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Abstract

Subdivision is a powerful paradigm for the generation of surfaces of arbitrary topology. Given an
iitial triangular mesh the goal is to produce a smooth and visually pleasing surface whose shape is
controlled by the initial mesh. Of particular interest are interpolating schemes since they match the
original data exactly, and are crucial for fast multiresolution and wavelet techniques. Dyn, Gregory,
and Levin introduced the Butterfly scheme [17], which yields C' surfaces in the topologically regular
setting. Unfortunately it exhibits undesirable artifacts in the case of an irregular topology. We examine
these failures and derive an improved scheme, which retains the simplicity of the Butterfly scheme, is
interpolating, and results in smoother surfaces.

1 Introduction

Modeling the geometry of surfaces of arbitrary topology is an important area of research in computer graphics
and approximation theory. A powerful paradigm for the construction of such surfaces is subdivision. Begin-
ning with an input mesh a sequence of meshes is defined whereby new vertices are inserted as, preferably,
simple local affine combinations of neighboring vertices. An attractive feature of these schemes is that they
are local, 1.e., no global system of equations needs to be solved. For example, classical spline constructions
fit into this category since the resulting surface can be evaluated with the de Casteljau algorithm. These
schemes are generally not interpolating, although modifications are possible to recover interpolating schemes
(see below). Another class of schemes is based on interpolating subdivision. Perhaps the most common of
these is piecewise linear interpolation. Unfortunately this is not smooth enough for many applications. A
scheme that achieves C' continuity, at least in the topologically regular setting, was pioneered by Dyn,
Gregory, and Levin [17, 18] and has been applied to the construction of smooth surfaces.

The mathematical analysis of the surfaces resulting from subdivision is not always straightforward (see
for example Reif [28]). However, the simplicity of the algorithms and associated data structures makes them
attractive for large datasets and interactive applications where speed is of the essence.

Recently interest in interpolating subdivision has increased since it allows fast multiresolution and wavelet
decompositions of complex geometry [24, 19]. Interpolating subdivisions present the only currently known
way to build smooth finite analysis and synthesis filters for wavelet algorithms on general manifolds [30].
These wavelet schemes can be thought of as instances of the so-called lifting scheme [31] which in a funda-
mental way is related to interpolating subdivision. Furthermore, the ability to build adaptive subdivisions
relies on the interpolating nature of the subdivision rule. Multiresolution decomposition algorithms are of
importance for compression, progressive display and transmission, multiresolution editing, and for multi-
grid/wavelet based numerical methods.

While the Butterfly scheme of Dyn, Gregory and Levin can be used to generate smooth surfaces over
triangular meshes in which every vertex is of valence 6, it exhibils degeneracies when applied in a topologically
irregular setting: smoothness can be lost at vertices of valence not equal to 6. Figure 1 shows an example
of such a failure for a vertex of valence 3. The left shows the control mesh, in the middle the resulting
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mesh after 3 levels of applying the Butterfly scheme, and on the right the result achieved with our modified
scheme, which does not exhibit the cusp-like loss of smoothness.

Motivated by these observations we consider in this paper the construction of subdivision schemes under
the following constraints:

¢ Interpolation: The original mesh vertices are interpolated and all newly generated vertices at any
step during the subdivision are on the limit surface. In particular this implies that points will not be
moved once they have been generated.

o Locality: The neighborhood used to define new vertex positions from old ones should be as small as
possible to enable fast algorithms.

o Symmetry: The scheme should exhibit the same type of symmetries as the local mesh topology.

¢ Generality: The scheme should work over triangulations which are not topologically restricted, in-
cluding the proper handling of boundaries.

e Smoothness: We require the resulting scheme to reproduce polynomials up to some power—a nec-
essary but not sufficient condition for higher order continuity.

o Simplicity: The scheme should only require simple topological and fiexible data structures so that
adaptive level of detail, for example, is easily incorporated into an implementation.

Since the Butterfly scheme satisfies these requirements except for topological generality, we make it the
starting point of our investigation.

The main result of our work is a simple modification of the Butterfly scheme around vertices of valence
not equal to 6. It combats the cusp like artifacts exhibited by the unmodified scheme in those circumstances.
We use eigen analysis and Fourier transform techniques [12, 1] to synthesize new interpolating subdivision
schemes.

Before describing the main result in detail sufficient for implementation, we briefly review related work
and discuss a number of issues which are relevant to smooth subdivision schemes in general. This is followed
by a section discussing the results of our modification. We conclude with a discussion and outlook towards
future research issues. For purposes of exposition, the mathematical derivations have been moved to the
appendix.

2 Related Work

In this section we briefly review a number of algorithms which attempt to build smooth surfaces over
arbitrary topology control meshes through the use of subdivision. These come in two principal varieties,
approximating and interpolating. The former are typically based on generalizations of spline patch based
schemes, while the latter are related to 1D interpolating schemes [15, 13, 8, 9, 10].
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Figure 1: On the left an input control mesh with a vertex of valence 3. In the middle the result after several
levels of subdivision using the Butterfly scheme. The surface loses smoothness around the vertex of valence
3. On the right the result achieved in the same situation with our modified scheme. The behavior around
the extraordinary vertex remains smooth and no cusp is formed.



2.1 Approximating Subdivision Schemes

The first subdivision algorithms for meshes of arbitrary topology were given by Doo and Sabin [11, 12, 29]
and Catmull and Clark [2]. These were based on generalizations of quadratic and cubic B-spline subdivision
for meshes consisting of quadrilaterals. The behavior around extraordinary vertices was first analyzed by
Doo and Sabin [12] using Fourier transforms and an eigen analysis of the subdivision process. This work was
expanded upon by Ball and Storry [1] who derived some necessary conditions. More recently Warren [32]
showed that polynomial reproduction is a necessary .condition for smoothness of planar subdivision schemes.
The behavior around extraordinary vertices was also studied by Reif [28], who derived necessary and sufficient
conditions for C! continuity. A first scheme for arbitrary meshes consisting of triangles was given by
Loop [22]. Tt is based on a generalization of quartic triangular B-splines.

