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1. INTRODUCTION 

Similar to many research and application fields, geography has moved from a data-poor and 

computation-poor to a data-rich and computation-rich environment. The scope, coverage and 

volume of digital geographic datasets are growing rapidly.  Public and private sector agencies are 

creating, processing and disseminating digital data on land use, socioeconomic and infrastructure 

at very detailed levels of geographic resolution. New high spatial and spectral resolution remote 

sensing systems and other monitoring devices are gathering vast amounts of geo-referenced 

digital imagery, video, and sound.  Geographic data collection devices linked to global 

positioning system receivers allow field researchers to collect unprecedented amounts of data. 

Position aware devices such as cell phones, in-vehicle navigation systems and wireless Internet 

clients allow tracking of individual movement behavior in space and time.  Information 

infrastructure initiatives such as the U. S. National Spatial Data Infrastructure are facilitating data 

sharing and interoperability.  Digital geographic data repositories on the World Wide Web are 

growing rapidly in both number and scope. The amount of data that geographic information 

processing systems can handle will continue to increase exponentially through the mid-21st 

century.  

Traditional spatial analytical methods were developed in an era when data collection was 

expensive and computational power was weak.  The increasing volume and diverse nature of 
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digital geographic data easily overwhelm mainstream spatial analysis techniques that are oriented 

towards teasing scarce information from small and homogenous datasets.  Traditional statistical 

methods, particularly spatial statistics, have high computational burdens.  These techniques are 

confirmatory and require the researcher to have a priori hypotheses.  Therefore, traditional spatial 

analytical techniques cannot easily discover new and unexpected patterns, trends and 

relationships that can be hidden deep within very large and diverse geographic datasets. 

In March 1999, the National Center for Geographic Information and Analysis (NCGIA) – 

Project Varenius held a workshop on “Discovering geographic knowledge in data-rich 

environments” in Kirkland, Washington.  The workshop brought together a diverse group of 

stakeholders with interests in developing and applying computational techniques for exploring 

large, heterogeneous digital geographic datasets.  This includes geographers, geographic 

information scientists, computer scientists and statisticians.  This book is a result of that 

workshop.  This volume brings together some of the cutting-edge research from the diverse 

stakeholders working in the area of geographic data mining and geographic knowledge discovery 

in a data-rich environment. 

This chapter provides an introduction to geographic data mining and geographic knowledge 

discovery (GKD).  In this chapter, we provide an overview of knowledge discovery from 

databases (KDD) and data mining.  We also provide an overview of the highly interesting special 

case of geographic knowledge discovery and geographic data mining.  We identify why 

geographic data is a non-trivial special case that requires special consideration and techniques.  

We also review the current state-of-the-art in GKD, including the existing literature and the 

contributions of the chapters in this volume.      

 

2. KNOWLEDGE DISCOVERY AND DATA MINING 

In this section of the chapter, we provide a general overview of knowledge discovery and data 

mining.  We begin with an overview of knowledge discovery from databases (KDD), highlighting 
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its general objectives and its relationship to the field of statistics and the general scientific 

process.  We then identify the major stages of the KDD processing, including data mining.  We 

classify major data mining tasks and discuss some techniques available for each task.  We 

conclude this section by discussing the relationships between scientific visualization and KDD.   

 

2.1. Knowledge discovery from databases  

Knowledge discovery from databases (KDD) is a response to the enormous volumes of data being 

collected and stored in operational and scientific databases.  Continuing improvements in 

information technology (IT) and its widespread adoption for process monitoring and control in 

many domains is creating a wealth of new data.  There is often much more information in these 

databases than the “shallow” information being extracted by traditional analytical and query 

techniques.  KDD leverages investments in IT by searching for deeply hidden information that 

can be turned into knowledge for strategic decision-making and answering fundamental research 

questions.        

KDD is better known through the more popular term “data mining.”  However, data mining 

is only one component (albeit a central component) of the larger KDD process.  Data mining 

involves distilling data into information or facts about the mini-world described by the database.  

KDD is the higher-level process of obtaining information through data mining and distilling this 

information into knowledge (ideas and beliefs about the mini-world) through interpretation of 

information and integration with existing knowledge.  

KDD is based on a belief that information is hidden in very large databases in the form of 

interesting patterns. These are non-random properties and relationships that are valid, novel, 

useful and ultimately understandable.  Valid means that the pattern is general enough to apply to 

new data; it is not just an anomaly of the current data.  Novel means that the pattern is non-trivial 

and unexpected.  Useful implies that the pattern should lead to some effective action: rather than 

searching for any valid and novel pattern, KDD should inform decision making and scientific 
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investigation.  Ultimately understandable means that the pattern should be simple and 

interpretable by humans (Fayyad, Piatetsky-Shapiro and Smyth 1996).  

KDD is also based on the belief that traditional database queries and statistical methods 

cannot reveal interesting patterns in very large databases.  One reason is the type of data that 

increasingly comprise enterprise databases.  Another reason is the novelty of the patterns sought 

in KDD.  

KDD goes beyond the traditional domain of statistics to accommodate data not normally 

amenable to statistical analysis. Statistics usually involves a small and clean (noiseless) numeric 

database scientifically sampled from a large population with specific questions in mind.  Many 

statistical models require strict assumptions (such as independence, stationarity of underlying 

processes and normality).  In contrast, the data being collected and stored in many enterprise 

databases are noisy, non-numeric and possibly incomplete.  These data are also collected in an 

open-ended manner without specific questions in mind (Hand 1998).  KDD encompasses 

principles and techniques from statistics, machine learning, pattern recognition, numeric search 

and scientific visualization to accommodate the new data types and data volumes being generated 

through information technologies. 

KDD is more strongly inductive than traditional statistical analysis.  The generalization 

process of statistics is embedded within the broader deductive process of science.  Statistical 

models are confirmatory, requiring the analyst to specify a model a priori based on some theory, 

test these hypotheses and perhaps revise the theory depending on the results.  In contrast, the 

deeply hidden, interesting patterns being sought in a KDD process are (by definition) difficult or 

impossible to specify a priori, at least with any reasonable degree of completeness.  KDD is more 

concerned about prompting investigators to formulate new predictions and hypotheses from data 

as opposed to testing deductions from theories through a sub-process of induction from a 

scientific database (Elder and Pregibon 1996; Hand 1998). A rule-of-thumb is that if the 
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information being sought can only be vaguely described in advance, KDD is more appropriate 

than statistics (Adriaans and Zantinge 1996). 

KDD more naturally fits in the initial stage of the deductive process when the researcher 

forms or modifies theory based on ordered facts and observations from the “real world.”  In this 

sense, KDD is to information space as microscopes, remote sensing and telescopes are to atomic, 

geographic and astronomical spaces, respectively: KDD is a tool for exploring domains that are 

too difficult to perceive with unaided human abilities.  For searching through a large information 

wilderness, the powerful but focused laser beams of statistics cannot compete with the broad but 

diffuse floodlights of KDD.  However, floodlights can cast shadows and KDD cannot compete 

with statistics in confirmatory power once the pattern is discovered. 

 
2.2. Data warehousing 

An infrastructure that often underlies the KDD process is the data warehouse (DW).  A DW is a 

repository that integrates data from one or more source databases.  The data-warehousing 

phenomenon results from several technological and economic trends, including the decreasing 

cost of data storage and data processing, and the increasing value of information in business, 

governmental and scientific environments.  A DW usually exists to support strategic and 

scientific decision-making based on integrated, shared information, although DWs are also used 

to save legacy data for liability and other purposes (see Jarke at al. 2000).   

The data in a DW are usually read-only historical copies of the operational databases in an 

enterprise, sometimes in summary form.   Consequently, a DW is often several orders of 

magnitude larger than an operational database (Chaudhuri and Dayal 1997).   Rather than just a 

very large database management system, a DW embodies very different database design 

principles than operational databases. 

Operational database management systems are designed to support transactional data 

processing, that is, data entry, retrieval and updating.  Design principles for transactional database 



Page 6 of 48 
Filename: GKD Chapter 1 v8. Last save: 9-21-2000 7:41 AM 

systems attempt to create a database that is internally consistent and recoverable (i.e., can be 

“rolled-back” to the last known internally consistent state in the event of an error or disruption).  

