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Abstract

The self-organising map (SOM) and its variant, visualisation induced SOM (ViSOM), have been known to yield similar results to
multidimensional scaling (MDS). However, the exact connection has not been established. In this paper, a review on the SOM and its cost function
and topological measures is provided first. We then examine the exact scaling effect of the SOM and ViSOM from their objective functions. The
SOM is shown to produce a qualitative, nonmetric scaling, while the local distance-preserving ViSOM produces a quantitative or metric scaling.
Their relationship with the principal manifold is also discussed. The SOM-based methods not only produce topological or metric scaling but also
provide a principal manifold. Furthermore a growing ViSOM is proposed to aid the adaptive embedding of highly nonlinear manifolds. Examples
and comparisons with other embedding methods such as Isomap and local linear embedding are also presented.
c© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

A great challenge in the information era is to analyse a vast
amount of data in order to extract useful information and to dis-
cover meaningful patterns and rules. Clustering, classification
and projection of multidimensional data are common practices
for this purpose in many fields, ranging from high-throughput
bioinformatics, web information extraction, decision support
and marketing, to data and knowledge management. Seeking
a suitable and meaningful representation of a data space has
always been a key objective of data analysis and pattern recog-
nition. Projecting and abstracting data onto its underlying sub-
spaces can help reduce the number of features, identify latent
variables, detect intrinsic structures, and facilitate the visualisa-
tion of variable interactions. With the ever- increasing quantity
and complexity of the data (or pattern features) used for pattern
recognition tasks, more sophisticated methods are required and
are being developed. A great deal of research has been devoted
to this emerging topic, mainly on improving and extending the
classical methods such as principal component analysis (PCA)
and multidimensional scaling (MDS).
I An abbreviated version of some portions of this article appeared in Yin
(2007) as part of the IJCNN 2007 Conference Proceedings, published under
IEE copyright.
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PCA has for long been considered to be the workhorse,
and widely used for reducing the number of variables and
visualising data in scatter plots or linear subspaces. Singular
value decomposition and factor analysis are often adopted to
perform the task due to various advantages, such as direct
operation on the data matrix, stable results even when the
data matrix is ill-conditioned, and decomposition at both the
feature and data levels. The linearity of PCA however limits its
power for practical, complex and increasingly large data sets,
as it cannot capture nonlinear relationships defined by beyond
second order statistics. Extension to nonlinear projection, in
principle, can tackle the problems better; yet a unique solution
is still to be defined (Malthouse, 1998). Various nonlinear
methods have been proposed, such as the auto-associative
networks (Kramer, 1991), generalised PCA (Karhunen &
Joutsensalo, 1995), kernel PCA (Schölkopf, Smola, & Müller,
1998), principal curve and surface (Hastie & Stuetzle, 1989),
and local linear embedding (LLE) (Roweis & Saul, 2000).

MDS is another popular methodology that projects data
onto a low (often two) dimensional plane by preserving as
closely as possible the inter-point distances (or pair-wise
dissimilarities) (Cox & Cox, 1994). Metric MDS generalises
classical MDS by minimising a stress function. The mapping is
generally nonlinear and can reveal the overall structure of the
data. Sammon mapping (Sammon, 1969) is a widely known
example and uses an inter-point distance in the data space

http://www.elsevier.com/locate/neunet
mailto:h.yin@manchester.ac.uk
http://dx.doi.org/10.1016/j.neunet.2007.12.027


H. Yin / Neural Networks 21 (2008) 160–169 161
as the weighting for the stress. In contrast to metric MDS,
nonmetric MDS finds a monotonic relationship (instead of
metric one) between the dissimilarities of the data points in
the data space and those of their corresponding coordinates in
the low-dimensional space. A more general weighting scheme
has been proposed recently and the resulting MDS is called
the generalised MDS (Bronstein, Bronstein, & Kimmel, 2006).
Isomap (Tenenbaum, de Silva, & Langford, 2000) applies
scaling on geodesic instead of Euclidean distances. MDS
techniques are generally point-to-point mappings and do not
provide a generalising mapping function or manifold.

Neural networks present alternative approaches to nonlinear
data projection and dimension reduction. They can provide
(implicit) generalising mapping functions. Early examples
include feed-forward neural network based mapping (Mao &
Jain, 1995) and radial-basis-function based MDS (Lowe &
Tipping, 1996). The self-organising map (SOM) (Kohonen,
1982, 1997) has become a widely used method for data
visualisation. Self-organisation is a fundamental pattern
recognition process, in which intrinsic inter- and intra-pattern
relationships within the sensory data are learnt. Kohonen’s
SOM is a simplified, abstracted version of Willshaw and von
der Malsburg’s retinotopic mapping model (Willshaw & von
der Malsburg, 1976). Modelling and analysing such mappings
are important to understanding how the brain perceives,
encodes, recognises, and processes the patterns it receives and
thus, if somewhat indirectly, are beneficial to machine-based
pattern recognition. The SOM is a topology-preserving vector
quantisation. The topology-preserving property is utilised to
extract and visualise relative mutual relationships among the
data. Many variants and extensions have since been proposed,
including the visualisation induced SOM (ViSOM) (Yin,
2002a). The ViSOM regularises the inter-neuron distances
within a neighbourhood so as to preserve (local) distances
on the map. The SOM and some variants have been linked
with the principal curve and surface (e.g. Ritter, Martinetz,
and Schulten (1992) and Yin (2002b)). It has also been widely
observed that SOMs produce a similar effect to MDS. In fact
it has been argued that the SOM is closer to MDS than it is to
the principal curve/surface (Ripley, 1996). However, the exact
connection between SOMs and MDS has not been established.
Initial analysis has shown such connections (Yin, 2007). This
paper further elaborates the relationship between the SOM (and
ViSOM) and MDS, and to what extent they are analogous, by
analysing the underlying objective functions of the mappings.
The connections with principal manifolds are also analysed. A
growing variant of local distance preserving ViSOM is then
proposed for embedding nonlinear manifolds.

