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ABSTRACT
The frequently changing user preferences and/or item pro-
files have put essential importance on the dynamic modeling
of users and items in personalized recommender systems.

However, due to the insufficiency of per user/item records
when splitting the already sparse data across time dimen-
sion, previous methods have to restrict the drifting purchas-
ing patterns to pre-assumed distributions, and were hardly
able to model them rather directly with, for example, time
series analysis. Integrating content information helps to al-
leviate the problem in practical systems, but the domain-
dependent content knowledge is expensive to obtain due to
the large amount of manual efforts.

In this paper, we make use of the large volume of textual
reviews for the automatic extraction of domain knowledge,
namely, the explicit features/aspects in a specific product
domain. We thus degrade the product-level modeling of
user preferences, which suffers from the lack of data, to the
feature-level modeling, which not only grants us the ability
to predict user preferences through direct time series analy-
sis, but also allows us to know the essence under the surface
of product-level changes in purchasing patterns. Besides,
the expanded feature space also helps to make cold-start
recommendations for users with few purchasing records.

Technically, we develop the Fourier-assisted Auto-Regressive
Integrated Moving Average (FARIMA) process to tackle with
the year-long seasonal period of purchasing data to achieve
daily-aware preference predictions, and we leverage the con-
ditional opportunity models for daily-aware personalized rec-
ommendation. Extensive experimental results on real-world
cosmetic purchasing data from a major e-commerce website
(JD.com) in China verified both the effectiveness and effi-
ciency of our approach.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Information
Filtering; G.3 [Mathematics of Computing]: Probability
and Statistic - Time Series Analysis
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1. INTRODUCTION
The vast amount of online products in various e-commerce

websites make it an essential task to develop reliable Person-
alized Recommender Systems (PRS) [24]. One of the most
extensively investigated approaches for personalized recom-
mendation is to model user preferences according to his/her
historical choices, as well as those of the others’, leading to
the success of Collaborative Filtering (CF) techniques [27].

However, both user preferences and item profiles may change
dynamically over time [16, 34, 11], thus treating the histor-
ical decisions of a user or the received comments of an item
as static, fixed, or long-term influential information sources
can be infeasible in real-world applications. In the prod-
uct domain of cosmetics for temperate area users, for exam-
ple, one may buy a sun cream product in summer when the
UV radiation is strong, while purchase nourishing creams in
winter when it is cold and dry, as exposited in Fig.1. If the
system simply treats the user’s historical purchasing records
as a whole without dynamic modeling of his/her preference,
then the user may receive sun cream recommendations fre-
quently in the cold winter, and vise versa. Similarly, an item
can receive new reviews from users continuously in practical
systems, which makes its profile drift dynamically over time,
as a result, it would be unwise for the system to recommend
items that no longer fit the user needs any more.

The dynamic nature of users and items requires the abil-
ity of time-dependent modeling in recommender systems.
Researchers have been putting efforts to capture this nature
and integrate time factors into the recommendation process,
giving rise to the research of time-aware recommendation [5],
which is also generally categorized into the research topic of
Context-Aware Recommender Systems (CARS) [1].

The most early approaches for time-aware recommenda-
tion mainly focus on the dynamic modeling of user and item
profiles [6, 2, 9]. However, recommendation based merely
on content profiles may lack the ability to take advantage of
the wisdom of crowds, which is proved effective in many CF
approaches. This leads to two concurrent research lines. Ko-
ren [16] and Xiang [34] adopted the approaches of dynamic
modeling through time bins on explicit feedbacks, and ses-
sions on implicit feedbacks, respectively, which were further
combined by Dror [11] into Yahoo! Music recommendation
and achieved superior results in KddCup-2011; At the same
time, Lu [19] and Shi [25], as well as Karatzoglou [15] and
Gantner [13] adopted matrix/tensor factorization to model
time as context information. Recently, Wang [32, 31] inves-
tigated users’ subsequent purchasing behavior with oppor-
tunity models for recommendation.
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However, both the profile-based and the dynamic model-
ing approaches attempt to model user preferences in the pro-
duce space according to user purchasing and rating histories,
which suffer from the problem of data sparsity due to the
fact that a single user may be only related to a small number
of products, compared with the vast amount of products in
a system [32]. As a result, many of the current approaches
have to assume pre-defined distributions over time and con-
duct parameter estimation thereon for purchasing predic-
tion. It is shown that considering content information, such
as popularity, product names and categories, helps to allevi-
ate the problem [9], but such information is either difficult
to obtain and structure, or expensive for manual generation.

Fortunately, the increasing availability of textual user re-
views and the ever developing text summarization and sen-
timent analysis techniques have made it possible to take
advantage of this important information source besides nu-
merical ratings [38]. In this work, we extract and summarize
the domain knowledge (i.e., domain-specific product features
like anti-UV or nutrition for cosmetics) automatically from
the textual user reviews, and conduct feature-level dynamic
modeling to capture the drifting user preferences and item
profiles, thus to avoid the lack of data in previous product-
level modeling approaches. This allows us to conduct direct
time series analysis to predict the importance of each feature
and to provide pre-time favoured recommendations. More
importantly, by analyzing the seasonal, cyclic and trend fac-
tors of different features, we are able to understand in detail
how users’ preferences change over time.

In order for rapid track of the fashion and provide timely
recommendation, we choose to model and predict the time
series in daily resolution. This leads to nearly year-long pe-
riod (up to 365) time series, making them difficult to model
with standard Auto-Regressive Integrated Moving Average
(ARIMA) process due to expensive computational costs. As
a result, we develop the Fourier-assisted ARIMA (FARIMA)
process that leverages Fourier terms to model the seasonal
patterns and short-term ARIMA process to model the error.
Based on the product features that have been predicted of
different importances, we further adapt the conditional op-
portunity model for daily-aware recommendation. We con-
duct extensive experiments to exposit both the intuition of
how user preferences drift over time in e-commerce, and the
superior performance of our proposed method.

The following of the paper is organized as follows: we re-
view the related work in Section 2, and provide the prelim-
inary studies of time series for e-commerce in Section 3; we
propose our model for daily-aware time series prediction and
personalized recommendation in Section 4 and Section 5, re-
spectively; in Section 6, we present the experimental results
from different aspects on real-world purchasing dataset; and
we conclude the work in Section 7.

