set can be defined by the following membership function. 

 
2

1
( )

1
A x

x
 


. 

 

 

Figure 1.6: Membership function of fuzzy set “real number near 0” 

 

Fig. 1.6 shows this membership function. We can also write the fuzzy set with the function. 

The membership degree of 1 is 0.5, the possibility of 2 is 0.2 and that of 3 is 0.1. 
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1.2 TYPES OF FUZZY SETS  

(i) Interval-Valued Fuzzy Sets. A membership function based on the approach that 

does not assign to each element of the universal set to one real number, but a closed 

interval of real numbers between the identified lower and upper bounds. Fuzzy sets 

defined by membership function of this type are called interval-valued fuzzy sets. 

These sets are defined as follows 

A: X  ([0, 1]), 

where P ([ 0, 1 ]) denote the family of all closed intervals of real numbers in [0, 1]. 

(ii) Fuzzy Sets of Type-2. We can generalize interval-valued fuzzy sets by allotting their 

intervals to be fuzzy. Each internal now becomes an ordinary fuzzy set defined 

within the universal set [0, 1]. The membership grades assigned to elements of the 

universal set by these generalized fuzzy sets are ordinary fuzzy set. These sets are 

known as 'fuzzy set of type-2. The membership function of this type of set having the 

following form 

A: X P ([0 1]) where P ([0 1]) denotes the set of all ordinary fuzzy sets that can be 

defined within the universal set [0, 1]. 

The set P ([0, 1]) is also called a fuzzy power set of [0, 1]. 

(iii) L-Fuzzy Sets. When we relax the requirement that the membership grades must be 

represented by numbers in the unit interval [0, 1] and allow them to be represented by 

symbols of an arbitrary set L, i.e., at least partially ordered, we obtain L-fuzzy set 

The membership function of L-fuzzy set have the following form 

A: X L 

(iv) Level-2 Fuzzy Sets. The generalization of ordinary fuzzy sets involves fuzzy sets 

defined within a universal set whose elements are ordinary fuzzy sets. These fuzzy 

sets are known as level-2 fuzzy sets. The membership function of level-2 fuzzy set 

having the following form 

A:  C (X)  ([0, 1]) where C(X) denotes the fuzzy power set of X (The set of all 

ordinary sets). 

 

Example 1.2.1: Consider set A= “adult”. The membership function of this set maps whole 

age to “youth”, “manhood” and “senior” (Fig. 1.7). For instance, for any person x, y and z, 

 ( ) "youth", ( ) "manhood", ( ) .A A Ax y z     
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Figure 1.7: Fuzzy set of type - 2(a) and level - 2 fuzyz set {(b), (c)}  

 

The values of membership for “youth” and “manhood” are also fuzzy sets, and thus the set 

“adult” is a type-2 fuzzy set. 

The sets “youth” and “manhood” are type-1 fuzzy sets. In the same manner, if the values of 

membership function of “youth” and “manhood” are type-2, the set “adult” is type-3. 

1.2.1 Support of a Fuzzy Set 

Let A be fuzzy set defined on X, then the support of fuzzy set A is a crisp set. It is denoted by 

Supp (A) and defined as 

  ( ) : ( ) 0 .ASupp A x X x    

Example 1.2.2: Consider a universal set X which is defined on the age domain 

  5,15,25,35,45,55,65,75,85X   
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Table 1.2 membership of  “infant”, “young”, “adult” and “senior” 

Age Infant Young Adult Senior 

     

5 0 0 0 0 

15 0 0.2 0.1 0 

25 0 1 0.9 0 

35 0 0.8 1 0 

45 0 0.4 1 0.1 

55 0 0.1 1 0.2 

65 0 0 1 0.6 

75 0 0 1 1 

85 0 0 1 1 

 

We can define fuzzy sets such as “infant”, “young”, “adult” and “senior” in X. The 

possibilities of each element of x to be in those four fuzzy sets are in Table 1.2. 

The support of fuzzy set “young” i.e.  Supp(young) 15,25,35,45,55  and it is a crisp 

set. Certainly, the support of “infant” is empty set. 

The maximum value of the membership is called “height”. Suppose the “height” of some 

fuzzy sets is 1, then fuzzy set is “normalized”. The sets “young”, “adult” and “senior” are 

normalized as shown in fig. 1.8. 

 

 

Figure 1.8: Non-normalized and normalized fuzzy set 

 

Let’s consider crisp set “teenager”. This crisp set is clearly defined having elements only 10-

19 in the universal set X. As you shall notice this set is a restricted set comparing with X. 

Similarly fuzzy set “young” is also a restricted set. When we apply a “fuzzy restriction” to 

universal set X in certain manner, we get a fuzzy set. 
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1.2.2  - Cut Set  

Let A be fuzzy set defined on universe of discourse and [0,1]   be any number, then  - 

cut set of A is a crisp set. It is denoted by A
 and defined as  

  : ( ) ,AA x X x      

where strong  - cut set of fuzzy set A is denoted by A
 and defined as 

  : ( ) .AA x X x       

Remark: For any fuzzy set A and pair 1 2, [0, 1]    of distinct values such that 1 2  , 

we have 1 2A A
 

  and 1 2A A.
  

  

 

Figure 1.9: Subnormal fuzzy set that is convex 

Example 1.2.3: The  -cut set is derived from fuzzy set “young” by giving 0.2 to   

this means “the age that we can say young with possibility not less than 0.2”. 

If  0.40.4, 25,35,45young     

If  0.80.8, 25,35 .young    

Remark: The 1- cut, 
1A , is often called the core of fuzzy set A. The height, ( )h A , of a 

fuzzy set A is the largest membership grade obtained by any element in that set. Formally, 

( ) ( )sup A

x X

h A x


 . A fuzzy set A is called normal when ( ) 1h A  ; it is called subnormal 

when ( ) 1.h A   The height of fuzzy set may also be viewed as the supremum of   for 

which A .    
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1.2.3 Level Set  

The value   which explicitly shows the value of the membership function, is in the range of 

[0, 1]. The “level set” is obtained by the ' .s  That is, 

  : ( ) , 0, .A A x x X         

The level set of above fuzzy set “young” is, 

  0, 0.1, 0.2, 0.4, 0.8, 1.0 .A   

1.2.4  Convex Fuzzy Set 

Assuming universal set X is defined in n-dimensional Euclidean Vector space 
n . If all the 

 - cut sets are convex, the fuzzy set with these  - cut sets is convex (Fig. 1.10(a)). In other 

words, if a relation 

  ( ) Min ( ), ( )A A At r s   , 

where (1 ) ; , , [0, 1]nt r s r s        holds, the fuzzy set is convex. Fig. 1.10(b) 

shows a convex fuzzy set and Fig. 1.10(c) describes a non-convex set. 

 

 

 

(a) Convex Fuzzy Set 
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(b) Convex Fuzzy Set ( ) ( )A At r 

  

(c) Non- Convex Fuzzy Set ( ) ( )A At r   

Figure 1.10: Convex and non-convex fuzzy sets 

1.2.5  Magnitude of Fuzzy set 

There are three ways of measuring the cardinality of fuzzy set. First, we can derive magnitude 

by summing up the membership degrees. It is “scalar cardinality”. 

 ( ).A

x X

A x


  
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Following this method, the magnitude of fuzzy set “senior” is, 

 senior 0.1 0.2 0.6 1 1 2.9.       

Second, comparing the magnitude of fuzzy set A with that of universal set X can be an idea. 

 .
A

A
X

  

This is called “relative cardinality”. In the case of “senior”, 

 senior 2.9 9 and senior 2.9 9 0.32.X     

Third method expresses the cardinality of fuzzy set as explained below: 

Let A
be the  -cut of A . The number of elements is A .

 In other words, the possibility 

for number of elements in A to be A
 is .  Then the membership degree of fuzzy 

cardinality A is defined as  

  A , ,AA

     where A  is a level set. 

Example 1.2.5: If we cut fuzzy set “senior” at 0.1,   there are 5 elements in the  -cut. 

 0.1 0.1senior 45,55,65,75,85 , senior 5.   In the same manner, there are 4 elements at 

0.2,   there are 3 elements 0.6,   there are 2 elements 1.0.   Therefore, the fuzzy 

cardinality of “senior” is 

         senior 5,0.1 , 4,0.2 , 3,0.6 , 2,1 .   

1.3 OPERATIONS ON FUZZY SETS 

Considering three fuzzy sets ,A B  and C  on the universe .X  For a given element x  of the 

universe, the following function theoretic operations for the set theoretic operations unions, 

intersection and complement are defined for ,A B  and C  on :X  

Union:  ( ) ( ) ( ) max ( ), ( ) .A B A B A Bx x x x x         

Intersection:  ( ) ( ) ( ) min ( ), ( ) .A B A B A Bx x x x x         

Complement: ( ) 1 ( ).AA
x x    

Subset: ( ) ( ),A BA B x x    for all , ( ) 0x X x   and ( ) 1.X x 
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Figure 1.11: Venn diagram of operation on fuzzy sets 
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Any fuzzy set A  defined on a universe X  is a subset of that universe. The membership 

value of any element x in the null set   is 0, and the membership value of any element x in 

the whole set x is 1. This statement is given by De Morgan’s laws stated for classical sets also 

hold for fuzzy sets, as denoted by the following expressions: 

 A B A B    and .A B A B    

All operations on classical sets also hold for the fuzzy set except for the excluded middle 

laws. These two laws does not hold good for fuzzy sets. Since fuzzy sets can overlap, a set 

and its complement also can overlap. 

The excluded middle law for fuzzy sets is given by 

 A A X   and .A A     

  

 (a) Crisp set A and its complement   (b) Crisp set A A X  (Law of exclusive)  

 

 

(c) Crisp set A A   (Law of contradiction) 

Figure 1.12: Excluded middle law for classical sets 
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 Figure 1.13: Excluded middle law for Fuzzy sets 

Comparing Venn diagram for classical sets and fuzzy sets for excluded middle law are shown 

in Fig.1.6 and Fig.1.7 respectively. 

1.3.1  Properties of Fuzzy Sets 

The properties of the classical set also suits for the properties of the fuzzy sets. The important 

properties of fuzzy sets are as follows: 

Commutativity: A B B A    and .A B B A    

Associativity: ( ) ( )A B C A B C      and ( ) ( ) .A B C A B C      

Ditributivity: ( ) ( ) ( )A B C A B A C       and ( ) ( ) ( ).A B C A B A C       

Idempotency: A A A   and .A A A   
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Identity: A A   and ,A X A  A     and .A X X   

Transitivity: If A B C   then .A C  

Involution: .A A  

These are the important properties of the fuzzy set. 

Example 1.3.1: Consider two fuzzy sets A  and .B  find Complement, Union, Intersection, 

Difference, and De Morgan’s law. 

1 0.5 0.6 0.2 0.6

2 3 4 5 6
A

 
     
 

 and 
0.5 0.8 0.4 0.7 0.3

.
2 3 4 5 6

B
 

     
 

 

 

Complement  

0 0.5 0.4 0.8 0.4

2 3 4 5 6
A

 
     
 

 and 
0.5 0.2 0.6 0.3 0.7

.
2 3 4 5 6

B
 

     
 

 

 

Union 

 
1 0.8 0.6 0.7 0.6

.
2 3 4 5 6

A B
 

      
 

 

Comparing the membership values and writing maximum of the two values determine Union 

of the fuzzy set. 

Intersection 

 
0.5 0.5 0.4 0.2 0.3

.
2 3 4 5 6

A B
 

      
 

 

Comparing the membership values and writing minimum of the two values determine 

intersection of the fuzzy set. 

Difference 

 
0.5 0.2 0.6 0.2 0.6

,
2 3 4 5 6

A B A B
 

       
 

 

 
0 0.5 0.4 0.7 0.3

.
2 3 4 5 6

B A B A
 

       
 

 

De Morgan’s Laws 

 
0 0.2 0.4 0.3 0.4

,
2 3 4 5 6

A B A B
 

        
 

 

 
0.5 0.5 0.6 0.8 0.7

.
2 3 4 5 6

A B A B
 

        
 

 

Example 1.3.2: We want to compare two sensors based upon their detection levels and gain 

settings. The following table 1.3 of gain settings and sensor detection levels with a standard 
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item being monitored provides typical membership values to represent the detection levels for 

each of the sensors. 

Table 1.3 

Gain setting Sensor 1 detection levels Sensor 2 detection levels 

0 0 0 

20 0.5 0.35 

40 0.65 0.5 

60 0.85 0.75 

80 1 0.90 

100 1 1 

 

The universe of discourse is  0, 20, 40, 60, 80, 100X   Find the membership function 

for the two sensors: Find the following membership functions using standard set operations: 

(a) 
1 2

( )S S x   (b) 
1 2

( )S S x   (c) 
1
( )

S
x  (d) 

2
( )

S
x  

Solution: It can be solved  similar as previous example. 

 

1.3.2  Fuzzy Complement 

Complement set A  of set A carries the sense of  negation. Complement set may be defined 

by the following function C. 

 :[0, 1] [0, 1]C   

Complement function C is designed to map membership function ( )A x  of fuzzy set A to 

[0,1] and the mapped value is written as C( ( )A x ). To be a fuzzy complement function, the 

following two axioms should be satisfied: 

1( )C  (0) 1, (1) 0C C  (boundary condition). 

2( )C  If , [0, 1]a b  and a b , then ( ) ( )C a C b  (monotonic non increasing), where a and 

b stand for membership value of member x in A. For example, if ( )A x a  ,

( ) ; , ,A y b x y X   then ( ) ( ), ( ( )) ( ( )).A A A Ax y C x C y      

1( )C  and 2( )C  are fundamental requisites to be a complement function. These two axioms 

are called “axiomatic skeleton”. For particular purposes, we can insert the following 

additional requirements: 

3( )C  C  is a continuous function. 

4( )C  C  is a involutive. . ., ( ( ))i e C C a a  for all [0, 1].a  

Example 1.3.3: Above four axioms hold in standard complement operator 

 ( ( )) 1 ( ) or ( ) 1 ( )A A AA
C x x x x        

this standard function is shown in Fig. 1.14(a), and it’s visual representation is given in Fig 

1.14(b). 
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Fig. 1.14 Axioms  in standard complement operator 

The following is a complement function satisfying only the axiomatic skeleton 

(Fig 1.14(b)): 

 
1, for

( )
0, for .

a t
C a

a t


 


 

Note that it does not hold in fig.1.14(c) and fig.1.14 (d).  

Again, the following as shown in Fig 1.15: 

 ( ) 0.5(1 cos ),C a a   

when 0.33, (0.33) 0.75a C  is continuous. However, when (0.75) 0.15 0.33,C    

( )C a is not continuous. One of the popular complement functions is Yager’s function 

defined as  

 
1( ) (1 ) ,w w

wC a a   where ] 1, [.w    
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The shape of the function is dependent on parameter (Fig 1.16). When w = 1, the Yager’s 

function becomes the standard complement function C(a) = 1 - a. 

 

 

Figure 1.15: Continuous fuzzy complement function ( ) 0.5(1 cos )C a a    

 

Figure 1.16: Yager’s complement function 

1.3.3  Fuzzy Union Function 

In general sense, union of A and B is specified by a function of the form: 

 :[0, 1] [0, 1] [0, 1].U    

This union function calculates the membership degree of union A B  from those of A and 

B, 

 ( ) [ ( ), ( )]A B A Bx U x x     

this union function should obey the following axioms: 

1( ) (0, 0) 0, (0, 1) 1, (1, 0) 1, (1, 1) 1U U U U U    (Boundary condition) 
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2( ) ( , ) ( , )U U a b U b a (Commutative) 

3( )U  If 
'a a  and 

' ,b b ' '( , ) ( , ).U a b U a b  Function U  is monotonic function. 

   4( ) ( , ), , ( , )U U U a b c U a U b c  (Associative) 

5( )U  Function U is continuous. 

6( ) ( , )U U a a a  (Idempotent) 

 

 

Figure 1.17: Visualization of standard union operation 

The standard operator Max is treading on those six axioms. 

    [ ( ), ( )] max ( ), ( ) or ( ) max ( ), ( )A B A B A B A BU x x x x x x x         

visualizing the standard union operation is illustrated in figure 1.17. 

Yager’s union function satisfies all axioms except 6( )U . 

 
1( , ) min 1, ( ) , ]0, [.w w w

wU a b a b where w       

The shape of Yager function varies with parameter w. For instance, 

 1w  leads to  1( , ) min 1, ( ) .U a b a b   

 2w  leads to 
2 2

2 ( , ) min 1, .U a b a b  
 

 

Supposing ,w Yager union function is transformed into the standard union function 

1min 1, ( ) max( , ).lim
w w w

w

a b a b


     

There are some examples of Yager function for w =1, 2 and   in Tables 1.4. We know that 

the union operation of crisp sets is identical to OR logic. It is easy to see thet the relation is 

also preserved here. For example, if set A be “young” and B “senior”, the union of A and B is 

“young or senior”. In the sense of meaning, the union and OR logic are completely identical. 
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Table 1.4 Yager’s union function 

   (a)  ( , ) min 1, ( )
1

U a b a b                   (b) 2 2
( , ) min 1,

2
U a b a b  

  
        (c) max( , )U a b


  

  

1.3.4 Fuzzy Intersection Function 

In general sense, intersection of A and B is specified by a function of the form 

 :[0, 1] [0, 1] [0, 1].I    

This intersection function calculates the membership degree of union A B  from those of A 

and B, 

 ( ) [ ( ), ( )]A B A Bx I x x     

this intersection function should obey the followings: 

1( ) (0, 0) 0, (0, 1) 0, (1, 0) 0, (1, 1) 1I I I I I    (boundary condition). 

2( ) ( , ) ( , )I I a b I b a (commutativity). 

3( )I  If 
'a a  and 

' ,b b ' '( , ) ( , ).I a b I a b  Function I  is monotonic function. 

   4( ) ( , ), , ( , )I I I a b c I a I b c  (associativity). 

5( )I  Function I is continuous. 

6( ) ( , )I I a a a  (idempotency). 

The standard fuzzy intersection satisfies the above six axioms with 

    [ ( ), ( )] min ( ), ( ) or ( ) min ( ), ( ) .A B A B A B A BI x x x x x x x         

Visualizing the standard intersection union operation leads to Fig. 1.18. 

Yager’s function as constructed in previous section satisfies all the axioms except 6( )I , 

where 

 
1( , ) 1 min 1, ((1 ) (1 ) ) , ]0, [.w w w

wI a b a b where w          

However, the shape varies with parameter w. For instance, 
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 1w  leads to  1( , ) 1 min 1, (2 ) .I a b a b     

 2w  leads to 
2 2

2 ( , ) 1 min 1, (1 ) (1 ) .I a b a b     
 

 

Supposing ,w Yager function converges to the standard intersection function  

  11 min 1, ((1 ) (1 ) ) min ( , ).lim
w w w

w

a b a b


        

Note that intersection and AND logic are equivalent. For instance, consider two fuzzy sets 

“young” and “senior”. Intersection for these is “person who is at once young and senior”. 

 

 

Figure 1.18: Visualization of standard fuzzy intersection set 

 

Example 1.3.4: Take Yager function at w = 1 for example. Taking a = 0.4 and b = 0.6, we 

have 

    1( , ) 1 min 1, (2 ) 1 min 1, 2 1 1 1 0.I a b a b           

This time let a = 0.5 and b = 0.6, then a+b=1.1 

  1( , ) 1 min 1, 2 1.1 1 min[1, 2 1.1] 0.1.I a b         

Next, take a = 0.3 and b = 0.6 for an example. If w  , the intersection is reduced to, 

( , ) min[0.3, 0.6] 0.3.I a b    

There are some more examples of Yager function in Tables 1.5. 

 

 

 

 

Tables 1.5 Yager’s intersection function 
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(a)  ( , ) 1 min 1, (2 )
1

I a b a b           (b) 2 2
( , ) 1 min 1, (1 ) (1 )

2
I a b a b     

  
 (c) ( , ) min( , )I a b a b  

 

1.3.5 Some Other Operations  

(i) Simple disjunctive sum 

By means of fuzzy union and fuzzy intersection, definition of the disjunctive sum in fuzzy set 

is defined just like in crisp set as given below: 

 ( ) ( )A B A B A B      (crisp set) 

 and  max min[ ( ), 1 ( )],min[1 ( ), ( )] .A B A BA B x x x x        

(ii) Disjoint sum  

The key idea of “exclusive OR” is elimination of common area from the union of A and B. 

With this idea, we can define an operator   for the exclusive OR disjoint sum as follows 

 ( ) ( ) ( ) .A B A Bx x x      

Example 1.3.5: Here we discuss procedures obtaining disjunctive sum and disjoint sum of A 

and B given Figures 1.19 (a) and 1.19 (b), respectively. 

 1 2 3 4( ,0.2), ( ,0.7), ( ,1), ( ,0)A x x x x ,  1 2 3 4( ,0.5), ( ,0.3), ( ,1), ( ,0.1)B x x x x   

 1 2 3 4( ,0.8), ( ,0.3), ( ,0), ( ,1)A x x x x ,  1 2 3 4( ,0.5), ( ,0.7), ( ,0), ( ,0.9)B x x x x  

 1 2 3 4( ,0.2), ( ,0.7), ( ,0), ( ,0)A B x x x x  ,  1 2 3 4( ,0.5), ( ,0.3), ( ,0), ( ,0.1)A B x x x x   

 

 

 

 

 

and finally, we have 
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  1 2 3 4( ) ( ) ( ,0.5), ( ,0.7), ( ,0), ( ,0.1)A B A B A B x x x x       

  1 2 3 4( ,0.3), ( ,0.4), ( ,0), ( ,0.1) .A B x x x x     

 

 Figure 1.19(a): Example of simple disjunctive sum  

 

Figure 1.19(b): Example of disjoint sum 

(i) Simple difference in fuzzy set 

The difference in crisp set is defined as follows 

   .A B A B    

By using standard complement and intersection operations, the difference operation 

in fuzzy set would be simple. 

(ii) Bounded difference 
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For novice-operator , we define the membership function as 

 ( ) max[0, ( ) ( )].A B A Bx x x     

Example 1.3.6: If we reconsider the previews example, A B  and A B (Figures 1.20 and 

1.21). 

 

Figure 1.20: Simple difference A B  

 1 2 3 4( ,0.2), ( ,0.7), ( ,1), ( ,0)A x x x x ,  1 2 3 4( ,0.5), ( ,0.3), ( ,1), ( ,0.1)B x x x x   

 

Figure 1.21: Bounded difference A B  

Simple difference is 

 1 2 3 4( ,0.2), ( ,0.7), ( ,0), ( ,0) .A B x x x x 
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By this definition, bounded difference of preceding two fuzzy sets is as follows 

  1 2 3 4( ,0), ( ,0.4), ( ,0), ( ,0) .A B x x x x   

1.3.6 t-norms and t-conorms 

There are two types of operators in fuzzy sets: t-norm and t-conorm. These are often called as 

triangular-norm and triangular-conorm respectively. 

Definition (t-norm): The fuzzy intersection/t-norms of two fuzzy sets A and B is specified in 

general by a binary operation on the unit interval. In other words a function 

:[0,1] [0,1] [0,1]T    which satisfies the following axioms: for all 
' ', , , , [0,1]x y x y z : 

1( )T  ( ,0) 0, ( ,1)T x T x x   (boundary condition). 

2( )T  ( , ) ( , )T x y T y x  (commutativity). 

3( )T  If 
' ' ' ', ( , ) ( , )x x y y T x y T x y    (monotonicity). 

4( )T  ( ( , ), ) ( , ( , ))T T x y z T x T y z  (associativity). 

Now we can easily recognize that the following operators hold conditions for t-norm. 

(a) Intersection operator ( )  

(b) Algebraic product operator ( )  

(c) Bounded product operator ( )  

(d) Drastic product operator    

Definition (t-conorm (s-norm)): The fuuzy union/t-conorm/s-norm of two fuzzy sets A and B 

is specified in general by a binary operation on the unit interval. In other words it is a 

function :[0,1] [0,1] [0,1]S    satisfies the following axioms: for all 
' ', , , , [0,1]x y x y z : 

1( )T  ( ,0) , ( ,1) 1S x x S x   (boundary condition). 

2( )T  ( , ) ( , )S x y S y x  (commutativity). 

3( )T  If 
' ' ' ', ( , ) ( , )x x y y S x y S x y    (monotonicity). 

4( )T  ( ( , ), ) ( , ( , ))S S x y z S x S y z  (associativity). 
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There are examples of t-conorm/s-norm operators. 

(a) Union operator ( )  

(b) Algebraic sum operator ˆ( )  

(c) Bounded sum operator ( )  

(d) Drastic sum operator    

(e) Disjoint sum operator ( )  

 

1.4 FUZZY NUMBERS 

Among the various types of fuzzy sets, of special significance are fuzzy sets that are defined 

on the set R of real numbers. Membership functions of these sets as 

 : [0, 1].A R   

These clearly have a quantitative meaning and may, under certain conditions, be viewed as 

fuzzy numbers or fuzzy intervals. To view them in this way, they should capture our intuitive 

conceptions of approximate numbers or intervals, such as "numbers that are close to a given 

real number" or "numbers that are around a given interval of real numbers." Such concepts 

are essential for characterizing states of fuzzy variables and, consequently, play an important 

role in many applications, including fuzzy control, decision making, approximate reasoning, 

optimization, and statistics with imprecise probabilities. 

To qualify as a fuzzy number, a fuzzy set A on R must possess at least the following three 

properties: 

(i) A  must be normal fuzzy set; 

(ii) A
must be closed interval for every [0, 1]  ; 

(iii) Support of ,A 0 A,
must be bounded 

Since  -cuts of any fuzzy number are required to be closed intervals for all ]0, 1],   every 

fuzzy number is a convex fuzzy set. The inverse, however, is not necessarily true, since  - 

cuts of some convex fuzzy sets may be open or half-open intervals. 

Special cases of fuzzy numbers include ordinary real numbers and intervals of real numbers. 

As illustrated in Figure 1.22 (a) is an ordinary real number, (b) is an ordinary (crisp) closed 

interval [1.25, 1.35], (c) is a fuzzy number expressing the proposition "close to 1.3;" and (d) 

is a fuzzy number with a flat region (a fuzzy interval). 
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(a)   (b)  

(c)   (d)  

 

Figure 1.22: A comparison of a real number and a crisp interval with a fuzzy number 

and a fuzzy interval, respectively 
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Figure 1.23: Basic types of fuzzy numbers 

Although the triangular and trapezoidal shapes of membership functions shown in Figure 

1.22 are used most often for representing fuzzy numbers, other shapes may be preferable in 

some applications. Furthermore, membership functions of fuzzy numbers need not be 

symmetric as shown in Figure 1.23. Fairly typical are so-called "bell-shaped" membership 

functions, as exemplified by the functions in Figure 1.22 (a) is symmetric and figure 1.22 (b) 

is asymmetric. It may also be membership functions which only increase (Figure 1.23 (c)) or 

only decrease (Figure 1.23 (d)) also qualify as fuzzy numbers. They capture our conception 

of a large number or a small number in the context of each particular application. 

 The following proposition shows that membership functions of fuzzy numbers may be, in 

general, piecewise-defined functions. 

Proposition 1.4.1: Let ( ).A F R  Then, A is a fuzzy number if and only if there exists a 

closed interval [ , ]a b  such that 

 

1, for [ , ]

( ) ( ), for ] , [

( ), for ] , [,

x a b

A x l x x a

r x x b




  
  

 

where ( )l x  is a function from ] , [a to [0,1] that is monotonic increasing and continuous 

from the right such that ( ) 0l x   for 1] , [;x   r is a function from ] , [b   to [0,1] that 

is monotonic decreasing and continuous from the left such that ( ) 0r x   for 2] , [.x    

The implication of proposition 1.4.1 is that every fuzzy number can be represented in the 

form of ( ).A x  In general this form allows us to define fuzzy numbers in a piecewise manner, 

as illustrated in Figure 1.24. 
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Figure 1.24: General fuzzy number 

As an example, let us define the four fuzzy numbers in Figure 1.24 in terms of ( ) :A x  

(a) 1 2 1.3, ( ) 0,for all ] , 1.3[, ( ) 0for all ]1.3, [.a b l x x r x x            

(b) 1 21.25, 1.35, ( ) 0, for all ] , 1.25[, ( ) 0, for all ]1.35, [.a b l x x r x x          

 

(c) 1 21.2, 1.3, 1.4,a b      

 
0, for ] , 1.2[

( )
10( 1.3) 1, for [1.2, 1.3[.

x
l x

x x

 
 

  
 

10(1.3 ) 1, for ]1.3, 1.4]
( )

0, for ]1.4, [.

x x
r x

x

  
 

 
 

(d) 1 21.2, 1.28, 1.32, 1.4,a b      

0, for ] , 1.2[
( )

12.5( 1.28) 1, for [1.2, 1.28[.

x
l x

x x

 
 

  
 

12.5(1.32 ) 1, for ]1.32, 1.4]
( )

0, for ]1.4, [.

x x
r x

x

  
 

 
 

1.4.1 Triangular Fuzzy Number 

 It is a fuzzy number represented with three points as follows  

 1 2 3( , , ).A a a a  
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This representation is interpreted as membership function defined below: 

 

Now if you get crisp interval by  -cut operation, interval A
 shall be obtained as follows 

 [0, 1] 

 

( )( )

3 31 1

2 1 3 2

, .
a aa a

a a a a



 


 
 

 

We get 

 
( ) ( )

1 2 1 1 3 3 2 3( ) ( ) .a a a a and a a a a          

Thus 

  ( ) ( )

1 3 2 1 1 3 2 3, ( ) , ( ) .A a a a a a a a a              

 

 

Figure 1.25: Triangular fuzzy number 1 2 3( , , )A a a a   

Example 1.4.1: In the case of the triangular fuzzy number ( 5, 1, 1)A     (Figure 1.25), the 

membership function value will be 
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 - cut interval of this fuzzy number is  

  
5

4 5
4

x
x 


     

 
1

2 1
2

x
x 


      

   ( ) ( )

1 3, 4 5, 2 1 .A a a            

If 0.5  , substituting 0.5 for  , we get 

   0.5 (0.5) (0.5)

1 3A , 3, 0 .a a      

 

 

Figure 1.26: 0.5   cut of triangular fuzzy number ( 5, 1, 1)A     

1.4.2 Trapezoidal Fuzzy Number 

We can define trapezoidal fuzzy number A as (Figure 1.27), 

 1 2 3 4( , , , ).A a a a a  
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The membership function of this fuzzy number will be interpreted as follows 

 

 

 

Figure 1.27: Trapezoidal fuzzy number 1 2 3 4( , , , )A a a a a  

 -cut interval for this shape is   [0, 1] 

  2 1 1 4 3 4( ) , ( ) .A a a a a a a         

When 2 3a a the trapezoidal fuzzy number coincides with triangular one. 

1.4.3 Bell Shape Fuzzy Number 

Bell shape fuzzy number is often used in practical applications and its function is defined as 

follows 

 

2

2

( )
( ) exp

2

f

f

f

x m
x



   
  

    
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Figure 1.28: Flat fuzzy number 

Here ( )f x  is the mean of the function and f  is the standard deviation. 

 

 

Figure 1.29: Bell shape fuzzy number 

1.5 ARITHMETIC OPERATIONS ON INTERVALS AND FUZZY 

NUMBERS 

Fuzzy arithmetic is based on two properties of fuzzy numbers: (1) each fuzzy set, and thus 

also each fuzzy number, can fully and uniquely be represented by its  -cuts and (2)  -cuts 

of each fuzzy number are closed intervals of real numbers for all ]0, 1],   These properties 

enable us to define arithmetic operations on fuzzy numbers in terms of arithmetic operations 

on their a-cuts (i.e., arithmetic operations on closed intervals). The latter operations are a 

subject of interval analysis, a well-established area of classical mathematics; we overview 

them in this section to facilitate our presentation of fuzzy arithmetic in the next section. 

1.5.1 Arithmetic Operations on Intervals 

Let * denote any of the four arithmetic operations on closed intervals: addition (+), 

subtraction (-), multiplication (•) , and division ( / ). Then, 

  [ , ] [ , ] : , ,a b c d f g a f b c g d        
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is a general property of all arithmetic operations on closed intervals, except that 

[ , ] [ , ]a b c d  is not defined when 0 [ , ],c d  i. e., the resultant of an arithmetic operation on 

closed intervals is again a closed interval. 

The four arithmetic operations on closed intervals are defined as follows: 

Addition 

 [ , ] [ , ] [ , ],a b c d a c b d     

Subtraction  

 [ , ] [ , ] [ , ],a b c d a d b c     

 

Multiplication  

 [ , ].[ , ] [min( , , , ), max( , , , )]a b c d ac ad bc bd ac ad bc bd  

or [ , ].[ , ] [( . . . . ), ( . . . . )],a b c d a c a d b c b d a c a d b c b d        

and, provided that 0 [ , ].c d  

Division  

 [ , ] / [ , ] [min( / , / , / , / ), max( / , / , / , / )]a b c d a c a d b c b d a c a d b c b d  

or  

 [ , ] / [ , ] [( / / / / ), ( / / / / )],a b c d a c a d b c b d a c a d b c b d        

 

Inverse Interval  

 
1[ , ] [min(1/ , 1/ ), max(1/ , 1/ )],a b a b a b   

or  

 
1[ , ] [(1/ 1/ ), (1/ 1/ )].a b a b a b     

Example 1.5.1: Let A and B be 

 A = [3, 5], B = [–2, 7], thus 

 

Addition  

  [3, 5] [ 2, 7] [3 2, 5 7] [1, 12],       

Subtraction 

  [3, 5] [ 2, 7] [3 7, 5 ( 2)] [ 4, 7],         
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Multiplication 

[3, 5] [ 2, 7] [min(3 ( 2), 3 7, 5 ( 2), 5 7),max(3 ( 2), 3 7, 5 ( 2), 5 7)] [ 10, 35],         

Division 

[3, 5] / [ 2, 7] [min(3 / ( 2), 3 / 7, 5 / ( 2), 5 / 7),max(3 / ( 2), 3 / 7, 5 / ( 2), 5 / 7)] [ 2.5, 5 / 7],         

Inverse Interval 

1[ 2, 7] [min(1/ ( 2), 1/ 7), max(1/ ( 2), 1/ 7)] [ 1/ 2,1/ 7].       

1.5.2  Operations on  -cut Intervals 

We referred to  -cut interval of fuzzy number 1 2[ , ]A a a  as crisp set 

  
( ) ( ) ( ) ( )

1 2 1 2 1 2A [ , ], [0, 1], , , ,a a a a a a         

So A
 is a crisp interval. As a result, the operations of interval reviewed in the previous 

section can be applied to the  -cut interval A.
 

If  -cut interval B
 of fuzzy number 1 2[ , ]B b b  is given 

  
( ) ( ) ( ) ( )

1 2 1 2 1 2[ , ], [0, 1], , , , ,B b b b b b b         

operations between A
 and B

can be described as follows 

  
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 2 1 2 1 1 2 2[ , ]( )[ , ] , , [0, 1],a a b b a b a b                 

 and  
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 2 1 2 1 2 2 1[ , ]( )[ , ] , , [0, 1].a a b b a b a b                 

These operations can be also applicable to multiplication and division in the same manner.  

1.5.3 Arithmetic Operations on Fuzzy Numbers 

Let A and B denote fuzzy numbers and let   denote any of the four basic arithmetic 

operations. Then, we define A B  a fuzzy set on R by defining its  -cut, (A*B)
 as 

 (A*B)= A B    

for any ]0, 1].   When is /,  it is required that 0 B  for all ]0, 1].   Now A B  can 

be expressed as  

  
]0, 1]

.A B A B




     
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Since  A B


  is closed interval for each ]0, 1]   and A, B are fuzzy numbers, A B  is 

also a fuzzy number. 

For example consider two triangular-shape fuzzy numbers A  and B  defined as follows: 

 

0, for 1 and 3

( ) ( 1) 2, for 1 1

(3 ) 2, for 1 3,

x x

A x x x

x x

  


    
   

 

 

0, for 1 and 3

( ) ( 1) 2, for 1 3

(5 ) 2, for 3 5.

x x

B x x x

x x

 


   
   

 

Their  -cuts are:  

 A [2 1, 3 2 ]      and B [2 1, 5 2 ].       

 Using arithmetic operation, we obtain 

  ( ) [4 , 8 4 ] for ]0, 1],A B        

  ( ) [4 6, 2 4 ] for ]0, 1],A B         

  

2 2

2 2

[ 4 12 5, 4 16 15] for ]0, 0.5]
( )

[4 1, 4 16 15] for ]0.5, 1],
A B

    

   

      
  

   
  

  
       

       

2 1 2 1 , 3 2 2 1 for ]0, 0.5]
( / )

2 1 5 2 , 3 2 2 1 for ]0.5, 1].
A B

    

    

      
 

      

 

The resulting fuzzy numbers are then: 

 

0, for 0 and 8

( ) 4, for 0 4

(8 ) 4, for 4 8,

x x

A B x x x

x x

 


   
   

 

 

0, for 6 and 2

( ) ( 6) 4, for 6 2

(2 ) 4, for 2 2,

x x

A B x x x

x x

  


      
    
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 

1 2

1 2

1 2

0, for 5 and 15

3 (4 ) 4, for 5 0
( )

(1 ) 2, for 0 3

4 (1 ) 2, for 3 15,

x x

x x
A B x

x x

x x

  

      

  
  

     

 

 

0, for 1 and 3

( 1) (2 2 ), for 1 0
/ ( )

(5 1) (2 2), for 0 1 3

(3 ) (2 2), for 1 3 3.

x x

x x x
A B x

x x x

x x x

  


    
 

   
    

 

We now proceed to the second method for developing fuzzy arithmetic, which is based on the 

extension principle. Employing this principle, standard arithmetic operations on real numbers 

are extended to fuzzy numbers. 

Let A and B denote fuzzy numbers and let   denote any of the four basic arithmetic 

operations. Then, we define a fuzzy set A B  on R by the equation  

     ( ) sup ( ) ( ) for all .
z x y

A B z A x B y z R
 

     

More specifically, we define for all z R  as given below: 

     ( ) sup ( ) ( ) ,
z x y

A B z A x B y
 

    

     ( ) sup ( ) ( ) ,
z x y

A B z A x B y
 

    

     ( ) sup ( ) ( ) ,
z x y

A B z A x B y
 

    

     
/

/ ( ) sup ( ) ( ) .
z x y

A B z A x B y


   

Example 1.5.2: Let A  and B  be such that 

( ) [ 5, 1]A x    and ( ) [ 5, 12]B y     

with associate membership functions shown in Fig. 1.30. 
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Figure 1.30: Two membership functions 

  

5
, for 5 2

3 3
( )

1
, for 2 1,

3 3

A

x
x

x
x

x




    

 
    



 

  

0, for 5 3

3
( ) , for 3 4

7 7

12
, for 4 12.

8 8

B

x

y
y x

y
x




    



    



  

 

Then, by the general operation rule we have  

  ( ) ( ) ( ) [ 5, 1] [ 5, 12] [ 10, 13]C z A x B y         

and, by comparing ( )A x  and ( )B x  point wise, we obtain  

   ( ) sup ( ), ( )C A B
z x y

z x y  
 

  

  

0, for 10 8

8
( ) , for 8 2

10 10

13
, for 2 13.

11 11

C

z

z
z z

z
z




    



    



  

 

Here, it is clear that the general “sup” rule does not yield the explicit formulas easily. In 

contrast, this resulting explicit formula of ( )C z  can be easily obtained by using the 

equivalent  -cut operation as follows. 
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Figure 1.31: Membership function 

In the α-cut notation, for any α value, the α-cut of ( )A x  is obtained by letting α = x/3 + 5/3 

and α = −x/3 + 1/3, respectively, which give 1x  = 3α − 5 and 2x  = −3α + 1, as shown in (the 

enlarged) Fig. 1.31. Hence, the projection interval is 

  1 2( ) [ , ] [3 5, 3 1].A x x x


       

Similarly,   1 2( ) [ , ] [7 3, 8 12],B y x x


       

so that  

       ( ) ( ) ( ) [10 8, 11 13].C z A x B y
  

        

Setting 1z  = 10α − 8 and 2z = −11α + 13 gives α = 1z /10 + 8/10 and α = – 2z /11 + 12/11, 

which yield the membership function shown in Fig. 1.32. 

 

 

 

Figure 1.32: The resulting membership function 
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Taking ( ) [ 10, 13]C z    into account, we finally arrive at 

  

0, for 10 8

8
( ) , for 8 2

10 10

13
, for 2 13.

11 11

C

z

z
z z

z
z




    



    



  

 

Example 1.5.3: Let ( )A x  and ( )B y  be such that 

  ( ) [0, 20]A x   and ( ) [0, 10],B y   

With the membership functions  

0, for 0 7

3
, for 7 14

7 7
( )

12
, for 14 19

8 8

0, for 19 20,

A

x

y
x

x
y

x

x



 

   


 
   


  

 

and 

  

0, for 0 3

3
( ) , for 3 5

2 2

2, for 5 10.
5

B

x

y
y x

y
x




   



   



  

 

Then we have, via the interval arithmetic 

  ( ) ( ) ( ) [ 10, 20],C z A x B y     with 

  

0, for 10 3

3
, for 3 9

12 12
( )

16
, for 9 16

7 7

0, for 16 20.

C

x

z
x

z
z

x

x



   

    


 
   


  
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Example 1.5.4: Let ( )A x  and ( )B y  be such that 

  ( ) [2, 5]A x   and ( ) [3, 6],B y   

With the membership functions 

  

2, for 2 3

( ) 5
, for 3 5,

2 2

A

x x

x x
x



  


 
  



 

  

3
, for 3 5

( ) 2 2

6, for 5 6,
B

y
x

y

y x




  

 
   

 

as shown in figure 1.33. 

In the  -cut notation, for any   value, letting 

   ( ) 2, 2 5A x


      and    ( ) 2 3, 6 .B y


    
 

 

 

Figure 1.33: Two membership functions 

 

 

Figure 1.34: The intermediate membership functions 
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It then follows that 

 ( ) [6, 30]C z   and 

          ( ) ( ) ( ) 2, 2 5 2 3, 6C z A x B y
  

             = ( ), ( )p p  
   

where 

 2 2 2 2( ) min 2 7 6, 4 12, 4 4 15,2 17 30 ,p                     

 2 2 2 2( ) max 2 7 6, 4 12, 4 4 15,2 17 30 ,p                     

with the curves shown in figure 1.34. 

Hence 
2( ) 2 7 6p       and 

2( ) 2 17 30p       so that 

2 2( ) ( ), ( ) 2 7 6, 2 17 30 .C z p p                 

Let, moreover 

2 2

1 22 7 6, 2 17 30.z z          

We solve them for ,  subject to 0 1,   and obtain 

 
1 27 1 8 17 49 8

or .
4 4

z z
 

    
   

And consequently 

7 1 8
, for 6 15

4
( )

17 49 8
, for 15 30,

4

C

z
z

z
z

z



  
 


 

 
 



 

As shown in figure 1.35. 

 

Figure 1.35: The resulting membership function 
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Example 1.6.5: Let ( )A x  and ( )B y  be such that 

 ( ) [18, 33]A x   and ( ) [5, 8],B y   

With the membership functions 

 

18
, for 18 22

4 4
( )

3, for 22 33,
11

A

x
x

x
x

x




  

 
   



 

 

5, for 5 6

( )
4, for 6 8,

2

B

y x

y y
x



  


 
   


 

as shown in figure 1.36. 

 

Figure 1.36: Two membership functions 

In the  -cut notation, for any   value, letting 

   ( ) 4 18, 11 33A x


      and    ( ) 5, 2 8 .B y


      

 
 

 
 
 

( ) 4 18, 11 33 4 18 11 33
( ) , .

( ) 5, 2 8 2 8 5

A x
C z

B y







   

   

      
          

 

 

Figure 1.37: The resulting membership functions 
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Let 1 2

4 18 11 33
,

2 8 5
z z

 

 

  
 
  

 gives 

 1 2

1 2

8 18 5 33
and ,

2 4 11

z z

z z
 

  
 

 
 such that 

 

8 18 9 11
, for

2 4 4 3
( )

5 33 11 11
, for ,

11 3 3

C

z
z

z
z

z
z

z




  

 
   

 

 

As shown in figure 1.37 
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Exercise - 1 

1. Let A  be the given fuzzy set with membership function 

5, 5 6

( ) 7, 6 7

0, otherwise,

x for x

A x x for x

  


    



 

  Sketch the graph of the function. What is its type? 

2. Consider two fuzzy sets A and B as shown 

0 0.5 0.3 0.7 0.9 0.2 0.4 0.6 0.9 0.4
, .

1 2 3 4 5 1 2 3 4 5
A B

   
            
   

 

Find ( ) , ( ) , ( ) , ( ) .a A B b A B c A B d A B     

3. Consider the fuzzy sets A, B, and C defined on the interval X = [0,10] of real 

numbers by the membership grade functions 

             
2

1
( ) , ( ) 2 , ( ) .

2 1 10( 2)

xx
A x B x C x

x x

  
  

 

Determine mathematical formulas and graphs of the membership grade functions of 

each of the following sets: 

(a) , , ;A B C  

(b) , , ;A B A C B C    

(c) , , ;A B A C B C    

(d) , ;A B C A B C     

(e) , , .A C A C B C    

4. Let A be a fuzzy set defined by 

1 2 3 4 5

0.5 0.4 0.7 0.8 1
( ) .A x

x x x x x
      

List all  -cuts and strong  -cuts of A. 
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5. Discuss the reflexivity properties of the following fuzzy relation. 

R Xl X2 X3 

X1 1.0 0.7 0.3 

X2 0.4 0.5 0.8 

X3 0.7 0.5 1.0 

6. For the fuzzy relation 

              

1.0 0.4 0.8 0.3 0.0

0.5 1.0 0.6 0.7 1.0

0.9 1.0 0.0 0.6 0.8

1.0 0.5 0.2 0.0 0.9

0.3 0.5 0.3 0.1 1.0

R

 
 
 
 
 
 
  

 

 Compute its projections and cylindrical extensions. 

7. Show the two fuzzy sets satisfy the De Morgan’s Law 

              
2

1 1
( ) , ( ) .

1 ( 10) 1
A x B x

x x
 

  
 

8. Define equilibrium point. Show that every fuzzy complement has at most one 

equilibrium. 

9. Compute the complements, intersection and union of the following fuzzy relations R 

and S. 

  

1.0 0.2 0.4 0.0

0.0 0.1 0.0 0.9

0.1 0.0 1.0 0.0

0.0 0.4 0.0 1.0

a b c d

a

b
R

c

d

 
 
 
 
 
 

 and 

1.0 0.0 0.0 0.4

0.0 0.0 0.4 0.9

0.4 0.0 0.1 0.0

0.5 1.0 0.0 0.0

a b c d

a

b
S

c

d

 
 
 
 
 
 

 

10. Determine whether the following fuzzy relation is an equivalence relation. 

         

1.0 0.8 0.4 0.1

0.8 1.0 0.0 0.0

0.4 0.0 1.0 0.5

0.1 0.0 0.5 1.0

a b c d

a

b

c

d

 
 
 
 
 
 
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11. Discuss the properties of the following morphism h. 

  : , ; ; ,h a b c d e     , where 

     , , , , , , , , , .A a b c d e B R A A S B B         

  

1.0 0.0 0.0 1.0 0.1

1.0 0.4 0.0 0.0 1.0

0.4 0.0 0.0 0.9 0.0

0.8 0.0 0.6 0.8 0.0

0.0 0.6 0.8 0.4 1.0

a b c d e

a

b

R c

d

e

 
 
 
 
 
 
  

 and 
1.0 0.0 1.0

0.4 0.0 0.9

0.8 0.8 1.0

S

  







 
 


 
  

 

12. For all , [0,1],a b  prove that min ( , ) ( , ) min( , ),i a b i a b a b    

  where mini  denotes the drastic intersection. 

13. For all , [0,1],a b  show that maxmax( , ) ( , ) ( , ),a b u a b u a b   

 where maxu  denotes the drastic union. 

14. Let A, B be two fuzzy numbers whose membership functions are given by 

( 2) 2, 2 0

( ) (2 ) 2, 0 2

0, otherwise,

x for x

A x x for x

   


   



 and 

( 2) 2, 2 4

( ) (2 ) 2, 0 6

0, otherwise.

x for x

A x x for x

  


   



 

Calculate the fuzzy numbers , , , , .A B A B B A A B A B     

15. Let [1, 5]xS   and [2, 6]yS   with fuzzy membership functions 

( 1), 1 2

(5 ) 3, 2 5,xS

x for x

x for x


  
 

  
 and 

( 2) 2, 2 4

(6 ) 2, 4 6,yS

y for x

y for x


  
 

  
 

Compute the following six operations to obtain zS  and :
zS  

 ( , ) for  , , , / .z F x y x y         
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Chapter-2 

Fuzzy Relations and Fuzzy Logic 

2.1  INTRODUCTION  

In the first chapter we have defined fuzzy set and its properties, operations on fuzzy sets and 

different fuzzy numbers. In the present chapter important topics of fuzzy set theory like 

Membership function; fuzzification and membership values assignments are discussed. Fuzzy 

relations and their graphs are studied in details. However, our main emphasis is on fuzzy 

logic which is a method to formalize the human capacity of imprecise reasoning or 

approximate reasoning. Such reasoning represents the human ability to reason approximately 

and judge ambiguous uncertainty. In fuzzy logic all truths are partial or approximate. In this 

sense this reasoning has also been termed interpolative reasoning and the process of 

interpolating between the binary extremes of true and false is represented by the ability of 

fuzzy logic to encapsulate partial truths. In later part of the chapter the concepts of classical 

and fuzzy logic and approximating reasoning are explained in detail. 

2.2. FEATURES OF MEMBERSHIP FUNCTION 

The feature of the membership function is defined by three properties: 

(i) Core 

(ii) Support 

(iii) Boundary 

The Fig. 2.1 shown below defines the properties listed above. 

(i) Core 

If the region of universe is characterized by full membership 1 in the set A then this gives the 

core of the membership function of fuzzy at A. The elements which have the membership 

function as 1 are the elements of the core, i.e., ( ) 1.A x   

(ii) Support 

If the region of universe is characterized by nonzero membership in the set A, this defines the 

support of a membership function for fuzzy set A. 

The support has the elements whose membership is greater than zero, . ., ( ) 0.Ai e x 
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(iii) Boundary    

 

 

Figure 2.1: Features of membership function 

If the region of universe has a nonzero membership but not full membership, this defines the 

boundary of a membership function; this defines the boundary of a membership function for 

fuzzy set A. 

The boundaries have the elements whose memberships are between 0 and 1, 

. ., 0 ( ) 1.Ai e x   

These are the standard regions defined in the membership functions. Next, we define two 

important terms. 

Crossover point 

The crossover point of a membership function is the element in universe whose membership 

value equal to 0.5, . ., ( ) 0.5.Ai e x   

Height 

The height of the fuzzy set A is the maximum value of the membership function, . .,i e  

 max ( ) .A x   

The membership functions can be symmetrical or asymmetrical.  
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2.3  FUZZIFICATION 

Fuzzification is an important concept in the fuzzy logic theory. Fuzzification is the process 

where the crisp quantities are converted to fuzzy (crisp to fuzzy). By identifying some of the 

uncertainties present in the crisp values, we form the fuzzy values. The conversion of fuzzy 

values is represented by the membership functions. 

In any practical applications in industries, measurement of voltage, current, temperature, etc., 

there might be a negligible error. This causes imprecision in the data. This imprecision can be 

represented by the membership functions. Thus fuzzification is performed. 

Hence, fuzzification process may involve assigning membership values for the given crisp 

quantities. 

Membership values Assignments 

There are various methods to assign the membership values or the membership functions to 

fuzzy variables. The assignment can be just done by intuition or by using some algorithms or 

logical procedures. The methods for assigning the membership values are listed as follows: 

(i) Intuition 

(ii) Inference 

(iii) Rank ordering 

(iv) Angular fuzzy sets 

(v) Neural networks 

(vi) Genetic algorithms 

(vii) Inductive seasoning 

 

(i) Intuition 

Intuition is based on the human’s own intelligence and understanding to develop the 

membership functions. The thorough knowledge of the problem and the linguistic variable 

should also be known. Fig. 2.2 (a) shows membership function for imprecision in crisp 

temperature reading.  

For example, consider the speed of a dc-motor. The shape of the universe of speed given in 

rpm is shown in Fig. 2.2 (b). 
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Figure 2.2: Membership function (a) temperature (b) speed 

The curves represent membership function corresponding to various fuzzy variables. The 

range of speed is splitted into low, medium and high. The curves differentiate the ranges set 

by humans. The placement of curves is approximate over the universe of discourse; the 

number of curves and the overlapping of curves is an important criteria to be considered 

while defining membership functions. 

(ii) Inference 

This method involves the knowledge to perform deductive reasoning. The membership 

function is formed from the known facts or knowledge set. 

Let us use inference method for the identification of the triangle. Let U be universe of 

triangles and A,B, and C be the inner angles of the triangles. Also 0.A B C    Therefore 

the universe is given by: 

 ( , , ), 0, 180 .U A B C A B C A B C        

There are various types of triangles, for identifying, we define three types of triangles: 

I- Appropriate isosceles triangle, R- Appropriate right triangle and O- Other triangles. The 

membership vales can be inferred to all of these triangle types through the method of 

inference, as we know the knowledge about the geometry of the triangles. 

The membership for the approximate isosceles triangle, for the given conditions 

0A B C   and 180 ,A B C    is given as, 

1
( , , ) 1 min( , ).

60
I A B C A B B C      

The membership for the appropriate right triangle, for the same conditions, is 

1
( , , ) 1 ( 90 ).

90
R A B C A     

The membership for the other triangles can be given as the complement of the logical union 

of the two already defined membership functions 
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( , , )O A B C I R    or by using De Morgan’s law, it is 

1 ( , , )
( , , ) min .

1 ( , , )

I

O

R

A B C
A B C I R

A B C






 
    

   

 

Figure 2.3 : A given triangle 

Example 2.3.1: Define the triangle for the figure shown in Fig. 2.3 with the three given 

angles. 

Solution. The condition is 

0A B C   and 180 .A B C    

Here  85 60 35 0, 180 .U A B C A B C           

The membership values for the triangle shown in Fig. 2.3 for each type of triangles are: 

1
( ) 1 min( , ).

60
I x A B B C      

1 1
( ) 1 min(85 60 ,60 35 ) 1 min(25 ,25 )

60 60
I x        

( ) 0.583.I x   

Now,  
1

( ) 1 ( 90 ).
90

R x A     

1
( ) 1 (85 90 ) 0.944.

90
R x      

And  ( ) min 1 ( ), 1 ( ) min{1 0.583, 1 0.944}.O I Rx x x x         

( ) 0.055.O x   

Hence there is highest membership for ( ).R x  Thus inference method can be used to 

calculate the membership values. 
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(iii) Rank ordering 

The polling concept is used to assign membership values by rank ordering process. 

Preferences are above for pair wise comparisons and from this the ordering of the 

membership is done. 

Example 2.2: Suppose 1000 people respond to a questionnaire about the pair wise+ 

preference among five cars of universe set X={Palio, Siena, Astra, Easter, Baleno}. Define a 

fuzzy set as A on the universe of cars, “best cars”. 

Table 2.1: Pair wise preferences among five cars between 1000 people 

 Number who preferred 

 Palio Siena Astra Easter Baleno Total Percentage Rank 

order 

Palio - 515 545 523 671 2.254 22.5 2 

Siena 481 - 475 845 580 2.381 23.8 1 

Astra 469 624 - 141 536 1.770 17.7 4 

Easter 457 530 470 - 649 2.114 21.1 3 

Baleno 265 425 402 389 - 1.481 14.8 5 

Total      10,000   

 

The pair wise comparison is made among 1,000 people and their views are summarized in 

Table 2.1. 

From the table, it is clear that 515 preferred Siena compared to Palio, 545 Astra to Palio, etc. 

The table forms an anti symmetric matrix. There are about ten comparisons made which gives 

a ground total of 10,000. Based on preferences, the percentage is calculated. The ordering is 

then performed. It is found that Siena is selected as the best car. 

Fig. 2.4 shows the membership function for this example. 

 

Figure 2.4: Membership for best car 
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(iv) Angular Fuzzy Set 

The angular fuzzy sets are different from the standard fuzzy sets in their coordinate 

description. These sets are defined on the universe of angles, hence are repeating shapes after 

every 2  cycle. Angular fuzzy sets are applied in quantitative description of linguistic 

variables known truth-values. When membership of value 1 is true and that of 0 is false, then 

in between ‘0’ and ‘1’ is partially true or partially false. 

The linguistic values are formed to vary with θ, the angle defined on the unit circle and their 

membership values are on ( )t   The membership of this linguistic term can be obtained 

from ( ) tan ,t t   where t is the horizontal projection of the radial vector and is given as 

cos θ, i.e., t = cosθ. When the coordinates are in polar form, angular fuzzy sets can be used. 

Example 2.3.2: Consider a motor which is used in computer peripheral applications. From 

the membership function based on its rotation using angular fuzzy sets 

 

Figure 2.5: Angular fuzzy set 

The linguistic terms relating to the direction of motion of the motor is given as 

 

Figure 2.6: Angular fuzzy membership function 
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Fully anticlockwise (FA) – θ = Π/2 

Partially anticlockwise (PA) – θ = Π/4 

No rotation (NR) – θ = 0 

Partially clockwise (PC) – θ = −Π/4 

Fully clockwise (FC) – θ = −Π/2 

The angular fuzzy set for this is shown in Fig. 2.5. The membership function is shown in Fig. 

2.6. The values for membership functions used in Fig. 2.5 is obtained as follows 

( ) tan ,t Z Z  where cos .Z   

Therefore, the angular fuzzy membership values are shown in Table 2.2. Hence, angular 

fuzzy sets can be used to obtain fuzzy membership values. 

Table 2.2: Angular fuzzy membership values 

 tan  Z = cos  t(Z) = (Z tan ) 

II/2(90)  0 1 

II/4(45) 1 0.707 0.707 

0 0 2 0 

(v) Neural Networks 

Neural networks are used to simulate the working network of the neurons in the human brain. 

The concept of the human brain is used to perform computation on computers. 

In this case, the fuzzy membership function may be created for fuzzy classes of an input data 

set. The procedure is the numbers of input data values are selected. Then it is divided into 

training data set and testing data set. The training data set may be used to train the network. 

The generations of membership function from neural network are shown in Fig. 2.7. 

Fig. 2.7 (a) shows the training data set. This is passed through a neural network shown in Fig. 

2.7 (b). The data points of Fig. 2.7 (a) are divided into three regions as 
1R , 

2R  and 
3R  as in 

Fig. 2.7 (c). Depending upon the data points, the regions are classified. If the data point is in 

region 1, then we assign full membership in region 1 and zero membership in regions 2 and 3. 

Similarly if the data points are in region 2, it will have full membership in region and zero 

membership in regions so on. 
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Figure 2.7: Generation of membership function using neural networks 

The neural network is then created, from which the training is done between corresponding 

membership values in different classes, to simulate the relationship between the coordinate 

locations and membership values. The neural network uses the set of data value and 

membership values to train itself as shown in Figure 2.7 (d). This training process is 

continued until the neural network can simulate for the given entire set of input and output 

value. 

After the net is trained, its performance can be checked by the testing data. After full training 

and testing process is completed, the neural network is ready and it can be used to determine 

the membership values of any input data in the different regions. These are all shown in 

Figure 2.7 (g)–(i). 

The complete mapping of the membership of different data points in different fuzzy classes 

can be determined by using neural network approach. 
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(vi) Genetic Algorithms 

Genetic algorithm (GA) uses the concept of Darwin’s theory of evolution. Darwin’s theory is 

based on the rule, “survival of the fittest.” Darwin also postulated that the new classes of 

living things came into existence through the process of reproduction, crossover, and 

mutation among existing organisms. 

The steps involved in computing membership functions using GA are: 

(a) For the given functional mapping of a system, some membership functions and their 

shapes are assumed for various fuzzy variables to be defined. 

(b) These membership functions are then coded as bit strings. 

(c) These bit strings are then concatenated (joined). 

(d) Similar to activation function in neural networks, GA has a fitness function. 

(e) This fitness function is used to evaluate the fitness of each set of membership functions. 

(f) These membership functions are the parameters that define the functional mapping of the 

system. 

 Thus, GA can be used to determine the membership functions. 

(vii) Inductive Reasoning 

The membership can also be generated by the characteristics of inductive reasoning. The 

induction is performed by the entropy minimization principle, which clusters the parameters 

corresponding to the output classes. For inductive reasoning method, there should be a well-

defined database for the input–output relationships. This method can be suited for complex 

systems where the data are abundant and static. When the data’ are dynamic, this method is 

not suited, since the membership functions continually change with time. 

There are three laws of induction. 

(1) Given a set of irreducible outcomes of an experiment, the induced probabilities are those 

probabilities consistent with all available information that maximize the entropy of the set. 

(2) The induced probability of a set of independent observations is proportional to the 

probability density of the induced probability of a single observation. 

(3) The induced rule is that of rule consistent with all available information of which the 

entropy is minimum. 

The third law stated here is the mostly used for membership function development. 

The steps involved in generating membership functions using inductive reasoning are as 

follows: 

(a) It is necessary to establish a fuzzy threshold between classes of data. 

(b) First, determine the threshold line with an entropy minimization screening 

method. 

(c) After this, start the segmentation process. 
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(d) The segmentation process first results into two classes. 

(e) Further partitioning the first two classes one more time, there is three different 

classes. 

(f) The partitioning is repeated with threshold value calculations, which lead us to 

partition the data set into a number of classes or fuzzy sets. 

(g) Then based on shape, membership function is determined. 

Thus the generation of membership function is based on partitioning or analog screening 

concept. This draws a threshold line between two classes of sample data. The main concept 

behind drawing the threshold line is to classify the samples when minimizing the entropy for 

optimum partitioning. 

2.4  FUZZY RELATIONS AND THEIR GRAPHS 

2.4.1 Crisp Relation 

Definition (Cartesian product): Let A and B be two non-empty sets, the product set or 

Cartesian product A B  is defined as follows 

 ( , ) : , .A B a b a A b B     

The concept of Cartesian product can be extended to n sets. For an arbitrary number of sets 

1 2, , ......, nA A A , the set of all n-tuples  1 2, ,......, na a a  such that 
1 1,a A  

2 2 , ......, n na A a A   is called the Cartesian product and is written as 

1 2 ...... nA A A   or .
1

n
Ai

i



 

The product is used for the “composition” of sets and relations in the later sections. For 

example, a relation is a product space obtained from two sets A and B. 
3   

denotes the 3-dimensional space of real numbers. 
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Figure 2.8: Cartesian product A B  

Definition (Binary relation): If A and B are two sets and there is a specific property between 

elements x of A and y of B, this property can be described using the ordered pair (x, y). A set 

of such (x, y) pairs, x A  and ,y B is called a relation R. 

  , : , .R x y x A y B    

R is a binary relation and a subset of A B . 

The term “x is in relation R with y” is denoted as  ,x y R  or x R y  with .R A B   

Representation Methods of Relations 

There are four methods of expressing the relation between sets A and B. 

(i) Bipartigraph 

 

 

Figure 2.9: Bipartigraph 

The first is by illustrating A and B in a figure and representing the relation by drawing arcs or 

edges (Fig. 2.9). 
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(ii) Coordinate diagram 

The second is to use a coordinate diagram by plotting members of A on x axis and that of B 

on y axis, and then the members of A B  lie on the space. Fig 2.10 shows this type of 

representation for the relation R, namely 2 2 4x y  where x A  and .y B  

 

 

Figure 2.10: Relation of 2 2 4x y   

(iii) Matrix 

The third method is by manipulating relation matrix. Let A and B be finite sets having m and 

n elements respectively. Assuming R is a relation between A and B, we may represent the 

relation by matrix  R i jM m  which is defined as follows 

1, ( , ) ; 1(1) , 1(1)
( ), where

0, ( , )

i j

R i j i j

i j

a b R i m j n
M m m

a b R

  
  



 

Such matrix is called a relation matrix. 

(iv) Digraph 

The fourth method is the directed graph or digraph method. Elements are represented as 

nodes, and relations between elements as directed edges. 

A = {1, 2, 3, 4} and R ={(1, 1), (1, 2), (2, 1), (2, 2), (1, 3), (2, 4), (4, 1)} for instance. 

  

Figure 2.11: Directed graph 
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Fig 2.11 shows the directed graph corresponding to this relation. When a relation is 

symmetric, an undirected graph can be used instead of the directed graph. 

Table2.4: Comparison of relations 

Property Relation Reflexive Anti-reflexive Symmetric Anti-

symmetric 

Transitive 

Equivalence         

Compatibility        

Pre-order        

Order         

Strict-order         

 

 

 

2.4.2  Fuzzy Relation 

If a crisp relation R represents that of from sets A to B, for x A  and ,y B its membership 

function ( , )A x y  is 

1, iff ( , )
( , )

0, iff ( , ) .
A

x y R
x y

x y R



 


 

This membership function maps A B  to set {0, 1}, . ., : {0, 1}.Ri e A B    

Definition (Fuzzy relation): Fuzzy relation has degree of membership whose value lies in 

[0, 1]. 

 : [0, 1]R A B    and   ( , ), ( , ) : ( , ) 0, , .R RR x y x y x y x A y B      

Here ( , )R x y is interpreted as strength of relation between x and y. 

Operations on Fuzzy Relations 

Let R and T be fuzzy relation on Cartesian space X ×Y. Then the following operations apply 

for the membership values for various set operations: 

Union: The union of two fuzzy relations R and T is defined by 

  ( , ) max ( , ), ( , ) .R T R Tx y x y x y     

Intersection: The union of two fuzzy relations R and T is defined by 

  ( , ) min ( , ), ( , ) .R T R Tx y x y x y     
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Complement: The complement of fuzzy relation R is given by 

 ( , ) 1 ( , ).RR
x y x y    

Containment: The containment of two fuzzy relations R and T is given by 

 ( , ) ( , ), , .R TR T x y x y x y      

2.4.3  Fuzzy Cartesian product and Composition 

Let A be a fuzzy set on universe X and B be a fuzzy set on universe Y, then the Cartesian 

product between fuzzy sets A and B will result in a fuzzy relation R which is contained with 

the full Cartesian product space or A B R X Y    , where the fuzzy relation R has 

membership function 

  ( , ) ( , ) min ( , ), ( , ) .R A B A Bx y x y x y x y      

Example 2.4.1: Consider two fuzzy sets A and B. A represents universe of three discrete 

temperatures  1 2 3, ,x x x x  and B represents universe of two discrete flow  1 2, .y y y  

Find the fuzzy Cartesian product between them 

 
1 2 3 1 2

0.4 0.7 0.1 0.5 0.8
and .A B

x x x y y
      

Solution. A represents column vector of size 3 × 1 and B represents column vector of size 

1×2. The fuzzy Cartesian product results in a fuzzy relation R of size 3 × 2: 

 

1 2

1

2

3

0.4 0.4

0.5 0.7 .

0.1 0.1

y y

x

A B R x

x

 
 

  
 
  

 

Composition of Fuzzy Relation 

Let R be a fuzzy relation on the Cartesian space X ×Y, S be a fuzzy relation on Y × Z, and T 

be a fuzzy relation on X × Z, then the fuzzy set max–min composition is defined as: 

 T R S  (Set-theoretic notation) 

       , ,max min ( , ), ( , ) : , , .R S
y

x z x y y z x X y Y z Z      

In function-theoretic form 

      , , , .T R S
y Y

x z x y y z  


    

In fuzzy max–product composition is defined in terms of set-theoretic 
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      , ,max ( , ) ( , ) : , ,R S
y

T R S x z x y y z x X y Y z Z        

        , , , .T R S
y Y

x z x y y z  


    

Max-Average Composition 

The max–average composition 
org

S R  is defined as follows: 

   
1

( , ) , , max ( , ) ( , ) : , , .
2

R S
org y

S R x z x z x y y z x X y Y z Z 
 

     
   

 

 

Example 2.4.2: Consider fuzzy relations 

  

1 2

1

2

0.7 0.6
,

0.8 0.3

y y

x
R

x

 
  

 

 

1 2 3

1

2

0.8 0.5 0.4
.

0.1 0.6 0.7

z z z

y
S

y

 
  

 

 

Find the relation T R S using max–min and max–product composition. 

Solution. Max–Min Composition 

 T R S  

  T(x1, z1)  = max[min(0.7, 0.8), min(0.6, 0.1)] 

     = max[0.7, 0.1] 

    = 0.7, 

 T(x1, z2)  = max[min(0.7, 0.5), min(0.6, 0.6)] 

     = max[0.5, 0.6] 

    = 0.6, 

 T(x1, z3)  = max[min(0.7, 0.4), min(0.6, 0.7)] 

     = max[0.4, 0.7] 

    = 0.7, 

 T(x2, z1)  = max[min(0.8, 0.8), min(0.3, 0.1)] 

     = max[0.8, 0.1] 

    = 0.8, 

 T(x2, z2)  = max[min(0.8, 0.5), min(0.3, 0.6)] 
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     = max[0.5, 0.3] 

    = 0.5, 

 T(x2, z3)  = max[min(0.8, 0.4), min(0.3, 0.7)] 

    = 0.4 

  

 

 

 

Max–Product Composition 

   

   

   

and so on 

  

Example 2.4.3: In the field of computer networking there is an imprecise relationship 

between the level of use of a network communication bandwidth and the latency experienced 

in peer-to-peer communication. Let X be a fuzzy set of use levels (in terms of the percentage 

of full bandwidth used) and Y be a fuzzy set of latencies (in milliseconds) with the following 

membership function 

  

1 2 3

1

2

0.7 0.6 0.7
.

0.8 0.5 0.4

z z z

x
T

x

 
  

 

 

 
1 1( , ) max (0.7 0.8), (0.6 0.1)

max 0.56, 0.06

0.56

T x z   





 

 
1 2( , ) max (0.7 0.5), (0.6 0.6)

max 0.35, 0.36

0.36

T x z   





 

 
1 3( , ) max (0.7 0.4), (0.6 0.7)

max 0.28, 0.42

0.42

T x z   





1 2 3

1

2

0.56 0.36 0.42
.

0.64 0.40 0.32

z z z

x
T

x

 
  

 

0.2 0.5 0.8 1.0 0.6 0.1
,

10 20 40 60 80 100
X

 
      
 

0.3 0.6 0.9 1.0 0.6 0.3
.

