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Abstract In some problem domains, it is important to minimize the visually perceived
distance between a given curve and a Bézier curve approximating it. This paper provides an
algorithm for constructing a parabolic Bézier curve approximation which deviates the least (asymptotically)
from the given curve, according to the Hausdorff metric, which corresponds to minimal deviation
as perceived by the human eye.

The rapid development of new manufacturing technologies has ever stronger
demands for effective methods of geometric description. In the last decade, alongside
with classical methods of curve description - algebraic polynomials and trigonometric
polynomials-product and tool engineering have seen many new methods, based
primarily on polynomial splines and their numerous generalizations. These methods,
although possessing good approximation and computational properties, are not
always convenient for solving the tasks of engineering geometry associated with
real-world tasks and their technological constraints . Among the most widely known
methods for description of smooth contours in geometrical design are the Bézier
functions [1] – [4]. As a rule, quadratic Bézier functions are used when there is one
intermediate point between initial and final points of interpolation, and cubic, if
there are two intermediate points. If there are more points , Bézier functions are
applied by reducing the task to one of the two previous cases. The widespread use of
Bézier functions results from their ease of construction. On the other hand, the fact
that the intermediate points may relatively far from the Bézier curve sometimes
limits the use of Bézier functions for the description of contours.

In this paper, an algorithm is given for construction of a parabolic Bézier function
which provides the least deviation (asymptotically) from the approximated curve
according to the Hausdorff (visual) metric. The use of Hausdorff distance is explained
by its convenience for solution of those tasks in which distance is defined visually-
i.e., as it is perceived by the human eye [5].

As usual, we define Hausdorff distance between two sets L and Γ by the equations:

ρ(L, ρ) = max

{
sup
M∈Γ

inf
N∈L

|MN |, sup
N∈L

inf
M∈Γ

|MN |
}

,

Where |MN | is Euclidean distance between points M and N .
Let Γ(t) is smooth flat curve, given in its natural parametrization Γ(t) = (x(t), y(t)),

t ∈ [0, T ], i.e., parameter t is length, beginning at some fixed point, satisfying the
conditions:

(x′(t))2 + (y′(t))2 ≡ 1 t ∈ [0, T ],
Let

∆n = {0 = t1 < t2 < . . . < t2n = T}−
Date:
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for any partition of the range of the parameter. Then, if

hi+1/2 = ti+1 − ti (i = 0, 1, . . . , 2n− 1),

and
Γi = (xi, yi) = (x(ti), y(ti)) (i = 0, 1, . . . , 2n),

for t ∈ (t2i, t2i+2),a parabolic parametrically defined Bézier function will be of the
form: BΓ(t) = (Bx(t), By(t)), where

BΓ(t) = (1− τ)2Γ2i + 2τ(1− τ)Γ2i+1 + τ2Γ2i+2,

and
τ =

t− t2i

h2i+3/2 + h2i+1/2
.

We consider the set of data

Γ̃2i+1 = Γ2i+1 − 1
2
∆2Γ2i+1 (i = 0, 1, . . . , n− 1),

where
∆2Γ2i+1 = Γ2i − 2Γ2i+1 + Γ2i+2.

Then we designate
BΓ̃(t) = (Bx(t), By(t)),

where

(1) BΓ̃(t) = (1− τ)2Γ2i + 2τ(1− τ)Γ̃2i+1 + τ2Γ2i+2 =

(1− τ)2Γ2i + 2τ(1− τ)
(

Γ2i+1 − 1
2
∆2Γ2i+1

)
+ τ2Γ2i+2.

The parabolic Bézier function corresponds to each number i (or to interval [t2i, t2i+2]).
So number n equals to Bézier functions number, which form the parabolic Bézier
spline on interval [0, T ].

We will call the partitions ∆0
n optimum if

ρ(Γ, BΓ̃(∆0
n)) = inf

∆n

ρ(Γ, BΓ̃(∆n)).

The sequence partitions ∆∗
n will be called asymptotically optimum if as n →∞

ρ(Γ, BΓ̃(∆∗
n)) = inf

∆n

ρ(Γ, BΓ̃(∆n))(1 + o(1)).