2. RELATED WORK
With the ability to help discover items of potential inter-

ests, Personalized Recommender Systems (PRS) [24] have
been widely integrated into many online applications, such
as e-commerce, social networks, and online review services.
Early systems for personalized recommendation rely on content-
based approaches [21], which make recommendations by an-
alyzing the item features or user demographics. Recently,
the Collaborative Filtering (CF) [27] based approaches have
gained great popularity due to their free from human efforts,

Spring	  	  	  	  Summer	  	  Autumn	  	  	  	  Winter	  	  	  	  	  	  Spring	  	  	  	  Summer	  	  Autumn	  	  Winter	  
1	  	  	  2	  	  3	  	  	  4	  	  	  5	  	  	  6	  	  7	  	  	  8	  	  	  9	  	  10	  11	  12	   1	  	  	  2	  	  3	  	  	  4	  	  	  5	  	  	  6	  	  7	  	  	  8	  	  	  9	  	  10	  1112	  N

ut
ri9

ou
s	  	  
	  	  	  
	  A
n9

-‐U
V	  

Figure 1: The frequency of two product features
(Anti-UV and Nutritious) in user reviews over two
consecutive years. The data is from JD.com, a ma-
jor e-commerce website in China. One can see that
Anti-UV seasonally prospers in summer, while Nu-
tritious seasonally prospers in winter.

superior performance, and the ability to take advantage of
the wisdom of crowds.

In real-world systems, however, it is usually observed that
both user preferences and item profiles may dynamically
drift over time [5], thus a static modeling of users/items
that treats the historical purchases or reviews as fixed and
long-term effective may be inappropriate to track users’ in-
terests. For example, a user may be less likely to buy an
anti-UV suncream in winter, although she may well have
bought one in summer; and a user who has purchased an
SLR camera may not buy another one in a reasonably long
period. As a result, the ability of time-aware modeling is of
essential importance to practical systems [5].

In the early stage of the research on time-aware recom-
mendation, researchers attempted to construct dynamic user
or item profiles. Chen et al. [6] constructed a system that
discovers, stores and updates private dynamic user profiles
for personalized content recommendation; Baltrunas and
Amatriain [2] proposed micro-profiling, which splits a user
profile into several sub-profiles of different contexts; Chu and
Park [9] combined both user and item profiles in a dynamic
bilinear model for time-aware recommendation. A review of
various user/item profiling techniques is provided in [14].

However, the profiling approaches usually require the pres-
ence of specific domain knowledge, which is usually expen-
sive to obtain. Besides, it is difficult for them to leverage
the wisdom of crowds. This drives researchers to investigate
the CF approaches for time-aware recommendation.

Oku [20] and Yuan [37] integrated time factors into the
similarity calculation of neighbour-hood based methods for
time-aware CF; Koren [16] proposed timeSVD++ for dy-
namic CF with factor models by tracking the drifting user/item
biases across different time bins; Xiang et al. [34] further ex-
tended the dynamic modeling to implicit feedback through
random walk on sessions-based temporal graphs; Lu [19] and
Shi [25] adapted the famous Matrix Factorization (MF) [28]
approaches for time-aware CF, while Karatzoglou [15] and
Gantner [13] leveraged tensor factorization to integrate the
many contextual features. The topic modeling approaches
are also investigated by Chen [7] and Vaca [30], while re-
cently, Wang et al. [32, 31] borrowed the opportunity models
from survival analysis to predict users’ subsequent purchases
for time-aware recommendation.

However, current approaches model the time-dependent
user preferences in the product space directly, which suffers
from the problem of data sparsity because a single user is
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usually related to only a small number of products compared
with the huge product space in a system. Incorporating
content information like product categories helps to build
more accurate models [1, 9, 32], but such information is
either absent in practical applications or difficult to generate
and structure manually.

Fortunately, the ever developing phrase-level sentiment
analysis techniques [18, 10, 36, 29] have made it possible
to extract, summarize and structure the rich product fea-
tures and user preferences automatically from free-text re-
views, and have begun to be leveraged for personalized rec-
ommendation tasks [38, 33]. This also sheds light on the
feature-level dynamic modeling for recommendation. Com-
pared with product-level modeling, feature-level modeling
is finer-grained because a user who made only a single re-
view may well have commented on several product features.
Besides, by investigating into the detailed features, we can
obtain an intuitional understanding of how and why the user
purchasing behaviors drift over time.

We adopt Time Series Analysis (TSA) [3, 26] for daily pre-
diction of the trend of product features. Time series analysis
has long been used in many scientific data analysis tasks,
such as econometrics, bioinformatics, physics, and astron-
omy [26]. Recently, it has also begun to be applied to data
mining tasks, such as epidemic prediction [35], and economic
indicators prediction in Google Trends [8]. However, to the
best of our knowledge, it has not been investigated in person-
alized recommendation tasks, perhaps because of the lack of
per-user purchasing data as mentioned above. Nevertheless,
as we will exposit in the following, the information-rich tex-
tual reviews have made such analysis practical in real-world
systems, which helps not only in time-aware recommenda-
tion, but also a better understanding of user behaviors.

3. TIME SERIES IN E-COMMERCE
Before introducing the models for daily-aware recommen-

dation, we execute an initial study of the time series in e-
commerce to exposit the intuition. The data is from JD.com,
a major e-commerce website in China, and the data consists
of 5,524,491 reviews from 1,844,569 users towards 53,188
products since Jan. 1st, 2011 to Mar. 31st, 2014. We in-
troduce the automatic extraction of product features from
free-text reviews fist, and then focus on the trend, seasonal,
cyclic and random effects of feature-level time series.

3.1 Product Feature Extraction
We extract a set of product features F = {f1, f2, · · · , fr}

based on a review corpus from a product domain, e.g., cos-
metic products. We leverage the state-of-the-art phrase-
level sentiment analysis techniques described in [18, 39, 22].
Generally, we adopt the Stanford Parser1 to conduct part-
of-speech tagging, morphological analysis and grammatical
analysis on each of the reviews to construct the correspond-
ing dependency tree, and then retain those Noun Phrases
(NP) whose frequency are above a specific threshold as fea-
ture candidates. The candidates are further pruned by Point-
wise Mutual Information (PMI) [22] to form the final fea-
ture set of this domain. In cosmetics for example, the ex-
tracted features include anti-UV, nutritious, price, feeling,
etc. These features serve as the feature space in the follow-

1http://nlp.stanford.edu/software/lex-parser.shtml
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Figure 2: Three daily time series of the feature ‘Nu-
tritious’: (a) The total number of reviews per day
N(t); (b) The number of reviews where ‘Nutritious’
is commented on per day Nf (t); (c) The percentage
of reviews Xf (t) = Nf (t)/N(t) per day where ‘Nutri-
tious’ is commented on.

ing part of time series analysis, prediction, and personalized
recommendation.