Another class of approaches to arbitrary topology meshes attempts to dircctly derive a set of spline
patches which globally achieve some order of continuity. Most of these approaches are based on some
number of initial “corner cuttings” to regularize the topology, or alternatively place some restrictions on the
mesh connectivity [23, 26, 27, 5]. The output of these algorithms is a set of patches of varying, at times
rather high, polynomial order and varying shape, typically triangles and quadrilaterals. Once these patches
have been generated the surface can be built by subdivision through the de Casteljau algorithm.

2.2 Interpolating Subdivision Schemes

Since the ability to control the resulting surface exactly is very important in many practical applications,
a number of modifications of approximating schemes have been developed to force the limit surface to
interpolate particular points. Nasri [25] gives modifications to the quadratic scheme of Doo-Sabin to enforce
interpolation of vertices and normals by solving a linear system which is global but sparse. Similarly
Halstead, Kass and DeRose [20] give an algorithm modifying the cubic scheme of Catmull-Clark to enforce
position and normal conditions, again by solving a global and sparse linear system. In both cases there
are a number of limitations. For example it is unclear under what conditions the linear system to be
solved for the interpolation constraints can become singular. Additionally, the interpolation conditions are
only satisfied in the limit. Among the patch based schemes only Peters [26] recently gave one which can
incorporate interpolation constraints without requiring the solution of a global linear system. While this
could in principle be used to define an interpolating subdivision scheme, we chose a more direct route by
considering subdivision schemes which are interpolating by design.

Surprisingly little is known about the construction of such schemes in the topologically irregular setting.
Piecewise linear interpolation over arbitrary triangulations certainly belongs to this class and satisfies our
simplicity requirement, but for many applications it is not smooth enough. The only other alternative, which
satisfies almost all of our requirements, is the Butterfly scheme of Dyn, Gregory and Levin [17] and a later
variant [16]. These schemes are interpolating by design, local in that they use a small neighborhood, and
simple in terms of the required data structures and algorithms. They are also known to be smooth in the
regular setting, where they lead to C! limit functions [18, 16]. Topological regularity, however, is a rather
severe restriction since all vertices must be of valence six for these results to be applicable. The failure to
be smooth for vertices of valence other than six is casily observed in practice as can be seen in the example

of Figure 1.

Generalizations of patch based schemes offer simple descriptions of the resulting surfaces in terms of
polynomials, except possibly at extraordinary vertices. However, more involved algorithms are required to
derive the associated patches. Enforcing interpolation conditions generally leads to the need to solve global
but sparse linear systems, although alternatives to this have recently become available [26]. In contrast,
interpolating schemes converge to limit surfaces which are harder to characterize and in most cases do not
have a closed form solution. This should not be regarded as an obstacle when it comes to evaluating the
surface at a point, for which simple and efficient recursive algorithms exist. Even a quantity such as the
normal can be computed directly from the mesh. The resulting algorithms are uniform and simple.



3 Interpolating Subdivision Surfaces

Before giving the main results of our analysis we consider what makes a surface smooth. This is the first
step in deciding on how to modify a given scheme to create smoother surfaces. In particular it provides
us with the motivation to pursue polynomial reproduction as a design criterion, i.e., to look for schemes
which converge to a polynomial (of suitably low order) if the initial control mesh admits a polynomial
parameterization (of the same low order).

3.1 Smoothness

One of the advantages of patch based, approzimating polynomial schemes is that their analytic smoothness
properties are well understood and closely correlate with what a human observer would call a smooth surface.
Note that this property is only partially covered by such notions as C* continuity. For example, it is quite
possible to have a C'? function which is nonetheless quite “wiggly,” exhibiting surface undulations which are
not desirable. On the other hand it is possible to have functions of fractional regnlarity o < 2 whose visual
appearance is very smooth nonetheless [9].

These properties of overall smoothness and appearance are often referred to as “fairness.” For exam-
ple, Halstead, Kass and DeRose [20] observed that enforcing interpolation conditions on Catmull-Clark
subdivision surfaces resulted in unwanted undulations. They addressed this problem by applying a global
optimization pass, minimizing a weighted Sobolev norm over the surface after some number of initial sub-
divisions.

Ideally one would like to avoid a global minimization step. In the present paper we do not consider
the question of optimal fairness. Nonetheless we are attempting to build smooth interpolating subdivision
schemes which yield surfaces whose shape is as pleasing as possible. Because no vertex is ever moved once
it is computed, any distortion in the early stages of the subdivision will persist. This makes particularly the
first few subdivision steps very important, an observation which stands in marked contrast to the asymptotic
view.

Considering the local properties of the surface, we find that smoothness corresponds to the existence of
a smooth parameterization (x(s, 1), y(s,t), 2(s,t)) of the surface. In our case these functions z, y, and z, can
be thought of as defined over a triangulated parameter plane (s,t). In order to construct a smooth surface
with our interpolating subdivision scheme we are therefore naturally led to consider the general problem of
constructing smooth interpolating subdivision schemes over the real plane. Such a subdivision scheme is
then used to build the smooth parameterization of the limit surface. We refer to this as a planar subdivision.