We define function

F (t) = k′(t) = x′(t)y′′′(t)− x′′′(t)y′(t),

where k(t) is the curvature of the curve Γ.
Let {Fn(t)} a sequence of functions such that

‖F − Fn‖∞ ≤ n−α,

where α ∈ (0, 1/4)

Theorem 1. Let parametrically defined curve Γ(t) = (x(t), y(t)), t ∈ [0, T ] be
such that x, y be four times continuously differentiable on [0, T ] (x, y ∈ C4

[0,T ]),
number α ∈ (0, 1/4) and the sequence of partitions {∆∗

n} is defined by equations:

(2) t∗2i = θi, t∗2i+1 = (θi+1 + θi)/2,
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where the points θi are found according to conditions:

(3)
∫ θi

0

(|Fn(t)|1/3 + n−α)dt =
i

n

∫ T

0

(|Fn(t)|1/3 + n−α)dt

(i = 0, 1, . . . , n).

Then the sequence of partitions {∆∗
n} will be asymptotically optimum as n → ∞,

and

ρ(Γ, BΓ̃(∆∗
n)) =

1
9
√

3n3

(∫ T

0

|Fn(t)|1/3dt

)3

+ o(n−3).

In a number of cases, it is the inverse problem which must be solved, i.e.,
given an existing error ε of the description curve, it is necessary to construct an
approximative apparatus with a minimum number of nodes.

Let ε be a given error in the description of a contour. We shall call a Bézier curve
BΓ̃(t) ε- allowable for curve Γ(t) if

ρ(Γ, BΓ̃) ≤ ε.

A ε- allowable curve BΓ̃(∆0
n0

, t) is called ε-ҥoptimum if, for all ε- allowable curves
BΓ̃(∆n, t) the following inequality holds:

No ≤ n.

The sequence of ε- allowable curves {BΓ̃(∆∗
n∗ , t)} will be called asymptotically ε

optimum if

n∗ = no(1 + o(1)).

Theorem 2. Let the parametrically defined curve Γ(t) = (x(t), y(t)), t ∈ [0, T ] be

such that x, y ∈ C4
[0,T ], and let the number n∗ be defined by conditions:

(4) n∗ =

[
1

3
√

9
√

3ε

∫ T

0

|F 1/3(t)|dt

]
+ 1,

(here [a] denotes the integer part of a) and the sequence of partitions {∆∗
n∗} is

defined from equations (2)- (3). Then the sequence {BΓ̃(∆∗
n∗ , t)} is asymptotically

ε-optimal.

Remark 1. In the theorem formulation in equality (3) instead of function Fn(t),
in particular, one can take the function F (t). But then the formulation will be
more weak. On practice, the approximated curve is given in the kind of some
approximation, that is why the using of function F (t) practically is rarely possible.
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Remark 2. If function F (t) is continuous and its number of zeros on segment
[0, T ] is finally, moreover, all zeros are simple (i.e. if F (τ) = 0, then F ′(τ) 6= 0)
then addend n−α in formula (3) may be removed and the nodes of asymptotically
optimal partitions sequence will be defined from conditions:

(5)
∫ θi

0

(|Fn(t)|1/3)dt =
i

n

∫ T

0

(|Fn(t)|1/3)dt

(i = 0, 1, . . . , n).
From the approximation theorem point of view, the case when there is the segment

on which function F (t) vanishes:

(6) F (t) = 0 (t ∈ [a, b], [a, b] ⊂ [0, T ])

or that is the same, k(t) = const is practically impossible.
In this case there will be the situations, when maximal length of parameter change

interval (at using formulae (5)) will not tend to zero. Then there is no reason to
say about asymptotic formulae optimality.

But case (6) is sufficiently wide-spread at engineering problems. The curves
with constant curvature (as linear curve and circles) sufficiently frequently meet
at drawings. That is why in general case the presence of addend n−α in formulae
of nodes choice is necessary. The presence of this addend ensures the solvability of
equation (3) at any significance of function F (t).

Remark 3. If curve F (t) is defined in natural parametrization, the theorem gives
us concrete algorithm that is easily programmized. To obtain this algorithm it’s
necessary to find derivatives, calculate the function F (t) and define nodes from
formula (3).

