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Abstract

Given a set of points xi; i = 0; : : : ; n on [�1; 1] and the corresponding
values yi; i = 0; : : : ; n of a 2-periodic function y(x), supplied in some way
by interpolation or approximation, we describe a simple method that by dou-
bling iteratively this original set, produces in the limit a smooth function. The
analysis of the interpolation error is given.

We show that if y 2 C4 then the error in the p-norm, p = 1; p = 2 and
p =1 depends on the magnitude of the fourth derivative of the function y(x)
and on a function �(x) which is even, concave and bounded on [�1; 1].
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1 Introduction

The development of communication systems, for instance computer webs, stimu-
lated the attention on the problem of coding and compressing data. Very frequently
in multimedia applications, for example with sound data, as coding functional one
chooses the values of a function on a given set of points or the values of the functions
on a �ner data set obtained from the original by splitting each interval or doubling
the number of the data points. To regenerate the underlying function in the litera-
ture there exist many methods based on wavelets, interpolation by trigonometric or
algebraic polynomials or by using splines (cf. [5, 2]).

In the present paper we address the problem of interpolating a set of speci�c
values supplied in some ways and by an interative-like interpolation process we build
the underlying interpolant. Such problems often arise in mechanical engineering, for
the necessity of numerical control metalcutting, in problems related to computer
modelling and many other problems of processing curves and surfaces (cfr. [5]).

Let us start by formulating our problem. Let yi = yi;0; i = 0; : : : ; n be the values
of a 1-periodic function f(x) : [a; b]! R at the equispaced points xi;0 = ih; h = b�a

n .
In what follow, we assume for the sake of simplicity that [a; b] = [�1; 1], and that
the points are supplied in some way: for instance they can be the data of some
interpolating or approximating process (Lagrange or spline interpolation, smoothing
spline, etc...) which we consider as initial data.

The method builds the interpolant simply by doubling iteratively the original
set of points. The analysis of the interpolation error is discussed with the aid of a
2-periodic function �(x) which is shown to be bounded and concave on [�1; 1].

2 The method

The idea of the method is as follows. Given the data yi;0; i = 0; :::; n the new
supplied values are obtained by inserting at each middle point a new value, generated
by an interpolation process, getting yi;1; i = 0; : : : ; 2n. Now we proceed similarly
getting yi;2; i = 0; : : : ; 4n and so forth.

2.1 The interpolation process

Starting from the initial set (xi;0; yi;0); i = 0; :::; n, through the points (x�;0; y�)
� = i � 1; i; i + 1; i + 2; 1 � i � n � 2 we construct the interpolating cubic
polynomial.

Now, let ŷi+ 1

2
;0 be the value of y(x) at the point xi+ 1

2
;0, that is:

ŷi+ 1

2
;0 =

1

16
(�yi�1;0 + 9yi;0 + 9yi+1;0 � yi+2;0)

=
yi+1;0 + yi;0

2
�

1

8
�2
�
yi+1;0 + yi;0

2

�
; (1)
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where �2zi = zi+1 � 2zi + zi�1 stands for the second central di�erence at the point
zi.

Letting
y2i;1 = yi;0 ; i = 0; : : : ; n; (2)

y2i+1;1 = ŷi+ 1

2
;0 ; i = 0; : : : ; n� 1: (3)

then we have provided a way to compute the function values yi;1; i = 0; : : : ; 2n.

Remarks. Looking to the de�nition of the scheme, the points y1;1 and y2n�1;1
can not be determined with the scheme since they require the knowledge of two
points outside [a; b], let us say y�1;0 and yn+1;0. To determine them we can follow
two directions:

1. de�ne them as the values of the interpolating cubic spline passing through the
points (x0;0; y0;0); (x1;0; y1;0) and (xn�1;0; yn�1;0); (xn;0; yn;0), respectively;

2. by using Newton's interpolating formula we have

y�1;0 = 5y0;0 � 10y1;0 + 10y2;0 � 5y3;0 + y4;0 ;

yn+1;0 = 5yn;0 � 10yn�1;0 + 10yn�2;0 � 5yn�3;0 + yn�4;0 :

As well-known, Newton's formula gives a global polynomial interpolant which can
oscillate close to the end points of [a,b]. Therefore, the use of cubic splines, which
are piecewise polynomials, can sensibly improve the �tting, as shown in the Figure
1.