3.2 Planar Subdivision

Instead of thinking of surface subdivision in terms of vectors we now consider only one of the coordinate
functions. This can be visualized as the graph of some function over the real parameter plane, it is, however,
not to be confused with the actual surface. More concretely, instead of thinking about generating new
vertices in R? by taking local averages of vertices in the control polyhedron, we are now thinking of scalar
values which are located at vertices in R?. The planar vertices may be part of a topologically arbitrary
triangulation. This triangulation is refined by cutting each triangle into four through the insertion of
midpoints in all edges and reconnecting. Now the interpolating subdivision scheme is used to find a new
value for the midpoint of some edge by taking suitable averages of nearby values. Note that all new planar
vertices will be of valence 6. The neighbors participating in the computation are part of the subdivision
stencil and their weights characterize the scheme.

Since we assume that all our schemes will be local, i.e., confined to some M-neighborhood, we need to
analyze only a small number of possible cases of the relationship between the new site and the topology of
its M-neighborhood.

¢ Regular: All vertices in the neighborhood are of valence 6. In this case the Butterfly scheme and its
ten point variant are known to produce C* limit functions.

o Isolated K-vertex: The site in question is immediately adjacent to a K # 6 valence vertex. In this
* case the Butterfly stencil looses some of its smoothness properties and a new analysis needs to be
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Figure 2: On the left a regular neighborhood in which all vertices have valence 6. On the right an example
of a K = 7 vertex. In both cases the dot represents a typical midpoint for which we seek to compute a new
value. In the regular case the Butterfly stencil is used, while in the K # 6 a separate analysis is performed
leading to a local modification of the weights.
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Figure 3: Ten-point stencil.

applied.

It is also possible to have K-vertices which are not isolated, but we postpone that case to a later section.

As mentioned in the introduction, we would like to have smooth limit surfaces. Above we argued that in
order to build subdivision surfaces, we need to consider subdivision of functions defined over triangulations
of the plane. When we use the stencils from a planar case to build subdivision surfaces, we actually implicitly
build a parameterization of the surface, i.e., a local mapping from the surface to the plane. A sufficient
condition to get a smooth manifold is that this mapping has a non-zero Jacobian at each point and is smooth
itself.

The mapping is defined by three coordinate functions which are functions built by planar subdivision
over the parameter space. For each K-vertex in the original mesh, we consider a local mapping to a K-
regular triangulation, i.e., a triangulation which has a single K-vertex surrounded by vertices of valence
6. Once we are in that setting, rotational symmetry of the topology allows us to apply a Fourier analysis
and reduce the modification of stencils around A-vertices to a simple computation. This derivation is given
in the appendix and it amounts to ensuring that the scheme reproduces at least all quadratic polynomials
around a K-vertex for K > 3. In the case K = 3, all quadratic polynomials cannot be reproduced (using
only a l-neighborhood), but good results are achieved for a scheme that reproduces all bilinear functions
(Figure 5).



Figure 4: Stencil for a vertex in the I1-neighborhood of an extraordinary vertex

3.3 The Modified Subdivision Scheme

The subdivision scheme computes a new scalar value for each edge midpoint of the triangulation. We
distinguish between three situations.

First consider the case where the edge connects two vertices of valence 6. In that case we use the
extension of the Butterfly scheme to the ten point stencil [16] (see Figure 3). The dot indicates the midpoint
of the edge for which a new scalar value is computed. This is the canonical setting and the weights are given
by

a=1/2—w, b=1/84+2w, c=-1/16—-w, d=w

where w can be chosen suitably small [16] (we used w = 0).

Second, for an edge connecting a A-vertex (K # 6) and a 6-vertex, the 1-neighbors of the K-vertex are
used in the stencil as indicated in Figure 4. For K > 5 the weights are given by

sj = %:(1/4+cos(27rj/K)+1/2cos(47rj/K)) (1)

with j = 0,...,K — 1. For K = 3 we take sg = 5/12, s;» = —1/12, and for K = 4, so = 3/8, 50 = —1/8,
$13 = 0.

Finally, in case the edge connects two extraordinary vertices, we take the average of the values computed
using the appropriate scheme of the previous paragraph for each endpoint. Since this case can only occur
at the topmost level of subdivision the ultimate smoothness of the scheme is not influenced by this choice.
However, we have found that the overall fairness of the resulting shapes tends to be better with this scheme.

The final algorithm for our interpolating scheme is thus as follows:

1. For all edges with both endpoints of valence 6 compute the value for the
midpoint using the coefficients of the ten point scheme.

2. For every edge with one extraordinary vertex, compute the value for the
midpoint using coefficients of (1).

3. For every edge that connects two extraordinary vertices, compute values
for the midpoint using the coefficients (1) for each vertex and take the
average.

4 Results

We built an interactive application supporting general triangular meshes and adaptive subdivision. We use
triangular quadtrees and enforce a restriction criterion, which allows easy implementation of such operators



as Neighbor and VertexValence. All subdivision coefficients are precomputed and stored in a table indexed
by the valence of a given vertex. We present here some results obtained with this application.

4.1 Bases

We argued earlier that the examination of planar subdivision schemes is fundamental to understanding the
surface case. Since the operator which constructs a planar subdivision based on some initial data at all the
vertices is linear, we can write the result as a superposition of basis functions. A basis function is defined
as the subdivision limit of the Dirac scquence, i.c., the value at one vertex is set to 1 while all others are set
to zero. Here we consider the case of a K-regular triangulation which consists of isometric triangles where
all vertices have valence 6, except the origin, which has valence K. Setting the value at the A-vertex to 1
and all others to zero results in a basis functions whose graph can be visualized over the parameter plane.
Figure 5 shows the basis function for a regular triangular tiling (all vertices have valence 6) in the upper
left. The row immediately below illustrates the behavior of the unmodified Butterfly scheme for vertices of
valence 3, 8 and 13. Note how the smoothness of the bases is lost and the function become very “spiked.” In
practice this behavior often leads to cusp-like features on the limit surtaces. The top row shows an extreme
example, a tetrahedron and its subdivision using the unmodified scheme. Next to it is the result of applying
the modified scheme. Now the resulting surface is globally smooth. The basis functions of the modified
scheme associated with K-regular scttings for K = 3, K = 8, and K = 13 are shown in the third row.