On practice the function Γ is usually defined in discrete form. In this case
it’s necessary to construct the discrete analogies of all values, being in theorem
formulations. Such algorithm is given in paper end.

Remark 4. Some graphic illustrations are given on Figures.
(1) The approximated curve Γ(t) = (cos(t)+ 0.2 sin(4t); − sin(t)− 0.2 cos(5t)

cos(5t)) (t ∈ [0, 2π]) is drawn on Figure 1.
(2) The Bézier curve BΓ̃ at the case, when nodes are chosen on equidistant

partition is drawn on Figure 2. The number of intervals n = 15.
(3) The Bézier curve with nodes chosen from condition (3) is drawn on Figure

3. The number n = 15 is the same.
(4) The nodes by Bézier functions, chosen from conditions (3), are drawn on

Figure 4 by means of painting over balls.
(5) The graphics illustration of nodes choice from conditions (3) is given on

Figure 5.
Insofar as approximation of smooth curves is concerned, it is important to know

to what extent they are smooth, and to have a technique for reconstruction of the
curve from the given points. For any curve L(t) = (u(t), v(t)), where u(t) and v(t)
possess one-sided derivatives at each point (this property is shared by BΓ̃(∆∗

n, t)),
we denote L̇(t + 0) = (u̇(t + 0), v̇(t + 0)) and, similarly L̇(t− 0)).

We denote as ϕ(L, t) the smallest angle between vectors L̇(t + 0)) and L̇(t −
0)). The angle ϕ(BΓ̃(∆∗

n), t) characterizes the degree of non-smoothness for curve
BΓ̃(∆∗

n) at point t.
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Theorem 3 Let parametrically defined curve Γ(t) = (x(t), y(t)), t ∈ [0, T ] be
such that x, y ∈ C4

[0,T ], and the sequence of partitions {∆∗
n} be defined by equation

(3); then

max
t

ϕ(BΓ̃(∆∗
n), t) = O

(
1
n3

)
.

If curve Γ such that F (t) > 0 at all t ∈ [0, T ] and the sequence of partitions
{∆?

n} is defined by equations

t?2i = θ?
i , t?2i+1 = (θ?

i+1 + θ?
i )/2,

where the points θ?
i are found from conditions

(7)
∫ θ?

i

0

F 1/3(t)dt =
i

n

∫ T

0

F 1/3(t)dt

(i = 0, 1, . . . , n).
Then

ϕ(BΓ̃(∆?
n), t?2i) =

A2i,n

n3
+ O

(
1
n4

)
.

where

A2i,n = I3

(
F ′2i

36
+

Φ2i

16F2i

)
,

and

I =
∫ T

0

F 1/3(t)dt,

Φ(t) = x(4)(t)y′(t)− y(4)(t)x′(t).

Proof of Theorem 1. From the Taylor formula at a point t2i+1 we have for
t ∈ (t2i, t2i+2)

x(t) = x2i+1 + x′2i+1(t− t2i+1) +
1
2
x′′2i+1(t− t2i+1)2+

1
6
x′′′2i+1(t− t2i+1)3 + O((h2i+1/2 + h2i+3/2)4),

then
∆2x2i+1 = x2i − 2x2i+1 + x2i+2 = x′2i+1(h2i+3/2 − h2i+1/2)+

1
2
x′′2i+1(h

2
2i+1/2 + h2

2i+3/2) +
1
6
x′′′2i+1(h

3
2i+3/2 − h3

2i+1/2) + O((h2i+1/2 + h2i+3/2)4),

Substituting the representations just obtained, we have

Bx̃(t) = (1− τ)2x2i + 2τ(1− τ)x̃2i+1 + τ2x2i+2 =

(1− τ)2x2i + 2τ(1− τ)
(

x2i+1 − 1
2
∆2x2i+1

)
+ τ2x2i+2 =

x2i+1 + x′2i+1(−(1− τ)2h2i+1/2 − τ(1− τ)(h2i+3/2 − h2i+1/2) + τ2h2i+3/2)+
1
2
x′′2i+1((1− τ)2h2