0.5 1 1.5 4 8 20
Y

 
      
 
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Find the Cartesian product represented by the relation  

Reflexivity: Let  be the fuzzy relation on  then  is called reflexive  

if   

Example 2.4.4: Let , then the following relation is reflexive. 

  

If  and are reflexive fuzzy relation, then max-min composition
1 2R R is also reflexive. 

Symmetry: Let  be the fuzzy relation on  

(i)  is called symmetric if  

(ii)  is called anti-symmetric if for  

 

(iii)  is called perfectly symmetric if for  whenever 

 

Example 2.4.5: 

 

 

 is a perfectly anti symmetric relation, while  is an anti symmetric relation, but not a 

perfectly anti symmetric relation.  is non symmetric relation, that is, there exist 

with  which is not anti symmetric and therefore also not perfectly anti 

symmetric. 

.R X Y 

R ,X X R

( , ) 1, .R x x x X   

 1 2 3 4, , ,X x x x x

1 2 3 4

1

2

3

4

1 0 0.2 0.3

0 1 0.1 1
:

.2 0.7 1 0.4

0 1 0.4 1

x x x x

x

x
R

x

x

 
 
 
 
 
 

1R 2R

R .X X

R ( , ) ( , ) , .R Rx y y x x y X   

R x y

either ( , ) ( , )
, .

or ( , ) ( , ) 0

R R

R R

x y y x
x y X

x y y x

 

 

 
 

  

R x y

( , ) 0 then ( , ) 0 , .R Rx y y x x y X    

1R 2R

3R ,x y X

( , ) ( , ),R Rx y y x 
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One could certainly define other concepts, such as an -anti symmetry  

  

These concepts would probably be more in line with the basic ideas of fuzzy set theory. Since 

we will not need this type of definition for our further considerations, we will abstain from 

any further definition in the direction. 

Example2.4.6: Let  and  

The following relation is symmetric relation. 

 

Transitivity: A fuzzy relation  is called (max-min) transitive if  

In other words, a fuzzy relation  is transitive (max-min transitive) if  

  

is satisfied for each pair of  A relation failing to satisfy this inequality for 

some member of  is called non transitive, and if  

   

for all  then the relation is called anti transitive. 

   

Figure 2.12: Fuzzy relation 

For max-min composition, the following properties hold: 

(i)  is reflexive and  is an arbitrary fuzzy relation, then  and 

  

(ii) If  is reflexive, then   



( , ) ( , ) , .R Rx y y x x y X     

 1 2 3 4, , ,X x x x x  1 2 3 4, , , .Y y y y y

R .R R R

( , )R X X

 ( , ) max min ( , ), ( , )R R R
y Y

x z x y y z  




( , ) .x z X X 

X

 ( , ) max min ( , ), ( , ) ,R R R
y Y

x z x y y z  




( , ) ,x z X X 

1R 2R 1 2 2R R R

2 1 2.R R R

R .R R R
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(iii)  and  are reflexive, then  is reflexive. 

(iv)  and  are symmetric, then  is symmetric if  

(v) If  is symmetric, so is each power of  

 

 

 

Example 2.4.7: Let  be the fuzzy relation defined as 

 

Then  is 

 

Now one can easily see that  holds for all   

Combinations of the above properties give some interesting results for max-min composition 

as given below: 

(i) If  is symmetric and transitive, then  for all   

(ii) If  is reflexive and transitive, then  

(iii) If  and are transitive and 
1 2 2 1,R R R R then is transitive. 

Similarity or Equivalence Relation 

A similarity relation is a fuzzy relation  that is reflexive, symmetric and max-min 

transitive. 

Example 2.4.8: Let’s consider a fuzzy relation expressed in the following matrix. Since this 

relation is reflexive, symmetric and transitive, we see that it is a fuzzy equivalence relation 

(Fig 1.4.6). 

1R 2R 1 2R R

1R 2R 1 2R R 1 2 2 1.R R R R

R .R

R

R R

( , ) ( , )R R Rx y x y  , .x y X

R ( , ) ( , )R R Rx y x x  , .x y X

R .R R R

1R 2R 1 2R R

( , )R x x
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Figure 2.13: Graph of fuzzy equivalence relation 

Example 2.4.9: The following relation is a similarity relation: 

 

 

A similarity relation of a finite number of elements can also be represented by a similarity 

tree, similar to a dendogram. In this tree, each level represents an -cut ( -level set) of the 

similarity relation. For the above similarity relation, the similarity tree is shown below. The 

sets of elements on specific -levels can be considered as similarity classes of -level.  

 

 

 

 

 

 

 

 

 

 

 
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Figure 2.14: Dendogram 

We shall now turn to fuzzy order relations: As already mentioned, similarity relations and 

order relations are primarily distinguished by their degree of symmetry. Roughly speaking, 

similarity relations are fuzzy relations that are reflexive, (max-min) transitive and 

symmetrical; order relations, however, are not symmetrical. To be more precise, even 

different kinds of fuzzy order relations differ by their degree of similarity. 

Pre-order Relation 

A fuzzy relation that is (max-min) transitive and reflexive is called a fuzzy pre-order relation. 

 

 

Order Relation 

A fuzzy relation that is (max-min) transitive, reflexive and anti symmetric is called a fuzzy 

order relation. If the relation is perfectly anti symmetrical, it is called a perfect fuzzy order 

relation. It is also called a fuzzy partial order relation. 

Total Order Relation 

A order relation or a fuzzy linear ordering is a fuzzy total order relation such that 

 either  or   

Any -cut of a fuzzy linear order is a crisp linear order. 

 

 

 

 

 

, ;x y X x y   ( , ) 0R x y  ( , ) 0.R y x 


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Example 2.4.10: The following relation is fuzzy order relation: 

 

2.4.4 Fuzzy Graphs 

A graph G is defined as follows: , where 

 set of vertices. A vertex is also called a node or element. 

 set of edges. An edge is pair  of vertices in  

A graph is a data structure expressing relation  When order in pair (x, y) is 

defined, the pair is called edge with direction and we call such graph directed graph. When 

order is not allowed, we call it undirected graph. 

When sets A and B are given (including the case A = B), let’s define a crisp relation 

 For if there exists an edge between x and y. In other 

words,  

  

Here given the relation R is a fuzzy relation, and the membership function  enables 

 value to be between 0 and 1. Such graph is called a fuzzy graph. 

Definition: Let  be the (crisp) set of nodes. A fuzzy graph is then defined by 

  

 

Example 2.4.11: Figure shows an example of fuzzy graph represented as fuzzy 

relation matrix  

 

( , )G V E

:V

:E ( , )x y .V

.R V V 

.R A B  , ,x A y B  ( , ) ,x y R

( , ) ( , ) ( , ) 1.R Gx y R x y x y     

( , )R x y

( , )G x y

E

  ( , ) ( , ), ( , ) :( , ) .i j i j G i j i jG x x x x x x x x E E  

.GM
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Figure 2.15: Fuzzy graph 

Example 2.4.12: There is a set  where  is the set of real numbers and 

The membership function of the set A is 

formally defined as  

(i) Show the graphical representation of A. 

(ii) Show the -cut set of A at =0.5. 

(iii) Show the relation defined as follows: 

  

(iv) Show the -cut relation of R at =0.5. 

(v) Show the set defined by  This set B is a set induced by R 

and A. 

(vi) Show the relation defined as follows:  

 

 

Figure 2.16: Set ( ) cos 0A x x  
 

A 

 , : close to 2 , 0,1,2,... .x A x x k k  

 ( ) max 0, cos .A x x 

 

 ( , ) : cos 0,R x y y x x A   

 

( ) cos , .B y x x A  

 ( , ) max 0, sin ,R x y x x A  
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Figure 2.17:  

 

 

Figure 2.18: Relation   

 

Figure 2.19:  

0.5cut set A 

( , ) cosR x y x 

0.5cut relation R 
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Figure 2.20:  

 

 

Figure 2.21:  

 

Sub graph 

 is a fuzzy sub graph of  if 

   

 spans graph  if the node sets of  and  are 

equal, that is, if they differ only in their arc weights.  

2.4.5 Fuzzy Morphism 

Definition (Homomorphism): Given multiple crisp relations  and  

homomorphism from (A, R) to (B, S) is for the function  having the characteristics 

as for ,  

 

( ) cos ,B y x x A  

 ( , ) max 0, sinR x y x 

( , )i jH x x ( , )i jG x x

( , ) ( , ), ( , ) .H i j G i j i jx x x x x x E E    

( , )i jH x x ( , )i jG x x ( , )i jH x x ( , )i jG x x

R A A  S B B 

:h A B

1 2,x x A  1 2 1 2( , ) ( ), ( )x x R h x h x S  
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In other words, if two elements  and are related by R, their images  and are 

also related by S. 

Definition (Strong Homomorphism): Given two crisp relations  and 

, if the function satisfies the following, it is called strong homomorphism from (A, 

R) to (B, S). 

(i)  for ,   

(ii) For all , if  

  then  

Definition (Fuzzy Homomorphism): If the relations  and  are fuzzy 

relations, the above Morphism is extended to a fuzzy homomorphism as follows 

For all  and their images ,  

  1 2 1 2( , ) ( ), ( ) .R Sx x h x h x   

in other words, the strength of the relation S for is stronger than or equal to the 

that of R for  

If a homomorphism exists between fuzzy relations (A, R) and (B, S), the homomorphism h 

partitions A into subsets  because it is a many-to-one mapping 

 so to speak, image h(xi) of elements xi in Aj is 

identical to element y in B. In this manner, every element in A shall be mapped to one of B. If 

the strength between  and  gets the maximum strength between and  

thus morphism is replaced with fuzzy strong homomorphism. 

Definition (Fuzzy strong homomorphism): Given the fuzzy relations R and S, if h satisfies 

the followings, h is a fuzzy strong homomorphism. 

 For all  

 ,  

  

Example 2.4.13: Consider the relations  and  in the following 

1x 2x 1( )h x 2( )h x

R A A  S B B 

:h A B

1 2,x x A  1 2 1 2( , ) ( ), ( )x x R h x h x S  

1 2,y y B

1 1

1 1 2 2( ), ( )x h y x h y   1 2 1 2( , ) ( , ) .y y S x x R  

R A A  S B B 

1 2,x x A 1 2( ), ( )h x h x B

 1 2( ), ( )h x h x

1 2( , ).x x

1 2, ,..., nA A A

, 1,2,..., , ( )i j ix A i n h x y B    

jA
kA j jx A ,k kx A

, , ,j j k k j kx A x A A A A  

1 2( ), ( )j ky h x y h x   1 2 1 2, , , ,y y B y y S 

1 2
,

max ( , ) ( , ).
j k

R j k S
x x

x x y y 

R A A  S B B 
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we apply the mapping function h from A to B as follows  

 

Figure 2.22: Fuzzy homomorphism 

Here all of A has the relation in B. Furthermore 

 holds.  

For example   

As a consequence, this morphism is a fuzzy homomorphism (Fig 2.22). We know 

, but we are not able to find its corresponding pair in R. Therefore it is not a 

fuzzy strong homomorphism. 

Example 2.4.14: We have two relations  and  

  

: , ; ; .h a b c d    

 1 2, ,x x R  1 2( ), ( ) ,h x h x S

   1 2 1 2, ( ), ( )R Sx x h x h x 

( ) , ( ) ,h c h d      , 0 , 0.6.R Sc d     

 , 0.6S   

R A A  .S B B 
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We have also a function from A to B as follows   

Here for all of A has the relation  in B and inversely, for all 

 in  Thus h completes the conditions for fuzzy 

homomorphism. Now, let’s consider the conditions for the fuzzy strong homomorphism. 

 

 

Figure 2.23: Fuzzy strong homomorphism 

For example,  

 

in the same manner, we can verify for other pairs and then we see the morphism h is a fuzzy 

strong homomorphism (Fig 2.23). 

2.4.6. Extension Principle: An introduction to Fuzzy Control 

One of the most important notions in fuzzy set theory is the extension principle. The 

extension principle provides a general method for combining non-fuzzy and fuzzy concepts 

of all kinds, e.g., for combining fuzzy sets and relations, but also for the operation of a 

mathematical function on fuzzy sets. Fuzzy sets can also be interpreted as fuzzy numbers. In 

this Case one can use the extension principle to add or multiply these fuzzy numbers. 

Let  be fuzzy sets, defined respectively on  and let  be a non-fuzzy 

function  The aim is to extend  such that it operates on  

and returns a fuzzy set  on  This is done by using the sup-min composition as follows: 

: ; , ; , .h a b c d e    

 1 2, ,x x R  1 2( ), ( ) ,h x h x S

 1 1

1 2 1 2( , ) , ( ), ( )y y S h y h y R   .A

1 1( , ) , ( , ) 1, ( ) { , }, ( ) { , }SS h b c h d e          

   max ( , ), ( , ) max 1, 0.5 1 ( , )R R Sc d c e      

1,..., nA A 1,..., ,nU U f

1: ... .nf U U V   f
1,..., ,nA A

F .V



2.30 | Fuzzy Logic Models and Fuzzy Control: An Introduction 

Definition (Extension Principle): The extension of  operating on 
1,..., nA A  results in the 

following membership function for  

    (2.4.1) 

when  exists. Otherwise   

Another way to obtain this result is  

     (2.4.2) 

 In the binary case and on a discrete or compact domain, (2.4.1) is given by  

    (2.4.3) 

So the function  is extended from the domain of real numbers to the domain of fuzzy 

numbers. 

Example 2.4.15: The extension principle is often used in fuzzy arithmetic. Let  and  be 

two fuzzy numbers (fuzzy sets defined on ), then the membership function of the sum of 

 and  (denoted ) is 

     (2.4.4)  

So, the original function, in this case + is given in the subscript of the supremum operation. It 

is worthwhile to work this out. Let  be the fuzzy number with membership degree 

 and  the fuzzy number with membership degree  then  

has membership degree  approximately 10, but quite fuzzy. As a 

formula, 

  (2.4.5) 

In the same way, subtractions is defined by 

    (2.4.6) 

and  

,f

F

 

 
1

1

1

1
,...,

,...,

( ) sup min ( ),..., ( ) ,
n

n

n

F A A n
u u
f u u v

v u u  





1( )f v ( ) 0.A v 

 
 

1

1

1

1...

min ( ),..., ( )
.

,...,

n

n

A A n

nU U

u u
F

f u u

 

 

 

 
1 2 1 2

1 2

1 2

( , ) 1 2
,

( , )

( ) max min ( ), ( ) .f A A A A
x x
y f x x

y x x  




f

m n

m n m n

 
,

( ) sup min ( ), ( ) .
m n m n

x y
z x y

z x y  


 



6

 ;4,6,8x 4  ;3,4,5 ,y 6 4

 ;7,10,13 , . .,z i e

   
6 4

6 4 max min ( ), ( ) ;7,10,13
z x y

z x y

x y z z z 
 

 

    

 
,

( ) sup min ( ), ( )
m n m n

x y
z x y

z x y  


 


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    (2.4.7) 

 

While the domain in fuzzy control usually is either discrete or compact, one can almost 

always use the max-min composition instead of the sup-min composition. An ‘extended’ 

extension operator can be found by using  (S-norm-T-norm) composition. That is, 

    (2.4.8) 

On continuous domains one has to be careful with choice of  Normally, only the 

supremum operation and the  operation can be used. Another well known composition 

operation is the max-product or max-dot composition, that is, 

    (2.4.9)  

2.5  CLASSICAL AND FUZZY LOGIC 

2.5.1  Introduction 

Logic is but a small part of the human capacity to reason. Logic can be a means to compel us 

to infer correct answers, but it cannot by itself be responsible for our creativity or for our 

ability to remember. In other words, logic can assist us in organizing words to make clear 

sentences, but it cannot help us determine what sentences to use in various contexts. Consider 

the passage above from the nineteenth-century mathematician Lewis Carroll in his classic 

Through the Looking Glass. How many of us can see the logical context in the discourse of 

these fictional characters? Logic for humans is a way quantitatively to develop a reasoning 

process that can be replicated and manipulated with mathematical precepts. The interest in 

logic is the study of truth in logical propositions; in classical logic this truth is binary – a 

proposition is either true or false. 

This section introduces the reader to fuzzy logic with a review of classical logic and its 

operations, logical implications, and certain classical inference mechanisms such as 

tautologies. The concept of a proposition is introduced as are associated concepts of truth 

sets, tautologies, and contradictions. The operations of disjunction, conjunction, and negation 

are introduced as well as classical implication and equivalence; all of these are useful tools to 

construct compound propositions from single propositions. Operations on propositions are 

shown to be isomorphic with operations on sets 

 

 

 
,

( ) sup min ( ), ( ) .
m n m n

x y
z x y

z x y  


 



*
*

 

 

1

1

1

1
* *

,...,
,...,

( ) * ( ) ... ( )
n

n

n

F A A n

u u
f u u v

v u u  




  

*.


WS

1 2
1

1

1 2
,...,

( ,..., )

( ) max ( ) ( ) ... ( ).
n

n

n

F A A A n
u u

f u u v

v u u u   


   
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2.5.2  Classical Logic 

In classical logic, a simple proposition  is a linguistic, or declarative, statement contained 

within a universe of elements, (say), that can be identified as being a collection of 

elements in  that are strictly true or strictly false. Hence, a proposition  is a collection 

of elements, i.e., a set, where the truth values for all elements in the set are either all true or 

all false. The veracity (truth) of an element in the proposition  can be assigned a binary 

truth value, called  just as an element in a universe is assigned a binary quantity to 

measure its membership in a particular set. For binary (Boolean) classical logic,  is 

assigned a value of 1 (truth) or 0 (false). If  is the universe of all propositions, then  is a 

mapping of the elements,  in these propositions (sets) to the binary quantities (0, 1), or  

  

All elements u in the universe  that are true for proposition  are called the truth set of 

 denoted Those elements u in the universe  that are false for proposition  are 

called the falsity set of  

In logic we need to postulate the boundary conditions of truth values just as we do for sets; 

that is, in function-theoretic terms we need to define the truth value of a universe of 

discourse. For a universe Y  and the null set  we define the following truth values: 

 
 and  

Now let  and  be two simple propositions on the same universe of discourse that can be 

combined using the following five logical connectives 

 

to form logical expressions involving the two simple propositions. These connectives can be 

used to form new propositions from simple propositions. 

The disjunction connective, the logical or, is the term used to represent what is commonly 

referred to as the inclusive or. The natural language term or and the logical or differ in that 

the former implies exclusion (denoted in the literature as the exclusive or; further details are 

given in this chapter). For example, ‘‘soup or salad’’ on a restaurant menu implies the choice 

of one or the other option, but not both. The inclusive or is the one most often employed in 

logic; the inclusive or (logical or as used here) implies that a compound proposition is true if 

either of the simple propositions is true or both are true. 

P
X

X P

P
( )T P

( )T P

U T
,u

: (0, 1).T u U 

U P

,P ( ).T P U P

.P

,

( ) 1T Y  ( ) 0.T  

P Q
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The equivalence connective arises from dual implication; that is, for some propositions  

and  if  and  then   

Now define sets  and  from universe  (universe  is isomorphic with universe ), 

where these sets might represent linguistic ideas or thoughts. A propositional calculus 

(sometimes called the algebra of propositions) will exist for the case where proposition P 

measures the truth of the statement that an element, x, from the universe  is contained in 

set  and the truth of the statement  that this element,  is contained in set  or more 

conventionally, 

  and  

where truth is measured in terms of the truth value, i.e., 

    

   

or, using the characteristic function to represent truth (1) and falsity (0), the following 

notation results: 

  

A notion of mutual exclusivity arises in this calculus. For the situation involving two 

propositions  and  where we have that the truth of  always 

implies the falsity of and vice versa; hence,  and  are mutually exclusive 

propositions. 

Example 2.5.1: Let  be the proposition ‘‘the structural beam is an 18WF45’’ and let  

be the proposition ‘‘the structural beam is made of steel.’’ Let  be the universe of 

structural members comprised of girders, beams, and columns;  is an element (beam),  is 

the set of all wide-flange (WF) beams, and  is the set of all steel beams. Hence, 

 
 and  

The five logical connectives already defined can be used to create compound propositions, 

where a compound proposition is defined as a logical proposition formed by logically 

connecting two or more simple propositions. Just as we are interested in the truth of a simple 

proposition, classical logic also involves the assessment of the truth of compound 

propositions. For the case of two simple propositions, the resulting compound propositions 

are defined next in terms of their binary truth values. 

Given a proposition  we have the following for the logical connectives: 

Disjunction   (2.5.1) 

P
,Q P Q ,Q P .P Q

A B X X U

X
A Q ,x ,B

: truth thatP x A : truth thatQ x B

if , ( ) 1; otherwise, ( ) 0x A T P T P  

if , ( ) 1; otherwise, ( ) 0x B T Q T Q  

1,
( )

0,
A

x A
x

x A



 



P ,Q ( ) ( ) ,T P T Q   P

Q P Q

P Q

X

x A

B

: is inP x A : is in .Q x B

: , : ,P x A P x A 

 : . . ( ) max ( ), ( )P Q x A or x B i e T P Q T P T Q      



2.34 | Fuzzy Logic Models and Fuzzy Control: An Introduction 

Conjunction  (2.5.2) 

Negation If  then  if ( ) 0,T P   then   (2.5.3) 

Implication   (2.5.4) 

Equivalence    (2.5.5) 

 

The logical connective implication, i.e.,  (  implies ), presented here is also 

known as the classical implication, to distinguish it from an alternative form devised in the 

1930s by Lukasiewicz, a Polish mathematician, who was first credited with exploring logics 

other than Aristotelian (classical or binary logic) [Rescher (1969)], and from several other 

forms (see end of this chapter). In this implication the proposition  is also referred to as the 

hypothesis or the antecedent, and the proposition  is also referred to as the conclusion or 

the consequent. The compound proposition  is true in all cases except where a true 

antecedent  appears with a false consequent,  i.e., a true hypothesis cannot imply a 

false conclusion. 

Example 2.5.2 [Gill (1976)]: Consider the following four propositions: 

1. If 1+1=2, then  

2. If 1+1=3, then  

3. If 1+1=3, then  

4. If 1+1=2, then  

The first three propositions are all true; the fourth is false. In the first two, the conclusion 4 > 

0 is true regardless of the truth of the hypothesis; in the third case both propositions are false, 

produce a true conclusion. 

Hence, the classical form of the implication is true for all propositions of  and  except 

for those propositions that are in both the truth set of  and the false set of  i.e.,  

      (2.5.6) 

This classical form of the implication operation requires some explanation. For a proposition 

 defined on set  and a proposition  defined on set  the implication ‘‘  implies 

’’ is equivalent to taking the union of elements in the complement of set  with the 

elements in the set  (this result can also be derived by using De Morgan’s principles on 

(2.5.6). That is, the logical implication is analogous to the set-theoretic form 

    

 : and . . ( ) min ( ), ( )P Q x A x B i e T P Q T P T Q      

( ) 1,T P  ( ) 0;T P  ( ) 1.T P 

( ) : . ., ( ) ( )P Q x A or x B i e T P Q T P Q       

1, for ( ) ( )
( ) : ( )

0, for ( ) ( )

T P T Q
P Q T P Q

T P T Q


   



P Q P Q

P
Q

P Q

P ,Q

4 0.

4 0.

4 0.

4 0.

P Q

P ,Q

( ) ( ) ( )T P Q T P T Q  

P A Q ,B P

Q A

B

 ( ) is true either"not in " or "in "P Q A B A B   
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so that     (2.5.7) 

This expression is linguistically equivalent to the statement, ‘‘  is true’’ when either 

‘‘not ’’ or ‘‘ ’’ is true (logical or). Graphically, this implication and the analogous set 

operation are represented by the Venn diagram in Fig. 2.5.1. As noted in the diagram, the 

region represented by the difference  is the set region where the implication  is 

false (the implication ‘‘fails’’). The shaded region in Fig. 2.5.1 represents the collection of 

elements in the universe where the implication is true; that is, the set 

     

If  is in  and  is not in  then 

 

Now, with two propositions ( and ) each being able to take on one of two truth values 

(true or false, 1 or 0), there will be a total of  propositional situations. These situations 

are illustrated, along with the appropriate truth values, for the propositions  and 

 

Figure 2.24 Graphical analog of the classical implication operation; gray area is 

where implication holds. 

Table 2.5: Truth table for various compound propositions 

 

 

and the various logical connectives between them in Table 5.1. The values in the last five 

columns of the table are calculated using the expressions in (2.5.1) and (2.5.7). In Table 2.5 T 

(or 1) denotes true and F (or 0) denotes false. 

 ( ) ( ) max ( ), ( )T P Q T P Q T P T Q   

P Q

A B

|A B P Q

| .A B A B A B   

x A x ,B

fails | (difference)A B A B 

P Q
22 4

P
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Suppose the implication operation involves two different universes of discourse;  is a 

proposition described by set ,A  which is defined on universe  and  is a proposition 

described by set  which is defined on universe  Then the implication  can be 

represented in set-theoretic terms by the relation ,R  where R  is defined by 

   ( ) ( ) ,R A B A Y IF A THEN B      

where and where andIF x A x X A X THEN y B y Y B Y       
(2.5.8) 

This implication, (2.5.8), is also equivalent to the linguistic rule form, IF ,A  THEN .B  The 

graphic shown in Fig. 2.5.2 represents the space of the Cartesian product X × Y, showing 

typical sets A  and ;B  and superposed on this space is the set-theoretic equivalent of the 

implication. That is, 

: , , or .P Q IF x A THEN y B P Q A B       

The shaded regions of the compound Venn diagram in Fig. 2.5.2 represent the truth domain 

of the implication, IF ,A  THEN ( ).B P Q  

Another compound proposition in linguistic rule form is the expression 

, ,IF A THEN B ELSE C
 

Linguistically, this compound proposition could be expressed as 

  , , and ,IF A THEN B IF A THEN C  

In classical logic this rule has the form 

( ) ( )P Q P S  
       

 (2.5.9) 

: , ; : , ; : ,P x A A X Q y B B Y S y C C Y       

 

Figure 2.25 The Cartesian space showing the implication IF ,A  THEN B  

P
,X Q

,B .Y P Q
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Figure 2.26 Truth domain for IF ,A  THEN ,B  ELSE .C  

The set-theoretic equivalent of this compound proposition is given by 

, , ( ) ( ) relation on .IF A THEN B ELSE C A B A C R X Y        
(2.5.10) 

The graphic in Fig. 2.26 illustrates the shaded region representing the truth domain for this 

compound proposition for the particular case where .B C    

Tautologies 

In classical logic it is useful to consider compound propositions that are always true, 

irrespective of the truth values of the individual simple propositions. Classical logical 

compound propositions with this property are called tautologies. Tautologies are useful for 

deductive reasoning, for proving theorems, and for making deductive inferences. So, if a 

compound proposition can be expressed in the form of a tautology, the truth value of that 

compound proposition is known to be true. Inference schemes in expert systems often employ 

tautologies because tautologies are formulas that are true on logical grounds alone. For 

example, if A is the set of all prime numbers 
1 2 3 4( 1, 2, 3, 5,...)A A A A     on the real 

line universe, ,X  then the proposition ‘‘Ai is not divisible by 6’’ is a tautology. 

One tautology, known as modus ponens deduction, is a very common inference scheme used 

in forward-chaining rule-based expert systems. It is an operation whose task is to find the 

truth value of a consequent in a production rule, given the truth value of the antecedent in the 

rule. Modus ponens deduction concludes that, given two propositions, P  and ,P Q  both 

of which are true, then the truth of the simple proposition Q  is automatically inferred. 

Another useful tautology is the modus tollens inference, which is used in backward-chaining 

expert systems. In modus tollens an implication between two propositions is combined with a 

second proposition and both are used to imply a third proposition. Some common tautologies 

follow: 

    ; ;B B X A X A X X      

     ( ) (modus ponens)A A B B       (2.5.11) 
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     ( ) (modus tollens)B A B A       (2.5.12) 

A simple proof of the truth value of the modus ponens deduction is provided here, along with 

the various properties for each step of the proof, for purposes of illustrating the utility of a 

tautology in classical reasoning. 

Proof 

     ( )A A B B    

    
 ( )A A B B    Implication 

    
 ( ) ( )A A A B B     Distributivity 

    
 ( )A B B     Excluded middle axioms 

    
 A B B   Identity 

    
 A B B   Implication 

    
 A B B   De Morgan’s principles 

    
 A B B   Associativity 

    A X  Excluded middle axioms 

    
( ) 1X T X   Identity; QED 

A simpler manifestation of the truth value of this tautology is shown in Table 2.6 in truth 

table form, where a column of all ones for the result shows a tautology. 

Table 2.6 Truth Table (modus ponens) 
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Table 2.7 Truth Table (modus tollens) 

 

 

 

Similarly, a simple proof of the truth value of the modus tollens inference is listed here. 

Proof 

    
 ( )B A B A    

    
 ( )B A B A    

    
 ( ) ( )B A B B A     

    
 ( )B A A    

    
 B A A   

    
 B A A   

    
 B A A   

    
 B A A   

    
( ) 1B X X T X     QED 

  The truth table form of this result is shown in Table 2.7. 

Contradictions 

Compound propositions that are always false, regardless of the truth value of the individual 

simple propositions constituting the compound proposition, are called contradictions. For 

example, if A is the set of all prime numbers 
1 2 3 4( 1, 2, 3, 5,...)A A A A     on the real 

line universe, X, then the proposition ‘‘
iA  is a multiple of 4’’ is a contradiction. Some simple 

contradictions are listed here:  
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    ; ; .B B A A     

Equivalence 

As mentioned, propositions P  and Q  are equivalent, i.e., ,P Q  is true only when both 

P  and Q  are true or when both P  and Q  are false. For example, the propositions P : 

‘‘triangle is equilateral’’ and Q : ‘‘triangle is equiangular’’ are equivalent because they are 

either both true or both false for some triangle. This condition of equivalence is shown in Fig. 

2.27, where the shaded region is the region of equivalence. 

It can be easily proved that the statement P Q  is a tautology if P  is identical to ,Q  i.e., 

if and only if ( ) ( ).T P T Q  

 

Figure 2.27: Venn diagram for equivalence  

Example 2.5.3: Suppose we consider the universe of positive integers,  1 8 .X n    Let 

P  = ‘‘n is an even number’’ and let "(3 7) ( 6)."Q n n      Then  ( ) 2,4,6,8T P   

and  ( ) 3,4,5,7 .T Q   The equivalence P Q  has the truth set 

          ( ) ( ) ( ) ( ) ( ) 4 1 1, 4T P Q T P T Q T P T Q         

One can see that ‘‘1 is an even number’’ and "(3 1 7) (1 6)"     are both false, and ‘‘4 is 

an even number’’ and "(3 4 7) (4 6)"     are both true. 

Example 2.5.4: Prove that P Q  if P  = ‘‘n is an integer power of 2 less than 7 and 

greater than zero’’ and 2" 6 8 0."Q n n     Since  ( ) 2,4T P  and  ( ) 2,4T Q   it 

follows that P Q  is an equivalence. 

Suppose a proposition R  has the form .P Q  Then the proposition Q P  is called the 

contrapositive of ;R  the proposition Q P  is called the converse of R; and the proposition 

P Q  is called the inverse of .R   
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The dual of a compound proposition that does not involve implication is the same proposition 

with false (0) replacing true (1) (i.e., a set being replaced by its complement), true replacing 

false, conjunction ( )  replacing disjunction ( )  and disjunction replacing conjunction. If a 

proposition is true, then its dual is also true. 

Exclusive Or and Exclusive Nor 

Two more interesting compound propositions are worthy of discussion. These are the 

exclusive or and the exclusive nor. The exclusive or is of interest because it arises in many 

situations involving natural language and human reasoning. For example, when you are going 

to travel by plane or boat to some destination, the implication is that you can travel by air or 

sea, but not both, i.e., one or the other. For two propositions, P and Q, the exclusive or, 

denoted here as XOR, is given in Table 2.27 and Fig. 2.28. 

Table 2.8: Truth table for exclusive or 

 

 

Figure 2.28: Exclusive or shown in black areas 

The exclusive nor is the complement of the exclusive or [Mano (1988)]. A look at its truth 

table, Table 2.5.5, shows that it is an equivalence operation, i.e., 
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Table 2.9: Truth table for exclusive nor 

 

     P XOR Q P Q   

and, hence, it is graphically equivalent to the Venn diagram in Fig. 2.5.4. 

Logical Proofs 

Logic involves the use of inference in everyday life, as well as in mathematics. In the latter, 

we often want to prove theorems to form foundations for solution procedures. In natural 

language, if we are given some hypotheses it is often useful to make certain conclusions from 

them – the so-called process of inference (inferring new facts from established facts). In the 

terminology we have been using, we want to know if the proposition 

 1 2 ... nP P P Q    is true. That is, is the statement a tautology? 

The process works as follows. First, the linguistic statement (compound proposition) is made. 

Second, the statement is decomposed into its respective single propositions. Third, the 

statement is expressed algebraically with all pertinent logical connectives in place. Fourth, a 

truth table is used to establish the veracity of the statement. 

Example 2.5.5:  

Hypotheses: Engineers are mathematicians. Logical thinkers do not believe in magic. 

Mathematicians are logical thinkers. 

Conclusion: Engineers do not believe in magic. 

Let us decompose this information into individual propositions. 

  P: a person is an engineer 

  Q: a person is a mathematician 

  R : a person is a logical thinker 

  S : a person believes in magic 

The statements can now be expressed as algebraic propositions as 

   ( ) ( ) ( ) ( )P Q R S Q R P S        

It can be shown that this compound proposition is a tautology. 
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Sometimes it might be difficult to prove a proposition by a direct proof (i.e., verify that it is 

true), so an alternative is to use an indirect proof. For example, the popular proof by 

contradiction (reductio ad absurdum) exploits the fact that P Q  is true if and only if 

P Q  is false. Hence, if we want to prove that the compound statement 

 1 2 ... nP P P Q     is a tautology, we can alternatively show that the alternative 

statement 1 2 ... nP P P Q     is a contradiction. 

Example 2.5.6:  

Hypotheses: If an arch-dam fails, the failure is due to a poor sub grade. An arch-dam fails. 

Conclusion: The arch-dam failed because of a poor sub grade. 

This information can be shown to be algebraically equivalent to the expression 

  
 ( )P Q P Q    

To prove this by contradiction, we need to show that the algebraic expression 

  
 ( )P Q P Q    

is a contradiction. We can do this by constructing the truth table in Table 5.6. Recall that a 

contradiction is indicated when the last column of a truth table is filled with zeros. 

Table 2.10: Truth table for dam failure problem 

 

Deductive Inferences 

The modus ponens deduction is used as a tool for making inferences in rule-based systems. A 

typical if–then rule is used to determine whether an antecedent (cause or action) infers a 

consequent (effect or reaction). Suppose we have a rule of the form IF A , THEN ,B  where 

A  is a set defined on universe X  and B  is a set defined on universe Y. As discussed before, 

this rule can be translated into a relation between sets A and B; that is, recalling (2.5.8), 

( ) ( ).R A B A Y     Now suppose a new antecedent, say A , is known. Can we use 

modus ponens deduction, (2.5.11), to infer a new consequent, say ,B  resulting from the new 

antecedent? That is, can we deduce, in rule form, IF A, THEN B? The answer, of course, is 

yes, through the use of the composition operation. Since ‘‘ A  implies B ’’ is defined on the 
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Cartesian space ,X Y  B  can be found through the following set-theoretic formulation, 

again from (2.5.8): 

  
 ' ' ( ) ( )B A R A A B A Y      

where the symbol denotes the composition operation. Modus ponens deduction can also be 

used for the compound rule IF ,A  THEN ,B  ELSE ,C  where this compound rule is 

equivalent to the relation defined in (2.5.10) as ( ) ( ).R A B A C     For this compound 

rule, if we define another antecedent ,A  the following possibilities exist, depending on (1) 

whether A  is fully contained in the original antecedent ,A  (2) whether A  is contained only 

in the complement of ,A  or (3) whether A  and A  overlap to some extent as described next: 

  
' ', ; ,IF A A THEN y B IF A A THEN y C     

  
' ', ,IF A A A A THEN y B C        

 

 

The rule IF A, THEN B (proposition P is defined on set A  in universe X, and proposition Q 

is defined on set B  in universe Y), i.e., ( ) ( ) ( ),P Q R A B A Y       is then defined 

in function-theoretic terms as 

     ( , ) max ( ) ( ) , (1 ( )) 1R A B Ax y x y x          (2.5.13) 

Example 2.5.7: Suppose we have two universes of discourse for a heat exchanger problem 

described by the following collection of elements, X = {1, 2, 3, 4} and Y = {1, 2, 3, 4, 5, 6}.  

Suppose X is a universe of normalized temperatures and Y is a universe of normalized 

pressures. Define crisp set A on universe X and crisp set B on universe Y as follows: A = {2, 

3} and B = {3, 4}. The deductive inference IF A, THEN B (i.e., IF temperature is A, THEN 

pressure is B) will yield a matrix describing the membership values of the relation R, i.e., 

( , )R x y  through the use of (2.5.13). That is, the matrix R represents the rule IF A, THEN B 

as a matrix of characteristic (crisp membership) values. 

Crisp sets A and B can be written using Zadeh’s notation, 

  
0 1 1 0

,
1 2 3 4

A
 

    
 

 
0 0 1 1 0 0

.
1 2 3 4 5 6

B
 

      
 

 

If we treat set A as a column vector and set B as a row vector, the following matrix results 

from the Cartesian product of A B  is 
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0 0 0 0 0 0

0 0 1 1 0 0
.

0 0 1 1 0 0

0 0 0 0 0 0

A B

 
 
  
 
 
 

 

 

The Cartesian product A × Y can be determined by arranging A as a column vector and the 

universe Y as a row vector (sets A and Y can be written using Zadeh’s notation), 

  
1 0 0 1

,
1 2 3 4

A
 

    
 

 
1 1 1 1 1 1

.
1 2 3 4 5 6

Y
 

      
 

 

  

1 1 1 1 1 1

0 0 0 0 0 0
.

0 0 0 0 0 0

1 1 1 1 1 1

A Y

 
 
  
 
 
   

 

Then the full relation R describing the implication IF A, THEN B is the maximum of the two 

matrices A B  and A Y  or, using (2.5.13), 

  

1 2 3 4 5 6

1 1 1 1 1 1 1

2 0 0 1 1 0 0
.

3 0 0 1 1 0 0

4 1 1 1 1 1 1

R

 
 
 
 
 
 

 

The compound rule IF A, THEN B, ELSE C can also be defined in terms of a matrix relation 

as ( ) ( ) ( ) ( ),R A B A C P Q P S        as given by (2.5.9) and (2.5.10), where 

the membership function is determined as 

     ( , ) max ( ) ( ) , (1 ( )) ( )R A B A Cx y x y x y           (2.5.14) 

Example 2.5.8: Continuing with the previous heat exchanger example, suppose we define a 

crisp set C on the universe of normalized temperatures Y as C = {5, 6}, or, using Zadeh’s 

notation, 

  
0 0 0 0 1 1

.
1 2 3 4 5 6

C
 

      
 
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The deductive inference IF A, THEN B, ELSE C (i.e., IF pressure is A, THEN temperature is 

B, ELSE temperature is C) will yield a relational matrix R, with characteristic values 

( , )R x y  obtained using Eq. (2.5.14). The first half of the expression in Eq. (5.10) (i.e., A × 

B) has already been determined in the previous example. The Cartesian product A C can be 

determined by arranging the set A  as a column vector and the set C as a row vector 

  

0 0 0 0 1 1

0 0 0 0 0 0
.

0 0 0 0 0 0

0 0 0 0 1 1

A C

 
 
  
 
 
 

 

Then the full relation R describing the implication IF A, THEN B, ELSE C is the maximum 

of the two matrices A × B and ,A C  

  

1 2 3 4 5 6

1 0 0 0 0 1 1

2 0 0 1 1 0 0
.

3 0 0 1 1 0 0

4 0 0 0 0 1 1

R

 
 
 
 
 
 

 

2.5.3  Fuzzy Logic 

A fuzzy logic proposition, P, is a statement involving some concept without clearly defined 

boundaries. Linguistic statements that tend to express subjective ideas and that can be 

interpreted slightly differently by various individuals typically involve fuzzy propositions. 

Most natural language is fuzzy, in that it involves vague and imprecise terms. Statements 

describing a person’s height or weight or assessments of people’s preferences about colors or 

menus can be used as examples of fuzzy propositions. The truth value assigned to P can be 

any value on the interval [0, 1]. The assignment of the truth value to a proposition is actually 

a mapping from the interval [0, 1] to the universe U of truth values, T, as indicated in 

(2.5.15), 

  : (0, 1)T u U   (2.5.15) 

As in classical binary logic, we assign a logical proposition to a set in the universe of 

discourse. Fuzzy propositions are assigned to fuzzy sets. Suppose proposition P is assigned to 

fuzzy set A; then the truth value of a proposition, denoted ( )T P  is given by 

  ( ) ( ), where 0 ( ) 1A AT P x x     (2.5.16) 

(2.5.16) indicates that the degree of truth for the proposition :P x A  is equal to the 

membership grade of x  in the fuzzy set .A  
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The logical connectives of negation, disjunction, conjunction, and implication are also 

defined for a fuzzy logic. These connectives are given in (2.5.17)–(2.5.20) for two simple 

propositions: proposition P defined on fuzzy set A and proposition Q defined on fuzzy set B. 

Negation ( ) 1 ( )T P T P   (2.5.17) 

Disjunction  : is or . ., ( ) max ( ), ( )P Q x A B i e T P Q T P T Q      (2.5.18) 

Conjunction  : is and . ., ( ) min ( ), ( )P Q x A B i e T P Q T P T Q      (2.5.19) 

Implication [Zadeh (1973)]  

 : is , then is . ., ( ) max( ( ), ( ))P Q x A x B i e T P Q T P Q T P T Q     
 

 (2.5.20) 

As before in binary logic, the implication connective can be modelled in rule-based form; 

P Q  is, IF x is A, THEN y is B and it is equivalent to the following fuzzy relation, 

( ) ( ),R A B A Y     just as it is in classical logic. The membership function of R is 

expressed by the following formula: 

   ( , ) max ( ) ( ) , (1 ( ))R A B Ax y x y x         (2.5.21) 

Example 2.5.9: Suppose we are evaluating a new invention to determine its commercial 

potential. We will use two metrics to make our decisions regarding the innovation of the idea. 

Our metrics are the ‘‘uniqueness’’ of the invention, denoted by a universe of novelty scales, 

X = {1, 2, 3, 4}, and the ‘‘market size’’ of the invention’s commercial market, denoted on a 

universe of scaled market sizes, Y = {1, 2, 3, 4, 5, 6}. In both universes the lowest numbers 

are the ‘‘highest uniqueness’’ and the ‘‘largest market,’’ respectively. A new invention in 

your group, say a compressible liquid of very useful temperature and viscosity conditions, has 

just received scores of ‘‘medium uniqueness,’’ denoted by fuzzy set A, and ‘‘medium market 

size,’’ denoted fuzzy set B. We wish to determine the implication of such a result, i.e., IF A, 

THEN B. We assign the invention the following fuzzy sets to represent its ratings: 

  A   medium uniqueness 
0.6 1 0.2

2 3 4

 
   
 

 

  B   medium market size 
0.4 1 0.8 0.3

2 3 4 5

 
    
 

 

  C   diffuse market size 
0.3 0.5 0.6 0.6 0.5 0.3

1 2 3 4 5 6

 
      
 

 

The following matrices are then determined in developing the membership function of the 

implication, ( , )R x y  illustrated in (2.5.21), 
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1 2 3 4 5 6

1 0 0 0 0 0 0

2 0 0.4 0.6 0.6 0.3 0
,

3 0 0.4 1 0.8 0.3 0

4 0 0.2 0.2 0.2 0.2 0

A B

 
 
  
 
 
 

 

  

1 2 3 4 5 6

1 1 1 1 1 1 1

2 0.4 0.4 0.4 0.4 0.4 0.4
,

3 0 0 0 0 0 0

4 0.8 0.8 0.8 0.8 0.8 0.8

A B

 
 
  
 
 
 

 

and finally,  max ,R A B A Y    

  

1 2 3 4 5 6

1 1 1 1 1 1 1

2 0.4 0.4 0.6 0.6 0.4 0.4
.

3 0 0.4 1 0.8 0.3 0

4 0.8 0.8 0.8 0.8 0.8 0.8

R

 
 
 
 
 
   

 

When the logical conditional implication is of the compound form 

  is , is , isIF x A THEN y B ELSE y C  

then the equivalent fuzzy relation, R, is expressed as ( ) ( ),R A B A C     in a form 

just as (2.5.10), whose membership function is expressed by the following formula: 

  
   ( , ) max ( ) ( ) , (1 ( )) ( )R A B A Cx y x y x y             (2.5.22) 

Hence, using the result of (2.5.22), the new relation is 

  

1 2 3 4 5 6

1 0.3 0.5 0.6 0.6 0.5 0.3

2 0.3 0.4 0.4 0.4 0.4 0.3
( ) ( ) :

3 0 0 0 0 0 0

4 0.3 0.5 0.6 0.6 0.5 0.3

R A B A C A C

 
 
      
 
 
 

 

and finally, 
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1 2 3 4 5 6

1 0.3 0.5 0.6 0.6 0.5 0.3

2 0.3 0.4 0.6 0.6 0.4 0.3
.

3 0 0.4 1 0.8 0.3 0

4 0.3 0.5 0.6 0.6 0.5 0.3

R

 
 
 
 
 
 

 

2.5.4  Approximate Reasoning  

The ultimate goal of fuzzy logic is to form the theoretical foundation for reasoning about 

imprecise propositions; such reasoning has been referred to as approximate reasoning [Zadeh 

(1976, 1979)]. Approximate reasoning is analogous to classical logic for reasoning with 

precise propositions, and hence is an extension of classical propositional calculus that deals 

with partial truths. 

Suppose we have a rule-based format to represent fuzzy information. These rules are 

expressed in conventional antecedent-consequent form, such as 

Rule 1: IF x is A, THEN y is B, where A and B represent fuzzy propositions (sets). 

Now suppose we introduce a new antecedent, say 
'A  and we consider the following rule: 

Rule 2: IF x is ' ,A  THEN y is 
'.B  

From information derived from Rule 1, is it possible to derive the consequent in Rule 2, 
'B ? 

The answer is yes, and the procedure is fuzzy composition. The consequent 
'B  can be found 

from the composition operation, 
' ' .B A R  

The two most common forms of the composition operator are the max–min and the max–

product compositions. 

Example 2.5.10: Suppose that the fuzzy relation just developed, i.e., R describes the 

invention’s commercial potential. We wish to know what market size would be associated 

with a uniqueness score of ‘‘almost high uniqueness.’’ That is, with a new antecedent A the 

following consequent B can be determined using composition. Let 

  
'A  almost high uniqueness 

0.5 1 0.3 0

1 2 3 4

 
    
 

 

Then, using the following max–min composition, 

  
' ' 0.5 0.5 0.6 0.6 0.5 0.5

1 2 3 4 5 6
B A R

 
       

 
 

we get the fuzzy set describing the associated market size. In other words, the consequent is 

fairly diffuse, where there is no strong (or weak) membership value for any of the market size 

scores (i.e., no membership values near 0 or 1). 
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This power of fuzzy logic and approximate reasoning to assess qualitative knowledge can be 

illustrated in more familiar terms to engineers in the context of the following example in the 

field of biophysics. 

Example 2.5.11: For research on the human visual system, it is sometimes necessary to 

characterize the strength of response to a visual stimulus based on a magnetic field 

measurement or on an electrical potential measurement. When using magnetic field 

measurements, a typical experiment will require nearly 100 off/on presentations of the 

stimulus at one location to obtain useful data. If the researcher is attempting tomap the visual 

cortex of the brain, several stimulus locations must be used in the experiments. When 

working with a new subject, a researcher will make preliminary measurements to determine if 

the type of stimulus being used evokes a good response in the subject. The magnetic 

measurements are in units of femtotesla (
1510

tesla). Therefore, the inputs and outputs are 

both measured in terms of magnetic units. 

We will define inputs on the universe X = [0, 50, 100, 150, 200] femtotesla, and outputs on 

the universe Y = [0, 50, 100, 150, 200] femtotesla. We will define two fuzzy sets, two 

different stimuli, on universe X: 

  W  `` weak stimulus” 
1 0.9 0.3 0 0

0 50 100 150 200
X

 
      
 

 

  M  `` medium stimulus” 
0 0.4 1 0.4 0

0 50 100 150 200
X

 
      
   

 

 

and one fuzzy set on the output universe Y, 

  S  `` severe stimulus” 
0 0 0.5 0.9 1

0 50 100 150 200
Y

 
      
 

 

The complement of S will then be 

  

1 1 0.5 0.1 0
.

0 50 100 150 200
S

 
     
 

 

We will construct the proposition: IF ‘‘weak stimulus’’ THEN not ‘‘severe response,’’ using 

classical implication. 

  ( ) ( )IF W THEN S W S W S W Y       
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 

0 50 100 150 200

1 0 1 1 0.5 0.1 0

0.9 50 0.9 0.9 0.5 0.1 0

1 1 0.5 0.1 00.3 100 0.3 0.3 0.3 0.1 0

0 150 0 0 0 0 0

0 200 0 0 0 0 0

W S

   
   
   
     
   
   
      

 

  

 

0 50 100 150 200

0 0 0 0 0 0 0

0.1 50 0.1 0.1 0.1 0.1 0.1

1 1 1 1 10.7 100 0.7 0.7 0.7 0.7 0.7

1 150 1 1 1 1 1

1 200 1 1 1 1 1

W Y

   
   
   
     
   
   
      

 

  

   

0 50 100 150 200

0 1 1 0.5 0.1 0

50 0.9 0.9 0.5 0.1 0.1

100 0.7 0.7 0.7 0.7 0.7

150 1 1 1 1 1

200 1 1 1 1 1

R W S W Y

 
 
 
     
 
 
    

 

 

This relation R, then, expresses the knowledge embedded in the rule: IF ‘‘weak stimuli’’ 

THEN not ‘‘severe response.’’ Now, using a new antecedent (IF part) for the input, M= 

‘‘medium stimuli,’’ and a max–min composition we can find another response on the Y 

universe to relate approximately to the new stimulus M, i.e., to find :M R  

   

0 50 100 150 200

1 1 0.5 0.1 0

0.9 0.9 0.5 0.1 0.1

0 0.4 1 0.4 0 0.7 0.7 0.7 0.7 0.7 .0.7 0.7 0.7 0.7 0.7

1 1 1 1 1

1 1 1 1 1

M R

 
 
 
  
 
 
  

 

This result might be labelled linguistically as ‘‘no measurable response.’’ 
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An interesting issue in approximate reasoning is the idea of an inverse relationship between 

fuzzy antecedents and fuzzy consequences arising from the composition operation. 

Consider the following problem. Suppose we use the original antecedent A in the fuzzy 

composition. Do we get the original fuzzy consequent B as a result of the operation? Does the 

composition operation have a unique inverse, i.e., B A R ? The answer is an unqualified 

no, and one should not expect an inverse to exist for fuzzy composition. 

Example 2.5.12: Again, continuing with the invention example, Examples 2.5.9 and 2.5.10, 

suppose that 
'A A   ‘‘medium uniqueness.’’ Then 

  
' ' 0.4 0.4 1 0.8 0.4 0.4

1 2 3 4 5 6
B A R A R B

 
         

 
 

That is, the new consequent does not yield the original consequent (B = medium market size) 

because the inverse is not guaranteed with fuzzy composition. 

In classical binary logic this inverse does exist; that is, crisp modus ponens would give 

  
' 'B A R A R B    

where the sets A and B are crisp, and the relation R is also crisp. In the case of approximate 

reasoning, the fuzzy inference is not precise but rather is approximate. However, the 

inference does represent an approximate linguistic characteristic of the relation between two 

universes of discourse, X and Y. 

Example 2.5.13: Suppose you are a soils engineer and you wish to track the movement of 

soil particles under applied loading in an experimental apparatus that allows viewing of the 

soil motion. You are building pattern recognition software to enable a computer to monitor 

and detect the motions. However, there are some difficulties in ‘‘teaching’’ your software to 

view the motion. The tracked particle can be occluded by another particle. The occlusion can 

occur when a tracked particle is behind another particle, behind a mark on the camera’s lens, 

or partially out of sight of the camera. We want to establish a relationship between particle 

occlusion, which is a poorly known phenomenon, and lens occlusion, which is quite well-

known in photography. Let these membership functions, 

  
1 2 3

0.1 0.9 0
A

x x x

 
   
 

 and 
1 2 3

0 1 0
B

y y y

 
   
 

 

describe fuzzy sets for a tracked particle moderately occluded behind another particle and a 

lens mark associated with moderate image quality, respectively. Fuzzy set A is defined on a 

universe  1 2 3, ,X x x x  of tracked particle indicators, and fuzzy set B (note in this case that 

B is a crisp singleton) is defined on a universe  1 2 3, ,Y y y y  of lens obstruction indices. A 

typical rule might be: IF occlusion due to particle occlusion is moderate, THEN image quality 

will be similar to a moderate lens obstruction, or symbolically, 

  is , is . ., ( ) ( )IF x A THEN y B i e A B A Y R       
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We can find the relation, R, as follows: 

  

1 2 3

1

2

3

0 0.1 0

0 0.9 0

0 0 0

y y y

x

A B x

x

 
 

 
 
  

 and 

1 2 3

1

2

3

0.9 0.9 0.9

0.1 0.1 0.1

1 1 1

y y y

x

A Y x

x

 
 

 
 
  

 

  

1 2 3

1

2

3

0.9 0.9 0.9

( ) ( ) 0.1 0.1 0.1

1 1 1

 
 

    
 
  

y y y

x

R A B A Y x

x

 

This relation expresses in matrix form all the knowledge embedded in the implication. Let A 

be a fuzzy set, in which a tracked particle is behind a particle with slightly more occlusion 

than the particle expressed in the original antecedent A given by 

  

'

1 2 3

0.3 1 0
A

x x x

 
   
 

 

We can find the associated membership of the image quality using max–min composition. 

For example, approximate reasoning will provide 

  ' ' ',IF x is A THEN B A R and we get 

   '

1 2 3

0.9 0.9 0.9
0.3 0.9 0.3

0.3 1 0 0.1 0.1 0.1

1 1 1

 
  

     
   

B
y y y

 

This image quality 
'B  is fuzzier than B as indicated by the former’s membership function. 

OTHER FORMS OF THE IMPLICATION OPERATION 

There are other techniques for obtaining the fuzzy relation R based on the IF A, THEN B, or 

.R A B  These are known as fuzzy implication operations, and they are valid for all 

values of x X  and .y Y  The following forms of the implication operator show different 

techniques for obtaining the membership function values of fuzzy relation R defined on the 

Cartesian product space .X Y  

   ( , ) max ( ), 1 ( )R B Ax y x x     (2.5.23) 

   ( , ) min ( ), ( )R B Ax y x x    (2.5.24) 

  
  ( , ) min 1, 1 ( ) ( )R B Ax y x x      (2.5.25) 
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( , ) ( ) ( )R B Ax y x x     (2.5.26) 

  

1, for ( ) ( )
( , )

( ), otherwise

A B

R

B

x x
x y

x

 





 


 (2.5.27)  

In situations where the universes are represented by discrete elements the fuzzy relation R is a 

matrix. 
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EXERCISE-2 

1. Using the inference method, find the membership values of the triangular shapes for each 

of the following triangles: ( ) 60 , 40 , 80a  ( ) 45 , 65 , 70b  and ( ) 75 , 55 , 50 .c  

2. Using your own intuition, develop fuzzy number “approximately 4 or approximately 8” 

using the following function shapes: 

  (1) Symmetric triangle 

  (2) Trapezoids 

  (3) Gaussian functions. 

3.  Develop membership function for trapezoidal similar to algorithm developed for triangle 

and the function should have two independent variables hence it can be passed. For the 

shown in table, show the first iteration in trying to compute the membership values for 

input variables 
1 2,x x  and 

3x  in the output regions 
1R  and 

2R  

   

1 2

1 2 3

1.0 0.5 2.3 1.0 0.0

x x x R R
 

  (a) Use 3 3 1   neural network, 

  (b) Use 3 3 2   neural network.  

4.  The three variables of interest in the MOSFET are the amount of current that can be 

switched, the voltage that can be switched and the cost. The following membership 

function for the transistor was developed 

  Current 
0.4 0.7 1 0.8 0.6

,
0.8 0.9 1 1.1 1.2

I
 

      
 

 

  Voltage 
0.2 0.8 1 0.9 0.7

,
30 45 60 75 90

V
 

      
 

 

  Cost=
0.4 1 0.5

.
0.5 0.6 0.7

 
   
 

 

  The power is given by .P V I  

  (a) Find the fuzzy Cartesian product .P V I   

  (b) Find the fuzzy Cartesian product .T I C   

  (c) Using max–min composition find .E P T  

  (d) Using max–product composition find .E P T  
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5. Find the relation between two fuzzy sets 
1R  and 

2R  using 

  (a) Max–min composition 

  (b) Max–product composition 

  (c) Max–average composition 

  

1 2 3 4

1

1

2

0.3 0.1 0.6 0.3
,

0.1 1 0.2 0.1

y y y y

x
R

x

 
  

 

 

   

1 2 3

1

2

2

3

4

0.9 0.1 1

0.1 0.5 0.4
.

0.6 0.8 0.5

0.1 0 0

z z z

y

y
R

y

y

 
 
 
 
 
 

 

6. Discuss the reflexivity property of the following fuzzy relation 

   

1 0.7 0.3

0.4 0.5 0.8 .

0.7 0.5 1

R

 
 


 
  

 

7. For each of the following relation on single set state whether the relation is reflexive, 

symmetric, and transitive 

(a) “is a sibling of,” 

(b) “is a parent of,” 

(c) “is a smarter than,” 

(d) “is the same height as,” 

(e) “is at least as tall as.” 

8. A factory process control operation involves two linguistic (atomic) parameters consisting 

of pressure and temperature in a fluid delivery system. Nominal pressure limits range from 

400 psi minimum to 1000 psi maximum. Nominal temperature limits are 130 to 140◦F. 

We characterize each parameter in fuzzy linguistic terms as follows: 

  Low temperature 
1 0.8 0.6 0.4 0.2 0

131 132 133 134 135 136

 
      
 

 

  High temperature 
0 0.2 0.4 0.6 0.8 1

134 135 136 137 138 139

 
      
 

 

  High pressure 
0 0.2 0.4 0.6 0.8 1

400 600 700 800 900 1000

 
      
 
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  Low pressure 
1 0.8 0.6 0.4 0.2 0

400 600 700 800 900 1000

 
      
 

 

  (a) Find the following membership functions: 

 (i) Temperature not very low 

  (ii) Temperature not very high 

  (iii) Temperature not very low and not very high 

  (b) Find the following membership functions: 

  (i) Pressure slightly high 

  (ii) Pressure fairly high  2 3[high]  

  (iii) Pressure not very low or fairly low 

9. Show that the following propositions from Lewis Carroll are tautologies [Gill, 1976]: 

  (a) No ducks waltz; no officers ever decline to waltz; all my poultry are ducks. Therefore, 

none of my poultry are officers. 

  (b) Babies are illogical; despised persons cannot manage crocodiles; illogical persons are 

despised; therefore, babies cannot manage crocodiles. 

(c) Promise-breakers are untrustworthy; wine-drinkers are very communicative; a man 

who keeps his promise is honest; all pawnbrokers are wine-drinkers; we can always trust a 

very communicative person; therefore, all pawnbrokers are honest. (This problem requires
62 64  lines of a truth table; perhaps it should be tackled with a computer.) 

10. Given the fuzzy sets A and B on X and Y, respectively, 

  
1 0.1

, for [0, 10]
x

A x
x

 
  

 
  and 

0.2
, for [0, 5]

y
B y

y

 
  

 
  

  
( ) 0A x   outside the interval [0, 10]  and ( ) 0B x   outside the interval [0, 5].  

  (a) Construct a fuzzy relation R for the implication A B using the classical implication 

operation, i.e., construct    .R A B A Y     

  (b) Use max–min composition to find ' ,B  given 
' 1

.
3

A
 

  
 
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Chapter-3 

Fuzzy Systems and Fuzzy Models 

3.1.  DEFUZZIFICATION 

Apart from the lambda cut sets and relations which convert fuzzy sets or relations into crisp 

sets or relations, there are other various defuzzification methods employed to convert the 

fuzzy quantities into crisp quantities. The output of an entire fuzzy process can be union of 

two or more fuzzy membership functions. To explain this in detail, consider a fuzzy output, 

which is formed by two parts, one part being triangular shape (Figure 3.1 (a)) and other part 

being trapezoidal (Figure 3.1 (b)). The union of these two forms (Figure 3.1 (c)) the outer 

envelope of the two shapes. 

 

(a)                                             (b)                                            (c)  

Figure 3.1: Typical fuzzy output 

There are seven methods used for defuzzifying the fuzzy output functions: 

(i) Max-membership principle 

(ii) Centroid method 

(iii) Weighted average method 

(iv) Mean–max membership 

(v) Centre of sums 

(vi) Centre of largest area 

(vii) First of maxima or last of maxima 
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Next, we explain each method with graph. 

Max-membership principle 

This method is given by the expression 

  
*( ) ( ),C Cz z   for all .z X       (3.1.1) 

 

 

Figure 3.2: Max membership method 

This method is also referred as height method. This is shown in Figure 3.2. 

(i) Centroid method 

This is the most widely used method. This can be called as centre of gravity or centre of area 

method. It can be defined by the algebraic expression 

   * ( )
,

( )

C

C

z zdx
z

z dx




 

        

(3.1.2) 

where  is used for algebraic integration. Fig. 3.3 represents this method graphically. 

 

 

Figure 3.3: Centroid method 
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(ii) Weighted Average method 

This method cannot be used for asymmetrical output membership functions, can be used only 

for symmetrical output membership functions. Weighting each membership function in the 

obtained output by its largest membership value forms this method. The evaluation 

expression for this method is 

   *
( )

,
( )

C

C

z z
z

z








        (3.1.3) 

where  is used for algebraic sum. 

 

Figure 3.4: weighted average method 

(iii) Mean-max membership 

This method is related to max-membership principle, but the present of the maximum 

membership need not be unique, i.e., the maximum membership need not be a single point, it 

can be a range. This method is also called as middle of maxima method the expression is 

given as 

   
* ,

2

a b
z


          (3.1.4) 

where a × b are the end point of the maximum membership range as shown in Fig. 3.5. 

 

Figure 3.5: Mean-max membership 
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(iv) Centre of sums 

It involves the algebraic sum of individual output fuzzy sets, say 1c and 2c  instead of union. 

In this method, it is noted that the intersecting areas are added twice. This method is similar 

to the weighted average method, but in centre of sums, the weights are the areas of the 

respective membership functions whereas in the weighted average method, the weights are 

individual membership values. 

The defuzzified value 
*z is given as 

 

Figure 3.6: (a) First membership (b) Second membership (c) defuzzification step 

                                         

* 1

1

( )

.

( )

k

k

n

C

k

n

C

k

x z dx

z

x z dz













                                                      (3.1.5) 

(v) Centre of largest area 

If the fuzzy set has two convex sub regions, then the entire of gravity of the convex sub 

region with the largest area can be used to calculate the defuzzification value. The equation is 

given as  
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Figure 3.7: Centre of largest area 

  
*

( )
,

( )

m

m

C

C

z z dx
z

z dx








        (3.1.6) 

Where 
m

C is the convex region with largest area. The value 
*z is same as the Value 

*z  

obtained by centroid method. This can be done even for non-convex regions. 

(vi) First of maxima or last of minima 

Here, the computed output of all individual output fuzzy sets 
k

C  is used to determine the 

smallest value, with maximized membership degree in 
m

C . 

 

 

Figure 3.8: First of maxima or last of minima 
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Example 3.1.1: For the given membership function as shown in Fig. 3.8 determines the 

defuzzified output value by seven methods. 

 

Figure 3.9: Membership function 

Solution. (a) Centroid method  

  11 : (0,0), (2, 0.7),A   

The straight line may be: 

  

0.7
0 ( 0), 3.5 .

2
y x y x     

  12 : 0.7.A y   

 13 : not needed.A  

  21 : (2,0), (3, 1),A  

  

0 1
0 ( 2), 2.

3 2
y x y x


    


 

  12 : 1.A y   

  23 : (4, 1), (6, 0),A  

  

0 1
1 ( 4), 0.5 3.

6 4
y x y x


     


 

Solving 12A  and 21,A  we have 2.7, 0.7.x y   

Numerator    
2 2.7 3 4 6

2 2 2

0 2 2.7 3 4

0.35 0.7 2 0.5 3z dz Kdz z z dz zdz z z dz             

 10.98.  



Fuzzy Systems and Fuzzy Models | 3.7 
 

Denominator    
2 2.7 3 4 6

2 2 2

0 2 2.7 3 4

0.35 0.7 2 0.5 3z dz Kdz z dz dz z z dz             

  3.445.  

  
* Numerator 10.98

3.187.
Denominator 3.445

z     

(b) Weighted average method 

* 2 0.7 4 1
3.176.

1 0.7
z

  
 


  

(c) Mean–max method 

* 2.5 3.5
3.

2
z


 

 

(d) Center of sums method 

  

6

* 0

6

0

1 1
0.7 (3 2) 2 1 (2 4) 4

2 2

1 1
0.7 (3 2) 1 (2 4)

2 2

dz

z

dz

    
            

    


    
          

    





 

  

 

 

6

* 0

6

0

3.5 12

2.84.

1.75 3

dz

z

dz



 







 

(e) First of maxima 

  
* 3.z   

(f) First of maxima 

  

  
* 4.z   

(g) Centre of largest area 

Area of 
1

0.7 (2.7 0.7) 1.19,
2

I       

Area of 
1 1

1 (2 3) 0.7 2.255.
2 2

II         
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Area of II is larger, So, 

  

3 64

* 2.7 43

3 64

2.7 43

1 1
0.3 0.3 2.85 2 51 1 3.5

2 2

1 1
0.3 0.3 2 11 1

2 2

dz dzdz

z

dz dzdz

      



    

 

 

 

  

3 64

* 2.7 43

3 64

2.7 43

0.12825 53.5

4.49.

0.045

dz dzdz

z

dz dzdz



 



 

 

 

3.2  FUZZY SYSTEMS  

Natural language is perhaps the most powerful form of conveying information that humans 

possess for any given problem or situation that requires solving or reasoning. This power has 

largely remained untapped in today’s mathematical paradigms; however it can be handled 

with the utility of fuzzy logic. Consider the information contained in the passage above from 

Charles Dickens’ A Tale of Two Cities. Imagine reducing this passage to a more precise form 

such that it could be assimilated by a binary computer. First, we will have to remove the 

fuzziness inherent in the passage limiting the statements to precise, either–or, Aristotelian 

logic. Consider the following crisp version of the first few words of the Dickens passage: 

The time interval x was the period exhibiting a 100 percent maximum of possible values as 

measured along some arbitrary social scale and the interval x was also the period of time 

exhibiting a 100 percent minimum of these values as measured along the same scale [Clark, 

(1992)]. 

The crisp version of this passage has established an untenable paradox, identical to that posed 

by the excluded middle axioms in probability theory. Another example is available from the 

same classic, the last sentence in Dickens’ A Tale of Two Cities: ‘‘It is a far, far better thing 

that I do, than I have ever done; it is a far, far better rest that I go to, than I have ever 

known.’’ It would also be difficult to address this original fuzzy phrase by an intelligent 

machine using binary logic. Both of these examples demonstrate the power of communication 

inherent in natural language, and they demonstrate how far we are from enabling intelligent 

machines to reason the way humans do – a long way! 

Cognitive scientists tell us that humans base their thinking primarily on conceptual patterns 

and mental images rather than on any numerical quantities. In fact the expert system 

paradigm known as ‘‘frames’’ is based on the notion of a cognitive picture in one’s mind. 

Furthermore, humans communicate with their own natural language by referring to previous 

mental images with rather vague but simple terms. Despite the vagueness and ambiguity in 

natural language, humans communicating in a common language have very little trouble in 

basic understanding. Our language has been termed the shell of our thoughts [Zadeh, 1975]. 

Hence, any attempts to model the human thought process as expressed in our 
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communications with one another must be preceded by models that attempt to emulate our 

natural language. 

Our natural language consists of fundamental terms characterized as atoms in the literature. A 

collection of these atoms will form the molecules, or phrases, of our natural language. The 

fundamental terms can be called atomic terms. Examples of some atomic terms are slow, 

medium, young, beautiful, etc. A collection of atomic terms is called a composite, or simply a 

set of terms. Examples of composite terms are very slow horse, medium-weight female, 

young tree, fairly beautiful painting, etc. Suppose we define the atomic terms and sets of 

atomic terms to exist as elements and sets on a universe of natural language terms, say 

universe X. Furthermore, let us define another universe, called Y, as a universe of cognitive 

interpretations, or meanings. Although it may seem straightforward to envision a universe of 

terms, it may be difficult to ponder a universe of interpretations. Consider this universe, 

however, to be a collection of individual elements and sets that represent the cognitive 

patterns and mental images referred to earlier in this chapter. Clearly, these interpretations 

would be rather vague, and they might best be represented as fuzzy sets. Hence, an atomic 

term, or as [Zadeh, (1975)] defines it, a linguistic variable, can be interpreted using fuzzy 

sets. 

The need for expressing linguistic variables using the precepts of mathematics is quite well 

established. Leibniz, who was an early developer of calculus, once claimed, ‘‘If we could 

find characters or signs appropriate for expressing all our thoughts as definitely and as 

exactly as arithmetic expresses numbers or geometric analysis expresses lines, we could in all 

subjects, in so far as they are amenable to reasoning, accomplish what is done in arithmetic 

and geometry.’’ Fuzzy sets are a relatively new quantitative method to accomplish just what 

Leibniz had suggested. 

With these definitions and foundations, we are now in a position to establish a formal model 

of linguistics using fuzzy sets. Suppose we define a specific atomic term in the universe of 

natural language, X, as element   and we define a fuzzy set A  in the universe of 

interpretations, or meanings, Y, as a specific meaning for the term .  Then natural language 

can be expressed as a mapping M from a set of atomic terms in X to a corresponding set of 

interpretations defined on universe Y. Each atomic term   in X corresponds to a fuzzy set 

A  in Y, which is the ‘‘interpretation’’ of .  This mapping, which can be denoted ( , )M A  

is shown schematically in Fig. 3.10. 