The paper is organised as follows. Section 2 provides
a review on the SOM and its statistical properties. Issues
surrounding its convergence and cost functions are clarified.
Then the distance-preserving ViSOM is described in Section 3.
In Section 4, after a general framework and definitions of MDS
including metric, nonmetric and generalised MDS are given,
the scaling effects of the SOM and ViSOM are examined and
demonstrated. Their links to the principal curve/surface are
also analysed, followed by a growing ViSOM for embedding
nonlinear manifolds. Examples and experiments are presented
in Section 5. Brief conclusions are given in the last section.

2. Self-organising maps: A review

2.1. The SOM algorithm

External stimuli are received by various sensory or receptive
fields (e.g. visual-, auditory-, motor-, or somato-sensory),
coded or abstracted by the living neural networks, propagated
through axons, and projected onto the cerebral cortex, often to
distinct parts of the cortex. The different areas of the cortex
(cortical maps) respond to different sensory inputs, though
many functions and actions require collective responses from
various areas. Topographically ordered mappings are widely
observed in the cortex. The main structures (primary sensory
areas) of the cortical maps are established genetically in a
predetermined manner (Kohonen, 1984). More detailed areas
(associative areas) between the primary sensory areas, however,
are developed through self-organisation gradually during life,
and in a topographically meaningful fashion. Therefore,
studying such topographic projections, which had been ignored
during the early period of neural information processing
research (Kohonen, 1986), is undoubtedly fundamental to the
understanding and construction of the dimension-reduction
mapping for effective representation of sensory information and
feature extraction.

Von der Malsburg and Willshaw first developed in
mathematical form the self-organising topographic mappings,
mainly from two-dimensional presynaptic sheets to two-
dimensional postsynaptic sheets, based on retinatopic mapping:
the ordered projection of the visual retina to the visual
cortex (von der Malsburg & Willshaw, 1973; Willshaw
& von der Malsburg, 1976). Kohonen (1982) abstracted
this self-organising learning model and proposed a much
simplified mechanism which ingeniously incorporates the
Hebbian learning rule and lateral interactions. This simplified
model can emulate the self-organisation effect. Although the
SOM algorithm was more or less proposed in a heuristic
manner, it is an abstract and generalised model of the self-
organisation or unsupervised learning process.

In the SOM, a set of neurons, often arranged in a 2-D
rectangular or hexagonal grid or map, is used to form a discrete,
topological mapping of an input space, X ∈ Rn . At the start of
the learning, all the weights {w1,w2, . . . ,wM } are initialised
to either small random numbers or some specific values (e.g.
the principal subspace), where wi is the weight associated to
neuron i and is a vector of the same dimension, n, of the input,
M is the total number of neurons. Denote by ri the discrete
vector defining the position (coordinates) of neuron i on the
map grid. Then the algorithm iterates the following steps.

• At each time t , present an input, x(t), select the winner,

v(t) = arg min
k∈Ω

‖x(t)− wk(t)‖. (1)

• Update the weights of the winner and its neighbours,

∆wk(t) = α(t)η(v, k, t)[x(t)− wk(t)]. (2)
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• Repeat until the map converges.

Here α(t) is the learning rate and η(v, k, t) is the
neighbourhood function and Ω is the set of neuron indexes.
Although one can use a top-hat type of neighbourhood function,

a Gaussian, η(v, k, t) = e
−

d2
vk

2σ(t)2 , is often used in practice with
σ(t), representing the effective range of the neighbourhood and
dvk = ‖rv − rk‖, the distance between neurons v and k on the
map grid.

2.2. Convergence and cost function

The SOM was proposed to model the sensory-to-cortex
mapping, and thus is an unsupervised, associative memory
mechanism. Such a model is also related to vector quantisation
(VQ) in coding terms. The SOM has been shown to be an
asymptotically optimal VQ (Yin & Allinson, 1995). More
importantly, with the neighbourhood learning, the SOM is an
error tolerant VQ and a Bayesian VQ (Luttrell, 1990, 1994).
Convergence and ordering has only been formally proven in
the trivial one- dimensional case. A complete proof of both
convergence and ordering in multidimensional cases is still
outstanding, though there have been several attempts that have
made progress(for example, Ritter and Schulten (1988), Erwin,
Obermayer, and Schulten (1992a), Erwin, Obermayer, and
Schulten (1992b), Lo and Bavarian (1991), Yin and Allinson
(1995) and Lin and Si (1998)). Especially, it was shown
that there was no cost function that the SOM would follow
exactly (Erwin et al., 1992a, 1992b). Such an issue is also linked
to the claimed lack of an exact cost function that the algorithm
optimises.

