

MINING GRAPH DATA
EDITED BY

Diane J. Cook
School of Electrical Engineering and Computer Science

Washington State University
Pullman, Washington

Lawrence B. Holder
School of Electrical Engineering and Computer Science

Washington State University
Pullman, Washington

WILEY-INTERSCIENCE

A JOHN WILEY & SONS, INC., PUBLICATION

MINING GRAPH DATA

MINING GRAPH DATA
EDITED BY

Diane J. Cook
School of Electrical Engineering and Computer Science

Washington State University
Pullman, Washington

Lawrence B. Holder
School of Electrical Engineering and Computer Science

Washington State University
Pullman, Washington

WILEY-INTERSCIENCE

A JOHN WILEY & SONS, INC., PUBLICATION

Copyright c© 2007 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as
permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee
to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400,
fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission
should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street,
Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at
http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts
in preparing this book, they make no representations or warranties with respect to the accuracy or
completeness of the contents of this book and specifically disclaim any implied warranties of
merchantability or fitness for a particular purpose. No warranty may be created or extended by sales
representatives or written sales materials. The advice and strategies contained herein may not be
suitable for your situation. You should consult with a professional where appropriate. Neither the
publisher nor author shall be liable for any loss of profit or any other commercial damages, including
but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our
Customer Care Department within the United States at (800) 762-2974, outside the United States at
(317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print
may not be available in electronic formats. For more information about Wiley products, visit our web
site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data

Mining graph data / edited by Diane J. Cook, Lawrence B. Holder.
p. cm.

Includes index.
ISBN-13 978-0-471-73190-0
ISBN-10 0-471-73190-0 (cloth)

1. Data mining. 2. Data structures (Computer science) 3. Graphic methods.
I. Cook, Diane J., 1963- II. Holder, Lawrence B., 1964-

QA76.9.D343M52 2006
005.74—dc22

2006012632

Printed in the United States of America.

10 9 8 7 6 5 4 3 2 1

To Abby and Ryan, with our love.

CONTENTS

Preface xiii

Acknowledgments xv

Contributors xvii

1 INTRODUCTION 1
Lawrence B. Holder and Diane J. Cook

1.1 Terminology 2
1.2 Graph Databases 3
1.3 Book Overview 10

References 11

Part I GRAPHS 15

2 GRAPH MATCHING—EXACT AND ERROR-TOLERANT
METHODS AND THE AUTOMATIC LEARNING OF EDIT COSTS 17
Horst Bunke and Michel Neuhaus

2.1 Introduction 17
2.2 Definitions and Graph Matching Methods 18
2.3 Learning Edit Costs 24
2.4 Experimental Evaluation 28
2.5 Discussion and Conclusions 31

References 32

3 GRAPH VISUALIZATION AND DATA MINING 35
Walter Didimo and Giuseppe Liotta

3.1 Introduction 35
3.2 Graph Drawing Techniques 38
3.3 Examples of Visualization Systems 48

vii

viii CONTENTS

3.4 Conclusions 55
References 57

4 GRAPH PATTERNS AND THE R-MAT GENERATOR 65
Deepayan Chakrabarti and Christos Faloutsos

4.1 Introduction 65
4.2 Background and Related Work 67
4.3 NetMine and R-MAT 79
4.4 Experiments 82
4.5 Conclusions 86

References 92

Part II MINING TECHNIQUES 97

5 DISCOVERY OF FREQUENT SUBSTRUCTURES 99
Xifeng Yan and Jiawei Han

5.1 Introduction 99
5.2 Preliminary Concepts 100
5.3 Apriori-based Approach 101
5.4 Pattern Growth Approach 103
5.5 Variant Substructure Patterns 107
5.6 Experiments and Performance Study 109
5.7 Conclusions 112

References 113

6 FINDING TOPOLOGICAL FREQUENT PATTERNS FROM
GRAPH DATASETS 117
Michihiro Kuramochi and George Karypis

6.1 Introduction 117
6.2 Background Definitions and Notation 118
6.3 Frequent Pattern Discovery from Graph

Datasets—Problem Definitions 122
6.4 FSG for the Graph-Transaction Setting 127
6.5 SIGRAM for the Single-Graph Setting 131
6.6 GREW —Scalable Frequent Subgraph Discovery Algorithm 141
6.7 Related Research 149
6.8 Conclusions 151

References 154

7 UNSUPERVISED AND SUPERVISED PATTERN LEARNING
IN GRAPH DATA 159
Diane J. Cook, Lawrence B. Holder, and Nikhil Ketkar

7.1 Introduction 159

CONTENTS ix

7.2 Mining Graph Data Using Subdue 160
7.3 Comparison to Other Graph-Based Mining Algorithms 165
7.4 Comparison to Frequent Substructure Mining Approaches 165
7.5 Comparison to ILP Approaches 170
7.6 Conclusions 179

References 179

8 GRAPH GRAMMAR LEARNING 183
Istvan Jonyer

8.1 Introduction 183
8.2 Related Work 184
8.3 Graph Grammar Learning 185
8.4 Empirical Evaluation 193
8.5 Conclusion 199

References 199

9 CONSTRUCTING DECISION TREE BASED ON CHUNKINGLESS
GRAPH-BASED INDUCTION 203
Kouzou Ohara, Phu Chien Nguyen, Akira Mogi, Hiroshi Motoda,
and Takashi Washio

9.1 Introduction 203
9.2 Graph-Based Induction Revisited 205
9.3 Problem Caused by Chunking in B-GBI 207
9.4 Chunkingless Graph-Based Induction (Cl-GBI) 208
9.5 Decision Tree Chunkingless Graph-Based Induction

(DT-ClGBI) 214
9.6 Conclusions 224

References 224

10 SOME LINKS BETWEEN FORMAL CONCEPT ANALYSIS
AND GRAPH MINING 227
Michel Liquière

10.1 Presentation 227
10.2 Basic Concepts and Notation 228
10.3 Formal Concept Analysis 229
10.4 Extension Lattice and Description Lattice Give

Concept Lattice 231
10.5 Graph Description and Galois Lattice 235
10.6 Graph Mining and Formal Propositionalization 240
10.7 Conclusion 249

References 250

x CONTENTS

11 KERNEL METHODS FOR GRAPHS 253
Thomas Gärtner, Tamás Horváth, Quoc V. Le, Alex J. Smola,
and Stefan Wrobel

11.1 Introduction 253
11.2 Graph Classification 254
11.3 Vertex Classification 266
11.4 Conclusions and Future Work 279

References 280

12 KERNELS AS LINK ANALYSIS MEASURES 283
Masashi Shimbo and Takahiko Ito

12.1 Introduction 283
12.2 Preliminaries 284
12.3 Kernel-based Unified Framework for Importance

and Relatedness 286
12.4 Laplacian Kernels as a Relatedness Measure 290
12.5 Practical Issues 297
12.6 Related Work 299
12.7 Evaluation with Bibliographic Citation Data 300
12.8 Summary 308

References 308

13 ENTITY RESOLUTION IN GRAPHS 311
Indrajit Bhattacharya and Lise Getoor

13.1 Introduction 311
13.2 Related Work 314
13.3 Motivating Example for Graph-Based Entity Resolution 318
13.4 Graph-Based Entity Resolution: Problem Formulation 322
13.5 Similarity Measures for Entity Resolution 325
13.6 Graph-Based Clustering for Entity Resolution 330
13.7 Experimental Evaluation 333
13.8 Conclusion 341

References 342

Part III APPLICATIONS 345

14 MINING FROM CHEMICAL GRAPHS 347
Takashi Okada

14.1 Introduction and Representation of Molecules 347
14.2 Issues for Mining 355
14.3 CASE: A Prototype Mining System in Chemistry 356
14.4 Quantitative Estimation Using Graph Mining 358
14.5 Extension of Linear Fragments to Graphs 362

CONTENTS xi

14.6 Combination of Conditions 366
14.7 Concluding Remarks 375

References 377

15 UNIFIED APPROACH TO ROOTED TREE MINING:
ALGORITHMS AND APPLICATIONS 381
Mohammed Zaki

15.1 Introduction 381
15.2 Preliminaries 382
15.3 Related Work 384
15.4 Generating Candidate Subtrees 385
15.5 Frequency Computation 392
15.6 Counting Distinct Occurrences 397
15.7 The SLEUTH Algorithm 399
15.8 Experimental Results 401
15.9 Tree Mining Applications in Bioinformatics 405
15.10 Conclusions 409

References 409

16 DENSE SUBGRAPH EXTRACTION 411
Andrew Tomkins and Ravi Kumar

16.1 Introduction 411
16.2 Related Work 414
16.3 Finding the densest subgraph 416
16.4 Trawling 418
16.5 Graph Shingling 421
16.6 Connection Subgraphs 429
16.7 Conclusions 438

References 438

17 SOCIAL NETWORK ANALYSIS 443
Sherry E. Marcus, Melanie Moy, and Thayne Coffman

17.1 Introduction 443
17.2 Social Network Analysis 443
17.3 Group Detection 452
17.4 Terrorist Modus Operandi Detection System 452
17.5 Computational Experiments 465
17.6 Conclusion 467

References 468

Index 469

PREFACE

Data mining, or knowledge discovery in databases, is a large area of study and is
populated with numerous theoretical and practical textbooks. In this book, we take
a focused and comprehensive look at one topic within this field: mining data that is
represented as a graph. We attempt to cover the full breadth of the topic, including
graph manipulation, visualization, and representation, mining techniques for graph
data, and application of these ideas to problems of current interest.

The book is divided into three parts. Part I, Graphs, offers an introduction to
basic graph terminology and techniques. In Part II, Mining Techniques, we take a
detailed look at computational techniques for extracting patterns from graph data.
These techniques provide an overview of the state of the art in frequent substructure
mining, link analysis, graph kernels, and graph grammars. Part III, Applications,
describes application of mining techniques to four graph-based application domains:
chemical graphs, bioinformatics data, Web graphs, and social networks.

The book is targeted toward graduate students, faculty, and researchers from
industry and academia who have some familiarity with basic computer science and
data mining concepts. The book is designed so that individuals with no background
in analyzing graph data can learn how to represent the data as graphs, extract patterns
or concepts from the data, and see how researchers apply the methodologies to real
datasets.

For those readers who would like to experiment with the techniques found in
this book or test their own ideas on graph data, we have set up a Web page for the
book at http://www.eecs.wsu.edu.mgd. This site contains additional information on
current techniques for mining graph data. Links are also given to implementations
of the techniques described in this book, as well as graph datasets that can be used
for testing new or existing algorithms.

With the advent of and continued prospect for large databases containing rela-
tional and graphical information, the discovery of knowledge in such data is an
important challenge to the scientific and industrial communities. Fielded applica-
tions for mining graph data from real-world domains has the potential to make
significant contributions of new knowledge. We hope that this book accelerates
progress toward meeting this challenge.

xiii

ACKNOWLEDGMENTS

We would like to acknowledge and thank the many people who contributed to this
book. All of the authors were very willing to help and contributed excellent material
to the book. The creation of this book also initiated collaborations that will continue
to further the state of the art in mining graph data. We would also like to thank
Whitney Lesch and Paul Petralia at Wiley for their assistance in assembling the
book and to thank the faculty and staff at the University of Texas at Arlington and
at Washington State University for their continued encouragement and support of
our work. Finally, we would like to thank our children, Abby and Ryan, for the
joy they bring to our lives and for forcing us to talk about topics other than graphs
at home.

xv

CONTRIBUTORS

Indrajit Bhattacharya University of Maryland
College Park, Maryland

Horst Bunke Institute of Computer Science and Applied Mathematics
University of Bern
Bern, Switzerland

Deepayan Chakrabarti Yahoo! Research
Sunnyvale, California

Diane J. Cook School of Electrical Engineering and Computer Science
Washington State University
Pullman, Washington

Walter Didimo Dipartimento di Ingegneria Elettronica e dell’Informazione
Università degli Studi di Perugia
Perugia, Italy

Christos Faloutsos School of Computer Science
Carnegie Mellon University
Pittsburgh, Pennsylvania

Thomas Gärtner Fraunhofer AIS
Schloß Birlinghoven
Sankt Augustin, Germany

Lise Getoor University of Maryland
College Park, Maryland

David Gibson IBM Almaden Research Center
San Jose, California

Seth A. Grennblatt 21st Century Technologies, Inc.
Austin, Texas

Jiawei Han University of Illinois at Urbana-Champaign
Urbana-Champaign, Illinois

Lawrence B. Holder School of Electrical Engineering and Computer Science
Washington State University
Pullman, Washington

xvii

xviii CONTRIBUTORS

Tamás Horváth Fraunhofer AIS
Schloß Birlinghoven
Sankt Augustin, Germany

Takahiko Ito NARA Institute of Science and Technology
Ikoma, Nara, Japan

Istvan Jonyer Department of Computer Science
Oklahoma State University
Stillwater, Oklahoma

George Karypis Department of Computer Science & Engineering
University of Minnesota
Minneapolis, Minnesota

Nikhil Ketkar School of Electrical Engineering and Computer Science
Washington State University
Pullman, Washington

Ravi Kumar Yahoo! Research, Inc.
Santa Clara, California

Michihiro Kuramochi Department of Computer Science & Engineering
University of Minnesota
Minneapolis, Minnesota

Quoc V. Le Statistical Machine Learning Program
NICTA and ANU Canberra
Canberra, Australia

Giuseppe Liotta Dipartimento di Ingegneria Elettronica e dell’Informazione
Università degli Studi di Perugia
Perugia, Italy

Michel Liquière LIRMM
Montpellier, France

Sherry E. Marcus 21st Century Technologies, Inc.
Austin, Texas

Kevin S. McCurley Google, Inc.
Mountain View, California

Akira Mogi Institute of Scientific and Industrial Research
Osaka University
Osaka, Japan

Hiroshi Motoda Institute of Scientific and Industrial Research
Osaka University
Osaka, Japan

Melanie Moy 21st Century Technologies, Inc.
Austin, Texas

Michel Neuhaus Institute of Computer Science and Applied Mathematics
University of Bern
Bern, Switzerland

CONTRIBUTORS xix

Phu Chien Nguyen Institute of Scientific and Industrial Research
Osaka University
Osaka, Japan

Kouzou Ohara Institute of Scientific and Industrial Research
Osaka University
Osaka, Japan

Takashi Okada Department of Informatics
School of Science & Engineering
Kwansei Gakuin University
Sanda, Japan

Masashi Shimbo NARA Institute of Science and Technology
Ikoma, Nara, Japan

Alex J. Smola Statistical Machine Learning Program
NICTA and ANU Canberra
Canberra, Australia

Andrew Tomkins Google, Inc.
Santa Clara, California

Takashi Washio Institute of Scientific and Industrial Research
Osaka University
Osaka, Japan

Stefan Wrobel Fraunhofer AIS
Schloß Birlinghoven
Sankt Augustin, Germany
and
Department of Computer Science III
University of Bonn,
Bonn Germany

Xifeng Yan Department of Computer Science
University of Illinois at Urbana-Champaign
Urbana-Champaign, Illinois

Mohammed Zaki Department of Computer Science
Rensselaer Polytechnic Institute
Troy, New York

1

INTRODUCTION
LAWRENCE B. HOLDER AND DIANE J. COOK

School of Electrical Engineering and Computer Science
Washington State University, Pullman, Washington

The ability to mine data to extract useful knowledge has become one of the most
important challenges in government, industry, and scientific communities. Much
success has been achieved when the data to be mined represents a set of independent
entities and their attributes, for example, customer transactions. However, in most
domains, there is interesting knowledge to be mined from the relationships between
entities. This relational knowledge may take many forms from periodic patterns of
transactions to complicated structural patterns of interrelated transactions. Extracting
such knowledge requires the data to be represented in a form that not only captures
the relational information but supports efficient and effective mining of this data and
comprehensibility of the resulting knowledge. Relational databases and first-order
logic are two popular representations for relational data, but neither has sufficiently
supported the data mining process.

The graph representation, that is, a collection of nodes and links between
nodes, does support all aspects of the relational data mining process. As one of
the most general forms of data representation, the graph easily represents entities,
their attributes, and their relationships to other entities. Section 1.2 describes several
diverse domains and how graphs can be used to represent the domain. Because one
entity can be arbitrarily related to other entities, relational databases and logic have
difficulty organizing the data to support efficient traversal of the relational links.

Mining Graph Data, Edited by Diane J. Cook and Lawrence B. Holder
Copyright c© 2007 John Wiley & Sons, Inc.

1

2 INTRODUCTION

Graph representations typically store each entity’s relations with the entity. Finally,
relational database and logic representations do not support direct visualization of
data and knowledge. In fact, relational information stored in this way is typically
converted to a graph form for visualization. Using a graph for representing the data
and the mined knowledge supports direct visualization and increased comprehensi-
bility of the knowledge. Therefore, mining graph data is one of the most promising
approaches to extracting knowledge from relational data.

These factors have not gone unnoticed in the data mining research community.
Over the past few years research on mining graph data has steadily increased.
A brief survey of the major data mining conferences, such as the Conference on
Knowledge Discovery and Data Mining (KDD), the SIAM Conference on Data
Mining, and the IEEE Conference on Data Mining, has shown that the number
of papers related to mining graph data has grown from 0 in the late 1990s to 40
in 2005. In addition, several annual workshops have been organized around this
theme, including the KDD workshop on Link Analysis and Group Detection, the
KDD workshop on Multi-Relational Data Mining, and the European Workshop on
Mining Graphs, Trees and Sequences. This increasing focus has clearly indicated
the importance of research on mining graph data.

Given the importance of the problem and the increased research activity in
the field, a collection of representative work on mining graph data was needed to
provide a single reference to this work and some organization and cross fertilization
to the various topics within the field. In the remainder of this introduction we first
provide some terminology from the field of mining graph data. We then discuss
some of the representational issues by looking at actual representations in several
important domains. Finally, we provide an overview of the remaining chapters in
the book.

1.1 TERMINOLOGY

Data mining is the extraction of novel and useful knowledge from data. A graph
is a set of nodes and links (or vertices and edges), where the nodes and/or links
can have arbitrary labels, and the links can be directed or undirected (implying
an ordered or unordered relation). Therefore, mining graph data, sometimes called
graph-based data mining, is the extraction of novel and useful knowledge from
a graph representation of data. In general, the data can take many forms from
a single, time-varying real number to a complex interconnection of entities and
relationships. While graphs can represent this entire spectrum of data, they are typ-
ically used only when relationships are crucial to the domain. The most natural
form of knowledge that can be extracted from graphs is also a graph. Therefore,
the knowledge, sometimes referred to as patterns, mined from the data are typically
expressed as graphs, which may be subgraphs of the graphical data, or more abstract
expressions of the trends reflected in the data. Chapter 2 provides more precise def-
initions of graphs and the typical operations performed by graph-based data mining
algorithms.

1.2 GRAPH DATABASES 3

While data mining has become somewhat synonymous with finding frequent
patterns in transactional data, the more general term of knowledge discovery encom-
passes this and other tasks as well. Discovery or unsupervised learning includes not
only the task of finding patterns in a set of transactions but also the task of finding
possibly overlapping patterns in one large graph. Discovery also encompasses the
task of clustering, which attempts to describe all the data by identifying categories
or clusters sharing common patterns of attributes and relationships. Clustering can
also extract relationships between clusters, resulting in a hierarchical or taxonomic
organization over the clusters found in the data. In contrast, supervised learning is
the task of extracting patterns that distinguish one set of graphs from another. These
sets are typically called the positive examples and negative examples. These sets of
examples can contain several graph transactions or one large graph. The objective
is to find a graphical pattern that appears often in the positive examples but not in
the negative examples. Such a pattern can be used to predict the class (positive or
negative) of new examples. The last graph mining task is the visualization of the
discovered knowledge. Graph visualization is the rendering of the nodes, links, and
labels of a graph in a way that promotes easier understanding by humans of the
concepts represented by the graph.

All of the above graph mining tasks are described within the chapters of this
book, and we provide an overview of the chapters in Section 1.3. However, an
additional motivation for the work in this book is the important application domains
and how their data is represented as a graph to support mining. In the next section
we describe three domains whose data is naturally represented as a graph and in
which graph mining has been successful.

1.2 GRAPH DATABASES

Three domains that epitomize the tasks of mining graph data are the Internet Movie
Database, the Mutagenesis dataset, and the World Wide Web. We describe several
graph representations for the data in these domains and survey work on mining
graph data in these domains. These databases may also serve as a benchmark set of
problems for comparing and contrasting different graph-based data mining methods.

1.2.1 The Internet Movie Database

The Internet Movie Database (IMDb) [41] maintains a large database of movie and
television information. The information is freely available through online queries,
and the database can also be downloaded for in-depth analysis. This database
emerged from newsgroups in the early 1990s, such as rec.arts.movies, and has now
become a commercial entity that serves approximately 65 million accesses each
month.

Currently, the IMDb has information on 468,305 titles and 1,868,610 people
in the business. The database includes filmographies for actors, directors, writers,
composers, producers, and editors as well as movie information such as titles, release

4 INTRODUCTION

dates, production companies and countries, plot summaries, reviews and ratings,
alternative names, genres, and awards.

Given such filmography information, a number of mining tasks can be performed.
Some of these mining tasks exploit the unstructured components of the data. For
example, Chaovalit and Zhou [9] use text-based reviews to distinguish well-accepted
from poorly accepted movies. Additional information can be used to provide recom-
mendations to individuals of movies they will likely enjoy. Melville et al. [33] combine
IMDb movie information (title, director, cast, genre, plot summary, keywords, user
comments, reviews, awards) with movie ratings from EachMovie [14] to predict items
that will be of interest to individuals. Vozalis and Margaritis [42] combine movie
information, ratings from the GroupLens dataset [37], and demographic information
to perform a similar recommendation task. In both of these cases, movie and user
information is treated as a set of independent, unstructured attributes.

By representing movie information as a graph, relationships between movies,
people, and attributes can be captured and included in the analysis. Figure 1.1(a)
shows one possible representation of information related to a single movie. This
hub topology represents each movie as a vertex, with links to attributes describing
the movie. Similar graphs could be constructed for each person as well. With this
representation, one task we can perform is to answer the following question:

What commonalities can we find among movies in the database?

Using a frequent subgraph discovery algorithm, subgraphs that appear in a
large fraction of the movie graphs can be reported. These algorithms may report
discoveries such as movies receiving awards often come from the same small set of
studios [as shown in Fig. 1.1(b)] or certain director/composer pairs work together
frequently [as shown in Fig. 1.1(c)].

By connecting people, movies, and other objects that have relationships to each
other, a single connected graph can be constructed. For example, Figure 1.2 shows
how different movies may have actors, directors, and studios in common. Similarly,

Person

Studio Award

Movie

Person

Movie
AwardMadeBy

Person

John
Williams

Movie

Person

George
Lucas

 Year

ReleaseDate

Actor

(a) (c)(b)

Director

Person

MadeBy AwardComposer

Miramax Oscar

Best
Movie

Director

Name

Composer

Category

Name

Figure 1.1. (a) Possible graph representation for information related to a single movie.

(b) One possible frequent subgraph. (c) Another possible frequent subgraph.

1.2 GRAPH DATABASES 5

Movie

Person

Studio Award

Person

Award
Movie

Movie

Movie

 Year

ReleaseDate

Actor

Director

Person

Composer

MadeBy

Actor

MadeBy

Director

Figure 1.2. Second graph representation in which relationships between data points are

represented using labeled edges.

different actors may appear in the same movie, forming a relationship between these
people. Analysis of this connected graph may answer questions such as:

What common relationships can we find between objects in the database?

For the movie graph, a discovery algorithm may find a recurring pattern that
movies made by the same studio frequently also have the same producer. Jensen and
Neville [21] mention another type of discovery that can be made from a connected
graph. In this case, an emerging film star may be characterized in the graph by a
sequence of successful movies in which he or she stars and by winning one or more
awards.

Other analyses can be made regarding the topology of such graphs. For example,
Ravasz and Barabasi [36] analyzed a graph constructed by linking actors appearing
in the same movie and found that the graph has a distinct hierarchical topology.
Movie graphs can also be used to perform classification. As an example, Jensen and
Neville [21] use information in a movie graph as shown in Figure 1.2 to predict
whether a movie will make more than $2 million in its opening weekend. In a
separate study, they use structure around nominated and nonnominated movies to
predict which new movies will be nominated for awards [32].

These examples show that patterns can be learned from structural information
that is explicitly provided. However, missing structure can also be inferred from
this data. Getoor et al.’s [16] approach learns a graph linking actors and movies
using IMDb information together with demographic information based on actor ZIP
codes. Mining algorithms can be used to infer missing links in the movie graph.
For example, given information about a collection of people who starred together

6 INTRODUCTION

in a movie, link completion [17, 28] can be used to determine who the remaining
individuals are who starred in the same movie. Such link completion algorithms can
also be used to determine when one movie is a remake of another [21].

1.2.2 Mutagenesis Data

The Mutagenesis dataset is a chemical compound dataset where the task is explicitly
defined as:

Given the molecular structure of a compound, identify the compound as muta-
genic or not mutagenic.

The Mutagenesis dataset was collected to identify mutagenic activity in che-
mical data [10]. Mutation is a structural alteration in DNA (deoxyribonucleic acid).
Occasionally, a mutation improves an organism’s chance of surviving or has no
observable effect. In most cases, however, such DNA changes harm human health.
A high correlation is also observed between mutagenicity and carcinogenicity. Some
chemical compounds are known to cause frequent mutations. Mutagenicity cannot
be practically determined for every compound using biological experiments, so
accurate evaluation of mutagenic activity from chemical structure is very desirable.

Structure–activity relationships (SARs) relate biological activity with molecular
structure. The importance of SARs to drug design is well established. The Mutagen-
esis problem focuses on obtaining SARs that describe the mutagenicity of nitroaro-
matic compounds or organic compounds composed of NO or NO2 groups attached
to rings of carbon atoms. Analyzing relationships between mutagenic activity and
molecular structure is of great interest because highly mutagenic nitroaromatic com-
pounds are carcinogenic.

The Mutagenesis dataset collected by Debnath et al. [10] consists of the mole-
cular structure of 230 compounds, such as the one shown in Figure 1.3. Of these
compounds, 138 are labeled as mutagenic and 92 are labeled nonmutagenic. Each
compound is described by its constituent atoms, bonds, atom and bond types, and
partial charges on atoms. In addition, the hydrophobicity of the compound (log P),
the energy level of the compound’s lowest unoccupied molecular orbital (LUMO), a
Boolean attribute identifying compounds with three or more benzyl rings (I1), and a

NO2

CH3

CH 3 CH3 NO2

CH3

Figure 1.3. 1,6,-Dinitro-9,10,11,12-tetrahydrobenzo[e]pyrene.

1.2 GRAPH DATABASES 7

Boolean attribute identifying compounds that are acenthryles (Ia). The mutagenicity
of the compounds has been determined using the Ames test [1]. While alternative
datasets are being considered by the community as challenges for structural data
mining [29], the Mutagenesis dataset provides both a representative case for graph
representations of chemical data and an ongoing challenge for researchers in the
data mining community.

Some work has focused on analyzing these chemical compounds using global,
nonstructural descriptors such as molecular weight, ionization potential, and various
physiocochemical properties [2, 19]. More recently, researchers have used induc-
tive logic programming (ILP) techniques to encode additional relational information
about the compounds and to infuse the discovery process with background knowl-
edge and high-level chemical concepts such as the definitions of methyl groups and
nitro groups [23, 40]. In fact, Srinivasan and King in a separate study [38] show that
traditional classification approaches such as linear regression improve dramatically
in classification accuracy when enhanced with structural descriptors identified by
ILP techniques.

Inductive logic programming methods face some limitations because of the
explicit encoding of structural information and the prohibitive size of the search
space [27]. Graphs provide a natural representation for the structural information
contained in chemical compounds. A common mining task for the Mutagenesis data,
therefore, is to represent each compound as a separate graph and look for frequent
substructures in these graphs. Analysis of these graphs may answer the following
question:

What commonalities exist in mutagenic or non-mutagenic compounds that will
help us to understand the data?

This question has been addressed by researchers with notable success [5, 20].
A related question has been addressed as well [11, 22]:

What commonalities exist in mutagenic or nonmutagenic compounds that will
help us to learn concepts to distinguish the two classes?

An interesting twist on this task has been offered by Deshpande et al. [12], who
do not use the substructure discovery algorithm to perform classification but instead
use frequency of discovered subgraphs in the compounds to form feature vectors
that are then fed to a Support Vector Machine classifier.

Many of the graph templates used for the Mutagenesis and other chemical
structure datasets employ a similar representation. Vertices correspond to atoms and
edges represent bonds. The vertex label is the atom type and the edge label is the
bond type. Alternatively, separate vertices can be used to represent attributes of
the atoms and the bonds, as shown in Figure 1.4. In this case information about
the atom’s chemical element, charge, and type (whether it is part of an aromatic
ring) is given along with attributes of the bond such as type (single, double, triple)
and relative three-dimensional (3D) orientation. Compound attributes including log

8 INTRODUCTION

Element Atom TypeCharge

Atom

Element Atom TypeCharge

Atom

BondBond Type

Compound

Figure 1.4. Graph representation for a chemical compound.

P , LUMO, I1, and Ia can be attached to the vertex representing the entire chemical
compound.

When performing a more in-depth analysis of the data, researchers often aug-
ment the graph representation with additional features. The types of features that
are added are reflective of the type of discoveries that are desired. Ketkar et al. [22],
for example, add inequality relationships between atom charge values with the goal
of identifying value ranges in the concept description. In Chapter 14 of this book,
Okada provides many more descriptive features that can be considered.

1.2.3 Web Data

The World Wide Web is a valuable information resource that is complex, dyna-
mically evolving, and rich in structure. Mining the Web is a research area that is
almost as old as the Web itself. Although Etzioni coined the term “Web mining” [15]
to refer to extracting information from Web documents and services, the types of
information that can be extracted are so varied that this has been refined to three
classes of mining tasks: Web content mining, Web structure mining, and Web usage
mining [26].

