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Abstract. Invertible wavelet transforms that map integers to integers have important appli-

cations in lossless coding. In this paper we present two approaches to build integer to integer

wavelet transforms. The first approach is to adapt the precoder of Laroia et al., which is used in

information transmission; we combine it with expansion factors for the high and low pass band

in subband filtering. The second approach builds upon the idea of factoring wavelet transforms

into so-called lifting steps. This allows the construction of an integer version of every wavelet

transform. Finally, we use these approaches in a lossless image coder and compare the results

to the literature.

1. Introduction

Wavelets, wavelet packets, and local cosine transforms are used in a variety of applications,

including image compression [2, 29, 39, 10, 25]. In most cases, the filters that are used have

floating point coefficients. For instance, if one prefers to use orthonormal filters with an assigned

number N (N > 2) of vanishing moments and minimal filter length, then the resulting filter

coefficients are real numbers which can be computed with high precision, but for which we do

not even have a closed form expression if N > 3 [8]. When the input data consist of sequences

of integers (as is the case for images), the resulting filtered outputs no longer consist of integers.

Yet, for lossless coding it would be of interest to be able to characterize the output completely

again with integers.

In the case of the Fourier and cosine transforms, this problem has been solved in [17]. An

integer version of the orthogonal Haar transform has been known for some time as the S-

transform [24, 16]. In [10] a redundant integer version of the Haar transform is introduced

which uses rounded integer arithmetic and which yields near optimal approximation in certain

Besov spaces. Relaxing the constraint of orthonormality of the wavelets makes it possible to

obtain filter coefficients that are dyadic rationals [6, 14, 37, 31]; up to scaling these filters can

be viewed as mapping integers to integers. This rescaling amplifies the dynamic range of the
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data considerably, however, so that this does not lead to reasonable lossless compression. In the

special case of binary valued images it is possible to define binary valued wavelet transforms

(and thus no bit growth) [18, 31].

In this paper, we present two approaches that lead to wavelet transforms that map integers

to integers, and which can be used for lossless coding. The two approaches are independent

of each other, and the reader can explore the corresponding two parts of this paper (Section 2

and Section 3) in either order. The second approach looks more promising for lossless image

coding. Note that in both cases we are not building integer arithmetic wavelet transforms. Thus

the computations are still done with floating point numbers, but the result is guaranteed to be

integer and invertibility is preserved. In software applications, this should not affect speed, as in

many of today’s microprocessors floating point and integer computations are virtually equally

fast.

The first approach, in Section 2, is inspired by the precoding invented by Laroia, Tretter,

and Farvardin (LTF) [21], which is used for transmission over channels subject to intersymbol

interference and Gaussian noise. When integer data undergo causal filtering with a leading filter

coefficient equal to 1, this precoding makes small (non-integer) adjustments to the input data

resulting in integer outputs after filtering. In Section 2.1, we try to adapt this method to the

subband filtering inherent to a wavelet transform. Even though this approach cannot be made

to work for other wavelet bases than the Haar basis, it leads to a reformulation of the original

problem, by including the possibility of an expansion coefficient. Section 2.2 shows how the

specific structure of wavelet filters can be exploited to make this expansion coefficient work. In

Section 2.3, we generalize the expansion idea to propose different expansion factors for the low

and the high pass filter: for the high pass filter, we can afford a larger expansion factor because

the dynamic range of its output tends to be smaller anyway. In most cases, the product of the

expansion factors for high and low pass is larger than 1, which turns out to be bad for lossless

compression.

A different approach (although there are points of contact) is taken in Section 3. An example

in [39] of a wavelet transform that maps integers to integers is seen to be an instance of a

large family of similar transforms, obtained by combining the lifting constructions proposed in

[32, 33] with rounding-off in a reversible way. In Section 3.1 we review the S transform, and in

Section 3.2 two generalizations, the TS transform and the S+P transform. In Section 3.3 we

briefly review lifting, and in Section 3.4 we show how a decomposition in lifting steps can be

turned into an integer transform. In general, this transform exhibits some expansion factors as

well. Unlike to what happened in Section 2 the product of the low and high pass expansion
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factors is now always equal to 1. Section 3.5 gives a short discussion of how this approach can

be linked to the one in Section 2. In Section 4, we show many examples.

Finally, in Section 5 we show applications of the two approaches to lossless image coding, and

we compare our results with other results in the literature.

Except where specified otherwise, our notations conform with the standard notations for filters

associated with orthonormal or biorthogonal wavelet bases, as found in e.g., [8].

2. Expansion factors and integer to integer transforms

2.1. Precoding for subband filtering. We start by reviewing briefly the LTF precoder [21].

Suppose we have to filter a sequence of integers (an)n∈Z, with a causal filter (i.e., hk = 0 for

k < 0) and leading coefficient 1 (i.e., h0 = 1). If the hk are not themselves integers, then the

filtered output bn = an +
∑∞

k=1 hkan−k will in general not consist of integers either. The LTF

precoder replaces the integers an by non-integers a′n by introducing small shifts rn, in such a

way that the resulting b′n are integers. More concretely, define

a′n = an − rn

rn =

{ ∞∑
k=1

hka
′
n−k

}
=

{ ∞∑
k=1

hk(an−k − rn−k)

}
,

where the symbol {x} = x − bxc stands for the fractional part of x, and bxc for the largest

integer not exceeding x. In practice, both the an and the hk are non-zero for only finite ranges

of the indices n or k, so that the infinite recursion is not a problem: if an = 0 for n < 0, then

so are a′n and rn and the recursion can be started. If we now compute b′n = a′n +
∑∞

k=1 hka
′
n−k,

then we immediately see that

b′n = an +

⌊ ∞∑
k=1

hka
′
n−k

⌋

is an integer. To recover the original an from the b′n, one first applies the inverse filter 1/H(z) =

(1 +
∑∞

k=1 hk zk)−1 (assuming this filter is stable), which gives the a′n from which

an = a′n +

{ ∞∑
k=1

hk a′n−k

}

can be computed immediately.
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This approach can also be used if h0 6= 1. In that case, if we have

a′n = an − rn

rn =

{
(h0 − 1)a′n +

∞∑
k=1

hka
′
n−k

}

=

{
(h0 − 1)(an − rn) +

∞∑
k=1

hka
′
n−k

}
, (2.1)

then the

b′n =
∞∑

k=0

hka
′
n−k = a′n +

⌊
(h0 − 1)a′n +

∞∑
k=1

hka
′
n−k

⌋
+ rn

= an +

⌊
(h0 − 1)a′n +

∞∑
k=1

hka
′
n−k

⌋
are integers again. The situation is now slightly more complicated, because the rn are defined

implicitly. Since both an and the a′n−k for k > 1 are known when rn needs to be determined, we

can reformulate (2.1) as

rn = {(1 − h0)rn + yn}
with yn =

{
(h0 − 1)an +

∑∞
k=1 hka

′
n−k

}
. Whether or not the equation

r = {αr + y} (2.2)

has a solution for arbitrary y ∈ [0, 1) depends on the size and sign of α. As shown in Figure 1,

a solution fails to exist for some choices of y if 0 < α < 2; for α 6 0 or α > 2 there always exists

at least one solution. This range for α where (2.2) always has a solution corresponds to |h0| > 1.

When faced with having to use the precoder for cases where |h0| < 1, a simple expedient is to

consider a renormalized filter, with h̃n = αhn, so that |h̃0| > 1. (For instance, α = h−1
0 will do.)

In the case of the wavelet transform, we work with several filters, followed by decimation.

In this paper, we shall always work with 2-channel perfect reconstruction filter banks; in this

section, unless specified explicitly, we assume the filter pair is orthonormal.

Assume that the two filters H and G are FIR, with hn = gn = 0 if n < 0 or n > 2N . Then

we have

s1,n =
∑

k

h2n−ks0,k

d1,n =
∑

k

g2n−ks0,k , (2.3)
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Figure 1. Solving r = {αr + y}:
a: For 0 < α 6 1, the equation r = {αr + y} has solutions for y = y1 (full) but

not for y = y2 (dotted), since {αr + y1} intersects the diagonal (dashed), but

{αr + y2} does not.

b: For 1 6 α < 2, the situation is reversed.

c: For α 6 0 we always have at least one solution.

d: Likewise for α > 2.

which can be rewritten as(
s1,n

d1,n

)
=
∑

k

(
h2(n−k) h2(n−k)+1

g2(n−k) g2(n−k)+1

)(
s0,2k

s0,2k−1

)

=
N∑

k=0

(
h2k h2k+1

g2k g2k+1

)(
s0,2(n−k)

s0,2(n−k)−1

)
(2.4)

(This corresponds to a polyphase decomposition of the filters; see e.g., [30, 35, 38].) The sub-

scripts 0, 1 correspond to the “level” of the filtered sequences; level 0 are the unprocessed data,
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while level 1 corresponds to one application of the H, G filters. More generally, sj,n and dj,n are

obtained by applying H, G to the sj−1,k, so that they are the results of j layers of filters.

If we define

Hk =

(
h2k h2k+1

g2k g2k+1

)
with 0 6 k 6 N − 1 ,

then (2.4) can be read as a 2D analog to the situation above; now each an or bn is a 2-vector, with

an = (s0,2n s0,2n−1)t, and bn = (s1,n d1,n)t. For an arbitrary 2-vector a = (a1 a2)t, we introduce

the notations

{a} =

(
{a1}
{a2}

)
, and bac =

(
ba1c
ba2c

)
.

We can now generalize the LTF precoder by defining

a′n = an − rn

rn =

{
(H0 − I)a′n +

N−1∑
k=1

Hka
′
n−k

}
= {(I − H0)rn + yn} , (2.5)

with

yn =

{
(H0 − I)an +

N−1∑
k=1

Hka
′
n−k

}
.

