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Preface

Swarm intelligence and bio-inspired computation have become very popular in recent
years. Optimization in general and swarm-based intelligence in particular are becoming
a basic foundation for many modern applications in different disciplines. For its simplic-
ity and flexibility swarm intelligence has found its way in engineering applications. This
book presents a brief introduction to the mathematical optimization with special atten-
tion to swarm intelligence and its applications, divisions, variants, and hybridizations.
Basic concepts related to swarm intelligence are presented such as randomness, random
walks and chaos theory as a preface for many of the variants and enhancements in the
literature for the basic swarm optimization methods.

This is a book for researchers and students who are interested in understanding and
solving swarm optimization problems and also to developing an understanding of new
swarm optimization techniques and knowing their advantages and limitations that lead
to a better understanding of their impact on various applications. The main goal of
this book is to give a comprehensive description of the newest modern swarm algorithms
including

e Bat algorithm (BA)
o Artificial fish swarm algorithm (AFSA)

Firefly algorithm (FFA)

Cuckoo search (CS)

Flower pollination algorithm (FPA)

Artificial bee colony (ABC)

Wolf search algorithm (WSA)

Gray wolf optimization (GWO)

For the individual optimization methods, we tried to standardize the variants and
hybridizations and even the algorithms. The variants focus more on binary, discrete,
constrained, adaptive, and chaotic versions of the different optimizers. Applications of
individual optimizers mentioned in the literature are also presented. When presenting
the different applications the focus was toward variable selection, and fitness function de-
sign to fit the different applications. The final part of the book is dedicated to exploring
similarities, differences, weaknesses, and strengths of individual methods covered in the
book. This final part tries to standardize the operator concepts and searching manner

XV



xvi Preface

of the different algorithms covered. In our opinion, this book can provide a good base
for swarm intelligence beginners as well as experts and can provide a complete view of
new directions, enhancements, and hybridizations of the different optimizations.

A chapter-by-chapter description of the book follows.

Chapter 1 is an introductory chapter that aims at setting the environment for the
whole book. This chapter starts with basic definitions and concepts related to optimiza-
tion and its sources of inspiration. It then describes randomness as a basic building
block for stochastic optimization and common random distributions that are commonly
exploited in optimization. Moreover, it describes the principle of random/pseudo num-
ber generation using common random distributions. We cover the topics of random
distribution and pseudo-random generation as it is the base for modifying and enhanc-
ing common optimizers. Random walk is a common concept in optimization and hence
it is covered as well. Because chaos theory and chaos variables are becoming common
as independent optimization tools or as a method for adapting optimizers’ parameters,
a brief discussion is given about the chaos theory.

Chapter 2 Bat Algorithm (BA) is a new meta-heuristic optimization algorithm de-
rived by simulating the echolocation system of bats. It is becoming a promising method
because of its good performances in solving many problems. This chapter discusses
the behavior of bats and its variants including the discrete bat algorithm, binary bat
algorithm, chaotic bat algorithm, parallel bat algorithm, bat for constrained problems,
bat with Levy distribution, chaotic bat with Levy distribution, self-adaptive bat algo-
rithm and an adaptive bat algorithm. Moreover, this chapter reviews the most hybrid
evolutionary bat algorithm with other optimization techniques including differential evo-
lution (DE), particle swarm optimization, cuckoo search, simulated annealing, harmony
search and artificial bee colony. This chapter ends with a discussion of a real-world
application as a case study of bat algorithms. Finally, an extensive bibliography is also
included.

Chapter 3 Artificial Fish Swarm (AFS) is one of the best and new swarm opti-
mization methods. The basic idea of the artificial fish swarm is simulated fish behaviors
such as swarming, preying, followed by a local search of a fish individual for reaching the
global optimum,; it is chaotic, binary and parallel search algorithm. This chapter reviews
the basic concepts of the artificial fish swarm algorithm and discusses its variants and
hybridization with other optimization techniques. In addition, we show how the artificial
fish swarm algorithm is applied to solve real-life applications such as selection of optimal
cluster heads (CHs) locations in wireless networks and in community detection in social
networks.

Chapter (4) Cuckoo Search (CS) is one of the latest biologically inspired algorithms,
proposed by Yang and Deb in 2009 and Suash Deb. It is based on the brood parasitism of
some cuckoo species. In addition, this algorithm is enhanced by the so-called Levy flights
rather than by simple isotropic random walks. This chapter provides basic information
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about the cuckoo search algorithm and its behavior. In addition, it discusses its variants
including discrete, binary, chaotic and parallel versions. A hybridization of the cuckoo
search (CS) with other approaches is discussed in this chapter with differential evolu-
tion, scatter search, colony optimization, powell search, bat algorithm, particle swarm
optimization, Levenberg-Marquardt and quantum computing. Reviews of a real-world
application as well as results of two cases in feature selection and a modified version of
a cuckoo search for solving a convex economic dispatch problem. Finally, an extensive
bibliography is also included.

Chapter (5) Firefly Algorithm (FA) is a nature-inspired stochastic global optimiza-
tion method that was developed by Yang [1]. This algorithm imitates the mechanism of
firefly mating and the exchange of information using light flashes. This chapter presents
the main concepts and behavior of fireflies, the artificial FFA, and the variants added
to the basic algorithm including the discrete firefly, binary firefly, chaotic firefly, parallel
firefly, firefly for constrained problems, Levy flight firefly, intelligent firefly, Gaussian fire-
fly, network-structured firefly algorithm and firefly with adaptive parameters. Moreover,
this chapter reviews the most hybrid evolutionary firefly algorithm with other opti-
mization techniques including harmony search, pattern search, learning automata firefly
algorithm and ant colony optimization. This chapter ends by discussing a real-world
application as a case study of the firefly algorithm. Finally, an extensive bibliography is
also included.

Chapter (6) Flower Pollination Algorithm was developed by Xin-She Yang in
2012, inspired by the flower pollination process of flowering plants. The flower pollina-
tion algorithm has been extended to multi-objective optimization with promising results.
This chapter provides an introduction to the flower pollination algorithm and its basic
characteristics. In addition, flower pollination algorithm variants are presented and its
hybridization with other optimization techniques. The chapter reviews some real-life
applications with the flower pollination algorithm applied. Moreover, feature selection
that is critical for a successful predictive modeling exercise is introduced based on flower
pollination algorithm.

Chapter (7) Artificial Bee Colony Optimization was introduced by Karabora in
2005. In this chapter, an overview of the basic concepts of artificial bee colony optimiza-
tion, its variants, and hybridization with other optimization techniques is presented. In
addition, different application areas are discussed, where the artificial bee colony opti-
mization algorithm has been applied. In addition, reviews of the results of artificial bee
colony on retinal vessel segmentation and the memetic artificial bee colony for integer
programming are discussed.

Chapter (8) Wolf-Based Search Algorithms is a new bio-inspired heuristic opti-
mization algorithm that imitates the way wolves search for food and survive by avoiding
their enemies. It was proposed by Rui Tang in 2012. This chapter reviews the wolf search
optimizers algorithm and its variants as well as reviews some real-life applications. In
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addition, it shows how wolf-based search algorithms are applied in a feature selection
problem.

Chapter (9), presents a high-level discussion of the presented algorithms in this book
and differentiates among them based on different criteria. It identifies similarities and
differences in criteria setting. These criteria are according to the swarm guide, the
probability distribution, the number of behaviors, exploitation of positional distribu-
tion of agents, number of control parameters, generation of completely new agents per
iteration, exploitation of velocity concept in the optimization, and the type of explo-
ration/exploitation used. This discussion may help in finding weak and strong points
of each algorithm and may help in presenting new hybridizations and modifications to
further enhance their performance or at least help us choose among this set to handle
specific optimization tasks.

Additional material is available from the CRC website: http://www.crcpress.com/
product/isbn /9781498791064
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1 Introduction

Optimization is everywhere, from engineering applications to computer science and from
finance to decision making. Optimization is an important paradigm itself with a wide
range of applications. In almost all applications in engineering and industry, we are
always trying to optimize something, whether to minimize the cost and energy con-
sumption, or to maximize the profit, output, performance, and efficiency [1].

Mathematical optimization is the study of such planning and design problems using
mathematical tools [2]. It is possible to write most optimization problems in the generic
form as follows:

min f;i(z), (i=1,2,...M) (1.1)
zeRn

Subject to hj(x) =0, (j =1,2,...J) (1.2)
ge(z) <0,(k=1,2,...,K) (1.3)

Where M is the number of cost or objective functions to be optimized f;(z) is the ob-
jective function representing objective ¢ and x is the design variables to be guessed by
the optimization algorithm and its size is n.

R™ is the space spanned by the decision variables and is called the design space or
search space. The equalities for h; and inequalities for g; are called constraints.

The optimization problem with M = 1 is called single objective optimization, while
optimization at M > 1 is called multi-objective optimization. If no constraints are im-
posed on the problem J = 0 and K = 0, the optimization is said to be an unconstrained
problem, while at J > 0 or K > 0, the problem is said to be constrained problem.

The optimization problem can be classified according to the linearity /nonlinearity of
objective and/or constrains. When all f;, hj, g5 are nonlinear, the optimization problem
is said to be nonlinear optimization problem. When only the constrains h; and g are
nonlinear, the optimization problem is said to be a nonlinearly constrained problem.
When both h; and gj are linear, the problem is said to be a linearly constrained prob-
lem. It is worth mentioning that in some optimization tasks, some of the variables are
linearly related to the objective function and others are nonlinearly related to it.

Classification of an optimization algorithm can be carried out in many ways. A simple
way is to look at the nature of the algorithm, and this divides the algorithms into two
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categories: deterministic algorithms and stochastic algorithms [2]. Deterministic algo-
rithms follow a rigorous procedure, and the path and values of both design variables and
the functions are repeatable. Hill-climbing is an example of a deterministic algorithm,
and for the same starting point, it will follow the same path.

Stochastic algorithms always have some randomness. Thus, intermediate and final so-
lutions will differ from time to time. Particle swarm optimization (PSO) is an example of
such non-repeatable algorithms. Based on the number of agents used to search the search
domain, optimization algorithms can be classified as single agent and multiple agent
optimizers [1]. Simulated annealing is a single-agent algorithm with a zigzag piecewise
trajectory, whereas genetic algorithms, PSO, and firefly algorithms are population-based
algorithms. These algorithms often have multiple agents, interacting in a nonlinear man-
ner.

Depending on the sources of inspiration, optimization can be classified as bio-inspired,
nature-inspired algorithms, and meta-heuristics in general [1]. Heuristic means by trial
and error, and meta-heuristic can be considered a higher-level method by using certain
selection mechanisms and information sharing [1]. Random search [2] is an example of
such a category. Nature-inspired algorithms are algorithms drawing inspiration from
nature such as artificial bee colony and genetic algorithms. Bio-inspired algorithms may
be viewed as a branch of nature-inspired algorithms and it is inspire from a biological
system such as a bee colony.

1.1 Sources of inspiration

Most new optimization algorithms are nature-inspired, because they have been devel-
oped by drawing inspiration from nature [5]. The highest level of inspiration sources are
from biology, physics, or chemistry. The main source of inspiration is nature. Therefore,
almost all the new algorithms can be referred to as nature-inspired. By far the major-
ity of the nature-inspired algorithms are based on some successful characteristics of the
biological system. Therefore, the largest fraction of the nature-inspired algorithms are
biology-inspired, or bio-inspired [5].

Among the bio-inspired algorithms, a special class of algorithms has been developed
based on swarm intelligence. Therefore, some of the bio-inspired algorithms can be called
swarm intelligence-based. Examples of swarm-intelligence-based are cuckoo search [1],
bat algorithm [1], and artificial bee colony [55]. Many algorithms have been developed by
using inspiration from physical and chemical systems such as simulated annealing [14].
Some may even be based on music such as harmony search [15]. Fister et al. [5] divides
all the existing intelligent algorithms into four major categories: swarm intelligence(SI)-
based, bio-inspired (but not Sl-based), physics/chemistry-based, and others.
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1.1.1 Swarm intelligence—based algorithms

Swarm intelligence (SI) concerns the collective, emerging behavior of multiple, interact-
ing agents that follow some simple rules [5]. Each agent may be considered as unintel-
ligent, while the whole system of the multiple agents may show some self-organization
behavior and thus can behave like some sort of collective intelligence. Many algorithms
have been developed by drawing inspiration from the SI systems in nature. The main
properties for the SI-based algorithms can be summarized as follows:

Share information among the multiple agents.

Agents have self-organization and co-evolution.

It is highly efficient for its co-learning.

It can be easily parallelized for practical and real-time problems.

1.1.2 Bio-inspired, but not swarm intelligence—based algorithms

The SI-based algorithms belong to a wider class of the algorithms, called the bio-inspired
algorithms, as mentioned before. The SI-based algorithms are a subset of the bio-inspired
algorithms, while the bio-inspired algorithms are a subset of the nature-inspired algo-
rithms [5]. Thus, we can observe thatSI-based C bio-inspired C nature-inspired.

Many bio-inspired algorithms do not directly use the swarming behavior. It is better
to call them bio-inspired, but not Sl-based. For example, the genetic algorithms are
bio-inspired, but not SI-based. The flower algorithm [1], or flower pollination algorithm,
developed by Xin-She Yang in 2012, is a bio-inspired algorithm, but it is not an SI-based
algorithm because the flower algorithm tries to mimic the pollination characteristics of
flowering plants and the associated flower consistency of some pollinating insects.

1.1.3 Physics- and chemistry-based algorithms

For the algorithms that are not bio-inspired, most have been developed by mimicking
certain physical and/or chemical laws, including electrical charges, gravity, river systems,
etc. [5]. Examples of such algorithms, spiral optimization [12], water cycle algorithm [13],
simulated annealing [14], and harmony search [15].

1.1.4 Other algorithms

Some developed algorithms are away from nature using various characteristics from dif-
ferent sources, such as social, emotional, etc. Examples of such a system are Imperialist
competitive algorithm [16], league championship algorithm [17], social-emotional opti-
mization [18].
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1.2 Random variables

A random variable can be considered as an expression whose value is the realization
or outcome of events associated with a random process [2]. A random variable is a
function which maps events to real numbers. The domain of this mapping is called the
sample space. Each random variable is represented by a probability density function to
express its probability distribution. Random variables are mile stones for all stochastic
optimization algorithm and hence we will discuss some of the random probability density
functions.

1.2.1 Uniform distribution

The uniform distribution [20] is a very simple case with

1
f(z;a,b) = 7 fora<z<b (1.4)

—a
where a,b is the distribution limiting range and is always set to [0 1]. The uniform

. . . . . . b—a)?
distribution has expectation value F(z) = (a + b)/2 and variance ( =

1.2.2 Normal distribution

Gaussian distribution or normal distribution is by far the most popular distribution,
because many physical variables including light intensity, and errors/uncertainty in mea-
surements, and many other processes obey the normal distribution.

The probability density function related to normal distribution is mentioned in equa-
tion 1.5.

1 (z — p)?
e e —
oV 2w <Pl 202

p(z;p,0) = |,—oo <z < o0 (1.5)

where p is the mean and o > 0 is the standard deviation. A Gaussian distribution with
mean zero and standard deviation one, often known as a “standard normal” distribution,
has the probability density function (PDF) shown in figure 1.1. In many connections it
is sufficient to use this simpler form since g and ¢ simply may be regarded as a shift
and scale parameter, respectively.

1.2.3 Cauchy distribution

The Cauchy distribution is given by the following equation:
1
R (1.6)

x is defined in —oo < & < oo. It is a symmetric uni-modal distribution. Figure 1.2 is a
sample figure of Cauchy distribution.



1.2 Random variables 5

N
o | —_ NO)
0.2 —
0 ——'T'#- | 1 | 1 | 1 ] I ] Hr———
-3 —2 -1 0 1 2 3
z
Figure 1.1: Normal distribution for N(0,1)
1.2.4 Poisson distribution
The Poisson distribution [20] is given by the following equation:
pre

where r is an integer parameter >0 and p is a real positive quantity. The Poisson
distribution describes the probability to find exactly r events in a given length of time if
the events occur independently at a constant rate p. It is worth mentioning that when
w goes to oo the distribution tends to a normal one.

1.2.5 Levy distribution

Levy distribution [2] is a distribution of the sum of N identically and independently
distribution random variables whose Fourier transform takes the following equation:

Fy (k) = exp(—N|k|?) (1.8)

and the actual distribution from the inverse of Fourier is defined by the following equa-
tion:

[e.e]

L(s) = / COS(TS)G_QTBdT, (0<B<=2) (1.9)
T Jo

Where L(s) is called Levy distribution with index 5 and « is always set to 1 for simplicity.

Two special cases are § = 1, the above integral becomes the Cauchy distribution; where.

When 8 = 2 it becomes the normal distribution. In this case, Levy flights become

the standard Brownian motion. Equation in 1.9 can be expressed as an asymptotic
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Figure 1.2: Cauchy distribution

series, and its leading-order approximation for the flight length results in a power-law
distribution defined by the following form:

L(s) |s|7t# (1.10)

which is heavy tailed with infinite variance for 0 < § < 2. A simple version of the Levy
distribution can be defined as

v/ oL exp[— ol ] s, f0<pu<s<
L(s,%u)z{ 2 XDl o s MO < <s<oo (1.11)

0, otherwise

where p > 0 is minimum step and -y is the scale parameter and as s — oo we have the
following form:
v 1

—_ 1.12
21 st.5 ( )

L(s,7y,p) =

1.3 Pseudo-random number generation

Simulations requiring random numbers are critical in fields including communications, fi-
nancial modeling, and optimization. A wide range of random number generators (RNGs)
have been described in the literature [19]. They all utilize well-understood basic math-
ematical principles, usually involving transformations of uniform random numbers. As-
suming suitably precise arithmetic, the RNGs can generally be configured to deliver
random numbers of sufficient quality to meet the demands of a particular simulation
environment.

RNGs aim to produce random numbers that, to the accuracy necessary for a given
application, are statistically indistinguishable from samples of a random variable with
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an ideal distribution. RNGs can be classified as cumulative, accept-reject or composition
techniques [20].

1.3.1 Cumulative technique

The most direct technique to obtain random numbers from a continuous PDF f(x) with
a limited range from x4, tO Tpmas is to solve for x in the following equation:
F(l'ma:p) - F(xmzn)

where ( is uniformly distributed between zero and one and F(x) is the cumulative dis-

tribution (or as statisticians say the distribution function), for a properly normalized
PDF. Thus

¢ = (1.13)

x=F(¢) (1.14)

The technique is sometimes also of use in the discrete case if the cumulative sum may
be expressed in analytical form. Also, for general cases, discrete or continuous, e.g., from
an arbitrary histogram, the cumulative method is convenient and often faster than more
elaborate methods. In this case the task is to construct a cumulative vector and assign
a random number according to the value of a uniform random number (interpolating
within bins in the continuous case).

1.3.2 Accept/reject technique

A useful technique is the acceptance-rejection method where we choose fi,q. to be greater
than or equal to f(x) in the entire interval between s, and x4, and proceed as follows:

1. Generate a pair of uniform pseudo-random numbers (1, (s.
2. Calculate z as © = Tymin + C1-(Tmaz — Tmin)-

3. Determine y as y = finaz-Co-
4

. If y— f(z) > 0 reject and go to 1. Otherwise accept x as a pseudo-random number
from f(x).
f(x)

The efficiency of this method depends on the average value of Froas OVEr the interval. If
this value is close to one the method is efficient.

1.3.3 Composition technique

Let f(z) be written in the form

inf
fa) = / g:(x)dH(2) (1.15)

—inf
where we know how to sample random numbers from the PDF, g(x), and the distribution
function H(z). A random number from f(z) is then obtained by
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1. Generating a pair of uniform pseudo-random numbers (i, (o
2. Calculating z as z = H~1((1)

3. Determining = as x = G~ '(s, where G, is the distribution function corresponding
to the PDF g,(x).

1.4 Random walk

A random walk is a random process that consists of taking a series of consecutive random
steps [2] as actually occurs in optimization. Let Sy denote the sum of each consecutive
random step X;, then Sy forms a random walk; see equation 1.16.

N

Sv=) Xi=Xi+..+ Xy (1.16)
i=1

where X; is a random step drawn from a random distribution. This relationship can
also be written as a recursive formula as defind as follows:

Sy = Sn-1+ Xy (1.17)

which means the next state Sy will only depend on the current existing state Sy_1 and
the motion or transition Xy from the existing state to the next state.

When the step length obeys the Levy distribution, such a random walk is called a
Levy flight or Levy walk. If the step length is a random number drawn from Gaussian
distribution the random walk is called Brawnian movement [14].

A study by Reynolds and Frye [21] shows that fruit flies, or Drosophila melanogaster,
explore their landscape using a series of straight flight paths punctuated by a sudden 90°
turn, leading to a Levy-flight-style intermittent scale free search pattern. Subsequently,
such behavior has been applied to optimization and optimal search, and preliminary
results show its promising capability [3,21].

1.5 Chaos

Chaos means a condition or place of great disorder or confusion [23]. The first paper
constructing the main principles of chaos was authored by Edward Lorenz [24]. Chaotic
systems are deterministic systems showing irregular, or even random, behavior and sen-
sitive dependence to initial conditions (SDIC). SDIC means that small errors in initial
conditions lead to totally different solutions [24]. Chaos is one of the most popular phe-
nomenan that exist in nonlinear systems, whose action is complex and similar to that of
randomness [25]. A definition that is much related to optimization concepts is set in [26]
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as traveling particles within a limited range occurring in a deterministic nonlinear dy-
namic system.

Chaos theory studies the behavior of systems that follow deterministic laws but ap-
pear random and unpredictable, or we can say a dynamical system that has a sensitive
dependence on its initial conditions; small changes in those conditions can lead to quite
different outcomes [23]. A dynamical system must satisfy the following chaotic proper-
ties, to be referred to as chaotic [23]:

e It must be sensitive to initial conditions.
e It must be topologically mixing and its periodic orbits must be dense.
e It is ergodic and stochastically intrinsic.

Chaotic variables can go through all states in certain ranges according to their own
regularity without repetition [25]. Due to the ergodic and dynamic properties of chaos
variables, chaos search is more capable of hill-climbing and escaping from local optima
than random search and thus has been applied to the optimization [25]. It is widely
recognized that chaos is a fundamental mode of motion underlying almost natural phe-
nomena. Given a cost function a chaotic dynamic system can reach the global optimum
with high probability [25]. In mathematics, a chaotic map is a map that exhibits some
sort of chaotic behavior [23].

Chaos was introduced into the optimization to accelerate the optimum seeking [25].
The chaotic map can be helpful to escape from a local minimum, and it can also improve
the global/local searching capabilities [28,29]. Some well-known chaotic maps that can
be used in optimization algorithms are as follows [4]:

e The Logistic Map: This map is one of the simplest chaotic maps. A logistic map
is a polynomial map that was first introduced by Robert May in 1976 [31]. This
map is defined by:

Tpr1 = axg(l — zp) (1.18)

where 3, € [0,1] under the condition that z¢p € [0,1], 0 < a < 4, and k is the
iteration number.

e Lozi Map: Lozi admits a strange attractor and the transformation is given by [32]

(@h+1, Y1) = H @k, Y) (1.19)

H(zy,yr) = (14 yp — alxy|, bry) (1.20)

Lozi suggested the parameter values of @ = 1.7 and b = 0.5.
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Sinusoidal Map: 1t is represented by [33]
Tpy1 = axisin(my) (1.21)
or its simplified form:
Tpr1 = sin(mzg) (1.22)

which generates chaotic numbers in the range (0,1).

Iterative Chaotic Map: The iterative chaotic map with infinite collapses is de-
scribed as [33]
. [
Yn+1 = Sin ? n e (0, 1) (123)

n

Circle Map: The circle map is expressed as [33]

Y1 =Y, +a— 2£sin(27rYn)mod1 (1.24)
™

Chebyshev Map: The family of chebyshev map is written as the following equation
[33]

Y1 = cos(k.cos 1 (Yy)) Y € (-1,1) (1.25)
Y1 = uYEsin(nYy,) (1.26)

Tent Map: This map resembles the logistic map due to its topologically conjugate
behavior. The tent map can display a range of dynamical behaviors from pre-
dictable to chaotic, depending on the value of its multiplier, where the equations
are 1.20 and 1.27:

Tp+1 = G(zy) (1.27)
o x <07

Glx) =147 (1.28)
ﬁx(l —x) otherwise

Gauss Map: This map is a one-dimensional, real value map in the space domain
which is discrete in the time domain. Gauss maps let us completely analyze its
chaotic qualitative and quantitative features. The equations are as follows [33]:

Th+1 = G(a;k) (1.29)

0 z=0
Glz) = {;modl z € (0,1) (1.30)
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e Henon Map: This map is a simplified version of the Poincare map of the Lorenz
system [27]. The Henon equations are given by

yt)=1—ay(t—1)+2(t—1) (1.31)
z(t) =by(t—1) (1.32)
where a = 1.4 and b = 0.3 (the values for which the Henon map has a strange

attractor).
e Modified Henon map:
yl(k) =1 —a(sin(yl(k —1))) + by(k — 1) (1.33)

y(k) = y1(k — 1) (1.34)

where k is the iteration number. This map is capable of generating chaotic attrac-
tors with multifolds via a period-doubling bifurcation route to chaos [34]. This
map exhibits very complicated dynamical behaviors with coexisting attractors.
The optimization algorithm needs to normalize the variable y(k) in the range [0,1]
using the following transformation:

a(k) = 22 (1.35)

where o and § = [—8.58827.645].

1.6 Chapter conclusion

This introductory chapter aims at setting the environment for the whole book. This
chapter started with basic definitions and concepts related to optimization and its sources
of inspiration. It followed with a brief discussion on randomness as a basic building
stone for stochastic optimization techniques. Moreover, a description of the principle of
random /pseudo-number generation using common random distributions was included.
Random walk is a common concept in optimization as well as chaos theory and chaos
variables were becoming common as independent optimization tools or as a method for
adapting optimizers’ parameters, so a brief discussion about these concepts with some
detail were discussed in this chapter.
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2 Bat Algorithm (BA)

2.1 Bat algorithm (BA)

2.1.1 Behavior of bats

Bats are fascinating animals in that they are the only mammals with wings and they
also have advanced capability of echolocation [1]. Most bats use echolocation to a cer-
tain degree; among all the species, microbats are a famous example, as microbats use
echolocation extensively while megabats do not. Most microbats are insectivores. Mi-
crobats use a type of sonar, called echolocation, to detect prey, avoid obstacles, and
locate their roosting crevices in the dark. These bats emit a very loud sound pulse and
listen for the echo that bounces back from the surrounding objects. Their pulses vary in
properties and can be correlated with their hunting strategies, depending on the species.
Most bats use short, frequency-modulated signals to sweep through about an octave,
while others more often use constant-frequency signals for echolocation [1]. Their signal
bandwidth varies depend on the species, and often increases by using more harmonics.
When hunting for prey, the rate of pulse emission can be sped up to about 200 pulses
per second when they fly near their prey. Such short sound bursts imply the fantastic
ability of the signal processing power of bats. The loudness also varies, from the loudest
when searching for prey to a quieter base when homing toward the prey. The traveling
range of such short pulses is typically a few meters, depending on the actual frequencies.
Microbats can manage to avoid obstacles as small as thin human hairs. Microbats use
the time delay from the emission and detection of the echo, the time difference between
their two ears, and the loudness variations of the echoes to build up three-dimensional
scenario of the surroundings. They can detect the distance and orientation of the target,
the type of prey, and even the moving speed of the prey such as small insects. Indeed,
studies suggested that bats seem to be able to discriminate targets by the variations of
the Doppler effect induced by the wing-flutter rates of the target insects [1].

2.1.2 Bat algorithm

Three idealized rules can be formulated for simplicity to describe the behavior of micro-
bats [1]:

e All bats use echolocation to sense distance, and they also know the difference
between food/prey and background barriers in some magical way.

e Bats fly randomly with velocity v; at position x; with a fixed frequency fiin,
varying wavelength A and loudness Ag to search for prey. They can automatically

15
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adjust the wavelength (or frequency) of their emitted pulses and adjust the rate of
pulse emission depending on the proximity of their target.

e Although the loudness can vary in many ways, we assume that the loudness varies
from a large (positive) Ap to a minimum constant value A,,in.

Virtual bats adjust their position according to equations 2.1, 2.2, and 2.3.

Fi :Fmin+(Fmax _Fmin)ﬁ (21)
Vi=Vit 4 (Xt - XN)F, (2.2)
Xi=X;" +V} (2.3)

where § is a random vector in the range [0,1] drawn from uniform distribution, X* is
the current global best location, Fi,;, and Fj,.; represent the minimum and maximum
frequency need depending on the problem and V; represents the velocity vector.

Probabilistically a local search is to be performed using a random walk as in equation
2.4.
Xnew = Xold + eAt (24)

where A' is the average loudness of all bats at this time and € is a random number
uniformally drawn from normal distribution in the range [-1 1]. It is worth mention-
ing that this equation can be viewed as some form of local searching. Local searching
should be motivated more at the end of optimization so this updating mechanism is ap-
plied in relation to bat’s pulse rate where the pulse rate decreases by time; see equation
2.5, giving more chance for local searching. It is also worth mentioning that the search
locality rate should be increased as optimization grows, which means that much inten-
sive local search is applied at the final iterations of optimization. Thus, the parameter ¢
should be decreased as optimization grows by any form of decrement or at least be static.

r; controls the application of the local search as shown on the algorithm and is up-

dated using equation 2.5.

it =1 — exp(—1)] (2.5)

where r? is the initial pulse emission rate and is a constant greater than 0.
The updating of the loudness is performed using equation 2.6.

AT = A (2.6)

where « is a constant selected experimentally.
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The bat’s amplitude parameter is used to control the keeping/discarding of bat’s new
better bat’s positions. If a better position is found by a given bat, it should stochasti-
cally change its current position to this new position in relation to current bat’s sound
amplitude.

The algorithm describing the the virtual bat algorithm is outlined in the algorithm 1.

input : @ frequency band
fi pulse frequency
r; pulse emission rate
A; Loudness
€ sound amplitude control parameter
~ pulse rate control parameter
output: Optimal Bat position and the corresponding fitness

Initialize a population of n bat’ positions at random
Find the best solution based on fitness; g* ;

while Stopping criteria not met do
foreach bat; do

Generate new solution by adjusting frequency(z7“"); see equations
2.1,2.2,2.3
if rand > r; then
Perform local search around global best best (x
(refeq.Batda)
end

if rand < A; and fitness of new solution is better than original one then
Update the position of bat; to bex**"

(]
Increase emission rate r;;2.5
Decrease Loudness A;;2.6
end
Update the best solution
end

new

7ew): equation

Algorithm 1: Pseudo code for bat algorithm

2.2 BA variants

2.2.1 Discrete bat algorithm

Since standard BA is a continuous optimization algorithm, the standard continuous
encoding scheme of BA cannot be used to solve many combinational optimization prob-
lems [2]. A discrete version of the standard bat optimization algorithm was proposed
in [2]. Some neighborhood search methods are used to enhance the quality of the discrete
solution, namely, swap, insert inverse, and crossover. The details of these neighborhoods
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are as follows:

Swap: Choose two different positions from a solution permutation randomly and swap
them.
Insert: Choose two different positions from a solution permutation randomly and insert
the back one before the front.
Inverse: Inverse the subsequence between two different random positions of a solution
permutation.
Crossover: Choose a subsequence in a random interval from another random job per-
mutation and replace the corresponding part of the subsequence.

The proposed discrete algorithm applies these set operators on the whole swarm itera-
tively given a best solution and hence it can update the velocity and the global solution.

2.2.2 Binary bat algorithm (BBA)

In the standard bat algorithm each bat moves in the search space toward continuous-
valued positions. In some cases such as features selection the search space is modeled
as an n-dimensional boolean lattice, in which the bat moves across the corners of a
hypercube [3]. Since the problem is to select or not a given feature, the bat’s position
is then represented by binary vectors. Thus, the BBA is proposed. Sigmoidal function
is common for squashing continuous values into extremes; see equation 2.7. The bat
velocity will be calculated as
; 1
S(l) = ———— (2.7)
1+ exp(—v))

and the bat position is calculated as:

; LifS(w!)>o
J i
Ti = otherwise (28)

where o U(0, 1) so the position result is a 0, 1 binary.

2.2.3 Chaotic bat algorithm (CBA)

The classical BA over some benchmark functions shows that premature and/or false
convergence are the most serious weaknesses of the classical BA [4]. This is mainly due
to the random initialization of the parameters. In the random initialization process, the
produced sequences are not well distributed and this leads to different results in different
executions [4].

To deal with these problems the initialization process has to be done in a way that ini-
tial sequences are well distributed [4]. Chaotic sequences (when they are far from their
strange attractors) can be a very good approach to achieve well-distributed sequences for
dealing with premature and false convergence in the algorithm. To improve the perfor-
mance of the classical BA, chaotic sequences are used to initialize frequencies, loudness
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and pulse emission rates.

Gauss map outperforms other chaotic series in enhancing convergence rate [4]. In the
implementation in [4] Gauss sequences are used to initialize frequencies and loudness;
see equations 2.9 and 2.10.

Tp1 = G(wg) (2.9)
0 z=0
Gla) = {imodl z € (0,1) (2.10)

This map is a one-dimensional, real value map in the space domain which is discrete
in the time domain.

Tent map is used to initialize pulse emission rate; see equations 2.11 and 2.12.

Tr+1 = G(xg) (2.11)
Gx) =4 %7 r<07 (2.12)
o32(1 —x) otherwise

2.2.4 Parallel bat algorithm

In [5] a parallelized version of the standard bat algorithm was proposed. The proposed
model divides the whole swarm of bats into disjoint independent subgroups, each with
N bats. Each subgroup contains its own global best and its own agents. At specified
time steps the information is exchanged among the subgroups. The exchange of explo-
ration information is performed using the best of the global best solutions over all the
subgroups. The obtained best of best solutions is used to replace a fraction of worst
solutions in each subgroup after applying the mutation operator on it.

2.2.5 BA for constrained problems

A version of the standard bat algorithm was proposed in [6] for handling constrained
optimization problems. Most design optimization problems in the real world are highly
nonlinear, involving many different design variables under complex constraints. These
constraints can be written either as simple bounds such as the ranges of material proper-
ties, or more often as nonlinear relationships. The nonlinearity in the objective function
often results in multi-modal response landscape, while such nonlinearity in the con-
straints leads to the complex search domains [6]. Penalization is used in that proposed
work to adapt the fitness function to be as follows:

M M
@ piv) = f@)+ " midi(z) + > v (@) (2.13)
i=1 j=1
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where 1 < p; and 0 < p;, which should be large enough depending on the solution
quality needed. ¢; represents the equality constraints while v); represents the inequality
constraints.

By defining the new modified fitness function the target is to minimize it using the
standard bat algorithm.

2.2.6 BA with Lévy distribution

Levy flights are Markov processes, which differ from regular Brownian motion. Ex-
tremely long jumps may occur, and typical trajectories are self-similar, on all scales
showing clusters of shorter jumps interspersed by long excursions. Levy flight has the
following properties [7]:

e Stability: distribution of the sum of independent identically distributed stable
random variables equal to distribution of each variable.

e Power law asymptotics (heavy tails).

e Generalized central limit theorem: The central limit theorem states that the sum
of a number of independent and identically distributed (i.i.d.) random variables
with finite variances will tend to a normal distribution as the number of variables
grows.

e Infinite variance with an infinite mean value allowing for much variation.

Due to these properties the Levy statistics provide a framework for the description of
many natural phenomena in physical, chemical, biological, and economical systems from
a general common point of view [7]. Leévy is used to enhance the local search for BA as

in equation 2.14.

t
Z;

= z!7! + pusign(rand — 0.5) @ Levy (2.14)

where p is a random number drawn from uniform distribution in the range from 0 to
1. sign® means entrywise multiplications, rand € [0, 1], and random step length that
obeys Levy distribution.

2.2.7 Chaotic bat with Lévy distribution

The track of chaotic variable can travel ergodically over the whole search space [§].
The chaotic variable has special characters, i.e., ergodicity, pseudo-randomness, and
irregularity. The Levy flight process is a random walk that is characterized by a series
of instantaneous jumps chosen from a probability density function that has a power law
tail [8]. This process represents the optimum random search pattern and is frequently
found in nature. In [8] the chaotic Levy flight for the improved bat algorithm is proposed.
The well-known logistic map which exhibits the sensitive dependence on initial conditions
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is employed to generate the chaotic sequence ¢4 for the parameter in Levy flight; scaling
value in bat local search. So the local searching of bat algorithm is defined as

Tnew = Told + Cs @ Lévy(A) (215)

where ¢, is determined using logistic map and Lévy(A) is a random number drawn from
Levy distribution.

A chaotic version of the BA was proposed in [8] for solving integer programming
problems. Different chaotic maps are used to update both the frequency and velocity of
the bat at individual iterations as follows:

Ji = fmin + (fmaac - fmm)Sz (2.16)

where S; is a chaos map and finaz, fmin are the bat’s frequency limits.

The velocity is updated as follows:
ol =l 4+ (xf_l — best) fi x S; (2.17)

2 3

where all variables are as mentioned in the standard BA and S; is a given chaotic map.
The used chaos maps are:

1. Logistic map

2. The Sine map
Iterative chaotic map
Circle map
Chebyshev map
Sinusoidal map
Gauss map

Sinus map

© W N > o e w

Dyadic map
10. Singer map
11. Tent map

Another variant of chaotic BA was proposed in [8]. The approach is based on the sub-
stitution of the random number generator (RNG) with chaotic sequences for parameter
initialization. Simulation results on some mathematical benchmark functions demon-
strate the validity of proposed algorithm, in which the chaotic bat algorithm (CBA)
outperforms the classical BA.
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Figure 2.1: The a parameter value on each iteration (for 100 iteration)

2.2.8 Self-adaptive BA

The main idea behind self-adaptive BA is to escape from local optima as well as to avoid
pre-mature convergence [9]. The o parameter controls the decrement value which affects
the local search of the bat. An adaptation is proposed using equation 2.18.

o = (1/2Iter)"/Tter qold (2.18)

where Iter is the iteration number.

The different values for a are drawn according to equation 2.18 in the first 100 itera-
tions in Figure 2.1. From the figure we can see that the change in amplitude of the bat
sound is very small in the beginning of iteration, which allows the bat to greatly explore
the search space, while in late iteration the amplitude should drop quickly to allow for
much local searching.

The main problem faced in [10] is the insufficiency at exploration that exists in the BA.
It can easily get trapped in local minimum on most of the multi-modal test functions. In
standard BA exploration and exploitation are controlled by pulse emission rate r, and
this factor increases as iteration proceeds. The algorithm gradually loses exploitation
capability as iteration proceeds. To avoid this problem, exploitation capability of BA is
improved by inserting linear decreasing inertia weight factor. Inertia weight is linearly
decreased and hence the effect of previous velocity gradually decreases. Thus exploitation
rate of BA gradually increases as iterations proceed. Equation 2.19 outlines the updating
for the inertia factor.
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iter — iter
witer = L(U}max - wmzn) + Wmin (219)
itermar

where iter,itermar Wmin, Wmae are current iteration, maximum number of iterations,
minimum value for inertia weight, and maximum inertia weight in order.