These objectives must be met in an environment where multiple users are retrieving and updating 

data.  For example, the normalization process in relational database design decomposes large, 

“flat” relations along functional dependencies to create smaller, parsimonious relations that 

logically store a particular item a minimal number of times (ideally, only once; see Silberschatz, 

et al. 1997).  Since data are stored a minimal number of times, there is a minimal possibility of 

two data items about the same real-world entity disagreeing (e.g., if only one item is updated due 

to user error or an ill-timed system crash).   

In contrast to transactional database design, good DW design maximizes the efficiency of 

analytical data processing or data examination for decision making.  Since the DW contains 

read-only copies and summaries of the historical operational databases, consistency and 

recoverability in a multi-user transactional environment are not issues. The database design 

principles that maximize analytical efficiency are contrary to those that maximize transactional 

stability. Acceptable response times when repeatedly retrieving large quantities of data items for 

analysis require the database to be non-normalized and connected; examples include the “star” 

and “snowflake” logical DW schemas  (see Chaudhuri and Dayal 1997).  The DW is in a sense a 

buffer between transactional and analytical data processing, allowing efficient analytical data 

processing without corrupting the source databases (Jarke et al. 2000).  

In addition to data mining, a DW often supports online analytical processing (OLAP) tools.  

OLAP tools provide multidimensional summary views of the data in a DW.  OLAP tools allow 

the user to manipulate these views and explore the data underlying the summarized views.  

Standard OLAP tools include roll-up (increasing the level of aggregation), drill-down (decreasing 

the level of aggregation), slice and dice (selection and projection) and pivot (re-orientation of the 

multidimensional data view) (Chaudhuri and Dayal 1997).  OLAP tools are in a sense a type of 

“super-queries”: more powerful than standard query language such as SQL but shallower than 
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data mining techniques since they do not reveal hidden patterns.  Nevertheless, OLAP tools can 

be an important part of the KDD process.  For example, OLAP tools can allow the analyst to 

achieve a synoptic view of the DW that can help specify and direct the application of data mining 

techniques (Adriaans and Zantinge 1996).  

A powerful and commonly applied OLAP tool for multidimensional data summary is the 

data cube.  Given a particular measure (e.g., “sales”) and some dimensions of interest (e.g., 

“item”, “store,” “week”) a data cube is an operator that returns the power set of all possible 

aggregations of the measure with respect to the dimensions of interest.  These include 

aggregations over 0-dimensions (e.g., “total sales”), 1-dimension (e.g., “total sales by item,” 

“total sales by store”, “total sales per week”), 2-dimensions (e.g., “total sales by item and store”) 

and so on up to N-dimensions. (In the present example, N = 3, with the corresponding 

aggregations “total sales by item and store and region”).  The data cube is an N-dimensional 

generalization of the more commonly known SQL aggregation functions and “Group-By” 

operator.  However, the analogous SQL query only generates the zero and one-dimensional 

aggregations; the data cube operator generates these and the higher dimensional aggregations all 

at once (Gray et al. 1997).  

The power set of aggregations over selected dimensions is called a “data cube” since the 

logical arrangement of aggregations can be viewed as a hypercube in an N-dimensional 

information space (see Gray et al. 1997, Figure 2; Shekhar et al. this volume).   The data cube can 

be pre-computed and stored in its entirety, computed “on-the-fly” only when requested, or 

partially pre-computed and stored (see Harinarayan, Rajaman and Ullman 1996).  The data cube 

can support standard OLAP operations including roll-up, drill-down, slice, dice and pivot 

operations on measures computed by different aggregation operators, such as max, min, average, 

top-10, variance, and so on. 

  

2.3. The KDD process and data mining 
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The KDD process usually consists of several generic steps, namely, data selection, data pre-

processing, data enrichment, data reduction and projection, and interpretation and reporting.  

These steps may not be necessarily executed in linear order.  Stages may be skipped or revisited.  

Ideally, KDD should be a human-center process based on the available data, the desired 

knowledge and the intermediate results obtained during the process (see Adriaans and Zantinge 

1996; Brachman and Anand 1996; Fayyad, Piatetsky-Shapiro and Smyth 1996; Matheus, Chan 

and Piatetsky-Shapiro 1993).   

Data selection refers to determining a subset of the records or variables in a database for 

knowledge discovery. Particular records or attributes are chosen as foci for concentrating the data 

mining activities. Automated data reduction or “focusing” techniques are also available (see 

Barbara et al. 1997, Reinartz 1999).   Data pre-processing involves “cleaning” the selected data 

to remove noise, eliminating duplicate records, and determining strategies for handling missing 

data fields and domain violations. The pre-processing step may also include data enrichment 

through combining the selected data with other, external data (e.g., census data, market data).  

Data reduction and projection concerns both dimensionality and numerosity reductions to further 

reduce the number of attributes or tuples or transformations to determine equivalent but more 

efficient representations of the information space. Smaller, less redundant and more efficient 

representations enhance the effectiveness of the data mining stage that attempts to uncover the 

information (interesting patterns) in these representations.  The interpretation and reporting stage 

involves evaluating, understanding and communicating the information discovered in the data 

mining stage.  

Data mining refers to the application of low-level algorithms for revealing hidden 

information in a database (Klösgen and Żytkow 1996).  There are many types of data mining 

techniques and many ways to classify these techniques. Table 1-1 provides a possible 

classification of data mining tasks and techniques.  See Matheus, Chan and Piatetsky-Shapiro 

(1993), Fayyad, Piatetsky-Shapiro and Smyth (1996) as well as several of the chapters in this 
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current volume for other overviews and classifications of data mining techniques.  Also see 

Goebel and Gruenwald (1999) for an overview of techniques and a survey of available software 

tools for KDD and data mining.  

 

Data mining task Description Techniques 

Segmentation Clustering: Determining a finite 

set of implicit classes that 

describes the data.  

Classification:  Mapping data 

items into predefined classes 

•  Cluster analysis 

•  Bayesian classification 

•  Decision or classification trees 

•  Artificial neural networks  

Dependency 

analysis 

Finding rules to predict the value 

of some attribute based on the 

value of other attributes  

•  Bayesian networks 

•  Association rules 

Deviation and 

outlier analysis 

Finding data items that exhibit 

unusual deviations from 

expectations   

•  Clustering and other data 

mining methods 

•  Outlier detection 

Trend detection Lines and curves summarizing the 

database, often over time 

•  Regression 

•  Sequential pattern extraction 

Generalization and 

characterization 

Compact descriptions of the data •  Summary rules 

•  Attribute-oriented induction 

Table 1-1: Data mining tasks and techniques 

Segmentation involves partitioning the selected data into meaningful groupings or 

classes.  This can require two major subtasks.  Clustering determines a finite set of implicit 

classes that describe the database by examining relationships between data items. Classification 

refers to finding rules to assign data items into pre-existing classes.  Some authors consider 
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clustering and classification to be separate data mining tasks.  However, there can be a great deal 

of overlap and therefore we consider them together as two subtasks of the larger "segmentation" 

task.  

The commonly used data mining technique of cluster analysis determines a set of classes 

and assignments to these classes based on the relative proximity of data items in the information 

space.  Cluster analysis methods for data mining must accommodate the large data volumes and 

high dimensionalities of interest in data mining; this usually requires statistical approximation or 

heuristics  (see Farnstrom, Lewis and Elkan 2000; Han, Kamber and Tung, this volume).   

Bayesian classification methods, such as AutoClass, determine classes and a set of weights or 

class membership probabilities for data items (see Cheesman and Stutz 1996). Decision or 

classification trees are hierarchical rule sets that generate an assignment for each data item with 

respect to a set of known classes.  Entropy-based methods such as ID3 and C4.5 (Quinlan 1986, 

1992) derive these classification rules from training examples.  Statistical methods include the 

Chi-square Automatic Interaction Detector (CHAID) (Kass 1980) and the Classification and 

Regression Tree (CART) method (Beiman et al. 1984).  Artificial neural networks (ANN) can be 

used as non-linear clustering and classification techniques.  Unsupervised ANNs such as 

Kohonen Maps are a type of neural clustering where weighted connectivity after training reflects 

proximity in information space of the input data (see Flexer 1999).  Supervised ANNs such as the 

well-known feedforward/backpropagation architecture require supervised training to determine 

the appropriate weights (response function) to assign data items into known classes.   