The process of feature word extraction is fully automatic
and requires no human efforts. Since the process is not the
focus of this work, we refer the readers to the related litera-
ture [18, 39, 22] for more details. The quality evaluation of
the extracted features will be reported in the experiments.

3.2 Feature-level Time Series
In this section, we investigate three candidate daily time

series for each feature f to determine the appropriate one
for dynamic user preference modeling and time-aware recom-
mendation, as exampled in Fig.2 for the feature nutritious.

We first plot the total number of reviews per day N(t) in
Fig.2(a). This time series is an indicator of the total pur-
chasing volume in the system, which is independent from a
specific user, product or feature. After careful examination,
we find that the peaks in N(t) correspond to the online sales
promotional campaigns carried out by the website. For ex-
ample, on Oct. 1st in the year of 2012 and 2013, the website
conducted sales promotion to celebrate the National Day.

As we aim to investigate the different time series patterns
of different features, we further plot the number of reviews
Nf (t) per day where the target feature f is commented on,
as shown in Fig.2(b). We expect to discover regular seasonal
or cyclic patterns from the series, because the features tend
to gain different degrees of attention over time. Unfortu-
nately, this set of time series do not exhibit clear seasonal or
cyclic patterns. Generally, they exhibit similar trends with
the total number of reviews N(t). The reason could be the
magnitude-level difference between the total number of re-
views and the number of reviews relevant to a feature, which
diminishes the fluctuation of per-feature series.

This observation further inspires us to investigate the per-
centage of reviews relevant to each feature, which we denote
as percentage time series Xf (t) = Nf (t)/N(t), shown in
Fig.2(c). As expected, the percentage time series exhibit
explicit seasonal and cyclic patterns over three consecutive
years on the feature nutritious.
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3.3 Validating Percentage Time Series
To validate the seasonal effect of all product features on

average rather than nutritious alone, we conduct time se-
ries decomposition on the percentage time series Xf (t) for
each of the r features f ∈ F = {f1, f2, · · · , fr}. Without
loss of generality, we use X(t) to denote the time series of
an arbitrary feature. In line with the literature [3, 26], we
decompose a time series X(t) into three components in an
additive manner, which are trend-cycle T (t), seasonal com-
ponent S(t), and random effect R(t):

X(t) = T (t) + S(t) +R(t) (1)

The trend-cyclic component T (t) captures long-term in-
crease or decrease in the data, as well as the rises and falls
that are not of fixed period, and it is reconstructed with the
Moving Average (MA) [3] process:

T (t) =
1

2s+ 1

s∑
j=−s

X(t+ j) (2)

The seasonal component S(t) captures the fixed period
influence of seasonal factors like quarter, month, or day of a
week, and it is estimated by averaging the difference values
X(t) − T (t) = S(t) + R(t) for a year over the (three) years
provided in the data set. This is because the seasonal varia-
tion is by definition constant from one year to the next, and
the white noise residual R(t) can be averaged out.

Finally, the random effect R(t) = X(t) − T (t) − S(t) is
constructed by substracting trend-cyclic and seasonal effects
from the time series.

Fig.3 shows the decomposition for the percentage time se-
ries of nutritious, where the scale used for moving average
is half a year (s = 182 in Eq.(2)). The trend-cyclic compo-
nent indicates that the overall attention towards the feature
nutritious decreases first and then rises, while the seasonal
component presents a clear and regular seasonal fluctuation
over years. The amplitudes of the seasonal signal over years
turn approximately equal when the trend basis is removed.

The seasonal component S(t) comprises the major part of
energy in the time series, and this is of key importance in
the following part of time series estimation and prediction.
As a result, we fit the seasonal component of each feature
f by a simple one-order Fourier series with a fixed period
m = 365 to investigate the seasonality of the features:

S(t) ≈ Ŝ(t) = a+A sin

(
2πt

m
+ ϕ

)
(3)

We estimate the parameters by minimizing the Akaike
Information Criterion corrected (AICc) [4], which is a cor-
rected version of AIC for finite size samples, and has long
been used as a measure of the relative quality of a statistical
model for a given set of data in time series analysis:

AICc = 2k + n ln
( 1

n

n∑
t=1

(
S(t)− Ŝ(t)

)2)
︸ ︷︷ ︸

AIC

+
2k(k + 1)

n− k − 1
(4)

where k is the number of parameters, and n is the total
number of data instances. Here we set k = 3 because we use
a simple one-order Fourier series with three parameters.

For the seasonal series Sf (t) of each feature f , we calculate
the percentage of energy that a simple one-order Fourier can
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Figure 3: Decomposition of the percentage time se-
ries. From top to bottom are the original observed
series, trend-cyclic component, seasonal component,
and the random effect, respectively.

capture from the total amount of energy therein, which is:

pf =

n∑
t=1

|Ŝf (t)|2
/ n∑
t=1

|Sf (t)|2 (5)

According to Parseval’s theorem, a full-order Fourier trans-
formation from time domain to frequency domain will pre-
serve the energy, namely, pf = 1, while pf < 1 for an under-
ordered Fourier due to the loss of information. In this study,
we retain r = 58 features primarily by selecting the feature
set with the highest F1-score, which will be exposited with
more detail in the experiments. The distribution of pf for
the 58 features in F is shown in Table 1.

Table 1: Statistical distribution of pf of the features.
pf 0.7 ∼ 0.8 0.8 ∼ 0.9 0.9 ∼ 1.0
#Features 7 35 16
Percent(%) 12.1 60.3 27.6

We find that a simple one-order fixed-period Fourier is
able to preserve more than 70% of the energy, and 87.9% of
the features even got 80% or more energy preserved. The
minimum and maximum pf among the features are 0.753
and 0.966, respectively, and the average is 0.874.

The decomposation analysis above indicates that the per-
centage time series is capable of capturing the trend, cyclic,
seasonal and random effects of a feature over time, and the
decomposed seasonal component can be easily modeled with
Fourier terms, which serves as an important basis for model
estimation and prediction in the following. We thus adopt
the percentage time series of each feature f primarily to in-
vestigate the feature-level dynamic preference of the users.