Recent work by various researchers has shed light on
this intriguing issue surrounding the SOM. In Yin and
Allinson (1995), the Central Limit Theorem is extended and
used to show that with the diminishing neighbourhood, the
weight vectors are asymptotically Gaussian distributed and will
converge in the mean-square sense to the means of the Voronoi
cells. The authors have also proved that the initial state has
a diminishing effect on the final weights when the learning
parameters meet the convergence conditions. Such an effect
has been recently verified in de Bolt, Cottrell, and Verleysen
(2002) using Monte-Carlo bootstrap cross-validation. The
ordering was not considered. Luttrell (1990) first related a
hierarchical noise tolerant coding theory to the SOM. When the
transmission channel noise is taken into consideration, a two-
stage optimisation has to be done, not only to minimise the
representation distortion (as in the VQ), but also to minimise
the distortion caused by the channel noise. He revealed that
the SOM can be interpreted as such a coding algorithm. The
neighbourhood function acts as the model for the channel noise
distribution and should not go to zero. Such a noise tolerant VQ
has the following objective function (Luttrell, 1990),

D2 =

∫
dxp(x)

∫
dnπ(n) ‖x − wk‖

2 (3)

where n is the noise variable and π(n) is the noise distribution.
Durbin and Mitchison (1990) and Mitchison (1995) have linked
the SOM and this noise tolerant VQ with minimal wiring of
cortex-like maps.

When the codebook (map) is finite, the noise can be
considered as discrete; the cost function can thus be re-
expressed as,

D2 =

∑
i

∫
Vi

∑
k

π(i, k) ‖x − wk‖
2 p(x)dx (4)

where Vi is the Voronoi region of cell i . When the channel noise
distribution is replaced by a neighbourhood function (analogous
to inter-symbol dispersion), this gives the cost function of
the SOM algorithm. The neighbourhood function can be
interpreted as a channel noise model. Such a cost function
has been discussed in the SOM community (e.g. Kohonen
(1991), Lampinen and Oja (1992), Heskes (1999), Ripley
(1996) and Yin (1996)). The cost function is, therefore,

E(w1, . . .wM ) =

∑
i

∫
Vi

∑
k

η(i, k) ‖x − wk‖
2 p(x)dx. (5)

This leads naturally to the SOM update algorithm using the
sample, or stochastic, gradient descent method. That is, for each
Voronoi region, the sample cost function is,

Êi (w1, . . .wM ) =

∫
Vi

∑
k

η(i, k) ‖x − wk‖
2 p(x)dx. (6)

The optimisation for the weights {w1,w2, . . . ,wM } can be
sought using the sample gradients. The sample gradient for w j
is,

∂ Êi (w1, . . .wM )

∂w j
= 2η(i, j)(x − w j ) (7)

which leads to the SOM updating rule, Eq. (2). Note
that, although the neighbourhood function η(i, j) is only
implicitly related to w j , it does not contribute to the weight
optimisation, nor does the weight optimisation lead to its
adaptation (neighbourhood adaptation is controlled by a pre-
specified scheme, unrelated to the weight adaptation); thus
the neighbourhood can be omitted from taking the partial
differential. This point has caused problems in interpreting the
cost function of the SOM in the past.

It has however been argued that this energy function is
violated at boundaries of Voronoi cells where the input x
has exactly the same smallest distance to two neighbouring
neurons. Thus this energy function holds mainly for the discrete
cases where the probability of such boundary input points is
close to zero, or the local (sample) cost function Êi should be
used instead in deciding the winner (Heskes, 1999). When a
spatial-invariant neighbourhood function is used (as is often the
case), assigning the boundary input to either cells will lead to
the same local sample cost or error; therefore any input data on
the boundary can be assigned to either Voronoi cells that have
the same smallest distance to it (for example, using the first-
come-first-served manner). Only when the neurons concerned
lie on the borders of the map, does such violation occur due
to unbalanced neighbourhoods of the neurons. The result is a
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slightly more contraction towards to the centre (inside) of the
map for the border neurons (Kohonen, 1991). Using either the
simple distance or the local distortion measure as the winning
rule will result in border neurons being contracted towards
the inside of the map, especially when the map is not fully
converged or when the effective range of the neighbourhood
function is large. With the local distortion rule, this boundary
effect is greater as greater local error is incurred at the border
neurons due to their few neighbouring neurons than inside
neurons.

To follow the cost function exactly, the winning rule should
be modified to follow the local sample cost function Êi (or
the local distortion measure) instead of the simplest nearest
distance, that is,

v = arg min
i

∑
k

η(i, k) ‖x − wk‖
2 . (8)

When the neighbourhood function is symmetric (as is often
the case), and when the data density function is smooth,
this local distortion winning rule is almost the same as the
simplest nearest distance rule for most non-boundary nodes,
especially if the number of nodes is large. On the map borders,
however, differences exist due to the imbalance of the nodes
presented in the neighbourhood. Such differences however
become negligible to the majority of the neurons, when a large
map is used and when the neighbourhood function shrinks to its
minimum scale.