If the equations (2.5) for rn can indeed be solved, then we find, as before, that the

b′n =
n−1∑
k=0

Hka
′
n−k

consist of only integer entries. It is not clear, however, that the equation

r = {(I − H0)r + y} (2.6)

always has solutions for any y ∈ [0, 1) × [0, 1). Indeed, for the Haar case, where

H0 =

(
1√
2

1√
2

− 1√
2

1√
2

)

one checks that (2.6) has no solution if y1 = 1/4, y2 = 1/2.

The simple expedient of “renormalizing” H0 to αH0 works here as well. Let us replace the

orthonormal filtering (2.3) and its inverse

s0,k =
∑
n

[h2n−ks1,n + g2n−kd1,n]
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by scaled versions:

s̃1,n = α
∑

k

h2n−ks0,k, d̃1,n = β
∑

k

g2n−ks0,k

s0,k =
∑
n

[
α−1h2n−ks̃1,n + β−1g2n−kd̃1,n

]
.

The polyphase regrouping then uses the matrices

H̃k =

(
αh2k αh2k+1

βg2k βg2k+1

)
=

(
α 0

0 β

)
Hk ;

the corresponding equations for r1, r2 become

r1 = {(1 − αh0)r1 + (y1 − αh1r2)}
r2 = {(1 − βg1)r2 + (y2 − βg0r1)} . (2.7)

For the special case where the wavelet basis is the Haar basis, i.e., h0 = h1 = 1√
2

= g1 = −g0,

with all other hn, gn = 0, we can choose α = β =
√

2. The system for r1, r2 reduces then to

r1 = {y1 − r2}
r2 = {y2 + r1}

which has the easy solution r1 = {(y1 − y2)/2} , r2 = {(y1 + y2)/2} for arbitrary y1, y2 ∈ [0, 1).

Unfortunately, things are not as easy for orthonormal wavelet filters of higher order. When

N > 1, orthonormality of the wavelet filters implies

h2N−2g0 + h2N−1g1 = 0

h2N−2h0 + h2N−1h1 = 0 ,

where h2N−1 6= 0. Hence h0 g1 = −h2N−2 g0 h0/h2N−1 = h1 g0 or det H0 = 0.

This implies that

r = {(I − αH0)r + y} (2.8)

cannot be solved for arbitrary y ∈ [0, 1)2, regardless of the choice of α, as shown by the following

argument. Suppose that for a given y in the interior of [0, 1)2, r solves (2.8). Then there exists

n ∈ Z2 so that

r + n = (I − αH0)r + y ,

or αH0r + n = y. Since both r and y are in [0, 1)2, it follows that ‖n‖ is bounded by some C > 0,

uniformly in y. Since det H0 = 0, there exists a 2-vector e in R2 so that αH0R2 ⊂ {λe;λ ∈ R}.
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Take now f⊥e, and consider y′ = y + µf . Since y was chosen in the interior of [0, 1)2, y′ still

lies within [0, 1)2 for sufficiently small µ. Suppose r′ is the corresponding solution of (2.8),

αH0r
′ + n′ = y′ = y + µf .

Taking inner products of both sides with f leads to

〈n′, f〉 = 〈y, f〉 + µ‖f‖2 ,

or

µ = 〈n′ − y, f〉/‖f‖2 .

Since the right hand side can take on only a finite set of values (since n′ ∈ Z2, ‖n′‖ 6 C), this can

only hold for finitely many values of µ, and not for the interval around 0 for which y′ = y + µf

is within [0, 1)2. (Note that the same no-go argument still works if we replace α by a diag-

onal matrix A, corresponding to a non-uniform expansion; in that case it suffices to choose

f ⊥AH0R2.)

There exists a way around this problem, which exploits that the yn are not really independent

of the an or rn, as we have implicitly assumed here. This is the subject of the next subsection.

2.2. Uniform expansion factors. For the Haar filter, we were looking in the last subsection

at the equation (
y1

y2

)
=

(
n1

n2

)
+ α

(
1√
2

1√
2

− 1√
2

1√
2

)(
r1

r2

)

For α = 1, n1, n2 ∈ Z and r1, r2 ∈ [0, 1), the possible values taken on by the right hand side

range over the union of tilted squares shown in Figure 2a, which clearly do not cover the square

[0, 1)2. For α =
√

2, the tilted squares are blown up so that their union does not leave any gaps.

In the Haar case, the different pairs (s0,2k, s0,2k−1) remain nicely decoupled in the subband

filtering process, which enabled us to reduce the whole analysis to a 2D argument. As we saw

above, the most naive way to reduce to 2D does not work for longer filters; a solution to the

problem at the end of the last section is possible only by taking into account to some extent

the coupling between the pairs (s0,2k, s0,2k−1) in the filtering process. To do this, we shall first

consider the full problem, for the complete data sequence, and try to carry out a reduction to

fewer dimensions at a later stage. Imagine that the initial data constitute a finite sequence

(of length L) of integers, a ∈ ZL. The subband filtering operator H can now be viewed as an
8
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Figure 2.

a. For H0 =

(
1√
2

1√
2

− 1√
2

1√
2

)
, the union

⋃
n∈Z2(H0[0, 1)2 + n) does not cover

[0, 1)2.

b. and c. As α > 1 increases, the set [0, 1)2 \ ⋃n∈Z2(αH0[0, 1)2 + n) becomes

smaller; the gap closes for α =
√

2.

L × L-matrix, which decomposes into 2 × 2 blocks (see Section 2.1).

H =


H0 H1 H2 · · · HN−3 HN−2 HN−1 0 0 · · · 0

0 H0 H1 · · · HN−4 HN−3 HN−2 HN−1 0 · · · 0
...

...
...

...
...

...
...

...
...

...
...

H1 H2 H3 · · · HN−2 HN−1 0 0 0 · · · H0

 (2.9)

(We have here given H a circulant-structure to deal with the finite length of the data sequence,

which amounts to periodizing the data. Other ways of extending the data, such as reflections

or interpolation techniques, can also be used. This would change only the first and last few

rows and columns of the matrix, and it would not affect our argument significantly, although we

would, of course, have to take those changes into account near the start and end of the signal.

We have also implicitly assumed that L is even here, which is usually the case; odd L can be

handled as well, but are slightly more tricky.)

In general, Ha 6∈ ZL if a ∈ ZL. An appropriate shift of Ha will bring it back to ZL. More pre-

cisely, if Λ is a fundamental region in RL for the lattice ZL, then we can find f = f(a) ∈ Λ so that

Ha + f ∈ ZL. In order for the transform a −→ Ha + f(a) to be invertible, we must require that

if a 6= a′, then Ha + f(a) 6= Ha′ + f(a′), or since H itself is invertible, H−1f(a) 6= H−1f(a′) + (a′ − a).

This will be satisfied if H−1Λ
⋂

(H−1Λ + n) = ∅ for n ∈ ZL, n 6= 0. The Haar example shows us

already that it may not be possible to find such a fundamental region Λ without introducing an
9



expansion factor. (For Haar, the problem reduces to considering H0 only in 2D; since H−1
0 = Ht

0,

we can look at Figure 2a again, which shows the regions H0[0, 1)2 + n; their mirror images are

the Ht
0[0, 1]

2 + m. For α = 1, they do intersect non-trivially.) If we do use an expansion factor

α, then we are dealing with the transform a −→ αHa + f instead, and the sufficient condition

for invertibility becomes

H−1(α−1Λ)
⋂

H−1(α−1Λ + n) = ∅ for all n ∈ ZL\∅ . (2.10)

(In this section we consider uniform dilation factors only; non-uniform dilations, with different

expansion factors for high and low pass parts, will be considered in the next subsection.) Given

any bounded fundamental region Λ, (2.10) will always be satisfied for sufficiently large α; the

challenge is, for a given H, to find a “reasonable” Λ for which α is as small as possible. (Since

one goal of this approach is to develop a practical lossless coding scheme with wavelets, the

region Λ must be tractable for numerical computations. In the Haar case of last section, we had

Λ = [0, 1)L, and α =
√

2.) It will be useful below, when we try to construct explicit Λ, to relax

the condition that Λ be exactly a fundamental region and to require instead that Λ contain a

fundamental region. Renaming α−1Λ = Γ, we have therefore the following challenge:

Find Γ ⊂ RN so that

• αΓ contains a fundamental region for ZL (with α > 1 as small as we can get it)

• for all n ∈ ZL, n 6= 0.

H−1Γ
⋂

(H−1Γ + n) = ∅ . (2.11)

In order to reduce the problem to a smaller size and make the search for a suitable Γ more

tractable, we shall here restrict ourselves to special Γ of the form

Γ = Ω × Ω × . . . × Ω ,

where Ω ⊂ R2 so that αΩ contains a fundamental region for Z2. This still enables us to exploit

the 2 × 2-block structure of H. Moreover, this will also make the implementation easier. Instead

of working with the large matrix H and its inverse, for which we would have to wait to acquire

all the data, restricting ourselves to product Γ makes a “running” implementation possible.

Let us look at this problem for the simplest example beyond the Haar case, which uses the

4-tap filters

h0 = 1+
√

3
4
√

2
, h1 = 3+

√
3

4
√

2
, h2 = 3−√

3
4
√

2
, h3 = 1−√

3
4
√

2
,

g0 = −h3 , g1 = h2 , g2 = −h1 , h3 = h0 .
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Introducing the unitary matrices

U = 1
2
√

2

(
1 +

√
3 1 −√

3√
3 − 1 1 +

√
3

)

V = 1
2

(
1

√
3

−√
3 1

)
,

we can rewrite the matrices H0 and H1 (the only non-zero Hk) in this case as

H0 = U

(
1 0

0 0

)
V = U H̃0 V, H1 = U

(
0 0

0 1

)
V = U H̃1 V .