4. DAILY-AWARE TIME SERIES ANALYSIS
In this section, we present our model for daily-aware time

series prediction. The Auto-Regressive Integrated Moving
Average (ARIMA) process is widely adopted for monthly
or yearly time series analysis, however, the year-long period
(around 365) of daily time series makes the ARIMA models
infeasible in practice due to the huge computational cost.
To address the problem, we adopt Fourier series to capture
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the seasonal effect in daily time series, and further lever-
age ARIMA process to model the residuals, which gives the
Fourier-assisted ARIMA (FARIMA) model.

In the following, we briefly introduce the primary time
series analysis (ARIMA) model first, and then integrate
Fourier series into ARIMA to derive our FARIMA model.

4.1 Primary Time Series Analysis
The ARMA(p, q) process models a time series X(t) with

p Auto-Regressive (AR) terms and q Moving Average (MA)
terms, which is given by:

X(t) = α1X(t− 1) + · · ·+ αpX(t− p)
+ Z(t) + β1Z(t− 1) + · · ·+ βqZ(t− q)

(6)

where Z(t)
iid∼ Φ(0, σ2) is independently identically sampled

from a normal distribution with zero mean.
A simple example would be X(t) ∼ ARMA(1, 0), which is

X(t) = α1X(t − 1) + Z(t) that models the next data point
as the previous one plus a white noise.

The successful application of ARMA(p, q) process requires
the time series X(t) be stationary, namely, for any positive
integer k ≥ 1 and any integer τ , the two discrete processes:

{X(t1), X(t2), · · · , X(tk)}, and

{X(t1 + τ), X(t2 + τ), · · · , X(tk + τ)}
(7)

have the same point distribution:

Ft1,t2,··· ,tk (X1, X2, · · · , Xk) = P (X(t1) < X1, · · · , X(tk) < Xk)
(8)

Unfortunately, many time series in practice do not hold
the stationary property, however, the d-order difference time
series W (t)

.
= ∇dX(t) may be stationary, where 1-order dif-

ference series is ∇X(t) = X(t)−X(t− 1), and higher-order
differences are iteratively defined as∇dX(t) = ∇(∇d−1X(t)).

When W (t)
.
= ∇dX(t) is modeled by an ARMA(p, q) pro-

cess in Eq.(6), we denoteX(t) as modeled by an ARIMA(p, d, q)
process.

4.2 Fourier-assisted ARIMA Model
The prediction of a future data instance in ARIMA(p, d, q)

process requires to borrow information from those instances
of at least a period ago to model the seasonal and cyclic
effect in data fluctuation, which means that the number of
parameters (especially the value of p) should be at least
comparable to the period of the time series.

This is fine when processing monthly, quarterly, or yearly
series because the periods (and thus the number of parame-
ters) are small, which are usually 12 for monthly data and 4
for quarterly data. However, the approximate period of 365
of daily series makes it impractical for model estimation in
ARIMA. Fortunately, the results on energy analysis in the
previous section make it possible for us to leverage Fourier
series to enhance ARIMA models on daily time series.

To do so, we use Fourier terms to model the seasonal
pattern while using short-term ARIMA time series for the
dynamic error, which is given by:

X(t) ≈ a+

K∑
k=1

[
αk sin

(
2πkt

m

)
+ βk cos

(
2πkt

m

)]
︸ ︷︷ ︸

F (t)

+ ARIMA(p, d, q)(t)︸ ︷︷ ︸
E(t)

.
= X̂(t) = F (t) + E(t)

(9)
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Figure 4: Fourier-assisted ARIMA estimation of a
time series. (a) The original series X(t); (b) The

estimated series X̂(t) = F (t) + E(t); (c) The Fourier
component F (t); (d) The ARIMA component E(t).

where m = 365 is the period, F (t) is a K-order Fourier, and
E(t) is an ARIMA process that models the error of a Fourier
approximation. The intuition here is that the annual sea-
sonal shape is unchanged from year to year, so that Fourier
terms can be used to model the annual seasonality, while the
period of the residual series is reduced from m = 365 so that
it can be modeled with a low-order ARIMA. This is shown
in Fig.4, where the Fourier component F (t) and ARIMA

component E(t) add up to the estimated series X̂(t).
The order of Fourier component K and ARIMA compo-

nent (p, d, q) can be determined by minimizing the AICc, as
shown by the procedure in Algorithm 1. The subroutines
Fourier and Arima fit the given time series with the spec-
ified orders by minimizing the AICc, and return the fitted
series together with the corresponding AICc value achieved.
In this work, we choose the Fourier and Arima routines
from the R language2 in practical implementation.

5. DAILY-AWARE RECOMMENDATION
In this section, we leverage the predicted global prefer-

ence (i.e., percentage time series) and the personal user/item
preferences for daily-aware personalized recommendation.
Table 2 lists the notations adopted for easy reference.

5.1 Feature Space Representation
The predicted percentage time series X̂f (t) for each fea-

ture f is an indicator of the potential degree that users care
about feature f at the given time t, which serve as the global
preference of the users. There are many approaches in prac-
tice to describe the global preference of users towards the
features based on the results of time series prediction. In
this work, however, we adopt the approach of integrating
X̂f (t) into a vector of covariates directly to keep the simplic-
ity, and also to fit with the conditional opportunity model in
the following subsection. More precisely, we construct the
global covariate vector :

xg(t) = [xg1(t), xg2(t), · · · , xgr(t)]T (10)

2http://www.r-project.org/
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where the kth(1 ≤ k ≤ r) element xgk(t) = 1

1+exp(−X̂fk (t))
is

the sigmoid normalization of X̂fk (t) for feature fk ∈ F .
Besides, different users may concern about different fea-

tures, and to profile a user u in the feature space, we consider
all the historical reviews of the user. Suppose the kth feature
fk is mentioned for wuk (t) times by user u, then we profile
this user as a user covariate vector :

xu(t) = [xu1 (t), xu2 (t), · · · , xur (t)]T (11)

where xuk(t) = 1
1+exp(−wu

k
(t))

is the normalization of wuk (t).