The fuzzy set A  represents the fuzziness in the mapping between an atomic term and its 

interpretation and can be denoted by the membership function ( , )M y   or more simply by 

  ( , ) ( )M Ay y                                                                                             (3.2.1)  
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Figure 3.10: Mapping of a linguistic atom, ,  to a cognitive interpretation A  

As an example, suppose we have the atomic term ‘‘young’’ ( ) and we want to interpret this 

linguistic atom in terms of age, ,y  by a membership function that expresses the term 

‘‘young.’’ The membership function given here in the notation of [Zadeh,(1975b)] and 

labeled A , might be one interpretation of the term young expressed as a function of age, 

  

1
225 100

0 25

1 1 25
" " 1

5

y
A young

y y



  
     

   
   

or alternatively, 

  

1
2

25
1 , 25 years

(young, ) 5

1, 25 years

M

y
y

y

y



           




 

Similarly, the atomic term ‘‘old’’ might be expressed as another fuzzy set, O, on the universe 

of interpretation, Y, as 

  

1
2

25
(old, ) 1 1 , for 50 100.

5
M

y
y y



  
      

   

 

On the basis of the foregoing, we can call α a natural language variable whose ‘‘value’’ is 

defined by the fuzzy set ( )y  Hereinafter, the ‘‘value’’ of a linguistic variable will be 

synonymous with its interpretation. 

As suggested before, a composite is a collection, or set of atomic terms combined by various 

linguistic connectives such as and, or, and not. Define two atomic terms   and   on the 

universe X. The interpretation of the composite, defined on universe Y can be defined by the 

following set-theoretic operations [Zadeh, (1975b)], 

   : ( ) max ( ), ( ) ,oror y y y         (3.2.2)  
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   : ( ) min ( ), ( ) ,andand y y y         (3.2.3) 

  : ( ) 1 ( ).Not y y
       (3.2.4) 

These operations are analogous to those proposed earlier in this chapter (standard fuzzy 

operations), where the natural language connectives and, or, and not were logical 

connectives. In linguistics, fundamental atomic terms are often modified with adjectives 

(nouns) or adverbs (verbs) like very, low, slight, more or less, fairly, slightly, almost, barely, 

mostly, roughly, approximately, and so many more that it would be difficult to list them all. 

We will call these modifiers ‘‘linguistic hedges’’: that is, the singular meaning of an atomic 

term is modified, or hedged, from its original interpretation. Using fuzzy sets as the calculus 

of interpretation, these linguistic hedges have the effect of modifying the membership 

function for a basic atomic term [Zadeh, (1972)]. As an example, let us look at the basic 

linguistic atom, α, and subject it to some hedges. Define ( ) ; then
Y

y y    

  
 

2

2
( )

" " ,
Y

y
Very

y

           (3.2.5) 

  
4" , " ,Very very  

       
(3.2.6) 

  
1.25" " ,Plus  

       
(3.2.7) 

  

 
0.5

( )
" " ,

Y

y
Slightly

y

   
     

(3.2.8) 

  
0.75" " .Minus  

       
(3.2.9) 

The expressions shown in (3.2.5)-(3.2.7) are linguistic hedges known as concentrations 

[Zadeh, 1972]. Concentrations tend to concentrate the elements of a fuzzy set by reducing the 

degree of membership of all elements that are only ‘‘partly’’ in the set. The less an element is 

in a set (i.e., the lower its original membership value), the more it is reduced in membership 

through concentration. For example, by using (3.2.5) for the hedge very, a membership value 

of 0.9 is reduced by 10% to a value of 0.81, but a membership value of 0.1 is reduced by an 

order of magnitude to 0.01. This decrease is simply a manifestation of the properties of the 

membership value itself; for 0 1,   then 
2.   Alternatively, the expressions given in 

(3.2.8) and (3.2.9) are linguistic hedges known as dilations (or dilutions in some 

publications). Dilations stretch or dilate a fuzzy set by increasing the membership of elements 

that are ‘‘partly’’ in the set [Zadeh, 1972]. For example, using (3.2.8) for the hedge slightly, a 

membership value of 0.81 is increased by 11% to a value of 0.9, whereas a membership value 

of 0.01 is increased by an order of magnitude to 0.1. 

Another operation on linguistic fuzzy sets is known as intensification. This operation acts in a 

combination of concentration and dilation. It increases the degree of membership of those 



3.12 | Fuzzy Logic Models and Fuzzy Control: An Introduction 

elements in the set with original membership values greater than 0.5, and it decreases the 

degree of membership of those elements in the set with original membership values less than 

0.5. This also has the effect of making the boundaries of the membership function steeper. 

Intensification can be expressed by numerous algorithms, one of which, proposed by Zadeh 

(1972) is 

  
 

2

2

2 ( ), for 0 ( ) 1
"intensify"

1 2 1 ( ) , for 0.5 ( ) 1

y y

y y

 

 

 


 

  
 

   

   (3.2.10) 

Intensification increases the contrast between the elements of the set that have more than 

half-membership and those that have less than half-membership. Fig. 3.11 (a) and (b), and 

3.12 illustrate the operations of concentration, dilation, and intensification, respectively, for 

fuzzy linguistic hedges on a typical fuzzy set .A  

 

Figure 3.11: (a) Fuzzy concentration (b) Fuzzy dilation 

 

Figure 3.12: Fuzzy intensification 

Composite terms can be formed from one or more combinations of atomic terms, logical 

connectives, and linguistic hedges. Since an atomic term is essentially a fuzzy mapping from 

the universe of terms to a universe of fuzzy sets represented by membership functions, the 

implementation of linguistic hedges and logical connectives is manifested as function-

theoretic operations on the values of the membership functions. In order to conduct the 

function-theoretic operations, a precedence order must be established. For example, suppose 

we have two atomic terms ‘‘small’’ and ‘‘red,’’ and their associated membership functions, 

and we pose the following linguistic expression: a ‘‘not small’’ and ‘‘very red’’ fruit. Which 

of the operations, i.e., not, and, very, would we perform first, which would we perform 

second, and so on? In the literature, the following preference table (Table 3.1) has been 

suggested for standard Boolean operations. 
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Parentheses may be used to change the precedence order and ambiguities may be resolved by 

the use of association-to-the-right. For example, ‘‘plus very minus very small’’ should be 

interpreted as 

   plus very(minus(very(small)))  

Table 3.1: Precedence for linguistic hedges and logical operations 

Precedence Operation 

First 

Second 

Third 

Hedge. Not 

And 

Or 

 

Every atomic term and every composite term has a syntax represented by its linguistic label 

and a semantics, or meaning (interpretation),which is given by a membership function. The 

use of a membership function gives the flexibility of an elastic meaning to a linguistic term. 

On the basis of this elasticity and flexibility, it is possible to incorporate subjectivity and bias 

into the meaning of a linguistic term. These are some of the most important benefits of using 

fuzzy mathematics in the modelling of linguistic variables. This capability allows us to 

encode and automate human knowledge, which is often expressed in natural language 

propositions. 

In our example, a ‘‘not small’’ and ‘‘very red’’ fruit, we would perform the hedges ‘‘not 

small’’ and ‘‘very red’’ first, then we would perform the logical operation and on the two 

phrases as suggested in Table 3.2.1. To further illustrate Table 3.2.1, consider the following 

numerical example. 

Example 3.2.1: Suppose we have a universe of integer,  1, 2, 3, 4, 5 .Y   We define the 

following linguistic terms as a mapping onto Y: 

1 0.8 0.6 0.4 0.2
" "

1 2 3 4 5
Small

 
     
 

 and 
0.2 0.4 0.6 0.8 1

"Large"
1 2 3 4 5

 
     
 

  

Now we modify these two linguistic terms with hedges, 

 2 1 0.64 0.36 0.16 0.04
" " " "

1 2 3 4 5
Very small small

 
      

 
 

 2 0 0.36 0.64 0.84 0.96
" " 1 " " " " .

1 2 3 4 5
Not very small Very small small

 
        

 
 

Then we construct a phrase or a composite term: 

  "not verysmalland not very large"   
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which involves the following set-theoretic operations: 

0 0.36 0.64 0.84 0.96 1 1 0.9 0.6 0.36 0.64 0.6
.

1 2 3 4 5 1 2 3 4 2 3 4


     
                
     

 

In summary, the foregoing material introduces the idea of a linguistic variable (atomic term), 

which is a variable whose values (interpretation) are natural language expressions referring to 

the contextual semantics of the variable. Zadeh [Zadeh (1975b)] described this notion quite 

well: 

A linguistic variable differs from a numerical variable in that its values are not numbers but 

words or sentences in a natural or artificial language. Since words, in general, are less precise 

than numbers, the concept of a linguistic variable serves the purpose of providing a means of 

approximate characterization of phenomena which are too complex or too ill-defined to be 

amenable to description in conventional quantitative terms. More specifically, the fuzzy sets 

which represent the restrictions associated with the values of a linguistic variable may be 

viewed as summaries of various subclasses of elements in a universe of discourse. This, of 

course, is analogous to the role played by words and sentences in a natural language. For 

example, the adjective handsome is a summary of a complex of characteristics of the 

appearance of an individual. It may also be viewed as a label for a fuzzy set which represents 

a restriction imposed by a fuzzy variable named handsome. From this point of view, then, the 

terms very handsome, not handsome, extremely handsome, quite handsome, etc., are names 

of fuzzy sets which result from operating on the fuzzy set handsome with the modifiers 

named very, not, extremely, quite, etc. In effect, these fuzzy sets, together with the fuzzy set 

labelled handsome, play the role of values of the linguistic variable Appearance. 

Fuzzy (Rule-Based) Systems 

In the field of artificial intelligence (machine intelligence) there are various ways to represent 

knowledge. Perhaps the most common way to represent human knowledge is to form it into 

natural language expressions of the type 

  IF premise (antecedent), THEN conclusion (consequent)                                 (3.2.11) 

The form in Expression (3.2.11) is commonly referred to as the IF–THEN rule-based form; 

this form generally is referred to as the deductive form. It typically expresses an inference 

such that if we know a fact (premise, hypothesis, antecedent), then we can infer, or derive, 

another fact called a conclusion (consequent). This form of knowledge representation, 

characterized as shallow knowledge, is quite appropriate in the context of linguistics because 

it expresses human empirical and heuristic knowledge in our own language of 

communication. It does not, however, capture the deeper forms of knowledge usually 

associated with intuition, structure, function, and behavior of the objects around us simply 

because these latter forms of knowledge are not readily reduced to linguistic phrases or 

representations; this deeper form, as described in Chapter 1, is referred to as inductive. 
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Table 3.2: The canonical form for a fuzzy rule-based system 

Rule 1 : IF condition C1, THEN restriction R1 

Rule 2 : IF condition C2, THEN restriction R2 

Rule r : IF condition Cr, THEN restriction Rr 

 

The fuzzy rule-based system is most useful in modelling some complex systems that can be 

observed by humans because it makes use of linguistic variables as its antecedents and 

consequents; as described here these linguistic variables can be naturally represented by 

fuzzy sets and logical connectives of these sets. 

By using the basic properties and operations defined for fuzzy sets, any compound rule 

structure may be decomposed and reduced to a number of simple canonical rules as given in 

Table 3.2. These rules are based on natural language representations and models, which are 

themselves based on fuzzy sets and fuzzy logic. The fuzzy level of understanding and 

describing a complex system is expressed in the form of a set of restrictions on the output 

based on certain conditions of the input (see Table 3.2). Restrictions are generally modelled 

by fuzzy sets and relations. These restriction statements are usually connected by linguistic 

connectives such as ‘‘and,’’ ‘‘or,’’ or ‘‘else.’’ The restrictions 
1 2, ,..., rR R R apply to the 

output actions, or consequents of the rules. The following illustrates a couple of the most 

common techniques [Ross (1995)] for decomposition of linguistic rules involving multiple 

antecedents into the simple canonical form illustrated in Table 3.2. 

Multiple conjunctive antecedents 

  
1 2is and ...and isL sIF x A A A THEN y B  

Assuming a new fuzzy subset 
sA  as 

  
1 2 ... ,s LA A A A     

expressed by means of membership function 

  1 2( ) min ( ), ( ),..., ( )s LA A A A
x x x x        

based on the definition of the standard fuzzy intersection operation, the compound rule may 

be rewritten as 

  
s sIF A THEN B  
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Multiple conjunctive antecedents 

  
1 2is ... isL sIF x A or A or A THEN y B  

Could be rewritten as 

  ,s sIF A THEN B  

where fuzzy set 
sA  is defined as 

  
1 2 ... ,s LA A A A     

  1 2( ) max ( ), ( ),..., ( ) .s LA A A A
x x x x        

This is based on the definition of the standard fuzzy union operation. 

3.2.1  Fuzzy Expert Systems 

An expert system is a program which contains human expert’s knowledge and gives answers 

to the user’s query by using an inference method. The knowledge is often stored in the form 

of rule base, and the most popular form is that of “IF-THEN”. 

A fuzzy expert system is an expert system which can deal uncertain and fuzzy information. In 

our real world, a human expert has his knowledge in the form of linguistic terms. Therefore it 

is natural to represent the knowledge by fuzzy rules and thus to use fuzzy inference methods. 

Table 3.3: Lookup table 
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The structure of a fuzzy expert system is similar to that of the fuzzy logic controller. Its 

configuration is shown in Fig. 3.13. As in the fuzzy logic controller, there can be fuzzification 

interface, knowledge base, and inference engine (decision making logic). Instead of the 

defuzzification module, there is the linguistic approximation module. 

 

Fuzzification Interface 

This module deals user’s request, and thus we have to determine the fuzzification strategy. If 

we want to make the fuzzy expert system receive linguistic terms, this module has to have an 

ability to handle such fuzzy information. The fuzzification strategy, if necessary, is similar to 

that of the fuzzy logic controller. 

In contradiction to the fuzzy logic controller, it is not needed to consider the discretization or 

normalization. But the fuzzy partition and assigning fuzzy linguistic terms to each sub region 

are necessary. 

The expert’s knowledge may be represented in the form of “IF-THEN” by using fuzzy 

linguistic terms. Each rule can have its certainty factor which represents the certainty level of 

the rule. This certainty factor is used in the aggregation of the results from each rule. 

 

Inference Engine (Decision Making Logic) 

The fuzzy expert systems can use the inference methods of the fuzzy logic controller. The 

system does not deal with a machine or process, and thus it is difficult to have a fuzzy set 

with monotonic membership function in the consequent part of a rule. Therefore especially, 

Mamdani method and Larsen method are often used. 

 

Linguistic Approximation 

As we stated before, a fuzzy expert system does not control a machine nor a process, and 

thus, in general, the defuzzification is not necessary. Instead of the defuzzification module, 

sometimes we need a linguistic approximation module. 

This module finds a linguistic term which is closest to the obtained fuzzy set. To do it, we 

may use a measuring technique of distance between fuzzy sets. 

 

Scheduler 

This module controls all the processes in the fuzzy expert system. It determines the rules to 

be executed and sequence of their executions. It may also provide an explanation function for 

the result. For example, it can show the reason how the result was obtained. 
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Figure 3.13: Configuration of fuzzy expert system 

3.3. FUZZY MODELLING 

Modelling, in a general sense, refers to the establishment of a description of a system (a plant, 

a process, etc.) in mathematical terms, which characterizes the input-output behaviour of the 

underlying system. 

To describe a physical system, such as a circuit or a microprocessor, we have to use a 

mathematical formula or equation that can represent the system both qualitatively and 

quantitatively. Such a formulation is a mathematical representation, called a mathematical 

model, of the physical system. 

Most physical systems, particularly those complex ones, are extremely difficult to model by 

an accurate and precise mathematical formula or equation due to the complexity of the 

system structure, nonlinearity, uncertainty, randomness, etc. Therefore, approximate 

modelling is often necessary and practical in real world applications. 

Intuitively, approximate modelling is always possible. However, the key questions are what 

kind of approximation is good, where the sense of “goodness” has to be first defined, of 

course, and how to formulate such a good approximation in modelling a system such that it is 

mathematically rigorous and can produce satisfactory results in both theory and applications. 

From the detailed studies in the last two chapters, it is clear that interval mathematics and 

fuzzy logic together can provide a promising alternative to mathematical modelling for many 

physical systems that are too vague or too complicated to be described by simple and crisp 

mathematical formulas or equations. When interval mathematics and fuzzy logic are 

employed, the interval of confidence and the fuzzy membership functions are used as 

approximation measures, leading to the so-called fuzzy systems modelling. 

Following the traditional classification in the field of control systems, a system that describes 

the input-output behaviour in a way similar to a mathematical mapping without involving a 

differential operator or equation is called a static system. In contrast, a system described by a 

differential operator or equation is called a dynamic system. In this chapter, static fuzzy  
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systems modeling is first discussed, including its stability analysis, and the dynamic fuzzy 

systems modeling will then follow, along with its stability and controllability analyses. 

Basic Concepts of Systems Modelling 

The fundamental concept of systems modelling can be illustrated as follows: 

Suppose that we have an unknown system (“black box”), for which only a set of its inputs 

1 2, ,..., nx x x  and outputs 1 2, ,..., my y y  can be measured (or observed) and so these data are 

available. Here, both inputs and outputs can be either discrete-time series or continuous 

signals. We want to find a mathematical description to qualitatively and quantitatively 

characterize this unknown system, in the sense that by inputting 1 2, ,..., nx x x  into the 

mathematical description we can always obtain the corresponding outputs 1 2, ,..., .my y y  

Establishing such a mathematical description is called mathematical modelling for the 

unknown system (Fig. 3.14). As usual, the mathematical description can be a mathematical 

formula, such as a mapping or a functional that relates the inputs to the outputs in the form 

  

1 1 1 2

1 1 2

( , ,..., ),

.

.

( , ,..., ),

n

m n

y f x x x

y f x x x






 

                                                                                         (3.3.1) 

or a set of differential equations (assuming proper conditions) in the form 

  

. .

11 1 1

. .

11 1

( ,..., , ,..., ),

.

.

( ,..., , ,..., ),

nn

nm n

y f x x x x

y f x x x x











                                                                       (3.3.2) 

or a logical linguistic statement, which can be quantified mathematically, in the form 

IF (input 1x ) AND ... AND (input nx ) THEN (output 1y ) AND ... AND (output my ). (3.3.3) 

 

Figure 3.14: An unknown system as a “black box” 

Fuzzy system modelling is to quantify the logical linguistic form (3.4.3) by using fuzzy logic 

and the mathematical functional model (3.4.1), or by using fuzzy logic together with the 

differential equation model (3.4.2). The result of the former is called a static fuzzy system 

and the latter, a dynamic fuzzy system. 
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3.4  MODELLING OF STATIC FUZZY SYSTEMS 

Return to the “black box” shown in Fig. 3.14. Since all the inputs 1 2, ,..., nx x x and outputs 

1 2, ,..., my y y are assumed to be available the logical linguistic statement (3.3.3) has actually 

described the unknown system on the basis of the available data. Yet this is not the ultimate 

purpose of mathematical modelling, since if a new input 1nx  comes in, we don’t know what 

the corresponding output should be. The main purpose of mathematical modelling, therefore, 

is not only to correctly describe the existing input-output relations through the unknown 

system but also to enable the established model to approximately describe other possible 

hidden input-output relations of the system. Thus, a general approach is to first quantify the 

linguistic statement (3.3.3) and then to relay the quantified logical input-output relations by 

using the mathematical functional (3.3.1), or differential equations (3.3.2). 

Recall that a finite fuzzy logic implication statement can always be described by a set of 

general fuzzy IF-THEN rules containing only the fuzzy logic AND operation, in the 

following multi-input single-output form: 

(1)   IF ( 1x  is 11X ) AND ... AND ( nx  is 1nX ) THEN ( 1y  is 1Y ). 

(2)   IF ( 1x  is 21X ) AND ... AND ( nx  is 2nX ) THEN ( 1y  is 2Y ). 

        (N)  IF (x1 is  XN1)  AND ... AND (xn is XNn) THEN (y1 is YN). 

Here, we should recall that the phrase " is "x X  is an abbreviation of the complete statement 

“x belongs to the fuzzy subset X with a corresponding membership value ( ).X x ” We 

should now restrict our discussion on closed intervals for the fuzzy subsets 11 12, ,..., NnX X X

and 1 2, ,..., ,NY Y Y so that interval arithmetic can be applied. 

For simplicity of discussion, we first consider the simplest case where N = 1 with only one 

fuzzy IF-THEN rule: 

  
1 :R  IF ( 1x  is 1X ) AND ... AND ( nx  is nX ) THEN is .y Y  

An example is the following rule with constants  0 1, ,..., :na a a  

  
1 :R  IF ( 1x  is 1X ) AND ... AND ( nx  is nX ) THEN 0 1 1 ... .n ny a a x a x     

When a set of particular inputs are available: 

  
0 0

1 1 1,..., n n nx x X x x X     with 
1

0 0

1( ),..., ( ),
nX X nx x   

the output y will assume the value 

  
0 0 0

0 1 1 ... ,n ny a a x a x   
 (3.4.1) 
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with membership value given by the following general rule 

  
 

0 0 0 1
0 1 1

0 0 0

1
...

( ) ( ) ... ( ) .
n

n n

Y X X n
y a a x a x

y x x  
   

                             (3.4.2) 

If there are more than one fuzzy IF-THEN rule: 

  :iR  IF ( 1x  is 1iX ) AND ... AND ( nx  is inX )  

THEN 0 1 1 ... , 1,2,..., .i i i in ny a a x a x i N      

In this case, with the given set of inputs 
0 0

1 1 1,..., n n nx x X x x X     namely, the same 

inputs applied to all the different rules, one will have 

  
0 0 0

1 10 11 1 1... ,n ny a a x a x   
 

  
0 0 0

2 20 21 1 2... ,n ny a a x a x   
.              (3.4.3) 

  
0 0 0

0 1 1 ... .N N N Nn ny a a x a x   
 

The corresponding membership values for these outputs are given as 

 
0 0 0 1

0 1 1

0 0 0

1
...

( ) ( ) ... ( ) , 1,..., .
n

i i in n

Y i X X n
y a a x a x

y x x i N  
   

               (3.4.4) 

In a typical modelling approach, the final single output, y, is usually obtained via the 

following weighted average formula: 

  

0 0

1

0

1

( )

,

( )

N

Y i i

i

N

Y i

i

y y

y

y















                                                                                           (3.4.5) 

where “.” is the ordinary algebraic multiplication. 

For the most general situation, we assume that all the coefficients 

 0 1, ,..., : 1,2,...,i i ina a a i N  are uncertain and belong to certain intervals: 

  0 0 ,..., , 1,2,..., ,i in na A a A i N    

where, for example, 

  
   0 10 20 0 10 20 0min , ,..., ,max , ,..., ,N NA a a a a a a     

  
   1 11 21 1 11 21 1min , ,..., ,max , ,..., ,N NA a a a a a a     

  
   1 2 1 2min , ,..., ,max , ,..., ,n n n Nn n n NnA a a a a a a     
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Thus, with the given inputs 1 1 2 2, ,..., ,n nx X x X x X    the output becomes 

  0 1 1 ... ,n nY A A X A X     
              (3.4.6) 

which yields the fuzzy subset (interval) for y with the membership functions given by the 

general rule as 

  
 

1
0

0 0

, 1
...

( ) ( ) ... ( ) , 1,..., .
n

i i in n
Y i i X X n

y a a x
y x x i N  

  
              

 
(3.4.7) 

Finally, the output y is computed by the weighted average formula 

  

,
,1

1
, ,

1 1

( )
( )

, where .

( ) ( )

N

Y i i i N
Y i ii

i i iN N
i

Y i i Y i i

i i

y y
y

y y

y y




 

 





 



   



 

          (3.4.8) 

This is a convex combination of the outputs , 1,2,..., .iy i N  

The three formulas (3.4.6) to (3.4.8) are sometimes called the input-output algorithm for 

static fuzzy system modeling under the fuzzy IFTHEN rules , 1,2,..., ,iR i N  where the 

former has constant coefficients, while the latter has interval coefficients. 

Example 3.4.1: Consider an unknown system with two inputs, 1 2,x x  and one output, y, as 

shown in Figure 3.5.1(a). Let inputs 1x be within the range 1 [0,20]X  = [0,20] and 2x  in 

2 [0,10].X  Suppose that 1X  has two associate membership functions, 
1
( )s   and 

1
( )L   

describing “small” and “large,” respectively, and 

Similarly 2X  has 
2
( )s   and 

2
( )L   as shown in Fig. 3.15 (b)-(c). 

 
 

Figure 3.15: The unknown system and its two inputs 
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Now, suppose that from experiments, the following input-output relations (fuzzy IF-THEN 

implication rules): 

  
1 :R  IF ( 1x  is small) AND ( 2x  is small) THEN 

1 2y x x   

  
2 :R  IF 1x  is large THEN 1

1

2
y x  

  
3 :R  IF 2x  is large THEN 2

1

3
y x  

Otherwise, 0.y   

Here, we assume that 1 2andx x  will not both be large in this example, just for simplicity of 

discussion with consistence. 

Let 
0 0

1 213 and 4x x  be given, for instance. It can be found from Figures 3.5.1 (b)-(c) that 

  
1 1 2 2

0 0 0 0

1 1 2 2( ) 2 15, ( ) 3 10, ( ) 1 5, ( ) 1 7.s L s Lx x x x        

Then, applying the input-output algorithm, we compute the following: 

(1) The corresponding outputs: 

   
0 0 0

1 1 2 13 4 17,y x x    
 

   
0 0

2 1

1 13
,

2 2
y x   and 

0 0

3 2

1 4
.

3 3
y x    

(2) The fuzzy set :Y  

   11 12 21 22 31 321, 1, 1 2, 0, 0, 1 3a a a a a a       

   
1

1 1
min 1, ,0 ,max 1, ,0 [0, 1],

2 2
A

    
     

      

   
2

1 1
min 1,0, ,max 1,0, [0, 1],

3 3
A

    
     

      

   1 1 1 1 [0,1] [0,20] [0,1] [0,10] [0,30].Y A X A X          

(3) The fuzzy membership values of the outputs: 

   
 

0 0 0 1 2
1 1 2

0 0 0

,1 1 1 2( ) ( ) ( )Y S S
y x x

y x x  
 

  
 

     
1 2

0 0

1 2

2 1 2
max min ( ) ( ) max min , .

15 5 15
S Sx x 

  
    

  
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  

1
0 0
1 1

0 0

,2 2 11

2

3 3
( ) min ( ) max .

10 10
Y L

y x

y x 


 
    

   

   
  

2
0 0
1 2

0 0

,3 3 21

3

1 1
( ) min ( ) max .

7 7
Y L

y x

y x 


 
    

   

(4) The average value of the final output, corresponding to the input 
0 0

1 213 and 4 :x x   

   

0 0

,
0 1

0

,

1

2 3 13 1 4( ) 17
15 10 2 7 3 7.649.

2 3 1
( )

15 10 7

N

Y i i i

i

N

Y i i

i

y y

y

y









     
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 




 

(5) The three membership functions, one “small” and two “large,” for the final output: 

   
1, 0 20,

( ) 20

0, 20 30,
S

y
y

y

y




   

 
  

  
1

0, 0 5,

( ) 1, 5 10,
5

1, 10 30,

L

y

y
y y

y



 



   

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2

0, 0 1,

3 3 10
( ) , 1 ,

7 7 3

10
1, 30,

3

L

y

y
y y

y




  



   



 

 

However, ( )S y  can also be computed from 
1
( )S y  and 

2
( )S y  by the  -cut operations 

and similarly, 
1
( )L y from 

1

0

1( )L x and 
2
( )L y  from 

2

0

2( ),L x  respectively. Here, to find 

1
( )L y  from 

1

0

1( )L x , for instance, we use  -cut on the membership function curve 

1
( ) : ( 10) 10,L y x     and obtain 11 10 10,x    while 12 20x   is obtained from Fig. 

3.16. Thus, we have    11 12, 10 10, 20 .x x    It follows from the implication rule 

2

2 1

1

2
R y x

 
 

 
 that the output interval is    21 22, 5 5, 10 .y y    Then, by setting 

21 5 5,y    we have 21 5 1y    on [5, 10] (since 
1
( 5) 0L y   and

1
( 10) 1L y   ). 

These membership functions are finally extended to the interval Y = [0, 30]. The resulting 

three output membership functions are shown in Fig. 3.16. 
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Figure 3.16: The three output membership functions 

3.5  MODELLING OF DYNAMICS FUZZY SYSTEMS 

A static fuzzy model given by a set of fuzzy IF-THEN rules in the form 

   :iR IF ( 1x  is 1iX ) AND ... AND ( nx  is inX )  

   THEN 0 1 1 ... , 1,2,..., ,i i i in ny a a x a x i N    
                                      

(3.5.1) 

and the final output is 

  

,

1

,

1

( )

, 1, 2,..., .

( )

N

Y i i i

i

N

Y i i

i

y y

y i N

y











 



                                                             (3.5.2) 

This fuzzy modeling by its nature is static. If the input-output relations are such that 

  1 ( ),x x k  

  2 ( 1),x x k   

  
( ( 1)),nx x k n    

and  

  ( ), 1,2,..., ,i iy y k i N   
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so that 

  0 1 2( ) ( ) ( 1) ... ( ( 1)), 1,..., ,i i i i iny k a a x k a x k a x k n i N           (3.5.3) 

then this new system is considered to be dynamic, since it is described by a set of difference 

equations rather than a simple input-output mapping. This case is special in that all the inputs 

1 2, ,..., nx x x are related (each state is the delay of its previous one) and the output is given at 

the last step of the process. (3.5.3) is a typical discrete-time dynamic system in the classical 

systems theory if all quantities involved are crisp. 

Dynamic Fuzzy Systems without Control 

It is interesting to study the stability of a discrete-time dynamic (fuzzy) system described by 

(3.6.3) because that when we are doing system modelling, we would like that the resulting 

model works well in the sense that it approximates the unknown system closely (preferably, 

optimal in some sense). It performs its actions stably, particularly for dynamic processes. In 

other words, stability is one criterion or one of the few most important issues in dynamic 

system modelling as is in common practice of system engineering. 

Definition 3.5.1: A typical single-input/single-output (SISO), discrete-time dynamic fuzzy 

system is a fuzzy model described by a set of fuzzy IF-THEN rules of the form as follows: 

  :iR IF ( ( )x k  is 1iX ) AND ... AND ( ( ( 1))x k n   is inX )  

  THEN 0 1( ) ( ) ... ( ( 1)), 1,2,..., ,i i i iny k a a x k a x k n i N      
 

With ( 1) ( 1), 0,1,2,...,kx k c y k k     where 

  

1

1

( 1)

( 1) , 0,1, 2,...

N

i i

i

N

i

i

w y k

y k k

w





 

  



 

Here, the fuzzy sets consist of intervals  : 1,...,jX j n with the associate fuzzy 

membership functions  : 1,...,
jX j n   and  : 1,...,iw i N  is a set of weights satisfying 

1
0, 1,..., , 0.

N

i ii
w i N w


    

In all the rules , 1,2,..., ,iR i N  in this definition 
ijX share the same fuzzy subset jX  and 

the same membership function 
jX  for each 1,2,..., .j n  
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It may be noted that, similar to formula (3.6.1), the weights  : 1,...,iw i N usually are 

chosen to be equal to ( ).
jY iy  Moreover, for simplicity of notation and discussion in the 

following, we will always let 1kc   for all 0,1,2,...k   and 0 0, 1,2,..., ,ia i N   for all 

1,...,N, although this is not necessary in general. 

Next, we define some standard concepts and stability results in classical systems theory. 

Definition 3.5.2: A multi-input/multi-output (MIMO), nonlinear, discrete-time, dynamic 

system of the form 

  ( 1) ( ( )), ( ) , 0,1,2,...,mx k f x k x k R k     

is said to be asymptotically stable about an equilibrium point ,ex  or ex  is an asymptotically 

stable equilibrium point of the system, if  

  ( )e ex f x  

and, starting from any (0) ,mx R all ( )x k are bounded and 

  ( ) ( )ex k x k   

In this definition, the convergence ( ) ( )ex k x k   is usually measured by the 2l -norm 

(the “length” of a vector), namely, 

2
lim ( ) 0,e
k

x k x


   where   2 2

1 1
2

... ...
T

m mx x x x    is the length vector. 

The following stability criterion is well known in classical systems theory. 

Theorem 3.5.1: Suppose that the multi-input/multi-output (MIMO), nonlinear, discrete-time, 

dynamic system of the form 

  ( 1) ( ( )), ( ) , 0,1,2,...,mx k f x k x k R k     

has an equilibrium point ,ex  or ex  is and that there exist a scalar valued function ( ( ))V x k

satisfying 

(i) (0) 0;V   

(ii) ( ( )) 0 ( ) 0;V x k for all x k   

(iii) 
2

( ( )) ( ) ; andV x k as x k   

(iv) ( ( 1)) ( ( )) 0 ( ) 0, 0,1,2,...V x k V x k for all x k and all k      

Then this system is asymptotically stable about the equilibrium point 0. 

In theorem 3.5.1, the function V(x(k)), if it exists, is called a Lyapunov function. 
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Note that this theorem particularly applies to all linear time-invariant state-space systems of 

the form 

  ( 1) ( ), ( ) , 0,1,2,...mx k Ax k x k R k                 (3.5.4) 

For this linear time-invariant system, however, there is a very simple criterion for the 

determination of its asymptotic stability. 

Theorem 3.5.2: Let , 1,2,..., ,j j m  be Eigen values, counting multiple ones, of the 

constant matrix A in the linear time-invariant system (3.5.4). Then the system is 

asymptotically stable about the equilibrium point 0 if and only if  

  1, for all 1,2,..., .j j m    

Now, return to the single-input/single-output, linear, discrete-time dynamic fuzzy system 

described in Definition 3.5.1. To apply the classical stability theorem 3.5.1 or 3.5.2 to it, we 

first reformulate it in the state-space setting as discussed below: 

Let 01, 0,1,2,..., and 0, 1,..., ,k ic k a i N     in the system (for simplicity, as mentioned 

above). Define 

   ( ) ( ) ( 1) ( 2)... ( ( 1)) ,
T

k x k x k x k x k n    x  

  

1 2 1...

1 0 ... 0 0

.0 1 ... 0 0

0

0 0 ... 1 0

i i in in

i

a a a a

A

 
 
 
 
 
 
  

 

Although this (canonical) formulation has some redundancy (only the first equation is 

essential), yet it is convenient to use for stability analysis. The system can be rewritten as 

  

1

1

( )

( 1) , 0,1, 2,...

N

i i

i

N

i

i

w A k

x k k

w





  




x

                                                             

 

(3.5.5) 
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Corollary 3.5.1: In the dynamic fuzzy system (3.5.5), let 

  

1

1

( 1) ,
n

i
in

i
i

i

w
x k A

w



 


 

and assume that  iw are constants independent of k. Then, the system is asymptotically 

stable if and only if all Eigen values of A, , for all 1,2,...,i i n   satisfy 

  1, for all 1,2,..., .i j n    

Next, we state a theorem whether proof related to fuzzy system (3.5.5). 

Theorem 3.5.3: The discrete-time dynamic fuzzy system (3.5.5) is asymptotically stable 

about the equilibrium point 0 if there exists a common positive definite matrix P such that 

  0, 1,2,..., .T

i iA PA P for all i N    

Dynamic Fuzzy Systems with Control 

Let us consider, again, the typical single-input/single-output (SISO) linear discrete-time 

dynamic fuzzy system discussed and defined in the last subsection and taking consideration. 

Definition 3.5.3: An SISO, discrete-time, dynamic fuzzy control system is a fuzzy control 

model described by a set of fuzzy IF-THEN rules of the form 

:iR (IF ( ( )x k  is 1iX ) AND ... AND ( ( ( 1))x k n   is inX )) AND (IF ( ( )u k  is 1iU ) AND 

... AND ( ( ( 1))k m   is imU )) 

  THEN 
0 1

0 1

( ) ( ) ... ( ( 1))

( ) ... ( ( 1)), 1,2,..., ,

i i i in

i i im

y k a a x k a x k n

b b u k b x k m i N

     

      
 

with m n  and 

  ( 1) ( 1), 0,1,2,...,kx k c y k k     where 

  

1

1

( 1)

( 1) , 0,1, 2,...

N

i i

i

N

i

i

w y k

y k k

w







  



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In this system the fuzzy sets consist of intervals  : 1,...,jX j n  and  : 1,..., ,jU j m  

and their associate fuzzy membership functions  : 1,...,
jX j n  and  : 1,..., ,

jX j m   

respectively, and  : 1,...,iw i N  is a set of weights satisfying 

1
0, 1,..., , 0.

N

i ii
w i N w


    

Here, we note again that for each rule : 1,2,... ,iR i N  all the 
ijX share the same fuzzy 

subset jX and the same membership function 
jX for each 1,2,..., .j n  Also, the weights 

are usually quantified by the output membership functions in the same way as in (3.5.1). For 

simplicity of notation and discussion, we assume 1kc   for all 0,1, 2,...,k  and 

0 0 0i ia b  for all 1,2,... ,i N in this model. 

It is clear that Definitions 3.5.1 and 3.5.3 have no essential difference if the control inputs 

{u(k)} in Definition 3.5.3 are independent of the states {x(k)}. In engineering control 

systems, however, most of the time we would like to have negative state-feedback controllers 

of the form: 

  

11 12 1

22 2

( ) ( ) ( 1) ... ( ( 1)),

( 1) ( 1) ... ( ( 1)),

( ) ( ) ... ( ( 1)),

n

n

mm mn

u k K x k K x k K x k n

u k K x k K x k n

u k m K x k m K x k n

       

       

       

 

where ijK  are constant control gains to be determined. 

To facilitate our discussion, let us consider a simple example. Suppose that a fuzzy control 

system is given by 

  

1

SR :  IF x(k) is X1 AND u(k) is U1 

 THEN x1(k + 1) = a1x(k) + b1u(k). 

  
2

SR : IF x(k) is X2 AND u(k) is U2 

 THEN x2(k + 1) = a2x(k) + b2u(k) 

Assume also that a state-feedback fuzzy controller is designed to be one described by 

 
1

CR : IF x(k) is X1 AND x(k – 1) is X1 

 THEN u1(k) = -K11x(k) – K12x(k – 1) 

  
2

CR : IF x(k) is X2 AND x(k – 1) is X2 

 THEN u2(k) = -K21x(k) – K22x(k – 1) 
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Then, we can combine all possibilities, where it is important to note that for “ ( )x k  is 1X  

and ( )u k  is 1U ” there are two possibilities for the previous control input ( 1)u k   either “is 

1U ” or “is 2 .U ” The same is true for “ ( )x k  is 2X and ( )u k  is 1.U ” Thus, we have 

  R11 : (IF x(k) is X1) AND (IF u(k) is U1 AND u(k – 1) is U1) 

 THEN x11(k + 1) :  = a1x(k) + b1u1(k) 

      = (a1 – b1K11) x(k) – b1K12x(k – 1) 

  R12 :  (IF x(k) is X1) AND (IF u(k) is U1 AND u(k – 1) is U2) 

  THEN  x12 (k + 1) :  = a1x(k) + b1u2(k) 

   = (a1 – b1K21) x(k) – b1K22x(k – 1) 

 R21 : (IF x(k) is X2) AND (IF u(k) is U2 AND u(k – 1) is U2) 

  THEN x21 (k + 1) :  = a2x(k) + b2u1(k) 

      = (a2 – b2K11) x(k) – b2K12x(k – 1) 

 R22 : (IF x(k) is X2) AND (IF u(k) is U2 AND u(k – 1) is U2) 

  THEN x22(k + 1) : = a2x(k) + b2u2(k) 

      = (a2 – b2K21) x(k) – b2K22x(k – 1) 

On using all state feedback inputs, the fuzzy system, described by Definition 3.6.3 reduces to 

a new closed-loop dynamic fuzzy system, given by the rules 11 12 21, , ,R R R  and 22 ,R  

containing no more control variables ( ).u k  Thus, the stability conditions obtained in 

Theorem 3.5.3 can be applied, namely, the designer can choose the feedback control gains 

11 12 21, ,K K K and 22K  to ensure the asymptotic stability of the overall controlled system. 

Example 3.5.3: Consider a fuzzy control system described by the following rule base: 

 
1

SR : IF x(k) is X1 AND x(k -1) is X1 

 THEN x1(k + 1) = 2.178x(k) – 0.588x(k – 1) + 0.603u(k) 

  
2

SR : IF x(k) is X2 AND x(k – 1) is X2 

 THEN x2(k + 1) = 2.256x(k) – 0.361x(k -1) + 1.120u(k) 

Let the fuzzy state-feedback controller be described by 

  
1

CR :  IF x(k) is X1 AND x(k – 1) is X1 

 THEN u1(k) = r(k) – K11x(k) – K12x(k – 1) 

  
2

CR : IF x(k) is X2 AND x(k – 1) is X2 

 THEN u2(k) = r(k) – K21x(k) – K22x(k – 1)  
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where,  ( )r x  is a reference signal (set-points).  

Since the control input ( )u k does not appear in the condition parts, we consider its 

membership values to be identically equal to 1 therein. The resulting closed-loop dynamic 

fuzzy system is then obtained as follows: 

  R11 :  IF x(k) is X1 AND x(k – 1) is X1 

 THEN x11 (k + 1) = (2.178 – 0.603K11) x(k)  

      + (-0.588 – 0.603 K12) x(k – 1) + 0.603 r(k) 

  R12 : IF x(k) is X1 AND x(k – 1) is X2 

 THEN x12 (k + 1) = (2.178 – 0.603 K21) x(k) 

      + (-0.588 – 603 K22) x(k – 1) + 0.603 r(k) 

 R21 :  IF x(k) is X2 AND x(k – 1) is X1 

 THEN x21 (k + 1) = (2.256 – 1.120 K11) x(k) 

      + (-0.361 – 1.120 K12) x(k – 1) + 1.120 r(k) 

 R22 :  IF x(k) is X2 AND x(k – 1) is X2 

 THEN x22 (k + 1) = (2.256 – 1.120 K21) x(k) 

      + (-0.361 – 1.120 K22) x(k – 1) + 1.120 r(k) 

The overall state output ( 1)x k   is computed by 

  1 11 2 12 3 21 4 22

1 2 3 4

( 1) ( 1) ( 1) ( 1)
( 1)

w x k w x k w x k w x k
x k

w w w w

      
 

  
 

for some weights satisfying 
1

0, 1,..., , 0.
N

i ii
w i N w


  

 

Then, the weights can be determined by using these membership functions on the same line. 

For simplicity we assume that the reference signal r(k) = 0 for all k = 0,1,2,..., and that the 

controller in both 
1

CR and 
2

CR  are as given below: 

  1 2( ) ( ) ( ), 0,1,2,...u k u k K x k k     

Then, the closed-loop fuzzy system reduces to the following simple one: 

  R1 : IF x(k) is X1 AND x(k – 1) is X1 

  THEN x1(k + 1) = (2.178 – 0.603K) x(k) – 0.588 x(k – 1) 

 R2 : IF x(k) is X2 AND x(k – 1) is X2 

  THEN x2(k + 1) = (2.256 – 1.120K) x(k) – 0.361 x(k – 1) 

Finally, by applying the above stability theorems, we can verify that this system is stable. 
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EXERCISE- 3 

1. Determine crisp   cut relation for 0.2;   for 1, 2,...,10j   for the following 

fuzzy relation matrix :R  

  

0.3 0.8 0.7 0.9

1 0.7 0.6 0.2
.

0.1 0.7 1 0.9

0.5 0.6 0.2 0.5

R

 
 
 
 
 
 

 

2. By using centroid method of defuzzification convert fuzzy value z  to precise value 
*Z for the following graph. 

 

3. Find the defuzzified value by weighted average method shown in figure. 

 

4. Find the defuzzified values using (a) center of sums methods and (b) center of largest 

area for the figure shown. 
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5. In reference to car speeds we have the linguistic variables ‘‘fast’’ and ‘‘slow’’ for 

speed: 

  Fast
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 10 20 30 40 50 60 70 80 90 100

 
           
 

 

  Slow
1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

0 10 20 30 40 50 60 70 80 90 100

 
           
 

 

Using these variables, compute the membership function for the following linguistic  

terms: 

  (a) Very fast     (b) Very, very fast 

  (c) Highly fast (= minus very, very fast) 

  (d) Plus very fast 

  (e) Fairly fast   2 3
fast  

  (f) Not very slow and not very fast 

  (g) Slow or not very slow 

6. Consider an unknown SISO system shown in Figure 

 

  Suppose that this system is described by the following two rules: 

  
1 2

1 1: is small ,R IF x THEN y a x b x   

  
2 2

2 2: is large ,R IF x THEN y a x b x   

  where the small and large membership functions are given by Figures, respectively. 

 

  Now, a set of experimental data on the system input-output relation is available: 

  

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

0.4 0.8 1.5 2.1 2.8 3.4 4.0 4.7 5.5 6.4 7.3

x

y
 

Use the least-squares approach to determine the unknown constant coefficients  

1 2 1, ,a a b  and 2.b  
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7. Consider a fuzzy system of the form ,z x y    

 

where the fuzzy inputs x and y have membership functions as shown in Figures, 

respectively. Find the interval Z and membership function z for the fuzzy output z. 

8. Consider the discrete-time SISO linear dynamic fuzzy system described by the rules 

  
1 1
: ( 1) is small ( 1) ( ) ( 1),

4
R IF x k THEN x k x k x k       

  
2 1

: ( 1) is large ( 1) ( ) ( 1),
4

R IF x k THEN x k x k x k      

where the small and large membership functions for inputs are the same as those 

given in Exercise Q.6 above, and the weights for the output average are all equal to 1. 

Suppose that the system initial conditions are ( 1) (0) 1.0.x x    Let the weights in 

the output average be all identically equal to 1. Is this system asymptotically stable? 

Why? (or why not?) 
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Chapter-4 

Fuzzy Control 

4.1  INTRODUCTION 

The ''fuzzy wave" reached Europe after success stories in Japanese white goods and home 

electronics, popular but also industrial interest in fuzzy control. It was not being recognized as a 

serious discipline, but had been dramatically increasing since 1990. There are still, however, two 

predominant, extreme positions with respect to the benefits of fuzzy control. On one hand, 

many proponents of this technology claim that fuzzy control will revolutionize control 

engineering which promises major breakthrough and will be able to solve complex engineering 

problems with very little effort. On the other hand, many representatives of the control 

engineering community still proclaim the philosophy that "everything that can be done in fuzzy 

control can be done conventionally as well and announce a breakdown of the "fuzzy hype" in 

the near future. 

 The insight that neither of the two positions accounts for the real potential of fuzzy control is 

only gradually increasing. In this preface, we will try and explain that many of the expectations 

triggered mainly by popular press articles are exaggerated, but the fuzzy control has its 

advantages in many respects, and that it is here to stay: in most cases as an add-on to 

conventional technology, in some cases as an enabling technology. The main reason why it will 

become an integral part, of control engineering is that fuzzy control is a useful technology from 

an industrial, business oriented point of view, which is the one we are taking here. 

 When confronted with a control problem for a complicated physical process, a control 

engineer generally follows a relatively systematic design procedure. A simple example of a 

control problem is an automobile “cruise control” that provides the automobile with the 

capability of regulating its own speed at a driver-specified set-point (e.g., 55 mph). One 

solution to the automotive cruise control problem involves adding an electronic controller 

that can sense the speed of the vehicle via the speedometer and actuate the throttle position so 

as to regulate the vehicle speed as close as possible to the driver-specified value (the design 

objective). Such speed regulation must be accurate even if there are road grade changes, head 

winds, or variations in the number of passengers or amount of cargo in the automobile. After 

gaining an intuitive understanding of the plants dynamics and establishing the design 

objectives, the control engineer typically solves the cruise control problem by doing the 

following:  
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1.  Developing a model of the automobile dynamics (which may model vehicle and power 

train dynamics, tire and suspension dynamics, the effect of road grade variations, etc.). 

2.  Using the mathematical model, or a simplified version of it, to design a controller (e.g., 

via a linear model, develop a linear controller with techniques from classical control). 

3. Using the mathematical model of the closed-loop system and mathematical or 

simulation-based analysis to study its performance (possibly leading to redesign). 

4.  Implementing the controller via, for example, a microprocessor, and evaluating the 

performance of the closed-loop system (again, possibly leading to redesign). 

This procedure is concluded when the engineer has demonstrated that the control objectives 

have been met, and the controller (the “product”) is approved for manufacturing and 

distribution.  

In the present chapter we first provide an overview of the standard approach to constructing a 

control system and identify a wide variety of relevant conventional control ideas and 

techniques in Section 4.2. We assume that the reader has at least some familiarity with 

conventional control. Our focus in this chapter is not only on introducing a variety of 

approaches to fuzzy control but also on comparing these to conventional control approaches 

to determine when fuzzy control offers advantages over conventional methods. Hence, to 

understand this chapter reader need to understand several ideas from conventional control e.g. 

classical control, state-space based design, the linear quadratic regulator, stability analysis, 

feedback linearization, adaptive control, etc. In section 3, we explain the benefits of fuzzy 

control from two technology perspectives.  

The reader not familiar with conventional control to this extent will still find the chapter quite 

useful. In fact, we expect to what the appetite of such readers so that they become interested 

in learning more about conventional control. In Section 4.4 we outline a “philosophy” of 

fuzzy control where we explain the design methodology for fuzzy controllers, relate this to 

the conventional control design methodology, and highlight the importance of analysis and 

verification of the behavior of closed-loop fuzzy control systems. At the end of this chapter 

we will provide a list of books that can serve to teach such readers about these areas. 

Further, we show how the fuzzy control designed methodology can be used to construct fuzzy 

controllers for challenging real-world applications. As opposed to “conventional” control 

approaches (e.g., proportional-integral-derivative (PID), lead-lag, and state feedback control) 

where the focus is on modeling and the use of this model to construct a controller that is 

described by differential equations, in fuzzy control we focus on gaining an intuitive 

understanding of how to best control the process, then we load this information directly into 

the fuzzy controller. 

For an example, in the cruise control we may gather rules about how to regulate the vehicle’s 

speed from a human driver. One simple rule that a human driver may provide is “If speed is 

lower than the set-point, then press down further on the accelerator pedal.” Other rules may 

depend on the rate of the speed error increase or decrease, or may provide ways to adapt the 

rules when there are significant plant parameter variations (e.g., if there is a significant 

increase in the mass of the vehicle, tune the rules to press harder on the accelerator pedal). 

For more challenging applications, control engineers typically have to gain a very good 
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understanding of the plant to specify complex rules that dictate how the controller should 

react to the plant outputs and reference inputs. 

Basically, while differential equations are the language of conventional control, heuristics and 

“rules” about how to control the plant are the language of fuzzy control. This is not to say that 

differential equations are not needed in the fuzzy control methodology. Indeed, one of the 

main focuses of this Chapter will be on how “conventional” the fuzzy control methodology 

really is and how many ideas from conventional control can be quite useful in the analysis of 

the new class of control systems. 

4.2 CONVENTIONAL CONTROL SYSTEM DESIGN 

A basic control system is shown in Figure 1.1. The process (or “plant”) is the object to be 

controlled. Its inputs are u(t), its outputs are y(t), and the reference input is r(t). In the cruise 

control problem, u(t) is the throttle input, y(t) is the speed of the vehicle, and r(t) is the 

desired speed that is specified by the driver. The plant is the vehicle itself. The controller is 

the computer in the vehicle that actuates the throttle based on the speed of the vehicle and the 

desired speed that was specified. In this section we provide an overview of the steps taken to 

design the controller shown in Figure 4.1. Basically, these are modeling, controller design, 

and performance evaluation. 

 

Figure 4.1 Control systems. 

4.2.1 Mathematical Modeling 

When a control engineer is given a control problem, often one of the first tasks that she or he 

undertakes is the development of a mathematical model of the process to be controlled, in 

order to gain a clear understanding of the problem. Basically, there are only a few ways to 

actually generate the model. We can use first principle of Newton’s law in physics (e.g., F = 

ma) to write down a model. Another way is to perform “system identification” via the use of 

real plant data to produce a model of the system. Sometimes a combined approach is used 

where we use physics to write down a general differential equation that we believe represents 

the plant behavior, and then we perform experiments on the plant to determine certain model 

parameters or functions.  

Often, more than one mathematical model is produced. A “truth model” is one that is 

developed to be as accurate as possible so that it can be used in simulation based evaluations 

of control systems. It must be understood, however, that there is never a perfect mathematical 

model for the plant. The mathematical model is an abstraction and hence cannot perfectly 

represent all possible dynamics of any physical process (e.g., certain noise characteristics or 
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failure conditions). This is not to say that we cannot produce models that are “accurate 

enough” to closely represent the behavior of a physical system.  

Usually, control engineers keep in mind that for control design they only need to use a model 

that is accurate enough to be able to design a controller that will work. Then, they often also 

need a very accurate model to test the controller in simulation (e.g., the truth model) before it 

is tested in an experimental setting. Hence, lower-order “design models” are also often 

developed that may satisfy certain assumptions (e.g., linearity or the inclusion of only certain 

forms of nonlinearities) yet still capture the essential plant behavior. Indeed, it is quite an art 

(and science) to produce good low-order models that satisfy these constraints. We emphasize 

that the reason we often need simpler models is that the synthesis techniques for controllers 

often require that the model of the plant satisfy certain assumptions (e.g., linearity) or these 

methods generally cannot be used. 

Linear models such as the one in Equation (4.1) have been used extensively in the past and 

the control theory for linear systems is quite mature 

  x˙ = Ax + Bu         (4.1) 

  y = Cx + Du 

In this case u is the m-dimensional input; x is the n-dimensional state (x˙ = differentiation 

with respect to t); y is the p dimensional output; and A, B, C, and D are matrices of 

appropriate dimension. Such models, or transfer functions (G(s) = C(sI − A)−1B + D where s 

is the Laplace variable), are appropriate for use with frequency domain design techniques, the 

root-locus method, state-space methods, and so on. Sometimes it is assumed that the 

parameters of the linear model are constant but unknown, or can be perturbed from their 

nominal values (then techniques for “robust control” or adaptive control are developed).  

Much of the current focus in control is on the development of controllers using nonlinear 

models of the plant of the form 

  x˙ = f(x, u)         (4.2) 

  y = g(x, u) 

where the variables are defined as for the linear model and f and g are nonlinear functions of 

their arguments. One form of the nonlinear model that has received significant attention is 

  x˙ = f(x) + g(x)u        (4.3) 

since it is possible to exploit the structure of this model to construct nonlinear controllers 

(e.g., in feedback linearization or nonlinear adaptive control). Of particular interest with both 

of nonlinear models is the case where f and g are not completely known and subsequent 

research focuses on robust control of nonlinear systems. 

Discrete time versions of the above models are also used, and stochastic effects are often 

taken into account via the addition of a random input or other stochastic effects. Under certain 

assumptions we can linearize the nonlinear model in Equation (4.2) to obtain a linear one. In 

this case we sometimes think of the nonlinear model as the truth model, and the linear models 

are generated from it as control design models. 



Fuzzy Control | 4.5 
 

There are certain properties of the plant that the control engineer often seeks to identify early 

in the design process. For instance, the stability of the plant may be analyzed (e.g., to see if 

certain variables remain bounded). The effects of certain nonlinearities are also studied. The 

engineer may want to determine if the plant is “controllable” to see, for example, if the 

control inputs will be able to properly affect the plant; and “observable” to see, for example, 

if the chosen sensors will allow the controller to observe the critical plant behavior so that it 

can be compensated for, or if it is “non minimum phase.”  

The above mentioned properties will have a fundamental impact on our ability to design 

effective controllers for the system. In addition, the engineer will try to make a general 

assessment of how the plant behaves under various conditions, how the plant dynamics may 

change over time, and what random effects are present. Overall, this analysis of the plant’s 

behavior gives the control engineer a fundamental understanding of the plant dynamics. This 

will be very valuable when it comes time to synthesize a controller. 

4.2.3 Performance Objectives and Design Constraints 

Controller design entails constructing a controller to meet the specifications. Often the first 

issue to address is whether to use open- or closed-loop control. If we can achieve our 

objectives with open-loop control, why turn to feedback control? Often, we need to pay for a 

sensor for the feedback information and there needs to be justification for this cost. Moreover, 

feedback can destabilize the system. Since open-loop controller may provide adequate 

performance, so we do not develop a feedback controller just because we used to developing 

feedback controllers. 

Assuming we use feedback control, the closed-loop specifications (or “performance 

objectives”) can involve the following factors: 

Disturbance rejection properties (e.g., for the cruise control problem, that the control system 

will be able to dampen out the effects of winds or road grade variations). Basically, the need 

for disturbance rejection creates the need for feedback control over open-loop control; for 

many systems it is simply impossible to achieve the specifications without feedback (e.g., for 

the cruise control problem, if we have no measurement of vehicle velocity, how well could 

we regulate the velocity to the driver’s set-point?). 

•  Insensitivity to plant parameter variations (e.g., for the cruise control problem, that 

the control system will be able to compensate for changes in the total mass of the 

vehicle that may result from varying the numbers of passengers or the amount of 

cargo). 

•  Stability (e.g., in the cruise control problem, to guarantee that on a level road the 

actual speed will converge to the desired set-point). 

•  Rise-time (e.g., in the cruise control problem, a measure of how long it takes for the 

actual speed to get close to the desired speed when there is a step change in the set-

point speed). 

•  Overshoot (e.g., in the cruise control problem, when there is a step change in the set-

point, how much the speed will increase above the set-point). 
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•  Settling time (e.g., in the cruise control problem, how much time it takes for the 

speed to reach to within 1% of the set-point). 

•  Steady-state error (e.g., in the cruise control problem, if we have a level road, can the 

error between the set-point and actual speed actually go to zero; or if there is a long 

positive road grade, can the cruise controller eventually achieve the set-point). 

•  While these factors are used to characterize the technical conditions that indicate 

whether or not a control system is performing properly, there are other issues that 

must be considered that are often of equal or greater importance. These include the 

following: 

•  Cost: How much money will it take to implement the controller, or how much time 

will it take to develop the controller? 

•  Computational complexity: How much processor power and memory will it take to 

implement the controller? 

•  Manufacturability: Does our controller have any extraordinary requirements with 

regard to manufacturing the hardware that is to implement it? 

•  Reliability: Will the controller always perform properly? What is its “mean time 

between failures?” 

•  Maintainability: Will it be easy to perform maintenance and routine adjustments to 

the controller? 

•  Adaptability: Can the same design be adapted to other similar applications so that 

the cost of later designs can be reduced? In other words, will it be easy to modify the 

cruise controller to fit on different vehicles so that the development can be done just 

once? 

• Understandability: Will the right people be able to understand the approach to 

control? For example, will the people that implement it or test it be able to fully 

understand it? 

•  Politics: Is your boss biased against your approach? Can you sell your approach to 

your colleagues? Is your approach too novel and does it thereby departs too much 

from standard company practice? 

Remarks: Most often not only must a particular approach to control satisfy the basic 

technical conditions for meeting the performance objectives, but the above issues must also 

be taken into consideration — and these can often force the control engineer to make some 

very practical decisions that can significantly affect how, for example, the ultimate cruise 

controller is designed. It is important then that the engineer has these issues in mind early in 

the design process.  

 

 

 



Fuzzy Control | 4.7 
 

4.2.4 Controller Design 

Conventional control has provided numerous methods for constructing controllers for 

dynamic systems. Some of these are listed below, and we provide a list of references at the 

end of this chapter for the reader who is interested in learning more about any one of these 

topics. 

•  Proportional-integral-derivative (PID) control: Over 90% of the controllers in 

operation today are PID controllers (or at least some form of PID controller like a P 

or PI controller). This approach is often viewed as simple, reliable, and easy to 

understand. Often, like fuzzy controllers, heuristics are used to tune PID controllers 

(e.g., the Zeigler-Nichols tuning rules). 

•  Classical control: Lead-lag compensation, Bode and Nyquist methods, root-locus 

design, and so on. 

•  State-space methods: State feedback, observers, and so on. 

•  Optimal control: Linear quadratic regulator, use of Pontryagin’s minimum principle 

or dynamic programming, and so on. 

•  Robust control: H2 or H∞ methods, quantitative feedback theory, loop shaping, and 

so on. 

•  Nonlinear methods: Feedback linearization, Lyapunov redesign, sliding mode 

control, back stepping, and so on. 

•  Adaptive control: Model reference adaptive control, self-tuning regulators, nonlinear 

adaptive control, and so on. 

•  Stochastic control: Minimum variance control, linear quadratic gaussian (LQG) 

control, stochastic adaptive control, and so on. 

•  Discrete event systems: Petri nets, supervisory control, infinitesimal perturbation 

analysis, and so on. 

Basically, these conventional approaches to control system design offer a variety of ways to 

utilize information from mathematical models on how to do good control. Sometimes they do 

not take into account certain heuristic information early in the design process, but use 

heuristics when the controller is implemented to tune it (tuning is invariably needed since the 

model used for the controller development is not perfectly accurate). Unfortunately, when 

using some approaches to conventional control, some engineers become somewhat removed 

from the control problem (e.g., when they do not fully understand the plant and just take the 

mathematical model as given), and sometimes this leads to the development of unrealistic 

control laws. Sometimes in conventional control, useful heuristics are ignored because they 

do not fit into the proper mathematical framework, and this can cause problems. 
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4.2.5 Performance Evaluation 

The next step in the design process is to perform analysis and performance evaluation. 

Basically, we need performance evaluation to test that the control system that we design does 

in fact meet the closed-loop specifications (e.g., for “commissioning” the control system). 

This can be particularly important in safety-critical applications such as a nuclear power plant 

control or in aircraft control. However, in some consumer applications such as the control of 

a washing machine or an electric shaver, it may not be as important in the sense that failures 

will not imply the loss of life (just the possible embarrassment of the company and cost of 

warranty expenses), so some of the rigorous evaluation methods can sometimes be ignored. 

Basically, there are three general ways to verify that a control system is operating properly: 

(1) Mathematical analysis based on the use of formal models. 

(2) simulation-based analysis that most often uses formal models. 

(3) Experimental investigations on the real system. 

Next, we discuss these ways one by one 

(1) Mathematical Analysis 

In mathematical analysis we may seek to prove that the system is stable, that it is 

controllable, or that other closed-loop specifications such as disturbance rejection, rise-time, 

overshoot, settling time, and steady state errors have been met. Clearly, however, there are 

several limitations to mathematical analysis. First, it always relies on the accuracy of the 

mathematical model, which is never a perfect representation of the plant, so the conclusions 

that are reached from the analysis are in a sense only as accurate as the model that they were 

developed from and second, there is a need for the development of analysis techniques for 

even more sophisticated nonlinear systems since existing theory is somewhat lacking for the 

analysis of complex nonlinear (e.g., fuzzy) control systems, particularly when there are 

significant nonlinearities, a large number of inputs and outputs, and stochastic effects. These 

limitations do not make mathematical analysis useless for all applications, however. Often it 

can be viewed as one more method to enhance our confidence that the closed-loop system 

will behave properly, and sometimes it helps to uncover fundamental problems with a control 

design. 

(2) Simulation-Based Analysis 

In simulation-based analysis we seek to develop a simulation model of the physical system. 

This can entail using physics to develop a mathematical model and perhaps real data can be 

used to specify some of the parameters of the model (e.g., via system identification or direct 

parameter measurement). The simulation model can often be made quite accurate, and we can 

even include the effects of implementation considerations such as finite word length 

restrictions. As discussed above, often the simulation model (“truth model”) will be more 

complex than the model that is used for control design because this “design model” needs to 

satisfy certain assumptions for the control design methodology to apply (e.g., linearity or 

linearity in the controls). Often, simulations are developed on digital computers, but there are 
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occasions where an analog computer is still quite useful (particularly for real time simulation 

of complex systems or in certain laboratory settings). 

 Regardless of the approach used to develop the simulation, there are always limitations on 

what can be achieved in simulation-based analysis. First, as with the mathematical analysis, 

the model that is developed will never be perfectly accurate. Also, some properties simply 

cannot be fully verified via simulation studies. For instance, it is impossible to verify the 

asymptotic stability of an ordinary differential equation via simulations since a simulation can 

only run for a finite amount of time and only a finite number of initial conditions can be 

tested for these finite length trajectories. Basically, however, simulation-based studies can 

enhance our confidence that properties of the closed-loop system hold, and can offer valuable 

insights into how to redesign the control system before you spend time implementing the 

control system. 

(3) Experimental Investigations 

To conduct an experimental investigation of the performance of a control system, you 

implement the control system for the plant and test it under various conditions. Clearly, 

implementation can require significant resources (e.g., time, hardware), and for some plants 

you would not even consider doing an implementation until extensive mathematical and 

simulation-based investigations have been erformed. 

However, the experimental evaluation does shed some light on some other issues involved in 

control system design such as cost of implementation, reliability, and perhaps maintainability. 

The limitations of experimental evaluations are, first, problems with the repeatability of 

experiments, and second, variations in physical components, which make the verification 

only approximate for other plants that, are manufactured at other times. On the other hand, 

experimental studies can go a long way toward enhancing our confidence that the system will 

actually work since if you can get the control system to operate, we will see one real example 

of how it can perform. 

4.3 FUZZY CONTROL FROM AN INDUSTRIAL PERSPECTIVE 

In order to be able to explain what, the benefits of fuzzy control are, we first will reconsider it from 

two different technological perspectives. 

4.3.1 Fuzzy Control: Real-time Expert Systems or Nonlinear Control 

Systems? 

Out of the many possible ways of looking at fuzzy control, we consider the following two as most 

appropriate. A fuzzy control system is a real-time expert system, implementing a part of a 

human operator's or process engineers expertise which does not lend itself to being easily 

expressed in PID-parameters or differential equations but rather in situation/action rules. This 

view is introduced in the next sections of this chapter. However, fuzzy control differs from main-

stream expert system technology in several aspects. One main feature of fuzzy control systems 

is their existence at two distinct levels: first, there are if-then rules and qualitative, fuzzy 
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variables and values such as if pressure is high and slightly increasing Then energy supply is 

medium negative.  

These fuzzy values such as "slightly increasing" and fuzzy operators such as "and" are 

compiled into very elementary numerical objects and algorithms: function tables, 

interpolation, comparators, etc. The existence of this compiled level is the basis for fast, real-

time implementations, as well as for embedding fuzzy control into the essentially numerical 

environment of conventional control. In artificial intelligence, the field of qualitative physics 

follows a similar approach, using qualitative variables and so-called "'qualitative differential 

equations," too. A main technical difference is their usage of crisp intervals corresponding 

to rectangular fuzzy membership functions for representing qualitative values.  

The major difference between fuzzy control and qualitative physics, however, can be found in 

their relationship to classical engineering discipline a: while the "Qualitative Physics Manifesto" 

aims at replacing differential equation-based techniques and solving the whole problem with 

artificial intelligence methods, fuzzy control has right from the beginning been considered an 

extension to existing technology, seeking hybrid solutions by enhancing control engineering 

where it is needed and where it makes sense.  

In fact, most of the inventors of fuzzy control have a strong control engineering or systems 

theory background. From their perspective, fuzzy control can be seen as a heuristic, and modular 

way for defining nonlinear, table-based control systems. Reconsider the rule above: it is 

nothing but an informal "nonlinear PD-element." A collection of such rules can be used and, in 

fact, results in the definition of a nonlinear transition function, without the need for defining 

each entry of the table individually, and without necessarily knowing the closed form 

representation of that function. 

One way to combine fuzzy and PID-control then is to use a linear PID system round the set 

point, where it does its job, and to "delinearize" the system in other areas by describing the 

desired behavior or control strategy with fuzzy rules. A representation theorem due to Kosko 

[120] state that any continuous nonlinear function can be approximated as exactly as needed 

with a finite set of fuzzy variables, values, and rules. This theorem describes the 

representational power of fuzzy control in principle, but it does not answer the questions, how 

many rules are needed and how they can be found, which are of, Course essential to real-world 

problems and solutions. In many cases, relatively small and simple systems will do, and that is 

why already several hundreds of real, industrial applications of fuzzy control exist. What exactly 

are the benefits of using fuzzy control? 

4.3.2 The Benefits of Fuzzy Control  

Considering the existing applications of fuzzy control, which range from very small, 

micro-controller based systems in home appliances to large-scale process control systems, 

the advantages of using fuzzy control usually fall into one of the following four categories: 

(1)  To implement expert knowledge for a higher degree of automation  

In many cases of industrial process control, e.g., in chemical industries, the degree of automation 

is quite low. There is a variety of basic, conventional control loops, but a human operator is 

needed during the starting or closing phase, for parametrizing the controllers, or for switching 

between different control modules. The knowledge of this operator is usually based on 
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experience and does not lend itself to being expressed in differential equations. It is often rather 

of the type "if the situation is such and such, I should do the following." In this case, fuzzy 

control offers a method for representing and implementing the expert's knowledge. As an 

example, consider digester management in paper industries. A Portuguese company has 

implemented a fuzzy based digester management system on top of its process control software. 

Some twenty-five rules are used for expressing the core of the operator's control strategy.  

 

 The main advantage of the higher degree of automation that has been achieved this way is the 

resulting consistent control strategy around the clock, yielding a substantial reduction (up to 

60%) of the variation of product quality. Kurt her more, subsequent optimizations of the 

software system led to a significant reduction of energy and base material consumption. All in 

all, a return on the investment needed for the fuzzy control software package ant) the 

knowledge base of the actual control system was achieved after only a few months. 

(2)  Robust nonlinear control 

Consider the following problem: a robot arm with several links has to move objects with 

different masses along a predefined path. Since there are good and exact models of this system 

available, it is not too big a problem to realize a PID-controller that works pretty well for known 

masses within a narrow range. Substantial parameter changes, however, or major external 

disturbances, lead to a sharp decrease in performance. In the presence of such disturbances, 

PID-systems usually are faced with a trade-off between fast reactions with significant overshoot 

or smooth but slow reactions, or they even run into problems in stabilizing the system at all.  

In this case, fuzzy control offers ways in implement simple but robust solutions that cover a 

wide range of system parameters and that can cope with major disturbances. Its particular case 

is called fuzzy gliding mode controller and its implementation is discussed in chapter 5. It 

exhibits similar performance for a given mass only slight variations, but that outperforms the 

PID-solution as soon as major variations are imposed. 