Another modification is based on changing the frequency per dimension rather than
using the same frequency for all dimensions in the basic BA. Equation 2.20 outlines the
calculation of the frequency value for every dimension for bat 7.

V(min(dif f) — dif f;)?

range

fj = fmm + (fmaz - fmm) (2-20)

where f; is the frequency for dimension j, fie: and fpi, are the frequency minimum
and maximum, and dif f; is the difference in dimension j between the best solution and
the Bat position 1.

The step size updating for the standard BA algorithm is proposed in [11]. Proper
tuning of this parameter reduces the number of iterations (hence the computational
time). In addition, this improvement can provide easy adjustment of the bat algorithm
for discrete optimization problems. Dynamic scale factor parameter is formulated as

Omin
iter _ 1n emaq‘) N
- Ymax . .
0 Ormaz exp( iter) (2.21)

emax

and, hence, the local search of the BA is updated as follows:

Tnew = Tojd + 0" (2.22)
where 0" is the step size at iteration iter, Omin, Omae are the minimum and maximum
step size in order, and ¢ is a suitable random number.

2.2.9 Adaptive bat algorithm

A simplified bat position updating equation is proposed in [12]. The improved algorithm
is more concise and clear. The search process is only controlled by the position vector;
each bat updates its location which is only dependent on bat individual global optimal
location pyq and random location pad in the current. p,q can increase the variability of
the bat position; to some extent it increased the diversity of the bats; see equation 2.23.

ot = wal + fie(pad — 7}) + for(Pga — @} (2.23)

Pad = 2 * Tt x rand (2.24)

where t is the current iteration number, w is the inertia weight, fi;, fo; are the frequency,
xy is i-th bat location in the current iteration, and pyq is global optimum location in the
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current iteration, pgq is a bat individual random position in the current iteration.

In order to make the global search ability and local search ability to be balanced, we can
achieve their goals through the inertia weight adjustment. The strategy of inertia weight
w commonly is used with linear decreasing. Large values for inertia weight are conducive
to the global search, but the algorithm overhead is large and search efficiency is low. In
the latter part we can get smaller values conducive to accelerate the convergence of the
algorithm, but the algorithm is easy to fall into local optimum and lacks the ability to
improve the solution. So the algorithm will set inertia weight as random numbers which
obey normal distribution. That is not only conducive to maintain the diversity of the
population, but also improves the performance of the global search in the latter part of
the algorithm; refer to equation 2.25.

W = lmin + (maz — Mmin) * Tand + o(0.5randn + 0.5poissrnd) (2.25)

where rand, randn, poissrnd are random numbers drawn from uniform, normal, and
poisson distributions, fmaz, thmin are the maximum and minimum value for inertia, and
o is the variance of the random weight.

According to the loudness and pulse emission rate updated with the iterative process,
we consider that the frequency can be adaptive while the number of iterations increases.
We will take a strategy that f will be divided into f; and fs. In the early search stage
when fi is low value and fs5 is high, the bats would be closer to the average position
of the bat colony and less close to the optimal position, which is conducive to the bat
colony, and strengthens the capability of the global search. In the latter search stage
when fi is high value and f5 is low, the bats would be closer to the optimal position
and less close to the average position of the bat colony, which is of rapid convergence to
global optimal solution. The updating for fi, fo is as in equation 2.24.

fl(t) =1- exp(_‘Favg(t) - ngest(t)‘) (226)
fa(t) =1 = fi(t) (2.27)

1 N
Fuug(t) = 5 D (f(@i(1)) (2.28)

t=1

where f1(t), f2(t), respectively, represent the frequency, and Fug(t) and Fypest (), respec-
tively, represent the adaptation value of the bat colony average fitness and the optimal
location in the iteration t.

2.3 Bat hybridizations

In the literature many hybridizations are proposed between firefly algorithm and other
optimizers to enhance its performance in solving optimization tasks. Some of the BA
problems reported in the literature are:
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Table 2.1: BA hybridizations and sample references

Hybrid with Target Sample
References
Differential  evolu- | To enhance local searching heuristics, and | [13,14]
tion (DE) exploit the self-adaptation mechanisms
Particle swarm opti- | To ensure population diversity and replace | [15]
mization (PSO) weak agents
Cuckoo search (CS) | To enhance accuracy, convergence speed, | [16]
and ensure global convergence
Simulated annealing | To exploit global searching capability of | [17]
(SA) SA and speed up convergence rate
Harmony search | To hire the pitch adjustment into mu- | [19]
(HS) tation operators to ensure global conver-
gence
Artificial bee colony | To enhance population diversity and en- | [18]
(ABC) hance global convergence

25

e BA has low convergence accuracy, slow convergence velocity, and easily falls into
local optima.

e It cannot perform a global search well.

e It suffers from lack of incorporated domain-specific knowledge of the problem to
be solved.

Table 2.1 states samples of hybridizations mentioned in the literature.

2.3.1 Bat hybrid with differential evolution (DE)

The original BA algorithm suffers from a lack of incorporated domain-specific knowledge
of the problem to be solved [13]. That work focuses on hybridizing the BA using novel
local search heuristics that better exploit the self-adaptation mechanism of this algo-
rithm. The standard rand/1/bin DE strategy and three other DE strategies focusing on
the improvement of the current best solution were used for this purpose.

The local search is launched according to a threshold determined by the pulse rate r;.
The local search is an implementation of the operator’s crossover and mutation borrowed
from DE. First, the four virtual bats are selected randomly from the bat population and
the random position is chosen within the virtual bat. Then, the appropriate DE strategy
modifies the trial solution. The DE strategies are many and always direct the solution
toward the global best solution. Equations 2.29, 2.30, 2.31, and 2.32 outline sample DE
strategies used.

Yj = Tr14 + F.(ng,j — 1'7»37j) (2.29)
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Yj = Tij + F.bestj (.%'lej — :L'TQJ) (2.30)
Yj = bestj + F.(a:rlvj + Xroj — Tr3j — a:r47j) (2.31)
Y; = bestj + F.(IETLJ‘ — LETQJ) (232)

where F' is a constant scaling factor always in [0.1,1], best is the global best solution,
and x, is a randomly selected virtual bat.

Another hybridization is proposed in [14] where the DE strategy DE/rand/1/bin is
used to replace the local search using normal distribution in the original BA algorithm.
DE/rand/1/bin denotes that the base vector is randomly selected, 1 vector difference is
added to it, and the number of modified parameters in mutation vector follows binomial
distribution.

2.3.2 Bat hybrid with particle swarm optimization

A hybrid particle swarm optimization with bat algorithm (hybrid PSO-BA) is designed
based on original PSO and bat algorithm in [15]. Each algorithm evolves by optimiza-
tion independently, i.e., the PSO has its own individuals and the better solution to
replace the worst artificial bats of BA. In contrast, the better artificial bats of BA are
to replace the poorer individuals of PSO after running some fixed iterations. Figure 2.2
outlines the communication strategy used to exchange solutions between PSO and BA
agents.

2.3.3 Bat hybrid with cuckoo search

In order to solve the problems of bat algorithm including low convergence accuracy,
slow convergence velocity, and easily falling into local optimization, this paper presents
an improved bat algorithm [16]. Based on basic CS algorithm, it draws the bat al-
gorithm into the basic CS algorithm, and makes their respective advantages together
in a hybrid optimization algorithm (BACS), bat algorithm, and cuckoo optimization
algorithm.

Based on the basic algorithm of the cuckoo, the bird’s nest location z! does not access
to the next iteration (¢ + 1) directly after the evolution, but access to BA algorithm
continues to update the bird’s nest position through the dynamic transformation strat-
egy. First of all, comparing a uniformly distributed random number with the launch
and pulse rate, if it meets the conditions, a random disturbance is carried out for the
optimal position of the bird’s nest with current, and gains a new bird’s nest. Then it
carries on the cross-border process and evaluates the corresponding of the fitness value.
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Figure 2.2: Solution exchange between bat algorithm and particle swarm optimization

Make a comparison between loudness and uniformly distributed random number, and
update the bird’s nest position in the basic cuckoo algorithm by applying the new op-
erators if conditions are met. Update the launch of loudness and pulse rate as well.
Finally evaluate the fitness values of the bird’s nest, and find out the current optimal
position of the bird’s nest and the optimal value, and enter the next iteration; continue
to search and update the position through adopting the basic cuckoo algorithm. It solves
the balance of global search and local search well in the algorithm, thus improving the
convergence of the algorithm, and avoiding it falling into local optimum and getting the
global optimal solution. And it enhances the ability of local optimization and convergent
precision at the same time.

2.3.4 Bat hybrid with simulated annealing

A simulated annealing Gaussian bat algorithm (SAGBA) for global optimization was
proposed in [17]. The proposed algorithm not only inherits the simplicity and efficiency
of the standard BA with a capability of searching for global optimality but also speeds
up the global convergence rate.

The basic idea and procedure can be summarized as two key steps: Once an initial
population is generated, the best solutions are replaced by new solutions generated by
using simulated annealing (SA), followed by the standard updating equations of BA.
Then, the Gaussian perturbations are used to perturb the locations/solutions to gener-
ate a set of new solutions.
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The basic steps for the SAGBA are as follows:

1.

Initialize the bat positions, velocities, frequency ranges, pulse rates, and the loud-
ness as in the standard BA.

Evaluate the fitness of each bat, store the current position and the fitness of each
bat, and store the optimal solution of all individuals in the pbest.

Determine the initial temperature as in the equation below:

[ (pbest)

ty =
0 Inb

(2.33)

According to the following formula to determine the adaptation value of each
individual in the current temperature,

e~ (f(@i)—f(pbest))/t
Zj-vzl e~ (f(z;)—f(pbest))/t

TF(z;) = (2.34)

where t is the current temperature.

Use roulette strategy to determine an alternative value pbest and then update the
velocity and position as in the standard BA.

Calculate the new objective or fitness value of each bat, and update the posi-
tions/solution if it is better. Then, carry out Gaussian perturbations, and compare
the position before and after Gaussian perturbations to find the optimal position
pbest and its corresponding optimal value. Gaussian perturbations can be simply
implemented as

X = X' 4 ae (2.35)

where € ~ N(0,1) and a is a scaling factor.

Update the cooling schedule as
thes = Ak (2.36)
where where A in [0.5,1] is a cooling schedule parameter.

Check for stopping and repeat at step 4.

2.3.5 Bat hybrid with harmony search

The standard BA algorithm is adept at exploiting the search space, but at times it may
trap into some local optima, so that it cannot perform a global search well [19]. A hybrid
meta-heuristic algorithm induces the pitch adjustment operation in HS as a mutation
operator into a bat algorithm, the so-called harmony search/bat algorithm(HS/BA). The
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difference between HS/BA and BA is that the mutation operator is used to improve the
original BA generating a new solution for each bat. In this way, this method can explore
the new search space by the mutation of the HS algorithm and exploit the population
information with BA, and therefore can avoid trapping into local optima in BA [19].
In the HS/BA a local search is performed either using the standard bat local search or
stochastically using the harmony search equation as follows:

Tnew = Told + bw(25 - 1) (237)

where ¢ is a random real number drawn from a uniform distribution [0, 1] and BW is
the bandwidth controlling local range of pitch adjustment. Pitch adjustment operation
in HS serves as a mutation operator updating the new solution to increase diversity of
the population to improve the search efficiency.

2.3.6 Bat hybrid with artificial bee colony

The idea is based on replacing the weaker individuals according to a fitness evaluation of
one algorithm with stronger individuals from an other algorithm in parallel processing
for swarm intelligent algorithms [18]. Several groups in a parallel structure are created
from dividing the population into subpopulations to construct the parallel processing al-
gorithm. Each of the subpopulations evolves independently in regular iterations. They
only exchange information between populations when the communication strategy is
triggered. It results in taking advantage of the individual strengths of each type of algo-
rithm, replacing the weaker individuals with the better one from the other, and reducing
the population size for each population and the benefit of cooperation is achieved.

The hybrid BA-ABC is designed based on original BA optimization and artificial bee
colony optimization algorithm. Each algorithm evolves by optimization independently,
i.e., the BA has its own bats and near best solution to replace artificial agents of ABC
worst and not near best solution. In contrast, the artificial agents better than ABC are
to replace the poorer bats of BA after running R; iterations. The total iteration contains
R times of communication, where R = R1,2R1,3R1,... . The bats in BA don’t know
the existence of artificial bees of ABC in the solution space [18]. Figure 2.3 outlines an
abstracted view of the communication between BA and ABC [18].

2.4 Bat algorithm in real world applications

This section presents sample applications for the bat algorithm (BA). BA was suc-
cessfully applied in many disciplines in decision support and making, image processing
domain, and engineering. The main focus is on identifying the fitness function and the
optimization variables used in individual applications. Table 2.2 summarizes sample
applications and their corresponding objective(s).

BA is used in [20] for feature reduction. The BA is used to search the space of feature
combination to find a feature set maximizing the rough-set classifier. It is used with naive
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Figure 2.3: The diagram of hybrid BA-ABC with communication strategy [18]

Bayes theory for feature selection in [21]. The velocity in the standard BA is represented
as a positive integer number. Velocity suggests the number of bat attributes that should
change at a certain moment of time. The difference between bat position and best
solution in velocity calculation is represented as the difference between feature size of
the given solution and the best solution. Bat position is represented as the binary string
representing the selected /unselected features. Loudness is represented as the change in
number of features at a certain time during local search around the global best bat,
as well as a local search around the i—th bat. The fitness function used is a double
objective one that incorporates both classification accuracy and feature reduction; refer
to equation 2.38.

TP +TN TF — SF
£=0.9 i foaE=SE

TP+TN+ FP+ FN TF

(2.38)

where TP, FP, TN, FN are the classifier true positives, classifier false positive, classifier
true negatives, and classifier false negative in order and TF, SF are the total number of
features and the size of selected features in order.

Predicting efforts for the software testing phase is a complex task. There are many
factors that affect test effort estimation, such as productivity of the test team, testing
strategy, size and complexity of the system, technical factors, expected quality, and oth-
ers [22]. There is a strong need to optimize the test effort estimation. BA is used to
estimate the test effort. The proposed model is used to optimize the effort by iteratively
improving the solutions. The amount of deviation between the expected and the actual
effort is to be minimized so that the prediction system will be suitable.
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Table 2.2: CS applications and the corresponding fitness function

Application Name Fitness Function Sample
References
Feature selection and | Maximize classification accuracy and mini- | [20,21]
ranking mize number of selected features
Prediction of software | The fitness is the amount of deviation between | [22]
test effort the predicted and actual test effort
Resource scheduling in | Objective is to minimize the makespan and | [23]
cloud environment time
Localization of nodes | Fitness is estimated as the amount of devia- | [24]
in wireless sensor net- | tion between actual and predicted positions of
work some known-position nodes
Cluster head selection | Goal is to maximize network lifetime by min- | [25]
in wireless sensor net- | imizing routing cost
work
Economic load dis- | Target is minimizing the total fuel cost while | [26]
patch (ELD) enhancing security and stability of power sys-
tems
Economic load dis- | The objective of the economic dispatch prob- | [?]
patch lem is minimization of operating cost
Design of brushless DC | Maximizing the efficiency of the DC wheel mo- | [27]
wheel motor tor
Microstrip coupler de- | Minimizing microstrip coupler design equa- | [28]
sign tions
Training of neural net- | Target is the amount of deviation between the | [29]
work expected and the actual network output
Training of functional | Objective is to minimize the classification er- | [30]
Link Artificial Neu- | ror rate for the network
ral Network (FLANN)
classifier
To find optimal param- | Error between predicted and actual output of | [31]
eter values for support | the SVM
vector machine (SVM)
Image thresholding maximizing Kapur’s entropy [32]
Image thresholding Maximizing Otsus between class variance | [33]
function
Image thresholding Minimizing variance inside individual clusters | [34]
Image thresholding Maximize the correlation between data points | [35,36]
in same cluster
Multi-level image | Maximize entropy inside individual clusters [37]
thresholding

31

BA is used in [23] for resource scheduling in cloud computing. Resource scheduling
is a complicated process in cloud computing because of the heterogamous nature of the
cloud and multiple copies of the same task is given in multiple computers. The BA
proves good accuracy and efficiency in its application. The fitness for evaluating the bat
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solution is composed of two components, namely, makespan and cost. The makespan is
the total execution time while the cost is measured in dollars and it is decided per job.

In wireless sensor network (WSN) the information gathered by the microsensors will
be meaningless unless the location from where the information is obtained is known.
This makes localization capabilities highly desirable in sensor networks [24]. Using the
global position system is inefficient and costly. So, instead of requiring every node to
have GPS installed, all localization methods assume only a few nodes be equipped with
GPS hardware. These nodes are often called anchor nodes and they know their positions.
Other normal sensors can communicate with a few nearby sensors and estimate distances
between them using some localization algorithm and then derive their positions based
on the distances. BA is employed to localize nodes based on their estimated distance to
each other [24].

BA is used in [25] in WSN for cluster head selection. The target of the BA is to divide
the nodes of the network into a set of disjoint clusters and further a node inside each
cluster is used as a cluster head.

Power system operation involves some kind of optimization for ensuring economy, se-
curity, and stability. Economic load dispatch (ELD) is one such optimization problem
and it is applied for minimizing the total fuel cost. Optimizing the fuel cost is done by
properly setting the real power generation from the generators in a power system [26].
BA is used in optimization of ELD in [26].

ELD is an optimization problem for scheduling generator outputs to satisfy the total
load demand at the least possible operating cost. An ELD problem is often formulated as
a quadratic equation. The ELD problem is in reality a nonconvex optimization problem
[26]. The objective of the economic dispatch problem is minimization of operating cost.
The generator cost curves are represented by a quadratic function with a sine component.
The sine component denotes the effect of steam valve operation [26]. The fitness function
can be formulated as follows:

Ng
F.(Py) = Z a;P? + b;P; + c; + |disin[e; * (pi™™ — p;)]| (2.39)
i=1
where Ng is the number of generating units, a;, b;, ¢;, d; and e; are the cost coefficients
of the ith generating unit, and p; is the real power output of the ith generator.

The aim of BA in [27] is to optimize the mono- and multi-objective optimization
problems related to the brushless DC wheel motor problems, which has five design pa-
rameters and six constraints for the mono-objective problem and two objectives, five
design parameters, and five constraints for the multi-objective version. The goal of the
optimization is to maximize the efficiency of the DC wheel motor.
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Microstrip couplers are part of many microwave circuits and components and their
design is of interest [28]. The theoretical foundations and the models predict very close
proximity to the real experimental results that are obtained, however the complexity of
equations make the design a difficult task unless an optimizing tool in a CAD program
is used. These equations are used in an algorithm and then the obtained results are
used in a CAD program to observe whether the algorithm has found correct dimension
values for the desired coupling. The target is to minimize microstrip coupler design
equations [28].

BA is used to find optimal weights and biases in a momentum feed-forward neural
network [29]. The target or fitness function is to minimize the network output error.
In [30], a model has been proposed for classification using bat algorithm to update the
weights of a Functional Link Artificial Neural Network (FLANN) classifier. The pro-
posed model has been compared with FLANN, PSO-FLANN. The objective function is
the error between the targeted output and the actual output. BA is used to find optimal
parameter values for the support vector machine (SVM) [31]. The trained SVM is used
to predict future trends of the stock market.

Threshold localization based on maximizing Kapur’s entropy using BA is proposed
in [32]. The selected threshold divides the histogram into non-overlapping regions.

Histogram based bilevel and multi-level segmentation is proposed for gray-scale images
using bat algorithm (BA). The optimal thresholds are attained by maximizing Otsus be-
tween class variance function [33].

In [34] BA has been used for detection of hairline bone fracture. BA is used as a pre-
processor for image enhancement and then image is passed to a self-organizing map for
further clustering. BA is used to adjust threshold based on minimizing variance inside
individual clusters.

In [35] BA is used to find optimal cluster centers. The distance similarity measure is
the correlation between the data points and the cluster center; refer to equation 2.40.

Diz1 Tili 2.40
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where x,y,n are the first vector, second vector, and number of dimensions.

r =

The monochromatic cost function is suitable for detecting meaningful homogeneous
bi-clusters based on categorical valued input matrices [36]. Given an input matrix over
some fixed finite domain D of values, and integers K and L, the monochromatic bi-
clustering task is to find a partition of the rows of the matrix into K groups and its
columns into L groups, such that the resulting matrix blocks are as homogeneous as
possible. We define the cost of a partition as the fraction of matrix entries that reside
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in blocks in which they are not the majority value entries. The BA iterates over all
(discarding symmetries) possible patterns, and for each pattern finds the best (approxi-
mated) partition. Naturally, the pattern of the best partition will be considered, and it
is easy to see that the partition minimizing the cost with respect to the optimal pattern
is the optimal monochromatic solution [36].

A system for multi-level image thresholding was proposed in [37] based on the bat
algorithm. The optimal thresholds are obtained by maximizing the objective function:

k
min (Z Hz) (2.41)
i=0
where k is the number of thresholds required and H; is the entropy inside cluster i.

2.4.1 Bat algorithm for solving ill-posed geomagnetic inverse problem

The aim of the geomagnetic inverse problem is to detect the buried magnetic bodies from
the measured geomagnetic field signal. In the two-dimensional space, the model domain
is subdivided into two-dimensional prisms of equal sides and each prism is extended to
infinity in the third direction perpendicular to the plane. Each prism has an unknown
magnetic susceptibility. The problem can be expressed as

min = || Az — b]|? (2.42)

where A is the kernel matrix, which expresses the geometrical relation between each
prism and each measuring point, x is the vector of unknown magnetic susceptibility of
prisms, and b is the vector of measured magnetic field. To solve the above system, the
BA as an evolutionary technique is a good choice.

The Kaczmarz method or the modified version of Kaczmarz algorithm for solving ill-
posed systems of linear algebraic equations is based on transforming regularized normal
equations to the equivalent augmented regularized normal system of equations [38]. Such
algorithm can effectively solve ill-posed problems of large dimensionality. By running
this method on different data samples we found that it converges to a suboptimal solu-
tion especially if the problem dimension is very high. Thus, the Kaczmarz were used as
an initializer for the bat algorithm for its fast regularization, and further, the BA adapts
this solution, as well as other random solutions, using BA principles. In the Kac-BA
the Kaczmarz is set to run around one third of the total running time and BA is run
to enhance the solution by Kaczmarz for the rest of the allowed time. For comparison
purposes we compared the Kaczmarz method for regularization against a Kac-Bat reg-
ularization where both methods are allow to run for the same running time and each
method is run on the same data for 10 runs to estimate statistically the capability of
each method to converge regardless of the initial and random solutions used. The new
hybrid method was applied to three synthetic examples using different noise levels and
earth model dimensions in each case to prove its efficiency.
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Figure 2.4: Sample synthetic data and the corresponding reconstructed image using
Kaczmarz method at SNR = 100 at dimension [10 x 64]

Three synthetic data samples were used for the experiment and testing the algorithm.
Each data sample is exposed to white Gaussian noise to simulate the natural field data
where different noise may be observed with signal-to-noise ratio (SNR) ranges from 100
to 60 with step 10. The synthetic data were resized to different sizes to evaluate the
performance of each optimizer on low and high dimensional problems. The problem
dimensions were [10x64], [10x16], and [5x16].

Figure 2.4 displays sample synthetic data and the corresponding reconstructed im-
age using Kaczmarz method at SNR = 100 at dimension [10x64]. We can see that the
Kaczmarz can guess the position of the mass but with some haze boundaries and mis-
positioning.

Figure 2.5 displays sample synthetic data and the corresponding reconstructed image
using BA Method at SNR = 100 at dimension [10x64]. We can see that the BA can
localize the synthetic object in both dimensions.

Figure 2.6 displays sample synthetic data and the corresponding reconstructed image
using BA method at SNR = 100 at dimension [5x16]. We can see that the BA can guess
the position of the mass much better at this dimension which is, respectively, low.
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Figure 2.5: Sample synthetic data and the corresponding reconstructed image using BA
method at SNR = 100 at dimension [10 x 64]

Table 2.3 outlines the performance of BA and Kaczmarz over the first synthetic data
on different noise rates and on different dimensions. The output fitness value from
Kaczmarz and Kac-BA are outlined as well as the mean square error between the recon-
structed image and the synthetic one. We can see remarkable advance for the BA over
Kaczmarz at the high dimensional data, which can be interpreted by the exploitative
capabilities of BA especially at the final steps for optimization. We can also remark that
noise effect on the performance of BA is minor.

At data with lower dimension we can see that Kaczmarz can reach the global solution
and hence it outperforms BA. Similar results and conclusion can be derived from Tables
2.4 and 2.5 on synthetic data sample 2 and 3.

Figure 2.8: Visualizations of the result obtained by bat algorithm on Facebook social
network dataset

2.4.2 Bat algorithm for the community social network detection problem

Community detection in networks has raised an important research topic in recent years.
The problem of detecting communities can be modeled as an optimization problem where



2.4 Bat algorithm in real world applications 37

5 10 15 20 25 30

Figure 2.6: Sample synthetic data and the corresponding reconstructed image using
Kaczmarz method at SNR = 100 at dimension [10 x 64]

Table 2.3: Resulting fitness value and mean square error for BA and Kaczmarz on syn-
thetic data 1 at different SNR and different dimensions

SNR Dim Kaczmarz Kac-BA Kaczmarz BA MSE
Fitness Fitness MSE
100 640 18.56654 15.70077 0.000004 0.000004
100 160 4.364369 3.211048 0.000002 0.000002
100 80 1.82478 2.315475 0.000002 0.000004
90 640 17.80673 15.93999 0.000004 0.000004
90 160 4.254198 3.220406 0.000002 0.000002
90 80 1.839903 2.346384 0.000002 0.000004
80 640 18.13617 16.13885 0.000004 0.000004
80 160 4.39544 3.258705 0.000002 0.000002
80 80 1.881141 2.37184 0.000002 0.000004
70 640 17.72511 17.26083 0.000004 0.000004
70 160 4.397793 3.49102 0.000002 0.000002
70 80 1.964255 2.575199 0.000002 0.000004
60 640 23.32973 21.53744 0.000004 0.000004
60 160 5.456999 4.243028 0.000002 0.000002
60 80 2.312926 3.843799 0.000002 0.000004
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Table 2.4: Resulting fitness value and mean square error for BA and Kaczmarz on syn-
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thetic data 2 at different SNR and Different Dimensions

SNR Dim Kaczmarz Kac-BA Kaczmarz BA MSE
Fitness Fitness MSE
100 640 20.14454 17.67157 0.000005 0.000005
100 160 4.8768 4.057205 0.000004 0.000004
100 80 3.007872 4.913887 0.000004 0.000005
90 640 19.98031 17.74035 0.000005 0.000005
90 160 5.19905 4.045526 0.000004 0.000004
90 80 3.207954 5.002001 0.000004 0.000005
80 640 20.67425 17.63531 0.000005 0.000005
80 160 5.898271 4.248078 0.000004 0.000004
80 80 3.362344 5.026152 0.000004 0.000005
70 640 21.02544 18.18722 0.000005 0.000005
70 160 5.292449 4.127389 0.000004 0.000004
70 80 3.3517 4.897991 0.000004 0.000005
60 640 21.67418 19.0649 0.000005 0.000005
60 160 6.335895 5.229592 0.000004 0.000004
60 80 4.417849 5.067848 0.000004 0.000005

Figure 2.7: Result for Facebook dataset
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Table 2.5: Resulting fitness value and mean square error for BA and Kaczmarz on syn-
thetic data 3 at different SNR and different dimensions

SNR Dim Kaczmarz Kac-BA Kaczmarz BA MSE
Fitness Fitness MSE
100 640 34.29171 29.05363 0.000008 0.000009
100 160 9.053332 7.218613 0.000006 0.000006
100 80 5.408153 6.843847 0.000006 0.000008
90 640 32.52878 29.32763 0.000008 0.000009
90 160 9.36744 7.284556 0.000006 0.000006
90 80 5.210043 6.787388 0.000006 0.000008
80 640 33.22117 29.30881 0.000008 0.000009
80 160 9.684629 7.226406 0.000006 0.000006
80 80 5.115863 6.751183 0.000006 0.000008
70 640 34.45014 29.81535 0.000008 0.000009
70 160 10.22134 7.522129 0.000006 0.000006
70 80 5.157756 6.950278 0.000006 0.000008
60 640 38.6098 35.45318 0.000008 0.000009
60 160 11.88874 9.294612 0.000006 0.000006
60 80 6.157133 7.277374 0.000006 0.000008

a quality objective function that captures the intuition of a community as a set of nodes
with better internal connectivity than external connectivity is selected to be optimized.
In this work the bat algorithm was used as an optimization algorithm to solve the
community detection problem. Bat algorithm is a new nature-inspired meta-heuristic
algorithm that proved its good performance in a variety of applications. However, the
algorithm performance is influenced directly by the quality function used in the opti-
mization process. Experiments on real life networks show the ability of the bat algorithm
to successfully discover an optimized community structure based on the quality function
used and also demonstrate the limitations of the BA when applied to the community
detection problem.

In this section we tested our algorithm on a real life social network for which a ground
truth community partition is known. To compare the accuracy of the resulting com-
munity structures, we used normalized mutual information (NMI) [] to measure the
similarity between the true community structures and the detected ones. Since modu-
larity is a popular community quality measure used extensively in community detection,
we used it as a quality measure for the result community structure of all other objectives.

We test the BA algorithm on Facebook dataset [?]. The data were collected from
survey participants using a Facebook application [?]. The ego network consists of a
user’s — the ego node — friends and their connections to each other. The 10 Facebook
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ego networks from [?] are combined into one big network. The resulting network is
an undirected network that contain 3959 nodes and 84243 edges. Despite that there is
no clear community structure for the network, a ground truth structure was suggested
in [?]. For the tested dataset, we applied the bat algorithm 10 restarts and calculated
the NMI and modularity value of the best solution selected. This process was repeated
10 times and average NMI and average modularity are reported. The bat algorithm was
applied with the following parameter values: number of BA in the population np = 100
and the maximum number of iterations Max_Ilterations = 100.

Figure 2.7 shows a visualization of the largest 12 communities from the detected com-
munity structure of the Facebook dataset. We can observe that each group shows a dense
connection between nodes from the same group and sparce or low interactions between
nodes from different groups, except for a few nodes that have a large edge degree across
different groups such as nodes {1750, 476, and 294}, which makes group membership
assignment a hard process for the algorithm.

As observed from the experimental result the bat algorithm performance is promising
for small-size networks, however for large networks bat algorithm performance is de-
graded compared to other community detection algorithms. From our initial analysis,
we found there is not much diversity in the BA swarm over the search space and the bat
algorithm does not explore a large region in the search space for the following reasons:

e All the population is moving toward one position (current global best x*). Over it-
erations this will lead to all BAs will moving/evolving to similar solutions. Despite
that we overcome this problem using 7 top global best, it decreased its impact but
did not eliminate it.

e There is no operator/behavior that allows the BA to escape a local optima or
jump/explore new random regions in the search space. For example, in genetic
algorithm there exists a mutation operation that allows such behavior that even
a simple mutation in the current solution could cause a large diversity in the
current population. Despite that bat algorithm performance in other applications
that continue in nature is very promising, for the community detection problem
(discrete case) bat algorithm performance has some limitations.

e The local search and bat difference operator are not optimal and it is not clear if
they are efficient in exploring the search space. It is possible for another design to
cause a significant improvement to the algorithm performance.

e Accepting criteria for new solutions has some limitation. The basic bat algorithm
accepts new solutions only if it is better than the current global best. This may
constrain the number of moves that a bat can perform.
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2.5 Chapter conclusion

This chapter discusses the behavior of bats and its variants. Variant versions include
discrete bat algorithm, binary bat algorithm, chaotic bat algorithm, parallel bat algo-
rithm, bat for constrained problems, bat with Levy distribution, chaotic bat with Levy
distribution, self-adaptive bat algorithm, and an adaptive bat algorithm. Moreover, this
chapter reviews the most hybrid evolutionary bat algorithm with other optimization
techniques. This chapter ends by discussion of a real-world application as a case study
of bat algorithm as well as shows how bat algorithm is applied for solving ill-posed
geomagnetic inverse problems and detection in the community in the social network.
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3 Artificial Fish Swarm

3.1 Fish swarm optimization

3.1.1 Biological base

Artificial fish swarm algorithm (AFSA) is a population-based evolutionary computing
(EC) technique that is inspired by the social behavior of fish schooling and swarm intelli-
gence (SI). AFSA, with its artificial fish (AF) concept, was proposed by Dr. Li Xiao-Lei
in 2002 [1]. AF adopts information by sense organs and performs stimulant reaction by
controlling the tail and fin. The AFSA is a robust stochastic technique in solving opti-
mization problems based on the movement and intelligence of swarms in the food-finding
process. Swarms have much explorative capability and noncentralized decision making.
The three main principles developed in AFSA are the fish behaviors in food searching,
swarming, and following.

3.1.2 Artificial fish swarm algorithm

The main states of a particular fish are Random, Search, Swarm, Chase, and Leap; see
Algorithm 2. The fish swap among one or more states in the same iteration. Details
concerning these procedures are presented below.

The main issue of the artificial fish swarm algorithm is the visual scope of each fish.
The visual scope of each point X; is defined as the closed neighborhood of X; with ray
equal to a positive quantity called visual. When the visual scope of a fish is empty
the fish applies random search state. When the fish is in the random state it jumps
randomly to a new position if the new position has better fitness.

When the visual scope is crowded, the point has some difficulty in following any
particular point, and searches for a better region choosing randomly another point (from
its visual scope) and moves toward it; search behavior. In this case, the fish moves along
a direction defined as in the following equation:

d; = Xrand - X; (31)
Xrand 1s the position of a random fish in the visual scope of fish 7.
When the visual scope is neither crowded nor empty, the fish is able either to swarm

or move toward the central; swarming state, or to chase or move toward the best point;
chasing behavior.

45
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input : n Number of Fish in the swarm
NIter Number of iterations for optimization
Visual The visual scope radius
T Leaping Threshold

output: Optimal fish position and its fitness

Initialize a population of n fish’ positions at random
while Stopping criteria not met do
foreach I'ish; do

Compute the visual scope
if Visual Scope is empty then
| Y« random(X?)
else
if Visual Scope is crowd then
| Y < search(X?)
else
Calculate Swarm centroid C; if Fitness of C; better than Fitness
of Fish; then
| Y]« swarm(X?)
else
| Y} < search(X?)
end
if Fitness of Fish; worse than global best then
| YY)+ chase(X?)
else
| Y3 < search(X?)
end
Y = argminfitness(Y{,Ys)
end

end

foreach F'ish; do

X« select(X*, YY)

if No Advance In global best for T Iterations then
| Randomly choose a fish X? Y < leap(X?)

end

end
Algorithm 2: Pseudo-code of the AFSA algorithm



3.2 AFSA variants 47

Input: 2%, 1, u,d’
1. A~ UJ0,1]
2. Fork=1,...,ndo
a Ifd};>0then ‘
yi o at + )\%(uk —t)
b Else .
yi <+ xl + )\%(:c}; —lg)
c End If

3. End For

Algorithm 3: Movement along a particular direction

In the swarming state the fish moves along a direction defined as

di = C; — X; (3.2)
where X is calculated as C; = % npt®ue is the number of fish in the visual

scope of fish ¢, and X is the positiofl of fish j inside the visual domain of fish ¢. In the
chasing state, the fish moves along a direction defined using the following form:

di = Xpest — Xii (3.3)

where Xpes is the best solution found ever. A fish applies a move along a particular
direction d; as shown in Algorithm 3:

A leaping behavior can be applied if the best solution gets no advance for a predeter-
mined number of successive iterations 1. The leaping behavior randomly selects a point
from the population and carries out a random move inside its surround. Algorithm 4
describes the pseudo-code of this leap procedure [2,5].

3.2 AFSA variants

3.2.1 Simplified binary artificial fish swarm algorithm

A simplified binary version of the AFSA is presented in [3]. In the simplified version, a
threshold 0 < 71 < 72 < 1 is employed in order to perform the movements of random,
searching, and chasing. If rand < 71, the random behavior is applied. In this behavior
the trial point v' is created by randomly setting 0/1 bits of length m. The chasing
behavior is implemented when rand(0, 1)> 72 and it is related to the movement toward
the best point found so far in the population, y***t. Here, the trial point v' is created
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Input: z,l,u
1. rand ~ U0, ..., 1]

2. For k=1,...,n do
a A\ ~U[0,1]; Ay ~U[0,1]
b If Ay > 0.5 then
Y = 25+ Ny (uy — xhond)
c Else
e = = dg(afed = 1)

d End If

3. End For
Algorithm 4: Leaping behavior

using a uniform crossover between y' and 1%t

In uniform crossover, each bit of the trial point is created by copying the corresponding
bit from one or the other current point with equal probability. The searching behavior is
related to the movement toward a point y"*"¢ where rand is an index randomly chosen
from the set of fish 1,2, ..., N. This behavior is implemented when 71 < rand(0,1) < 72.
A uniform crossover between y' and y"%"¢ is performed to create the trial point v'.

A mutation is performed in the point y**** to create the corresponding trial point v.
In mutation, a 4-flip bit operation is performed, i.e., four positions are randomly selected
and the bits of the corresponding positions are changed from 0 to 1 or vice versa. Local
search based on swap move is applied after the selection procedure. In this local search,
the swap move changes the value of a 0 bit of a current point to 1 and simultaneously
another 1 bit to 0. The points in a population may converge to a non-optimal point.
To diversify the search, re-initialization is applied to the population randomly, every R
iteration keeping the best solution found so far.

3.2.2 Fast artificial fish swarm algorithm (FAFSA)

A fast version of the AFSA has been presented in [6]. In that implementation, the ran-
dom numbers used in the standard AFSA that are drawn from uniform distribution are
replaced by Brownian motion and Levy flight, which enhances the convergence speed
of the algorithm as pretended by the authors. The Brownian motion is closely linked
to the normal distribution. The process has independent increments with expected
value 0.
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3.2.3 Modified artificial fish swarm optimization

Since most of the behaviors of the fish are local behavior, the algorithm may stuck in
local minima [7]. So in [7] a random leaping is presented. A leaping is performed if for
a predetermined set of iterations the enhancement in the best fitness is limited; then a
random leaping is performed as in equation 3.4.

X! = X! + Buisual.rand (3.4)

where ¢ is the index for a random fish drawn from the swarm, § is a constant, rand is
a random number drawn from uniform distribution in the range [0, 1], and visual is the
fish visual.

The fish step is also an important parameter in the performance of the AFSA. When
step size is small the algorithm can quickly converge to a good solution but can oscillate
around the minima. When step size is small the algorithm takes longer time in con-
vergence but convergence to global solution is much ensured. Using the adaptive step
may prevent the emergence of vibration, increase the convergence speed, and enhance
the optimization precision [7]. In the behaviors of AF-Prey, AF-Swarm, and AF-Follow,
which use the Step parameter in every iteration, the optimized variables (vector) have
the various quantity of Step * Rand(), Step is a fixed parameter, and Rand() is a uni-
formly distributed function. Zhu and Jiang [11] give an adaptive Step process using the
following equation, where t means iteration time:

a.N —t
N
where « is a constant between 1.1 and 1.5, and ¢, N are the iteration number and number
of iterations. In the above equation the step size decreases throughout iterations to allow
for coarse exploration in the beginning of the optimization and detailed exploration in

the end of optimization.

stepiy1 = step; (3.5)

In [28] adaptive visual and step parameters are proposed. In order to control values
of step and visual and balancing between global search and local search, a parameter
called movement weight (MW) is presented. MW can be a constant value smaller than
one, positive linear or nonlinear function. In each iteration, visual and step values are
given according to the following equations:

visual, = MW.wisual,—q (3.6)

stepy = MW.step;_1 (3.7)

where iter is the current iteration of the algorithm. With the purpose of attaining bet-
ter values for the visual and step based on the iteration number, different methods for
calculating MW have been presented in [28].
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e Linear movement of MW: In this method, MW is a positive function that varies be-
tween a minimum and a maximum and is calculated according to current iteration
and final iteration number; see equation 3.8.