2.3. Topological order measures

The quality of the mapping in terms of topographic
or topological preservation is measured for its topological
ordering, in addition to the overall quantisation error. Such a
measure is not unique (unless the input and map dimensions
are the same) and there is no clear definition of order (Goodhill
& Sejnowski, 1997). Among several proposed measures, Bauer
and Pawelzik (1992) proposed a measure called the topology
product to measure the topological ordering of the map:

P =
1

M2 − M

×

∑
i

∑
j

log

(
j∏

l=1

d D(wi ,wζ O (l,i))

d D(wi ,wζ D(l,i))

d O(i, ζ O(l, i))

d O(i, ζ D(l, i))

) 1
2k

(9)

Here d D and d O represent the distance measures in the input
(or data) space and on the output (or map) space respectively.
ζ D(l, i) and ζ O(l, i) represent the l-th neighbour of node i in
the data (D) and map(O) spaces, respectively.

The first ratio in the product measures the match of weight
distance sequences within a neighbourhood (upto j) on the map
and those in the data space. The second ratio is the ratio of
index distance sequences within the neighbourhood on the map
and those in the data space. The topographic product measures
the product or the match of these two ratios for all the possible
neighbourhoods.

Villmann, Der, Herrmann, and Martinetz (1997) proposed
a topographic function to measure the “neighbourhood-ness”
of weight vectors in data space as well as on the map grid.
The neighbourhood-ness of the weight vectors is defined by the
adjacent Voronoi cells of the weights. The function measures
the degree to which weight vectors are ordered in the data space
as to their indexes on the grid, as well as how well the indexes
are preserved when their weight vectors are neighbours.

Defining a fully ordered map can be straightforward using
the distance relations (Yin, 1996). For example, if all the
nearest neighbouring nodes on the map grid have their nearest
neighbouring nodes’ weights in their nearest neighbourhood in
the data space, we can call the map a 1st-order (ordered) map,
that is,

d(wi ,w j ) ≤ d(wi ,wk), ∀i ∈ Ω; j ∈ Λ1
i ; k 6∈ Λ1

i (10)

where Ω is the set of grid indexes and Λ1
i denotes the 1st order

neighbourhood of node i on the map grid.
Similarly, if the map is a 1st-order map, and all the 2nd order

neighbouring nodes on the grid have their weights in their 2nd
nearest neighbourhoods in the data space, we call the map a
2nd-order (ordered) map. For the 2nd ordered map, the distance
relations to be satisfied are:

d(wi ,w j ) ≤ d(wi ,wk) ≤ d(wi ,wl),

∀i ∈ Ω; j ∈ Λ1
i ; k 6∈ Λ1

i & k ∈ Λ2
i ; l 6∈ Λ1

i ∨ Λ2
i (11)

and so forth to define higher order maps with inter-
neuron distance hierarchies. An m-th order map is optimal
for tolerating the channel noise spreading up to the m-th
neighbouring code. Such fully ordered maps, however, may
not be always achievable, especially when the mapping is
a dimension reduction one. Then the degree (percentage) of
the nodes with their weights being ordered can be measured.
Together with the probabilities of the nodes being utilised, it
can be used to quantify the topology preservation and to what
degree and to what order the map can tolerate the channel
(inter-symbol) noise. This approach can directly associate the
topological order with the error/fault tolerance ability of the
map.

Goodhill and Sejnowski (1997) proposed the C measure,
a correlation between the similarity of stimulus in the data
space and the similarity of their prototypes in the map space,
to quantify the topological preservation:

C =

∑
i

∑
j

F(i, j)G[M(i),M( j)] (12)

Here F and G are symmetric similarity measures in the input
and map spaces respectively and are problem specific, and M(i)
and M( j) are the mapped points of nodes i and j , respectively.

The C measure evaluates the correlation between distance
relations of two spaces and is a more generalised topographic
measure. Many topographic mapping objectives can be unified
under the C measure. It has also been shown that if a mapping
that preserves ordering exists, then maximising C will find it.
Thus the C measure can also be used as the objective function
of the mapping, an important property different from other
topology preservation measures and definitions.
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The above list of measures is by no means complete.
Other measures for ordering exist in the literature. One can
always use the underlying cost function equation (5) to directly
measure the goodness of the mapping, including the topology
preservation. At least one can use a temporal window to take
a sample of it (Kohonen, 1991). The (final) neighbourhood
function specifies the level of topology (ordering) the mapping
is likely to achieve or is required.

3. Visualisation induced SOM (ViSOM)

The SOM has been widely used for data visualisation.
However, the inter-neuron distances, when referred to the
data space, have to be crudely or qualitatively marked by
colours or grey levels on the trained map. The coordinates of
the neurons (the resulting of scaling) are fixed on the lower
dimensional (often 2-D) grid and do not resemble the distances
(dissimilarities) in the data space.