Web content mining algorithms attempt to answer the following question:

What patterns can I find in the content of Web pages?

The most common approach to answering this question is to perform mining
of the content that is found within each page on the Web. This content typically
consists of text occasionally supplemented with HTML tags [8, 43]. Using text
mining techniques, the discovered patterns facilitate classification of Web pages and
Web querying [4, 34, 44].

When structure is added to Web data in the form of hyperlinks, analysts can
then perform Web structure mining. In a Web graph, vertices represent Web pages
and edges represent links between the Web pages. The vertices can optionally be

1.2 GRAPH DATABASES 9

labeled by the domain name (as Kuramochi and Karypis describe in Chapter 6), and
edges are typically unlabeled or labeled with a uniform tag. Additional vertices can
be attached to the Web page nodes that are labeled with keywords or other textual
information found in the Web page content. Figure 1.5 shows a sample graph of
this type for a collection of three Web pages. With the inclusion of this hypertext
information, Web page classification can be performed based on structure alone
(Gartner and co-workers describe this in Chapter 11 of this book) or together with
Web content information [18]. Algorithms that analyze Web pages based on more
than textual content can also potentially glean more complex patterns, such as “there
is a prevalence of data mining web pages that have links to job pages and links to
publication pages.”

Other researchers focus on insights that can be drawn using structural infor-
mation alone. Chakrabarti and Faloutsos. (Chapter 4) and others [7, 24] have studied
the unique attributes of graphs created from Web hyperlink information. Such hyper-
link graphs can also be used to answer the following question:

What patterns can I find in the Web structure?

In Chapter 6, Kuramochi and Karypis discover frequent subgraphs in these
topology graphs. In Chapter 16, Tomkins and Kumar show how new or emerging
communities of Web pages can be identified from such a graph. Analysis of this
graph leads to identification of topic hubs and authorities [25]. Authorities in this
case are highly ranked pages on a given topic, and hubs represent overview sites
with links to strong authority pages. The PageRank program [6] precomputes page
ranks based on the number of links to the page from other sites together with the
probability that a Web surfer will visit the page directly, without going through
intermediary sites. In Chapter 12, Shimbo and Ito also demonstrate how the relat-
edness of Web pages can be determined from link structure information. Finally,

Page

Software

Page

Web

Bayesian

Fraud

Link

Page

Training

Consulting

Companies

Data

Text

Mining

Figure 1.5. Graph representation for Web text and structure data. Solid arrows represent

edges labeled ‘‘hyperlink’’ and dashed arrows represent edges labeled ‘‘keyword.’’

10 INTRODUCTION

Desikan and Srivastava [13] have been investigating methods of finding patterns
in dynamically evolving graphs, which can provide insights on trends as well as
potential intrusions.

The third type of question that is commonly addressed in mining the web is:

What commonalities can we find in Web navigation patterns?

Answering this question is the problem of Web usage mining. Although mining
clickstream data on the client side has been investigated [30], data is most easily
collected and mined from Web servers [39]. Didimo and Liotta (Chapter 3) provide
some graph representations and visualizations of navigation patterns. As Berendt
points out [3], a graph representation of navigation allows the individual’s website
roadmap to be constructed. From the graph one can determine which pages act
as starting points for the site, which collection of pages are typically navigated
sequentially, and how easily (or often) are pages within the site accessed. Navigation
graphs can be used to categorize Web surfers and can ultimately assist in organizing
websites and ranking Web pages [3, 31, 35, 45].

1.3 BOOK OVERVIEW

The intention of this book is to provide an overview of the state of the art in mining
graph data. To this end, we have gathered writings from colleagues that contribute
to varied aspects of the problem. The aspects we focus on here are basic graph
tools, techniques for mining graph data, and noteworthy graph mining applications.

Chapter 2 kicks off the graph tools part of the book by providing working
definitions of key terms including graphs, subgraphs, and the operation that underlies
much of graph mining, graph isomorphism. Here, Bunke and Neuhaus examine
graph isomorphism techniques in detail and evaluate their merits based on the type
of data that is available and the task that must be performed. Didimo and Liotta
provide a thorough overview of graph visualization techniques in Chapter 3. They
show how graph drawing algorithms assist and enhance the mining process and
show how many of the techniques are customized for particular mining and other
graph-based tasks. In Chapter 4, Chakrabarti and Faloutsos describe how the R-MAT
algorithm can be used to generate graphs that exhibit properties found in real-world
graphs. The ability to generate such graphs is useful for developing new mining
algorithms, for testing existing algorithms, and for performing mining tasks such as
anomaly detection.

In Part II, we highlight some of the most popular mining techniques that are cur-
rently developed for graph data. Chapters 5 through 7 focus on methods of discov-
ering subgraph patterns from graph data. Yan and Han (Chapter 5) and Kuramochi
and Karypis (Chapter 6) investigate efficient methods for extracting frequent sub-
structures from graph data. Cook, Holder, and Ketkar (Chapter 7) evaluate subgraph
patterns based on their ability to compress the input graph. Discovered subgraphs
can be used to generate a graph grammar that is descriptive of the data, as shown by

REFERENCES 11

Jonyer in Chapter 8. In contrast, Ohara et al. (Chapter 9) allow discovered subgraphs
to represent features in a supervised learning problem. These subgraphs represent
the attributes in a decision tree that can be learned from graph data. In Chapter 10,
Liquière presents an alternative method for inducing concepts from graph data. By
defining a partial order over the graph-based examples, the classification space can
be viewed as a lattice and classical algorithms can be used to construct the concept
definition from this lattice. In Chapter 11, Gärtner et al. define kernels on struc-
tural data that can be represented as a graph. The result can be applied to graph
classification, making this problem tractable.

The next two chapters focus on properties of portions of the graph (individual
edges, nodes, or neighborhoods around nodes), rather than on the graph as a whole,
to perform the mining task. Shimbo and Ito, in Chapter 12, define an inner product
of nodes in a graph. The resulting kernel can be used to analyze Web pages based
on a combination of two factors: importance of the page and the degree to which
two pages are related. Bhattacharya and Getoor use this location information in
Chapter 13 to perform graph-based entity resolution. Edge attributes and constructed
clusters of nodes can be used to identify the unique (nonduplicated) set of entities
in the graph and to induce the corresponding entity graph.

The final part of the book features a collection of graph mining applications.
These applications cover a diverse set of fields that are challenging and relevant,
and for which data can be naturally represented as a graph. In Chapter 14, Okada
provides an overview of chemical structure mining, including graph representations
of the data and graph-based algorithms for analyzing the data. Zaki uses tree mining
techniques to analyze bioinformatics data in Chapter 15. Specifically, the Sleuth
algorithm is used to mine subtrees and can be applied to bioinformatics data such
as RNA (ribonucleic acid) structures and phylogenetic subtrees. Tomkins and Kumar
apply graph algorithms to Web data in Chapter 16 in which dense subgraphs are
extracted that may represented communities of websites. Finally, Greenblatt and co-
workers introduce a variety of graph mining tools in Chapter 17 that are effective for
analyzing social network graphs. These applications are by no means comprehensive
but illustrate the types of fields for which graph mining techniques are needed, and
define the challenges that continue to drive this growing field of study.

REFERENCES

1. B. N. Ames, J. Mccann, and E. Yamasaki. Methods for detecting carcinogens and muta-
gens with the salmonella/mammalian-microsome mutagenicity test. Mutation Research,
31(6):347–364, 1975.

2. J. M. Barnard, G. M. Downsa, and P. Willet. Descriptor-based similarity measures for
screening chemical databases. In H. J. Bohm and G. Schneider, eds. Virtual Screening
for Bioactive Molecules, Wiley, New York, 2000.

3. B. Berendt. The semantics of frequent subgraphs: Mining and navigation pattern analysis.
In Proceedings of WebKDD, Chicago, Illinois, 2005.

4. T. Berners-Lee, J. Hendler, and O. Lassila. The semantic Web. Scientific American
279(5):34–43, 2001.

12 INTRODUCTION

5. C. Borgelt and M. R. Berthold. Mining molecular fragments: Finding relevant substruc-
tures of molecules. In Proceedings of the IEEE International Conference on Data Mining,
Maebashi City, Japan, pp. 51–58 2002.

6. S. Brin and L. Page. The anatomy of a large-scale hypertextual (web) search engine.
Computer Network and ISDN Systems 30:107–117, 1998.

7. A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stat, and
A. Tomkins. Graph Structure in the Web: Experiments and models. In Proceedings
of the World Wide Web Conference, Amsterdam, The Netherlands, 2000.

8. S. Chakrabarti. Data mining for hypertext: A tutorial survey. ACM SIGKDD Explorations
1(2):1–11, 2000.

9. P. Chaovalit and L. Zhou. Movie Review Mining: A comparison between supervised
and unsupervised classification approaches. In Proceedings of the Thirty-Eighth Annual
Hawaii International Conference on System Sciences, Waikoloa, Hawaii, 2005.

10. A. K. Debnath, R. L. Lopez de Compadre, G. Debnath, A. J. Shusterman, and
C. Hansch. Structure-activity relationship of mutagenic aromatic and heteroaromatic
nitro compounds: Correlation with molecular orbital energies and hydrophobicity. Jour-
nal of Medicinal Chemistry 34(2):786–797, 1991.

11. M. Deshpande, M. Kuramochi, and G. Karypis. Automated approaches for classifying
structures. In Proceedings of the Workshop on Data Mining in Bioinformatics, Edmonton,
Alberta, Canada, 2002.

12. M. Deshpande, M. Kuramochi, N. Wale, and G. Karypis. Frequent substructure-based
approaches for classifying chemical compounds. IEEE Transactions on Knowledge and
Data Engineering 17(18):1036–1050, 2005.

13. P. Desikan and J. Srivastava. Mining Temporally Evolving Graphs. In Proceedings of
WebKDD, Seattle, Washington, 2004.

14. EachMovie. http://research.compaq.com/SRC/eachmovie.
15. O. Etzioni. The World wide web: Quagmire or gold mine? Communications of the ACM

39(11):65–68, 1996.
16. L. Getoor, N. Friedman, D. Koller, and B. Taskar. Learning probabilistic models of

relational structure. In Proceedings of the International Conference on Machine Learning,
Williamstown, Massachusetts, 2001.

17. A. Goldenberg and A. Moore. Tractable learning of large bayes net structures from
sparse data. In Proceedings of the International Conference on Machine Learning, 2004.

18. J. Gonzalez, L. B. Holder, and D. J. Cook. Graph-based relational concept learning. In
Proceedings of the International Machine Learning Conference, 2002.

19. C. Hansch, R. M. Muir, T. Fujita, C. F. Maloney, and M. Streich. The correlation of
biological activity of plant growth-regulators and chloromycetin derivatives with ham-
mett constants and partition coefficients. Journal of the American Chemical Society
85:2817–2824, 1963.

20. A. Inokuchi, T. Washio, T. Okada, and H. Motoda. Applying the apriori-based graph
mining method to mutagenesis data analysis. Journal of Computer Aided Chemistry
2:87–92, 2001.

21. D. Jensen and J. Neville. Data mining in social networks. In Workshop on Dynamic
Social Network Modeling and Analysis, Washington, DC, 2002.

22. N. Ketkar, L. B. Holder, and D. J. Cook. Qualitative comparison of graph-based and
logic-based multi-relational data mining: a case study. In Proceedings of the KDD
Workshop on Multi-Relational Data Mining, 2005.

23. R. D. King, S. H. Muggleton, A. Srinivasan, and M. J. E. Sternberg. Structure-activity
relationships derived by machine learning: The use of atoms and their bond connectivities

REFERENCES 13

to predict mutagenicity by inductive logic programming. In Proceedings of the National
Academy of Sciences, Vol. 93, pp. 438–442, National Academy of Sciences, Washing-
ton, DC, 1996.

24. J. Kleinberg and S. Lawrence. The structure of the web. Science 294, 2001.
25. J. M. Kleinberg. Authoritative sources in a hyperlinked environment. Journal of the

ACM 46:604–632, 1999.
26. P. Kolari and A. Joshi. Web mining: Research and practice. IEEE Computing in Science

and Engineering 6(4):49–53, 2004.
27. S. Kramer, B. Pfahringer, and C. Helma. Mining for causes of cancer: Machine learning

experiments at various levels of details. In Proceedings of the Conference on Knowledge
Discovery and Data Mining, pp. 233–226, Newport Beach, California, 1997.

28. J. Kubica, A. Goldenberg, P. Komarek, and A. Moore. A comparison of statistical and
machine learning algorithms on the task of link completion. In Proceedings of the KDD
Workshop on Link Analysis for Detecting Complex Behavior, 2003.

29. H. Lodhi and S. H. Muggleton. Is Mutagenesis Still Challenging? In Proceedings of the
International Conference on Inductive Logic Programming, pp. 35–40, 2005.

30. A. Maniam. Graph-based click-stream mining for categorizing browsing activity in the
world wide web. Master’s thesis, University of Texas at Arlington, 2004.

31. J. E. McEneaney. Graphic and numerical methods to assess navigation in hypertext.
International Journal of Human-Computer Studies 55:761–786, 2001.

32. A. McGovern and D. Jensen. Identifying predictive structures in relational data using
multiple instance learning. In Proceedings of the International Conference on Machine
Learning, 2003.

33. P. Melville, R. Mooney, and R. Nagarajan. Content-boosted collaborative filtering for
improved recommendations. In Proceedings of the National Conference on Artificial
Intelligence, pp. 187–192, 2002.

34. A. Mendelzon, G. Michaila, and T. Milo. Querying the world wide web. In Proceed-
ings of the International Conference on Parallel and Distributed Information Systems,
pp. 80–91, 1996.

35. R. Meo, P. L. Lanzi, M. Matera, and R. Esposito. Integrating web conceptual modeling
and web usage mining. In Proceedings of WebKDD, 2004.

36. E. Ravasz and A.-L. Barabasi. Hierarchical organization in complex networks. Physical
Review E, 67, 2003.

37. P. Resnick, N. Iacovou, M. Sushak, P. Bergstrom, and J. Riedl. Grouplens: An open
architecture for collaborative filtering of netnews. In Proceedings of the ACM Conference
on Computed Supported Cooperative Work, pp. 175–186, 1994.

38. A. Srinivasan and R. D. King. Feature construction with inductive logic programming:
A study of quantitative predictions of biological activity aided by structural attributes.
Data Mining and Knowledge Discovery 3(1):37–57, 1999.

39. J. Srivastava, R. Cooley, M. Deshpande, and P.-N. Tan. Web usage mining: Discovery
and applications of usage patterns from web data. SIGKDD Explorations 1(2):1–12,
2000.

40. M. J. E. Sternberg and S. H. Muggleton. Structure activity relationships (SAR) and
pharmacophore discovery using inductive logic programming (ILP). QSAR and Combi-
natorial Science 22, 2003.

41. The Internet Movie Database. http://www.imdb.com.
42. E. Vozalis and K. Margaritis. Recommender systems: An experimental comparison of

two filtering algorithms. In Proceedings of the Ninth Panhellenic Conference in Infor-
matics, 2003.

14 INTRODUCTION

43. R. Weiss, B. Velez, and M. Sheldon. HyPursuit: A hierarchical network search engine
that exploits context-link hypertext clustering. In Proceedings of the Conference on
Hypertext and Hypermedia, pp. 180–193, 1996.

44. O. R. Zaiane and J. Han. Resource and knowledge discovery in global information
systems: A preliminary design and experiment. In Proceedings of the International
Conference on Knowledge Discovery and Data Mining, pp. 331–336, 1995.

45. M. J. Zaki. Efficiently mining frequent trees in a forest. In Proceedings of the Interna-
tional Conference on Knowledge Discovery and Data Mining, 2002.

Part I

GRAPHS

15

2
GRAPH MATCHING—EXACT

AND ERROR-TOLERANT
METHODS AND THE

AUTOMATIC LEARNING OF
EDIT COSTS

HORST BUNKE AND MICHEL NEUHAUS
Institute of Computer Science and Applied Mathematics

University of Bern, Bern, Switzerland

2.1 INTRODUCTION

In recent years, the use of graph representations has gained popularity in pattern
recognition and machine learning [1–3]. The main advantage of graphs is that
they offer a powerful way to represent structured data. Among other applica-
tions, attributed graphs have been used to address the problem of graphical symbol
recognition [4], character recognition [5, 6], shape analysis [7], biometric person
authentication by means of facial images [8] and fingerprints [9], computer network
monitoring [10], Web document analysis [11], and data mining [12].

The process of evaluating the structural similarity of graphs is commonly
referred to as graph matching. A large variety of methods addressing specific prob-
lems of structural matching have been proposed [13]. Graph matching systems can
roughly be divided into systems matching structure in an exact manner and systems
matching structure in an error-tolerant way. Although exact graph matching offers
a rigorous way to describe the graph matching problem in mathematical terms, it is
generally only applicable to a restricted set of real-world problems. Error-tolerant
graph matching, on the other hand, is able to cope with strong inner-class distortion,
which is often present in real-world problems, but is generally computationally less
efficient.

Mining Graph Data, Edited by Diane J. Cook and Lawrence B. Holder
Copyright c© 2007 John Wiley & Sons, Inc.

17

18 EXACT AND ERROR-TOLERANT METHODS

Edit distance [14, 15] is one of the most intuitive dissimilarity measures on
graphs. However, the applicability of error-tolerant graph matching using edit dis-
tance strongly depends on the definition of suitable edit costs. In the past, edit cost
functions have mostly been designed in a manual fashion, due to the lack of methods
to automatically learn edit costs.

In this chapter we provide an introduction to, and overview of, basic graph
matching methods. We describe exact matching paradigms, such as graph iso-
morphism, subgraph isomorphism, and maximum common subgraph, as well as
error-tolerant matching approaches, such as graph edit distance, and present two
methods for automatically learning edit costs from a sample set of graphs.

2.2 DEFINITIONS AND GRAPH MATCHING METHODS

Attributed graphs with an unrestricted label alphabet is one of the most general
ways to define graphs. It turns out that the definition given below is sufficiently
flexible for a large variety of pattern recognition applications.

Definition 2.1 (Graph) Given a node label alphabet LV and an edge label alpha-
bet LE , we define a (directed attributed) graph g by the four-tuple g = (V, E,µ, ν),
where

• V denotes a finite set of nodes.
• E ⊆ V × V denotes a set of edges.
• µ : V → LV denotes a node labeling function.
• ν : E → LE denotes an edge labeling function.

The set V can be regarded as a set of node identifiers and is often chosen to be
equal to V = {1, . . . , |V |}. While V defines the nodes, the set of edges E represents
the structure of the graph. That is, a node u ∈ V is connected to a node v ∈ V by
an edge e = (u, v) if (u, v) ∈ E. The labeling functions can be used to integrate
information about nodes and edges into graphs by assigning attributes from LV and
LE to nodes and edges, respectively. Usually, there are no constraints imposed on
the label alphabets. In practical applications, however, label alphabets L are often
defined as vector spaces of a fixed dimension, L = Rk , or discrete sets of symbols,
L = {s1, . . . , sk}. Theoretically, nodes and edges may also have more complex labels
such as strings or graphs themselves.

The graph definition introduced above includes a number of special cases. To
define undirected graphs, for instance, we require that (v, u) ∈ E for every edge
(u, v) ∈ E such that ν(u, v) = ν(v, u). In the case of nonattributed graphs, the
label alphabets are defined by LV = LE = {φ}, so that every node and every edge
gets assigned the null label ∅. The empty graph is defined by gε = (∅, ∅, µε, νε).

For some applications, it is important to detect if a smaller graph is present in a
larger graph—for instance, if the larger graph represents an aggregation of objects

2.2 DEFINITIONS AND GRAPH MATCHING METHODS 19

and the smaller graph a specific object in the larger context. This intuitively leads
to the formal definition of a subgraph.

Definition 2.2 (Subgraph) Let g1 = (V1, E1, µ1, ν1) and g2 = (V2, E2, µ2, ν2)

be graphs. Graph g1 is a subgraph of g2, written g1 ⊆ g2, if

• V1 ⊆ V2.
• E1 = E2 ∩ (V1 × V1).
• µ1(u) = µ2(u) for all u ∈ V1.
• ν1(u, v) = ν2(u, v) for all (u, v) ∈ E1.

Conversely, graph g2 is called a supergraph of g1 if g1 is a subgraph of g2. Some-
times the second condition of this definition is replaced by E1 ⊆ E2, and a subgraph
fulfilling the more stringent condition given above is called an induced subgraph.
The notion of subgraph can be used to approach more complex problems such as
the largest common part of several graphs, which will be discussed in greater detail
below. In the following section, a number of standard techniques to perform graph
matching are described.

2.2.1 Exact Graph Matching

In exact graph matching, the objective is to determine whether or not the labels
and structure, or part of the structure, of two graphs are identical. While it is easy
to determine equality of patterns in case of feature vectors or strings, the same
computation is much more complex for graphs. Because the nodes and edges of a
graph cannot be ordered in general, unlike the components of a feature vector or the
symbols of a string, the problem of graph equality, known as graph isomorphism,
is computationally very demanding.

Definition 2.3 (Graph Isomorphism) Let g1 = (V1, E1, µ1, ν1) and g2 = (V2,
E2, µ2, ν2) be graphs. A graph isomorphism between g1 and g2 is a bijective func-
tion f : V1 → V2 satisfying

• µ1(u) = µ2(f (u)) for all nodes u ∈ V1.
• For every edge e1 = (u, v) ∈ E1, there exists an edge e2 = (f (u), f (v)) ∈ E2

such that ν1(e1) = ν2(e2).
• For every edge e2 = (u, v) ∈ E2, there exists an edge e1 = (f −1(u), f −1(v))

∈ E1 such that ν1(e1) = ν2(e2).

Two graphs g1 and g2 are called isomorphic if there exists a graph isomorphism bet-
ween them.

From the last definition we conclude that isomorphic graphs are identical in
terms of structure and labels. To establish an isomorphism, one has to map each

20 EXACT AND ERROR-TOLERANT METHODS

(a) (b) (c)

Figure 2.1. Three graphs: Graph (b) is isomorphic to (a) and (c) is isomorphic to a subgraph

of (a).

node from the first graph to a node of the second graph such that the edge structure
is preserved and the node and edge labels are consistent. An illustration of two
isomorphic graphs without labels is shown in Figure 2.1(a) and 2.1(b).

The most straightforward approach to checking the isomorphism of two graphs
is to traverse a search tree considering all possible node-to-node correspondences
[16]. The expansion of tree branches is continued until the edge structure implied
by the node mapping does not correspond in both graphs. If nodes and edges are
additionally endowed with labels, matching nodes and edges must also be consistent
in terms of their labels. Reaching a leaf node of the search tree is equivalent to
successfully mapping all nodes without violating the structure and label constraints
and is therefore equivalent to having found a graph isomorphism. In general, the
computational complexity of this procedure is exponential in the number of nodes
of both graphs.

Closely related to graph isomorphism is the problem to detect if a smaller graph
is present in a larger graph. If graph isomorphism is regarded as a formal notion of
graph equality, subgraph isomorphism can be seen as subgraph equality.

Definition 2.4 (Subgraph Isomorphism) Let g1 = (V1, E1, µ1, ν1) and g2 =
(V2, E2, µ2, ν2) be graphs. An injective function f : V1 → V2 is called a subgraph
isomorphism from g1 to g2 if there exists a subgraph g ⊆ g2 such that f is a graph
isomorphism between g1 and g.

A subgraph isomorphism exists from g1 to g2 if the larger graph g2 can be turned
into a graph that is isomorphic to the smaller graph g1 by removing some nodes
and edges. For an illustration of two graphs with an existing subgraph isomorphism
between them, see Figures 2.1(a) and 2.1(c). Subgraph isomorphism can also be
determined with the procedure outlined above for graph isomorphism [16]. It is
known that subgraph isomorphism belongs to the class of NP-complete problems.

The definition of subgraph isomorphism leads us to the formal definition of the
largest common part of two graphs.

Definition 2.5 (Maximum Common Subgraph, MCS) Let g1 = (V1, E1, µ1,

ν1) and g2 = (V2, E2, µ2, ν2) be graphs. A graph g = (V , E,µ, ν) is called a com-
mon subgraph of g1 and g2 if there exist subgraph isomorphisms from g to g1

and from g to g2. A common subgraph of g1 and g2 is called maximum common

2.2 DEFINITIONS AND GRAPH MATCHING METHODS 21

(a) (b) (c)

Figure 2.2. Two graphs: (a) and (b) and a maximum common subgraph (c).

subgraph (MCS) if there exists no other common subgraph of g1 and g2 that has
more nodes than g.

A maximum common subgraph of two graphs represents the maximal part of both
graphs that is identical in terms of structure and labels. Note that, in general, the
maximum common subgraph is not uniquely defined, that is, there may be more than
one common subgraph with a maximal number of nodes. A standard approach to
computing maximum common subgraphs is based on solving the maximum clique
problem in an association graph [17]. The association graph of two graphs represents
the whole set of possible node-to-node mappings that preserve the edge structure of
both graphs. Finding a maximum clique in the association graph, that is, a fully con-
nected maximal subgraph, is equivalent to finding a maximum common subgraph.
Two graphs and a maximum common subgraph are shown in Figure 2.2.

Object similarity, or dissimilarity, is a key issue in many pattern recognition
tasks. A simple graph dissimilarity measure can be derived from the maximum com-
mon subgraph of two graphs. Intuitively speaking, the larger a maximum common
subgraph of two graphs is, the more similar are the two graphs. This observation
leads to a graph dissimilarity measure that is able to cope with structural errors. The
dissimilarity of two graphs is defined by relating the size of the maximum common
subgraph to the size of the larger of the two graphs [18].

Definition 2.6 (MCS Distance) Let g1 = (V1, E1, µ1, ν1) and g2 = (V2, E2, µ2,

ν2) be graphs and gMCS = (VMCS, EMCS, µMCS, νMCS) be their maximum common
subgraph. The MCS distance, dMCS, of g1 and g2 is then defined by

dMCS(g1, g2) = 1 − |VMCS|
max{|V1|, |V2|} (2.1)

Note that whereas the maximum common subgraph of two graphs is not uniquely
defined, the MCS distance is. If two graphs are isomorphic, their MCS distance is 0;
if two graphs have no part in common, their MCS distance is 1. The MCS distance
accounts for a certain amount of tolerance toward errors, as two graphs need not be
completely identical for a successful match. However, a small MCS distance, and
hence a high graph similarity, can only be obtained if large portions of both graphs
are isomorphic. Two other graph distances based on the MCS of a pair of graphs
have been reported in [19, 20].

22 EXACT AND ERROR-TOLERANT METHODS

2.2.2 Error-Tolerant Graph Matching

In graph representations based on real-world patterns, it is often the case that graphs
from the same class differ in terms of structure and labels. Hence the graph matching
systems need to take structural errors into account. Graph edit distance [14, 15]
offers an intuitive way to integrate error tolerance into the graph matching process
and is applicable to virtually all types of graphs. Originally, edit distance has been
developed for string matching [21], and a considerable amount of variants and
extensions to edit distance have been proposed for strings and graphs. The key idea is
to model structural variation by edit operations reflecting modifications in structure,
such as the removal of a single node or the modification of an attribute attached to an
edge. A standard set of edit operations consists of a node insertion, node deletion,
node substitution, edge insertion, edge deletion, and edge substitution operation.
Applying a node deletion operation, for instance, is equivalent to removing a node
from a graph, and applying an edge substitution operation is equivalent to changing
the value of an edge label.

Definition 2.7 (Edit Path) Let g1 = (V1, E1, µ1, ν1) and g2 = (V2, E2, µ2, ν2)

be graphs. Any bijective function f : V̂1 → V̂2, where V̂1 ⊆ V1 and V̂2 ⊆ V2, is
called an edit path from g1 to g2.

Edit paths are used to establish correspondences between some nodes of the first
graph and some nodes of the second graph. An edit path f : V̂1 → V̂2 assigns to each
node u ∈ V̂1 a matching node f (u) ∈ V̂2, which is equivalent to substituting node
u by node f (u). Accordingly, the remaining nodes of the first graph, V1 \ V̂1, and
the remaining nodes of the second graph, V2 \ V̂2, are not assigned to a node of the
other graph. Hence, this is equivalent to deleting all nodes that belong to V1 \ V̂1

from g1, and inserting all nodes from V2 \ V̂2 into g2. In a similar manner, we
obtain edge edit operations from an edit path. If a node is removed, for example, all
edges connected to that node are removed as well. Thus, every edit path as defined
above is equivalent to a sequence of edit operations transforming the first graph
into the second one. In some cases it is more convenient to specify the edit path in
terms of edit operations, for example f = {u1 → v3, u2 → ε, . . . , ε → v6}, instead
of an equivalent function f . Using the edit operation notation, u1 → v3 denotes
the substitution of node u1 ∈ V1 by node v3 ∈ V2, u2 → ε denotes the deletion of
u2 ∈ V1, and ε → v6 denotes the insertion of v6 ∈ V2.

With substitutions, deletions, and insertions for both nodes and edges at our
disposal, any graph can be transformed into any other graph by iteratively applying
edit operations. Consequently, the concept of graph editing can be used to define a
dissimilarity measure on graphs. To quantify how strongly an edit operation modifies
the structure of a graph, it is common to use an edit cost function that assigns a
cost value to each edit operation. An edit operation associated with a low cost is
assumed to only slightly alter the graph under consideration, while an edit operation
with a high cost is assumed to strongly modify the graph. To obtain a cost function
on edit paths, we simply accumulate individual edit operation costs of the edit path.
The problem of measuring the dissimilarity of two graphs is then equivalent to

2.2 DEFINITIONS AND GRAPH MATCHING METHODS 23

the problem of finding the edit path that models the structural difference of two
graphs in the least costly way. Consequently, the graph edit distance of two graphs
is defined by the minimum cost edit path from the first to the second graph.

