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BAGGING AND BOOSTING CLASSIFICATION TREES 

TO PREDICT CHURN 

 

 

 

ABSTRACT 

In this paper, bagging and boosting techniques are proposed as performing 

tools for churn prediction. These methods consist of sequentially applying a 

classification algorithm to resampled or reweigthed versions of the data set. We 

apply these algorithms on a customer database of an anonymous U.S. wireless 

telecom company. Bagging is easy to put in practice and, as well as boosting, 

leads to a significant increase of the classification performance when applied to 

the customer database. Furthermore, we compare bagged and boosted classifiers 

computed, respectively, from a balanced versus a proportional sample to predict a 

rare event (here, churn), and propose a simple correction method for classifiers 

constructed from balanced training samples. 

KEYWORDS: bagging, boosting, classification, churn, gini coefficient, rare 

events, sampling, top decile. 
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1. INTRODUCTION 

Marketers are regularly confronted with classification issues, such as: who 

are our most profitable customers, what is our stable customer base, which 

customers would buy this specific product (see e.g. Bolton, Kannan and Bramlett 

2000; Ganesh, Arnold and Reynolds 2000; Reinartz and Kumar 2002)? 

Classification techniques answer these kinds of questions by predicting, on the 

basis of several relevant predictive variables like personal social-demographic 

characteristics or past purchase behaviour, the group which a specific individual 

belongs to.  

Logistic regression, discriminant analysis, classification trees or neural 

networks are common classification methods. In this paper, a technique 

originating from statistical machine learning, namely bagging (Breiman 1996), will 

be investigated. It consists of sequentially computing a base classifier from 

resampled versions of the training sample in order to obtain a committee of 

classifiers. The final classifier is then obtained by taking the average over all 

committee members. Bagging is very simple and easy to put in practice: it only 

requires a bit more computation time, but no more information than the one 

contained in the training sample is needed. Moreover, there is a growing literature 

showing that committees usually perform better than the base classifiers. As base 

classifier, we select a classification tree, as recommended by Breiman (1996), even 

if other choices are possible as well. More sophisticated versions of bagging, using 

weighted sampling schemes, exist under the name of boosting. Here we will 

compare bagging with two versions of boosting, i.e. the Real Adaboost (Freund 
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and Schapire 1996; Schapire and Singer 1998) and the Stochastic Gradient 

Boosting (Friedman 2002). 

In this paper, bagging and boosting are applied to a customer database of 

an anonymous U.S. wireless telecom company2. The classification task consists in 

predicting churn based on personal social-demographic characteristics and past 

purchase behaviour. Churn, and especially voluntary churn, is a marketing-related 

term characterising whether a current customer decides to take his business 

elsewhere (i.e. to defect from one mobile service provider to another) or voluntary 

terminate their service3. Churn prediction does not only forecast whether a 

customer will defect or not during the following months, but also attaches a 

probability of churn to each customer. As such, a scoring of the risk of churn is 

obtained allowing the company to rank their customers according to this risk. 

Therefore, the marketing mix can be more adequately adapted to these customers 

which are the most disposed to churn with the purpose of improving retention. 

For example, specific incentives could be undertaken towards the most risky 

group (i.e. customers which are the most inclined to leave the company), such as 

sending personalized promotional offers via SMS, hoping that these targeted 

customers would remain loyal. 

In the wireless telecom sector, churn is a major concern. Indeed, domestic 

monthly churn rates in the U.S. wireless telecom industry rose to 2 or 3% in 2001 

(Telephony Online 2002) and stabilized at about 2.6% at the end of 2002 (Hawley 

2003), corresponding to an annual churn rate of about 30%. In Western Europe, 

                                                 
2 Provided by the Teradata Center for Customer Relationship Management at Duke University in the 
context of the Churn Modelling Tournament. See Gupta et al. (2003) for a study on the predictive 
performance of different classification methods using this database. 
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the situation is similar, with monthly churn rates between 2 and 3% (Hawley 

2003). The main reason to this churn intensification is the increased competition 

between wireless providers, due to the difficulty for providers to differentiate their 

offers, but also to the saturation of the wireless customer base. For example, in 

2002, subscriber yearly growth rates decreased from 50% to 15%-20%, while 

analysts predicted a 10% growth rate only for 2003 (Business Week Online 2002). 

Churn is extremely damageable for companies. Indeed, The Wall Street 

Journal Europe reported that the loss of a customer cost a US wireless company 

an average of $676 in 1998 (2000, September 18) while Wireless Week mentioned 

that the annual turnover of nearly 40 million customers for the North American 

wireless industry amounts to $10 billion annually (2002, May 27). In fact, “the 

top six US wireless carriers would have saved $207 million if they had retained an 

additional 5% of customers open to incentives but who switched plans in the past 

year” (Reuters 2002). As a comparison, in the U.K., the cost of replacement of a 

lost wireless customer amounts to £200 to £400 in terms of sales support, 

marketing, advertising and commissions (SAS, 2001). Therefore, the wireless 

industry strategy has moved from an acquisition orientation to a retention policy. 

Predicting churn makes this strategy feasible. Other scientific studies also pointed 

out the economic value of customer retention. For example, Athanassopoulus 

(2000), Bhattacharya (1998), as well as Colgate and Danaher (2000) illustrated 

the advantage of customer retention as a low-cost operation, compared to the cost 

necessitated for attracting new customers. Clearly, customer retention via churn 

                                                                                                                                                  
3 Involuntary churn is the escape or defection of consumers for reasons that are independent of the willingness 
(e.g. the death). Since there is no real marketing-based purpose of predicting involuntary churn because of its 
unavoidable nature, marketers should focus on predicting voluntary churn. 
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forecasting is an efficient way to maintain a sustainable level of profitability in a 

highly competitive world such as the Telco industry. 