 Dependency analysis involves finding rules to predict the value of some attribute based 

on the value of other attributes (Ester, Kriegel and Sander 1997).  Bayesian networks are 

graphical models that maintain probabilistic dependency relationships among a set of variables.  

These networks encode a set of conditional probabilities as directed acyclic networks with nodes 

representing variables and arcs extending from cause to effect.  We can infer these conditional 

probabilities from a database using several statistical or computational methods depending on the 
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nature of the data (see Buntine 1996; Heckerman 1997).  Association rules are a particular type of 

dependency relationship.  An association rule is an expression YX ⇒ (c%, r%) where X and Y 

are disjoint sets of items from a database, c% is the confidence and r% is the support. Confidence 

is the proportion of database transactions containing X that also contain Y; in other words, the 

conditional probability )( XYP .  Support is proportion of database transactions that contain X 

and Y, i.e., the union of X and Y, ( )YXP ∪  (see Hipp, Güntzer and Nakhaeizadeh 2000).  

Mining association rules is a difficult problem since the number of potential rules is exponential 

with respect to the number of data items.  Algorithms for mining association rules typically use 

breadth-first or depth-first search with branching rules based on minimum confidence or support 

thresholds (see Agrawal et. al 1996; Hipp, Güntzer and Nakhaeizadeh 2000). 

Deviation and outlier analysis involves searching for data items that exhibit unexpected 

deviations or differences from some norm.  The motivation is that these cases are either errors 

that should be corrected/ignored or represent unusual cases that are worthy of additional 

investigation.  Outliers are often a byproduct of other data mining methods, particularly cluster 

analysis.  However, rather than treating these cases as “noise,” special-purpose outlier detection 

methods search for these unusual cases as signals conveying valuable information (see Breuing et 

al. 1999; Ng, this volume).  

Trend detection typically involves fitting lines and curves to the data, including linear and 

logistic regression analysis that are very fast and easy to estimate.  These methods are often 

combined with filtering techniques such as stepwise regression.  Although the data often violates 

the stringent regression assumptions, violations are less critical if the estimated model is used for 

prediction rather than explanation (i.e., estimated parameters are not used to explain the 

phenomenon).  Sequential pattern extraction explores time series data looking for temporal 

correlations or pre-specified patterns (such as curve shapes) in a single temporal data series (see 

Agrawal and Srikant 1995; Berndt and Clifford 1996).      
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Generalization and characterization are compact descriptions of the database.  As the 

name implies, summary rules are a relatively small set of logical statements that condense the 

information in the database.  The previously discussed classification and association rules are 

specific types of summary rules.  Another type is a characteristic rule: this is an assertion that 

data items belonging to a specified concept have stated properties, where “concept” is some state 

or idea generalized from particular instances (Klösgen and Żytkow 1996).  An example is “all 

professors in the applied sciences have high salaries.”  In this example, “professors” and “applied 

sciences” are high-level concepts (as opposed to low-level measured attributes such as "assistant 

professor" and "computer science") and “high salaries” is the asserted property (see Han, Cai and 

Cercone 1993).      

A powerful method for finding many types of summary rules is attribute-oriented 

induction (also known as generalization-based mining).  This strategy performs hierarchical 

aggregation of data attributes, compressing data into increasingly generalized relations.  Data 

mining techniques can be applied at each level to extract features or patterns at that level of 

generalization (Han and Fu 1996).  Background knowledge in the form of a concept hierarchy 

provides the logical map for aggregating data attributes.  A concept hierarchy is a sequence of 

mappings from low-level to high-level concepts.  It is often expressed as a tree whose leaves 

correspond to measured attributes in the database and the root representing the null descriptor 

(“any”).  Concept hierarchies can be derived from experts or from data cardinality analysis (Han 

and Fu 1996). 

 

2.5. Visualization and knowledge discovery 

KDD is a complex process.  The mining metaphor is appropriate: information is buried deeply in 

a database and extracting it requires skilled application of an intensive and complex suite of 

extraction and processing tools.  Selection, pre-processing, mining and reporting techniques must 

be applied in an intelligent and thoughtful manner based on intermediate results and background 



Page 13 of 48 
Filename: GKD Chapter 1 v8. Last save: 9-21-2000 7:41 AM 

knowledge.  Despite attempts at quantifying concepts such as "interestingness" (e.g., Silberschatz 

and Tuzhilin 1996), the KDD process is difficult to automate.  KDD requires a high-level, most 

likely human, intelligence at its center (see Brachman and Anand 1996).    

Visualization is a powerful strategy for integrating high-level human intelligence and 

knowledge into the KDD process.  The human visual system is extremely effective at recognizing 

patterns, trends and anomalies.  The visual acuity and pattern spotting capabilities that humans 

acquired for throwing objects at prey and recognize stalking predators can also be exploited in 

many stages of the KDD process, including OLAP, query formulation, technique selection and 

interpretation of results.  These capabilities have yet to be surpassed by machine-based 

approaches (Gahegan 2000b, this volume; Wachowicz, this volume).   

Keim and Kriegel (1994) and Lee and Ong (1996) describe software systems that 

incorporate visualization techniques for supporting database querying and data mining.  Keim and 

Kriegel (1994) use visualization to support simple and complex query specification, OLAP, and 

querying from multiple independent databases.  Lee and Ong's (1996) WinViz software uses 

multidimensional visualization techniques to support OLAP, query formulation and the 

interpretation of results from unsupervised (clustering) and supervised (decision tree) 

segmentation techniques.       

 

3. GEOGRAPHIC DATA MINING AND KNOWLEDGE DISCOVERY 

This section of the chapter describes a very important special case of KDD, namely, geographic 

knowledge discovery (GKD).  We will first discuss why GKD is an important special case that 

requires careful consideration and specialized tools.  We will then discuss geographic data 

warehousing and online geographic data repositories, the latter an increasingly important source 

of digital geo-referenced data and imagery.  We then discuss geographic data mining techniques 

and the relationships between GKD and geographic visualization (GVis), an increasingly active 

research domain integrating scientific visualization and cartography.  We follow this with 
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discussions of current GKD applications and research frontiers.  Throughout this section, we 

discuss the existing literature in geographic information science and computer science as well as 

the contributions of this current volume. 

   

3.1. Why geographic knowledge discovery? 

3.1.1. Geographic information in knowledge discovery 

The digital geographic data explosion is not much different from similar revolutions in marketing, 

biology and astronomy. Is there anything special about geographic data that requires unique tools 

and provides unique research challenges?  In this section, we identify and discuss some of the 

unique properties of geographic data and challenges in geographic knowledge discovery (GKD). 

 

Geographic measurement frameworks.  While many information domains of interest in KDD 

are high dimensional, these dimensions are relatively independent.   Geographic information are 

not only high dimensional but also have the property that up to four dimension of the information 

space are interrelated and provide the measurement framework for all other dimensions.  Formal 

and computational representations of geographic information require the adoption of an implied 

topological and geometric measurement framework.  This framework affects measurement of the 

geographic attributes and consequently the patterns that can be extracted (see Beguin and Thisse 

1979).   

The most common framework is the topology and geometry consistent with Euclidean 

distance.  Euclidean space fits in well with our experienced reality and results in maps and 

cartographic displays that are useful for navigation.  However, geographic phenomena often 

display properties that are consistent with other topologies and geometries.  For example, travel 

time relationships in an urban area usually violate the symmetry and triangular inequality 

conditions for Euclidean and other distance metrics.  Therefore, seeking patterns and trends in 

transportation systems (such as congestion propagation over space and time) benefits from 
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projecting the data into an information space whose spatial dimensions are non-metric.  Also, 

disease patterns in space and time often behave according to other topologies and geometries than 

Euclidean (see Cliff and Haggett 1998; Miller 2000). The useful information implicit in the 

geographic measurement framework is ignored in many induction and machine learning tools 

(Gahegan 2000a).   