For metric scaling and data visualisation, a direct and
faithful display of the datas structure and distribution is highly
desirable. The visualisation induced SOM (ViSOM) has been
proposed to extend the SOM for distance preservation on the
map (Yin, 2002a). For the map to capture the data manifold
structure directly, (local) distance quantities must be preserved
on the map, along with the topology. The map can be seen as
a smooth and graded mesh embedded into the data space, onto
which the data points are mapped and the inter-point distances
are approximately preserved.

In order to achieve that, the updating force, [x(t) − wk(t)],
of the SOM algorithm is decomposed into two elements,
[x(t)−wv(t)]+ [wv(t)−wk(t)]. The first term, [x(t)−wv(t)],
represents the updating force from the winner v to the input
x(t), and is similar to the updating force used by the winner
v. The second term, [wv(t) − wk(t)], is a lateral contraction
force bringing the neighbouring neuron k to the winner. In the
ViSOM, this lateral contraction force is regulated in order to
help maintain unified inter-neuron distances locally on the map.
The update rule is

∆wk(t) = α(t)η(v, k, t) ([x(t)− wv(t)]

+β[wv(t)− wk(t)]) (13)

where β is a constraint coefficient — the simplest form being
β = δvk/(dvkλ)−1, δvk is the distance of neuron weights in the
input space, dvk is the distance of neuron indexes on the map,
and λ is a resolution constant.

The ViSOM regularises the inter-neuron contraction so that
local distances between the nodes on the map are analogous
to the distances of their weights in the data space. In addition
to the SOM objective of minimising the quantisation error, the
aim is also to maintain constant inter-neuron distances locally.
When the data points are eventually projected onto the trained
map, the distance between data points i and j on the map is
proportional to the distance of these two points in the data
space, at least locally, subject to the quantisation error (the
distance between a data point and its neural representative).
That is, di j ∝ δi j or λdi j ≈ δi j . This makes the visualisation
more direct and quantitatively measurable. The resolution of the
Fig. 1. Local linear projection. x: data point, v: winning node, and x′: the
projected point on the map.

map can be enhanced by interpolating a (small) trained map or
by incorporating the local linear projection (LLP) method (Yin,
2003). Instead of being projected onto the winning node v (or
wv), the data point x is projected to the sub plane spanned by
the two closest edges, as shown in Fig. 1. The projected point
is, therefore,

x′
= wv + max

v′=v±1

{
(x − wv) • (wv − wv′)

‖wv − wv′‖
2 , 0

}
(14)

where ‘•’ denotes dot-product.
The size or covering range of the neighbourhood function

decreases from an initially large value to a final small one.
The final neighbourhood, however, should not contain just the
winner. The rigidity or curvature of the map is controlled by
the ultimate size of the neighbourhood. The larger this size, the
flatter the final map is in the data space. Guidelines for setting
these parameters can be found in Yin (2002b).

Several improvements have since been made to the ViSOM.
For instance, in Wu and Chow (2005) a probabilistic data
assignment is used in both the input assignment and the
neighbourhood function, and a second order constraint is
adopted. In Estévez and Figueroa (2006) the ViSOM is
extended to an arbitrary, neural gas type of map structure.

4. Connection with multidimensional scaling and principal
manifolds

4.1. Self-organising maps and multidimensional scaling

MDS is a traditional approach to dimension reduction and
data visualisation. MDS aims to project (or embed) high-
dimensional data points or map proximities of objects onto a
lower, often two dimensional space by preserving as faithfully
as possible the inter-point metrics or the proximities (Borg &
Groenen, 2005; Cox & Cox, 1994). The projection is generally
nonlinear and can reveal the overall structure and mutual
relationship of the data set.

Assume that the data is represented by either a set of n-
dimensional vectors or given as a dissimilarity matrix. Let δi j
denote the dissimilarity between objects i and j . For a set of n-
dimensional data points, the dissimilarity δi j is often calculated
(but not necessarily) by the (Euclidean) distance of data vectors
δi j = ‖xi − x j‖, xi , x j ∈ Rn . When objects are projected
onto a lower dimensional space, let yi and y j be the mapped
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points (coordinates) of objects i and j in the new space; then
the distance between mapped points is di j = ‖yi − y j‖.

There are several types of MDS for different purposes
and effects. Classical MDS looks for a configuration so that
the distances between projected points match the original
dissimilarities, i.e. di j = δi j ,∀i, j . Metric MDS seeks a
solution where the dissimilarities are proportional to the
distances of projected points, di j = f (δi j ),∀i, j ; here f is
a continuous, monotonic function, or a metric transformation
function that transforms the dissimilarities to distance metrics.
In practice, such exact dissimilarity-distance matches may not
be possible due to data noise and imprecision; the equality
is replaced by approximation, i.e. “≈”, meaning “as equal as
possible” (Borg & Groenen, 2005).

Nonmetric MDS deals with rank order type dissimilarities
and seek a configuration so that distances between pairs of
mapped points match the dissimilarities order-wise “as well as
possible”.