Similarly, we profile an item as an item covariate vector
according to its corresponding reviews:

xi(t) = [xi1(t), xi2(t), · · · , xir(t)]T (12)

where xik(t) = 1
1+exp(−wi

k
(t))

, and item i is commented for

wik(t) times on feature fk.
Finally, we construct the covariate vector x(t) for user-

item pair (u, i) by integrating the global preference xg(t),
personal user preference xu(t), and item profile xi(t):

x(t) =
[
xg(t)T,xu(t)T,xi(t)T

]T
(13)

In practical applications, our framework is flexible to in-
tegrate other available information into the covariate vector
for model learning and prediction. Such information could
be both user related (e.g. demographics), item related (e.g.
content information), or even global factors.

5.2 Conditional Opportunity Model
To leverage the covariate vectors for prediction and rec-

ommendation in continuous rating scale, we adapt the con-
ditional opportunity model used for follow-up purchase pre-
diction in [32]. The probability density function of numerical
rating y is modeled with a standard Weibull distribution:

p(y) = γλyγ−1 exp(−λyγ) (14)

Given the covariate vector x(t), we re-parameterize the
scale parameter λ = exp(θTx(t)) based on the regression
parameter θ and the covariates x(t) in the following oppor-
tunity model:

p(y) = γ exp
(
θTx(t)

)
yγ−1 exp

(
− exp

(
θTx(t)

)
yγ
)

(15)

For each user u, we sample the regression parameter θu
from a Gaussian distribution θu ∼ Φ(µ,Σ), and sample

Table 2: A summary of the notations used.
F F = {f1, f2, · · · , fr} is the product feature set

X̂f (t) The value of the predicted percentage time series
for feature f at time t

x(t) The integrated covariate vector that contains the
global, user, and item covariates

λ, γ Scale/shape parameter of Weibull distribution
θ The regression parameter for covariate vectors
µ,Σ Gaussian distribution parameters for sampling θ
a, b Gamma distribution parameters for sampling γ
ξu ξu = {θu, γu} is the hidden variables for a user u
D D = {(y|u, i, t)}nk=1 is a set of n data instances,

where (y|u, i, t) is a data instance
yu yu = {yu,1, yu,2, · · · , yu,Nu} is the set of ratings

in D rated by user u
ŷui(t) The predicted rating of user u to item i at time t

Algorithm 1: Farima(X(t),m, K̄, p̄, d̄, q̄)

Input: Time series X(t), Period m = 365,
Maximum possible order of Fourier: K̄,
Maximum possible order of ARIMA: p̄, d̄, q̄

Output: Fitted time series X̂(t)

1 minAICc←∞; F̂ (t);

2 for K ← 1 to K̄ do
3 {F (t), AICc} ← Fourier(X(t),m,K);
4 if AICc < minAICc then

5 F̂ (t)← F (t);
6 minAICc← AICc;

7 end

8 end

9 minAICc←∞; Ê(t);

10 for (p, d, q) in [0, p̄]× [0, d̄]× [0, q̄] do

11 {E(t), AICc} ←Arima(X(t)− F̂ (t), p, d, q);
12 if AICc < minAICc then

13 Ê(t)← E(t);
14 minAICc← AICc;

15 end

16 end

17 return X̂(t)← F̂ (t) + Ê(t);

the shape parameter γu from a Gamma distribution γu ∼
Γ(a, b). We use D = {(y|u, i, t)}nk=1 to denote a set of n user-
item rating instances for model learning, where an instance
(y|u, i, t) means that user u rated item i with the rating y at
time t. Based on this, we estimate the conditional probabil-
ity of a single instance (y|u, i, t) in the following conditional
opportunity model:

p(y|u, i, t) = p
(
y|θu, γu,x(t)

)
= γu exp

(
θT
ux(t)

)
yγu−1 exp

(
− exp

(
θT
ux(t)

)
yγu
) (16)

Let φ = (µ,Σ, a, b), and let ξu = {θu, γu} be the hidden
variables for user u; yu = {yu,1, yu,2, · · · , yu,Nu} be the rat-
ings rated by user u, then the likelihood of the observations
in D can be written as a function of φ:

p(D|φ) =

|U|∏
u=1

p(yu|φ) =

|U|∏
u=1

∫
p(ξu, yu|φ)dξu (17)

where U is the set of users in the system.
Maximizing the likelihood p(D|φ) is equivalent to maxi-

mizing the log-likelihood function L(φ) = ln p(D|φ). In this
work, we adopt the same EM approach for model learning as
in [32], which the reader may refer to for detailed derivation
of the EM updating rules.

5.3 Rating Prediction and Recommendation
With the predicted covariate vector x(t) given by the

FARIMA model, as well as the estimated regression param-
eters θu and shape parameter γu for each user given by the
conditional opportunity model, we make daily-aware rating
prediction by selecting the y that maximizes the conditional
probability p

(
y|θu, γu,x(t)

)
in Eq.(16). The closed form so-

lution can be easily found with the derivative of the Weibull
distribution in Eq.(14):

p′(y) = γλyγ−2 exp(−λyγ)(γ − 1− λγyγ) (18)
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Table 3: Cumulative statistical information in each quarter, where the statistics for a quarter represent the
number of users, items and reviews in the system by the end of that quarter (included).
Year 2011 2012 2013 2014
Quarter Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1

#Users 72,403 164,256 280,918 500,619 701,975 925,649 1,070,542 1,239,967 1,355,395 1,417,551 1,575,223 1,710,040 1,844,569
#Items 3,559 5,474 7,961 11,235 14,265 20,444 28,746 37,380 42,184 46,877 49,710 52,117 93,243
#Reviews 119,517 305,974 571,602 1,108,673 1,667,607 2,409,277 3,015,849 3,656,338 4,100,668 4,253,294 4,656,628 4,963,927 5,524,491

By setting p′(y) = 0 and λ = exp(θT
ux(t)), the predicted

rating for user u towards item i at time t will be:

ŷui(t) =

(
γu − 1

γu exp(θT
ux(t))

) 1
γu

(19)

In practice, we construct the time-aware personalized rec-
ommendation list on daily resolution for user u by ranking
the unreviewed items in descending order of the predicted
ratings ŷui(t).

6. EXPERIMENTS
In this section, we conduct extensive experiments to eval-

uate the performance of product feature extraction, daily-
aware time series prediction, dynamic personalized recom-
mendation, and the performance of our framework in han-
dling with cold-start users.