The images also demonstrate the character of the influence of a single vertex on its neighborhood. As
it can be seen the support of the basis functions is only slightly larger than their diameter. As the valence
of a vertex increases, the basis function has ever more lobes as demonstrated for K = 13. A possible way
to smooth out the lobes is to go to a scheme which is also modified along edges emanating from K-vertices.
The image at the bottom left shows the result of doing this (K = 13 here as well) with a scheme we are
currently investigating.

4.2 Complex Shapes

Finally we demonstrate the application of these schemes to more complex shapes. In the top half of Figure 6
the geometry of 6 pipes meeting at right angles is shown.! On the top left the original control polyhedron.
Note that it contains vertices of valence 7 and 4 directly neighboring each other. After applying 6 levels
of Butterfly subdivision the shape pictured directly underneath results. It shows various regions where the
smoothness of the surface collapsed. In contrast on the top right is the shape resulting from applying the
modified scheme to the same original control polyhedron. These images also demonstrate the treatment
of boundaries. Edges which are on the boundary are subdivided using the 1-dimensional 4 point scheme
(s—1=—1/16, sg = 9/16, s; = 9/16, 51 = 9/16) [15, 13]. In this case only other edge points participate in
the stencil. A consequence of this rule is that two separate geometries, whose boundary is identical, will have
a matching boundary curve after subdivision. This is of obvious utility when designing separate parts to be
connected later. Edges which are not on the boundary but which have a vertex which is on the boundary
are subdivided as before with the proviso that any vertices in the stencil which would be on the other side
of the boundary are replaced with “virtual” vertices. These are constructed on the fly by reflecting vertices
across the boundary.

Finally we applied our scheme to a dataset of a mannequin head (courtesy University of Washington).
The bottom half of Figure 6 shows the original polyhedron and 4 successive levels of subdivision applied to
it and a closeup.

5 Summary and Future Work

We have presented a simple interpolating subdivision scheme for meshes with arbitrary topology. Our scheme
is based on the Butterfly scheme, with special rules applied in the neighborhood of the extraordinary vertices.
The proposed scheme has a number of properties that make it attractive:

- 1t 1s interpolating at all levels of subdivision;

1 This configuration was inspired by a similar configuration of Jens Albrecht, Erlangen University.



the support of the scheme is minimal;
- it is easy to implement;
- limit surfaces have adequate smoothness;

- subdivision with this scheme can be performed adaptively.

There are explicit formulas for the normals, and due to the simple form of the left eigenvectors of the
subdivision matrix one can hope to find geometric conditions for degenerate conligurations ol points; one such
condition is presented in Section A.9. The scheme is especially convenient for multiresolution representation
of surfaces and wavelet representation of functions on surfaces.

There arc scveral aspeets in which the proposed scheme can be improved:

- Higher degree of smoothness at extraordinary vertices can be achieved by increasing the size of the

invariant neighborhood for these vertices and modifying the scheme along the edges of the original
mesh.

- Currently we perform only a limited adaptation of the scheme at the boundary. A more detailed
analysis of K-vertices on or near the boundary would be desirable.

- By collapsing vertices and edges, this scheme can immediately accommodate mesh tagging approaches
such as in [21]. This again relies on the fact that the boundary of a resulting surface only depends
on the boundary vertices of the input mesh. Also, the degree of smoothness of the surface can be
continuously adjusted by manipulating the remaining degrees of freedom of the scheme. This might
allow continuous variations in smoothness in the spirit of tension parameters.

- Little is known about theoretical properties of the scheme. One can hope to analyze its continuity at
the extraordinary vertices using methods based on the work of Reif [2§].

- We have observed that the “fairness” of the surface is determined by the behavior of the scheme
at the first two subdivision steps. A more thorough analysis of the behavior of the scheme and its
possible extensions at these subdivision steps may yield new insights on maintaining fairness under
the constraint of interpolation.

Another interesting research direction is to explore the properties of the modification of our scheme suggested
in Section A.7 which has the unique feature that the same subdivision procedure can be applied to all edges
at all levels.
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Fignre 5 Examples of hasig functions. Top lefl: the basis function of the Butterfly scheme on a regular
mesh; top middle: Filure of nnmadified scheme for tetralisdron: top right; resulting surface for tefraliedron

when using the modified seheme; middle ow: basis functions for K-regular setting using the unmodified
Butterfly scheme for K = 3, K = 8, and K = 13 third row: basis functions al modified scheme in the

K-regular setting with K =3, K =3, and K = 13; bottom left: a more recent modilied scheme for K = 1




Figure 6: The top unages demonstrate the difference between the classical Butterfly scheme and the modified
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a simple mesh approximating a mannequin head {courtesy University of Washington)
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Appendix A: Planar Subdivision

In this appendix we discuss the construction of planar subdivision schemes that reproduce polynomials.
Recall that these schemes will actually be used to build the coordinate functions of the local mapping from
the surface to the planar parameter space. We start out by defining the notion of a K-regular triangulation
which will form the paramcter space for the ncighborhood of a vertex with valence A on the original mesh.
The Discrete Fourier Transform (DFT) now allows us to exploit the symmetries of the stencil. We use DFT
to construct the stencils around A-vertices. Finally, we show how to compute the normals to the limit
surface exactly.