It maxr t
MW, = MW + —o0m = 2 O Waw — MWinin) (3.8)

where MW, is the movement at time t, MW, i, MW, 0 are the minimum and
maximum values for the movement, and Iter,,,, is the total number of iterations
in the optimization.

e Random movement of MW: MW is a random number between two values: mini-
mum and maximum. In each iteration, random value of MW is calculated based
on the following equation:

MW, = MWin + rand(MWae — MWinin) (3.9)
where rand is a random number drawn from normal distribution between 0 and 1.

Artificial fish swarm algorithm has global search capability, but the convergence speed
of later stages is too slow; a lot of artificial fish perform invalid searches which wastes
much time [8]. An improved algorithm based on swallowed behavior is proposed in [8].
A diversity indicator is calculated as in equation 3.10 to switch to these two behaviors.

min(f, favg)
T max(f, favg)

where fq.4 is the average fitness of the whole swarm and f is the fitness of the current
fish. After a certain time of iteration a threshold is applied to individual fish to decide if
it will be swallowed or not. These proposed modifications improve the AFSO algorithm’s
stability and the ability to search the global optimum. The improved algorithm has more
powerful global exploration ability and faster convergence speed, and can be widely used
in other optimization tasks especially for high dimensional data.

(3.10)

3.2.4 New artificial swarm algorithm (NAFSA)
In the paper in [9], the following problems are outlined in the standard AFSA:

e Lack of using previous experiences of AFs during optimization process: Exploita-
tion performance of AFs decreases. AFs in AFSA do not use the best recorded
position on the bulletin for their next movements. This is a considerable weak
point in AFSA, since the best result found by swarm so far is not applied for
improving swarm member positions.

o Lack of existing balance between exploration and exploitation: Setting the initial
value for visual and step parameters has a considerable effect on the quality of the
final result, because the values of these two parameters remain fixed and are equal
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to their initial value up to the end of the algorithm execution. By adjusting the
initial values of Visual and Step parameters AFs are able to appropriately perform
just one of the exploration and exploitation tasks.

e Wasting high computational load: There are some complicated calculations such
as calculating in two behaviors and applying one only and the cost of calculating
the spatial distance between fish.

o Weak points of AFSAs parameters: Parameters such as visual, crowd, step, are
very difficult to select while it affects the performance.

Contraction factor (CF) is added to NAFSA structure. C'F' is a positive number less
than 1 that could be considered constant or be generated by a function. Previously,
inertia weight was presented for balancing the exploration and exploitation in PSO. C'F
in NAFSA has a similar application to inertia weight in PSO. The updating for the CF
is defined as follows:

CF = CFpin + (CFpar — CFpn)rand (3.11)

where CF,40, CFpin are the minimum and maximum allowed value for the C'F and
rand is a random number drawn from uniform distribution in the range from 0 to 1.
The visual parameter is calculated given the C'F using the following equation:

m’sual(t;r1 = visualy x CF (3.12)

where C'F' is as calculated in equation 3.11 and m’sualﬁl is the visual parameter in di-
mension d at iteration t.

In the NAFSA the new behaviors are individual behavior and group behavior. The
individual behavior is composed of prey and free move behaviors. In this case, AF; which
is in position Xj(t), tries a number of times to move toward better positions. In each try,
AF considers position X;(t) around itself by equation. 3.13, then evaluates fitness value
of that point. If better than current position X;(¢) then it will be kept else a new trial
is applied. If for a number of failure trials no better solution is found then a random
position is chosen according to equation 3.13.

xé:&l = xt-yd + visual.randg(—1,1) (3.13)

7

where randy(—1,1) is a random number drawn from uniform distribution in the range
[-1,1], and visual is AFSA visual parameter. In group behavior, two goals are followed:
first goal is to keep AF's as a swarm and the second one is the movement of AFs toward
the best AF's position. Central position of swarm is calculated by equation 3.14.

1 N
Ted = N Z Ti.d (3.14)
i=1
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where IV is the number of fish in the swarm, d is the dimension, and s. is the central
position. Movement condition toward center position makes use of x.; also, if it gets to
a worse solution it tries to move toward the best solution.

3.2.5 AFSA with mutation

An efficient artificial fish swarm (AFS) algorithm should be capable of exploring the
whole search space as well as exploiting around the neighborhood of a reference point,
for example, the best point of the population [29]. Previous experiments have shown that
AFS algorithms may be trapped into local optimum, although the leaping behavior aims
at jumping out from local solutions. The mutation operator has been used as a diver-
sifying procedure to translate three important behaviors in AFS algorithm: searching,
random, leaping [29]. The introduction of the mutation operator into the AFS algorithm
aims at diversifying the search, thus preventing the algorithm from falling into a local
optimum. The mutated artificial fish swarm algorithm (MutAFSA for short) uses the
following mutation strategies:

i + F1(Tpest — Ti + Tp1 — Tp2), for searching behavior
Yi = § ¢ + Fo(zr — x;) + Fi(xp0 — 23), for random behavior (3.15)
i + Fi(xro — zr3), for the leaping behavior

where rj, j = 1,2, 3 are randomly chosen indices from the set 1, ..., ps;ze, mutually differ-
ent and different from the running index . F; and Fy are real and constant parameters
from [0,1] and [0,2], respectively.

3.2.6 Fuzzy adaptive AFSA

In nature, fish swarm members have a certain visual that directly depends on the fish
type, environment conditions (e.g., water fog), and nearn obstacles (e.g., water plants
and other fish). When the swarm moves toward a target (e.g., food) as much of it
converges, visibility is reduced due to density [4]. In order to control values of step,
visual, and balancing between global search and local search, a novel parameter, called
Constriction Weight, is proposed. Weight has to be greater than 0 and smaller than
1. Current iteration visual and step values are calculated according to the following
formulas in the presence of weight parameters:

visualier = CWuoisualiter—1 (3.16)

stepiter = CWStepiterfl (317)

With the purpose of attaining better values for the visual and step two different fuzzy
methods for calculating the weight have been proposed in [4].

1. In fuzzy uniform fish CW weight is a value between 0 and 1 that is calculated
as an output of the fuzzy engine. All of the fish in the swarm then adjust their
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visual and step based on the output weight. The proposed fuzzy engine has two
inputs and one output: iteration number and ratio of improved fish as inputs and
constriction weight as an output.

Tteration number, normalized between 0 and 1, is the proportion of the current
iteration number to the final iteration number. Ratio of improved fish is the pro-
portion of the number of fish that finds better positions in problem space (points
with higher fitness) to the total number of fish in comparison with a previous it-
eration.

Based on the above two inputs the CW is calculated by a fuzzy system defined
using the Mamdani fuzzy system.

2. In uniform autonomous (FUA) each artificial fish adjust its visual and step pa-
rameters individually and independent of the rest rest of the swarm. The input to
the fuzzy system in this case are distance from best, fitness ranking and iteration
number. Distance from best is a normalized rank-based value between 0 and 1
for each fish. Fitness ranking is equal to the proportion of the ranking number,
calculated based on the fitness value for the artificial fish, to the total number
of artificial fish. Also, the Mamdani fuzzy system is constructed based on these
variables to output the value of CW.

3.2.7 AFSA with adaptive parameters

There are many parameters that need to be adjusted in AFSA [10]. Among these param-
eters, visual and step are very significant in view of the fact that artificial fish basically
move based on these parameters. Always, these two parameters remain constant un-
til the algorithm termination. Large values of these parameters increase the capability
of algorithm in a global search, while small values improve the local search ability of
the algorithm. The work in [10] empirically studies the performance of the AFSA, and
different approaches to balance between local and global exploration have been tested
based on the adaptive modification of visual and step during algorithm execution.

In order to control values of step and visual and balancing between global search and
local search, authors of [10] proposed a parameter called Movement Weight (MW). MW
can be a constant value smaller than one, or a positive linear or nonlinear function. In
each iteration, visual and step values are given according to the following equations:

Visual; = MW x Visual;_1 (3.18)
Step; = MW x Step;_1 (3.19)

where ¢ is the current iteration of the algorithm. The MW parameter can be updated
using the following linear formula:

Itermar — 1
MW= MWonin & 37 Wy ¢ M Wmas = MWonin) - (3:20)
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where MW in, MWi,a: are the allowed minimum and maximum value for MW and
Itery,az, @ are the maximum allowed number of iteration and the current iteration num-
ber in order.

A random updating mechanism was also proposed in [10] as follows:

where MW, in, MW, are the allowed minimum and maximum value for MW and
rand is a random number.

3.2.8 AFSA with modified preying

Preying behavior is the basic behavior of AFSA. To further enhance the performance
of AFSA, the preying behavior is modified as follows [23]: Let X; be the artificial fish
current state and select a state X; randomly in its visual distance and let Y be the
food density (objective function value). If ¥; > Y}, the fish goes forward a step in the
direction of the vector sum of the X; and the best Xpeo . Xpess is the best artificial fish
state till now. Otherwise, select a state X; randomly again. If it cannot satisfy after N
times, it moves a step randomly.

3.2.9 Quantum AFSA

A modified quantum-based AFSA was proposed in [11]. The goal of the hybridization
is to improve the global search ability and the convergence speed of the artificial fish
swarm algorithm (AFSA). The hybrid algorithm is based on the concepts and principles
of quantum computing, such as the quantum bit and quantum gate. The position of the
artificial fish (AF) is encoded by the angle in [0, 27r] based on the qubit’s polar coordinate
representation in the two-dimension Hilbert space. The quantum rotation gate is used
to update the position of the AF in order to enable the AF to move and the quantum
non-gate is employed to realize the mutation of the AF for the purpose of speeding up
the convergence.

3.2.10 Chaotic AFSA

In [26] a chaotic version of AFSA was presented. Chaotic phenomenon is a specific
phenomenon of the nonlinear dynamic system with randomness, ergodicity, deterministic
properties. Because the chaotic searching can be easily executed and can avoid the local
extremes and it is better than random searching, the chaotic variables have advantages
for local searching. Chaotic sequence is generated for every fish in every dimension by
projecting and normalizing the fish’s position on that dimension and then the chaotic
sequence is generated. The generated chaotic sequence is projected back to the original
space so that it can be evaluated. A selection phase is used to compare the fish’s original
and chaotic position and the better position is selected as a candidate position for the

AFSA.
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The chaotic variables use the tent chaotic map defined as follows:

2x; x; € (0,0.5
piy = 4 2 @i € (0,03] (3.22)
2(1 — z;) @; € (0.5,1]

3.2.11 Parallel AFSA (PAFSA)

A parallel version of AFSA was introduced in [12]. Because the main loop of the basic
AFSA only selects one of the three behaviors (chasing behavior, the swarming behavior,
and the feeding behavior) to execute the result is easy to be stagnant or be missed,
and it is not very satisfactory. Therefore, we propose an improved parallel artificial fish
swarm algorithm (PAFSA) which reduces the probability of missing the better solutions.
The improvement of PAFSA is made at the loop body. This method is divided into two
paths after initialization execution: one path to perform the chasing behavior (feeding
behavior is a random behavior), and another path to perform the swarming behavior
(and the feeding behavior is also a random behavior), by comparing the fitness value of
the two behaviors, choosing the better result and recording on the bulletin board at the
same time to update the individual to continue the iterative optimization.

3.3 AFSA hybridizations

3.3.1 AFSA hybrid with culture algorithm (CA) (CAFAC)

A hybrid algorithm is proposed in [14] for enhanced optimization. The AFSA is tolerant
to initial value and parameter settings. However, due to the random step length and
random behavior, the artificial fish converges slowly at the mature stage of the algo-
rithm. Thus, the optimization precision usually cannot be high enough, which results in
the blindness of search and poor ability of maintaining the balance of exploration and
exploitation. Crossover is added to allow the fish to jump to and explore a diverse area.
The exploitation of the crossover operator can help the artificial fish to not only jump
out the blindness search but also to inherit the advantage of its parents. Inspired by
the principle of the CA, they applied the normative knowledge and situational knowl-
edge stored in belief space in the CA into the AFA. The fish swarm is regarded as the
population space, from where the domain knowledge is extracted. Hence, the domain
knowledge is formed and stored in belief space so as to model and impact the evolution
of the population at iteration.

The following equation is used to decide if the algorithm is stuck in local minima:
flat = (a7
Flai™h)

when the above criterion is satisfied crossover is applied on the ith artificial fish as in
equation 3.24.

[ | <0.1 (3.23)
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7 =z + a(Tr2 — T1) (3.24)

where x,1, xro are two random fish and r1 # r2 # i. « is a random number uniformly
distributed in interval of [1 — d,1 + d], and d is chosen as 0.25. Evaluate the child x;,
and replace the individual " with the child if its fitness is better. The main steps for
the CAFAC are:

1. Set all the values for the parameters, and initialize the N artificial fish in the search
ranges with random positions.

2. Evaluate all the artificial fishes using the fitness function y, and initialize the belief
space.

3. For each ith artificial fish, simulate the preying pattern, swarming, and chasing
patterns separately, and select the best child fish. If the child is better, replace the
ith artificial fish with the child.

4. Update the belief space.

5. If the crossover criterion is satisfied, apply the crossover operator to the ith artificial
fish from Step 3.

6. Return to Step 3 until the termination criterion is satisfied.

3.3.2 AFSA hybrid with PSO

A hybridization between PSO and AFSA based on the number of fellows was proposed
in [15]. af parameter was defined as the number of fellows of a given fish in its visual
scope. When this number is high, this means that there is enough information around
the fish to continue exploration using AFSA. When the af is small the standard PSO is
applied. PSO can search the best position by the best position of particles and swarm
on the call-board.

3.3.3 AFSA hybrid with glowworm optimization

In [16], a hybrid algorithm was proposed between AFSA and the glow worm optimizer.
In the basic GSO algorithm, each glowworm—only in accordance with luciferin values of
glowworms in its neighbor set—selects the glowworm by a certain probability and moves
toward it. If the search space of a problem is very large or irregular, the neighbor sets of
some glowworms may be empty, which leads these glowworms to keep still in iterative
process. To avoid this case and ensure that each glowworm keeps moving, the predatory
behavior of AFSA has been hired into glowworm swarm optimization (GSO). The idea
of hybrid algorithm is that the glowworms whose neighbor sets are empty carries out
predatory behavior in their dynamic decision domains.
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3.3.4 AFSA hybrid with cellular learning automata

A hybrid version of AFSA with cellular automata was proposed in [17]. In the proposed
algorithm, each dimension of search space is assigned to one cell of cellular learning
automata and in each cell a swarm of artificial fish are located which have the optimiza-
tion duty of that specific dimension. In fact, in the proposed algorithm for optimizing
D-dimensional space, there are D one-dimensional swarms of artificial fishes and each
swarm is located in one cell and they contribute with each other to optimize the D-
dimensional search space. The learning automata in each cell is responsible for making
diversity in artificial fishes swarm of that dimension and equivalence between global
search and local search processes.

3.4 Fish swarm in real world applications

This section presents sample applications for artificial fish swarm algorithm. AFSA was
successfully applied in many disciplines in decision support and making, image process-
ing domain, engineering, etc. The main focus is on identifying the fitness function and
the optimization variables used in individual applications. Table 3.1 summarizes sample
applications and their corresponding objective(s).

Grid computing is a high performance computing environment to solve larger scale
computational demands. Grid computing contains resource management, job schedul-
ing, security problems, and information management. Job scheduling is a fundamental
issue in achieving high performance in grid computing systems. It is a big challenge for
efficient scheduling algorithm design and implementation [7]. Unlike scheduling problems
in conventional distributed systems, this problem is much more complex as new features
of grid systems such as its dynamic nature and the high degree of heterogeneity of jobs
and resources must be tackled. The problem is multi-objective in its general formulation,
the two most important objectives being the minimization of make-span and flow-time of
the system. Job scheduling is known to be NP-complete [7] which motivates using AFSA
to optimize it. A modified version of AFSA was used in [7] for the efficient job scheduling.

AFSA is used in [18] to train a feed-forward neural network. Each artificial fish rep-
resents a feed-forward neural network. The optimizing variables are weight matrix and
biases. The feed-forward neural network (NN) training process is to get the minimum
value of network error, F, by adjusting the weights and biases values. The nonlinear
error function chosen is mean square error to quantify the error of the network.

In [24] AFSA is used as both a feature selection method and neural trainer at the same
time. The neural weights and the selected feature set are the target of the optimization.
The fitness function is calculated as the function achieving minimum error on the given
weight set and feature set.
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Table 3.1: AFSA applications and the corresponding fitness function

Application Name Fitness Function Sample Ref-
erences
Job scheduling The minimization of make-span and | [7]
flow-time of the system
Training of feed-forward | Fitness function minimize, the neural | [18,24]
neural network network output error
Feature selection Feature combination with maximum | [24]
classification performance
Radial basis function neu- | Minimize over all network error [13]
ral network
Support vector machine | Fitness is performance of SVM [12]
training (SVM)
Feature selection Rough-set classification performance [25]
Intrusion detection Increase the detection rate [26]
Decision support (taxi al- | The purpose is to obtain an optimal | [19]
location to city locations) | match of the empty taxis and passen-
gers predicted according to the histori-
cal scheduling data
Un-capacitated facility lo- | Minimize the cost of traveling vehicles | [3]
cation problem (UFLP)
Data clustering Minimize intracluster distance inside | [20]
individual clusters
Motion estimation Minimum spectral distance between | [23]
matched blocks
Welded beam  design | Minimum cost subject to constraints | [21]
problem on shear stress, bending stress in the
beam, buckling load on the bar, end
deflection of the beam, and side con-
straints
Optimization operation of | Maximal gross power generation in one | [21]
cascade reservoirs scheduling period as the target
Tension/compression Minimization of the weight of a ten- | [21]
string design problem sion/compression spring subject to
constraints on minimum deflection,
shear stress, surge frequency, limits
on outside diameter and on side con-
straints
The pressure vessel design | Minimization of the total cost of the | [21]
problem specimen studied, including the cost of
the material, forming, and welding
Integral plus derivative | System performance maximization [27]

(PID) controller
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AFSA was used in combination with radial-basis neural network (RBFF) to predict
the stock indices in [13]. The movement of stock index is difficult to predict for it is
non-linear and subject to many inside and outside factors. That work selects radial
basis functions neural network (RBFNN) to train data and forecast the stock index in
the Shanghai Stock Exchange. In order to solve the problem of slow convergence and
low accuracy, and to ensure better forecasting result, they introduce artificial fish swarm
algorithm (AFSA) to optimize RBF, mainly in parameter selection. Empirical tests in-
dicate that RBF neural network optimized by AFSA can have ideal results in short-term
forecast of stock indices.

In [12] AFSA was employed in the training of the support vector machine (SVM). A
parallel version of AFSA was employed to find the optimal parameter for SVM, namely,
kernel and penalty factors. The appropriate kernel functions and parameters are se-
lected, according to the specific circumstances of the problem. Gaussian kernel has
better adaptability; whether it is low-dimensional, high-dimensional, smaller sample, or
larger sample, Gaussian kernel function is applicable and it is a satisfactory function for
classification. In that work, the Gaussian kernel function is selected as the kernel func-
tion of SVM. Thus, the target of optimization is to select the Gaussian kernel parameter
and the penalization factor given the SVM performance as a fitness function.

A system for feature selection based on AFSA was proposed in [25]. The proposed al-
gorithm uses rough set to assess the quality of individual fish, while it uses the searching
capability of AFSA to search for optimal feature combination. The proposed algorithm
searches the minimal reduct in an efficient way to observe the change of the significance
of feature subsets and the number of selected features.

The anomaly detection or abnormal intrusion detection can detect the new attack
modes which have become the main direction of current research [26]. The network in-
trusion detection is a pattern recognition problem in which the original network intrusion
features contain redundant features that cannot only cause a bad effect on the perfor-
mance of the classifier and increase the probabilities of dimension disaster appearance
influencing the efficiency, but also make the detection accuracy more worse when the
amount of the features excess some threshold because there are no linear proportional
relationships between the amount of intrusion features and detection results. Thus, it is
important to select the key features strongly related to the intrusion features and elim-
inate the redundancy. The objective functions are constructed according to the feature
subset dimensions and the detection accurate rates of the detection model. Then the
artificial fish swarm algorithm is used to search the optimal feature subset.

The purpose of optimizing the dispatch is to guide the empty taxis to arrive the po-
sition where passengers may be waiting for the taxis [19]. An improved artificial fish
swarm algorithm (AFSA)-based method is proposed in [19] for the optimization of a city
taxi scheduling system. In this method, the grid scheduling algorithm is used for taxi
automatic scheduling, and the AFSA is used to further optimize this scheduling system.
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The purpose is to obtain an optimal match of the empty taxis and passengers predicted
according to the historical scheduling data.

The un-capacitated facility location problem (UFLP) is faced in [3] using AFSA. The
UFLP involves a set of customers with known demands and a set of alternative candidate
facility locations. If a candidate location is to be selected for opening a facility, a known
fixed setup cost will be incurred. Moreover, there is also a fixed known delivery cost
from each candidate facility location to each customer. The goal of UFLP is to connect
each customer to exactly one opened facility in the way that the sum of all associated
costs (setup and delivery) is minimized. It is assumed that the facilities have sufficient
capacities to meet all customer demands connected to them. Given the UFLP, the
number of alternative candidate facility locations is m and the number of customers is
n. The mathematical formulation of the UFLP is given as follows:

b2z, y) = Z Z CijTij + Z fivi (3.25)
i=1

i=1 j=1
subject to
m
> i = 1for all j (3.26)
i=1
xi; < yfor all 7, (3.27)
zij,y; € 0, 1for all ¢, 7 (3.28)

where ¢;; = the delivery cost of meeting customer j's demand from a facility at location
i
fi = the setup cost of facility at location i.

1, if customer j is served from location i
T = . (3.29)
0, otherwise
i = 1, ifa fa?ility is opened at location i (3.30)
0, otherwise
(3.31)

In [20] AFSA was used for data clustering, where the intra-cluster variation is used
as a fitness and cluster centers are the dimensions to be searched for a hybrid clustering
algorithm proposed based on AFSA and k-means approaches. Several advantages in-
cluding particularly high computational speed and efficient local search are involved in
K-means. However, its convergence is extremely sensitive to the chosen initial solution.
The goal of the hybrid approach is to improve convergence rate, by conquering the men-
tioned problems. In that proposed approach, k-means has been applied as a behavior for
artificial fish. After executing group and individual behaviors on AFSA, they perform
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an iteration of k-means on a specified percentage of artificial fish to enhance its local
searching.

Motion estimation plays a key role in H.264/AVC video coding, but it is the most
time-consuming task in the encoding process. In order to reduce the computational
complexity of motion estimation in H.264/AVC video coding, the work in [23] proposes
a new search algorithm based on artificial fish swarm algorithm (AFSA) which is a new
efficient optimizing method. A modified fast version of AFSA was employed to find the
optimal frame shifting in z,y directions. The objective function calculates the residual
error for the given block at the given shift.

The welded beam design problem is the process in which a welded beam is designed
for minimum cost subject to constraints on shear stress, bending stress in the beam,
buckling load on the bar, end deflection of the beam, and side constraints. This design
problem was tackled by AFSA in [21].

The optimization operation of cascade reservoirs takes the power discharges as the
decision variables, and takes the maximal gross power generation in one scheduling
period as the target. The objective function for cascade reservoirs is

n T
mazimize B = 3600. Y (Qpt.My/Ry) (3.32)
p=1 t=1

where E is the gross power generation of cascade power stations, @ is the power
discharge of power station p in interval ¢, M; is the number of hours in interval ¢, R is
the mean water rate of power station p in interval ¢, its unit is m?/kW h; n is the number
of the reservoirs, T is total time-interval for calculation. This problem is constrained to

e Water balance equations constraint
e Storage capacity constraint

e Correlation equation

e Turbine discharge constraint

e Spillway capacity constraint

e Boundary constraint

e Outflow from reservoir constraint

e Output of power station constraint

e Relationship between water level and storage capacity
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Tension /compression string design problem was tackled by AFSA in [21]. It is devoted
to the minimization of the weight of a tension/compression spring subject to constraints
on minimum deflection, shear stress, surge frequency, and limits on outside diameter and
on side constraints. The design variables are the wire diameter, the mean coil diameter,
and the number of active coils.

The pressure vessel design problem [21] is devoted to the minimization of the total
cost of the specimen studied, including the cost of the material, forming, and welding. A
cylindrical vessel is capped at both ends by hemispherical heads. There are four design
variables: thickness of the shell, thickness of the head, inner radius, and length of the
cylindrical section of the vessel, not including the head. This problem was solved by
AFSA in [21] and proved good performance.

A three-term Proportional plus Integral plus Derivative (PID) controller, playing a
vital role in the field of automation and control, has been counted as a reliable compo-
nent of industry because of its simplicity and satisfactory performance with vast range of
processes. Because of its simple structure, it can be easily understood and implemented
in practice. Thus their presence is highly appreciated in practical applications. AFSA
was employed in [27] for PID controller design where the parameters K, K;, K4 are to be
found by the AFSA. The performance of system is the fitness function for the PID design.

3.4.1 Fish swarm in selection of optimal cluster heads (CHs) locations in
wireless network

The battery supplies power to the complete sensor node. Sensor nodes are generally
small, light, and cheap. The size of the battery is limited and it plays a vital role in
determining sensor node lifetime. The amount of power drawn from a battery should
be carefully monitored. AA batteries normally store 2.2 to 2.5 Ah at 1.5 V. However,
these numbers vary depending on the technology utilized. For example, Zincair-based
batteries have higher capacity in Joules/cm® than lithium batteries. Alkaline batteries
have the smallest capacity, normally around 1200 J/cm3. Furthermore, sensors must
have a lifetime of months to years, since battery replacement is not an option for net-
works with thousands of physically embedded nodes. This causes energy consumption
to be the most important factor in determining sensor node lifetime. One of the main
design goals of WSN is to carry out data communication while trying to prolong the
lifetime of the network and prevent connectivity degradation by employing aggressive
energy management techniques.

In this case study, an optimized hierarchical routing technique which aims to reduce
the energy consumption and prolong network lifetime is presented. In this study, the
selection of optimal cluster heads (CHs) locations is based on artificial fish swarm al-
gorithm (AFSA). Various behaviors in AFSA such as preying, swarming, and following
are applied to select the best locations of CHs. A fitness function is used to compare
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between these behaviors to select the best CHs [30].

Each AFSA behavior outputs a set of CHs. To choose the best CHs set, the fitness
function is used. The fitness function is described in equation 3.33. The smallest fitness
represents the best CHs set among others.

fitness = af; + (1 — a) fo (3.33)
_ Zij\il E(n)

=S Ron,) (334)

fo=maxy_ ”chff (3.35)
icm m

where f; is the energy representation part, and it is equal to the sum of all member
node energy E(,,) (not including CH) divided by the sum of all CH energy E(CHp,)
referring to equation 3.34. Where fo represents the density it is equal to cluster with
highest average distance between CH and joined member nodes d(n;, C H,,) divided by
the total member nodes in the same cluster ||Cm/|| as shown in equation 3.35.

3.4.2 Fish swarm in community detection in social networks

A social network is a graph made of nodes that are connected by one or more specific
types of relationships, such as values, friendship, work. The goal of community detection
in networks is to identify the communities by only using the information embedded in
the network topology. The problem has a long tradition and it has appeared in various
forms in several disciplines. Many methods have been developed for the community de-
tection problem. These methods use tools and techniques from disciplines like physics,
biology, applied mathematics, and computer and social sciences [31]. One of the spe-
cial interests in social network analysis is finding community structure. Community is a
group of nodes that are tightly connected to each other and loosely connected with other
nodes. Community detection is the process of network clustering into similar groups or
clusters. Community detection has many applications including realization of the net-
work structure, detecting communities of special interest, and visualization [31].

A social network can be modeled as a graph G = (V, E), where V is a set of nodes,
and F is a set of edges that connect two elements of V. A community structure S in a
network is a set of groups of nodes having a high density of edges among the nodes and a
lower density of edges between different groups. The problem of detecting & communities
in a network, where the number k is unknown, can be formulated as finding a partitioning
of the nodes in k subsets that best satisfy a given quality measure of communities F(.S).
The problem can be viewed as an optimization problem in which one usually wants to
optimize the given quality measure F(S). A single objective optimization problem (;F)
is defined as in equation 3.36.
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min F(S), st S e (3.36)

where F(S) is an objective function that needs to be optimized, and @ = {S1, So ... Sx}
is the set of feasible community structures in a network. We assume that all quality
measures need to be minimized without loss of generality.

3.5 Chapter conclusion

The basic concepts of artificial fish swarm algorithm were discussed in this chapter.
In addition, this chapter discusses variants and hybridization with other optimization
techniques. We showed also how the artificial fish swarm algorithm was applied to solve
real life applications for selection of optimal cluster heads (CHs) locations in wireless
network and for community detection in social networks.
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4 Cuckoo Search Algorithm

4.1 Cuckoo search (CS)

Cuckoo search is a meta-heuristic algorithm proposed by Yang and Deb in 2009 [1, 2]
for solving continuous optimization problems. This algorithm is based on the obligate
brood parasitic behavior of some cuckoo species.

4.1.1 Cuckoo breeding behavior

Cuckoo birds have aggressive reproduction strategy. Some species such as the ani and
Guira cuckoos lay their eggs in communal nests, though they may remove others eggs
to increase the hatching probability of their own eggs. A number of species engage the
obligate brood parasitism by laying their eggs in the nests of other host birds [1]. Some
host birds can engage direct conflict with the intruding cuckoos. If a host bird discovers
the eggs are not its own, it will either throw these alien eggs away or simply abandon
its nest and build a new nest elsewhere [1]. Some cuckoo species such as the New World
brood-parasitic Tapera are often very specialized in the mimicry in color and pattern of
the eggs of a few chosen host species. This reduces the probability of their eggs being
abandoned and thus increases their reproductivity [1]. Parasitic cuckoos often choose a
nest where the host bird just laid its own eggs to increase the cuckoo chicks’ share of
food provided by its host bird [1].

4.1.2 Artificial cuckoo search

Yang and Deb [1] formulated three idealized rules describing the behavior of the Cuckoo
species as follows:

e FEach cuckoo lays one egg at a time and dumps its egg in a randomly chosen nest.
e The best nests with high quality of eggs will carry over to the next generations.

e The number of available host nests is fixed, and the egg laid by a cuckoo is dis-
covered by the host bird with a probability p, € [0,1]. A fraction p, of the nests
is replaced by new ones.

The quality or fitness of a solution can simply be proportional to the value of the objective
function. Each egg in a nest represents a solution, and a cuckoo egg represents a new
solution; the aim is to use the new and potentially better solutions (cuckoos) to replace
a not-so-good solution in the nests [1]. When generating new solutions X *+1 for cuckoo
i, a Levy flight is performed as in equation 4.1 [1].

69
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XY = X!+ o@D Levy (M) (4.1)

)

where a > 0 is the step size which should be related to the scales of the problem of
interests. The product €5 means entrywise multiplications. The Levy flight essentially
provides a random walk while the random step length is drawn from a Levy distribution

1]

Lévy ~ =121 <\ < 3) (4.2)

which has an infinite variance with an infinite mean. Here the steps essentially form a
random walk process with a power law step-length distribution with a heavy tail. Some
of the new solutions should be generated by Levy walk around the best solution obtained
so far, as this will speed up the local search. However, a substantial fraction of the new
solutions should be generated by far-field randomization and whose locations should be
far enough from the current best solution. This will make sure the system will not be
trapped in a local optimum [1].

CS local search capability can be formulated using equation 4.3 that is used to get
new cuckoo solutions based on equation 4.1 [1].

XPew = X0 4 95 step « (X7 — best) (4.3)

where step is a random number drawn from Lévy distribution, best is the current best
solution, Xfld is the old given solution, and X/*** is the newly generated solution.

The explorative power of the CS algorithm is in its strategy for abandoning bad
solution where a fraction p, of solutions is abandoned and new solutions are generated
using equation 4.4.

X = Xiold + randl * (rand2 > pg) * (Xq — Xp) (4.4)

where X" is the new nest to be found, new solution, Xfld old nest to be abandoned,
randl, rand2 are two random numbers drawn from uniform distribution € [0,1], p, is
the probability of a nest being discovered, and X, X} are two randomly selected existing
nests.

Based on the above description, the basic steps of the cuckoo search (CS) can be
summarized as the pseudo code shown in Algorithm (5).

4.2 Cuckoo search variants

4.2.1 Discrete cuckoo search

A discrete version of the CS algorithm was proposed in [11]. The basic idea is to squash
the step size of the CS using sigmoidal activation function 4.5 that is a further threshold
to generate a 0 or 1 value using equation 4.6.
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begin
e objective function f(X), X = (21, 72,...,2q4)"
e Generate initial population of n random solutions (nests)
e while (stopping criteria not fulfilled)
1. Update the cuckoos’ position using equation 4.3
2. Select the best between Cuckoos’ solutions and existing nests
3. Abandon a fraction of solution using equation 4.4
4. Select the best between abandoned nests and newly generated nests
5. Update the best solution
e end while
end

Algorithm 5: Pseudo code of the cuckoo search (CS)

stp = ——— (4.5)

where stp is the squashed step size and « is the CS continuous step size.

(4.6)

1if rand < stp
v =
0 otherwise

where muv is calculated as in equation 4.6 and rand is a random number drawn from
uniform distribution in the range [0,1]. The newly generated discretized solution is
calculated as in equation 4.7.

2t = mod(x! + mv,m) + 1 (4.7)
i+
(2
the discrete step size as calculated in equation 4.6, and m is the range of allowed discrete
numbers.

where 2! is the update solution or nest position, z! is the old solution or nest, mv is

4.2.2 Binary cuckoo search

In the binary CS, the search space is modeled as an n-dimensional boolean lattice, in
which the solutions are updated across the corners of a hypercube [5]. In order to build
this binary vector, equation 4.8 is used, which can provide only binary values in the
boolean lattice restricting the new solutions to only binary values:

1if S(xf(t)) >0

) (4.8)
0 otherwise

xg(t+1):{
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where S (l’z (t)) is calculated as in equation 4.9, xz(t) is the concinnous updated nest
position, 2/ (t 4+ 1) is the binary updated binary nest position, and o U(0,1).

Stalt) = ———— (4.9)
1+e %

The BCS is initialized with random binary vectors and uses the same updating method-
ology for the continuous CS.

4.2.3 Chaotic cuckoo search

Although chaotic search can avoid being caught in local minimum because of its er-
godicity, pure chaotic search can obtain good solution only through huge iteration step
numbers and it is sensitive to initial solution [4]. A two-stage chaotic CS algorithm is
put forward by combining CS algorithm with the chaotic search, in which CS algorithm
is used to lead global search and chaos optimization (CO) leads local search according
to the result of CS algorithm. In order to maintain population diversity and strengthen
the dispersion of the search, the algorithm keeps some superior individuals, dynamically
contracts search range in view of the best position of the population, and replaces the
worse nest position with the one generated in the contract region randomly. The steps
of chaotic cuckoo search algorithm can be described as follows:

e Initialize the population, generate randomly n initialized nests.
e Evaluate solutions and find the best solution/nest.

e Update the nest positions as in CS algorithm; see equation 4.1 except the best
solution.

e Compare the new positions and the old ones and keep the better solutions.

e R stands for the possibility that the nest host will recognize the cuckoo egg. Com-
pare it with probability Pa. If R > Pa, change the nest position randomly and
obtain a set of new nest positions.

e Maintain a set of 1/5 of the best solutions.

e Perform chaos optimization search to the optimal nest position in the population,
and update the new nest position.

e Contract the search space around the best solution.

e Generate the rest 4/5 nest positions of the population randomly in the contracted
space, and evaluate it. If the stopping criterion is not met, return to the second
step.
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Search region contraction is performed using the following two formulas:

xf]”” = maa:x?}m —r(xf" — :L‘fj””) (4.10)
o = minx " — r(z" — xZ”") (4.11)

where j is the current dimension, r is a random number drawn from uniform distribution
in the range from 0 to 1, xg-m“ is the maximum value in dimension j, and ZL‘%”” is the
minimum value in dimension j.

Logistic equation is used in the chaotic search as indicated in the following equation:

Ynt+1,d = HYn,d(1 — Yn.d) (4.12)

where d is the dimension number, y, 4 is the solution to be repositioned, and p is a
constant.

4.2.4 Parallel cuckoo search

A parallel version of the standard cuckoo search is proposed in [6].This parallelization
is to try to run more than one population on the same search space and to find a
better ratio between exploration and exploitation. This is done by dividing the main
population into a number of subpopulations or subgroups. CS algorithm can achieve
good results even with a small number of cuckoos. Every sub-flock is running standard
CS algorithm on the same search space with a different random seed. After a certain
number of generations, the results from all flocks are copied into one array, that array
is sorted by the fitness value of the results, and the top quarter of the array is copied
back to the flocks. The flocks then continue to execute standard CS algorithm with
these results as input. The sub-flocks continue their search from best results from all
sub-flocks as a starting point. This method prevents trapping into local optimum.

4.2.5 Cuckoo search for constrained problems

A version of CS is presented in [7] for handling constrained optimization problems. The
proposed method uses penalty function to convert the constrained optimization problem
into an unconstrained one with modified fitness function. The modified fitness function
can be formulated as in the following equation:

minF(x) = f(x) + Px, k; (4.13)
where Pz, k; are the penalty functions which can be presented as
g
Pz, kj = Z kj.mazx(0, gjz?) (4.14)
j=1

where the parameters k; are a suitable constant value, g;z is the substitution of the
vector x in the constraint j, and n; is the number of constraints.
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4.2.6 Cuckoo search with adaptive parameters

The parameters p,, A, and « are very critical for the performance of CS; see equation 4.1.
In [8], the three aforementioned parameters are adapted throughout the optimization
iteration to achieve better performance. The main drawback is using constant values for
Pa, and A appears in the number of iterations to find an optimal solution. If the value
of p, is small and the value of « is large, the performance of the algorithm will be poor
and leads to considerable increase in number of iterations. If the value of p, is large and
the value of « is small, the speed of convergence is high but it may be unable to find
the best solutions. To improve the performance of the CS algorithm and eliminate the
drawbacks with fixed values of p, and «, the improved cuckoo search (ICS) algorithm
uses variables p, and «. In the early generations, the values of p, and o must be big
enough to enforce the algorithm to increase the diversity of solution vectors. However,
these values should be decreased in final generations to result in a better fine-tuning of
solution vectors. The values of p, and « are dynamically changed with the number of
generation and expressed in equations 4.15 to 4.17.

t
Pl = poMazx — m(paMax — paMin) (4.15)
o' = Qumag exp(c.t) (4.16)
1 Qmin
= — x] 4.17
c N7 *In P ( )

where pf, ol is the calculated p, and « at iteration ¢, N1 is the total number of iterations
for the optimization, ¢ is the current iteration, and cupnin, Qmas are the range for allowed
« values.