To evaluate the performance of a churn prediction rule, as well as the 

potential financial gains that would derive from it, the specificity of the problem 

needs to be taken into account. Only looking at the misclassification rate of the 

prediction rule is often misleading (see Section 5), and other criteria like the gini 

coefficient or the top decile, would be therefore more appropriate. These criteria 

will be reviewed in Section 5. 

The rarity of the churn event, despite its high financial consequences, 

implies another issue for churn prediction. Indeed, if the sample used to build a 

classifier (i.e. the training sample) is randomly drawn from the customers’ 

population, the percentage of churners in this training sample would be relatively 

low. To compensate for the low proportion of churners in such a proportional 

training sample, marketing researchers would need a sufficiently large sample size. 

However, this involves several drawbacks: data gathering becomes more costly 

and statistical estimation more time-consuming. Therefore, selective sampling is 

often advised as a way to avoid this efficiency loss. Here, the training sample is 

stratified according to outcome of interest, i.e. churn, in such a way that the two 

strata (churners versus non-churners) contain an equal number of customers. Such 

a sampling scheme will be called balanced sampling. Several methods exist to 

correct classifiers computed from disproportional training samples, hereby taking 

the real-life proportion of churners into account (see e.g. Cosslett 1993; Donkers, 

Franses and Verhoef 2003; Franses and Paap 2001; Imbens and Lancaster 1996; 

Scott and Wild 1997). However, no such correction has yet been provided for 
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bagging and boosting. In Section 4, we discuss two easy correction methods from 

which marketers may take profit to predict churn. 

Knowing (i) that churn prediction is crucial for the financial wealth of 

companies which are therefore seeking for more performing classification methods, 

(ii) that a balanced sampling requires an appropriate correction that does not 

exist yet for bagging and boosting, and (iii) that proportional or balanced 

sampling could yield different performances for predicting the rare event in 

question, i.e. churn, we came up with three research questions that will be 

investigated throughout this paper: 

• Q1: Does bagging, Real Adaboost or Stochastic Gradient Boosting improve 

the performance of the initial base classifier for churn prediction, and by how 

much? If so, marketers could also expect financial gains from this improvement. 

To answer this question, a proportional training sample will be used. 

• Q2: Does the use of a balanced training sample request an appropriate 

correction? How do perform both corrections to be discussed in Section 4? The 

best correction method will then be used for the question 3.  

• Q3: How do the classifiers computed from the proportional and the 

balanced training data perform comparatively? This question will be answered for 

bagging as well as boosting. 

The paper is organized as follows. Section 2 contains a description of the 

data as well as the data preparation step. Section 3 outlines the bagging 

procedure, as well as the Adaboost algorithm. Section 4 presents the correction 

methods to be applied to the predictions computed from a balanced training 
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sample. Section 5 provides the assessment criteria used to evaluate the different 

classification rules. Results are then reported in Section 6, where the different 

research questions are addressed, and Section 7 provides a conclusion. 

2. THE DATA 

2.1. Data description 

The study is performed on a dataset provided by the Teradata Center at 

Duke University. This database contains three datasets of respectively 51,306, 

100,000 and 100,462 observations. These represent mature subscribers (i.e. 

customers who were with the company for at least six months) of a major U.S. 

wireless telecom carrier. The two first datasets will be used as training samples. 

They contain data extracted from the months of July, September, November and 

December 2001. The third dataset contains a different set of customers selected at 

a future point in time. A classifier will be constructed using data from one of the 

aforementioned training samples from which the probability to churn will be 

subsequently predicted for every customer in the third dataset. 

The variable to predict is whether a subscriber will churn during the period 

31-60 days after the sampling date. This variable is observed one to two months 

after the predictive variables because of practical concern. Indeed, a few weeks 

would actually be needed to score customers and implement proactive marketing 

incentives. The churn response is coded as a dummy variable with 1=y  if the 

customer churns, and 1−=y  otherwise. 
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The test set contains a huge number of observations, allowing to measure 

the performance of the classification procedure very precisely. The proportion of 

churners in the test set is about 1.8% (1808 churners), meaning that churn is 

indeed a rather rare event.  

The first training sample is a proportional training sample. Hence, the 

proportion of churners in the sample is about 1.8% (924 churners), like the actual 

monthly churn rate in this anonymous wireless telecom company. The second 

training set contains an oversampled number of churners such that the number of 

churners is equal to, i.e. balanced by, the number of non-churners. Theoretically, 

a potentially better performing classifier could be obtained from such a sample. 

When comparing the quality of predictions from the proportional and the 

balanced training sets, the number of observations of the latter one will be 

reduced to 51,306 observations to equal the size of both training sets. 

2.2 Variables selection and transformation 

To predict the churn potential of customers, U.S. wireless operators today 

take into account from 50 to 300 subscriber variables as explicative factors 

(Hawley 2003). From the high number of explicative variables contained in the 

initial database (171 variables), we retain 43 variables, including 31 continuous 

and 13 categorical variables.  

Selection of the variables is based on a two-step procedure. A descriptive 

analysis provides a first insight about the nature of the data and the number of 

missing values. Variables containing more than 30% of missing values are 

excluded from the analysis.  
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In a second step, and following an unreported preliminary analysis, a 

subset of 43 variables was selected. According to the well-known (RFM) trilogy 

introduced by Cullinan (1977) and further developed by Bauer (1988), we retain 

recency, frequency, and monetary value variables. Other potentially important 

variables, like the mean unrounded minutes of customer care calls, the number of 

adults in the household, the education level of the customer, etc. were added as 

well. Most of these variables were included in similar previous studies (see 

Vandepoel 2003 for a review). All methods will be applied on the same set of 

selected variables, hereby creating a benchmark dataset making the comparison 

between different methods easy. In this paper, we do not study the individual 

contributions of each explicative variable, but focus on the predictive performance 

of the classification rule. 