Definition 2.8 (Graph Edit Distance) Let g1 = (V1, E1, µ1, ν1) and g2 = (V2,
E2, µ2, ν2) be graphs, and let c(f) denote the cost of edit path f . If {f1, . . . , fm} is
the set of edit paths from g1 to g2, the edit distance of g1 and g2 can be defined by

d(g1, g2) = min
i∈{1,...,m}

c(fi) (2.2)

If the two graphs under consideration are very similar in terms of structure and
labels, it can be assumed that only minor edit operations are required to transform
the first into the second graph, which results in a low-cost edit path. In this case,
the resulting edit distance will be small. Conversely, if the two graphs differ sig-
nificantly, every edit path will necessarily include strong modifications and hence
result in high costs.

The edit cost functions can be used to tailor edit distance to specific applications
and datasets. The insertion, deletion, and substitution costs of nodes, for instance,
determine whether it is cheaper to delete a node u and subsequently insert a node v

instead of substituting node u with v, which means that a deletion and insertion is
preferred over a substitution in an optimal edit path. Usually, edit operation costs are
limited to nonnegative values. If, in addition, a cost function satisfies the conditions
of positive definiteness and symmetry as well as the triangle inequality at the level
of single edit operations, the resulting edit distance is known to be a metric [22],
which legitimates the use of the term distance in edit distance. Also note that the
MCS distance defined in Eq. (2.1) can be regarded as an instance of edit distance
under certain cost functions [23].

To compute the edit distance of graphs, one usually resorts to a tree search
procedure evaluating all possible edit paths [15]. In some cases, the running time
and memory requirements can be reduced by applying heuristics to the tree search.
Yet, the overall computational complexity is rather high. For unconstrained graphs,
the time and space complexity of an edit distance computation is exponential
in the number of nodes involved. Thus, graph edit distance is in general only
feasible for small graphs. For larger graphs, an approximate edit distance algo-
rithm has been proposed [24] that computes an upper bound of the exact edit
distance.

A generic procedure for the computation of graph edit distance is outlined in
Algorithm 2.1. The basic idea is to keep a set of partial edit paths to be processed
(OPEN) and terminate as soon as a complete edit path with minimal costs is avail-
able. In step 5, the best minimum-cost candidate is retrieved from the OPEN list. If
the candidate path is a complete edit path, that is, if all nodes from g1 and from g2

are involved, the algorithm returns the optimal edit path. Otherwise, in steps 9–15,
new edit operations are added to the candidate path, resulting in the addition of
a number of new partial edit paths to OPEN. If a node uk+1 from g1 has not yet
been processed, all substitutions from uk+1 to nodes in g2 that are consistent with

24 EXACT AND ERROR-TOLERANT METHODS

Algorithm 2.1 Computation of Graph Edit Distance

Input: Nonempty graphs g1 = (V1,E1,µ1, ν1) and g2 = (V2,
E2,µ2, ν2), where V1 = {u1, . . .,u|V1|} and V2 =
{v1, . . .,v|V2|}

Output: A minimum-cost edit path from g1 to g2,
e.g., f = {u1 → v3,u2 → ε, . . ., ε → v6}

1: Initialize OPEN to the empty set
2: For each node w ∈ V2, insert the substitution {u1 → w}

into OPEN
3: Insert the deletion {u1 → ε} into OPEN
4: loop
5: Retrieve minimum-cost partial edit path fmin from

OPEN
6: if fmin is a complete edit path then
7: Return fmin as the solution
8: else
9: Let fmin = {u1 → vi1, . . .,uk → vik}
10: if k < |V1| then
11: For each w ∈ V2 \ {vi1, . . .,vik}, insert fmin ∪ {uk+1 →

w} into OPEN
12: Insert fmin ∪ {uk+1 → ε} into OPEN
13: else
14: Insert fmin ∪ ⋃

w∈V2\{vi1, ...,vik }{ε → w} into OPEN

15: end if
16: end if
17: end loop

the present candidate path are considered (step 11), as well as the deletion of uk+1

(step 12). If all nodes from g1 have been processed, the remaining unmatchable
nodes from g2 are eventually inserted (step 14). It is straightforward to see that this
algorithm returns a minimum cost edit path from g1 to g2.

For specific pattern classification tasks, the edit distance of graphs is often
evaluated with classifiers based on the nearest-neighbor paradigm. In this case, we
simply assume that patterns that are similar in terms of edit distance belong to
the same class, and we therefore classify an unknown graph according to the most
similar known graph. More elaborate nearest-neighbor classifiers consider more
neighbors than only the closest one and also take the distribution of the neighbors
into account.

2.3 LEARNING EDIT COSTS

One of the major difficulties in the application of edit distance is the definition of
adequate edit costs. The edit costs essentially govern how the structural matching

2.3 LEARNING EDIT COSTS 25

is performed. For some graph representations, it may be crucial whether a node
is missing or not, while for other representations, the connecting edges are more
important than the nodes. The question of how to define edit costs can therefore
only be addressed in the context of an application-specific graph representation.

A simple edit cost model that has been used often is based on the distance of
labels [25]. Here it is assumed that labels are elements of the n-dimensional space
of real numbers. The idea is to assign edit costs to substitutions that are proportional
to the Euclidean distance of the two labels. Substituting an edge by another edge
with the same label therefore does not involve any costs. For nonidentical labels,
the further the two labels differ from each other, the higher will be the correspond-
ing substitution cost. Insertions and deletions are often assigned constant costs in
this model. The advantage of this simple model is that only a few parameters are
involved, and the edit costs are defined in a very intuitive way. However, it turns
out that for some applications this model is not sufficiently flexible. For instance, it
does not take into account that some label components may be more relevant than
others. Also, the absolute values of the labels are not evaluated, but only the distance
of labels, which means that all regions of the label space are equally weighted in
terms of edit costs.

2.3.1 Learning Probabilistic Edit Costs

To address the problems discussed above, a probabilistic model for edit costs was
proposed [26]. The edit costs are defined such that they can be learned from a labeled
sample set of graphs. The idea is to model the distribution of edit operations in the
label space. The probability distribution is then adapted so as to assign lower costs
to those edit paths that correspond to pairs of graphs from the same class, while
higher costs are assigned if a pair of graphs belong to different classes. To this
end, we adopt a stochastic view on the process of editing a graph into another one,
motivated by a cost learning method for string edit distance [27].

In the first step, we define a probability distribution on edit operations. While the
general framework can be implemented for various distribution models, we propose
a system of Gaussian mixtures to approximate the unknown distribution. Assuming
that edit operations are statistically independent, we obtain a probability measure on
edit paths. If G(. |µ, �) denotes a multivariate Gaussian density with mean µ and
covariance matrix �, the probability of an edit path f = {e1, . . . , ek}, for instance,
f = {u1 → v3, u2 → ε, . . . , ε → v6}, is given by

p(f) = p(e1, . . . , ek) =
k∏

j=1

βtj

mtj∑
i=1

αi
tj

G(ej |µi
tj
, �i

tj
) (2.3)

where tj denotes the type of edit operation ej . Every edit operation type is addition-
ally provided with a weight βtj , a number of mixture components mtj , and for each
component i ∈ {1, . . . , mtj } a mixture weight αi

tj
. During training, pairs of graphs

that are required to be similar are fed into the cost model. The objective of the learn-
ing algorithm is to derive the most likely edit paths between the training graphs and

26 EXACT AND ERROR-TOLERANT METHODS

adapt the model so as to further increase the probability of the optimal edit paths.
If we consider the probability of all edit paths between two graphs, we obtain a
probability distribution on pairs of graphs. Formally, given two graphs g and g′ and
the set of edit paths {f1, . . . , fm} from g to g′, the probability of g and g′ is

pgraph(g, g′) =
∫

i∈{1,...,m}
dp(fi |�) (2.4)

where � collectively denotes the parameters of the edit path distribution. The result-
ing learning procedure leads to a distribution that assigns high probabilities to graphs
from the same class. If graphs from different classes are sufficiently distinct in terms
of structure and labels, we assume that while increasing the probability of intraclass
pairs, the probability of interclass pairs will not be increased significantly. Hence
the relative similarity of graphs from the same class will be increased.

To train the probability model, we resort to an Expectation Maximization (EM)
algorithm. EM can be used to perform a maximum-likelihood estimation in case of
missing or hidden information [28, 29]. In the context of our model, this means that
the learning procedure actually estimates maximum-likelihood model parameters
with respect to the training sample, which corresponds to the intuitive description
of the training process given above. The EM learning algorithm iteratively adapts the
hidden model parameters to better reflect the observed edit operations. The hidden
data in our model are the underlying parameters of the Gaussian mixtures, namely
mean vectors, covariance matrices, and weighting factors βtj and αi

tj , whereas the
observed data correspond to edit operations occurring on edit paths between graphs
required to be similar. In the case of Gaussian mixtures, the EM training algorithm
is guaranteed to converge to a stationary point of the likelihood surface—in most
cases it even converges to a local maximum of the likelihood. To avoid having to
define a constant number of mixture components, we employ a greedy initialization
technique for Gaussian mixtures [30]. The idea is to initialize the mixture with a
single component, train the system until convergence, and iteratively insert new
components until the model cannot be improved any further. For more details about
the training algorithm, the reader is referred to [26].

After training we derive edit costs from the probabilistic model. Consistent
with the maximum-likelihood training criterion, we assume that the probability of
an edit operation reflects its importance in matching graphs of the same class.
Hence, an edit operation with a high probability is frequently involved in matching
graphs of the same class and should therefore be assigned a small cost. A low
probability edit operation should conversely be blocked from optimal edit paths and
be assigned a high cost. Thus, for an edit operation e, we suggest to derive costs
from probabilities by

c(e) = − log p(e) (2.5)

The resulting edit cost model has the advantage of being able to discriminate between
more and less relevant regions of the attribute space.

2.3 LEARNING EDIT COSTS 27

2.3.2 Self-Organizing Edit Costs

The probabilistic edit cost model introduced in Section 2.3.1 is potentially limited
in that a certain number of graph samples are required for the accurate estimation of
the distribution parameters. For small samples, we therefore propose an alternative
way to derive edit costs from samples by means of self-organizing maps.

Self-organizing maps (SOMs) [31] are two-layer neural networks, consisting of
an input layer and a competitive layer. The role of the input layer is to forward
input patterns to the competitive layer. The competitive neurons are arranged in a
homogeneous grid structure such that every neuron is connected to its neighbors.
The idea is that the competitive layer reflects the space of input elements, that is,
every competitive neuron corresponds to an element of the input space. For pattern
representations in terms of feature vectors, this is usually accomplished by assigning
weight vectors of the same dimension as the input space to neurons. Upon feeding
an input pattern into the network, neurons of the competitive layer compete for the
position of the input element. To this end, the weight of the closest competitive
neurons and their neighbors are adapted so as to shift them toward the position of
the input element. The longer this procedure is carried out, the more the competitive
neurons tend to migrate to areas where many input elements are present. That is,
the competitive layer can be regarded as a model of the pattern space, where the
neuronal density reflects the pattern density. This unsupervised learning procedure is
called self-organization as it does not rely on predefined classes of input elements. A
basic self-organization procedure is given in Algorithm 2.2. The similarity value α

of two neurons in line 7 is usually computed by means of an activation function with
respect to the grid distance of the two neurons. In line 8, the weight of neurons close

Algorithm 2.2 Self-Organization Procedure

Input: Initial map and set of input vectors
Output: Map after self-organization

1: Initialize competitive neuron weights with random or
predefined values;

2: while terminating condition does not hold do
3: Randomly choose a vector vin from the set of all

input vectors;
4: Determine neuron nwin with the most similar weight

to vin;
5: for all competitive neurons n with weight v do
6: if neuron n is close to nwin in the grid then
7: Let α ∈ [0,1] define the similarity of n and

nwin;
8: v = v+ α(vin − v);
9: end if
10: end for
11: end while

28 EXACT AND ERROR-TOLERANT METHODS

to the input pattern are shifted toward the input vector. During learning it is common
to iteratively reduce the neighborhood radius and the learning intensity. That is, the
similarity value α decreases in successive iterations resulting in a convergence of
the self-organization process.

Similarly to the probablistic model described above, SOMs can be used to model
the distribution of edit operations. The idea is to use a SOM to represent the label
space. A sample set of edit operations is derived from pairs of graphs from the same
class in a manner that is equivalent to the probabilistic model. The self-organization
process turns the initially regular grid of the competitive layer into a deformed grid.
From the deformed grid, we obtain a distance measure for substitution costs and
a density estimation for insertion and deletion costs. In the case of substitutions,
the SOM is trained with pairs of labels, where one label belongs to the source
node (or edge) and one to the target node (or edge). The competitive layer of the
SOM is then adapted so as to draw the two regions corresponding to the source and
the target label closer to each other. The edit cost of node and edge substitutions
is then defined proportional to the distance in the trained SOM. That is, instead
of measuring label distance by the Eucliden distance, we measure the deformed
distance in the corresponding SOM. In the case of insertions and deletions, the SOM
is adapted so as to draw neurons closer to the inserted or deleted label. The edit
cost of insertions and deletions is then defined according to the competitive neural
density at the respective position. That is, the more neurons at a certain position in
the competitive layer are, the lower is the respective insertion or deletion cost. The
self-organizing training procedure for substitutions, insertions, and deletions hence
results in lower costs for those pairs of graphs that are in the training set and belong
to the same class. For further details, see [32].

Unlike the probabilistic model, the self-organizing model can also be used to
specifically train pairs of graphs required to be dissimilar. Hence, not only the
similarity of graphs can be modeled explicitly but also the dissimilarity. In addition,
the self-organizing model is also applicable to small training sets. On the other
hand, the probabilistic model is capable of learning general edit cost, while the
self-organizing model is restricted to Euclidean label distances.

2.4 EXPERIMENTAL EVALUATION

In this section we present an experimental evaluation of the two edit cost models
introduced in Section 2.3. For this purpose we use a database of graphs representing
line drawings of capital letters. First, 15 prototypes are manually created, one for
each capital letter consisting of straight lines only (letters A, E, F, H, I, K, L, M,
N, T, V, W, X, Y, Z). To generate a graph sample, we apply a distortion process
to each prototype drawing that randomly displaces, removes, and inserts lines. The
strength of the distortions can be controlled by a distortion parameter. By repeating
this procedure we obtain a database of line drawings. These line drawings are then
converted into graphs by representing endpoints of lines by nodes, endowed with a
position label, and lines by edges without label. A line drawing of letter A and the
corresponding attributed graph are shown in Figure 2.3.

2.4 EXPERIMENTAL EVALUATION 29

(58,44)

(51,28)

(36,61)

(17,20)

(15,40)

(a) (b)

Figure 2.3. (a) A letter line drawing and (b) the corresponding attributed graph.

First, we conduct an evaluation of the cost learning process. For a database of
three letter classes containing 11 graphs each, we train a probabilistic cost model
and compare the initial costs before learning and the final cost after learning. To
obtain a visualization of the graph distribution according to edit costs, we derive
from the edit distance matrix a Euclidean embedding by means of multidimensional
scaling [33]. An illustration of the distribution before and after learning is shown
in Figure 2.4. It can clearly be observed that the training process leads to compact
and well-separated clusters of graphs.

In our next experiment, we train a self-organizing model for a database con-
sisting of all 15 letter classes. At every training iteration, we evaluate the resulting
graph clusters by means of a cluster validation index. That is, at every training step
we compute an index value reflecting the clustering quality in quantitative terms.
The validation index we use is the C-index [34] (modified such that it assigns
high index values to compact and well-separated clusters). The progress of the self-
organizing training is illustrated in Figure 2.5(a) on a weakly distorted database of

(a) (b)

Figure 2.4. Distribution of three graph classes: (a) before and (b) after probabilistic learning.

30 EXACT AND ERROR-TOLERANT METHODS

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0 5 10 15 20 25

Q
ua

lit
y

of
 C

lu
st

er
in

g

Training Iteration

Self-organizing Model (β=0.2)
Self-organizing Model (β=0.1)

Self-organizing Model (β=0.05)
Euclidean Model

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0 5 10 15 20 25

Training Iteration

Self-organizing Model (β=0.2)
Self-organizing Model (β=0.1)

Self-organizing Model (β=0.05)
Euclidean Model

(a) (b)

Figure 2.5. SOM learning on (a) weakly distorted letter graphs and (b) strongly distorted

letter graphs.

letter graphs and in Figure 2.5(b) on a strongly distorted database. The straight line
indicates the clustering quality of the simple Euclidean model without any learning,
and parameter β of the self-organizing model denotes a parameter weighting the
preference of substitutions over insertions and deletions. The improvement of the
clustering quality during self-organization can clearly be seen. The fact that the
strongly distorted database is more difficult to cope with than the weakly distorted
database is also visible in the diagrams.

Finally, we turn to a performance evaluation of the cost models on datasets of
various distortions. By varying the distortion parameter in the generation process of
the graph database, we obtain datasets of several degrees of distortions, that is, of
varying recognition difficulty. On each dataset we then proceed by training a proba-
bilistic model and a self-organizing model. The quality of clustering resulting from
the learned edit costs is illustrated in Figure 2.6(a). We find that the probabilistic
model outperforms the self-organizing model particularly on difficult datasets. The
validation index of the self-organizing model clearly degrades with an increasing
degree of distortion, while the probabilistic model is able to maintain a higher level
of clustering quality. As the self-organizing model is superior only for the least
strongly distorted dataset, we conclude that the probabilistic model is best applied
to strongly distorted data in the presence of large training sets, whereas the self-
organizing model is rather suitable for weakly distorted data or small training sets.

This conclusion is also confirmed for a different kind of distortion, where a
graph dataset is additionally deformed by applying a shearing transformation to the
line drawings, or graphs. The stronger the shearing operation, the more difficult the
letter recognition is supposed to be. An illustration of the classification accuracy of
the two learning models and the simple Euclidean model described at the beginning
of this section is provided in Figure 2.6(b). As expected, the simple Euclidean model
is unable to cope with strong distortions. For small distortions the self-organizing

2.5 DISCUSSION AND CONCLUSIONS 31

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 0 0.2 0.4 0.6 0.8 1 1.2

Q
ua

lit
y

of
 C

lu
st

er
in

g

Degree of Graph Distortion

Probabilistic Model
Self-organizing Model

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

1

0 0.5 1 1.5 2 2.5 3

C
la

ss
if

ic
at

io
n

A
cc

ur
ac

y

Degree of Shearing Distortion

Probabilistic Model
Self-organizing Model

Euclidean Model

(a) (b)

Figure 2.6. Performance in relation to degree of distortion for (a) graph distortion operator

and (b) shearing operator.

model is best, while for strong distortions the probabilistic model clearly outperforms
the other two.

2.5 DISCUSSION AND CONCLUSIONS

Graph matching has successfully been applied to various problems in the field of
pattern recognition and machine learning. In the case of exact graph matching, the
graph extraction process is assumed to be structurally flawless, that is, the conversion
of patterns from a single class into graphs always results in identical structures or
substructures. Otherwise graph isomorphism or subgraph isomorphism detection are
rather unsuitable, which seriously restricts the applicability of graph isomorphism
algorithms. The main advantages of isomorphism algorithms are their mathemati-
cally stringent formulation and the existence of well-known procedures to derive
optimal solutions.

While the maximum common subgraph concept belongs to the category of
exact graph matching methods, too, it provides us with a less restricted notion of
graph matching than methods based on isomorphism. If two graphs have a large
part in common, they can be positively matched, even if the remaining parts dif-
fer completely from each other. While the theoretical computational complexity
of graph isomorphism and maximum common subgraph algorithms is exponential
in the number of nodes, exact graph matching can be quite efficient in practice,
particularly in the presence of node and edge labels.

Error-tolerant methods, sometimes also referred to as inexact or error-correcting
methods, are characterized by their ability to cope with errors, or noncorrespond-
ing parts, in structure and labels of graphs. Hence, for two graphs to be positively
matched, they need not be identical at all but only similar. The notion of graph

32 EXACT AND ERROR-TOLERANT METHODS

similarity depends on the error-tolerant matching method that is to be applied. Edit
distance offers a definition of graph similarity in an intuitive manner by introducing
edit operations on graphs. Although edit distance is generally applicable to all kinds
of graphs, the suitability of edit distance is largely dependent on the adequate defini-
tion of edit costs. For this reason, we propose two methods to automatically derive
edit costs from a sample set of graphs. The first method is based on a probabilistic
estimation of the edit operation distribution, and the second method is based on
self-organizing maps in the label space. Experimental results show that the learning
methods can be used to obtain cost functions that outperform manually designed
cost functions. We also find that the two methods are particularly well-performing
in complementary situations. The probabilistic method, which requires a sufficiently
large training set, is applicable to strongly distorted data, whereas the self-organizing
method is superior on weakly distorted data or on small training sets. The automatic
learning of cost functions is an important step toward making graph edit distance
more widely and easily applicable.

ACKNOWLEDGMENT

This research was supported by the Swiss National Science Foundation NCCR
program “Interactive Multimodal Information Management (IM)2” in the Individual
Project “Multimedia Information Access and Content Protection.”

REFERENCES

1. Special Section on Graph Algorithms and Computer Vision. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 23(10):1040–1151, 2001.

2. Special Issue on Graph Based Representations. Pattern Recognition Letters, 24(8):
1033–1122, 2003.

3. Special Issue on Graph Matching in Pattern Recognition and Computer Vision. Interna-
tional Journal of Pattern Recognition and Artificial Intelligence 18(3):261–517, 2004.

4. J. Lladós and G. Sánchez. Graph matching versus graph parsing in graphics recognition.
International Journal of Pattern Recognition and Artificial Intelligence, 18(3):455–475,
2004.

5. P. N. Suganthan and H. Yan. Recognition of handprinted Chinese characters by con-
strained graph matching. Image and Vision Computing, 16(3):191–201, 1998.

6. J. Rocha and T. Pavlidis. A shape analysis model with applications to a character
recognition system. IEEE Transactions on Pattern Analysis and Machine Intelligence,
16(4):393–404, 1994.

7. A. Shokoufandeh and S. Dickinson. A unified framework for indexing and matching
hierarchical shape structures. In Proceedings of 4th International Workshop on Visual
Form, Vol. 2059 of LNCS, pp. 67–84. Springer, Berlin, 2001.

8. A. Tefas, C. Kotropoulos, and I. Pitas. Using support vector machines to enhance the per-
formance of elastic graph matching for frontal face authentification. IEEE Transactions
on Pattern Analysis and Machine Intelligence 23(7):735–746, 2001.

REFERENCES 33

9. D. Maio and D. Maltoni. A structural approach to fingerprint classification. In Pro-
ceedings of 13th International Conference on Pattern Recognition, Vienna, Austria,
pp. 578–585, 1996.

10. H. Bunke, M. Kraetzl, P. Shoubridge, and W. D. Wallis. Detection of abnormal change
in time series of graphs. Journal of Interconnection Networks, 3(1–2):85–101, 2002.

11. A. Schenker, M. Last, H. Bunke, and A. Kandel. Classification of web documents using
graph matching. International Journal of Pattern Recognition and Artificial Intelligence
18(3):475–496, 2004.

12. L. B. Holder and D. J. Cook. Graph-based relational learning: Current and future direc-
tions. SIGKDD Explorations, Special Issue on Multirelational Data Mining, 5(1):90–93,
2003.

13. D. Conte, P. Foggia, C. Sansone, and M. Vento. Thirty years of graph matching in pat-
tern recognition. International Journal of Pattern Recognition and Artificial Intelligence,
18(3):265–298, 2004.

14. A. Sanfeliu and K. S. Fu. A distance measure between attributed relational graphs
for pattern recognition. IEEE Transactions on Systems, Man, and Cybernetics (Part B),
13(3):353–363, 1983.

15. B. T. Messmer and H. Bunke. A new algorithm for error-tolerant subgraph isomor-
phism detection. IEEE Transactions on Pattern Analysis and Machine Intelligence
20(5):493–504, 1998.

16. J. R. Ullman. An algorithm for subgraph isomorphism. Journal of the Association for
Computer Machinery, 23(1):31–42, 1976.

17. G. Levi. A note on the derivation of maximal common subgraphs of two directed or
undirected graphs. Calcolo, 9:341–354, 1972.

18. H. Bunke and K. Shearer. A graph distance metric based on the maximal common
subgraph. Pattern Recognition Letters, 19(3):255–259, 1998.

19. M.-L. Fernandez and G. Valiente. A graph distance metric combining maximum
common subgraph and minimum common supergraph. Pattern Recognition Letters,
22(6–7):753–758, 2001.

20. W. D. Wallis, P. Shoubridge, M. Kraetzl, and D. Ray. Graph distances using graph
union. Pattern Recognition Letters, 22(6):701–704, 2001.

21. R. A. Wagner and M. J. Fischer. The string-to-string correction problem. Journal of the
Association for Computer Machinery, 21(1):168–173, 1974.

22. H. Bunke and G. Allermann. Inexact Graph Matching for Structural Pattern Recognition.
Pattern Recognition Letters, 1:245–253, 1983.

23. H. Bunke. On a relation between graph edit distance and maximum common subgraph.
Pattern Recognition Letters, 18:689–694, 1997.

24. M. Neuhaus and H. Bunke. An error-tolerant approximate matching algorithm for attri-
buted planar graphs and its application to fingerprint classification. In Proceedings of
10th International Workshop on Structural and Syntactic Pattern Recognition, LNCS
3138, Springer, Berlin, pp. 180–189, 2004.

25. B. Le Saux and H. Bunke. Feature selection for graph-based image classifiers. In Pro-
ceedings of 2nd Iberian Conference on Pattern Recognition and Image Analysis LNCS
3523, Springer, Berlin, 2005.

26. M. Neuhaus and H. Bunke. A probabilistic approach to learning costs for graph edit
distance. In J. Kittler, M. Petrou, and M. Nixon, eds. Proceedings 17th International
Conference on Pattern Recognition, Cambridge, United Kingdom, Vol. 3, pp. 389–393,
2004.

34 EXACT AND ERROR-TOLERANT METHODS

27. E. Ristad and P. Yianilos. Learning string edit distance. IEEE Transactions on Pattern
Analysis and Machine Intelligence 20(5):522–532, 1998.

28. A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete
data via the EM algorithm. Journal of the Royal Statistical Society, 39(1):1–38, 1977.

29. R. A. Redner and H. F. Walker. Mixture densities, maximum likelihood and the EM
algorithm. Society for Industrial and Applied Mathematics (SIAM) Review 26, 195–239
(1984).

30. N. Vlassis and A. Likas. A greedy EM algorithm for Gaussian mixture learning. Neural
Processing Letters, 15(1):77–87, February 2002.

31. T. Kohonen. Self-Organizing Maps. Springer, Berlin, 1995.
32. M. Neuhaus and H. Bunke. Self-organizing maps for learning the edit costs in graph

matching. IEEE Transactions on Systems, Man, and Cybernetics (Part B) 35(3):503–514,
2005.

33. T. Cox and M. Cox. Multidimensional Scaling. Chapman and Hall, London, 1994.
34. L. Hubert and J. Schultz. Quadratic assignment as a general data analysis strategy.

British Journal of Mathematical and Statistical Psychology, 29:190–241, 1976.

3

GRAPH VISUALIZATION AND
DATA MINING

WALTER DIDIMO AND GIUSEPPE LIOTTA
Dipartimento di Ingegneria Elettronica e dell’Informazione,

Università degli Studi di Perugia, Perugia, Italy

3.1 INTRODUCTION

Graph visualization, also known as graph drawing, is an emerging discipline that
addresses the problem of conveying the structure of data space and of producing
new knowledge of it by using diagrams. In this introductory section we briefly
glance at the research area of graph visualization and then a discussion on typical
applications of graph drawing that can be of interest in the context of data mining.

3.1.1 Graph Drawing at a Glance

A large body of graph drawing literature has been published in the last two decades.
Surveys (see, e.g., [40, 50, 72, 102, 113]), book chapters (see, e.g., [84, 115]), an
annual symposium [10, 35, 39, 67, 80, 83, 86, 92, 96, 97, 116, 118], a number of
journal special issues (see, e.g., [30, 32, 45–47, 71, 79, 85, 93]), and various books
(see, e.g., [41, 75, 78, 95, 98, 107]) have been devoted to this research area.

A graph drawing algorithm receives as input a combinatorial description of a
graph and returns as output a drawing of the graph. Various drawing conventions
have been proposed for the representation of graphs in the plane. Usually, each

Mining Graph Data, Edited by Diane J. Cook and Lawrence B. Holder
Copyright c© 2007 John Wiley & Sons, Inc.

35

36 GRAPH VISUALIZATION AND DATA MINING

vertex is mapped to a distinct point and each edge (u, v) is mapped to a simple
Jordan curve between the points representing u and v. In particular, the edges
are represented as polygonal chains in a polyline drawing, as chains of alternating
horizontal and vertical segments in an orthogonal drawing, and as segments in a
straight-line drawing.

Within a given drawing convention, a graph has infinitely many drawings;
however, one of the fundamental properties of a drawing is its readability, that is,
the capability of conveying the information associated with the graph in a clear
way. The readability of a drawing is expressed by means of aesthetic criteria,
which can be formulated as optimization goals for the drawing algorithms. These
aesthetic criteria have been selected through an extensive analysis of human-drawn
diagrams from various contexts (see, e.g., [114]) and have been validated through
experimental studies on human understanding of diagrams (see, e.g., [100, 101]).
Some aesthetic criteria are general, others depend on the drawing convention adopted
and on the particular class of graphs considered (trees, planar graphs, hierarchical
graphs, etc.). They have been frequently used as quality measures in the evaluation
and comparison of graph drawing algorithms. For a survey on experimental studies
of graph drawing algorithms see, for example, [117].

3.1.2 Graph Drawing Applications for Data Mining

Graphs and their visualizations are essential in data exploration and understanding,
particularly for those applications that need to manage, process, and analyze huge
quantities of data. The benefits of graph drawing techniques for data mining purposes
include analysis through visual exploration, discovery of patterns and correlations,
and abstraction and summarization. Among the different areas that benefit from
technological solutions imported from graph drawing, we list the following.