Then, by using (1) and the previous remarks, we are able to compute

ŷi+ 1

2
;1 =

yi+1;1 + yi;1
2

�
1

8
�2
�
yi+1;1 + yi;1

2

�
(4)

that is the values yi;2; i = 0; : : : ; 22 n.
Finally the recurrence required is:

ŷi+ 1

2
;k�1 =

yi+1;k�1 + yi;k�1
2

�
1

8
�2
�
yi+1;k�1 + yi;k�1

2

�
; (5)

and
y2i;k = yi;k�1 ; i = 0; : : : ; 2k�1n;

y2i+1;k = ŷi+ 1

2
;k�1 ; i = 0; : : : ; 2k�1n� 1;

where k is any natural number.
For an example of how the scheme is working see below, Section 5 where a

comparison with the well-known Shepard's method for data-�tting is provided.
We notice that this interpolation scheme is similar to the so-called 9=16-subdvision

scheme studied by Dubuc [3] and generalized to the bidimensional case by S. De
Marchi [1].
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3 The function �(x) and its properties

To study the error of the method we �rst introduce the following function �(x).
We assume �(�1) = �(1) = 0 and

�(0) =
�
1

16

�0

+
1

2
(�(�1) + �(1)) = 1: (6)

Assuming that �
�
�=2k�1

�
and �

�
(� + 1)=2k�1

�
are known, then we may de�ne

�(x) as a recurrence:

�
�
2� + 1

2k

�
=
�
1

16

�k

+
1

2

�
�
�

�

2k�1

�
+ �

�
� + 1

2k�1

��
; (7)

where � = �2k�1; : : : ; 2k�1 � 1, k 2 N , k � 0.
For each �xed k we shall de�ne a step-function �̂k(x); x 2 [�1; 1] by the relation

�̂k(x) = �
�
�

2k

� �
x 2

�
�

2k
;
� + 1

2k

�
; � = �2k; : : : ; 2k � 1

�

and at each point of discontinuity we set it by the following:

�̂k

�
�

2k

�
=

1

2

�
�̂k

�
�

2k
+ 0

�
+ �̂k

�
�

2k
� 0

��
:

It is possible to show (see later the Corollary 1 and (12)) that there exists a unique
limit as k ! 1 for the function �̂k(x) and this limit holds uniformly. Let �(x) be
this limit.

Lemma 1 For any �xed k the following inequality holds:

�2�
�
�

2k

�
< 0; � = �2k + 1; : : : ; 2k � 1:

Proof. From equation (7)

�
�
1

16

�k

=
1

2

�
�
�

�

2k�1

�
+ �

�
� + 1

2k�1

��
� �

�
2� + 1

2k

�
;

For odd � the Lemma is true, since

�2
�
1

16

�k

= �2�
�
2� + 1

2k

�
: (8)

For even � we proceed by mathematical induction.

As follows from (8) we have �2�
�
1
2

�
� �2:
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Now, for all �; � = �2k�2; : : : ; 2k�2 � 1 the following inequality holds:

�2�
�
2(2� + 1)

2k�1

�
� �2

�
1

16

�k�1

; (9)

To conclude we should prove that for all �; � = �2k�1; : : : ; 2k�1 � 1

�2�
�
4(2� + 1)

2k

�
� �2

�
1

16

�k

:

Using (7), we obtain

�2�
�
4(2� + 1)

2k

�
= 2

�
1

16

�k

+

+
1

2

�
�
�
2(2� + 1)� 1

2k�1

�
+ �

�
2(2� + 1) + 1

2k�1

��
� �

�
2� + 1

2k�2

�
=

= 2
�
1

16

�k

+
1

2

�
�
�
4� + 1

2k�1

�
� 2�

�
4� + 2

2k�1

�
+ �

�
4� + 3

2k�1

��
:

Therefore from this results and from (9) we �nally have

�2�
�
4(2� + 1)

2k

�
� 2

�
1

16

�k

�
�
1

16

�k�1

� �2
�
1

16

�k

:

This concludes our proof.