An extra variable is added indicating whether one missing value was found 

for at least one of the continuous variables. One could indeed imagine that not 

answering a question may also be informative. For categorical variables, an extra 

level is created indicating whether the value is missing or not. 

The reasons for carrying out a variable selection procedure are mainly 

computational. Bagging and boosting require repetitive application of the base 

classifier, and working with fewer variables therefore reduces computation time. 

Some experiments indicated that whether a variable selection procedure was 

implemented or not, did, in fact, hardly changed the performance criteria of the 

classification rules. 
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3. THE BAGGING AND BOOSTING METHODOLOGY 

Bagging and boosting both originate from the machine learning research 

community, and are based on the principle of aggregating classifiers. In a seminal 

paper of Breiman (1996), he found gains in accuracy by aggregating predictors 

built from perturbed versions of the training set in order to construct a final rule. 

Over the recent years, bagging and boosting received increasing attention, and 

were applied to various fields of application (e.g. Friedman, Hastie and Tibshirani 

2000, for the UCI machine learning archive; Nardiello, Sebastiani and Sperduti 

2003, for text categorisation; Varmuza, He and Fang 2003, in chemometrics; or 

Viane, Derrig and Dedene 2002, for an application in fraud claim detection). 

Statistical theory has recently been elaborated and is still under development to 

provide more theoretical background to these techniques (e.g. Bühlmann and Yu 

2002, for bagging; Friedman, Hastie and Tibshirani 2000, for boosting). Most 

recent state-of-the-art supervised classification techniques can be found in Hastie, 

Tibshirani, and Friedman (2001), an already renowned reference in the field.  

3.1. Bagging 

Bagging is, by far, the simplest technique to upgrade, or to “boost”, the 

performance of a classifier. It only requires repeated applications of the initial 

classifier on resampled versions of the training sample, while no additional 

information has to be provided in the training sample, neither in the form of 

additional variables, nor in terms of extra observations. 

We select the decision tree as base classifier (Breiman et al. 1984). Decision 

trees are powerful nonparametric classification methods, available in most 



 12

software packages. According to Breiman (1996), they are adequate candidates for 

the bagging procedure since they are highly performing, but unstable classifiers. 

“Instability” refers to classifiers that significantly change when small changes in 

the dataset are performed. Because bagging, i.e. Bootstrap AGGregatING, 

averages predictions over a collection of bootstrap samples, it reduces the variance 

of the prediction (Bauer and Kohavi 1999) allowing for an upgrade of the 

predictive performance of the classifier.  

Denote the training sample by ( ) ( ) ( ){ }NNii yxyxyxZ ,,,,,,, 11 KK= , 

where N  is the number of observations in the training sample. In this expression, 

),...,,( 21 iKiii xxxx =  represents a vector containing the K  explicative variables 

for individual i , while iy  (equal to 1 or —1) indicates whether this individual i  

will churn or not. A base classifier f̂  is computed from these training data. In the 

case of a customer whose value of the churn variable is unknown, the base 

classifier returns a value ( )xf̂ , with x  the characteristics of this customer. This 

value can be considered as the score associated with the customer, i.e. a measure 

of its associated risk to churn. Classification into one of the two groups is 

accomplished by computing  

( )( )Bxfsignxc τ−= ˆ)(̂ ,    (1) 

giving values +1 or —1, where Bτ  is a cut-off value. If ( )ixf̂  is larger than Bτ , 

customer i  will be classified as churner, while, if ( )ixf  is smaller than Bτ , it will 

be predicted as non-churner. When using a classification tree, the score is given 

by ( ) ( ) 1ˆ2ˆ −= xpxf , where ( )xp̂  is the probability to churn as estimated by the 
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tree. A natural value for Bτ  is 0=Bτ , while in the case of non proportional 

sampling, the value of Bτ  could vary (see Section 4). 

From this original training set Z , we draw B  bootstrap samples 

BbZ b ,,2 ,1 ,* K= . A bootstrap sample is created by randomly drawing with 

replacement N  observations from Z . Therefore, it contains the same number of 

elements as the training sample, but some observations could be drawn more than 

once, and others could not be represented in the bootstrap sample at all. For each 

bootstrap sample *
bZ , a classifier is estimated, giving B  score functions 

( ) ( ) ( )xfxfxf Bb
***

1
ˆ,, ˆ,, ˆ KK . These functions are then aggregated into the final 

score 

( )∑
=

=
B

b
bbag xf

B
xf

1

*ˆ1
)(ˆ .    (2) 

Classification can then be carried out via 

( )Bbagbag xfsignxc τ−= )(ˆ)(ˆ , with { }1,1)(ˆ −∈xcbag .  (3) 

Again, Bτ  is a selected cut-off value, equal to zero for proportional 

samples. Note that bagging simply consists of B  repeated applications of a 

classification rule on resampled training sets. The unique remaining question 

therefore relies to the choice of the constant B , i.e. the number of bootstrap 

samples to be built. A strategy consists of computing a performance criterion on 

the training sample, like the error rate (i.e. the apparent error rate), and to select 

B  such that the difference between the error rates at iterations B  and 1+B  is 
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negligible. In our application, after 50=B , the performance on the training 

sample becomes stable. 

3.2. Boosting 

A comparison will be done between bagging and one of the most well-

known boosting algorithms, i.e. Real Adaboost (Freund and Schapire 1996; 

Schapire and Singer 1998). We also include Stochastic Gradient Boosting 

(Friedman 2002), a new and more advanced variant of boosting, and also the 

winner of the Teradata Churn Modelling Tournament. Many other versions of 

boosting exist and are regularly proposed. Among others, LogitBoost (Friedman, 

Hastie and Tibshirani 2000), Random Forest (Breiman 2001), Gradient Boosting 

(Friedman 2001) are different variants of boosting. Research on this issue is 

ongoing in the machine learning and statistical community. Note that, in contrast 

to bagging, not all of these algorithms are straightforward to implement. We 

restrict the analysis to two representative variants of boosting, the Real Adaboost 

and the Stochastic Gradient Boosting. The first is based on the classical boosting 

scheme while the second is one of the most recent and advanced development in 

the field. 