4.2.7 Gaussian cuckoo search

In [9] a version of CS is making use of Gaussian distribution instead of Lévy distribution
as outlined in equation 4.18.
et =2l +a® oy (4.18)

)

where :Lf+1 and z! are the new and old solutions, « is a constant always 1, and o is a

random number drawn from normal distribution using equation 4.19.
os = 0o exp(—uk) (4.19)

where k is the current generation and sigmag and p are constants. Results on sample
test function proves good performance for the proposed modification.
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Table 4.1: CS hybridizations and sample references
Hybrid with Target Sample Ref-
erences

Evolutionary algorithm | Enhance global searching [10]

(EA)

Genetic algorithms | Exploit crossover and mutation [11]

(GA)

Scatter search Exploit its ability to find the nearest | [12]
global optimum

Ant colony optimization | Enhance the convergence speed of ant | [13]
colony

Powell search Exploiting the local searching capability | [14]
of Powell search

Pattern search Exploit pattern search local searching ca- | [15,16]
pability

Bat algorithm Exploit the local searching (mutation) | [17]
operator in bat algorithm

Particle swarm opti- | Exploit information sharing and local ex- | [18]

mization perience of PSO

Levenberg-Marquardt Exploit local searching capability and | [33]

(CSLM) speed of Levenberg-Marquardt

Quantum computing Exploit the diversity and performance of | [24]
quantum computing

4.3 Cuckoo search hybridizations

Exploiting the global searching capability of cuckoo search many hybridizations are per-
formed and stated in the literature. The Table 4.1 outlines samples of the hybridization
and the corresponding references.

4.3.1 Cuckoo search hybrid with differential evolution

The standard differential evolution (DE) algorithm is adept at exploring the search space
and locating the region of global optimal value, but it is not relatively good at exploiting
solution [10]. On the other hand, standard CS algorithm is usually quick at the exploita-
tion of the solution though its exploration ability is relatively poor. A hybrid algorithm
is proposed in [10] by integrating DE into CS, so-called DE/CS. The difference between
DE/CS and CS is that the mutation and crossover of DE are used to replace the original
CS selecting a cuckoo. This method can explore the new search space by the mutation
of the DE algorithm and exploit the population information with CS, and therefore can
conquer the lack of exploitation of the DE algorithm.
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The mutation operator of DE can add diversity of the population to improve the
search efficiency. The mutation operator of DE can improve the exploration of the new
search space.

Crossover and mutation operators are hired from genetic algorithm (GA) and used
with the discrete CS in [11] for solving discrete optimization problems. Two parents’
solutions are selected from the current population via roulette wheel selection, then
crossover operator between the two parents is performed. Improve the offspring by the
mutation operation and insert the resulting offspring to the new population.

4.3.2 Cuckoo search hybrid scatter search

Cuckoo search algorithm has proven its ability in solving some combinatorial problems
and finding the nearest global optimum solution in reasonable time and good perfor-
mance. CS has been used in [12] for the reference set update method in scatter search
algorithm to further enhance the obtained intermediate solutions. The improvement
provides scatter search with random exploration for search space of problem and more
of diversity and intensification for promising solutions based on the cuckoo search algo-
rithm.

4.3.3 Cuckoo search hybrid with ant colony optimization

In [13] a hybrid algorithm is presented between CS and ant colony optimization (ACO).
The major disadvantage in the ACO is that while trying to solve the combinatorial
optimization problems the search has to be performed much faster, but in ACO ant will
walk through the path where the pheromone has been deposited. This acts as if it lures
the artificial ants. Hence local search will be performing at the faster rate than in the
ACO. In order to overcome this drawback, cuckoo search is used. Hence, CS is used only
to allow ants to perform local search and keep the global searching capability of ACO.

4.3.4 Hybrid cuckoo search and Powell search

A modified version of CS with inertia weight hybridized with Powell search is proposed
in [14]. The inertia weight is presented to balance the local and global ability of CS.
Thus, when generating a new solution z!*! a Lévy flight integrating with inertia weight
Witer 1S performed as

ot = wiger.al + EB Levy(A) (4.20)

A reasonable choice for w;se should linearly decrease from a large value to a small value
through the course so that the CS algorithm has a better performance compared with
fixed wjer settings. The larger wjte, has greater global search ability, whereas the small
witer has greater local search ability. The inertia weight w;, is a nonlinear function of
the present iteration number (iter) at each time step. The proposed adaptation of wjser
is given in the following equation:

Witer = winitial-ﬂiiter (421)
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where winitiq is the initial inertia weight value selected in the range [0,1] and u is a
constant value in the range [1.0001,1.005].

Powell search, which is an extension of the basic pattern search method, is based
on conjugate direction method and is used to speed up the convergence of nonlinear
objective functions. A conjugate direction method minimizes a quadratic function in a
finite number function; it can be minimized in a few steps using Powell’s method. Powell
search is used to locally search around the best solution at each iteration so that better
solutions may be obtained.

4.3.5 Hybrid cuckoo search and simplex method

Despite its age, simplex method (SM) is still a method of choice for many practitioners
in the fields of statistics, engineering, and the physical and medical sciences because it
is easy to code and very easy to use [15]. SM is a fast algorithm to search for a local
minimum and applicable for multi-dimensional optimization. It is derivative-free and
it converges to minima by forming a simplex and using this simplex to search for its
promising directions. A simplex is defined as a geometrical figure which is formed by
(N+1) vertices (N: the number of variables of a function). SM is hybridized into the
standard CS algorithm for locally applying the SM around the best solution at each
iteration. Also, SM is used to enhance the worst solution by conducting SM around
it [16].

4.3.6 Cuckoo search hybrid with bat algorithm (BA-CS)

Based on the basic CS algorithm, it draws the bat algorithm into the basic CS algorithm,
and makes their respective advantages together, then proposes a hybrid optimization al-
gorithm (BACS) bat algorithm and cuckoo optimization algorithm [17].

Based on the new hybridization the updating of nest position is not directly passed to
the next iteration. But it is updated using bat algorithm principles. As in the standard
bat algorithm, according to the pulse rate and loudness, the nest’s position is updated
according to equation 4.22.

Xnew = Xold + eAl (422)

where A' is the average loudness of all bats at this time, € is a random number unifor-
mally drawn from [-1 1], and X,e, Xoiq is the updated and original nest positions.

Finally the algorithm evaluates the fitness values of the bird’s nest, and finds out the
current optimal position of the bird’s nest and the optimal value, and enters the next
iteration, continue to search and update position through adopting the basic cuckoo
algorithm. The proposed hybridization solves the balance of global search and local
search well, thus improving the convergence of the algorithm, and avoiding it falling into



78 Cuckoo Search Algorithm

local optimum and getting the global optimal solution and enhancing the ability of local
optimization and convergent precision at the same time.

4.3.7 Cuckoo search hybrid with particle swarm optimization

In the proposed hybrid algorithm, the ability of communication for cuckoo birds has been
added [18]. The goal of this communication is to inform each other about their position
and help each other to immigrate to a better place. Each cuckoo bird will record the best
personal experience as pbest during its own life as well as the global swarm intelligence
recorded by the gbest. The updated rule for cuckoo s to position as the following:

Ty = T+ Vi (4.23)

where a:i 41 1s the updated nest position, ! is the original nest’s position, and v% 41 1s the
velocity of change and is calculated as follows:

U§+1 = w! * vl + ¢ * rand * (pbest — xt) + co * rand * (gbest — xt) (4.24)

where w is inertia weight which shows the effect of previous velocity vector (v}) on the
new vector, ¢; and ¢y are acceleration constants, and rand is a random function in the
range [0,1] and z! is current position of the cuckoo. The communication is actually
performed after performing the nest updating of the standard CS.

4.3.8 Cuckoo search hybridized with Levenberg—Marquardt (CSLM)

In [33] a hybridization between cuckoo search and Marquardt optimization is proposed.
In that work CS final solution is passed to the Marquardt optimization for further
enhancement. Thus, this may be called cascading that exploits the global searching
power of CS while exploiting the local searching capability of the Levenberg-Marquardt
method.

4.3.9 Cuckoo search hybridized with quantum computing

A quantum inspired cuckoo search (QICSA) which integrates the quantum computing
principles such as qubit representation, measure operation and quantum mutation, in the
core the cuckoo search algorithm was proposed in [24]. This proposed model focuses on
enhancing diversity and the performance of the cuckoo search algorithm.The proposed
hybridization contains three essential modules.

The first module contains a quantum representation of cuckoo swarm. The particular-
ity of quantum-inspired cuckoo search algorithm stems from the quantum representation
it adopts which allows representing the superposition of all potential solutions for a given
problem.

The second module contains the objective function and the selection operator. The
selection operator is similar to the elitism strategy used in genetic algorithms [24].
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The third module, which is the most important, contains the main quantum cuckoo
dynamics. This module is composed of four main operations inspired from quantum
computing and cuckoo search algorithm: measurement, mutation, interference, and Lévy
flights operations. QICSA uses these operations to evolve the entire swarm through
generations [24].

4.4 Cuckoo search in real world applications

This section presents sample applications for cuckoo search. CS is successfully applied
in many disciplines in decision support and making, image processing domain, and en-
gineering. The main focus is on identifying the fitness function and the optimization
variables used in individual applications. Table 5.2 summarizes sample applications and
their corresponding objective(s).

Cuckoo search is applied in [19] for the optimal synthesis of symmetric uniformly
spaced linear microstrip antenna arrays. The objective is to determinate the optimal
excitations element that produces a synthesized radiation pattern within given bounds
specified by a pattern mask. The work in [20] deals with the application of the cuckoo
search algorithm in the design of an optimized planar antenna array which ensures high
gain, directivity, suppression of side lobes, and increased efficiency and improves other
antenna parameters as well.

In [21] CS is used to obtain optimal power flow (OPF) problem solution to determine
the optimal settings of control variables. The main objective of the OPF problem is to
optimize a chosen objective function such as fuel cost, piecewise quadratic cost func-
tion, fuel cost with valve point effects, voltage profile improvement, and voltage stability
enhancement, through optimal adjustments of power systems control variables while at
the same time satisfying system operating conditions with power flow equations and
inequality constraints. CS is used for the active power loss minimization in distribution
systems to raise the overall efficiency of power systems. The cuckoo search algorithm is
used for minimization of cost that includes capacitor cost and cost due to power loss.

In [22] optimum design of truss structures for both discrete and continuous variables
based on the CS algorithm is presented. In order to demonstrate the effectiveness and ro-
bustness of the present method, minimum weight design of truss structures is performed
and the results of the CS and the selected well-known meta-heuristic search algorithms
are compared for both discrete and continuous design of three benchmark truss struc-
tures.

A hybrid discrete version of the CS has been used in [11] to tackle the aircraft landing
problem (ALP) in order to optimize the usage of existing runways at airports. In [10] a
hybrid CS and differential evolution algorithm are proposed. The algorithm targets at
finding the safe path by connecting the chosen nodes of the coordinates while avoiding
the threat areas and costing minimum fuel and thus helps for uninhabited combat air
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Table 4.2: Cuckoo search applications and the corresponding fitness function

Application Name Fitness Function Sample
References
Linear microstrip an- | Determinate the optimal excitations ele- | [19,20]
tennas array ment that produces a synthesized radia-
tion pattern
Optimal power flow | Optimize a chosen objective function such | [21]
(OPF) problem as fuel cost, piecewise quadratic cost func-
tion, fuel cost with valve point effects,
voltage profile improvement, voltage sta-
bility enhancement
Design of truss struc- | Minimum weight design of truss structures | [22]
tures
Aircraft landing prob- | Optimize the usage of existing runways at | [10,11]
lem (ALP) airports
Job scheduling problem | Minimize the makespan of performing N | [13,23]
jobs
Knapsack problem | Choose a subset of items that maximize | [24]
(KP) the knapsack profit, and have a total
weight less than or equal to C
Feature selection Minimize the scatter function for the | [25]
points inside each class
Image segmentation Intra-cluster variability [26-29]
Deployment of wireless | Find the optimal node placement in order | [30]
sensor network to improve the network coverage and con-
nectivity with a minimum coverage hole
and overlapping area
Speaker recognition sys- | Maximize matching of sound phonemes [31]
tems
Train neural network Minimize network mean square error [32,33]
Spam detection Minimize the total membership invalida- | [34,35]
tion cost of the Bloom filter by finding the
optimal false positive rates
Planar graph coloring Find the minimum number of colors that | [36]
can be used to color the regions in a pla-
nar map with neighboring regions having
different colors

vehicle (UCAV). Path planning for UCAV is a complicated high dimension optimization
problem, which primarily centralizes on optimizing the flight route considering the dif-
ferent kinds of constraints.
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In [13] a hybrid CS and ant colony optimization are used to solve the job scheduling
problem. In job scheduling we have N jobs and M machines. Each and every job has
its own order of execution that has to be performed on M machines. Each job has its
own starting time. The objective of this algorithm is to minimize the makespan and
it can also be used for job scheduling in scientific and high power computing. In [23]
a discrete version of the CS algorithm is used to solve the constrained job scheduling
task. The goal of job scheduling is to find best start times for each activity in order to
complete the whole project in minimum possible duration time. There are two kinds
of constraints, first each activity has some precedence activity and cannot start until
precedence activities are finished completely. Second constriction is that the availability
of each resource in each period of activity duration is limited. So activity start time
might be postponed some-times because of lacking some needed resources or precedence
constraints.

Knapsack problem (KP) is a well-known optimization problem. Several problems
are encoded like Knapsack problems involving resource distribution, investment decision
making, budget controlling, project selection, and so on. This problem was proved to
be NP-Hard. A hybrid CS quantum algorithm is proposed in [24] to solve the Knapsack
problems. The Knapsack problem can be formulated as having a knapsack with maxi-
mum capacity equal to C and a set of N items. Each item i has a profit pi and a weight
wi. The problem consists of choosing a subset of items that maximize the knapsack
profit, and having a total weight less than or equal to C.

CS is used in feature selection on the face recognition data set in [25]. The CS targets
to minimize the scatter function for the points inside each class. The fitness function is
calculated as in

L
F=,|> (Bi— E)(E: - B,)! (4.25)
=1

where L is the number of classes.

E,= % z; kiE; (4.26)
where £ is the number of images in class .
1 k;
E; k—z Uij,i=1,2,3,..L (4.27)

where Uij: represents the sample image from class i.

In [26] CS is used to optimally select cluster centers for data clustering problems and
proves superior performance in comparison with particle swarm optimizer and genetic
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optimizer. The k-means centers are localized using the CS in [27]. The aim of the op-
timization is to minimize k-means fitness function. In this study CS helps k-means to
converge to global solution rather than the solutions that may get stuck in local minima
in the standard k-means algorithm.

In [28] CS is used with wind-driven optimization to find an optimal threshold set for
image data. CS algorithm and wind-driven optimization (WDO) for multilevel thresh-
olding using Kapurs entropy have been employed. For this purpose, the best solution as
fitness function is achieved through CS and WDO algorithm using Kapurs entropy for
optimal multilevel thresholding. A new approach of CS and WDO algorithm is used for
selection of optimal threshold value.

A new metaheuristic scheme based upon CS algorithm for the exudates detection in di-
abetic retinopathy using multi-level thresholding is presented [29].The proposed method
is applied for edge detection and the results obtained by this method were compared
with the existing methods.

In wireless sensor network applications with a large-scale area, the sensor nodes are
deployed randomly in a noninvasive way. The deployment process will cause some issues
such as coverage hole and overlapping that reflect to the performance of coverage area
and connectivity. Node placement model is constructed to find the optimal node place-
ment in [30]. Virtual force algorithm (VFA) and cuckoo search (CS) algorithm approach
for node placement technique is analyzed to find the optimal node placement in order
to improve the network coverage and connectivity with a minimum coverage hole and
overlapping area.

In [31] CS has been applied on speaker recognition systems and voice. The process
of speaker recognition is optimized by a fitness function that matches voices being done
on only the extracted optimized features produced by the CS algorithm. CS is used to
train a feed-forward neural network in [32]. The CS can quickly find optimal selection for
weight /bias satisfying a given error function and avoiding the local minima that always
are a problem in gradient-based methods.

A method for training a feed-forward neural network based on CS is proposed in [33].
The proposed method makes use of CS to find the optimal weight/bias values to maxi-
mize a given error function. The resulting weights and biases are further enhanced using
the Levenberg-Marquardt backpropagation algorithm.

In [34] a system for spam detection based on CS is proposed. A spam word is a list of
well-known words appearing in spam mails. Bin Bloom Filter (BBF) groups the words
into a number of bins with different false-positive rates based on the weights of the spam
words. A CS algorithm is employed to minimize the total membership invalidation cost
of the BFs by finding the optimal false-positive rates and number of elements stored in
every bin. In [35] authors propose the application of cuckoo search optimization algo-
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rithm in web document clustering area to locate the optimal centroids of the cluster and
to find global solution of the clustering algorithm. Web document clustering helps in
the development of new techniques for helping users to effectively navigate, summarize,
and organize the overwhelming information to ease the process of finding the relevant
information on the Web.

The minimum number of colors that can be used to color the regions in a planar
map with neighboring regions having different colors has been a problem of interest
for over a century.In [36] an improved cuckoo search optimization (ICS) algorithm is
proposed for solving the planar graph coloring problem. The improved cuckoo search
optimization algorithm consists of the walking one strategy, swap and inversion strategy,
and greedy strategy. The proposed improved cuckoo search optimization algorithm can
solve the planar graph coloring problem using four colors more efficiently and accurately.

4.4.1 Cuckoo search in feature selection

In this case study CS optimizer is used to optimally select a subset of feature to max-
imize classification performance. Ten datasets chosen from the UCI machine learning
repository [18] are used in the experiments and comparison results; see Table 4.3. The
ten datasets were selected to have various numbers of attributes and instances as rep-
resentatives of various kinds of issues that the proposed technique would be tested on.
For each dataset, the instances are randomly divided into three sets, namely, training,
validation, and testing sets in cross-validation manner.

The well-known K-NN is used as a classifier to evaluate the final classification perfor-
mance for individual algorithms with k = 5 [17]. Each optimization algorithm is run for
M times to test convergence capability for an optimizer. The indicators used to compare
the different algorithms are

Table 4.3: Description of the data used in the experiments

Dataset No. of Features | No. of Samples
WineEW 13 178
spectEW 22 267
sonarEW 60 208

penglungEW 325 73
ionosphereEW 34 351
heartEW 13 270
congressEW 16 435
breastEW 30 569
krvskpEW 36 3196
waveformEW 40 5000
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o C(lassification average accuracy: This indicator describes how accurate the classi-

fier is given the selected feature set. The classification average accuracy can be
formulated as

M N
1 1
AvgPerf = } 1: 5 § 1: Match(Cy, L;) (4.28)
Jj= 1=

where M is the number of times to run the optimization algorithm to select feature
subset, N is the number of points in the test set, C; is the classifier output label
for data point 4, L; is the reference class label for data point 7, and Match is a
function that outputs 1 when the two input labels are the same and outputs 0
when they are different.

Statistical mean is the average of solutions acquired from running an optimization
algorithm for different M running. Mean represents the average performance a
given stochastic optimizer can be formulated as.

1 &
Mean = i Z; g (4.29)
1=

where M is the number of times to run the optimization algorithm to select feature
subset, and g% is the optimal solution resulted from run number .

Std is a representation for the variation of the obtained best solutions found for
running a stochastic optimizer for M different runs. Std is used as an indicator
for optimizer stability and robustness where Std is smaller; this means that the
optimizer converges always to the same solution, while larger values for Std mean
much random results. Std is formulated as

Std = \/Ml_ 1 Z(g}k — Mean)? (4.30)

where M is the number of times to run the optimization algorithm to select feature
subset, g is the optimal solution resulted from run number i, and Mean is the
average defined in equation 4.29.

Average selection size represents the average size of the selected features to the
total number of features. This measure can be formulated as

M. ;
, 1 size(gl)
AV GSelectionSZ = — —= 4.31
election i Zz; D (4.31)
where M is the number of times to run the optimization algorithm to select feature
subset, g is the optimal solution resulted from run number 7, size(x) is the number
of values for the vector x, and D is the number of features in the original dataset.
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Table 4.4: CS parameter setting

Parameter | Value Meaning
NIter 80 Total number of iterations used
n 10 Number of search agents
pa 0.25 Nest abandon probability

CS optimizer is evaluated against other common optimizers such as the particle swarm
optimization (PSO) method proposed in [53] and the genetic algorithm proposed in [52]
for optimal searching of the feature space.

The parameter setting used for the different optimizers are in Table 4.4.

Each algorithm is run for M = 10 times with new random initialization and best
feature combination selected.

Table 4.5 displays the average of the fitness function, statistical mean, of the best
solution found by the different optimization algorithms at the different datasets. This
indicator proves the capability of optimization algorithm to find optimum solution. We
can see from the table that CS finds better solutions than PSO and GA, which proves
its searching capability.

Table 4.6 outlines the average performance of the selected features by the different
algorithms over the test data. We can remark that the CS performs better on the test
data than GA and PSO.

Table 4.7 outlines the variation of the obtained best solutions for the different runs
of each optimizer on the different dataset. We can see that the minimum variation of
output fitness value is achieved by CS, which proves that the CS always converges to
optimal /near-optimal solution regardless of the random initialization of the algorithm.

Table 4.5: Experimental results of statistical mean of fitness function of the best solution
for the different methods
Dataset CS GA PSO

breastEW 0.014737 | 0.029474 | 0.026316
congressEW | 0.024828 | 0.042759 | 0.044138
heartEW 0.133333 0.14 0.155556
ionosphereEW | 0.083761 | 0.109402 | 0.11453
krvskpEW .026992 | 0.047048 | 0.075726

penglungEW | 0.191667 | 0.208333 0.2
sonarEW 0.118841 | 0.188406 | 0.165217
spectEW 0.110112 | 0.139326 | 0.137079
waveformEW | 0.185868 | 0.215329 | 0.21018
WineEW 0.00678 | 0.016949 | 0.023729
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Table 4.6: Performance of the different algorithms on test data
Dataset CS GA PSO
breastEW 0.942105 | 0.944211 0.94
congressEW | 0.947586 | 0.931034 | 0.935172
heart EW 0.811111 | 0.793333 | 0.753333
ionosphereEW | 0.866667 | 0.818803 | 0.85812
krvskpEW 0.96939 | 0.945352 | 0.913427
penglungEW 0.68 0.672 0.64
sonarEW 0.737143 | 0.645714 0.68
spectEW 0.806742 | 0.795506 | 0.802247
waveformEW | 0.792192 | 0.764805 | 0.768168
WineEW 0.943333 | 0.926667 0.93

Table 4.7: Standard deviation of fitness functions for the different optimizers
Dataset cs GA PSO

breastEW 0.005766 | 0.007061 | 0.007443
congressEW | 0.007863 | 0.00577 | 0.012528
heartEW 0.028328 | 0.030021 | 0.028328
ionosphereEW | 0.014044 | 0.020406 | 0.018726
krvskpEW 0.007824 | 0.007597 | 0.050853
penglungEW | 0.095924 | 0.10623 | 0.090331
sonarEW 0.036087 | 0.043478 | 0.040476
spectEW 0.033141 | 0.03237 | 0.018463
waveformEW | 0.009586 | 0.015021 | 0.009286
WineEW 0.01516 | 0.011985 | 0.025705

Table 5.6 outlines the selected feature size from the different optimizers on the different
datasets. We can see that the CS has comparable feature sizes to both GA and PSO,
while it keeps better classification accuracy as we outlined in Table 4.6.

4.4.2 A modified cuckoo search for solving a convex economic dispatch
problem

Economic load dispatch (ELD) is a non-linear global optimization problem for deter-
mining the power shared among the generating units to satisfy the generation limit
constraints of each unit and minimizing the cost of power production. Cuckoo search is
one of the most powerful swarm intelligence algorithms and it has been applied to solve
global optimization problems; however, it suffers from slow convergence and stagnation.
The economic load dispatch (ELD) problem can be mathematically formulated as a con-
tinuous optimization problem. The goal of the economic dispatch problem is to find the
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Table 4.8: Mean selection size for the different optimizers over the different datasets

Dataset CS GA PSO
breastEW 0.593333 | 0.613333 0.52
congressEW 0.425 0.6 0.475

heartEW 0.646154 | 0.553846 | 0.461538
ionosphereEW | 0.435294 | 0.494118 | 0.447059
krvskpEW 0.483333 | 0.488889 | 0.566667
penglungEW | 0.511385 | 0.486154 | 0.473846
sonarEW 0.473333 | 0.553333 0.51
spectEW 0.554545 | 0.536364 | 0.472727
waveformEW 0.535 0.605 0.57
WineEW 0.553846 | 0.538462 | 0.507692

optimal combination of power generation in such a way that the total production cost
of the system is minimized. The cost function of a generating unit can be represented
as a quadratic function with a sine component. The sine component denotes the effect
of steam valve operation. The quadratic refers to a convex objective, whereas the valve-
point effect makes the problem non-convex. The convex and non-convex cost function
of a generator can be expressed as follows:

Fi(P) = a;P? + b;P; + ¢; (4.32)

Fi(P;) = a;P? + b;P; + ¢; + |d;sin[e; » (P™" — B)]| (4.33)

)

where P; is the active power output, F;(P;) is the generation cost, P/ is the minimum
output limit of the generator, and a;, b;, ¢;, d;, e; are the cost coefficients of the generator.

The fuel cost of all generators can be defined by the following equation:
Ng
MinF,(P) =Y a;P} + b:P; + ¢ + |disinfe; » (P — B))]| (4.34)
i

where Ng is the number of generating units.
In order to investigate the efficiency of the modified cuckoo search (MCS) algorithm,

we present the general performance of it with a six-generator test system and the pa-
rameter setting of the algorithm is reported in Table 4.9.

Table 4.9: Parameter setting

Parameters  Definitions Values
N Population size 40
Pa A fraction of worse nests 0.25

Maxit, Maximum number of iterations 500
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Table 4.10: Generator active power limits
Generator 1 2 3 4 5 6
Pyin(MW) 10 10 35 35 130 125
P (MW) 125 150 225 210 325 315

Table 4.11: Fuel cost coeflicients

No. «a b c

0.15240 38.53973 756.79886
0.10587 46.15916 451.32513
0.02803 40.39655 1049.9977
0.03546 38.30553 1243.5311
0.02111 36.32782 1658.5596
0.01799 38.27041 1356.6592

S Uk W N~

The MCS algorithm is tested on a six-generator test system. In order to simplify the
problem, the values of parameters d, e in Equation 4.33 have been set to zero. The
proposed algorithm is carried out for a total demand of 700 MW and 800 MW. The
generator active power limits and the fuel cost coefficients are given in Tables 4.10 and
4.11, respectively.

The general performance of the MCS algorithm with economic dispatch problem is
shown in Figure 4.1 by plotting the number of iterations versus the cost ($/h) for total
system demand 700 MW and 800 MW, respectively.

Figure 4.1 shows that the cost values are rapidly decreasing with a few numbers of
iterations. We can conclude from Figure 4.1 that the algorithm is promising and can
obtain the desired power with minimum cost.

Total system demand =700MW <10' Total system demand =800MW

L . L ; L L 185 L " " " L L
100 150 200 250 300 350 400 450 50 0 50 100 150 200 250 300 350 400 450 50
Treratians Treratians

Figure 4.1: The general performance of MCS with economic dispatch problem
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4.5 Chapter conclusion

This chapter reviewed the cuckoo search algorithm, its behavior as well as its variants.
A hybridization of the cuckoo search with other approaches was discussed. We gave an
overview of real life application as well as results of two cases in feature selection and a
modified version cuckoo search for solving a convex economic dispatch problem.
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5 Firefly Algorithm (FFA)

5.1 Firefly algorithm (FFA)

FA is a nature-inspired stochastic global optimization method that was developed by
Yang [1]. This algorithm imitates the mechanism of firefly mating and exchange of
information using light flashes. This chapter presents the main behavior of fireflies, the
artificial FFA, and the variants added to the basic algorithm that was proposed in 2008.
Sample applications of FFA are presented at the end of the chapter.

5.1.1 Behavior of fireflies

There are about two thousand firefly species, and most fireflies produce short and rhyth-
mic flashes [2]. The fundamental functions of such flashes are:

e Attraction of mating partners (communication)
e Attraction of potential prey

e Provides warning mechanism

Two combined factors make most fireflies visible only to a limited distance [2]. The
first is that the light intensity at a particular distance r from the light source obeys
the inverse square law. That is to say, the light intensity I decreases as the distance r
increases in terms of I r%, i.e., light intensity is inversely proportional to the square of
the distance. The second is that the air absorbs light which becomes weaker and weaker
as the distance increases.

The a forementioned manners and rules are formulated mathematically in the artificial
firefly to be discussed in the next section.

5.1.2 Artificial fireflies

Yang in [2] formulated three idealized rules that describe the behavior of artificial fireflies
as follows:

o All fireflies are unisex so that one firefly will be attracted to other fireflies regardless
of their sex;

e Attractiveness is proportional to the brightness, thus for any two flashing fireflies,
the less brighter one will move toward the brighter one. The attractiveness de-
creases as the distance increases between two fireflies. If there is no brighter one
than a particular firefly, it will move randomly;

93
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e The brightness of a firefly is affected or determined by the landscape of the objective
function. For a maximization problem, the brightness can simply be proportional
to the value of the objective function.

The movement of a firefly ¢ attracted to another more attractive (brighter) firefly j is
determined by

2 = 2 + Boe T (xj — x;) + a(rand — 0.5) (5.1)

where the second term is due to the attraction while the third term is randomization
with « being the randomization parameter. rand is a random number drawn from uni-
form distribution in [0, 1] and hence the expression (rand — 0.5) ranges from [-0.5,0.5]
to allow for positive and negative variation. [y is always set to 1 and a € [0,1]. The
« parameter physically represents the noise existing in the environment and affects the
light transmission, while in the artificial algorithm it can be selected to allow for solution
variation and hence provide for more diversity of solutions. Furthermore, the random-
ization term can easily be extended to a normal distribution with 0 mean and variance
1;N(0,1) to allow for variation of noise rate in the environment.

The parameter v characterizes the variation of the attractiveness, and its value is cru-
cially important in determining the speed of the convergence and how the FA algorithm
behaves. In most applications, it typically varies from 0.01 to 100. The distance between
Firefly;, Firefly; is denoted as r;; and defined in equation 5.2.

rij = |z — ] (5.2)
where x; represents the position of firefly 4.

Remark that the attractiveness coefficient in the updating equation 506_7”%‘ is used
as an approximation of the light intensity loss by distance as mentioned in the idealized
rules. It can be modeled by any monotonically decreasing functions. Also, the random
term in the equation is used to formulate the effect of dust and environment on the light
intensity. So, the firefly algorithm (FFA) which is inspired by the behavior of fireflies
can be formulated in the following pseudo-code; see Algorithm 6.

For more details about the implementation reader can refer to [3]. FFA properties can
be formulated in the following items:

e FFA is a swarm intelligent method that has the advantages of swarm optimization.
e FFA can easily handle multi-modal problems thanks to its automatic subdivision
of population, where the scope vision of each firefly is limited which allows fireflies

to make sub-swarms in the search space.

e The randomness and attraction parameters of the FFA can be easily tuned through-
out the iteration to enhance the convergence speed of the algorithm.
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input : n Number of Fireflies

N Iter Number of iterations for optimization

v attractiveness parameter

« contribution of the random term (environment noise)
output: Optimal firefly position and its fitness

Initialize a population of n fireflies’ positions at random
Find the best solution based on fitness;

while Stopping criteria not met do
foreach Firefly; do

foreach Firefly; do

if firefly j is better than firefly i then
| Move firefly ¢ towards firefly j using equation 5.1

else

end
Evaluate The positions of individual fireflies.
end

Algorithm 6: Pseudo code of the firefly algorithm

5.2 FFA variant
5.2.1 Discrete FFA

A discrete version of the standard continuous FFA is proposed in [29]. The proposed
algorithm can be formulated as digitization of the initialization, distance, attraction, and
random component in the standard continuous FFA updating equation; see equation 5.1.
These steps can be displayed in some detail as follows:

o [Initial Fireflies: Random permutations are generated an equal number of fireflies
in the required space ™.

e Distance Function: Hamming distance is used where it counts the number of
non-corresponding elements in the sequence. The Hamming distance between two
permutations is the number of non-corresponding elements in the sequence.

Example: consider the following three fireflies with positions

m =[1,2,3,4,5,6] (5.3)
T =[1,2,4,3,6,5] (5.4)
75 =[1,2,4,5,6,3] (5.5)

The hamming distance between 7y, w9 is 4, while the Hamming distance between
T, 3 is 2, as there are 4 corresponding elements between o, 73.
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o Attraction Step: Attraction is the first component of the firefly updating equation.
In the discrete version a firefly 7 is attracted to firefly mo, denoted as mi_,s.
First, the common corresponding elements are set in the output solution. Second,
elements are copied from solution 7 to the output solution with probability:

1

= —
1+ 'Ydrrl,ﬂ'2

(5.6)

where dr1 72 is the Hamming distance between the two fireflies and the parameter
characterizes the variation of the attractiveness as defined above in the continuous
version. The other elements are retained from o solution. While doing this,
we need to watch not to create duplicate elements in the resulting permutation.
Duplicate elements are filled with random unused numbers.

The attraction step can be formulated as in the following equation:

et ot

Tig Hag=25

z;, dT = :z;d if rl < 3 (5.7)
:z:;d if r1 > 6 and a:f 4 Dot previously appeared inxﬁv d

where
— rlis arandom number generated from uniform distribution in the range [0,1].
— xf 40 is the value of solution ¢ in dimension d at time ¢.
— [ is attraction coefficient calculated as in equation 5.6.

The result of equation 5.7 is some missing values in some dimensions that further
will be filled with random allowed numbers with no repetition.

e Random Component: It should allow us to shift the permutation into one of the
neighboring permutations. There are two ways how to apply the a-step: either to
make an a. Random() many swaps of randomly chosen two elements, or to choose
an a.Random() many elements, and shuffle their positions.

5.2.2 Binary FFA

A binary version of the standard firefly algorithm was proposed in [6]. The algorithm
forces the firefly positions to be on the binary grid. The FFA standard updating equation
(see equation 5.1) allows updated the binary FFA position which may lead to continuous
values. The continuous values are mapped into binary values by means of a probabilistic
rule based on a sigmoidal transformation applied to each component of the real-valued
position vector as shown in the following equation:

1 4 d< — L+
Xig = ifran ' I+erp(—wia) (5.8)
0 otherwise
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where X4 is the position of the ith agent in dimension d and rand is a random number
drawn from uniform distribution in the range from 0 to 1.

The aforementioned equation forces the firefly position/solutions to be € 0,1. The
same binarization step is used in [7] but using the hyperbolic tan function for squashing
the continuous values before threshold; see next equation.

exp(2 % |xpy|) — 1

tanh =
anh(wp) exp(2 * |xp|) +1

(5.9)

where x,, is the continuous value of the solution x in dimension d. The final binary value
for the discrete solution can be calculated as
1 if rand < tanh(zp)
Xid =

) (5.10)
0 otherwise

where tanh is the hyperbolic tan function.

5.2.3 Chaotic firefly algorithm

The rate of convergence of FA is strongly influenced by the choice of algorithm pa-
rameters [8]. The success and rapidness of the search is highly dependent on a good
trade-off between the exploration and the exploitation. Exploration allows search of the
entire search space by ensuring the redirection of the search toward new regions, while
exploitation favors a quick convergence toward the optimum. Santos Coelho [9] pointed
out that use of chaotic sequences can help the FA to escape more easily from local min-
ima than through traditional FA. A logistic map was used to tune the randomization
parameter (o) and the attraction variation parameter (7) to generate the novel chaotic
firefly algorithm (CFA).

The updating for the a and ~ parameters are adapted according to the following:

A = L =1 (5.11)

t+

o = ppal[l — o] (5.12)

where ji1, pg are constants of the logistic chaos function, alpha® is the firefly attraction
variation parameter at iteration ¢, and ' is the firefly randomization parameter at
iteration ¢.

5.2.4 Parallel firefly

Motivated by advance in multi-core technology a parallel version of FFA is presented
in [10]. Parallelization of algorithms has been proven to be a very powerful method in
the case of population-based algorithms. Multiple colony approach is used in this work
for parallelizing the FFA as follow.
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e Step 1 (Initialization): Set the number of colonies/subpopulation each with its
own fireflies on an individual threads and define the communication time; i.e., for
every 100 iterations.

e Step 2 (Execution): Run firefly optimization on individual threads.

e Step 3 (Communication): Sort agents in individual threads according to their
attractiveness and divide them into two groups. Every subpopulation exchanges
half its agents with another subpopulation.

After that, sub-colonies are replaced with a new population and search process is con-
tinued.
5.2.5 FFA for constrained problems

A version of FFA to handle optimization problems with constraints is proposed in [11].
The constrained problem is transformed into an unconstrained one by forming a pseudo-
objective function as follows:

®(z,r) = f(z) +r{d @) + Y _lg (@)} (5.13)
i=1 =1

where g (z) = max(0, gi(z)), gi(x) represents the inequality constraints where g;(z) <
0, h;(x) represents the equality constraints and r is the scalar penalty parameter. An-
other propose in the same paper is based on a set of rules that helps FFA deal with
constraints as follows:

e If both fireflies are at feasible positions and firefly j is at a better position than
firefly 4, then firefly ¢ moves toward firefly j.

o If firefly ¢ is at an infeasible position and firefly j is at a feasible position, then ¢
moves to firefly j.

e If positions of firefly ¢ and firefly j are infeasible and the number of constraints
satisfied by firefly j is more than that of firefly ¢, then firefly ¢ moves to firefly j.

e Once the position of the firefly is updated using above rules 1 to 3, if the updated
position of the firefly ¢ presents improved solution over the solution associated with
its previous iteration position, then firefly ¢ accepts its current solution, otherwise
retains its previous iteration solution.

5.2.6 Levy flight FFA (LFA)

Numerical studies and results suggest that the proposed Lévy-flight firefly algorithm is
superior to existing metaheuristic algorithms and and motivates using this distribution
in combination with the standard FFA [12]. The random component in the standard
FFA is replaced by the Levy flight rather than the uniform random numbers used in the
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standard FFA; see equation 5.1. The movement of a firefly ¢ attracted to another more
attractive (brighter) firefly j is determined by

i = i + Boe H (xj — x;) + asign(rand — 0.5) @ Levy (5.14)

where the second term is due to the attraction while the third term is randomization
with a being the randomization parameter. rand is a random number generated uni-
formly in [0,1]. By is always set to 1 and « € [0,1]. The product @ means entrywise
multiplications. The sign(rand — 0.5) where rand € [0,1] provides a random sign or
direction while the random step length is drawn from a Levy distribution.

Levy p=t"*(1<A<3) (5.15)

which has an infinite variance with an infinite mean. Here the steps of firefly motion
are essentially a random walk process with a power-law step-length distribution with a
heavy tail.