Internet Computing. Visualization of interconnections among routers are relevant
for Internet service providers (ISPs) that need to manage large and complex net-
works. ISPs are also interested in representing the structure of the Internet at a higher
level (connection among autonomous systems) in order to understand the position
of their partners and competitors in the Internet. The visualization of the graph of
the autonomous systems and their connection policies can be used, for example, to
analyze and capture recurrent patterns in the Internet traffic and to detect routing
instabilities (see, e.g., [23, 29, 44, 51]).

Social Sciences. Social network analysts use graph-theoretic methodologies to
identify important actors, crucial links, subgroups, roles, and network characteristics
in such graphs. In this context, graph visualization is essential to make complicated
types of analysis and data handling, such as identification of recurrent patterns and
of relationships, more transparent, intuitive, and readily accessible. For example, the
centrality role of an element in a collaboration network can be more easily detected
by visual inspection of a radial drawing of the network itself (see, e.g., [17]), that
is, a drawing where vertices lie on concentric circles. Examples and references of

3.1 INTRODUCTION 37

visual analysis of different types of social networks, including citation networks and
co-authorship networks, can be found, for example, in [2, 16, 19].

Software Engineering. The display of schematic diagrams, like Unified Modeling
Language (UML) diagrams, is a valuable tool in reverse engineering to understand
the architecture of object-oriented software systems and to detect the roles, the
connections, and the dependencies of their classes. The need of visual representa-
tions of software diagrams becomes fundamental when a system consists of a large
number of classes and relations among them. Different automatic graph drawing
plug-ins for existing Computer Aided Software Engineering (CASE) tools and sev-
eral ad hoc algorithms and systems have been developed in this context (see, e.g.,
[5, 57, 68, 69]).

Information Systems. To design, maintain, update, and query databases, users
and administrators cope with the complexity of the database schemas describing the
structure of the data. A graphical representation of such schemas greatly improves
the friendliness of a database application. Also, a critical task in the engineering of
information systems is the detection of the data types, that is, entities and relation-
ships, that are involved in the system. Inspecting large databases with the aim of
identifying the key data is not feasible in practice without using diagrammatic inter-
faces. Examples of automatic graph drawing systems and algorithmic techniques for
the visual representation of databases can be found in [3, 4, 6, 36, 111].

Homeland Security. One of the most crucial aspects concerning homeland secu-
rity is the detection of organized crimes, like, for example, terrorism and narcotics
trafficking. Organized crimes often rely on the cooperation and the aggregation of
individuals and groups who may play different roles. Intelligence and law enforce-
ment agencies typically have large volumes of raw data collected from multiple
sources, and often incomplete, that need a careful analysis to possibly reconstruct
criminal organizations. Recent approaches to criminal network analysis rely on
graph- drawing-based tools that produce graphical representation of criminal net-
works and in some cases also provide analytical functionalities to detect patterns
of interactions, subgroups, and implications (see, e.g., [24, 25, 119]). For example,
Figure 3.1 shows a layout of a criminal activity network (CAN) [24].

Web Searching. Developing effective technologies for mining data from the World
Wide Web is a very fertile research field. The effectiveness and the efficiency of
most common search engines rely on the structural properties of the Web graph
(Web resources and their hyperlinks). Valuable insight into the link structure and
the page rank of the Web graph can be provided by automatic visualization systems,
as it is shown, for example, in a paper by Brandes and Cornelsen [13]. Also, a new
generation of Web search engines is being designed, where the data collected from
the World Wide Web are clustered into meaningful semantic categories. The user
interacts with the Web data by means of a graphical user interface that displays
these categories organized as a tree structure or organized as a graph (see, e.g., [48,
49, 59, 120]).

38 GRAPH VISUALIZATION AND DATA MINING

The nodes in this chart are individuals, vehicles or
locations, the edges are reports linking them in TPD and
PCSD. The CAN is augmented with border crossing
information

Individuals
The focus of investigations

Involved in violent crimes

Involved in narcotic crimes

Involved in violent and narcotic crimes

Vehicles

Vehicles seen crossing the border

Locations

Link found in the TPD records

The above CAN includes associations between individuals, vechicals and locations.

Link found in the PCSD records
Link found in the TPD and PCSD records

Critical Infrastructure Locations

Vehicles seized at the border

Figure 3.1. A criminal activity network. (Courtesy of H. Chen, H. Atabakhsh, S. Kaza,

B. Marshall, J. Xu, G. A. Wang, T. Petersen, and C. Violette.)

Computational Biology. Biologists often model the data collected from biochem-
ical reactions of organisms by means of graphs. As a consequence, there are many
types of complex biological networks, including neural networks, genome networks,
protein networks, and networks of metabolic reactions. Automatic visualization
of such graphs helps in understanding the complex relations among the chemi-
cal components in these networks and in extracting various information from the
represented data. A limited list of publications in the vast literature of visualization
systems and graph drawing techniques designed for the computational biology field
includes [1, 11, 14, 15, 22, 33, 34, 52, 70, 89, 104, 110]. For example, Figure 3.2
depicts a 2 1

2 -dimensional visualization of a metabolic network computed by the
system WilmaScope [53, 110].

The remainder of this chapter is organized as follows. In Section 3.2 some
of the most used graph drawing techniques are briefly illustrated. Examples of
visualization systems for Web searching and for Internet computing are the subject
of Section 3.3. Conclusions and a list of online graph visualization resources are
given in Section 3.4.

3.2 GRAPH DRAWING TECHNIQUES

In this section we overview three of the most popular graph drawing approaches,
namely, the force-directed, the hierarchical, and the topology-shape-metrics
approach. Since an exhaustive analysis of the many algorithms that have been pub-
lished in the literature based on these three approaches exceeds the scope of this
chapter, we restrict our attention to the basic principles that are behind them. For
more details, the interested reader is referred to [41, 75, 78, 95, 107]. As shown

3.2 GRAPH DRAWING TECHNIQUES 39

Figure 3.2. A 2 1
2 D picture that shows experimental time-series data in the context of a

metabolic network; the diagram has been computed by the system WilmaScope. (Courtesy of

T. Dwyer, H. Rolletschek, and F. Schreiber.)

in the next section, algorithms that follow these approaches are often used in the
drawing engine of systems that mine data by means of graph visualization.

3.2.1 Force-Directed Methods

Force-directed methods are quite popular for network analysis since they are easy to
implement and often produce aesthetically pleasing results. For example, Brandes
et al. [17] use a variant of force-directed methods to visually convey centrality in
policy networks. Figure 3.3 describes informal communication among organizations
involved in drug policy making; the dark vertices represent organizations that have
a repressive attitude toward drug users, the light vertices represent organizations
with a supportive attitude.

As another example, Batagelj and Mrvar [2] use different drawing methods,
including force-directed ones, within Pajek, a system for visualizing and analyzing
large networks. Figure 3.4 is a force-directed drawing computed by Pajek.

A milestone of the force-directed graph drawing literature is the work by Eades
[54]. Indeed, most force-directed algorithms described in the literature adopt the
physical model by Eades and propose variants of the forces definition (see, e.g.,
[31, 62, 63, 77, 108]). An experimental comparison of graph drawing algorithms
based on force-directed methods is described in the work by Brandenburg et al. [12].

Eades’ idea is to model a graph G as a mechanical system where the vertices
of G are steel rings and the edges of G are springs that connect pairs of rings. To

40 GRAPH VISUALIZATION AND DATA MINING

Figure 3.3. Example of social network. (Courtesy of U. Brandes, P. Kenis, and D. Wagner.)

Figure 3.4. Portion of a Geomlib network computed by the system Pajek. (Courtesy of

V. Batajeli and A. Mrvar.)

3.2 GRAPH DRAWING TECHNIQUES 41

compute a drawing of G, the rings are placed in some initial layout and let go until
the spring forces move the system to a local minimum of energy. Clearly, different
definitions of the repulsive and attractive forces that characterize the physical model
of G give rise to different drawings of G. For example, Eades’ implementation of the
physical model does not reflect Hooke’s law for the forces but obeys a logarithmic
function for attractive forces; also, while repulsive forces act between every pair
of vertices, attractive forces are calculated only between pairs of adjacent vertices.
More precisely, in the model of Eades [54] the repulsive force between any pair
(u, v) of vertices is

frep(u, v) = k · uv
d2(u, v)

where d(u, v) is the Euclidean distance between the points representing u and v,
uv is the unit length vector oriented from the point representing u to the point
representing v, and k is a repulsion constant. The attractive force of two adjacent
vertices u and v is

fattr(u, v) = χ log
d(u, v) vu

l

where l is the zero energy length of the spring and χ is the stiffness constant of the
spring. To compute a drawing, one can start with an initial random placement of the
vertices and proceed iteratively to find an equilibrium configuration. For example,
a heuristic that converges to an equilibrium configuration consists of computing at
each iteration and for each vertex v the force F(v), that is, the sum of the repulsive
and attractive forces acting on v; v is then moved in the direction of F(v) by a
small amount proportional to the magnitude of F(v).

3.2.2 Hierarchical Methods

Hierarchies arise in a variety of applications, for example, Project Evaluation Review
Technique (PERT) diagrams in project planning, class hierarchies in software engi-
neering, and is-a relationships in knowledge representation systems. It is customary
to represent hierarchical graphs so that all the edges flow in the same direction, for
example, from top to bottom or from left to right. Algorithms that compute draw-
ings of hierarchies generally follow a methodology first introduced by Sugiyama
et al. [109] that accepts, as input, a directed graph G without any particular restric-
tion (G can be planar or not, acyclic or cyclic) and that produces as output a layered
drawing of G, that is, a representation where the vertices are on horizontal layers
and the edges are monotone polygonal chains connecting their end vertices.

Figure 3.5 shows the heritage of the Unix operating system and is computed
by the system Graphviz [58], developed at the AT&T Labs. The methodology of
Sugiyama, Tagawa, and Toda [109] is also used by the system Ptolomaeus [42] to
draw maps of Web navigations; see [109] for example, Figure 3.6.

42 GRAPH VISUALIZATION AND DATA MINING

Figure 3.5. Hierarchical drawing showing the heritage of the Unix operating system, com-

puted by Graphviz. The figure uses data from a hand-drawn graph by Ivan Darwin and Geoff

Collyer from the mid-1980s. (Courtesy of J. Ellson, E. R. Gansner, E. Koutsofios, S. C. North, and

G. Woodhull.)

Figure 3.6. Web map computed by the system Ptolomaeus. (Courtesy of G. Di Battista,

R. Lillo, and F. Vernacotola.)

The methodology of Sugiyama, Tagawa, and Toda [109] consists of the follow-
ing steps:

Cycles Removal. This step removes existing cycles in the input graph by reversing
the direction of some edges. Minimizing the number of reversed edges is an NP-
hard problem, and different heuristics have been designed to solve this problem
by reversing a small number of edges. A trivial heuristic is based on performing
a Depth-First-Search (DFS) of the graph and reversing all back edges; however,

3.2 GRAPH DRAWING TECHNIQUES 43

in the worst case this may reverse as many as m − n − 1 edges, where m is the
number of edges and n is the number of vertices of G. A better performing heuristic
was proposed by Eades et al. [55] who present a greedy strategy that guarantees the
reversal of at most m/2 − n/6 edges. An exact solution based on branch-and-cut is
also described by Jünger et al. [76].

Layer Assignment. Each vertex is assigned to a horizontal line (layer) such that
no vertices in the same layer are adjacent and if (u, v) is a directed edge of G, then
the layer of u is above the layer of v in the drawing. Several objective functions
can be taken into account in the layer assignment step. For example, minimizing the
number of layers can be achieved by a simple linear-time longest-path algorithm:
All sources are assigned to the lowest level L0; each remaining vertex v is assigned
to level Lp where p is the length of the longest path from any source to v. If one
wants to minimize both the number of layers and the number of vertices on each
layer, however, the problem becomes NP-hard. The polynomial time algorithm by
Coffman and Graham [28] receives as input a reduced digraph G and a positive
integer W ; it returns a layer assignment where each layer consists of at most W

vertices and the number h of layers is h ≤ (2/W)hmin where hmin is the minimum
possible number of layers. Gansner et al. [64] present a polynomial time algorithm,
based on a relaxed integer linar programming (ILP) formulation, to compute a layer
assignment that minimizes the total number of crossings between layers and edges
(thus minimizing the sum of the so-called edge spans). The layer assignment step
is concluded by inserting dummy vertices along edges whose end vertices are not
on consecutive layers. The result is a proper k-level graph, that is, a graph where
an edge connects only vertices on consecutive layers.

Crossing Reduction. This step aims at reducing the crossings among edges by
permuting the order of the vertices on each layer. The number of edge crossings in
a layered drawing does not depend on the precise position of the vertices but only
on the ordering of the vertices within each layer. Thus the problem of reducing
edge crossings is the combinatorial one of choosing an appropriate vertex ordering
for each layer, not the geometric one of choosing an x coordinate for each vertex.
This problem has been shown to be NP-hard by Garey and Johnson [65]; Eades
and Wormald [56] showed that it remains NP-hard even if there are only two layers
and the permutation of the vertices on one of them is fixed. A rich body of litera-
ture presenting heuristics and fixed parameter tractable approaches for the crossing
minimization problem have been published. The reader interested in entry points to
this literature can, for example, look at [74, 90, 91, 105, 106].

Horizontal Coordinate Assignment. Bends along the edges occur at the dummy
vertices introduced in the layer assignment step. The horizontal coordinate assign-
ment reduces the number of bends by readjusting the position of vertices on each
layer without perturbing the order established in the crossing reduction step. The
problem can be expressed as one of minimizing the total amount by which the edges
deviate from being a straight line [41, 75, 78, 107]. This leads to the optimization

44 GRAPH VISUALIZATION AND DATA MINING

Figure 3.7. Layout of a reaction network computed by the system BioPath. (Courtesy of

F. J. Brandenburg, M. Forster, A. Pick, M. Raitner, and F. Schreiber.)

of a quadratic objective function, and then the problem can be solved optimally
only for small instances. In practice, a variant of the problem is often considered
that attempts at drawing the edges as close to vertical lines as possible (see, e.g.,
Gansner et al. [64], Buchheim et al. [21], and Brandes and Köpf [18]).

We conclude this section with two additional examples of layered drawings
computed by systems that adopt the above-described methodology. The drawing in
Figure 3.7 shows a reaction network, containing structural formulas for substances.
The drawing is computed by the layout algorithm of the system BioPath [11, 103].
The drawing in Figure 3.8 represents an example of a flow chart and is computed
by the system Govisual [68].

3.2.3 Topology-Shape-Metrics Approach

The topology-shape-metrics approach is one of the most effective techniques for
computing highly readable drawings of graphs. It represents graphs in the so-called
orthogonal drawing standard, that is, each vertex of the graph is drawn as a point
or a box and each edge is drawn as a polygonal chain of horizontal and vertical
segments. Orthogonal drawings are widely used in many application fields, like very

3.2 GRAPH DRAWING TECHNIQUES 45

Figure 3.8. Layout of a flowchart computed by the system Govisual. (Courtesy of

C. Gutwenger, M. Jünger, K. Klein, J. Kupke, S. Leipert, and P. Mutzel.)

Figure 3.9. Orthogonal layout of the relational schema of a database, computed by the

system DBDraw.

large scale integration (VLSI), software engineering, information systems, internet,
and Web computing. For example, Figure 3.9 shows an orthogonal layout of the rela-
tional schema of a database, computed by the system DBDraw [36, 38]; Figure 3.10
depicts a clustered data flow diagram computed by the system Govisual [68]. Further

46 GRAPH VISUALIZATION AND DATA MINING

Sales
Order

customer
exists

Get Customer
from System

Create Shop
Floor Jobs

Create
Order

Close
Order

Close
Jobs

Create
Customer

Order Entry

Enter Order
Lines

Close Order
Lines

Ship
Goods

Send
Invoice

Receive
Payment

A/R Interface

G/L
Interface

Book Order

pass C.C. ?

Credit Check

Extend
Credit Limit

Accounts Receivables

Create
P/O

Purchasing

Create item
Create item

Demand
Item

exists

Get item
ID

Get items
from Stock

all items
available

Put final
Goods in FGI

Work in Progress

Inventory

Figure 3.10. Clustered orthogonal drawing of a data flow diagram, computed by the system

Govisual. (Courtesy of C. Gutwenger, M. Jünger, K. Klein, J. Kupke, S. Leipert, and P. Mutzel.)

examples of orthogonal drawings computed using variants of the topology-shape-
metrics approach will be illustrated in Section 3.3.

The topology-shape-metrics approach [5, 112] takes as input a graph G with
vertices of degree at most 4 and produces as output an orthogonal drawing of G

where each vertex is drawn as a point. It consists of three steps (see also Fig. 3.11):

Planarization If G is planar, then a planar embedding of G is computed. A
planar embedding of G specifies the set of faces of a planar drawing of G. If
G is not planar, a set of dummy vertices is added to replace edge crossings.

Orthogonalization During this step, an orthogonal shape H of G is computed
within the previously defined embedding. An orthogonal shape specifies the
sequence of left and right turns along each edge, and the angles formed by
consecutive edges incident around a vertex.

Compaction In this step a final geometry for H is computed by assigning
coordinates and dimensions to vertices and edge bends.

As described above, the topology-shape-metrics approach deals with the topol-
ogy, shape, and geometry of the drawing separately; in each step of the approach,
one or more optimization goals are considered, which are related to well-known
drawing aesthetic criteria [41]. Namely, during planarization, since each dummy
vertex represents an edge crossing, the goal is the minimization of the number
of inserted dummy vertices. During orthogonalization the objective is typically to

3.2 GRAPH DRAWING TECHNIQUES 47

1

2 35

4

V={1,2,3,4,5}
E={(1,2), (1,3), (1,4), (1,5), (2,3), (2,4), (2,5), (3,4), (3,5), (4,5)}

Planarization 1

2 3

54

Orthogonalization

2

4

35

1

Compaction

Figure 3.11. Illustration of the topology-shape-metrics approach.

determine a shape with the minimum number of edge bends. Finally, in the com-
paction step, the goal can be either the minimization of the area of the drawing or
the minimization of the total edge length.

The distinct phases of the topology-shape-metrics approach have been exten-
sively studied in the literature. If G is planar, which can be tested in linear time [73,
81], a planar embedding of G is also computable in linear time [26, 87]. If G is
not planar, the minimum number of edge crossings required by the drawing may
be �(n4), although in practice this number is much smaller. Since, minimizing
the number of crossings is an NP-hard problem [65], several heuristic planarization
techniques have been proposed in the literature; the reader is referred to the paper
by Liebers [82] for an annotated bibliography.

A popular and very elegant algorithm for constructing an orthogonal shape
of an embedded planar graph with vertices having at most four incident edges
was presented by Tamassia [112]. This algorithm uses a flow network approach
to compute an orthogonal shape that has the minimum number of edge bends,
while preserving the given embedding. Garg and Tamassia [66] proved that the
problem of computing an orthogonal shape with the minimum number of bends
in a variable embedding setting is NP-hard. Polynomial time solutions for specific
classes of graphs are studied by Di Battista et al. [43]; exponential algorithms have
been proposed by Bertolazzi et al. [7] and by Mutzel and Weiskircher [94].

Patrignani [99] showed that the problem of compacting an orthogonal shape
minimizing the area or the total edge length of the drawing is NP-hard, while

48 GRAPH VISUALIZATION AND DATA MINING

1

2

3

4 5

6 7

4

1

2

3

6 7

5

(b)(a) (c)

6

7

4

2

1

5

3

Figure 3.12. (a) A planar graph G. (b) A Kandinsky orthogonal representation of G. (c) A

Kandinsky orthogonal drawing of G.

Bridgeman et al. [20] showed polynomial time solutions for particular classes of
orthogonal shapes [20].

Several standards have been proposed in the literature to extend the topology-
shape-metrics approach so as to work with graphs of any vertex degree. Here
we recall the Kandisky drawing convention, originally described by Fößmeier and
Kaufmann [60]. A Kandisky drawing is an orthogonal drawing with the following
properties (see also Fig. 3.12):

• Segments representing edges cannot cross, with the exception that two seg-
ments that are incident of the same vertex may overlap (the angle between
such segments has 0◦).

• All the polygons representing the faces have area strictly greater than 0.
• Vertices are drawn as boxes with equal size and overlapping segments are

drawn as very near segments.

The Kandisky model has been further extended by Di Battista et al. [37] to
deal with drawings in which the size (width and height) of each single vertex is
assigned by the user. Having the possibility of customizing the size of each vertex
is important in many application contexts; for example, this makes it possible to
place a textual or graphical label in a vertex without intersecting any other element
of the drawing (see also [8, 9]). Algorithms for nonplanar orthogonal drawings in
the Kandinsky model have been investigated in [27, 61].

3.3 EXAMPLES OF VISUALIZATION SYSTEMS

In this section we give examples of recent systems that use graph drawing tech-
niques to discover properties, analyze phenomena, and extract knowledge in the
context of Web searching and Internet computing. The graph drawing engines of
these systems are based on variants of the visualization techniques described in the
previous section.

3.3.1 Web Searching

The output of a classical Web search engine consists of an ordered list of links
uniform resource locators (URLs) that are selected and ranked according to the user’s

3.3 EXAMPLES OF VISUALIZATION SYSTEMS 49

Louis Biography Lance

Armstrong

....

(a)

Louis Biography Lance

Armstrong

....

(b)

Figure 3.13. (a) Portion of a tree of categories for the query ‘‘Armstrong.’’ (b)–(c) The

same tree, plus edges that highlight cluster relationships.

query, the documents content, and (in some cases, like Google) the popularity of
the links in the World Wide Web. The returned list can, however, consist of several
hundreds of URLs and users may omit to check some URLs, that can be relevant
for them just because these links do not appear in the first positions of the list.
This problem is even more evident when the user’s query presents polisemy, that
is, words with different meanings. For example, suppose that the user submits the
query “Jaguar.” Is she interested in the “car” or in the “animal”?

A Web meta-search clustering engine is a system conceived to support the user
in retrieving data on the Web by overcoming some of the limitations of traditional
search engines. A Web meta-search clustering engine provides a visual interface to
the user who submits a query; it forwards the query to (one or more) traditional
search engines, and returns a set of clusters, also called categories, which are typi-
cally organized in a hierarchy. Each category contains URLs of documents that are
semantically related with each other and is labeled with a string that describes its
content. As a consequence, the user of a meta-search clustering engine has a global
view of the different semantic areas involved by her query and can more easily
retrieve the Web data relative to those topics in which she is interested. Clearly, the
graphical user interface plays a fundamental role for Web meta-search clustering
engines. Indeed, an effective representation of the categories and of their semantic
relationships is essential for efficiently retrieving the wanted information.

Most Web meta-search clustering engines (see, e.g., Vivı́simo1, iBoogie2,
SnakeT3) have a graphical user interface (GUI) in which the clusters hierarchy
is displayed as a tree. However, this type of representation may not be fully satis-
factory for a complex analysis of the returned Web data. Suppose, for example, that
the user’s query is “Armstrong” and that the clusters hierarchy returned by a Web
meta-search clustering engine is the tree depicted in Figure 3.13(a). Is the category
“Biography” related to “Louis” or to “Lance” or to both (or to neither but to the
astronaut Neil Armstrong)? If instead of a tree the systems returned a graph as the
one in Figure 3.13(b), the user would be facilitated in deciding whether the category
“Biography” is of her interest.

1http://vivisimo.com/.
2http://www.iboogie.com/.
3http://snaket.di.unipi.it/.

50 GRAPH VISUALIZATION AND DATA MINING

WhatsOnWeb4 [48, 49] is a meta-search clustering engine that makes it possible
to retrieve data on the Web by using drawings of graphs. The nodes represent clusters
of semantically coherent URLs and the edges describe relationships between pairs
of clusters. The graphical environment of WhatsOnWeb consists of two frames
[see, e.g., Fig. 3.14(a)]. In the left frame the clusters hierarchy is represented as
a classical directories tree. In the right frame, the user interacts with the drawing
of a clustered graph. The drawing is computed with an engineered version of the
topology-shape-metrics approach.

The user can expand/contract clusters in the graph and the drawing changes
accordingly. Each cluster is drawn as a box having the minimum size required to host
just its label (if the cluster is contracted) or a drawing of its subclusters (if the cluster
is expanded). Figure 3.14(a) shows a snapshot of the interface, where the results for
the query “Armstrong” are presented; in the figure, the category “Louis Armstrong”
has been expanded by the user. During the browsing, the system automatically keeps
consistent the map and the tree, that is, if a category is expanded in the map, it also
appears expanded in the tree, and vice versa. Also, to preserve the user mental map,
WhatsOnWeb preserves the orthogonal shape of the drawing during any expansion
or contraction operation. For example, Figure 3.14(b) shows the map obtained by
expanding the categories “Jazz,” “School,” and “Louis Armstrong Stamp” in the
map of Figure 3.14(a).

Besides these browsing functionalities, WhatsOnWeb is equipped with several
facilities that support the user’s analysis of the Web data. For example, different
colors are used to convey the “importance” that the system gives to every category.
Red categories are the most important for the system, while yellow categories are
the least important. The user can force the system to automatically prune categories
on the basis of their importance and on the basis of their connectivity level with
the rest of the graph. Furthermore, the user can explore the information associated
with the edges of the map. Namely, if the mouse is positioned on an edge (u, v),
a tool-tip is displayed that shows both the weight and the label of the relationship
between u and v. Clicking on the edge, a two-layered drawing is shown to the user
that displays the URLs in u, the URLs in v, and the relationships between these two
sets of URLs. This feature makes it possible to isolate all those documents that give
rise to a specific relationship and can be also used as a tool to evaluate and tune the
mechanism adopted by the system for creating cluster relationships. For example,
Figure 3.15(a) shows the information (weight and label strings) related to the edge
between “Other Topics” and “University.” Figure 3.15(b) depicts the two-layered
drawing that shows the relationships between the URLs of “Louis Armstrong Stamp”
and those of “Jazz.”

3.3.2 Internet Analysis

At a high level of abstraction, the Internet can be seen as a network of so-called
autonomous systems. An autonomous system (AS in the following) is a group of

4http://whatsonweb.diei.unipg.it/.

3.3 EXAMPLES OF VISUALIZATION SYSTEMS 51

(a)

(b)

Figure 3.14. Snapshots of the user interface of WhatsOnWeb: (a) A map for the query

‘‘Armstrong’’; in the map the user performed the expansion of the category ‘‘Louis Armstrong.’’

(b) A successive map obtained by expanding the categories ‘‘Jazz,’’ ‘‘School,’’ and ‘‘Louis

Armstrong Stamp’’; this last category contains two URLs, represented by using their title.

52 GRAPH VISUALIZATION AND DATA MINING

(a)

(b)

Figure 3.15. Illustration of the edge exploration functionalities of WhatsOnWeb: (a) Infor-

mation of the edge between ‘‘Other Topics’’ and ‘‘University’’ are shown. (b) A two-layered

drawing that shows the relationships between the URLs of ‘‘Louis Armstrong Stamp’’ and

those of ‘‘Jazz.’’ The drawing is computed with a hierarchical method.

subnetworks under the same administrative authority, and it is identified by a unique
integer number. In this sense, an AS can be seen as a portion of the Internet, and
the Internet can be seen as the totality of the ASs. To maintain the reachability of
any portion of the Internet, each AS exchanges routing information with a subset of
other ASs, mainly selected on the basis of economic and social considerations. To

3.3 EXAMPLES OF VISUALIZATION SYSTEMS 53

exchange information, the ASs adopt a routing protocol called BGP (border gateway
protocol). This protocol is based on a distributed architecture where border routers
that belong to distinct ASs exchange information about the routes they know. Two
border routers that directly communicate are said to perform a peering session, and
the ASs they belong to are said to be adjacent. The ASs graph is the graph having a
vertex for each AS and one edge between each pair of adjacent ASs. The ASs graph
consists of more than 10,000 vertices, and then it is not reasonable to visualize it
completely on a computer screen.

Internet service providers are often interested in visualizing and analyzing the
structure of the ASs graph and the related connection policies to extract valuable
information on the position of their partners and competitors, capture recurrent
patterns in the Internet traffic, and detect routing instabilities. Several tools have
been designed for this purpose (see, e.g., [51] for pointers). We describe here the
system Hermes5 [23] that allows users to incrementally explore the Internet topology
by means of automatically computed maps. The graph drawing engine of Hermes
has the following characteristics.

• Its basic drawing convention is the Kandinsky model for orthogonal drawings.
However, since the handled graphs often have many vertices of degree one
connected with the same vertex, the Kandinsky model is enriched with new
features for effectively representing such vertices.

• It is equipped with two different graph drawing algorithms. In fact, at each
exploration step of the user, the current map is enriched with new vertices
and hence it has to be redrawn. Depending on the situation, the system (or
the user) might want to use a static or a dynamic algorithm. Both the static
and the dynamic algorithms are mainly based on variations of the topology-
shape-metrics approach. The dynamic algorithm is faster than the static one,
and it is designed to preserve the user’s mental map during the exploration;
however, it can lead, after a certain number of exploration steps, to drawings
that are much less readable than those constructed with a static algorithm.

To determine the topology of the ASs graph, Hermes collects the data taken
from several public routing databases, including ANS, APNIC, ARIN, BELL,
CABLE&WIRELESS, CANET, MCI, RADB, RIPE, VERIO, and the routing BGP
data provided by the route views project of Oregon University [88]. All data, which
originally have heterogenous formats and often contain inconsistency, are filtered
and represented by Hermes using the RPSL language.

The graphical user interface of Hermes offers several exploration facilities. The
user can search for a specific AS and can start the exploration of the Internet from
that AS. At each successive step, the user can display information about the routing
policies of the ASs contained in the current map, or she can expand the map by
exploring one of these ASs. For example, Figure 3.16 shows a snapshot of the
system where the AS10474 (NETACTIVE, Tiscali South Africa) is searched and

5http://www.dia.uniroma3.it/∼hermes.