The general principle of boosting consists of sequentially applying the base 

learner to adaptively reweighted versions of the initial dataset 

, ..., B,  bZ b 21,* = . Previously misclassified observations get an increased weight 

on the next iteration, while weights given to previously correctly classified 

observations are reduced. The idea is to force the classification procedure to 

concentrate on the hard-to-classify observations. Note that, unlike bagging, the 
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boosting procedure requires software that allows assigning weights to the 

observations of the training sample when computing the base classifier. 

Another difference with bagging is that the initial classification rule is 

preferably a “weak” learner, i.e. a classifier that has a slightly lower error rate 

than random guessing. Hastie, Tibshirani and Friedman (2001) advised to use 

decision stumps, i.e. binary trees with only two terminal nodes, for Real 

Adaboost, and Friedman (2002) k-node trees for Stochastic Gradient Boosting 

where k is about 6. Other authors (e.g. Ting and Zheng 1999) suggest a naïve 

Bayes learner as base classifier. Such a “weak” base classifier would have a low 

variance, but a high bias.  After B  iterations of the boosting algorithm, the bias 

should be reduced, while the variance would remain moderate. In principle, 

boosting should therefore outperform bagging since it not only reduces the 

variance, but also the bias. 

Real Adaboost allows working with score predictions f̂ , unlike Discrete 

Adaboost that only produces binary classification rules ĉ . In the first step of the 

Real Adaboost, i.e. 1=b , estimated probabilities )(ˆ*
1 ixp  are computed from the 

training set using a decision stump with equal weights for every observation: 

 NiNw i  , ,1 with ,1
1, K== .    (4)  

Weights are computed in the further iterations on the basis of the 

probabilities estimated in the previous iteration. Suppose that, in step b, 

probabilities Nixp ib ,...,2 ,1 for ),(ˆ* = , have been computed. The scores ( )ib xf̂  are 

then obtained by calculating the half logit-transform of the probability estimates 

as: 
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( ) ( )
( )









−

=
ib

ib
ib xp

xp
xf

*

*

ˆ1

ˆ
log

2
1ˆ .     (5) 

Weights for step 1+b  are afterwards updated by the formula 

( )( ) Nixfyww ibibibi ,...,2 ,1  , ˆexp,1, =−=+ ,   (6) 

and normalized such that the sum of all weights equals one. The probability 

estimates for iteration 1+b , ( )ib xp *
1ˆ +  are then computed applying the base 

classifier on the weighted training sample, using the above-defined weights 1, +biw . 

The procedure is repeated for Bb ,,2 ,1 K= . The final prediction consists again of 

a majority vote using the scores, so  

( ) ( ) 







−= ∑

=

B

b
Bbboost xfsignxc

1

ˆˆ τ , with ( ) { }1 ,1ˆ −∈xcboost .   (7) 

Again, Bτ  is a correction term for balanced training sample (see Section 4). When 

a proportional sample is used, 0=Bτ . 

The Stochastic Gradient Boosting algorithm is more evolved than Real 

Adaboost. We prefer not to outline it here, and refer for details to Friedman 

(2002). 

4. CORRECTION FOR A BALANCED TRAINING SAMPLE 

Even if churn has very damageable consequences for companies, it is, 

statistically speaking, a rare event. It concerns, per month, about 1.8% of the 

customers of the U.S. wireless telecom company under consideration. The rarity of 

the event could make it difficult to be predicted. Indeed, the group of churners in 
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a proportional training sample would be far smaller than the group of non-

churners since it is constituted by random drawing of customers from the whole 

population. One may therefore fear that the characteristics driving the defection 

of a customer could well be difficult to be detected in such a sample, and that the 

vast majority of non-churners in the sample will dominate the statistical analysis.  

A simple solution to handle this problem could consist in creating a 

balanced training sample where the proportion of churners equals the proportion 

of non-churners. Nevertheless, a classifier trained on such a balanced sample 

would overestimate the proportion of churners when applied on new real-life 

observations. In this case, an appropriate correction needs to be carried out. 

While such methods already exist for some common classifiers (see Section 1), we 

did not find any correction method for the more recent bagging and boosting 

classification methods.  

A first solution consists in attaching a weight to the observations of the 

balanced training sample. Marketers or managers generally have a priori idea 

about the churn rate cπ , i.e. the proportion of churners, among their customers. 

For example, it can be estimated by the empirical frequency of churners in a 

proportional sample. In our case, cπ  is taken as 1.8%.  Let balanced
cN  be the 

number of churners in the balanced sample, with N  the total size of this sample. 

One may weight observations of a balanced training sample by attaching the 

weights 
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balanced
c

cnc
ibalanced

c

cc
i NN

w
N

w
−
−

==
ππ 1

  and       (8) 

to the churners, respectively the non-churners. In a perfectly balanced training 

sample,  

balanced
c

balanced
c NNN −= .     (9) 

The sum of the weights defined in (8) is always equal to one. Moreover, the 

sum of the weights associated to the churners equals the real-life proportion of 

churners 

c

N

i

c
i

bal
c

w π=∑
=

.

1

.      (10) 

When applying this weighting correction to bagging and Stochastic 

Gradient Boosting, a sequence of weighted decision trees are computed, where the 

weights remain fixed through iterations. For the Real Adaboost procedure 

however, the initial weights are now given by (8), instead of taking them all 

equal, as stated in (4). For the next iterations, adaptively reweighted classification 

rules are then computed in the same way as explained in Section 3. 