(This is in fact a different way of writing the factorization of [36] for this particular case.)

It follows that H = UH̃V, where U and V are matrices with the 2 × 2 blocks U resp. V , on

the diagonal, and zeros elsewhere, and where

H̃ =


H̃0 H̃1 0 · · · 0

0 H̃0 H̃1 · · · 0
...

...

H̃1 0 0 · · · H̃0

 =



1 0 0 0 0 0 · · · · · · 0 0

0 0 0 1 0 0 · · · · · · 0 0

0 0 1 0 0 0 · · · · · · 0 0

0 0 0 0 0 1 · · · · · · 0 0
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

0 0 0 0 0 0 · · · · · · 1 0

0 1 0 0 0 0 · · · · · · 0 0


.

Note that H̃f (and therefore H̃−1f as well) is just a permutation of the even entries of f .

(For longer filters H this will no longer be true; we shall see below how to extend this ap-

proach to that case.) It follows that if Γ̃ is a product of 2D regions, Γ̃ = Ω̃ × . . . × Ω̃, with

Ω̃ ⊂ [a1, a2) × [b1, b2) = R then H̃Γ̃ ⊂ R × . . . × R. In particular, any Γ̃ that is already of the

form R × . . . × R is invariant under H̃ or H̃−1. This suggests the following strategy for find-

ing a suitable Ω that would satisfy all our requirements. Take Ω so that U tΩ is a rectangle

with its sides parallel to the axes; then UtΓ = U tΩ × . . . × U tΩ will be left invariant by H̃,

so that H−1Γ = (V tU tΩ × . . . × V tU tΩ), and our sufficient condition reduces to a set of 2D

requirements. In particular, the last part (2.11) of the sufficient condition reduces to

V tU tΩ
⋂

(V tU tΩ + n) = {0} for n ∈ Z2\{0} .

Since U tΩ = [a1, a2) × [b1, b2) = R, this can be rewritten as

R
⋂

(R + V n) = {0} for n ∈ Z2\{0}
11



or

R − R
⋂

V Z2 = {0} ,

where we have used the notation A − B = {x − y; x ∈ A, y ∈ B}; in our case both A and B

equal R, and
R − R = {x − y; x, y ∈ R}

= {z = (u, v); |u| < a2 − a1, |v| < b2 − b1} .

Note that this set is symmetric around the origin, even if R is not. We can therefore assume,

without loss of generality, that R is centered around the origin, so that the condition reduces to

2R◦ ⋂ V Z2 = {0} or 2(V tR)◦
⋂

Z2 = {0} ,

where B◦ denotes the interior of the set B.

In summary, we are thus looking for a rectangle Ra,b = [−a, a) × [−b, b) so that

• αURa,b contains a fundamental region for Z2

• 2(V tRa,b)◦
⋂

Z2 = {0}.
We would like to find a, b so that α is as small as possible. We start by constructing one

candidate for Ra,b, and computing the corresponding α. The following technical lemma will be

useful in our construction:

Lemma 2.1. Start with a parallelogram P that is a fundamental region for Z2 in R2. Form a

hexagon ∆ ⊂ P by picking six points on the boundary of P so that opposite vertices are congruent

modulo Z2 and so that no three of the six points are collinear. Then any parallelogram P̃ that

contains ∆ also contains the interior of a fundamental region of Z2.

Proof. See Appendix A.

(Note that as a fundamental region for Z2, P cannot be open nor closed. Likewise, P̃ can fail

to contain a true fundamental region if P̃ contains too little of ∂P̃ .)

Corollary 2.2. Any parallelogram symmetric around 0 that contains the points (1
2 , 0), (0, 1

2) and

either (1
2 , 1

2) or (1
2 ,−1

2) contains the interior of a fundamental region for Z2.

Let us apply this to our problem. We start with the second requirement, that

R◦
a,b

⋂ 1
2
V Z2 = {0} .

Since V is an orthogonal matrix, 1/2V Z2 is a (tilted) square lattice. It therefore makes sense

(because of symmetry considerations) to choose Ra,b itself to be a square, i.e., a = b. The largest

possible value for a is then
√

3/4. (It suffices to check the points (1, 0), (0, 1) and (1,±1) in Z2.)
12



Next, we check the other requirement. We have

αURa,b = αUR√
3

4
,
√

3
4

= {(x, y) ∈ R2; |(1 +
√

3)x + (
√

3 − 1)y| 6
√

3√
2
α, |(1 −√

3)x + (1 +
√

3)y| 6
√

3√
2
α} .

A straightforward application of Corollary 2.2 shows that this contains a fundamental region for

Z2 if α >
√

2.

In order to implement this integer to integer transform we would then do the following:

• Given the integers an = s0,n, n = 1 . . . L, compute bn, n = 1 . . . L by b =
√

2H a.

• For each bn, determine b′n ∈ Z so that b′n − 1/2 6 bn 6 bn + 1/2.

To invert, we compute c = 1/
√

2H−1 b′, and we find the unique a ∈ ZL so that V [(a2n,a2n+1)
t −

(c2n, c2n+1)t] ∈ R√
3/4.

Remark: There exist other solutions, in which Ra,b is not a square. In fact, we could just as

well have replaced our choice b =
√

3
4 with the smaller value b = 1+

√
3

8 , and obtained the same

value for α. This change of b corresponds to trimming the Ra,b slightly in a non-essential way,

which reduces the overlap of the αURa,b in the direction where we had room to spare. One can

also find completely different Ra,b, with very different aspect ratios, that avoid 1
2V Z2. These

lead to worse α, however.

This approach can also be used for longer filters, and even for biorthogonal pairs. For the

general biorthogonal case, the L × L wavelet matrix H is of the type

H =



h0 h1 · · · · · · h2N−2 h2N−1 0 0 · · · · · ·
g0 g1 · · · · · · g2N−2 g2N−1 0 0 · · · · · ·
0 0 h0 h1 · · · · · · h2N−2 h2N−1 0 · · ·
0 0 g0 g1 · · · · · · g2N−2 g2N−1 0 · · ·
...

...
...

...
...

...
...

...
...


with

H−1 =



h̃0 g̃0 0 0 · · · · · ·
h̃1 g̃1 0 0 · · · · · ·
h̃2 g̃2 h̃0 g̃0 0 · · ·
h̃3 g̃3 h̃1 g̃1 0 · · ·
...

...
...

...
...

...


where

∑
n hnh̃n+2k = δk,0, g̃n = (−1)nh−n−1+2N , gn = (−1)nh̃−n−1+2N . We assume that h0 and

h1 are not both zero (same for h̃0, h̃1), but we place no such restrictions on the final filter taps,

so that our notation can accommodate biorthogonal filters of unequal length (which is always

the case when the filter lengths are odd, as in the popular 9-7 filter pair [6]).
13



Leaving the circulant nature of H−1 aside, H−1 consists of repeats of the two rows

· · · 0 0 h̃2N−2 g̃2N−2 h̃2N−4 g̃2N−4 · · · h̃0 g̃0 0 0 · · ·
· · · 0 0 h̃2N−1 g̃2N−1 h̃2N−3 g̃2N−3 · · · h̃1 g̃1 0 0 · · ·

with offsets of 2 at each repeat.

Since h0h̃2N−2 + h1h̃2N−1 = 0 and h2N−2h̃0 + h2N−1h̃1 = 0, the two 2 × 2 matrices at the

start and at the end of this repeating block are again singular. Define ratios λ and µ so that

λh1 = h̃2N−2, λh0 = −h̃2N−1, and µh̃1 = h2N−2, µh̃0 = −h2N−1 ,

and define the matrices

A =

(
h1 h̃0

−h0 h̃1

)
B =

(
λ 1

1 −µ

)
.

Then (
h̃2N−2 g̃2N−2

h̃2N−1 g̃2N−1

)
=

(
λh1 h1

−λh0 −h0

)
= A

(
1 0

0 0

)
B ,

and (
h̃0 g̃0

h̃1 g̃1

)
=

(
h̃0 −µh̃0

h̃1 −µh̃1

)
= A

(
0 0

0 1

)
B .

It follows that H−1 has a structure reminiscent of (2.11),

H−1 = A


...

...
...

· · · 0 0 1 0

· · · 0 0 0 0
C1 . . . CN−2

0 0 0 0 · · ·
0 1 0 0 · · ·

...
...

...

B , (2.12)

where A and B have the 2 × 2 blocks A, respectively B, on the diagonal, and zero entries

elsewhere. The 2 × 2 matrices Ck are defined by

Ck = A−1

(
h̃2N−2−2k g̃2N−2−2k

h̃2N−1−2k g̃2N−1−2k

)
B−1 .

Note that since H−1 is invertible, both A and B, and therefore also A and B must be invertible.

(In the orthogonal case, this can be seen immediately because detA = h2
0 + h2

1,det B = −1 − λ2.)

We can now follow the same strategy as before: we try to find Ω ⊂ R2 so that

• αΩ contains a fundamental region for Z2

• for all n ∈ ZL, n 6= 0

H−1(Ω × . . . × Ω)
⋂ [

H−1(Ω × . . . × Ω) + n
]

= 0 (2.13)

14



We shall take the ansatz Ω = B−1Ra,b. On the other hand, we define Ω̃ = ARc,d; for appropriate

c, d, we then have

H−1(Ω × . . . × Ω) ⊂ Ω̃ × . . . × Ω̃ .