2i+1/2 − τ(1− τ)(h2
2i+3/2 + h2

2i+1/2) + τ2h2
2i+3/2)+

1
3!

x′′′2i+1(−(1− τ)2h3
2i+1/2 − τ(1− τ)(h3

2i+3/2 − h3
2i+1/2) + τ2h3

2i+3/2)+

O((h2i+3/2 + h2i+1/2)4).
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It is clear from this that for t ∈ (t2i, t2i+2)

x(t)−Bx̃(t) =
3
2
x′2i+1τ(τ − 1)(h2i+3/2 − h2i+1/2)−

1
2
x′′2i+1τ(1− τ)(h2i+3/2 − h2i+1/2)2 +

1
6
x′′′2i+1τ(1− τ)(τ(h2i+3/2 + h2i+1/2)3−

(3h2i+3/2h
2
2i+1/2 − h3

2i+3/2)) + O((h2i+3/2 + h2i+1/2)4).

The first terms on the right-hand side of the last equation are zero (we shall
hereinafter consider only such partitions) whenever

h2i+1/2 = h2i+3/2 = hi,

Under this condition, the error will be of the form

x(t)−Bx̃(t) =
4
3
x′′′2i+1τ(1− τ)(τ − 1/2)h3

i + O(h4
i ).

As
x(t)− x(ζ) = x′(t)ξ +

x′′(t)
2

ξ2 +
x′′′(t)

6
ξ3 + O(ξ4),

where ξ = t− ζ, then uniformly on i

x(ζ)−Bx̃(t) = x(t)−Bx̃(t) + x(ζ)− x(t) =

4
3
x′′′2i+1τ(1− τ)(τ − 1/2)h3

i − x′(t)ξ − x′′(t)
2

ξ2 − x′′′(t)
6

ξ3 + O(ξ4 + h4
i ).

In addition, for t ∈ (t2i, t2i+2)
ρ(Γ, B(̃Γ)) ≤√

‖x(t)−Bx̃(t)‖2C[t2i,t2i+2]
+ ‖y(t)−Bỹ(t)‖2C[t2i,t2i+2]

= O(h3
i )

holds uniformly on i. Therefore, according to the definition of the Hausdorff distance,
we need only consider those ξ which satisfy the condition ξ = O(h3

i ) uniformly on
i. Then we obtain

x(ζ)−Bx̃(t) =
4
3
x′′′2i+1τ(1− τ)(τ − 1/2)h3

i − x′(t)ξ + O(h4
i ),

and also

y(ζ)−Bỹ(t) =
4
3
y′′′2i+1τ(1− τ)(τ − 1/2)h3

i − y′(t)ξ + O(h4
i ).

Let
|Γ(ζ)−BΓ̃(∆n, t)|2 = (x(ζ)−Bx̃(t))2 + (y(ζ)−Bỹ(t))2.

Then, if max hi → 0 as n →∞, then for n large enough, the equation

max
ζ

min
t
|Γ(ζ)−BΓ̃(∆n, t)|2 =

max
i

max
0<τ<1

((
4
3
F2i+1τ(1− τ)(τ − 1/2)h3

i

)2

+ O(h7
i )

)
=

max
i

((
1

9
√

3
F2i+1h

3
i

)2

+ O(h7
i )

)
.

will hold. Similarly,

max
t

min
ζ
|Γ(ζ)−BΓ̃(∆n, t)|2 = max

i

((
1

9
√

3
F2i+1h

3
i

)2

+ O(h7
i )

)
.
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Thus, if maxhi → 0 as n →∞, then for large enough n, the equation

ρ2(Γ, B(̃Γ,∆n)) = max
i

((
1

9
√

3
F2i+1h

3
i

)2

+ O(h7
i )

)
.

will hold uniformly on i. Using the last equation, and following the outline of the
proof in references [6] – [8], we obtain the statement of the theorem.