Rather than weighting the observations of a balanced sample, one may 

consider to take a non-zero cut-off value Bτ  in the bagging and boosting 

algorithms. The value of Bτ  is taken such that the proportion of predicted 

churners in the training sample cπ̂  equals the actual a priori proportion of 

churners cπ . This correction is achieved for bagging (and similarly for boosting) 
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by first sorting the values of )(ˆ xfbag  in the training sample from the largest to the 

smallest value, ( )( ) ( )( ) ( )( )Nbagbagbag xfxfxf ˆˆˆ
21 ≥≥≥ K , and taking  

( )( ) ˆ
jbagB xf=τ , with balanced

cNj = .   (11) 

This latter correction method can also be called intercept correction, by analogy 

to the correction carried out for the logistic regression model when oversampling 

the population of 1=y  (see e.g. Franses and Paap 2001, pp. 73-75). Both 

correction methods will be compared in Section 6. 

Note that, given the high amount of observations in the Teradata 

database, the absolute number of churners in the training set under consideration 

is never insignificant. For example, the proportional training sample still contains 

924 churners. Therefore, even if churn is a rare event, a proportional sampling 

could still be efficient, while, for smaller databases, stratified sampling could be 

more relevant. The third research question (Section 6.3) addresses this issue. 

5. THE ASSESSMENT CRITERIA 

After building a classifier on a training set with bagging or boosting, 

marketers may use it to predict the future churn behaviour of their customers. To 

assess the precision of such predictions, one has to use a test set, as the one 

included in the Teradata database (see Section 2). The principle is that this test 

set has not been used for constructing the classification rules, and will therefore 

give reliable indicators of performance for marketers. Indeed, if one assesses a 

classifier on its respective training set, his judgment could be biased because of 

the overfitting problem. Overfitting means that a classifier fits the idiosyncrasies 
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of the training set too closely. It leads to lower error rates on the training set, but 

at the same time much higher error rates on the test set (more details in Berry 

and Linoff, 1997, pp.79-80). 

Denote ( ) ( ) ( ){ } ,,,,,,, 11 MMii yxyxyx KK  the test set. The scores 

computed for a given classifier are denoted by ( )ixf̂ , and the classifications 

themselves as ( )ixĉ , for Mi ,,1K=  where M  is the size of the test sample. The 

traditional performance criterion is the error rate, counting the percentage of 

incorrectly classified observations in the test set: 

( )[ ]∑
=

≠=
M

i
ii yxcI

M
Error Rate

1

ˆ
1

,   (12) 

where [ ]AI  is an indicator function, equal to 1 when A  is true and zero 

otherwise. For rare events, the error rate is often inappropriate, as already noticed 

by Morrison (1969). For example, a prediction rule stating that nobody churns 

would have an expected error rate of about 1.8% only, which could be falsely 

considered as sufficiently good. Indeed, marketers would not be satisfied with such 

a classification rule that simply does not make any distinction between customers. 

Since all are expected not to churn, no targeted incentives could be undertaken to 

touch the riskiest of the customers. Moreover, error rates do not take the scores 

( )ixf̂  into account, while it is relevant to check whether future churners indeed 

receive the highest scores. In other words, it is important to know if the 

customers that would be targeted with special offerings are indeed the most 

inclined to churn. The top decile and the gini coefficient are appropriate measures 

for assessing this power of “discriminability”.  
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5.1. Top decile 

The top decile only focuses on the top 10% of customers that are predicted 

as most likely to churn. Potentially, this segment is the perfect target for a 

retention marketing campaign. The top decile measures the proportion of 

churners in this top 10% divided by the total proportion of churners in the whole 

test set. Practically, customers are first sorted from the predicted most likely to 

churn to the predicted least likely to churn, i.e. ( ) ( ) ( )Mxfxfxf ˆˆˆ
21 ≥≥≥ K . Then, 

the exact proportion of actual churners from the top 10% predicted most likely to 

churn is computed as 

[ ]∑
=

==
m

i
iyI

m 1
%10 1

1π̂ ,    (13) 

where m  is the number of observations in this top 10% most risky customers, and 

the churn rate across all customers is estimated by 

[ ]∑
=

==
M

i
iyI

M 1

1
1π̂ .     (14) 

Finally, the top decile is obtained by computing the ratio between both 

proportions: 

π
π

ˆ

ˆ
 %10=decileTop .     (15) 

The higher the top decile, the better the classifier. 
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5.2. Gini coefficient 

Another possible measure is the gini coefficient (e.g. Hand 1997, p.134). 

We first determine the fraction of all subscribers having a predicted churn 

probability above a certain threshold. A whole sequence of thresholds is 

considered, each of them given by a predicted score ( )lxf̂ , for M ..., 2, ,1=l , 

resulting in M  proportions 

( ) ( )[ ]∑
=

>=
M

i
lil xfxfI

M 1

ˆˆ1π .   (16) 

The fraction of all churners having predicted churn probability above this 

threshold is also computed for each threshold 

( ) ( )[ ]∑
=

=>=′
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M 1

1 and ˆˆ1π ,   (17) 

with cM  the total number of actual churners in the test set. The gini coefficient 

is then computed as  

( )∑
=

−′=
M

l
llM

tcoefficienGini
1

2
 ππ .    (18) 

The idea behind the gini coefficient consists in giving a larger penalization 

for misclassified customers having high associated predicted probability to churn, 

than for those with low associated predicted probability. For marketers, it is 

indeed important to maximize the number of future churners that would be 

targeted by incentives and, on the other hand, to minimize the amount of 

customers that would be targeted while they are not potential churners. The 

latter could have as a consequence that a company would “waste” money by 
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offering special incentives to customers that would not be willing to leave the 

company in the next future.  

6. RESULTS 

This section addresses the three research questions exposed in Section 1. It 

will be shown (i) that both bagging and boosting techniques significantly improve 

the classification performance, (ii) that the correction methods for a balanced 

training sample reduce the classification error rate, and (iii) that the use of a 

balanced training sample improves the forecasting accuracy of the bagging 

procedure, while this was not confirmed for boosting. Details for the computation 

of these classifiers were described in the methodological Section 3.   