An extensive toolkit of analytical cartographic techniques is available for estimating 

appropriate distance measures and projecting geographic information into that measurement 

framework (see, e.g., Cliff and Haggett 1998; Gatrell 1983; Mueller 1982; Tobler 1994).  The 

challenge is to incorporate scalable versions of these tools into GKD.  Cartographic 

transformations can serve a similar role in GKD as data reduction and projection in KDD, i.e., 

determining effective representations that maximize the likelihood of discovering interesting 

geographic patterns in a reasonable amount of time.     

  

Spatial dependency and heterogeneity.  Measured geographic attributes usually exhibit the 

properties of spatial dependency and spatial heterogeneity.  Spatial dependency is the tendency of 

attributes at some locations in space to be related1.  These locations are usually proximal in 

Euclidean space.   However, direction, connectivity and other geographic attributes (e.g., terrain, 

land cover) can also affect spatial dependency (see Miller 2000; Rosenberg 2000).  Spatial 

dependency is similar to but more complex than dependency in other domains (e.g., serial 

autocorrelation in time series data).   

Spatial heterogeneity refers to the non-stationarity of most geographic processes.  An 

intrinsic degree of uniqueness at all geographic locations means that most geographic processes 

vary by location.  Consequently, global parameters estimated from a geographic database do not 

                                                           
1 In spatial analysis, this meaning of spatial dependency is more restrictive than it's meaning in the GKD 
literature.  Spatial dependency in GKD is a rule that has a spatial predicate in either the precedent or 
antecedent.  We will use the term "spatial dependency" for both cases with the exact meaning apparent 
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describe well the geographic phenomenon at any particular location.  This is often manifested as 

apparent parameter drift across space when the model is re-estimated for different geographic 

subsets.  

Spatial dependency and spatial heterogeneity have historically been regarded as 

nuisances confounding standard statistical techniques that typically require independence and 

stationarity assumptions.  However, these can also be valuable sources of information about the 

geographic phenomena under investigation.  Increasing availability of digital cartographic 

structures and geoprocessing capabilities has led to many recent breakthroughs in measuring and 

capturing these properties (see Fotheringham and Rogerson 1993). 

Traditional methods for measuring spatial dependency include tests such as Moran's I or 

Geary's C.  The recognition that spatial dependency is also subject to spatial heterogeneity effects 

has led to the development of local indicators of spatial analysis (LISA) statistics that 

disaggregate spatial dependency measures by location.  Examples include the Getis and Ord G 

statistic and local versions of the I and C statistics (see Anselin 1995; Getis and Ord 1992, 1996). 

One of the problems in measuring spatial dependency in very large datasets is the 

computational complexity of spatial dependency measures and tests.  In the worse case, spatial 

autocorrelation statistics are approximately ( )2nO , since )1( −nn calculations are required to 

measure spatial dependency in a database with n items (although in practice we can often limit 

the measurement to local spatial regions).  Scalable analytical methods are emerging for 

estimating and incorporating these dependency structures into spatial models: Pace and Zou 

(2000) report an ( )( )nnO log  procedure for calculating a closed form maximum likelihood 

estimator of nearest neighbor spatial dependency.  Another, complementary strategy is to exploit 

parallel computing architectures.  Fortunately, many spatial analytic techniques can be 

decomposed into parallel computations either due to task parallelism in the calculations or 

                                                                                                                                                                             
from the context.  This should not be too confusing since the GKD concept is a generalization of the 
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parallelism in the spatial data (see Ding and Densham 1996; Densham and Armstrong 1998; 

Griffith 1990).  Armstrong and Marciano (1995) and Armstrong, Pavlik and Marciano (1994) 

report promising results with parallel implementations of the Getis-Ord G statistic.  

Spatial analysts have recognized for quite some time that the regression model is 

misspecified and parameter estimates are biased if spatial dependency effects are not captured.  

Methods are available for capturing these effects in the structural components, error terms or both 

(see Anselin 1993; Bivand 1984). Regression parameter drift across space has also been long 

recognized.  Geographically weighted regression uses location-based kernel density estimation to 

estimate location-specific regression parameters (see Brunsdon, Fotheringham and Charlton 

1996; Fotheringham, Charlton and Brunsdon 1997).        

 

The complexity of spatio-temporal objects and rules.  Spatio-temporal objects and 

relationships tend to be more complex than the objects and relationships in non-geographic 

databases.  Data objects in non-geographic databases can be meaningfully represented as points in 

information space.  Size, shape and boundary properties of geographic objects often affect 

geographic processes, sometimes due to measurement artifacts (e.g., recording flow only when it 

crosses some geographic boundary).    Relationships such as distance, direction and connectivity 

are more complex with dimensional objects (see Egenhofer and Herring 1994; Okabe and Miller 

1996; Peuquet and Ci-Xiang 1987).   Transformations among these objects over time are complex 

but information-bearing (Hornsby and Egenhofer 2000).  Developing scalable tools for extracting 

spatio-temporal rules from collections of diverse geographic objects over time is a major GKD 

challenge.   

In Chapter 2, Roddick and Lees discuss the types and properties of spatio-temporal rules 

that can describe geographic phenomena.  In addition to spatio-temporal analogs of 

generalization, association and segmentation rules, there are evolutionary rules that describe 

                                                                                                                                                                             
concept in spatial analysis. 
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changes in spatial entities over time.  They also note that the scales and granularities for 

measuring time in geography can be complex, reducing the effectiveness of simply 

"dimensioning up" geographic space to include time.  Roddick and Lees suggest that geographic 

phenomena are so complex that GKD may require meta-mining, that is, mining large rulesets that 

have been mined from data to seek more understandable information.         

 

Diverse data types.  The range of digital geographic data also presents unique challenges.  One 

aspect of the digital geographic information revolution is that geographic databases are moving 

beyond the well-structured vector and raster formats.  Digital geographic databases and 

repositories increasingly contain ill-structured data such as imagery and geo-referenced 

multimedia (see Câmara and Raper 1999).  Discovering geographic knowledge from geo-

referenced multimedia data is a more complex sibling to the problem of knowledge discovery 

from multimedia databases and repositories (see Zaïane et al. 1998).  

 

3.1.2. Geographic knowledge discovery in geographic information science  

There are unique needs and challenges for building geographic knowledge discovery into 

geographic information science.  Most GIS databases are "dumb": they are at best a very simple 

representation of geographic knowledge at the level of geometric, topological and measurement 

constraints.  Knowledge-based GIS is an attempt to capture high-level geographic knowledge by 

storing basic geographic facts and geographic rules for deducing conclusions from these facts 

(see, e.g., Srinivasan and Richards 1993; Yuan 1997).  GKD is a potentially rich source of 

geographic facts and rules.  A research challenge is building discovered geographic knowledge 

into geographic databases and models to support intelligent spatial analysis and additional 

knowledge discovery.  This is critical; otherwise, the geographic knowledge obtained from the 

GKD process may be lost to the broader scientific and problem-solving processes.  
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3.1.3. Geographic knowledge discovery in geographic research 

Geographic information has always been the central commodity of geographic research.  

Throughout its 3000-year history, the field of geography has operated in a data-poor environment.  

Geographic information was difficult to capture, store and integrate. Most revolutions in 

geographic research have been fueled by a technological advancement for geographic data 

capture, referencing and handling, including sailing ships, satellites, clocks, the global positioning 

system, the map and GIS.  The current explosion of digital geographic and geo-referenced data is 

the most dramatic shift in the information environment for geographic research since the Age of 

Discovery in the fifteen and sixteenth centuries, perhaps in history.  

Despite the promises of GKD in geographic research, there are some cautions.  In 

Chapter 2, Roddick and Lees note that KDD and data mining tools were mostly developed for 

applications such as marketing where the standard of knowledge is "what works" rather than 

"what is authoritative."  The question is how to use GKD as part of a defensible and replicable 

scientific process.  As discussed previously in this chapter, knowledge discovery fits most 

naturally into the initial stages of hypothesis formulation.  Roddick and Lees also suggest a 

strategy where data mining is used as a tool for gathering evidences that strengthen or refute the 

null hypotheses consistent with a conceptual model.   These null hypotheses are a type of 

focusing technique that constrain the search space in the GKD process.  The results will be more 

acceptable to the scientific community since the likelihood of accepting spurious patterns is 

reduced.             