Corollary 1 From Lemma 1 and the fact that

�
�
�

2k

�
= �

�
�

�

2k

�

the function �(x) is even, concave and the following relations hold:

max
�=�2k;:::;2k

�
�
�

2k

�
= max

x2[�1;1]
� (x) = �(0) = 1:

��

The following Lemma specializes the Lemma 1.

Lemma 2 Let � � k � 1, then

�2�
�
2�(2� + 1)

2k

�
= �

1

7

�
1

2

�4k�1 �
6 � 23� + 1

�
(10)
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Proof. For � = 0 the statement follows from (8).
On the other side, it is clear that

�2�
�
2�(2� + 1)

2k

�
= �

�
2�(2� + 1)� 1

2k

�
�2�

�
2�(2� + 1)

2k

�
+�

�
2�(2� + 1) + 1

2k

�
:

By using (7), we also get

�2�
�
2�(2� + 1)

2k

�
= 2

�
1

16

�k

+
1

2

"
�

 
2��1(2� + 1)� 1

2k�1

!
+ �

 
2��1(2� + 1) + 1

2k�1

!#
�

� �
�
2� + 1

2k��

�
: (11)

Repeating this process � times, we have

�2�
�
2�(2� + 1)

2k

�
= 2

�
1

16

�k

+
�
1

16

�k�1

+ : : :+
1

2��2

�
1

16

�k���1

+

+
1

2�

�
�

�
(2� + 1)� 1

2k��

�
+ �

�
(2� + 1) + 1

2k��

��
�

1

2��1
�

�
2� + 1

2k��

�
=

=

�
1

2

�4k+1 ��1X
j=0

8j +
1

2�
�2�

�
2� + 1

2k��

�
:

Then from (8) it follows

�2�
�
2�(2� + 1)

2k

�
=
�
1

2

�4k+1 ��1X
j=0

8j � 2
1

2�

�
1

16

�k��

:

Noticing, that
�X

j=0

8j =
8� � 8

8� 1
=

8� � 8

7
;

we obtain

�2�
�
2�(2� + 1)

2k

�
=
�
1

2

�4k�1 8�+1 � 8

7
�
�
1

2

�4k�3�+1

=

=
�
1

2

�4k�1 �8� � 1

7
� 8�

�
=

1

7

�
1

2

�4k�1

(�6 � 8� � 1) :

This concludes the proof.

Corollary 2

max
�=�2k+1;:::;2k�1

�����2�
�
�

2k

����� = 1

7

�
1

2

�4k�1 �
6 � 8k�1 + 1

�
:

and

lim
k!1

�2�
�
�

2k

�
= 0: (12)
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��

Let ~�k(x) be the linear interpolant at the point set�
�

2k
; �
�
�

2k

��
� = �2k; : : : ; 2k:

Then
�(x) = lim

k!1
~�k(x):

Let

kfkp ;[a;b] =

8><
>:
�

1
b�a

R b
a jf(t)j

pdt
�1=p

p 2 [1;1)

maxt2[a;b] jf(t)j p =1;

When [a; b] = [�1; 1], we shall simply write kfkp = kfkp ;[�1;1]:

Lemma 3 Let k = 1; 2; : : : then

k�kk1 = 1; (13)

k�kk1 =
8

15

�
1�

1

16k+1

�
; (14)

k�kk
2
2 =

64

225

�
1�

1

16k+1

�2

+
64

765

�
1�

1

162k+2

�
: (15)

Therefore, k�k1 = 0:533, k�k2 =
q

1408
3825 � 0:607, k�k1 = 1 and

k�k1 < k�k2 < k�k1:

Proof. From the Corollary 1 we have at once the equality (13).
Let us consider the 2-periodic function

~�0(x) =
�
x+ 1; x 2 [�1; 0]
1� x; x 2 (0; 1]

and

~�k(x) = ~�0(x)+
1

16
~�0(2x)+

1

162
~�0(4x)+ : : :+

1

16k
~�0(2

kx) =
kX

�=0

1

16�
~�0(2

�x): (16)

Thus

k�kk1 =
1

2

Z 1

�1

kX
�=0

1

16�
~�0(2

�x) dx =
1

2

Z 1

�1

kX
�=0

Z 1

�1

1

16�
~�0(2

�x) dx =

7



=
1

2

Z 1

�1

kX
�=0

Z 1

�1

1

16�
~�0(x) dx =

8

15

 
1�

�
1

16

�k+1
!
:

At once we have

k�k1 =
8

15
:

We remind that 2-periodic even continuous function f(x) can to be expanded in
Fourier series, that is

f(x) = a0 +
1X
�=1

a� cos(��x)

and the Parseval's identity Z 1

�1
f2(x)dx = 2 a20 +

1X
�=1

a2� : (17)

As

~�0(x) =
1

2
+

4

�2

1X
i=1

cos((2i + 1)�x)

(2i + 1)2
;

then from (16) we have

~�k(x) =
kX

�=0

1

16�

 
1

2
+

4

�2

1X
i=1

cos((2i + 1)2��x)

(2i+ 1)2

!
=

=
1

2

kX
�=0

1

16�
+

4

�2

kX
�=0

1

16�

1X
i=1

cos((2i + 1)2��x)

(2i+ 1)2
=

=
8

15

�
1�

1

16k+1

�
+

4

�2

kX
�=0

1X
i=1

cos((2i + 1)2��x)

16�(2i + 1)2
: (18)

Let us observe, that for i;m 2 N

(2i + 1)2� = (2j + 1)2� () i = j; � = �:

If � > �, then

(2i+ 1)2� = (2j + 1)2� () (2i + 1)2��� = (2j + 1):

Therefore from this fact, since in the left side of (18) each item meets only once,
then by using the Parseval's identity

Z 1

�1
~�2
k(x) dx = 2

�
8

15

�
1�

1

16k+1

��2

+
16

�4

kX
�=0

1X
i=0

1

162�
1

(2i+ 1)4
:

Noting, that
1X
i=0

1

(2i+ 1)4
=

�4

96
;

we get (15).
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4 The analysis of the error of the interpolating method

Given the data xi = xi;0 = ih; i = 0; 1; : : : ; n we set

xi+ 1

2

=
�
i+

1

2

�
h

and

xi;k = i
h

2k
; i = 0; : : : ; 2kn:

Moreover, let ~yk(x) be the piecewise linear function, interpolating the values yi;k at
the points xi;k, i = 0; : : : ; 2kn.

Our main result is the following Theorem:

Theorem 1 Let y 2 C4 and let k be any �xed natural number, then

ky � ~ykkp �
3

128
h4k�kpky

(4)kp +O(h
5) (19)

where

k�k1 = 1;

k�k1 =
8

15
;

k�k2 =

r
1408

3825
:

Before proving the Theorem we wish to prove a preliminary statement.

Lemma 4 Let y 2 C4, n; k 2 N and � = 2ki+� ; i = 0; : : : ; n� 1; � = 0; 1; : : : ; 2k.
Then uniformly on �

y�;k = y(x�;k)� h4�
�

j

2k�1

�
y(4)(x�;k) +O(h

5) � = 0; 1; : : : ; 2kn; (20)

where

 =
3

128
and j = �� 2k�1:

Proof. By induction on k.
Let us consider the Taylor expansion for the function y(x) around the point xi+ 1

2

,

we have

yi+1;0 + yi;0
2

= y(xi+ 1

2

) +
1

2

�
h

2

�2

y00(xi+ 1

2

) +
1

4!

�
h

2

�4

y(4)(xi+ 1

2

) +O(h5):

Then, substituting in (1), we have

ŷi+ 1

2
;0 = y(xi+ 1

2

) +
1

2

�
h

2

�2

y00(xi+ 1

2

) +
1

4!

�
h

2

�4

y(4)(xi+ 1

2

) +O(h5)�
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�
1

8
�2

 
y(xi+ 1

2

) +
1

2

�
h

2

�2

y00(xi+ 1

2

) +
1

4!