6.1 Experimental Setup
We obtained the real-world reviews in the cosmetic do-

main of JD.com, the second largest e-commerce website in
China, from Jan. 1st, 2011 to Mar. 31st, 2014. The dataset
covers all the reviews of three consecutive years and a quar-
ter, which is sufficient for daily-aware time series modeling.
The statistical information of cumulative per-quarter data
is listed in Table 3, where the statistics of a specific quarter
represents the total number of users, items, or reviews in the
system until the end of that quarter.

To simulate the practical system operation over time, and
also to evaluate the effectiveness of our framework over a
whole year, we construct four time-dependent training-testing
datasets D1 ∼ D4 based on the last four quarters of data.
Specifically, each of the dataset takes the reviews in one of
the last four quarters (i.e. Q2 ∼ Q4 of 2013, and Q1 of 2014)
as testing set, and takes the reviews in the previous quarters
as training set, which is denoted in Table 4. In the following,
we evaluate and report the performance of both time series
prediction and personalized recommendation on each of the
four datasets, as well as the average performance of the four
quarters for the yearly performance.

In the following experiments, we set the maximum possi-
ble order of Fourier and ARIMA components as K̄ = 10 and
(p̄, d̄, q̄) = (10, 3, 10) in Algorithm 1, respectively, as we find
this is sufficient to achieve satisfactory performances. We
introduce the comparative algorithms and evaluation met-
rics for each experimental task separately in the following,

Table 4: Four time-dependent datasets constructed
for model training and testing.

Dataset Train Test
D1 2011 + 2012 +Q1, 2013 Q2, 2013
D2 2011 + 2012 +Q1, Q2, 2013 Q3, 2013
D3 2011 + 2012 +Q1, Q2, Q3, 2013 Q4, 2013
D4 2011 + 2012 + 2013 Q1, 2014

|	  	  	  |	  

|	  	  	  	  	  |	  

Figure 5: The dependency of variables for daily-
aware recommendation. The ith rating yu,i of user u
is dependent on the conditional opportunity model
ξu = {θu, γu} of user u and the integrated covariate
vector x(t). Models of different users share informa-
tion through the same prior φ = (µ,Σ, a, b).

because the evaluation of time series prediction and person-
alized recommendation require different settings.

6.2 Product Feature Extraction
We first extract product features in cosmetic domain based

on all the textual reviews in the whole dataset. Similar with
many other text mining tasks, the automatic extraction of
product features from free-text reviews is inherently difficult
and have to trade off between precision and recall.

In this work, we tune the parameters in the method intro-
duced in [22, 39] and record the precision and recall. In line
with the literature [18, 39], we construct the gold-standard
feature set by sampling 1, 000 reviews and presenting them
to 3 human annotators for manual feature extraction. The
gold-standard feature set is constructed by selecting the
common features of the three manually extracted sets, and
it is further used to evaluate the automatically extracted
features. The averaged pair-wise agreement between anno-
tators is 82.46%, and the evaluation results for several trials
of automatic feature set extraction are shown in Table 5.

Table 5: Evaluation of automatic feature extraction
when trading off between precision and recall.

Trial 1 2 3 4 5 6
#Features 32 44 58 66 79 95

Precision 0.9063 0.8864 0.8621 0.7879 0.6962 0.6316
Recall 0.3867 0.5200 0.6667 0.6933 0.7333 0.8000

F1-score 0.5421 0.6555 0.7519 0.7376 0.7143 0.7059

We select the result with the highest F1-score primarily
(Trial #3), which contains 58 features. In general, we tend
to keep a high precision while choosing an acceptable recall
to reduce the probability of introducing noise into time series
prediction and personalized recommendation. We adopt the
automatically constructed feature set without incorporating
any human annotation information in the following experi-
ments, thus to guarantee that no manual effort is included
in our framework.
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(d) D4 : K, p, d, q = 7, 3, 1, 2

Figure 6: Exampled time series prediction results on the four datasets D1 ∼ D4, where K is the final order of
the Fourier component, and (p, d, q) is the order of ARIMA component. The orders are automatically selected
by minimizing the AICc. The blue line is the predicted series for the testing set, and the dark grey and light
grey boundaries are 80% and 95% prediction intervals of the random effect, respectively.

6.3 Daily-Aware Time Series Prediction
To evaluate the performance of FARIMA model in time

series prediction, we conduct experiment on each of the four
datasets D1 ∼ D4. For each dataset, we adopt the training
set for model learning based on Algorithm 1, and predict the
time series of the following quarter in testing set. Figure 6
examples the time series prediction on the four datasets,
where the listed Fourier order K and ARIMA order (p, d, q)
are determined by minimizing the AICc automatically. We
can see intuitionally that our FARIMA model is not only
capable of capturing the future trends in rise and fall (e.g.,
in Figure 6(a) and 6(c)), but also able to predict the future
inflexions ahead of time (e.g., in Figure 6(b) and 6(d)).

For numeral evaluation of the prediction accuracy, we
adopt the Root Mean Square Error (RMSE) and Mean Ab-
solute Percentage Error (MAPE), which are defined as:

RMSE =

√∑n
t=1(X(t)− X̂(t))2

n
,MAPE =

1

n

n∑
t=1

∣∣∣∣∣X(t)− X̂(t)

X(t)

∣∣∣∣∣
(20)

where n is the number of instances in the testing set, X(t)

is the actual value and X̂(t) is the forecasted value. The
RMSE is a measure of the absolute error of prediction that
has been widely adopted in many tasks, however, in the task
of time series prediction the values of X(t) are not restricted
to a fixed range; as a result, we further adopt MAPE as
an indicator of relative prediction deviation. The averaged
results over the features for each dataset as well as the total
averages across datasets are shown in Table 6.

Table 6: Evaluation of time series prediction.
Dataset D1 D2 D3 D4 Average

#Instance 4,253,294 4,656,628 4,963,927 5,524,491 4,849,585

RMSE 0.00406 0.00453 0.00704 0.00603 0.00541
MAPE 0.08012 0.11962 0.12580 0.07770 0.10081

∼MAE 0.3205 0.4785 0.5032 0.3108 0.4032

The results on both RMSE and MAPE indicate that our
FARIMA model is able to achieve quite accurate predictions
of future time series. It may be easier for one to get a more
intuitional understanding of the results by rescaling them
into the frequently seen range of 1 ∼ 5 stars. By multiplying
MAPE with the rating range (i.e., 4), we get the estimated
MAE as shown in the last row of Table 6, which implies a
superior result in prediction accuracy.