A.1 Planar Subdivision Around a R-vertex

Consider an initial triangulation T° of the plane with vertices VO = {v? € R? |l € L°}. Here L° is an
infinite index set. We call a triangulation K -regular if one vertex v3 = (0,0) has valence K, all other vertices
have valence 6, and all triangles are isometric, see Figure 7 for an example of a 7-regular triangulation. In

Figure 7: A T-regular triangulation of the plane. Note how all triangles are isometric.

case K = 6 all triangles are equilateral and we call a 6-regular triangulation simply regular. A finer
triangulation T with vertices V' = {v} | | € L'} can be obtained from T° by adding a new vertex in
the middle of each edge of T° and connecting the new vertices. All new vertices have valence 6. Repeated
application of this procedure yields a sequence of triangulations 7% with ¢ > 0. The vertices of 7" are given
by Vi = {vi |l € L*}. We have that V! C Vi*1. We choose the index sets so that L' C L‘*! and vf"’l =l
Note that Vi*! consists of “new” vertices Vit1 \ V% and “old” vertices V. If TO is K-regular than all T¢
are K-regular as well. In fact, 7" is the dilation of 7"*+! by a factor of 2. The regular triangulation is in
addition invariant under translation.

Consider a set of scalar values P° = {p{ | I € L°} assigned to the vertices of the initial triangulation
T°. A planar subdivision scheme is a linear operator S that assigns values P! = {pit! | [ € Li+!} to
the vertices of the new triangulation T+! given the values on the vertices of T%: Pi*t! = § P*, We already
mentioned in the section on surface subdivision that the scheme has to be interpolating, i.e., old values do
not change, and that the stencil has to be local, i.e., a new value only depends on old values in a finite
neighborhood. We add the following two constraints:

¢ Affine invariance: The values computed by the scheme S are invariant under any affine transfor-
mation A = ax + b. Thus A and S have to commute: S A = AS. By letting a = 0 we see that if all
old values are equal to a constant, all new values are equal to the same constant. Consequently the
coefficients of a stencil sum to one.

e Symmetry : The stencil is invariant under isometries that map the triangulation onto itself. A typical
example is a rotation with an angle of 2w /K.

We next consider the construction of the stencil in the case when the set of old values is in a 2-neighborhood
of the K-vertex. We denote the 2-neighborhood of the K-vertex in 7% with N?. The set N* contains 3K +1
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vert1ces see Figure 8 for an examplein case K = 7. We call N* an invariant neighborhood because all values
pi ! at the vertices of Nit! depend only on the values pl at the vertices of a topologically identical set. N7
on a coarser level. As the subdivision is linear, the dependence of the values at the vertices of N1 on the
values at the vertices of N7 can be described by a square (3K + 1) x (3K + 1) subdivision matriz SJ. If the
subdivision matrix does not depend on j, we call the subdivision scheme stationary. The smoothness of the
limit function at the K-vertex is then completely defined by the subdivision matrix.

A.2 Polynomial Reproduction and Smoothness

As we discussed in the section on surface subdivision, a sufficient condition for the surface to be smooth is
that the parameterization is smooth. We thus would like to construct smooth planar subdivision schemes.
However there are no necessary and sufficient conditions available for planar subdivision to yield smooth
limit functions.

If we consider the one dimensional setting for a moment, the situation is quite different. Partially
motivated by wavelet constructions, the smoothness question has been extensively studied and seems to be
well understood. We only mention [7, 4, 3, 9] as examples of the literature. A basic result is that in order
to achieve a C* limit function, the subdivision scheme has to reproduce at least all polynomials of degree k.
However, very often the resulting smoothness is much less than C* even though all polynomials of degree
k+1 are reproduced. Only splines achieve this upper bound. Other families such as the Daubechies’ scaling
functions [6] or the Deslauriers-Dubuc interpolating functions [9] typically have smoothness proportional to
the degree of polynomials reproduced. All these schemes, however, are constructed by requiring polynomial
reproduction combined with other constraints such as orthogonality or interpolation.

Based on these results and a recent proof given by Warren [32], which shows that polynomial reproduction
is also a necessary condition in the planar subdivision setting, we construct our planar subdivision schemes
by requiring polynomial reproduction combined with interpolating properties. We start by carefully defining
what we mean with polynomial reproduction. Consider a polynomial P(z), z € R? and assume the initial
values p{ are samples of this polynomial: p} = P(v]). We now say that the subdivision scheme reproduces
P if all new values are also samples of the same polynomial: p} = P(v!) for i > 0 and I € I*. In the next
sections we construct subdivision schemes on K-regular triangulations reproducing all polynomials up to a
certain degree. We first simplify the construction using the DFT.

A.3 Fourier Analysis

It is well known that many properties of subdivision schemes are determined by the eigenvalues and eigen-
vectors of the subdivision matrix [1]. Due to the symmetries of coefficients of a subdivision scheme around
a K-vertex a convenient tool for the analysis of such schemes is the Discrete Fourier Transform (DFT) [1].

Consider an invariant 2-neighborhood of the K-vertex in a K-regular triangulation. There are four
symmetry types of vertices in this neighborhood, see Figure 8. For any two vertices of the same symmetry
type there is a rotation that maps one vertex to the other and maps the triangulation onto itself. Conversely,
for two vertices of different type there is no such transformations. We use letters A, B, C to denote values
at the vertices of cach symmetry type. The center value is denoted with . The numbering of vertices of
each type is shown in Figure 8.

We arrange the values A;, B;, C; into a vector of length 3K + 1 in groups corresponding to each type of
vertex:

P= [Q,AQ...AK__l,B[).‘.BK_l,Oo...CK_l]f'.