6.1. Do bagging and boosting improve the performance of the initial base 

classifier for churn prediction? 

Classification or regression trees, also known as CART, are common 

classifiers, elaborated by Breiman et al. (1984). Decision trees can be used in 

several marketing applications such as market segmentation, consumer choice 

modelling or purchase timing modelling (see e.g. Baines 2003; Currim, Meyer and 

Le 1988; Haughton and Oulabi 1993; Newman and Staelin 1971). Bagging and 

boosting will be done by sequentially applying the CART algorithm4 to the 

resampled or reweighted training data, resulting in a bagged or boosted classifier. 

This classifier gives an associated score ( )xf , i.e. the propensity to churn, to each 

observation, as well as a classification outcome ( )xc , the latter being +1 or —1. 

                                                 
4 As implemented in the statistical software package Splus. 
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We compute the gini coefficient and the top decile on the test set in order to 

evaluate the gain in performance obtained from bagging and boosting. In the 

bagging and boosting literature, results are usually presented as a function of B , 

the number of iterations performed in the procedure. Figure 1 represents both 

performance criteria against the number of iterations of bagging or boosting (Real 

Adaboost and Stochastic Gradient Boosting). The training set under 

consideration is the proportional sample. 

[Insert Figure 1 about here] 

The horizontal line in Figure 1 represents the performance of the initial 

classifier. It is constant since it is only computed once. Bagging and boosting 

clearly outperform such a classical decision tree, confirming hereby many other 

examples (e.g. Hastie, Tibshirani and Friedman 2001, pp.246-249 & 299-345). 

Bagging and boosting already perform better than the CART classifier after a few 

iterations, with respect to the gini coefficient as well as the top decile. When the 

number of iterations approaches 50, the value of both criteria stabilizes, 

confirming that 50=B  is an acceptable default choice. 

 The Stochastic Gradient Boosting classifier achieves here the best 

performance, for the gini coefficient as well as the top decile. Figure 2 reports the 

error rate (on the test set) as a function of the number of iterations. Due to the 

rarity of the churn event, all error rates are small and difficult to distinguish. As 

explained in Section 5, only looking at the error rate is misleading here. Indeed, 

no clear difference between the performances of the three final classifiers appears, 

while a significant difference was clearly visible for the gini coefficient and the top 

decile measures.  
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[Insert Figure 2 about here] 

6.2. Does the use of a balanced training sample request an appropriate 

correction? How do perform the two corrections discussed in Section 4?  

Two corrections were envisaged to adapt the predicted probabilities 

obtained by using a balanced training sample. Using any of these two corrections 

provides a very significant improvement of the error rate, as illustrated in Figure 

3. Without a correction, the classification error is unreasonably high, i.e. about 

40%. Using any of both correction methods brings the classification error rate to 

more reasonable proportions. 

[Insert Figure 3 about here] 

Since a correction is necessary, we also would like to assess the relative 

performance of both corrections: the correction by weighting of the sample versus 

the use of a non-zero cut-off value Bτ . The assessment is first done for the 

bagging classifier. While the error rate hardly distinguished which correction 

method works best (see Figure 3), the gini coefficient and the top decile provide 

more evidence about the best correction to use. Figure 4 reports the gini 

coefficient and the top decile for a bagged classifier trained on the balanced 

training sample, respectively corrected by weighting or with intercept correction. 

One may observe that the intercept correction outperforms the weighting 

correction.  

[Insert Figure 4 about here] 
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For boosting, both correction methods comparatively perform (see Figure 

5). Note that, since the gini coefficient and the top decile only use the relative 

ranking of the attributed scores, their values for uncorrected bagging/boosting 

and bagging/boosting with intercept correction are identical. 

[Insert Figure 5 about here] 

Reweighting the observations from a balanced training sample makes it 

representative of the real-life population of customers. This approach is 

statistically valid, but cancels the advantage relative to the balanced sampling. 

Further experiments showed that reweighting observations of a balanced training 

sample, in fact, gave similar results than working with a proportional training 

sample of the same size. Given these results, the intercept correction will be 

applied to handle the third question.  

6.3. How do the predictions from the proportional and the balanced training data 

comparatively perform? 

It is often advised to construct a more efficient classifier from a balanced 

training sample when the variable to be predicted consists of a rare event, like 

churn. This third research question puts this statement into question when using 

bagging and boosting classifiers. We compare the performance of balanced and 

proportional classifiers on two criteria, the gini coefficient and the top decile. As 

already mentioned above, we build the classifiers on the same number of 

observations (i.e. 51,306 customers) in order to ensure a fair comparison. 
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Figure 6 represents the gini coefficient as well as the top decile of two 

classifiers constructed on the basis of the bagging algorithm. Results indicate that 

the balanced sampling scheme is recommended. For the error rate (not reported 

here), results for both classifiers are again very close to each other. 

[Insert Figure 6 about here] 

Figure 7 reports similar results as Figure 6, but now for the Stochastic 

Gradient Boosting algorithm5, respectively computed from the balanced and the 

proportional training samples. Fixing the number of iterations at 50=B , Figure 

7 illustrates that a proportional sample provides, in this case, better results. 

Moreover, we did find out that the initial weighting correction gives slightly 

better results than intercept correction for boosting. When comparing bagging 

and Stochastic Gradient Boosting applied to the balanced sample, it appears that 

bagging performs slightly better here, while, for the proportional sample, Boosting 

clearly outperforms bagging. Note that it is not possible to find a universally best 

classifier, since performance always depends on the dataset under consideration. 