There are two other advantages which can be achieved by using fuzzy or rather hybrid 

solutions which do not relate tn the performance of the control system but rather to other 

aspects - I hat are nevertheless important from a business standpoint. 

(3)  Reduction of development and maintenance time 

In some cases, two different groups of experts are involved in the development of a control 

system. Field experts know the application problem and how to design appropriate control 

strategies. Often, however, they are not electronics experts who know the bits and bytes of 

numerical algorithms and micro-controller implementations. The actual system realization then 

is carried out by electronics and systems programming engineers, who on the other hand arc 

not familiar with the application problem. This often results in communication problems 

between these two groups of people, and hence in delays and extended development times. Fuzzy 

control, which was pointed out above "lives"1 at two levels of abstraction, offers languages at 

both levels of expertise: the symbolic level is appropriate for describing the application 

engineer?' strategies, while the compiled level is well understood by the electronic engineers. 

Since there is a well-defined, formal translation between those levels, a fuzzy based approach can 

help reducing communication problems. 
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As an example, consider idle-speed control in automotive electronics, where sophisticated control 

strategies have to be implemented and run in time-critical situations on simple 8-bit micro-

controllers. Besides major variations in system parameters due to mass series production and to 

aging problems, which require extensive system tuning, communication problems between engine 

and microcontroller specialists lead to very long development times.  

We recently had the chance to drive an experimental car with two idle-speed controllers, a 

conventional PID-system, and a fuzzy control system. The major control goal was to keep a 

constant idle-speed of 8130 rpm. Independently of disturbances imposed by different road 

conditions or additional power consumers such as power steering and air conditioning. Practically 

no differences could be observed concerning the system's behavior, but while almost two man-

years went into the development of the conventional solution, development time for the fuzzy 

solution was around six months only. 

(4)  Marketing and patents 

In Japan, "fuzzy" has become one of the most popular words. In particular in the realm of 

home appliances, the label "fuzzy-controlled" raises positive associations in the sense of 

modern, high quality, or user friendly. As a matter of fact, the use of fuzzy control has 

contributed heavily to the functionality of quite a few home appliances. The "one-touch-

button"1 washing machine, for example, constitutes a major advance with respect to the large 

control panels of the older washing machines. In this machine, an additional infrared sensor is 

used to assess the quality and the quantity of dirt in the laundry, and a fuzzy evaluation procedure 

for these sensor data and subsequent fuzzy rule based inference is used to determine the details 

of the washing program. In 1990, Japanese manufacturers reported sales of fuzzy controlled 

home appliances in the range of several billion US dollars. 

This and other successful applications of fuzzy control, however, have led to a state where 

merely using fuzzy control - whether or not it really makes sense from a technological point of 

view has become a marketing argument. Therefore, the majority of newly introduced home 

appliances are labeled fuzzy or "neuro-fuzzy." We do not believe that the mere use of fuzzy 

control, independently of its actual merits, will play a role as a marketing argument for industrial 

applications. In a few cases, we expect fuzzy control to be used in industrial applications even 

when it is not actually needed, just to enable companies to demonstrate their technological 

competence in fuzzy control. 

There is yet another mason, however, for using fuzzy control even if it does not improve system 

performance or reduce development costs. In some business areas, the patent situation is such 

that it is hard to come up with new solutions using conventional technology without violating or 

at least interfering with a competitor's patent. Even if the patent turns out to be untenable, this 

usually leads to significant delays in introducing new products. In some cases, using fuzzy 

control for a qualitatively equivalent solution will - and actually does -help io by-pass 

existing patents. 

So far, we have listed several success stories of fuzzy control, highlighting the benefits. It 

should be clear that in most cases, these are no pure fuzzy solutions but rather hybrid solutions, 

using fuzzy control to augment conventional technology. We should, however, address the 

question: where are the limits? 
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4.3.3 The Limits of Fuzzy Control 

In some articles in the popular press, examples such as those above are overly generalized to 

statements about much logic, as a really fabulous technique. Some of these statements are 

definitely misleading, for some others we simply need a much broader basis for induction in 

terms of many more applications in order to verify or deny such general statements. So let us 

reconsider the examples above and their erroneous generalizations as discussed below: 

(i) Fuzzy control leads to a higher degree of automation for complex, ill-structured 

processes 

This is true in many cases, but only if there is relevant knowledge about the process and its 

control available that can be well expressed in terms of fuzzy logic. There are processes for 

which that kind of knowledge simply is not at all or not to the necessary extent available. 

(ii) Fuzzy controllers are more robust than conventional controllers  

Again, there are many applications, where the use of fuzzy control - pure or in combination with, 

say, FID-control - resulted in simple yet highly robust control systems. There are other cases, 

too. We know of two attempts to control air conditioning system? With fuzzy logic, with only 

minor differences in structure and knowledge base: one turned out to be highly robust even in 

the presence of major disturbances, the other one was unstable. It is not yet fully understood 

for which kinds of control engineering problems fuzzy control really leads to improved 

robustness and stability, and which are the relevant design choices that affect these 

properties. 

It is not true, however, as opponents of fuzzy control often argue, that there are no 

stability criteria available for fuzzy control systems. Such criteria are discussed in 

several different places in this hook. We also have to realize that in this respect, fuzzy 

control competes with nonlinear conventional control, where stability issues are not as 

easy to handle as for simple linear systems. 

(iii) Fuzzy control reduces development time 

Again, yes in many cases it does, and the example above in automotive elec tronics is a 

real one. It cannot he expected, however, as claimed in a number of publications, that 

using fuzzy control will help to solve really complex problems within a couple of weeks. 

The reduction of development time for results from the fact that there is often 

knowledge about a process or about control strategies available which ran he naturally 

expressed in fuzzy control but which is hard to encode in differential equations or 

conventional control algorithms. This knowledge remains to be acquired, encoded, tested, 

arid debugged, and for all but the simplest problems, a strong control engineering 

background will be needed to realize good solutions. 

In many ongoing projects in European industries, using fuzzy instead of conventional 

control will actually increase development time, just because the application engineers 

working on those projects are not yet familiar with the new technology. The shortage of 

well-trained personnel in fuzzy control is one of the major bottlenecks that prevent a 
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broader exploitation of t h i s  new technology at this time. Fuzzy control is only 

beginning to be integrated into the academic: curricula, and it will take several years 

until a sufficient number of engineers familiar with Uv/r/y control will he available from 

tin: universities. Suite in dust ry cannot wait for this to happen - in particular because 

the situation in Japan is completely different an increasing number of special seminars 

and in-house training programs have been started. 

(iv) Products using fuzzy control sell better  

It is true for home appliances in Japan, however, we do not expect that th i s  phenomenon 

will carry over to Europe. Marketing arguments will have to focus on user-friendliness, 

additional functionality, and environmental aspects such as energy savings or say, 

reduction of fresh water consumption of washing machines. Since fuzzy logic can in many 

cases contribute to these points, we expect the technology to become positively 

associated with these advantages, but merely labeling a product "fuzzy-controlled'1 will 

not become a major sales argument, in some cases, in particular in home electronics and 

video equipment, the use of fuzzy control is not being mentioned at all.  

A fuzzy auto-focus system, for example, does not seem to be a quality label Therefore; 

most suppliers of such systems use the term digital or intelligent auto-focus, even if it is 

implemented in fuzzy logic. In the realm of industrial process control and related fields, 

marketing strategies differ from those in mass markets such as home appliances. While it is 

important to companies to demonstrate their technological competence in fuzzy control, the 

actual decisions for using fuzzy control or any other technique will be made in terms of its 

contribution to a higher degree of automation, better product quality, cost reduction, or other 

business-relevant aspects. 

4.3.4 On When to Use Fuzzy Control 

Having gone through a few examples where fuzzy control is being successfully used, we 

immediately cautioned about unjustified, too high expectations. But when, then, should fuzzy 

control be considered? 

A satisfactory answer to this question cannot yet be formulated. What we would like to have at 

our disposal is a systematic decision procedure for analyzing a given problem and inferring 

whether and if so which variant of fuzzy control should be used based on problem 

characteristics. At this time, the statistical basis in terms of number of successful applications is 

not yet broad enough to generate useful generalizations. This should not be a surprise because 

the industrial and commercial use of fuzzy control did not really start until the late 1980s, 

compared to the immense number of existing conventional control systems with an 

accumulated experience of many decades. At tins point, we can only formulate a few 

guidelines on whether to use fuzzy control or not. 

First, it is clear that if there exists already a successful fuzzy control baser) solution to a 

problem similar to the one at hand, you are on the safe side. In terms of business advantages, 

however, these are the less interesting cases since somebody else might, already commercially 

exploit that solution. 
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Next, if we have a good PlD-solution, where system performance, development and 

maintenance costs as well as marketing policy are really satisfactory, stick to it. 

Finally, if we are not satisfied with our existing solution with respect to any one of these; 

criteria, or if you have to deal with a problem that could not be solved so far, it is 

important to analyze the reason why. If there is knowledge available about the system or 

process that could be used to improve your solution but that is hard to encode in terms of 

conventional control such as differential equations and PID-parameters and give fuzzy control a 

try. 

 In many cases, this knowledge is of a more heuristic and qualitative nature and is easily 

expressible in terms of fuzzy if-then rules. We know of many cases of exactly this kind. 

Just to name one there is no exact and complete mathematical understanding of the processes 

going on in cooling systems in power generation devices. Hence, algorithmic solutions to infer 

diagnoses such as system leakage from sensor data exist only to a very limited extent, and the 

expertise of system operators and engineers is always needed to monitor such cooling systems 

both the evaluation of data such as pressure and change of pressure and the combination of 

symptoms to proper situation identification however can be naturally expressed in fuzzy terms 

such as "normal pressure, but quickly increasing'1 and corresponding if-then rules. In this 

particular case, it took only a matter of months to design and implement a fuzzy logic 

based monitoring system for cooling system leakage that outperforms the existing 

classical solutions. It is important to note, however, that the fuzzy operators and 

membership functions being used in this system differ from the very simple min/max-

inference and triangular membership functions that are predominant in most of the ele-

mentary control applications. We will come back to that issue later on. 

4.3.5 The Market Place 

So far, public interest in fuzzy control has been raised mainly by llic immense number of 

fuzzy-controlled Japanese home appliances and the corresponding number of sales, 

ranging far above one billion US dollars. We expect fuzzy control to penetrate into 

European and US-American white good markets in 1993, presumably to a lower degree 

than that which can be observed in Japan. Another main area of current commercial 

activities in fuzzy control is automotive electronics. Here again, mainly Japanese 

suppliers have already brought fuzzy controlled anti-skid modules and engine 

management systems into the stage of series production. We expect this trend to 

continue, and major European and American car manufacturers have significant ongoing 

activities in fuzzy control, though we do not know of any product originating from 

Europe or the US that has already reached the market place. 

Focusing on such spectacular products as "one-touch-button washing machines," 

however, it is often overlooked that, the first real applications, of fuzzy control were 

realized in the realm of industrial process control, such as cement kiln operation. An 

increasing number of applications are being reported in this area, and several major 

suppliers of process control hardware and software are now offering fuzzy control 

capabilities, for example, in programmable logic controllers or higher level process 

control systems. In the long run, we see the major application potential in this area, 
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while in terms of market share and commercial benefits, home appliances, automotive 

electronics, and other microcontroller based applications will dominate the fuzzy control 

business for the next couple of years. As the technology matures, however, we foresee an 

increasing number of applications in complex systems engineering, the focus of fuzzy 

control moving from elementary control problems to higher levels in the system hierarchy 

such as supervisory control, monitoring and diagnosis, and logistics problems. It is 

important to note that also one of the major future industries, telecommunications, has 

started investigating fuzzy control for communication systems, and that several pilot 

projects have been started concerning, for example, routing and overload handling 

problems. 

An increasing number of market growth studies are trying to estimate and forecast the 

economic relevance of fuzzy control. While these studies are worthwhile to carry out, it is 

very hard to delineate exactly the contribution of fuzzy control to the monetary value of a 

product. Consider the example of a washing machine, where a major part of the electronic 

control is realized in fuzzy logic. It is certainly not correct to take the price of the whole 

washing machine, but it also would be misleading to consider just the - usually standard - 

microcontroller or the number of lines of code realizing the fuzzy part of the system. Our 

assessment of the contemporary and future market relevance of fuzzy control is the following: 

we estimate that about 10-15% of all electric and electronic engineering applications will benefit 

from the use of fuzzy control, being roughly evenly split into fuzzy control as an enhancing and 

as an enabling technology. Considering the huge market volume of this area, and also its 

expected further growth, it becomes evident that fuzzy control is a major technology from a 

business point of view. In addition to that, there is a still small but increasing number of 

applications of fuzzy logic in other, purely information technology oriented fields such as 

databases, expert systems in the financial sector, and so on. 

We should not, however, commit the same error as was done with "classical" artificial 

intelligence systems, whereafter some initial success in relatively narrow application areas it 

was believed that artificial intelligence could be used as a universal stand-alone technology 

to solve just about every problem in information processing. We expect that for a long time 

the main application potential of fuzzy logic will stay within the realm of fuzzy control, in an 

increasingly broader sense of "control." This is not to say that the relevance of fuzzy logic will 

not expand to other areas, where there are already a few spots such as data compression, but this 

is still mainly research-oriented work, whereas fuzzy control has already gained a significant 

role in daily industrial practice and its full potential in this area is by no means yet exploited 

or even known. 

 So far, we have discussed the relevance of fuzzy control applications as a business. There is yet 

another business area in fuzzy control, relating to the technology itself as a product, in terms 

of special hardware and software. So far, the majority of all existing applications is purely 

software-based. Although there are a large number of special fuzzy logic processors available 

and offered by semiconductor firms or small specialized companies, yet we expect that this 

situation will not change within the next years.  

Using special hardware in the sense of general-purpose fuzzy logic processors or coprocessors is 

and will only be justified in the following situations; the application is extremely time-critical, 

and the extra costs for an additional fuzzy processor can be recovered either from the sheer 

number of items (such as in automotive electronics) or from the fact that the system as a whole 

is large and expensive enough that the costs for a special processor are negligible (this might be 
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the case when using a fuzzy processor for, say, a pattern recognition task in a complex plant 

automation system). Therefore, most suppliers of micro-controllers, PLCs, and other control 

equipment focus on developing specialized fuzzy control software for standard devices, and on 

integrating these packages into the existing development environments. 

Besides major electric/electronic and industrial automation companies, an increasing number 

of small and specialized software companies is offering fuzzy control development tool kits 

for a broad range of standard processors. Our advice in general is to use as long as possible 

pure software solutions, even in higher programming languages such as C. The reason for this is 

that software offers a much higher degree of flexibility and, in most cases, the solutions are 

hybrid, i.e., there is always and for a standard processor to implement the "non-fuzzy" parts of 

the system. Experience so far has shown also that the elementary fuzzy operations such as 

function table look-up and interpolation, comparators, and basic arithmetic functions are simple 

enough that fuzzy control algorithms can be optimized to run even very lime-critical 

applications without specialized hardware. It may be the case that the role of hardware will 

become more important in the future, when more complex operators will be needed, to 

adequately express and implement the expertise for control strategies. This might trigger the 

development of more sophisticated fuzzy processors and also semi- and full-custom integrated 

hardware designs. The point is, however, that it is not yet obvious which operators will be 

needed and that existing special hardware does not support any but the simplest fuzzy 

algorithms. 

4.3.6 What Needs to Be Done? 

Reconsider the example of the cooling system monitoring problem discussed above. During the 

system design and knowledge acquisition phase, it turned out that the human expert's usage of, 

for example, the AND-operation when combining symptoms could not be adequately expressed 

with the usual fuzzy logic interpretation of AND as a minimum operation. Also the fuzzy 

membership functions representing values such as "normal pressure" turned out to be more -

sophisticated than the simple triangular functions predominant in elementary control 

applications. 

Several conclusions can be inferred from this example: first of all, it was extremely helpful to 

have a software tool available which supports experimental system implementation, evaluation, 

and tuning, and which offers the user ways to combine predefined standard operations with his 

or her own special code. There is an increasing number of such software tools available which - 

though not yet completely matured provide valuable support. They are being steadily improved 

and are being integrated into standard software development packages for automatic control. 

Secondly, considering the major pact of existing applications of fuzzy control, it can be realized 

that the "application-proven" part, let us say the "first generation" of fuzzy control, exploits only 

a very small fragment of fuzzy logic theory. In many cases of more complex, ill-structured 

problems, this first generation technology is not sufficiently strong to represent and implement the 

knowledge needed for powerful solutions. It is often possible, though, to improve the technology 

additively by exploiting a larger part of the readily available theory. 

The example above and many others make clear that the development of a mature, more 

powerful second generation technology still requires basic and experimental research. This 

research will have to focus on the questions of which parts of the still unused theory will 
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eventually gain practical relevance, where does the theory itself need extensions, and which are 

useful ways of integrating fuzzy control with conventional and also other modern control 

algorithms such as neural network based approaches. We are convinced that only application-

driven, experimental research can be sufficiently focused and guided in the right directions lo 

make good progress. It simply does not make any sense to define a new operator "Fuzzy-And. 

Version 137'' and to discuss its mathematical properties without being triggered by the fact 

that none of the existing operators can be used for a particular application. 

Thus, we believe that industrial research - as opposed to pure university-based research - will play 

a major role. Only industrial research labs have direct access to real-world problems, which is 

essential for proceeding in this field. This is not to say that the universities are not needed: 

most importantly, fuzzy control has to become an integral part of educational curricula in 

electronic and control engineering. Furthermore, academic people can and must contribute to 

the long-term, fundamental issues in fuzzy control theory. But the major push in fuzzy control 

within the next years will be application-driven and will necessarily have to be carried out in 

industrial research labs. 

Also considering first generation technology, there are still a few bottle-necks hindering industry 

from a broader exploitation of the application potential of fuzzy control, in the first place, we 

need a bettor and more systematic design and analysis methodology for fuzzy control 

applications, supporting the whole life-cycle from initial decision making all the way through to 

deployment and maintenance, focusing on the following issue: which are the proper design choices 

given an analysis of the problem, and how do variations of system parameters affect the 

system's performance. It should be clear that we cannot expect a universal design and 

optimization strategy for fuzzy control which is of any practical use. Such a universal theory 

does not exist for conventional control engineering either. Instead, we have to proceed from the 

few isolated spots where we already know exactly how to design a fuzzy control algorithm to 

clusters of problems and related design methodologies. 

Besides the necessary paper and experimental work which is needed to advance this 

methodology, we need a much broader basis of experience in terms of successful and of 

unsuccessful applications. We expect this methodology to gradually emerge as experience is 

being accumulated. 

The absence of such a coherent and systematic methodology makes another main problem for 

first-generation fuzzy control even more serious: the lack of well-trained and experienced 

"fuzzy control engineers.'' It means that engineers who want to or have to get into this new 

technology have only limited support and guidance and must by and large rely on their own 

experience gained through experimental work. 

4.4 FUZZY CONTROL SYSTEM DESIGN 

What, then, is the motivation for turning to fuzzy control? Basically, the difficult task of 

modeling and simulating complex real-world systems for control systems development, 

especially when implementation issues are considered, is well documented. Even if a 

relatively accurate model of a dynamic system can be developed, it is to be often too complex 

to use in controller development, especially for many conventional control design procedures 

that require restrictive assumptions for the plant (e.g., linearity). It is for this reason that in 
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practice conventional controllers are often developed via simple models of the plant behavior 

that satisfy the necessary assumptions, and via the ad-hoc tuning of relatively simple linear or 

nonlinear controllers. It is well understood (although sometimes forgotten) that heuristics 

enter the conventional control design process as long as you are concerned with the actual 

implementation of the control system. It must be acknowledged, moreover, that conventional 

control engineering approaches that use appropriate heuristics to tune the design have been 

relatively successful. You may ask the following questions: 

 How much of the success can be attributed to the use of the mathematical model and 

conventional control design approach? And how much should be attributed to the clever 

heuristic tuning that the control engineer uses upon implementation? And if we exploit the 

use of heuristic information throughout the entire design process, can we obtain higher 

performance control systems? 

Fuzzy control provides a formal methodology for representing, manipulating, and 

implementing a human’s heuristic knowledge about how to control a system. In this section 

we seek to provide a philosophy of how to approach the design of fuzzy controllers. This will 

lead us to provide a motivation for, and overview of, the entire book. The fuzzy controller 

block diagram is given in Figure 4.2, where we show a fuzzy controller embedded in a 

closed-loop control system. The plant outputs are denoted by y(t), its inputs are denoted by 

u(t), and the reference input to the fuzzy controller is denoted by r(t). 

 

Fig. 4.2 design of fuzzy controllers 

The fuzzy controller has four main components:  

(1)  The “rule-base” holds the knowledge, in the form of a set of rules, of how best to 

control the system.  

(2)  The inference mechanism evaluates which control rules are relevant at the current 

time and then decides what the input to the plant should be.  

(3)  The fuzzification interface simply modifies the inputs so that they can be interpreted 

and compared to the rules in the rule-base. And  

(4)  The defuzzification interface converts the conclusions reached by the inference 

mechanism into the inputs to the plant. 

Basically, we will view the fuzzy controller as an artificial decision maker that operates in a 

closed-loop system in real time. It gathers plant output data y(t), compares it to the reference 

input r(t), and then decides what the plant input u(t) should be to ensure that the performance 

objectives will be met. 
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To design the fuzzy controller, the control engineer must gather information on how the 

artificial decision maker should act in the closed-loop system. Sometimes this information 

can come from a human decision maker who performs the control task, while at other times 

the control engineer can come to understand the plant dynamics and write down a set of rules 

about how to control the system without outside help.  

These “rules” basically say, “If the plant output and reference input are behaving in a certain 

manner, then the plant input should be some value.” A whole set of such “If-Then” rules is 

loaded into the rule-base, and an inference strategy is chosen, then the system is ready to be 

tested to see if the closed-loop specifications are met. 

 This brief description provides a very high-level overview of how to design a fuzzy control 

system. Below we will expand on these basic ideas and provide more details on this 

procedure and its relationship to the conventional control design procedure.  

4.4.1 Modeling Issues and Performance Objectives 

People working in fuzzy control often say that “a model is not needed to develop a fuzzy 

controller, and this is the main advantage of the approach.” However, will a proper 

understanding of the plant dynamics be obtained without trying to use first principles of 

physics to develop a mathematical model? And will a proper understanding of how to control 

the plant be obtained without simulation-based evaluations that also need a model? We 

always know roughly what process we are controlling (e.g., we know whether it is a vehicle 

or a nuclear reactor), and it is often possible to produce at least an approximate model, so 

why not do this?  

For a safety-critical application, if we do not use a formal model, then it is not possible to 

perform mathematical analysis or simulation-based evaluations. Is it wise to ignore these 

analytical approaches for such applications? Clearly, there will be some applications where 

we can simply “hack” together a controller (fuzzy or conventional) and go directly to 

implementation. In such a situation there is no need for a formal model of the process; 

however, is this type of control problem really so challenging that fuzzy control is even 

needed? Could a conventional approach (such as PID control) or a “table look-up” scheme 

work just as well or better, especially considering implementation complexity? 

Overall, when we carefully consider the possibility of ignoring the information that is 

frequently available in a mathematical model, it is clear that it will often be unwise to do so. 

Basically, then, the role of modeling in fuzzy control design is quite similar to its role in 

conventional control system design. In fuzzy control there is a more significant emphasis on 

the use of heuristics, but in many control approaches (e.g., PID control for process control) 

there is a similar emphasis. Basically, in fuzzy control there is a focus on the use of rules to 

represent how to control the plant rather than ordinary differential equations (ODE). This 

approach can offer some advantages in that the representation of knowledge in rules seems 

more lucid and natural to some people. For others, though, the use of differential equations is 

more clear and natural. Basically, there is simply a “language difference” between fuzzy and 

conventional control: ODEs are the language of conventional control, and rules are the 

language of fuzzy control. 



Fuzzy Control | 4.21 
 

The performance objectives and design constraints are the same as the ones for conventional 

control that we summarized above, since we still want to meet the same types of closed-loop 

specifications. The fundamental limitations that the plant provides affect our ability to 

achieve high-performance control, and these are still present just as they were for 

conventional control (e.g., non minimum phase or unstable behavior still present’s challenges 

for fuzzy control). 

4.4.2 Fuzzy Controller Design 

Fuzzy control system design essentially amounts to  

(1)  Choosing the fuzzy controller inputs and outputs,  

(2)  Choosing the preprocessing that is needed for the controller inputs and possibly post 

processing that is needed for the outputs, and 

(3)  Designing each of the four components of the fuzzy controller shown in Figure 4.2. 

As we will see in the next chapter, there are standard choices for the fuzzification and 

defuzzification interfaces. Moreover, most often the designer settles on an inference 

mechanism and may use this for many different processes. Hence, the main part of 

the fuzzy controller that we focus on for design is the rule-base.  

The rule-base is constructed so that it represents a human expert “in-the-loop.” Hence, the 

information that we load into the rules in the rule-base may come from an actual human 

expert who has spent long time learning how best to control the process. In other situations 

there is no such human expert, and the control engineer will simply study the plant dynamics 

(perhaps using modeling and simulation) and write down a set of control rules that makes 

sense. As an example, in the cruise control problem discussed above it is clear that anyone 

who has experience driving a car can practice regulating the speed about a desired set-point 

and load this information into a rule-base. For instance, one rule that a human driver may use 

is “If the speed is lower than the set-point, then press down further on the accelerator pedal.” 

A rule that would represent even more detailed information about how to regulate the speed 

would be “If the speed is lower than the set-point AND the speed is approaching the set-point 

very fast, and then release the accelerator pedal by a small amount.” This second rule 

characterizes our knowledge about how to make sure that we do not overshoot our desired 

goal (the set-point speed). Generally speaking, if we load very detailed expertise into the rule-

base, we enhance our chances of obtaining better performance. 

4.4.3 Performance Evaluation of Fuzzy Control 

Each and every idea presented in Section 4.2.5 on performance evaluation for conventional 

controllers applies here as well. The basic reason for this is that a fuzzy controller is a 

nonlinear controller — so many conventional modeling, analysis (via mathematics, 

simulation, or experimentation), and design ideas apply directly. 

Since fuzzy control is a relatively new technology, it is often quite important to determine 

what value it has relative to conventional methods. Unfortunately, few have performed 

detailed comparative analyses between conventional and intelligent control that have taken 
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into account a wide array of available conventional methods (linear, nonlinear, adaptive, etc.); 

fuzzy control methods (direct, adaptive, supervisory); theoretical, simulation, and 

experimental analyses; computational issues; and so on. 

Moreover, most work in fuzzy control to date has focused only on its advantages and has not 

taken a critical look at what possible disadvantages there could be to using it (hence the 

reader should be cautioned about this when reading the literature). For example, the following 

questions are cause for concern when you employ a strategy of gathering heuristic control 

knowledge: 

•  Will the behaviors that are observed by a human expert and used to construct the 

fuzzy controller include all situations that can occur due to disturbances, noise, or 

plant parameter variations? 

•  Can the human expert realistically and reliably foresee problems that could arise 

from closed-loop system instabilities or limit cycles? 

•  Will the human expert be able to effectively incorporate stability criteria and 

performance objectives (e.g., rise-time, overshoot, and tracking specifications) into a 

rule-base to ensure that reliable operation can be obtained? 

These questions may seem even more troublesome in view of the following: 

(1)  If the control problem involves a safety-critical environment where the failure of the 

control system to meet performance objectives could lead to loss of human life or an 

environmental disaster, or 

(2)  If the human expert’s knowledge implemented in the fuzzy controller is somewhat 

inferior to that of the very experienced specialist we would expect to design the 

control system (different designers have different levels of expertise) 

Clearly, then, for some applications there is a need for a methodology to develop, implement, 

and evaluate fuzzy controllers to ensure that they are reliable in meeting their performance 

specifications. This is the basic theme and focus of this book. 

4.4.4 Application Areas 

Fuzzy systems have been used in a wide variety of applications in engineering, science, 

business, medicine, psychology, and other fields. For instance, in engineering some potential 

application areas include the following: 

•  Aircraft/spacecraft: Flight control, engine control, a vionic systems, failure diagnosis, 

navigation, and satellite attitude control. 

•  Automated highway systems: Automatic steering, braking, and throttle control for 

vehicles. 

•  Automobiles: Brakes, transmission, suspension, and engine control. 

•  Autonomous vehicles: Ground and underwater. 

•  Manufacturing systems: Scheduling and deposition process control. 
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•  Power industry: Motor control, power control/distribution, and load estimation. 

•  Process control: Temperature, pressure, and level control, failure diagnosis, 

distillation column control, and desalination processes. 

•  Robotics: Position control and path planning. 

This list is only representative of the range of possible applications for the methods of this 

book. Others have already been studied, while still others are yet to be identified. 

4.5  CONCLUSIONS 

In this chapter we have provided an overview of the approaches to conventional and fuzzy 

control system design and have showed how they are quite similar in many respects. In this 

chapter our focus will be not only on introducing the basics of fuzzy control, but also on 

performance evaluation of the resulting closed-loop systems. Moreover, we will pay 

particular attention to the problem of assessing what advantages fuzzy control methods have 

over conventional methods. Generally, this must be done by careful comparative analyses 

involving modeling, mathematical analysis, simulation, implementation, and a full 

engineering cost-benefit analysis (which involves issues of cost, reliability, maintainability, 

flexibility, lead-time to production, etc.).  

Some of our comparisons will involve many of these dimensions while others will necessarily 

be more cursory. Although it is not covered in this book, we would expect the reader to have 

as prerequisite knowledge of the basic ideas in conventional control (at least, those typically 

covered in a first course on control). After completion of this chapter, the reader should then 

understand the following: 

•  The distinction between a “truth model” and a “design model.”  

•  The basic definitions of performance objectives (e.g., stability and overshoot). 

•  The general procedure used for the design of conventional and fuzzy control systems, 

which often involves modeling, analysis, and performance evaluation. 

•  The importance of using modeling information in the design of fuzzy controllers and 

when such information can be ignored. 

•  The idea that mathematical analysis provides proofs about the properties of the 

mathematical model and not the physical control system. 

•  The importance, roles, and limitations of mathematical analysis, simulation-based 

analysis, and experimental evaluations of performance for conventional and fuzzy 

control systems. 

•  The basic components of the fuzzy controller and fuzzy control system. 

•  The need to incorporate more sophisticated reasoning strategies in controllers and the 

subsequent motivation for adaptive and supervisory fuzzy control. 
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Essentially, this is a checklist for the major topics of this chapter. The reader should be sure to 

understand each of the above concepts before proceeding to later chapters, where the 

techniques of fuzzy control are introduced. We find that if we have a solid high-level view of 

the design process and philosophical issues involved, we will be more effective in developing 

control systems. 

The more that we understand about conventional control, the more we will be able to 

appreciate some of the finer details of the operation of fuzzy control systems. We realize that 

all readers may not be familiar with all areas of control, so next we provide a list of books 

from which the major topics can be learned. There are many good texts on classical control 

[10, 20, 11, 7, 6, 2]. State-space methods and optimal and multivariable control can be 

studied in several of these texts and also in [12, 1, 4, 25]. Robust control is treated in [8, 9, 

30]. Nonlinear control is covered in [17, 5, 28, 29, 16]; stability analysis in [27, 26]; and 

adaptive control in [15, 18, 3, 13,]. System identification is treated in [24] (and in the 

adaptive control texts), and optimal estimation and stochastic control are covered in [19, 23, 

22, 14]. A relatively complete treatment of the field of control is in [21]. 

For more recent work in all these areas, see the proceedings of the IEEE Conference on 

Decision and Control, the American Control Conference, the European Control Conference, 

the International Federation on Automatic Control World Congress, and certain conferences 

in chemical, aeronautical, and mechanical engineering.  

Major journals to keep an eye on include the IEEE Transactions on Automatic Control, IEEE 

Transactions on Control Systems Technology, IEEE Control Systems Magazine, Systems and 

Control Letters, Automatica, Control Engineering Practice, International Journal of Control, 

and many others. Extensive lists of references for fuzzy and intelligent control are provided at 

the end. 
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EXERCISE -4 

1. Describe example of a control problem of an automobile “cruise control” (George 

Viote). 

2. Explain, How the fuzzy control design methodology can be used to construct fuzzy 

controllers for challenging real-world applications? 

3. Write basics of Conventional Control System Design. 

4. When a control engineer is given a control problem, how he developed  a 

mathematical model of the process? 

5. Explain Performance Objectives and Design Constraints for constructing a controller 

to meet the specifications. 

6. Write  numerous methods used for constructing controllers for dynamic systems. 

7. How we conduct an experimental investigation of the performance of a control 

system. 

8. Write the Benefits of Fuzzy Control.  

9. Write the Limits of Fuzzy Control. 

10. Write the Application Areas of Fuzzy Control. 
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Chapter-5 

Fuzzy Knowledge Base Control (FKBC) 

5.1 INTRODUCTION 

The primary goal of control engineering is to distill and apply knowledge about how to 

control a process so that the resulting control system may reliably and safely achieve high-

performance operation. In this chapter we show how fuzzy logic provides a methodology for 

representation and implementation of our knowledge about how best to control a process. 

After study of this chapter, it is expected that the reader should be able to design and simulate 

a fuzzy control system. This will move the reader a long way toward implementation of fuzzy 

controllers since we provide pointers on how to overcome certain practical problems 

encountered in fuzzy control system design and implementation (e.g., coding the fuzzy 

controller to operate in real-time, even with large rule-bases). 

In Section 5.2 we begin with a “gentle” (tutorial) introduction via a simple inverted pendulum 

control problem. We focus on the construction and basic mechanics of operation of a two-

input one-output fuzzy controller with the most commonly used fuzzy operations. In section 

5.3 we explain the difference between fuzzy and human control, building on our 

understanding of the two-input one-output fuzzy controller. Sections 5.4 and 5.5 cover the 

Fuzzy Rule for a mathematical characterization of general fuzzy system with two inputs and 

outputs. Fuzzy quantifications such as membership function and general fuzzification, 

inference, and defuzzification strategies for Fuzzy Control are discussed in section 5.6. In 

Section 5.7 fusion of fuzzy and PID controller are given for Supervision of conventional 

controllers, Correction of conventional controllers, and Coordination of control loop set-

points. In section 5.8 Inversion of fuzzy systems has been explained. In section 5.9 we 

illustrate some typical steps in the fuzzy control design process and explain how to write a 

computer program that will simulate the actions of a fuzzy controller discussed in Section 

5.5.We explain various issues encountered in implementing fuzzy controllers in Section 5.10. 

In the end designing some problems as an exercise is given. 

5.2 CLASSICAL FUZZY CONTROL IN INVERTED PENDULUM 
Basically Inverted pendulum is used to control Voltammeter Ammeter. Here, we want to 

design and analyze a fuzzy controller for the simplified version of the inverted pendulum 

system as shown in figure 5.1. The differential equation describing the system is 

   -ml2 d2/dt2 + (m l g) sin () =  = u (t),     ....(5.1) 
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where m is the mass of the pole located at the tip point of the pendulum, I is the length of the 

pendulum,  is the deviation angle from vertical in the clockwise direction,  = u (t) is the 

torque applied to the pole in the counterclockwise direction (u (t) is the control action), m 

time, and g is the acceleration due to gravity. 

Assuming x1 =  and x2 = d/dt to be the state variables, the state-space representation for the 

non-linear system defined by Eq. (5.1) is given by  

  dx1 /dt = x2,   dx2/dt = (g/1) sin (x1) - (1/ml2) u (t) 

 
Fig. 5.1: Inverted pendulum control problem 

 

For very small rotation, we have sin (), where  is measured in radians. We get   

  dx1 /dt = x2 

  dx2 / dt = (g/1) x1 - (1/ml2) u (t) 

If x1 is measured in degrees and x2 is measured in degrees per second, by choosing l = g and 

m = 180 / ( . g2), the linearized and discrete time state-space equation can be represented as 

matrix difference equations, 

   x1 (k + 1) = x1(k) + x2(k) 

   x2 (k + 1) = x1(k) + x2(k) - u(k)  

For this problem we assume the universe of discourse for the two variables to be 

  - 2 ≤ x1 ≤ 2 and -5 dps ≤ x2 ≤ 5 dps (dps = degrees per second).  

Step 1: We construct three membership functions for x1 on its universe, that is, for the values 

positive (P), zero (Z), and negative (N), as shown in following figure: 

 

 
 

Fig. 5.2 
We then construct three membership functions for x2 on its universe, that is, for the values 

positive (P), zero (Z) and negative (N), as shown below. 
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Fig. 5.3: Input x2 partitioned 
Step 2: To partition the control space (output), we will construct five membership functions 

for u (k) on its universe, which is -24 ≤ u (k) ≤ 24, as shown in figure below. 

 
 

Fig. 5.4: Output, u (k), partitioned into seven partitions (only five used). 
Step 3: We then construct nine rules (even though we may not need this many) in a 3 × 3 

FAM table, as shown below, for this system, which would involve  and d/dt in order to 

stabilize the inverted pendulum system. The entries in this table are the control actions, u (k). 

 

Table 5.1 FAM Table 

x2 P Z N 

x1 

P PB P Z 

Z P Z N 

N Z N NB 

Step 4: Using the rules expressed in above table, we will now conduct a simulation of this 

control problem. To start the simulation, we will use the following crisp initial conditions: 

   x1 (0) = l° and x2(0) = -4dps 

Then we will conduct four cycles of simulation using the matrix difference equations, above, 

for the discrete steps 0 < k < 3. Each simulation cycle will result in membership functions for 

the two input variables. The FAM table will produce a membership function for the control 

action, u (k). We will defuzzify the membership function for the control action using the 

centroid method and then use the recursive difference equations to solve for new values of x1 

and x2. Each simulation cycle after k = 0 will begin with the previous values of x1 and x2 as 

the input conditions to the next cycle of the recursive difference equations. Figures 5.5 and 

5.6 given below show the initial conditions for x1 and x2, respectively. From the FAM table 

 If (x1 = P) and (x2 = Z), then (u = P)   min (0.5, 0.2) = 0.2 (P)  

 If(x1 = P) and (x2 = N), then (u = Z)  min (0.5, 0.8) = 0.5 (Z) 

 If (x1 = Z) and (x2 = Z), then (u = Z)  min (0.5, 0.2) = 0.2 (Z)  

 If (x1 = Z) an d(x2 = N), then(u = N)   min (0.5, 0.8) = 0.5 (N) 
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Fig. 5.5: Initial condition for x1 

 
 

Fig. 5.6: Initial condition for x2 
Figure 5.7 below shows the union of the truncated fuzzy consequents for the control variable, 

u. 

 
 

Fig. 5.7: Union of fuzzy consequents fired by rules 
The final form with the defuzzified control value is illustrated in the following figure (5.8): 

 
 

Fig. 5.8: Union of fuzzy consequents and defuzzified value 
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We have completed the first cycle of the simulation. Now, we take the value of the 

defuzzified control variable (i.e., u = -2). Using the system equations, we find the initial 

conditions for next iteration as 

   x1 (1) = x1(0) + x2(0) = 1 - 4 = -3 and 

   x2 (1) = x1(0) + x2(0) - u(0) = 1 - 4 - (-2) = -1 

From this, we get the initial conditions for the second cycle as x1(1) = -3 and x2 (1) = -1, 

which are shown graphically in following figures 5.9 and 5.10: 

 
Fig.5.9: Initial condition for second cycle for x1 

 
 

Fig. 5.10: Initial conditions for second cycle for x2 
  From the FAM table 5.1, we have  

if (x1 = N) and (x2 = N), then (u = NB) and min (1, 0.2) = 0.2 (NB)  

and 

if (x2 = N) and (x2 = Z), then (u = N)  and min (1, 0.8) = 0.8 (N). 

The union of the fuzzy consequents and the resulting defuzzified output are shown below. 

The defuzzified value is u = - 9.6. 

 
 

Fig. 5.11: Truncated consequents and defuzzified output for second cycle. 
We now use u = - 9.6 to find the initial conditions for third cycle iteration. 

   X1(2) = X1(1) X2(1) = - 3 - 1 = - 4 AND 

    x2 (2) = x1(1)x2(1) - u(1) = - 3 - 1 - (-9.6) = + 5.6 

Thus, we get initial conditions x1(2) = -4 and x2(2) = 5.6, which are shown graphically in 

following figures: 
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Fig. 5.12: Initial condition for third cycle for x1 

 
 

Fig. 5.13: Initial condition for third cycle for x2 
From the FAM table 5.1, if (x1 = N) and (x2 = P), then (u = Z) and min (1, 1) = 1(Z). 

 The resulting consequents and defuzzified control variable, u(z) = 0.0, are shown below 

 
 

Fig. 5.14: Defuzzified output for third cycle of simulation 
  For the next iteration 

   x1 (3) = x1(2) + x2(2) = -4 + 5.6 = 1.6 and 

   x2 (3) = x1(2) + x2(2) - u(2) = -4 + 5.6 - (0.0) = 1.6 

  Initial conditions x1(3) = 1.6 and x2(3) = 1.6 are shown graphically in figures below: 

 
 

Fig. 5.15: Initial condition for next iteration for x1 
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Fig. 5.16: Initial condition for next iteration for x2 

 

From FAM table 5.1, we get 

if (x1 = Z) and (x2 = P), then (u = P)  and min (0.25, 0.3) = 0.3 (P), 

if (x1 = Z) and (x2 = Z), then (u = Z) and min (0.25, 0.7) = 0.25 (Z), 

if (x1 = P) and (x2 = P), then (u = PB) and min (0.75, 0.3) = 0.3 (PB), 

and 

if (x1 = P) and (x2 = Z), then (u = P)and min (0.75, 0.7) = 0.7 (P) 

These conditions are shown graphically in following figure and the defuzzified value is u = 

5.28. 

 
Fig. 5.17: Defuzzified output for next iteration. 

 

5.3  FUZZY AND HUMAN CONTROL AN INTRODUCTION 

A block diagram of a fuzzy control system discussed in Chapter 4 is shown in Figure 5.18. 

Sometimes a fuzzy controller is called a “fuzzy logic controller” (FLC) or even a “fuzzy 

linguistic controller” since it uses fuzzy logic in the quantification of linguistic descriptions. 

The fuzzy controller is composed of the following four elements: 

1.  A rule-base (a set of If-Then rules), which contains a fuzzy logic quantification of the 

expert’s linguistic description of how to achieve good control. 

2.  An inference mechanism (also called an “inference engine” or “fuzzy inference” 

module), which emulates the expert’s decision making in interpreting and applying 

knowledge about how best to control the plant. 

3.  A fuzzification interface, which converts controller inputs into information that the 

inference mechanism can easily use to activate and apply rules. 

4.  A defuzzification interface, which converts the conclusions of the inference mechanism 

into actual inputs for the process. 
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Fig. 5.18 Fuzzy control 

We introduce each of the components of the, “inverted pendulum on a cart” by fuzzy and 

human controller for a simple problem of balancing as shown in Figure 5.19 and 5.20 

respectively.  

 

 

Fig. 5.19 Inverted pendulum Fuzzy control  

 

 

Fig. 5.20 Inverted pendulum human control 

Here, y denotes the angle that the pendulum makes with the vertical (in radians), l is the half-

pendulum length (in meters), and u is the force input that moves the cart (in Newton’s). We 

will use r to denote the desired angular position of the pendulum. The goal is to balance the 

pendulum in the upright position (i.e., r = 0) when it initially starts with some nonzero angle 

off the vertical (i.e., y = 0). This is a very simple and academic nonlinear control problem, 

and many good techniques already exist for its solution. Indeed, for this standard 

configuration, a simple PID controller works well even in implementation.  
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Consider a human-in-the-loop whose responsibility is to control the pendulum, as shown in 

Figure 5.20. The fuzzy controller is to be designed to automate how a human expert who is 

successful at this task would control the system. First, the expert tells us (the designers of the 

fuzzy controller) what information she or he will use as inputs to the decision-making 

process. Suppose that for the inverted pendulum, the expert (this could be you!) says that she 

or he will use e (t) = r (t) – y (t) and 
d e(t)

dt
 as the variables on which to base decisions.  

Certainly, there are many other choices (e.g., the integral of the error e could also be used) but 

this choice makes good intuitive sense. Next, we identify the controlled variable. For the 

inverted pendulum, we are allowed to control only the force that moves the cart, so the choice 

here is simple. 

Once the fuzzy controller inputs and outputs are chosen, we will determine what the reference 

inputs are. For the inverted pendulum, the choice of the reference input r = 0 is clear. In some 

situations, r is some nonzero constant to balance the pendulum in the off-vertical position. To 

do this, the controller must maintain the cart at a constant acceleration so that the pendulum 

will not fall. 

 After all the inputs and outputs are defined for the fuzzy controller, we can specify the fuzzy 

control system. The fuzzy control system for the inverted pendulum, with our choice of 

inputs and outputs, is shown in Figure 5.21. Now, within this framework we seek to obtain a 

description of how to control the process.  

 

 

Fig. 5.21 Fuzzy controller for Inverted pendulum 
Suppose that the human expert shown in Figure 5.20 provides a description of how best to 

control the plant in some natural language (e.g., English). We seek to take this “linguistic” 

description and load it into the fuzzy controller, as indicated by the arrow in Figure 5.21. 

The linguistic description provided by the expert can generally be broken into several parts. 

For the inverted pendulum, “error” describes e (t), “change-in-error” describes 
de(t)

dt
 and 

“force” describes u (t). 

Note that we use quotes to emphasize that certain words or phrases are linguistic descriptions. 

Regardless, the choice of the linguistic variable has no impact on the way that the fuzzy 

controller operates; it is simply a notation that helps to facilitate the construction of the fuzzy 

controller via fuzzy logic. Just as e (t) takes on a value of, for example, 0.1 at t = 2  e (2) = 

0.1, “linguistic values.” That is, the values that linguistic variables take on over time change 

dynamically. Suppose for the pendulum example that “error,” “change-in-error,” and “force” 

take on the following values: “Negative Large (NL), Negative Small (NS), Zero (ZE), 

Positive Small (PS) and Positive Large (PL). For an even shorter description we could use 
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integers: -2, -1, 0, 1 and 2 to represent Negative Large (NL), Negative Small (NS), Zero (Z), 

Positive Small (PS) and Positive Large (PL) respectively. 

This is a particularly appealing choice for the linguistic values since the descriptions are short 

and nicely represent that the variable we are concerned with has a numeric quality. We shall 

find the use of this type of linguistic value quite convenient and hence will give it the special 

name, “linguistic-numeric value.” 

In the next subsection we shall study how to quantify knowledge about how to control the 

pendulum using linguistic descriptions is controlled. 

For the inverted pendulum each of the following statements quantifies a different 

configuration of the pendulum (refer back to Figure 5.19): 

•  The statement “error is PL” can represent the situation where the pendulum is at a 

significant angle to the left of the vertical. 

•  The statement “error is NS” can represent the situation where the pendulum is just 

slightly to the right of the vertical, but not too close to the vertical to justify 

quantifying it as “zero” and not too far away to justify quantifying it as “NL.” 

•  The statement “error is ZE” can represent the situation where the pendulum is very 

near the vertical position  

•  The statement “error is PL and change-in-error is PS” can represent the situation 

where the pendulum is to the left of the vertical and, since 
dy

dt
< 0 the pendulum is 

moving away from the upright position (note that in this case the pendulum is 

moving counterclockwise).  

•  The statement “error is NS and change-in-error is PS” can represent the situation 

where the pendulum is slightly to the right of the vertical and, since 
dy

dt
< 0, the 

pendulum is moving toward the upright position (note that in this case the pendulum 

is also moving counterclockwise). 

It is important for the reader to study each of the cases above to understand how the expert’s 

linguistics quantifies the dynamics of the pendulum (actually, each partially quantifies the 

pendulum’s state). 

Overall, we see that to quantify the dynamics of the process we need to have a good 

understanding of the physics of the underlying process we are trying to control. While for the 

pendulum problem, the task of coming to a good understanding of the dynamics is relatively 

easy; this is not the case for many physical processes. Quantifying the process dynamics with 

linguistics is not always easy, and certainly a better understanding of the process dynamics 

generally leads to a better linguistic quantification. Often, this will naturally lead to a better 

fuzzy controller provided that we can adequately measure the system dynamics so that the 

fuzzy controller can make the right decisions at the proper time. 
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5.4 RULES 
Next, we will use the above linguistic quantification to specify a set of rules (a rule-base) that 

captures the expert’s knowledge about how to control the plant.  

 

 
 

 

Fig. 5.22 Fuzzy rule base for Inverted pendulum 

In particular, for the inverted pendulum in the three positions shown in Figure 5.22, we have 

the following rules: 

Rule Statement Description 

1 If error is NL and 

change-in-error is NL 

Then force is PL. 

This rule quantifies the situation in Figure 2.5(a) where the 

pendulum has a large positive angle and is moving 

clockwise 

2 If error is ZE and 

change-in-error is PS 

Then force is NS. 

 

This rule quantifies the situation in Figure 2.5(b) where the 

pendulum has nearly a zero angle with the vertical (a 

linguistic quantification of zero does not imply that e(t) = 0 

exactly) and is moving counterclockwise 

3 If error is PL and 

change-in-error is NS 

Then force is NS. 

This rule quantifies the situation in Figure 2.5(c) where the 

pendulum is far to the left of the vertical and is moving 

clockwise 

 

Action is to be taken to start the pendulum moving in the proper direction in each rule:  

Rule 1: we should apply a strong positive force (to the right)  

Rule 2: we should apply a small negative force (to the left) (a positive force could result in 

the pendulum overshooting the desired position). 

Rule 3: we should apply a small negative force (to the left) to assist the movement, but not a 

big one since the pendulum is already moving in the proper direction 
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Each of the three rules listed above is a “linguistic rule” since it is formed solely from 

linguistic variables and values.  

The general form of the linguistic rules listed above is 

 

 

If premise Then consequent 

As we can see from the three rules listed above, the premises (which are sometimes called 

“antecedents”) are associated with the fuzzy controller inputs and are on the left-hand-side of 

the rules. The consequents (sometimes called “actions”) are associated with the fuzzy 

controller outputs and are on the right-hand-side of the rules.  

 

5.4.1  Rule-Bases 
Using the above approach, we could continue to write down rules for the pendulum problem 

for all possible cases. For above mentioned pendulum problem, with two inputs and five 

linguistic values there are at most 52 = 25 possible rules (all possible combinations of premise 

linguistic values for two inputs). A tabular representation of one possible set of rules for the 

inverted pendulum is shown in the following Table 5.2:  

     

Table 5.2: Possible set of rules 
‘Force ‘ u Change in error e 

-2 -1 0 1 2 

 

Error e 

-2 2 2 2 1 0 

-1 2 2 1 0 -1 

0 2 1 0 -1 -2 

1 1 0 -1 -2 -2 

2 0 -1 -2 -2 -2 

 

Notice that the body of the table lists the linguistic-numeric consequents of the rules, and the 

left column and top row of the table contain the linguistic-numeric premise terms. For 

example, 

 

 If error is PL (2) and change-in-error is NS (-1) Then force is NS (-1) which is rule 3 above.  

Table 5.2 represents abstract knowledge that the expert has about how to control the 

pendulum given the error and its derivative as inputs. The pattern of rule consequents that 

appears in the body of the table:  
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The diagonal of zeros and viewing the body of the table as a matrix we see that it has a 

certain symmetry to it. This symmetry that emerges when the rules are tabulated is no 

accident and is actually a representation of abstract knowledge about how to control the 

pendulum; it arises due to symmetry in the system’s dynamics. We will actually see later that 

similar patterns will be found when constructing rule-bases for more challenging 

applications, and we will show how to exploit this symmetry in implementing fuzzy 

controllers. The each entry output force = -2 (NL) in above table 5.2 is obtained in the 

following manner. All the remaining entry will be obtain in similar manner. 

 

 

 

5.5 FUZZY QUANTIFICATION OF KNOWLEDGE 

Up to this point we have only quantified, in an abstract way, the knowledge that the human 

expert has about how to control the plant. Next, we will show how to use fuzzy logic to fully 

quantify the meaning of linguistic descriptions so that we may automate, in the fuzzy 

controller, the control rules specified by the expert. 
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2
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5.5.1 Membership Functions 

First, we quantify the meaning of the linguistic values using “membership functions.” For 

example, this is a plot of a function μ versus e (t) that takes on special meaning as shown in 

figure 5.23. The function μ quantifies the certainty 2 that e (t) can be classified linguistically 

as “PS.” To understand the way that a membership function works, it is best to perform a case 

analysis where we show how to interpret it for various values of e (t): 

 

Fig. 5.23 Membership function for Inverted pendulum 

5.5.2 Matching: Determination of Rules to be Used 

It is actually the case that for most fuzzy controllers the fuzzification will explain the exact 

operations of the fuzzification process and also explain why it can be simplified and under 

certain conditions virtually ignored. The fuzzification process as the act of obtaining a value 

of an input variable (e.g., e (t)) and finding the numeric values of the membership function(s) 

that are defined for that variable. For example, if e (t) = π/4 and d/ dt e (t) = π/16, the 

fuzzification process amounts to finding the values of the input membership functions for 

these.  
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Next, we seek to explain how the inference mechanism in Figure 5.23 operates. The inference 

process generally involves two steps: 

1.  The premises of all the rules are compared to the controller inputs to determine which 

rules apply to the current situation. This “matching” process involves determining the 

certainty that each rule applies and we will more strongly take into account the 

recommendations of rules about which we are more certain to apply to the current 

situation. 

2.  The conclusions (what control actions to take) are determined using the rules that 

have been determined to apply at the current time. The conclusions are characterized 

with a fuzzy set (or sets) that represent the certainty that the input to the plant should 

take on various values. 

5.5.3 Premise Quantification via Fuzzy Logic 

To perform inference we must first quantify each of the rules with fuzzy logic. To do this we 

first quantify the meaning of the premises of the rules that are composed of several terms, 

each of which involves a fuzzy controller input. Consider Figure 5.24 in where we list two 

terms from the premise of the rule 

If error is ZE and change-in-error is PS, then force is NS. Thus, we had quantified the 

meaning of the linguistic terms “error is ZE” and “change-in-error is PS” via the membership 

functions shown in Figure 5.24. Now we seek to quantify the linguistic premise “error is ZE 

and change-in-error is PS.” Hence, the main item to focus on is how to quantify the logical 

“and” operation that combines the meaning of two linguistic terms. While we could use 

standard Boolean logic to combine these linguistic terms, since we have quantified them 

more precisely with fuzzy sets (i.e., the membership functions), we can use these. 

 

 

Fig. 5.24 

5.5.4 Determining Which Rules Are On 

Determining the applicability of each rule is called “matching.” We say that a rule is “on at 

time t” if its premise membership function μpremise (e (t), d/dt e(t)) > 0. 
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Hence, the inference mechanism seeks to determine which rules are on to find out which 

rules are relevant to the current situation. In the next step, the inference mechanism will seek 

to combine the recommendations of all the rules to come up with a single conclusion. 

Consider, for the inverted pendulum example, how we compute the rules that are on. Suppose 

that 

  e (t) = 0 

and 

  d/dt e (t) = π/8 − π/32 (= 0.294) 

Figure 5.25 shows the membership functions for the inputs and the values above for e(t) and 

d/ dt e(t) are indicated with thick black vertical lines 

 

Fig. 5.25 

5.5.5 Inference Step: Determining Conclusions 

Next, we consider how to determine which conclusions should be reached when the rules that 

are on are applied to deciding what the force input to the cart carrying the inverted pendulum 

should be. To do this, we will first consider the recommendations of each rule independently. 

Then, we will combine all the recommendations from all the rules to determine the force 

input to the cart. 

We see that μ(1)(u) is in general a time-varying function that quantifies how certain rule (1) 

,i.e., the force input u should take on certain values. It is most certain that the force input 

should lie in a region around zero (see Figure 5.26 (b)), and it indicates that it is certain that 

the force input should not be too large in either the positive or negative direction—this makes 

sense if we consider the linguistic meaning of the rule. The membership function μ(1)(u) 

quantifies the conclusion reached by only rule (1) and only for the current e(t) and d/dt e(t). It 

is important that the reader be able to picture how the shape of the implied fuzzy set changes 

as the rule’s premise certainty changes over time. 
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Fig. 5.26  

5.5.6 Converting Decisions into Actions 

Next, we consider the defuzzification operation, which is the final component of the fuzzy 

controller shown in Figure 5.18. Defuzzification operates on the implied fuzzy sets produced 

by the inference mechanism and combines their effects to provide the “most certain” 

controller output (plant input). Some think of defuzzification as “decoding” the fuzzy set 

information produced by the inference process (i.e., the implied fuzzy sets) into numeric 

fuzzy controller outputs. 

 To understand defuzzification, it is best to first draw all the implied fuzzy sets on one axis as 

shown in Figure 5.27. We want to find the one output, which we denote by “ucrisp,” that best 

represents the conclusions of the fuzzy controller that are represented with the implied fuzzy 

sets. There are actually many approaches to defuzzification.  

 

Fig. 5.27 

5.5.7 Graphical Depiction of Fuzzy Decision Making 

For convenience, we summarize the procedure that the fuzzy controller uses to compute its 

outputs given its inputs in Figure 5.28. Here, we use the minimum operator to represent the 

“and” in the premise and the implication and COG defuzzification. The reader is advised to 

study each step in this diagram to gain a fuller understanding of the operation of the fuzzy 

controller. To do this, develop a similar diagram for the case where the product operator is 

used to represent the “and” in the premise and the implication, and choose values of e (t) and 

d/dt e (t) that will result in four rules being on. Then, repeat the process when center-average 

defuzzification is used with either minimum or product used for the premise. Also, learn how 

to picture in your mind how the parameters of this graphical representation of the fuzzy 

controller operations change as the fuzzy controller inputs change. 
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Fig. 5.28 

This completes the description of the operation of a simple fuzzy controller. You will find that 

while we will treat the fully general fuzzy controller in the next section, there will be little 

that is conceptually different from this simple example. We simply show how to handle the 

case where there are more inputs and outputs and show a fuller range of choices that you can 

make for the various components of the fuzzy controller.  

As evidenced by the different values obtained by using the minimum, product, and 

defuzzification operations, there are many ways to choose the parameters of the fuzzy 

controller that make sense. This presents a problem since it is almost always difficult to know 

how to first design a fuzzy controller. Basically, the choice of all the components for the 

fuzzy controller is somewhat ad hoc. What are the best membership functions? How many 

linguistic values and rules should there be? Should the minimum or product be used to 

represent the “and” in the premise—and which should be used to represent the implication? 

What defuzzification method should be chosen? These are all questions that must be 

addressed if we want to design a fuzzy controller. 

5.6. FUSION OF FUZZY AND PID  

A typical example is the conventional proportional-integral-derivative (PID) controller 

design, where the first- or second-order linear plant transfer function has to be first given. We 

will review and discuss these conventional PID controllers in Chapter 6. Here, to design a 

fuzzy logic controller, not necessarily of PID-type, for set point tracking, we suppose that the 

mathematical formulation of the plant is completely unknown. 
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Most of fuzzy control research focuses on set point regulation problem, hence, fuzzy control 

is often viewed as a form of nonlinear PID control and comparisons of fuzzy control vs. fuzzy 

control are frequent in literature.  

Conventional PID control is, however, well established and can satisfy the performance 

requirements of most set point regulation problems at minimal cost.  

Often, performance improvement offered by fuzzy control cannot compensate the increased 

complexity in computation and tuning. Consequently, fuzzy PID control is rare in commercial 

applications; commercial applications of fuzzy control are largely focused on high-level, task-

oriented control that fall outside the domain of conventional control methods Chiu [8]. 

i)  Supervision of conventional controllers  

In this configuration, the high level strategy is used for adjustments of the parameters of the 

conventional control loops. A common problem with linear PID controllers used for control 

of highly nonlinear processes is that the set of controller parameters produces satisfactory 

performance only when the process is within a small operational window. Outside this 

window, different PID controller parameters are necessary, and these adjustments may be 

done automatically by a higher level controller (Fig. 5.29). 

The control system consists of a conventional discrete PID controller of which the 

proportional, integral and derivative gains (Kp, Ki, Kd) are changed by a fuzzy supervisor 

each sampling time (thus fuzzy controller is regarded a gain scheduler). The inputs of the 

supervisor might be error and the change of error Nauta Lemke and Krijgsman [9] Zhao et. 

al.[10] the supervisor is used to tune the scaling factors of the underlying fuzzy PD controller 

depending on overshoot, reaching time and amplitude of oscillation. 

 

Fig. 5.29 Supervisory control system for advanced PID control 

Alternative gain scheduling scheme may be implemented through the use of a homogeneous 

1st order TS system with the following rule format Jang and Gulley [11]: 

  IF e is A1r AND e is A2r THEN yr = p1r e + p2re 

Each such rule represents a local PD controller (with suitable variable selection other control 

laws can be implemented) that are combined together by means of fuzzy logic. Thus it is 

possible to specify separate control law for each region of variable space that is determined 

by the selection of input MFs. Low transparency measure of the controller would be useful. 
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ii)  Correction of conventional controllers 

Normally, conventional control systems, which are based on PID controllers, are capable of 

controlling the process when the operation is smooth and close to normal conditions. 

However, if sudden changes occur or if the process enters abnormal situations, then a 

configuration that is capable of bringing the process back to normal operation as fast as 

possible may be useful. This idea can be implemented using the parallel connection of fuzzy 

and PID controllers (Fig. 5.30). For normal operation, the addition to the output of PID 

controller is zero, whereas in abnormal situations fuzzy controller develops nonzero output 

that restores the normal state. 

 

Fig. 5.30 Parallel connection of fuzzy and PID control 

iii)  Coordination of control loop set-points 

Fuzzy logic can be applied not only for calculation of control variable (i.e. direct control) but 

for modification of control strategy in general, by using a fuzzy supervisor that makes 

adjustments of the controller set point (Fig 5.31). 

 

Fig. 5.31 Supervisory control system for modifying the control strategy 

History of such fuzzy hierarchical control configuration goes back to the first industrial 

application of fuzzy control where human supervisor of the cement kiln was replaced. Such 

utilization of fuzzy logic can be very effective because high-level control strategy is often 

formulated using natural language and the translation into the language of fuzzy systems may 

be rather straightforward. Setpoint control, on the other hand, is often more effective if 

implemented with conventional tools for reasons pointed out earlier. The applications 

described in chapter 6 use this type of hierarchical control architecture exclusively. 
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5.7 INVERSION OF FUZZY SYSTEMS 

The design process for fuzzy controllers that makes use of heuristic information originating 

from human experts has many successful applications. Supervised learning of fuzzy 

controllers has also found use. Both approaches have, however, several shortcomings, as 

already described in the introduction. It may be difficult to perform the initial synthesis of the 

controller or to maintain required performance as some time passes (because of significant 

and unpredictable drift of plant parameters or the presence of noise or some other type of 

disturbance). 

The solution is to use self-learning fuzzy controllers that can adapt to different plant 

conditions, i.e. adaptive fuzzy control. 

On the other hand, it can be postulated that the ultimate goal of the controller design is to 

derive the inverse model of the process. In theory, the use of an inverse model possesses the 

advantages of open-loop control, i.e. inherent stability and perfect control with zero error. The 

major concern is that if the inverse configuration actually exists or if it is physically 

realizable. Global inversion of the system, where all states become outputs of the inverted 

model and the output of the original system becomes the state variable (Fig. 5.32, center) has 

normally non-unique solution and must be given by a family of solutions. In case of partial 

inversion, only one of the states of the original system becomes an output of the inverted 

model and other states together with the original output are the inputs of the inverted model 

(Fig. 5.32, right). 

Partially inverted model can be also more easily embedded into the control system than the 

global inversion. 

 

Fig. 5.32 Global (center) and Partial (right) inversion of the original fuzzy model(left) 

The partial inversion has often a unique solution but not necessarily (the original model must 

be strictly monotone in respect to the inverted state to be invertible). 

5.7.1 Numerical inversion of fuzzy systems 

The most intuitive way to obtain the inversion is to reverse the input and output data and train 

an inverse model of a system or process as shown in (Fig. 5.33, left). For the sake of 

simplicity only two states are brought in with x1 = u (k), x2 = y (k), y = y (k + 1). This type of 

training has been long practiced with neural networks. Two major drawbacks are 

characteristic to this approach - first, if several values of u are possible for the same output of 

the process (many-to-one mapping, Fig.5.33. right), and a least-squares approach is used, the 

identification algorithm maps y to the mean of all u, which can lead to a quite meaningless 

inverse model. 
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Secondly, it is difficult to pick the appropriate signal u for inverse learning, as it is supposed 

to work over a wide range of amplitudes of y and for a large bandwidth. 

The second problem can be solved with online learning scheme depicted in Fig. 5.34., 

successful application of which is reported in Jang (1995). Here, the controller is the copy of 

inverse model and instead process output u we need to pick r that is the set point for the 

controlled process that we usually know. 

 

 

Fig. 5.33 Training of the inverse process model (left) non-invertible function (right) 

 

 

 

Fig. 5.34 Online inverse training 

Another numerical inversion technique that is generally associated with neural networks is 

back propagation through time (temporal back propagation) that was invented by several 

researchers simultaneously in 1980s. One of the most famous applications of this technique is 

the truck backer-upper simulation. 
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Fig. 5.35 Back propagation through time 

The goal of training is to minimize the cost function (5.2) by changing the parameter set 

the controller 

  
21

K[ (k)] (r(k) y(k))
2

   .      (5.2) 

  We apply gradient descent method using the chain rule: 

  
J[ (k)] J[ (k)] y(k) u(k)

(k) y(k) u(k) (k)

     


   
     (5.3) 

Note that the error is back propagated through the model (though the parameters of the model 

are not updated by gradient descent). The model of the system can be a neural emulator, 

neuro-fuzzy system or even a set of mathematical equations as demonstrated in Jang [12], 

where the method implemented with ANFIS is used to balance the inverted pendulum. 

5.7.2 Non-numerical inversion of fuzzy systems 

The numerical identification of the inverse model may become computationally expensive, 

requiring many training epochs and many training samples. The issue of invertibility is also 

of importance and not very well handled with automatic generation of the inverted model. 

The techniques for training the inverted fuzzy model have become known basically through 

neural network research. Fuzzy systems, however, are principally different from neural 

networks because: (a) they can be interpreted in linguistic terms; (b) if transparent, their 

parameters can be interpreted in terms of their influence to the input-output relationship. First 

feature allows linguistic inversion Second feature allows exact analytical inversion. 

Linguistic inversion (causality inversion) is obtained through the exchange of antecedent and 

consequent variables in fuzzy rules if a symmetrical operator (t norm) represents the if-then 

relation. 

Consider a three-input fuzzy system from Baranyi et. al.(1998) as given given in the 

following Table 5.3: 
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Table 5.3 Rule base of the original model 

U2, U3 U1 is small U1 is medium U1 is large 

U2 is low AND U3 is low 

U2 is low AND U3 is high 

U2 is high AND U3 is low 

U2 is high AND U3 is high 

zero 

low 

low 

medium 

low  

medium 

medium 

medium 

medium 

high 

high 

high 

 

The inversion procedure may have three possible results marked in table 5.4: 

i)  The input configuration is unique. This is the ideal case. 

ii)  The input configuration is non-unique that means that the rule base is non-invertible. 

The approximate solution is to choose the input configuration with the lowest control 

energy (in linguistic sense). 

iii)  There are no inputs that allow one-step transition to the desired output. 

The reason why such situation occurs is two-fold. First, the number of MFs given for U 1 and 

V is not equal, i.e. there are 16 rules in the inverted model whereas the number of rules in the 

original model is 12. 

The second reason is that the original system may not simply allow one-step transition to the 

desired output from the given state. The approximate solution is to choose the “nearest” 

output (again in linguistic sense). 

Table 5.4 Inverted rule base 

U2, U3 V is zero V is low V is medium V is high 

U2 is low AND U3 is low 

U2 is low AND U3 is high 

U2 is high AND U3 is low 

U2 is high AND U3 is high 

small (i) 

small (iii) 

small (iii) 

small (iii) 

medium (i) 

small (i) 

small (i) 

small (iii) 

large (i) 

medium (i) 

medium (i) 

small (ii) 

large (iii) 

large (i) 

large (i) 

large (i) 

 

 One must pay careful attention to MFs of the inverted model. Input and output MFs may be 

of different type (e.g. triangular input and singleton output MFs) and therefore conversion of 

MFs is in order. The conversion algorithms are rather straightforward. This is similarly valid 

even if linguistic inversion is performed on standard fuzzy systems with triangular MFs 

(unless they are uniformly distributed on all variables) because of the contradictive nature of 

input and output transparency constraints. 

If the inversion goal is fixed (let us for instance assume that the desired state of y is under 

label of medium), it is possible to perform local inversion of the model. The difference 

between partial linguistic inversion and local linguistic inversion is that while inverted input 
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(U1) becomes output, inverted output (V) is never used in the final inverted model. From the 

rules that have linguistically identical premises in terms of U2 and U3 (i.e. rows in table 5.3) 

only one that Transparent fuzzy systems: modeling and control 120 results in the desired V is 

selected. Thus, indirect inversion of the model inTable 5.3 would appear as 

  IF U2 is low AND U3 is low THEN U1 is large 

  IF U2 is low AND U3 is high THEN U1 is medium 

  IF U2 is high AND U3 is low THEN U1 is medium 

  IF U2 is high AND U3 is high THEN U1 is small(ii) 

There are the following advantages of this approach: 

i)  The number of rules of the inverted model is Sy times smaller than in the case of 

linguistic inversion, where Sy is the number of linguistic labels of y. 

ii)  Type of consequent MFs does not matter, as they are never inverted. For instance, 

models with incremental rule bases would be extremely difficult to invert 

linguistically, because of the large number of consequent MFs. With indirect 

inversion this is not a problem, rather the opposite. 

iii)  Less problems with (ii) and (iii) type rules. 

The basic disadvantage of local inversion is that the inverted model is valid only for the fixed 

inversion goal and in case of multiple goals model must be re-inverted each time. 

5.7.3 Example of Control 

Hereby we present a comparison of selected control methods described above. The controlled 

object depicted in Fig. 5.36 is the water tank with a pipe flowing in and pipe flowing out 

(MATLAB demo). The outflow rate Fo depends on the diameter of the outflow pipe (which is 

constant) and the pressure in the tank (the latter varies with the water level h  [0, 2]). Thus 

the system has some very nonlinear characteristics. Our task is to maintain some 

predetermined water level (we choose the set-point that changes between 0.5 and 1.5) in the 

tank by changing the valve that lets the water to flow in with Inflow rate F  [-1, 1]. The 

generic control system that suits for most of the designed controllers is depicted in Fig. 5.37. 