Indeed, it suffices that

Ra,b + C1Ra,b + · · · + CN−2Ra,b ⊂ Rc,d . (2.14)

This, in turn, is assured if(
1 +

∑N−2
`=1 |C`;1,1|

∑N−2
`=1 |C`;1,2|∑N−2

`=1 |C`;2,1| 1 +
∑N−2

`=1 |C`;2,2|

)(
a

b

)
=

(
c

d

)
. (2.15)

(Of course (2.14) may be satisfied for choices of a, b, c, d where (2.15) is not, but in prac-

tice, for the filter pairs we considered, not much is lost.) Finally, if 2AR◦
c,d

⋂
Z2 = {0} or

R◦
c,d

⋂ 1
2A−1Z2 = {0}, then the second part of (2.13) is satisfied.

Let us see how this works on the example of the 6-tap orthogonal filter with three vanishing

moments,
h0 = .332671 h1 = .806891 h2 = .459878

h3 = −.135011 h4 = −.085441 h5 = .035226 .

Because of orthogonality, λ equals µ with λ = µ = hµ

h1
' −.1059; moreover both A and B are

orthogonal matrices (up to an overall constant each),

A = (h2
0 + h2

1)
1
2

(
cos θ sin θ

− sin θ cos θ

)
B = (1 + λ2)

1
2

(
cos ϕ sin ϕ

sinϕ − cos ϕ

)
,

with θ = arctan h0
h1

, ϕ = arctan 1
λ . We now want to determine c, d so that R◦

c,d

⋂ 1
2A−1Z2 = {0}.

Since A consists of a rotation combined with an overall scaling, 1
2A−1Z2 is a square lattice, and

it makes sense to choose c = d, as in the 4-tap case. The largest possible value for c = d is then
h1

2(h2
0+h2

1)
' .5296.

On the other hand, because the filters are so short, we have only one matrix C1,

C1 =
1

(h2
0 + h2

1)(1 + λ2)

(
h1 −h0

h0 h1

)(
h2 h3

h3 −h2

)(
λ 1

1 −λ

)
=

(
0 .5461

−.5461 0

)
According to (2.15), we then have(

a

b

)
=

(
1 .5461

.5461 1

)−1(
c

d

)
'
(

.3425

.3425

)
.

Finally, it remains to determine α so that αΩ = αB−1Ra,b contains a fundamental region for

Z2. αB−1Ra,b is the tilted square delimited by λx + y = ±aα(λ2 + 1), x − λy = ±bα(λ2 + 1);

by Corollary 2.2 this contains a fundamental region if (1
2 , 0), (0, 1

2 ) and (−1
2 , 1

2) are included,
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leading to d > |λ|+1
2a(1+λ2)

' 1.5965. This expansion factor is significantly worse than the factor√
2 obtained for the 4-tap orthonormal filter earlier. In fact, applying this same strategy to the

family of all 6-tap orthonormal filters with at least one vanishing moment, leads to α >
√

2 in all

cases, with the minimum α =
√

2 attained only for the 4-tap filter. In the next subsection, we

shall see that better results for orthonormal filters can be obtained via non-uniform expansion

factors.

The same strategy can also be used for biorthogonal filters. For the simple filter pair

h0 = −1
8

= h4, h1 =
1
4

= h3, h2 =
3
4
, other hn = 0

h̃1 = h̃3 =
1
2
, h̃2 = 1, other h̃n = 0 , (2.16)

the matrices A, B, and C are

A =

(
1
4 0
1
8

1
2

)
B =

(
0 1

1 1
4

)
C =

(
0 4

−7
4 0

)
,

leading to the choices c = 2, d = 1, and a = 1
3 , b = 5

12 . Then αB−1Ra,b contains (1
2 , 0), (0, 1

2) and

(−1
2 , 1

2) (and therefore a fundamental region for Z2) if α > 3
2 . In this case it is not clear, however,

what a uniform expansion factor really means, since the two filters h and h̃ need not have the

same normalization in a biorthogonal scheme—as indeed they do not in this example, where∑
n hn = 1,

∑
n h̃n = 2. One could explore “renormalized” versions, replacing hn with δhn and

h̃n with δ−1h̃n, and find the corresponding expansion factors. This amounts to the same as

introducing nonuniform expansion factors, the subject of the next subsection.

2.3. Different expansion factors for the high and low pass channels. Nothing forces us,

when we introduce our expansion factor, to choose the same expansion for the high pass channel

as for the low pass channel; allowing for different factors may lead to better results. In practice,

the dynamic ranges of the two channels on (natural) images are very different, and this might

be another reason to consider different expansion factors.

The analysis is similar to what was done in the previous subsection. We replace the uniform

factor α by a pair (αL, αH), and we denote by α the operation which multiplies the odd-indexed

entries a2k+1 of α ∈ ZL with αL, the even-indexed entries a2k by αH . We again seek a subset

Γ ⊂ RL that satisfies (2.11) and so that αΓ contains a fundamental region for ZL. We can now

seek to minimize αL (which leads to the least increase in dynamical range as we keep iterating

the wavelet filtering) or the product αLαH (to minimize the impact on the high-low, low-high

channels that detect horizontal and vertical edges in 2D-images).
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As a warm-up, let us look at the Haar case again. We can confine our analysis to R2 and Z2.

A pair of expansion factors (αL, αH) will work if we can find a set Ω in R2 so that

• Ω is a fundamental region for Z2

• H−1
0 α−1Ω

⋂
(H−1

0 α−1Ω + n) = 0 for n ∈ Z2, n 6= 0,

where α denotes now the 2 × 2 matrix,

α =

(
αL 0

0 αH

)
.

Let us take Ω = [−1
2 , 1

2)2, so that Ω◦ is symmetric with respect to the origin, consistent with

our analysis of longer filters in Section 2.2; this clearly satisfies the first requirement. Then

α−1Ω is the rectangle [−α−1
L
2 ,

α−1
L
2 ) × [−α−1

H
2 ,

α−1
H
2 ). The matrix H−1

0 rotates this by 45◦, to a

tilted rectangle bounded by y = x ± 1√
2
α−1

H , y = −x ± 1√
2
α−1

L (see Figure 3). In order to satisfy

the second requirement, this tilted rectangle can have area at most 1, or αHαL > 1. Can we

choose αL, αH so as to achieve the extremum αHαL = 1? In that case H−1
0 α−1Ω must be a

fundamental region itself. For this, it is sufficient that (0, 1
2), (1

2 , 0) and (1
2 , 1

2) ∈ H−1
0 α−1Ω, or

1
2 6

1√
2
α−1

H , 1 6 1√
2
α−1

L . This leads to the choices αH =
√

2, αL = 1√
2
, which do indeed satisfy

αLαH = 1. For the Haar case, we can therefore find a non-uniform expansion matrix corre-

sponding with a global expansion factor of 1 (i.e., no net expansion factor), a significant gain

over the uniform case. Note that the total transform αH0 is then given by

(
x

y

)
→
(

x+y
2

x − y

)
, (2.17)

a (non-orthonormal) form of the Haar transform often used in practice, and one which has been

known to lead to a map of integers to integers, called the S-transform [39]. We shall come back

to this in Section 3.1.

After this warm-up, let us consider longer filters. We can re-use much of what was done in

the previous section. The factorization (2.12) becomes now

H−1α−1 = A


...

...
...

· · · 0 0 1 0

· · · 0 0 0 0
C1 . . . CN−2

0 0 0 0 · · ·
0 1 0 0 · · ·

...
...

...

Bα−1 ,

which suggests that we seek Ω = αB−1Ra,b so that (αH)−1(Ω × . . . × Ω) ⊂ (ARc,d × . . . × ARc,d)

where R◦
c,d

⋂ 1
2A−1Z2 = {0}. Let us check what this leads to in a few examples. We first take

the 4-tap orthonormal filter. In that case, there are no C-matrices to worry about, and we have
17



b ca

(-1/2,-1/2) (1/2,-1/2)

(-1/2,1/2) (1/2,1/2)

Figure 3.

a. The square Ω =
[−1

2 , 1
2

)2
b. Applying α−1 leads to

[
−α−1

L
2 ,

α−1
L
2

)
×
[
−α−1

H
2 ,

α−1
H
2

)
c. Applying next H−1

0 leads to the rectangle given by |y − x| 6 α−1
H√
2

, |y + x| 6 α−1
L√
2

.

This contains (1
2 , 0), (0, 1

2) and (1
2 , 1

2 ) if αH >
√

2, αL >
1√
2
.

c = a, d = b. The matrix A (= V t in the notations of the first part of Section 2.2) is still the

same rotation, so we still choose Rc,d to be the square given by c = d =
√

3
4 . Because αL 6= αH ,

the set αB−1Ra,b will no longer be a square; it is the parallelogram

Ω = {(x, y); |(1 +
√

3)
x

αL
+ (1 −

√
3)

y

αH
| 6

√
6

2
and |(

√
3 − 1)

x

αL
+ (

√
3 + 1)

y

αH
| 6

√
6

2
} .

If we assume αL 6 αH , then the condition αL >
1+

√
3√

6
already ensures that (1

2 , 0) and (0, 1
2) ∈ Ω.

If we pick the minimal αL = 1+
√

3√
6

' 1.1, does there exist a solution for αH and how large does it

need to be? With the notation αH = αL · δ, with δ > 1, the parallelogram Ω contains the point

(1
2 , 1

2) (and therefore also a fundamental region for Z2) if
∣∣∣1 + 1−√

3
1+

√
3

1
δ

∣∣∣ 6 1, or δ >
√

3+1
2 , leading

to the solution αH = 2+
√

3√
6

' 1.6. The product αLαH is then 5+3
√

3
6 ' 1.7, an improvement over

α2 = 2 in the uniform expansion case, although it is not as spectacular as in the Haar case.