54 GRAPH VISUALIZATION AND DATA MINING

Figure 3.16. Map showing the ASs adjacent to AS10474 (NETACTIVE, Tiscali South Africa).

Figure 3.17. New map obtained from the previous map by exploring AS11845.

selected by the user for exploration; a first map that consists of the ASs adjacent to
AS10474 is then automatically computed and displayed by the system. Figure 3.17
shows how the map is expanded when the user decides to explore the AS11845.
Figure 3.18 depicts a more complex map obtained by performing three additional
exploration steps.

3.4 CONCLUSIONS 55

Figure 3.18. More complex map obtained by performing several exploration steps.

Although Hermes is an interesting and useful tool to analyze the topology of
the Internet at the autonomous system level, it does not provide full support to
understand Internet routing and its changes over time. The system BGPlay [29, 44]
uses specifically tailored techniques and algorithms to display the state of routing
at specific points in time and to animate its changes. The system obtains routing
data from well-known routing archives of routing information, which are constantly
kept up-to-date.

In some details, a route in the BGP protocol is a (directed) path in the Internet
that can be used to reach a specific set of Internet protocal (IP) addresses, repre-
senting a set of subnetworks. A route is completely described by its destination IP
address, its cost, and by the sequence of ASs that it traverses; this sequence is called
an AS path. A routing graph is a network in which vertices are ASs and each edge
defines a pair of ASs that appear consecutively in at least one of the AS paths.
BGPlay is able to visualize the evolution of the AS paths used to reach a target
AS from a subset of other ASs in the routing graph. To make the visualization and
the animation effective, BGPlay uses a constrained force-directed algorithm, where
the geometric distance between every AS and the target AS in the drawing reflects
the number of (AS-) hops separating them. Figure 3.19 shows a drawing of the AS
paths used to reach AS137 at a specific time.

3.4 CONCLUSIONS

This chapter summarized basic graph drawing techniques and software systems
that can be used to process and analyze relational data by visually exploring the

56 GRAPH VISUALIZATION AND DATA MINING

Figure 3.19. Portion of the routing graph computed by BGPlay. (Courtesy of L. Colitti, G. Di

Battista, F. Mariani, M. Patrignani, and M. Pizzonia.)

related networks. We presented examples of visualization tools for data mining appli-
cations in the fields of Internet computing, social sciences, software engineering,
information systems, homeland security, Web searching, and computational biology.
We also described the main theoretic principles behind some of the most popular
graph drawing approaches. We end the chapter with a list of online graph drawing
resources.

• The graph drawing e-print archive at the University of Köln:
http://gdea.informatik.uni-koeln.de/

• The Web page maintained by Tamassia:
http://www.cs.brown.edu/people/rt/gd.html

• The Web page maintained by Brandes:
http://graphdrawing.org/

• The Wiki for Open Problems page maintained by Marcus Raitner:
http://problems.graphdrawing.org/index.php/

• The section of the “Geometry in Action” pages devoted to graph drawing and
maintained by David Eppstein:
http://www.ics.uci.edu/ eppstein/gina/gdraw.html

• The information visualization material in the Web pages of Hanrahan:
http://www-graphics.stanford.edu/courses/cs448b-04-winter/

• The information visualization material in the Web pages of Munzner:
http://www.cs.ubc.ca/ tmm/courses/infovis/

REFERENCES 57

• The data mining and visualization page of Vladimir Batagelj:
http://vlado.fmf.uni-lj.si/vlado/vladodam.htm

• The Atlas of Cyberspace at:
http://www.cybergeography.org/atlas/atlas.html

• The graph drawing page maintained by Stephen Koubourov:
http://www.cs.arizona.edu/people/kobourov/gdiv.html

• The social networks and visualization page maintained by Jonathon N. Cum-
mings:
http://www.netvis.org/resources.php

3.4.1 Acknowledgment

Work partially supported by the MIUR Project ALGO-NEXT: Algorithms for the
Next Generation Internet and Web: Methodologies, Design and Applications.

REFERENCES

1. N. Amenta and J. Klingner. Case study: Visualizing sets of evolutionary trees. In IEEE
Information Visualization, pp. 71–74, IEEE Comp. Society, New York, 2002.

2. V. Batagelj and A. Mrvar. Pajek—analysis and visualization of large networks. In
M. Jünger and P. Mutzel, eds. Graph Drawing Software, pp. 77–103. Springer, 2003.

3. C. Batini, L. Furlani, and E. Nardelli. What is a good diagram? A pragmatic approach.
In Proceedings of 4th International Conference on the Entity-Relationship Approach,
pp. 312–319, IEEE Comp. Society, New York, 1985.

4. C. Batini, E. Nardelli, M. Talamo, and R. Tamassia. GINCOD: A graphical tool for
conceptual design of data base applications. In A. Albano, V. De Antonellis, and A. Di
Leva, eds. Computer Aided Data Base Design, pp. 33–51. North-Holland, New York,
1985.

5. C. Batini, E. Nardelli, and R. Tamassia. A layout algorithm for data flow diagrams.
IEEE Transactions on Software Engineering, SE-12(4):538–546, 1986.

6. C. Batini, M. Talamo, and R. Tamassia. Computet aided layout of entity-relationship
diagrams. Journal of Systems and Software, (4):163–173, 1984.

7. P. Bertolazzi, G. Di Battista, and W. Didimo. Computing orthogonal drawings with
the minimum numbr of bends. IEEE Transactions on Computers, 49(8), 2000.

8. C. Binucci, W. Didimo, G. Liotta, and M. Nonato. Computing orthogonal drawings of
graphs with vertex and edge labels. Computational Geometry: Theory and Applications.
Vol 32(2), pp. 71–114, 2005.

9. C. Binucci, W. Didimo, G. Liotta, and M. Nonato. Computing labeled orthogonal draw-
ings. In 10th International Symposium on Graph Drawing, GD 2002, Vol. 2528 of
Lecture Notes in Computer Science, pp. 66–73, Springer, Berlin, 2002.

10. F. J. Brandenburg, ed. Graph Drawing (Proc. GD’95), Vol. 1027 of Lecture Notes in
Computer Science. Springer, Berlin, 1995.

11. F. J. Brandenburg, M. Forster, A. Pick, M. Raitner, and F. Schreiber. Bio-
Path—exploration and visualization of biochemical pathways. In M. Jünger and
P. Mutzel, eds. Graph Drawing Software, pp. 215–235. Springer, Berlin, 2003.

58 GRAPH VISUALIZATION AND DATA MINING

12. F. J. Brandenburg, M. Himsolt, and C. Rohrer. An experimental comparison of force-
directed and randomized graph drawing algorithms. In F. J. Brandenburg, ed. Graph
Drawing (Proc. GD ’95), Vol. 1027 of Lecture Notes in Computer Science, pp. 76–87.
Springer, Berlin, 1996.

13. U. Brandes and S. Cornelsen. Visual ranking of link structures. Journal of Graph
Algorithms and Applications, 7(2):40–50, 2003.

14. U. Brandes, T. Dwyer, and F. Schreiber. Visual triangulation of network-based phylo-
genetic trees. In Proceedings of 6th Joint Eurographics—IEEE TCVG Symposium on
Visualization (VisSym ’04), pp. 75–83, IEEE Comp. Society, New York, 2004.

15. U. Brandes, T. Dwyer, and F. Schreiber. Visual understanding of metabolic pathways
across organisms using layout in two and a half dimensions. Journal of Integrative
Bioinformatics, 2:996–1003, 2004.

16. U. Brandes and T. Erlebach, eds. Network Analysis: Methodological Foundations, Vol.
3418 of Lecture Notes in Computer Science. Springer, Berlin, 2005.

17. U. Brandes, P. Kenis, and D. Wagner. Communicating centrality in policy network
drawings. IEEE Transactions on Visualization and Computer Graphics, 9(2):241–253,
2003.

18. U. Brandes and B. Köpf. Fast and simple horizontal coordinate assignment. In
S. Leipert M. Jünger, and P. Mutzel, eds. 9th International Symposium on Graph Draw-
ing, GD 2001, Vol. 2265 of Lecture Notes in Computer Science, pp. 31–44, Springer,
Berlin, 2002.

19. U. Brandes and D. Wagner. Visone—analysis and visualization of social networks.
In M. Jünger and P. Mutzel, eds. Graph Drawing Software, pp. 321–340. Springer,
Berlin, 2003.

20. S. S. Bridgeman, G. Di Battista, W. Didimo, G. Liotta, R. Tamassia, and L. Vismara.
Turn-regularity and optimal area drawings of orthogonal representations. Computational
Geometry: Theory and Applications, 16(1):53–93, 2000.

21. C. Buchheim, M. Jünger, and S. Leipert. A fast layout algorithm for k-level graphs. In
Joe Marks, ed. 8th International Symposium on Graph Drawing, GD 2000, Vol. 1984
of Lecture Notes in Computer Science, pp. 229–240, Springer, Berlin, 2000.

22. Y. Byun, E. Jeong, and K. Han. A partitioned approach to protein interaction mapping.
In 10th International Symposium on Graph Drawing, GD 2002, Vol. 2528 of Lecture
Notes in Computer Science, pp. 370–371, Springer, Berlin, 2002.

23. A. Carmignani, G. Di Battista, F. Matera, W. Didimo, and M. Pizzonia. Visualization
of the high level structure of the internet with Hermes. Journal of Graph Algorithms
and Applications, 6(3):281–311, 2002.

24. H. Chen, H. Atabakhsh, S. Kaza, B. Marshall, J. Xu, G. A. Wang, T. Petersen, and
C. Violette. Bordersafe: Cross-jurisdictional information sharing, analysis, and visu-
alization. In DG.O2005: Proceedings of the 2005 National Conference on Digital
Government Research, pp. 241–242. Digital Government Research Center, Atlanta,
Georgia, USA, May 15–18, 2005.

25. H. Chen, D. Zeng, H. Atabakhsh, W. Wyzga, and J. Schroeder. COPLINK: Managing
law enforcement data and knoweldge. Communication of the ACM, 46(1):28–34, 2003.

26. N. Chiba, T. Nishizeki, S. Abe, and T. Ozawa. A linear algorithm for embedding planar
graphs using PQ-trees. Journal of Computer and System Sciences, 30(1):54–76, 1985.

27. M. Chimani, G. Klau, and R. Weiskircher. Non-planar orthogonal drawings with fixed
topology. In Proceedings of SOFSEM’05: Theory and Practice of Computer Science,
Vol. 3381 of Lecture Notes in Computer Science, pp. 96–105, Springer, Berlin, 2005.

REFERENCES 59

28. E. G. Coffman and R. L. Graham. Optimal scheduling for two processor systems. Acta
Informatica, 1:200–213, 1972.

29. L. Colitti, G. Di Battista, F. Mariani, M. Patrignani, and M. Pizzonia. Visualizing Inter-
net domain routing with BGPlay. Journal of Graph Algorithms and Applications,
Vol. 9(1), pp. 117–148, 2005.

30. I. F. Cruz and P. Eades, eds. Special issue on graph visualization. Journal of Visual
Languages and Computing, 6(3), 1995.

31. R. Davidson and D. Harel. Drawing graphs nicely using simulated annealing. ACM
Transactions on Graphics, 15(4):301–331, 1996.

32. H. de Fraysseix and J. Kratochvil, eds. Graph drawing and representations: Special
issue on selected papers from the 1999 Symposium on Graph Drawing. Journal of
Graph Algorithms and Applications, 6(1), 2002.

33. E. Demir, O. Babur, U. Dogrusoz, A. Gursoy, A. Ayaz, G. Gulesir, G. Nisanci, and
R. Cetin-Atalay. An ontology for collaborative construction and analysis of cellular
pathways. Bioinformatics, 20(3):349–356, 2004.

34. E. Demir, O. Babur, U. Dogrusoz, A. Gursoy, G. Nisanci, R. Cetin-Atalay, and
M. Ozturk. PATIKA: An integrated visual environment for collaborative construction
and analysis of cellular pathways. Bioinformatics, 18(7):996–1003, 2002.

35. G. Di Battista, ed. Graph Drawing (Proc. GD’97), Vol. 1353 of Lecture Notes in
Computer Science. Springer, Berlin, 1997.

36. G. Di Battista, W. Didimo, M. Patrignani, and M. Pizzonia. Drawing database schemas.
Software—Practice and Experience, 32:1065–1098, 2002.

37. G. Di Battista, W. Didimo, M. Patrignani, and M. Pizzonia. Orthogonal and quasi-
upward drawings with vertices of prescribed sizes. In Jan Kratochvil, ed. Graph
Drawing (Proc. GD ’99), Vol. 1731 of Lecture Notes in Computer Science, pp. 297–310.
Springer, Berlin, 1999.

38. G. Di Battista, W. Didimo, M. Patrignani, and M. Pizzonia. DBDraw—automatic lay-
out of relational database schemas. In M. Jünger and P. Mutzel, eds. Graph Drawing
Software, pp. 237–256. Springer, Berlin, 2003.

39. G. Di Battista, P. Eades, H. de Fraysseix, and P. Rosenstiehl, eds. Graph Drawing
(Proc. GD’93), Paris, France, September 26–29, 1993.

40. G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Algorithms for drawing
graphs: An annotated bibliography. Computational Geometry: Theory and Applications,
4(5):235–282, 1994.

41. G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing. Prentice Hall,
Upper Saddle River, NJ, 1999.

42. G. Di Battista, R. Lillo, and F. Vernacotola. Ptolomaeus: The web cartographer. In 6th
International Symposium on Graph Drawing, GD 1998, Vol. 1547 of Lecture Notes in
Computer Science, pp. 444–445, Springer, Berlin, 1998.

43. G. Di Battista, G. Liotta, and F. Vargiu. Spirality and optimal orthogonal drawings.
SIAM Journal on Computing, 27(6):1764–1811, 1998.

44. G. Di Battista, F. Mariani, M. Patrignani, and M. Pizzonia. BGPlay: A system for visu-
alizing the interdomain routing evolution. In 11th International Symposium on Graph
Drawing, GD 2003, Vol. 2912 of Lecture Notes in Computer Science, pp. 295–306,
Springer, Berlin, 2003.

45. G. Di Battista and R. Tamassia, eds. Special issue on graph drawing. Algorithmica,
16(1), 1996.

46. G. Di Battista and R. Tamassia, eds. Special issue on geometric representations of
graphs. Computational Geometry: Theory and Applications, 9(1–2), 1998.

60 GRAPH VISUALIZATION AND DATA MINING

47. G. Di Battista, ed. New trends in graph drawing: Special issue on selected papers from
the 1997 Symposium on Graph Drawing. Journal of Graph Algorithms and Applications,
3(4), 1999.

48. E. Di Giacomo, W. Didimo, L. Grilli, and G. Liotta. Using graph drawing to search
the web. In 13th International Symposium on Graph Drawing, GD 2005, Lecture Notes
in Computer Science, Vol 3843, pp. 480–491, Springer, Berlin.

49. E. Di Giacomo, W. Didimo, L. Grilli, and G. Liotta. A topology-driven approach to the
design of web meta-search clustering engines. In Proceedings of SOFSEM’05: Theory
and Practice of Computer Science, Vol. 3381 of Lecture Notes in Computer Science,
pp. 106–116, Springer, Berlin, 2005.

50. J. Diaz, J. Petit, and M. Serna. A survey of graph layout problems. ACM Computing
Surveys, 34(3):313–356, 2002.

51. M. Dodge and R. Kitchin. Atlas of Cyberspace. Addison Wesley, Reading, MA, 2001.
52. A. W. M. Dress and D. H. Huson. Constructing splits graphs. IEEE Transactions on

Computational Biology and Bioinformatics, 1(3):109–115, 2004.
53. T. Dwyer, H. Rolletschek, and F. Schreiber. Representing experimental biological data

in metabolic networks. In 2nd Asia-Pacific Bioinformatics Conference (APBC’04),
Vol. 29 of CRPIT, pp. 13–20, ACS, Sydney, 2004.

54. P. Eades. A heuristic for graph drawing. Congr. Numer., 42:149–160, 1984.
55. P. Eades, X. Lin, and W. F. Smyth. A fast and effective heuristic for the feedback arc

set problem. Information Processing Letters, 47:319–323, 1993.
56. P. Eades and N. C. Wormald. Edge crossings in drawings of bipartite graphs. Algo-

rithmica, 11(4):379–403, 1994.
57. M. Eiglsperger, C. Gutwenger, M. Kaufmann, J. Kupke, M. Jünger, S. Leipert,

K. Klein, P. Mutzel, and M. Siebenhaller. Automatic layout of UML class diagrams in
orthogonal style. Information Visualization, 3(3):189–208, 2004.

58. J. Ellson, E. R. Gansner, E. Koutsofios, G. Woodhull, and S. C. North. Graphviz and
Dynagraph—static and dynamic graph drawing tools. In M. Jünger and P. Mutzel, eds.
Graph Drawing Software, pp. 127–148. Springer, Berlin, 2003.

59. P. Ferragina and A. Gullı́. A personalized search engine based on web-snippet hierar-
chical clustering. In 14th International Conference on World Wide Web, pp. 801–8106,
Chiba, Japan, May 10–14, 2005.

60. U. Fößmeier and M. Kaufmann. Drawing high degree graphs with low bend numbers.
In F. J. Brandenburg, ed. 3rd International Symposium on Graph Drawing (GD ’95),
Vol. 1027 of Lecture Notes in Computer Science, pp. 254–266, Springer, Berlin, 1996.

61. U. Fößmeier and M. Kaufmann. Algorithms and area bounds for non-planar orthogonal
drawings. In G. Di Battista, ed. 5th International Symposium on Graph Drawing (GD
1997), Vol. 1353 of Lecture Notes in Computer Science, pp. 134–145, Springer, Berlin,
1997.

62. A. Frick, A. Ludwig, and H. Mehldau. A fast adaptive layout algorithm for undirected
graphs. In R. Tamassia and I. G. Tollis, eds. Graph Drawing (Proc. GD ’94), Vol. 894
of Lecture Notes in Computer Science, pp. 388–403. Springer, Berlin, 1995.

63. T. Fruchterman and E. Reingold. Graph drawing by force-directed placement. Soft-
ware—Practice and Experience, 21(11):1129–1164, 1991.

64. E. R. Gansner, E. Koutsofios, S. C. North, and K. P. Vo. A technique for drawing
directed graphs. IEEE Transactions on Software Engineering, SE-19(3):214–230, 1993.

65. M. R. Garey and D. S. Johnson. Crossing number is NP-complete. SIAM Journal of
Algebraic Discrete Methods, 4(3):312–316, 1983.

REFERENCES 61

66. A. Garg and R. Tamassia. On the computational complexity of upward and rectilinear
planarity testing. SIAM Journal on Computing, 31(2):601–625, 2001.

67. M. T. Goodrich and S. G. Kobourov, eds. Graph Drawing (Proc. GD 2002), Vol. 2528
of Lecture Notes in Computer Science. Springer, Berlin, 2002.

68. C. Gutwenger, M. Jünger, K. Klein, J. Kupke, S. Leipert, and P. Mutzel. GoVisual—a
diagramming software for UML class diagrams. In M. Jünger and P. Mutzel, eds.
Graph Drawing Software, pp. 257–278. Springer, Berlin, 2003.

69. C. Gutwenger, J. Kupke, K. Klein, and S. Leipert. GoVisual for CASE tools Borland
Together Control Center and Gentleware Poseidon—system demonstration. In 11th
International Symposium on Graph Drawing, GD 2003, Vol. 2912 of Lecture Notes in
Computer Science, pp. 123–128, Springer, Berlin, 2003.

70. K. Han, B-H. Ju, and J. H. Park. InterViewer: Dynamic visualization of protein-protein
interaction. In 10th International Symposium on Graph Drawing, GD 2002, Vol. 2528
of Lecture Notes in Computer Science, pp. 364–365, Springer, Berlin, 2002.

71. X. He, ed. Special issue on selected papers from the Tenth International Symposium
on Graph Drawing, GD 2002. Journal of Graph Algorithms and Applications, 8(2),
2004.

72. I. Herman, G. Melancon, and M. S. Marshall. Graph visualization and navigation in
information visualizaion: A survey. IEEE Transactions on Visualization and Computer
Graphics, 6(1):24–43, 2000.

73. J. Hopcroft and R. E. Tarjan. Efficient planarity testing. Journal of the ACM, 21(4):
549–568, 1974.

74. M. Jünger and P. Mutzel. 2-layer straightline crossing minimization: Performance
of exact and heuristic algorithms. Journal of Graph Algorithms and Applications,
1(1):1–25, 1997.

75. M. Jünger and P. Mutzel, editors. Graph Drawing Software. Springer, Berlin, 2003.
76. M. Jünger, G. Reinelt, and S. Thienel. Practical problem solving with cutting plane

algorithms in combinatorial optimization. In P. Seymour W. Cook, L. Lovász, ed.
DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pp.
111–152, Piscataway, New Jersey, 1995.

77. T. Kamada and S. Kawai. An algorithm for drawing general undirected graphs. Infor-
mation Processing Letters, 31(1):7–15, 1989.

78. M. Kaufmann and D. Wagner, eds. Drawing Graphs, Vol. 2025 of Lecture Notes in
Computer Science. Springer, Berlin, 2001.

79. M. Kaufmann, ed. Special issue on selected papers from the 2000 Symposium on Graph
Drawing. Journal of Graph Algorithms and Applications, 6(3), 2002.

80. J. Kratochvil, ed. Graph Drawing (Proc. GD’99), Vol. 1731 of Lecture Notes in Com-
puter Science. Springer, Berlin, 1999.

81. A. Lempel, S. Even, and I. Cederbaum. An algorithm for planarity testing of graphs.
In Theory of Graphs: Internat. Symposium, pp. 215–232. Gordon and Breach, 1967.

82. A. Liebers. Planarizing graphs—a survey and annotated bibliography. Journal of Graph
Algorithms and Applications, 5(1):1–74, 2001.

83. G. Liotta, ed. Graph Drawing (Proc. GD 2003), Vol. 2912 of Lecture Notes in Computer
Science. Springer, Berlin, 2003.

84. G. Liotta and R. Tamassia. Drawings of graphs. In J. L. Gross and J. Yellen, eds.
Handbook of Graph Theory, pp. 1015–1045. CRC Press, Boca Raton, FL, 2004.

85. G. Liotta and S. H. Whitesides, eds. Special issue on selected papers from the
1998 Symposium on Graph Drawing. Journal of Graph Algorithms and Applications,
4(3), 2000.

62 GRAPH VISUALIZATION AND DATA MINING

86. J. Marks, ed. Graph Drawing (Proc. GD 2000), Vol. 1984 of Lecture Notes in Computer
Science. Springer, Berlin, 2000.

87. K. Mehlhorn and P. Mutzel. On the embedding phase of the Hopcroft and Tarjan
planarity testing algorithm. Algorithmica, 16:233–242, 1996.

88. D. Meyer. University of oregon route views project. On line: http://www.
antc.uoregon.edu/route-views.

89. T. Munzner, F. Guimbretiere, S. Tasiran, L. Zhang, and Y. Zhou. TreeJuxtaposer: Scal-
able tree comparison using focus+context with guaranteed visibility. ACM Transactions
on Graphics, 22(3):453–462, 2003.

90. P. Mutzel. An alternative method to crossing minimization on hierarchical graphs.
SIAM Journal of Optimization, 11(4):1065–1080, 2001.

91. P. Mutzel. Optimization in leveled graphs. In P. M. Pardalos and C. A. Floudas, eds.
Encyclopedia of Optimization, pp. 189–196. Berlin, Kluwer Academic, 2001.

92. P. Mutzel, M. Jünger, and S. Leipert, eds. Graph Drawing (Proc. GD 2001), Vol. 2265
of Lecture Notes in Computer Science. Springer, Berlin, 2001.

93. P. Mutzel and M. Jünger, eds. Advances in graph drawing. Special issue on selected
papers from the Ninth International Symposium on Graph Drawing, GD 2001. Journal
of Graph Algorithms and Applications, 7(4), 2003.

94. P. Mutzel and R. Weiskircher. Bend minimization in orthogonal drawings using integer
programming. In Proceedings of COCOON 2002, pp. 484–493, Singapore, 15–17
August, 2002.

95. T. Nishizeki and Md. Saidur Rahman. Planar Graph Drawing. Word Scientific, Sin-
gapore, 2004.

96. S. North, ed. Graph Drawing (Proc. GD’96), Vol. 1190 of Lecture Notes in Computer
Science. Springer, Berlin, 1996.

97. J. Pach, ed. Graph Drawing (Proc. GD 2004), Vol. 3383 of Lecture Notes in Computer
Science. Springer, Berlin, 2004.

98. J. Pach, ed. Towards a Theory of Geometric Graphs. American Mathematical Society,
Providence, 2004.

99. M. Patrignani. On the complexity of orthogonal compaction. Computational Geometry:
Theory and Applications, 19(1):47–67, 2001.

100. H. C. Purchase, D. Carrington, and J-A. Allder. Graph layout aesthetics in UML dia-
grams: User preferences. Journal of Graph Algorithms and Applications, 6(3):131–147,
2002.

101. H. C. Purchase, D. Carrington, and J-A. Allder. Evaluating graph drawing aesthetics:
Defining and exploring a new empirical research area. In J. Di Marco, ed. Computer
Graphics and Multimedia: Applications, Problems and Solutions, pp. 145–178. Hershey,
PA, USA, Idea Group Publishing, 2004.

102. G. Sander. Graph layout for applications in compiler construction. Theoretical Com-
puter Science, 217:175–214, 1999.

103. F. Schreiber. High quality visualization of biochemical pathways in BioPath. In Cilico
Biology, 2(2):59–73, 2002.

104. F. Schreiber. Visual comparison of metabolic pathways. Journal of Visual Languages
and Computing, 14(4):327–340, 2003.

105. M. Suderman and S. H. Whitesides. Experiments with the fixed-parameter approach
for two-layer planarization. Journal of Graph Algorithms and Applications, Vol. 9(1).
pp. 149–163, 2005.

106. M. Suderman and S. H. Whitesides. Experiments with the fixed-parameter approach
for two-layer planarization. In G. Liotta, ed. 11th International Symposium on Graph

REFERENCES 63

Drawing, Vol. 2912 of Lecture Notes in Computer Science, pp. 345–356, Springer,
Berlin, 2003.

107. K. Sugiyama. Graph Drawing and Applications for Software and Knowledge Engineers.
World Scientific, Singapore, 2002.

108. K. Sugiyama and K. Misue. Graph drawing by the magnetic spring model. Journal of
Visual Languages and Computing, 6(3):217–231, 1995.

109. K. Sugiyama, S. Tagawa, and M. Toda. Methods for visual understanding of hier-
archical systems. IEEE Transactions on Systems, Man, and Cybernetics, SMC-
11(2):109–125, 1981.

110. F. Schreiber, T. Dwyer, and H. Rolletschek. Representing experimental biological data
in metabolic networks. In Second Asia-Pacific Bioinformatics Conference (APBC
2004), pp. 13–20, Vol. 29 of CRPIT, ACS, Sydney, 2004.

111. R. Tamassia. New layout techniques for entity-relationship diagrams. In Proceedings
of 4th International Conference on Entity-Relationship Approach, pp. 304–311, IEEE
Comp. Society, New York, 1985.

112. R. Tamassia. On embedding a graph in the grid with the minimum number of bends.
SIAM Journal on Computing, 16(3):421–444, 1987.

113. R. Tamassia. Advances in the theory and practice of graph drawing. Theoretical Com-
puter Science, 17:235–254, 1999.

114. R. Tamassia, G. Di Battista, and C. Batini. Automatic graph drawing and readability
of diagrams. IEEE Transactions on Systems, Man, and Cybernetics, SMC-18(1):61–79,
1988.

115. R. Tamassia and G. Liotta. Graph drawing. In J. E. Goodman and J. O’Rourke, eds.
Handbook of Discrete and Computational Geometry, 2nd ed, pp. 1015–1045. New York,
Chapman & Hall/CRC, 2004.

116. R. Tamassia and I. G. Tollis, eds. Graph Drawing (Proc. GD’94), Vol. 894 of Lecture
Notes in Computer Science. Springer, Berlin, 1994.

117. L. Vismara, G. Di Battista, A. Garg, G. Liotta, R. Tamassia, and F. Vargiu. Exper-
imental studies on graph drawing algorithms. Software—Practice and Experience,
30(11):1235–1284, 2000.

118. S. H. Whitesides, ed. Graph Drawing (Proc. GD’98), Vol. 1547 of Lecture Notes in
Computer Science. Springer, Berlin, 1998.

119. J. Xu and H. Chen. Criminal network analysis and visualization. Communication of
the ACM, 48(6):101–107, 2005.

120. O. Zamir and O. Etzioni. Grouper: A dynamic clustering interface to web search results.
Computer Networks, 31(11–16):1361–1374, 1999.

4

GRAPH PATTERNS AND THE
R-MAT GENERATOR

DEEPAYAN CHAKRABARTI1 AND CHRISTOS FALOUTSOS2

1Yahoo! Research, Sunnyvale, California
2School of Computer Science, Carnegie Mellon University,

Pittsburgh, Pennsylvania

4.1 INTRODUCTION

“How can we quickly generate a synthetic yet realistic graph? How can we spot fake
graphs and outliers?”

Graphs, networks, and their surprising regularities/laws have been attracting sig-
nificant interest recently. The World Wide Web, the Internet topology, and peer-to-peer
networks follow surprising power laws [12, 22, 34], exhibit strange “bow-tie” or “jel-
lyfish” structures [22, 63], while still having a small diameter [6]. Finding patterns,
laws, and regularities in large real networks has numerous applications from crim-
inology and law enforcement [28] to analyzing virus propagation patterns [53] and
understanding networks of regulatory genes and interacting proteins [12], and so on.

How could we visualize the information contained in such large graphs effi-
ciently? Which patterns should we be looking for? How can we generate “realistic”
graphs that match these patterns? These are the questions that our NetMine system
focuses on, and they are important for many applications:

• Detection of Abnormal Subgraphs/Edges/Nodes: Abnormalities should deviate
from the “normal” patterns, so understanding the patterns of naturally occur-
ring graphs is a prerequisite for detection of such outliers.