 

 

Fig. 5.36 Control object 
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Fig. 5.37 Control system 

Conventional control 

There is not much to comment on conventional setpoint control. The nearoptimal tuning 

parameters are not difficult to find. In case of P control Kp = 100; in case of PD control Kp = 

7 and Kd = 10; application of PI or PID control does not make much sense as there is no 

performance improvement with these control laws. The problem with P control is that it does 

not remove oscillations (Fig. 5.38). The problem with PD control is that while it results in 

superb performance in noise-free environment, it is very sensitive to output-additive white 

noise even if the level of noise is not very high (presently 1%) as can be seen from Fig. 5.39. 

PD control would supposedly benefit from internal model control scheme (Dutton et. al. 

1996) that can cancel the influence of output additive noise. 

 

Fig. 5.38 P control Noise-free (left), with noisy data (right) 

 

 

 

Fig. 5.39 PD control Noise-free (left), with noisy data (right) 
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MATLAB fuzzy controller 

The controller that is developed for MATLAB demo is quite interesting. It takes e (k) and 

dh(k)/dt as its inputs, whereas the rule base of the controller is nontraditional and consists of 

only the following 5 rules: 

  IF e (k) is Z    THEN u (k) is Z 

  IF e (k) is P    THEN u (k) is PB 

  IF e (k) is N    THEN u (k) is NB 

  IF e (k) is Z AND dh (k) is P  THEN u (k) is NS 

  IF e (k) is Z AND dh (k) is P  THEN u (k) is PS 

First three rules are responsible for general control strategy (relay-type logic), whereas last 

two ensure smooth action around the set point. It is interesting to note that the controller is 

non-transparent even though the MFs do not violate any of transparency conditions. The first 

rule is always fired whenever e (k) falls into Z, thus controller output cannot achieve NS and 

PS values even if the respective rules are fully activated but falls somewhere in between Z 

and those MFs. Nevertheless, the control performance does not necessarily suffer from non-

transparency as has been shown many times. The controller is also surprisingly insensitive to 

noise (Fig. 5.40). 

 

Fig. 5.40 Fuzzy control (MATLAB demo) Noise-free (left), with noisy data (right) 

Fuzzy PD controller  

Fuzzy PD controller is constructed according the guidelines of section 5.2 with 5 fuzzy sets 

on each input variable, thus consisting of 25 fuzzy rules. Input MFs have uneven partition as 

in Fig. 5.41, left and in the final tuning phase, scaling factors ke = 0.8, kde = 5 and ku = 1.5, 

are specified. This way, rather good control performance can be obtained (Fig. 5.41), whereas 

fuzzy PD control is less sensitive to noise, as can be seen from Fig. 5.41, right. 

 

Fig. 5.41 Fuzzy PD control. Noise-free (left), with noisy data (right) 
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Control using analytical inversion 

In this approach fuzzy (transparent) model of the controlled process must be identified first. 

We collect 1000 samples of system response (Fig. 5.42, right) generated with input noise 

(Fig. 5.42, left). 

 

Fig. 5.42 Collected data Input u (left), output h (right) Sampling interval is 0.5 s. 

Based on this collection, modeling data set is constructed to the format 

  h (k + 1) = f(h(k), h(k - 1), u(k))      (5.4) 

The problem with this method is that it is not always simple to choose the appropriate u 

algorithmically if the rule base of the model is non-invertible. We choose 2 MFs for each 

input variable. This way, non-invertibility is avoided and the modeling error also seems low 

enough (RMSE = 0.0261). 

More serious problem with (5.4) is, however, that the inverted controller u (k) = f(h(k), h(k - 

1), r(k + 1)) pays no attention to system inertia. It always chooses positive u whenever error 

is positive (and vice versa). It never slows down near the set point and thus performs as 

(poorly tuned) P controller and is shown in the following Fig. 5.43: 

 

Fig. 5.43 Inverted model based control. Noise-free (left), with noisy data (right) 

To give the controller some predictive power (derivative gain, so to speak) we use the model 

structure. 

  h (k + 2) = f(h(k + 1), h(k), u(k)),      (5.5) 

  in inverted mode 

 u (k) = f (h (k), h(k + 1), r(k + 2)),      (5.6) 

  Where unknown h (k + 1) is predicted recursively using the fuzzy model (5.27). 

 h (k + 1) = f(h(k), h(k - 1), u(k - 1)).      (5.7) 
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The resulting controller has much better performance (Fig. 5.44). Presumably, with a more 

complex (and accurate) model, even better results could be obtained. 

 

Fig. 5.44 Inverted model based control. Ahead inverted model Noise-free (left), with 

output-additive noise (right). 

Inverted control is not very sensitive to noise and, in fact, in this case, internal model control 

(Fig. 5.45) is directly applicable as fuzzy model of the process has already been identified. 

Control using linguistic inversion 

With model configuration h(k + 1) = f(h(k), u(k)), output is highly correlated to h(k) and 

while this way low average approximation error can be obtained, it is very likely that 

important information about u is not present and cannot be extracted. One possibility to cope 

with this problem is to use fuzzy variational model. More serious problem with linguistic 

inversion (as already pointed out in section 5.5.1) is a large amount of type (ii) and (iii) rules, 

moreover, because of model-plant mismatch there are also contradictory rules that in 

summary means the majority of the rules must be derived from our knowledge about the 

controlled process and that too much depends on critical judgment – which, on the other 

hand, is a classical example of knowledge-based control (already implemented with fuzzy PD 

controller). This is also the reason why there are very few successful reports of linguistic 

inversion based control and allows us to conclude that control based on linguistic inversion is 

not very well suited for set point control. 

 

Fig. 5.45 Internal model control scheme 

The compared controllers, respective control laws and performance measures IAE (integrated 

average error) are given in Table 5.5. Note: IAE is not the best possible performance criterion 

as it favors fast rise times and oscillating (e.g. P control) to slower but much smoother 

response (e.g. PD control) but it produces the numbers that are somewhat representative. 
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 Table 5.5 Control results.  

Controller Control law IAE IAE (noisy data) 

P 

PD 

MATLAB Fuzzy 

Fuzzy PD 

Inverted model 1 

Inverted model 2 

u = f(e) 

u = f(e, de/dt) 

u = f(e, dh/dt) 

u = f(e(k), e(k)) 

u(k) = f(h(k – 1), h(k), r(k + 1)) 

u(k) = f(h(k), h(k + 1), r(k + 2) 

0.0818 

0.0940 

0.0994 

0.0828 

0.1429 

0.1163 

0.0787 

0.1250 

0.0859 

0.0899 

0.1346 

0.1129 

 

Fuzzy approaches seem to be less sensitive to noise but that does not necessarily mean that 

fuzzy control is more robust per se. This sensitivity rather depends on how the inputs of the 

controller are processed. I.e. controllers that have continuous derivative component (as PD) 

experience most serious performance drop, whereas controllers where the derivative is 

obtained by discrete approximation (Fuzzy PD) or there is no derivative component at all (P, 

Inverted model based control) are much more robust. The level of noise depends on 

application and very often conventional control is more reliable and almost always less costly 

than fuzzy control. 

5.8 SUMMARY AND CONCLUSIONS 

During the last few decades, fuzzy control has been successfully applied to many control 

problems its applications involve a wide range of products ranging from simple consumer 

products to control systems of complex technological systems. 

The main strengths of fuzzy logic control have arguably been: 

1.  It can be used in systems which cannot be easily modeled mathematically. In 

particular, systems with non-linear responses that are difficult to analyze may 

respond to a fuzzy control approach. 

2.  As a rule-based approach to control, fuzzy control can be used to efficiently represent 

an expert's knowledge about a problem. 

3.  Continuous variables may be represented by linguistic constructs that are easier to 

understand, making the controller easier to implement and modify. 

4.  Fuzzy controllers may be less susceptible to system noise and parameter changes, 

thus making them more robust. 

5.  Complex processes can often be controlled by relatively few logic rules, allowing a 

more understandable controller design and faster computation for real-time 

applications. 
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A fuzzy controller is constructed to make decisions about what the control input to the plant 

should be given processed versions of the plant outputs and reference input. It is a form of 

artificial (i.e., non-biological) decision-making system. Decision making systems find wide 

applications in many areas in addition to those have been traditionally studied in control 

systems. For instance, the machine scheduling case study of the previous section shows a 

nontraditional application of feedback control where a fuzzy system can play a useful role as 

a decision-making system. 

There are many other areas in which fuzzy decision-making systems can be used including 

the following: 

•  Manufacturing: Scheduling and planning materials flow, resource allocation, routing, 

and machine and equipment design. 

•  Traffic systems: Routing and signal switching. 

•  Robotics: Path planning, task scheduling, navigation, and mission planning. 

•  Computers: Memory allocation, task scheduling, and hardware design. 

•  Process industries: Monitoring, performance assessment, and failure diagnosis. 

•  Science and medicine: Medical diagnostic systems, health monitoring, and automated 

interpretation of experimental data. 

•  Business: Finance, credit evaluation, and stock market analysis. 

This list is by no means exhaustive. Virtually any computer decision-making system has the 

potential to benefit from the application of fuzzy logic to provide for “soft” decisions when 

there is the need for decision making under uncertainty. At last we focus on the design of 

fuzzy decision-making systems for problems other than feedback control. We begin by 

showing how to construct fuzzy systems that provide warnings for the spread of an infectious 

disease. Then we show how to construct a fuzzy decision making system that will act as a 

failure warning system in an aircraft. 

Its main weaknesses include 

1.  Lack of systematic approach in knowledge acquisition and tuning of the controller 

2.  Lack of reliable means for the analysis of optimality and stability of the controller. 

3.  Combinatorial explosion of rules in case of multitude of inputs.  

Most existing fuzzy logic controllers since Mamdani's application Mamdani and Assilian [7] 

are set point controllers that respond to proportional and derivative (PD) or proportional and 

integral (PI) terms (section 5.6). 

  



5.32 | Fuzzy Logic Models and Fuzzy Control: An Introduction 

EXERCISE 5 (PROBLEM DESIGNING) 

Design1: Study of a biological system where a fuzzy decision-making system is used as a 

warning system to produce alarm information.  

To model a form of biological growth, using one of Volterra’s population equations a simple 

model representing the spread of a disease in a given population is given by 

  
dx1(t)

dt
 = −ax1(t) + bx1(t)x2(t) (5.8) 

  
dx2(t)

dt
 = −bx1(t)x2(t) (5.9) 

where x1(t) is the density of the infected individuals, x2(t) is the density of the noninfected 

individuals, a > 0, and b > 0. These equations are only valid for x1(t) ≥ 0 and x2(t) ≥ 0. The 

initial conditions x1(0) ≥ 0 and x2(0) ≥ 0 must also be specified. Equation (5.9) intuitively 

means that the noninfected individuals become infected at a rate proportional to x1(t)x2(t). 

This term is a measure of the interaction between the two groups. The term −ax1(t) in 

Equation (5.8) represents the rate at which individuals die from disease or survive and 

become forever immune. The term bx1(t)x2(t) in Equation (5.1) represents the rate at which 

previously noninfected individuals become infected. 

Problem 5.1: Design a fuzzy system to produce alarms if certain conditions occur in the 

diseased population—that is, a simple warning system. The fuzzy system uses x1(t) and x2(t) 

as inputs, and its output is an indication of what type of warning condition occurred along 

with the certainty that this warning condition has occurred. 

Design 2 Failure Warning System for an Aircraft 

Consumer and governmental demands have provided the impetus for an extraordinary 

increase in the complexity of the systems that we use. For instance, in automotive and aircraft 

systems, governmental demands have called for  

(1) Highly accurate air-to-fuel-ratio control in automobiles to meet pollution standards,  

(2) Highly technological aircraft capable of achieving frequent flights with very little 

maintenance downtime.  

Similarly, consumer demands have driven  

(1) The development of antiskid braking systems for increased stop ability, steer ability, and 

stability in driving and  

(2) The need for increased frequency of commercial flights such that travel must occur under 

all weather conditions in a timely manner. 

While engineers have, in general, been able to meet these demands by enhancing the 

functionality of high-technology systems, this has been done at the risk of significant failures 

(it is generally agreed that “the more complex a system is the more likely it is to fail in some 

way”).  
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For automotive and aircraft systems, some of the failures that are of growing concern include 

the following: 

•  Failures and/or degradation of performance of the emissions control systems (failures 

or degradation leads to a significant increase in the level of pollutants). 

•  “Cannot duplicate” failures where a failure is detected while the aircraft is in flight 

that cannot be duplicated during maintenance, which lengthens the downtime. 

•  Actuator, sensor, and other failures in aircraft systems that cause commercial aircraft 

crashes in adverse weather conditions. 

•  A system failure in an integrated vehicle handling, braking and traction control 

system, which can lead to a loss of control by the driver. 

Automotive and aircraft systems provide excellent examples of how failures in high-

technology systems can result in catastrophic failures. In addition, the effect of undetected 

system faults can lead to costly downtime or catastrophic failures in manufacturing systems, 

nuclear power plants, and process control problems. As history indicates, the probability of 

some of the system failures listed above is sometimes high. There is then the need for 

detecting, identifying, and providing appropriate warnings about failures that occur on 

automobiles, aircraft, and other systems so that corrective actions can be taken before there is 

a loss of life or other undesirable consequences. 

Problem 5.2: Suppose the aircraft’s input vector u has two components, the elevator δe (deg), 

and thrust δt (deg).The output vector y has three components, pitch rate q (deg/sec), pitch 

angle θ (deg), and load factor ηz (g). 

Consider four aircraft failure modes (To define the modes, take the same approach as in the 

previous section and define decision regions using conventional logic and inequalities. Later, 

soften the decision boundaries and define the fuzzy decision-making system.) 

To define the decision boundaries, each input and output is discretized into five regions with 

four boundaries associated with the real number line. For example, the elevator δe is 

discretized as follows: 

•  Region R1: δe ≤ δR1 

•  Region Y1: δR1 < δe ≤ δY1 

•  Region G: δY1 < δe ≤ δY2 

•  Region Y2: δY2 < δe ≤ δR2 

•  Region R2: δe ≥ δR2 

The G (for Green) region denotes an area of safe operation, the Y1 and Y2 (for Yellow) 

regions denote areas of warning, and the R1 and R2 (for Red) regions denote areas of unsafe 

operation. 

Using the defined regions for the aircraft inputs and outputs, explain four failure modes for 

the aircraft identified as follows: 
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1. Load factor is in region R2. 

2. Load factor is in region Y2. 

3. Load factor is in region Y2 and elevator is in region Y1 

4. (Pitch rate is in Y1 and Pitch angle is in Y1) or (Pitch rate is in Y2 and Pitch angle is in Y2). 
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Chapter-6 

 Adaptive Fuzzy Control  

6.1 INTRODUCTION 

Adaptive control is a method of designing a controller with some adjustable parameters and 

an embedded mechanism for adjusting these parameters. Adaptive controllers have been used 

mainly to improve the controller’s performance online. For each control cycle, the adaptive 

algorithm is normally implemented in three basic steps:  

(i) observable data are collected to calculate the controller’s performance,  

(ii) the controller’s performance is used as a guidance to calculate the adjustment to a set of 

controller parameters and 

(iii) the controller’s parameters are then adjusted to improve the performance of the 

controller in the next cycle.  

Normally, an adaptive controller is designed based on one of the available techniques. Each 

technique is originally designed for a specific class of dynamic systems. The controller is 

then adjusted as data are collected during run time to extend its effectiveness to control a 

larger class of dynamic systems. Actually, 90% of the controllers in operation today are PID 

controllers (or at least some form of PID controller like a P or PI controller). This approach is 

often viewed as simple, reliable, and easy to understand.  

Conventional (classical) proportional-integral-derivative (PID) controllers are perhaps the 

most well-known and most widely used controllers in modern industries: statistics has shown 

that more than 90% controllers used in industries are PID or PID-type of controllers. 

Generally, PID controllers have the merits of being simple, reliable and effective. These 

consume lower cost but are very easy to operate. Besides, for lower-order linear systems 

(plants, processes), PID controllers have remarkable set-point tracking performance and 

guaranteed stability. Therefore, PID controllers are very popular in real-world applications. 

In this chapter, we first give a brief review on the conventional PID controllers and introduce 

the design and stability analysis of a new type of fuzzy PID controller. We also compare these 

two classes of PID controllers and discuss their advantages as well as limitations. It is seen 

that the fuzzy PID controllers are generally superior to the conventional ones, particularly for 

higher-order, time-delayed, nonlinear systems, and for those systems that have only vague 

mathematical models which the conventional PID controllers are difficult, if not impossible, 

to handle. For lower-order linear systems, it will be seen that both conventional and fuzzy 
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PID controllers work equally well, so in these simple cases conventional PID controllers are 

recommended due to their simple structures.  

The price to pay for the success of the fuzzy PID controllers is that their design methods are 

slightly more advanced and their resulting formulas are somewhat more complicated (e.g., 

containing variable control gains in contrast to the conventional PID controllers where the 

control gains are constant). It may be seen that although the fuzzy PID controllers are 

designed by fuzzy mathematics, their final form as controllers are conventional controllers. 

As such, those can be used to directly replace the conventional ones in applications. 

Moreover, their variable control gains are self-tuned formulas that have adaptive capability to 

handle time-delay effects, nonlinearities, and uncertainties of the given system. 

6.2. CONVENTIONAL PID CONTROLLERS 

In this section, we provide a brief review on several basic types of conventional PID 

controllers and their configuration, design methods and stability analysis, which are needed to 

introduce the fuzzy PID controller later, where the fuzzy PID controllers are natural 

extensions of the Conventional ones: they have the same structure but are defined based on 

fuzzy mathematics and fuzzy control strategies. Individually, the conventional proportional 

(P), integral (I), and derivative (D) controllers for controlling a given system (plant, process) 

have the structures shown in Figure 6.1(a), (b), and (c), respectively, where r = r(t) is the 

reference input (set-point), y = y(t) is the controlled system’s output, e = e(t) = r(t) – y(t) is 

the set-point tracking error, and u = u(t) is the control action (output of the controller) which 

is used as the input to the system. For Fuzzy controller we consider two domains the 

frequency domain and time domain. 

In the time domain, there are the following solutions: 

  (i) P-controller u(t) = KP e(t); 

  (ii) I-controller u(t) = KI 
e

I
0

K (t)d    

  (iii) D-controller u(t) = 
D

d
K e(t)

dt
  

In frequency domain for the individual P, I, and D controllers: 

  (i) P-controller U(s) = KP E(s)  

  (ii) I-controller U(s) = (KI / s) E(s) and 

  (iii) D-controller U(s) = KD s E(s). 

Here L is the Laplace transform L{.} of a continuous-time signal, or the z-transform Z{.} of a 

discrete-time signal. Thus, U(s) = L{ u(t) } and E(s) = L{ e(t) }, with zero initial conditions.  
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Figure6.1. Proportional-integral-derivative controllers. 

  

 

Figure 6.2 Some typical combinations of P, I and D controllers. 
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There are some basic and typical combinations of P, I, and D controllers 

In the time domain: 

  (iv) PI-controller 
t

P I
0

u(t) K e(t) K e( )dt     

  (v) PD-controller 
P D

d
u(t) K e(t) K e(t)

dt
    

  (vi) PID-controller 
t

P I D
0

d
u(t) K e(t) K e( )dt K e(t)

dx
     

  (vii) The PI+D-controller 
t

P I D
0

d
u(t) K e(t) K e( )dt K y(t)

dt
     

In the frequency domain: 

  (iv) PI-controller U(s) = KP E(s) + (s /KI) E(s); 

  (v) PD-controller U(s) = KP E(s) + KD s E(s); 

  (vi) PID-controller U(s) = KP E(s) + s KI E(s) + KD s E(s); 

  (vii) PI+D-controller U(s) = KP E(s) + (s/KI) E(s) – KD s Y(s), 

  where Y(s) = L{ y(t) } = L{ r(t) – e(t) } = R(s) – E(s). 

It may be noted that the PID controller shown in Figure 6.2(c) is not a good combination of 

the three controllers in practice, since if the error signal e(t) has discontinuities, then the D-

controller produces very bad (even unbounded) responses. A practical combination of the 

three controllers is the PI+D controller has been shown in Figure 6.2(d), where the system 

output signal y(t) is usually smoother than the error signal  

To show how a PID-type of controller works and how to design such a controller to perform 

set-point tracking with guaranteed stability, we study simple Greg Viot’s Fuzzy Cruise 

controller examples given below and explain PI, PD, PID and PI+D control in frequency 

domain and time domain. 

Example 6.2.1: Greg Viot's Fuzzy Cruise Controller:  

G-V controller is used to maintain a vehicle at a desired speed. This system consists of two 

fuzzy inputs, namely speed difference and acceleration and one fuzzy output, namely throttle 

control. It is shown in the following Figure 6.3 

 

 
 

Fig. 6.3 : Fuzzy Cruise Controller 
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 The fuzzy sets which characterize the inputs and outputs are given in the following figures: 

(i)Speed difference in Fig. (6.4 – a), (ii) Acceleration in Fig. (6.4 – b) and (iii) Throttle 

control in Fig. (6.4 – c), where NL - Negative large; PM - Positive medium; NS - Negative 

small; ZE- Zero; PL - Positive large; NM - Negative medium; PS- Positive small;  

 

Fig.6.4 (a), (b) and (c) Speed difference, Acceleration, and Throttle control 

A sample fuzzy rule base R we consider for governing the cruise control is given in the 

following table 6.1: 

Table 6.1 Sample Cruise Control Rule Base 

 
Rule l  If (speed difference is NL) and (acceleration is ZE) then (throttle control is PL) 

Rule 2 If (speed difference is ZE) and (acceleration is NL) then (throttle control is PL) 

Rule 3 If (speed difference is NM) and (acceleration is ZE) then (throttle control is PM) 

Rule 4  If (speed difference is NS) and (acceleration is PS) then (throttle control is PS) 

Rule 5  If (speed difference is PS) and (acceleration is NS) then (throttle control is NS) 

Rule 6 If (speed difference is PL) and (acceleration is ZE) then (throttle control is NL) 

Rule 7 If (speed difference is ZE) and (acceleration is NS) then (throttle control is PS) 

Rule 8 If (speed difference is ZE) and (acceleration is NM) then (throttle control is PM) 
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Fig. 6.5 
For the fuzzification of inputs, i.e., to compute the membership for the antecedents, we use 

the Figure 6.5 and compute the followings:  

  delta 1 = x - point 1 and delta 2 = point 2 – x 

  Degree of membership 

=0 If (Delta1< 0) or (Delta 0),

Delta 1*slope1
= min Otherwise

Delta 2* slope 2,Max




 
 
 

 

Here, x is the system input and has its membership function values computed for all fuzzy 

sets. For a measured value of the speed difference the membership function of each of the set 

is computed using the above formula. Similarly, for each of the other system inputs 

(acceleration), the fuzzy membership function values are recorded. 

Let the measured normalized speed difference be 100 and the normalized acceleration be70, 

then the computation of the fuzzy membership values i.e. fuzzified inputs are shown in the 

following Figure 6.6:  

 
 

Fig 6.6: Fuzzification of speed difference = 100 

The computations of the fuzzy membership values for the given inputs speed difference (x = 

100), using the qualifying fuzzy sets shown in the above figure 8.4. Fuzzy membership 

function of x for NS, where 
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Delta 1 = 100 - 63 = 37; Delta 2 = 127 - 100 = 27 ., 

Slope 1 = 1/32 = 0.03125; Slope 2 = 1/32 = 0.03125 

The degree of the membership function is given by 

 

  Degree of membership 

=0 If (Delta1< 0) or (Delta 0),

Delta 1*slope1
= min Else

Delta 2* slope 2,Max




 
 
 

 

  

 μ NS (x) = min 
37*0.03125

27*0.03125

 
 
 

= 0.8438 

Fuzzy membership function of x for ZE, where 

Delta 1 = 100 - 95 = 5; Delta 2 = 159 -100 = 59  

Slope 1 = 1/32 = 0.03125; Slope 2 = 1/32 = 0.03125 

 

  μ NS (x) = min 
5*0.03125

59*0.03125

 
 
 

 = 0.1563 

The membership function of x with the remaining fuzzy sets, namely NL,......, NM, PS,......is 

zero. 

Similarly for acceleration (x = 70) the qualifying fuzzy sets are shown in the following Figure 

6.7. 

 

 
 

 

Fig 6.7: Fuzzification of acceleration.  
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Fig 6.8 Fuzzy membership values for speed difference = 100 and acceleration = 70 
The fuzzy membership function of x = 70 for NM is  

μNM (x) = 0.7813 and for NS is μNS(x) = 0.2188. 

Thus, using the fuzzy rule base, the rule strengths are given by the following table:  

Table 6.2: Sample Cruise Control Rule Base 
Rule l  If (speed difference is NL) and (acceleration is ZE) then (throttle control is PL) 

Rule 2 If (speed difference is ZE) and (acceleration is NL) then (throttle control is PL) 

Rule 3 If (speed difference is NM) and (acceleration is ZE) then (throttle control is 

PM) 

Rule 4  If (speed difference is NS) and (acceleration is PS) then (throttle control is PS) 

Rule 5  If (speed difference is PS) and (acceleration is NS) then (throttle control is NS) 

Rule 6 If (speed difference is PL) and (acceleration is ZE) then (throttle control is NL) 

Rule 7 If (speed difference is ZE) and (acceleration is NS) then (throttle control is PS) 

Rule 8 If (speed difference is ZE) and (acceleration is NM) then (throttle control is 

PM) 

 

  Rule 1: min (0, 0) = 0  

  Rule 2: min (0.1563, 0) = 0 

  Rule 3: min (0, 0) = 0  

  Rule 4: min (0.8438, 0) = 0 

  Rule 5: min (0, 0.2188) = 0 

  Rule 6: min (0,0) = 0 

  Rule 7: min (0.1563, 0.2188) = 0.1563  

  Rule 8: min (0.1563, 0.7813) = 0.1563 . : 

 

The fuzzy output of the system is the 'fuzzy OR' of all the fuzzy outputs of the rules with the 

non-zero rule strengths. In the given rule base R, the computing fuzzy outputs are those of 

rules 7 and 8 with strengths of 0.1563 each. 

To defuzzify the output, we use the centre of gravity method. The computation of CG for the 

two competing outputs of rules 7 and 8 with strengths of 0.1563 each. 
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Fig 6.9: Computation of CG for fuzzy cruise control system 
 

For the Fuzzy Set PS  
  X-axis centroid point = 159  

  Rule strength applied to determine output area = 0.1563 

  Shaded area = 1/2 h (a1 + a2) = 1/2(0.1563) (64 + 63.82) = 9.99 

For the Fuzzy Set PM 

  X-axis centroid point = 191 

  Rule strength applied to determine output area = 0.1563 

  Shaded area = 1/2 h (a1 + a2) = 1/2(0.1563) (64 + 63.82) = 9.99 

  Therefore, weighted average (CG) = (9.99 x 159 +9.99 x 191)/ 19.98 = 175. 

  In crisp term, the throttle control is to be set as 175. 

6.3 DESIGN OF THE PI CONTROLLER IN FREQUENCY DOMAIN  

Consider the PI-control system shown in the frequency domain by Figure 6.10 where the 

given linear system has a first-order transfer function, 1/(as + b), with known constants a > 0 

and b. The reference r is a given constant (set-point).  

 

Fig. 6.10: PI-control system 

In GV cruise control problem the design of the PI controller is to determine the two constant 

control gains, KP (Speed Difference) and KI (Acceleration) such that the system output 

Throttle Control = y(t) can track the reference: y(t)  r as t , while the entire feedback 

control system is stable even if the given transfer function 1/(as + b) is unstable. 
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We first observe from Figure 6.10 that 

  
p

I

s
U(s) K E(s) E(s)

K
   

  E(s) = R(s) – Y(s), 

  

1
Y(s) U(s)

(as b)



 

By combining these relations together, we can obtain the following overall system input-

output relation:  

  

p IK s K
Y(s) H(s)R(s) R(s)

(as b)





          (6.1) 

where H(s) is the transfer function of the overall feedback control system. It is easy to see 

that this transfer function has two poles: 

  

2

P P I

1,2

(b K ) (b K ) 4aK
S

2a

    
           (6.2) 

Thus, in our design, if we choose (note: a > 0)  

  KP > –b,               (6.3)  

then we can guarantee that these two poles have negative real parts, so that the overall 

controlled system is stable. 

What we want for set-point tracking is 

 
t
lime(t) 0


 .                 (6.4) 

  It follows from the Terminal-Value Theorem of Laplace transforms that 

   
t |z| 0
lime(t) lim s E(s)
 

  

   
|z| 0
lim s[R(s) Y(s)]


   

   
|z| 0
lim s[1 H(s)]R(s)


   

   

2

2|z| 0
P I

as bs r
lims. .

as (b K )s K s




  
 

   = 0 
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It may appear that the set-point tracking task can always be done no matter how we choose 

the control gain KI, provided that the other control gain, KP, satisfies the condition (6.3), and 

this is true for any given constants a and b in the given system (plant). This observation is 

correct for this example.  

However, in so doing it often happens that the system output y(t) tracks the set-point r with 

higher-frequency oscillations caused by the pure imaginary parts of the two poles given in 

(6.2). Hence, to eliminate such undesirable oscillations so as to obtain better tracking 

performance, we can select the 

 

Figure 6.11 A typical tracking performance of the PI control system. 

  control gain KI to zero out the pure imaginary parts of the poles s1 and s2. 

  Namely, we can force 

   (b + KP)2 – 4 a KI = 0, 

  which yields 

   

2

P
I

(b K )
K

4a


 , 

where KP has been determined by (6.3-b). Thus we complete the design of the PI controller 

for the given plant 1/(as + b), which can be originally unstable (i.e., b < 0). We thus obtain an 

overall stable feedback control system whose output can track the set-point without 

oscillations, at least in theory. Its output y(t) generally has the shape as shown in Figure 6.11. 

As seen, a PI controller so designed can completely eliminate both the steady-state tracking 

error and the transient oscillations, but may not be able to reduce the maximum overshoot in 

the output. On the contrary, a PD controller can generally improve the tracking performance 

by reducing the maximum overshoot of the output, but may not be able to eliminate the 

steady-state tracking error, as can be seen from the next example. 
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Example 6.3.1. Consider the PD-control system shown in the frequency domain by Figure 

6.12, where the given linear system has a second-order transfer function, 1/(as2 + bs + c), 

with known constants a > 0, b, and c. The design of the PD controller is again to determine 

the two constant control gains, KP and KD (Input), such that the system output can track the 

set-point while the entire feedback control system is stable even if the given transfer function 

1/(as2 + bs + c) is unstable. 

It follows from Figure 6.12 that U(s) = KP E(s) + KD s E(s), 

   E(s) = R(s) – Y(s), 

   
2

1
Y(s) U(s)

as bs c


 
, 

  so that 

 

 

Figure 6.12 A typical tracking performance of the PI controller. 

   P D

2

D P

K K s
Y(s) H(s)R(s) R(s)

as (b K )s (c K )


 

   
. 

  The transfer function H(s) of the overall feedback control system has two poles: 

  

2

D D P

1,2

(b K ) (b K ) 4a(c K )
S

2a

     
 ,    (6.5) 

  and so the selection (note a > 0) 

 KD > –b         (6.6) 

  and 

 

2

D
P

(b K )
K c

4a


          (6.7) 

can guarantee the controlled system be stable and have no oscillations on the output trajectory 

during the set-point tracking process. However, the asymptotic tracking error for this PD 

controlled system is 
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t |z| 0
lime(t) lim sE(s)
 

  

    
|z| 0
lim s[I H(s)]R(s)


   

    

2

2|z| 0
D P

as bs c r
lim s. .

as (b K )s (c K ) s

 


   
 

    

P

cr

c K



, 

which is non-zero if c ≠ 0 and r ≠ 0. This implies that the PD controller generally cannot 

eliminate the steady-state error in set-point tracking. 

The PD controller, as compared to the PI controller, has its advantages: it can produce smaller 

maximum overshoot and is more sensitive (easier to tune) in general. A typical set-point 

tracking performance of the PD control is similar to that of the PI controller shown in Figure 

6.11. 

To implement a PI or PD controller on a computer, we need the digital version of the analog 

one discussed above. To digitize an analog controller, the following three discretization 

formulas can be used: 

  (i) The forward divided difference: 
z 1

s
T


 ; 

 (ii) The backward divided difference: 

11 z
s

T


 ; 

  (iii) The trapezoidal formula: 
2 z 1

s
T z 1





,  

where T > 0 is the sampling period. These formulas transform the analog controller and the 

controlled system from the continuous-time frequency domain (in the Laplace-transform s-

variable) to the discrete-time frequency domain (in the z-transform z-variable). In particular, 

the last formula maps the entire left-half (right-half) s-plane into the entire inner (outer) unit 

circle in the z-plane in such a way that the mapping is one-to-one and the entire imaginary 

axis corresponds to the entire unit circle. Hence, this formula preserves all basic properties, 

particularly the stability, of the original controller and controlled system, and hence is the one 

used most frequently. This trapezoidal formula is also known as the bilinear transform in 

engineering and the conformal mapping in mathematics.  
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Using the bilinear transform  

  
2 z 1

s
T z 1





         (6.8) 

  in the continuous-time PI controller, we obtain (see Figure 6.10): 

   

1

I I I I I

1 1

K K T z 1 K T 2 (1 z ) K T K T

s 2 z 1 2 1 z 2 1 z



 

  
   

  
, 

   
I I I

P P 1

K K T K T
U(s) (K )E(s) U(z) (K )E(z)

s 2 1 z
     


. 

  Let 

  
I

P P

K
K K

s
    and I IK K T .    (6.9) 

  Then we have 

   
1 1

P I(1 z )U(z) K (1 z )E(z) K E(z)     . 

  It then follows from the inverse z-transform that 

  u(nT) – u(nT – T) = PK [e(nT) – e(nT – T)] + IK e(nT),  

 so that  

   I
P

u(nT) u(nT T) e(nT) e(nT T) K
K e(nT)

T T T

   
   

  Let, furthermore, 

  u(nT) = 
u(nT) u(nT T)

T

 
                (6.10) 

  be the incremental control and 

  
e(nT) e(nT T)

v(nT)
T

 
                   (6.11) 

  We arrive at 

   u(nT) = u(nT – T) + Tu(nT)      (6.12) 

   u(nT) = PK v(nT) + IK

T
e(nT)    (6.13) 
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  which can be implemented as shown in Figure 6.13. 

 

 

Figure 6.13 The digital PI controller 

Similarly, using the bilinear transform (6.8) in the continuous-time PD controller (see Figure 

6.12), we obtain 

   

1

D D D1

2 z 1 2 1 z
sK K K

T z 1 T 1 z





 
 

 
, 

   U(s) = (KP + sKD) E(s)  

1

P D1

2 1 z
U(z) (K K )E(z)

T 1 z






 


 

  Let P PK K    and  D D

2
K K

T
     (6.14) 

  Then we have 

   
1 1 1

P D(1 z )U(z) (1 z )K E(z) K (1 z )E(z)       ,  

  so that the inverse z-transform gives 

 u(nT) = P DK d(nT) K v(nT) ,      (6.15) 

   
e(nT) e(nT T)

d(nT)
T

 
 , 

   
e(nT) e(nT T)

v(nT)
T

 
  
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This digital PD controller, described by (6.15) can be implemented as shown in the following 

figure 6.14. 

 

 

Figure 6.14 The digital PD controller. 

  We remark that formula (6.15) can be rewritten as 

  u(nT) = -u(nT – T) + PK [e(nT) + e(nT – T)] + DK [e(nT) – e(nT – T)], 

  so that  

     u(nT – T) = -u(nT – 2T) + PK [e(nT – T) + e(nT – 2T)] + DK [e(nT – T) – e(nT – 2T)]. 

 Thus, by substituting u(nT – T) into u(nT), we obtain  

    u(nT) = u(nT – 2T) + PK [e(nT) – e(nT – 2T)] + DK [e(nT) – 2e(nT – T) + e(nT – 2T)] 

   P

e(nT) e(nT 2T)
u(nT 2T) K T

T

 
     

     
2

D 2

e(nT) 2e(nT T) e(nT 2T)
K T

T

   
  

where the two finite divided differences are the discretization of e(t) and e(t) ,respectively 

of the continuous-time error signal e(t), under the bilinear transform. This formula shows 

clearly that the digital PD controller implicitly uses the discretization of both e(t) and e(t)  

in conventional control theory.  

The fuzzy PI, PD, and PI+D controllers to be introduced below employ the digital PI 

controller (6.12) and the digital PD controller (6.15), whose implementations are shown in 

Figures 6.13 and 6.14, respectively. 
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6.4 FUZZY PID CONTROLLER 

 Now we introduce the fuzzy PID controllers and discuss their design methods, performance 

evaluation, and stability analysis. 

We first study the fuzzy PD controller design in detail, in which all the basic ideas, design 

principles, and step-by-step derivation and calculations are discussed. The fuzzy PI controller 

design is discussed briefly and followed by the fuzzy PI+D controller design. Having this 

background, many other types of fuzzy PID controllers can be designed by following similar 

procedures. The stability analysis of these fuzzy PID controllers will be investigated in the 

last section of the chapter. 

Although it is possible to design a fuzzy logic type of PID controller by a simple modification 

of the conventional ones, via inserting some meaningful fuzzy logic IF-THEN rules into the 

control system (e.g., to self-tune the PID control gains with the help of a “look-up” table), yet 

these approaches in general complicate the overall design and do not come up with new fuzzy 

PID controllers that capture the essential characteristics and nature of the conventional PID 

controllers. Besides, they generally do not have analytic formulas to use for control 

specification and stability analysis. 

 The fuzzy PD, PI, and PI+D controllers to be introduced below are natural extensions of 

their conventional versions, which preserve the linear structures of the PID controllers, with 

simple and conventional analytical formulas as the final results of the design. Thus, they can 

directly replace the conventional PID controllers in any operating control systems (plants, 

processes). The main difference is that these fuzzy PID controllers are designed by employing 

fuzzy logic control principles and techniques, which are very similar to the conventional 

digital PID controllers. After the design is completed, all the fuzzy logic IF-THEN rules, 

membership functions, defuzzification formulas, etc. are not required any more in 

applications. What one can see is a conventional controller with a few simple formulas 

similar to the familiar PID controllers. Thus, in operations the controllers do not use any 

“look-up” table at any step, and so can be operated in real time. A control engineer who 

doesn’t have any knowledge about fuzzy logic and/or fuzzy control systems can use them just 

like the conventional ones, particularly for higher-order, time-delayed, and nonlinear systems, 

and for those systems that have only vague mathematical models or contain significant 

uncertainties. The key reason, which is the price to pay, for such success is that these fuzzy 

PID controllers are slightly more complicated than the conventional ones, in the sense that 

they have variable control gains in their linear structures. These variable gains are nonlinear 

functions of the errors and changing rates of the error signals. The main contribution of these 

variable gains in improving the control performance is that they are self-tuned gains and can 

adapt to the rapid changes of the errors and the (changing) rates of the error signals caused by 

the time-delayed effects, nonlinearities, and uncertainties of the underlying system (plant, 

process). 
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6.5. FUZZY PD CONTROLLER 

The overall fuzzy PD set-point tracking control system is shown in Figure 6.15, where the 

process under control is a discrete-time system (or a discretized continuous-time system), and 

r(nT) is the reference signal which can be a constant (set-point). The fuzzy PD controller 

inside the dashed box differs from the conventional digital PD controller (shown in Figure 

6.14) as there is an extra “fuzzy controller” in the path of the incremental control signal 

Δu(nT). Moreover, a constant multiplication block has been changed from the sampling 

period T to an adjustable constant control gain Ku in order to enable the new controller one 

more degree of freedom in the control process (but this is not necessary). In this fuzzy PD 

controller, the “fuzzy controller” block is the key that improves the conventional digital PD 

controller’s capabilities and performance. 

 

 

 

Figure 6.15 The fuzzy PD controller. 

  To simplify the notation, we have let the adjustable control gains be 

  P PK K  and d DK K  in Figure 6.15 (compared to Figure 6.14) and similarly let 

i IK K when the fuzzy PI controller is discussed later. 

To illustrate how the “fuzzy controller” block works, we first introduce a constant parameter 

(an adjustable scalar) L > 0, and decompose the plane by L as twenty input-combination 

regions (IC1-IC20) as shown in Figure 6.16, where the horizontal axis is the input signal 

Kpd(nT), and the vertical axis the input signal Kdv(nT), to the “fuzzy controller.” Then, 

according to which region the input signals (Kpd(nT), Kdv(nT)) belong, the “fuzzy controller” 

block produces the following incremental outputs: 
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  u(nT) = 
p d

p

L[K d(nT) K v(nT)]

2(2L K | d(nT) |)




,   in IC1, IC2, IC5, IC6, (6.16) 

   
p d

d

L[K d(nT) K v(nT)]

2(2L K | v(nT) |)





,  in IC3, IC4, IC7, IC8, (6.17) 

   d

1
[L K v(nT)]

2
  ,    in IC9, IC10  (6.18) 

    
p

1
[ L K v(nT)]

2
   ,   in IC11, IC12  (6.19) 

    d

1
[ L K v(nT)]

2
   ,  in IC13, IC14  (6.20)   

 

 

Figure 6.16 Regions of the “fuzzy controller” input-combination values. 

  p

1
[L K v(nT)]

2
  ,    in IC15, IC16,  (6.21) 

  = 0,      in IC17, IC19,  (6.22) 

  = -L,     in IC18,  (6.23) 

  = L,     in IC20,  (6.24) 

Here, if the input signals (Kpd(nT), Kdv(nT)) belong to a boundary line, then either of the two 

neighboring regions can be used, since they will be the same (namely, all these control 

functions are continuous on the boundaries).  
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This completes the description for implementation of the fuzzy PD controller in a set-point 

tracking system, regardless of any knowledge about the system (plant, process) under control. 

The initial conditions for this control system are the following nature ones: 

  y(0) = 0, Δu(0) = 0, e(0) = r, v(0) = 0.     (6.25) 

Before we discuss how to derive these formulas for the “fuzzy controller” block and in what 

sense this design is good, a few remarks on the above formulas are in order. 

First, we note that the above nine pieces of formulas are all conventional (crisp) analytical 

formulas, from which one does not see any fuzzy contents (membership functions, fuzzy 

logic IF-THEN rules, etc.). Therefore, the “fuzzy controller” block, as well as the entire fuzzy 

PD controller shown in Figure 6.15, are conventional controllers: the overall control system 

works in the conventional manner despite the name “fuzzy.” As a result, this fuzzy PD 

controller can be used to replace the conventional PD controller anywhere, and a control 

engineer can operate this fuzzy PD controller in a way completely analogous to the 

conventional one: what he needs to do is to tune the control gains and parameters, Kp, Kd, Ku, 

and L, without the need of knowledge of the fuzzy mathematics, fuzzy logic, and fuzzy 

control theory.  

Second, the above nine pieces of formulas are continuously connected as a whole (on the 

boundaries between different regions shown in Figure 6.16). This can be verified by direct 

calculation of any two adjacent formulas on a boundary. Therefore, the control formula 

switching process does not have any jumps. 

Third, since as usual all the control gains (Kp, Kd, and Ku) are positive real numbers, the 

above nine formulas can be computed from the two inputs 

   Kpd(nT) and Kdv(nT),  

  where we have 

   Kp | d(nT) | = | Kpv(nT) | and Kd | v(nT) | = | Kdv(nT) |. 

Finally, but most importantly, we should point out that the first formula (6.16) preserves the 

linear structure of the conventional PD controller (see formula (6.15)): 

 u(nT) = 
p d

p p

LK LK
d(nT) v(nT)

2(2L K | d(nT) |) 2(2L K | d(nT) |)

   
   

       
, 

except that the two control gains here are variable gains: they are nonlinear functions of the 

signal d(nT) = 
1

T
[e(nT) + e(nT–T)]. Similarly, the second formula (6.17) has the same linear 

structure but with two variable gains that are nonlinear functions of the signal v(nT) = 
1

T
[e(nT) – e(nT–T)]. It is very important to note that it is exactly these variable control gains 

that improve the performance of the controller , for instance, when the error signal e(nT) 

increasesthe signal d(nT) increases, so that the control gain L/2(2L–Kp|d(nT)|) also increases 
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automatically. This means that the controller takes larger actions accordingly and hence, has 

certain self-tuning and adaptive capabilities in the control process. Here, it is also important 

to note that Kp|d(nT)| does not exceed the constant L in the denominator of the control gain 

according to the definition of the input-combination (IC) regions shown in Figure 6.16; 

otherwise, the formula will switch to another one of the nine formulas. 

We next discuss the design principle of the fuzzy PD controller described above, and give 

detailed derivations to the resulting formulas (6.16)-(6.24). 

We first recall that in a standard procedure, a fuzzy controller design consists of three 

components: (i) fuzzification (ii) rule base establishment and (iii) defuzzification. Our design 

of the fuzzy PD controller follows this procedure. 

In the fuzzification step, we employ two inputs: the error signal e(nT) and the rate of change 

of the error signal v(nT) with only one control output u(nT) (to be fed to the system under 

control). The input to the fuzzy PD controller, namely, the “error” and the “rate” signals, have 

to be fuzzified before being fed into the controller. The membership functions for the two 

inputs (error and rate) and the output of the controller that is used in our design are shown in 

Figure 6.17, which are likely the simplest possible functions to use for this purpose. Both the 

error and the rate have two membership values: positive and negative, while the output has 

three (singleton functions): positive, negative,  

 

 

Figure 6.17 The membership functions of e(nT), v(nT), and u(nT). 

and zero. The constant L > 0 used in the definition of the membership functions is chosen by 

the designer according to the value ranges of the error, rate, and output, which is used as a 

tunable parameter but can also be fixed after being determined. Note that the constant L used 

in these three membership functions can be different in general (according to the physical 

meaning of the signals in the application), but we let them be the same here in order to 

simplify the design. 

Based on these membership functions, the fuzzy control rules that we used are the following: 

   R(1) IF error = ep AND rate = vp THEN output = oz. 

   R(2) IF error = ep AND rate = vn THEN output = op. 

   R(3) IF error = en AND rate = vp THEN output = on. 

   R(4) IF error = en AND rate = vn THEN output = oz. 

Here, “output” is the fuzzy control action Δu(nT), “ep” means “error positive,” “oz” means 

“output zero,” etc. The “AND” is the logical AND defined by 
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  μA AND μB = min{ μA, μB }for any two membership values μA and μB on the fuzzy 

subsets A and B, respectively. 

The reason for establishing the rules in such formulation can be understood in the same way 

as that described in Chapter 4, Section II, which is briefly repeated here for clarity. First, it is 

important to observe that since the error signal is defined to be e = r – y, where r is the 

reference (set-point) and y is the system output (see Figure 6.11 for the general situation in 

the continuous-time setting), we have e r y y    in the case that the set-point r is 

constant. 

For Rule 1 (R(1)): condition ep (the error is positive, e > 0) implies that r > y (the system 

output is below the set-point) and condition vp ( e  > 0) implies that y 0  (the system output 

is decreasing). In this case, the controller at the previous step is driving the system output, y, 

to move downward. Hence, the controller should turn around and drive the system output to 

move upward. It is very important to observe, however, that in our control law (see formula 

(6.12) and Figure 6.15): 

   u(nT) = –u(nT – T) + KuΔu(nT),     … (6.26) 

there is a minus sign in front of u(nT–T), which will automatically perform the expected task. 

For this reason, we set “output = oz” for the incremental control as the first rule, which means 

Δu(nT) = 0 at this step. For Rule 2 (R(2)): condition ep (e > 0) implies that r > u and condition 

vn (e 0) implies that y 0 . In this case, u is below r and the controller at the previous 

step is driving the system output, y, to move upward. Hence, the controller needs not to take 

any action. But, in control law (6.26), there is a minus sign with u(nT–T) which will turn the 

control action to the opposite. To compensate for this, we should let Δu be positive, i.e., 

“output = op.” 

For Rule 3 (R(3)): condition en (e < 0) implies that r < y and condition vp (e 0 ) implies that 

y 0 . In this case, y is over r and the controller at the previous step is driving the system 

output to move downward. Therefore, the controller needs not to take any action. Similar to 

Rule 2, to compensate the minus sign in (6.26), we let Δu be negative, i.e., “output = on.”  

For Rule 4 (R(4)): condition en (e < 0) implies that r < y and condition vn (e 0 ) implies that 

y 0 . In this case, y is over r and the controller at the previous step is driving the system 

output to move upward. Hence, the controller should turn its output around to drive the 

system output to move downward. Because of the minus sign in (6.26), similar to Rule 1, the 

controller needs not to take any action: “output = oz.” 

Here, we remark that one may try to let the controller take some action to speed up the system 

output in cases of Rules 1 and 4, but this will somewhat complicate the design of the 

controller. 

In the defuzzification step, we use the same logical AND as mentioned above, and the 

membership functions shown in Figure 6.17 for the error e(nT), the rate v(nT), and the output 

Δu(nT) of the “fuzzy controller” block. Because we have two (positive and negative) 

membership values for the error and rate, the commonly used weighted average formula is 

used for defuzzification, leading to 
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(membership value of input corresponding value of output)
u(nT)

(membership value of input)

 
 


     (6.27) 

The defuzzification procedure and its corresponding results are now analyzed and 

summarized as follows: 

First, we observe from (6.16)-(6.24) that, instead of the error signal e(nT), use the average 

error signal d(nT) and simply call Kpd(nT) and Kdr(nT) the “error signal” and the “rate 

signal” respectively. 

Note that using the average error will not alter the above reasoning for the control rules (R(1))-

(R(4)), at least in principle. 

Second, observe that the membership functions of the average error and rate signals 

decompose their value ranges into twenty adjacent inputcombination (IC) regions as shown in 

Figure 6.16. This figure is explained as follows: 

We put the membership function of the error signal (given by the first picture of Figure 6.15) 

over the horizontal Kpd(nT)-axis in Figure 6.16 and put the membership function of the rate 

of change of the error signal (given by the second picture of Figure 6.17) over the vertical 

Kdr(nT)-axis in Figure 6.16. 

These two membership functions then overlap and form the third-dimensional picture (which 

is not shown in Figure 6.16) over the 2-D regions shown in Figure 6.16 in the region IC. For 

example, if we look upward to the Kpd(nT)-axis, we see the domain [0,L] and the 

membership function (in the third dimension) over [0,L] of the error signal; if we look 

leftward to the Kdr(nT)-axis, we see the domain [–L,0] and the membership function (in the 

third dimension) over [–L,0] of the rate of change of the error signal. 

Next, we consider the locations of the error Kpd(nT) and the rate Kdr(nT) in the region IC1 

and IC2 (see Figure 6.16). Let us look at region IC1, for example, where we have ep > 0.5 > 

vp (see the first two pictures in Figure 6.17). Hence, the logical AND used in (R(1)) leads to 

   {“error = ep AND rate = vp”} = min{ ep, vp } = vp, 

  so that Rule 1 (R(1)) yields 

   
(1)

the selected input membership value is vp;
R :

the corresponding output value is oz





 

Similarly, in region IC1, Rules 2-4, (R(2))-(R(4)), and the logical AND used in (R(2))-(R(4)) 

together yield 

   
(2)

the selected input membership value is vn;
R :

the corresponding output value is op





 

   
(3)

the selected input membership value is en;
R :

the corresponding output value is on




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(4)

the selected input membership value is en;
R :

the corresponding output value is oz





 

  It can be verified that the above are true for the two regions IC1 and IC2. 

  Thus, in regions IC1 and IC2 it follows from the defuzzification formula (6.27) that 

   u(nT) = 
vp.oz vn.op en.on en.oz

vp vn en en

  

  
 

It is very important to note that if one follows the above procedure to work through the two 

cases, then it is found that both the last two cases give the same result of en ( i.e., the two en 

in the above formula are not the misprint of en and ep!). To this end, by applying op = L, on = 

–L, oz = 0 (obtained from Figure 6.17), and the following straight line formulas from the 

geometry of the membership functions associated with Figure 6.17: 

   
pK d(nT) L

ep
2L


  ,

pK d(nT) L
en

2L

 
 , 

   
dK v(nT) L

vp
2L


  and 

dK v(nT) L
vn

2L

 
 , we obtain 

   u(nT) = p d

p

L
[K d(nT) K v(nT)]

2[2L K d(nT)]



 

  Here, we note that d(nT) ≥ 0 in regions IC1 and IC2. 

  In the same way, one can verify that in regions IC5 and IC6, 

   u(nT) = p d

p

L
[K d(nT) K v(nT)]

2[2L K d(nT)]



,

 

  where d(nT) ≤ 0 in regions IC5 and IC6. 

Therefore, by combining the above two formulas, we arrive at the following result for the 

four regions IC1, IC2, IC5, and IC6: 

   u(nT) = p d

p

L
[K d(nT) K v(nT)]

2[2L K | d(nT) |]



, 

which is (6.16). Similarly, if Kpd(nT) and Kdv(nT) are located in the regions IC3, IC4, IC7, 

and IC8, we have 

   Kp | d(nT) | ≤ Kd | v(nT) | ≤ L, 
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  and, in this case, 

   u(nT) = 
p d

d

L
[K d(nT) K v(nT)]

2[2L K | d(nT) |]



 

which is (6.17). Finally, in the regions IC9-IC20, we have the corresponding formulas shown 

as in (6.18)-(6.24). 

To this end, we have determined all the control rules and formulas for the fuzzy PID 

controller, with the control law (6.26) and the fuzzy control action Δu(nT) calculated by 

(6.16)-(6.24) according to the different locations in Figure 6.16 of the error signal Kpd(nT) 

and the rate of the change of the error signal Kdv(nT). The initial conditions for the overall 

control system are the following natural values:  

For the fuzzy control action Δu(0) = 0, for the system output, y(0)= 0, for the original error 

and rate signals, e(0) = r (the set-point) and v(0) = 0 respectively as shown in (6.25). 

Finally, we remark that in the steady-state situation |e(nT)| = 0, so that |v(nT)| = |d(nT)| = 0 in 

the denominators of the coefficients of Δu(nT). Thus, we obtain the steady-state relations 

between the conventional PD control gains Kc
d and Kc

p and the fuzzy PD control gain Kp and 

Kd as follows: 

  
c u d
d

K K
K

4
   and 

u pc

p

K K
K

4
               (6.28) 

Example 6.3. In order to compare the fuzzy PD controller with the conventional one, we first 

consider a first-order linear system with transfer function 

   
1

H(s)
s 1




, 

and the reference (set-point) r = 10.0. For this system, the fuzzy controller parameters are: T 

= 0.1, Kd = 0.5, Kp = 0.5, Ku = 1.0, and L = 361.0. The control performance is shown in 

Figure 6.18. 

  We then consider a second-order linear system with transfer function 

   
2

1
H(s)

s 4s 3


 
, 

and the reference (set-point) r = 10.0. The system response, controlled by the fuzzy PD 

controller is shown in Figure 6.19. The controller parameters are T = 0.1, Kp = 0.51, Kd = 

0.02, Ku = 0.232 and L = 1000.0. 

  In the above two cases, both conventional and fuzzy PD controllers work equally 

well. 

To show one more case of the second-order linear system, consider one with the transfer 

function 
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1

H(s)
s(s 100)




, 

which is only marginally stable. This time, let us make it more difficult by setting the 

reference as a ramp signal, r(t) = t. The controller parameters used are T = 0.01, Kp = 25.0, Kd 

= –50.0, Ku = 0.5, L = 3000.0 and the tracking tolerance is 5% of the steady-state error. For 

this example, it is easy to verify that the steady-state error for the conventional PD controller 

is given analytically by 

   ss c

p

100
e (t)

K
  

Thus, we have to use a high gain of Kc
p = 2000.0 (along with Kc

d = 10.0) to obtain specified 

performance (of 5% steady-state tracking error). The fuzzy control result is shown in Figure 

6.20, where the solid curve is the set point in which the dashed curve is the system output. 

This result demonstrates the advantage of the fuzzy PD controller over the conventional one 

(the former uses very small control gains) even for a second-order linear process. 

  Next, consider a lower-order linear system with time-delay, with transfer function 

   
3z

2

1
H(s) e

(100s 1)




. 

The comparison is shown in Figure 6.21. The conventional PD controller with Kc
p = 66.0, Kc

d 

= 25.0 and T = 0.1 produces the solid curve. On the contrary, the fuzzy PD controller with T 

= 0.1, Kp = 49.3, Kd = 5.3, Ku = 0.8, and L = 19.0 yields the dashed curve in the same figure.  

Finally, the conventional and fuzzy PD controllers are compared using two nonlinear 

systems. The first one has the simple nonlinear model 

   y(t)  = 0.0001 |y(t)| + u(t). 

Here, we use two different references, namely, the constant set-point r = 1.0 and the ramp 

signal r(t) = t. For the constant set-point case, the fuzzy PD controller has the parameters T = 

0.1, Kp = 19.5, Kd = 0.5, Ku = 0.1 and L = 20.0. The result is shown in Figure 6.22(a). The 

conventional PD controller, on the other hand, cannot handle this nonlinear system no matter 

how one changes its two constant gains. One control performance is shown in Figure 6.22(b) 

with Kc
p = 3.0, Kc

d = 0.1 and T = 0.1.  

For the ramp signal reference case, the fuzzy PD controller produces a good tracking result 

with very small transient oscillation as shown in Figure 6.22(c), where Kp = 19.0, Kd = 0.5, 

Ku = 0.1, L = 40.0 and T = 0.1. Although the conventional PD controller also performs well 

after a long transient period, as shown in Figure 6.22 (d), yet its transient behavior is poorer 

(see Figure 6.22 (e)) as compared to the fuzzy controller (Figure 6.22 (c)). 

 

 The second nonlinear example is shown in Figure 6.23, where the system is described by 
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  y(t)  = –y(t) + 0.5y2(t) + u(t) with the constant set-point r = 2.0. The fuzzy controller 

is designed with Kp = 41.9, Kd = 15.4, Ku = 0.1, L = 239.0, and T = 0.1, which produces the 

tracking response shown in Figure 6.23. However, no matter how one adjusts the two 

constant gains of the conventional PD controller, it does not show any reasonable tracking 

results. 

 

 

Figure 6.18 Output of a first-order linear fuzzy PD control system. 

 

 

 

Figure 6.19 Output of a second-order linear fuzzy PD control system.  
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Figure 6.20 Output of a second-order linear fuzzy PD control system.  

 

 

Figure 6.21 Comparison of outputs for a second-order linear fuzzy PD control system 

with a time delay.  

 

 

Figure 6.22(a) Output of a nonlinear fuzzy PD control system with a constant set-

point. 
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Figure 6.22(b) Output of a nonlinear conventional PD control system (with a 

constant set-point).  

  

Figure 6.22 (c) Output of a nonlinear fuzzy PD control system (with a ramp set-

point).   

 

Figure 6.22 (d) Steady-state output of a nonlinear conventional PD control system 

(with a ramp set-point). 
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Figure 6.22 (e) Transient output of a nonlinear conventional PD control system (with 

a ramp set-point).   

 

 

 

Figure 6.23 Output of a highly nonlinear PD control system. 

6.6. FUZZY PI CONTROLLER 

Design of the fuzzy PI controller is similar to that for the fuzzy PD controller and will be 

introduced briefly in this section. 

The overall PI controller system is shown in Figure 6.24 (see Figure 6.13 also). In Figure 

6.24, we let p P i IK K and K K   as mentioned before. The “fuzzy controller” works in a 

way similar to that of the fuzzy PD controller. We first decompose the plane with a scalar L > 

0 into twenty input-combination (IC) regions for the inputs Kie(nT) and Kpv(nT), where 

v(nT) = 1/T [e(nT)–e(nT–T)] as shown in Figure 6.25. Here, Kie(nT) and Kpv(nT) are called 
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the error signal and the rate of change of error signal respectively for convenience. Then, 

according to the location of the inputs (Kie(nT), Kpv(nT)) to the “fuzzy controller” block, the 

corresponding incremental control output are computed by the following formulas: 

  u(nT) = 
i p

i

L[K e(nT) K v(nT)]

2(2L K | e(nT) |]




,   in IC1, IC2, IC5, IC6, (6.29) 

   =
i p

p

L[K e(nT) K v(nT)]

2(2L K | e(nT) |]




,  in IC3, IC4, IC7, IC8, (6.30) 

   
p

1
[L K v(nT)]

2
  ,    in IC9, IC10,   (6.31)  

 

Figure 6.24 The fuzzy PI controller. 

   
i

1
[L K e(nT)]

2
  ,    in IC11, IC12,  (6.32) 

   p

1
[ L K v(nT)]

2
   ,   in IC13, IC14,   (6.33) 

   
i

1
[ L K e(nT)]

2
   ,   in IC15, IC16,  (6.34) 

   = 0,     in IC18, IC20,  (6.35) 

   = -L,     in IC17,  (6.36) 

   = L,     in IC19.  (6.37)  
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  Then, the control action output of the fuzzy PI controller, which is the control input 

to the system (plant, process), is given by 

   u(nT) = u(nT–T) + KuΔu(nT),      (6.38) 

where Ku is an adjustable constant control gain that may be fixed to be Ku = T to simplify the 

design (but one then loses a degree of freedom in the tuning of the controller). 

In a comparison of the fuzzy PI and PD control laws (6.38) and (6.26), one can find the main 

difference: there is a minus sign in front of u(nT–T) in the fuzzy PD controller and this minus 

sign makes the rule base design quite different. Of course, their incremental controls Δu(nT) 

are given by formulas (6.16)-(6.24) and (6.29)-(6.37) respectively, which are also different. 

  Similarly, the initial conditions for the fuzzy PI controller are the following natural 

ones: 

   y(0) = 0, Δu(0) = 0, e(0) = r, v(0) = 0.     (6.39)  

 

 

Figure 6.25 Regions of the “fuzzy controller” input-combination values. 

A verification of the above fuzzy PI controller formulas can be carried out in a step-by-step 

procedure by mimicking the fuzzy PD controller’s design given in the last section. This will 

be discussed in more detail in the next subsection within the PI+D controller. 

We remark once again that the nine pieces of formulas (6.29)-(6.37) are conventional (crisp) 

formulas. So the “fuzzy controller” block as well as the entire fuzzy PI controller shown in 

Figure 6.24 are conventional controllers and the overall control system works in the 

conventional (crisp) manner despite the name “fuzzy.” Therefore, this fuzzy PI controller can 

be used to replace the conventional digital PI controller anywhere. A control engineer can 

operate it without knowledge of fuzzy mathematics, fuzzy logic and fuzzy control theory. He 

only need to tune the control gains and parameters: Kp, Ki, Ku, and L.Finally, the computer 

simulations for comparison of the fuzzy and conventional PI controllers show similar results.  
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6.7. FUZZY PI+D CONTROLLER 

 The conventional analog PI+D controller is shown in Figure 6.2(d). Similar to the fuzzy PD 

controller design discussed in Section 6.5, we first discretize it by applying the bilinear 

transform, then design the fuzzy PI and a fuzzy D controller separately, and finally combine 

them together as a whole in the closed-loop system. 

In so doing, the design of the fuzzy PI controller is the same as that mentioned briefly above, 

but the design of the fuzzy D controller is rather different. 

Starting with the conventional analog PI+D control system shown in Figure 6.26, the output 

of the conventional analog PI controller in the frequency s-domain, as can be verified easily 

from Figure 6.10, is given by 

 

 Figure 6.26 The conventional continuous-time PI+D control system.  

   

c
c i

PI p

K
U (s) K E(s)

s

 
  
 

, 

where Kc
p and Kc

i are the proportional and integral gains, respectively, and E(s) is the 

tracking error signal, after taking the Laplace transform (with zero initial conditions). This 

equation can be transformed into the discrete version by applying the bilinear transformation 

(6.8), which results in the following form: 

   

c c
c i i

PI p 1

K T K T
U (z) K E(z)

2 1 z

 
   

 
. 

  Letting 

  

c
c i

p p

K T
K K

2
   and

c

i iK K T ,     (6.40) 

  and then taking the inverse z-transform, we obtain 

   uPI(nT) – uPI(nT–T) = Kp[ e(nT) – e(nT–T) ] + KiTe(nT).  

 Dividing this equation by T, we have  

   ΔuPI(nT) = Kpv(nT) + Kie(nT),       (6.41) 
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 where PI PI
PI

u (nT) u (nT T)
u (nT)

T

 
 

 
and

e(nT) e(nT T)
v(nT)

T

 
  

  It follows that uPI(nT) = uPI(nT–T) + TΔuPI(nT). 

In the design of the fuzzy PI controller to be discussed later, we will replace the coefficient T 

by a fuzzy control gain Ku,PI, so that 

  uPI(nT) = uPI(nT–T) + Ku,PIΔuPI(nT).      (6.42) 

The D controller in the PI+D control system, as shown in Figure 6.26, has y as its input and 

uD as its output. It is clear that 

   UD(s) = sKc
d Y(s), 

where Kc
d is the control gain and Y(s) is the output signal. Under the bilinear transformation, 

the above equation becomes   

 

 

Figure 6.27 The conventional digital PI+D control system. 

   
c

D d

2 z 1
U (z) K Y(z)

T z 1





 or 

1
c

D d 1

2 1 z
U (z) K Y(z)

T 1 z








 .
 

 Consequently,  

   uD(nT) + uD(nT – T) = 
c

d2K

T
[y(nT) – y(nT – T)] 
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  Dividing this equation by T yields 

  ΔuD(nT) = KdΔy(nT)  ,               (6.43) 

 where uD(nT) = D Du (nT) u (nT T)

T

 
is the incremental control output of the fuzzy D 

controller, y(nT) = 
y(nT) y(nT T)

T

 
is the rate of change of the output y, and 

  
c

d
d

2K
K

T
                   (6.44) 

Next, we modify (6.43) by adding the signal Kyd(nT) to its right-hand side and take 

  yd(nT) = y(nT) – r(nT) = – e(nT) in order to obtain correct control values. 

 

 

Figure 6.28 The fuzzy PI+D control system. 

  Thus, (6.43) becomes 

   ΔuD(nT) = KdΔy(nT) + Kyd(nT). 

We always use K = 1 to simplify the discussion in this section, while it is not necessary in a 

real design. Note that from (6.43) we consider 

   uD(nT) = D Du (nT) u (nT T)

T

 
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  so that 

   uD(nT) = – uD(nT–T) + TΔuD(nT). 

When ΔuD(nT) becomes a fuzzy control action later in the design, we use Ku,D as this fuzzy 

control gain (which will be determined later in the design). Thus, we can rewrite the above 

formula as 

   uD(nT) = – uD(nT–T) + Ku,DΔuD(nT).             (6.45) 

Finally, the overall fuzzy PI+D control law can be obtained by algebraically summing the 

fuzzy PI control law (6.42) and fuzzy D law (6.45) together. The result is 

   uPID(nT) = uPI(nT) – uD(nT) 

   or  

   uPID(nT) = uPI(nT–T) + Ku,PIΔuPI(nT) + uD(nT–T) – Ku,DΔuD(nT).           (6.46) 

  This equation is referred to as the fuzzy PI+D control law. 

 

Figure 6.29 Regions of the “fuzzy (PI) controller” input-combination values. 

The overall conventional PI+D control system is shown in Figure 6.27. To this end, the fuzzy 

PI and fuzzy D controllers will be inserted into Figure 6.27 resulting in the configuration as 

shown in Figure 6.28. 

In summary, the fuzzy PI+D control system is implemented by Figure 6.28, in which there 

are five constant control gains that can be tuned: Ki, Kp, Ku,PI, KD, and Ku,D, where one may 

set Ku,PI = Ku,D = T to simplify the design.  

In this implementation, the two incremental control actions ΔuPI(nT) and ΔuD(nT) have the 

analytical formulas as given by (6.47) to (6.55). 

Similar to Figure 6.25, we first divide the plane as twenty regions of the “fuzzy (PI) 

controller” input-combination (IC) for (Kie(nT),Kpv(nT)), as shown in Figure 6.29. 

Then, the incremental control of the fuzzy PI controller is calculated by formulas: 
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  uPI(nT) = 
i p

i

L[K e(nT) K v(nT)]

2(2L K | e(nT) |)




,   in IC1, IC2, IC5, IC6,             (6.47) 

     =
i p

p

L[K e(nT) K v(nT)]

2(2L K | e(nT) |)




,  in IC3, IC4, IC7, IC8,             (6.48) 

    
p

1
[L K v(nT)]

2
  ,    in IC9, IC10,           (6.49) 

    
i

1
[L K e(nT)]

2
  ,    in IC11, IC12,                         (6.50) 

    
p

1
[ L K v(nT)]

2
   ,   in IC13, IC14,                (6.51) 

     
i

1
[ L K e(nT)]

2
   ,   in IC15, IC16,           (6.52) 

      = 0,     in IC18, IC20,              (6.53) 

      = -L,      in IC17,           (6.54) 

     = L,     in IC19,           (6.55)   

 

Figure 6.30 Regions of the “fuzzy (D) controller” input-combination values. 

 

 

Figure 6.31 Input membership functions for the PI component.  
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Figure 6.32 Output membership functions for the PI component. 

 

For the fuzzy D controller, the twenty regions of the input-combination are shown in Figure 

6.30. The incremental control of the fuzzy D controller is calculated by the following 

formulas: 

 uD(nT) = 
d d

d

L[Ky (nT) K y(nT)]

2(2L K | y (nT) |)

 


,   in IC1, IC2, IC5, IC6,     (6.56) 

    =
d d

d d

L[Ky (nT) K y(nT)]

2(2L K | y (nT) |)

 


, in IC3, IC4, IC7, IC8,    (6.57) 

    
d

1
[L K y(nT)]

2
   ,   in IC9, IC10,  (6.58) 

    
d

1
[ L Ky (nT)]

2
      in IC11, IC12,   (6.59) 

    
d

1
[ L Ky (nT)]

2
   ,  in IC13, IC14,  (6.60) 

    
d

1
[L Ky (nT)]

2
  ,  in IC15, IC16,  (6.61) 

     = 0,    in IC18, IC20,  (6.62) 

     = -L,     in IC17,  (6.63) 

      = L,    in IC19,  (6.64)  
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Figure 6.33 Input membership functions for the D component.  

 

 

Figure 6.34 Output membership functions for the D component. 