Our next example is the 6-tap orthonormal filter also considered in Section 2.2. We keep

again the same Rc,d as before, with c = d ' .5296. The square Ra,b is also not changed, with

a = b ' .3425. It then remains to determine αL, αH (minimizing either αL or αLαH) so that
18



αB−1Ra,b contains a fundamental region. We have

αB−1Ra,b = {(x, y);
∣∣∣∣λ x

αL
+

y

αH

∣∣∣∣ 6 a(λ2 + 1) ,

∣∣∣∣ x

αL
− λ

y

αH

∣∣∣∣ 6 b(λ2 + 1)} .

This parallelogram contains (1
2 , 0), (0, 1

2) and (−1
2 , 1

2 ), and therefore a fundamental region for Z2,

if αL = 1
2a(λ2+1) ' 1.4437, αH = 1

2a(1−|λ|)(1+λ2) ' 1.6147. Again the product αLαH ' 2.3310 is

smaller than the corresponding (1.5965)2 ' 2.5490 in the uniform expansion case, but the gain

is not as dramatic as in the Haar case: we still have αLαH > 1; worse, even αL is still larger

than
√

2.

Finally, let us revisit the biorthogonal example at the end of Section 2.2. Again, the values

of c, d, and a, b can be carried over, and we consider

αB−1Ra,b =
{

(x, y);
∣∣∣∣ y

αH

∣∣∣∣ 6 1
3
,

∣∣∣∣ x

αL
+

y

4αH

∣∣∣∣ 6 5
12

}
.

This contains (1
2 , 0), (0, 1

2 ) and (−1
2 , 1

2) if αL = 6
5 , αH = 3

2 , a gain over uniform expansion, but

still a rather large price to pay, when compared to the Haar case (where we obtained αL < 1!).

In the next section, a different approach is explained, which goes beyond the reduction to

2D used so far, and which enables us to reduce any wavelet filtering to a map from integers

to integers without global expansion. In fact, this amounts to constructing appropriate sets

Γn without using products of 2D regions by using a different representation of the filtering

operations.

3. The lifting scheme and integer to integer transforms

3.1. The S transform. We return again to the Haar transform, which we write in its unnor-

malized version (2.17) involving simply pairwise averages and differences:

s1,l =
s0,2l + s0,2l+1

2
d1,l = s0,2l+1 − s0,2l . (3.1)

Its inverse is given by

s0,2l = s1,l + d1,l/2

s0,2l+1 = s1,l − d1,l/2 . (3.2)

Because of the division by two, this is not an integer transform. Obviously we can build an

integer version by simply omitting the division by two in the formula for s1,l and calculating

the sum instead of the average; this is effectively what was proposed in Section 2.1. But a

more efficient construction, known as the S transform (Sequential), is possible [24, 16]. Several
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definitions of the S transform exist, differing only in implementation details. We consider the

following case:

s1,l = b(s0,2l + s0,2l+1)/2c
d1,l = s0,2l+1 − s0,2l . (3.3)

At first sight, the rounding-off in this definition of s1,l seems to discard some information.

However, the sum and the difference of two integers are either both even or both odd. We can

thus safely omit the last bit of the sum, since it is equal to the last bit of the difference. The

S-transform thus is invertible and the inverse is given by

s0,2l = s1,l − bd1,l/2c
s0,2l+1 = s1,l + b(d1,l + 1)/2c . (3.4)

As long as the S-transform is viewed as a way to exploit that the sum and difference of two

integers have the same parity, it is not clear how to generalize this approach to other wavelet

filters. A different way of writing the Haar transform, using “lifting” steps1, leads to a natural

generalization. Lifting is a flexible technique that has been used in several different settings,

for an easy construction and implementation of “traditional” wavelets [32], and of “second

generation” wavelets [33], such as spherical wavelets [26]. Lifting is also closely related to several

other techniques [13, 22, 37, 34, 20, 4, 15, 7, 3, 19, 28]. Rather than giving the general structure

of lifting at this point, we show how to rewrite the Haar and S transforms using lifting.

We rewrite (3.1) in two steps which need to be executed sequentially. First compute the

difference and then use the difference in the second step to compute the average:

d1,l = s0,2l+1 − s0,2l

s1,l = s0,2l + d1,l/2 . (3.5)

This is the same as the Haar transform (3.1) because s0,2l + d1,l/2 = s0,2l + s0,2l+1/2− s0,2l/2 =

s0,2l/2 + s0,2l+1/2 . It is now immediately clear how to compute the inverse transform again

in two sequential steps. First recover the even sample from the average and difference, and

later recover the odd sample using the even and the difference. The equations can be found by

reversing the order and changing the signs of the forward transform:

s0,2l = s1,l − d1,l/2

s0,2l+1 = d1,l + s0,2l .

1The name “lifting” was coined in [32], where it was developed to painlessly increase (“lift”) the number of

vanishing moments of a wavelet.
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As long as the transform is written using lifting, the inverse transform can be found immediately.

We will show below how this works for longer filters or even for non-linear transforms.

We can change (3.5) into an integer transform by truncating the division in the second step:

d1,l = s0,2l+1 − s0,2l

s1,l = s0,2l + bd1,l/2c .

This is the same as the S transform (3.3) because s0,2l + bd1,l/2c = s0,2l + bs0,2l+1/2− s0,2l/2c =

bs0,2l/2 + s0,2l+1/2c .

Even though the transform now is non-linear, lifting allows us to immediately find the inverse.

Again the equations follow from reversing the order and changing the signs of the forward

transform:

s0,2l = s1,l − bd1,l/2c
s0,2l+1 = d1,l + s0,2l .

Substituting and using that d− bd/2c = b(d + 1)/2c, we see that this is the same as the inverse

S transform (3.4).

This example shows that lifting allows us to obtain an integer transform using simply trun-

cation and without losing invertibility.

3.2. Beyond the S transform. Two generalizations of the S transform have been proposed:

the TS transform [39] and the S+P transform [25]. The idea underlying both is the same: add a

third stage in which a prediction of the difference is computed based on the average values; the

new high pass coefficient is now the difference of this prediction and the actual difference. This

can be thought of as another lifting step and therefore immediately results in invertible integer

wavelet transforms.

We first consider the TS transform. The idea here is to build an integer version of the

(3, 1) biorthogonal wavelet transform of Cohen-Daubechies-Feauveau [6]. We present it here

immediately using sequential lifting steps. The original, non-truncated transform goes in three

steps. The first two are simply Haar using a preliminary high pass coefficient d
(1)
1,l . In the last

step the real high pass coefficient d1,l is found as d
(1)
1,l minus its prediction:

d
(1)
1,l = s0,2l+1 − s0,2l

s1,l = s0,2l + d
(1)
1,l /2

d1,l = d
(1)
1,l + s1,l−1/4 − s1,l+1/4 . (3.6)
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The prediction for the difference thus is s1,l+1/4 − s1,l/4. The coefficients of the prediction are

chosen so that in case the original sequence was a second degree polynomial in l, then the new

wavelet coefficient d1,l is exactly zero. This assures that the dual wavelet has three vanishing

moments. This prediction idea also connects to average-interpolation as introduced by Donoho

in [12]. Substituting we see that the high pass filter is {1/8, 1/8,−1, 1,−1/8,−1/8} while the

low pass filter is {1/2, 1/2}, and we thus indeed calculate the (3,1) transform from [6]. Here the

numbers 3 and 1 stand respectively for the number of vanishing moments of the analyzing and

synthesizing high pass filter. We shall follow this convention throughout.

The integer version or TS-transform now can be obtained by truncating the non-integers

coming from the divisions in the last two steps:

d
(1)
1,l = s0,2l+1 − s0,2l

s1,l = s0,2l + bd(1)
1,l /2c

d1,l = d
(1)
1,l + bs1,l−1/4 − s1,l+1/4 + 1/2c . (3.7)

In the last step we add a term 1/2 before truncating to avoid bias; in the second step this is not

needed because the division is only by two. As the transform is already decomposed into lifting

steps, the inverse again can be found immediately by reversing the equations and flipping the

signs:

d
(1)
1,l = d1,l − bs1,l−1/4 − s1,l+1/4 + 1/2c

s0,2l = s1,l − bd(1)
1,l /2c

s0,2l+1 = d
(1)
1,l + s0,2l . (3.8)

The S+P transform (S transform + Prediction) goes even further. Here the predictor for d
(1)
1,l

does not only involve s1,k values but also a previously calculated d
(1)
1,l+1 value. The general form

of the transform is

d
(1)
1,l = s0,2l+1 − s0,2l

s1,l = s0,2l + bd(1)
1,l /2c

d1,l = d
(1)
1,l + bα−1 (s1,l−2 − s1,l−1) + α0 (s1,l−1 − s1,l) + α1 (s1,l − s1,l+1) − β1 d

(1)
1,l+1c .(3.9)

Note that the TS-transform is a special case, namely when α−1 = β1 = 0 and α0 = α1 = 1/4.

Said and Pearlman examine several choices for (αw, β1) and in the case of natural images suggest

α−1 = 0, α0 = 2/8, α1 = 3/8 and β1 = −2/8. It is interesting to note that, even though this

was not their motivation, this choice without truncation yields a high pass analyzing filter with

2 vanishing moments.
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3.3. The lifting scheme. We mentioned that the S, TS, and S+P transform can all be seen

as special cases of the lifting scheme. In this section, we describe the lifting scheme in general

[32, 33]. There are two ways of looking at lifting: either from the basis function point of view

or from the transform point of view. We consider the transform point of view.
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Figure 4. The forward wavelet transform using lifting: First the Lazy wavelet,

then alternating dual lifting and lifting steps, and finally a scaling.
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Figure 5. The inverse wavelet transform using lifting: First a scaling, then

alternating lifting and dual lifting steps, and finally the inverse Lazy transform.