The proof of Theorem 2 easily follows from Theorem 1.
Proof of Theorem 3. From the equations derived earlier to be convinced that

sinϕ(BΓ̃(∆n), t2i) =

(
1
3
(x′′′2iy

′
2i − x′2iy

′′′
2i)(h

2
i − h2

i−1)+

1
4
(x(4)

2i y′2i − x′2iy
(4)
2i )(h3

i−1 + h3
i ) + O((hi−1 + hi)4)).

Examining choice of nodes, as indicated in a condition of Theorem 3, we receive

h?
i−1 =

I

2n(F2i)1/3
+

F ′2iI
2

24n2(F2i)2/3
+ O(n−3),

and

h?
i =

I

2n(F2i)1/3
− F ′2iI

2

24n2(F2i)2/3
+ O(n−3).

From these and previous equations we obtain, for all i,

sin ϕ(BΓ̃(∆?
n), t2i) =

I3

n3

(
F ′2i

36
+

Φ2i

16F2i

)
,

This completes the proof of the Theorem 3.
We can apply the algorithm, and receive the desired result. Assume that curve

is given by a set of points describing the given contour with sufficient precision. It
could be a set of data taken manually from a surface, by scanner output, or in some
other way (by smoothing them,for example), or a set obtained by updating given
points by means of an approximating curve (for example, a spline).

So, let N points of smooth curve be given:

Mi = (xi, yi) (i = 1, 2, . . . , N),

and let the allowable error be ε.
We calculate quantities:

li+1/2 =
√

(xi+1 − xi)2 + (yi+1 − yi)2 (i = 1, 2, . . . , N − 1),

and

σi =
i∑

ν=1

lν+1/2, (i = 1, 2, . . . , N − 1).

We calculate

Fi+1/2 = ∆xi+1/2∆3yi+1/2 −∆3xi+1/2∆yi+1/2 (i = 1, . . . , N − 1),

and
F1/2 = F3/2; FN−1/2 = FN−3/2.

We now calculate a discrete analog of the primitive:

Ψ(t) =
∫ t

0

F (t)1/3dt
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It will be

Ψi =
i∑

ν=1

(|Fν+1/2|1/3 + N−1)lν+1/2, (i = 1, 2, . . . , N − 1),

Ψ0 = 0.

Further, using the formula (4) from theorem 2 we calculate the asymptotically
optimum number of nodes,according to the algorithm, as

n =

[
6

3
√

9
√

3ε
ΨN−1

]
+ 1,

And we construct the nodes of the asymptotically optimum partition ti (i = 1, 2, . . . , 2n+
1) according to the algorithm indicated in Theorem 1:

tj = (j − 1)ΨN−1/(2n + 1)−Ψk−1/Ψk + (k − 2)σN−1/N

where
iσN−1

N
≤ tj ≤ (i + 1)σN−1

N
and

Ψk < (j − 1)ΨN/(2n + 1)
for k = 2, 3, . . . and i ≤ 2n + 1.

The task remains to calculate discrete analogs for

(x(tj), y(tj)) (j = 1, . . . , 2n + 1)

For tj ∈ (σi, σi+1), there are data:

x(tj) =
(

σi+1 − tj
li+1/2

)
xi +

(
tj − σi

li+1/2

)
xi+1,

y(tj) =
(

σi+1 − tj
li+1/2

)
yi +

(
tj − σi

li+1/2

)
yi+1.

We construct the Bézier function with the required properties using the information
obtained by applying formulae (1).
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Рис. 1. The approximated curve
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Рис. 2. Bézier curve with equidistant nodes. The number of
intervals n = 15
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Рис. 3. The Bézier curve with asymptotically optimal nodes. The
number of intervals n = 15.
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Рис. 4. The symptotically optimal nodes by Bézier curve if
number n = 15.
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0 θ1 θ2 θ2n−1 θ2n = T

∫ ϑ

0
(Fn(t) + n−α)dt

HHHj

ϑ

Рис. 5



14 A.A. LIGUN, A.A. SHUMEIKO, S.P.RADZEVICH, E.D.GOODMAN

Correspondence should be directed to:
Eric D.Goodman, Professor and Director Case Center for Computer-Aided
Engineering and Manufacturing Michigan State University 112 Engineering

Building East Lansing, MI 48824 USA email: goodman@egr.msu.edu