 

3.2. Geographic data warehousing 

The data warehousing literature contains surprisingly little on the unique challenges associated 

with geographic data warehousing.  Both academic and trade books on data warehousing mention 

geographic data only in passing, treating location as just another attribute of the data object.  
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Geographic data warehousing (GDW) shares most of the (considerable) challenges and design 

issues in standard data warehousing and introduces unique problems to DW design. 

 In Chapter 3, Bedard, Merrett and Han provide an overview of general DW design issues 

as well as issues specific to geographic data.  As Bedard, Merrett and Han state, "A DW is an 

enterprise-oriented, integrated, non-volatile read-only collection of data imported from 

heterogeneous sources at several levels of detail to support decision-making." All of the terms in 

this definition have non-trivial design implications.  The authors discuss the multidimensional 

DW design philosophy.  They also review several system architectures for a DW, including 

traditional centralized, multi-tiered and data mart (mini-warehouses) architectures. 

 Geographic data introduces complexities that must be accommodated in the DW design 

and during the data integration process.  First is the sheer size: GDW are potentially much larger 

than comparable non-geographic DWs.   Consequently, there are stricter requirements for 

scalability.  Multidimensional GDW design is more difficult since the spatial dimension can be 

measured using non-geometric, non-geometric generalized from geometric and fully geometric 

scales.  Some of the geographic data can be ill-structured, for example remotely-sensed imagery 

and other graphics.  OLAP tools such as roll-up and drill-down require aggregation of spatial 

objects and summarizing spatial properties.  Spatial data interoperability is critical and 

particularly challenging since geographic data definitions in legacy databases can vary widely.  

Metadata management is more complex, particularly with respect to aggregated and fused spatial 

objects.            

A spatial data cube is the GDW analog to the data cube tool for computing and storing 

all possible aggregations of some measure in OLAP.  The spatial data cube must include standard 

attribute summaries as well as pointers to spatial objects at varying levels of aggregation.  

Aggregating spatial objects is non-trivial and often requires background domain knowledge in the 

form of a geographic concept hierarchy. Strategies for selectively pre-computing measures in the 
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spatial data cube include none, pre-computing rough approximations (e.g., based on minimum 

bounding rectangles), and selective pre-computation (see Han, Stefanovic and Koperski 1998). 

In Chapter 4, Shekhar, Lu, Tan, Chawla and Vatsavai introduce the map cube.  The map 

cube adds cartographic visualization to the spatial data cube.  The map cube operator takes as 

arguments a base map, associated data files, a geographic aggregation hierarchy and a set of 

cartographic preferences.  The operator generates an album of maps corresponding to the power 

set of all possible spatial and non-spatial aggregations.  The map collection can be browsed using 

OLAP tools such as roll-up, drill-down and pivot using the geographic aggregation hierarchy.   

Distributed geolibraries are becoming increasing prevalent and important as a source of 

geographically referenced data (National Research Council 1999).  Sengupta and Bennett point 

out in Chapter 5 that while the volume of web-accessible geographically referenced data is 

growing rapidly, there are some substantial barriers to the effective use of these resources.  A 

diverse set of national, state, and local agencies are developing and posting geographic datasets in 

a variety of formats, projections, coordinate systems and for different geographic extents.  It is 

often necessary to perform a complicated sequence of data transformations to create a consistent 

and usable geographical dataset from these and other sources.  Unfortunately, many users lack the 

technical knowledge to perform these transformations.   

Sengupta and Bennett discuss the use of intelligent agent and blackboard technologies to 

resolve these difficulties.  The system is designed for a distributed computer network.  Individual 

agents contain the knowledge needed to perform a specific data transformation.   Blackboard 

technologies find and organize a sequenced set of agents capable of performing all needed 

transformations to integrate diverse geographic data into a usable database.  Their chapter 

discusses the knowledge structures developed to store spatial data processing knowledge, the 

algorithms used to develop transformation plans and provides an overview of a sample project.  

    

3.3. Geographic data mining 
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3.3.1. Capturing spatial dependency effects 

Geographic data mining involves the application of computational tools to reveal interesting 

patterns in objects and events distributed in geographic space and across time.  These patterns 

may involve the spatial properties of individual objects and events (e.g., shape, extent) and spatio-

temporal relationships among objects and events in addition to the non-spatial attributes of 

interest in traditional data mining.   

In Chapter 6, Chawla, Shekhar, Wu and Ozesmi discuss the effects of spatial dependency 

in geographic data mining techniques.  They note that spatial proximity and dependency patterns 

have led to major historical breakthroughs in understanding geographic processes and solving 

problems.  These include hints of plate tectonics from the curious fact that the continents could be 

re-arranged to fit together and the discovery of the transmission mechanism for cholera in the 

1800's from the unusual spatial clustering of incidences around a well in London (also see 

Dobson 1992).  Despite these remarkable historical precedents, many data mining techniques 

ignore or greatly limit their search for spatial dependency patterns among attributes.  Traditional 

data mining techniques search only for explicitly defined relationships among data objects and 

assume that no dependency effects are present in any relationship not explicitly examined.  

However, as the spatial dependency literature has shown, this can result in patterns that are biased 

and do not fit the data well.  Chawla et al. demonstrate the effects of including spatial dependency 

into regression models and clustering techniques.   

Difficulties in accounting for spatial dependency in geographic data mining include 

identifying the spatial dependency structure, the potential combinatorial explosion in the size of 

these structures and scale-dependency of many dependency measures. Further research is 

required along all of these frontiers.  As noted above, researchers report promising results with 

parallel implementations of the Getis-Ord G statistic.  Continued work on parallel 

implementations of spatial analytical techniques and spatial data mining tools can complement 

recent work on parallel processing in standard data mining (see Zaki and Ho 2000). 
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Spatial dependency can also manifest itself across spatial relationships other than 

Euclidean distance.  Non-Euclidean distances, topological, directional relationships or some 

combination may be more appropriate for some geographic processes.  In Chapter 7, Ester, 

Kriegel and Sander discuss efficient methods for capturing complex neighborhood relationships 

in spatial data mining.  The authors argue that neighborhood effects are the major difference 

between mining in relational databases and mining in geographic databases.  They present 

algorithms for major geographic data mining tasks and discuss typical applications for each 

algorithm.  Their discussion highlights the requirements for efficient processing of neighborhood 

relations.  Ester, Kriegel and Sander introduce general concepts for neighborhood relations and 

efficient computational strategies for implementing these concepts in geographic data mining.  

Their strategy allows a tight and efficient integration of geographic data mining algorithms with 

geographic database management systems, speeding up the development and the execution of the 

mining algorithms. 

 

3.3.2. Geographic data mining techniques 

Many of the traditional data mining tasks discussed previously have analogous tasks in the 

geographic data mining domain.  See Ester, Kriegel and Sander (1997) and Han and Kamber 

(2000) for overviews.  Also see Roddick and Spiliopoulou (1999) for a useful bibliography of 

spatio-temporal data mining research.  The volume of geographic data combined with the 

complexity of spatial data access and spatial analytical operations implies that scalability is 

particularly critical.       

Spatial segmentation tasks include spatial clustering and spatial classification.  Spatial 

clustering groups spatial objects such that objects in the same group are similar and objects in 

different groups are unlike each other.  This generates a small set of implicit classes that describe 

the data.  Clustering can be based on combinations of non-spatial attributes, spatial attributes 

(e.g., shape) and proximity of the objects or events in space, time and space-time.  Spatial 
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clustering has been a very active research area in both the spatial analytic and computer science 

literatures.  Research on the spatial analytic side has focused on theoretical conditions for 

appropriate clustering in space-time (see O'Kelly 1994; Murray and Estivill-Castro 1998).  

Research on the computer science side has resulted in several scalable algorithms for clustering 

very large spatial datasets and methods for finding proximity relationships between clusters and 

spatial features  (Knorr and Ng 1996; Ng and Han 1994).    

In Chapter 8, Han, Tung and Kamber present an overview of major spatial clustering 

methods recently developed in the data mining literature.  They classify spatial clustering 

methods into five categories, namely, partitioning, hierarchical, density-based, grid-based and 

model-based methods.  Although traditional partitioning methods such as k-means and k-medoids 

are not scalable, scalable versions of these tools are available (also see Ng and Han 1994). 