An MDS configuration is often sought by minimising the
following general cost, or the raw Stress, function,

S =

∑
i, j

(
f (δi j )− di j

)2 (15)

where f is the metric transformation function. In some
cases, the above raw stress is normalised by

∑
i, j d2

i j or∑
i, j δ

2
i j to give a relative reading of the overall stress.

Other normalisation schemes are also possible. For example,
in Sammon mapping (Sammon, 1969), an intermediate
normalisation (pair-wise distance of original space) is used
to preserve good local distributions and at the same time to
maintain a global structure. The Sammon stress is expressed
as,

S =
1∑

i< j
δi j

∑
i< j

(δi j − di j )
2

δi j
. (16)

A second-order Newton optimisation method is used to
recursively solve the optimal configuration.

For general metric MDS, especially when the original
dissimilarities need to be transformed to a distance-like form, f
is a monotonic transformation function, e.g. a linear function.
For classical MDS and many cases of metric MDS, when the
data are given as high dimensional vectors, f is simply the
identify function, and the stress becomes

S =

∑
i, j

(
δi j − di j

)2
. (17)

That is, the metric MDS configuration tries to preserve, as well
as possible, the pair-wise distances of original data points on
the projected space.

For nonmetric MDS, f is a monotonic function satisfying

if δi j ≤ δkl , then di j ≤ dkl , ∀i, j, k, l. (18)

That is, nonmetric MDS produces an ordinal scaling rather than
a metric one.
The similarities between SOMs and metric MDS in terms
of topographic mapping, mostly the qualitative likeness of the
mapping results, have been reported before (e.g. Ripley (1996)).
However, some limitations of using the SOM for MDS have
also been noted (Flexer, 1997) — the main one being that
SOM does not preserve distance. Many applications combine
the SOM and MDS for improved visualisation of the SOM
projection results. In Ripley (1996), it is argued that the SOM is
closer to MDS than to the principal manifold. In Yin (2002b),
it is shown that the distance preserving ViSOM approximates a
discrete principal manifold and also produces a similar mapping
result as compared to the Sammon mapping — a metric MDS.

Let’s take a close look at the cost function of metric MDS,
Eq. (17). It can be rewritten as,∑

i, j

(δi j − di j )
2

=

∑
i, j

(δ2
i j + d2

i j − 2δi j di j ). (19)

The first term is a constant as data points are fixed, and the
second term will be eventually fixed as it is to match the first
term. To minimise the above stress is to maximise the third
term. The third term plays a dominant role and explains that
the mapping is to form a corresponding correlation between
inter-point distances in the original and mapped spaces. This
is closely related to the C measure.

From the cost function of the SOM, Eq. (5), we can see that
the sample cost function – the integrand of Eq. (6) – can be
expressed as (for the data contained in Voronoi region i):∑

k

η(i, k) ‖x − wk‖
2 (20)

where x ∈ Vi , Voronoi region of neuron i , and wk is the weight
vector of neuron k.

As any data that belongs to neuron i will be quantised to, or
be represented by, wi the weight vector of neuron i , x can be
replaced by wi in the above expression, as far as the projection
is concerned. Furthermore, η(i, k) is a function of ‖ri − rk‖ or
dik . Then the above equation can be expressed as,∑

k

η(i, k) ‖x − wk‖
2

=

∑
k

f (‖ri − rk‖) ‖wi − wk‖
2

=

∑
k

f (dik)δ
2
ik . (21)

For the SOM, f (dik) is typically an exponential function of
d2

ik — see Section 2.1. The first term of its Taylor expansion
is proportional to d2

ik . This leads the above cost function
approximately to∑

k

−(dikδik)
2 (22)

where dik represents the distance between the indexes (mapped
data points) of the neurons i and k on the map grid.

Therefore, the SOM preserves the correlation between the
pair-wise distances in both data and map spaces, as in MDS. In
the standard SOM, the grid is fixed and the distance between
nodes, dik , does not reflect metrically ‖wi − wk‖, the distance
of their weights in the input space, i.e. δik , the distance of the
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data points mapped onto these two nodes. Therefore, the scaling
is to preserve the orders of the indexes of the neurons with
the distances of their corresponding data regions in the input
space. As the grid (coordinates) is prefixed and not scalable,
the data points will be mapped to the grid positions to achieve
maximum correlation. This is a qualitative scaling and does not
preserve the distance in the mapped space. This, however, can
also be regarded as a kind of generalisation as two spaces are
no longer required to be in the same metric space. The SOM
thus can be used to relate any two metric spaces by forming
such a topological mapping, similarly to the nonmetric MDS
condition, Eq. (18). That is, SOM is a nonmetric MDS or
ordinal scaling.

In the ViSOM, however, as dik is proportional to ‖wi −wk‖,
as shown in Section 3. In the metric scaling sense, dik is a
metric function of δi j . In other words it shows that the ViSOM
is a distance-preserving, metric MDS. The squared distance
correlation terms in Eq. (22) have an effect not much different
from those non-squared ones of MDS in Eq. (19).