5.2.7 Intelligent firefly algorithm (IFA)

IFA is proposed in [13] for the global optimization. In the original FA, the movement
of a firefly is determined mainly by the attractiveness of the other fireflies. A firefly can
be attracted to another firefly merely because it is close to it even if it is not so much
better, which may take it away from the global minimum that may be far in distance
from it. A firefly is pulled toward other fireflies as each of them contributes to the move
by its attractiveness. This behavior may lead to a delay in the collective move toward
the global minimum. In the intelligent firefly algorithm (IFA) the ranking is performed
such that the firefly is attracted only as a subset ¢ of the better fireflies. This fraction
represents a top portion of the fireflies based on their rank. Thus, a firefly is acting
intelligently by basing its move on the top ranking fireflies only and not merely on at-
tractiveness.

The strength of FA is that the location of the best firefly does not influence the
direction of the search. Thus, the fireflies are not trapped in a local minimum. However,
the search for the global minimum requires additional computational effort as many
fireflies wander around uninteresting areas. With the intelligent firefly the parameter ¢
can maintain the advantage of not being trapped in a local minimum while speeding up
the search for the global minimum. The value of ¢ gives a balance between the ability
of the algorithm not to be trapped in a local minimum and its ability to exploit the best
solutions found [13].

5.2.8 Gaussian firefly algorithm (GDFF)

The GDFF proposed in [14] applies three behaviors to improve performance of the firefly
algorithm.
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1. Adaptive step size: All fireflies move with a fixed length in all iterations in the

standard FFA. The algorithm may miss better local search capabilities and some-
times it traps into several local optimums. In the proposed algorithm, it is defined
as weight for a that depends on iterations and it always produces a value less than
one. This coefficient is determined by equation 5.16.
iter —)"

O = Qumin, + (ﬁz;l;mx) * (amax - amin) (516)
where «; is the step size at iteration i, aunin, Qmaez are the limits for the «, and n
is a constant defined according to the problem dimension as in equation 5.17.

n=10"1 (5.17)
where d is the problem dimension.

Directed movement: Fireflies that are not attracted by any other firefly are moved
toward the best firefly according to the standard movement equation of fireflies; see
equation 5.1. This is caused if there was no local best in each firefly’s neighborhood;
they move toward best solution and make a better position for each firefly for next
iteration and they will get nearer to global best.

Social behavior: A random walk is applied on each firefly according to equation
5.18.

xi=x; +a(l—p)xU(0,1) (5.18)
where z; is the firefly position, U(0,1) is a random number drawn from uniform

distribution in the range [0, 1], and p is calculated as

1 _ew?
p=—=¢ 202 (5.19)

where p, o are set to 0 and 1 in order, and x = f(best) — f(z;).

5.2.9 Network-structured firefly algorithm (NS-A)

In NS-FA fireflies have a network structure [15]. The fireflies of the NS-FA are attracted
to only directly connected fireflies. Therefore, the firefly of the NS-FA is not affected by a
brighter firefly if there is no connection between the two fireflies. The network structure
is modified with generation. The firefly of the NSFA is stochastically connected with
brighter fireflies and is disconnected from less brighter fireflies. An initial network struc-
ture of the NS-FA is assumed to be ring topology. The connection among the fireflies is
denoted by a connection matrix C. If the firefly ¢ is connected to the firefly j, C; ; =1,
otherwise C; ; = 0.

The firefly updating equation is modified as follows:

(5.20)

7 t
79

S {xf + Bz} — x}) + a(rand = 0.5)L, Cj;=1and I; > I;

x otherwise
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where L is the average scale of the problem and the other parameters are as in the
standard FFA.

The firefly i, except the brightest firefly k, is stochastically disconnected from less
brighter fireflies. If Rand; < C;;, 1 is disconnected from j according to

Cii=0,I; <Iji#k (5.21)

where Rand; is a random number generator uniformly distributed in [0, 1] and C} is a
connection probability determined by

t

Cy = (5.22)

tmax
where t, 1,4, are the iteration number and the maximum number of iterations. The
network structure keeps on changing, and the fireflies converge to the optimum solution.

5.2.10 FFA with adaptive parameters

The value of v in FFA determines the variation of attractiveness with increasing distance
from communicated firefly. Using v = 0 corresponds to no variation or constant attrac-
tiveness and conversely setting v — oo results in attractiveness being close to zero, which
again is equivalent to the complete random search [16]. As mentioned in [16] gamma
should be in the range [0, 10] and specifically v can be estimated as

y =1 (5.23)

Tmazx

where 79 € [0,1] and 7,4, is the maximum range in all problem dimensions.

The random term in the standard FFA updating is replaced by the following [16]:

, (5.24)
—arandy(x;, — ay) otherwise

{arandl(bk —x;k)  ifsgn(randl —0.5) <0
Ui =

where randy, rands are two random numbers from uniform distribution in the range
from O to 1, and ag, by are the limits of dimension k. The suggested alternative approach
is set as a fraction of the distance to search space boundaries.

A study in [17] is performed on the parameter selection for the FFA based on exper-
imental results on five different test functions. The author concluded that increasing
the number of fireflies requires more iteration to converge and he suggests using a low
number of fireflies. Best values for o and « are around 0.1 and 0.01 in order.

A comparative study was conducted in [18] to compare the performance of FFA and
particle swarm optimization (PSO) on noisy nonlinear test functions. The study finds
out that the FFA is superior to PSO in reaching the global optimum. A modified version
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of the FFA main updating equation is proposed in [32] where the updating equation is
modified as follows:

T = T; + Boefng (z; —a;) + ﬁoe_wibest(xbest — x;) + a(rand — 0.5) (5.25)

where the second term is due to the attraction while the fourth term is randomiza-
tion with « being the randomization parameter. rand is a random number generator
uniformly distributed in [0, 1]. Sy is always set to 1 o € [0, 1]. Furthermore, the ran-
domization term can easily be extended to a normal distribution N(0,1) and xpes is the
position of best solution.

5.3 FFA hybridizations

In literature many hybridizations are performed between firefly algorithm and other opti-
mizers to enhance its performance in solving optimization tasks. Some of the motivations
as mentioned in the literature are mentioned below.

e To improve the population diversity and to avoid the premature convergence of
FFA.

e To minimize the number of function evaluations is a main problem in FFA.
e To avoid falling in local minima.

Table 5.1 states samples of hybridizations mentioned in the literature.

5.3.1 Hybrid evolutionary firefly algorithm (HEFA)

The HEFA is a hybrid between FFA and differential evolution (DE) and is proposed
in [20]. In this proposal the population in each iteration is divided into two groups and
each group is updated individually as follows:

Table 5.1: FFA hybridizations and sample references

Hybrid with Target Sample Reference

Evolutionary algorithm (EA) Enhance global searching [20]
Genetic algorithms (GA) Enhance global searching [21-23]
Harmony search (HS) Explore the new search space [24]
and exploit the population
Pattern search (PS) Make use of local searching [25]
capability of PS

Learning automata (LA) Adapt FFA parameters [26]
Ant colony Avoid falling in local minima [22]
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e Agents with potential fitness: This group is handled as in the standard firefly
algorithm where each firefly is moved to the brighter fireflies.

o Agents with less significant fitness: The solutions in this population undergo the
evolutionary operations of the DE method. Mutation operation is performed on
the original solution generating a trivial solution v; according to the following
equation:

UV = Tpest T F(.’Erl — xrz) (526)

where pes is the best solution, F' is a mutation constant, and z,1,z.0 are two
random solutions from the group.

Offspring solution is produced by the crossover operation that involved the parent
xz; and the trivial solution v;. The vectors of the ith offspring solution, yi, are
created as follows:

i = {vi ifR<CR (5.27)

x; otherwise

where R is a random number drawn from uniform distribution € [0, 1] and CR is
a constant crossover coefficient.

Each new solution is compared to its original one and the better one is kept as in
equation 5.28.

S {xf if f(@i) < f(wi) (5.28)

7 .
y; otherwise

This indicates that the original solution would be replaced by the offspring so-
lution if the fitness value of the offspring solution were better than the original
solution. Otherwise, the original solution would remain in the population for the
next iteration.

Another variant of FFA is proposed in [21] that is more similar to HEFA. The global
searching power of a genetic algorithm is employed in the standard FFA which is much
better in a local search. In this proposal all solutions in each iteration are used to gener-
ate new ones based on the standard GA steps, namely, crossover, mutation, and selection.

Another variant of hybridization between FFA and genetic is proposed in [22]. In
each iteration of the genetic optimization the population generated is passed to FFA
updating. Genetic algorithm searches the solution space for global minimum and the
firefly algorithm improves the precession of the potential candidate solution.

A hybrid algorithm between FFA and GA is proposed in [23]. Each individual opti-
mizer is initialized independently and at each iteration the population of each algorithm
is swapped to take advantage of both the global search capability of GA and the local
searching capability of FFA.
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5.3.2 Hybrid FFA and harmony search (HS/FA)

A hybrid by inducing harmony search (HS) into the FA method named HS/FA is uti-
lized to deal with the optimization problem, which can be considered as mutation oper-
ator [24]. The mutation of the HS and FA can explore the new search space and exploit
the population, respectively. Therefore, it can overcome the lack of exploration of the
FA [24].

The hybrid algorithm performs attraction only to a number of best fireflies, not all
of which speeds up the number of function evaluations. The second improvement is the
addition of HS serving as mutation operator striving to improve the population diversity
to avoid the premature convergence. In HS/FA, if firefly ¢ is not brighter than firefly
j, firefly j is updated by mutation operation to improve the light intensity for firefly j.
Every element xy;(k = 1,2, ..., D) is tuned as follows:

T,k + bw(2rand — 1) if rand; < HMCR and rands < PAR
Tyk = Trik if randy < HMCR and > PAR

Tmink T rand(JUmar,k - xmin,k) otherwise

(5.29)
e 1,1 is a random solution drawn from the current fireflies randomly.
e rand is uniform random number in [0,1].
e bw is band width.
e HMCR is the harmony memory consideration rate.
e PAR is the pitch adjustment rate.

® Tin, Tmaz are the limits for the search space.

5.3.3 Hybrid FFA and pattern search (hFAPS)

In [25] a hybrid FFA and pattern search optimizer is used for automatic generation
control (AGC) of multi-area power systems with the consideration of generation rate
constraint (GRC). FFA is used to find the parameters of proportional integral deriva-
tive (PID) controllers employing an integral time multiple absolute error (ITAE) fitness
function. Pattern search (PS) for its local searching power is then employed to fine tune
the best solution provided by FA.

5.3.4 Learning automata firefly algorithm (LA-FF)

In firefly algorithm, for any two flashing fireflies, the less bright one will move toward
the brighter, with a percentage of randomness. The initial percentage value and other
parameter such as attractiveness coefficient are crucially important in determining the
speed of the convergence and how the FA algorithm behaves. « determines random
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percentage in firefly moving. Attractiveness coefficient is named «y. The parameter varies
between zero to extreme [26]. Absorption coefficient is set by one learning automata. In
each iteration, the value of parameter is set as

e Unchanged
e Increased by multiplying a number greater than one
e Increased by multiplying a number smaller than one

In any iteration, the learning automaton functions three actions: decrease, increase,
and unchanged gamma parameter; therefore, any action determines the parameter value
related to this value in the previous iteration. In the learning automata’s problem, en-
vironment with input « changes probability of any action according to a set of rules.
Learning automata environment considers P model and it is applied from learning algo-
rithm p(n + 1) = T[a(n), B(n), p(n)] [26].

5.3.5 Hybridization between ant colony optimization and FFA

To avoid falling in a local minima, ant colony optimization (ACO) is enhanced using the
local searching power of FFA [22]. The pheromone generated by the ACO is converted
into candidate solutions using equation 5.30.

lri; (O for all z;; , z;; € allowed
Py (1) = { Dicattovea, [l gt g (5.30)
0, otherwise
where xfj(t) is probability that option x;; is chosen by ant k for variable ¢ at time ¢ and

allowedy, is the set of the candidate values contained in the group 1.

The candidate ACO solutions are used to initialize the FFA for further enhancement.
The random component in the standard FFA updating equation is adapted as follows:

Ayl = Oétgl_TLC (5.31)

where t is iteration number, T'c maximum number of iterations, and 6 € [0, 1] is the
randomness reduction constant.

5.4 Firefly in real world applications

This section presents sample applications for FFA. FFA is successfully applied in many
disciplines in decision support and decision making, in the engineering field, computer
science, and communication. The main focus is on identifying the fitness function and
the optimization variables used in individual applications. Table 5.2 summarizes sample
applications and their corresponding objective(s).

In [28] FFA is used to tackle the problem of quewing. Queueing theory provides
methods for analysis of complex service systems in computer systems, communications,
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Table 5.2: FFA applications and the corresponding fitness function

Application Name Fitness Function Sample
References
Queuing problem Maximizes the overall profits 28
Job scheduling Minimize the make span time as well as the flow 21
time
Quadratic assignment | minimum total cost [29]
problem (QAP)
Data clustering Maximum entropy [30-33]
Data clustering Minimize fuzzy c-means fitness function [35]
Cloud computing Maximize the resource utilization and provide a | [36]
good balanced load among all the resources in
cloud servers
Image retrieval Feature weighting to maximize correlation be- | [37]
tween query and content
Proportional-integral- Goal is to improve the automatic voltage regula- | [38]
derivative (PID) tor system step response characteristics
System identification Objective is to find a model and a set of param- | [34,39]
eters that minimize the prediction error between
system output y(t), measured data, and model
output y(tA7 0) at each time step ¢
Economic dispatch Minimize the total system cost where the total | [40-42]
(ED) system cost is a function composed by the sum of
the cost functions of each online generator
UCAYV path planning Minimize threat and fuel consumption [43]
Structural mass Frequency constraint weight minimization [44,45]
optimization
Traveling salesman Minimize length of the tour [46]
problem (TSP)
Social portfolio Make a proper selection of projects to benefit | [47]
problem from the portfolio of projects to optimize prop-
erly, the social benefit for each of the minorities
with the aim of improving their living conditions
in everyday aspects
Supplier selection Target is the select supplier(s) to provide a given | [48]
problem quantity with minimum transportation cost and
product price
Mathematical pro- | Create multiple solution alternatives that both | [49]
gramming applications | satisfy required system performance criteria and
yet are maximally different in their decision
spaces
Cluster head selection | Main issue is power consumption and lifetime of | [50]

wireless sensor network
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transportation networks, and manufacturing. In this problem the goal is to seek the
number of servers that maximizes the overall profits.

The job scheduling is an NP-hard problem that is solved in [5] using FFA. The ob-
jective is to minimize the make span time as well as the flow time. The job scheduling
targets to distribute optimally a set of IV tasks on M resources. The same problem
is handled in [21] but using a hybrid algorithm between FFA and genetic algorithm to
make use of the global searching power of the genetic algorithm as well as to make use
of the local searching capability of the FFA.

The quadratic assignment problem (QAP) is a mathematical model for the location
of indivisible economic activities, and is one of the basic computational problems in
computer science with complexity strong NP-hard [29]. For the given n facilities and
n locations, with the given flows between all the pairs of the facilities and the given
distances between all the pairs of the locations, find an assignment of each facility to
the unique location, such that the total cost, computed as the sum of distances times
corresponding flows, is minimum. The problem is faced in [29] using FFA. The problem

is formulated as follows: n n
min Z Z aijbﬂ(i)w(j) (5.32)
i=1 j=1

where
e a;; represents the flow from the facility ¢ to the facility j.
e b;; represents the distance from the location 7 to the location j.
e 7 is the number of facilities or locations.

A discrete version of FFA is used to optimize the QAP in [29].

In [30,31] FFA is used to create initial cluster centers for the K-means clustering. The
used fitness for FFA is maximum entropy as in equation 5.33.

1

)= —— 5.33
f(z) S (5.33)

where k is the number of clusters and S; is defined as
Si= > [-—log(H)] (5.34)

P P;

JEC;
where P;; is the probability of occurrence of pixel value j in cluster ¢ and P; is the prob-
ability of occurrence of all the pixel values in class 7. This used initialization overcomes
most of the problems related to K-means, especially speed, clustering accuracy, and lo-
cal minima problems [30,32]. In [33] FFA with K-means is used for Dorsal Hand Vein
segmentation from the CCD camera.
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The fuzzy c-means (FCM) fitness function is used with FFA for image data clustering
in [35] to overcome the local minima problem in the standard FCM.

Vein structure is unique to every individual. There are different imaging methods
where near-infrared lighting sensors are more common in capturing dorsal hand vein,
palm vein, and fingers vein patterns. Black and white CCD cameras are also sensitive in
the near-infrared region, so a filter blocking the visible light is all that is needed on the
camera. Since shape and state of skin have no effect on the system’s result, dorsal hand
vein patterns are more secure than finger print and hand geometry [33]. These are one
of the highest popular systems among security and biometric systems because of their
uniqueness and stability [33].

Image registration is the process of transforming different images into the same co-
ordinate system [8]. In [8] an image registration model is proposed based on FFA. A
chaotic FFA is used to find the optimal transformation parameter set that maximizes
the normalized cross correlation (NCC).

1 Z (A= pa)(T(B) — prm))

min — 5.35
[Tz, Ty,0) N OAOT(B) (5.85)

z,yY

where N denotes the total number of pixels in image A and B, u4 and up denote the
average of the images A, B, and 0 4, orp denote the standard deviation for image A and
transformed image B.

A cloud computing is conceptually a distributed and elastic system where resources
will be distributed through the network. The full resources of the system cooperate to
respond to a client request which requires intercommunication between various compo-
nents of the system to design a component or subset of components to deal with the
request [36]. This can lead to bottlenecks in the network and an imbalanced charge in
a distributed system where some components will be overcharged while others will not
or will be light charged. Among the major challenges faced by the cloud computing
systems, load balancing is one tedious challenge that plays a very important role in the
realization of cloud computing. For developing strategy for load balancing, the main
points to be considered are estimation of load, comparison of load, stability of different
system, performance of system, interaction between the nodes, nature of work to be
transferred, and selecting of nodes. Thus, in order to tackle the problems related to load
balancing in the cloud network, an effective system should be developed. The design of
a load balancing model using firefly algorithm is proposed in [36]. The main objective
is to maximize the resource utilization and provide a good balanced load among all the
resources in cloud servers.

In [37] FFA is used in the content-based image retrieval (CBIR). The CBIR system
has been implemented with the relevance feedback mechanism and for the optimization
the objective function for the firefly has been designed with image color parameters and
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texture parameters. The decision variables of the firefly algorithm are the four feature
vectors My, Mem, Mean, Myt The brightness of light intensity is associated with the
objective function, which is related to the sum of weighted Euclidean distance between
the query image and the stored database image in D-dimensional search space: M}, color
histogram bins, M., color moments, M.q4; edge direction histogram, and M,,; wavelet
texture feature values.

The work in [38] presents a tuning approach based on continuous firefly algorithm
(CFA) to obtain the proportional-integral-derivative (PID) controller parameters in an
automatic voltage regulator system (AVR). In the tuning processes the CFA is iterated
to reach the optimal or the near-optimal of PID controller parameters when the main
goal is to improve the AVR step response characteristics. In time domain, the fitness can
be formed by different performance specifications such as the integral of time multiplied
by absolute error value (ITAE), rise time, settling time, overshoot, and steady-state error.

The problem of determining a mathematical model for an unknown system by moni-
toring its input-output data is known as system identification. This mathematical model
then could be used for control system design purposes [34]. A modified version of FFA
is used in [34] for the system identification problem.

System identification consists of two subtasks:
e Structural identification of the equations in the model M
e Parameter identification of the model’s parameter 0

A system identification problem can be formulated as an optimization task where the
objective is to find a model and a set of parameters that minimize the prediction error
between system output y(t), measured data, and model output y(tA7 0) at each time step
t; see equation 5.36 [39)].

A~

T
MSE(§,0) = = (y(t) — i(t,0))’ (5.36)

t=1

Nl =

In [40-42] FFA is used to handle the economic dispatch (ED) problem. The ED
problem is an optimization problem that determines the power output of each online
generator that will result in a least cost system operating state. The objective of eco-
nomic dispatch is to minimize the total system cost where the total system cost is a
function composed of the sum of the cost functions of each online generator. This power
allocation is done considering system balance between generation and loads, and feasible
regions of operation for each generating unit. The objective of the classical economic
dispatch is to minimize the total fuel cost by adjusting the power output of each of the
generators connected to the grid.
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FFA is used in [43] for path planning for uninhabited combat air vehicles (UCAVs).
UCAV is a complicated high dimension optimization problem, which mainly centralizes
on optimizing the flight route considering the different kinds of constraints under com-
plicated battlefield environments. A performance indicator of path planning for UCAV
mainly contains the completion of the mandate of the safety performance indicator and
fuel performance indicator, i.e., indicators with the least threat and the least fuel [43].

Structural mass optimization on shape and size is performed in [44] using FFA tak-
ing into account dynamic constraints. In this kind of problem, mass reduction especially
conflicts with frequency constraints when they are lower bounded, since vibration modes
may easily switch due to shape modifications. The main goal is that engineering struc-
tures are often supposed to be as light as possible. Thus a frequency constraint weight
optimization process should be performed to obtain these two aims simultaneously.

In design optimization of truss structures, the objective is to find the best feasi-
ble structure with a minimum weight [45]. Optimum design of truss structures is a
search for the best possible arrangements of design variables according to the deter-
mined constraints. Design variables involved in optimum design of truss structures can
be considered as sizing, geometry, and topology variables. In sizing optimization of truss
structures, the aim is to find the optimum values for cross-sectional areas of the elements.
Geometry optimization means to determine the optimum positions of the nodes while
presence or absence of the members are considered in the topology optimization. FFA
is used in [45] for the optimization of truss structures.

The goal of the traveling salesman problem (TSP) is to find a tour of a given number
of cities, visiting each city exactly once and returning to the starting city where the
length of the tour is minimized. The TSP is a NP-hard problem [46]. A discrete version
of FFA is used to solve the TSP problem in [46].

In [47] FFA is used in decision making about a social portfolio known in English as
” Social Portfolio Problem” based on a social modeling characterized by four minorities.
In this social representation it is necessary to make a proper selection of projects to
benefit from the portfolio of projects to optimize properly, the social benefit for each
of the minorities with the aim of improving their living conditions in everyday aspects.
The fitness function is formulated in the following equation:

K = IS[(PE — IE)Y“M] £ RSLP (5.37)

where IS = social impact of the project; PE = economic potential of the project; I E
= ecological impact; PCM = minority cultural preservation, since the project does not
affect the culture associated with the minority; and RSLP = social return of long-term
project, meaning that the project changed over time the situation of the minority.

A discrete version of FFA is used in [48] for a supplier selection problem. The supplier
selection is a crucial problem of the logistics. The required quantity of the product
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is given: Q. The minimum and maximum quantities are also given for every supplier.
The capacity of the transport vehicles are P;, which is constant in the model for every
transport vehicle at the given supplier. The transportation cost is also defined for every
vehicle: T'r;. The target is select supplier(s) to provide a given quantity with minimum
transportation cost and product price according to the equation

minC = > (Cf + C7) (5.38)

i=1
where C; is purchasing price of the product and C}® is transportation cost.

When solving many practical mathematical programming applications, it is generally
preferable to formulate numerous quantifiably good alternatives that provide very dif-
ferent perspectives to the problem [49]. These alternatives should possess near-optimal
objective measures with respect to all known modeled objectives, but be fundamentally
different from each other in terms of the system structures characterized by their deci-
sion variables. This solution approach is referred to as modeling to generate alternatives
(MGA). The Firefly algorithm was used to efficiently create multiple solution alternatives
that both satisfy required system performance criteria and yet are maximally different
in their decision spaces in [49].

A cluster head selection for a wireless sensor network (WSN) is proposed in [50]. In
wireless sensor network the main issue is power consumption and lifetime of network.
This can be achieved by selection of proper cluster heads in a cluster-based protocol.
The selection of cluster heads and its members is an essential process which affects
energy consumption. A hybrid clustering approach proposes to minimize the energy of
the network so the lifetime of WSN can be increased.

5.4.1 Firefly algorithm in feature selection

FFA was used to select optimal feature combination to maximize classification perfor-
mance in this case study. Eight datasets from the UCI machine learning repository [51]
are used in the experiments and comparison results. The eight datasets were selected to
have various numbers of attributes and instances as representatives of various kinds of
issues that the proposed technique would be tested on, as shown in Table 5.3.

For each dataset, the instances are randomly divided into three sets, namely, train-
ing, validation, and testing sets. The training set is used to train the used classifier,
while the validation set is used to evaluate the classifier performance and is used in-
side the optimization fitness. The test data are kept hidden for both the classifier and
the optimizer for the final evaluation of the whole feature selection and classification
system.
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Table 5.3: Datasets used in the case study

Dataset No. of Attributes | No. of Instances
Breast cancer 9 699
Exactly 13 1000
Exactly2 13 1000
Lymphography 18 148
M-of-N 13 1000
Tic-tac-toe 9 958
Vote 16 300
Zoo 16 101

The fitness function for the FFA is to maximize classification performance over the
validation set given the training data 5.39.

1 N
e Z 10; — R;| (5.39)
=1

where z is the current selected features, N is the number of data points in the validation
set, and O;, R; are the output classifier result and the reference true classification result.
Individual solutions in the FFA are points in the feature space; d-dimensional space,
where d is the number of features in the original dataset in the range [0,1]. The well-
known K-nearest neighbor classifier was used in the fitness function. The FFA is ran-
domly initialized with solutions in the feature space and is applied to minimize the fitness
function in equation 5.39 and given the following parameter set. It worth mentioning
that the randomness parameter « is decremented by a factor § at each iteration as in
the following equation:

ol =5xal! (5.40)

The genetic algorithm (GA) [52] optimizer and particle swarm optimizer (PSO) [53] are
used in the same manner to be compared with the FFA to evaluate its classification
performance.

Table 5.4: FFA parameter setting

Parameter | Value Meaning
«a 0.5 Randomness parameter
~y 1 Absorbtion coefficient
) 0.99 | Randomness reduction coefficient
50 0.2 Light amplitude
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Table 5.5: Best, mean, and worst obtained fitness value for the different optimizers used

Dataset GA PSO FPA

Best | Mean | Worst | Best Mean | Worst | Best | Mean | Worst

Breast cancer | 0.0215 | 0.0240 | 0.0258 | 0.0129 | 0.0223 | 0.0258 | 0.0129 | 0.0232 | 0.0300
Exactly 0.2485 | 0.2844 | 0.3054 | 0.2784 | 0.2892 | 0.3024 | 0.0539 | 0.1485 | 0.2814
Exactly2 0.2186 | 0.2293 | 0.2425 | 0.2096 | 0.2281 | 0.2455 | 0.2096 | 0.2257 | 0.2515

Lymphography | 0.1224 | 0.1557 | 0.2041 | 0.1224 | 0.1598 | 0.2244 | 0.1224 | 0.1352 | 0.1837

M-of-N 0 0.0766 | 0.1198 0 0.0808 | 0.1886 0 0.0108 | 0.0299

Tic-tac-toe | 0.1781 | 0.2238 | 0.2531 | 0.1781 | 0.23625 | 0.2656 | 0.2062 | 0.225 | 0.2531
Vote 0.02 | 0.042 | 0.06 0.03 0.044 0.07 0.02 | 0.032 | 0.05

Zoo 0 0.0531 | 0.0882 0 0.0427 | 0.0882 0 0.0357 | 0.1176

Table 5.5 displays the best, mean, and worst fitness function value obtained by run-
ning each stochastic algorithm for 10 different initializations. We can see that the FFA
obtains much enhanced fitness value over both PSO and GA. The advance in the ob-
tained fitness value is in the best, mean, and worst obtained solution.

The performance of the different optimizers over the different test dataset is outlined
in Figure 5.1. We can remark from the figure that the performance of FFA is much
better than PSO and GA, which proves that the selected feature combinations are much
better.

Table 5.6 represents the average number of features selected to the total number of
features for different datasets and using different optimizers. We can remark that FFA
selects a minimum number of features in comparison with PSO and GA, while it keeps
better classification performance as outline in Table 5.5.

For assessing the stability of the performance of the optimizer we run an individ-
ual optimizer for 10 different running and using different initial random solutions and
measuring the standard deviation of the obtained best solution. Table 6.5 represents
the calculated standard deviation of the obtained fitness function. We can remark that
the obtained variation for the FFA is comparable to both GA and PSO, although the
random factor for FFA is set to 0.5, a respectively high value. We allowed for high ran-
domization factor or random factor in the FFA to tolerate for the high variation existing
in the search space so that FFA can reach the global minima.

Table 5.6: Average feature reduction for different data sets using different optimizers

Dataset | beancer | exactly | exactly2 | Lymph | m-of-n | TicTacToe | Vote Zoo
FFA 0.6 0.4462 | 0.3231 0.3333 | 0.4615 0.6222 0.2875 | 0.375
GA 0.7111 | 0.4769 | 0.5077 | 0.4556 | 0.6462 0.6667 0.4375 | 0.6125
PSO 0.6444 | 0.7846 | 0.3385 | 0.5444 | 0.5692 0.6444 0.475 0.55




114 Firefly Algorithm (FFA)

1 mfirefty_simpte

0.9 +

0.8 -

0.7 +

0.6 +

0.5 +

0.4

Figure 5.1: Classification accuracy over the different data sets and using different
optimizers

Table 5.7: Obtained standard deviation for the different datasets and using different

optimizers
Dataset | beancer | exactly | exactly? | Lymph | m-of-n | TicTacToe | Vote Z00
GA 0.0024 | 0.0222 | 0.0091 | 0.0307 | 0.0473 0.0290 0.0148 | 0.03821
PSO 0.0056 | 0.0109 | 0.0135 0.039 | 0.0730 0.0354 0.0152 | 0.0405
FFA 0.0078 | 0.1202 | 0.0171 | 0.0271 | 0.0149 0.0173 0.0164 | 0.0483

5.5 Chapter conclusion

This chapter presented the main behavior of fireflies, the artificial FFA, and its variants
that were proposed in 2008. Real applications of FFA were reviewed and the chapter
ended by showing results of the algorithm in a featured selection problem.
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6 Flower Pollination Algorithm

6.1 Flower pollination algorithm (FPA)

The flower search is a meta-heuristic optimization algorithm based on the flower polli-
nation process of flowering plants that was proposed by Yang [1]. FPA uses the same
principles of pollination that exist in nature.

6.1.1 Characteristics of flower pollination

The main purpose of a flower is ultimately reproduction via pollination. Flower pollina-
tion is typically associated with the transfer of pollen; such transfer is often linked with
pollinators such as insects, birds, bats, and other animals [2].

Pollination can take two major forms: abiotic and biotic. About ninety percent of a
flowering plants belong to biotic pollination, that is, pollen is transferred by a pollinator
such as insects and animals. About ten percent of pollination takes abiotic form which
does not require any pollinators. Pollination can be achieved by self-pollination or cross-
pollination. Cross-pollination, or allogamy, means pollination can occur from pollen of
a flower of different plant, while self-pollination is the fertilization of one flower, such
as peach flowers, from pollen of the same flower or different flowers of the same plant,
which often occurs when there is no reliable pollinator available.

Biotic, cross-pollination may occur at long distance, and the pollinators such as bees,
bats, birds, and flies can fly a long distance; this they can be considered as global polli-
nation and uses some form of random walking. In addition, bees and birds may behave
as Levy flight behavior [3], with jump or fly distance steps that obey a Levy distribution.
Furthermore, flower constancy can be used as an increment step using the similarity or
difference of two flowers [2].

6.1.2 The artificial flower pollination algorithm

Yang [1] idealized the characteristics of the pollination process, flower constancy, and
pollinator behavior in the following rules [1]:

1. Biotic and cross-pollination are considered as global pollination processes with
pollen carrying pollinators performing Levy flights.

2. Abiotic and self-pollination are considered as local pollination; mutation in differ-
ential evolution naming.
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3. Flower constancy can be considered as the reproduction probability and is propor-
tional to the similarity of two flowers involved.

4. Local pollination and global pollination are controlled by a switch probability
pe(0,1].

Due to the physical proximity and other factors such as wind, local pollination can
have a significant fraction p in the overall pollination activities. There are two key steps
in this algorithm: global pollination and local pollination.

In the global pollination step, flower pollens are carried by pollinators such as insects,
and pollens can travel over a long distance. This ensures the pollination and reproduction
of the most fit, and thus we represent the most fit as g,. The first rule can be formulated
as equation 6.1.

X = X! 4 L(XE - g4) (6.1)

where Xf is the solution vector i at iteration t and g, is the current best solution. The
parameter L is the strength of the pollination which is the step size randomly drawn
from Levy distribution [3].

The local pollination (Rule 2) and flower constancy can be represented as in equation
6.2.

XM =X+ e(XE—gp) (6.2)

where X; and X,tc are solution vectors drawn randomly from the solution set. The
parameter € is drawn from uniform distribution in the range from [0,1]. We use a
switch probability (Rule 4) or proximity probability p to switch between common global
pollination to intensive local pollination. The FPA search can be summarized in the
main procedure in algorithm (7).

6.2 Flower pollination algorithm variants

6.2.1 Binary flower pollination algorithm

In [4] a binary version of FPA algorithm was proposed to tackle for binary problems
such as feature selection. In the proposed binary flower pollination algorithm the search
space is modeled as a d-dimensional boolean lattice, in which the solutions are updated
across the corners of a hypercube. Binary solution vector is used, where 1 corresponds to
that feature which will be selected to compose the new dataset, with 0 being otherwise.
Individual dimension continuous data is squashed using the formula 6.3 to to limit its
range and hence can be threshold using the formula in 6.4.

S 0) = — (63)
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input : Search space
Fitness function
Number of flower agents
Number of iterations (n)
Switch probability p
output: Optimal Bat position and the corresponding fitness

Initialize a population of n flowers/pollen gametes with random solutions.
Select the best solution called g,
t=0;

?

while t < n do

foreach Flower i in the solution pool do

if rand <p then

Draw a (d-dimensional) step vector L which obeys a Levy distribution.
Apply Global pollination on solution i using equation 6.1.

else

Draw € from uniform distribution

Randomly choose j, k solutions from the current pool of solutions
Apply local pollination on solution i using j, k and equation 6.2

end

Evaluate the new solution if new solution is better, replace solution 7 with
it.
Endfor

Update the best solution.
end

Algorithm 7: Flower search algorithm (FSA)

where Xij (t) is the ith dimension of the solution j at iteration ¢.

X0 {g e 60

where o is a random number drawn from uniform distribution in the range [0, 1].

6.2.2 Chaotic flower pollination algorithm

Chaotic maps are used in [5] to tune the flower pollination algorithm parameters and
improve its performance. The main parameter that most affects the performance of FPA
is the P parameter, which controls the switching between global and local pollination.
Thus, in that work different chaotic maps are used to adapt this parameter and get
enhanced performance. The chaotic maps used are

e Logistic map

e The sine map
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e Iterative chaotic map
e Circle map

e Chebyshev map

e Sinusoidal map

e Gauss map

e Sinus map

e Dyadic map

e Singer map

e Tent map

6.2.3 Constrained flower pollination algorithm

A constrained version of the FPA is used in [6] where a penalty function is used to embed
the constraints into the fitness function as follows:

K
fmodified(x) = f(.ilf) =+ AZMax(ngn) (65)

n=1

where f(x) is the original fitness function and lambda is the penalty coefficient, and K
is the number of constraints and g, is the constraint number n.

6.2.4 Multi-objective flower pollination algorithm

A multi-objective optimization problem with m objectives can be converted into a sin-
gle fitness function simply by weighted summing of the individual objectives [7]. The
fundamental idea of this weighted sum approach is that these weighting coefficients act
as the preferences for these multi-objectives. For a given set of weights (w1; we; ...; wy,),
the optimization process will produce a single point of the Pareto front of the problem.
For a different set of w;, another point on the Pareto front can be generated. With a
sufficiently large number of combinations of weights, a good approximation to the true
Pareto front can be obtained. It has proved that the solutions to the problem with the
combined objective are Pareto-optimal if the weights are positive for all the objectives,
and these are also Pareto-optimal to the original problem [7].

6.2.5 Modified flower pollination algorithm

In the work of [8] FPA is enhanced by enhancing the mutation process, dimension-
by-dimension updating and local/global swtich probability adaptation. In the adapted
mutation process, local neighborhood is used rather than the whole population. In this
model, each vector uses the best vector of only a small neighborhood rather than the
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entire population to do the mutation. The neighborhood topology here is static and
determined by the collection of vector subscript indices. And the local neighborhood
model can be expressed in the following formula:

Xic+1 = Xia+a(Xnpest;,c — Xic) + B(Xpa — Xg.6) (6.6)

where X, pest; ¢ is the best solution for vector X; ¢, p, ¢ are solution indices in the neigh-
borhood of X; ¢4+1 and «, 8 are constants controlling the mutation.

Overall update evaluation strategy used in the standard FPA will affect the conver-
gence rate and quality of solutions [8]. Thus, a dimension-by-dimension updating is
proposed. Updating factors are applied in a dimension-by-dimension basis and only di-
mensions that cause enhancement in the fitness function are kept. In FPA, local search
and global search are controlled by a switching probability p € [0,1], and it is a constant
value. Authors of [8] suppose that a reasonable algorithm should do more global search
at the beginning of the searching process and global search should be less in the end.
Thus, dynamic switching probability strategy (DSPS) to adjust the proportion of two
kinds of searching processes was used. The switching probability is updated at each
iteration of the optimization as follows:

T—1
T

p=0.6—0.1x% (6.7)

where T is the number of iterations used and ¢ is the current iteration number.

6.3 Flower pollination algorithm: hybridizations

In the literature, respectively few hybridizations are performed between FPA algorithm
and other optimizers to enhance its performance in solving optimization tasks. This may
be due to its good stand-alone performance and as it is respectively a new algorithm.
Some of the motivations as mentioned in the literature are mentioned below.

e To improve the population diversity and to avoid the premature convergence of
FPA

e To minimize the number of function evaluations that is a main problem in FPA
e To avoid falling in local minima

Table 6.1 states samples of hybridizations mentioned in the literature.

6.3.1 Flower pollination algorithm hybrid with PSO

In a proposed hybrid model in [6] the standard particle swarm optimization was applied
until convergence, then the obtained solution became the initial solutions for the stan-
dard FPA that further enhances the obtained solutions. It is worth mentioning that the
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Table 6.1: FPA hybridizations and sample references

Hybrid with Target Sample Reference

Particle swarm optimization | To enhance premature [6]

(PSO) convergence

Harmony search (HS) To enhance premature [9]
convergence

used FPA is a chaotic one where the p parameter of the FPA is updated using a logistic
map according to the following equation:

Pr+1 = pn(l — pp) (6.8)

where p is set to 0.4, n is the iteration number, and p is the probability for switching
between local and global pollination.

6.3.2 FPA hybridized with chaos enhanced harmony search

In [9] FPA population is initialized with the population at the convergence of the chaos
enhance harmony search. Chaos logistic function is used to adapt the parameters of the
harmony search optimizer.

6.4 Real world applications of the flower pollination algorithm

This section presents sample applications for flower pollination optimization. FPA was
successfully applied in many disciplines in image processing domain, engineering, etc.
The main focus is on identifying the fitness function and the optimization variables
used in individual applications. Table 6.2 summarizes sample applications and their
corresponding objective(s).