[Insert Figure 7 about here] 

7. MARKETING IMPLICATIONS AND CONCLUSIONS 

The aim of this paper was to bring some new developments from the 

machine learning and statistical classification literature under the attention of 

marketing researchers. We used one of the simplest versions of aggregated 

                                                 
5 For Real Adaboost, we do not wish to generalize these statements, given the observed instabilities during 
the boosting iterations. 
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classifiers, i.e. bagging, one of the most standard version of boosting, i.e. Real 

Adaboost, as well as one of most recent algorithms of this emerging research field, 

i.e. Stochastic Gradient Boosting. Bagging is an easy procedure aimed at 

increasing the classification performance of an initial classifier, by repeatedly 

applying this classifier to bootstrapped versions of the training sample. Boosting 

algorithms are most sophisticated versions using weighted sampling schemes. 

In this paper, we found that, when predicting churn, bagging and boosting 

provide substantially better classifiers than a CART decision tree. It has been 

shown that the Stochastic Gradient Boosting scheme yields superior results in 

some cases. Our feeling, however, is that the simple bagging algorithm already 

gives reliable and stable results. Moreover, it is a transparent procedure in the 

tradition of the bootstrap (more details in Efron and Tibshirani 1993) and well 

suited for practitioners which are non-experts in modern classification techniques. 

Another contribution of this paper is the study of the appropriateness of a 

balanced training sample compared to a proportional sample, when predicting 

rare events, like churn. For smaller data sets, it is clear that a balanced sample 

can increase precision (see e.g. Donkers, Franses and Verhoef 2003).  However, for 

churn prediction in the telecom industry, one typically has enormous databases, 

allowing to have enough churners even under a proportional sampling scheme. We 

found that bagging still found profit from balanced samples, while selective 

sampling did not increase efficiency for boosting. For bagging, in contrast to 

boosting, balanced sampling indeed provides better gini coefficients and top 

deciles than proportional sampling.  However, to maintain the classification error 

rate at a reasonable level, it is indispensable to correct the predictions obtained 

from a balanced sample with an intercept correction, as discussed in Section 4.  
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Companies should profit from the bagging and boosting algorithms in the 

elaboration of their retention strategy. For example, it was shown (Figure 1) that 

the gini coefficient, an appropriate measure in the context of churn prediction, got 

a relative increase of about 55% after running the bagging iterations with respect 

to a single tree, and about 110% for Stochastic Gradient Boosting. The relative 

increase for the top decile measure was about 28% with respect to a single tree 

classifier, about 69% for Stochastic Gradient Boosting. Moreover, this 

performance gain only requires an increased computing time, linearly growing 

with the number of iteration steps B.  

If companies are able to identify more accurately the potential churners, 

they should be able to more precisely target these with special incentives and to 

translate the improved prediction accuracy into real profits. Indeed, if churn 

prediction belongs to a fully integrated Business Intelligence process, including an 

efficient data management, a proper data analysis (e.g. bagging or boosting), and 

the appropriate subsequent marketing decisions about adequate incentives aimed 

at future churners, profits can be huge. 



Figure 1: Gini coefficient (left) and top decile (right) on the test set for bagging, Real Adaboost, Stochastic Gradient Boosting and 

a single CART tree 
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Figure 2: Error rate on the test set for bagging, Real Adaboost, 

Stochastic Gradient Boosting and a single CART tree 

Figure 3: Error rate on the test set for bagging with intercept 

correction, for reweighted bagging and for uncorrected bagging. 
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Figure 4: Gini coefficient (left) and top decile (right) on the test set for bagging with intercept correction and for reweighted 

bagging.  
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Figure 5: Gini coefficient (left) and top decile (right) on the test set for intercept corrected or reweighted Stochastic Gradient 

Boosting.  
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Figure 6: Gini coefficient (left) and top decile (right) on the test set for bagging with a balanced or a proportional training sample 
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Figure 7: Gini coefficient (left) and top decile (right) on the test set for Stochastic Gradient Boosting with a balanced and a 

proportional training sampling 

0 10 20 30 40 50

Number of iterations

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

G
in

i c
oe

ffi
ci

en
t

Balanced (intercept correction)
Proportional

Stochastic Gradient Boosting

 

0 10 20 30 40 50

Number of iterations

1.
2

1.
4

1.
6

1.
8

2.
0

2.
2

2.
4

To
p 

de
ci

le

Balanced (intercept correction)
Proportional

Stochastic Gradient Boosting

 



REFERENCES 

Athanassopoulos, Antreas D. (2000), “Customer Satisfaction Cues to Support 

Market Segmentation and Explain Switching Behavior”, Journal of Business 

Research, 47, 191-207. 

Baines Paul R., Worcester Robert M., Jarrett David and Roger Mortimore 

(2003), “Market Segmentation and Product Differentiation in Political 

Campaigns: A Technical Feature Perspective”, Journal of Marketing 

Management, 19, 225-249.  

Bauer Eric and Ron Kohavi (1999), “An Empirical Comparison of Voting 

Classification Algorithms: Bagging, Boosting and Variants”, Machine Learning, 

36, 105-142. 

Bauer, Connie L. (1988), “A Direct Mail Customer Purchase Model”, Journal of 

Direct Marketing, 2, 16-24. 

Berry Michael J.A. and Gordon Linoff (1997), Data Mining Techniques for 

Marketing, Sales and Customer Support, New York: Wiley Computer Publishing.  

Bhattacharya, C.B. (1998), “When Customers are Members: Customer Retention 

in Paid Membership Contexts”, Journal of the Academy of Marketing Science, 26, 

31-44. 

Bolton Ruth N., P.K. Kannan and Matthew D. Bramlett (2000), “Implications of 

Loyalty Program Membership and Service Experiences for Customer Retention 

and Value”, Journal of the Academy of Marketing Science, 28, 95-108. 



 37

Breiman, Leo (1996), “Bagging Predictors”, Machine Learning, 26, 123-140. 

---- (1999), “Random Forests - Random Features”, Technical Report 567, 

Department of Statistics, University of California, Berkeley, September. 

----, Jerome .H. Friedman, Richard A. Olshen, and Charles J. Stone (1984), 

Classification and Regression Trees, Wadsworth Belmont CA. 