The inverse transform can immediately be derived from the forward by running

the scheme backwards and flipping the signs.

Computing the wavelet transform using lifting steps consists of several stages. The idea is to

first compute a trivial wavelet transform (the Lazy wavelet or polyphase transform) and then

improve its properties using alternating lifting and dual lifting steps, see Figure 4. The Lazy

wavelet only splits the signal into its even and odd indexed samples:

s
(0)
1,l = s1,2l

d
(0)
1,l = s1,2l+1 .

A dual lifting step consists of applying a filter to the even samples and subtracting the result

from the odd ones:

d
(i)
1,l = d

(i−1)
1,l −

∑
k

p
(i)
k s

(i−1)
1,l−k .
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A lifting step does the opposite: applying a filter to the odd samples and subtracting the result

from the even samples:

s
(i)
1,l = s

(i−1)
1,l −

∑
k

u
(i)
k d

(i)
1,l−k .

Eventually, after, say M pairs of dual and primal lifting steps, the even samples will become the

low pass coefficients while the odd samples become the high pass coefficients, up to a scaling

factor K:

s1,l = s
(M)
1,l /K and d1,l = K d

(M)
1,l .

As always, we can find the inverse transform by reversing the operations and flipping the

signs, see Figure 5. We thus first compute

s
(M)
1,l = K s1,l and d

(M)
1,l = d1,l/K .

Then undo the M alternating lifting steps and dual lifting steps:

s
(i−1)
1,l = s

(i)
1,l +

∑
k

u
(i)
k d

(i)
1,l−k ,

and

d
(i−1)
1,l = d

(i)
1,l +

∑
k

p
(i)
k s

(i−1)
1,l−k .

Finally retrieve the even and odd samples as

s1,2l = s
(0)
1,l

s1,2l+1 = d
(0)
1,l .

The following theorem holds:

Theorem 3.1. Every wavelet or subband transform with finite filters can be obtained as the

Lazy wavelet followed by a finite number of primal and dual lifting steps and a scaling.

This theorem follows from a factorization well known to both electrical engineers (in linear

system theory) as well as algebraists (in algebraic K-theory); [9] gives a self-contained proof

as well as many examples coming from wavelet filter banks.. The proof is constructive; for a

given wavelet transform, the filters used in the lifting steps can be found using the Euclidean

algorithm. The number of lifting steps is bounded by the length of the original filters. It is also

shown in [9] how, with at most 3 extra lifting steps, K can always be set to 1.

It is important to point out that the lifting factorization is not unique. For a given wavelet

transform, one can often find many quite different factorization. Depending on the application
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one then chooses the factorization with the smallest M , or the one with K closest to one, or the

one which preserves symmetry.

3.4. Lifting and integer wavelet transforms. Since we can write every wavelet transform

using lifting, it follows that we can build an integer version of every wavelet transform. Like

in the examples, one can, in each lifting step round-off the result of the filter right before the

adding or subtracting. An integer dual lifting step thus becomes:

d
(i)
1,l = d

(i−1)
1,l − b

∑
k

p
(i)
k s

(i−1)
1,l−k + 1/2c ,

while an integer primal lifting step is given by

s
(i)
1,l = s

(i−1)
1,l − b

∑
k

u
(i)
k d

(i)
1,l−k + 1/2c .

This obviously results in an integer to integer transform. Because it is written using lifting steps,

it is invertible and the inverse again immediately follows by flipping the signs and reversing the

operations.

The issue of the scaling factor K remains. Two solutions are possible:

1. Omit the scaling factor K, and keeping in mind that one actually calculates the low pass

times K and the band pass divided by K. This approach is similar to the non uniform

expansion factor of Section 2.3, with the difference that now the product of the factor for

the low pass (K) and the factor for the high pass (1/K) is always one. In this case it is

preferable to let K be as close to 1 as possible. This can be done using the non-uniqueness

of the lifting factorization [9].

2. With three extra lifting steps K can be made equal to one. One can then build the integer

version of those extra lifting steps. This comes down to shifting one coefficient b bits to

the left and the other b bits to the right. The b bits that get lost in the shift to the right

end up in the b locations freed up by the shift to the left.

This leads to the following pseudo-code implementation of an invertible integer wavelet trans-

form using lifting:

s
(0)
1,l := s0,2l

d
(0)
1,l := s0,2l+1

for i = 1:(1):M

∀l : d
(i)
1,l := d

(i−1)
1,l − b∑k p

(i)
k s

(i−1)
1,l−k + 1/2c

∀l : s
(i)
1,l := s

(i−1)
1,l − b∑k u

(i)
k d

(i)
1,l−k + 1/2c
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end

The inverse transform is given by:

for i = M:(-1):1

∀l : s
(i−1)
1,l := s

(i)
1,l + b∑k u

(i)
k d

(i)
1,l−k + 1/2c

∀l : d
(i−1)
1,l := d

(i)
1,l + b∑k p

(i)
k s

(i−1)
1,l−k + 1/2c

end

s0,2l+1 := d
(0)
1,l

s0,2l := s
(0)
1,l

3.5. Links with the approach in Section 2. There are two ways in which the scheme from

Section 3.4 can be linked to the approach in Section 2. First of all, by writing the filter bank as

a succession of lifting steps, we have in fact reduced everything to a situation similar to LTF:

every simple lifting step consists in “correcting” one entry (d(i)
1,l or s

(i)
1,l) by adding to it a linear

combination of previously encountered entries. In LTF, the entry to be corrected is nudged away

from its integer value by subtracting from it the fractional part of what will be added by the

filter, but the filtering itself is then untouched. We choose to keep the integer value of the entry

to be corrected, but to change the filter step, adding only the integer part of the correction.

This amounts of course to the same thing.

A second link is the realization that we have in fact constructed in Section 3.4 particular

sets in R2L analogous to the H−1 Γ + n considered in Section 2. To see this, note that if the

lifting scheme, with the truncation to integers of the “lifted” part (but not the first term) at

every step, is applied to real entries instead of integers, the final outcome will also consist of real

numbers (s(M)
1,l or d

(M)
1,l ). For each choice n = (ns,l, nd,l)l=1,...L ∈ Z2L we can define the region

Σn for which bs(M)
1,l c = ns,l, bd(M)

1,l c = nd,l. These regions correspond to the H−1 Γ + n that we

considered in Section 2.

The regions Σn are quite complex, however, and do not have the structure proposed in

Section 2.2 or 2.3. Applied to the same data, they will also give different results. The different

Σn need not be even translates of Σ0. To illustrate this, let us look at the filters for the integer

TS transform as in (3.7). For simplicity, we take wraparound at the edges. Then the 2L entries

s0,0, . . . , s0,2L−1 get transformed into s1,l, d1,l with l = 0, . . . , L − 1, as given by (3.7), with the

boundary cases given by

d1,0 = d
(1)
1,0 + b1/4 (s1,L−1 − s1,1) + 1/2c

d1,L−1 = d
(1)
1,2L−2 + b1/4 (s1,L−2 − s1,0) + 1/2c .
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The region Σ0 is now

Σ0 = {(s0,0, . . . , s0,2L−1) ; 0 6 s1,l < 1, 0 6 d1,l < 1, l = 0, . . . , L − 1} .

Since b1/4(a − b) + 1/2c = 0 if bac = bbc = 0, we find that Σ0 is exactly

Σ0 = {(s0,0, . . . , s0,2L−1) ; 0 6 s0,2l+1 − s0,2l < 1, 0 6 s0,2l+1 + s0,2l < 2, l = 0, . . . , L − 1},

or a product of L tiles identical (up to a shift) to those we found for the non-uniform expansion

Haar case in Section 2.3. Define now 2k = (s1,l, d1,l)l=1,... ,L−1, with d1,l = 0 for all l, s1,l = 2 δl,k.

Then

Σ2k
={(s0,0, . . . , s0,2L−1) ; 2 6 s1,k < 3

0 6 s1,l < 1, l = 0, . . . , L − 1, l 6= k,

0 6 d1,l < 1, l = 0, . . . , L − 1} .

One easily checks that the integer in Σ2k
is mk = (0, . . . , 0, 2, 2, 1, 0, . . . , 0), i.e., s0,2k =

s0,2k+1 = 2, s0,2k+2 = 1, all other s0,l = 0. Take now s0 = (0, . . . , 0, 2.9, 2.9, 1, 0, . . . , 0) ∈
Σ0 + mk. Then d

(1)
1,l = −δl,k+1, s1,l = 2.9 δl,k, d1,l = −δl,k−1, so that s0 6∈ Σ2k

.

Note that in this particular case Σ0 happens to be a fundamental region for Z2L; in general

(and in particular, in some of the more complex examples that we implemented) even this is not

necessarily true. In most cases, especially when even more truncation steps are considered, Σ0

can also not be written as a product of two-dimensional regions.

4. Examples

4.1. Interpolating transforms. The first group of examples are instances of a family of sym-

metric, biorthogonal wavelet transforms built from the interpolating Deslauriers-Dubuc scaling

functions [32]. We present examples of the form (N, Ñ ) where N is the number of vanishing

moments of the analyzing high pass filter, while Ñ is the number of vanishing moments of the

synthesizing high pass filter. Using this notation the S-transform (3.3) can be referred to as a

(1, 1) transform. For all the interpolating examples we take K = 1.