Hierarchical methods group objects into a tree-like structure, that progressively reduces the 

search space.  Hierarchical methods can build clusters from the bottom-up (by aggregation) or 

from the top-down (by splitting). Some methods combine hierarchical clustering and iterative 

relocation to improve their solutions.  Density-based methods can find arbitrarily-shaped clusters 

by growing from a seed as long as the density in its neighborhood exceeds certain threshold. 

Grid-based methods divide the information spaces into a finite number of grid cells and cluster 

objects based on this structure.  Finally, model-based methods first develop hypotheses for 

clusters and then find the best fit of the data to that model.  

Spatial classification selects a relevant set of attributes and attribute values that determine 

an effective mapping of spatial objects into predefined target classes.  Ester, Kriegel and Sander 

(1997) present a learning algorithm based on ID3 for generating spatial classification rules based 

on the properties of each spatial object as well as spatial dependency with its neighbors.  The user 

provides a maximum spatial search length for examining spatial dependency relations with each 

object's neighbors.  Adding a rule to the tree requires meeting a minimum information gain 

threshold.  
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Mining for spatial dependency involves finding rules to predict the value of some 

attribute based on the value of other attributes, where one or more of the attributes are spatial 

properties.  Spatial association rules are association rules that include spatial predicates in the 

precedent or antecedent.  Spatial association rules also have confidence and support measures.  

Spatial association rules can include a variety of spatial predicates, including topological relations 

such as "inside" and "disjoint," as well as distance and directional relations.  Koperski and Han 

(1995) provide a detailed discussion of the properties of spatial association rules.  They also 

present a top-down search technique that starts at the highest level of a geographic concept 

hierarchy (discussed below), using spatial approximations (such as minimum bounding 

rectangles) to discover rules with large support and confidence.  These rules form the basis for 

additional search at lower levels of the geographic concept hierarchy with more detailed (and 

computationally-intensive) spatial representations. 

Spatial objects that do not belong to any cluster are called outliers; distance measures can 

be used to identify outliers and analyze their properties.  Han, Tung and Kamber also discuss 

distance-based outlier analysis and its use in outlier detection.   As mentioned previously in this 

chapter, clustering and outlier detection are inverse problems.  Outlier analysis can also be used 

in monitoring, embedded in a real-time system looking for unusual cases with respect to spatial 

and temporal trends.  Ng discusses outlier analysis in Chapter 9, highlighting its use in a real-time 

monitoring system.  Ng first reviews different classes of outlier detection, including noise-based, 

distribution-based, depth-based and distance-based.  Ng also discusses the use of distance-based 

outlier detection in a video surveillance system monitoring a small geographic space.  Video 

images of people walking through the space are translated to spatio-temporal trajectories.  A 

distance-based outlier method determines cases that exhibit unusual trajectories, indicating 

unusual movement patterns through the geographic space.  Although this type of system can be 

potentially abused, it also has great potential benefits for detecting thieves, terrorists or rapists in 

sensitive locations.  The distance-based outlier analysis applied to space-time trajectories could 
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also be used to spot unusual and interesting movement behavior at other geographic scales and 

for other movement phenomena.  This can include vehicular movement through intelligent 

transportation systems to spot congestion build-up or other unusual transportation events.  

Another possibility is tracking wildlife such as bears, wolves or hawks with embedded global 

positioning system receivers to spot unexpected changes in ecological niches.          

Spatial trend detection involves finding patterns of change with respect to the 

neighborhood of some spatial object.  Ester, Kriegel and Sander (1994) provide a neighborhood 

search algorithm for discovering spatial trends.  The procedure performs a breadth-first search 

along defined neighborhood connectivity paths and evaluates a statistical model at each step.  If 

the estimated trend is strong enough, that neighborhood path is expanded in the next step. 

Geographic phenomena often have complex hierarchical dependencies.   Examples 

include city systems, watersheds, location and travel choices, administrative regions and 

transportation/telecommunications systems.  Geographic characterization and generalization is 

therefore an important geographic data mining task.  Generalization-based data mining can follow 

one of two strategies in the geographic case.  Geographic dominant generalization first spatially 

aggregates the data based on a user-provided geographic concept hierarchy.  A standard attribute-

oriented induction method is used at each geographic aggregation level to determine compact 

descriptions or patterns of each region.  The result is a description of the pre-existing regions in 

the hierarchy using high-level predicates.  Non-geographic dominant generalization generates 

aggregated spatial units that share the same high-level description.  Attribute-oriented induction is 

used to aggregate non-spatial attributes into higher-level concepts.  At each level in the resulting 

concept hierarchy, neighboring geographic units are merged if they share the same high-level 

description.  The result is a geographic aggregation hierarchy based on multidimensional 

information.  The extracted aggregation hierarchy for a particular geographic setting could be 

used to guide the application of confirmatory spatial analytic techniques to the data about that 

area.    
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3.4. Geographic knowledge discovery and geographic visualization        

Earlier in this chapter, we noted the potential for using visualization techniques to integrate 

human visual pattern acuity and knowledge into the KDD process.   Geographic visualization 

(GVis) is the integration of cartography, GIS and scientific visualization to explore geographic 

data and communicate geographic information to private or public audiences (see MacEachren 

and Kraak 1997).  Major GVis tasks include feature identification, feature comparison and 

feature interpretation (MacEachren et al. 1999).   

GVis is related to GKD since it often involves an iterative, customized process driven by 

human knowledge.  However, the two techniques can greatly complement each other.  For 

example, feature identification tools can allow the user to spot the emergence of spatio-temporal 

patterns at different levels of spatial aggregation and explore boundaries between spatial classes.  

Feature identification and comparison GVIs tools can also guide spatial query formulation.  

Feature interpretation can help the user build geographic domain knowledge into the construction 

of geographic concept hierarchies.  MacEachren et al. (1999) discuss these functional objects and 

a prototype GVis/GKD software system that achieves many of these goals.            

MacEachren et al. (1999) suggest that integration between GVis and GKD should be 

considered at three levels. The conceptual level requires specification of the high-level goals for 

the GKD process. Operational-level decisions include specification of appropriate geographic 

data mining tasks for achieving the high-level goals. Implementation level choices include 

specific tools and algorithms to meet the operational-level tasks.   

In Chapter 10, Wachowicz presents the GeoInsight approach that builds on this 

conceptual model.  At the conceptual level, GeoInsight helps define goals of the GKD process by 

considering what type of geographic knowledge is to be constructed and how knowledge can be 

constructed given the general nature of the geographic data.  At the operational level, a method-

task-operation strategy dictates that the data mining task to be applied consider the potential 
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forms of visual representation and user interaction modes.  At the implementation level, 

GeoInsight approach dictates seamless integration of GKD and GVis tools to provide an effective 

and easy-to-use ESA environment.  Wachowicz supports this strategy by first discussing the 

shared concepts and objectives as well as the integration challenges among GVis, GKD and ESA 

In Chapter 11, Gahegan argues that portraying geographic data in a form that a human 

can understand frees ESA from some of the representational constraints that GIS and geographic 

data models impose.  The chapter describes techniques that are currently available for exploratory 

visual analysis and visual data mining, highlighting the reasoning and inference implicit in each. 

Gahegan categorizes techniques according to the roles required from the system and user and the 

primary mode of reasoning (deduction, induction and abduction or inference to the best 

explanation). Following this review, Gahegan provides a formal description of mapping data from 

the database to a visual space with respect to how to control what is observed within the data.  

Gahegan briefly describes visual geographic knowledge construction and provides some general 

conclusions and future directions for continued research on the interface between GVis and GKD 

in exploratory spatial analysis.  

 

3.5. Applications of geographic data mining and knowledge discovery  

Although there is a need for more widespread "test cases" or benchmarks for GKD (see below), 

there have been some successful applications of these techniques for both human and physical 

geographic phenomena.  In this subsection, we discuss some example applications in the existing 

literature as well as in this volume.  

 
Map interpretation and information extraction. Map interpretation is a basic but daunting task 

that challenges even human-level intelligence.  A particularly complex map product is a 

topographic map.  Roughly, a topographic map is a large-scale (1:10,000 to 1:100,000) 

composite map usually depicting relief (terrain), land cover, hydrography and human-made 
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features.  Although many GIS software can handle topographic map data, the ability to extract 

geographic information from these products is limited.    This requires the ability to recognize 

natural versus human environmental features, interpret the spatial interrelationships among these 

features and understand territorial organization of political and administrative units.  Although 

humans can often recognize features such as a road and distinguish this from other linear features 

such as hydrography, formal definitions suitable for automated feature extraction and 

interpretation are difficult to state.  For example, consider the difficulty of stating a consistent and 

complete definition of the feature "road" that would be suitable for automated map interpretation. 