The subdivision scheme in the invariant neighborhood can be written as:

Qj+1 - QJ'

Al = AQQJ+Z(szAJ+s,BBJ+slC;C“)
1=0

Bitt = BQQJ-}-Z BA Al +sPE Bl +sPS )

citt = A
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Figure 8: Invariant neighborhood of a 7-point; four symmetry types of vertices are denoted Q, A, B, C.

or as a malrix equation

pitt —§pi,

As the subdivision scheme is interpolating, two types of vertices are inherited from the previous level: @
and C. This means that corresponding rows of the subdivision matrix have one entry equal to 1 and all
other entries equal to zero. Old A-values become new C-values on the next subdivision level.

Because constants have to be reproduced each row of the matrix sums up to one. This requirement can
always be satisfied by setting the entries in the first column — corresponding to the central vertex — to
one minus the sum of the entries of the remaining columns. If we further exploit the assumption of affine
invariance we can assume that the value at the central point of the scheme is 0 without loss of generality.
Now the central vertex does not contribute to the values at other vertices at all anymore. Therefore, we
omit the first column and the first row of the subdivision matrix from now on to simplify exposition. The
3K x 3K subdivision matrix S can then be separated into nine K’ x A blocks:

SAA SAB SAC
S — SBA SBB SBC
1 0 0

The three blocks in the last low are the A x K unit matrix and zero matrices, reflecting the fact that vertices
of type A become vertices of type C on the next subdivision level. Each block is a Toeplitz matrix due to
the symmetry of the scheme. Tt thus simply represents a cyclic convolution. For example, the matrix S44
1s given by

AA  _AA AA

T Cha D ED
gAA _ Sk-1. S0 " SK-2

AA  JAA AA

Sl 52 PR 50

We next define the Discrete Fourier Transform. Let W = exp (—2mi/K) and let W be the A x K DFT
matrix:

1 1 1 1

1w w2 o .. wiE-D
W = 1 W2 W4 L M/Z(K—l)

i WI;’—I Wz(}\’—1) o WE=D?
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We know that the DFT transforms a Toeplitz matrix into a diagonal matrix. Given that the subdivision
matrix has a block Toeplitz structure, we define a corresponding block DFT transform:

W 0 O
W= 0 W 0
0 0 W

This is a 3K x 3K matrix with K x K blocks. We now let the block DFT act on the subdivision matrix:
’S‘AA §AB §Ac
S=—wsw-1l= §BA §BB gBC ||
I 0 0

where §AAA = W S44 W1 and similarly for the other blocks. The DFT of a Toeplitz matrix is a diagonal

matrix so S44 = diag(s44,...5%4 ), and similarly for the other blocks. The vectors 844 = [554,...584 ]!
and s44 = [sf4, .. 58441 are related by

1
SAA = W /S\AA.
K
By applying an appropriate permutation, we reduce the subdivision matrix to a block form with 3 x 3 blocks
on the diagonal and zeroes elsewhere:

B, 0 0
0 B, 0
S=pspt=| 0 O o 1,
0 0 - Bg
where “AA SAB  AC
g4 8% 5%
B; = | 3P4 BB ghe
10 o0

The resulting matrix S has the same eigenvalues as S; moreover, if the eigenvectors of S are orthogonal,
then the eigenvectors of S are orthogonal, because DFT and permutation matrices are multiples of unitary
matrices. If V is an eigenvector of S, then S has an eigenvector P W P. All properties of S can be described
through the properties of a sct of 3 x 3 matrices B;. It is important to note that the eigenvectors of S can be
chosen to have the form [0, ..., rg, 71, 7s,...,0]" with non-zero entries only in three positions corresponding
to the matrix B;. Here [rg,r1, 72" is an eigenvector of B;. Consequently the eigenvectors of the matrix S
can be chosen to have the form [roe), riel¥), roel]t, where el) = [1, W7, ... WE=1)J], the jth row of the
K x K matrix W. We always will take j modulo & in the notation el .

A.4 Construction of Planar Subdivision Schemes

We use the DFT machinery developed in the previous section to construct a polynomial-reproducing scheme
at a K-vertex. Polynomial reproduction for the invariant neighborhoods means that vectors of values of
monomials at the vertices of the neighborhood should be eigenvectors of the subdivision matrix. As the size
of the invariant neighborhood shrinks by 2, the eigenvalues for the monomial eigenvectors are 1/2™, where
m 1s the total degree of the monomial.

We represent the coordinates of a point in the plane using complex numbers. Reproducing polynomial
functions of the coordinates of points is equivalent to reproducing the polynomial functions of the corre-
sponding complex value z = x + ¢y and its conjugate Z = x — iy. The vector of values of = at the vertices of
the invariant set can be written as

[1/2 e, cos(n/K) W12 e, e(l)]t.
The First K components of the vector above (1/2 (1)) are the values A;, the next K (cos(n/K) W=1/2e(1))

are the values B;, and last K are the values C;.

16



Asking for the scheme to reproduce all polynomials x!y™~" with m < M is equivalent to requiring that

it reproduce all polynomials z! 2™~* = z%=™ with m < M. Polynomials of this form lead us to consider
P(l,m—l) _ [1/2m e(21—m)’ Cosm(ﬂ_/}-{) W—(2l—m)/2 e(2l—m)’ e(2l—m)]t‘

Applying the DFT and permutation P to the vector P(:™=1 we obtain a vector which has non zero entries
only in three positions starting with 3((2l — m) mod K). These positions correspond to the eigenvector of

the matrix B(zl—m)modK'

plm=t =10, ...0, 1/2™, cos™(x/K)W~=m)/2 1 ¢, .. .0]".

Thus, we arrive at the following simple condition for polynomial reproduction on the subdivision matrix at
the extraordinary vertex:

For polynomial reproduction up to order M on R-regular triangulations, the blocks B(zl—m) mod K

with 1 < m < M and 0 <! < m have to have eigenvectors Pm=1) with eigenvalue 1/2m.