The results are statistically significant due to the huge
amount of instances for testing. In the following experi-
ments, we leverage the predicted percentage time series in
each dataset for daily-aware recommendation.

6.4 Daily-Aware Rating Prediction
With the predicted daily time series on each feature, we

preform daily-aware rating prediction and recommendation
with the conditional opportunity model.

In real-world systems, the number of users and products
are increasing with the business growth of the e-commerce.
This is shown by the continuously growing number of users,
item, and reviews in Table 3, which leads to the frequently
noted problem of cold-start in recommender systems, es-
pecially when we are simulating the time effect by split-
ting training and testing sets according to time, because a
user/item may have not even a single record in the training
set, while we have to predict his/her ratings in the testing
set, which may cause some comparative algorithms to fail.

As a result, for each dataset Di, we only consider those
users/items in the testing set that also exist in the training
set. We will experiment on the performance of cold-start
recommendation separately in the following sections.

We compare our daily-aware recommendation method based
on Feature-level Time Series Analysis (FTSA) with the fol-
lowing comparative algorithms:

NMF: Non-negative Matrix Factorization [17] algorithm
that is among the best MF algorithms in previous research
[28]. This method is a baseline for time-independent CF.

timeSVD++: The state-of-the-art time-aware collabo-
rative prediction method proposed by Koren [16]. For easy
comparison, we adopt the open-source implementation pro-
vided by MyMediaLite [12].

Tensor: The tensor factorization approach [15] for time-
aware prediction, which is widely adopted for context-aware
recommendation. For daily prediction, we incorporate 366
days of a year as the time dimension of a tensor, and a user-
item rating made on the ith day of a year is placed in the
rating matrix on the ith layer.

EFM: The Explicit Factor Model for explainable recom-
mendation proposed in [38], which is time-independent but
it is the state-of-the-art CF method based on sentiment anal-
ysis on textual reviews as in this work.

To investigate the effect of incorporating different number
of features r, we make use of the six sets of extracted features
F = {f1, f2, · · · , fr} in the different trials on the experiment
of product feature extraction (Table 5). Specifically, we tune
r = 32, 44, 58, 66, 79, 95 in our FTSA approach by using the
corresponding feature set for time series analysis and rat-
ing prediction. To ensure comparable model complexity, we
take the same r as the number of latent factors in NMF,
timeSVD++ and tensor factorization, and we use the same
feature set in the EFM method.
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We adopt the frequently used RMSE for evaluation. The
hyper-parameters for each method are selected by grid search
on the four datasets and retaining those with the best per-
formance. The averaged RMSE of the four datasets is shown
in Figure 7, and Table 7 shows the best RMSE achieved by
each method on each dataset, as well as their averages.
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Figure 7: Averaged RMSE over D1 ∼ D4 against the
number of features/factors for different methods.

We see that for the latent factor based methods (NMF,
timeSVD++ and Tensor), the RMSE decreases with the in-
crease of the number of latent factors used r. However, we
find that the time-aware tensor factorization approach did
not gain superiority against the static NMF. This may be
of the reason that splitting the rating records into the days
of a year makes the training instances sparse, because the
time-aware SVD (timeSVD++) gains superior results than
NMF by integrating the advantages of time factors and la-
tent factorization.

Surprisingly, a static model that takes advantage of tex-
tual reviews (EFM) is even better than a dynamic modeling
approach (timeSVD++) that only makes use of the numer-
ical ratings. This indicates the importance of incorporating
textual reviews as an information source for CF. However,
by further incorporating the time factors for dynamic CF
through time series analysis on product features, our FTSA
approach gains consistently better results than EFM.

We noticed that the performance of FTSA tends to drop
slightly when the number of product features increases to
95, in which case too many noise features are incorporated
(Table 5). As a result, it would be important to construct a
reliable feature set for FTSA to gain the best performance in
practical applications. However, our FTSA model achieves
superior result in a large range of feature selections.

To validate the effect of our FARIMA model in time se-
ries prediction, we replace the predicted time series X̂fk (t)
in Eq.(10) with the real value Xfk (t), and still conduct rat-
ing prediction with our conditional opportunity model. The
results are shown by FTSA′ in Table 7. We find that our
predicted percentage time series is even better than using
the real values. This may indicate that the smoothing effect
of our FARIMA model is important for noise filtering. For
example, a feature may be commented for only a few times in
a specific day due to the relatively fewer active users on that
day. However, by leveraging the data accumulated through
the previous years, we are able to model the dynamic user
preferences more accurately.

6.5 Daily-Aware Top-K Recommendation
We also care about the performance of our method in top-

K recommendation, as is important in real-world scenarios.

Table 7: The best RMSE achieved on four datasets
and their averaged value for each method, standard
deviations ≤ 0.015 for each experimental run.

Dataset D1 D2 D3 D4 Average
NMF 0.857 0.866 0.851 0.878 0.863

timeSVD++ 0.782 0.813 0.795 0.826 0.804
Tensor 0.912 0.937 0.916 0.951 0.929
EFM 0.733 0.768 0.742 0.769 0.753
FTSA 0.706 0.729 0.711 0.726 0.718

FTSA′ 0.716 0.732 0.722 0.735 0.726

To evaluate top-K recommendation, we select those users
who have 10 or more records in the testing set for each
dataset Di, and then conduct top-10 recommendation for
them. Following [38, 23], we adopt the frequently used
NDCG to evaluate top-10 recommendation, and we still use
the NMF, timeSVD++, Tensor and EFM methods for per-
formance comparison. We set r = 58 for all methods.

Table 8 shows the evaluation results on different datasets
and their averages. It is shown that time-aware approaches
(timeSVD++ and Tensor) are consistently better than static
models (NMF and EFM). This indicates that considering the
time factors may be more important for top-K recommen-
dation than in rating prediction tasks. By taking advantage
of both product features from textual reviews and dynamic
time series analysis, our FTSA approach achieves the best
NDCG among the comparative algorithms.

Table 8: The number of selected users and best
NDCG on four datasets, standard deviations ≤ 0.01.