�
h

2

�4

y(4)(xi+ 1

2

) +O(h5)

!
=

= y(xi+ 1

2

)�
3

128
h4y(4)(xi+ 1

2

) +O(h5) (21)

Thus, if the values yi;0 and yi+1;0 are known, the values ŷi+ 1

2

are determined through

the values of the function y(xi+ 1

2

) as follows

y2i+1;1 = y(xi+ 1

2

)� h4�(0)y(4)(xi+ 1

2

) +O(h5): (22)

Continuing this process

ŷ2i+ 1

2
;1 =

y2i+1;1 + y2i;1
2

�
1

8
�2
�
y2i+1;1 + y2i;1

2

�

Noticing that y2i;1 = yi;0, we obtain

ŷ2i+ 1

2
;1 =

y(xi+ 1

2

)� h4�(0)y(4)(xi+ 1

2

) + yi;0

2
�

�
1

8
�2

 
y(xi+ 1

2

) + yi;0

2

!
+O(h5) =

=
y(xi+ 1

2

) + yi;0

2
�



2
h4�(0)y(4)(xi+ 1

2

)�

�
1

8
�2

 
yi+ 1

2
;0 + yi;0

2

!
+O(h5) =

=
y(xi+ 1

2

) + yi

2
�

1

8
�2

 
yi+ 1

2
;0 + yi;0

2

!
�



2
h4�(0)y(4)(xi+ 1

2

) +O(h5):

Since y(xi+ 1

2

) comes from xi but using h=2 instead of h, then

ŷ2i+ 1

2
;1 = yi+ 1

4
;0 �

3

128

�
h

2

�4

y
(4)

i+ 1

4

�


2
h4�(0)y

(4)

i+ 1

4

+O(h5) =

= yi+ 1

4
;0 � h4

 �
1

2

�4

+
1

2
�(0)

!
y
(4)

i+ 1

4

+O(h5):

Noticing, that

�
�
1

2

�
=
�
1

2

�4

+
1

2
(�(0) + �(1));

we have

ŷ2i+ 1

2
;1 = yi+ 1

4
;0 � h4�

�
1

2

�
y
(4)

i+ 1

4

+O(h5):
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To conclude we shall make one more step. The error at the point (i+ 3
8)h is

ŷi+ 3

8

=
ŷi+ 1

4

+ ŷi+ 1

2

2
�

1

8
�2

 
ŷi+ 1

4

+ ŷi+ 1

2

2

!
:

Therefore, we get

ŷi+ 3

8

=
y(xi+ 1

2

)� h4�(0)y(4)(xi+ 1

2

) + yi+ 1

4

� h4�
�
1
2

�
y
(4)

i+ 1

4

2
�

�
1

8
�2

 
y(xi+ 1

2

) + yi+ 1

4

2

!
+O(h5) =

=
yi+ 1

2
;0 + yi+ 1

4
;0

2
�

1

8
�2

 
yi+ 1

2
;0 + yi+ 1

4
;0

2

!
�

�h4


2

�
�
�
1

2

�
y
(4)

i+ 1

4

+ �(0)y(4)(xi+ 1

2

)
�
+O(h5):

Since the values yi+ 1

2
;0 and yi;0 are points of the function, then as follows from

(21) (using h
4 instead of h)

ŷi+ 3

8

= yi+ 3

8

�
3

128

�
h

4

�4

y
(4)

i+ 3

8

� h4
1

2

�
�
�
1

2

�
y
(4)

i+ 1

4

+ �(0)y(4)(xi+ 1

2

)
�
+O(h5) =

= yi+ 3

8

� h4
 �

1

4

�4

+
1

2

�
�
�
1

2

�
+ �(0)

�
y
(4)

i+ 3

8

!
+O(h5) =

= yi+ 3

8

� h4�
�
1

4

�
y
(4)

i+ 3

8

+O(h5):

Hence

y�;k�1 = y(x�;k�1)� �
�

j

2k�2

�
y(4)(x�;k�1) +O(h

5):

Then from (4) we have

y2�+1;k =
y�+1;k�1 + y�;k�1

2
�

1

8
�2
�
y�+1;k�1 + y�;k�1

2

�
=

=
1

2

�
y(x�+1;k�1)� �

�
j + 1

2k�2

�
y(4)(x�+1;k�1) + y(x�;k�1)� �

�
j

2k�2

�
y(4)(x�;k�1)

�
�

�
1

8
�2
�
y�+1;k�1 + y�;k�1

2

�
+O(h5) =

1

2
(y(x�;k�1) + y(x�+1;k�1))�

�


2

�
�
�

j

2k�2

�
y(4)(x2�+1;k) + �

�
j + 1

2k�2

�
y(4)(x2�+1;k)