 Next we describe derivations of the above formulas of the fuzzy PI and D controllers. 

We first fuzzify the PI and D components of the PI+D control system individually and then 

establish the desired fuzzy control rules for each of them taking into consideration the 

interconnected PI+D fuzzy control law given in equation (6.46). The input and output 

membership functions of the PI component are shown in Figures 6.31 and 6.32 respectively. 

The fuzzy PI controller employs two inputs: the error signal e(nT) and the rate of change of 

the error signal v(nT). The fuzzy PI controller has a single output, ΔuPI(nT), as shown in 

Figure 6.28, where the constant L > 0 is a tunable parameter that can also be fixed after being 

determined.  

Using these membership functions, the following control rules are established for the fuzzy 

PI controller: 

   R(1): IFe = en AND v = vn THEN PI-output =on. 

   R(2): IFe = en AND v = vp THEN PI-output =oz. 

   R(3): IFe = ep AND v = vn THEN PI-output =oz. 

   R(4): IFe = ep AND v = vp THEN PI-output =op. 

In these rules, e := r – y is the error, v e 0 y y     is the rate of change of the error, “PI-

output” is the fuzzy PI control output ΔuPI(nT), “ep” means “error positive,” “op” means 

“output positive,” etc. Also, AND is the logical AND operator defined as before. 

If we look at the fuzzy control law for the D component, equation (6.43), the only 

information it contains that is relevant to the output performance is Δy(nT). Based on this 

signal alone, it is impossible to come up with a useful fuzzy control law. We therefore look 

for another control signal that can be used in conjunction with Δy(nT) to provide information 

about the output (above or below the reference signal). For this purpose, a logical and natural 

choice is the negative error signal  

  yd(nT) = – e(nT).        (6.65) 
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Here, it is important to observe that yd positive (resp. negative) means that the system output 

y is above (resp. below) the reference r. This yd control signal is implemented as shown by 

the path with the –1 block in Figure 6.28 (compared with Figure 6.27). 

The input and output membership functions for the fuzzy D controller are shown in Figures 

6.33 and 6.34, respectively.  

Similarly, from the membership functions of the fuzzy D controller, the following control 

rules are used for the D component: 

   R(5): IFyd = ydp AND Δy = Δyp THEN D-output =oz. 

   R(6): IFyd = ydp AND Δy = Δyn THEN D-output =op. 

   R(7): IFyd = ydn AND Δy = Δyp THEN D-output =on. 

   R(8): IFyd = ydn AND Δy = Δyn THEN D-output =oz. 

In the above rules, “D-output” is the fuzzy D control output ΔuD(nT), and the other terms are 

defined similar to the PI components. 

  These eight rules altogether yield the control actions for the fuzzy PI+D control law.

  

Formulation of these rules is explained as follows: 

 For Rule 1 (R(1)): if we look at this rule for the PI controller, condition “en” (error is 

negative) implies that the system output, y, is above the set-point, and “vn” (rate of error is 

negative) implies y 0  (meaning that the controller at the previous step is driving the system 

output to move upward). Since the ΔuPI(nT) component of formula (6.46) contains more 

control terms with gain parameters than D controller, we set this term to be negative and set 

the ΔuD(nT) component to be zero. Thus, the combined control action will drive the system 

output to move downward by Rules 1 to 5 of both controllers. 

We note that one could have set the output of the D controller to be positive in order to drive 

the output to move downward faster. However, having both controllers’ outputs being 

nonzero at the same time will complicate the design of the controller. Computer simulations 

have demonstrated that the simple design described above performs sufficiently well in all 

numerical examples tested, so more sophisticated design is not discussed here. 

Similarly, for Rule 2 (R(2)), since the output is above the set-point and is moving downward, 

we set the “larger” component of formula (6.46), namely, the term ΔuPI(nT), to be zero, and 

set the “smaller” component ΔuD(nT) to be positive. Thus, the combined controller will tend 

to drive the system output to move downward faster by the combined action of these two 

rules. Rules 3 and 4 are similarly determined.  

In the defuzzification step, for both fuzzy PI and D controllers, the same weighted average 

formula is employed to defuzzify the incremental control of the fuzzy control law: 

u(nT) = 
(membership value of input corresponding value of output)

(membership value of input)

 


 (6.66) 
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  For the fuzzy PI controller, the value ranges of the two inputs, the error, and the rate 

of change of the error are actually decomposed into twenty adjacent input-combination (IC) 

regions, as shown in Figure 6.29. This figure is understood as follows: We put the 

membership function of the error signal (given by the curves for e in Figure 6.31) over the 

horizontal Kie(nT)-axis on Figure 6.29, and put the membership function of the rate of 

change of the error signal (given by the same curves in Figure 6.31 for v) over the vertical 

Kpv(nT)-axis on Figure 6.29. These two membership functions then overlap and form the 

third-dimensional picture (which is not shown in Figure 6.29) over the two-dimensional 

regions shown in Figure 6.29. When we look at region IC1, for example, if we look upward 

to the Kie(nT)-axis, we see the domain [0,L] and the membership function (in the third 

dimension) over [0,L] of the error signal; if we look leftward to the Kpv(nT)-axis, we see the 

domain [–L,0] and the membership function (in the third dimension) over [–L,0] of the rate of 

change of the error signal. This situation is completely analogous to the analysis of the fuzzy 

PD controller studied in Section II.A. 

The control rules for the fuzzy PI controller (R(1)-R(4)), with membership functions and IC 

regions together, are used to evaluate appropriate fuzzy control formulas for each region. 

In doing so, we consider the locations of the error Kie(nT) and the rate Kpv(nT) in the regions 

IC1 and IC2 (see Figure 6.29). Let us look at region IC1, for example, where we have e > 0.5 

> v(nT) (see Figure 6.31). Hence, the logical AND used in (R(1)) leads to 

   {“error = e AND rate = v”} = min{ e, v } = e, so that Rule 1 (R(1)) yields 

   
(1)

the selected input membership value is en;
R :

the corresponding output value is on.





 

  Similarly, in region IC1, Rules 2-4, (R(2))-(R(4)) are obtained as 

   
(2)

the selected input membership value is en;
R :

the corresponding output value is oz.





 

   
(3)

the selected input membership value is vn;
R :

the corresponding output value is oz.





 

   
(4)

the selected input membership value is vp;
R :

the corresponding output value is op.





 

  It can be verified that the above are true for the two regions IC1 and IC2. 

  Thus, in regions IC1 and IC2, it follows from the defuzzification formula (6.66) that 

   
en on en oz vn oz vp op

u(nT)
en en vn vp

      
 

  
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It is very important to note that if one follows the above procedure to work through the two 

cases, then it is found that both the last two cases give the same result of en (i.e., the two en in 

the above formula are not the misprint of en and ep!). To this end, by applying op = L, on = –

L, oz = 0 (obtained from Figure 6.32), and the following straight line formulas from the 

geometry of the membership functions associated with Figure 6.29: 

   iK e(nT) L
ep ,

2L


    iK e(nT) L

en
2L

 
 , 

   
pK v(nT) L

vp ,
2L


   and 

pK v(nT) L
vn

2L

 
 , 

  we obtain 

   
i p

PI

i

L[K e(nT) K v(nT)]
u (nT)

2[2L K e(nT)]


 


 

Here, we note that e(nT) ≥ 0 in regions IC1 and IC2. In the same way, one can verify that in 

regions IC5 and IC6: 

   
i p

PI

i

L[K e(nT) K v(nT)]
u (nT)

2[2L K e(nT)]


 


, 

where it should be noted that e(nT) ≤ 0 in regions IC5 and IC6. Thus, by combining the above 

two formulas, we arrive at the following control formula for the four regions IC1, IC2, IC5, 

and IC6: 

   
i p

PI

i

L[K e(nT) K v(nT)]
u (nT)

2[2L K | e(nT) |]


 


. 

Working through all regions in the same way, we obtain the PI control formulas (6.47)-(6.55) 

for the twenty IC regions. 

Similarly, defuzzification of the fuzzy D controller follows the same procedure as described 

above for the PI component, except that the input signals in this case are different. The IC 

combinations of these two inputs are decomposed into twenty similar regions, as shown in 

Figure 6.30. 

Similarly, by applying the value op = L, on = –L, oz = 0, and the following straight line 

formulas obtained from the geometry of Figure 6.34: 

   d
d

Ky (nT) L
y p

2L


 ,   d

d

Ky (nT) L
y n

2L

 
 , 

   dK y(nT) L
yp

2L

 
   and dK y(nT) L

yn
2L

  
  , 

  we obtain the D control formulas (6.56)-(6.64) for the twenty IC regions. 



Adaptive Fuzzy Control | 6.43 
 

It may be noted that the constant K that multiplies the signal yd(nT) is used as a parameter for 

generality here, and in the derivation of ΔuD(nT). Although it could be used as a control gain, 

its value is permanently set to one throughout the computer simulations shown in the next 

example. 

Example6.4. We first apply the fuzzy PI+D controller to a lower-order linear system, to see 

how well it performs for such simple cases. Recall that the conventional PI+D controller is 

designed for linear systems, for which it works very well. We show that the fuzzy PI+D 

controller is as good as the conventional one for such lower-order linear systems.  

Firstly, a first-order linear system is considered with transfer function 

   
1

H(s)
s 1




 

and with controller parameters T = 0.1, K = 1.0, Kp = 1.2, Ki = 0.1, Ku,PI = 0.2, Ku,D = 0.01, L 

= 360.0. The set-point is r = 5.0. The response of the fuzzy PI+D controller for a step input is 

shown in Figure 6.35. 

  The second example is a second-order linear system with transfer function 

   
2

1
H(s)

s 4s 3


 
, 

where the controller parameters are T = 0.01, K = 1.0, Kp = 8.0, Kd = 0.01, Ki = 1.0, Ku,PI = 

0.2, Ku,D = 0.01, L = 1000.0, and the set-point is r = 5.0. The response of the fuzzy PI+D 

controller is shown in Figure 6.36. 

Finally, we compare the performance of both the conventional and the fuzzy PI+D 

controllers, using two nonlinear systems. Although the fuzzy PI+D controller has the same 

linear structure as the conventional PI+D controller, the fuzzy PI+D gains are nonlinear with 

self-tuning capability and, therefore, have better performance in this simulation and in 

general. 

  The first nonlinear system has the following simple model: 

   y(t) = 0.0001 |y(t)| + uPID(t),  

with fuzzy PI+D parameters T = 0.1, K = 1.0, Kp = 1.5, Kd = 0.1, Ki = 2.0, Ku,PI = 0.11, Ku,D = 

1.0, L = 45.0, and the set-point is r = 5.0. The result is shown in Figure 6.37. On the contrary, 

the conventional PI+D controller is unable to track the set-point, no matter how one changes 

its parameters. A typical response of the conventional PI+D controller is shown in Figure 6.38 

with parameters T = 0.1, Kc
p = 19.5, Kc

i = 1.0, for r = 5.0. 

  The second nonlinear system used in the simulation is 

   PIDy(t) y(t) y(t) u (t)    

In this case, the fuzzy PI+D parameters are T = 0.1, K = 1.0, Kp = 2.0, Kd = 1.942, Ki = 1.0, 

Ku,PI = 0.1, Ku,D = 0.27, L = 350.0, and the set-point r = 5.0. 

 



6.44 | Fuzzy Logic Models and Fuzzy Control: An Introduction 

The response of this fuzzy PI+D control system to a step input is shown in Figure 6.39. The 

conventional PI+D controller, however, cannot yield any reasonable response, no matter how 

one adjusts its gains. A typical response of the conventional PI+D controller (with parameters 

T = 0.1, Kc
p = 2.0, Kc

i = 1.0, and r = 5.0) is shown in Figure 6.40. We remark that this result is 

due to the fact that the conventional PI+D controller usually has difficulties in controlling 

higher-order and time-delayed linear systems as well as nonlinear systems, because they are 

designed only for lower-order linear systems, for which they can work very well as has been 

widely experienced. 

 

 

Figure 6.35 Output of a first-order linear fuzzy PI+D control system.   

 

 

 

Figure 6.36 Output of a second-order linear fuzzy PI+D control system.  
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Figure 6.37 Output of a nonlinear fuzzy PI+D control system.   

 

 

 

Figure 6.38 Output of a nonlinear conventional PI+D control system.  
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Figure 6.39 Output of a nonlinear fuzzy PI+D control system.   

 

 

 

Figure 6.40 Output of a nonlinear conventional PI+D control system.  

  

 

 

Figure 6.41 Input-output relation of a system. 
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6.8. STABILITY ANALYSIS OF FUZZY PID CONTROLLER 

In this section, we analyze the stability of the fuzzy PI, PD, and PI+D control systems 

designed. Recall the Lyapunov asymptotic stability for fuzzy modeling discussed in Chapter 

3, for  both discrete-time and continuous-time fuzzy dynamic systems. 

In order to show the bounded input bounded-output (BIBO) stability of a control system, we 

introduce the Small Gain Theorem in this section and discuss the BIBO stability of the fuzzy 

PI, PD, and PI+D control systems. We first note that differing from the Lyapunov asymptotic 

stability, which is usually local (in a neighborhood of an equilibrium point), the BIBO 

stability is global and is particularly suitable for nonlinear systems described by input-output 

maps. We should also note that both the Lyapunov asymptotic stability and the BIBO stability 

analyses provide conservative sufficient conditions, especially for nonlinear systems.  

From a theoretical point of view, the larger the region of stability can be found, the better the 

result is. However, from the design point of view, relatively conservative stability region is 

actually safer and more reliable in applications. BIBO stability theory turns out to be 

appropriate for this purpose. 

6.8.1. BIBO Stability and the Small Gain Theorem 

Definition 6.1. A (linear or nonlinear) control system is said to be bounded-input bounded-

output (BIBO) stable if a bounded control input to the system always produces a bounded 

output through the system.  

Here, the bound is defined in the norm (l2, l∞, etc.) of the function space which we consider in 

the design. 

Let S denote a (linear or nonlinear) system. S may be considered as a mapping which maps a 

control input, u(t), to the corresponding system output y(t), as shown in Figure 6.41, where S: 

u(t) → y(t) or y(t) = S{u(t)}. 

  Recall the standard Lp-spaces of signals: 

   1 ≤ p < :  
p

p
0

L {f (t) | | f (t) | dt }


   , 

   p =  :  p
0 t

L {f (t) | ess sup | f (t) | }
 

      

 

Figure 6.42 A nonlinear feedback system. 
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where “ess” means “essential,” namely, the supirum holds except over a set of measure zero. 

For piecewise continuous signals, essential supirum and supirum are the same, so “ess” can 

be dropped from the above. 

Consider a nonlinear (including linear) feedback system shown in Figure 6.42, where for 

simplicity it is assumed that all signals u, e, y1, u2, e2, y2  Rn. 

  It is clear from Figure 6.42 that 

  
1 1 2 2

2 2 1 1

e u S (e ),

e u S (e )

 


 
        (6.67) 

  or, equivalently, 

  
1 1 2 2

2 2 1 1

u e S (e ),

u e S (e )

 


 
        (6.68) 

For this system, we have the following so-called Small Gain Theorem, which gives sufficient 

conditions under which a “bounded input” yields a “bounded output,” where the norm || . || is 

the standard Euclidean norm (“length” of a vector). 

Theorem6.1. Consider the nonlinear feedback system shown in Figure 6.42, which is 

described by the relationship (6.67)-(6.68). Suppose that there exist constants L1, L2, M1, M2, 

with L1L2 < 1 such that 

  
1 1 1 1 1

2 2 2 2 2

|| S (e ) || M L || e ||,

|| S (e ) || M L || e ||

 


  .

       (6.69) 

  Then, we have 

  

1

1 1 2 1 2 2 2 2 1

1

2 1 2 2 1 1 1 1 2

|| e || (1 L L ) (|| u || L || u || M L M ),

|| e || (1 L L ) (|| u || L || u || M L M )





     


    

    (6.70) 

  Proof. It follows from 

   e1 = u1 – S2(e2), which implies that 

   || e1 || ≤ || u1 || + || S2(e2) || ≤ || u1 || + M2 + L2 || e2 ||. 

  Similarly, we have 

   || e2 || ≤ || u2 || + M1 + L1 || e1 ||. 

  Combining these two inequalities, we obtain 

   || e1 || ≤ L1L2|| e1 || + || u1 || + L2 || u2 || + M2 + L2M1, 

  On using the fact L1L2 < 1, the theorem follows immediately.  
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Figure 6.43 A feedback control system. 

   || e1 || ≤ (1–L1L2)–1( || u1 || + L2 || u2 || + M2 + L2M1 ). 

 It is clear that the Small Gain Theorem is applicable to both continuous time and discrete-

time systems, and to both SISO and MIMO systems. Hence, although its statement and proof 

are quite simple, it is very useful. 

We next point out an interesting relation between the BIBO stability and the Lyapunov 

asymptotic stability. It is clear that the asymptotic stability generally implies the BIBO 

stability, but the reverse can also be true under some conditions. 

Consider a nonlinear system described by the following first-order vectorvalued ordinary 

differential equation: 

  
0

x(t) Ax(t) f (x(t), t),

x(0) x

 



      (6.71) 

with an equilibrium solution x(t) 0 , where A is an n×n constant matrix whose eigenvalues 

are assumed to have negative real parts, and f : Rn × R1 → Rn is a real vector-valued 

integrable nonlinear function of t  [0,∞). By adding and then subtracting the term Ax(t), a 

general nonlinear system can always be written in this form. Let 

  

t
( t )

0
x(t) u(t) e y( )d

y(x) f (x(t), t),

    

 

        (6.72) 

with u(t) = eAtx0. Then we can implement system (6.72) by a feedback configuration as 

depicted in Figure 6.43, where the error signal e(t) = x(t), the plant P(.)(t) = f( . , t), and the 

compensator C(.)(t) = 
t

( t )A

0
e (.)( )d    

  Theorem6.2. Consider the nonlinear system (6.72) and its associate feedback 

configuration as shown in Figure 6.43. Suppose that U = V = Lp([0,∞),Rn), where 1 ≤ p ≤ ∞. 

Then, if the feedback system shown in Figure 6.43 is BIBO stable, then it is also 

asymptotically stable. 

  Proof. Since all eigenvalues of the constant matrix A have negative real parts, we 

have 

    | etA x0 | ≤ Me–αt 

for some constants 0 < α, M < ∞ for all t ∈ [0,∞), so that |u(t)| = | etA x0 | → 0 as t → ∞. 
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Hence, in view of the first equation defined above, i.e., x(t) = u(t) – 
t

( t )A

0
e y( )d   , if we 

succeed to prove that  

t
( t )A

0
v(t) : e y( )d 0     as t  , 

  then it will follow that 

    | x(t) | = | u(t) – v(t) | → 0 as t→∞. 

  To do so, we write 

   
t / 2 t

( t )A (t )A

0 t / 2
v(t) e y( )d e y( )d         

   
t t

A (t )A

t / 2 t / 2
e y(t )d e y( )d         

  Then, by the Holder inequality we have 

   
t t

A (t )A

t / 2 t / 2
| v(t) | e y(t )d e y( )d          

      
1/q 1/ p

t t
A q p

t / 2 t / 2
| e | d | y(t ) | d       

       
 

1/q 1/ p
t t

(t )A q p

t / 2 t / 2
| e | d | y( ) | d      

         

  
1/q 1/ p

A q p

t / 2 0
| e | d | y(t ) | d

 
       

       
1/q 1/ p

(t )A q p

t / 2 0
| e | d | y( ) | d

 
      

         

 As all eigenvalues of A have negative real parts and the feedback system is BIBO stable from 

U to V, so that y  V = Lp([0,∞),Rn). Thus, we have 

  
p

t
t / 2

lim | y( ) | d 0




     and  

  
p

t
t / 2

lim | y( ) | d 0




     

  Therefore, it follows that | v(t) | → ∞ as t → ∞, completing the proof of the theorem. 

6.8.2. BIBO Stability of Fuzzy PD Control Systems 

We are now in a position to study the BIBO stability of the fuzzy PI, PD, and PI+D control 

systems. 
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We first discuss in detail the fuzzy PD system. Return to the fuzzy PD control system 

described in Figure 6.15. 

 

 

Figure 6.44 An equivalent closed-loop control system. 

We consider the general case where the system under control is nonlinear, which will be 

denoted by N. Suppose that the fuzzy control law (6.26) together with the incremental control 

formula (6.16) are used, and let the reference signal be r = r(nT) for generality. By defining 

  

1

2

1

2

1 1 u

2 2 2

e (nT) e(nT),

e (nT) u(nT),

u (nT) r(nT),

u (nT) u(nT T),

S (e (nT)) K u(nT),

S (e (nT)) N(e (nT)),






 


  
  




      (6.73) 

  it is easy to see that an equivalent closed-loop control system as shown in Figure 6.44 

is 

  

1

1 2 2

2 u

2 1 1

u (nT) r(nT) e(nT) N(u(nT))

e (nT) S (e (nT)),

u (nT) u(nT T) u(nT) K u(nT)

e (nT) S (e (nT))

  


 


     
  

   (6.74) 

Observe that when e(nT) and r(nT) are in the regions IC1, IC2, IC5, IC6, we have formula 

(6.16), so that 

  || S1(e1(nT)) || 

  
p du

1

p e

| K K |K L
| e (nT) | | e(nT T) |

2(2L K M ) T

 
   

  
 

  
u p d u p d

e 1

p e p e

K L | K K | K L | K K |
M | e (nT) |

2(2L K M ) 2(2L K M )

 
 

 
,   (6.75) 

  and 
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   || S2(e2(nT)) || ≤ || N || . | e2(nT) |,     (6.76), 

where || N || is the operator norm of the given N(.) or the gain of the given nonlinear system 

defined as usual by 

  
1 2

1 2

v v ,n 0 1 2

| N(v (nT)) N(v (nT)) |
|| N ||: sup

| v (nT) v (nT) | 





     (6.77) 

over a set of admissible control signals that have any meaningful function norms, and Me is 

defined by 

  
e

n 1 n 1

2
M : sup | d(nT) | sup | e(nT) |

T 

       (6.78) 

To this end, an application of the Small Gain Theorem (Theorem 6.1) yields the following 

sufficient condition for the BIBO stability of the nonlinear fuzzy PD control systems: 

  
u p d

p e

K L | K K |
|| N || 1

2T(2L K M )





.

       (6.79) 

When e(nT) and r(nT) are in the regions IC3, IC4, IC7, IC8, we can similarly obtain a 

sufficient stability condition as follows: 

  
u p d

p r

K L | K K |
|| N || 1

2T(2L K M )





,       (6.80) 

  where 

  
r e

n 1 n 1

1
M : sup | r(nT) | sup | e(nT) e(nT T) | M

2 

    
.
   (6.81) 

When e(nT) and r(nT) are in the rest of the regions, from IC9-IC20, the other incremental 

control formulas (6.18)-(6.24) are used. In these cases, the stability conditions are found to be 

  

u p

u d

K K
|| N || 1,

2T

K K
|| N || 1

2T

|| N || is bounded













       (6.82) 

By combining all the above conditions together, and noting that in IC1-IC8, KpMe ≤ L, and 

that Kp > 0 and Kd > 0, we arrive at the following result for the stability of the nonlinear fuzzy 

PD control systems. 
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Theorem6.3. A sufficient condition for the nonlinear fuzzy PD control systems to be BIBO 

stable is that the given nonlinear system has a bounded norm (gain) || N || < ∞ and the 

parameters of the fuzzy PD controller, Kp, Kd, and Ku, satisfy 

  m uK K
|| N || 1

2TL


 ,       (6.83) 

  where γ = max{ 1, L } and Km = max{ Kp, Kd }. 

Remarks: This theorem provides a useful criterion for the design of the nonlinear fuzzy PD 

controller when a nonlinear process N is given. We may first choose Ku = T and then find a 

value of Kd (or Kp) for the tracking purpose 

  e(nT) = y(nT) – r(nT) → 0 as n→∞.      (6.84) 

Finally, we may determine Kd (or Kp) among all possible choices such that the inequality 

(6.83) is satisfied. 

6.8.3. BIBO Stability of Fuzzy PI Control Systems 

The analysis of the BIBO stability condition for the fuzzy PI control system is similar to that 

for the fuzzy PD control system discussed in the last subsection. 

We again consider the general case where the system under control, N, is nonlinear. We start 

with the configuration shown in Figure 5.17 with the control law (6.38) and (6.39). By 

defining 

  

1

2

1

2

1 1 u

2 2 2

e (nT) e(nT),

e (nT) u(nT),

u (nT) r(nT),

u (nT) u(nT T),

S (e (nT)) K u(nT),

S (e (nT)) N(e (nT)),






 


  
  




      (6.85) 

it is easy to see that we obtain an equivalent closed-loop control system as shown in Figure 

6.44 where, differing from the fuzzy PD control system, we have 

  

1

1 2 2

2 u

2 1 1

u (nT) r(nT) e(nT) N(u(nT))

e (nT) S (e (nT)),

u (nT) u(nT T) u(nT) K u(nT)

e (nT) S (e (nT))

  


 


     
  

    (6.86)  

  

 



6.54 | Fuzzy Logic Models and Fuzzy Control: An Introduction 

 

Observe, moreover, that when e(nT) and r(nT) are in the regions IC1, IC2, IC5, or IC6, we 

have 

  
p pu

1 1 i 1 1

i 1

K KK L
|| S (e (nT)) || K e (nT) e (nT T)

2(2L K | e (nT) |) T T

  
       

   
 

  
p pu

i 1 e

i e

K KK L
K | e (nT) | M

2(2L K M ) T T

  
    

   
  

  
u p e u i p

i e i e

K K M L K K K L
| e(nT) |

2(2L K M ) 2(2L K M )


 

 
     (6.87) 

  and 

  || S2(e2(nT)) || ≤ || N || . | e2(nT) |,      (6.88) 

where || N || is the operator norm of the given N(.), or the gain of the given nonlinear system, 

defined as in formula (6.77), and Me is the maximum magnitude of the error signal 

  e
n 1 n 1

M : max{sup | e(nT) |,sup | e(nT T)}
 

      (6.89) 

  In regions IC1-IC8, KiMe ≤ L.  

 

 

 

Figure 6.45 Equivalent closed-loop control systems. 
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To this end, an application of the Small Gain Theorem (Theorem 6.1) produces the following 

sufficient condition for the BIBO stability of the closed-loop nonlinear fuzzy PI control 

system: 

  
u i pK (TK K )

|| N || 1
2T


       (6.90) 

When e(nT) and r(nT) are in the regions IC3, IC4, IC7, or IC8, we can similarly obtain a 

sufficient stability condition as follows: 

  
u i pK (TK K )

|| N || 1
2T


       (6.91) 

When e(nT) and r(nT) are in the rest of the regions, from IC9 to IC20, the other control laws 

are used. In this case, the stability conditions are found to be 

  

u i

u p

K K
|| N || 1,

2T

K K
|| N || 1

2T

|| N || is bounded













       (6.92) 

  By combining all the above conditions together, we arrive at the following result: 

Theorem6.4. A sufficient condition for the nonlinear fuzzy PI control system shown in 

Figure 6.24 to be globally BIBO stable is: (1) the given nonlinear system has a bounded norm 

(gain) || N || < ∞, and (2) the parameters of the fuzzy PI controller, Kp, Kd, and Ku, satisfy 

  
u i pK ( K K )

|| N || 1
2T

 
 ,       (6.93) 

  where γ = max{L,T}. 

6.8.4. BIBO Stability of Fuzzy PI+D Control Systems 

The stability analysis of the fuzzy PI+D control system is in a sense to combine the results 

obtained individually for the fuzzy PI and PD control systems. 

Consider the fuzzy PI+D control system shown in Figure 6.21. First, observe that if we 

disconnect the fuzzy D controller from Figure 6.21, we have the fuzzy PI control system, 

exactly the same as Figure 6.17. Hence, all the results obtained in the last subsection for the 

fuzzy PI control system apply to this case also. 

For the fuzzy PI+D control system shown in Figure 6.21, one can easily verify that it is 

equivalent to either one of the two configurations shown in Figure 6.45. Recall from the 
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Small Gain Theorem (Theorem 6.1) that if we let the system denoted by S1 and the fuzzy 

PI+D controller together be denoted by S2, which is the dashed box in the second picture of 

Figure 6.45, then we can obtain a sufficient condition for the BIBO stability of the overall 

closed loop control system from the bounds 

  

1 PID 1 1 PID

2 2 2

|| S (u ) M L || u ||,

y y
|| S M L || ||

e e

 


    
     

    

 ,     (6.94) 

  where M1, M2, L1, L2 are constants with L1L2 < 1and has been discussed in detail in 

Theorem 6.1. 

Here, we observe that due to the special structure of the D controller, denoted SD, we actually 

have 

   
D D

2

PI PI

S 1 S 1y y y
S .

0 S 0 Se e e

         
         

       
 

   ≤ max{ || SD ||, || SPI ||, 1 } . max{ || y ||, || e || }. 

Hence, a sufficient condition for the overall fuzzy PI+D control system to be BIBO stable is 

the worst one between the fuzzy PI and D control systems.  

Namely, we may use the larger norms from the right-hand side of the above. 

Thus, we will have the second equation of inequalities (6.94) in which SD and SPI are 

separated in M2 and/or L2, so that the analysis performed in the last two subsections can be 

repeated here for inequalities (6.94). 

Note that in this case we may assume that max{ ||SD||, ||SPI|| } ≥ 1; otherwise, the system will 

be stable without additional conditions by the contraction mapping principle. Under this 

inequality, the second condition of (6.94) can be guaranteed. 

6.8.5. Graphical Stability Analysis of Fuzzy PID Control Systems 

We have shown how to analytically analyze the BIBO stability of a fuzzy PID type of control 

system in the last few sections. Sufficient conditions so obtained are useful for controller 

design. Although such sufficient conditions are generally conservative, just like many other 

sufficient conditions derived via different methods for nonlinear systems, they provide useful 

guidelines for designing “safe” controllers (namely, stabilizing controllers with desirable 

robustness against system parameter variation and/or external disturbances). 

In this section, we introduce a graphical approach to the BIBO stability analysis for PID type 

of fuzzy control systems. We only discuss the fuzzy PI+D control systems shown in Figure 

6.28, but the methodology clearly is applicable to different types of fuzzy PID control 

systems. 
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In Figure 6.28, we observe that the control signal uPID(nT) to the error signal e(nT) can be 

related implicitly through the closed-loop configuration. In the z-domain, let 

  
PID

e(z)
f (z)

u (z)
         (6.95) 

  and  

  
PID

v(z)
g(z)

u (z)
         (6.96) 

  where 

   f(z) = f0 + f1 z–1 + f2 z–2 + … 

   g(z) = g0 + g1 z–1 + g2 z–2 + … 

  are unknown (not explicitly known) but well-defined, and similarly, 

   e(z) = e0 + e1 z–1 + e2 z–2 + … 

   v(z) = v0 + v1 z–1 + v2 z–2 + … 

   uPID(z) = u0 + u1 z–1 + u2 z–2 + … . 

  Let i

i 0

|| F || f




 ,   i

i 0

|| G || g




 ,  i

i 0

|| E || e




 ,  

   i

i 0

|| V || v




 ,  i

i 0

|| U || u




    

 For the BIBO stability of the closed-loop system, we must require that both 

  || F || and || G || be finite. So let || F || = α1 and || G || = α2,where α1 and α2 are constants 

to be determined.  

 To this end, we have 

  || E || ≤ α1 || U ||,        (6.97) 

  || V || ≤ α2 || U ||.        (6.98)  

 

Figure 6.46 An open common region in the error space. 



6.58 | Fuzzy Logic Models and Fuzzy Control: An Introduction 

  Suppose that 

   y(nT+T) = N( y(nT) ) + H1( uPID(nT) ) + H2( w(nT) ),   (6.99) 

where {w(nT)} are disturbances (H2 = 0 if it does not exist), N is the closedloop system 

operator, and N, H1, H2 are bounded nonlinear functions (in operator norm): 

   || N || < ∞, || H1 || < ∞, || H2 || < ∞. 

  Then, it follows that 

  || H1(uPID) || = || y(nT + T) – N (y(nT)) – H2(w(nT)) || 

 ≤ || y(nT+T) || + || N || . || y(nT) || + || H2 || . || w ||. 

  Since || H1(uPID) || ≤ || H1 || . || uPID ||, to ensure the left-hand side be bounded, 

  we can require 

 || H1 || . || uPID || ≤ || y(nT+T) || + || N || . || y(nT) || + || H2 || . || w || 

  or, even more conservatively, 

 || uPID || ≤ β1 + β2 || E || + β3 || V ||,      (6.100) 

  where 

  1

1

1

|| H ||
  (|| y(nT+T) || + || N || . || y(nT) || + || H2 || . || w || ), 

  β2 ≤ max{ || KP || , 1 }and β3 ≤ max{ || KI || , || KD || }. 

  Substituting (6.100) into (6.97) gives 

  || E || ≤ α1(β1 + β2 || E || + β3 || V || ), 

  which implies  

  || V || ≥ 
1 3

1

 
[ (1– α1β2) || E || – α1β1 ] if α1β2 < 1.    (6.101) 

  Similarly, substituting (6.100) into (6.98) leads to  

  || V || ≤ 
2 3

1

1 
[α2β2 || E || + α2β1 ], if α2β3 < 1    (6.102) 

It is clear that the two straight lines on the right-hand side of (6.101) and (6.102) will create a 

common region for || V || in the || E || - || V || plane. If α1β2 > 1 (the first straight line has a 

negative slope) and α2β3 < 1 (the second straight line has a positive slope), then an open 

region is created as shown in Figure 6.46. In this case, there is no common region in which 

the errors e and v are guaranteed to be bounded. Therefore, this case should be avoided.   
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Figure 6.47 A closed common region in the error space. 

Observe that we are dealing with norms, so only the first quadrant of the || E || - || V || plane is 

intersecting. To obtain a closed region on the plane, we can equate (6.101) and (6.102), which 

gives 

  
1 3

1

 
[(1– α1β2) || Er || – α1β1 ] = 

2 3

1

1 
[ α2β2 || Er || + α2β1 ],  (6.103) 

where || Er || is the value of || E || at a point denoted by r on the plane. Solving (6.103) for || Er 

||, we have 

 
1 1

r

1 2 2 3

|| E ||
1 ( )

 


    
      (6.104) 

  Substituting (6.104) into (6.102) yields the corresponding 

 
2 1

r

1 2 2 3

|| V ||
1 ( )

 


    
      (6.105)   

 

 Therefore, the intersection point r of the two straight lines has the coordinates 

  
1 1 2 1

r r

1 2 2 3 1 2 2 3

(|| E ||,|| V ||) .
1 ( ) 1 ( )

    
  

          
,  (6.106) 

 which are finite if α1β2 + α2β3 < 1. This situation is shown in Figure 6.47. We summarize the 

sufficient conditions in the following theorem: 

Theorem6.5. A sufficient condition for the BIBO stability of the fuzzy PI+D control system 

is that the fuzzy control gains KP, KI, KD are chosen such that there are constants α1, α2, β1, β2, 

β3 that together satisfy 

  (a) || E || ≤ α1 || U ||, || V || ≤ α2 || U ||, 
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  (b) β1 ≤ 
1

1

|| H ||
[ ( 1 + || N ||) . || y || + || H2 || . || w || ], 

  (c) β2 ≤ max{ || KP || , 1}, 

  (d) β3 ≤ max{ || KI || , || KD || }, 

  (e) α1β2 < 1, α2β3 < 1, 

  (f) α1β2 + α2β3 < 1, 

  and the closed region shown in Figure 6.47 is not empty. Here, 

   || y || = 
n 0

sup


|| y nT || 

Remark: The norm || y || in condition (b) of Theorem 6.5 need not be finite when verifying the 

constant β1; namely, if || y || = ∞ then condition (b) is trivially satisfied. However, if all the 

other conditions are satisfied simultaneously, then || y || would be finite as a result of the 

BIBO stability of the overall control system. 
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EXERCISE-6 

1. Following the derivation of the digital PD controller shown in Figure 6.14, verify the 

digital PI controller shown in Figure 6.24. 

2. Verify formulas (6.18) – (6.24) for the fuzzy PD controller by showing all the detailed 

derivation steps. 

3. Verify formulas (6.29) – (6.37) for the fuzzy PI controller by showing all the detailed 

derivation steps. 

4. Repeat all numerical simulations shown in Example 6.3, so as to experience how and 

how well the fuzzy PD controller works. 

5. Perform some numerical simulations for the fuzzy PI controller and compare them with 

the conventional PI controller. You may use the same models as those simulated in 

Example 6.3. 

6. Perform the graphical stability analysis studied in Section 6.8.5 on the fuzzy PD and 

fuzzy PI controller individually. 
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Chapter-7 

Non-linear Fuzzy Control 

7.1 INTRODUCTION 

The analytic functions employed in models of linear and nonlinear system operate on the 

domain of crisp reals. In addition we have the class of fuzzy systems whose models are 

generally algebraic mappings from the domain of crisp reals into a prespecified domain of 

fuzzy reals. Similarly the class of controllers can be divided into linear, nonlinear and fuzzy 

knowledge base controllers (FKBC). Figure 7.1 shows an open scheme for different types of 

systems and controllers. 

 

Fig. 7.1 open scheme for different types of systems and controllers. 
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Control systems theory, or what is called modern control systems theory today, can be traced 

back to the age of World War II, or even earlier, when the design, analysis, and synthesis of 

servomechanisms were essential in the manufacturing of electromechanical systems. The 

development of control systems theory has since gone through an evolutionary process, 

starting from some basic, simplistic, frequency-domain analysis for single-input single-output 

(SISO) linear control systems, and generalized to a mathematically sophisticated modern 

theory of multi-input multi-output (MIMO) linear or nonlinear systems described by 

differential and/or difference equations. 

It is believed that the advances of space technology in the 1950s completely changed the 

spirit and orientation of the classical control systems theory: the challenges posed by the high 

accuracy and extreme complexity of the space systems, such as space vehicles and structures, 

stimulated and promoted the existing control theory very strongly, developing it to such a 

high mathematical level that can use many new concepts like state-space and optimal 

controls. The theory is still rapidly growing today; it employs many advanced mathematics 

such as differential geometry, operation theory, and functional analysis, and connects to many 

theoretical and applied sciences like artificial intelligence, computer science, and various 

types of engineering.  

 The modern control systems theory, referred to as conventional or classical control systems 

theory, has been extensively developed. The theory is now relatively complete for linear 

control systems, and has taken the lead in modern technology and industrial applications 

where control and automation are fundamental. The theory has its solid foundation built on 

contemporary mathematical sciences and electrical engineering, as was just mentioned. As a 

result, it can provide rigorous analysis and often perfect solutions when a system is defined in 

precise mathematical terms. In addition to these advances, adaptive and robust as well as 

nonlinear systems control theories have also seen very rapid development in the last two 

decades, which have significantly extended the potential power and applicable range of the 

linear control systems theory in practice.  

 Conventional mathematics and control theory exclude vagueness and contradictory 

conditions. As a consequence, conventional control systems theory does not attempt to study 

any formulation, analysis, and control of what has been called fuzzy systems, which may be 

vague, incomplete, linguistically described, or even inconsistent. Fuzzy set theory and fuzzy 

logic, studied in some detail in Chapters 1 and 2, play a central role in the investigation of 

controlling such systems. The main contribution of fuzzy control theory, a new alternative 

and branch of control systems theory that uses fuzzy logic, is its ability to handle many 

practical problems that cannot be adequately managed by conventional control techniques. At 

the same time, the results of fuzzy control theory are consistent with the existing classical 

ones when the system under control reduces from fuzzy to non-fuzzy. In other words, many 

well-known classical results can be extended in some natural way to the fuzzy setting. We 

have many examples in which the interval arithmetic is consistent with the classical 

arithmetic when an interval becomes a point. 

 The fuzzy logic is consistent with the classical logic when the multi-valued inference 

becomes two-valued andThe fuzzy stability and fuzzy controllability and observability 

become the classical ones when the fuzzy control systems become non-fuzzy. On the other 
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hand, if there exists a good enough non-fuzzy (crisp) models of the process; we can adopt 

methods from linear and nonlinear control theory for the FKBC design. 

Basically, the aim of fuzzy control systems theory is to extend the existing successful 

conventional control systems techniques and methods as much as possible, and to develop 

many new and special-purposed ones for a much larger class of complex, complicated and ill-

modeled systems of fuzzy systems. This theory is developed for solving real-world problems. 

The fuzzy modeling techniques, fuzzy logic inference and decision-making, and fuzzy control 

methods are studied in this chapter. The real-world problems exist in the first place. Fuzzy 

logic, fuzzy set theory, fuzzy modeling, fuzzy control methods, etc. are all man-made and 

subjectively introduced to the scene. If this fuzzy interpretation is correct and if the fuzzy 

theory works, then we are able to solve the real-world problems. We also study this routine in 

detail for various control systems design and applications in this chapter.  

7.2 THE CONTROL PROBLEM (CRISP LOGIC)  

A programmable logic controller (PLC) is a simple microprocessor-based, specialized 

computer that carries out logical control functions of many types, with the general structure 

shown in Figure 7.2. A PLC usually operates on ordinary house current but may control 

circuits of large amperage and voltage of 440V and higher.  

 

Fig. 7.2 A programmable logic controller (PLC) 

A PLC typically has a detachable programmer module used to construct a new program or 

modify an existing one, which can be taken easily from one PLC to another. The program 

instructions are typed into the memory by the user via a keyboard. The central processing unit 

(CPU) is the heart of the PLC, which has three parts:  

(i) The processor, 

(ii) Memory and  

(iii) Power supply.  
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In the input-output (I/O) modules, the input module has terminals into which the user enters 

outside process electrical signals and the output module has another set of terminals that send 

action signals to the processor. A remote electronic system for connecting the I/O modules to 

long-distance locations can be added, so that the actual operating process under the PLC 

control can be some miles away from the CPU and its I/O modules. Optional units include 

racks, chassis, printer, program recorder/player, etc.  

To see how a PLC works, let us consider an example of a simple pick-and place robot arm 

working in an automatic cycle under the control of a PLC. This simple robot arms is shown in 

Figure 7.3, which has three joints: one rotational type and two sliding types, as indicated by 

the arrows; and has a gripper that can close (to grasp an object) and open (to release the 

object).  

 

 

Fig. 7.3 A pick-and-place robot arm controlled by a PLC. 

To control this robot arm, according to the structure shown in Figure 7.3, we need eight 

actions created by the PLC, called outputs of the PLC, as follows:  

A0: rotate the base counterclockwise (CCW), 

   A1: rotate the base clockwise (CW), 

   A2: lift the arm, 

   A3: lower the arm,  

   A4: extend the arm,  

   A5: retract the arm,  

   A6: close the gripper,  

   A7: open the gripper.  

Suppose that in each cycle of the control process, the entire job performance is completed in 

12 steps sequentially within 40 seconds, as shown in Figure 7.4  
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Fig.7.4  Time duration of activities of the robot arm. 

In Figure 7.4, it is shown that the PLC is needed to first operate the “extend arm” action for 4 

seconds (from the beginning), and then stop this action. To this end, the PLC operates the 

“lower arm” action for 2 seconds and then stops, and so on. For simplicity, we assume that 

the transitions between any two consecutive steps are continuous and smooth, so that no time 

is needed for any of these transitions.  

 

Table 7.1 PLC Drum-Timer Array for the Robot Arm 

Step  Counts 

(Count/sec 

Outputs 

A0 A1 A2 A3 A4 A5 A6 A7 

1 4 0 0 0 0 1 0 0 0 

2 2 0 0 0 1 0 0 0 0 

3 1 0 0 0 0 0 0 1 0 

4 2 0 0 0 0 0 0 0 0 

5 4 0 0 0 0 0 1 0 0 

6 7 1 0 0 0 0 0 0 0 

7 4 0 0 0 0 1 0 0 0 

8 2 0 0 0 1 0 0 0 0 

9 1 0 0 0 0 0 0 0 1 

10 2 0 0 1 0 0 0 0 0 

11 4 0 0 0 0 0 1 0 0 

12 7 0 1 0 0 0 0 0 0 
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To set up the PLC timer, called the drum-timer, so as to accomplish these sequential activities 

of the robot arm, we need to select the time frequency for the PLC. Since the smallest step 

time in Figure 7.4 is the 1-second gripper operation, we select a count frequency of 1 count 

per second. The entire PLC drum-timer array is shown in Table 7.1, where 1 means ON and 0 

means OFF.  

The above-described sequential control process is by nature an open-loop control procedure. 

Now, if we use sensors to provide feedback information at each step of the arm’s motion, then 

we can also perform a closed-loop logic control. 

For this purpose, mechanical limit switches (or proximity switches) can be used to sense the 

point of completion of each arm motion and, hence, provide inputs to the PLC. The PLC can 

then be programmed not to begin the next step until the previous step has been completed, 

regardless of how much time this might take.  

We use, by industrial convention, the number symbol 00 to represent the input from the limit 

switch that signals completion of the previous output A0 (“rotating the base 

counterclockwise”), 01 to represent the input from the limit switch that signals completion of 

the previous output A1 (“rotating the base clockwise”) and 07 for the input that signals 

completion of A7. The entire scheme, together with necessary prior inputs for each arm 

motion, is shown in Table 7.2. It may be noted that in this diagram usually two previous steps 

are sufficient as prerequisite, but one more is needed in case two are not enough for 

distinction of different actions. 

It is also important to remark that if we do not consider the necessary prior conditions, then 

when the PLC applies the logic control to the robot arm, it may make mistakes. For example, 

the second step in Table 7.2 is “lower arm,” for which the completion is represented by 03. If 

03 were to be used as the logic input to trigger the next step in the sequential operations, the 

“close gripper” action, the robot arm would always close its gripper after it executes the 

action “lower arm.” However, the eighth step of the program is also “lower arm,” but it is 

followed by “open gripper” instead. Hence, it is necessary to provide other prior conditions to 

the eighth step to ensure that it would not repeat the second step here.  

Table 7.2 Robot Arm Control Scheme 

Arm Motion PLC Outputs PLC Inputs Necessary Prior Conditions 

extend arm A4 04 01,07 

lower arm A3 03 01,04,07 

close gripper A6 06 01,03 

lift arm A2 02 01,06 

retract arm A5 05 01,02,06 

rotate base CCW A0 00 05,06 

extend arm A4 04 00,06 

lower arm A3 03 00,04,06 

open gripper A7 07 00,03 

lift arm A2 02 00,07 

retract arm A5 05 00,02,07 

rotate base CW A1 01 05,07 
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Figure 7.5 shows the ladder logic diagram corresponding to Table 7.2 in which the standard 

symbols listed in Table 7.3 are used and the input contact P0 is used to represent a power-ON 

switch. Here, the input contacts include switches, relays, photoelectric sensors, limit switches, 

and other ON-OFF signals from the logical system; the output loads include motors, valves, 

alarms, bells, lights, actuators, or other electrical loads to be driven by the logical system. We 

should not confuse the input contact symbol with the familiar circuit symbol for capacitors. 

Also, we should note that output loads can become input contacts in the following steps, 

depending on the actual system structure. 

In a routine yet somewhat tedious procedure, we can verify that the PLC ladder logic diagram 

shown in Figure 7.5 performs the automatic control process summarized in Table 7.2. Under 

the indicated necessary prior conditions for each step during the entire process, this PLC 

works for the designed “pick-and-place” motion-control of the robot arm described by Figure 

7.4.  

 

Table 7.3 Lader diagram symbol 
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Fig.7.5. PLC ladder logic diagram for the robot. 

The design procedure is time-consuming. However, once a design has been completed, the 

PLC can be automatically programmed over and over again, to control the robot arm to repeat 

the same “pick-and-place” motion for the production line. When the job assignment is 

changed, the PLC has the flexibility to be reprogrammed to perform a new logic control 

process. 

7.3 THE CONTROL PROBLEM (FUZZY LOGIC) MODEL-FREE   

APPROACH 

The programmable logic controllers (PLCs) discussed in the section7.2 have been widely 

used in industries and can only perform classical two valued logic in programming. Some are 

relatively simple but very precise automatic control processes. To carry out fuzzy logic-based 

control programming, a new type of programmable fuzzy logic controllers is needed.  
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The majority of fuzzy logic control systems are knowledge-based systems in that either their 

fuzzy models or their fuzzy logic controllers are described by fuzzy IF-THEN rules, which 

have to be established based on experts’ knowledge about the systems, controllers, 

performance, etc. Moreover, the introduction of input-output intervals and membership 

functions is more or less subjective, depending on the designer’s experience and the available 

information. However, we emphasize once again that after the determination of the fuzzy 

sets, all mathematics to follow are rigorous. Also, the purpose of designing and applying 

fuzzy logic control systems is, above all, to tackle those vague, ill-described, and complex 

plants and processes that can hardly be handled by classical systems theory, classical control 

techniques, and classical two-valued logic. There are two types of fuzzy logic control system:  

(i)  The fuzzy logic controller directly performs the control actions and thus completely 

replaces a conventional control algorithm.  

(ii)  The fuzzy logic controller is involved in a conventional control system and thus 

becomes part of the mixed control algorithm, so far as to enhance or improve the 

performance of the overall control system.  

In this section, we first discuss a general approach of fuzzy logic control for a conventional 

(crisp) system (plant or process) of the feedback (closed loop) type. 

7.3.1 .A Closed-Loop Set-Point Tracking System 

To facilitate our presentation and discussion, we consider the typical continuous-time, closed-

loop, set-point tracking system shown in Figure 7.6. In this figure, we assume that the plant is 

a conventional (crisp) one, which is given but its mathematical model may not be known, and 

that all the signals (r, e, and y) are crisp. The closed-loop set-point tracking control problem is 

to design the controller such that the output signal of the controlled plant, y, can track the 

given reference signal r (need not be a constant): 

 e(t) : = r(t) - y(t)  0  (t  ). 

 

 

Fig. 7.6 General structure of a fuzzy logic controller 

Instead of designing a conventional controller, we study how to design a fuzzy logic 

controller for the same purpose. Recall that in designing a conventional controller, a precise 

mathematical model (formulation) of the plant is usually necessary. A typical example is the 

conventional proportional-integral-derivative (PID) controller design, where the first- or 

second-order linear plant transfer function has to be first given. We review and discuss these 
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conventional PID controllers in Chapter 6. Here, to design a fuzzy logic controller, not  

necessarily of PID-type, for set point tracking, we suppose that the mathematical formulation 

of the plant is completely unknown. 

If the mathematical formula of the plant is unknown, for instance we don’t even know if it is 

linear or nonlinear (and, if it is linear, we don’t know what order it has; if it is nonlinear, we 

don’t know what kind of nonlinearity it has), how can we design a controller to perform the 

required set-point tracking? One may think of designing a conventional controller and try to 

answer this question at this point, to appreciate the ease of fuzzy logic controller design to be 

studied below. 

Before we discuss how fuzzy logic can help in completing such a design for a “black box” 

system, we need to clarify some basic concepts and to introduce some new terminology.  

First, the general structure of a fuzzy logic controller (FLC), or fuzzy controller (FC) consists 

of three basic portions:The fuzzification unit at the input terminal, 

the inference engine built on the fuzzy logic control rule base in the core, and 

The defuzzification unit at the output terminal (refer to Figure 7.7). 

 

 

 

Fig. 7.7 General structure of a fuzzy logic controller 

The fuzzification module transforms the physical values of the current process signal, the 

error signal in Figure 7.6 which is input to the fuzzy logic controller, into a normalized fuzzy 

subset consisting of a subset (interval) for the range of the input values and an associate 

membership function describing the degrees of the confidence of the input belonging to this 

range. The purpose of this fuzzification step is to make the input physical signal compatible 

with the fuzzy control rule base in the core of the controller. Here, between the physical input 

signal and the fuzzy subset within the fuzzification unit, a pre-processing unit mapping the 

physical signal to some pointwise and crisp real values (that the fuzzy subset can accept) 

depending on the nature of the underlying process may be needed. Generally, a universal 

fuzzy logic controller for the closed-loop set-point tracking system shown in Figure 7.6 is 

unlikely possible.  

Hence, the fuzzy subset, both the subset and the membership function, has to be selected by 

the designer according to the particular application at hand. In other words, depending on the 

nature and characteristics of the given plant and reference signal the FLC has to be designed 

to fit to the need to make the closed-loop fuzzy control system work for that particular 
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application. This situation is just like the design of a conventional controller for a specifically 

given system, where there is no universal controller in practical design. 

 The role of the inference engine in the FLC is key to make the controller work and work 

effectively. The job of the “engine” is to create the control actions, in fuzzy terms, according 

to the information provided by the fuzzification module and the set-point tracking 

requirement (and perhaps other control performance requirements as well). A typical fuzzy 

logic IF-THEN rule base performing the inference is in the general form that was studied in 

detail in Sections 3 of Chapter 3. More specifically, the rule base is a set of IF-THEN rules of 

the form 

  R1 : IF  controller input e1 is E11 AND ... AND controller input en is E1n 

  THEN controller output u1 is U1. 

 Rm: IF controller input e1 is Em1 AND ... AND controller input en is Emn 

  THEN controller output um is Um. 

Here, as discussed in Sections 3.2 – 3.4 of Chapter 3, the fuzzy subsets E11, ...,Em1 share the 

same subset E1 and the same membership function 
1E defined on E1, and fuzzy subsets E1n, 

…., Emn share the same subset En and the same membership function 
nE  defined on En. In 

general, m rules produce m controller outputs, u1, ..., um, belonging to m fuzzy subsets, U1, ..., 

Um, in which, of course, some of them may overlap. The establishment of this rule base 

depends heavily on the designer’s work experience, knowledge about the physical plant, 

analysis and design skills, etc., and is, hence, more or less subjective. Thus, a good design can 

make the controller work; a better design can make it work more effectively. This situation is 

just like conventional design: any specific design is not unique in general. Yet, there are some 

general criteria and some routine steps for the designer to follow in a real design, which will 

be discussed in more detail later. Here, basically, what have to be determined are the choices 

of the controller’s input and output variables and the IF-THEN rules. 

The defuzzification module is the connection between the control rule base and the physical 

plant to be controlled that plays the role of a transformer mapping the controller outputs 

(generated by the control rule base in fuzzy terms) back to the crisp values that the plant can 

accept. Hence, in a sense the defuzzification module is the inverse of the fuzzification 

module. The controller outputs u1, ..., um generated by the rule base above are fuzzy signals 

belonging to the fuzzy subsets U1, ..., Um respectively. The job of the defuzzification module 

is to convert these fuzzy controller outputs to a pointwise and crisp real signal, u, and then 

send it to the physical plant as a control action for tracking. Between the defuzzification step 

and the physical plant, a post-processing unit mapping the pointwise signal u to a physical 

signal (that the plant can accept) may be needed, depending again on the nature of the 

underlying process. What has to be determined in this stage is essentially a defuzzification 

formula. There are several commonly used, logically meaningful, and practically effective 

defuzzification formulas available, which are by nature weighted average formulas in various 

forms. 

This tree-step design routine, the “fuzzification – rule base establishment – defuzzification” 

procedure, is further discussed in next section. 
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7.3.2. Design Principle of Fuzzy Logic Controllers 

Now, we discuss some design principles of a fuzzy logic controller using the typical structure 

shown in Figure 7.7 for the setpoint tracking system depicted in Figure 7.6. 

We only consider a continuous-time single-input/single-output (SISO) system in this study 

for simplicity of notation. Discrete-time and multi-input/ multi-output (MIMO) cases can be 

similarly discussed. 

Suppose that a scalar-valued reference signal r, the set-point, is given, which needs not be a 

constant in general. For ease of explanation, we fix it to be constant in the following 

discussion. A plant is also assumed to be given, whose mathematical formulation is assumed 

to be unavailable. The aim is to design a fuzzy logic controller, to be put into the controller 

block of Figure 7.6, to derive the plant output y(t) to track the constant set-point r as t→∞ or 

in other words, to force the error signal 

e(t) = r – y(t)  0  (t  ) 

This is a general approach for the design of the fuzzy logic controller. 

 

7.3.3 The Fuzzification Module.  

The fuzzification module performs the following functions: 

(a) It transforms the physical values (position, voltage, degree, etc.) of the process signal, the 

error signal shown in Figure 7.7 which is an input to the fuzzy logic controller, into a 

normalized fuzzy subset consisting of a subset (interval) for the range of the input values and 

a normalized membership function describing the degree of confidence of the input belonging 

to this range. 

For example, suppose that the physical error signal, the input to the fuzzy logic controller 

shown in Figure 7.7, is the degree of temperature. Suppose also that the distribution of this 

temperature error signal is within the range [–25,45] in an application in which the fuzzy 

logic controller needs to be designed to reduce this error to 0  0.01. In this case, the scale 

of 1 is too large to use in the measurement of the control effect within 0.01. Hence, we 

may first try to rescale the range to be [−2500, 4500] in the unit of 0.01. But this is not 

convenient in the calculation of fuzzy membership functions either. To have a compromise, a 

better choice can be a combination of two different scales (see Figure 7.8): Use [−25, 45] 

when |error| > 1 and 

   Use [−100*, 100*] when |error| ≤ 1, with 1 = 100*.   
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Fig.7.8 Selection example of membership function 

(b) It selects reasonable and good, ideally optimal, membership functions under certain 

convenient criteria meaningful to the application 

In the above-described temperature control example, one may use the membership functions 

shown in Figure 7.8 to describe “the error is positive large (PL)” or “the error is negative 

large (NL)”, etc., in which one figure is in the 1 scale and the other is in the 1* = 0.01 scale. 

A designer may have other choices, of course, but this example should provide some idea 

about how the selection can be done in general. 

In the fuzzification module, the input is a crisp physical signal (e.g., temperature) of the real 

process and the output is a fuzzy subset consisting of intervals and membership functions. 

This output will be the input to the next module, the fuzzy logic IF-THEN rule base for the 

control, which requires fuzzy-subset inputs in order to be compatible with the fuzzy logic 

rules. 

7.3.4 The Fuzzy Logic Rule Base.  

Designing a good fuzzy logic rule base is key to obtaining a satisfactory controller for a 

particular application. Classical analysis and control strategies should be incorporated in the 

establishment of a rule base. A general procedure in designing a fuzzy logic rule base 

includes the following: 

(i) To determine the process states and control variables. 

In the set-point tracking example discussed above in Figures 7.6 and 7.7, let us suppose that 

the physical process is a temperature control. Thus, the set-point r is a target temperature to 

be reached, say r = 45. In this application, the process state is the overall controlled system 

output, y(t), which is also temperature. Finally, the error signal 

    e(t) = r − y(t),       …(7.1)  

as shown in Figure 7.9, is used to create the control variable u (see Figure 7.6) through the 

controller. 
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Fig. 7.9 Temperature set point tracking example 

(ii) To determine input variables to the controller. 

As mentioned above, the tracking error signal e(t) is an input variable to the controller (see 

Figures 7.6 and 7.7). Generally, we need more auxiliary input variables in order to establish a 

complete and effective rule base. In this temperature control example, it can be easily seen 

that only the error signal e(t) is not enough to write an IF-THEN control rule. Indeed, let us 

say e > 0 at a moment. Then we know e = r − y > 0 or r > y, i.e., at that moment the system 

output y is below the set-point. This indicates that the output y is either at position a or 

position d in Figure 7.9. However, this information is not sufficient for determining a control 

strategy that can bring the trajectory of y to approach the set-point there are two cases: 

Case1. If the output y is at position a then the controller should take action to keep the 

trajectory going up 

Case2, If y is at position d then the controller should turn the trajectory to the opposite 

moving direction (from pointing down to pointing up). 

In the first case the controller should maintain the previous action but in the second case it 

should switch its previous action to the opposite. Therefore, one more input variable that can 

distinguish these two situations is necessary. 

It may be recalled from Calculus that if a curve is moving up its derivative is positive and if it 

is moving down its derivative is negative. Hence, the change of the error signal, denoted e  or 

e can help distinguish the two situations at points a and d as well as that at points b and c as 

shown in Figure 7.9. Hence, we introduce the change of error as the second input variable for 

this temperature set-point tracking example. More input variables can be introduced such as 

the second derivative e  or the sum (integral) e of the errors, to make the controller work 

more effectively. However, this will also complicate the design, and so there is a trade-off for 

the design engineer. In order to simplify the design and for simplicity of discussion, in this 

example we only use two input variables e and e  for the controller. 

(iii) To establish a fuzzy logic IF-THEN rule base 

The input variables determined in the previous step will be used in the design of the rule base 

for control. As mentioned above, successful classical analysis and control strategies should  
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also be incorporated in the design. To obtain some ideas and insights about the rule base 

design, we consider again the above temperature control example. 

In Figure 7.9, it is clear that essentially we have four situations to consider: when the 

temperature output y(t) is at the situations represented by the points a, b, c, and d. We thus 

need at least four rules for this set-point tracking application in order to make it work and 

work effectively.  

 In principle, also intuitively, we can set up the following four control rules, where u is the 

output (control action) of the controller: 

  R1 : IF e > 0 AND e  < 0 THEN u(t+) = u(t); 

  R2 : IF e < 0 AND e  < 0 THEN u(t+) = −u(t); 

  R3 : IF e < 0 AND e  > 0 THEN u(t+) = u(t); 

  R4 : IF e > 0 AND e  > 0 THEN u(t+) = −u(t). 

  Otherwise (e.g., e = 0 or e  = 0), u(t+) = u(t), until the next step. 

  In Figure 4.8, it is very important to observe that 

   e (t) = r  − y (t) = − y  (t).      …(7.2) 

Hence, the rules R1, R2, R3 and R4 correspond to the situations indicated by points a, b, c, and 

d respectively in Figure 7.9. In these rules, the notation u(t+) = u(t) means that, conceptually, 

the controller retains its previous action unchanged, u(t+) = −u(t) means that the controller 

turns its previous action to the opposite (e.g., from a positive action to a negative action, or 

vice versa). Quantitative implementation of these actions will be further discussed below. 

 To this end, it can be easily realized that by following the above four rules, the controller is 

able to drive the temperature output y(t) to track the set-point r, at least in principle. For 

example, if e > 0 and e  < 0 then r > y and y  > 0, which means that the     curve y is at 

position a of Figure 7.9. In this case, rule R1 implies that the controller should maintain its 

current action (to keep pushing the system in the same way). The other three rules can be 

similarly analyzed. 

 For technical issues let us again look at the situation at point a in Figure 7.9, which has the 

control rule R1. One problem with this rule is that if the previous control action u was small, 

this rule would let the controller keep driving the output temperature up toward the set-point, 

but very slowly; so it may need a long time to complete the task. Another problem with this 

rule is that if the previous control action u was large, this rule would lead the controller to 

drive the output temperature overshooting the set-point. As a result of such rules and actions, 

the output temperature oscillates up and down around the set-point, which may not eventually 

settle at the set-point, or take a very long time to do so. Hence, these four rules have to be 

further improved. 

 It may be recalled that we have fuzzified the error signal e in the fuzzification module. If we 

also fuzzify the change of error, e , in the fuzzification module, then we have two fuzzified 

input variables, e and e , for the controller, and they have corresponding membership 
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functions to describe their properties of “positive large,” “negative small”, etc. These 

properties can be used to improve the above rules. Again, let us consider the situation at point 

a in Figure 4.8 and its corresponding control rule R1. It is clear that if the error e > 0 is small 

then the controller can take a smaller action, and if the error e > 0 is large then the controller 

can take a larger action. In doing so, the output trajectory y(t) will be directed to the set-point 

correctly and more efficiently. Therefore, we should incorporate the membership values of 

the two input variables e and e  in the four control rules. 

To further simplify the notation and discussion below, we only use the simple membership 

functions shown in Figure 7.10 rather than those shown in Figure 7.8 for both e and e . In a 

real application, of course, a designer can (and likely should) employ more membership 

functions. 

 

 

 

Fig. 7.10 Four membership function for both e and e  

 

Using these membership functions as weights for the control u(t), we can accomplish the 

following task: if y is far away from r then the control action is large, but if y is close to r then 

the control action is small. The improved control rule base is obtained as follows: 

   R1 : IF e = PL AND e  < 0 THEN u(t+) = PL(e) . u(t); 

   R2 : IF e = PS AND e  < 0 THEN u(t+) = (1 − PS(e)) . u(t); 

   R3 : IF e = NL AND e  < 0 THEN u(t+) = −NL(e) . u(t); 

   R4 : IF e = NS AND e  < 0 THEN u(t+) = −(1 − NS(e)) . u(t); 

   R5 : IF e = NL AND e  > 0 THEN u(t+) = NL(e) . u(t); 

   R6 : IF e = NS AND e  > 0 THEN u(t+) = (1 − NS(e)) . u(t); 

   R7 : IF e = PL AND e  > 0 THEN u(t+) = −PL(e) . u(t); 

   R8 : IF e = PS AND e  > 0 THEN u(t + 1) = −(1 − PS(e)) . u(t), 

  Here and below “= PL” means “is PL”, etc.  
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These rules can be easily verified by taking into account the temperature output curve y(t) 

shown in Figure 7.9 the relation y (t) = - e (t), and the four membership functions for e (and 

the same four membership functions for e ) as shown in Figure 7.10. Note that “.” in the 

formulas of u(t+1) above are algebraic multiplications. 

To implement these rules on a digital computer, we actually use their discrete-time version of 

the form 

 u(t) = u(kT) and u(t+) = u((k+1)T),      …(7.3) 

where T is the sampling time and u(kT) is the value of the new change of the control action 

and u(t) at t = kT, k = 0, 1, 2, .... Thus, the actual executive rules on a computer program 

become 

   R1:  IF e(kT) = PL AND e  (kT) < 0 

     THEN u((k+1)T ) = μPL(e(kT)) . u(kT); 

   R2 :  IF e(kT) = PS AND e  (kT) < 0 

    THEN u((k+1)T) = (1 − μPS(e(kT))) . u(kT); 

   R3 :  IF e(kT) = NL AND e  (kT) < 0 

    THEN u((k+1)T ) = −μNL(e(kT)) . u(kT); 

   R4 :  IF e(kT) = NS AND e  (kT) < 0 

    THEN u((k+1)T ) = −(1 − μNS(e(kT))) . u(kT); 

   R5 :  IF e(kT) = NL AND e  (kT) > 0 

    THEN u((k+1)T ) = μNL(e(kT)) . u(kT); 

   R6 :  IF e(kT) = NS AND e  (kT) > 0 

    THEN u((k+1)T ) = (1−μNS(e(kT))) . u(kT); 

   R7 :  IF e(kT) = PL AND e  (kT) > 0 

    THEN u((k+1)T ) = −μPL(e(kT)) . u(kT); 

for all k = 0, 1, 2, ..., where e  (kT) 
1

T
 [e(kT) − e((k − 1)T)]with the initial conditions y(0) 

= 0, e(−T) = e(0) = r − y(0), e (0) = 
1

T
[e(0) − e(−T)] = 0. 

We finally remark that another commonly used alternative for determining the weight of the 

control u(t) is to give it a value of PL, PS, NL or NS. More specifically, we put the above rule 

base in a tabular form as shown in Table 7.4. 
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Table 7.4 is sometimes called a “look-up table,” which can be made more accurate by 

dividing both e and e& into more sub cases. Table 7.5 gives an example of a more subtle rule-

base table for fuzzy logic controller whose control action is proportional to both e and e , 

namely,  

   u((k+1)T) = a e(kT) + b e  (kT) 

Table 7.4 a Rule Base in Tabular Form for u 

 

Table 7.5 a Rule Base in Tabular Form for u = ae + b e  

 

 

for some constants a > 0 and b > 0, where NM and ZO mean “negative medium” and “zero,” 

respectively, and the other abbreviations are similarly understood. 

Finally, we need to select membership functions for the different control outputs, given either 

by the formulas shown in the rule base R1 - R8 above, or by the linguistic terms PL, PS, NS 

and NL shown in Table 7.4. Figure 7.11 is a simple, yet typical choice for the membership 

functions of u, where P, N, and ZO indicate positive, negative, and zero, respectively, and H 

is a real number. 

(iv) To establish a fuzzy logic inference engine 

In order to complete the fuzzy logic inference embedded in the control rule base, the general 

fuzzy IF-THEN rule given in Chapter 3 Table 3.3 has to be applied to each rule in the rule 

base. 
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Fig. 7.11 Typical membership function for u 

Take the first rule as an example: 

R1 :  IF e(kT) = PL AND e (kT) < 0THEN u((k+1)T) = PL(e(kT)) . u(kT). 

In this rule, e(kT) = PL has a membership function PL(e(kT)) shown in Figure 7.10 (a),  

e  (kT) < 0 is non-fuzzy and so has membership values N( e (kT)) = 1 and  

u((k+1)T) has three membership functions as shown in Figure 7.11. Thus, the fuzzy logic 

inference 

PL(e(kT))  N( e  (kT))  (u((k + 1)T))  

yields the logical inference membership function (see Chapter 3 for more detail): 

  (u((k+1)T)) = min {PL(e(kT)) , N( e (kT)) } = PL(e(kT)) 

  without using the membership functions shown in Figure 7.11. 

 Another approach is to use the output membership functions shown in Figure 4.10, along 

with the weighted average formula given by 3.1.3 as shown in formula (7.4) below: 

  

i

i

N

U i i

i 1

N

U i

i 1

(u (kT)).u (kT)

u((k 1)T)

(u (kT))







 






      …(7.4) 

Once this logical inference has a fuzzy logic membership function, it is completed as a 

logical formula. A fuzzy logic control rule base with all complete logical inference 

membership functions is called a fuzzy logic inference engine: it activates the rules with 

fuzzy logic. 

Remarks:The logical inference membership functions are usually not used in the design of a 

digital fuzzy logic controller in many control engineering applications today, where only the 

control rule base discussed in the last part (iv) is essential.We follow this common practice to 

use the rule base rather than the inference engine in the rest of the chapter. This is a design of 

a controller for which the design engineer has a choice of what approach to adopt. It is just 

like a classical controller design for which the designer usually has different options. 
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7.3.5 The Defuzzification Module.  

The defuzzification module is in a sense the reverse of the fuzzification module and it 

converts all the fuzzy terms created by the rule base of the controller to crisp terms 

(numerical values) and then sends them to the physical system (plant, process), so as to 

execute the control of the system. 

  The defuzzification module performs the following functions: 

(a)  It creates a crisp, overall control signal u by combining all possible control outputs from 

the rule base into a weighted average formula such as 

  

N

i i

i 1

N

i

i 1

u (kT)

u((k 1)T) 





 






, where 

N

i i

i 1

( 0, 0)


    .  …(7.5)   

In the control rule base R1 - R8, established above, we obtained eight different control 

outputs u denoted by ui(kT), i = 1, ..., 8. 