In [10] an automated retinal blood vessel segmentation approach based on flower pol-
lination search algorithm (FPSA) was proposed. The FPA searches for the optimal
clustering of the given retinal image into compact clusters under some constraints. The
used clustering objective function was maximizing the clusters’ compactness.

Economic load dispatch (ELD) is an optimization task in power system operation.
ELD minimizing the fuel cost by optimally setting the real power outputs from genera-
tors is the objective of the ELD problem. In [11] FPA is used considering three different
cost functions for minimizing the fuel cost. A multi-objective version of the FPA is
proposed in [12].

FPA is used to solve the disc brake design problem. The objectives are to minimize
the overall mass and the braking time by choosing optimal design variables: the inner
radius r, outer radius R of the discs, the engaging force F', and the number of the friction



6.4 Real world applications of the flower pollination algorithm 127
Table 6.2: CS applications and the corresponding fitness function
Application Name Fitness Function Sample
References
Image segmentation Divide image pixels into clusters and | [10]
hence can be converted into bi-level image
Economic load dispatch | Minimize the fuel cost by optimally set- | [11]
(ELD) ting the real power outputs from genera-
tors is the objective of ELD problem
Disc brake design prob- | Minimize the overall mass and the braking | [12]
lem time by choosing optimal design variables
Optimal reactive power | The objective of the reactive power dis- | [13]
dispatch problem patch is to minimize the active power loss
in the transmission network
Antenna arrays direc- | Goal is to have high directivity, low side | [14]
tivity lobe level, and half-power beam width
Cluster head selection | Minimize power consumption and hence | [15]
in wireless sensor net- | increase network lifetime
work
Transformer design | Achieve design objectives, namely, eco- | [16]
problem nomically viable, has low weight, small
size, and good performance
Integer programming Find optimal solution of a given linear | [5]
equation set with linear constraints

surface s, under design constraints such as the torque, pressure, temperature, and length
of the brake.

A hybridization of flower pollination algorithm with chaotic harmony search algorithm
(HFPCHS) is proposed to solve an optimal reactive power dispatch problem in [13].
The objective of the reactive power dispatch is to minimize the active power loss in the
transmission network which can be mathematically described as follows:

f= Z gk(ViQ + va — 2V;Vjcos(6;5))
keNbr

(6.9)

where gi is the conductance of branch between nodes ¢ and j, and Nbr is the total
number of transmission lines in power systems.

In modern era antenna arrays are used for long distance communication. In wireless
application, antenna array requires high directivity, low side lobe level, and half-power
beam width. To aid the introduced geometry in order to produce a preconceived radia-
tion pattern, evolutionary algorithm inspired from the FPA method was introduced [14].
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The triangular prism, whose controlling factor is optimized by the flower pollination al-
gorithm, steers for a beam pattern having side lobe level, half-power beam width, and
directivity.

In the work in [15] FPA is used for multilevel routing in a wireless sensor network
(WSN) to maximize network lifetime. The objective for the FPA is to select a set of
cluster heads that are representative of the whole WSN and can provide data transmis-
sion to a base station. The selected cluster heads should be as close to all the WSN
nodes as possible to minimize power consumed to transmit data from the sensors to the
cluster head.

The aim of transformer design is to obtain the dimensions of all parts of the trans-
former in order to supply these data to the manufacturer. The transformer should be
designed in a manner such that it is economically viable, has low weight, small size, and
good performance, and at the same time it should satisfy all the constraints imposed
by international standards. The problem of transformer design optimization is based
on minimization or maximization of an objective function which is subjected to several
constraints. Among various objective functions the commonly used objective functions
are minimization of total mass, minimization of active part cost, minimization of main
material cost, minimization of manufacturing cost, minimization of total owning cost or
maximization of transformer rated power. The task of achieving the optimum balance
between transformer performance and cost is complicated, and it would be unrealistic
to expect that the optimum cost design would satisfy all the mechanical, thermal, and
electrical constraints. FPA is proposed in [16] to tackle the transformer design problem.

Integer programming is NP-hard problems that are commonly faced in many applica-
tions [5]. It refers to the class of combinatorial constrained optimization problems with
integer variables, where the objective function is a linear function and the constraints
are linear inequalities. The linear integer programming (LIP) optimization problem can
be stated in the following general form:

Maxcx (6.10)

where x € Z, is a vector of n integers and c is a constant vector sized n,
subject to
Ax <b (6.11)

where A is an m x n matrix and m is the number of constraints. A chaotic version of
FPA is used in [5] to tackle the discrete constrained optimization problem.

6.5 Flower pollination algorithm in feature selection

In this study FPA optimization is used to find an optimal feature subset in a wrapper-
based manner. In wrapper-based feature selection a given classifier is used to guide
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the feature selection process; hence an intelligent searching method is always favored to
minimize the time cost of search. The used classifier is the K-NN classifier [17] with K
= 5 in all the experiments. Thus, the used fitness function of this task is formulated as
|C-R]

Wrapper = o*yg(D) + 8 el

(6.12)
where yr(D) is the classification quality of condition attribute set R relative to decision
D, | R | is the number of a position or the length of selected feature subset, | C' | is the
total number of features, o and 8 are two parameters corresponding to the importance
of classification quality and subset length, a€[0,1], and 8 =1 — a.

Eighteen datasets from the UCI [18] repository are used for comparison; see Table 6.3.
The eighteen datasets were selected to have various numbers of attributes and instances
as representatives of various kinds of issues that the proposed technique will be tested
on. For each dataset, the instances are randomly divided into three sets, namely, train-
ing, validation, and testing sets in cross-validation manner.

Each optimization algorithm is run for M times to test convergence capability for an
optimizer. The used indicators used to compare the different algorithms are

o C(lassification average accuracy: This indicator describes how accurate the classi-
fier is given the selected feature set. The classification average accuracy can be

Table 6.3: Description of the datasets used in experiments

Dataset No. of Features | No. of Samples

Breastcancer 9 699
Exactly 13 1000
Exactly2 13 1000
lymphography 18 148
M-of-N 13 1000
Tic-tac-toe 9 958
Vote 16 300

Zoo 16 101
WineEW 13 178
spectEW 22 267
sonarEW 60 208

penglungEW 325 73
ionosphereEW 34 351
heartEW 13 270
congressEW 16 435
breastEW 30 569
krvskpEW 36 3196
waveformEW 40 5000
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formulated as

M N
AvgPerf = % Z % Z Match(C;, L) (6.13)
7j=1 =1
where M is the number of times to run the optimization algorithm to select feature
subset, N is the number of points in the test set, C; is the classifier output label
for data point i, L; is the reference class label for data point ¢, and Match is a
function that outputs 1 when the two input labels are the same and outputs 0
when they are different.

e Statistical mean is the average of solutions acquired from running an optimization
algorithm for different M running. Mean represents the average performance a
given stochastic optimizer can be formulated as

LM
Mean = i Zgi (6.14)
i=1
where M is the number of times to run the optimization algorithm to select feature
subset, and g% is the optimal solution resulted from run number .

e Std is a representation for the variation of the obtained best solutions found for
running a stochastic optimizer for M different runs. Std is used as an indicator for
optimizer stability and robustness, whereas Std is smaller. This means that the
optimizer converges always to the same solution while larger values for Std mean
many random results. Std is formulated as

Std = \/Ml_ 1 Z(gi — Mean)? (6.15)

where M is the number of times to run the optimization algorithm to select feature
subset, g is the optimal solution resulted from run number i, and Mean is the
average defined in equation 6.14.

e Average selection size represents the saverage size of the selected features to the
total number of features. This measure can be formulated as

M. ;
, 1 size(gl)
AV GSelectionSZ = — —2 6.16
election i ;1 o) (6.16)
where M is the number of times to run the optimization algorithm to select feature
subset, g¢ is the optimal solution resulted from run number i, size(x) is the number

of on values for the vector x, and D is the number of features in the original data set.

Table 6.4 outlines the average fitness value for the global best solution obtained by
the different optimizers for the different 20 runs. We can see that the obtained best
solution for almost all the datasets is minimum compare with the solutions obtained by
both PSO or GA, which proves the capability of FPA to find an optimal solution
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Table 6.4: Experiment results of mean fitness for the different methods

Dataset FPA GA PSO
breastcancer | 0.0258 | 0.0266 | 0.0266
breastEW 0.0295 | 0.0337 | 0.0337
congressEW | 0.0317 | 0.0414 | 0.0386
exactly 0.0533 | 0.3060 | 0.2521
exactly?2 0.2353 | 0.2293 | 0.2395
heartEW 0.1356 | 0.1533 | 0.1644
ionosphereEW | 0.0974 | 0.1111 | 0.1077
krvskpEW 0.0339 | 0.0504 | 0.0645
lymphography | 0.1429 | 0.1633 | 0.1673
m-of-n 0.0096 | 0.0868 | 0.0605
penglungEW | 0.2333 | 0.2667 | 0.2500
sonarEW 0.1246 | 0.1594 | 0.1565
spectEW 0.1124 | 0.1281 | 0.1303
tic-tac-toe 0.2250 | 0.2419 | 0.2319
vote 0.0480 | 0.0540 | 0.0760
waveformEW | 0.1990 | 0.2107 | 0.2147
WineEW 0.0000 | 0.0034 | 0.0136
700 0.0588 | 0.0831 | 0.1128
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Table 6.5: Mean classification performance for the different optimizers over the different

test data

Dataset FPA GA PSO
breastcancer | 0.9571 | 0.9571 | 0.9571
breastEW 0.9358 | 0.9326 | 0.9453
congressEW | 0.9366 | 0.9200 | 0.9324
exactly 0.9483 | 0.6715 | 0.7213
exactly2 0.7375 | 0.7489 | 0.7387
heartEW 0.8022 | 0.8089 | 0.8133
ionosphereEW | 0.8479 | 0.8308 | 0.8496
krvskpEW 0.9547 | 0.9335 | 0.9328
lymphography | 0.7280 | 0.7320 | 0.7200
m-of-n 0.9910 | 0.8955 | 0.9297
penglungEW | 0.6480 | 0.6480 | 0.6560
sonarEW 0.7400 | 0.6886 | 0.7171
spectEW 0.8270 | 0.7978 | 0.8112
tic-tac-toe 0.7461 | 0.7254 | 0.7342
vote 0.9260 | 0.9420 | 0.8960
waveformEW | 0.7821 | 0.7656 | 0.7658
WineEW 0.9533 | 0.9300 | 0.9333
700 0.8845 | 0.9023 | 0.9030
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Table 6.6: Standard deviation for the obtained best solution over the different runs
Dataset FPA GA PSO
breastcancer | 0.0068 | 0.0064 | 0.0056
breastEW 0.0127 | 0.0127 | 0.0142
congressEW | 0.0079 | 0.0195 | 0.0159
exactly 0.0318 | 0.0075 | 0.0985
exactly?2 0.0096 | 0.0155 | 0.0060
heartEW 0.0183 | 0.0165 | 0.0145
ionosphereEW | 0.0318 | 0.0373 | 0.0281
krvskpEW 0.0110 | 0.0118 | 0.0359
lymphography | 0.0250 | 0.0144 | 0.0171
m-of-n 0.0109 | 0.0549 | 0.0620
penglungEW | 0.0697 | 0.0812 | 0.1062
sonarEW 0.0364 | 0.0271 | 0.0536
spectEW 0.0178 | 0.0293 | 0.0128
tic-tac-toe 0.0227 | 0.0303 | 0.0252
vote 0.0179 | 0.0167 | 0.0230
waveformEW | 0.0050 | 0.0067 | 0.0066
WineEW 0.0000 | 0.0076 | 0.0142
Z00 0.0690 | 0.0479 | 0.0684

Table 6.5 outlines tha average performance of the selected features by the different
optimizers on the different datasets used. We can remark the advance of the features
selected by FPA on the test data over the PSO and GA.

Table 6.5 outlines the obtained standard deviation for the fitness of the best solution
obtained at the different 20 runs of every optimizer on every data sample. The obtained
standard deviation value is minimum for FPA over most of the datasets used in the
experiment, which proves the convergence capability of the algorithm that converges to
the same/similar solution regardless of the initial random solutions at the begining of
the optimization.

6.6 Chapter conclusion

This flower pollination chapter comes with deep technical discussion of the algorithm as
one of the modern meta-heuristic optimizers. As a newly invented optimizer it still lacks
of variants on the basic algorithm. Therefore, binary and chaotic, constrained versions
of FPA were the first algorithms to be added to the basic FPA. This chapter also reviews
the multi-objective flower pollination algorithm. A hybridization of flower pollination al-
gorithm with particle swarm and harmony search was discussed. Successful applications
of FPA were reviewed including from image segmentation, cluster head selection, and
integer programming to economic load dispatch, disc brake design, and optimal reactive
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power dispatch problem. In addition, we discussed in more detail how flower pollina-
tion algorithm deals with the problem of feature selection and a multi-objective fitness
function was designed to reflect the classification performance and number of selected
features. It was tested and evaluated on a set of UCI standard datasets and proved good
performance.
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7 Artificial Bee Colony Optimization

7.1 Artificial bee colony (ABC)

A numerical optimization algorithm based on foraging behavior of honey bees, called
artificial bee colony (or ABC), was proposed by Karaboga in [55].

7.1.1 Inspiration

Honey bees collect nectar from vast areas around their hive [2]. Bee colonies have been
observed to send bees to collect nectar from flower patches relative to the amount of
food available at each patch. Bees communicate with each other at the hive via a dance
that informs other bees in the hive as to the direction, distance, and quality rating of
food sources [2]. Scout bees are employed in locating patches of flowers, who then return
to the hive and inform other bees about the goodness and location of a food source via
a waggle dance. The scout returns to the flower patch with follower bees, onlookers. A
small number of scouts continue to search for new patches, while bees returning from
flower patches continue to communicate the quality of the patch.

Similar to other swarm-based optimization algorithms, it is important to establish a
proper balance between exploration and exploitation in swarm optimization approaches.
In the bee swarm optimization, different behaviors of the bees provide this possibility to
establish a powerful balancing mechanism between exploration and exploitation. This
property provides the opportunity to design more efficient algorithms in comparison with
other population-based algorithms such as PSO and GA [3]. Spontaneous searching of
the scout bees navigate them to explore new regions beyond that defined by employer
or onlooker bees. Patterns by which the foragers and onlookers control their movements
may provide good exploration approaches. For example, experienced foragers can use
historical information about location and quality of food source to adjust their movement
patterns in the search space.

7.1.2 Artificial bee colony algorithm

The ABC algorithm contains three types of bees: experienced forager, onlooker, and
scout bees which fly in a D-dimensional search space to find the optimum solution. The
bees are partitioned based on their fitness. The percentage of scout, forager, and expe-
rienced forager are usually determined manually.

135
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The bees with the best fitness value are called experienced foragers; the bees with the
worst fitness are called scoutbees, while the bees with mild fitness are called onlooker bees.

e Scout bees: In a bee colony, the food sources with poor qualities are abandoned
and replaced by the new food sources that are found by the scout bees. The scout
bees employ a random flying pattern to discover new food sources and replace the
abandoned one with the new food source. A scout bee walks randomly in the
search space and updates the position of the food sources if the new food source
has better quality than previously found food source by that bee. The scout bee
walks randomly in a region with radius ¢. The search region is centered at current
position of the scout bee. So the next position of a scout bee is updated using
equation 7.1.

?newaai) = ?old(ﬁ;i) + RW(T, ?old(ﬁ,i)) (7.1)

where X4 is the abandoned solution, X, is the new food source, and RW is a
random walk function that depends on the current position of the scout bee, and
the radius search 9.

e FExperienced bees: The experienced foragers use their historical information about
the food sources and their qualities. The information that is provided for an ex-
perienced forager bee is based on its own experience (or cognitive knowledge) and
the knowledge of other experienced forager bees in the swarm. The cognitive
knowledge is provided by experienced foragers. These bees memorize the decisions
that they have made so far and the success of their decisions. An experienced
forager ¢ remembers the position of the best food source, denoted as b(¢, i), and
its quality which is found by that bee at previous times. The position of the best
food source is replaced by the position of the new food source if it has better fitness.

The social knowledge is provided by sharing the nectar information of the food
sources which are found by experienced forager bees. All the experienced forager
bees select the best food source that is found by the elite bee as their interesting
area in the search space. The position of the best food source is represented as
the vector e(¢,0). The elite bee is selected as the bee with best fitness. Since
the relative importance of cognitive and social knowledge can vary from one cycle
to another, random parameters are associated with each component of position
update equation. So, the position of an experienced forager bee i is updated using
equation 7.2.

?new(& ’L) = ?Old(éa Z) + wbrb( b (57 Z) - ?old(fv Z)) + were(?(§7 0) - ?old(‘fa 7’))
(7.2)

where 7, and 7. are random variables of uniform distribution in range of [0, 1]
which model the stochastic nature of the flying pattern, the parameters w; and
We, Tespectively, control the importance of the best food source ever found by the
ith bee and the best food source which is found by the elite bee, and xyew (¥, 1)
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and x,4(¢, 1), respectively, represent the position vectors of the new and old food
sources which are found by the experienced forager i. The second component in
the right side of the position update equation is the cognitive knowledge, which
represents that an experienced forager is attracted toward the best position ever
found by that bee. The third component is the social knowledge, which represents
that an experienced forager is attracted towards the best position e(¢, 0), which is
found by the interesting elite bee.

e Onlooker bees: An onlooker bee uses the social knowledge provided by the expe-
rienced forager bees to adjust its moving trajectory the next time. At each cycle
of the optimization, the nectar information about food sources and their positions
(social knowledge) that are provided by the experienced forager bees are shared
in the dance area. After that, an onlooker bee evaluates the provided nectar in-
formation, employs a probabilistic approach to choose one of the food sources,
and follows the experienced forager bee which found the selected food source. In
other words, an onlooker bee i selects an experienced forager j from a set of ex-
perienced bees as its own interesting elite bee denoted as e(¢, ) using the roulette
wheel approach. The roulette wheel approach is used by onlooker bees for select-
ing their interesting elite bees. In this approach, as the quality of a food source is
increased, the probability of its selection is increased, too. The flying trajectory of
an onlooker bee 7 is controlled using equation 7.3.

T new (ki) = 2 oa(k, i) + were(€(€,1) — 2 oia(k, 1)) (7.3)

where e(¢,1) is the position vector of the interesting elite bee for onlooker bee i,
Xora(k, 1) and X, (k, ), respectively, represent the position of the old food source
and the new one that are selected by the onlooker bee ¢, and w,, 7. probabilistically
controls the attraction of the onlooker bee toward its interesting food source area.

The algorithm for ABC is outlined as shown in Algorithm 8.

7.2 ABC variants
7.2.1 Binary ABC

A chaotic fuzzy version of ABC was used in [18] for feature selection for classification
purposes. The K-nearest neighbor (K-NN) classifier has been used in the fitness function
to evaluate feature selection given a dataset. A binary version of the standard artificial
bee colony was proposed in [4] for feature selection purposes. Initially, a set of food source
positions (possible solutions) are randomly selected by the employed bees and their
nectar amounts (fitness functions) are determined. One of the key issues in designing a
successful algorithm for a feature selection problem is to find a suitable mapping between
feature selection problem solutions and food sources in optimization algorithm. In the
ABC optimization algorithm, the food sources are randomly generated. The solutions
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input : NScouts, N Experienced, NOnlooker A user-defined Number of
scout, experienced and onlooker bees.
n Number of bees.
ITter,,ax maximum allowed number of iterations.

output: Optimal bee position and its fitness

Generate initial population of n random positions
while Stopping criteria not met do
Evaluate Individual bee position given the fitness function.
Select the best position; Elitist, according to fitness values.
Divide the swarm according to fitness of best into Experienced, Onlooker,
Scout bees.
foreach ExperiencedBee; do
Update the positions of experienced bees using equation 7.2 and given the
current global best
foreach Onlooker Bee do
Select one of the experienced bees as an elite one using Roulette wheel
approach.
Update the position of onlooker bees using equation 7.3.
foreach ScoutBee do
Walk randomly around the search space Update the position of scout bees

according to equation 7.1.
end

Algorithm 8: Artificial bee colony optimization algorithm

should have values equal to 0 or to 1, where 0 denotes that the feature is not activated
and 1 denotes that the feature is activated. In the proposed algorithm, the food sources
are calculated exactly as in the initially proposed algorithm, and, then, the values are
transformed by using a sigmoid function.

1

sig(xi) = ————— 7.4
where z;; is the continuous position of bee 7 in dimension j, and then the food sources
are calculated by
1if rand < sig(z;;
vij = < i9r) (7.5)

0 otherwise

where ;7 is the continuous position of bee number ¢ in dimension j, y;; is the binary
transformed solution, and rand is a random number drawn from uniform distribution in
the range [0,1].

Afterward, the fitness of each food source is calculated and an employed bee is at-
tached to each food source. The employed bees return in the hive and perform the
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waggle dance in order to inform the other bees (onlooker bees) about the food sources
as in the continuous version of ABC.

Another variant of binary ABC was proposed in [5] that makes use of logical operators
rather than mathematical ones. The reposition of onlooker and employed bees is updated
as

V) = x! Plex] P X)) (7.6)

where V/, X7 X ,JC are the new, current, and random solutions in dimension j, @ is the

x/or logical operator, and ¢ is the not logical operator where the result of XZJ P X ,Z, is
inverted if ¢ > 0.5; otherwise it is not inverted.

7.2.2 Chaotic search ABC (CABC)

The local searching of ABC around the best solution is always limited and hence in [6]
the chaotic search method is employed to solve this problem. In the CABC, onlooker
bees apply chaotic sequence to enhance the local searching behavior and avoid being
trapped into local optimum. For onlooker bees, chaotic sequence is mapped into the
food source. Onlooker bees make a decision between the old food source and the new
food source according to a greedy selection strategy. The chaos system used in this
chapter is defined by equation 7.7.

Tiv1 = pxx;x (1 —x;) (7.7)

where p is a chaotic attractor. If p is equal to 4 then the above system enters into a
fully chaos state, and ;11 is the value of the variable x; in ¢ iteration. The new food
source will be calculated as in equation 7.8.

T=2Tmi+ R*(2xx; — 1) (7.8)

where x is the new food source; x,,; is the center of local search; selected bee position,
x;, is the chaos variable calculated as in equation 7.7; and R is the radius of the new
food source being generated.

7.2.3 Parallel ABC

A message passing-base parallel version of the ABC was proposed in [7] to enhance its
performance. The proposed work uses the static load program where they calculated
the amount of assigned tasks required on each node, for the amount of assigned tasks on
each node is proportional there to the computing capacity of the node. Thus, each node
expects to complete the task at the same time, thereby minimizing the program run time.

The parallelized version was formulated as follows:

Step 1 Initialize the runtime environment.
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Step 2 If the current process is the main process, get algorithms related to the initial
parameters such as population size n, and send the above-mentioned parameters
and split the sample to each slave process. Each process randomly generates the
initial nectar location constituted of n solutions.

Step 3 Employ bees of each process in accordance with the formulas in the standard
ABC search for new nectar, and calculate the position and moderation. If the new
location is better than the original location, then replace the original location.

Step 4 Each process compares the number of iteration cycles with mazxcycle, if cycle >
mazcycle, then records the optimal solution; otherwise go to Step 3.

Step 5 Each process sends the results from the slave processes to the main process and
then exits parallel environment and output the final best solution.

7.2.4 ABC for constrained problems

A version of the ABC for handling constrained optimization problems was proposed
in [8]. The proposed method uses dynamic tolerance for equality constraints. To make
easier for the ABC the satisfaction of equality constraints, a dynamic mechanism based
on the tolerance value € was employed. The tolerance value is defined as

lift=1

(—(HF)

e=qe it1<t<S$ (7.9)
0.0001if ¢ > S

where E(t) is the current number of evaluations performed, Ey is the total number of
evaluations to be computed, and S is the evaluation number when the user wants €
become 0.0001 and dec is calculated as

921034 = Ey

dec = ——— 1
ec 3 (7.10)

7.2.5 Levy flight ABC

Although ABC is better in setting the balance between exploration and exploitation
compared to other algorithms, it has several deficiencies [9]. While it can perform
better the global search by performing random searches around each food source and
covering the search space optimally, it encounters several problems in the exploitation
part, and gets stuck on local minimums particularly in complex multimodal functions [9].
If the original ABC algorithm fails to make improvement for a particular food source
as much as a predetermined limit value number, then the employed bee having that
source becomes a scout bee. Then this scout bee is randomly distributed within the
search space, boundaries of which are determined. In this case, scout bees select a
zone within the search space completely randomly, without using the results found until
that moment as a result of the iterations. It is a very low probability for this newly
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selected food source to be better than the global best found until that moment. Scout
bees find new food sources using Levy flight distribution with also the effect of global
best instead of selecting a random food source. In this way, it is sought to attain a
better solution using the best food source until that moment instead of the food source
that could not be improved. By performing enough random searches, exploration of
the ABC algorithm, which is already good in exploration, is improved. The scout bee
repositioning is performed according to

X" = X"+ o Levy(B) (7.11)

where « is the step size that should be related to the scales of the problem of interest
and is selected randomly in this work.

7.2.6 Elitist ABC (E-ABC)

It was noticed that the ABC converges faster to a promising region of the search space,
causing, sometimes, premature convergence. In order to improve its performance in con-
strained numerical search spaces, some modifications are added [8]. The expected effect
of all changes is to slow down convergence by slowing down the replacement process of
the food sources generated by the onlooker bees, modifying the operator of the employed
bee and giving the scout bee more chances to generate good solutions in the neighbor-
hood of the best solution so far. In the modified version the employed bees change their
positions according to

Vi =X+ 20X — XF) (7.12)
where Vg is the new position, ngj is the current position, X} ¢ is a randomly chosen

solution from the current population, and ¢; is a constant in the range [0,1].

Another modification is used in the onlooker bee repositioning. Each onlooker bee
generates a food source V7 near the best food source, so far X%, and the replacement
takes place only if the new food source V7 is better than that best solution in the
population. The modified operator is formulated as

Vi = X7+ 20i(X]; — XB)) (7.13)
Scout bees are repositioned according to the following equation:
Vi = X7+ ¢i(X[; = X5) + (L= i) (X, — X7)) (7.14)

where X g jisa randomly selected agent and X9, ;18 the current global best solution. The
aim of this modified operator is to increase the capabilities of the algorithm to sample
solutions within the range of search defined by the current population.

7.2.7 Interactive artificial bee colony (IABC)

The original design of the onlooker bees’ movement only considers the relation between
the employed bee, experienced bees, which is selected by the roulette wheel selection,
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and the one selected randomly [10]. Newtonian law of universal gravitation described
in equation 7.15 is used to the universal gravitations between the onlooker bee and the
selected employed bees.

Fip=Gx M2 (7.15)

a1

F15 denotes the gravitational force heads from the object 1 to the object 2, G is the
universal gravitational constant, m; and ms are the masses of the objects, ro; represents
the separation between the objects, and r3; denotes the unit vector r91. In the imple-
mentation the ml is the fitness of the experienced bee selected by the roulette wheel,
and mo represents the fitness function of the onlooker bee. The universal gravitation
in equation 7.15 is formed in the vector format. Hence, the quantities of it on different
dimensions can be considered independently. The updating of any of the onlooker bees

is calculated as
ot =0 + Fy. 107, — 0] (7.16)

where azgj is the position of the updated onlooker bee at iteration t, ij is the position of
onlooker bee at time ¢, 0,2 j is the position of the experienced bee, and Fj;; is calculated

as in equation 7.15.

7.2.8 Pareto-based ABC

A Pareto-based enhanced version of ABC was proposed in [14]. An external Pareto
archive set was introduced to record non-dominated solutions found so far. To balance
the exploration and exploitation capability of the algorithm, the scout bees in the hybrid
algorithm are divided into two parts. The scout bees in one part perform random search
in the predefined region while each scout bee in another part randomly select one non-
dominated solution from the Pareto archive set.

7.2.9 Fuzzy chaotic ABC

Chaotic ABC based on the fuzzy system was proposed in [18]. The fuzzy logic is used for
ambiguity removal while chaos is used for generating better diversity in the initial pop-
ulation of bee colony optimization algorithm. The chaos theory has been incorporated
for three main purposes:

e Increasing diversity in the initial population
e Finding the neighborhood around a food source
e Generating random numbers

The logistic chaos map was selected as the one for chaotic number generation.

The decision for assigning a bee to one of the three classes, namely, scout, onlooker,
and experience, is based on fuzzy membership function with a single parameter: fitness.
A Gaussian rule base with Gaussian membership function was manually set and used
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for bee classification. Further the standard ABC optimization based on the chaotic map
and fuzzy bee classification is used for the optimization.

7.2.10 Multi-objective ABC

A multi-objective version of the ABC optimizer (MO-ABC) was proposed in [21]. Multi-
objective optimization entails finding the best optimal solution from all numbers of ob-
jectives simultaneously. The multi-objective algorithm (MOABC) method was proposed
to find a set of non-dominated solutions that are known as the Pareto optimality. A
solution X; dominates another solution Xs if the following was satisfied:

Vie(1,2,...m} fi(X1) < fi(X2) (7.17)

Fje1,2,my filX1) < fi(X2) (7.18)

In the MO-ABC the non-dominated solutions are stored in an external archive. The
employed bee comes into the hive with a non-dominate solution to go into the archive.
After all employed bees finish their search processes, they insert all new non-dominated
solutions into archive. Onlooker bees will select an archive member proportional to
the quality of food source with the roulette wheel selection, and pick the leader and
update it. When all the different types of bees (i.e., employed, onlooker, and scouts) are
evaluated, the archive is filled with the non-dominated bees. The content of the external
archive has a bounded size. If the archive is full, the archive gets updated at the end of
each iteration.

7.2.11 JA-ABC

Despite its excellent performance, ABC suffers from slow convergence speed and prema-
ture convergence tendency. To enhance the convergence speed of the standard ABC [12],
a ratio of all possible solutions, which have the lowest fitness value, are to be updated.
The proposed modification is to update poor possible solutions using mutation around
the best solution; see equation 7.19.

Zi; = best' + ¢(y), — yi) (7.19)

where ij is the new solution, best; is the best solution found ever, y, and y; are two
random agents drawn from the bee agents, and ¢ is a random number drawn from
uniform distribution in the range [-1,1].

7.3 ABC hybridizations

In the literature many hybridizations are performed between ABC algorithm and other
optimizers to enhance its performance in solving optimization tasks. Some of the moti-
vation as mentioned in the literature are mentioned below.
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e To improve the population diversity and to avoid the premature convergence of

FFA

e To minimize the number of function evaluations that are a main problem in FFA

Artificial Bee Colony Optimization

e To avoid falling in local minima

Table 7.1 states samples of hybridizations mentioned in the literature.

Table 7.1: ABC hybridizations and sample references

Hybrid with Target Sample
Reference
Least squares method | Enhances the convergence speed by employing | [19]
(LS) LS to optimize linear portions of the search
space
Differential evolution | Avoids premature convergence of DE and stag- | [11]
(DE) nation and to avoid convergence to a local min-
ima
Quantum  evolution | Improves the convergence speed and preserve | [13]
(QE) the instructive information; also improves the
convergence speed as well as increases the di-
versity of the population
Particle swarm opti- | Enhances the convergence rate of the hybrid | [15]
mization (PSO) algorithm while the explorative power of ABC
enhances space searching
Levenberq- Exploits the fast convergence of Levenberqg- | [17]
Marquardt Marquardt to initialize ABC to near optimal
solution
Harmony search (HS) | Tolerates the premature and/or false conver- | [20]
gence, slow convergence of harmony search es-
pecially over multi-modal fitness landscape
Ant colony optimiza- | Exploits the simplicity and robustness of ACO. | [21]

tion (ACO)

The search capability of the ABC algorithm is
used for escaping from the local minimum so-
lution. The hybrid algorithm is able to quickly
find the correct global optimum. The perfor-
mance of algorithm is improved by dividing the
optimization problem into continuous and dis-
crete category stages; thus, it decreases the size
of the search space. The hybrid algorithm is
able to overcome the drawback of classical ant
colony algorithm which is not suitable for con-
tinuous optimizations
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7.3.1 Hybrid ABC and least squares method

The proposed approach based on hybrid ABC optimization and weighted least squares
(LS) method was proposed in [19]. In some search spaces such as Takagi-Sugeno (TS)-
type model, part of the unknowns is linearly related to the output fitness and another
variable set is nonlinearly related to the fitness. In the work [19] ABC optimization
was used to optimize a set of nonlinearly related unknowns and given the ABC guess
an LS method is used to find the exact values of the rest of the variables and so on.
Thus the ABC is used for the nonlinear portions while LS is used to calculate the
nonlinear portions of the optimization problem and hence ensures high performance in
both accuracy and performance.

7.3.2 Hybrid differential artificial bee colony algorithm

In [11] a modified version of ABC is presented. In some problems, differential evolu-
tion (DE) may stop proceeding toward the global optimum: stagnation. DE also suffers
from premature convergence, where the population converges to some local optima of a
multimodal objective function, losing its diversity. Like other evolutionary computing
algorithms, the performance of DE deteriorates with the growth of the dimensionality
of the search space as well. The advantage of nature-inspired heuristic global search
algorithms is less likely to be entrapped in local optima, but the convergence rate will
slow down and the computational complexity is high at a later stage. The main goal
in [11] is to make hybrid version of the ABC with DE to combine their advantages.

Pipelining-type hybrid method is employed in this case because of its advantages. In
the pipelining hybridization, the optimization process is applied to each individual in
the population, followed by further improvement using DE search. According to this
method every generation, after the ABC is applied to all individuals in the population,
select n best differential vectors from the current population based on the fitness values
to generate the initial population required for local search via DE. This search continues
until it reaches maximum number of generations or it satisfies predefined criteria. In
brief the mutation, crossover, and selection operators are applied on each agent from the
ABC population in each iteration.

7.3.3 Quantum evolutionary ABC

The information in a quantum chromosome is more than that in a classical chromosome
[13]; the population size is decreased and the diversity is improved. In the quantum
evolution (QE) the mutation operation is not totally random but directed by some rules
to make the next generation better and increase the speed of convergence. The crossover
operation can avoid premature convergence and stagnation problems. The quantum
evolution algorithm (QEA) still has scope for improvement. QEA could not always
reach the best solution of the problem meaning that it has a considerable probability of
premature convergence. To make use of the advantages and tolerate for the disadvantages
the hybrid QDE and ABC are proposed in [13]. The main change in the ABC is in the
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employer bee updating. The updating equation is as mentioned in the experience bee
updating and followed by steps of quantum crossover and quantum mutation. Single
point crossover hired from QDE is used as well as the quantum rotation. In the single
point crossover process, a roulette selection operation is used to choose two quantum
chromosomes from the parent generations, and then the child generation is produced by
crossover. The result of crossover and the original solution are compared and the one
with best fitness is kept. This operation is mainly to improve the convergence speed
and preserve the instructive information. The selected solution is used as the mutation
director and implements the quantum mutation operation. This operation is also to
improve the convergence speed as well as to increase the diversity of the population.
After all the operations, finally the employed bee selects the better population as the
new source position to remember.

7.3.4 ABC hybrid with PSO

A hybrid version of ABC with particle swarm optimization (PSO) was proposed in
[15]. The algorithm starts by building random initial personal best positions for par-
ticles/bees. Then in the main loop it improves the personal bests using successive ap-
plication of PSO followed by ABC updating. When the main loop ends, the algorithm
scans the latest personal best positions and returns the best of them as the global best.
The velocity concept employed by PSO enhances the convergence rate of the proposed
hybrid algorithm while the explorative power of ABC enhances space searching.

7.3.5 ABC hybrid with Levenberq—Marquardt

A hybridization between ABC and Levenberq-Marquardt has been proposed in [17] for
optimal searching for neural network parameters. The Levenberq-Marquardt proves high
speed was exploited to initialize the ABC population which further used ABC principles
to reach an optimal solution. The exploration as well as exploitation capabilities of ABC
were well employed in conjunction with the fast convergence capabilities of Levenberq-
Marquardt to reach optimal fast solutions.

7.3.6 ABC hybrid with harmony search

Experiments with the harmony search (HS) meta-heuristics over the standard numerical
benchmarks suggest that the algorithm does suffer from the problem of premature and/or
false convergence, slow convergence especially over multi-modal fitness landscape [20].
The harmony memory plays a key role in the HS algorithm. To improve the convergence
of the HS, ABC is used to optimize the harmony memory.

The ABC is applied to optimize harmony memory as a learning mechanism. The
harmony memory has considered food sources, and is explored and exploited by the
employed bees, the onlooker bees, and the scout bees. Then, a new harmony vector is
generated [20].
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7.3.7 ABC hybrid with ant colony optimization(ACO)

Ant colony optimization (ACO) has a population-based search capability as well as sim-
plicity and robustness in different optimization tasks. ACO used a heuristic technique to
produce a good initial solution and determine a good search direction depending on the
experience. It is worthy of note that this strategy often helps ACO find a good solution
and it causes ACO to be trapped in local minima.

To overcome these disadvantages and integrate the merits of both ACO and ABC,
the hybrid ACOABC algorithm is introduced in [21]. Hybridizing ACO with ABC al-
gorithm takes advantage of ACO and ABC by dividing the optimization problem into
two parts. In each iteration, ant builds candidate solutions that are further optimized
by ABC. The proposed algorithm has several characteristic features. First, the search
capability of the ABC algorithm is used for escaping from the local minimum solution.
This causes ABC to generally affect the search process since it is able to quickly find the
correct global optimum. Second, the performance of algorithm is improved by dividing
the optimization problem into continuous and discrete category stages; thus, it decreases
the size of the search space. Finally, it is able to overcome the drawback of classical ant
colony algorithm which is not suitable for continuous optimizations [21].

To avoid falling in a local minima, ACO is enhanced using the local searching power of
FFA [22]. The pheromone generated by the ACO is converted into candidate solutions
using equation 7.20.

[ ()] for all x;; , x;; € allowed
pfj] (t) — ZlGallowedk [Til(t)]a . J 0 J k (720)
0, otherwise

where azfj (t) is probability of that option, z;; is chosen by ant k for variable i at time ¢,

and allowedy, is the set of the candidate values contained in the group .

The candidate ACO solutions are used to initialize the FFA for further enhancement.
The random component in the standard FFA updating equation is adapted as follows:

Oyl = Oéttgl_ﬁ (721)

where ¢ is iteration number, T'¢ maximum number of iterations, and 6 € [0,1] is the
randomness reduction constant.

7.4 Artificial bee colony in real world applications

This section reviews some success applications that used ABC. FFA was successfully
applied in many disciplines in decision support and decision making, in the engineering
field, computer science, communication, image processing, and enhancement. The wide
range of ABC applications may be interpreted by its capability to quickly converge to
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optimal solution thanks to the balance between exploration and exploitation. Our main
focus in this section is to highlight on identifying the fitness function and the optimization
variables used in individual applications. Table 7.2 summarizes sample applications of
ABC and their corresponding objective(s).

ABCs have been employed to solve several problems in image processing areas. ABCs
are used in [23] to discriminate between noisy and normal regions. A noise probability
threshold is required to be estimated using ABC. ABC optimization is used before per-
forming the FCM clustering algorithm.