Bühlmann Peter and Bin Yu. (2002), “Analysing Bagging”, Annals of Statistics, 

30, 927-961.  

Business Week Online (2002), “Who’ll Survive the Cellular Crisis”, February 15. 

Colgate Mark R. and Peter J. Danaher (2000), “Implementing a Customer 

Relationship Strategy: The Asymmetric Impact of Poor versus Excellent 

Execution”, Journal of the Academy of Marketing Science, 28, 375-387. 

Cosslett, S.R. (1993), “Estimation from Endogenously Stratified Samples”, in 

Maddala G.S., C.R. Rao and H.D. Vinod (eds), Handbook of Statistics, Vol. 11, 

Elsevier Science Publishers. 

Cullinan, G. J. (1977), Picking Them by Their Batting Averages’ Recency — 

Frequency — Monetary Method of Controlling Circulation, manual release 2103, 

New York: Direct Mail/Marketing Association. 

Currim Imran S., Meyer Robert J. and Nhan T. Le (1988), “Disaggregate Tree-

Structure Modelling of Consumer Choice Data”, Journal of Marketing Research, 

25, 253-265.  



 38

Donkers Bas, Philip H. Franses, and Peter Verhoef (2003), “Selective Sampling 

for Binary Choice Models”, Journal of Marketing Research, 40, 492-497. 

Efron Brad and Robert Tibshirani (1993), An Introduction to the Bootstrap, New 

York: Chapman and Hall. 

Franses Philip H. and Richard Paap (2001), Quantitative Models for Marketing 

Research, Cambridge: Cambridge University Press, 73-75. 

Freund Yoav & Robert E. Schapire (1996), “Experiments with a New Boosting 

Algorithm”, In Proceedings of the 13th International Conference on Machine 

Learning, 148-156. 

Friedman, Jerome H. (2002), “Stochastic Gradient Boosting”, Computational 

Statistics and Data Analysis, 38, 367-378 

----, Trevor Hastie & Robert Tibshirani (2000), “Additive Logistic Regression: a 

Statistical View of Boosting”, The Annals of Statistics, 28, 337-407. 

---- (2001), “Greedy Function Approximation: A Gradient Boosting Machine”, 

The Annals of Statistics, 29, 1189-1232. 

Ganesh Jaishankar, Mark J. Arnold and Kristy E. Reynolds (2000), 

“Understanding the Customer Base of Service Providers: An Examination of the 

Differences between Switchers and Stayers”, Journal of Marketing, 65, 65-87. 

Gupta Sunil, Wagner Kamakura, Junxiang Lu, Charlotte Mason and Scott A. 

Neslin (2003), "Churn Modelling Tournament", paper presented at Marketing 

Science Conference, University of Maryland.  



 39

Hand, David J. (1997), Construction and Assessment of Classification Rules, 

Chichester: Wiley Series in Probability and Statistics. 

Hastie Trevor, Robert Tibshirani and Jerome Friedman (2001), The Elements of 

Statistical Learning: Data Mining, Inference and Prediction, New York: Springer-

Verlag. 

Haughton Dominique and Samer Oulabi (1993), “Direct marketing modelling with 

CART and CHAID”, Journal of Direct Marketing, 7, 16- 26. 

Hawley, David (2003), “International Wireless Churn Management Research and 

Recommendations”, Yankee Group report, June.  

Imbens Guido W. and Tony Lancaster (1996), “Efficient Estimation and 

Stratified Sampling”, Journal of Econometrics, 74, 289-318. 

Lysne, Alan (2002), “Chopping Churn With Care”, Wireless Week, May 27. 

Morrison, Donald G. (1969), “On the Interpretability of Discriminant Analysis”, 

Journal of Marketing Research, 6, 156-163. 

Nardiello Pio, Fabrizio Sebastiani, and Alessandro Sperduti (2003), “Discretizing 

Continuous Attributes in AdaBoost for Text Categorization”, Proceedings of 

ECIR-03, 25th European Conference on Information Retrieval, Pisa, Italy, 320-

334. 

Newman Joseph W. and Richard Staelin (1971), “Multivariate Analysis of 

Differences in Buyer Decision Time”, Journal of Marketing Research, 8, 192-198. 



 40

Reinartz Werner and Vishesh Kumar (2002), “The Mismanagement of Customer 

Loyalty”, Harvard Business Review, July, pp. 86-97 

SAS Institute (2001), “Enterprise Miner Reference”, SAS. 

Schapire Robert E. and Yoram Singer (1998), “Improved Boosting Algorithms 

using Confidence-rated Predictions”, in Proceedings of the Eleventh Annual 

Conference on Computational Learning Theory. 

Scott Alastair J. and Chris J. Wild (1997), “Fitting Regression Models to Case-

Control Data by Maximum Likelihood”, Biometrika, 84, 57-71. 

Snel, Ross (2000), "Fighting the Fickle", The Wall Street Journal Europe, 

September 18. 

Telephony Online (2002), “Standing by Your Carrier”, March 19. 

Ting Kai Ming and Zijian Zheng (1999), “Improving the Performance of Boosting 

for Naive Bayesian Classification”, In Proceedings of Pacific-Asia Conference on 

Knowledge Discovery and Data Mining ’99 Berlin, Springer-Verlag. 

Van den Poel, Dirk (2003), “Predict Mail-Order Repeat Buying: Which Variables 

Matter?”, Tijdschrift voor Economie en Management, 48, 371-403. 

Varmuza Kurt, Ping He and Kai-Tai Fang (2003), “Boosting Applied to 

Classification of Mass Spectral Data”, Journal of Data Science, 1, 391-404. 

Viaene Stijn, Richard A. Derrig and Guido Dedene (2002). “Boosting Naive Bayes 

for Claim Fraud Diagnosis”, in Lecture Notes in Computer Science 2454, Berlin: 

Springer. 