Mining Graph Data, Edited by Diane J. Cook and Lawrence B. Holder
Copyright c© 2007 John Wiley & Sons, Inc.

65

66 GRAPH PATTERNS AND THE R-MAT GENERATOR

• Simulation Studies: Algorithms meant for large real-world graphs can be
tested on synthetic graphs that “look like” the original graphs. This is partic-
ularly useful if collecting the real data is hard or costly.

• Realism of Samples: Most graph algorithms are superlinear on the node count
and thus prohibitive for large graphs. We might want to build a small sample
graph that is “similar” to a given large graph. In other words, this smaller
graph needs to match the “patterns” of the large graph to be realistic.

• Extrapolation of Data: Given a real, evolving graph, we expect it to have x%
more nodes next year; how will it then look like, assuming that our “laws”
are still obeyed? For example, to test the next-generation Internet protocol,
we would like to simulate it on a graph that is “similar” to what the Internet
will look like a few years into the future.

• Graph Compression: Graph patterns represent regularities in the data. Such
regularities can be used to better compress the data.

Our NetMine system combines the computation of patterns and the generation
of realistic graphs into a single package. The primary contributions of NetMine are:

1. Scalable Pattern Computation: Given a large graph, NetMine runs through
a list of patterns commonly found in real-world graphs. These include the
in-degree and out-degree distributions, singular value distributions, “hop-
plots,” distributions of “singular vector value,” and “stress,” all of which will
be discussed later in this chapter. The pattern searchers are implemented scal-
ably, enabling NetMine to quickly handle graphs with hundreds of thousands
of nodes.

2. The New “Min-cut Plot”: In addition, NetMine also generates the recently
proposed “min-cut plots,” an interesting pattern to check for while analyzing
a graph.

3. Interpretation of Plots: We show how to interpret these plots and their
implications regarding the datasets.

4. The R-MAT Graph Generator: Finally, we describe a recent, promising graph
generator called R-MAT, which can be used to create synthetic yet realistic
graphs, that is, graphs that match almost all of the patterns mentioned in
scalable pattern computation above. NetMine also includes algorithms to
automatically estimate the parameters of R-MAT given the graph whose
patterns we wish to match.

For the pattern searches, the only desiderata are that they should provide some
new information about the graph and that we should be able to compute them
efficiently. A good graph generator, on the other hand, should satisfy many of the
following properties, if not all:

(P1) Realism: It should only generate graphs that obey all (or at least several)
of the above “laws,” and it would match the properties of real graphs

4.2 BACKGROUND AND RELATED WORK 67

(degree exponents, diameters etc., which we shall discuss later) with the
appropriate values of its parameters.

(P2) Procedural Generation: Instead of creating graphs to specifically match
some patterns, the generator should offer some process of graph genera-
tion, which automatically leads to the said patterns. This is necessary to
gain insight into the process of graph generation in the real world: if a
process cannot not generate synthetic graphs with the required patterns,
it is probably not the underlying process (or at least the sole process) for
graph creation in the real world.

(P3) Parsimony: It should have only a few parameters.
(P4) Fast Parameter Fitting: Given any real-world graph, the model parameters

should be easily tunable by some published algorithms to generate graphs
similar to the input graph.

(P5) Generation Speed: It should generate the graphs quickly, ideally, linearly
on the number of nodes and edges.

(P6) Extensibility: The same method should be able to generate directed, undi-
rected, and bipartite graphs, both weighted or] unweighted.

We will show how R-MAT matches all of these, including most of the patterns
required for (P1).

The rest of this chapter is organized as follows: Section 4.2 surveys the existing
graph laws and generators. Section 4.3 presents our proposed methods and algo-
rithms for mining large graphs. Section 4.4 demonstrates the usefulness of NetMine
using experiments on several real-world datasets. We conclude in Section 4.5. The
Appendix provides the details of a proof.

4.2 BACKGROUND AND RELATED WORK

Let us recall the terminology first. An unlabeled graph g = (V, E) is a set V of N

nodes and a set E of E edges between them. The edges may be undirected (like the
network of Internet routers and their physical links) or directed (like the network
of who-trusts-whom in the epinions.com database [57]). A special case is that of
bipartite graphs with two sets of nodes, V1 (say, “actors”) and V2 (say, “movies”),
with edges between them (which actor played in which movie). Unless otherwise
specified, all edges are unweighted: In a weighted graph, each edge has a (positive)
weight. For example, the Internet router graph has physical links between routers
as the edges of the graph, and the bandwidth of each link in megabits per second
(Mbps) is its weight.

The twin problems of finding graph patterns and building graph generators have
attracted a lot of recent interest, and a large body of work has been done on both, not
only by computer scientists but also physicists, mathematicians, sociologists, and
others. However, there is little interaction among these fields, with the result that
they often use different terminology and do not benefit from each other’s advances.

68 GRAPH PATTERNS AND THE R-MAT GENERATOR

In this section, we attempt to give a brief overview of the main ideas, with a focus
on combining sources from all the different fields, to gain a coherent picture of the
current state-of-the-art. The interested reader is also referred to some excellent and
entertaining books on the topic [12, 64].

4.2.1 Graph Patterns and ‘‘Laws’’

While there are many differences between graphs, some patterns show up regularly.
Work has focused on finding several such patterns, which together characterize
naturally occurring graphs. The main ones appear to be:

• Power laws
• Small diameters
• Community effects

Power Laws. While the Gaussian distribution is common in nature, there are many
cases where the probability of events far to the right of the mean is significantly
higher than in Gaussians. In the Internet, for example, most routers have a very low
degree (perhaps “home” routers), while a few routers have extremely high degree
(perhaps the “core” routers of the Internet backbone) [34]. Power law distributions
attempt to model this.

Definition 4.1 (Power Law) Two variables x and y are related by a power law
when their scatter plot is linear on a log–log scale:

y(x) = cx−γ (4.1)

where c and γ are positive constants. The constant γ is often called the power law
exponent.

Definition 4.2 (Degree Distribution) The degree distribution of an undirected
graph is a plot of the count ck of nodes with degree k, versus the degree k, typically
on a log–log scale. Occasionally, the fraction ck

N
is used instead of ck; however,

this merely translates the log–log plot downwards. For directed graphs, out-degree
and in-degree distributions are defined similarly.

Definition 4.3 (Scree Plot) This is a plot of the eigenvalues (or singular values)
of the adjacency matrix of the graph, versus their rank, using a log–log scale.

Both degree distributions and scree plots of many real-world graphs have been
found to obey power laws. Examples include the Internet Autonomous System
(AS) and router graphs [34, 36], the World Wide Web [10, 22, 40, 41], citation
graphs [56], online social networks [25], and many others. Power laws also show
up in the distribution of “bipartite cores” (≈ communities) and the distribution of
PageRank values [21, 52]. Indeed, power laws appear to be a defining characteristic
of almost all large real-world graphs.

4.2 BACKGROUND AND RELATED WORK 69

SIGNIFICANCE OF POWER LAWS. The significance of power law distributions lies
in the fact that they are heavy-tailed, meaning that they decay more slowly than
exponential or Gaussian distributions. Thus, a power law degree distribution would
be much more likely to have nodes with a very high degree (much larger than the
mean) than the other two distributions.

DEVIATIONS FROM POWER LAWS. Pennock et al. [54] and others have observed
deviations from a pure power law distribution in several datasets. Two of the more
common deviations are exponential cutoffs and lognormals. The exponential cutoff
models distributions look like power laws over the lower range of values on the
x axis but decay exponentially quickly for higher values; examples include the
network of airports [9]. Lognormal distributions look like truncated parabolas on
log–log scales and model situations where the plot “dips” downwards in the lower
range of values on the x axis; examples include degree distributions of subsets of
the World Wide Web (WWW), and many others [14, 54].

Small Diameters. Several definitions of the term “graph diameter” exist: the def-
inition we use is called the “effective diameter” or “eccentricity” and is closely
related to the “hop-plot” of a graph; both of these are defined below. The advan-
tages are twofold: (a) the hop-plot and effective diameter can be computed in linear
time and space using a randomized algorithm [50], and (b) this particular definition
is robust in the presence of outliers.

Definition 4.4 (Hop-plot) Starting from a node u in the graph, we find the num-
ber of nodes Nh(u) in a neighborhood of h hops. We repeat this starting from each
node in the graph and sum the results to find the total neighborhood size Nh for h

hops [Nh = ∑
u Nh(u)]. The hop-plot is just the plot of Nh versus h.

Definition 4.5 (Effective Diameter) This is the minimum number of hops in
which some fraction (say, 90%) of all connected pairs of nodes can reach each
other [63].

SIGNIFICANCE OF GRAPH DIAMETER. The diameters of many real-world graphs
are very small compared to the graph size [6]: only around 4 for the Internet AS-
level graph, 12 for the Internet router-level graph, 16 for the WWW, and the famous
“six degrees of separation” in the social network. Any realistic graph generator needs
to match this criterion.

Community Effects. Informally, a community is a set of nodes where each node
is “closer” to the other nodes within the community than to nodes outside it. This
effect has been found (or is believed to exist) in many real-world graphs, especially
social networks [47, 60].

Community effects have typically been studied in two contexts: (a) local one-
hop neighborhoods, as characterized by the clustering coefficient and (b) node groups
with possibly longer paths between members, such as graph partitions and bipartite
cores. All of these are discussed below.

70 GRAPH PATTERNS AND THE R-MAT GENERATOR

X

Set L Set R

(a) (b)

Figure 4.1. Indicators of community structure: (a) Node X has 6 neighbors (clustering

coefficient). These neighbors could have been connected by
(6

2

) = 15 edges, but only 5 such

edges exist. So, the local clustering coefficient of node X is 5/15 = 1/3. (b) A 4 × 3 bipartite

core, with each node in set L being connected to each node in set R.

Definition 4.6 (Clustering Coefficient) For a node v with edges (u, v) and
(v, w), the clustering coefficient of v measures the probability of existence of the
third edge (u, w) [Fig. 4.1(a)]. The clustering coefficient of the entire graph is found
by averaging over all nodes in the graph1.

Definition 4.7 (Graph Partitioning) Graph partitioning techniques typically
break the graph into two disjoint partitions (or communities) while optimizing some
measure; these two communities may then be repartitioned separately.

The popular METIS software tries to find the best separator, minimizing the
number of edges cut in order to form two disconnected components of relatively
similar sizes [37]. Many other measures and techniques exist [7, 20]. The recent
cross-associations method [26, 27] finds such partitions in a completely parameter-
free manner, using the Minimum Description Length (MDL) principle to choose the
number of partitions as well as their memberships.

Definition 4.8 (Bipartite Core) A bipartite core in a graph consists of two (not
necessarily disjoint) sets of nodes L and R such that every node in L links to every
node in R; links from R to L are optional [Fig. 4.1(b)].

SIGNIFICANCE OF GRAPH COMMUNITIES. Most real-world graphs exhibit strong
community effects. Moody [47] found groupings based on race and age in a net-
work of friendships in one American school, Schwartz and Wood [60] group people
with shared interests from email logs; Borgs et al. [19] find communities from
“cross posts” on Usenet; and Flake et al. [35] discover communities of Web pages
in the WWW. This is also reflected in the clustering coefficients of real-world
graphs: They are almost always much larger than in random graphs of the same
size [65].

1We note here that there is at least one other definition based on counting triangles in the graph; both
definitions make sense, but we use this one.

4.2 BACKGROUND AND RELATED WORK 71

Other Patterns. Many other graph patterns have also been studied in the literature.
We mention two of these that we will use later: (a) edge betweenness or stress,
(b) “singular vector value” versus rank plots, and (c) resilience under attack.

Definition 4.9 (Edge Betweenness or Stress) Consider all shortest paths bet-
ween all pairs of nodes in a graph. The edge betweenness or stress of an edge
is the number of these shortest paths that the edge belongs to and is thus a measure
of the “load” on that edge.

Definition 4.10 (Stress Plot) This is a plot of the number of edges sk with stress
k, versus k.

Definition 4.11 (Singular Vector Value versus Rank Plots) The singular vec-
tor value of a node is the absolute value of the corresponding component of the first
singular vector of the graph. It can be considered to be a measure of the “impor-
tance” of the node, and as we will see later, is closely related to the widely used
concept of “Bonacich centrality” in social network analysis [18].

Definition 4.12 (Resilience) A resilient graph is one whose diameter does not
increase when its nodes or edges are removed according to some “attack” process [5,
50]. Most real-world graphs are very resilient against random failures but susceptible
to targeted attacks (such as removal of nodes of the highest degree) [62].

As against these previous patterns, which appear in many real-world graphs,
several patterns specific to the Internet and the WWW have been discovered.
Broder et al. [22] show that the WWW has a “bow-tie” structure, with four roughly
equal parts. There is a central strongly connected component (SCC), a set of pages
(IN) pointing into this center, a set of pages (OUT) that the pages in the center
point to, and a set of TENDRILS hang off the IN and OUT sections. Dill et al. [29]
extend this by finding self-similarity in this structure. For the Internet topology,
Tauro et al. [63] observe a “jellyfish” structure, with nodes organized in a set of
concentric circles around a small core.

4.2.2 Graph Generators

Graph generators allow us to create synthetic graphs, which can then be used for,
say, simulation studies. However, to be realistic, the generated graph must match all
(or at least several) of the patterns mentioned above. By telling us which processes
can (or cannot) lead to the development of these patterns, graph generators can
provide insight into the creation of real-world graphs.

Graph models and generators can be broadly classified into four categories:

1. Random Graph Models: The graphs are generated by a random process. The
basic random graph model has attracted a lot of research interest due to its
phase transition properties.

72 GRAPH PATTERNS AND THE R-MAT GENERATOR

2. Preferential Attachment Models: In these models, the “rich” get “richer” as
the network grows, leading to power law effects. Some of today’s most
popular models belong to this class.

3. Optimization-Based Models: Here, power laws are shown to evolve when
risks are minimized using limited resources. Together with the preferential
attachment models, they try to provide mechanisms that automatically lead
to power laws.

4. Geographical Models: These models consider the effects of geography (i.e.,
the positions of the nodes) on the growth and topology of the network. This
is especially important for modeling router or power grid networks, which
involve laying wires between points on the globe.

We will briefly touch upon some of these generators below. Tables 4.1 and 4.2
provide a taxonomy of generators.

Random Graph Models. In the earliest random graph model [32], we start with
N nodes, and for every pair of nodes, an edge is added between them with proba-
bility p. This simple model leads to a surprising list of properties, including phase
transitions in the size of the largest component and diameter logarithmic in graph
size. Its ease of analysis has proven to be very useful in the early development of the
field. However, its degree distribution is Poisson, whereas most real-world graphs
seem to exhibit power law distributions. Also, the graphs lack community effects:
The clustering coefficient is usually far smaller than that in comparable real-world
graphs.

The basic Erdös–Rényi model has been extended in several ways, typically to
match the power law degree distribution pattern [2, 49, 51]. These methods retain
the simplicity and ease of analysis of the original model, while removing one of
its weaknesses: the unrealistic degree distribution. However, these models do not
describe any process by which power laws may arise automatically, which makes
them less useful in understanding the internal processes behind graph formation in
the real world (property P2). Also, most models make no attempt to match any
other patterns (property P1), and further work is needed to incorporate community
effects into the model.

Preferential Attachment Models. First developed in the mid-1950s [61], the
idea of preferential attachment models has been rediscovered recently due to their
ability to generate skewed distributions such as power laws [10, 55]. Informally,
they use the concept of the “rich getting richer” over time: New nodes join the
graph each time step and preferentially connect to existing nodes with high degree.
This basic idea has been very influential and has formed the basis of a large body
of further work [3, 4, 6, 11, 15, 17, 23, 52, 54, 67].

The preferential attachment models have several interesting properties:

• Power Law Degree Distributions: These models lead to power laws as a by-
product of the graph generation method and not as a specific designed-in
feature.

4.2 BACKGROUND AND RELATED WORK 73

• Low Diameter: The generated graphs have O(log N) diameter. Thus, the
increase in diameter is slower than the growth in graph size.

• Resilience: The generated graphs are resilient against random node/edge
removals but quickly become disconnected when nodes are removed in desc-
ending order of degree [5, 50]. This matches the behavior of the Internet.

• A Procedural Method: Perhaps most importantly, these models describe a
process that can lead to realistic graphs and power laws (matching prop-
erty P2). The two main ideas are those of (a) growth and (b) preferential
attachment; variants to the basic model add other ideas such as node “fit-
ness.” The ability of these models to match many real world graphs implies
that graphs in the real world might indeed have been generated by similar
processes.

Preferential attachment models are probably the most popular models currently,
due to their ability to match power law degree distributions by such a simple set of
steps. However, they typically do not exhibit community effects, and, apart from the
paper of Pennock et al. [54], little effort has gone into finding reasons for deviations
from power laws in real-world graphs (property P1).

One set of related models has shown promise recently: These are the “edge-
copying” models [40, 41], where a node (such as a website) acquires edges by
copying links from other nodes (websites). This is similar to preferential attachment
because pages with high degree will be linked to by many other pages and so have
a greater chance of getting copied. However, such graphs can be expected to have a
large number of bipartite cores (which leads to the community effect). This makes
the edge-copying technique a promising research direction.

Geographical Models. Several models introduce the constraints of geography into
network formation. For example, it is easier (cheaper) to link two routers that are
physically close to each other; most of our social contacts are people we meet often,
and who consequently probably live close to us (say, in the same town or city), and
so on. In this area, there are two important models: the small-world model, and the
Waxman model.

The small-world model [65] starts with a regular lattice and adds/rewires some
edges randomly. The original lattice represents ties between close friends, while
the random edges link “acquaintances” and serve to connect different social circles.
Thus, the resulting graph has low diameter but a high clustering coefficient—two
patterns common to real-world graphs. However, the degree distribution is not a
power law, and the basic model needs extensions to match this (property P1).

The Waxman model [66] probabilistically links two nodes in the graph, based
on their geographical distance (in fact, the probability decreases exponentially with
distance). The model is simple yet attractive and has been incorporated into the
popular BRITE [45] generator used for graph generation in the networking commu-
nity. However, it does not yield a power law degree distribution, and further work
is needed to analyze the other graph patterns for this generator (property P1).

TA
B

LE
4.

1
Ta

xo
no

m
y

of
G

ra
ph

G
en

er
at

or
sa

D
eg

re
e

D
is

tr
ib

ut
io

ns

G
ra

ph
Ty

pe
Po

w
er

L
aw

Se
lf

-
M

ul
t.

G
eo

g.
E

xp
.

D
ev

ia
-

E
xp

on
en

-
G

en
er

at
or

U
nd

ir
.

D
ir

.
B

ip
.

L
oo

ps
E

dg
es

In
fo

Pl
ai

n
C

ut
of

f
tio

n
tia

l

E
rd

ös
–

R
én

yi
[3

2]
√

√
√

√
PL

R
G

[2
],

√
√

√
√

PL
O

D
[5

1]
E

xp
on

en
tia

l
cu

to
ff

√
√

√
√

√
[4

9]
B

A
[1

0]
√

√
(γ

=
3)

A
B

[4
]

√
√

√
√

√
E

dg
e

co
py

in
g

[4
0,

41
]

√
√

√
√

G
L

P
[2

3]
√

√
√

√
A

cc
el

er
at

ed
gr

ow
th

√
√

√
Po

w
er

-l
aw

m
ix

tu
re

of
[1

1]
γ

=
2

an
d

γ
=

3
Fi

tn
es

s
m

od
el

√
√

[1
5]

(m
od

ifi
ed

)

74

A
ie

llo
et

al
.

[3
]

√
√

Pa
nd

ur
an

ga
n

et
al

.
[5

2]
√

√
√

√
In

et
[6

7]
√

√
√

Pe
nn

oc
k

et
al

.
[5

4]
√

√
√

√
√

Sm
al

l
w

or
ld

√
√

√
[6

5]
W

ax
m

an
[6

6]
√

√
√

B
R

IT
E

[4
5]

√
√

√
Y

oo
k

et
al

.
[6

8]
√

√
√

√
Fa

br
ik

an
t

et
al

.
[3

3]
√

√
√

R
-M

A
T

[2
5]

√
√

√
√

√
√

√
(D

G
X

)

a
T

hi
s

ta
bl

e
sh

ow
s

th
e

gr
ap

h
ty

pe
s

an
d

de
gr

ee
di

st
ri

bu
tio

ns
th

at
di

ff
er

en
tg

ra
ph

ge
ne

ra
to

rs
ca

n
cr

ea
te

.T
he

gr
ap

h
ty

pe
ca

n
be

un
di

re
ct

ed
,

di
re

ct
ed

,b
ip

ar
tit

e,
al

lo
w

in
g

se
lf

-l
oo

ps
or

m
ul

tig
ra

ph
(m

ul
tip

le
ed

ge
s

po
ss

ib
le

be
tw

ee
n

no
de

s)
.T

he
de

gr
ee

di
st

ri
bu

tio
ns

ca
n

be
po

w
er

la
w

(w
ith

po
ss

ib
le

ex
po

ne
nt

ia
l

cu
to

ff
s,

or
ot

he
r

de
vi

at
io

ns
su

ch
as

lo
gn

or
m

al
/D

G
X

)
or

ex
po

ne
nt

ia
l

de
ca

y.
E

m
pt

y
ce

lls
in

di
ca

te
th

at
th

e
co

rr
es

po
nd

in
g

pr
op

er
ty

do
es

no
t

oc
cu

r
in

th
e

co
rr

es
po

nd
in

g
m

od
el

.

75

TA
B

LE
4.

2
Ta

xo
no

m
y

of
G

ra
ph

G
en

er
at

or
s

(C
on

tin
ue

d.
)a

C
om

m
un

ity

D
ia

m
et

er
or

B
ip

.
C

or
e

C
(k

)
vs

.k
C

lu
st

er
in

g
G

en
er

at
or

A
vg

Pa
th

L
en

gt
h

vs
.

Si
ze

C
oe

ffi
ci

en
t

R
em

ar
ks

E
rd

ös
–

R
én

yi
[3

2]
O

(l
og

N
)

In
de

p.
L

ow
,

C
C

∝
N

−1
PL

R
G

[2
],

O
(l

og
N

)
In

de
p.

C
C

→
0

PL
O

D
[5

1]
fo

r
la

rg
e

N

E
xp

on
en

tia
l

cu
to

ff
O

(l
og

N
)

C
C

→
0

[4
9]

fo
r

la
rg

e
N

B
A

[1
0]

O
(l

og
N

)
or

C
C

∝
N

−0
.7

5

O
(

lo
g

N

lo
g

lo
g

N
)

A
B

[4
]

E
dg

e
co

py
in

g
[4

0,
41

]
Po

w
er

la
w

G
L

P
[2

3]
H

ig
he

r
th

an
In

te
rn

et
A

B
,

B
A

,
PL

R
G

on
ly

A
cc

el
er

at
ed

gr
ow

th
N

on
m

on
ot

on
ic

[1
1]

w
it

h
N

Fi
tn

es
s

m
od

el
[1

5]

76

A
ie

llo
et

al
.

[3
]

Pa
nd

ur
an

ga
n

et
al

.
[5

2]
In

et
[6

7]
Sp

ec
ifi

c
to

th
e

A
S

gr
ap

h
Pe

nn
oc

k
et

al
.

[5
4]

Sm
al

l
w

or
ld

O
(N

)
fo

r
sm

al
l
N

,
C

C
(p

)
∝

N
=

nu
m

no
de

s
[6

5]
O

(l
n

N
)

fo
r

la
rg

e
N

,
(1

−
p
)3

,
p

=
re

w
ir

in
g

pr
ob

de
pe

nd
s

on
p

In
de

p
of

N

W
ax

m
an

[6
6]

B
R

IT
E

[4
5]

L
ow

(l
ik

e
in

B
A

)
L

ik
e

in
B

A
B

A
+

W
ax

m
an

w
it

h
ad

di
ti

on
s

Y
oo

k
et

al
.

[6
8]

Fa
br

ik
an

t
et

al
.

[3
3]

T
re

e,
de

ns
ity

1
R

-M
A

T
[2

5]
L

ow
(e

m
pi

ri
ca

lly
)

a
T

he
co

m
pa

ri
so

ns
ar

e
m

ad
e

fo
r

gr
ap

h
di

am
et

er
,

ex
is

te
nc

e
of

co
m

m
un

ity
st

ru
ct

ur
e

[n
um

be
r

of
bi

pa
rt

ite
co

re
s

ve
rs

us
co

re
si

ze
,

or
cl

us
te

ri
ng

co
ef

fic
ie

nt
C

C
(k

)
of

al
l

no
de

s
w

ith
de

gr
ee

k
vs

.
k

],
an

d
cl

us
te

ri
ng

co
ef

fic
ie

nt
.
N

is
th

e
nu

m
be

r
of

no
de

s
in

th
e

gr
ap

h.
T

he
em

pt
y

ce
lls

re
pr

es
en

t
in

fo
rm

at
io

n
un

kn
ow

n
to

th
e

au
th

or
s

an
d

re
qu

ir
e

fu
rt

he
r

re
se

ar
ch

.

77

78 GRAPH PATTERNS AND THE R-MAT GENERATOR

Optimization-Based Models. Optimization-based models provide another proc-
ess leading to power laws. Carlson and Doyle [24, 30] propose in their highly
optimized tolerance (HOT) model that power laws may arise in systems due to trade-
offs between yield (or profit), resources (to prevent a risk from causing damage), and
tolerance to risks. Apart from power laws, HOT also matches the resilience pattern
of many real-world graphs (see Definition 4.12): it is robust against “designed-for”
uncertainties but very sensitive to design flaws and unanticipated perturbations.

Several variations of the basic model have also been proposed: COLD [48]
truncates the power law tails, while the heuristically optimized trade-offs model [33]
needs only locally optimal decisions instead of global optimality.

Optimization-based models provide a very intuitive process that leads to both
power laws and resilience (matching property P2). However, further research needs
to be conducted on other patterns for such graphs (property P1). One step in this
direction is the work of Berger et al. [13], who generalize the heuristically optimized
trade-offs model and show that it is equivalent to a form of preferential attachment;
thus, competition between opposing forces can give rise to preferential attachment,
and we already know that preferential attachment can, in turn, lead to power laws
and exponential cutoffs.

Summary of Graph Generators. Thus, we see that these are four general cat-
egories of graph generators, along with several “cross-category” generators too.
Most of the generators do well with properties P3–P6 but need further research
to determine their realism (property P1, that is, which patterns they match, and
which they do not). Next, we will discuss our R-MAT graph generator, which
attempts to match all of these properties, including the degree distribution (with
both power laws and deviations), community structure, singular vector value versus
rank patterns, and so on.

4.2.3 Other Related Concepts

There has been a lot of recent interest [31, 44] in the field of relational learning:
learning structure from datasets that are structured as graphs. The primary difference
between this exciting body of research and ours is that relational learning focuses
on finding structure at the local level (e.g., if a movie is related to another movie
that was nominated for/won an Academy Award, then it is likely to be nominated
itself), whereas we are attempting to find patterns at the global level (e.g., power
laws in degree distributions). Also, relational learning typically involves labeled data
(e.g., the nodes in a graph could have different labels) and structure/predictions are
made on those labels; our work attempts to find and model patterns that are solely
properties of the graph topology.

Other topics of interest involving graphs include graph partitioning [59], fre-
quent subgraph discovery (see [42, 43] and Chapter 7), finding cycles in graphs [8],
navigation in graphs [39], and many others. All of these address interesting prob-
lems, and we are investigating their use in our work.

4.3 NETMINE AND R-MAT 79

N

O(N

0.5

0.5
)

Min-cut

−10

−9

−8

−7

−6

−5

−4

−3

−2

4 6 8 10 12 14 16 18 20

lo
g(

m
in

cu
t/e

dg
es

)

log(edges)

Squares−Complete

(a) (b)

−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

0 2 4 6 8 10 12 14 16 18 20

lo
g(

m
in

cu
t/e

dg
es

)

log(edges)

Squares−Averaged

Slope=−0.5

(c)

Figure 4.2. Example of min-cut plot: Plot (a) shows a portion of a regular 400 × 400 2D grid

and a possible min-cut. Plot (b) shows the full 2D min-cut plot, and plot (c) shows the averaged

plot. If the number of nodes is N, the length of each side is
√

N. Then the size of the min-cut is

O(
√

N), which leads to a slope of −0.5, which is exactly what we observe.

4.3 NetMine AND R-MAT

Given a large graph, NetMine computes several patterns that often show up in
real-world graphs. These include in- and out-degree distributions, singular value
distributions, hop-plots, and distributions of singular vector value and stress. In the
previous section, we defined all of these and referenced research that allows fast
computation of these patterns. In this section, we will discuss two recent develop-
ments: the min-cut plots and the R-MAT graph generator.

4.3.1 Min-cut plots

A min-cut of an unlabeled graph g = (V, E) is a partition of the set of vertices
V into two sets V1 and V − V 1 such that both partitions are of approximately the
same size, and the number of edges crossing partition boundaries is minimized. The
number of such crossing edges is called the min-cut size. Min-cut sizes of various
classes of graphs have been studied extensively, and are known to have important
effects on other properties of the graphs [58]. For example, Figure 4.2(a) shows a
regular two-dimensional (2D) grid graph and one possible min-cut of the graph. We
see that if the number of nodes is N , then the size of the min-cut (in this case) is
O(

√
N).

80 GRAPH PATTERNS AND THE R-MAT GENERATOR

a

dc

From

To Nodes

Nodes

c d

b
a b

c d

Figure 4.3. The R-MAT model: The adjacency matrix is broken into four equal-sized par-

titions, and one of those four is chosen according to a (possibly nonuniform) probability

distribution. This partition is then split recursively till we reach a single cell, where an edge is

placed. Multiple such edge placements are used to generate the full synthetic graph.