The work in [24] presents an automatic image enhancement method based on ABC
algorithm. In this method, ABC algorithm is applied to find the optimum parameters
of a transformation function, which is used in the enhancement by utilizing the local
and global information of the image. In order to solve the optimization problem by
ABC algorithm, an objective criterion in terms of the entropy and edge information
is introduced to measure the image quality to make the enhancement as an automatic
process. Several images are utilized in experiments to make a comparison with other
enhancement methods, which are genetic algorithm-based and particle swarm optimiza-
tion algorithm-based image enhancement methods.

In [25], a new approach to automatic image enhancement using ABC is implemented
by specifying intensity of the edge pixels and also earlier reported PSO results were
used. Further comparativity analysis is performed between ABC and PSO results. The
obtained results indicate that the proposed ABC yields better results in terms of both
the maximization of number of pixels in the edges and pick signal-to-noise ratio (PSNR).

ABC algorithm is used in medical image retrieval [26]. Where ABC is used to op-
timize multi-feature similarity, score fusion allows for reasonable retrieval rate with less
retrieval time and high classification accuracy.

The work in [27] proposed a hybrid swarm optimization technique to outperform the
individual performance of ABC and PSO. The experimentation was performed in the
content-based image retrieval (CBIR) to evaluate the performance of the proposed hy-
brid algorithm, and the hybrid one proved superior performance.

ABC is used in [28] in medical image registration. ABC can obtain a set of op-
timized parameters for registration with the largest similarity measure. By applying
the proposed ABC method to medical images, the experimental results showed that
the method achieved better accuracy in registration than the conventional optimization
methods that are commonly used in medical image registration. ABC is also applied for
image registration in [29] and is compared to PSO and proves good performance.

ABC algorithm is used to improve the efficiency of FCM on abnormal brain segmen-
tation [30]. ABC is used to minimize the fuzzy c-means objective function to achieve
better segmentation results.



7.4 Artificial bee colony in real world applications

Table 7.2: ABC applications and the corresponding fitness function

149

Application Name Fitness function Sample
References

Image Enhancement Discriminate noisy and noise free regions [23]

Image Enhancement Intensity transformation function parameter | [24]
identification

Image Enhancement Find Edge pixels with maximum signal to noise | [25]
ratio

Medical Image Retrieval | Optimize multi-feature similarity score fusion | [26,27]
to allow for reasonable retrieval rate with less
retrieval time and high classification accuracy

Image Registration Find a set of optimized registration parameters | [28,29]
with the largest similarity measure

Image  Segmentation- | Minimize the fuzzy c-means objective function | [30,31]

brain images

Medical image segmen- | Find Gaussian mixture model parameter max- | [32]

tation imizing data fit

Image Segmentation Optimize Otsu’s objective function [33]

Image Segmentation Maximize Support vector machine performance | [34]

Brain tissue segmenta- | Multi-threshold selection to maximize intra- | [23,35]

tion cluster homogeneity

Image Segmentation Maximize Tsallis entropy [36]

Remote sensing image | Maximize gray level entropy [37]

segmentation

Multi-level thresholding | To produce the best compressed image in terms | [39-42,51]
of both compression ratio and quality

Multi-temporal — image | Maximize entropy [43]

fusion

Multi-temporal — image | Maximize the similarity score based on color | [44]

fusion and texture features

Shape Matching Optimize edge potential function [32,45,46]

Solve the travelling sales | Select route with minimum cost [47]

man problems

Capacitated vehicle | Find best route for a set of vehicles with limited | [48]

routing problem capacity

Job scheduling To minimize overall work load, completion time | [14]
and machine work load

Garlic Expert Advisory | Identify the diseases and disease management | [54]

System in garlic crop production to advise the farmers

subway routes selection | Aims to maximize the population covered by | [49]
subway routes

Multiple sequence align- | Maximize sequence correlation [50]

ment

Neural network training | Find neural weights and biases that output | [51-53,55—
minimum square error 57,59-61]

Fuzzy system training Estimation of membership function parameters | [16,19]
minimizing total mean squares error

Feature selection Rough set classification performance [62]
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Table 7.2: ABC applications and the corresponding fitness function (continued)

Application Fitness function Sample
Name References
Initialize  Fuzzy | Clustering using fuzzy C-means [51,63]
system training
Train least | Find optimal neural weights maximizing | [60]
squares support | neural performance
vector machine
Power system sta- | Improve the system performance and en- | [64]
bilizer hance power system stability
Feature Selection | Maximizing the performance of rough set | [62,65,66]
Data clustering Optimal partition of data point with guid- | [67]
ance of Debs rules
PID controller de- | Goal is to improve the Automatic Voltage | [6]
sign Regulator system step response character-
istics
Wire electri- | Modelling and optimization of process pa- | [6§]
cal discharge | rameters of wire electrical discharge ma-
machining chining
capacitor place- | The objective is improving the voltage | [72]
ment in distribu- | profile and reducing power loss
tion systems
automatic voltage | Improving the performance of the con- | [73]
regulator (AVR) | troller
System
Deployment of | Achieve better performance and much | [75-77]
wireless ~ sensor | coverage
network

ABC is used in [32] for selecting gaussian mixture model parameters of the histogram
of medical image. ABC optimization shows fast convergence and low sensitivity to ini-
tial point selection than expectation the maximization method which is common. A
combination of the 2D Otsu method with a modified ABC algorithm (called adaptive
ABC or AABC) to reduce the response and computational time for image segmentation
of pulmonary parenchyma is proposed [33].

Multisliced CT images are segmented using ABC algorithm. CT segmentation can be
modeled as a nonlinear multi-modal global optimization problem. In [34] SVM along
with ABC are used for segmenting tumor from a CT/MRI image. It reduces the re-
sponse time and computational time. It is efficient in terms of performance, speed, and
avoidance trapping in local minima points. In this chapter the ABC algorithm classified
all pixels into two groups based on the noise probability; the two groups are Normal and
Noisy.
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Fuzzy inference strategy was embedded into the ABC system to construct a segmenta-
tion system named fuzzy artificial bee colony system (FABCS) in [31]. They set a local
circular area with a variable radius by using a cooling schedule for each bee to search
suitable cluster centers with the FCM algorithm in an image. The cluster centers can
be calculated by each bee with the membership states in the FABCS and then updated
iteratively for all bees in order to find near-global solution in MR image segmentation.

Study in [23] shows the implementation of artificial bee algorithm for MRI fuzzy
segmentation of brain tissue, where ABC is used for multi-threshold segmentation of
images. Synthetic MRI data are segmented using ABC in [35] and compared with other
well-known segmentation methods such as k-means clustering and PSO optimization.
The experimental results have demonstrated that ABC-based clustering algorithm gives
more accurate outcomes than the other clustering methods.

The work in [36] uses the ABC approach since execution of an exhaustive algorithm
would be too time-consuming for threshold selection. The experiments demonstrate that
(1) the Tsallis entropy is superior to traditional maximum entropy thresholding, maxi-
mum between class variance thresholding, and minimum cross entropy thresholding; (2)
the ABC is more rapid than either genetic algorithm or particle swarm optimization.

A system for segmentation of synthetic aperture radar (SAR) images is presented
in [37]. Due to the presence of speckle noise, segmentation of SAR images is still a chal-
lenging problem. A fast SAR image segmentation method based on ABC algorithm is
proposed in [37]. In this method, threshold estimation is regarded as a search procedure
that searches for an appropriate value in a continuous gray-scale interval. Hence, ABC
algorithm is introduced to search for the optimal threshold. In order to get an efficient
fitness function for ABC algorithm, after the definition of gray number in Grey theory,
the original image is decomposed by discrete wavelet transform. Then a filtered image
is produced by performing a noise reduction to the approximation image reconstructed
with low-frequency coefficients. At the same time, a gradient image is reconstructed
with some high-frequency coefficients. A co-occurrence matrix based on the filtered im-
age and the gradient image is therefore constructed, and an improved two-dimensional
gray entropy is defined to serve as the fitness function of ABC algorithm.

A global multilevel thresholding method for image segmentation which is based on
ABC approach was proposed in [51]. ABC was used to determine the thresholds to pro-
duce the best compressed image in terms of both compression ratio and quality [39,40].
A new multilevel maximum entropy thresholding algorithm based on the technology of
ABC and the experimental results demonstrated that the proposed algorithm can search
for multiple thresholds that are very close to the optimum ones examined by the exhaus-
tive search method [41]. In [43] ABC is used for optimal fusion of multitemporal images.
The work proposed makes use of entropy as a fitness function for the fused image and
the input images are images acquired at two different dates.
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ABC was used in [44] for multitemporal image fusion. ABC algorithm is used to fuse
a similarity score based on color and texture features of an image thereby achieving very
high classification accuracy and minimum retrieval time.

ABC has been applied to the object recognition in the images to find a pattern or
reference image (template) of an object [45]. ABC employed for the problem of hand-
written digits recognition where it has been used to train a classifier [46]. A novel
shape-matching approach to visual target recognition for aircraft at low altitude where
ABC is employed to optimize edge potential function was used for automatic detection
of multiple circular shapes on images that considers the overall process as a multimodal
optimization problem [32].

The paper [47] makes use of ABC to solve the standard traveling salesman (TSP)
problem. In TSP a number of cities have to be visited by a salesman who must return to
the same city with the solution of shorter routes. A salesman travels around a given set
of cities, and return to the beginning of the path (from where he started), covering the
smallest total distance. The traveling sequence has to comply with a constraint, that is,
the salesman will start at a city, visit each city exactly once, and back to the start city.
The resulting route should incur a minimum cost. Thus, the fitness function is the cost
of the salesman’s path.

The paper [48] introduces an ABC heuristic for solving the capacitated vehicle rout-
ing problem which is an NP-hard problem. The capacitated vehicle routing problem
(CVRP) is defined on a complete undirected graph G = (V,E), where V = 0,1,..., n is
the vertex set and E = (i,j ): i, j € V, 1] is the edge set. Vertices 1,...,n represent
customers; each customer i is associated with a nonnegative demand d; and a nonneg-
ative service time s;. Vertex 0 represents the depot at which a fleet of m homogeneous
vehicles of capacity @ is based. The fleet size is treated as a decision variable. Each edge
(i, j) is associated with a nonnegative traveling cost or travel time Cij. The CVRP is to
determine m vehicle routes such that (a) every route starts and ends at the depot, (b)
every customer is visited exactly once, (c) the total demand of any vehicle route does
not exceed Q, (d) the total cost of all vehicle routes is minimized, In some cases, the
CVRP also imposes duration constraints where the duration of any vehicle route must
not exceed a given bound.

Flexible job scheduling problem (FJSP) considers n jobs to be processed on m ma-
chines as in the standard job scheduling problem [14]. There are some assumptions and
constraints that are common in the FJSP such as

1. Each job has a predefined number of operations and a known determined sequence
among these operations.

2. Each machine and each operation are ready at zero time.
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3. Each machine can only process one operation at a time, and each job must be
processed on one machine at a given time.

4. Each machine can process a new operation only after completing the predecessor
operation.

5. Each operation can be operated on a given candidate machine set instead of only
one machine like in JSP.

6. Given an operation O;; and the selected machine My, the processing time p;j is
also fixed.

The common objectives for this problem are
e To minimize maximum completion time
e To minimize total work load
e To minimize critical machine work load

In [14] a pareto-based ABC was used to find the optimum for the FJSP with the
above-mentioned constraints, assumptions, and objectives.

A new “Garlic Expert Advisory System” based on ABC, aims to identify the diseases
and disease management in garlic crop production to advise the farmers in the villages
to obtain standardized yields [54].

A method based on ABC is proposed to locate the subway routes that aim to maximize
the population covered by subway routes [49]. Multiple sequence alignment (MSA) is an
important method for biological sequence analysis and involves more than two biological
sequences, generally of the protein, DNA, or RNA type. This method is computationally
difficult and is classified as an NP-hard problem.

A parallel version of ABC is used in the optimization and investigation of multiple
alignments of biological sequences, which is highly scalable and locality-aware [50]. The
method is iterative and the concept is of algorithmic and architectural space correlation.

ABC was used in [51] to train a classifier of forward neural network to classify MR
brain images. The paper [52] presents an intelligent computer-assisted mass classifica-
tion method for breast DCE-MR images. It uses the ABC algorithm to optimize the
neural network performing benign-malignant classification on the region of interest. A
three-layer neural network with seven features was used for classifying the region of
interest as benign or malignant. The network was trained and tested using the ABC
algorithm and was found to yield a good diagnostic accuracy.

In [53], case-based reasoning (CBR) is used to describe a physician’s expertise, in-
tuition, and experience when treating patients with well-differentiated thyroid cancer.
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Various clinical parameters (the patient’s diagnosis, the patient’s age, the tumor size,
the existence of metastases in the lymph nodes, and the existence of distant metastases)
influence a physician’s decision-making in dose planning. The weights (importance) of
these parameters are determined here with the bee colony optimization (BCO) meta-
heuristic.

In [55] authors employed ABC for training feed-forward neural networks, i.e., search-
ing optimal weight set. ABC applied ABC on training feed-forward neural networks to
classify different datasets that are widely used in the machine learning community [56].
ABC employed to train a multi-layer perception neural network that is used for the clas-
sification of the acoustic emission signal to their respective source [57]. A comparison
of RBF neural network training algorithms was made for inertial sensor-based terrain
classification [59]. ABC used to train neural network for bottom hole pressure prediction
in under-balanced drilling [58], an integrated system where wavelet transforms and re-
current neural networks based on ABC (called ABC-RNN) are combined for stock price
forecasting [60]. An ABC-based methodology maximizes its accuracy and minimizes the
number of connections of an artificial neural network by evolving at the same time the
synaptic weights, the artificial neural networks architecture, and the transfer functions
of each neuron [61].

A hybrid Levenberq-Marquardt and ABC optimizer has been used in [17] for training
of a feed-forward neural network for classification purposes.

Fuzzy logic is conceived as a better method for sorting and handling data; also it has
proven to be an excellent choice for many control system applications due to mimicking
human logic. It uses an imprecise but very descriptive language to deal with input data,
more like a human operator [16]. The key component of a fuzzy system is the member-
ship function for defining the fuzzy sets and the rule base for producing the output. A
fuzzy membership parameter selection is a key factor for the performance of the fuzzy
system. ABC has been used in [16] for selection of membership parameters for construc-
tion of a fuzzy system.

A hybrid version of least-squares estimation and ABC has been used in [19] for esti-
mation of fuzzy model parameters. The parameters to be optimized are

e The first part deals with the rule selection and the optimization of the number of
rules.

e The second part deals with the optimization of rule premise fuzzy sets.
e The third part deals with the optimization of the rule-consequent parameters.

A new methodology was used for automatically extracting a convenient version of T-S
fuzzy models from data using a novel clustering technique, called variable string length
ABC algorithm based fuzzy c-means clustering approach [51]. Studying the risk of dams



7.4 Artificial bee colony in real world applications 155

in the perspective of clustering analysis and to improve the performance of fuzzy c-means
clustering, they proposed an ABC with fuzzy c-means [63].

A concept for machine learning integrates a grid scheme into a least-squares support
vector machine (called GS-LSSVM) for classification problems, where ABC is used to
optimize parameters for LSSVM learning [60].

The work in [62] proposes a new feature selection method based on rough set the-
ory hybrid with BCO in an attempt to combat this. This proposed work is applied in
the medical domain to find the minimal reducts and experimentally compared with the
quick reduct, entropy-based reduct, and other hybrid rough set methods such as genetic
algorithm (GA), ant colony optimization, and particle swarm optimization (PSO).

An improved rough set based attribute reduction (RSAR), namely, independent RSAR
hybrid with ABC algorithm, finds the subset of attributes independently based on deci-
sion attributes (classes) at first and then finds the final reduct [65]. The use of the ABC
algorithm as a new tool for data mining, particularly in classification tasks, indicated
that ABC algorithm is competitive, not only with other evolutionary techniques but
also to industry standard algorithms such as self-organizing maps (SOM), naive bayes,
classification tree, and nearest neighbor (kNN) [66].

An ABC clustering algorithm optimally partitions n objects into k clusters where
Debs rules are used to direct the search direction of each candidate [67].

A modified version of the ABC has been used in [6] for properly tuning the parame-
ters of PID controller, because many industrial plants are often burdened with problems
such as, high orders, time delays; and nonlinearities and the fact that the mathematical
model of plant is difficult to determine.

ABC has found several applications in mechanical and civil engineering areas. ABC
employed for modeling and optimization of process parameters of wire electrical dis-
charge machining [68]. A modification on the original ABC algorithm was to opti-
mize the equilibrium of confined plasma in a nuclear fusion device and its adaption
to a grid computing environment [69]. An ABC algorithm was introduced for struc-
tural optimization of planar and space trusses under stress, displacement, and buckling
constraints [70].

ABC was used by some researchers to solve the optimization problems encountered in
electrical engineering. A new method based on ABC algorithm applies for determining
the sectionalizing switch to be operated in order to solve the distribution system loss
minimization problem [68]. An ABC algorithm was used for simultaneous coordinated
tuning of two power system stabilizers to damp the power system inter-area oscilla-
tions [71].



156 Artificial Bee Colony Optimization

ABC applied for optimal control of flexible smart structures bonded with piezoelectric
actuators and sensor and the optimal locations of actuators/sensors and feedback gain
are obtained by maximizing the energy dissipated by the feedback control system [68].

The optimal tuning for the parameters of the power system stabilizer, can improve the
system damping performance within a wide region of operation conditions to enhance
power system stability using ABC [64].

A new method applies ABC for capacitor placement in distribution systems with an
objective of improving the voltage profile and reduction of power loss [72].

A study on comparative performance analysis of ABC for automatic voltage regulator
(AVR) systems showed that the ABC algorithm can be successfully applied to the AVR
system for improving the performance of the controller [73].

A few applications of ABC related to wireless sensor networks were found in the
literature. The use of ABC for the sensor deployment problem which is modeled as a
data clustering problem was proposed in [75]. ABC-based dynamic deployment approach
for stationary and mobile sensor networks was to achieve better performance by trying to
increase the coverage area of the network [76]. ABC applied to the dynamic deployment
of mobile sensor networks to gain better performance by trying to increase the coverage
area of the network [77].

7.4.1 Artificial bee colony in retinal vessel segmentation

Accurate segmentation of retinal blood vessels is an important task in computer- aided
diagnosis and surgery planning of retinopathy. Despite the high resolution of pho-
tographs in fundus photography, the contrast between the blood vessels and retinal
background tends to be poor. Furthermore, pathological changes of the retinal vessel
tree can be observed in a variety of diseases such as diabetes and glaucoma. Vessels
with small diameters are much liable to effects of diseases and imaging problems. In this
case study, an automated retinal blood vessel segmentation approach based on ABC
optimization is discussed.

The algorithm starts with ABC optimization with the objective of finding C' clus-
ter centers that minimize the inter-cluster fuzzy compactness function. The objective
function for the ABC optimization is as equation 7.22.

C n

minJ (M, vy, ve, ...v Z (i) (dige ) (7.22)
i=1 k=1

where z3, = kth data point (possibly m dimensional vector) and (k = 1,2,...C),
v; = the center of the ith fuzzy cluster (i = 1,2, ...c), and dip, = |2k —vill2 = X272, (2 —

1
vij)?]z.
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(a) Normal retinal image (b) Abnormal retinal image

Figure 7.1: DRIVE retinal images: samples for normal and abnormal

The limiting constraints for the variables vy, va, ..., v are € [0255]. In ABC searches
for C clusters, each represented by the cluster mean, centroid, and hence commonly the
search space is of 2D when searching for two clusters, each represented by a single gray
level.

Two retinal images databases were used for assessment of the proposed algorithm
performance. Both databases are available for free to scientific research on retinal vas-
culature and they are the most used benchmark databases; namely, DRIVE and STARE.
The DRIVE (Digital Retinal Images for Vessel Extraction) [78] is a publicly available
database, consisting of a total of 40 color fundus photographs. The photographs were
obtained from a diabetic retinopathy screening program in the Netherlands. The screen-
ing population consisted of 453 subjects between 31 and 86 years of age. Each image
has been JPEG compressed, which is common practice in screening programs. Of the
40 images in the database, 7 contain pathology, namely, exudates, hemorrhages, and
pigment epithelium changes.

Figure 7.1 shows examples of normal and abnormal images from DRIVE database.
We can remark about the clear confusion between the vessels and the background, es-
pecially for images with abnormalities; also we can remark about the dark and white
spots, which make the brightness inhomogeneous all over the image.

The second database is the structured analysis of the retina (STARE) originally col-
lected by Hoover et al. [79]. It consists of a total of twenty eye fundus color images where
ten of them contain pathology. The images were captured using a TopCon TRV-50 fun-
dus camera with FOV equal to thirty-five degrees. Each image resolution is 700*605
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(a) Normal retinal image (b) Abnormal retinal image

Figure 7.2: STARE retinal images: samples for normal and abnormal

pixels with eight bits per color channel and it is available in PPM format. The set of
twenty images are not divided into separated training and testing sets. The circular FOV
binary mask for each image is not available, so we created it by hand for each image using
MATLAB function, which creates an interactive draggable and resizable polygon on the
image to specify FOV. The database contains two sets of manual segmentations made
by two different ophthalmologists, where the second ophthalmologist’s segmentation is
accepted as the ground-truth for performance assessment. Figure 7.2 shows examples of
normal and abnormal images from STARE database. In the STARE database we can
see the same difficulties as the DRIVE dataset, but the STARE contains more abnormal
images.

Three measures are calculated for evaluating the segmentation performance of pro-
posed novel algorithm: sensitivity (Se), specificity (Sp), and accuracy (Acc). These
measures are computed individually for each image and on average for the whole test
images set.

Se =TP/(TP + FN) (7.23)
Sp =TN/(TN + FP) (7.24)
Acc = (TP +TN)/(TP+ FN + TN + FP) (7.25)

where the true positives (T'P) are the pixels classified as vessel-like and they are really
vessel pixels in the ground-truth. The false negatives (F'IN) are the pixels classified as
non-vessel although they are really vessel pixels in the ground-truth. The true negatives
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(T'N) are the pixels classified as non-vessel and they are really background pixels in the
ground-truth. The false positives (F'P) are the pixels classified as vessel-like although
they are really background pixels in the ground-truth. So the sensitivity (Se) is the
ratio of correctly classified vessel pixels, while specificity (Sp) is the ratio of correctly
classified background pixels, and accuracy (Acc) is the ratio of correctly classified both
vessels and background pixels.

Table 7.4 outlines the performance measure values resulting from the proposed system
over the DRIVE dataset. ABC is optimized with 100 iterations and population size of
20 and pattern search is initialized with the cluster centers obtained from the ABC. The
table outlines the robustness of the algorithm against changes in the input image, where
we can remark on the resulted stable accuracy regardless of whether the input image is
normal or abnormal, and it gives a fairly same result even with images with exudates,
hemorrhages, and pigment epithelium changes. Similar results can be noted in Table 7.3
but with much enhanced accuracy in the STARE database. The beauty of the proposed
algorithm is much clearer for the STARE dataset as it contains much abnormal images
which the proposed algorithm can handle by the second level optimization.

Figure 7.3 displays sample results for an ABC hybrid with fuzzy C-means cluster
where sample image from STARE dataset is displayed and another image from DRIVE
dataset is displayed with the corresponding segmentation.

7.4.2 Memetic artificial bee colony for integer programming

Due to the simplicity of the ABC algorithm, it has been applied to solve a large number
of problems. ABC is a stochastic algorithm and it generates trial solutions with random
moves, however it suffers from slow convergence. In order to accelerate the convergence
of the ABC algorithm, we proposed a new hybrid algorithm, which is called memetic
artificial bee colony for integer programming (MABCIP). The proposed algorithm is a
hybrid algorithm between the ABC algorithm and a random walk with direction ex-
ploitation (RWDE) as a local search method. MABCIP is tested on seven benchmark
functions. The numerical results demonstrate that MABCIP is an efficient and robust
algorithm for solving integer programming problems.

Integer programming problem definition

An integer programming problem is a mathematical optimization problem in which all
of the variables are restricted to be integers. The unconstrained integer programming
problem can be defined as follow:

minf(x), x€ S CZ", (7.26)

where Z is the set of integer variables, and S is not necessarily a bounded set.
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Table 7.3: The performance measures of the different images in the DRIVE database

Image | Sensitivity | Specificity | Accuracy
1 0.857 0.945 0.933
2 0.798 0.972 0.945
3 0.653 0.983 0.934
4 0.699 0.98 0.942
5 0.661 0.984 0.939
6 0.657 0.978 0.932
7 0.673 0.978 0.937
8 0.63 0.977 0.932
9 0.7 0.971 0.938
10 0.604 0.987 0.94
11 0.734 0.968 0.937
12 0.743 0.968 0.939
13 0.715 0.971 0.934
14 0.781 0.964 0.942
15 0.795 0.961 0.943
16 0.7 0.976 0.939
17 0.644 0.982 0.939
18 0.776 0.962 0.94
19 0.868 0.956 0.945
20 0.774 0.964 0.944

total 0.721 0.971 0.9388

Memetic ABC for integer programming (MABCIP) algorithm

In this section, we highlight the main components of MABCIP algorithm. In the MAB-
CIP algorithm, we tried to combine the ABC algorithm with its ability to global search
(exploration process) and the random walk with direction exploitation with its ability
to local search (exploitation process). The main steps of the MABCIP algorithm are
presented in the following subsection.

Memetic ABC for integer programming

In the memetic ABC for integer programming algorithm, the initial population is gen-
erated randomly, which contains NS solutions z;, i = {1,..., NS}; each solution is a D
dimensional vector. The number of the NS solutions (food sources) is equal to the num-
ber of employed bees. The solutions in the initial population are evaluated by calculating
their fitness function as follows:

1 3 .
f(xi) = {Hf(””) it flw) 20 (7.27)

1+ abs(f(x;)) if f(z;) <O
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Table 7.4: The performance measures of different images in the STARE database

Image | Sensitivity | Specificity | Accuracy
1 0.686 0.952 0.923
2 0.68 0.961 0.935
3 0.802 0.946 0.934
4 0.561 0.984 0.94
5 0.496 0.976 0.916
6 0.736 0.973 0.952
7 0.708 0.993 0.961
8 0.677 0.993 0.961
9 0.692 0.993 0.96
10 0.705 0.963 0.934
11 0.665 0.991 0.959
12 0.735 0.991 0.964
13 0.695 0.989 0.952
14 0.671 0.991 0.95
15 0.712 0.983 0.95
16 0.568 0.989 0.929
17 0.622 0.994 0.948
18 0.48 0.997 0.961
19 0.438 0.994 0.961
20 0.567 0.985 0.946

total 0.649 0.982 0.94677

The best food source is memorized xp.s; and the probability of each food source is
calculated in order to generate a new trail solution v; by onlooker bees. The associated
probability of each food source P; is defined as follows:

fi
P, - 7.28
§:§V:S1 J ( )

and the trail solution can be generated as vy = xij + ¢ij(xi; — xkj), ¢ij € [—1,1],
ke{1,2,...,NS}, j €{1,2,...,D}, and ¢ # k. The trail solution is evaluated and if it
is better than or equal to the old solution, then the old solution is replaced with the new
solutions; otherwise the old solution is retained. The best solution is memorized and the
local search algorithm starts to refine the best found solution so far. If the food source
cannot improve for a limited number of cycles, which is called limit, the food source
is considered to be abandoned and replaced with a new food source by scout. The
operation is repeated until termination criteria are satisfied, i.e., the algorithm reaches
to MCN maximum cycle number.
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(a) Sample image from DRIVE data (b) The segmented image

(c¢) Sample image from STARE data (d) The segmented images

Figure 7.3: Sample images from DRIVE and STARE database and the corresponding
segmented version

Numerical experiments

The efficiency of the MABCIP algorithm is tested on seven benchmark functions [80]
and the general performance of it is presented as follows.

The general performance of MABCIP with integer programming functions

The general performance of the proposed algorithm is tested on four benchmark functions
(randomly picked) as shown in Figure 7.4. We can observe from Figure 7.4 that the
function values for each test function are rapidly converging as the number of iterations
increases.
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7.5 Chapter conclusion

An overview of the basic concepts of the ABC optimization, its variants, and hybridiza-
tion with other optimization techniques was discussed. In addition, different real life
application areas were discussed, where the ABC optimization algorithm has applied.
Moreover, reviews of the results of ABC in retinal vessel segmentation and memetic
ABC for integer programming were discussed.
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8 Wolf-Based Search Algorithms

8.1 Wolf search algorithm (WSA)

WSA is a new bio-inspired heuristic optimization algorithm that imitates the way wolves
search for food and survive by avoiding their enemies. The WSA was proposed by Rui
Tang et al. [1].

8.1.1 Wolves in nature

Wolves are social predators that hunt in packs. Wolves typically commute as a nuclear
family. They remain silent and use stealth when hunting prey together and have devel-
oped unique, semi-cooperative characteristics; that is, they move in a group in a loosely
coupled formation, but tend to take down prey individually [1]. WSA naturally balances
scouting the problem space in random groups (breadth) and searching for the solution
individually (depth).

When hunting, wolves simultaneously search for prey and watch out for threats such
as human hunters or tigers. Each wolf in the pack chooses its own position, continuously
moving to a better spot and watching for potential threats [1].

WSA is equipped with a threat probability that simulates incidents of wolves bumping
into their enemies. When this happens, the wolf dashes a great distance away from its
current position, which helps break the deadlock of getting stuck in local optima. The
direction and distance they travel when moving away from a threat are random.

Each wolf in the WSA has a sensing distance that creates a sensing radius or coverage
area generally referred to as visual distance. This visual distance is applied to the search
for food (the global optimum), an awareness of their peers (in the hope of moving into
a better position), and signs that enemies might be nearby (for jumping out of visual
range). Once they sense that prey is near, they approach quickly, quietly, and very
cautiously because they do not want to be discovered.

In search mode, when none of the above-mentioned items, threat or prey, are detected
within visual range, the wolves move in Brownian motion (BM). Artificial wolf search
main steps are given in the following algorithm.
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8.1.2 Artificial wolf search algorithm

Three rules can be formulated to describe the wolf searching that can be summarized as
follows:

e Each wolf has a fixed visual area with a radius. In hyperplane, where multiple
attributes dominate, the distance would be estimated by Minkowski distance; see
equation 8.1.

n 1
d(zi, ve) = (Z |Tik — T k) (8.1)
k=1

where z; is the current position, z. are all the potential neighboring positions near
x;, and A is commonly 1 or 2.

e The fitness of the objective function represents the quality of the wolf’s current
position. The wolf always tries to move to a better position but rather than
choose the best terrain it opts to move to a better position that already houses a
companion. If there is more than one better position, the wolf will choose the best
terrain inhabited by another wolf from the given options. Otherwise, the wolf will
continue to move randomly in BM.

e It is possible that the wolf will sense an enemy. The wolf will escape to a random
position far from the threat and beyond its visual range.

WSA features three different types of preying behavior that take place in sequence.

1. Preying initiatively: This step allows the wolf to check its visual perimeter to
detect prey. Once the prey is found within the wolf’s visual distance, it will move
toward the prey that has the highest or fitness value; see equation 8.2, in which
circumstance the wolf will omit looking out for its companions. In WSA, this is
reflected by the fact that the wolf will change its own position for that of the
prey, which has the highest value, and because no other position is higher than the
highest, the wolf will maintain this direction.

t+1
7

=2t + By * exp " (2% — xt) + escape (8.2)

z J

where 7 is the distance between the wolf and its peer with the better location;
escape() is a function that calculates a random position to jump to with a constraint
of minimum length; v, = is the wolf, which represents a candidate solution; and x§
is the peer with a better position as represented by the value of the fitness function.

2. Preying passively: If the wolf does not find any food or better shelter inhabited
by a peer in the previous step, then it will prey passively. In this passive mode,
the wolf only stays alert for incoming threats and attempts to improve its current
position by comparing it to those of its peers.

ot =2t faxrxrand (8.3)
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input : r = Radius of the visual range.

s = Step size by which a wolf changes its position at a time

«a = Velocity factor of wolf

Pa = A user-defined threshold [0..1], determines how frequently an
enemy appears.

n Number of wolves.

Iter,,ax maximum allowed number of iterations.
output: Optimal Wolf’s position and its fitness

Generate initial population of n random positions
while Stopping criteria not met do
foreach Wolf; do

Calculate wol f; new position using BM motion; see equation 8.3.

If The wolf’s calculated new position is better than its current position
Update the wolf’s current position.

Find Wolves in the visual domain of Wol f;

if none of the wolf’s exist then
Calculate wol f; new position using BM motion; see equation 8.3.

If The wolf’s calculated new position is better than its current

position Update the wolf’s current position.
else
Calculate new position by moving towards the best wolf in the visual

domain; see equation 8.4 If The wolf’s calculated new position is
better than its current position Update the wolf’s current position.
end

IFrand > p, Escape to new position; see equation 8.4 Update the best

solution
end

Algorithm 9: Wolf search algorithm

where o and r are constants and rand is a random number drawn from uniform
distribution in the range [0,1].

3. Escape: When a threat is detected, given a threat probability p,, the wolf escapes
very quickly by relocating itself to a new position with an escape distance that is
greater than its visual range. The emergence of threats is modeled randomly at a
probability defined by the user. Escape is an important step that helps keep all of
the wolves from falling into and getting stuck at a local optimum.

ottt = 2l + a. s. escape() (8.4)
where z! is the wolfs location, « is the velocity, s is the step size, and escape

is a custom function that randomly generates a position greater than the visual
distance v and less than half of the solution boundary.
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8.1.3 Wolf search algorithm variants

Many algorithms are proposed in literature inspired from the wolf’s search manner,
which will be discussed in the coming subsections.

8.1.4 Wolf pack algorithm (WPA)

Wolves are social animals that live in packs. Always there is a lead wolf; some elite
wolves act as scouts and some ferocious wolves in a wolf pack [2]. First, the lead wolf,
is always the smartest and most ferocious one. It is responsible for commanding the
wolves and making decisions by evaluating the surrounding situation and perceiving in-
formation from other wolves.

Second, the lead wolf sends some elite wolves to hunt around and look for prey in the
probable scope. Those elite wolves are scouts. They walk around and independently
make decisions according to the concentration of smell left by prey; higher concentration
means the prey is closer to the wolves.

Third, once a scout wolf finds the trace of prey, it will howl and report that to the
lead wolf. Then the lead wolf will evaluate this situation and make a decision whether to
summon the ferocious wolves to round up the prey. If they are summoned, the ferocious
wolves will move fast toward the direction of that scout wolf.

Fourth, after capturing the prey, the prey is not distributed equitably, but in an order
from the strong to the weak.

The predation behavior of the wolf pack is abstracted in three intelligent behaviors,
scouting, calling, and besieging behavior, and two intelligent rules, winner-take-all gen-
erating rule for the lead wolf and the stronger-survive renewing rule for the wolf pack [2].

Winner-take-all: The wolf with the best objective function value is selected in each
iteration as the lead wolf.

Scouting behavior: Some of the elite wolves except the lead wolf are considered as the
scout wolves; they search the solution in predatory space. The state of the scout wolf ¢
is formulated below.

zh = xiq + sin(2m * %) % step? (8.5)

where step, is suitable step length for wolf in the scouting state, p is the dimension
number, and A is a random integer between 1 and p.

Calling behavior: The lead wolf will howl and summon ferocious wolves to gather
around the prey. Here, the position of the lead wolf is considered as the one of the
prey so that the ferocious wolves aggregate toward the position of lead wolf.stepy is the
step length; 95 is the position of artificial lead wolf in the dth variable space at the kth
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iteration. The position of the ferocious wolf i in the k" iterative calculation is updated
according to the following equation:

k k

k+1 _ Kk repd 9qa — Tig 3.6

Tig = Tig+ S epb'7|gk—xk| (8.6)
d id

where stepy is the step length and gg is the position of the lead wolf.

Besieging behavior: After large steps running toward the lead wolf, the wolves are
close to the prey, then all wolves except the lead wolf will take besieging behavior for
capturing prey. Now, the position of lead wolf is considered as the position of prey. gs
represents the position of prey; best, in the d'h variable space at the k'h iteration. The
position of wolf 7 is updated according to the following equation:

et = afy + Astepllgl — ] (8.7)
where ) is a random number drawn from uniform distribution in the interval [—11], step,
is the step length for wolf ¢ in the besieging behavior.

The stronger-survive rule for the wolf pack: The prey is distributed from the strong
to the weak, which will result in some weak wolves dead. The algorithm will generate
R wolves while deleting R wolves with bad objective function values. Specifically, with
the help of the lead wolf’s hunting experience, in the dth variable space, position of the
ith one of R wolves is defined as follows:

et = ggrand (8.8)

ga is the global best position, 4 is wolf index in the set 1,2, ..., R, and rand is a random
number drawn from uniform distribution in the range [—ss] and s is a small number.
The flow chart describing the complete WPA algorithm is outlined in Figure 8.1.

8.1.5 Gray wolf optimization (GWO)

Gray wolves are considered as apex predators, meaning that they are at the top of the
food chain. Gray wolves mostly prefer to live in a pack. The pack size is 512 on average.
They have a very strict social dominant hierarchy.

The leaders are a male and a female, called alphas. The alpha is mostly responsible
for making decisions about hunting, sleeping place, time to wake, and so on. The alpha’s
decisions are dictated to the pack [3].

The second level in the hierarchy of gray wolves is beta. The betas are subordinate
wolves that help the alpha in decision-making or other pack activities. The beta wolf
can be either male or female, and he/she is probably the best candidate to be the alpha
in case one of the alpha wolves passes away or becomes very old.
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Figure 8.1: The wolf pack optimization algorithm flow chart (after [2])

The lowest ranking gray wolf is omega. The omega plays the role of scapegoat. Omega
wolves always have to submit to all the other dominant wolves. They are the last wolves
that are allowed to eat.

The fourth class is called subordinate (or delta in some references). Delta wolves have
to submit to alphas and betas, but they dominate the omega. Scouts, sentinels, elders,
hunters, and caretakers belong to this category. Scouts are responsible for watching the
boundaries of the territory and warning the pack in case of any danger. Sentinels protect
and guarantee the safety of the pack. FElders are the experienced wolves who used to
be alpha or beta. Hunters help the alphas and betas when hunting prey and providing
food for the pack. Finally, the caretakers are responsible for caring for the weak, ill, and
wounded wolves in the pack.

In the mathematical model for the GWO the fittest solution is called the alpha («).
The second and third best solutions are named beta (3) and delta (§), respectively. The
rest of the candidate solutions are assumed to be omega (w). The hunting is guided by
«, B, and § and the w follows these three candidates.

In order for the pack to hunt a prey they first encircl: it. In order to mathematically
model encircling behavior the following equations are used:

X(t+1)=X,(t)+A.D (8.9)
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where B is as defined in equation 8.10 and t is the iteration number, Z, 8 are coefficient
vectors, }p is the prey position, and }is the gray wolf position.