• (2,2) interpolating transform

d1,l = s0,2l+1 − b1/2 (s0,2l + s0,2l+2) + 1/2c
s1,l = s0,2l + b1/4 (d1,l−1 + d1,l) + 1/2c . (4.1)

Note that, up to a shift where s1,l here corresponds to s1,l+1 before, this is exactly the

filter pair given in (2.16).
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• (4,2) interpolating transform

d1,l = s0,2l+1 − b9/16 (s0,2l + s0,2l+2) − 1/16 (s0,2l−2 + s0,2l+4) + 1/2c
s1,l = s0,2l + b1/4 (d1,l−1 + d1,l) + 1/2c . (4.2)

• (2,4) interpolating transform

d1,l = s0,2l+1 − b1/2 (s0,2l + s0,2l+2) + 1/2c
s1,l = s0,2l + b19/64 (d1,l−1 + d1,l) − 3/64 (d1,l−2 + d1,l+1) + 1/2c . (4.3)

• (6,2) interpolating transform

d1,l = s0,2l+1 − b75/128 (s0,2l + s0,2l+2) − 25/256 (s0,2l−2 + s0,2l+4)

+ 3/256 (s0,2l−4 + s0,2l+6) + 1/2c
s1,l = s0,2l + b1/4 (d1,l−1 + d1,l) + 1/2c . (4.4)

• (4,4) interpolating transform

d1,l = s0,2l+1 − b9/16 (s0,2l + s0,2l+2) − 1/16 (s0,2l−2 + s0,2l+4) + 1/2c
s1,l = s0,2l + b9/32 (d1,l−1 + d1,l) − 1/32 (d1,l−2 + d1,l+1) + 1/2c . (4.5)

4.2. (2+2,2) transform. Inspired by the S+P transform, we use one extra lifting step to build

the earlier (2, 2) into a transform with 4 vanishing moments of the high pass analyzing filter.

The resulting transform is different from the earlier (4, 2) transform and therefore is called the

(2 + 2, 2) transform. The idea is to first compute a (2, 2) yielding low pass samples s1,l and

preliminary detail or high pass samples d
(1)
1,l , and then use the s1,l combined with d1,l+n (n > 0)

to compute d′1,l as a prediction for d
(1)
1,l . The final detail sample then is d

(1)
1,l − d′1,l. We suggest a

scheme of the form:

d
(1)
1,l = s0,2l+1 − b1/2(s0,2l + s0,2l+2) + 1/2c
s1,l = s0,2l + b1/4(d(1)

1,l−1 + d
(1)
1,l ) + 1/2c

d1,l = d
(1)
1,l − bα (−1/2 s1,l−1 + s1,l − 1/2 s1,l+1)

+ β (−1/2 s1,l + s1,l+1 − 1/2 s1,l+2) + γ d
(1)
1,l+1 + 1/2c . (4.6)

Without truncation, we want the scheme to have 4 vanishing moments. This leads to the

following conditions:

8β + 3 γ = 1

4α + 4β + γ = 1 .
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Special cases are: (1) α = 1/6, β = 0, γ = 1/3, (2) α = 1/8, β = 1/8, γ = 0, and (3) α = 1/4, β =

−1/4, γ = 1. In our experiments we found that (2) works considerably better than (1) and (3),

and this is the case we use when we refer to (2 + 2, 2) in Section 5.

4.3. D4 orthogonal transform. The transform follows from the lifting factorization in [9].

d
(1)
l = s0,2l+1 − b

√
3 s0,2l + 1/2c

s1,l = s0,2l + b
√

3/4 d
(1)
1,l + (

√
3 − 2)/4 d

(1)
1,l−1 + 1/2c

d1,l = d
(1)
1,l + s1,l+1 .

Here K = (
√

3 + 1)/
√

2 ≈ 1.577.

4.4. (9 − 7) symmetric biorthogonal transform. We consider the popular (9 − 7) filter

pair. The analysis low pass filter has 9 coefficients, while the analysis high pass filter has 7

coefficients. Both analysis and synthesis high pass filters have 4 vanishing moments [8]. The

integer transform again follows from the lifting factorization in [9].

d
(1)
1,l = s0,2l+1 + bα (s1,2l + s1,2l+2) + 1/2c

s
(1)
1,l = s0,2l + bβ (d(1)

1,l + d
(1)
1,l−1) + 1/2c

d1,l = d
(1)
1,l + bγ (s(1)

1,l + s
(1)
1,l+1) + 1/2c

s1,l = s
(1)
1,l + bδ (d1,l + d1,l−1) + 1/2c .

The constants are given by

α ≈ −1.586134342

β ≈ −0.05298011854

γ ≈ 0.8829110762

δ ≈ 0.4435068522

K ≈ 1.149604398 .

5. Evaluation of integer to integer wavelet transforms

In this section, we evaluate the effectiveness of the various wavelet filters described in the

previous section for lossless compression of digital images. For the evaluation, we use selected

images from the set of standard ISO test images [1]. In this set of test images, there are natural

images, computer-generated images, compound images (mixed texts and natural images, e.g.,

“cmpnd1” and “cmpnd2”; “us” is an ultrasound image with text on it) and different types of
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medical images (“x ray”, “cr”, “ct”, and “mri”). Separable two dimensional wavelet transforms

are taken of the images.

The effectiveness for lossless compression is measured using the entropy H(X), given by

H(X) = −
∑

i

P (si) log P (si), (5.1)

where X is a discrete random variable taking on values si with probability P (si). For an image

X(, ) of size N × M , we take the probability P (si) to be the normalized count of value si, i.e.,

P (si) =
|(l,m) : X(l,m) = si|

NM
. (5.2)

We further take into account the fact that the statistics in different quadrants of a wavelet-

transformed image are different, and compute the weighted mean of the entropies in each quad-

rant of the transformed image. For example, in the two-scale decomposition shown in Figure 6,

the weighted entropy (in bits/pixel) is computed as

1
16

(H(C2) + H(D2,v) + H(D2,h) + H(D2,d)) +
1
4

(H(D1,v) + H(D1,h) + H(D1,d)) .

D
1,v

D
1,d

D
1,h

D
2,d

D
2,h

D
2,v

C 2

Figure 6. A two-scale wavelet decomposition.

In the evaluation, we decompose each image into a maximum of five scales, the length and

width permitting. The weighted entropies are tabulated in Table 1.

Several observations can be made:
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Images (1,1) (3,1) (2,2) S+P (4,2) (2+2,2) D4 9-7

air2 5.13 4.91 4.82 4.81 4.77 4.76 5.09 4.98

bike 4.36 4.28 4.19 4.18 4.20 4.21 4.37 4.31

cafe 5.69 5.54 5.41 5.42 5.41 5.41 5.63 5.51

cats 3.69 3.53 3.47 3.43 3.42 3.42 3.60 3.47

cmpnd1 2.25 2.84 2.79 2.97 3.31 3.36 3.04 3.45

cmpnd2 2.41 2.96 2.79 3.01 3.28 3.33 3.12 3.42

cr 5.40 5.25 5.20 5.24 5.22 5.22 5.28 5.22

ct 5.54 4.63 4.50 4.30 4.15 4.16 4.96 4.36

faxballs 1.61 1.31 1.08 1.41 1.36 1.17 1.54 1.97

finger 6.24 5.71 5.49 5.48 5.35 5.35 5.85 5.45

gold 4.27 4.10 4.05 4.08 4.04 4.03 4.19 4.14

graphic 3.18 2.82 2.60 2.67 2.56 2.56 3.08 3.00

hotel 4.30 4.18 4.03 4.10 4.06 4.04 4.25 4.18

mri 6.59 6.16 6.02 5.90 5.91 5.91 6.26 5.97

tools 5.84 5.80 5.69 5.73 5.73 5.72 5.88 5.81

us 3.64 3.79 3.69 3.79 3.87 3.85 3.95 4.26

water 2.46 2.45 2.42 2.47 2.45 2.44 2.46 2.50

woman 4.87 4.67 4.57 4.54 4.53 4.54 4.78 4.64

x ray 6.42 6.13 6.06 6.09 6.06 6.06 6.18 6.08

Table 1. Weighted entropies of transformed images.

1. There is no filter that consistently performs better than all the other filters on all the test

images.

2. Wavelet filters with more analyzing vanishing moments generally perform well with nat-

ural and smooth images and not so with images with a lot of edges and high frequency

components, such as with compound images.

3. On the other hand, a low order filter like (1,1) (S-transform) generally performs the worst,

especially with natural images. It does a poor job in decorrelating the images. However,

it performs significantly better on compound images (e.g., “cmpnd1” and “cmpnd2”) than

other higher order filters.
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4. Wavelet filters (4,2) and (2+2,2) have similar performances and generally perform better

than other filters evaluated. For images “finger” and “ct”, they perform significantly better

than other filters.

5. The filter (3,1) generally performs worse than filters with comparable number of analyzing

vanishing moments.

6. It is interesting to note that even though the S+P has 2 analyzing vanishing moments, it

performs better than the (3,1) which has 3 and has comparable performances with those

with 4. This suggests that there are other factors besides the number of analyzing vanishing

moments which affect compression efficiency.

7. The (9− 7), which is most popularly used for lossy compression of images and which has 4

analyzing vanishing moments, generally does not perform as well as the (4,2) and (2+2,2),

which have the same number of analyzing vanishing moments.

We further evaluate the wavelet filters by attaching an entropy coder to compute the actual

bit rate. We use the entropy coder of Said and Pearlman [25]. In each quadrant, the wavelet

coefficients are visited in a scanline order; for each coefficient, a context Cj is derived based on

the values of its adjacent coefficients which have already been visited and its parent coefficient.