Note that reproduction of the constant function has already been ensured through the affine invariance of
the scheme. Thus the range of m begins at 1 (rather than 0). The total number of distinct polynomials
is2+ ...+ (M+1) = M(M + 3)/2. Given that we want to fix that many eigenvalues we must have
M(M+3)/2 < 3K.

Let us consider this condition in some more delail Lo see what happens il K > 3. Reproduction of linears
(m = 1) prescribes eigenvalue 1/2 for the blocks B; (I = 1) and Bg_; (I = 0). Reproduction of quadratics
(m = 2) prescribes the eigenvalue 1/4 for the blocks By (I = 1), By (I = 2), and Bxg_» {{ = 0). Cubic
reproduction {m = 3) prescribes eigenvalue 1/8 for the blocks By, Bz, Bx_1, and Bg_3. Obviously some
blocks have several eigenvalues prescribed. If for an order M the number of eigenvalues required for a given
block is larger than 3, the polynomial reproduction of that order fails. This implies that no matter how
large K is we can not hope to do better than reproducing polynomials of order 6 (within a 2-neighborhood),
since at that point blocks 0 and K — 1 have had 3 distinct eigen values assigned to them.

Next take K = 3 and M = 3. Now By has to have eigenvalues 1/8,1/4,1/8, By has to have eigenvalues
1/2,1/4,1/8, and B has to have eigenvalues 1/2,1/4,1/8. In fact the eigenvectors with eigenvalue 1/8 for
B coincide so there is one degree of freedom left.

A.5 The Regular Setting

First we consider regular triangulations. In this case we use the Butterfly scheme first described in [17] and
analyzed in [18, 16]. If an interpolating subdivision scheme introduces new points at midpoints of the edges
of the original triangulation, the smallest possible stencil consists of two edge endpoints. Clearly, this stencil
is not sufficient to reproduce polynomials of degree higher then 1. It turns out that the next larger stencil,
consisting of 4 points (Figure 9) is not sufficient for reproducing quadratic polynomials. Adding four more
points (see Figure 9) turns out to be sufficient for reproducing quadratic polynomials. The cocfficient of the
scheme are uniquely defined by the condition of polynomial reproduction: a = 1/2, 6 = 1/8, ¢ = 1/16. In
addition, due to the symmetry of the scheme it turns out that it reproduces cubic polynomials. A natural
extension of this scheme in the regular case is a parametric family of schemes on the 10-point stencil as in
Figure 10 with coefficients @ = 1/2 — w, b = 2w+ 1/8, ¢ = —1/16 — w, d = w [16]. Although no scheme
from this family reproduces all polynomials of degree 4, the smoothness of the surface can be somewhat
improved by choosing a non-zero value for w. All new points introduced by the subdivision are regular, and
the simple scheme described above can be used to generate all points of the surface. It was shown in [18]
that for regular subdivision of the plane the ten-point schemes produce C! limit functions for a range of w.

At the extraordinary vertices the scheme is not always C': for vertices of valences 3,4 and greater than
8 it is known not to be C*! [14]. The following analysis shows that the 10-point scheme in these cases does
not always satisfy the necessary conditions for C'-continuity [28].

The invariant neighborhood for any vertex for a ten-point scheme has size 2, so we can use the results
of the previous sections. The blocks B; of the subdivision malrix for a vertex of valence K can be written
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Figure 9: 1. Four-point stencil. 2. Eight-point stencil (Butterfly scheme.)

C b C
d/\N\d
W\/
c b c

Figure 10: Ten-point stencil. Note that this stencil is the average of two 6 point stencils around the old
vertices of the edge containing the new vertex

in the following form (w = 0):

%—i—% cos (Jwi —%. cos(?jw;;) —11—6 (1+e"ij‘”’(/2) 0
Bj — _;_ (1 +ezjw;</2) _ % (e—mwxﬂ + 6323«.0;\'/2) % _11_6 (1 _!E)emw;\»/Z)
1

where wg = 27 /K.

For example, for a vertex of valence 3, the largest eigenvalue is %, and it has multiplicity at least 6.
While for large values of k£ the subdivision matrix may satisfy the necessary conditions for continuity, in
general, there tends to be more then one eigenvalue which is close in magnitude to the largest eigenvalue. As
a result, the functions generated by the scheme near extraordinary vertices, while they may be C' for some

valences, informally speaking, do not have enough smoothness to produce adequate interpolating surfaces.

If K approaches infinity, the matrices B; and B, for a fixed j go to the same limit. Suppose the
largest eigenvalue (1/2) can be found in the block B;. In almost all cases the eigenvalues of B4 converge
to the eigenvalues of B;. As a result, more and more eigenvalues of the subdivision matrix cluster around

1/2. The sequence of decreasing eigenvalues 1/2,1/2,1/4,1/4,1/4,... needed to ensure a C' surface thus
breaks and the resulting surface is not smooth.

A.6 Extraordinary Vertices

For extraordinary vertices we start out by only considering a 1-neighborhood of the K-vertex to build a
subdivision scheme. The stencil then only has K + 1 coefficients [g, so, 81, -, sK 1], see Figure 11 in the
case K = 7. After omitting the ceuler veriex, the subdivision matrix S now is a K x K Toeplitz matrix.
In this case our analysis still applies, but all coefficients except sj‘A have to be set to 0. There is no need
to consider a block DFT any more and we can immediately consider W S. The block matrices B; simply
become real numbers which are eigenvalues of S. The condition for reproducing the polynomials of degree
2 in this case becomes



w

Figure 11: Stencil for a vertex in the 1-neighborhood of an extraordinary vertex.

The eigenvalues of S with numbers 1 and K — 1 should be 1/2. The eigenvalues with numbers
0, 2, and K — 2 should be 1/4.