  Suppose that we have a fuzzy logic control rule base 

   Ri : IF e(kT) is Ei AND e (kT) is Fi THEN ui((k + 1)T) is Ui, 

where i = 1, ..., N; Ei, Fi, and Ui are fuzzy subsets consisting of some bounded intervals 

with their associated membership functions Ei(.), Fi(.) and Ui(.) respectively. Note that 

this control rule base may also be given in a tabular form like the one shown in Table 7.5. 

  There are several commonly used defuzzification formulas: 

(i) The “center-of-gravity” formula: 

  ,    

It is by nature the same as the formula (3.1 – (ii) introduced in Chapter 3. The 

continuous-time version of this formula is 

  

U

U

U

U

(u).u du

u(t)
(u)du









,        …(7.6) 

where U is the value range (interval) of the control u  in the rule base (the continuous-

time version): 

   R : IF e(t) is E AND e (t) is F THEN u(t+) is U. 

In applications, namely, in a practical engineering design employing digital computers, 

the continuous-time formulation is seldom used. However, the continuous-time formula 

(7.6) best explains the name of the formula:  
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If U represents the density function over a rigid body of volume U and u is a coordinate 

variable, say the horizontal x-coordinate (in a three-dimensional x-y-z Cartesian space), 

then formula (7.6) gives the x-coordinate of the center of mass (gravity) of the body (at 

time t), as is well known in Calculus and Mechanics. 

(ii) The “center-of-sums” formula: 

  
j

j

N N

i U i

i 1 j 1

N N

U i

i 1 j 1

u (kT). (u (kT))

u((k 1)T)

(u (kT))

 

 



 



 


     …(7.7) 

  This formula can be computed faster than the “center-of-gravity” formula 

  (7.5). Its continuous-time version is 

  

j

j

N

U

j 1U
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u. (u)du

u(t)

(u)du














       …(7.8) 

(iii) The “mean-of-maxima” formula: 

For each rule Ri, i = 1, ..., N, we first find the particular control output value ui(kT) from 

its value range (interval) Ui at which its membership value reaches the maximum: 

Ui(ui(kT)) = maximum (= 1 in the normalized case). If there are several such values 

ui(kT) at which their membership values reach the maxima, then we count the 

multiplicities. If there is a continuum (subinterval) of such values ui(kT) at which their 

membership values reach the maxima, then we pick the smallest and the largest values 

and count them just twice. Let us say the total number of such values of ui(kT), at which 

their membership values reach the maxima, is M. Then we take their mean (average) in 

the following form: 

  
M

j

i 1

1
u(kT) u (kT)

M 

                       …(7.9) 

  Its continuous-time version is 

U

1
u(t) {inf{u U | (u) max imum}

2
    

Usup{u U | (u) max imum}}   …(7.10) 

Ther e are other defuzzification formulas suggested in the literature, each of which has its 

own rationale, either from logical argument or from geometrical reasoning, or from 

control principles. We will however only discuss the “center-of-gravity” formula (7.5) 

throughout the chapter. 
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(b) Just like the first step of the fuzzification module, this step of the defuzzification module 

transforms the after all control output, u, obtained in the previous step, to the 

corresponding physical values (position, voltage, degree, etc.) that the system (plant, 

process) can accept. This converts the fuzzy logic controller’s numerical output to a 

physical means that can actually drive the given plant (process) to produce the expected 

outputs. 

The overall fuzzy logic controller that combines the “fuzzification – rule base - 

defuzzification” modules has been shown in Figure 7.7 and is the controller block in the 

closed-loop set-point control system of Figure 7.6. 

Finally, it is very important to recall that the design of the fuzzy logic controller that we 

discussed in this section does not require any information about the system (plant, 

process). It doesn’t matter if the system is linear or nonlinear (nor the order of linearity, 

structure of nonlinearity, etc.) as long as its output, y, can be measured by a sensor and 

used for the control. In other words, the design of the fuzzy logic controller is 

independent of the mathematical model of the system under control. Comparing it with 

the conventional controllers design, its advantages are obvious.  

The price that we have to pay for this success is the complexity in computation in the 

design: the “fuzzification - rule base - defuzzification” steps. But this is what it is 

supposed to be: under a worse condition (the system model is unknown, or only vaguely 

given). If we want to design a controller to achieve the same (or better) set-point tracking 

performance, then we have to do more analysis and calculation in the design. This is 

generally true in a sensible comparison of a fuzzy logic controller with a similar 

conventional one. It is likely impossible to obtain a better controller with less effort for a 

system under even worse conditions. However, the rapid development of modern high-

speed computers has made such computational tasks affordable. 

7.4. EXAMPLES OF MODEL-FREE FUZZY CONTROLLER DESIGN 

Two examples are given in this section to illustrate the model-free fuzzy control approach and 

to demonstrate its effectiveness in controlling a complex mechanical system without 

assuming its mathematical model. 

Example 7.1 

We first consider a truck-parking control problem, as shown in Figure 7.12. The objective is 

to design a fuzzy logic controller, without assuming a mathematical model of the truck, to 

park the truck anywhere on the x-axis. Suppose that the truck can move forward at a constant 

speed of v = 0.5 m/s and it is assumed that the truck is equipped with sensors that can 

measure location (x, y) and orientation (angle)  at all times. The fuzzy logic controller is to 

provide an input, u, to rotate the steering wheels and, consequently, to maneuver the truck. 

In the simulation, the input variables are the truck angle  and the vertical position 

coordinate, y, while the output variable is the steering angle (signal), u. The variable ranges 

are pre-assigned as –100 ≤ y ≤ 100, –180 ≤  ≤ 180, –30 ≤ u ≤ 30. 
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Here, clockwise rotations are considered positive in  and likewise, counterclockwise are 

negative. The linguistic terms used in this design are given as follows: 

Angle    y-position    Steering angle u 

  AB: Above   AO: Above much   NB: Negative big 

  AC: Above center  AR: Above    NM: Negative medium 

  CE: Center   AH: Above horizontal  NS: Negative small 

  BC: Below center  HZ: Horizontal   ZE: Zero 

  BE: Below   BH: Below horizontal  PS: Positive small 

      BR: Below    PM: Positive medium 

     BO: Below much   PB: Positive big 

 

Fig. 7.12 A truck driving control example 

The first step is to choose membership functions. They are as shown in Figures 7.12 – 7.15. 

These choices of their shapes, ranges and overlapping are somewhat arbitrary. We only note 

that narrow membership functions are used to permit fine control near the designated parking 

spot, while wide membership functions are used to perform fast controls when the truck is far 

away from the parking place. 

 

 

Fig. 7.13 Fuzzy membership functions for the position y 
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Fig. 7.14 Fuzzy membership functions for the angle  

 

Fig. 7.13 Fuzzy membership functions for the control signal u 

 

The rule base used in simulation is summarized in Table 7.6. Each rule has the form IF y is Y 

AND  is   THEN u is U, as usual. A glance of these rules reveals the symmetry, an 

intrinsic property of this controller, which is reasonable for this parking application since the 

truck can move in any direction. This is not always the case, which can be seen from the next 

example where symmetry of control rules is not reasonable. 

Table 7.6 Fuzzy Controller Rule Base 

 BE BC CE AC AB 

BO PB PB PM PM PS 

BR PB PB PM PS NS 

BH PB PM PS NS NM 

HZ PM PM ZE NM NM 

AH PM PS NS NM NB 

AR PS NS NM NB NB 

AO NS NM NM NB NB 
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Finally, we need to obtain the output action under the given input conditions. The following 

standard weighted average defuzzification formula was used in simulation: 

     

4

i i

i 1

4

i

i 1

(u )u

u

(u )














 

A total of 12 computer simulations were performed. Their initial conditions are summarized 

in Table 7.7, and the corresponding parking performances are shown in Figure 7.16 (a) to (c). 

 

Table 7.7 Initial Conditions of the 12 Simulated Cases 

Case 1 2 3 4 5 6 7 8 9 10 11 12 

 0 0 0 90 90 90 180 180 180 -90 -90 -90 

y 30 20 -20 30 10 -20 30 -20 -10 -10 -20 20 

 

The following is a simplified mathematical model for the motion of the truck. This model 

was used to create data for simulation butwas not used in the design of the controller. This 

model directly follows from the geometry of the truck (see Figure 7.12): 

 

   (k+1) = (k) + v T tan(u(k) ) / L, 

   x(k+1) = x(k) + v T cos((k) ),      ...(7.11) 

   y(k+1) = y(k) + v T sin((k) ), 

  where 

   (k)  – angle of the truck at time k, 

   x(k)  – horizontal position of the truck rear-end at time k, 

   y(k)  – vertical position of the truck rear-end at time k, 

   u(k)  – steering angle as control input to the truck at time k, 

   L  – length of the truck (L=2.5m), 

   T  – sampling time of the discrete model (T = 0.1s), 

  v  – constant speed of the truck (v = 0.5m/s 
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Fig. 7.16 – B Model free parking control simulation results for the angle   
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Fig. 7.16 – C Model free parking control simulation results for the control signal u 
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Example7.2   

In this example, we show a landing control problem of a model plane from a model-free 

approach. This airplane landing problem is visualized by Figure 7.17, which differs from the 

truck-parking control problem of Example7.1because of the airplane is not allowed to 

“overshoot” the set-point (i.e., cannot hit the ground) in order to avoid crashing. Therefore, 

the control rule base will not have symmetry in this example. 

 

 

 

Fig. 7.17 A model airplan landing control problem 

The objective is to design a fuzzy logic controller to land the plane safely, anywhere on the 

ground (the x-axis). Assume that no mathematical model for the plane is available for the 

design, but the plane is equipped with sensors that can measure the height h(t) and the angle  

of motion of the plane. Suppose that the model plane is moving forward at a constant speed 

of v=5 m/s, and the controller is used to steer the angle of the plane. Let the initial conditions 

be h(0)=1000m and (0)=0 deg. (horizontally). The fuzzy logic controller is used to provide 

an input, u, which controls the angle of the plane, so as to guide it to land on the ground 

safely. 

The parameters involved in the control system are as follows: 

   (t)  – angle of the plane at time t, 

   h(t)  – vertical position of the plane at time t, 

   u(t)  – control input to the plane at time t, 

   T  – sampling time for discretization (1s), 

   v  – constant speed of the plane (5m/s). 

We first define the ranges of the plane position and angle, as well as that of the control input 

throughout the landing process: 

4


 ≤ (t) ≤ 0, 

4


  ≤ u(t) ≤ 0 and 0 ≤ h(t) ≤ 1000. 
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Since the plane can land anywhere on the ground, we do not specify the parameter for the 

horizontal axis. The final state is defined by h = 0  1m and  = 0  0.1 deg. (horizontally) to 

ease the simulation. 

The following values are chosen before fuzzification, in order to quantify the linguistic terms 

of positive small, negative large, etc. 

height h 

h Z PS PM PL 

value 0 300 600 1000 

Angle  

 NL NM NS Z 

value -π/4 -π/6 -π/8 0 

The membership functions for the height h and the angle  are chosen as shown in Figures 

7.18 and 7.19 respectively. 

 

 

 

Fig. 7.18 Fuzzy membership function for the height (h) 
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Fig. 7.19 Fuzzy membership function for the angle () 

The fuzzy rule base used in the simulation is shown in Table 7.8, where V means “very.” It is 

also in the form of IF h is H AND  is   THEN u is U. 

Table 7.8 Fuzzy Control Rule Base 

 
h 

NL NM NS Z 

Z PMS PS PVS Z 

PS PS PVS Z NVS 

PM PVS Z NVS NS 

PL Z NVS NS NMS 

 

  The basic idea in constructing this simple control rule base is as follows: 

First, if the plane is far away from the ground, we increase the degree of the plane angle 

(downward). Second, as the plane approaches the ground, the desired plane angle will 

gradually turn from downward to horizontal, so that it can land smoothly and safely. 

The defuzzfication formula used is, again, the weighted average of all control actions, where 

the weights are the corresponding membership values given by 

   

n

i i

i 1

n

i

i 1

(u )u

u

(u )














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For the purpose of computer simulation, the following simplified mathematical model of the 

plane was used to create data for control (but it was not used in the controller design): 

 

 

Fig. 7.20 Airplan-landing control simulation result 

 

  (k+1) = (k) + vT tan(u(k)) 

  y(k+1) = y(k) + vT sin(u(k)).       …(7.12) 

A simulation result is shown in Figure 7.20 and that demonstrates the safe landing process of 

the plane under the designed fuzzy logic controller 

 

7.5 THE CONTROL PROBLEM (FUZZY LOGIC ) MODEL-BASED 

APPROACH 

 In section 7.3, we have seen that fuzzy logic controllers can be designed and work even 

without any knowledge about the structure of the system (plant, process) for set-point 

tracking problems, if the system output can be measured and used on-line. The main idea was 

to use the error signal (the difference between the reference signal and the system output) to 

drive the fuzzy logic controller, so as to create a new control action each time. 

These control actions should be able to alter the system outputs in such a way that the error 

signal is reduced until satisfactory set-point tracking performance is achieved. 

If the mathematical model, or a fairly good approximation of it is available, one may expect 

to be able to design a better fuzzy logic controller with performance specifications and 

guaranteed stability. In this section, we discuss another general approach of fuzzy logic 

control that uses an approximate mathematical model of the given system (plant, process). 

In the section 7.3, we used the set-point tracking control problem as a prototype for 

illustrating the basic ideas and methods. To facilitate our discussion in this section, we use the 

truck-driving example discussed in Example 7.1 above as a platform. 
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Consider the simplified truck-driving control problem described in Example7.1. Suppose that 

the truck is in the initial position A and we want to drive it to the target position B as shown 

in Figure 7.12. In order not to get the actuator-dynamics involved in this study of basic design 

principles, we again assume that the truck is driven by the actuator in a constant speed v 

while the control action is applied only to the steering angle of the front wheelers of the truck. 

Thus, a very simple mathematical model for the motion of the truck can be obtained from the 

geometry as shown in (7.11), which was used for simulation purposes before but is employed 

for controller design here. The model to be used is 

 (k+1) = (k) + v T tan(u(k)) / L, 

  x(k+1) = x(k) + v T cos((k)),       …(7.13) 

   y(k+1) = y(k) + v T sin((k)), 

  with notation as defined in (7.11). 

We note that this mathematical model, as it stands, is very simple and brief for describing the 

motion of the truck. Nevertheless, our design of a fuzzy logic controller u(k) that controls the 

steering angle will be based on this approximate model. 

We first discuss the general approach to this control problem. To begin, we convert this 

mathematical model to a fuzzy model described by the following IF-THEN rules (see Section 

II.B of Chapter 3): 

   
i

SR  :  IF (k) is i AND x(k) is Xi AND y(k) is Yi 

   THEN x(k+1) = fi(x(k)) + bi(u(k)), i = 1,...,N,    …(7.14) 

  where 

   x(k) = [(k) x(k) y(k) ]T, 

   
i

(k)

f (x(k)) x(k) vT cos( (k))

y(k) vTsin( (k))

 
 

  
 
   

, 

   i

vT tan(u(k)) / L

b (u(k)) 0

0

 
 


 
  

 

We then calculate the new state vector by the following standard weighted average formula: 

  

N

i i

i 1

N

i

i 1

w (k)x (k 1)

x(k 1)

w (k)







 



,       …(7.15) 

 



7.34 | Fuzzy Logic Models and Fuzzy Control: An Introduction 

  where 

  wi(k) = min{,i((k)), x,i(x(k)), y,i(y(k))}, 

  wi(k)  0,  
N

i

i 1

w (k) 0


 , 

in which ,i(.), x,i(.), y,i(.) are membership functions defined on the fuzzy subsets  , X, Y, 

and ,i, x,i, y,i are the corresponding membership values of (k), x(k), y(k) in the IF-THEN 

rule Ri, i = 1,..., N, respectively. Example 7.4.1discussed above shows a concrete case of this 

description. 

We now design a state-feedback fuzzy logic controller for guiding the steering angle of the 

front wheelers of the truck. This controller is governed by the following fuzzy IF-THEN 

rules: 

   i

CR :  IF (k) is i AND x(k) is Xi AND y(k) is Yi 

  THEN ui(k) = Ki x(k), i = 1,...,N,      …(7.16) 

where {Ki} are constant matrices (control gains) to be determined in the design with the 

averaged control action given by 

  

N

i i i

i 1

N

i

i 1

w (k)K x (k 1)

u(k)

w (k)











,      …(7.17) 

where for simplicity we use the same weights as those obtained in the system model above. 

Of course, it is possible to use different weights for the controller to make it more effective in 

a real design. 

Since this is a design, we may take different approaches. Here, to take a simple approach, we 

continue our design by further simplifying the models in two aspects: 

(i) We only study the simple case of horizontal parking of the truck, to position B of Figure 

7.12, where the final horizontal position, x(k), is not specified. Hence, we can simply delete 

the second equation of (7.13) without altering the control effect on the process. 

(ii) We linearize the rest of the mathematical model as follows:   

  (k + 1) = (k) + 
vT

L
u(k), 

  y(k + 1) = y(k) + vT(k), 

 where we note that 

  -(k) ≤ sin((k)) ≤ (k),  - ≤ (k) ≤ ,  
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  and  

  (k)  0  sin((k))  0, 

  (k)     sin((k))  0. 

 

 

Fig. 7.21 Membership function for truck model linearization 

To avoid the singular points  at which the linearization is invalid, we only consider the 

range 

    - +  ≤ (k) ≤  -  for a small  > 0 

Under these two simplifications, we obtain the following two linearized models for the truck-

driving control problem: 

   S1 : (when (k)  0) 

   1

(k 1) 1 0 (k) vT / L
u (k)

y(k 1) vT 1 y(k) 0

         
        

       
; 

   S2 :  (when (k)     ) 

   2

(k 1) 1 0 (k) vT / L
u (k)

y(k 1) vT 1 y(k) 0

         
        

        
   

Note that in these two linearized models, the data set {y(k)} is actually not used (they are 

zeroed out by the coefficient matrix) for the changes of the angle (k). This is reasonable 

since the truck is moving to the horizontal direction, (k)  0, independently of the vertical 

position of the truck.  

  Converting these mathematical models to fuzzy ones, we have 

   
1

SR  :  IF (k) is approximately 0 

    THEN x1(k+1) = A1 x(k) + b1 u(k); 

   
2

SR  : IF (k) is approximately  −  OR (k) is approximately − +  

    THEN x2(k + 1) = A2 x(k) + b2 u(k), 

  where x(k) = [(k) y(k)]T, 1

1 0
A

vT 1

 
  
 

, 2

1 0
A

vT 1

 
  

 
 and
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1 2

vT / L
b b

0

 
   

 
 

with the membership functions for linearization defined by −, 0, and + in Figure 7.21. Note 

that 
2

SR  is equivalent to the following two standard IF-THEN rules: 

   
21

SR  : IF (k) is approximately  −  

    THEN x21(k+1) = A2 x(k) + b2 u21(k); 

   
22

SR  : IF (k) is approximately − +  

    THEN x22(k+1) = A2 x(k) + b2 u22(k). 

In the above rules
1

SR , 
21

SR and 
22

SR  have the associated membership functions −, 0 and + 

respectively. Hence, the averaged state vector is given by 

  1 1 2 21 3 22

1 2 3

w (k)x (k 1) w (k)x (k 1) w (k)x (k 1)
x(k 1)

w (k) w (k) w (k)

    
 

 
, …(7.19) 

  where w1(k) = 0((k)), w2(k) = +((k)), and w3(k) = –((k)).  

The fuzzy logic controller for this system is described by the following two fuzzy IF-THEN 

rules: 

    
1

CR  :  IF (k) is approximately 0 

   THEN u(k) = K1 x(k) = [ K11 K12 ] x(k);  

    
2

CR  :  IF (k) is approximately  −  OR (k) is approximately − +  

   THEN u(k) = K2 x(k) = [K21 K22] x(k), 

where the constant gains, K11, K12, K21 and K22 are to be determined in the design for the 

control task driving the truck from position A to the horizontal position B as shown in Figure 

4.12. 

Similar to the system rules, the second control rule is equivalent to the following two 

standard IF-THEN rules: 

   
21

CR :  IF (k) is approximately  −  

    THEN u21(k) = K2 x(k) = [ K21 K22 ] x(k);  

   
22

CR  :  IF (k) is approximately − +  

    THEN u22(k) = K2 x(k) = [K21 K22] x(k), 

  and the averaged control is given by 
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    1 1 2 21 3 22

1 2 3

w (k)u (k) w (k)u (k) w (k)u (k)
u(k)

w (k) w (k) w (k)

 


 
,  …(7.20) 

 

 where as mentioned above, we use the same weights w1(k), w2(k), and w3(k) as those used in 

the system rules for simplicity of discussion. 

Observe that our control task in this example is to drive the truck to position B where (k*) = 

0, x(k*) is not specified (“don’t care”), and y(k*) = 0, for all large values of k*. This is 

guaranteed if we can design the fuzzy controller u(k) such that the equilibrium point x* = 0 of 

the linear controlled system (described by 
i

SR  and 
i

CR for I=1, 2) becomes asymptotically 

stable. If so, then (k)  0, y(k)  0 as k  . 

Therefore, we next complete the design by determining the constant control gains, K1 = [K11 

K12] and K2 = [K21 K22], such that the feedback controlled system is asymptotically stable 

about its equilibrium point x* = [* y*]T = 0. 

By substituting the control rules
1

CR , 
21

CR , 
22

CR  into 
1

SR , 
2

SR  and using the averaged state 

vector (7.19), in which they have the same weights, we obtain 

  1 1 2 2 3 3

1 2 3

w (k)H w (k)H w (k)H
x(k 1) x(k)

w (k) w (k) w (k)

 
 

 
,    …(7.21) 

 

 where  

  
11 12

1 1 2 1

1 vTK / L vTK / L
H A b K

vT 1

 
    

 
, 

11 21 12 22

2 1 1 1 2 2 2

1 vT(K K ) / 2L vT(K K ) / 2L1
H [(A b K ) (A b K )]

(1 )vT / 2 12

   
      

  
  

   
21 22

3 2 2 2

1 vTK / L vTK / L
H A b K

vT 1

 
    

 
 

It then follows from “The discrete-time dynamic fuzzy system is asymptotically stable about 

the equilibrium point 0 if there exists a common positive definite matrix P such that, AiTPAi 

P i=1,2,...,N.”  

If we can choose K11, K12, K21, and K22 such that there is a common positive definite matrix P 

satisfying Hi
T PHi – P < 0 , i = 1, 2, 3,then the feedback controlled system (7.21) will be 

asymptotically stable about its equilibrium point x* = 0. 
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Table 7.9 Different Initial Positions of the Truck 

 (0)[deg.] y(0)[m] 

1 0 30 

2 0 20 

3 0 10 

4 0 -10 

5 0 -20 

6 0 -30 

7 90 30 

8 90 20 

9 90 10 

10 90 -10 

11 90 -20 

12 90 -30 

13 180 30 

14 180 20 

15 180 10 

16 180 -10 

17 180 -20 

18 180 -30 

19 -90 30 

20 -90 20 

21 -90 10 

22 -90 -10 

23 -90 -20 

24 -90 -30 

 

 As a numerical example, let 

   L = 2.8 m, T = 1.0 sec., 

   v = 1.0 m/sec.,  = 0.01, 

  K11 = −0.4212,  K12 = −0.02944, 

  K21 = −0.0991,  K22 = −0.00967. 

  It can be verified that 

   
989.0 75.25

P 0
75.25 26.29

 
  
 

. 
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  It implies that 

   
T

1 1

120.4 6.008
H PH P 0

6.008 1.468

 
   

 
, 

   
T

2 2

68.31 5.873
H PH P 0

5.873 0.5079

  
   

  
 and 

   
T

3 3

100.0 0.000114
H PH P 0

0.000114 1.0

  
   

  
.   

The computer simulation results of this fuzzy control, for the linearized truck-driving system, 

with the target angle  = 0 and with 24 different initial positions (the position A in Figure 

7.12) listed in Table 7.9 are shown in Figures 7.21 (A) - (D). 

 

Fig. 7.22 control simulation results for Cases 
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EXERCISE-7 

1.  A conventional machine tool working in an automatic cycle is under the control of a 

programmable logic controller (PLC). This machine tool is loaded and unloaded by an 

industrial robot arm that operates according to a 2-second load cycle and then a 2-second 

unload cycle. There are several other activities to be performed at scheduled sequential 

times, some of them overlapping, as summarized in Figure 7.23 

 

 

 

Fig. 7.23 Activities of machine tool 

 Fill out the drum-timer array displayed in Table 7.10 for the machine tool. 

Table 7.10 PLC drum-timer array 
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2. Consider the ladder logic diagram shown in Figure 7.24. Show what the following logical 

operations in this diagram perform (in Boolean algebraic notation): 

. 

Fig. 7.24 adder logic diagram 

3.  (Computer programming project) 

Consider a unitless set-point tracking system shown in Figure 7.6, where the set-point r = 

2.0; the plant is given by the nonlinear model 

  
2T

y((k 1)T) [y(kT)] u(kT)
2

   ,      …(7.22) 

where T = 0.1 is the sampling time, and u(kT) is the control input to the plant created by 

the fuzzy logic controller shown in Figure 7.7. Follow the general design principle 

discussed in Section 7.5 to design a fuzzy logic controller for this set-point tracking task 

(see Figure 7.9). 

In the design, use the four membership functions shown in Figure 4.9 for both the error 

signal e(kT) and the change of error e& (kT), and the membership functions shown in 

Figure 4.10 for the control u(kT) and in the fuzzy logic control rule base. The common 

real constant H > 0 in the membership functions in Figures 7.10 and 7.11 can be used as a 

tuning parameter for improving the tracking performance when programming the control. 

Use the following initial conditions: 

   y(0) = 0, e(0) = r − y(0) = 2.0, 
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  and 

   
1 1

e(0) [e(0) e( T)] [2.0 2.0] 0
T 0.1

      . 

Describe clearly the entire design procedure, write a computer program (in any computer 

programming language) for the described simulation, and plot the final results in a graph 

similar to Figure 7.9. 

4. (Computer programming project) 

Consider a model-based fuzzy control problem for an inverted pendulum to track a 

specified trajectory. Figure 7.25 shows the inverted pendulum system, which has the 

following mathematical model: 

 

Fig. 7.25 The inverted pendulum system 

  1 2x x , 

  

2

1 2 1 1
2 2

1

gsin(x ) amlx sin(2x ) / 2 a cos(x )u
x

4l / 3 amlcos (x )

 



 ,   …(7.23) 

where x1 is the angle in radians of the pendulum measured from the vertical axis, x2 is the 

angular velocity in rad/sec, g = 9.8 m/sec2 is the gravity acceleration constant, m = 2.0 kg 

is the mass of the pendulum, a = (m + M)–1, M = 8.0 kg is the mass of the cart, 2l = 1.0 m 

is the length of the pendulum, and u is the force input to the cart. A fuzzy model used to 

approximate this physical system is as follows: 

   R1 : IF x1 is about 0, THEN x  = A1x + B1u 

   R2 : IF x1 is about /2, THEN x  = A1x + B1u, 
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  where 
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The membership functions for Rules 1 and 2 are shown in Figure 7.26. Design a model-

based fuzzy logic controller of the form ui = Kixi to stabilize this inverted pendulum 

system such that x1  0 and x2  0. 

[Hint: First, discretize the model, and then follow the design procedure discussed in 

Section III. One possible solution is K1 = [–120.7 –22.7] K2 = [–255.6 –746.0]. But this 

solution is by no means unique.] 

 

 

 

Fig. 7.26 The membership functions  
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Chapter-8 

Stability of Fuzzy Control System 

8.1 INTRODUCTION 

FKBC has proved to be a powerful tool when applied to the control of processes which are 

not amenable to conventional, analytic design techniques. The design of most of the existing 

FKBC has relied mainly on the process operator’s or control engineer’s experience based 

heuristic knowledge. Hence, the controller’s performance is very much dependent on how 

good this expertise is. Thus from the control engineering point of view, the major effort in 

fuzzy knowledge based control has been devoted to the development of particular FKBC for 

specific applications rather than to general analysis and design methodologies for coping with 

the dynamic behavior of control loops. The development of such methodologies is of primary 

interest for control theory and engineering. In particular, stability analysis is of extreme 

importance, and the lack of satisfactory formal techniques for studying the stability of process 

control systems involving FKBC has been considered a major drawback of FKBC.  

Fuzzy control systems are essentially nonlinear systems. For this reason it is difficult to 

obtain general results on analysis and design of FKBC. Furthermore, the knowledge of the 

dynamic behavior of process to be controlled is normally poor. Therefore, the robustness of 

the fuzzy control system must be studied to guarantee stability in spite of variations in 

process dynamics. 

In this chapter we consider several existing approaches for stability analysis of FKBC. In the 

fuzzy control literature this type of analysis of FKBC is usually done in the context of the 

following two view of the system under control: 

1. Classical nonlinear dynamic systems theory: The system under control is a “non-

fuzzy” system, and the FKBC is a particular class of nonlinear controller. 

2. Dynamic fuzzy systems. 

The second view is associated with Zadeh`s Extension principle and so far is only of 

theoretical interest. Research in this area includes stability criteria based on the concept of 

energy or the controllability of fuzzy systems. 
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The work presented in this chapter corresponds to the first view. We use the control structure 

shown in Fig. 8.1, where the FKBC is represented by means of a nonlinear function U = 

φ(X). It has been shown in Garcia in-Cerezo et al. [1992] and in section 4.2.2 that the FKBC 

is a nonlinear transfer element represented by the function φ (X). So, the structure of Fig. 8.1 

can be used to analyze the dynamic behavior of the closed-loop system.  

 

 

 

Fig. 8.1. FKBC in a closed-loop 

One of the first works dealing with FKBC closed-loop analysis is that of tone [1976]. The 

analysis is based on the relation matrix, which is a discrete version of the fuzzy relation, Ř or 

µR representing the meaning of the rule base. The nonlinear function ɸ(x) can be computed 

from Ř by means of fuzzification, composition-based inference and defuzzification, as shown 

in section 8.2 Tong [1978] shows that the relation matrix is dependent only on the set of rules. 

Thus, the performance of the closed-loop system is improved by modifying these rules.  

Braae and Rutherford [1979] introduced the concept of linguistic trajectory of closed-loop 

FKBC systems. They also show the relation between the dynamic behavior of the closed-loop 

system and the FKBC rules and at the same time established a relation between the state 

space representation of the system to be controlled and the FKBC rules. This relation is 

related to the notion of control space (state space) partition [ref. to Gracia-Cerezo(1987)].  

Analysis of the state space (the state space or phase plane in the two-dimensional case) has 

also been shown to be a simple but effective tool for simple systems. The “geometric method 

of stability analysis” [ref. to Article Aracil et al.(1988)] is based on a study of the 

contributions of the vector fields of the plant and controller. The interpretation is very 

intuitive and can be used to predict the stability under certain conditions. This method is also 

discussed in section 8.2. 
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The above geometric method is formalized with the definition of the so-called stability and 

robustness indices [given in Article Aracil et al.(1989)], based on concepts from the 

“qualitative theory of dynamical system” [Guckemheimer, J. et al. (1983)]. These indices are 

not only used to determine the stability and robustness of the closed-loop system, but are also 

used as a description of its dynamic behavior. Robustness indices are considered in section 

8.3. The above methods for stability analysis are based on internal representation of dynamic 

systems. In the framework of the general stability theory there are two main directions: (1) 

stability in the Lyapunov sense which refers to internal representation (the state vector tends 

toward zero), and (input-output stability, which refers to the external representation 

(relatively small outputs with regard to the input). Section 8.4 is devoted to general concepts 

in input-output stability.  

Vidyasagar [1978] shows that, under some restricitive conditions, internal stability implies 

external stability and vice versa. Safonov [1980] established a common conceptual 

framework for the two families of stability criteria, from which one can derive as particular 

cases the Lyapunov criteria, and the criteria in the input-output family: conicity, circle and 

popov criteria. Fihure 8.2 shows the relations among these criteria. 

 

 

 

Fig.8.2. Approaches to stability analysis 

The application of the classical input-output techniques such as the circle and popov criteria 

is well known in control theory. The work of Ray and Majumder [1984] is one of the first 

covering the application of input-output stability in FKBC analysis. More precisely, this is 

done by the application of the circle criterion. This method is described in section 8.5. 
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Recently, the conicity criterion has been introduced by Aracil et al. [1991] as a method for the 

stability analysis and design of FKBC and has been dealt in section 8.6. 

It should be noted here that the approaches presented in this chapter assume that a dynamic non-

fuzzy model of the process or plant to be controlled is known. In fact, some knowledge about the 

process dynamic is required for any stability analysis. The important point is that even if the 

model is only approximately knows, some conclusions about the stability of the closed-loop 

system can still be obtained. Furthermore, if the closed-loop system is robust enough (far from the 

point to stability loss) it can maintain stability even if the model does not exactly represent the 

actual dynamic behavior of the process under control.  

 

8.2 THE STATE SPACE APPROACH  

 
One of the first approaches to the stability analysis of FKBC uses the phase plane and was 

introduced by Braae and Rutherford [1985]. The practical applications of this method are 

restricted to Two-dimensional systems due to difficulties in the interpretation of higher order 

graphical representations of the phase plane. 

Stability analysis of a FKBC requires characterizations of the relation between the rules and 

the state space associated with the dynamic system under control. This relationship is based 

on the relative influence of each rule of the rule base on the control action produced by the 

FKBC. 

Let us consider a rule base composed by rules where the rules-antecedent contains two 

process state variables (plant variables), x1 and x2, representing the controller input variables. 

The consequent contains a single control output, u. The process state variables, x1 and x2 can 

take n1 and n2 linguistic values respectively. Under these conditions, the maximum number of 

rules contained in the rule base is n1 x n2. The region of study for the analysis of the FKBC 

in the state space is normally bounded by same finite values xmini, xmaxi where i = 1, 2.  

We will now state that the crisp element (x1, x2) of the state space belongs to the subspace of 

the partition associated with rule j, if it holds that  

   j ≠A(x1, x2) : µR, (x1, x2) ≥ µRk (x1, x2)        … (8.1) 

 

where µR, (x1, x2) and µRk (x1, x2) are the fuzzy relations representing the meaning of the 

rule-antecedents of rules j and k respectively. For example, let  

Rule j: if x1 is LX(j)
2 and x2 LX(j)

2 Then µ is LU(j)
, 

Rule k: if x2 is LX(k)
2 and x2 LX(k)

2 Then µ is LU(k)
. 

Thus µRj, and µRk in the case of Mamdani-type implication are defined as follows 

 x1,x2 : µRj (x1, x2) = min (µLX1
(j)

, µLX2
(k))                                   … (8.2) 

 x1,x2 : µRk (x1, x2) = min (µLX1
(j)

, µLX2
(k)).                                               … (8.3) 

In this case, xmin1 = -4, xmax1 = 4, xmin2 = -10, xmax2 =10. 
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Fig.8.3. Partition of the input space. 

The “partition limits” are determined through (8.1). Figure 8.3 shows the determination of the 

partition for a rule base defined in a table form as shown in fig. 8.4. 

A closed-loop system trajectory can be mapped on the partition space as done in Fig. 8.5. It 

can be seen there how certain areas of the partition space (the gray partition areas, each area 

corresponding to a particular FKBC rule) relate to the system trajectory. A sequence of rules, 

obtained according to the order in which they are fired, forms the so-called linguistic 

trajectory which with the system trajectory in Fig. 8.5a is given by 

Linguistic trajectory1 = (Rule11, Rule16, Rule17, Rule18, Rule19, Rule14, Rule9, Rule8, Rule13). 

From a design point of view, this method provides interesting guidelines for the analysis of a 

FKBC. Non-operative rules (non-fired rules in a given mode of operation or working 

conditions) such as shown in Fig. 8.5b can be easily modified. In Fig.8.5b top left corner, 

only the rules centered around the axis x1 are fired. A similar situation, this time around the 

axis x2, is presented in the top right corner. In the bottom left corner of this figure only the 

rule covering the origin of the control space is fired. Finally, in the bottom right corner the set 

of rules does not cover all system trajectories. This dynamic behavior suggests. 
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Fuzzy sets of rules 

 

Fig.8.4. The variables x1 and x2 can for example represent position and velocity. 

The rule base is in a table form. PNB, PN, PZ, PP and PPB represent linguistic values of x1, 

such as negative big, negative, zero, positive, and positive big. VBN, VN, VZ, VP and VPB 

represent linguistic values of x2, such as negative big, negative, Zero, positive, positive big. 

ANVB, ANB, AN, ANM, ANS, AZ, APS, APM, AP, APB and APVB represent linguistic 

values of the control output such as negative very big, negative big, negative, negative 

medium, negative small, zero, positive small, positive medium, positive, positive big, and 

positive very big. The membership functions for these linguistic values are defined in Fig. 

8.5.  

 

Fig.8.5. (a) The system trajectory mapped on the partitio
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Fig.8.5. (b) Inadequate coverage of the partition space during the operation of a 

FKBC. 

Gray areas correspond to fired rules, white areas correspond to non-fired rules and 

modifications in the fuzzy sets representing the meaning of the linguistic values of x1 and x2. 

Aracil et al. [1982] propose a geometric interpretation of the state map. This technique is 

based on the study of vector fields associated with the plant and the FKBC rule base. 

Let us consider the closed-loop system from Fig.8.1 represented as  

  
dx

dt
 = f(x) + bµ,   

    µ = Φ(x),       …. (8.4) 
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where f(x) is a nonlinear function which represents the plant dynamic with f (0) = 0, x and b 

are vectors of dimension n, µ is the scalar control variable and ɸ(x) is a nonlinear function 

representing the FKBC with ɸ(0) = 0. 

Let µR (x, µ) be the fuzzy relation representing the meaning of the rule base let, defuzz be 

any defuzzification operator and let u*x be the fuzzified input of the controller obtained from 

the crisp input x*; then closed loop behavior will depend on the nature of (x) and  

    ɸ(x) = Defuzz(µ *x oµR(x, µ)),   …(8.5) 

where x  x1 x x2 x … x xn and u  µ. 

The direction of the vector field associated with the FKBC is determined by coefficients of b, 

and the magnitude is given by b. ɸ(x1) as shown in Fig. 8.6. One should note the effect which 

the subspace determined by the condition ɸ(x) = 0 has on the closed loop. This subspace is 

usually a line (switching line) for second order System determines the separation of the state 

space in positive and negative control action areas (see Fig.8.7).  

 

Fig.8.6. The components of the vector field. 

 

 

Fig. 8.7. vector field representation. 
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With monotone f(x) and ɸ(x), state behavior of the closed-loop system can be predicted under 

the following conditions; 

1. The open-loop system 
dx

dt
 = f(x) is stable. 

2. The vector field associated with b. ɸ(x) = 0 tends towards ɸ(x) = 0. 

Obviously, for other situations such as unstable open-loop systems, the characteristics of the 

vector field must be determined to properly predict the behavior of the system. 

However, the above analysis is in line with the previous concepts when considering linguistic 

trajectories. A simple inspection using this approach suffices to establish stability or 

instability, in addition to predicting other dynamic phenomena such as limit cycles, isolated 

areas, oscillations, etc.  

To illustrate some of these dynamic phenomena, we can summarize as follows: 

(a) Stability feedback system: In this case, the vector field obtained as ɸ(x1, x2) tries to lead 

the system trajectories in the direction of the switching curve ɸ(x1, x2) =0. When the 

trajectories approach this curve, ɸ(x1, x2) = 0, the plant component of the vector field 

obtains a greater influence which makes the trajectories converge to the equilibrium point 

(see Fig.8.8). 

(b) Critical case: the nonlinear field does not lead the trajectories to the curve ɸ(x1, x2) = 0, so 

instability can be avoided if the plant component obtains greater influence then the 

controller component (see Fig. 8.9). 

(c) Limit cycles: This case can be considered as a combination of the stable and critical case 

(see Fig.8.1.). Limit cycle also depend on the plant component characteristics. 

(d) Nonlinear vector fields with isolated areas: Isolated areas are regions which behave 

differently from the dominated area, which is above the switching curve ɸ(x1, x2) = 0. 

Isolated areas are normally defined by closed generic curve ɸ(x1, x2) = 0, that do not 

contain the plant component equilibrium point, and do not produce field compensation. In 

this case, the tendency would be to go around these areas. Thus, an output trajectory 

appears where a large number of trajectories converge (see Fig.8.11). 

 

Fig.8.8. Stable feedback system. 
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R1: If x1 is N and x2 is P then u is NB, R2: If x1 is Z and x2 is P then u is NM 

R3: If x1 is P and x2 is P then u is NS R4: If x1 is N and x2 is Z then u is PM 

R5: If x1 is Z and x2 is Z then u is Z, R6: If x1 is P and x2 is Z then u is NM 

R7: If x1 is N and x2 is N then u is PS, R8: If x1 is Z and x2 is N them u is PM 

R9: If x1 is P and x2 is N then u is PB 

 

 
 

Fig 8.9 Critical Case 

R1: If x1 is N and x2 is P then u is PB  R2: If x1is Z and x2 is P then u is PM 

R3: If x1 is P and x2 is P then u is PS   R4: If x1 is N and x2 is Z then u is PM 

R5: If x1 is Z and x2 is Z then u is Z  R6: If x1 is P and x2 is Z then u is NS 

R7: If x1 is N and x2 is N then u is NS  R8: If x1 is Z and x2 is N them u is NM 

R9: If x1 is P and x2 is N then u is NB 

NB, NM, N, NS, Z, PS, P, PM, PB represents negative big negative medium negative small 

zero positive small positive positive medium and positive big respectively  

 

 

Fig. 8.10 presence of a limit cycle 



Stability of Fuzzy Control System | 8.11 
 

 

Fig.8.11. zNonlinear dynamic with isolated areas. 

Rules for presence of limit 
R1: If x1 is NB and x2 is PB then u is PS  R11: IF x1 NB and x2 is N then u is NM 

R2: IF x1 is N and x2 is PB then u is PS   R12: If x1 is N and x2 is N then u is NM 

R3 : IF x1 is Z and x2 is PB then u is PM  R13 : IF x1 is Z and x2 is N then u is NS 

R4 : If x1 is P and x2is PB then u is PM   R14: IF x1 is P and x2 is N then u is PM  

R5: If x1 is PB and x2 is PB then u is PB   R15 : IF x1 is PB and x2 is N then u is PM 

R6: IF x1 is NB and x2 is P then u is NM  R16: If x1 is NB and x2is NB then u is NB 

R7: IF x1 is N and x2 is P then u is NM   R17: If x1 is N and x2is NB then u is NM  

R8: IF x1 is Z and x2 is P then u is PS   R18: If x1 is Z and x2 is NB then u is NM  

R9: If x1 is P and x2is P then u is PM   R19: If x1 is P and x2 is NB then u is NS 

R10: If x1 is PB and x2 is P then u is PM   R20: If x1 is PB and x2 is N then u is NS 

 

Rules for Nonlinear dynamic with isolated areas. 

R1: If x1 is NB and x2 is P then u is PB   R7: IF x1NB and x2 is N then u is NM 

R2: IF x1 is N and x2 is P then u is PB   R7: If x1 is N and x2 is N then u is PM 

R3 : IF x1 is Z and x2 is P then u is PM   R8 : IF x1 is Z and x2 is N then u is NM 

R4 : If x1 is P and x2 is P then u is PS   R9: IF x1 is P and x2 is N then u is NS  

R5: If x1 is NB and x2 is Z then u is NM  R7 : IF x1 is NB and x2 is N then u is NB 

R6: IF x1 is N x2 is Z then u is NM   R7: If x1is N and x2 is NB then u is NB 

R7: IF x1is Z and x2 is Z then u is Z   R8: If x1 is Z and x2 is NB then u is NM  

R8: IF x1 is P and x2 is Z then u is PM    R9: If x1 is P and x2 is NB then u is NM  

NB, NM, N, NS, Z, PS, P, PM , PB represents negative big, negative medium, negative small, 

zero, positive small, positive, positive medium, and positive big respectively  
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The above conclusions about stability are qualitative, but enough to characterize the dynamic 

behavior of a feedback system, or serve as the bases for adequate selection or modification of 

rules. For example, the limit cycle in Fig.8.10 could be avoided by modifying the rule-

consequents of the rules R8 and R13 in order to generate a control output with the opposite 

sign. Thus “µ is PS” in rule R8 should become “µ is NS” and “µ is NS” in rule R13 should 

become “µ is PS” the same can be done with the rule R10 in order to eliminate the isolated 

area shown in Fig. 8.11.  

 

8.3 STABILITY AND ROBUSTNESS INDICES  
In the previous section we have presented approximation of the problem of FKBC stability, 

and its geometrical interpretation in the state space. In this section we formalize the problem 

of stability analysis by using concept extracted from the qualitative theory of nonlinear 

dynamic system [Guckemheimer, J. et al. (1983)]. These concepts are used to interpret 

instability and bifurcations and thus, a more complete representation of the stability problem 

is achieved. We start with the one-dimensional case followed by the n-dimensional case. 

 

8.3.1 The one-dimensional case 
Let us consider a system with a mathematical model of the following from  

 
dx

dt
 = f(x) + b. µ,  with                                                 …(8.6) 

x  X  IR and µ  U  IR, where f(x) is a nonlinear, monotone and increasing function 

such that f(0) = 0,and IR is the real line. Consider also the control law given by 

   µ = Φ(x),            ….(8.7) 

where Φ(x) is a nonlinear function representing the FKBC and Φ(0) = 0.  

Without loss of generality, we will consider the case b = 1. As we noted in section 8.2, the 

vector field associated with the closed-loop dynamical system (8.6) and (8.7) is 

   
dx

dt
 = f(x) + Φ(x)            … (8.8) 

It is composed of two parts: the plant component f(x) and the controller component Φ(x). to 

visualize geometrically these vector field we can rotate them counterclockwise by an angle of 

90o and obtain the curves shown in Fig. 8.12. 

The equilibrium point of system (8.8) are given by the values of x for which  

     
dx

dt
 = 0.             … (8.9) 

That is,  

   f(x) + Φ(x) = 0 or Φ(x) = - f(x).                       … (8.10) 

With the graphical convention of rotation the vector field, the equilibria will be located at 

values of x where the curve representing the controller component Φ(x) intersects the curve 

representing the plant component with the sign changed to –f(x). 

It is clear that system (8.8) has an equilibrium point at the origin as f(0) = 0 and Φ = 0. For 

this equilibrium to be stable it is necessary that 

     f’(0) = Φ’(0)<0.          … (8.11) 
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Fig 8.12. vector fields in the one-dimensional case. 

 
That is, the eigenvalue at the origin has a negative real part. 

Therefore, the system (8.8) is globally stable if it meets the following conditions 

 Condition 1 : Φ’(0)< - f’(0) 

 Condition 2 : IΦ’(x)< If’(x) Iᵾ  x≠ 0. 

Condition 1 ensures the equilibrium stability at the origin, while condition 2 prevents the 

appearance of other equilibria ( no intersection of curves Φ(x) and –f(x) if this condition is 

satisfied). 

Not meeting condition 2 for some value of x produces intersection of curves Φ(x) and –f(x) at 

point other than the origin. This is shown in Fig. 8.13 where new equilibrium point appear. 

To see how these new aquilibrium points are generated, assume that some “deformation” is 

produced in Φ(x), and/or f(x), so that an originally stable situation is changed. The question 

then is: under what circumstances will stability be lost? It is well known that loss of global 

stability may occur in at least one of the following cases: 

1. The equilibrium at the origin becomes unstable. 

2. New bifurcations are produced (intersections of Φ(x) with –f(x)). 

It is possible to give a measure of how for a system is from loss of stability (how large are the 

“deformations” the system can be exposed to without losing stability). With this measure we 

define some stability indices. 

To that end, let us reconsider condition 1. This condition can be rewritten  

 

  Φ’(0) + f’(0) < 0       … (8.12) 

 or  

    -(Φ’(0) + f’(0)) > 0.       … (8.13) 
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 Fig. 8.13 Appearance of multiple attractors  

Then the quantity –(Φ’(0) + f’(0)) gives a measure of the robustness of the system against 

loss of stability at the origin. The higher the value of –(Φ’(0) + f’(0)) the further away the 

system is from an unstable condition. This unstable condition is reached for –(Φ’(0) + f’(0)) 

= 0.  

In a similar way, a measure can be associated with condition 2 giving the minimum distance 

between Φ(x) and –f(x). The greater this distance, the more robust the system is against 

“deformation” of Φ(x) and –f(x). A natural candidate for this minimum distance is given by 

   min IΦ(x) + f(x)I.       … (8.14) 

However , IΦ(x) + f(x)I will take its minimum value at the origin, where it is 0. To avoid this, 

a certain region around the origin should be avoided. The boundary values of this region are 

B1 and B2. These are defined as the closest values to the origin such that ɸ’(B1) = - f’(B1) and 

ɸ’(B2) = - f’(B2). Figure 8.14 shows the geometrical interpretation of B1 and B2.  

 

It is interesting to see what happens in the second case when new bifurcations are produced. 

Assume a stable situation (on intersection of Φ(x) with –f(x) ). As Φ(x) and/or –f(x) are 

“deformed” to approach each other, the “contact” between them will be realized when they 

acquire a common tangent. Then the contact is reduced to a single point and a bifurcation is 

produced.  

As the deformation is increased two crossing points will appear. Under normal circumstances, 

one of these crossing points will give rise to a stable equilibrium point, and the other to an 

unstable one. This new equilibrium point will destroy the global stability at the origin as two 

attraction areas appear in the state space. In other words, the origin will no longer be the only 

attractor of the system. 
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Fig. 8.14 Graphical interpretation of the region B = (β1, β2). 

Summarizing the above discussion, two indices can be defined 

  I1 = - (Φ(0) + f(0)),       

  I2 = - 
min

b′
IΦ(x) + f(x)I,    … (8.15) 

where B is the complement of the region around the origin B = (β1, β2). 

8.3.2 The N-dimensional case 

Let us start with n = 2. In this case the system has the form  

  
dx

dtI
 = f(x) + b. µ      

  µ = Φ(x) with    … (8.16) 

 x  X  IR2 and u  U  IR, where IR2 is the real plane. This equation can be written in a 

more detailed form as  

  
dx1

dt
 = f1(x1,x2) - b1

. Φ(x1,x2),  

  
dx2

dt
 = f2(x1,x2) – b2

. Φ(x1,x2),      … (8.17) 

where f1(0, 0) = f2 (0, 0) = ɸ(0, 0) = 0 and f1 and f2 are monotone functions. As in the one-

dimensional case Φ(x1,x2) stands for the FKBC. Assume that the equilibrium at the origin is 

stable, i.e., the two eigienvalues of the linearized system around the origin have a negative 

real part. 

1. The real eigenvalue crosses the imaginary axis and acquires a positive sign. This 

bifurcation from a stable node to a saddle point is also called static bifurcation.  

A pair of complex poles crosses the imaginary axis both poles take positive real values. This 

bifurcation is called Hopf bifurcation. Figure 8.15 describe these two situations. 
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Fig.8.15  (a) Static bifurcation; (b) Hopf bifurcation. 

 

The simplest way to linearize a nonlinear system around a point x0 in its state space is to 

consider the series development 

  f(x) = f(x0)+ j(x- x0) + …,      …(8.18) 

where j is the so-called Jacobin matrix of f(x) at x0. This matrix is given by 

    J = |

 df1

dx1

df2

dx1
df2

dx1

df1

dx2

|   = |
a11 a12

a21 a22
|       …(8.19) 

 

If the linearized system is stable, the Lyapunov criterion guarantess stability at the origin of 

the nonlinear model. 

The characteristic polynomial of J is defined as  

   P(s) = det(s . I - J).       … (8.20) 

It is easy to see that  

   det(s . I - J) = s2 – s . (a11 + a22 – a12
. a21

.)     … (8.21) 

 

The characteristic polynomial J can be expressed as  

   P(s) = det(s . I - J) s2 + a1 
. s + a2 ,     … (8.22) 

where  

 a1 = -(a11 + a22) = - tr(J), 

    a2 = a11 . a22 – a12 . a21 = det(J).     … (8.23) 
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A static bifurcation is produced when a real zeal zero (eigenvalue) of the characteristic 

polynornial crosses the imaginary axis (see Fig.6.15a), i.e., when one of the roots of p(s) is 

s=0.This only will happen in equation (8.22) when a2 = 0. So this is the condition for loss of 

stability by a static bifurcation in a second order dynamic system. It should be noted that the 

larger the value of a2 the further the system is from the bifurcation point. Therefore , the 

system is more robust, then the value of a2 gives a measure of the degree of relative stability 

and it is quite natural to define a stability index such as  

     I1 = a2 = det(J).      … (8.24) 

A Hopf bifurcation is produced when two complex eigenvalues cross the imaginary axis and 

their real parts become positive (see Fig. 6.15b). In the case of our second order system, this 

means that the two complex eigenvalues of the system have zero real part. The requirement 

for this is that a1 =0 in the characteristic polynomial. Then the condition to have a Hopf 

bifurcation reduces to a1 = - tr(j)=0. A value of a1 far from 0 is a guarantee for not having a 

Hopf bifurcation. In this way we define a second stability index as 

   I1 = - tr(J).        … (8.25) 

To summarize, a statics bifurcation is be produced when a2 = 0 and a Hopf bifurcation when 

a1 = 0. The relative stability of the equilibrium point at the origin can be measured by the two 

indices 

   I1 = det(J) and I1 = -tr(j).      … (8.26) 

Let us now generalize the index I2.Remember that in the one-dimensional case a bifurcation 

occurs when the vector field of the FKBC exactly compensates the vector field of the plant, 

thus giving rise to a global vector field of value zero. In the two-dimensional case, the vector 

field of the controller has, at every point of the state space, the direction given by (b1, b2). 

Therefore, the compensation of the vector components of the plant and of the controller can 

only occur in the region of the state space where the plant component has the direction (b1-

b2). So we can define the auxiliary subspace as  

   
F1(x1,x2)

b1
=  

F2 (x1,x2)

b2
       …. (8.27) 

This expression represents the one-dimensional subspace of the state space, where the study 

of the occurrence of static bifurcations is to be performed. Thus the analysis is similar to the 

case of n = 1. Then an index I2 can be defined as the minimum distance between the plant and 

controller components, 

Calculated on the auxiliary subspace and excluding the region B around the origin: 

   I2 = min ǀ f(x) + b.ɸ(x) ǀ.      … (8.28) 

For n > 2, the generalization is straightforward. Let j be the Jacobian of the nonlinear system 

around the origin and let, 

   P(s) = sn + a1. sn-1 +…+an-1.s + an       … (8.29) 

be its corresponding characteristic polynomial. The generalization of the index I1 leads to  

   I1 = an = (-1)n. det (J).       … (8.30) 
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The index I1 is determined using the condition for aHopf bifurcation. This condition is 

equivalent to the one for having two pure imaginary axes. The characteristic polynomial 

(8.29) can be rewritten in the form. 

   P(s) = p1 (s) . (w2 + s2) + b1 . s + b2       … (8.31) 

Then the condition for having two pure imaginary axes is  

   b1 = b2 =0        … (8.32) 

For example, consider the case n = 3. The corresponding characteristic polynomial is  

   P(s) = s3 + a1 . s2 + a2 . s + a3      …. (8.33) 

(8.33) can be rewritten in the form of equation (8.31) as 

   P(s) = (s + a1) (w2+ s2) + (a2 - w2) s + a3 – a1 . w2.   … (8.34) 

Therefore b1 = a2 – w2 and b2 = a3 – a1w2. The Hopf condition (8.32) reduces in this case to  

 a2-w2 = 0,  

   a3 – a1. w2 =0.        … (8.35) 

That is, a1 .a2 - a3 = 0. Then we can take I1 as 

   I1 = a1.a2-a3         … (8.36) 

Thus , I1 is the index for the measure of the “distance” between the complex poles having a 

negative real part and crossing the imaginary axis at points where instability occurs.  

It can be demonstrated [ref. Article Ollero et al. (1992)] that the Hopf condition is equivalent 

to  

   det(Hn-1) = 0,        … (8.37) 

where Hn-1 is the minor principal of order n -1 of the Hurwitz matrix H. matrices H and Hn-1 

are given as follows 

  H = [
a1 a3 a5 …
1 a2 a4 …
0 a1 a3 …

] ; Hn-1[
a1 a3 a5 …
1 a2 a4 …
0 a1 a3 …

]     …(8.38) 

Consequently, 

 I1 = det(Hn-1).     …(8.39) 

It can also be shown that, [ref. Article Ollero et al. (1992)]  

   I1.I1 = det(H).         …(8.40) 

The generalization of the index I2 for the case n > 2 is straightforward. In this case the one-

dimensional auxiliary subspace will be given by 

f1(x1,x2,…,xn)

b1
=

f2((x1,x2,…,xn)

b2
= ⋯

fn((x1,x2,…,xn)

bn
          …(8.41) 
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The remarkable fact is that for every n, that auxiliary subspace is one-dimensional (if the 

dimension of ʮ  is one). 

Example 8.1 Let us consider a nonlinear system described by the following equation 

d2y

(dt)2
+ a1. (1 − y2)

dy

dt
+ a2. y = b1, u …(8.42) 

This system can be represented in the state space by means of    

  x1̇ = x2 and  x2̇ = - a2.x1 - a1.x2 + a1. x2
1. x2 + b1.u,    …(8.43) 

where x1 = y, b1 = a2 = 12.7388, a1 = 2.2165, and ǀuǀ ≤ 15. 

For u = 0, The System Has An Unstable Limit Cycle (FIG. 8.16). This corresponds to a 

system with a hypercritical Hopf bifurcation. Considering the saturation in u, a FKBC can be 

designed to increase the stability domain (limited by the unstable limit cycle) as much as 

possible and to improve the dynamic characteristics of this system in the stable domain. Thus 

a robust design is obtained. 

Assume we have a set of FKBC rules provided by an expert, and given in a table from as in 

Fig. 8.17. Additionally, Fig. 8.18 represents the FKBC as a nonlinear function Φ (x). 

 The Jacobian of the feedback system is given by 

               Jc = [

0 1

−a2 + b1.
∂∅(x1, x2)

∂x1
−a1 + b1.

∂∅(x1, x2)

∂x1

]                                … (8.44) 

 

Fig. 8.16. open system response. The system has an unstable limit cycle. 
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Fig. 8.17. (a) Fuzzy sets representing the meaning of linguistic values. 

 

In (i) PNB, PN, PZ, PP and PPB represent linguistic values of x1, such as negative big, 

negative, zero, positive, and positive big.  
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In (ii) VBN, VN, VZ, VP and VPB represent linguistic values of x2, such as negative big, 

negative, zero, positive, and positive big.  

 

Fig. 8.17 (b) 

 

 

Fig. 8.18 

In (iii) ANVB,ANB,AN,ANM,ANS,AZ,APS<APM,AP,APB and APVB represent linguistic 

values of the control output such as negative very big. Negative big, negative, negative 

medium, negative small, zero, positive small, positive medium, positive, positive big, and 

positive very big. and (iv) is a magnification of the control action interval (-1,1). 

Fig. 8.17 (b) The rule base in a table form. The variables X1 and X2 can for example represent 

position and velocity. 

Fig. 8.18. the nonlinear function Φ (x) representing the FKBC. 

 



8.22 | Fuzzy Logic Models and Fuzzy Control: An Introduction 

The derivatives Φ x1 and Φx2 at the origin can be obtained by using interpolation techniques. 

For the case of linear interpolation and the values of a1,a2 and b1 given as b1 = a2 = 12.7388, 

a1 = 2.2165, we obtain  

   Jc= [
0 1

-15.9236 -6.4204
]                                                          …(8.45) 

     

Then the corresponding characteristic polynomial is given by 

   P(s) = s2 + 6.4024.s + 15.9236.      … (8.46) 

Using equation (8.26) the indices can be obtained directly from the characteristic polynomial 

   I1 = 6.4024;   I’1 = 15.9236.      …(8.47) 

The auxiliary subspace is determined by 

   x2 = 0         …(8.48) 

Figure 8.19 present the contributions of f(x) and ɸ (x) on the auxiliary subspace. As shown, 

the index I2 is not defined, providing excellent robustness in the face of new attractors.  

The system in the stable domain is more robust than the original one. Figure 6.20. gives a 

state diagram of the closed-loop system. As shown, the stability domain is considerably 

increased. Finally, Figs. 8.21 and 8.22 compare the transient responses of the closed-loop 

system with that of the open-loop system. A significant improvement in system behavior is 

also apparent.  

 

 

Fig. 8.19. open-loop system response. 
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Fig. 8.20. Closed-loop system response. 

 

 

 

Fig. 8.21. open-loop system response. 
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Fig. 8.22. Closed-loop system response. 

 

 

Fig. 8.23. A general feedback system.  

 

 

 Fig. 8.24 Feedback system with additive inputs  
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8.4 INPUT-OUTPUT STABILITY 

In this section we will present the basics of input-output stability. For a more detailed account 

see Safonov [1980] and Vidyasagar [1978]. 

Following Safonov [1980], we deal with a feedback system as shown in Fig. 8.23. Typically, 

G (v) represents the plant and H(u) the controller. The scalar or vector signal y will be the 

control variable and z the control output.  

A particular case is that of Fig. 8.24, where u and v enter additively. In this case, u will be the 

reference variable and u may represent disturbances or initial conditions. 

8.4.1 The Spaces of signals 

In the input-output stability analysis, x(t) is a scalar or vector function of time, taken from a 

normed vector space x, i.e., a vector space with a norm on it. Two usually used norms are the 

2-norm and the infinity-norm. 

|x(t)|2= (∫ |x(t)|2dt)
∞

0

1/2
       … (8.49) 

ǀ x(t) ǀ∞ = ess sup { ǀx(t) ǀ : t ɛ [ 0,∞]}      …(8.50)  

where ess sup denotes the essential supremum. 

We denote by L2 and L2 ∞ the normed spaces of signals that have a finite 2-norm and infinity-

norm, respectively. The space L2 represents the set of all finite-energy signals, and the space 

L2 ∞ represents the set of all bounded signals.  

The problem formulation must be able to cope with bounded signals usual in control:  

(1) Steps with undefined 2-norm, and  

(2) Ramps with undefined 2-and infinity-norms.  

We define the extended space Xe in the following way. Consider the truncation xT(t) after 

time T, defined by: xT(t) = x(t) for t ≤ T, and xT(t) = 0 for t > T. the extended space xe is the 

space formed with all signals x(T) such that their corresponding truncation xT(t) belong to X. 

in this way, the extended normed spaces contain all physically conceivable signals. 

8.4.2 The input-output Notion of a system 

A system G that takes inputs X(t) and yields outputs Y(t) from the extended space Xe is 

considered as a relation G C Xe x Xe. This relation is normed by all pairs (x(t) , y(t)) such that 

y(t) is a possible output produced by the input x(t). 

The difference with the usual notion of a system as an operator is that given an input signal 

X(t), an operator produces one and only one input, Y(t) = Gx(t), while a replation may 

produce none, one, or more outputs. The advantage of using relation in this context is that one 

can not only cope with responses to different conditions, but can also separate the problem of 

existence and uniqueness of operators from the problem of stability. 
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8.4.3 The input-output Notion of stability  

A system G is said to be finite-gain stable when the gain of G, g(G) is defined by  

  g (G) = supX(T)≠0 {
Gx(t))t

XT(t)
} < ∞.      …(8.51) 

The intuitive idea behind that is that we can make the system output small provided that we 

make its inputs small enough. The above definition for an open-loop system G is translated to 

the feedback system of Fig. 8.24. Let us denote by F the closed-loop system, with closed-loop 

inputs (u-v) and closed-loop outputs (y, z). The intuitive idea of the closed-loop stability of F 

is that we can obtain small (y, z) provided that we make (u, v) small enough. For example, y 

may represent the error of the plant output with respect to the reference (set-point) v and u 

may represent disturbances to be avoided. 

Other similar definitions of stability can be provided [for details see, Safonove (1980)]. The 

input-output stability does not clarify the asymptotic approach of the control variables to 

zero. This property can be ensured based on the above mentioned equivalence between input-

output stability and Lyapunov internal stability. Vidyasagar (1986)].  

The main result in input-output stability the small gain Theorem [in James (1966)] that states 

that a sufficient condition for the stability of the closed-loop system F (see Fig. 8.26) is g(G). 

g(H) < 1. From this theorem, one can derive the circle criterion and the conicity criterion and 

these can be directly applied to FKBC stability. These criteria will be considered in Sections 

8.5 and 8.6. 

Finally, the gain of a general system is a quantity that can be difficult to obtain. For two 

classes of systems it is easy to derive the gain: (i) nonlinear static (memory less) systems 

(NLS) and (ii) Linear time-invariant systems (LTI).  

The gain of the NLS system defined by y = H (x) is given as  

                                            g (H) = sup|x|≠0 {
H(x))t

|x|
} ,                                               … (8.52) 

hwere the simplification is due to the fact that the time-dependence of the general formula 

disappears.  

The gain of the LTI system G given by its frequency response G (jw) is given by 

g(G) = supwσ̅{G(jw)}                                                                                                             … (8.53) 

where σ̅(A) denotes the maximum singular value of the matrix A the singular values of A are 

the square roots of the eigenvalues of A*A, with `* denoting transpose conjugation. The two 

last formulas are directly applicable and extensively used in practical input-output stability 

analysis. 

 

 

 



Stability of Fuzzy Control System | 8.27 
 

8.5 THE CRICLE CRITERION  

Ray et al. [1984] proposed an analysis technique for FKBC stability based on the circle 

criterion. In the main study is based on considering the FKBC as a multi-level relay, as 

previously introduced by Kicker [1978]. Even although this appears restrictive, yet it should 

not be considered as such. In practice, the concepts of limiting nonlinear functions are used 

for every nonlinear function. 

For the FKBC to behave as a multi-level relay, two conditions on the fuzzy sets describing 

the meaning of the linguistic values of control output u have to hold: 

(a) The fuzzy sets have symmetric membership functions and 

(b) The Middle-of-Maxima defuzzification method is used in obtaining the crisp value of 

u.  

Figure 8.25 shows the input-output map of the multi-level relay FKBC.  

8.5.1 Stability Analysis – SISO Case  

Consider a SISO (single input single output) linear system represented by its transfer function 

g(s), which is rational and asymptotically stable (Fig. 8.26). The nonlinear function 

representing the FKBC is described using f(e), where e is the closed-loop error with the 

constraints 

  k1 ≤ f(e) ≤ k2 ,        …(8.54) 

where k1 and k2 are two real numbers which, for the sake of simplicity, are considered to be 

positive. 

Under these conditions, the system is global and asymptotically stable if the Nyquist plot of 

g(s) does not cross or go around, in a counter clock wise direction, the circle whose diameter 

is defined by (-k1
-1,-k2

-1) as shown in Fig.8.27a. 

8.5.2 Stability Analysis – MIMO Case  

Let G (s) be a transfer matrix of dimension m x m (multi-Input multi-output Case), which is 

rational and asymptotically stable. The nonlinear feedback is defined by the diagonal matrix 

F(e, t), with components fi (e, t), and meets the restriction  

  k1 ≤ f1 (e,t) ≤ k2  where I = 1,….,m.     …(8.55) 

 

If  g ̂ij(jw) is the inverse of gij(jw), with circles of radius  r ̂i (jw), determined by  

   r ̂i (jw) = ∑ [|ĝik (jw)̂ |]k=1,k≠j         … (8.56) 

In the case of row dominance (see paragraph below), or 

  r ̂i (jw) = ∑ [|ĝkj (jw)̂ |]k=1,k≠j        …(8.57) 

In the case of column dominance the MIMO system is global and asymptotically stable if the 

Nyquist band of the inverse system crosses neither the origin nor the circle of diameter (- k1, - 
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k2) and encircles both of them the same number of times in a clockwise direction (see Fig. 

8.27b).  

 

Fig. 8.25. The FKBC as a multi-level relay. 

 

 

Fig. 8.26. The SISO system. 
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(a)                                                                                    (b)  

Fig. 8.27. Nyquist plot (a) SISO case and (b) MIMO case. 

Dominance Conditions for stability Analysis  

Let G(s) be an m x m rational transfer function matrix defined for all s on a subset D of the 

complex plane. Usually D will be the Nyquist contour consisting of the imaginary axis from –

jR to jR and a semicircle of large radius R in the right half plane, enclosing all poles and 

zeros of G(s). Let us write G(s)  = G−1(s), if G−1(s) exists. Then giî(s) are the diagonal 

entries of G(s) and, in general, g ii(s)≠ (g ii(s))-1. The rational m x m matrix G(s) is said to be 

row diagonal dominant on D when for all I = 1,…, m and for all s on D, the following holds; 

  |ĝii(s)| > ∑ |ĝij(s)|m
j=1,j≠1        …(8.58) 

In a dual way, G(s) is said to be column diagonal edominant on D when  

 |ĝii(s)| > ∑ |ĝjs(s)|m
j=1,j≠1        …(8.59) 

The diagonal dominance has a simple graphical interpretation. For each i = 1,., m, the gii(s) 

maps the imaginary axis s = jw in the contour D onto the curve gii(jw) in the complex plane. 

Let us define the radius  

 di(jw) > ∑ |ĝij(jw)|m
j=1,j≠1        …(8.60) 

and the closed disk Di(w) centered at ĝii(jw) with radius di(jw). Consider the union Bi of all 

these disks, for all w. This union is called the inverse Nyquist band and, and looks like a band 

in the complex plane centered along the curve ĝii(jw) of variable width, depending on the 

d1(jw). Then the system G(s) is row dominant when all the bands Bi, for i = 1,…, m, exclude 

the origin. A similar graphical test for column dominance can be built based on column wise 

defined radius  

d′i(jw) > ∑ |ĝji(jw)|m
j=1,j≠1                                    … (8.61) 

An application of diagonal dominance conditions to control systems stability was developed 

by Rosenbrock [1972] and Cook [1972] who presented multivariable versions of the circle 

criterion based on frequency response bands that were called Gershgorin bands. A complete 

design method can be found in Rosenbrock [1974] or in Bell et al. [1982]. 
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Remarks: Under normal considering the FKBC as a multi-level relay leads to k1 = 0. This 

would cause the circle to become a semiplane (−∞, −k2
−1) in the SISO case as shown in Fig. 