A total of 25 different contexts are used. The statistics of the context model is adaptively

updated as more pixels are visited and the model is reset after each quadrant is visited. An

arithmetic coder is then used to code the coefficients according to their contexts. The resulting

bit rate will be lower bounded by the conditional entropy,

H(X|C) = −
∑
i,j

P (si, cj) log P (si|cj), (5.3)

where P (si, cj) is the joint probability of value si and context cj and P (si|cj) is the conditional

probability of value si given context cj . The results are tabulated in Table 2. The numbers

are derived from compressed file sizes. Given that H(X|C) ≤ H(X), conditioning allows us to

achieve actual bit rate lower than the entropy H(X) computed in Table 1.

The relative strength of each filter over the others in actual coding is similar to that computed

using the entropies. As previously observed, wavelet filters (4,2) and (2+2,2) generally outper-

forms other filters for natural and smooth images. Also, filters with more analyzing vanishing

moments perform poorly with compound images. As can be seen from the two tables, numbers

computed from entropies provide a good indication of the actual performance of a wavelet filter.

Alternatively, with a context model in mind, one can compute the conditional entropies for a

better estimate of the actual bit rate.
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Images (3,1) (2,2) S+P (4,2) (2+2,2) D4 9-7

air2 4.34 4.29 4.28 4.24 4.24 4.60 4.52

bike 3.83 3.78 3.76 3.78 3.79 3.94 3.88

cafe 5.07 4.98 4.98 4.95 4.98 5.17 5.07

cats 2.60 2.56 2.53 2.52 2.52 2.67 2.57

cmpnd1 2.34 2.31 2.38 2.59 2.62 2.40 2.64

cmpnd2 2.46 2.33 2.45 2.58 2.61 2.49 2.64

cr 5.21 5.17 5.22 5.19 5.19 5.25 5.20

ct 3.96 3.92 3.70 3.61 3.65 4.30 3.80

faxballs 1.12 1.02 1.20 1.17 1.07 1.51 1.59

finger 5.73 5.56 5.51 5.41 5.42 5.90 5.50

gold 3.99 3.94 3.99 3.95 3.94 4.11 4.09

graphic 3.05 2.91 2.93 2.87 2.89 3.34 3.29

hotel 3.97 3.90 3.95 3.91 3.90 4.10 4.07

mri 5.99 5.90 5.77 5.80 5.81 6.13 5.89

tools 5.59 5.49 5.53 5.52 5.51 5.65 5.60

water 1.83 1.79 1.85 1.81 1.80 1.85 1.88

woman 4.24 4.17 4.15 4.14 4.15 4.37 4.28

us 3.17 3.13 3.16 3.23 3.22 3.38 3.53

x ray 5.99 5.92 5.94 5.92 5.92 6.05 5.95

Table 2. Exact bit rate of test images.

We also observe that the use of simple context modeling of the wavelet coefficients as in [25]

cannot provide a significant enough gain in actual coding when the performance of the wavelet

filter is poor in the first place. This points to the importance of using “good” wavelet filters and

necessitates the search for such filters.

The classical approach to lossless compression is decomposed into two steps: spatial decor-

relation and entropy coding of the decorrelated signals. The decorrelating steps have always

been performed in the spatial domains and they involve some form of non adaptive or adaptive

prediction of a pixel values based on previously visited pixels (see [23] and the references therein

for comparisons of state-of-the-art spatial-domain predication techniques). In fact, we can view

wavelet transforms that use two lifting steps such as those built from Deslauriers-Dubuc scaling

functions as decorrelation steps. The high pass coefficients are the decorrelated components.
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The lifting step computes the difference between a true coefficient and its prediction and has

the following form:

dj+1,l = sj,2l+1 − bf(sj,2l−2L · · · , sj,2l−2, sj,2l, sj,2l+2, sj,2l+4, · · · , sj,2l+2L)c. (5.4)

We are thus predicting a pixel at an odd location 2l+1 using pixels at even locations from both

sides of 2l + 1. This is in contrast to the spatial domain approach to prediction, which has the

following one-sided form:

dj = sj − bg(sj−J , · · · , sj−3, sj−2, sj−1)c. (5.5)

The price to pay for prediction based on (5.4) is to retain knowledge of the remaining pixels

at the even locations. Similar prediction steps can be performed on these remaining pixels,

but because the distances between adjacent pixels are larger than before, correlations between

adjacent pixels tend to be lower. The dual lifting step in generating the sj+1,l smoothes this set

of remaining pixels before the lifting step on the coarser level is performed.

The big advantage of using wavelet transform to represent images is multiresolution represen-

tation, which spatial-domain prediction techniques based on (5.5) cannot offer. Using wavelet

transforms that map integers to integers permits lossless representation of the image pixels and

easily allows the transmission of lower resolution versions first, followed by transmissions of suc-

cessive details. Such a mode of transmission is especially valuable in scenarios where bandwidth

is limited, image sizes are large and lossy compression is not desirable. Examples are transmis-

sion of 2-D and 3-D medical images for tele-medicine applications and transmission of satellite

images down to earth. Each of these images is typically several megabytes in size.

Valuable lessons could also be learned from the recent advances in spatial-domain prediction

techniques [23]. Adaptation of prediction methods is made based on local statistics of the pixels.

In the wavelet transform approach to decorrelating an image, we could also use an adaptive

scheme in deciding the use of wavelet filters on a pixel by pixel basis. As we have seen, there

is not a wavelet filter that performs uniformly better than the others. Thus, the activities in

some small neighborhood should be used in determining the type of filters to use. The use of

adaptive wavelet filters in lossless and multiresolution representation of images warrants further

investigation.
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Note. After finishing this work, we learned that a construction similar to the one presented in

Section 3 was obtained independently by Dewitte-Cornelis and Chao-Fischer [11, 5].

The Chao-Fischer approach has the extra feature that it uses modular arithmetic to eliminate

all increase in dynamic range; thus if the original image uses 8 bits per pixel, all the wavelet

coefficients uses 8 bits as well. The disadvantage is that large wavelet coefficients can become

small due to the modular arithmetic, and vice versa. In our experiments, this wraparound

disadvantage tends to cancel out the advantage of no bit growth; nevertheless it is useful for

certain implementations.
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Appendix A. Proof of Lemma 2.1

We start by reformulating Lemma 2.1 in a slightly different way, introducing explicit notations

for all the points involved.

Lemma 2.1. Let P be a parallelogram that is a fundamental region for Z2, and let A1, A2, A3

be three points on the boundary of P such that

• A′
j , the mirror image of Aj with respect to the center of P , is congruent with Aj modulo

Z2 (j = 1, 2, or 3)

• no three points among A1, A2, A3, A
′
1, A

′
2, A

′
3 are collinear.

Let Ω be the hexagon with vertices A1, A2, A3, A
′
1, A

′
2, A

′
3. Then any closed parallelogram Q that

contains Ω also contains a fundamental region for Z2.

(Note that Ω is a strict subset of a fundamental region, and is therefore not a fundamental region

itself.)

Proof. Without loss of generality, we can assume that P is centered around the origin.

Because of the prohibition of collinearity, the six points must be distributed among the four

sides of P , with two points each on two opposite sides, and one point each on the remaining two

sides. If none of the points Aj, A
′
j lies on a vertex of P , then we can assume (by renumbering if

necessary) that A1, A2, and A3 are three consecutive corners of the hexagon Ω, lying on three

different sides of P ; see Figure 7a. (If one of the Aj, A
′
j lies on a vertex, as in Figure 7b, then

the rest of this proof needs to be changed in a straightforward way; we leave this as an exercise

for the reader.)
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a. The parallelogram P (with vertices C12, C23, C
′
12, and C ′

23) and the inscribed

hexagon Ω, with associated triangles 412,423,4′
12 and 4′

23. All the ˜ and ̂
versions of the triangles are drawn, but only 4̃12 and 4̂12 have been labelled.

b. A special case where some vertices of Ω coincide with vertices of P .
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Denote by C12 the vertex of P that separates A1 from A2, and similarly by C23 the vertex

that separates A2 from A3. We denote their opposites, which separate A′
1 from A′

2, A′
2 from A′

3,

respectively, by C ′
12 and C ′

23.

The original fundamental region P is the union of the hexagon Ω and four triangles 412

(with vertices A1, A2, C12), 423 (vertices A2, A3, C23), 4′
12 (vertices A′

1, A
′
2, C

′
12), and 4′

13 (ver-

tices A′
1, A

′
3, C

′
13). For each of the triangles 4ij we define the two triangles 4̂ij and 4̃ij by

4̂ij = 4ij − Ai + A′
i, 4̃ij = 4ij − Aj + A′

j ; 4̂′
ij and 4̃′

ij are defined analogously. Every one of

the four original triangles is congruent modZ2 with its ̂ and ˜ versions.

Suppose there exists a parallelogram Q that contains Ω and that does not contain a funda-

mental region for Z2. If the parallel lines that bound Q do not touch Ω, we may reduce their

separation until they do. Let R be the resulting reduced parallelogram, bounded by the parallel

lines L,L′ and M,M ′, each of which is incident with Ω. Let x be a point in P so that R does

not contain any point congruent to x mod Z2. Then x ∈ 4ij or 4′
ij for some i, j, and there exist

points x̂, x̃ in the corresponding 4̂, 4̃ that are congruent to x mod Z2. Observe that if L,L′ are

parallel lines through opposite vertices j, j′ then exactly two of the points x, x̃, x̂ lie between L

and L′. Similarly for M,M ′. Hence one of the points x, x̃, x̂ lies in the parallelogram R bounded

by L,L′ and M,M ′, which is a contradiction.
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