Dataset D1 D2 D3 D4 Average
#Users 122,476 146,099 159,747 167,370 148,923

NMF 0.154 0.136 0.163 0.147 0.150
timeSVD++ 0.228 0.241 0.236 0.233 0.235

Tensor 0.207 0.192 0.196 0.211 0.202
EFM 0.186 0.194 0.208 0.195 0.196
FTSA 0.254 0.267 0.258 0.271 0.263

This experimental result verifies our observations to some
extent, that users tend to buy different categories/types of
products at different time of a year, although they may make
similar ratings towards the products. To further investigate
users’ purchasing behavior on different products, we con-
duct top-K recommendation for products of different popu-
larities separately. To do so, we select those items that have
more than L reviews in dataset Di (including both training
and testing set), and filter out the remaining ‘low frequency’
items. Based on the filtered items, we still select those users
with 10 or more reviews in the testing set to conduct top-10
recommendation. The averaged NDCG of the four datasets
under different filtering thresholds L is shown in Fig.8.
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Figure 8: Averaged NDCG over D1 ∼ D4 against the
filtering threshold L for different algorithms.
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We see that the results on NDCG for both dynamic algo-
rithms (timeSVD++ and Tensor) and static methods (NMF
and EFM) tend to rise gradually with the increase of filtering
threshold L. This is not surprising because the training set
becomes denser by selecting the popular items, which gives
us more accurate predictions. Besides, it is generally easier
to recommend popular items than long-tail ones. However,
the results for FTSA is interesting because the performance
tends to drop when L is too high. This indicates that our
method achieves superior results against others for low- or
mid-frequency items. After careful examination of the high
frequency items, we find that they tend to be seasonally in-
dependent and are welcomed all over the year, e.g., a major
part of them are lipsticks. Thus forcing a seasonal factor on
these products may result in inferior results. However, our
method is still favoured in a large range of filtering thresh-
olds. Besides, we usually need to consider all the products
rather than only the popular ones in practical systems.

6.6 Recommendation for Cold-Start Users
Previous work of personalized recommendation usually fil-

ter out the cold-start users for evaluation, e.g., those users
that have less than 20 reviews. However, this may not be fea-
sible for real-world systems because the most difficult users
are not properly considered, although they may constitute
a major part of the system. For example, [40] reported that
about 49% of the users in Yelp made only a single review.
As a result, we evaluate the performance on cold-start users
separately in this section.

For each dataset Di, we still conduct rating prediction
and top-10 recommendation using the training set, but we
only evaluate with the users that have at most one review in
the training set. This setting fits with the real scenarios in
practical systems, where we can adopt all the records in the
system for model learning, and make recommendation for
the cold-start users. The number of selected users for test-
ing, as well as the RMSE for rating prediction and NDCG
for top-10 recommendation are shown in Table 9.

Table 9: The number of users for evaluation, and the
RMSE and NDCG on the four datasets, standard
deviations ≤ 0.05 for RMSE and ≤ 0.02 for NDCG.

Metric
Dataset D1 D2 D3 D4 Average
#Users 527,328 637,965 613,904 712,003 622,800

R NMF 1.729 1.693 1.732 1.706 1.715
M timeSVD++ 1.441 1.438 1.506 1.475 1.465
S Tensor 1.763 1.779 1.725 1.769 1.759
E EFM 1.383 1.362 1.360 1.389 1.374

FTSA 1.344 1.287 1.278 1.326 1.309
N NMF 0.067 0.073 0.061 0.066 0.067
D timeSVD++ 0.084 0.075 0.088 0.092 0.085
C Tensor 0.046 0.054 0.044 0.048 0.048
G EFM 0.093 0.107 0.095 0.087 0.096

FTSA 0.118 0.098 0.122 0.115 0.113

In general, the prediction accuracy (RMSE) for cold-start
users exhibits similar patterns with that of the total users
(Table 7). The reviews-based approaches (EFM and FTSA)
outperform the rating-based approaches (NMF, timeSVD++
and Tensor). The reason could be the inherent difficulty for
rating-based methods to estimate accurate rating biases of
a user with insufficient training data, thus they tend to pre-
dict the ratings of cold-start users around the global mean.
For example, the regularization terms in NMF, timeSVD++
and tensor factorization actually force the predictions to be

centred under a Gaussian prior, which makes the predictions
less ‘personalized’. However, by leveraging the product fea-
tures embedded in reviews, we are able to expand the avail-
able information for prediction. We find that on average
there are 0.66 ratings per user for the cold-start users, while
the averaged number of features per user is 2.56, because
a user may comment on more than one features in a single
review. When taking time series factors into consideration,
our FTSA approach achieves the best performance.

On the result of NDCG, we see that the static NMF ap-
proach is still better than the dynamic tensor factorization
approach, which is different from the relatively ‘warm-start’
scenarios in Table 8. This is in fact not surprising because it
is difficult for the tensors to learn time-shifting factors and
even global time-specific mean ratings when so few as only
a single rating is available on the time dimension. When
the valid information is enriched with product features, our
FTSA method gains superior results on most detests.

7. CONCLUSIONS
In this paper, we propose to leverage direct time series

analysis for dynamic daily-aware recommendation. In order
to overcome the problem of data insufficiency in previous
product-level modeling approaches, we propose to extract
product features automatically from user reviews, and thus
to degrade product-level modeling to feature-level modeling.
To make it computationally feasible for time series analysis
on daily resolution, we develop the Fourier-assisted Auto-
Regressive Integrated Moving Average (FARIMA) approach
for percentage time series fitting and prediction, and we fur-
ther adapt the conditional opportunity model for personal-
ized rating prediction and recommendation.

For the first time, our analysis of time series in e-commerce
characterizes the trend, seasonal, cyclic, and random effects
of the product features that online users concern. The obser-
vation that a large amount of features exhibit clear seasonal
and cyclic patterns may be inspiring for the construction of
intelligent automatic marketing tools. Experimental results
on both rating prediction and top-K recommendation, as
well as cold-start performance verifies the superiority of our
feature-level time series analysis approach.

This is a first step towards leveraging the rather mature
technique of time series analysis in other research fields like
Economics, to the research of personalized recommender sys-
tems, and there is much room for improvements. Apart from
cosmetics, we will investigate other product domains with
sufficient data, and even take geometrical information into
consideration. Besides the conditional opportunity model,
we can also develop other factorization, graphical, or even
deep learning models to integrate feature-level time series for
personalized recommendation. The cross-adaption of other
models may even see more interdisciplinary research achieve-
ments between Economics and Artificial Intelligence.
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