8.28. Furthermore, in the MIMO case the circle has a diameter defined by (0, k2) as shown in 

Fig. 8.29.  

 

Fig. 8.28. SISO case for k1 =0 

 

Fig. 8.29. MIMO case for k1 = 0  

 

Table 8.1. FKBC for subsystem 1 

 



Stability of Fuzzy Control System | 8.31 
 

E represents error, S represents error sum, ZE represents Zero, PS, PB, PM, NB, NM ,NS 

have usual meaning 

Example 8.2 Consider the system defined by the following transfer matrix [see Ray et al. 

(1984)] 

    G(s) = [

1

(s+1)3

1

2(s+1)3

1

(s+2)3

3

2(s+2)3

]       …(8.62) 

The inverse matrix is defined by  

   Ĝ (s) = [

2

3
(s + 1)3 −1

2
(s + 1)3

(s + 2)3 (s + 2)3
]     …(8.63) 

 

 

Fig. 8.30. Nyquist plot 1st and 2nd column of Example 8.2. 

The open-loop system is column dominant. Thus, the original MIMO system can be 

considered as two relatively uncoupled subsystems. Tables 8.1 and 8.2 give the FKBC for 

each one of these subsystems. In both tables S denotes sum-of-error and E denotes error. The 

controller slopes are defined by the pairs (0, 1) and (0, 4). The feedback system is stable, as 

shown in Fig.8.30. 



8.32 | Fuzzy Logic Models and Fuzzy Control: An Introduction 

 

Table 8.2. FKBC for subsystem 2 

E represents error, S represents error sum, ZE represents Zero, PS, PB, PM, NB, NM ,NS 

have usual meaning 

 

Fig. 8.31. Design of the FKBC for an unstable plant. 

8.5.3 Application of the circle criterion to Design 

The previously mentioned criterion requires a linear and asymptotically stable plant. [Ray and 

Majumdar (1984)] used this criterion as an aid in the design of a FKBC. If stability defines 

the admissible limits for the FKBC. On the other hand, if the plant is unstable, a linear 

compensator is in-troduced in such a way that the compensated plant is stable (Fig.8.31). The 

conditions are fixed on the circle in a similar way.  

8.6 THE CONICITY CRITERION 

Consider the closed-loop system F of Fig. 8.32. If the small-gain condition g(G). g(H) < 1 

holds, then we can ensure closed-loop stability. If this condition does not hold we can not 

conclude instability of the small-gain condition is to add.  

 One way to increase the applicability of the small-gain condition is to add and 

subtract from F the same block C. This gives rise to the transformed closed-loop T(F,C) of 
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Fig. 8.33. Under not very restrictive conditions normally met in practice, the stability 

conditions of F and T(F,C) are equivalent, as stated in the loop transformation theorem 

[Desoer and Vidysagar (1975)]. 

If we apply the small gain condition to the transformed loop T(F,C), we obtain the conicity 

criterion, formulated as follows: 

  

 

  Fig.8.32. Canonical Closed-loop system 

 

 

 

Fig. 8.33. The transformed Closed-loop system 

The feedback system F is stable if there is a linear operator C and a positive number r > 0 

such that 

(a) g(H-C) < r and g(feedb(G,C)) ≤ 1/r. 
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In the above feedb(G, C) denotes the feedback configuration of the blocks G and C. 

The auxiliary elements C and r are called center and radius respectively. An intuitive 

graphical interpretation of the conicity criterion can be given James(1966) at least in the 

scalar case (C scalar), in the sense that the graph of H in the plane x-y must lie inside a sector 

of limiting slopes C + r and C – r. Also, condition (b) can be related to the usual circle 

criterion condition defined on the scalar frequency response G(jw) (see Section 8.5).  

The conicity criterion when stated in this abstract way contains as a particular case [compare 

Safonov (1980)] the circle criterion. To apply the conicity criterion in practice and thus 

compute the gains involved using the formulas in Section 8.4 for NLS and LTI systems, the 

closed-loop synamics must be organized in two blocks. One block say G, must have a LTI 

model and the other block say H, must have a NLS model. 

In this way, the center C must be chosen: (1) static, to compute g(H-C) with the NLS formula, 

and (2) linear, to compute g(feedback(G,C)) with the LTI formula. 

This fact force C to be a linear static (memory less) operator, i.e., matrix of appropriate 

dimensions. At this point the question is how to construct the center matrix C so that the 

conicity conditions hold. As no priori information is in general available, one possibility is to 

explore all centers that may verify the conicity inequalities. This leads to the definitions and 

criteria given by Barseina and Aracil (1992). The conic deviation dH (C) of the rnonlinear 

controller H from the center matrix C is given as  

   dH (C) = g (H – C)        …(8.64) 

The conic robustness rG(C) of the linear plant G with the feedback C is given by 

   rG(C) = 
1

g(G(I+C.G)−1)
      … (8.65) 

Then dH (C) gives a measure of the difference between C and H and rG (C) gives a measure of 

the robustness of the closed-loop formed with the plant G with the feedback C. If C is chosen 

so that the closed-loop approaches instability, then the gain approaches infinity and rG(C) 

converges to zero. Using this, the conicity stability is given by  

    C, r : dH (C) < r  rG (C)       …(8.66) 

 

Fig. 8.34. Interpretation of the conicity criterion. Sc is a subset of stabilizing centers. 

The intuitive idea behind this is that the feedback system formed with the plant G and 

controller H is stable if for some linear y = Cx the comic robustness rG(C) of G with the 

feedback c (instead of H) is greater than the deviation dH(C) between H (actual controller ) 

and C (linear controller ).  
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These ideas are illustrated in Fig 8.34. The x-axis is the space of linear centers C. this space is 

of dimension 1 when C is a scalar 

dimension 2 when C is a 1 x 2 matrix  

dimension n + m when C is a n x m matrix.  

Then the conic deviation dH(C) and conic robustness rG(C), is the function of C represented 

by curve surface of hyper surface. It may happen that rG(C) is defined only on a subset Sc of 

stabilizing centre. The stability condition holds for the gray area Fig 8.34. 

This formulation is a corollary of the conicity criterion but adds implicitly the idea of 

exploring among all the possible centers. As it may happen that the stability condition does 

not hold for some centers. But hold for other we must look for an appropriate centre. In 

Barreiro and Aracil (1992), techniques to organize this search are given. 

If the plant G has a transfer G(s) and frequency response G(jw) the stability condition are 

related as follow for some rand C: 

(i) Non linear conicity (dH(C) < r) given by: 

    x:IH(x) – C x I< r. I x I        … (8.67) 

(ii) Linear conicity (r < rG(C) Which is Divided into the following: 

(a) Stability of the linear closed loop  

 F(s) = G(s) .(I + c. (s))-1      …(8.68) 

(b) Frequency response condition  

   supωσ̅{F(jw)} = supωσ̅{G(jw) . (I + g(jw))-1 }  1/r   … (8.69) 

 

 

Fig. 8.35. 2-joints manipulator. 

This reformulation of the conicity criterion can be easily applied to the analysis and design of 

FKBC. In the following we represent the application of this method to the robust controls of a 

two joint manipulator.’ 
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Example 8.3 Consider the joint manipulator shown in figure 8.35 which has 2- rotational 

joint angle velocities and accelerations given respectively by xi ,xi (i =1, 2). Assuming the 

masses m1and m2 located at the distal ends of the links with length l1and l2 the dynamic model 

is given by 

   M(x) . x= u+ V(x, ẋ )+G(x) +F(x, ẋ ) + z,     …( 8.70) 

where x, ẋ , Ẍ  are two dimensional vectors u is a two dimensional vectors with the control 

torque M(x) is a 2 x 2 mass matrix is given as  

   [
l2
2m2 + 2l1l2m2c2 + l1

2(m1 + m2 l2
2m2 + 2l1l2m2c2

l2
2m2 + 2l1l2m2c2 l2

2m2

]   …(8.71) 

V (x, ẋ ) is a 2 x 1 centrifugal and Coriolis terms given by 

  V (x, ẋ ) = m2l1l2s2x2
2 + 2m2l1l2s2x1x2     … (8.72) 

   -m2l1l2gc12 

G(x) is a 2x1 vector of gravity terms given by 

 

  G(x) = -m2l1l2gc12 – (m1 + m2) l1c1     …(8.73) 

  -m2l1l2gc12 

F(x, ẋ ) is a model of friction and z is a 2 x 1 vectors of unknown signals due to extras 

distribance and unmodelled dynamics. Furthermore s2, c1, c2 and c12 represent sin (x2) cos (x1) 

Cos (x2) and cos(x1 + x2) , respectively. 

Let  

  q (x, ẋ ) = V(x, ẋ ) + G(X) + F(x, ẋ )      … (8.74) 

Using the computed torque technique [ref. Article Craig J.J. (1985)] the joint dynamics are 

decoupled and liberalized. The control law is then given by 

   u = –q (x, ẋ ) + M(x). (h (e, e)= Ẍ d)      … (8. 75)  

where e = xd – x, ė = ẋ d – ẋ  ; xd, ẋ d, ẋ̈d are desired joint angles angular velocities and 

acceleration respectively and h(e,  e)̇  is a feedback function. 

If the estimated values of parameter in –q(x, ẋ) and M(x) are close to the real values and there 

are no external disturbance and unmodelled dynamic (z = o) then the computed torque control 

law reduce the dynamics of each joint to a double integrator 

 ë =  −u = -u,         …(8. 76) 

   u = h(e, e)̇         … (8. 77) 
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In the above, the bold letter is omitted thus indicating that now we work with the scalar 

uncoupled dynamics of a separate joint. These dynamics can be regarded as a feedback 

configuration formed with a linear one-input two-output plant (input – u outputs e, ė) whose 

transfer Function is a double integrator  

   g(s) = (
1/s2 
1/s

)         …(8.78) 

The negative feedback is given by the nonlinear statics law h (e, ė) that can be written as  

   u = h (e, ė) =kp (e, ė).e + kv (e, ė). ė      … (8. 79) 

In the above position and velocity gains are nonlinear function of the error and derivatives of 

the error ė. A fixed constant value for the position and speed gain kp (e, ė) and kv (e, ė) will 

suffice in the ideal case of the exact model estimation, however estimation errors unmodelled 

dynamics and other nonlinearities mainly the actuator deteriorate the control performance  

It will be shown how a fuzzy design of the gains solves the actuator saturation problem. 

However before that we will show how the conicity criterion imposes some restriction on this 

design. In this way the conicity criterion can be regarded as a complementary stability tool in 

the fuzzy design process let us apply the conicity condition given above. 

 

 

Fig 8.36 Admissible control gains. 

Stabililty of Linear feedback:  

For some centre C=(c1,c2) the feedback system formed with g(s) and C must be stable. Which 

gives 

   c1 > 0 and c2 > 0        …(8. 80) 

 Following Craig (1985) we choose the central values of the position and velocity gain as 

follows;  

   c1 = 200; c2 = 20        … (8. 81)  
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Linear Conicity: 

For some radius r > 0, 

 r ≤ rg(c) = 1/
sup
w

(
(c1−c2)2+(c2.w)2

1+w2 )
1/2

     …(8.82) 

such that for a centre c= (200, 20) given rise to this radius r < rg(c)  15. 

Nonlinear conicity;  

From the condition  

 e, ė :I h(e , ė) – (c1.e + c2. ė)I < r. |(e, ė)|,    …(8.83). 

we obtain 

 ((kp – c1)2 + (kv – c2)2)1/2 ≤ r.      …(8.84). 

In other words, the position and the speed of gain kp(e, ė) and kv(e, ė) must always be interior 

to the circle of centre c and radius rg in the gain plane as shown in Fig 8.36. It may be noted 

that if the gain were fixed then any positive value kp > 0 and kv > 0 ensure linear stability. The 

circle restriction of Fig8.36 can be regarded as the price paid for the nonlinear variability of 

the gains. 

 

Fig 8.37 (a) Membership function (b) if then rules where eb represent the normalized 

error defined by eb=ev (xd – x) 
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Fig. 8.38. The nonlinear function Kv = ɸ(ė). 

Based on the conicity Stability condition the fuzzy design of the error gain can be 

accomplished same the following way, we assume the following working condition for the 

manipulator. 

i. Refereneces: ramp of slope 0.5 rad / sec., 

ii. Saturation: the saturation of the variable u is assumed to be ± 20 rad / sec2 and 

iii. Design objectives : obtain a fast ramp response with absolute error as small as 

possible and avoiding if possible the saturation region. 

Since the reference are ramp signals at the start time or the times of the slopes change the will 

be a large speed error hence the position gain has little effect and is kept constant at the value 

kp= 200. The velocity gain will be adjusted function of the velocity error kv = φ(ė) by mean of 

the set of if then rules.  

It should be noted that the final conicity stability condition is 

   C2 – r  20 – 15 = 5 ≤ kv = φ(ė) ≤ c2 + r  20 + 15 = 35.    …(8.85)  

This condition can be guaranteed provided that the rule consequent member ship function for 

kv be in the range [8.35]. Fig 8.37 shows the definition of rules and membership function this 

formulation of the FKBC and the membership function after fuzzification rules firing, 

Defuzzification result in a nonlinear function kv (e) that varies the stability condition this 

function is shown in Fig8.38. 

Finally Fig. 8.39 shows the simulation results. It may be noted that the fuzzy speed gain kv = 

φ(ė) gives a better globle response than the linear gain setting kv = 5 (with large initial error ) 

or Kv = 35 with slow convergence. Thus the wholes model is simulated with the two joint 

coupled simulation Gracia-Cerezo (1987) shows that even for considerable error (50%) in the 

estimated M(x) and q(x, ẋ ) of the actual M(x) used in Craige [1985] the fuzzy design of the 

speed gain work well showing inherent robustness.  
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Fig 8.39 Result of the fuzzy design 
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EXERCISE-8  

1  Consider an SISO dynamic system of the form 

   x (t) = x2(t) + u(t) 

   x(t0) = x0. 

  Assume that there exists a fuzzy model that accurately describes this system: 

  IF x(t)  Sn AND u(t)  Sm THEN x (t)  San+bm. 

  The definition for the fuzzy sets Sn and Sm are 

   Sn = [(n - 1)σ,(n+1)σ), 

   
nS

1 | x n | / for x [(n 1) , (n 1) ),
(x)

0 else.

        
  


     

(a) Estimate the constants {a,b} for each of the following ranges for x(t): (i) 

[0,0.5), (ii) [0.5,1.0), (iii) [1.0,4.0), (iv) [4.0,10.0), (v) [–0.5,0), (vi) [–1.0,–

0.5), (vii) [–4.0,–1.0), and (viii) [–10.0,–4.0). 

  (b) Design, for each of the ranges in part (a), a simple fuzzy controller in the 

form of 

  IF x(t)  Sn THEN u(t)  Skn, 

  i.e., determine the values of k in this fuzzy expression for each range listed in 

part (a). 

(c) Write a simulation program that combines the actual system, the fuzzy 

controllers in part (b), along with condition checking, to determine when x(t) 

falls into a particular range to activate a specific controller designed for that 

range. Use the following conditions x0 = 3.0 and Δt = 0.02 sec. Plot the output 

x(t) for t  [0.0,5.0) in seconds. 

2.  Consider an SISO dynamic system of the form 

   x (t) = sin(x(t)) + u(t) 

   x(t0) = x0. 

Assume that a set of data is collected for output x(t) at the beginning of every 

time interval [tn, tn + Δt). Denote this data set Dx,n with  

  Dx,n = {x(t0), x(t1), x(t2), …, x(tn)}. 

Similarly, assume that a set of data Du,n is collected for the input u(t) that 

drives the system, with 

   Du,n = {u(t0), u(t1), u(t2), …, u(tn)}. 

(a) Set up recursive formulas to update the parameters a and b in the 

corresponding fuzzy model 

   IF x(t)  Sn AND u(t)  Sm THEN x (t)  San+bm, 

  with fuzzy sets Sn and Sm defined as 

   Sn = [(n–1)σ,(n+1)σ), 

   
nS

1 | x n | / for x [(n 1) , (n 1) ),
(x)

0 else.

        
  


 

  for the data sets Dx,n and Du,n. 



8.42 | Fuzzy Logic Models and Fuzzy Control: An Introduction 

(b) For an input signal, u(t) = sin(πt), write a computer program to generate 

input and output profiles Du,n and Dx,n for the system at time t0 = 0.0 to tn = 

10.0 sec. with Δt = 0.02 sec. Plot the input u(t) and output x(t) versus time t. 

(c) Write a computer program to update the parameters a and b in the fuzzy 

model used to approximate the given nonlinear system. Plot the parameters 

a(t) and b(t) versus time t. 

  (d) Design a simple fuzzy controller in the form of  

   IF x(t)  Sn THEN u(t)  Skn 

and determine the values of k in the above fuzzy expression as functions of 

parameters a and b. 

(e) Write a computer program to combine the dynamic system, the update of 

the parameters a and b for the fuzzy model, the update of the parameter k for 

the fuzzy controller, and the input/output for the closed-loop system with 

initial condition x(0) = 3.0. Plot the input u(t) and output x(t) versus time t. 

How long does it take for the system to converge to final position xf = 0? Does 

the output system oscillate at this value? Explain. 

 

 

3.  Consider an SISO dynamic system of the form x (t) = sin(t) x(t) + cos(t) u(t) 

   x(t0) = x0. 

Assume that a set of data is collected for output x(t) at the beginning of every 

time interval [tn, tn+Δt). Denote this data set Dx,n with  

  Dx,n = {x(t0), x(t1), x(t2), …, x(tn)}. 

Similarly, assume that a set of data Du,n is collected for the input u(t) that 

drives the system, where  

  Du,n = {u(t0), u(t1), u(t2), …, u(tn)}. 

  Repeat the steps from (a) through (e) in Exercise 2 for the present case. 

4.  Consider an SISO dynamic system of the form 

   x (t) = 3 x(t) + 2 u(t) 

   x(t0) = x0. 

  (a) Design a Model Reference Adaptive Fuzzy System so that 

   u(t) = γ(t) x(t) 

  will drive the closed-loop system to track the fuzzy model 

   IF x(t)  Sn AND u(t)  Sm THEN x (t)  S6n+4n. 

(b) Write a computer program that plots the outputs and inputs of both the 

bounds of the fuzzy model and the dynamic system. Compare the results. Is 

the output of the closed-loop dynamic system tracking the fuzzy model, i.e., 

does it fall in between the two bounds? 

5.  Consider an SISO dynamic system of the form 

   x (t) = x2(t) + u(t) 

   x(t0) = x0.  
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  (a) Design a Model Reference Adaptive Fuzzy System, so that 

   u(t) = γ(t) x(t) 

  will drive the closed-loop system to track the fuzzy model 

   IF x(t)  Sn AND u(t)  Sm THEN x (t)  S2n+n. 

(b) Write a computer program that plots the outputs and inputs of both the 

bounds of the fuzzy model and the dynamic system. Compare the results. Is 

the output of the closed-loop dynamic system tracking the fuzzy model, i.e., 

does it fall in between the two bounds? 
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Chapter-9 

Fuzzy Control System Models 

9.1  INTRODUCTION 

This chapter introduces some engineering applications of fuzzy logic and fuzzy control 

systems. The purpose of this introduction is mainly to illustrate workability and applicability 

of fuzzy logic and fuzzy control in real-life situations based on the fuzzy systems theories 

developed in the previous chapters of the book. 

Three main applications are discussed in the following order: a fuzzy rule-based expert 

system for a health care diagnostic system monitoring vital signs of a human patient; a fuzzy 

control system for a diabetes system, and a fuzzy modeling and design of a fuzzy controller 

for a Air conditioner control system. For each application, a description of the functionality of 

the system is given, which is followed by the fuzzy logic rules and computer simulation 

results. 

9.2. HEALTH MONITORING SYSTEMS 

Diagnostic systems are used to monitor the behavior of a process and identify certain pre-

defined patterns that associate with well-known problems. These identified problems, 

provides suggestions for specific treatment. 

9.2.1 Introduction of Fuzzy Diagnostic Systems 

Most diagnostic systems are in the form of a rule-based expert system: a set of rules is used to 

describe certain patterns. Observed data are collected and used to evaluate these rules. If the 

rules are logically satisfied, the pattern is identified and a problem associated with that pattern 

is suggested. Each particular problem might imply a specific treatment. In general, the 

diagnostic systems are used for consultation rather than replacement of human expert. Thus, 

the final decision is still with the human expert to determine the cause and to prescribe the 

treatment. 
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Most current health monitoring systems only check the body’s temperature, blood pressure 

and heart rate against individual upper and lower limits. these start an audible alarm and each 

signal move out of its predefined range (either above the upper limit or below the lower 

limit). Then, human experts (nurses or physicians) examine the patient and probe the patient’s 

body further for additional data that lead to proper diagnosis and its corresponding treatment. 

Other more complicated systems normally involve more sensors that provide more data but 

still follow the same pattern of independently checking individual sets of data against some 

upper and lower limits. The warning alarm from these systems only carries a meaning that 

there is something wrong with the patient. Thus, attending staff would have to wait for the 

physician to make a diagnostic examination before they could properly prepare necessary 

equipment for a corresponding treatment. In a lifethreatening situation, reducing the 

physician’s reaction time (the time between the warning and the time proper treatment is 

given to the patient) by preparing proper equipment for specific treatment in advance would 

significantly increase the patient’s chance of surviving. 

In the field of exploration where a team of humans is sent to a distant and isolated location, it 

is important to have a health monitoring system that can give early diagnostic data of each 

explorer’s health status to prepare for the continuation of the mission. In space exploration 

missions, an astronaut who suddenly gets sick will be diagnosed and the data reviewed by the 

onboard physician as well as the physician team on earth to determine if a proper treatment 

onboard is possible (for the continuation of the mission) or if specific treatment on earth is 

required (for the abortion of the mission). 

Hence, the health monitoring system is playing two roles in every space mission: to monitor 

the health of the astronaut and to aid in determining wheather a mission should be continued 

or aborted (due to serious illness). This section presents a simple implementation of a health 

monitoring expert system utilizing fuzzy rules for its rule base. This health monitoring expert 

system consists of a set of sensors monitoring three vital signs of a patient: body temperature, 

blood pressure and heart rate. 

9.2.1. Fuzzy Rule-Based Health Monitoring Expert Systems 

In this system, we deal with a fuzzy rule-based expert health monitoring system with three 

basic sensors: body temperature, heart rate and blood pressure. Note that the blood pressure is 

measured in two readings: systolic pressure (the maximum pressure that the blood exerts on 

the blood vessel, i.e., the aorta, when the pumping chamber of the heart contracts), and 

diastolic pressure (the lowest pressure that remains in the small blood vessel when the 

pumping chamber of the heart relaxes). For simplicity of discussion only diastolic pressure is 

used with the understanding that an additional reading can be easily added to the system and 

the number of diagnostic cases will increase accordingly. The expert system will check for 

combinations of data instead of individual data and thus will identify twenty-seven different 

scenarios instead of three in the conventional system. 
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Individual sensors can identify three isolated cases: 

(i) high body temperature indicates high fever normally associated with the body fighting 

against some infectious virus or bacteria, some hormone disorder such as 

hyperthyroidism, some autoimmune disorder such as rheumatoid arthritis or some 

damage to the hypothalamus  

(ii) high blood pressure indicates hypertension normally associated with some kidney 

disease, hormonal disorder such as hyperaldoteronism, or acute lead poisoning and  

(iii) high heart rate indicates rapid heart beat normally associated with an increase in 

adrenaline (a hormone produced by the adrenal glands) production. 

In addition, three more cases can be identified: 

(iv) low body temperature indicates hypothermia  

(v) low blood pressure normally associates with excess bleeding, muscle damage, heart 

valve disorder, or excessive sweating/urination and  

(vi) low heart rate normally associates with abnormal pacemaker or with the blockage 

between the pacemaker and the atria where pacemaker signal is received to stimulate 

heartbeats.  

 

 

Figure 9.1 Definitions and membership functions of three different ranges for body 

temperatures. 

 

 

Figure 9.2 Definitions and membership functions of three different ranges for blood 

pressure. 
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Figure 9.3 Definitions and membership functions of three different ranges for heart 

rate. 

However, the three individual sensors, each with three settings (normal, high, and low), can 

be combined to give 27 different scenarios. With the perfectly normal case (where all three 

give normal readings) and the six cases defined above, there are additionally 20 more cases 

where combinations of abnormal readings can be observed. For example, low blood pressure 

and high body temperature might indicate severe exposure to heat and a severe loss of blood 

or lack of body fluid. 

Let x1 be the body temperature, x2 the (systolic) blood pressure, x3 the heart rate and y the 

diagnostic statement. Let Li, Ni and Hi represent the three sets of low range, normal range and 

high range for sensor data xi, where i = 1, 2, or 3. Furthermore, let C0, C1, C2, ..., C26 be the 

individual scenarios that could happen for each combination of the different data sets. 

The low range for the body temperature can be defined as below 98°F. Similarly, the normal 

range is 98°F and high range is above 98°F. One can define three ranges and three 

membership functions as in Figure 9.1. These functions have the mathematical representation 

as follows:  

   
1

o

1

o o

L 1 1 1

o

1

1 if x 96 F,

(x ) (98 x ) / 2 if 96 F x 98 F,

0 if 98 F x ,

   


    
   

 

   
1

o o

1 1

o o

N 1 1 1

(x 96) / 2 if 96 F x 98 F,

(x ) (100 x ) / 2 if 98 F x 100 F,

0 else,

   


    



 

   
1

o

1

o o

H 1 1 1

o

1

0 if x 98 F,

(x ) (x 98) / 2 if 98 F x 100 F,

1 if 100 F x ,

   


    
   
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2

2

L 2 2 2

2

1 if x 100Hg,

(x ) (120 x ) / 20 if 100Hg x 120Hg,

0 if 120Hg x ,

  


    
   

 

   
2

2 2

N 2 2 2

(x 100) / 20 if 100Hg x 120Hg,

(x ) (140 x ) / 20 if 120Hg x 140Hg,

0 else,

  


    



 

   
2

2

H 2 2 2

2

0 if x 120Hg,

(x ) (x 120) / 20 if 120Hg x 140Hg,

1 if 140Hg x ,

  


    
   

 

   
3

3

L 3 3 3

3

1 if x 40Hz,

(x ) (70 x ) / 30 if 40Hz x 70Hz,

0 if 70Hz x ,

  


    
   

 

   
3

3 3

N 3 3 3

(x 40) / 30 if 40Hz x 70Hz,

(x ) (100 x ) / 30 if 70Hz x 100Hz,

0 else,

  


    



 

   
3

3

H 3 1 3

3

0 if x 70Hz,

(x ) (x 70) / 30 if 70Hz x 100Hz,

1 if 100Hz x ,

  


    
   

 

  From this knowledge, four basic rules can be defined as follows: 

  R(0): IFx1 is N1 AND x2 is N2 AND x3 is N3 THEN y is C0 

  R(1): IFx1 is H1 AND x2 is N2 AND x3 is N3 THEN y is C1 

  R(2): IFx1 is N1 AND x2 is H2 AND x3 is N3 THEN y is C2 

  R(3): IFx1 is N1 AND x2 is N2 AND x3 is H3 THEN y is C3. 

  In addition, three scenarios can be identified when only one sensor provides data that 

are lower than the lower limit: 

  R(4): IFx1 is L1 AND x2 is N2 AND x3 is N3 THEN y is C4 

  R(5): IFx1 is N1 AND x2 is L2 AND x3 is N3 THEN y is C5 

  R(6): IFx1 is N1 AND x2 is N2 AND x3 is L3 THEN y is C6. 
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It can be seen that C0 corresponds to normal condition, C1 high fever, C2 hypertension, C3 

rapid heart rate, C4 hypothermia, C5 low blood pressure, C6 low heart rate. The remaining 20 

cases can be defined as follows: 

  R(7): IFx1 is L1 AND x2 is L2 AND x3 is L3 THEN y is C7 

  R(8): IFx1 is L1 AND x2 is L2 AND x3is N3 THEN y is C8 

  R(9): IFx1 is L1 AND x2 is L2 AND x3 is H3 THEN y is C9 

  R(10): IFx1 is L1 AND x2 is N2 AND x3 is L3 THEN y is C10 

  R(11): IFx1 is L1 AND x2 is N2 AND x3 is H3 THEN y is C11 

  R(12): IFx1 is L1 AND x2 is H2 AND x3 is L3 THEN y is C12 

  R(13): IFx1 is L1 AND x2 is H2 AND x3 is N3 THEN y is C13 

  R(14): IFx1 is L1 AND x2 is H2 AND x3 is H3 THEN y is C14 

  R(15): IFx1 is N1 AND x2 is L2 AND x3 is L3 THEN y is C15 

  R(16): IFx1 is N1 AND x2 is L2 AND x3 is H3 THEN y is C16 

  R(17): IFx1 is N1 AND x2 is H2 AND x3 is L3 THEN y is C17 

  R(18): IFx1 is N1 AND x2 is H2 AND x3 is H3 THEN y is C18 

  R(19): IFx1 is H1 AND x2 is L2 AND x3 is L3 THEN y is C19 

  R(20): IFx1 is H1 AND x2 is L2 AND x3 is N3 THEN y is C20 

  R(21): IFx1 is H1 AND x2 is L2 AND x3 is H3 THEN y is C21 

  R(22): IFx1 is H1 AND x2 is N2 AND x3 is L3 THEN y is C22 

  R(23): IFx1 is H1 AND x2 is N2 AND x3 is H3 THEN y is C23 

  R(24): IFx1 is H1 AND x2 is H2 AND x3 is L3 THEN y is C24 

  R(25): IFx1 is H1 AND x2 is H2 AND x3 is N3 THEN y is C25 

  R(26): IFx1 is H1 AND x2 is H2 AND x3 is H3 THEN y is C26. 

Physicians can provide their knowledge in medical science to label individual cases Ci for i = 

7, 8, ..., 26. For example, the condition C26 with high body temperature, high blood pressure 

and high heart rate might indicate hyperthyroidism (a condition in which excess thyroid 

hormone is produced); the condition C25 with high body temperature, high blood pressure, 

and normal heart rate might indicate pheochromocytoma (a tumor in the adrenal gland 

causing overproduction of a hormone that triggers high blood pressure and raises body 

temperature) or the condition C20 with high body temperature, low blood pressure, and 

normal heart rate might indicate heat stroke (a condition associated with prolonged exposure 

to heat). 
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The membership function for a rule is calculated as a minimum of the memberships of 

individual conditions, i.e., the membership functions for rules 

   R(0), R(1), R(2) and R(3) are 

   R
(0)(x1, x2, x3) = 

1 2 3N 1 N 2 N 3min{ (x ), (x ), (x )}   , 

   R
(1)(x1, x2, x3) = 

1 2 3H 1 N 2 N 3min{ (x ), (x ), (x )}   , 

   R
(2)(x1, x2, x3) = 

1 2 3N 1 H 2 N 3min{ (x ), (x ), (x )}  
and

 

   R
(3)(x1, x2, x3) = 

1 2 3N 1 N 2 H 3min{ (x ), (x ), (x )}   . 

The membership functions for rules R(4) through R(26) can be similarly established according 

to their corresponding rules given earlier. 

9.2.3 Computer Simulations 

In this section, numerical simulations are created to demonstrate the workability of 27 rules 

given in the previous section representing a health monitoring expert system. 

Example 9.2.1. In this example, the rule R(1) for high fever, R(2) for hypertension and R(3) for 

rapid heart rate are tested. The temperature profile x1(t), blood pressure profile x2(t) and heart 

rate profile x3(t) are generated according to the following formulas: 

    x1(t) = 98 + 4 sin(
20


t) e(t) + n(t), 

    x2(t) = 120 + 40 sin(
20


t) e(t – 20) + n(t) and 

   x3(t) = 70 + 60 sin(
20


t) e(t – 40) + n(t), 

where the function n(t) is random white noise and e(t) the rectangular envelop function of the 

form: 

   
1 if 0 x 20

e(t)
0 else

 
 


 

These three formulas for x1(t), x2(t), and x3(t) create three separate time intervals, I1 ≈ [7,13), 

I2 ≈ [27,33), and I3 ≈ [47,53). These data profiles will result in rule R(1) being valid in I1, rule 

R(2) valid in I2, and rule R(3) valid in I3. 

Thus, the expected membership function R
(1)(x1,x2,x3) should yield the value 1 for t  I1 and 

the value 0 for everywhere else. Similarly, the expected membership function R
(2)(x1,x2,x3) 

should yield the value 1 for t  I2 and the value 0 for everywhere else and the membership 

function R
(3)(x1,x2,x3) should yield the value 1 for t  I3 and the value 0 for everywhere else. 
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Example 9.2.2. In this example, the rule R(20) for heat stroke condition (high body 

temperature, low blood pressure, and normal heart rate) is tested. The temperature profile 

x1(t), blood pressure profile x2(t) and heart rate profile x3(t) are generated according to the 

following formulas: 

   x1(t) = 98 + 4 sin(
40


t) e(t) + n(t), 

   x2(t) = 120 – 40 sin(
40


t) e(t) + n(t) and 

   x3(t) = 70 + n(t), 

where the function n(t) is random white noise and e(t) the rectangular envelop function 

described in the previous example. These three formulas for x1(t), x2(t), and x3(t) create an 

interval I4  [10,30) where the rule R(20) is valid, i.e., the membership function R
(20)(x1,x2,x3) 

should yield the value 1 for t  I4 and the value 0 for everywhere else. 

Example 9.2.3. In this example, the rule R(26) for hyperthyroidism (high body temperature, 

high blood pressure and rapid heart rate) is tested. The temperature profile x1(t), blood 

pressure profile x2(t), and heart rate profile x3(t) are generated according to the following 

formulas: 

   x1(t) = 98 + 4 sin(
40


t) e(t) + n(t), 

   x2(t) = 120 + 40 sin(
40


t) e(t) + n(t) and 

   x3(t) = 70 + 60 sin(
40


t) e(t) + n(t), 

where the function n(t) is random white noise and e(t) the rectangular envelop function 

described in Example 9.1. These three formulas for x1(t), x2(t) and x3(t) create an interval I5  

[10,30) where the rule R(26) will be valid, i.e., the membership function R
(26)(x1,x2,x3) should 

yield the value 1 for t  I5 and the value 0 for everywhere else. 

9.2.4. Numerical Results 

In this section, computer simulations are created for the three examples listed in the previous 

section. Data are generated at the rate of one sample per second for the duration of 75 

seconds.  

For each example three sets of data, X1 = {x1(n) | n = 0, 1, 2, …, 74 }, X2 = {x2(n) | n = 0, 1, 

2, …, 74 } and X3 = {x3(n) | n = 0, 1, 2, …, 74 } are generated.  
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In Example 9.1, the membership functions R
(1)(x1(n),x2(n),x3(n)), R

(2)(x1(n),x2(n),x3(n)) and 

R
(3)(x1(n),x2(n),x3(n)) 

are generated for n = 0, 1, 2, …, 74. In Examples 9.2 and 9.3, the membership functions 

R
(20)(x1(n),x2(n),x3(n)) and R

(26)(x1(n),x2(n),x3(n)) are also generated for n = 0, 1, 2, …, 74. 

Figures 9.4 to 9.6 show the plot of the data x1(t) for body temperature, x2(t) for blood pressure 

and x3(t) for heart rate generated for Example 9.1. Figure 9.8 shows the resulting membership 

functions of the three conditions C1, C2 and C3 tested in Example 9.1. The data are generated 

at the beginning of each time interval of 1 second for 75 seconds. In the first 20 seconds, x2(t) 

and x3(t) are in normal range and x1(t) is gradually moving toward the high range causing the 

membership function of condition C1 to rise toward 1. Similarly, during the time interval 

[20,40], x1(t) and x3(t) are in normal range, and x2(t) is gradually moving toward the high 

range, causing the membership function of condition C2 to rise toward 1 and during the time 

interval [40,60], x1(t) and x2(t) are in normal range, and x3(t) is gradually moving toward the 

high range causing the membership function of condition C3 to rise toward 1. Therefore all 

three signals go back to normal, causing the membership function for condition C0 to rise 

toward 1. 

Figures 9.8, 9.9 and 9.10 show the plot of the data x1(t), x2(t), and x3(t) generated for 

Example 9.2. Figure 9.11 shows the resulting membership function for condition C20. Here, 

conditions for x1(t) to be high, x2(t) to be low, and x3(t) to be normal are simulated. The 

corresponding membership for condition C20 is shown to confirm that the rule R(20) is valid. 

Figures 9.12, 9.13 and 9.14 show the plot of the data x1(t), x2(t) and x3(t) generated for 

Example 9.3. Here, conditions for x1(t) to be high, x2(t) to be high and x3(t) to be high are 

simulated. The corresponding membership for condition C26 is shown in Figure 9.15 to 

confirm that the rule R(26) is valid. 

 

 

Figure 9.4 Body temperature profile for Example 9.1. 
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Figure 9.5 Blood pressure profile for Example 9.1. 

 
Figure 9.6 Heart rate profile for Example 9.1. 

 
Figure 9.7 Membership functions of conditions C1, C2, and C3 for Example 9.1. 

 
Figure 9.8 Body temperature profile for Example 9.2. 
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Figure 9.9 Blood pressure profile for Example 9.2. 

 
Figure 9.10 Heart rate profile for Example 9.2. 

 
Figure 9.11 Membership function of condition C20 for Example 9.2. 

 
Figure 9.12 Body temperature profile for Example 9.3. 
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Figure 9.13 Blood pressure profile for Example 9.3. 

 

 
Figure 9.14 Heart rate profile for Example 9.3. 

 
Figure 9.15 Membership function of condition C26 for Example 9.3. 

9.3 MONITORING SYSTEM FOR DIABETES  

We require energy when we walk briskly, run for the bus, ride a bike take an aerobic 

class and for our day to day chores and that is provided by the glucose in blood. When food 

is taken, it is broken down to smaller components. Sugars and carbohydrates are thus 

broken ("down into glucose for the body to utilize them as energy source. The liver is also 
able to manufacture glucose. In a healthy person the hormone insulin [which is made by 

the beta cells of the pancreas] regulates how much glucose is in the blood. When there 

is excess glucose in the blood, insulin stimulates cells to absorb enough glucose from 

the blood for the energy that they need. 
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9.3.1 Types of diabetes  

Diabetes type-1 insulin-dependent diabetes (IDDM) or early-onset diabetes develops 

when the body does not produce insulin. People usually develop type 1 diabetes before 

their 40th year, often in early adulthood or teenage years. Patients with type 1 diabetes 

will need to take insulin injections for the rest of their life; Symptoms are extreme 

thirst, Frequent urination, Drowsiness or Lethargy, Sudden weight loss, Sugar in the 

urine, Fruity odor on the breath, Heavy or Labored breathing, etc. Gestational Diabetes 
is also considered as type 1 and affects females during pregnancy. Women have very 

high levels of glucose in their blood. Diagnosis is made during pregnancy. Between 10% to 

20% of them need to take some kind of blood-glucose-controlling medications. Undiagnosed or 

uncontrolled gestational diabetes can raise the risk of complications during childbirth. The 

baby may be bigger than he/she should be. Scientists from the National Institutes of 

Health and Harvard University found that women whose diets before becoming 

pregnant were high in animal fat and cholesterol had a higher risk for gestational diabetes 

Diabetes Type-2 Adult-onset diabetes mellitus or non-insulin dependent-diabetes mellitus 

(NIDDM) develops when the body does not produce enough insulin for proper function or 

the cells in the body do not react to insulin. The body does not produce enough insulin for 

proper function of the cells in the body do not react to insulin (insulin resistance). 

Approximately 90% of all cases of diabetes worldwide are of this type. Some people 

may be able to control their type 2 diabetes symptoms by losing weight, following a 

healthy diet, doing plenty of exercise and monitoring their blood glucose levels. However, 

type 2 diabetes is typically a progressive disease-it gradually gets worse and the patient 

takes insulin, usually in tablet form. People usually develop type 2 diabetes after their 40th 

year. 

Symptoms of type 2 diabetes are increased hunger, increased thirst, frequent 

urination, Blurred vision and Slow-healing sores or frequent infections. 

Risk factors are high blood pressure, History of gestational diabetes, sedentary lifestyle, 

Age factor, polycystic ovary syndrome, Tri-glyceride level and Overweight. 

Polat and Sumer used an expert system approach based on principal component analysis 

and adoptive neuro fuzzy inference system diagnosis of diabetes [refer to Berkan and 

Trubetch(1997). This model is designed for diagnosis of Type -2 diabetes patients using if 

then rules. The process of fuzzfication is also introduced here. 

Recently, a work in this direction is to design a proposition for using mathematical models 

based on a fuzzy system with application, while some author’s recent work is to 

design a mathematical structure of fuzzy modeling of medical diagnoses by using 

clustering models.  
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9.3.2 Modeling Process 
(i) Fuzzification of Impaired fasting glucose test (Do not eat or drink anything except water 

for 8 – 10 hours before a fasting blood glucose test) 

Consider N= Normal, M = Medium, H = High and V.H. = very high. 

   μN(x1) =  {
1 80≤x1≤100

110−x1
10

100≤x1≤110
 

 μV.H(x1) =  {
x1−140

10
140≤x1≤150

1 x1≥150
 

 μH(x1) =  {

x1−120

10
120≤x1≤130

1 130≤x1≤140
150−x1

10
140≤x1≤150

 

 μM(x1) =  {

x1−100

10
100≤x1≤110

1 130≤x1≤140
150−x1

10
140≤x1≤150

 

(ii) Fuzzification of Triglyceride level (It is the form of the chemical glycerol- tri = three 

molecules of fatty acid + gleceride = glycerol) 

Consider N= Normal, M = Medium, H = High and V.H. = very high. 

   μN(x2) =  {
1 100≤x2≤150

170−x2
25

150≤x2≤175,
 

 μV.H(x2) =  {
x2−425

25
425≤x2≤450

1 x2≥450,
 

 μH(x2) =  {

x2−200

25
200≤x2≤225

1 225≤x2≤425
450−x2

25
425≤x2≤450

 

and 

 μM(x2) =  {

x2−150

25
150≤x2≤175

1 175≤x2≤200
150−x1

10
200≤x2≤225

 

(iii) Fuzzification of Blood Pressure (It is the pressure of blood in our arteries ( blood 

vessels). It is measured in mm Hg it is recorded two sides 120 - 80 

Consider N= Normal, M = Medium, H = High and V.H. = very high. 

 μN(x3) =  {
1 100≤x3≤120

120−x3
10

120≤x3≤130
, 

 μV.H(x3) =  {
x3−160

10
1605≤x3≤170

1 x3≥170,
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 μH(x3) =  {

x3−140

10
140≤x3≤150

1 150≤x3≤160
170−x3

10
160≤x3≤170,

 

and 

 μM(x3) =  {

x3−120

10
120≤x3≤130

1 130≤x3≤140
150−x3

10
140≤x3≤150

 

(iv) Fuzzification of Bodyweight (It is according to BMI which is calculated as 

weight/(height)2 

Consider N= Normal, M = Medium, H = High and V.H. = very high. 

 μN(x4) =  {
1 18≤x4≤20

25−x4
5

20≤x4≤25
,  μV.H(x4) =  {

x4−40

5
40≤x4≤45

1 x4≥45,
 

μH(x4) =  {

x4−30

5
30≤x4≤35

1 35≤x4≤40
45−x4

5
40≤x4≤45,

 and  μM(x4) =  {

x4−20

5
20≤x4≤25

1 25≤x4≤30
35−x4

5
30≤x4≤35

 

9.3.3 Defuzzification  

The center of gravity (COG) method is used for defuzzification process. 

Output data = 
∑ xi

xmax
iϵxmin

μ(xi)

∑ xi
xmax
iϵxmin

μ(xi)
 

 

 

 Fig. 9.16 Body weight x4  
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Fig. 9.17 Impaired fasting glucose x1 

 

 

Fig. 9.18 Blood pressure x3 

 

 

 

 Fig. 9.19 Triglyceride level x2  
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9.3.4 Case Study: 

Patients A1 Age 62 date 15.2.2015 Suffering with polydipsia, polyuria, irritation in urination 

swelling on feet, weakness 

  X1 = Imapaired glucose fasting value – 165 mg/dl 

  X2 = Triglyceride test value - 212 mg/dl 

  X3 = Blood pressure – 165 mm Hg systolic 

  X4 = BMI – 34.2 kg/m2 

The fuzzified value of the crisp inputs by the use of membership functions defined for each 

fuzzy set for each linguistic variable as shown in figure 9.16 – 9.19 is as below 

N (x1) = 0 M (x1) = 0 H (x1) = 0 V.H. (x1) = 1  

N (x2) = 0 H (x2) = 0.52 M (x2) = 0.42 V.H. (x2) = 0  

N (x3) = 0 M (x3) = 0 H (x3) = 0.5 V.H. (x3) = 0.5 

N (x4) = 0 M (x4) = 0.16 H (x4) = 0.84 V.H. (x4) = 0  

9.3.5RULE BASE 

Rule- IFGT Triglyceride Blood pressure BMI Output 
1 V.H. Moderate High Moderate Level 2 

2 V.H. Moderate High High Level 2 

3 V.H. Moderate V.H. Moderate Level 2 

4 V.H. Moderate V.H. High Level 3 

5 V.H. High High Moderate Level 2 

6 V.H. High High High Level 3 

7 V.H. High V.H. Moderate Level 3 

8 V.H. High V.H. High Level 4 

 

 

Fig. 9.20 Output of the system 
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9.3.6 Execute the inference system:  

We use root sum square (RSS) method to combine the effect of all applicable rules. 

Level 2 = √∑ (μRi)
2

j∈L2
 = √(0.16)2 + (0.5)2 + (0.16)2 + (0.16)2= 0.5766 

Similarly Level 3 = 0.8430 and Level 4 = 0.48 

Output of the decision of the expert system is given by 

 = 
0.5766 x 0.30+0.8480x 0.55+0.48x0.8

0.5766+0.8430+0.48
 = 0.53728 

This output shows that the patient A1 is at level 3 diabetes with 53.728 % degree of precision.   

9.4 AIR CONDITIONER CONTROLLER     

9.4.1 Air Conditioner overview 

The system comprises a dial to control the flow of warm/hot or cool/cold air and a 

thermometer to measure the room temperature (0°C). When the dial is Turned positive, 

warm/hot air is supplied from the air conditioner; If it is turned negative, cool/cold air is 

suppliedand if it is set to zero, no air is supplied. 

A person now notices the difference in temperature (TC) between the room temperature 

(T°C) as measured by the thermometer and the desired temperature (T0 °C) at which the room 

is desired to be kept (set-point).  

. 

Fig. 9.21 Air conditioner control system 

9.4.2 Air conditioner control problem 

The problem how to determine and what extent the dial should be turned so that the 

appropriate supply of air (hot/ warm/cool/cold) may nullify the change in temperature is 

discussed as follows. 
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(i) Rule Base 

Table 9.1: Fuzzy rule base for air conditioner control 

S.No. Fuzzy rule (Descriptive) Fuzzy rule (Notational) 
1. If the room temperature is approximately 

equal to the set point T0 °C, T is approx. 

zero (ZE)and the temperature is rapidly 

changing higher, i.e., dT/dt is PL 

If T is ZE and dT/dt is PL then 

dial should be NL. 

2. If the room temperature is high and there is 

no change in temperature, i.e., T is positive 

large (PL) and dT/dt is approximately zero 

(ZE) then blow cold air at an intermediate 

level, i.e., turn the dial negative medium 

(NM)  

If T is PL and dT/dt is ZE then 

dial should be NM. 

3. If the room temperature is a little bit higher 

than the set point and the temperature is 

gradually decreasing, i.e., T is positive 

small (PS) and dT/dt is negatively small 

(NS) then there is no need to blow hot or 

cold air, i.e., turn the dial to approximately 

zero (ZE) 

If T is PS and dT/dt is NS then 

dial should be ZE. 

(ii) Fuzzification: 

The fuzzy sets for the system inputs namely T and dT/dt, and the system output, namely 

turn of the dial are as shown in the following figures 8.11 to 8.13:  

 

 

 

Fig. 9.22 Temperature Difference 
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Fig. 9.23 Rate of Change in temperature difference 

 

 

 

Fig. 9.24 Turn dials output 

9.4.3 Case study 

Consider the system inputs, T = 2.5C and dT/dt = -1C/min. 

Here the fuzzification of system inputs refer to Figure 9.25 has been directly done by noting 

the membership value corresponding to the system inputs. The rule strengths of rules 1, 2, 3 

choosing the minimum of the fuzzy membership value of the antecedents are 0, 0.1 and 0.6 

respectively. Figure 9.25 The defuzzification of the fuzzy output shown in figure 9.26. 

Z = -0.2 for T = 2.5C and y = -1°C/min. 

 Hence, the dial needs to be turned in the negative direction, i.e., - 0.2 to achieve the desired 

temperature effect in the room. 
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Fig. 9.25: Fuzzfication of inputs T = 2.5C, dT/dt = -1C/min 

 

 

 

Fig. 9.26 Defuzzification of fuzzy outputs for z (turn of the dial) 
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9.5 BLOOD PRESSURE CONTROLLER DURING ANESTHESIA  

9.5.1 Anesthesia overview 

Here, a fuzzy logic controller was used to control mean arterial pressure (MAP), which was 

taken as a measure of the depth of anesthesia. A biological process like anesthesia has a non-

linear, time varying structure and time varying parameters modelling it suggests the use of 

rule-based controllers like fuzzy controllers. The design process here was iterative and the 

reference points of the membership functions as well as the linguistic rules were determined 

by trial and error. The control loop has the following structure. 

 

 

Fig. 9.27: Control loop for the control of depth of anesthesia 

 
 There are two different kinds of disturbances: 

  (1) Surgical disturbances 

  (2) Measurement noise and artifacts 

The depth of anesthesia is controlled by using a mixture of drugs that are injected 

intravenously or inhaled as gases. Most of these agents decrease MAP. Among the inhaled 

gases, isofluorane is widely used, most often in a mixture of 0 to 2 percent by volume of 

isofluorane in oxygen and/or nitrous oxide. The relationship between  

the inflow concentration of isofluorane u(t) and the resulting blood pressure y(t) is modeled 

as the sum of two first order terms, each with a pure time delay.  

The step response h(t) corresponding to a unit step input can be written as follows: 

   h(t) = f1(t) + f2(t),      … (9.1) 

  f1 = k11 exp[-1(t – t1)], for t > t1 and   … (9.2) 

  f2 = k22 exp[-2(t – t2)], for t > t2    … (9.3) 

 where, k1 = -3, k2 = -7.3, t1 = 23 s, t2 = 1.1 s, 1 = 0.01, 2 = 0.006   

Assume that t1 = c1T and t2 = c2T and use z-transform 

Let Y(z) and U(z) are z-transforms of the output blood pressure and input isofluorane 

concentration respectively. Then     

   i

2
C1 1

i i i

i 1

Y(z) k [1 z exp( T)] z (z)u 



      

   
1 1 2 2C 1 C C 1 C

1 2 3 4

1 2

1 2

b z b z b z b z
u(z)

1 a z a z

     

 

  

 
    … (9.4) 
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where, b1 = k11, 

  b2 = -k1 1 exp (-2T), 

  b3 = k2 2, 

  b4 = -k2 2 exp (-1T), 

  a1 = -exp (-1 T) – exp (-2T) and 

  a2 = exp (-1T) exp (-2T)  

The equation (9.4) in recursive form can be written as 

T = 10s, a1 =-1.221, a2 = 0.335, b1 =- 0.030, b2 = 0.048, b3 = - 0.017 and 

 b4 = 0.041.  

It implies y(kT) = -a1y((k - 1)T) - a2y ((k - 2)T) + b1u((k - C1)T)  

  + -b2u[(k - c1 - 1)T] + b1u [(k - c2)T] + b4u[(k - c2 - 1)T]   … (9.5) 

For the fuzzy controller, the error e(t) and the interval of error e(t)  
are used for 

determination of the control variable u(t). The error e(t) is defined as 

e(t) = d(t)-y(t),          … (9.6) 

where d(t) is the desired blood pressure. 

 

The linguistic rules that describe the anesthetist’s action are given in the table 9.2. 
Table 9.2 Linguistic rule 

Rule 
number 

Input e Input e   
Output u 

1 

2 

3 

4 

5 

6 

7 

8 

9 

NS 

PS 

NB 

PB 

ZE 

ZE 

ZE 

- 

- 

- 

- 

- 

- 

ZE 

PS 

NS 

NB 

PB 

PB 

PS 

PV 

ZE 

PM 

PS 

PB 

PV 

ZE 

9.5.2 Rule Base 
Considering ,   

NB = Negative big   NS = Negative small  

   ZE = Zero    PS = Positive small 

   PB = Positive big   PV = Positive very big, we draw the 

following Table.  
Table 9.3 The FAM table for this rule is as follows 

e/ e  NB NS ZE PS PB 

NB 

NS 

ZE 

PS 

PB 

PV 

PB/PV 

PV 

PS/PV 

ZE/PV 

PV 

PB 

PB 

PS 

ZE 

PV 

PB 

PM 

PS 

ZE 

PV 

PB 

PS 

PS 

ZE 

PV/ZE 

PB/ZE 

ZE 

PS/ZE 

ZE 
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The membership function used in this case are bell shaped functions that can be described by 

the following equation 

    = exp [-k ( - )2], 

where  is the input value and  is the shifting of the function in relation to zero. 

The factor k gives the width of the bell. 

The reference points for the membership functions are given in the following table 9.4. 

Table 9.4 
 

 
9.6 LOW COST TEMPERATURE CONTROL 
The fuzzy temperature controller is designed and implemented in microcontroller without 

using any special software tool. Unlike some fuzzy controllers with hundreds or even 

thousands of rules running on computer systems, a unique FLC using a small number of rules 

and simple implementation is demonstrated to solve a temperature control problem with 

unknown dynamics or variable time delays commonly found in industry. Also the final 

hardware is stand-alone system rather than a PC (personal computer/laptop computer) based 

system that takes control decision based on special software tools running on it and hence the 

design approach presented in the Table 9.5 for this example minimizes the total cost of 

hardware and software design. The control result can be improved by resizing the fuzzy sets 

and finer tuning for the membership functions. 

 
9.6.1 System model description 
Low cost temperature control using fuzzy logic system block diagram shown in the figure 

9.28 and 9.29 in this system set point of the temperature is given by the operator using 4X4 

keypad. LM35 temperature Sensor senses the current temperature. Analog to digital converter 

convert analog value into digital value and give to the Fuzzy controller. Controller calculates 

error between set point value and current value and consider as Input function of fuzzy logic. 

By fuzzification process controller calculate it membership. After in rule base and inference 

system output membership value calculated. Defuzzification process calculates actual value 

of PWM for heater and fan which is output of the temperature control system. The process 

comprises of a heater, fan and a temperature sensor. The amount of current passing through 

the coil decides the temperature of the thin metal plate. Temperature detection of this metal 

plate can be done by dedicated temperature sensors. A fan is placed near to the heating 

mechanism. Amount of power delivered to both heater and fan can be controlled by passing a 

command through serial port via microcontroller. Now, microcontroller generate PWM (Pulse 

Width Modulation) signal for the MOSFET to deliver desired amount of power to fan and 

heater. It could thus be used as a small plant readily available for various experimentation and 

study purpose. 

 Input e (mmHg) Input e  (mm Hg.s) Output Output u 
% 

NB 

NS 

ZE 

PS 

PB 

-10 

-5 

0 

5 

10 

-160 

-90 

0 

90 

160 

ZE 

PS 

PM 

PB 

PV 

0 

1 

2 

3 

4 
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Fig 9.28: Block diagram of temperature control system Fig:9.29 Temperature control 

system 

9.6.2 Fuzzification of Input 
In the fuzzification process, a real scalar value changes into a fuzzy value. Arrangements of 

Fuzzy variables ensure that real values get translated into fuzzy values. After translating those 

real values into fuzzy values, the possible outcome is called “linguistic terms”. The input 

linguistic variables for Fuzzy Logic Temperature Controller (FLTC) suggest two things. First 

it shows linguistically the difference between the set point and second it also express the 

measured and calculated signals from a temperature sensor. Input to FLTC is Error= (Set 

point-Temperature sensed). For fuzzified input, two functions including trapezoidal and 

triangular are used. To determine the range of fuzzy variables according to the crisp inputs is 

the primary requirement for proper running of the fuzzier program.Temperature difference 

which was sensed previously, is restricted to positive value. The following fuzzy sets are 

used: NEG =negative, SNEG=small negative, ZERO= zero, SPOZ=small positive, POZ= 

positive. Table suggests the Membership function for input linguistic variable. Membership 

function for input linguistic variable. To include the linguistic variable negative (Neg) to a 

microcontroller, transformation of the Pictorial representation into substantive code is needed. 

Table 9.5: Input linguistic variables 
No.  Crisp Input Range 

( Error = Set Point – Current Temperature )  

Fuzzy Variable Name 

1  -15 to -50  NEG 

2  0 to +30 SNEG 

3  -15 to +15  ZERO 

4  0 to +30  SPOZ 

5  +15 to +50  POZ 

9.6.3 Fuzzy Membership Functions for Outputs 
The output linguistic variables express linguistically the applied values to the FLTC actuators 

for temperature control. Present study considered typically one output variable, which is a 

PWM Wave for fan and Heater. In this case it is essential to attribute fuzzy memberships to 

yield variable which has to be identical to the input variable. The fuzzy sets used for PWM 

Wave are Z = zero, L = large, M = medium, H = high, VH = very high.  

Table 9.6: Output linguistic variables 

No Fuzzy variable Range output  Corresponding Fuzzy variable name 

1  165.75 to 255  65% to 100%  VH 

2  127 to 204  50% to 80%  H 
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3  165.75 to 89.25  65% To 35% M 

4  127 to 51  50% to 20%  L 

5  89.25 to 0  35% to 0%   Z 

9.6.4 Rule base 
Once the current values of the input variables are fuzzified, the fuzzy controller continues 

with the phase of “making decisions” or deciding what actions to take to bring the 

temperature to its setpoint value. For the action to be initiated the measures are minimal time 

as well as minimal temperature. The restraint policy of a Fuzzy Control System is comprised 

by the rule blocks. In the rules ‘IF’ part depicts the situation for which the rules are projected. 

The following 'THEN' part delineates the reaction of the fuzzy system in this state. The 

control policy of heater is structurally formulated according to fuzzy rules. For example, rule 

1 “If error is NEG, then firing angle is Z”. 

Table 9.7: Fuzzy rules 
No  Fuzzy variable Range output  Corresponding Fuzzy variable name  

1  165.75 to 255  65% to 100%  VH 

2  127 to 204  50% to 80%  H 

3  165.75 to 89.25 65% To 35% M 

4  127 to 51  50% to 20%  L 

5  89.25 to 0  35% to 0%  Z 

9.6.5 Defuzzification 
The outcome of defuzzification has to be in a numeric form so that it defines the PWM Wave 

of the MOSFET which is used to force the fan and heater. Out of the number of ways to 

execute defuzzification; in the given scenario, weighted average defuzzification is the best 

technique to obtain the crisp output. It can be further described by following equation;  

 

where

iW

iWiP

D

i

i ,

)(

)().(

7

1

7

1







  

P[i] = The extremum value of ith output membership function and W[i] =The weight 

associated with ith rule. 

The fuzzy variable can be converted into crisp output using C code fragment. One example of 

that is given below 

{
)fffffff(

))d*f()d*f()d*f()89*f()127*f()d*f()d*f((
z

7654321

776655432211




  PWM=z;} 

9.6.6 Outcome of temperature control using fuzzy logic 
The Temperature in the case study is as follow: 

Set temperature: 450 C, Current temperature: 460 C, then 

Error = SP – CV = 45 - 46 = -1 

Rule base Follow: Rule-2(SNEG) and Rule-3(ZERO) 

Therefore, Fuzzilization value f2=0.04, f3=0.933and Defuzzilization value Z * = 130.95 

The Duty Cycle of FAN speed = 51% and The Duty Cycle of HEATING COIL current = 49% 
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Fig 9.29: Overall view of system   Fig 9.30: LCD display 

9.7 AIRCRAFT LANDING CONTROL PROBLEM 
We will conduct a simulation of the final descent and landing approach of an aircraft. The 

desired downward velocity is proportional to the square of the height Thus, at higher altitudes 

a large downward velocity is desired. As the height (altitude) diminishes, the desired 

downward velocity gets smaller and smaller. In the limit, as the height becomes vanishingly 

small, the downward velocity also goes to zero. In this way, the aircraft will descend from 

altitude promptly but will touch down very gently to avoid damage. 

 

 
 

Fig. 9.31: Aircraft landing control problem 
The two state variables for this simulation are be the height above ground, h, and the vertical 

velocity of the aircraft, v. The control output is a force that when applied to the aircraft, it 

alters its height, h, and velocity v. The differential control equations are loosely derived as 

follows: 

Mass m moving with velocity v has momentum p = mv. If no external forces are applied, the 

mass continues in the same direction at the same velocity, v. If a force f is applied over a time 

interval t, a change in velocity of v = ft/m is affected. 

If we let t = 1.0 (sec) and m = 1.0 (N-sec2/m), we obtain v = f(N), or the change in velocity 

is proportional to the applied force.  
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In differential notation, we get vi+1 = vi + fi and hi+1 = hi + vi(1) 

where vi+1 is the new velocity, vi is the old velocity, hi+1 is the new height and hi is the old 

height.  

These two "control equations" define the new value of the state variables v and h in response 

to control input and the previous state variable value. Now, following the same procedure, we 

construct membership functions for the height, h, the vertical velocity, v and the control 

force, f : 

Step 1. Define membership functions for state variables as shown in the tables and figure 

given below 

Table 9.8 Membership values for height 

 Height (m) 
0.0 100 200 300 400 500 600 700 800 900 1000 

Large (L) 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.4 0.6 0.8 1.0 

Medium (M) 0.0 0.0 0.0 0.0 0.2 0.4 0.6 0.8 1.0 0.8 0.6 

Small (S) 0.4 0.6 0.8 1.0 0.8 0.6 0.4 0.2 0.0 0.0 0.0 

Near zero (NZ) 1.0 0.8 0.6 0.4 0.2 0.0 0.0 0.0 0.0 0.0 0.0 

 

 
 

Fig. 9.32: Height, h, partitioned Membership values for velocity 

Table 9.9 Vertical Velocity 

 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 

Up Large (UL) 0 0 0 0 0 0 0 0 0 0.5 1 1 1 

Up Small (US) 0 0 0 0 0 0 0 0.5 1 0.5 0 0 0 

Zero(Z) 0 0 0 0 0 0.5 1 0.5 0 0 0 0 0 

Down Small (DS) 0 0 0 0.5 1 0.5 0 0 0 0 0 0 0 

Down Large (DL) 1 1 1 0.5 0 0 0 0 0 0 0 0 0 
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Fig. 9.33: Velocity, v, partitioned 

Step2. Define a membership function for the control output, as shown in table and figure 

below. 

Table 9.10 Membership values for velocity 

 Control force (N) 
 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 

Up Large (UL) 0 0 0 0 0 0 0 0 0 0.5 1 1 1 

Up Small (US) 0 0 0 0 0 0 0 0.5 1 0.5 0 0 0 

Zero(Z) 0 0 0 0 0 0.5 1 0.5 0 0 0 0 0 

Down Small (DS) 0 0 0 0.5 1 0.5 0 0 0 0 0 0 0 

Down Large (DL) 1 1 1 0.5 0 0 0 0 0 0 0 0 0 

 

 
Fig. 9.34: Control force, f, partitioned 

Step3. Define the rules and summarize them in an FAM table. The values in the FAM table, 

of course, are the control outputs. 

Table 9.11 FAM table 

Height 
Velocity 

DL DS Zero US UL 

L Z DS DL DL DL 

M US Z DS DL DL 

S UL US Z DS DL 

NZ UL UL Z DS DS 

Step 4. Define the initial conditions and construct a simulation for four cycles. Since the task 

at hand is to control the aircraft's vertical descent during approach and landing, we will start 

with the aircraft at an altitude of 1000 feet, with a downward velocity of -20 ft/s. Then, using 

the following equation Control f0 to be computed. 
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  vi+1 = vi + fi ,  hi+1 = hi + vi 

 Initial height, h0 = 1000 m and Initial velocity, v0 = 20 m/s 

 Height h fires L at 1.0 and M at 0.6. and Velocity v fires only DL at 1.0. 

   Height    Velocity   Output 

   L(1.0) AND   DL(1.0)    Z(1.0) 

   M (0.6) AND   DL(1.0)   US (0.6) 

We defuzzify using the centroid method and get f0 = 5.8 N. This is the output force computed 

from the initial conditions. 

 
Fig. 9.35: Truncated consequents and union of fuzzy consequent for cycle 1 

Now, we compute new values of the state variables and the output for the next cycle. 

   h1 = h0 + v0 = 1000 + (-20) = 980 m 

   v1 = v0 + f0 = -20 + 5.8 = -14.2 m/s 

    Height, h1 = 980 m fires L at 0.96 and M at 0.64. 

   Velocity, v1 = -14.2 m/ s fires DS at 0.58 and DL at 0.42. 

   Height    Velocity   Output    

   L(0.96) AND   DS(0.58)   DS(0.58) 

   L(0.96) AND   DL(0.42)   Z(0.42) 

   M (0.64) AND  DS(0.58)    Z(0.58) 

   M (0.64) AND  DL(0.42)    US (0.42)  

  We find the centroid to be f1 = - 0.5 N. 

 
Fig. 9.36: Truncated consequents for cycle 2 
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  We compute new values of the state variables and the output for the next cycle. 

   h2 = h1 + v1 = 980 + (-14.2) = 965.8 m  

   v2 = v1 + f1 =-14.2+ (-0.5) = -14.7 m/s 

   h2 = 965.8 m fires L at 0.93 and M at 0.67. 

   v2 =-14.7 m/s fires DL at 0.43 and DS at 0.57. 

  Height    Velocity   Output 

  L (0.93) AND    DL (0.43)   Z(0.43) 

  L(0.93) AND    DS (0.57)    DS(0.57) 

  M (0.67) AND  DL(0.43)    US (0.43) 

  M (0.67) AND  DS(0.57)    Z(0.57)  

  We find the centroid for this cycle to be f2.= -0.4 N. 

 
Fig. 9.37: Truncated consequents for cycle 3. 

  Again, we compute new values of state variables and output: 

   h3 = h2 + v2 = 965.8 + (-14.7) = 951.1 m 

   v3 = v2 + f2 = -14.7 + (-0.4) = -15.1 m/s  

  and for one more cycle, we get 

   h3 = 951.1 m fires L at 0.9 and M at 0.7. 

   v3 = -15.1 m/s fires DS at 0.49 and DL at 0.51. 

 Height    Velocity   Output 

 L(0.9) AND   DS(0.49)    DS(0.49) 

 L(0.9) AND   DL(0.51)    Z(0.51) 

 M(0.7) AND   DS(0.49)    Z(0.49) 

 M(0.7) AND   DL(0.51)    US (0.51)  

 Next, we compute the final values for the state variables to finish the simulation. 

   h4 = h3 + v3 = 951.1 + (-15.1) = 936.0 m 

   v4 = v3 + f3 = -15.1 + 0.3 = -14.8 m/s 
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Fig. 9.38: Truncated consequents for cycle 4 

 
The summary of the four-cycle simulation results is presented in table 9.12 given below. 

 

Table 9.12: Summary of four-cycle simulation results 

 

 Cycle 0 Cycle 1 Cycle 2 Cycle 3 Cycle 4 
Height, m 1000.0 980.0 965.8 951.1 936.0 

Velocity, m/s -20 -14.2 -14.7 -15.1 -14.8 

Control force 5.8 0.5 -0.4 0.3  
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EXERCISE- 9 

1. Given the health monitoring diagnostic system described in Section 9.1 of this chapter, 

write a computer program to simulate the following sensor data for the time t [0,300.0] 

for every interval  t = 1 second: 

(a)  x1(t) = 98 + 4 sin )t(e)t
80

(
  

x2 (t) = 120 + 40 sin )t(e)t
60

(
  

x3 (t) = 70 + 60 sin )t(e)t
40

(
  

(b) Implement the 27 rules mentioned and plot out the membership value for each 

rule against time t. What diagnostic conclusion can we draw from the plot of these 27 

membership values? 

(c) Change the data in (a) to include additive random noise of Gaussian distribution. 

Repeat both steps (a) and (b). 

  x1(t) = 98 + 4 sin )t(e)t
80

(
 + n(t) 

 x2 (t) = 120 + 40 sin )t(e)t
60

(
 + n(t) 

 x3 (t) = 70 + 60 sin )t(e)t
40

(
 + n(t) 

2. Obtain a header format of digital image data stored under the bitmap format (with 

extension .bmp). Write out the format of this header in the following table: 

File type (2 words) data (1 word)  data (1 word) 

data (1 word) data (1 word)  data (1 word) data (1 word) 

data (1 word) data (1 word)  data (1 word)  data (1 word) 

data (1 word) data (1 word)  data (1 word) data (1 word) 

data (1 word) data (1 word)  data (1 word) data (1 word) 

data (1 word) data (1 word)  data (1 word) data (1 word) 

data (1 word) data (1 word)  data (1 word) data (1 word) 

data (1 word) data (1 word)  data (1 word) data (1 word) 

data (1 word) data (1 word)  data (1 word)  data (1 word) 

data (1 word) data (1 word)  data (1 word)  data (1 word) 

data (1 word) data (1 word)  data (1 word)  data (1 word) 

3. Obtain a digital image stored in the binary bitmap format (whose filename ended with the 

extension .bmp) described in Exercise 2. Write a computer program that simulates the 

off-focused data using the smooth (average) filter. Each off-focused image will be saved 

to the same binary bitmap format as the original image. Assuming that for each unit away 

from the correct focal point, the radius of the smooth filter is larger. The smooth filter is 

given as 

Ismooth(n,m) =
 












Rm

Rmj
original

Nn

Rni
2

).j,i(I
1R2

1
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4. Given a sequence of digital images generated in Exercise3, for each digital image, write a 

computer program to calculate the normalized sharpness index as 

  

N M

n 1 n 1

1
e(n,m)

NM
 

    

Is there another algorithm to calculate the sharpness index of a digital image? Outline and 

implement your own algorithm and compare the results to that of the above formula. 

5. Implement the fuzzy control for the autofocus camera using the simulation results from 

Problems Exercise 3 and Exercise4. Set the control step  arbitrarily large and adjust 

the control steps using various adjustment parameters  
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