4.2. Nonlinear principal manifold and self-organising maps

Despite a number of recent approaches to extending linear
PCA into a nonlinear variant, such as the auto-associative
network (Kramer, 1991), generalised PCA (Karhunen &
Joutsensalo, 1995), and kernel PCA (Schölkopf et al., 1998),
the subject remains largely open and active. The principal curve
and principal surface (Delicado, 2001; Hastie & Stuetzle, 1989)
constitite the principled nonlinear extension of the PCA. The
principal curve is defined as a smooth and self-consistent curve,
which does not intersect itself, passing through the middle of
the data. Denote x as a random vector in Rn with density p and
a finite second moment. Let ψ(•) be a smooth unit-speed curve
in Rn , parameterised by the arc length ρ (from one end of the
curve) over 5 ∈ R, a closed interval.

For a data point x, its projection index on ψ is defined as,

ρψ (x) = sup
ρ∈5

{ρ : ‖x − ψ(ρ)‖ = inf
ϑ

‖x − ψ(ϑ)‖}. (23)

The curve is called a self-consistent principal curve of ρ if

ψ(ρ) = E[X|ρψ (X) = ρ]. (24)

For a finite data set of N points, the density is often not
known, and the above expectation is replaced by a smoothing
method, such as the kernel smoother

ψ(ρ) =

N∑
t=1

x(t)κ(ρ, ρt )

N∑
t=1

κ(ρ, ρt )

. (25)

The principal component is a special case of the principal
curve if the data distribution is ellipsoidal. Although mainly
principal curves have been studied, an extension to higher
dimensions – for example, principal surfaces or manifolds
– is feasible in principle. However, in practice, a good
implementation of principal curve/surface relies on an effective
and efficient algorithm.
The SOM has been related to discrete principal curve/
surface (Ritter et al., 1992). However, differences remain
in both the projection and the smoothing processes. In the
SOM, data are projected onto the nodes rather than onto the
curve/surface. The principal curve or surface performs the
smoothing entirely in the data space. The smoothing process
in the SOM and ViSOM, as a convergence criterion, is (e.g. Yin
(2002b)),

wk =

N∑
t=1

x(t)η(v, k, t)

N∑
t=1

η(v, k, t)

. (26)

The smoothing is governed by the indexes of the neurons
in the map space. The kernel smoothing uses the arc length
parameters (ρ, ρi ) or ‖ρ−ρi‖ exactly, while the neighbourhood
function uses the node indexes (k, i) or coordinates (rk, ri ).
Arc lengths reflect the curve distances between the data points
in the data space. However, the node indexes are integer
numbers denoting the nodes or the positions on the map grid,
not the positions in the data space. So ‖rk − ri‖ does not
resemble ‖wk − wi‖ in the SOM. In the ViSOM, as the inter-
neuron distances on the map represent those in the data space
(subject to the resolution of the map and the quantisation error),
therefore, λ‖rk − ri‖ ≈ ‖wk − wi‖. Furthermore, the LLP
can make this approximation even more precise. The smoothing
process in the ViSOM resembles that of the principal curve as
shown below:

wk =

N∑
t=1

x(t)η(v, k, t)

N∑
t=1

η(v, k, t)

≈

N∑
t=1

x(t)η(wv,wk, t)

N∑
t=1

η(wv,wk, t)

. (27)

It shows that the ViSOM is a better approximation to the
principal curve/surface than the SOM is. The SOM and ViSOM
are similar only when the data are uniformly distributed, or
when the number of nodes becomes very large, in which
case both the SOM and ViSOM will closely approximate the
principal curve/surface.

As the ViSOM is a discrete principal manifold, at the same
time it is also a MDS. This implies that the MDS and principal
manifold perform the same underlying task at least in the
context of data visualisation and dimension reduction. Finding
a principal manifold – a smooth curve/surface passing through
the middle of the data – may well result in a topographic and
metric scaling of the input space onto a lower dimensional
manifold. On the other hand, although MDS presents a useful
scaling of the data on a low dimensional space for visualisation,
the principal manifold can provide the underlying mapping
function.

4.3. Growing ViSOM for nonlinear embedding

Although we have shown that SOM and ViSOM are MDS
methods and similar to the principal curve/surface, one of
the difficulties for SOM-based algorithms is to converge to
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(a) Sammon MDS. (b) SOM (with colouring). (c) ViSOM (λ = 0.075).

Fig. 2. Scaling of Iris data set by various methods. ‘×’: Iris setosa, ‘+’: Iris versicolor, ‘o’: iris virginica.
highly nonlinear manifolds such as swissroll-like data. Indeed
high nonlinearity poses problems for many MDS and data
projection methods. Isomap (Tenenbaum et al., 2000) adopts
a geodesic distance within a small neighbourhood, instead of a
global Euclidean distance in MDS to capture the nonlinearity
of the data set. LLE (Roweis & Saul, 2000) uses local linear
embedding to approximate global nonlinearity.

For a highly nonlinear manifold, it is often difficult for a
map of pre-fixed size to converge correctly, either because the
linear sub manifold is far from the true manifold, or due to the
complex nature of untangling the map. Here, the core of the
ViSOM, that it is local distance-preserving, is used to extract a
highly nonlinear manifold. An incremental ViSOM or growing
ViSOM (gViSOM) is proposed as below for embedding and
metric-scaling nonlinear manifolds.

gViSOM algorithm:

(1) Start with a small initial map, say M0 × M0, in either
rectangular or hexagonal, though the latter is preferred for
better nonlinear abilities. Place the initial map onto a linear
subspace of either the entire or a local region of the data
space. Set the desired resolution and the neighbourhood
(locality) size.