The min-cut plot is built as follows: Given a graph, its min-cut is found, and
the set of edges crossing partition boundaries is deleted. This divides the graph into
two disjoint graphs; the min-cut algorithm is then applied recursively to each of
these subgraphs. This continues till the size of the graph reaches a small value (set
to 20 in our case). Each application of the min-cut algorithm becomes a point in the
min-cut plot. The graphs are drawn on a log–log scale. The x axis is the number
of edges in a given graph. The y axis is the fraction of that graph’s edges that were
included in the edge-cut for that graph’s separator.

Figure 4.2(b) shows the min-cut plot for the 2D grid graph. In plot (c), the
value on the y axis is averaged over all points having the same x coordinate. The
min-cut size is O(

√
N), so this plot should have a slope of −0.5, which is exactly

what we observe.

4.3.2 The R-MAT Graph Generator

We have seen that most of the current graph generators focus on only one graph
pattern—typically the degree distribution—and give low importance to all the oth-
ers. There is also the question of how to fit model parameters to match a given
graph. What we would like is a trade-off between parsimony (property P3), realism
(property P1), and efficiency (properties P4 and P5). In this section, we present the
R-MAT generator, which attempts to address all of these concerns.

Description and Properties. R-MAT is based on the well-known “80–20 rule”
in one dimension (80% of the data falls on 20% of the data range), which is known
to result in self-similarity and power laws; R-MAT extends this rule to a two-
dimensional graph adjacency matrix. The R-MAT generator creates directed graphs
with 2n nodes and E edges, where both values are provided by the user. We start with
an empty adjacency matrix and divide it into four equal-sized partitions. One of the
four partitions is chosen with probabilities a, b, c, d, respectively (a + b + c + d =
1), as in Figure 4.3 The chosen partition is again subdivided into four smaller

4.3 NETMINE AND R-MAT 81

partitions, and the procedure is repeated until we reach a simple cell (= 1 × 1
partition). The nodes (i.e., row and column) corresponding to this cell are linked
by an edge in the graph. This process is repeated E times to generate the full
graph. There is a subtle point here: We may have duplicate edges (i.e., edges that
fall into the same cell in the adjacency matrix), but we only keep one of them
when generating an unweighted graph. To smooth out fluctuations in the degree
distributions, some noise is added to the (a, b, c, d) values at each stage of the
recursion, followed by renormalization (so that a + b + c + d = 1). Typically, a ≥
b, a ≥ c, a ≥ d .

PARSIMONY. The algorithm needs only three parameters: the partition probabil-
ities a, b, and c; d = 1 − a − b − c. Thus, the models is parsimonious.

DEGREE DISTRIBUTION. The following theorem gives the expected degree dis-
tribution of an R-MAT generated graph.

THEOREM 4.1 (Count vs. Degree) For a pure R-MAT generated graph (i.e.,
without any smoothing factors), the expected number of nodes ck with out-degree
k is given by

ck =
(

E

k

) n∑
i=0

(
n

i

) [
pn−i (1 − p)i

]k [
1 − pn−i (1 − p)i

]E−k
(4.2)

where 2n is the number of nodes in the R-MAT graph (typically n = �log2 N� and
p = a + b.

Proof. Theorem 4.1 is repeated and proven in the Appendix.

This is well modeled by a discrete lognormal [14], which looks like a trun-
cated parabola on the log–log scale. By setting the parameters properly, this can
successfully match both power law and “unimodal” distributions [54].

COMMUNITIES. Intuitively, R-MAT is generating “communities” in the graph:

• The partitions a and d represent separate groups of nodes that correspond to
communities (say, Linux and Windows users).

• The partitions b and c are the cross-links between these two groups; edges
there would denote friends with separate preferences.

• The recursive nature of the partitions means that we automatically get sub-
communities within existing communities (say, RedHat and Mandrake enthu-
siasts within the Linux group).

DIAMETER, SINGULAR VALUES, AND OTHER PROPERTIES. We show experimen-
tally that graphs generated by R-MAT have small diameters and match several other
criteria as well.

82 GRAPH PATTERNS AND THE R-MAT GENERATOR

EXTENSIONS TO UNDIRECTED, BIPARTITE, AND WEIGHTED GRAPHS. The basic
model generates directed graphs; all the other types of graphs can be easily generated
by minor modifications of the model. For undirected graphs, a directed graph is
generated and then made symmetric. For bipartite graphs, the same approach is
used; the only difference is that the adjacency matrix is now rectangular instead
of square. For weighted graphs, the number of duplicate edges in each cell of the
adjacency matrix is taken to be the weight of that edge. More details may be found
in [25].

PARAMETER FITTING ALGORITHM. We are given some input graph and need
to fit the R-MAT model parameters so that the generated graph matches the input
graph in terms of graph patterns. Using Theorem 4.1 we can fit the in-degree and
out-degree distributions; this gives us two equations (specifically, we get the values
of p = a + b and q = a + c). We need one more equation to fit the three model
parameters.

We tried several experiments where we fit the scree plot (see Definition 4.3).
However, we obtained comparable (and much faster) results by conjecturing that
the a : b and a : c ratios are approximately 75 : 25 (as seen in many real-world
scenarios) and using these to fit the parameters. Hence, this is our current parameter-
fitting method for R-MAT.

4.4 EXPERIMENTS

The questions we wish to answer are:

(Q1) How do the min-cut plots look for real-world graphs, and does R-MAT
match them?

(Q2) How well can R-MAT match real-world graphs? How does it compare
against other graph generators?

The datasets we use for our experiments are:

• Epinions: A directed graph of who-trusts-whom from epinions.com [57]: N =
75,879; E = 508,960.

• Epinions-U: An undirected version of the Epinions graph: N = 75,879; E =
811,602.

• Clickstream: A bipartite graph of Internet users’ browsing behavior [46]. An
edge (u,p) denotes that user u accessed page p. It has 23,396 users, 199,308
pages, and 952,580 edges.

• Lucent is an undirected graph of network routers, obtained from
www.isi.edu/scan/mercator/maps.html. N = 112,969; E = 181,639.

• Router is a larger graph (the SCAN + Lucent map) from the same uniform
resource locator (URL), which subsumes the Lucent graph. N = 284,805;
E = 898,492.

4.4 EXPERIMENTS 83

• Google is a graph of webpage connectivity from the Google [1] programming
contest. N = 916,428;E = 5,105,039.

4.4.1 (Q1) Min-cut Plots
We plotted min-cut sizes for a variety of graphs. For each graph listed we used
the Metis graph partitioning library [38] to generate a separator, as described by
Blandford et al. [16].

Figure 4.4 shows min-cut sizes of some real-world graphs. For random graphs,
we expect about half the edges to be included in the cut. Hence, the min-cut plot
of a random graph would be a straight horizontal line with a y coordinate of about
log(0.5) = −1. A very separable graph (e.g., a line graph) might have only one edge
in the cut; such a graph with N edges would have a y coordinate of log(1/N) =
− log(N), and its min-cut plot would thus be on the line y = −x. As we can
see from Figure 4.4, the plots for real-world graphs do not match either of these
situations, meaning that real-world graphs are quite far from either random graphs
or simple line graphs.

Observation 4.1 (Noise) We see that real-world graphs seem to have a lot of
“noise” in their min-cut plots, as shown by the first row of Figure 4.4

Observation 4.2 (“Lip”) The ratio of min-cut size to number of edges decreases
with increasing edges, except for graphs with large number of edges, where we
observe a “lip” in the min-cut plot.

The min-cut plot contains important information about the graph [58]. Hence,
any synthetically generated graph meant to simulate a real-world graph should match
the min-cut plot of the real-world graph. In Figure 4.5, we compare the min-cut plots
for the Epinions graph with a graph generated R-MAT. As can be seen, the basic
shape of the plot is the same in both cases, though the R-MAT plot appears to be
shifted slightly from the original.

Observation 4.2 The graph generated by R-MAT appears to match the basic
shape of the min-cut plot.

4.4.2 (Q2) Comparing R-MAT to Real-World Graphs
As described in Section 4.3, R-MAT is applicable to directed, undirected, as well
as bipartite graphs. We demonstrate results on one example graph of each type:
the Epinions directed graph, the Epinions-U undirected graph, and the Clickstream
bipartite graph. For each dataset, we fit the R-MAT parameters, generate a synthetic
graph with these parameters, and compare it to the true graph. We also compare
R-MAT with three existing generators chosen for their popularity or recency:

• The AB model [4]: This is a preferential attachment model with additional
process to rewire edges and add links between existing nodes (instead of only
adding links to new nodes).

84 GRAPH PATTERNS AND THE R-MAT GENERATOR

−12

−10

−8

−6

−4

−2

0

4 6 8 10 12 14 16 18 20 22

lo
g(

m
in

cu
t/e

dg
es

)

log(edges)

−10
−9
−8
−7
−6
−5
−4
−3
−2
−1

4 6 8 10 12 14 16 18

lo
g(

m
in

cu
t/e

dg
es

)

log(edges)

(a) (b)

−9

−8

−7

−6

−5

−4

−3

−2

−1

4 6 8 10 12 14 16 18 20

lo
g(

m
in

cu
t/e

dg
es

)

log(edges)

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

0 5 10 15 20 25

lo
g(

m
in

cu
t/e

dg
es

)

log(edges)

"Lip"

(c) (d)

−8

−7

−6

−5

−4

−3

−2

−1

0

0 2 4 6 8 10 12 14 16 18

lo
g(

m
in

cu
t/e

dg
es

)

log(edges)

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0 2 4 6 8 10 12 14 16 18 20

lo
g(

m
in

cu
t/e

dg
es

)

log(edges)

(e) and (f)

Figure 4.4. Min-cut plots for real-world graphs: Min-cut plots are shown for several real-

world datasets. We plot the ratio of min-cut size to edges versus number of edges on a

log–log scale. The first row shows the actual plots; in the second row, the cutsize-to-edge ratio

is averaged over all points with the same number of edges. (a) Google min-cut plot, (b) Lucent

min-cut plot, (c) Clickstream min-cut plot, (d) Google averaged, (e) Lucent averaged, and (f)

Clickstream averaged.

• The Generalized Linear Preference (GLP) model [23]: This modifies the orig-
inal preferential attachment equation with an extra parameter and is highly
regarded in the networking community.

• The PG model [54]: This model has a parameter to traverse the continuum
from pure preferential attachment to pure random attachment.

There are two important points to note:

• All of the above models are used to generate undirected graphs, and thus, we
can compare them to R-MAT only on Epinions-U.

4.4 EXPERIMENTS 85

−9

−8

−7

−6

−5

−4

−3

−2

−1

2 4 6 8 10 12 14 16 18 20

lo
g(

m
in

cu
t/e

dg
es

)

log(edges)

−7

−6

−5

−4

−3

−2

−1

4 6 8 10 12 14 16 18

lo
g(

m
in

cu
t/e

dg
es

)

log(edges)

(a) (b)

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0 2 4 6 8 10 12 14 16 18 20

lo
g(

m
in

cu
t/e

dg
es

)

log(edges)

Real Epinions data
R-MAT generated data

(c)

Figure 4.5. Min-cut plots for RMAT: We compare min-cut plots for the Epinions dataset and

a dataset generated by RMAT, using properly chosen parameters. We see from plot (c) that

the shapes of the min-cut plots are similar. (a) Epinions min-cuts, (b) RMAT min-cuts, and

(c) averaged min-cuts.

• We were unaware of any method to fit the parameters of these models, so we
fit them using a brute-force method. We use AB+, PG+, and GLP+ for the
original algorithms augmented by our parameter fitting.

The graph patterns we look at are:

1. Both in-degree and out-degree distributions (Definition 4.2).
2. Hop-plot and effective diameter (Definitions 4.4 and 4.5).
3. Singular value vs. rank plot (also known as the scree plot; see Definition 4.3).
4. Singular vector value versus rank plots (Definition 4.11).
5. Stress distribution (Definition 4.10).

We have already compared R-MAT min-cut plots to those in the real graph, earlier
in this section.

R-MAT on Directed Graphs. Figure 4.6 shows results on the Epinions directed
graph. The R-MAT fit is very good; the other models considered are not applicable.
The corresponding R-MAT parameters are shown in Table 4.3

86 GRAPH PATTERNS AND THE R-MAT GENERATOR

TABLE 4.3 R-MAT Parameters for the Datasets

R-MAT Parameters

Dataset Graph Type Dimensions Edges a b c d

Epinions Directed 75,879 × 75,879 508,960 0.56 0.19 0.18 0.07
Clickstream Bipartite 23,396 × 199,308 952,580 0.50 0.15 0.19 0.16
Epinions-U Undirected 75,879 × 75,879 811,602 0.55 0.18 0.18 0.09

R-MAT on Bipartite Graphs. Figure 4.7 shows results on the Clickstream bipartite
graph. As before, the R-MAT fit is very good. In particular, note that the in-degree
distribution is a power law while the out-degree distribution deviates significantly
from a power law; R-MAT matches both of these very well. Again, the other models
are not applicable.

R-MAT on Undirected Graphs. Figure 4.8 shows the comparison plots on the
Epinions-U undirected graph. R-MAT gives the closest fits. Also, note that all the y

scales are logarithmic, so small differences in the plots actually represent significant
deviations.

4.5 CONCLUSIONS

We described our NetMine toolkit for mining and visualizing the information in
real-world graphs. The emphasis is on scalability, so that our algorithms can handle
arbitrarily large graphs. When applied on real graphs, NetMine can check for many
of the patterns that frequently occur in real-world graphs, and fit the R-MAT model
parameters so that “similar” graphs can be generated. Deviations from the usual
patterns could signify abnormalities or outliers in the data, and the R-MAT model
with the fitted parameters can be used for, say, extrapolation of the data and “what-if”
scenarios.

Specifically, the major contributions of this work are:

• Min-cut Plots: They show the relative size of the minimum cut in a graph
partition. For regular 2D and 3D grid-style networks (like Delaunay triangu-
lations for finite element analysis), these plots have a slope that depends on
the intrinsic dimensionality of the grid. However, for real graphs, these plots
show significantly more “noise” as well as a “lip”. Their slope offers insight
into their intrinsic structure.

• R-MAT: This simple, parsimonious graph model is able to match almost all
the patterns of real-world graphs and is more widely applicable and accurate
than other existing graph generators. We also showed how the parameters
of R-MAT can be efficiently set to mimic any given graph; this allows the
user to quickly generate similar graphs that are synthetic yet realistic. We
were pleasantly surprised when R-MAT also matched the min-cut plots of
real-world graphs.

4.5 CONCLUSIONS 87

1

10

100

1,000

10,000

100,000

1 10 100 1,000 10,000

C
ou

nt

In-degree

Epinions
R-MAT Graph

PG+
AB+

GLP+

1

10

100

1,000

10,000

100,000

1 10 100 1,000 10,000

C
ou

nt

Out-degree

Epinions
R-MAT Graph

PG+
AB+

GLP+

(a) (b)

10

100

1,000

1 10 100

S
in

gu
la

r
V

al
ue

Rank

Epinions
R-MAT Graph

PG+
AB+

GLP+

100,000

1 × 106

1 × 107

1 × 108

1 × 109

1 × 1010

1 × 1011

1 2 3 4 5 6 7 8 9 10

N
ei

gh
bo

rh
oo

d
S

iz
e

Hops

Epinions
R-MAT Graph

Effective Diameter = 4

(c) (d)

1 × 10−5

1 × 10−3

0.1

1

1 100 1 × 104 1 × 106

S
in

gu
la

r
V

ec
to

r
V

al
ue

Rank

Epinions
R-MAT Graph

PG+
AB+

GLP+

1 × 10−5

1 × 10−3

0.1

1

1 100 1 × 104 1 × 106

S
in

gu
la

r
V

ec
to

r
V

al
ue

Rank

Epinions
R-MAT Graph

PG+
AB+

GLP+

(e) (f)

1

10

100

1,000

10,000

100,000

1 10 100 1,000 10,000

C
ou

nt

Link use Frequency (Stress)

Epinions
R-MAT Graph

AB+
PG+
GLP+

(g)

Figure 4.6. Results on the Epinions directed graph: The AB+, PG+ and GLP+ methods do

not apply. The crosses and dashed lines represent the R-MAT-generated graphs, while the

pluses and strong lines represent the real graph. (a) In-degree, (b) out-degree, (c) scree plot,

(d) hop-plot, (e) first left singular vector, (f) first right singular vector, and (g) stress.

88 GRAPH PATTERNS AND THE R-MAT GENERATOR

1

10

100

1,000

10,000

100,000

1 × 106

1 10 100 1000 10000 100000

C
ou

nt

Degree

Clickstream
R-MAT Graph

PG+
AB+

GLP+

1

10

100

1,000

10,000

1 10 100 1000 10000

C
ou

nt

Degree

Clickstream
R-MAT Graph

PG+
AB+

GLP+

(a) (b)

10

100

1,000

1 10 100

S
in

gu
la

r
V

al
ue

Rank

Clickstream
R-MAT Graph

PG+
AB+

GLP+

1 × 106

1 × 107

1 × 108

1 × 109

1 × 1010

1 × 1011

1 × 1012

1 2 3 4 5 6 7 8 9 10

N
ei

gh
bo

rh
oo

d
S

iz
e

Hops

Clickstream
R-MAT Graph

Effective Diameter = 3 or 4

(c) (d)

1 × 10−5

1 × 10−3

0.1

1

1 100 1 × 104 1 × 106

S
in

gu
la

r
V

ec
to

r
V

al
ue

Rank

Clickstream
R-MAT Graph

PG+
AB+

GLP+

1 × 10−5

1 × 10−3

0.1

1

1 100 1 × 104 1 × 106

S
in

gu
la

r
V

ec
to

r
V

al
ue

Rank

Clickstream
R-MAT Graph

PG+
AB+

GLP+

(e) (f)

1

10

100

1,000

1 10 100 1,000

C
ou

nt

Link Use Frequency (Stress)

Clickstream

R-MAT Graph

AB+
PG+
GLP+

(g)

Figure 4.7. Results on the Clickstream bipartite graph: The AB+, PG+, and GLP+ methods

do not apply. The crosses and dashed lines represent the R-MAT-generated graphs, while the

pluses and strong lines represent the real graph. (a) In-degree, (b) out-degree, (c) scee plot,

(d) hop-plot, (e) first left singular vector, (f) first right singular plot, and (g) stress.

4.5 CONCLUSIONS 89

1

10

100

1,000

10,000

100,000

1 10 100 1000 10000

C
ou

nt

Degree

Epinions-U
R-MAT

AB+
PG+

GLP+

Real

R-MAT

100,000

1 × 106

1 × 107

1 × 108

1 × 109

1 × 1010

1 × 1011

1 2 3 4 5 6 7 8 9 10

N
ei

gh
bo

rh
oo

d
S

iz
e

Hops

Epinions-U
R-MAT

AB+
PG+
PG+

Real

R-MAT

(a) (b)

10

100

1,000

1 10 100

S
in

gu
la

r
V

al
ue

Rank

Epinions-U
R-MAT

AB+
PG+

GLP+

Real

R-MAT

1 × 10−6

1 × 10−5

0.0001

0.001

0.01

0.1

1

1 10 100 1,000 10,000 100,000 1 × 106

S
in

gu
la

r
V

ec
to

r
V

al
ue

Rank

Epinions-U
R-MAT

AB+
PG+

GLP+

R-MAT

Real

(c) (d)

1

10

100

1,000

10,000

100,000

1 10 100 1,000

C
ou

nt

Link Use Frequency (Stress)

Epinions-U
R-MAT

AB+
PG+

GLP+

Real

R-MAT

(e)

Figure 4.8. Results on the Epinions-U undirected graph: We show (a) degree, (b) hop-plot,

(c) singular value, (d) singular vector value, and (e) stress distributions for the Epinions-U

dataset. R-MAT gives the best matches to the Epinions-U graph, among all the generators. In

fact, for the stress distribution, the R-MAT and Epinions-U plots are almost indistinguishable.

Moreover, we propose a list of natural tests that hold for a variety of real
graphs: matching the power law/DGX distribution for the in- and out-degree, the
hop-plot and the diameter of the graph, the singular value distribution, the values
of the first singular vector (“Google-score”), and the “stress” distribution over the
edges of the graph. All of these are packaged into the NetMine package, which
provides a complete toolkit for analyzing and visualizing large graphs in a scalable
manner, as shown by our experiments.

90 GRAPH PATTERNS AND THE R-MAT GENERATOR

APPENDIX: THE R-MAT DEGREE DISTRIBUTION

THEOREM 4.A1 (Count vs. Degree) For a pure R-MAT generated graph (i.e.,
without any smoothing factors), the expected number of nodes ck with out-degree
k is given by

ck =
(

E

k

) n∑
i=0

(
n

i

) [
pn−i (1 − p)i

]k [
1 − pn−i (1 − p)i

]E−k
(4.A.1)

where 2n is the number of nodes in the R-MAT graph (typically n = �log2 N� and
p = a + b.

Proof. In the following discussion, we neglect the elimination of duplicate edges.
This is a reasonable assumption: In most of our experiments, we found that the
number of duplicate edges is far less than the total number of edges. Each edge
that is “dropped” on to the adjacency matrix takes a specific path: At each stage
of the recursion, the edge chooses either Up (corresponding to partitions a or b)
or Down (corresponding to partitions c or d). There are n such stages, where 2n

is the number of nodes. Row X can be reached only if the edge follows a unique
ordered sequence of Up and Down choices. Since the probability of choosing Up is
p = a + b and the probability of choosing Down is 1 − p = c + d , the probability
of the edge falling to row X is

P(X) = pnum(Up)(1 − p)num(Down)

= pnum(Up)(1 − p)n−num(Up) (4.A.2)

This equation means that any other row that requires the same number of Up
choices will have the same probability as row X. The number of such rows can be

easily seen to be
[

n
num(Up)

]
. Thus, we can think of different classes of rows:

Class Probability of getting an edge Num(rows)

0 pn
(
n

0

)
1 pn−1(1 − p)1

(
n

1

)
...

...
...

i − 1 pn−i (1 − p)i
(
n

i

)
...

...
...

n (1 − p)n
(
n

n

)

4.5 CONCLUSIONS 91

Now, we can calculate the count-degree plot. Let

NRk = number of rows with outdegree k

= NR0,k + NR1,k + · · · + NRn,k (4.A.3)

where NRi,k = number of rows of class i with out-degree k. Thus, the expected
number of rows with out-degree k is

E[NRk] =
n∑

i=0

E[NRi,k] (4.A.4)

Now, for a row in class i, each of the E edges can either drop into it [with probability
pn−i (1 − p)i] or not [with probability 1 − pn−i (1 − p)i]. Thus, the number of edges
falling into this row is a binomially distributed random variable: Bin[E,pn−i (1 −
p)i]. Thus, the probability that it has exactly k edges is given by

Pi,k =
(

E

k

) [
pn−i (1 − p)i

]k [
1 − pn−i (1 − p)i

]E−k

Thus, the expected number of such rows from class i is

E[NRi,k] = number of rows in class i × Pi,k =
(

n

i

)
Pi,k

=
(

n

i

)(
E

k

) [
pn−i (1 − p)i

]k [
1 − pn−i (1 − p)i

]E−k

Using this in Equation (4.A.3) gives us

E[NRk] =
(

E

k

) n∑
i=0

{(
n

i

) [
pn−i (1 − p)i

]k [
1 − pn−i (1 − p)i

]E−k
}

(4.A.5)

Equation (4.A.5) gives us the count of nodes with out-degree k; thus we can plot
the count-vs.-outdegree plot using this equation. Q.E.D.

Acknowledgment

This work is partially supported by the National Science Foundation under Grants
No. CCR-0208853, ANI-0326472, IIS-0083148, IIS-0113089, IIS-0209107,
IIS-0205224, INT-0318547, SENSOR-0329549, EF-0331657, IIS-0326322, and
CNS-0433540 and by the Pennsylvania Infrastructure Technology Alliance, a part-
nership of Carnegie Mellon, Lehigh University, and the Commonwealth of Pennsyl-
vania’s Department of Community and Economic Development (DCED). Additional
funding was provided by donations from Intel and by a gift from Northrop-Grumman
Corporation. Any opinions, findings, and conclusions or recommendations expressed
in this material are those of the author(s) and do not necessarily reflect the views
of the National Science Foundation or other funding parties.

92 GRAPH PATTERNS AND THE R-MAT GENERATOR

REFERENCES

1. Google programming contest (2002). http://www.google.com/programming-contest/.
2. W. Aiello, F. Chung, and L. Lu. A random graph model for massive graphs. In ACM

Symposium on Theory of Computing, pp. 171–180, ACM Press, NY, NY, 2000.
3. W. Aiello, F. Chung, and L. Lu. Random evolution in massive graphs. In IEEE Sympo-

sium on Foundations of Computer Science, IEEE Computer Society Press, Los Alamitos,
CA, 2001.

4. R. Albert and A.-L. Barabási. Topology of complex networks: Local events and univer-
sality. Physical Review Letters, 85(24), 2000.

5. R. Albert, H. Jeong, and A.-L. Barabási. Error and attack tolerance of complex networks.
Nature, 406:378–381, 2000.

6. R. Albert and A.-L. Barabási. Statistical mechanics of complex networks. Reviews of
Modern Physics, 74(1):47–97, 2002.

7. N. Alon. Spectral techniques in graph algorithms. In C. L. Lucchesi and A. V. Moura,
eds. Lecture Notes in Computer Science 1380, pp. 206–215. Springer, Berlin, 1998.

8. N. Alon, R. Yuster, and U. Zwick. Finding and counting given length cycles. Algorith-
mica, 17(3):209–223, 1997.

9. L. A. N. Amaral, A. Scala, M. Barthélémy, and H. E. Stanley. Classes of behavior
of small-world networks. In Proceedings of National Academy of Science, U.S.A., 97,
2000.

10. A.-L. Barabási and R. Albert. Emergence of scaling in random networks. Science,
286:509–512, 1999.

11. A. L. Barabási, H. Jeong, Z. Néda, E. Ravasz, A. Schubert, and T. Vicsek. Evolution of
the social network of scientific collaborations. Physica A, 311:590–614, 2002.

12. A.-L. Barabási. Linked: The New Science of Networks. Perseus Publishing, May, New
York, NY, 2002.

13. N. Berger, C. Borgs, J. Chayes, R. M. D’Souza, and R. D. Kleinberg. Degree distribution
of competition-induced preferential attachment graphs. Combinatorics, Probability and
Computing, 14, pp. 697–721, 2005.

14. Z. Bi, C. Faloutsos, and F. Korn. The DGX distribution for mining massive, skewed
data. In Knowledge Discovery and Datamining, pp. 17–26, ACM Press, New York, NY,
2001.

15. G. Bianconi and A.-L. Barabási. Competition and multiscaling in evolving networks.
Europhysics Letters, 54:436–442, 2001.

16. D. Blandford, G. E. Blelloch, and I. Kash. Compact representations of separable graphs.
In ACM-SIAM Symposium on Discrete Algorithms, SIAM, Philadelphia, PA, 2003.

17. B. Bollobás, C. Borgs, J. Chayes, and O. Riordan. Directed scale-free graphs. In SIAM
Symposium on Discrete Algorithms, pp. 132–139, 2003.

18. P. Bonacich. Power and centrality: A family of measures. American Journal of Sociology,
92:1170–1182, 1987.

19. C. Borgs, J. Chayes, M. Mahdian, and A. Saberi. Exploring the community structure of
newsgroups (Extended Abstract). In Knowledge Discovery and Datamining, ACM Press,
New York, NY, 2004.

20. U. Brandes, M. Gaertler, and D. Wagner. Experiments on graph clustering algorithms.
In European Symposium on Algorithms, 568–579, Springer Verlag, Berlin, Germany,
2003.

21. S. Brin and L. Page. The anatomy of a large-scale hypertextual Web search engine.
Computer Networks and ISDN Systems, 30(1–7):107–117, 1998.

REFERENCES 93

22. A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata, A. Tomkins,
and J. Wiener. Graph structure in the web: Experiments and models. In World Wide Web
Conference, 2000.

23. T. Bu and D. Towsley. On distinguishing between Internet power law topology gener-
ators. In INFOCOM, pp. 638–647, IEEE Computer Society Press, Los Alamitos, CA,
2002.

24. J. M. Carlson and J. Doyle. Highly optimized tolerance: A mechanism for power laws
in designed systems. Physics Review E, 60(2):1412–1427, 1999.

25. D. Chakrabarti, Y. Zhan, and C. Faloutsos. R-MAT: A recursive model for graph mining.
In SIAM Data Mining, 2004.

26. D. Chakrabarti, S. Papadimitriou, D. Modha, and C. Faloutsos. Fully automatic
Cross-associations. In Knowledge Discovery and Datamining, ACM Press, NY, NY,
2004.

27. D. Chakrabarti. AutoPart: Parameter-free graph partitioning and outlier detection. In
Principles & Practice of Knowledge Discovery in Databases, Springer, Berlin, Germany,
112–124, 2004.

28. H. Chen, J. Schroeder, R. Hauck, L. Ridgeway, H. Atabaksh, H. Gupta, C. Boarman,
K. Rasmussen, and A. Clements. COPLINK Connect: Information and knowledge man-
agement for law enforcement. CACM, 46(1):28–34, 2003.

29. S. Dill, R. Kumar, K. S. McCurley, S. Rajagopalan, D. Sivakumar, and A. Tomkins.
Self-similarity in the Web. In Very Large Data Bases, Morgan Kaufmann, San Francisco,
CA, 2001.

30. J. Doyle and J. M. Carlson. Power laws, highly optimized tolerance, and generalized
source coding. Physical Review Letters, 84(24):5656–5659, June 2000.

31. S. Džeroski and N. Lavrač, eds. Relational Data Mining. Springer, Berlin, Germany,
2001.

32. P. Erdös and A. Rényi. On the evolution of random graphs. Publication of the
Mathematical Institute of the Hungarian Acadamy of Science, 5:17–61, 1960.