 In Chapter 12, Esposito, Lanza, Lisi and Malebra present a GIS for extracting 

information from topographic maps, INGENS (Inductive Geographic Information System).  

INGENS integrates traditional GIS data acquisition, storage, editing and graphical display 

capabilities with an inductive learning function.  The learning subsystem discovers first-order 

summary rules implicit in the topographic map.  The user provides primitive background 

knowledge (basic geographic constraints and properties, such as "two regions that share a 

geographic boundary are geographically proximal") and a set of geographic concepts to be 

learned (e.g., "downtown").  A learning algorithm follows a parallel search strategy, building a 

(possibly recursive) logical theory of the concepts based on observations in the database and the 

provided background knowledge.  The authors provide a detailed description of the formal 

learning problem implemented within INGENS and present an example application from 

topographic maps in a region of Italy.            

    

Information extraction from remotely-sensed imagery.  Increasingly detailed information 

about the Earth's surface and its natural and human features is available through remote sensing 

(RS) systems.  Traditionally, the spatial resolution of passive (reflectance-based) remote sensors 

has been limited, generally not better than 10 meters (m).   New high-resolution passive sensing 

systems (e.g., IKONOS) can achieve spatial resolution down to 1 m, greatly increasing their 
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potential for socio-economic applications.  Active sensing systems such as synthetic aperture 

radar (SAR) can presently achieve spatial resolutions down to the sub-meter level (see Lillesand 

and Kiefer 2000).  Laser-based LIDAR systems under development can also achieve sub-meter 

accuracy.  In addition to greater spatial resolution, RS systems are also improving with respect to 

spectral resolution.  New hyperspectral sensor systems such as the Airborne Visible InfraRed 

Imaging Spectrometer (AVIRIS) capture over two hundred electromagnetic bands, generating 

very detailed spectral signature for each pixel.  These technological breakthroughs are creating 

new domains for RS, particularly for socio-economic applications since detailed human features 

can now be obtained.  However, a challenge is dealing with the large amount of data and 

information in these imagery files. 

Artificial neural networks (ANNs) have been used effectively for classification and 

information extraction from remotely-sensed imagery for several decades.  However, a problem 

with ANNs is their "black box" nature: while ANNs are very good at classification and 

generalization, their internal workings are difficult to interpret.  This means that much of the 

information available in these images is lost.  While this may be acceptable for pure classification 

and prediction problems, the ability to interpret the parameters of a trained ANN can provide 

better understanding of the underlying data relationships and properties as well as the ability to 

generalize results across different geographic extents, time periods and RS systems.   

In Chapter 13, Gopal, Liu and Woodcock explore the use of visualization in interpreting 

the inner workings of a trained ANN. Gopal, Liu and Woodcock work with a family of ANNs 

known as fuzzy Adaptive Resonance Theory (ART) networks.  An advantage over standard 

backpropagation ANNs is that ART networks can incorporate new information without 

substantially disrupting the previously learned parameters.  Fuzzy ART networks can recognize 

"non-crisp" patterns; this capability is often critical in geographic applications where features are 

often fuzzy.  The authors train a fuzzy ART network to recognize a conifer forest (at least 40% 

needle leaf evergreen forest).  Visualization guides several aspects of this process, including 
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feature selection, analyzing the source and nature of misclassification errors, training data 

selection, understanding generalization problems and pruning the ANN to obtain a more 

parsimonious representation. 

 

Mapping environment features.  Many geographic phenomena have complex, multidimensional 

attributes that are difficult to summarize and combine using traditional analytical methods.  For 

example, phenomena such as soil type are very difficult to classify and map.  Soil type is a 

function of several geographic variables, including the soil composition, soil depth, underlying 

geology, slope, elevation and hydrology, all of which combine in a complex manner to form 

particular soil regimes.  This makes it very difficult to develop a precise formula or rule set that 

can unambiguously and accurately classify soil types.  Eklund, Kirkby and Salim (1998) apply 

data mining techniques to classify soil types.  They compare several inductive learning algorithms 

(including C4.5) and feedforward/backpropagation ANNs with ground truth data in classifying 

soils based on salinity.  The data mining techniques are embedded within a knowledge-based 

spatial decision support system for environmental monitoring and planning.  The data mining 

tools allow refinement of the knowledge base within the decision support system as new data are 

acquired.  

 Lees and Ritman (1991) apply data mining techniques to the difficult problem of 

mapping vegetation types and structure in hilly and disturbed areas.  While remotely-sensed 

imagery can often be useful in vegetation mapping, these images are not very useful in 

determining detailed speciation, particularly in hilly areas and disturbed areas (e.g., due to fire or 

human action).  Ancillary data can be helpful, but they can be difficult integrate with imagery 

within a traditional modeling framework.  Lees and Ritman (1991) use decision tree induction 

methods to integrate imagery with other environmental variables in a GIS to classify vegetation 

types.  Their method resolves topographic shadowing problems in the imagery due to terrain and 

can also identify disturbed, cleared and agricultural areas.    
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Extracting spatio-temporal patterns. Mesrobian et al. (1996) describe the OASIS (Open 

Architecture Scientific Information System) information system for querying, exploratory 

analysis and visualization of geophysical phenomena from large, heterogeneous, distributed 

database systems.  OASIS facilitates collaborative exploratory data analysis, knowledge 

discovery and visualization among scientists at diverse sites.  A component of OASIS is the 

Conquest Scientific Query Processing System.  This is a data mining system that locates cyclonic 

storms and their trajectories from weather and climate data.  The system extracts air pressure 

minima from the data, refines the location of the minima, and assigns minima to storm tracks 

(also see Mesrobian et al. 1994).  Clustering and normalization tools help spot unusual 

atmospheric patterns corresponding to cyclonic activity. 

 Openshaw (1994) describes two computational techniques for exploring space-time-

attribute patterns in digital geographic data.  The first technique has its origins in the Geographic 

Analysis Machine (GAM) developed by Openshaw et al. (1987).  During each iteration, the GAM 

searches within a small, pre-specified radius each of geographic object, looking for neighboring 

observations with similar values.  If a spatial dependency is found, the map displays that circle.  

After all observations have been scanned, a new iteration begins with a slightly larger circle based 

on a user-specified step-size.  This continues up to a user-specified limit.  The resulting map 

shows possible spatial clusters.  Later versions of the GAM include spatial cluster identification 

rules.  Openshaw (1994) develops an extension of this brute-force approach to include temporal 

and attribute search ranges.  He also describes the use of artificial life that explore databases 

feeding from spatio-temporal correlations.  Openshaw (1994) illustrates the use of these tools in a 

geo-referenced crime database.       

 
 
Interaction, flow and movement in geographic space.  Geographers refer to the movement of 

people, materials, capital and information between geographic locations collectively as spatial 
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interaction.  Spatio-temporal patterns in spatial interaction can illuminate the hidden and subtle 

geographic structures that generate these patterns.  Examples include characterizing the internal 

and external structure of regional economies, illuminating the relationships between migration, 

demographics and socioeconomic characteristics at detailed levels of spatio-temporal resolution 

and recognizing the predicates of congestion in transportation network.   Traditional spatial 

analytic techniques also have difficulty in capturing n-order cascade effects among interaction 

and flows (e.g., flow from A to B creating second-order flows from B to C, B to D, etc.).          

Spatial interaction data are often recorded as flows between origin and destinations or as 

flows within structures such as riparian systems and transportation networks. Analyzing 

interaction and flow data is a long-standing concern in geography.  However, existing techniques 

are easily overwhelmed by the huge sizes of the origin-destination matrices being published by 

entities such as the United States Bureau of Transportation Statistics, real-time data being 

collected through intelligent transportation systems and operational data being collected by utility 

companies.  Visualization and exploratory tools could discover the hidden knowledge within 

these rich flow matrices.  