D=|C.X,t - X0 (8.10)

The A, C' vectors are calculated as in equations 8.11 and 8.12.
A=oAdm -7 (8.11)
C =27 (8.12)

where components of d are linearly decreased from 2 to 0 over the course of iterations
and 71,7y are random vectors in [0, 1]. The hunt is usually guided by the alpha. The
beta and delta might also participate in hunting occasionally. In order to mathematically
simulate the hunting behavior of gray wolves, the alpha (best candidate solution), beta,
and delta are assumed to have better knowledge about the potential location of prey.
The first three are the best solutions obtained so far and oblige the other search agents
(including the omegas) to update their positions according to the position of the best
search agents. So the updating for the wolves’ positions is as in equations 8.13, 8.14,

and 8.15.
— = — — = — —
Do = |C.Xo — X|,Dp = |Ca.Xp — X|, Ds = |C. X5 — X| (8.13)
e
X; = |Xo — A;.Dol, Xo = | Xy — A3.Dj|, Xy = | X5 — As.Dj| (8.14)
- = =
X+ Xo+ X
X(e+1) =202 (.15)

A final note about the GWO is the updating of the parameter d that controls the
trade-off between exploration and exploitation. The parameter s linearly updated in

each iteration to range from 2 to 0 according to equation 8.16.

2

—
=2 —t—
“ MaxIter

(8.16)
where t is the iteration number and MaxlIter is the total number of iterations allowed
for the optimization.

8.2 Wolf search optimizers in real world applications

Gray wolf optimizer was used in [4] to find optimal feature subset in order to maximize
the classification performance. The fitness function is used is the classification perfor-
mance at a given selection of feature subset. The used number of variables is the same
as the feature vector size of the given data where individual variable value ranges from
0 to 1 and the feature corresponding to a given variable is selected if it passes a given
threshold. Different initialization strategies are used to assess the dependence of GWO
on the initial solutions used.
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Wolf search algorithm was employed in [6] in the domain of feature selection in com-
bination with rough-set to find optimal feature subset to maximize rough-set classifier
performance. In that work, authors made use of the fitness function in equation 8.17.

|C-R|

| Fitness = ay(D) + BW

(8.17)
where (D) is the classification quality for the selected features in D on the validation
set, C is the total number of attributes, R is the number of features selected, and «,
B are selected constants to balance the trade-off between accuracy and selected feature

size. The used fitness function incorporates both classification accuracy and reduction
size.

In [5] gray wolf optimizer has been employed to adjusting PID controller parameters
in DC motors. The fitness function to be minimized is as follows:

fitness = meanf? . (Ra,k) (8.18)

where K is the number of parameters and Ra is electrical resistance. The fitness func-

tion depends on electrical resistance changes and K parameter and develops the output
velocity of DC motor.

8.2.1 Gray wolf optimization for feature reduction

In this experiment, a multi-objective version of gray wolf optimization has been used
in the feature selection problem. A fitness function was used in this study to exploit
the data characterization capabilities of filter-based feature selection methods and the
classification performance of wrapper-based feature selection method. The proposed
fitness function made use of mutual information index as a guide to direct the search
toward finding a feature combination with minor redundancy and maximal relation to
class labels. The used mutual information fitness function was formulated as

f=V-P (8.19)

where V is the average mutual information between the selected features and the class
labels and P is the average mutual information among the selected features, where V'
and P are calculated as

V= % Zn: I(X,,Y) (8.20)
=1

p- ;iif(xi,xj) (8.21)

i=1 j=1

where I(X;,Y) is the mutual information between feature ¢ and the class labels Y and
I(X;,X;) is the mutual information between feature i and feature j and is defined by
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Table 8.1: Description of the data sets used in experiments

Dataset No. of Features | No. of Samples
Lymphography 18 148
Zoo 16 101
Vote 16 300
Breastcancer 9 699
M-of-N 13 1000
Exactly 13 1000
Exactly2 13 1000
Tic-tac-toe 9 958

Table 8.2: Parameter setting for gray wolf optimization

Parameter Value(s)
No. of wolves )
No. of iterations 100
Problem dimension | Same as number of features in any given database
Search domain [0 1]

the following formulas:
I(X;,Y)=H(X;,)+ HY) - H(X;,Y) (8.22)
I(X, X;) = H(X;) + H(X;) — H(X;, Xj) (8.23)

The used fitness function represents the predictability of features from each other
and the predictability between individual features. Hence the goodness of a feature
combination is estimated as how much the selected features can correctly predict the
output class labels and how much they are independent. The range for the parameter a
that controls the trade-off between exploitation and exploration is limited to the range
from 2 to 1 rather than from 2 to 0 to keep solution diversity and to tolerate stagnation.

At the second level optimization, GWO uses wrapper-based principles to further en-
hance the selected features. The classification performance is used as an objective for

the optimization as follows:
Fitness = CCR(D) (8.24)

where CCR(D) is the correct classification ratio at feature set D.

The optimization in this second phase is much guided toward enhancing the classi-
fication accuracy given a preselected classifier: K-nearest neighbor in the current case,
but the individual evaluation is more time consuming than the one used in the first
stage. Thus, the first stage is used to motivate the search agents to regions with ex-
pected promising regions in the feature space, while the second level optimization uses
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Table 8.3: Result of different runs for GA, PSO, and GWO of fitness function
Dataset Breastcancer

KNN MI MI and KNN
Algorithm GA | PSO | GWO| GA PSO | GWO| GA | PSO | GWO

Mean fitness | 0.024 | 0.030 | 0.026 | -0.378 | 0.916 | -0.412 | 0.024 | 0.028 | 0.027
Std fitness | 0.007 | 0.009 | 0.006 | 0.066 | 0.129 | 0.032 | 0.007 | 0.008 | 0.007
Best fitness | 0.017 | 0.021 | 0.021 | -0.426 | -0.426 | -0.426 | 0.017 | 0.021 | 0.021

Worst fitness | 0.034 | 0.043 | 0.034 | -0.274 | -0.130 | -0.355 | 0.034 | 0.043 | 0.039

Dataset Ezactly
KNN MI MI and KNN
Algorithm GA | PSO | GWO| GA PSO | GWO | GA | PSO | GWO
Mean fitness | 0.269 | 0.297 | 0.188 | 0.003 | 0.003 | 0.003 | 0.292 | 0.309 | 0.101
Std fitness | 0.051 | 0.017 | 0.142 | 0.000 | 0.000 | 0.000 | 0.011 | 0.020 | 0.120
Best fitness | 0.180 | 0.278 | 0.018 | 0.003 | 0.003 | 0.003 | 0.275 | 0.290 | 0.015
Worst fitness | 0.305 | 0.320 | 0.305 | 0.004 | 0.004 | 0.004 | 0.302 | 0.338 | 0.302

Dataset Ezactly?2
KNN MI MI and KNN
Algorithm GA | PSO | GWO| GA | PSO | GWO| GA | PSO | GWO
Mean fitness | 0.233 | 0.246 | 0.235 | 0.003 | 0.004 | 0.003 | 0.240 | 0.241 | 0.233
Std fitness | 0.012 | 0.009 | 0.010 | 0.000 | 0.000 | 0.000 | 0.015 | 0.012 | 0.012
Best fitness | 0.219 | 0.236 | 0.225 | 0.003 | 0.003 | 0.003 | 0.228 | 0.233 | 0.219
Worst fitness | 0.249 | 0.260 | 0.248 | 0.004 | 0.004 | 0.003 | 0.263 | 0.263 | 0.249
Dataset Lymphography
KNN MI MI and KNN
Algorithm GA | PSO | GWO| GA | PSO | GWO| GA | PSO | GWO
Mean fitness | 0.167 | 0.152 | 0.127 | -0.100 | -0.092 | -0.194 | 0.148 | 0.180 | 0.132
Atd fitness | 0.039 | 0.034 | 0.051 | 0.007 | 0.009 0 0.071 | 0.034 | 0.023
Best fitness | 0.122 | 0.102 | 0.061 | -0.111 | -0.103 | -0.194 | 0.061 | 0.143 | 0.102
Worst fitness | 0.224 | 0.184 | 0.204 | -0.093 | -0.084 | -0.194 | 0.245 | 0.224 | 0.163

exploitation to intensively find the solution with best classification performance. The
parameter d used by the GWO to control the diversification and intensification is set in
this second level of optimization to the range from 1 to 0 to enhance the intensification
of the solutions. This parameter choice allows for less deviation from the initial solutions
to this second stage of optimization and allows also for fine tuning to find classification-
performance guided solutions.

Table 8.1 summarizes the eight used datasets for further experiments. The datasets
are drawn from the UCI data repository [?]. The data are divided into three equal parts:
one for training, the second part for validation, and the third part for testing.
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Table 8.3: Result of different runs for GA, PSO, and GWO of fitness function (continued)

Dataset M-of-N

KNN MI MI and KNN
Algorithm GA | PSO | GWO| GA PSO | GWO | GA | PSO|GWO

Mean fitness | 0.097 | 0.125| 0.074 |-0.048 | -0.0491 | -0.053 | 0.109 | 0.585 | 0.028
Std fitness | 0.041 | 0.037 | 0.064 | 0.006 | 0.005 | 0.000 | 0.038 |0.085 | 0.011
Sest fitness | 0.036 | 0.087 | 0.018 |-0.053 | -0.053 | -0.053 | 0.066 |0.030 | 0.018

Worst fitness | 0.150 | 0.177 | 0.146 |-0.041 | -0.040 |-0.0530 | 0.165 | 0.036 | 0.042

Dataset Tic-tac-toe
KNN MI MI and KNN
Algorithm GA | PSO | GWO| GA PSO | GWO | GA | PSO|GWO
Mean fitness | 0.226 | 0.25 | 0.236 |-0.018 | -0.011 | -0.018 | 0.245 | 0.242 | 0.221
Std fitness |0.0213]0.013 | 0.029 0 0.004 0 0.0198 | 0.028 | 0.017
Best fitness | 0.203 |0.231 | 0.203 | -0.018 | -0.018 | -0.018 | 0.219 | 0.203 | 0.203
Worst fitness | 0.253 | 0.269 | 0.266 | -0.018 | -0.008 | -0.018 | 0.269 | 0.272 | 0.241

Dataset Vote
KNN MI MI and KNN
Algorithm GA | PSO | GWO| GA PSO | GWO GA | PSO | GWO
Mean fitness | 0.054 | 0.056 | 0.054 | -0.209 | -0.198 | -0.444 | 0.06 |0.056 | 0.058
Std fitness |0.0114 |0.009 | 0.021 | 0.136 | 0.144 0 0.023 [0.019] 0.019
Best fitness | 0.04 | 0.04 | 0.03 |-0.444| -0.444 | -0.444 | 0.04 | 0.04 | 0.04
Worst fitness | 0.07 | 0.06 | 0.08 |-0.103 | -0.094 | -0.444 0.1 0.09 | 0.09

Dataset Z00
KNN MI MI and KNN
Algorithm GA | PSO | GWO| GA PSO | GWO GA | PSO | GWO
Mean fitness | 0.076 | 0.076 | 0.076 | -0.310| -0.280 | -0.529 | 0.094 |0.112 | 0.083
std fitness | 0.049 | 0.049| 0.053 | 0.142 | 0.025 | 0.078 | 0.024 | 0.052| 0.043
best fitness 0 0 0 -0.565 | -0.308 | -0.564 | 0.061 | 0.031 | 0.030
Worst fitness | 0.118 [0.118 | 0.147 | -0.224 | -0.244 | -0.389 | 0.118 |0.176 | 0.147

GWO algorithm is compared with the particle swarm optimization (PSO) [53] and
genetic algorithms (GA) [52] which are common for space searching. The parameter set
for the GWO algorithm is outlined in Table 8.2. The same number of agents and same
number of iterations are used for GA and PSO.

Tables 8.3 summarizes the result of running the different optimization algorithms for
10 different runs. Mean fitness function obtained by the gray wolf optimizer achieves
remarkable advance over PSO and GA using the different fitness functions over the
different datasets used, which ensures the searching capability of GWO. By remarking
standard deviation of the solution obtained on the different runs of individual algorithms
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Table 8.4: Experiment results of mean classification accuracy

Dataset KNN MI MI and KNN
GA | PSO | GWO| GA | PSO | GWO| GA | PSO | GWO
Breastcancer | 0.953 | 0.959 | 0.947 | 0.887 | 0.916 | 0.924 | 0.949 | 0.960 | 0.960
Exactly 0.726 | 0.673 | 0.805 | 0.664 | 0.671 | 0.676 | 0.685 | 0.669 | 0.910
Exactly2 0.748 | 0.733 | 0.749 | 0.733 | 0.727 | 0.731 | 0.739 | 0.724 | 0.755
Lymphography | 0.747 | 0.727 | 0.776 | 0.755 | 0.741 | 0.601 | 0.771 | 0.688 | 0.776
M-of-N 0.868 | 0.836 | 0.914 | 0.806 | 0.837 | 0.818 | 0.855 | 0.921 | 0.972
Tic-tac-toe | 0.732 | 0.713 | 0.724 | 0.673 | 0.673 | 0.673 | 0.737 | 0.749 | 0.736
Vote 0.916 | 0.93 | 0.912 | 0.93 | 0.952 | 0.966 | 0.94 | 0.924 | 0.932
Zoo 0.855 | 0.842 | 0.873 | 0.655 | 0.727 | 0.6 | 0.885 | 0.848 | 0.855

Table 8.5: Experiment results of mean attribute reduction

Dataset KNN MI MI and KNN
GA | PSO | GWO| GA PSO | GWO | GA | PSO | GWO
Breastcancer |0.644| 0.644 | 0.511 | 0.111 | 0.178 | 0.111 | 0.578 | 0.667 | 0.622
Exactly 0.615| 0.6 | 0.492 | 0.892 | 0.892 | 0.892 | 0.785|0.508 | 0.508
Exactly2 0.292] 0.523 | 0.235 | 0.954 | 0.892 | 0.969 |0.354 | 0.523 | 0.262
Lymphography | 0.489 | 0.378 | 0.127 | 0.267 | 0.233 | 0.0556 | 0.489 | 0.489 | 0.367
M-of-N 0.631] 0.569 | 0.462 | 0.323 | 0.369 | 0.292 | 0.692 | 0.585 | 0.462
Tic-tac-toe 0.6 0.6 | 0.489 | 0.111 | 0.222 | 0.111 |0.556 | 0.622 | 0.533
Vote 0.375] 0.525 | 0.413 | 0.175 [0.2125| 0.063 | 0.463 | 0.363 | 0.35
700 0.588 1 0.5625 | 0.5625 | 0.2625 | 0.225 | 0.063 | 0.588 | 0.563 | 0.45

we can see that GWO has comparable or minimum variance value, which proves the ca-
pability of convergence to global optima regardless of the initial solutions, which proves
the stability of the algorithm. Also, on the level of best and worst solutions obtained at
the different runs we can see advance on the fitness value obtained by GWO over PSO
and GA over almost all the test datasets.

Table 8.4 summarizes the average testing performance of the different optimizers over
the different datasets. One can see that the performance of GWO is better than GA
and PSO for all the used fitness functions over the test datasets. By comparing the per-
formance of different fitness functions used, namely, mutual information, classification
performance, and the multi-objective fitness functions, we can see the advance of the
proposed multi-objective function on performance. This advance can be interpreted by
the good description of data with minimal redundancy and classifier guidance by the
second objective of the fitness function.

Table 8.5 describes the average selected feature size by the different optimizers using
different fitness functions over the different datasets. We can see that the proposed
multi-objective function outputs solutions with minor feature size in comparison to the
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other single objective fitness functions. Also, we can see that GWO is still performing
better for feature reduction.

8.3 Chapter conclusion

This chapter reviewed and discussed the wolf search optimizers and its variants as well
as reviewed some real life applications. In addition, it showed some results in how wolf-
based search algorithms applied in feature selection problems.
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9 Bird’s-Eye View

In previous chapters, we covered sets of modern numerical swarm-based optimization
methods including:

e Bat algorithm (BA)

e Firefly algorithm (FFA)

e Cuckoo search (CS)

e Flower pollination algorithm (FPA)

e Artificial bee colony (ABC)

e Artificial fish swarm algorithm (AFSA)
e Wolf search algorithm (WSA)

e Gray wolf optimization (GWO)

In this chapter, we are trying to classify the above algorithms according to different
criteria and find similarities and differences based on these criteria. This discussion may
help in finding weak and strong points of each and may help in presenting new hybridiza-
tions and modifications to further enhance their performance or at least help us choose
among this set to handle specific optimization tasks.

9.1 Criteria (1) Classification according to swarm guide

All swarm intelligence algorithms usually share information among the multiple agents.
Thus, at each iteration of the optimization all/some agents update/change their position
based on position information of other/own position. If we divided the algorithms based
on the number of agents according to which a given agent will change its position, we
can divide them into the following:

o Algorithms following best solution: BA uses the best solution for updating the
velocity vector and hence the agents’ positions. ABC uses the global best to
update the positions of the experienced bees. WSA uses the best solution inside
its visual domain but not the global best.

185
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Algorithms following the three best solutions: GWO uses equally the best three
solutions: alpha, beta, and delta, as the target for updating agents’ positions.

Algorithms following a subset of better solutions: In ABC, onlooker bees follow
one of the experienced bees in roulette wheel manner to update their positions.

Algorithms following all better solutions: FFA is an example of this class where
fireflies are moved toward all fireflies that are brighter.

Algorithms following random solution(s): FPA stochastically changes the position
of a given agent as a function of two random agents: local pollination. CS uses
two random solutions as a guide for generating solutions; nests, as a replacement
of worst solutions.

Algorithms following the agents centroid: Artificial fish swarm algorithm (AFSA)
uses the swarm centroid as a guide in the swarm-behavior state.

Figure 9.1 outlines the different swarm intelligence methods division based on the
number of agents used in the solution updating.

[FPA-CS(nestrepIacment)j [ Two random solution |
| GWO | 1l Bestti;reesolutions |
r ABC (onlo;kers) 1 rSubsetof b‘estsolution;
r FFA | AIIbettersc;Iutions ‘

——)

Figure 9.1: Classification of swarm intelligence methods based on the number of agents

to follow
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9.2 Criteria (2) Classification according to the probability
distribution used

On analyzing bio-inspired algorithms, we can see the types of randomness that a particu-
lar algorithm is employing. Algorithm uses different randomness generators inside differ-
ent components of an algorithm, and various probability distributions such as uniform,
Gaussian, and Levy distributions; Cauchy can be used for randomization. Randomiza-
tion is an efficient component for global search algorithms and hence a very precious way
to add modifications to the basic algorithms. Table 9.1 outlines the different optimiza-
tion algorithms and the corresponding statistical distribution used inside the algorithm.
We can see that either uniform or normal distributions are commonly used in local
searching while Levy distribution is more commonly used in global searching.

9.3 Criteria (3) Classification according to the number of
behaviors used

Some optimizers use a single formula or behavior to update all agents’ positions such
as PSO, where a single equation is used to update the agent’s velocity and hence the
agent’s position. FFA uses a single formula to update the agent’s position where this
formula incorporates attraction by other better fireflies and environment modeling.

In BA two behaviors are used to update bat’s position, namely, local move and global
move. In the local move the bat searches its surrounding to find a better solution using
normal random search around the global best. In the global searching behavior bats
update their position according to the position of the current global best solution.

FPA uses also two behaviors for searching, namely, local pollination and global polli-
nation. In the local pollination FPA two random agents are used in the pollination. In
the case of global pollination, FPA used Levy flight to move a pollen toward the global
best solution.

CS uses two different formulas to update its agents’ positions: global random walk
and local random walk. The local search is performed around the global best using Levy
distribution. In the global search, a fraction of agents are updated by selecting two
random agents and using them to update the agent’s position.

ABC uses three different formulas for position updating and each is dedicated to one
class of bees: scout, experienced, and onlooker bees. The experiencd bees update their
position using the guidance of the global best. An onlooker bee selects one of the experi-
enced bees as a guide for position updating. In the scout bee class, the agent randomly
updates its position.



188 Bird’s-Eye View

Table 9.1: Optimization algorithms and the used statistical distribution

Optimizer| Uniform Distribution Normal Lévy
Distribution Distribution

PSO Velocity updating

BA In local search

e Switching between local and global
search

e Stochastically moving an agent to a
better solution

CS e Local random walk The global
. random
e Selecting agents for local search walk
e For finding nests to be abandoned
FFA Modeling the environment randomly Modeling the envi-
ronment randomly
FPA e Switching between local and global Global
pollination pollina-
ti t
e Local pollination on- Sep
modeling

ABC e Updating the position for experi- | Local search in the
enced bee which balances positions | scout bee updating
change by bee’s own experience and
swarm experience

e Controls the attraction of the on-
looker bee toward its interesting
food source area

AFSA e In guiding the search in the random,
searching, swarming, and leaping

behaviors of fish

e Selecting random agent in the
searching behavior and leaping be-
havior of fish

WSA e Position updating in Escape behav-
ior and passively preying behavior
and initiatively preying behavior

e Deciding escaping wolves

GWO Position updating using alpha, beta, and
delta solutions
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Figure 9.2: Classification of SI methods based on the number of behaviors used in agent’s
repositioning

WSA switches among preying initiatively, preying passively, and escape behavior.
In the preying initiatively, the wolf is attracted by the best wolf position in its visual
domain. Preying passively uses random local search around individual agents to reposi-
tion the wolves. In the escape behavior the wolf goes outside its visual domain randomly.

AFSA uses either random, search, swarm, chase, or leap behavior to update agent’s
position. The switching among these states is controlled by the crowd parameter to
avoid algorithm stagnation. In the random behavior, an agent updates its position using
a random position. In the searching behavior, a fish updates its position with the guide
of a random agent inside its own visual range. In the swarming behavior, a fish is moved
toward the swarm centroid. The chasing behavior moves a given fish toward the current
global best solution. The leaping behavior is applied by repositioning a given agent in
the search space randomly. Figure 9.2 outlines the number of behaviors used inside the
different optimizers.

By increasing the number of behaviors in the optimization algorithm we increase
the complexity and running time of the optimizer but, on the other hand, it enhances
searching the solution space and helps avoid premature convergence.

9.4 Criteria (4) Classification according to exploitation of
positional distribution of agents

AFSA is the optimizer with most exploitation of agents’ positions in deciding the be-
havior and hence the position updating mechanism. Crowd parameter which estimates
the number of search agents in the visual scope of a given agent is used to decide the
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Figure 9.3: Hierarchical representation for exploiting spatial distribution of agents in the
swarm algorithm

fish behavior. If the crowd parameter is high the fish applies search behavior, while if it
is empty the fish switches to random behavior; otherwise the fish uses swarm or chase
behavior.

In the wolf search algorithm uses similar behavior as AFSA where it uses the visual
scope in the optimization. In the preying initiatively behavior, the agent follows the best
agent in its visual scope and goes to preying passively behavior if none of the wolves in
its visual scope is better.

FFA implicity used the spatial distribution of other fireflies where its distance between
firefly ¢ and firefly j is a major component in updating the ¢th firefly position.

Other algorithms such as FPA, WPA, GWO, CS, ABC, and BA do not monitor the
distribution of other agents at all. Figure 9.3 outlines the hierarchy of exploiting spatial
agents’ distribution into the swarm algorithm.

Naturally, the exploitation of spatial information helps the algorithm to avoid stag-
nation and hence helps better exploration of the search space, but it may require much
more time to converge.
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9.5 Criteria (5) Number of control parameters

All meta-heuristic algorithms have algorithm-dependent parameters, and the appropri-
ate setting of these parameter values largely affect the performance of the optimization.
One of the very challenging issues is deciding what values of parameters to use in an
algorithm at a given problem. How can these parameters be tuned so that they can
maximize the performance of the algorithm of interest [1]? Parameter tuning itself is an
optimization problem.

There are two main solutions for adapting a given parameter set for an optimizer,
namely, trial and error and by experience. In the trial-and-error approach, the algo-
rithm is run and the parameters are adapted until reaching a satisfactory result. Some
experts in a given operational field and given an optimization algorithm can set the
control parameters using their own experience and exploiting their knowledge about the
search space and shape of the objective function. A third approach was presented by
Yang in [1] using an algorithm (which may be well tested and well established) to tune
the parameters of another relatively new algorithm.

By analyzing the optimizers discussed here, we can see that the GWO is the optimizer
with almost 0 parameter to be tuned; @ controls the trade-off between exploration and
exploitation. The creators of that algorithm proposed an initialization and adaptation
for this parameter but this doesn’t prevent other methods from adapting and initializing
it.

In CS, the discovery rate parameter is a critical parameter as it controls the rate of
abandoning a given nest. Higher values for this parameter allow for much more explo-
ration but of course slow down the convergence speed of the optimizer. On the other
hand, lower values for this parameter allow for much exploitation but the threat of falling
in a local minimum is high. Thus, a good choice should be selecting higher values for this
parameter at the begining of optimization and at later iteration this parameter should
be decremented. Another effective parameter in CS is the 8 parameter that controls the
shape of the Levy distribution used. This parameter is always set to constant value.

In BA, six parameters are the key ones, namely, loudness, pulse rate, pulse rate adap-
tation (), loudness decrement («), local search radius, and frequency band parameters.
Frequency band parameter controls the amount in change in bat’s velocity and hence
low band limit can reduce the convergence speed of the algorithm but ensures intensive
searching of the search space. Higher values for this upper limit of this parameter allow
for faster convergence but with less intensification. The local search parameter should
start with large values at the begining of optimization to allow for much exploration
and should be decremented at later iterations to allow for intensive locals searching.
The loudness parameter decides the rate of catching a prey, where if loudness is high
and better solution is caught by a given the bat can neglect it and keeps its own posi-
tion. On the other hand, at lower loudness values a given bat always catches any better



192 Bird’s-Eye View

solution. Of course this parameter is set to high values at the begining of optimization
and decremented by a rate «. The last effective parameter in BA is the pulse rate param-
eter which controls the rate of local searching. Of course local searching rate increases
as optimization advances and hence this parameter should start with small values and
increases with time at a rate .

In FFA, the parameter o or randomness weight parameter is used to model noise in
the environment around the firefly swarm. This parameter affects the performance of
FFA as it adds a random component to the firefly step. For fitness functions with many
local minima this parameter should be set to high values while in fitness functions with
smooth terrain it should be set to low values. Higher values for this parameter slows
down convergence but increases the chance for extra exploration. On the other hand, low
values for this parameter allows for much speed convergence but much change for swarm
stagnation. This parameter should start at high values and decrements as optimization
proceeds given a rate 9.

The attraction strength is controlled by the parameter §y that controls the amount
of attraction by other brighter fireflies. At higher values for this parameter the given
firefly can be named an onlooker firefly that only follows other fireflies, while in the case
of lower values for this parameter the firefly is said to be very selfish, that is, it uses its
own experience. At lower values for this parameter the firefly is very dedicated to local
searching and hence can quickly converge but at possible local minima. On the other
hand, at high values for this parameter the firefly has more explorative capability but it
slows down convergence.

In FPA, the parameter p that controls the switch between local and global pollination
is an effective one. At high value for this parameter the algorithm is much tending to-
ward exploration and hence requires much time to convergence. At lower values for this
parameter the FPA applies many steps in exploitation and hence it is liable to premature
convergence. This parameter should be set to high values at the begining of optimiza-
tion and hence decremented to reach its lower bound at the end of the optimization.
Another effective parameter in CS is the § parameter that controls the shape of the
Levy distribution used. This parameter is always set to constant value.

In ABC, the parameter that controls the ratio of scout, onlookers and experienced bee
is very effective. Swarms with many scout bees are very explorative and require longer
time to converge. At the other end swarms with much experienced bees are converges
faster but at probably local optima. Thus, the number of experienced bees should be
lower at the begining of optimization to allow for many scout explorative bees, while
at the end of optimization the experienced bees should allow more for exploitation and
intensive searching. Naturally, a parameter that controls the trade-off between its own
experience and better bee experience is another effective one. In the case of using its own
experience more the bee swarm becomes more cautious in its steps and hence it becomes
more exploitative. On the other hand, on using lower values for this parameter the bees
are much attracted to the better location and hence allow for faster convergence.
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In AFSA, the visual domain is the most important parameter as it controls the behav-
ior of a given fish. Fish with low visual domain become more exploitative while fish with
larger visual domain are more explorative. The crowd parameter is also very effective
in performance. Lower values for crowd parameters allow for much application of the
searching behavior that allows for exploration. On the other extreme, at higher values
for crowd parameter the chasing and swarming behaviors are more applicable and hence
allow for much faster convergence. Thus, this parameter should be set to low values at
the begining of optimization and increases as optimization proceeds.

In WSA, the parameter Pa that controls the threat probability is an effective param-
eter that is used to stochastically apply the escape behavior. Too much application of
escape behavior allows for much exploration but slows down the convergence, while, on
the other hand, when the escape rate is very small the algorithm devotes much effort in
exploitation and hence speeds up convergence. So this parameter should be set to high
value; to allow for exploration, at the begining of optimization and then decreasing in
time. The « parameter controls the radius of local searching. This parameter should be
set to higher values at the begining of optimization and decreases in time.

9.6 Criteria (6) Classification according to either generation of
completely new agents per iteration

Weak agents are replaced with better or random ones in some algorithms, while other
algorithms always keep their agents forever. In CS a ration of nest is discovered and
destroyed at each iteration and new nests are created randomly. In WPA, a fraction
of wolves with worst fitness are replaced by new random ones. While in AFSA leaping
behavior is applied when no advance is achieved in the fitness, while when no fish exist
in the fish’s surround, visual scope, the fish applies random behavior.

Scout bees in AFSA perform the task of renewing the swarm where scout bees always
perform random search to explore new search areas. Other algorithms such as GWO,
BA, PSO, and FPA don’t explicitly change the swarm but depend on updating the posi-
tions of each agent individually. Performing the renewing of swarm always leads to much
exploration power and is used as a solution to the well-known stagnation problem. Fig-
ure 9.4 is a hierarchical representation of algorithms and their swarm-renewing strategies.

9.7 Criteria (7) Classification based on exploitation of velocity
concept in the optimization

Velocity is change in position through time. Velocity concept is explicitly used in opti-
mization in some methods such as BA, while it is implicitly used in other algorithms.
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Figure 9.4: Hierarchical representation for different strategies for renewing the swarm in
optimization

Velocity updating in PSO exploits the particle’s best position and the global best posi-
tion and hence can be considered as a generalization for the velocity updating in BA,
which exploits only the global best position. Other algorithms implicitly use velocity for
position updating. In FFA velocity is represented by two components: one is related to
attraction and the other is related to environment modeling and randomness. In FPA
velocity in the global pollination is much variant as it makes use of Levy flight, which
is very systematic as in local pollination. WSA uses different velocities according to
its current behavior where it can prey initiatively, prey passively, or escape. In WPA
velocity is controlled by current behavior such as scouting, calling, besieging behaviors.
CS uses Levy flight for updating the velocity implicitly and hence provides for much
variation in the velocity. In ABC the experienced bee uses its own best and global best
to update velocity, while onlooker bees use selected elite bees to update their position.
AFSA changes position according to the current behavior and uses systematic updating
except for leaping behavior that has abrupt change in position.

Figure 9.5 describes the velocity updating where velocity may be defined explicitly
as in BA. Implicit definition of velocity may use a direct deterministic equation for
calculating the amount of change in position as in FFA and WSA. Stochastic walks are
used also based either on random walks as in FPA, WSA, GWO or based on Levy flight
as in FPA and CS or based on Browning motion as in BA and ABC.
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Figure 9.5: Hierarchical representation for different strategies for renewing the swarm in
optimization

9.8 Criteria (8) Classification according to the type of
exploration /exploitation used

Exploration can be defined as acquisition of new information throughout searching [2].
Exploration is a main concern for all optimizers as it allows for finding new search
regions that may contain better solutions. Exploitation is defined as application of
known information. The good sites are exploited via the application of a local search.
The selection process should be balanced between random selection and greedy selection
to bias the search toward fitter candidate solutions (exploitation), whilst promoting
useful diversity into the population (exploration) [2]. The searching may be along a
given direction (diversification), around a specific point (intensification), or completely
random (diversification) in the space. Combinations of the past three strategies for
search are common in the SI algorithms.

e Searching along o direction: The updating of a given agent position takes the
generic form
ot = gl 4+ Ae(af — o) (9.1)

where a:f is the position to be updated, z},z} are two solutions from the swarm, e

is a constant always random controlling the position along the selected direction,
and A is an adaptable constant updating speed, that may depend on the problem
and/or the optimization iteration number.



196

Bird’s-Eye View

Figure 9.6: Updating of agent x! position in the direction zaz;

Figure 9.6 is a graph representing the effect of the updating direction xox{ on the
position of agent z!.

All optimization algorithms in the study make use of this type of searching. For
example, in PSO the A parameter is called loyalty factor and is always set ac-
cording to the problem in the range from 0 to 1, and € is selected as a uniform
random number € [0, 1]. x1, z2 are particle’s best solution and the agent’s position
in order. The same notation is incorporated in the PSO updating but z; replaced
by the best solution is also used.

In FFA the A is named [y and is always set to 1, € is represented as ¢~ where
ri; is the distance between fireflies ¢ and j, while x1, x9 are the brighter and darker
fireflies in order.

FPA uses Levy flight as a replacement for ¢ and A = 1, with z1, 22 the flower’s
pollen and the best pollen in global pollination. In case of local pollination ¢ is a
random number drawn from uniform distribution in the range [0,1], A = 1, and
1,2 are two random pollens.

In WSA, the A factor is set to 1 and ¢ is set to e with r being the distance
between wol f; and the best wolf in its visual domain. x1, x5 are set as a:ﬁ, $Zest and
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z ., is the wolf with best fitness in the visual domain of the wolf positioned at z!
at iteration t.

WPA uses A as 1 and ¢ is the random step size, while x1, xo are the positions of
the lead wolf and the wolf’s positions ! in the calling behavior.

In CS, the main updating equation uses A = 2 and ¢ as a random number drawn
from Levy distribution. z1, 9 are used as agent’s old position and best agent po-
sition in order. When abandoning a nest CS used another form of updating: x1, z2
are two random nests’ positions and € a random uniform number in the range [0,1]

and A is 1.

In foraging bees updating in the ABC, the A parameter is called loyalty factor and
is always set according to the problem in the range from 0 to 1, and ¢ is selected
as a uniform random number € [0,1]. x,z2 are the bee’s best solution and the
agent’s position to be updated in order. Also same notations are used with x1 as
the global best bee position. In onlooker bees, the A parameter is called loyalty
factor and is set € [0,1], and ¢ is selected as a uniform random number € [0, 1].
x1,T9 are elite or experienced bee’s position and the agent’s position to be updated
in order.

In BA, the bat’s velocity is updated using the same equation with A =1, € set as
frequency, and x1, xo are the bat’s position to be updated and position of the best
bat in order.

In AFSA, the searching along a direction is changed according to the fish’s current
behavior, but all use A = 1, ¢ as uniform random number € [0, 1] and 2 is set as
current fish’s position to be updated. x} is set as the position of a random fish, the
visual domain of z% in the case of searching behavior, as swarm centroid in case
of swarming behavior and as the global best fish position in the case of chasing
behavior.

e Searching around specific solutions: This search is always performed for exploita-
tion and has the following generic form:

i =2t + arand (9.2)

(]
where z! is the solution to be updated, o represents scaling factor, and rand is
a random number. In FFA fireflies use this as a random or mutation component
that models environment purity, « is a constant in the range from 0 to 1, and rand
is set as a uniform random number € [—0.5,0.5].
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Table 9.2: ST algorithms and the corresponding search direction

Method Search Direction
Generic form o = ol + Ae(af — o)
PSO gbest — xt
and pbest — x}
FFA 1‘3 —at
FPA Thest — T
or x§ — :1:’,5C two random pollens
WSA Thest — T¢ With Tpest is the best wolf position
in the visible domain of xf
WPA Tpest — xf with xpest is the leading wolf position
CS Thest — T or
xz — x}; are two random nests
ABC gbest' — x! and pbest — x! for experienced bees or

zelite! — !t with z.lite one of the
experienced bee for onlooker bees

BA gbest' — x! with gbest is best bat position
AFSA z! — z! in swarming behavior or
xéest —at tin chasing behavior or
Ty4nq — T in search behavior or

In WSA « is set to a constant € [0,1] and rand is a uniform random number
€ [0,1] and this factor can be considered as a mutation term to help escape from
local minima.

In the WPA « are set to 1, while rand is set as sin (27 * %) * stepg, where p is the
dimension number and h is a random integer between 1 and p.

In ABC scout bees use this type to explore new regions, with rand named RW
as a random walk function that depends on the current position of the scout bee,
and a named the radius search 9.

BA uses the same formula stochastically and performs searching with « as average
loudness and rand, called €, is a uniform random number € [—1, 1].

In AFSA the leaping behavior is performed using this type of search, with rand in
the position of a random fish in the swarm and « is set to a constant > 0.
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o Complete random position: This type of search is used to perform abrupt jumps
in the search space and has the following form:

gt =zl +C (9.3)

where xf is the agent’s position to be updated and c is a constant. The only opti-
mizer using this form is the WSA in the escaping behavior where C' is set as the
visual domain range to allow the wolf to escape from threats.

o Other: In GWO another updating form is applied not using any of the above three
main types.

9.9 Chapter conclusion

In this chapter, we gave a bird’s eye view of the modern swarm optimization techniques.
In addition, we provided several criteria that are used to differentiate among these swarm
techniques. It identifies similarities and differences in the criteria setting. This view
may help in finding weak and strong points of each algorithm and may help present
new hybridizations and modifications to further enhance their performance or at least
help us choose among this set to handle specific optimization tasks. We believe that the
future in swarm optimization will be as active as the past and will bring many advances
in swarm optimization and chagrin with many approaches currently used in practices.

Bibliography

[1] Xin-She Yang, Zhihua Cui, Renbin Xiao, Amir Hossein Gandomi, Mehmet
Karamanoglu, Swarm Intelligence and Bio-Inspired Computation; Theory and Ap-
plications, Elsevier, Waltham, Mass. 2013.

[2] Xin-She Yang, Nature-Inspired, Metaheuristic Algorithms, 2010, Luniver Press,
Bristol, UK.



This page intentionally left blank



Engineering - Electrical

SWARM INTELLIGENCE

Principles, Advances, and Applications
Aboul Ella Hassanien < Eid Emary

Swarm Intelligence: Principles, Advances, and Applications delivers
in-depth coverage of bat, artificial fish swarm, firefly, cuckoo search, flower
pollination, artificial bee colony, wolf search, and gray wolf optimization
algorithms. The book begins with a brief infroduction to mathematical
optimization, addressing basic concepts related to swarm intelligence, such
as randomness, random walks, and chaos theory. The text then

e Describes the various swarm intelligence optimization methods,
standardizing the variants, hybridizations, and algorithms whenever
possible

e Discusses variants that focus more on binary, discrete, constrained,
adaptive, and chaotic versions of the swarm optimizers

e Depicts real-world applications of the individual optimizers,
emphasizing variable selection and fitness function design

e Details the similarities, differences, weaknesses, and strengths of
each swarm optimization method

e Draws parallels between the operators and searching manners of
the different algorithms

Swarm Intelligence: Principles, Advances, and Applications presents
a comprehensive treatment of modern swarm intelligence optimization
methods, complete with illustrative examples and an extendable MATLAB®
package for feature selection in wrapper mode applied on different data
sets with benchmarking using different evaluation criteria. The book provides
beginners with a solid foundation of swarm infelligence fundamentals, and
offers experts valuable insight into new directions and hybridizations.
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