(2) Randomly draw a data sample from the data space and find
the winning neuron with the shortest distance.

(3) If the sample falls within the neighbourhood, update the
weights of the neurons of the neighbourhood using the
ViSOM principle; otherwise go back to Step 2.

(4) At regular iteration intervals (for instance, every 1000
iterations), if the growing condition is met (that is, the
data is underrepresented by the existing map), grow the
map by adding a column or row to the side with the
highest activities (measured by the winning frequencies).
The added column or row is a linear extrapolation of the
existing map. Other growing structures can be used, such
as incrementing polygons instead of entire column or row
for a free structure of the map and efficient use of neurons.

(5) As in the ViSOM, at regular intervals (every certain number
of iterations), refresh the map (neurons) probabilistically.

(6) Check if the map has converged. If not go back to Step (2);
if so go to the next step.

(7) Project the data samples onto the map, either to the neurons
or by the LLP resolution enhancement method.
5. Experiments and comparisons

The first example is on the Iris data set, which consists
of 150 4-D vectors of three iris categories, each having 50
samples. The results of metric MDS (Sammon mapping), SOM
and ViSOM are shown in Fig. 2. A 100 × 100 hexagonal grid is
used for both the SOM and ViSOM and the U matrix colouring
is applied to the SOM result. All three methods initialise the
mapping on the plane spanned by the first two eigenvectors.
As can be seen, ViSOM produces a metric scaling similar to
the Sammon mapping; while the SOM provides a qualitative
scaling of the data points. The advantage of a metric scaling
is that the distribution of the samples or objects is faithfully
preserved.

The next experiment is on a journal citation data set used
for studying MDS (Groenen & Heiser, 1996). The data set
consists of the numbers of citations of 28 journals from
the same set of journals in the psychometric literature. The
raw data resemble similarity measures. They were scaled
by a natural logarithm to provide a more natural effect of
the citations, and self-citations were removed. The scaling
results of these 28-D vectors by Sammon MDS, SOM and
ViSOM are shown in Fig. 3. All three methods have produced
some meaningful configurations showing the interrelationships
among the journals, with statistical journals being mainly
positioned on the left and psychological journals generally on
the right. Both SOM and ViSOM maps are in the form of a
20×20 rectangular grid. The ViSOM scaling is more similar to
the metric MDS, while the SOM simply confines all the objects
topologically onto the grid.

The last experiment is on embedding the highly nonlinear
3-D Swissroll data by the gViSOM, Isomap and LLE. Here
2000 data points were generated according to (Roweis & Saul,
2000). The gViSOM started with a 5×5 grid and finally settled
to 18 × 70. The resolution was set to 1.5. Fig. 4(a) shows the
gViSOM embedding in the data space with its final flattened
manifold revealed in Fig. 4(b). Typical results of Isomap and
LLE, obtained using the code provided by their authors, are
shown in Fig. 4(c) and (d), respectively.

The advantages of the gViSOM are evident as it produces
a much more faithful metric scaling and is able to extract a
highly nonlinear manifold function. In addition, it can cope
with discontinuities in the manifold (for example, holes in
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(a) Metric MDS (Sammon mapping).

(b) SOM scaling.

(c) ViSOM (λ = 5).

Fig. 3. Metric MDS, SOM and ViSOM scaling of Citation data set.

manifold or disjoint manifold), and adapt to the dynamics (slow
changes) of the manifold, for which both Isomap and LLE (and
other scaling methods) would have to re-capture with the entire
data set once any part or whole were updated. SOM-based
methods also have better abilities for handling noise.

6. Conclusions

This paper provides a review on the self-organising map
(SOM) and the issues surrounding its cost function and
topology measures. It then reveals the connection between the
SOM (or its variant ViSOM) and multidimensional scaling
(MDS) through analysing their cost functions, though such
an analogy has been reported in the literature before, mainly
based on experimental results. The analysis shows that SOMs
(a) Swissroll data and gViSOM embedding.

(b) Extracted manifold by gViSOM (λ = 1.5).

(c) Isomap embedding.

(d) LLE embedding.

Fig. 4. Embedding of Swissroll data set by gViSOM, Isomap and LLE.
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and MDS are similar mappings for the principle of data
visualisation. Furthermore, the ViSOM is closer to MDS than
SOM is in terms of metric scaling and distance preservation.
However, SOMs can be regarded as a generalised scaling
that associate or order two possibly different metric spaces. It
also reveals that the metric MDS and the principal manifold
essentially produce comparable topographic embeddings for
visualisation. The metric MDS is a point-to-point mapping
on dissimilarities; while the principal manifold approach can
establish an explicit mapping function of the data set. The core
of the ViSOM, namely local distance-preserving mapping, has
been used to provide an adaptive technique for dealing with
highly nonlinear, complex data sets.
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