 Marble, Gou, Liu and Saunders (1997) review traditional approaches to analyzing 

interaction and flow data and describe emerging research on the design and proof–of–concept 

testing of scientific visualization and dynamic graphics–based tools for the exploratory analysis 

of spatial–temporal, interregional flow systems.  This research is attempting to improve the 

computer-based flow mapping techniques developed by analytical cartographers (e.g., Tobler 

1981).  Of particular interest are visualization tools allowing the user to examine the total set of 

flows and identify interesting subsets within the total flow set.   Other exploratory tools include 

forward and backward brushing techniques.  These tools can quickly and selectively explore the 

relationships that exist between various components of the flow data set (e.g., inflows vs. 

outflows) and between the various interregional flows and selected characteristics of the origin 

and destination regions (e.g., out–migration as related to unemployment in the region of origin).   
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A third set of exploratory techniques involve the projection pursuit tools for reducing the 

dimensionality of multi–dimensional flow matrices to allow visualization within geographic and 

other spaces.  

 Geographers and transportation analysts have long recognized that aggregate flows 

between locations or within networks is an incomplete picture of spatial interaction phenomena.  

Individuals often exhibit complex trip chaining behavior where multiple trip purposes and 

multiple stops are combined into a single travel episode for efficiency or due to time constraints.  

Data on complex trip chaining behavior can be acquired through activity diaries, a collection 

method that is becoming increasingly useful and accurate due to developments in data collection 

devices such as global positioning systems (GPS) combined with handheld recording devices 

such as personal digital assistants (PDA) (see Murakami and Wagner 1999).  Arentze et al. 

(2000) apply the rule induction algorithms C4.5, CART and CHAID to derive decision trees for 

classifying different types of multi-stop/multi-purpose travel episodes based on a large activity 

database.  Results suggest that decision tree induction methods can capture both compensatory 

and non-compensatory behavioral rules as well as interactions among different travel choices.  

Forer (1998) and Kwan (2000) develop 3-D geographic visualizations of these paths to support 

exploratory analysis of activity data and spatio-temporal constraints on travel behavior.          

 The increasing number of position-aware, wirelessly connected mobile devices, including 

cell phones, personal information managers (PIMs) and personal digital assistants (PDAs), are a 

potentially rich source of information on human movement within geographic space.  Technology 

for determining the detailed geographic location is becoming very inexpensive.  Also, the social 

and commercial forces driving deployment of positioning capability are very strong (e.g., E-911 

services, intelligent transportation systems, mobile geographic information services).  

Consequently, there are growing possibilities to access space-time trajectories of these personal 

devices and their human companions in real-time and to deliver them to a data warehouse for 

analysis. These mobile trajectories contain detailed information about personal and vehicular 
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mobile behavior. They present interesting opportunities to find patterns, extract their content, and 

use this discovered knowledge to enhance people’s ability to travel efficiently, effectively, 

comfortably and with a minimum of stress. 

  In Chapter 14, Smyth explores the possibilities for geographic knowledge discovery from 

the spatio-temporal trajectories of mobile devices.  Smyth reviews general characteristics of the 

"mobile world" (the perspective of a person traveling though geographic space), position-aware 

wireless devices and the type of mobile geographic information services that could be provided 

through these and other mobile devices.  Smyth also identifies how recorded mobile trajectories 

reflect human spatial behavior and requirements for data mining from these trajectories.  Smyth 

discusses how the discovered knowledge can lead to better, more scalable, and less expensive 

mobile geographic information services.  One possibility is resolving the high cost of mobile 

geographic information services.  It may be possible to build self-maintaining mobile geographic 

information systems that can provide valuable assistance to an individual based only on past 

behavior and some knowledge of current conditions. 

 

 

4. GKD RESEARCH FRONTIERS 

There are several critical research frontiers in GKD, presented as below (in no particular order) 

(also see Miller and Han 2000).    

 

Developing and supporting geographic data warehouses. A glaring omission from current 

research in GKD techniques is the development and supporting infrastructure for geographic data 

warehouses (GDW).  To date, a true GDW does not exist.  This is alarming since data 

warehouses are central to the knowledge discovery process.  Creating true GDWs requires 

solving issues in geographic and temporal data compatibility, including differences in semantics, 
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referencing systems, geometry, accuracy and precision.  Supporting GDWs may also require 

restructuring of transaction-oriented databases systems, particularly for flow and interaction data. 

 

Better spatio-temporal representations in GKD.  Current GKD techniques use very simple 

representations of geographic objects and geographic relationships, for example, point objects 

and Euclidean distances.  Other geographic objects (including lines, polygons and more complex 

objects) and geographic relationships (including non-Euclidean distances, direction, connectivity, 

attributed geographic space such as terrain and constrained interaction structures such as 

networks) should be recognized by GKD techniques.  Time needs to be more completely 

integrated into geographic representations and relationships.  This includes a full range of 

conceptual, logical and physical models of spatio-temporal objects.   Finally, we need to 

formulate multiple representations (in particular, robust geographic concept hierarchies) and 

granularities in spatio-temporal representation in order to manage the complexity of GKD. 

 

GKD using richer geographic data types.  Geographic datasets are rapidly moving beyond the 

well-structured vector and raster formats to include semi-structured and unstructured data, in 

particular, geo-referenced multimedia data.  GKD techniques should be developed that can handle 

these heterogeneous datasets.  

 

User interfaces for GKD.  GKD needs to move beyond the technically-oriented researchers to 

the broader geographic and related research communities.  This requires interfaces and tools that 

can aid these diverse researchers in the GKD process.  These interfaces and tools should be based 

on useful metaphors that can guide the search for geographic knowledge and make sense of 

discovered geographic knowledge.   
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What are the new questions for geographic research?  A fundamental question for the 

geographic and related research communities is “What questions do we want to answer that we 

could not answer previously?”  These communities need to form well-structured (but possibly 

open-ended) questions in order to guide the computer science and related communities in their 

tool and algorithm development.         

 

Proof of concepts and benchmarking problems for GKD.  There is a strong need for some 

“examples” or “test cases” to illustrate the usefulness of GKD.  This includes a demonstration of 

GKD techniques leading to new, unexpected knowledge in key geographic research domains.  

Also important is benchmarking to determine the effects of varying data quality on discovering 

geographic knowledge.  A related issue is research and demonstration projects that illustrate the 

usefulness of GKD techniques in forecasting and decision support for the public and private 

sectors. 

 

Building discovered geographic knowledge into GIS and spatial analysis.  Current GIS 

software uses simple representations of geographic knowledge.  Discovered geographic 

knowledge should be integrated into GIS, possibly through inductive geographic databases or 

online analytical processing (OLAP)-based GIS interfaces.  There is also a need for new, 

intelligent spatial analysis methods that can represent the high-level discovered through GKD.   

 

 

5. CONCLUSIONS 

Due to explosive growth and wide availability of geo-referenced data in recently years, traditional 

spatial analysis tools are far from adequate at handling the huge volumes of data and the growing 

complexity of spatial analysis tasks.  Geographic data mining and knowledge discovery 

represents an important direction in the development of new generation of spatial analysis tools in 



Page 38 of 48 
Filename: GKD Chapter 1 v8. Last save: 9-21-2000 7:41 AM 

data-rich environment.  In this chapter, we provide a brief introduction to knowledge discovery 

from databases and data mining, with special reference the applications of these theories and 

techniques to geo-referenced data.    

As shown in this chapter, geographic knowledge discovery is an important and 

interesting special case of knowledge discovery from databases.  Much progress has been made 

recently in geographic knowledge discovery techniques, including heterogeneous spatial data 

integration, spatial or map data cube construction, spatial dependency and/or association analysis, 

spatial clustering methods, spatial classification and spatial trend analysis, spatial generalization 

methods, and geographic visualization tools.  Applications of geographic data mining and 

knowledge discovery have also been actively developed, including map interpretation and 

information extraction tools, information extraction from remotely-sensed imagery, identification 

of spatial-temporal patterns, mapping environment features, and analysis of flow and movements 

in geographic space.  However, according to our view, geographic data mining and knowledge 

discovery is a promising but young discipline, facing many challenging research problems.  We 

hope this book will introduce some recent works in this direction and motivate researchers to 

make contributions at developing new methods and applications in this promising field.  
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