�
�
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�
1

8
�2
�
y(x�;k�1) + y(x�+1;k�1)

2

�
+O(h5):

As follows from (1) and (21),

1

2
(y(x�;k�1) + y(x�+1;k�1))�

1

8
�2
�
y(x�;k�1) + y(x�+1;k�1)

2

�
=

= y(x2�+1;k)�
3

128

�
h

2k

�4

y(4)(x2�+1;k) +O(h
5):

Thus we have

y2�+1;k = y(x2�+1;k)� h4
�
1

2

�4k

y(4)(x2�+1;k)�

�


2
h4
�
�
�

j

2k�2

�
+ �

�
j + 1

2k�2

��
y(4)(x2�+1;k) +O(h

5) =

= y(x2�+1;k)� h4�
�
2j + 1

2k�1

�
y(4)(x2�+1;k) +O(h

5):

From here and from (7) we obtain (20).

The proof of the Theorem 1 is now an application of the the Lemma 3 and 4.

5 Example

We conclude our investigations with a simple but instructive example. Let us con-
sider the function

y(x) =
10

1 + 100x2
x 2 [�1; 1] ;

which is a good test function since it has a rapidly varying gradient.
Starting from an initial set of data, we �rstly built the interpolant using our in-

terpolation scheme. A picture of the results obtained just after 2 steps are displayed
in Fig. 1.

Then we made a comparison of our scheme with the well-known Shepard's
method for data-�tting, as described in [4]. The method is simply an interpolating
moving least-squares method, with weight functions

wi(x) =
1

(x� xi)s
; s > 0

where the xi are the interpolation points.
From Figures 2-4 it is clear that our method is much more precise than the

Shepard's one. For instance, the Shepard's method fails to �t the data when s = 1.
When s = 2 the at-spot phenomenon starts and this becomes more evident for
s > 2. A �rst remark is that while our method produces a cubic piecewise interpolant

12



which well �t the data just after a few steps, the Shepard's method does not (as
discussed in [4]).

In order to analyse the error we need some settings. Letting "k(y;x) = y(x) �
~yk(x) and

"k;h;p(y) =

����k"k(y)kp � 3

128
h4k�kpky

(4)kp

���� :
Then, using the sup-norm and after k = 10 iterated we have:"10

�
10

1 + 100(�)2

�
1

� 1:7326 � 10�2 :

We observe that this is nothing else that the error due to the approximation of a
piecewise linear interpolation

k"k(y) jp =
1

8

�
h

2k

�2

jy(2)kp +O
�
h

2k

�3

:

Thus at the values k such that

k"k(y)kp =
1

8

�
h

2k

�2

ky(2)kp +O
�
h

2k

�3

:

for which �
h

2k

�2

� h4;

hence
k � log2 h

which implies that suitable values for k are so that k � 8.
Finally

"10; 1
5
;1

�
10

1 + 100(�)2

�
� 5:87 � 10�3:

Remarks.

1. The constant can essentially be reduced. This example is a test example of
approximation of bad function with a quickly varying gradient.

2. Constant it is possible and it is necessary to reduce but this step will require
more investigations.

Acknowledgements. The authors are very grateful to the unknown referees for
their useful and appropriate remarks that allowed to substantially improve the the
results presented in the paper.
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Figure 1: The function y(x) = 1=(1+100x2) on [-1,1] (solid line) and the interpolant
after k = 2 steps (dashed line) as obtained with our scheme. Above by using
Newton's interpolation to compute the �rst and last new inserted point, while below
by using cubic splines interpolation.
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Figure 2: The function y(x) = 1=(1 + 100x2) on [-1,1] , our interpolant and the
Shepard's one
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Figure 3: The function y(x) = 1=(1 + 100x2) on [-1,1] , our interpolant and the
Shepard's one
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Figure 4: The function y(x) = 1=(1 + 100x2) on [-1,1] , our interpolant and the
Shepard's one
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Figure 5: The function �(x) on 213 + 1 points
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Figure 6: The function y(x) = 10
1+100 x2 and its approximant y10 (above) and a zoom

(below).
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