In other words, this describes 5 eigenvalues: two times 1/2 and three times 1/4. Consequently, in the case
of K = 3 and K = 4 it is impossible to reproduce all quadratics. One then only has either 3 or 4 eigenvalues
of § while quadratic reproduction requires 5 eigenvalues. For K = 3 we take the eigenvalues [1/4,1/2, 1/2]
which leads to the stencil ¢ = 3/4, so = 5/12, s1 = s_1 = —1/12. In case K = 4 we take the eigenvalues
[1/4,1/2,1/4,1/2] which leads to the stencil ¢ = 3/4, so = 3/8, s1 = s3 = 0, and s, = —1/8.

For K > 5 there are K — 5 eigenvalues of the subdivision matrix that we are free to choose.” We found
that in general they do not have significant effect on the appearance of the limit surfaces, as long as their
absolute value is sufficiently smaller then 1/4. The simplest choice is to set them all to 0. The sequence of
eigenvalues of S is thus:

[1/4,1/2,1/4,0,...,0,1/4,1/2].

In case K > 5, the coefficients [sq, s1,...,5k] are now simply given by the inverse DFT of the vector of
eigenvalues. This yields:

_1/1 2rj 1 Axj
S]—E<Z+COST+§COS?). (2)

The coefficient ¢ for the central vertex is obtained by subtracting the sum of all other coefficients from 1,
resulting in ¢ = 3/4 for the central vertex.

A.7 Top-level Subdivision

One question that remains unanswered in the construction above is the choice of the extraordinary vertex
for an edge of the original mesh which has extraordinary vertices at both endpoints. In this case we propose
to take the average of the positions computed using the appropriate 1-neighbor scheme for each endpoint.
There is an remarkable connection between this procedure and the ten-point schemes. Assume that we
would do this averaging also in case both endpoints of an edge have valence 6. Consider thus the regular
setting and do a one neighborhood analysis around a 6-vertex. From the previous section we see that the
eigenvalues are [1/4,1/2,1/4,—1/24 — 2w, 1/4,1/2], where the 4th eigenvalue has a free parameter w. We
thus obtain a one-parametric family of coefficients given by ¢ = 3/4, so = 1/4 — 2w, 51 = 1/8 + 2w, s9 =
—1/8 — 2w, s3 = 2w, s4 = —1/8 — 2w, s5 = 1/8 + 2w. If we now average this scheme applied at the left and
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at the right endpoint we end up precisely with the one-parametric 10-point scheme discussed earlier (with
the same w parameter).

A.8 Computing the Normals

A disadvantage of the proposed scheme is the lack of the explicit form for the limit surface. However, due
to the linear nature of the subdivision process it is possible to compute a number of important functions
on the surface explicitly. The neighborhood analysis technique can be used to compute the vertex normals
to the limit subdivision surface. In [20] it was shown that the (unnormalized) normal at a vertex can be
computed as a vector product of two 1 x 3 vectors:

n=m XT3

Here 7t = L, P, 74 = LyP, L; and L, are the left 1x 3K eigenvectors corresponding to the largest eigenvalue
of S, and P is a 3K x 3 matrix containing the coordinate vectors of the surface vertices in an invariant
neighborhood. Any subdivision level j can be chosen. The vectors 71 and 7 are orthogonal tangent vectors
to the surface and thus n is the surface normal. Note that there is no immediate guarantee that the vectors
71 and 79 are non zero.

Normals at extraordinary vertices. In the case of extraordinary vertices we only need to consider the
invariant 1-neighborhood. The vectors are thus of length K (as opposed to 3K’). The eigenvectors of the
subdivision matrix with eigenvalue 1/2 correspond to z and z which is 1/z as we are on the umit circle:

Ly = POLO W =1 w-t w2, . w-(E-1)
Ly = POV =el=0 =[1,W,W?,.. W&,

In this case the subdivision matrix is a Toeplitz matrix, and the left and right eigenvectors coincide and are
orthogonal. The vectors 7 and 72 are the second components of the Fourier transform and inverse Fourier
transform of P. Although the expressions for 7 and 7 are complex, real tangent vectors can be obtained
by taking the real part of their sum and complex part of their difference.

In this case it is possible to give a simple sufficient (but not necessary) condition for the normal to exist.
For any integer j with 0 < j < K — 1 we can split the set of indices {0,...,K — 1} of vertices in the
invariant neighborhood into two sets (all indices are taken modulo K): Hi(j) = {j,...,j+ |K/2]|} and its
complement Hz(j) ={j+|K/2]+1,...,j+ K —1}. For a unit direction in space d consider the orthogonal
projection onto d. Take the projections P]-d = P; d’ of the points of the invariant neighborhood onto this
direction. Then 7 d* = Ly P d'b = L; P%. Now consider the length K vector P¢ = P d'. If this vector
has two zero crossings, its second Fourier component and thus 7; is non-zero. In general, if there is a real
number C and an integer j, 0 < j < K — 1, so that for all m € Hy(j) P2 < C and for m € H»(j) P2 > C,
then the normal obtained from Equation 5 is not a zero vector. This condition means that there is a plane

such that | K/2] consecutive points of the invariant neighborhood are above this plane and the other [K /2]
are below.

Normals at regular vertices. In this case the invariant neighborhood of a point has size 2. Using the
fact that the eigenvectors corresponding to different blocks B; are orthogonal it is sufficient to find the left
eigenvectors corresponding to the eigenvalue 1/2 in blocks B; and B(x_1). This procedure results in the
following formulas for the left eigenvectors:

1 8 m
Ly = g[l(ie(l), —ﬁe’.?e(l), e]

-

L = z[i6el-", _%e—ret—n, al=1]

2

In this case it is difficult to find an intuitive geometric criterion for the normal to exist; it is possible however,
to write a simple linear condition on the values at the vertices which guarantees that the normal is not zero.
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