33. A. Fabrikant, E. Koutsoupias, and C. H. Papadimitriou. Heuristically optimized
trade-offs: A new paradigm for power laws in the Internet (extended abstract), Inter-
national Colloquium on Automata, Languages, and Programming, 110–122, Springer
Verlag, Berlin, 2002.

34. M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-law relationships of the Internet
topology. In Conf. of the ACM Special Interest Group on Data Communications, pp.
251–262, ACM Press, NY, NY, 1999.

35. G. W. Flake, S. Lawrence, and C. Lee Giles. Efficient identification of Web communities.
In Knowledge Discovery & Datamining, ACM Press, NY, NY, 2000.

36. R. Govindan and H. Tangmunarunkit. Heuristics for Internet map discovery. In IEEE
INFOCOM 2000, pp 1371–1380, Tel Aviv, Israel, March 2000.

37. G. Karypis and V. Kumar. Multilevel algorithms for multi-constraint graph partitioning.
Technical Report 98-019, University of Minnesota, Twin Cities, 1998.

38. G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning
irregular graphs. SIAM Journal on Scientific Computing, 20(1):359–392, 1999.

39. J. Kleinberg. The small-world phenomenon: An algorithmic perspective. Technical
Report 99-1776, Cornell Computer Science Department, Cornell University, Ithaca, NY,
1999.

40. J. Kleinberg, S. R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins. The web
as a graph: Measurements, models and methods. In Proceedings of the International
Conference on Combinatorics and Computing, Tokyo, Japan, pp. 1–17, 1999.

94 GRAPH PATTERNS AND THE R-MAT GENERATOR

41. S. R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins. Extracting large-scale
knowledge bases from the web. In Very Large Data Bases, 639–650, Edinburgh,
Scotland, 1999.

42. M. Kuramochi and G. Karypis. Frequent subgraph discovery. In IEEE International
Conference on Data Mining, Nov 29–Dec 2, pp. 313–320, 2001.

43. M. Kuramochi and G. Karypis. Discovering frequent geometric subgraphs. In IEEE
International Conference on Data Mining, Taebashi City, Japan; Dec 9–12, 2002.

44. A. McGovern and D. Jensen. Identifying predictive structures in relational data using
multiple instance learning. In International Conference on Machine Learning, Aug
21–24, Washington, DC, 2003.

45. A. Medina, I. Matta, and J. Byers. On the origin of power laws in Internet topologies.
In Conf. of the ACM Special Interest Group on Data Communications, Aug 28–Sep 1,
Stockholm, Sweden, pp. 18–34, 2000.

46. A. L. Montgomery and C. Faloutsos. Identifying Web browsing trends and patterns.
IEEE Computer, 34(7):94–95, 2001.

47. J. Moody. Race, school integration, and friendship segregation in America. American
Journal of Sociology, 107(3):679–716, 2001.

48. M. E. J. Newman, M. Girvan, and J. D. Farmer. Optimal design, robustness and risk
aversion. Physical Review Letters, 89(2), 028301 1–4, 2002.

49. M. E. J. Newman, S. H. Strogatz, and D. J. Watts. Random graphs with arbitrary degree
distributions and their applications. Physical Review E, 64, 026118 1–17, 2001.

50. C. R. Palmer, P. B. Gibbons, and C. Faloutsos. ANF: A fast and scalable tool for data
mining in massive graphs. In Knowledge Discovery & Datamining, Edmonton, AB,
Canada, July 23–26, 2002.

51. C. R. Palmer and J. Gregory Steffan. Generating network topologies that obey power
laws. In GLOBECOM, November, San Francisco, CA, 2000.

52. G. Pandurangan, P. Raghavan, and E. Upfal. Using PageRank to characterize Web struc-
ture. In International Computing and Combinatorics Conference, 330–339, Aug 15–17,
Singapore, 2002.

53. R. Pastor-Satorras and A. Vespignani. Epidemic spreading in scale-free networks. Phys-
ical Review Letters, 86(14):3200–3203, 2001.

54. D. M. Pennock, G. W. Flake, S. Lawrence, E. J. Glover, and C. Lee Giles. Winners
don’t take all: Characterizing the competition for links on the Web. Proceedings of the
National Academy of Sciences, 99(8):5207–5211, 2002.

55. D. S. De S. Price. A general theory of bibliometric and other cumulative advantage
processes. Journal of American Society of Information Science, 27:292–306, 1976.

56. S. Redner. How popular is your paper? An empirical study of the citation distribution.
European Physical Journal B, 4:131–134, 1998.

57. M. Richardson and P. Domingos. Mining knowledge-sharing sites for viral marketing.
In Knowledge Discovery & Datamining, pp. 61–70, Edmonton, Canada, 2002.

58. A. L. Rosenberg and L. S. Heath. Graph Separators, with Applications. Kluwer Aca-
demic/Plenum, London, 2001.

59. K. Schloegel, G. Karypis, and V. Kumar. Graph partitioning for high performance
scientific simulations. In CRPC Parallel Computing Handbook, Morgan Kaufmann, San
Francisco, CA, 2000.

60. M. F. Schwartz and D. C. M. Wood. Discovering shared interests using graph analysis.
Communications of the ACM, 40(3):78–89, 1993.

61. H. Simon. On a class of skew distribution functions. Biometrika, 42:425–440, 1955.

REFERENCES 95

62. H. Tangmunarunkit, R. Govindan, S. Jamin, S. Shenker, and W. Willinger. Network
topologies, power laws, and hierarchy. Technical Report 01-746, University of Southern
California, Los Angeles, 2001.

63. S. L. Tauro, C. Palmer, G. Siganos, and M. Faloutsos. A simple conceptual model for
the Internet topology. In Global Internet, San Antonio, Texas, 2001.

64. D. J. Watts. Six Degrees: The Science of a Connected Age. W. W. Norton, New York,
NY, 2003.

65. D. J. Watts and S. H. Strogatz. Collective dynamics of “small-world” networks. Nature,
393:440–442, 1998.

66. B. M. Waxman. Routing of multipoint connections. IEEE Journal on Selected Areas in
Communications, 6(9):1617–1622, December 1988.

67. J. Winick and S. Jamin. Inet-3.0: Internet Topology Generator. Technical Report CSE-
TR-456-02, University of Michigan, Ann Arbor, MI, 2002.

68. S.-H. Yook, H. Jeong, and A.-L. Barabási. Modeling the Internet’s large-scale topology.
Proceedings of the National Academy of Sciences, 99(21):13382–13386, 2002.

Part II

MINING TECHNIQUES

97

5

DISCOVERY OF FREQUENT
SUBSTRUCTURES

XIFENG YAN AND JIAWEI HAN
University of Illinois at Urbana-Champaign, Urbana-Champaign, Illinois

5.1 INTRODUCTION

Graphs become increasingly important in modeling complicated structures, such as
circuits, images, chemical compounds, protein structures, biological networks, the
Web, work flows, and XML documents. We have witnessed many graph-related
algorithms developed in chemical informatics [3, 4, 26, 27], computer vision [29],
video indexing [25], and text retrieval [19].

Among various kinds of graph patterns, frequent substructures are very basic
ones that can be discovered in a set of graphs. They are useful at characteriz-
ing graph sets, discriminating different groups of graphs, classifying and clustering
graphs, and building graph indices. Borgelt and Berthold [6] illustrated the discovery
of active chemical structures in a dataset that screened for the human immunodefi-
ciency virus (HIV) by contrasting the support of frequent graphs between different
classes. Deshpande et al. [8] used frequent structures as features to classify chemical
compounds. Huan et al. [13] successfully applied the frequent graph mining tech-
nique to study protein structural families. Frequent graph patterns were also used
as indexing features by Yan et al. [33] to perform fast graph search. Their method
outperforms the traditional path-based indexing approach significantly. Koyuturk
et al. [16] proposed a method to detect frequent subgraphs in biological networks.

Mining Graph Data, Edited by Diane J. Cook and Lawrence B. Holder
Copyright c© 2007 John Wiley & Sons, Inc.

99

100 DISCOVERY OF FREQUENT SUBSTRUCTURES

For example, they observed considerably large frequent subpathways in metabolic
networks.

The discovery of frequent substructures usually consists of two steps. In the
first step, it generates frequent substructure candidates while the frequency of each
candidate is checked in the second step. Most studies of frequent substructure dis-
covery focus on the first step since the second step involves subgraph isomorphism
that is NP-complete.

The initial frequent substructure mining algorithm, called AGM, was proposed
by Inokuchi et al. (see [15] and Chapter 9), which shares similar characteristics with
the Apriori-based itemset mining [1]. The Apriori property is also used by other fre-
quent substructure discovery algorithms such as FSG (see [17] and Chapter 6) and
the path-join algorithm [28]. All of them require a join operation to merge two (or
more) frequent substructures into one larger substructure candidate. They distinguish
themselves by using different building blocks: vertices, edges, and edge-disjoint
paths. In the context of frequent substructure mining, Apriori-based algorithms
have two kinds of considerable overheads: (1) joining two size-k frequent graphs
(or other structures like paths in [28]) to generate size-(k + 1) graph candidates,
and (2) checking the frequency of these candidates separately. These overheads
constitute the performance bottleneck of Apriori-based algorithms.

To avoid the overheads incurred in Apriori-based algorithms, non-Apriori-based
algorithms such as gSpan [30], MoFa [6], FFSM [14], SPIN [24], and Gaston [20]
have been developed recently. These algorithms are inspired by PrefixSpan [23],
TreeMinerV (see [35] and Chapter 15), and FREQT [2] at mining sequences and
trees, respectively. All of these algorithms adopt the pattern growth methodology
[10], which intends to extend patterns from a single pattern directly.

The Apriori-based approach has to use the breadth-first search (BFS) strategy
because of its level-wise candidate generation. To determine whether a size-(k + 1)

graph is frequent, it has to check all of its corresponding size-k subgraphs to obtain
an upper bound of its frequency. Thus, before mining any size-(k + 1) subgraph,
the Apriori-based approach usually has to complete the mining of size-k subgraphs.
Therefore, BFS is necessary in the Apriori-like approach. In contrast, the pattern
growth approach is more flexible on the search method. Both breadth-first search
and depth-first search (DFS) can work.

In this chapter, we will examine Apriori-based and pattern growth algorithms
to give an overview of frequent substructure discovery algorithms. The variants of
frequent substructures and their applications will be presented afterwards.

5.2 PRELIMINARY CONCEPTS

We denote the vertex set of a graph g by V (g) and the edge set by E(g). A label
function, L, maps a vertex or an edge to a label. A graph g is a subgraph of another
graph g′ if there exists a subgraph isomorphism from g to g′.

Definition 5.1 (Frequent Graph) Given a labeled graph dataset, D = {G1,

G2, . . . ,Gn}, support(g) [or frequency(g)] is the percentage (or number) of graphs

5.3 APRIORI-BASED APPROACH 101

S C C N

O

C C C

O

N

S

C S C

N

C

(g1) (g2) (g3)

Figure 5.1. Sample graph dataset.

C C O C C N

N

S

Frequency 2 Frequency 3

Figure 5.2. Frequent graphs.

in D where g is a subgraph. A graph is frequent if its support is no less than a
minimum support threshold, min support.

EXAMPLE 5.1 Figure 5.1 shows a sample chemical structure dataset. Fig-
ure 5.2 depicts two frequent subgraphs in this dataset if the minimum support is set
at 66.6%.

5.3 APRIORI-BASED APPROACH

The initial frequent substructure mining algorithm proposed by Inokuchi et al. [15]
shares similar characteristics with Apriori-based frequent itemset mining algorithms
developed by Agrawal and Srikant [1]. The frequent graphs having larger sizes are
searched in a bottom-up manner by generating candidates having an extra vertex,
edge, or path.

The general framework of Apriori-based methods is outlined in Algorithm 5.1.
Sk is the frequent substructure set of size k. We will clarify the definition of graph
size when the concrete mining algorithms are presented. Algorithm 5.1 adopts a
level-wise mining methodology. At each iteration, the size of newly discovered fre-
quent substructures is increased by one. These new substructures are first generated
by joining two similar but slightly different frequent subgraphs that are discovered
in the last call of Algorithm 5.1. This candidate generation procedure is shown on
line 4. The newly formed graphs are then checked for their frequency. The frequent
ones are detected and used to generate larger candidates in the next round.

The main design complexity of Apriori-based substructure mining algorithms is
the candidate generation step. The candidate generation for frequent itemset mining
is straightforward. For example, suppose we have two frequent itemsets of size 3:
(abc) and (bcd), the candidate frequent itemset of size 4 generated from these two
is (abcd). That is, after we find two itemsets (abc) and (bcd) are frequent, we
should check the frequency of (abcd). However, the candidate generation problem

102 DISCOVERY OF FREQUENT SUBSTRUCTURES

Algorithm 5.1 Apriori(D, min support, Sk)

Input: A graph dataset D and min support.
Output: A frequent substructure set Sk.

1: Sk+1 ← ∅;
2: for each frequent gi ∈ Sk do
3: for each frequent gj ∈ Sk do
4: for each size (k+ 1) graph g formed by the merge of

gi and gj do
5: if g is frequent in D and g �∈ Sk+1 then
6: insert g to Sk+1;
7: if sk+1 �= ∅ then
8: call Apriori(D, min support, Sk+1);
9: return;

in frequent substructure mining becomes much harder than the case in frequent
itemset mining since there are a lot of ways to join two substructures.

Researchers have proposed various kinds of candidate generation strategies.
AGM [15] proposed a vertex-based candidate generation method that increases the
substructure size by one vertex at each iteration of Algorithm 5.1. Two size-k fre-
quent graphs are joined only when the two graphs have the same size-(k − 1)

subgraph. Here the size of a graph means the number of vertices in a graph. The
newly formed candidate includes the common size-(k − 1) subgraph and the addi-
tional two vertices from the two size-k patterns. Since it is undetermined whether
there is an edge connecting the additional two vertices, we actually can form two
candidates. Figure 5.3 depicts the two substructures joined by two chains.

FSG proposed by Kuramochi and Karypis [17] adopts an edge-based method
that increases the substructure size by one edge in each call of Algorithm 5.1. In
FSG, two size-k patterns are merged if and only if they share the same subgraph
that has k − 1 edges, which is called the core. Here the size of a graph means the
number of edges in a graph. The newly formed candidate includes the core and the
additional two edges from the size-k patterns. Figure 5.4 shows potential candidates
formed by two structure patterns. Each candidate has one more edge than these
two patterns. This example illustrates the complexity of joining two structures to
form a large pattern candidate. In [17], Kuramochi and Karypis illustrate two other
candidate generation cases.

+

Figure 5.3. AGM [15].

5.4 PATTERN GROWTH APPROACH 103

+

Figure 5.4. FSG [17].

Other Apriori-based methods such as the disjoint-path method proposed by
Vanetik [28] use more complicated candidate generation procedures. For example,
in [28], graphs are classified by the number of disjoint paths they have. A substruc-
ture pattern with k + 1 disjoint paths is generated by joining substructures with k

disjoint paths.
Apriori-based algorithms have considerable overheads at joining two size-k

frequent substructures to generate size-(k + 1) graph candidates. To avoid such
overheads, non-Apriori-based algorithms have been developed recently, most of
which adopt the pattern growth methodology [10], which intends to extend patterns
from a single pattern directly. In the next section, we are going to introduce the
concept of a pattern growth approach.

5.4 PATTERN GROWTH APPROACH

A graph g can be extended by adding a new edge e. The newly formed graph
is denoted by g �x e. Edge e may or may not introduce a new vertex to g. If e

introduces a new vertex, we denote the new graph by g �xf e, otherwise, g �xb e,
where f or b indicates that the extension is in a forward or backward direction.

Algorithm 5.2 (PatternGrowth) illustrates a general framework of pattern
growth-based frequent substructure mining algorithm. For each discovered graph
g, it performs extensions recursively until all the frequent graphs with g embed-
ded are discovered. The recursion stops once no frequent graph can be generated
any more.

Algorithm 5.2 PatternGrowth(g, D, min support, S)

Input: A frequent graph g, a graph dataset D, and
min support.

Output: A frequent substructure set S.
1: if g ∈ S then return;
2: else insert g to S;
3: scan D once, find all the edges e such that g can be

extended to g �x e ;
4: for each frequent g �x e do
5: Call PatternGrowth(g �x e, D, min support, S);
6: return;

104 DISCOVERY OF FREQUENT SUBSTRUCTURES

Algorithm 5.2 is simple but not efficient. The bottleneck is at the inefficiency
of extending a graph. The same graph can be discovered many times. For example,
there may exist n different (n − 1)-edge graphs that can be extended to the same
n-edge graph. The repeated discovery of the same graph is computationally inef-
ficient. We call a graph that is discovered at the second time a duplicate graph.
Although line 1 of Algorithm 5.2 gets rid of duplicate graphs, the generation and
detection of duplicate graphs may cause additional workloads. To reduce the gener-
ation of duplicate graphs, each frequent graph should be extended as conservatively
as possible. This principle leads to the design of several new algorithms such as
gSpan [30], MoFa [6], FFSM [14], SPIN [24], and Gaston [20]. We take gSpan as
an example to illustrate the concept of a pattern-growth approach.

gSpan is designed to reduce the generation of duplicate graphs; it need not
search previous discovered frequent graphs for duplicate detection; and it does not
extend any duplicate graph but still guarantees the discovery of the complete set of
frequent graphs.

Depth-first search is adopted by gSpan to traverse graphs. Initially, a starting
vertex is randomly chosen, and the vertices in a graph are marked so that one can
tell which vertices are visited. The visited vertex set is expanded repeatedly until a
full DFS tree is built. One graph may have various DFS trees depending on how the
depth-first search is performed, that is, the vertex visiting order. The darkened edges
in Figures 5.5(b)–5.5(d) show three DFS trees for the same graph of Figure 5.5(a)
(the vertex labels are x, y, and z; the edge labels are a and b; the alphabetic order
is taken as the default order in the labels). When building a DFS tree, the visiting
sequence of vertices forms a linear order. We use subscripts to record this order,
where i < j means vi is visited before vj . T is named a DFS subscripting of G.

Given a DFS tree T , we call the starting vertex in T , v0, the root, and the
last visited vertex, vn, the rightmost vertex. The straight path from v0 to vn is
called the rightmost path. In Figures 5.5(b)–5.5(d), three different subscriptings are
generated based on the corresponding DFS trees. The rightmost path is (v0, v1, v3)

in Figures 5.5(b) and 5.5(c), and (v0, v1, v2, v3) in Figure 5.5(d).
PatternGrowth extends a frequent graph in every possible position, which may

generate a large number of duplicate graphs. In gSpan, we introduce a more sophis-
ticated extension method. The new method restricts the extension as follows: Given
a graph G and a DFS tree T in G, a new edge e can be added between the right-
most vertex and other vertices on the rightmost path (backward extension); or it
can introduce a new vertex and connect to vertices on the rightmost path (forward

X

a

b

b

(a)

a

v0

X

Z Y

X

a

b

b

(b)

a
X

Z Y

v1

v2 v3

X

a

a

b

(c)

X

Y Z

v1

v2 v3

v0 Y

b

b

a

(d)

a
X

X Z

v1

v2 v3

v0

b

Figure 5.5. DFS subscripting.

5.4 PATTERN GROWTH APPROACH 105

extension). Since both kinds of extensions take place on the rightmost path, we call
them rightmost extension, denoted by G �r e (for brevity, T is omitted here).

EXAMPLE 5.2 If we want to extend the graph in Figure 5.5(b), the backward
extension candidates can be (v3, v0). The forward extension candidates can be edges
extending from v3, v1, or v0 with a new vertex introduced.

Figures 5.6(b)–5.6(g) show all the potential rightmost extensions of
Figure 5.6(a) (the darkened vertices represent the rightmost path). Among them,
Figures 5.6(b)–5.6(d) grow from the rightmost vertex while Figures 5.6(e)–5.6(g)
grow from other vertices on the rightmost path. Figures 5.6(b.0)–5.6(b.4) are chil-
dren of Figure 5.6(b), and Figures 5.6(f.0)–5.6(f.3) are children of Figure 5.6(f).
In summary, backward extension only takes place on the rightmost vertex while
forward extension introduces a new edge from vertices on the rightmost path. This
restricted extension is similar to TreeMinerV’s equivalence class extension [35] and
FREQT’s rightmost expansion [2] in frequent tree discovery.

Since many DFS trees/subscriptings may exist for the same graph, we choose
one of them as the base subscripting and only conduct rightmost extensions on that
DFS tree/subscripting. Otherwise, rightmost extensions cannot reduce the generation
of duplicate graphs because we have to extend the same graph for every DFS
subscripting.

We transform each subscripted graph to an edge sequence, called DFS code,
so that we can build an order among these sequences. The goal is to select the
subscripting that generates the minimum sequence as its base subscripting. There
are two kinds of orders in this transformation process: (1) edge order, which maps
edges in a subscripted graph into a sequence; and (2) sequence order, which builds
an order among edge sequences, that is, graphs. In [31] Yan and Han illustrate how
to build an order among all of DFS codes, either from the same graph or from
different graphs. We are not going to elaborate the ordering technique. In summary,
one graph has at least one DFS code. Some graphs may have multiple DFS codes,
among which one code is minimum.

(a) (b) (c) (d) (f) (g)

(b.0) (b.1) (b.3) (b.4) (f.0) (f.1) (f.3)

(e)

(f.2)(b.2)

Figure 5.6. Rightmost extension.

106 DISCOVERY OF FREQUENT SUBSTRUCTURES

0-edge

...

s s'2-edge

1-edge

Pruned

n-edge

...

Figure 5.7. Lexicographic search tree.

Figure 5.7 shows how to arrange all DFS codes in a search tree through right-
most extensions. The root is an empty code. Each node is a DFS code encoding a
graph. Each edge represents a rightmost extension from a (k − 1)-length DFS code
to a k-length DFS code. The tree itself is ordered: Left siblings are smaller than right
siblings in the sense of DFS lexicographic order. Since any graph has at least one
DFS code, the search tree can enumerate all possible subgraphs in a graph dataset.
However, one graph may have several DFS codes, minimum and nonminimum. The
search of nonminimum DFS codes does not produce useful results. Is it necessary
to perform rightmost extensions on nonminimum DFS codes? The answer is “no.” If
codes s and s′ in Figure 5.7 encode the same graph and s′ is not a minimum code,
the search space under s′ can be safely pruned [31].

The details of gSpan are depicted in Algorithm 5.3. gSpan is called recursively
to extend a graph pattern until the support of the newly formed graph is lower
than min support or its code is not minimum any more. The difference between
gSpan and PatternGrowth is at the rightmost extension and extension termination
of nonminimum DFS codes (Algorithm 5.3 lines 1 and 2). We replace the existence
condition in Algorithm 5.2 lines 1 and 2 with the inequation s �= dfs(s). Actually,

Algorithm 5.3 gSpan(s, D, min support, S)

Input: A DFS code s, a graph dataset D, and min support.
Output: A frequent substructure set S.

1: if s �= dfs(s), then
2: return;
3: insert s into S;
4: set C to ∅;
5: scan D once, find all the edges e such that s can be

rightmost extended to s �r e; insert s �r e into C and
count its frequency;

6: sort C in DFS lexicographic order;
7: for each frequent s �r e in C do
8: Call gSpan(s �r e, D, min support, S);
9: return;

5.5 VARIANT SUBSTRUCTURE PATTERNS 107

s �= dfs(s) is more efficient to calculate. Line 5 requires exhaustive enumeration of
s in D in order to count the frequency of all the possible rightmost extensions of s.

Algorithm 5.3 implements a depth-first search version of gSpan. Actually,
breadth-first search works too: for each newly discovered frequent subgraph in
line 8, instead of directly calling gSpan, we insert it into a global FIFO queue Q,
which records all subgraphs that have not been extended. Then, we gSpan each sub-
graph in Q one by one. We implemented a breadth-first search version of gSpan.
Its performance is very close to that of the depth-first search one though the latter
usually consumes less memory.

5.5 VARIANT SUBSTRUCTURE PATTERNS

5.5.1 Closed Frequent Substructure

According to the Apriori property, all the subgraphs of a frequent substructure must
be frequent. A large graph pattern may generate an exponential number of frequent
subgraphs. For example, among 423 confirmed active chemical compounds in an
acquired immunodeficiency syndrome (AIDS) antiviral screen dataset, there are
nearly 1,000,000 frequent graph patterns whose support is at least 5%. This renders
the further analysis on frequent graphs nearly impossible.

The same issue also exists in frequent itemset mining and sequence mining. So
far, two solutions have been proposed. One is closed frequent pattern mining [7, 21,
22, 32, 36]. The other is maximal frequent pattern mining [5, 7, 9, 18]. A frequent
pattern is closed if and only if there does not exist a superpattern that has the same
support. A frequent pattern is maximal if and only if it does not have a frequent
superpattern.

EXAMPLE 5.3 The two graphs in Figure 5.2 are closed frequent graphs while
only the first graph is a maximal frequent graph. The second graph is not maximal
because it has a frequent supergraph.

Since the maximal pattern set is a subset of the closed pattern set, usually it is
more compact than the closed pattern set. However, it cannot reconstruct the whole
set of frequent patterns while the closed frequent pattern set can. The pruning tech-
niques developed in closed frequent pattern mining can also be applied to maximal
frequent pattern mining. For the AIDS antiviral dataset mentioned above, among the
one million frequent graphs, only about 2000 are closed frequent graphs. If further
analysis, such as classification or clustering, is performed on closed frequent graphs
instead of frequent graphs, it will achieve similar accuracy with less redundancy
and higher efficiency.

5.5.2 Approximate Substructure

An alternative way to reduce the number of patterns is to mine approximate frequent
substructures that allow minor structural variations. With this technique, one can

108 DISCOVERY OF FREQUENT SUBSTRUCTURES

represent several slightly different frequent substructures using one approximate
substructure.

Holder et al. (see [11] and Chapter 7) adopt the principle of minimum descrip-
tion length (MDL) in their substructure discovery system, called “SUBDUE,” for
mining approximate frequent substructures. It looks for a substructure pattern that
can best compress a graph set based on the MDL principle. SUBDUE adopts a con-
strained beam search method. It grows a single vertex incrementally by expanding
a node in it. At each expansion it searches for the best total description length:
the description length of a pattern and the description length of the graph set with
all the instances of the pattern condensed into single nodes. SUBDUE performs
approximate matching to allow slight variations of substructures, thus supporting
the discovery of approximate substructures.

5.5.3 Contrast Substructure

Between two predefined sets of graphs, contrast patterns are substructures that are
frequent in one set but infrequent in the other. The search of contrast patterns
requires two parameters: the minimum support of a substructure in the positive
set and the maximum support in the negative set. Borgelt and Berthold discussed
the mining of contrast substructures using their MoFa algorithm [6]. The mining
is carried using a pattern growth approach. The pruning is done on the search of
substructures in the positive set while the maximum support in the negative set is
used to filter out unqualified substructures.

5.5.4 Coherent Substructure

A frequent substructure G is a coherent subgraph if the mutual information between
G and each of its subgraphs is above some threshold. The number of coherent sub-
structures is significantly smaller than that of frequent substructures. Thus, mining
coherent substructures can efficiently prune redundant patterns—the patterns that are
similar to each other and have the similar supports. Furthermore, as demonstrated by
Huan et al. [13] in mining spatial motifs from protein structure graphs, the discov-
ered coherent substructures are usually statistically significant. Their experimental
study shows that coherent substructure mining selects a small subset of features that
have high distinguishing power between protein classes.

5.5.5 Discriminative Frequent Substructure

Given a graph query, it is desirable to retrieve graphs quickly from a large graph
database via graph-based indices. Yan et al. [33] developed a frequent substructure-
based graph index method, called gIndex, that is significantly different from the
existing path-based methods. Frequent substructures are ideal candidates since they
explore the shared structures in the data and are relatively stable to database updates.
To reduce the index size, that is, the number of frequent substructures that are
used in the indices, a new concept called discriminative frequent substructure is

5.6 EXPERIMENTS AND PERFORMANCE STUDY 109

introduced in [33]. A frequent substructure is discriminative if its support cannot be
approximated well by its subgraphs that are being indexed. For the AIDS antiviral
dataset we tested, the index built on discriminative frequent substructures is 10
times smaller but achieves similar performance in comparison with the index built
on frequent substructures directly.

5.5.6 Dense Substructure

There exists a specific kind of graph structure, called relational graph, where each
node label is used only once per graph. Relational graphs are widely used in mod-
eling and analyzing massive networks, for example, biological networks, social
networks, transportation networks, and the World Wide Web. In biological networks,
nodes represent objects like genes, proteins, and enzymes, whereas edges encode
the relationships, such as control, reaction, and correlation between these objects.
In social networks, each node represents a unique entity, and an edge describes a
kind of relationship between entities. One particular interesting patterns are frequent
highly connected or dense subgraphs in large relational graphs. In social networks,
this kind of pattern can help identify groups where people are strongly associated.
In computational biology, a highly connected subgraph could represent a set of
genes within the same functional module, that is, a set of genes participating in the
same biological pathways. We define the connectivity by the minimum cut size for
a given graph. In [34], Yan et al. proposed two algorithms, CloseCut and Splat, to
discover exact dense frequent substructures in a set of relational graphs. Hu et al.
[12] developed an algorithm called CoDense to find dense subgraphs across multiple
biological networks.

5.6 EXPERIMENTS AND PERFORMANCE STUDY

In this section, we compare the performance between Apriori-based and pattern
growth based methods. The real dataset used in the experiments is an AIDS antiviral
screen chemical compound dataset1. The synthetic data generator is provided by
Kuramochi and Karypis [17].

The AIDS antiviral screen compound dataset from Developmental Therapeutics
Program in NCI/NIH is available publicly. We select the most up-to-date release,
March 2002 Release. The dataset contains 43,905 chemical compounds. The screen-
ing tests categorized the compounds into three classes: CA (confirmed active), CM
(confirmed moderately active), and CI (confirmed inactive). Among these 43,905
compounds, 423 of them belong to CA, 1083 are of CM, and the remainings are in
class CI.

All the experiments are done on a 1.7-GHz Intel Pentium-4 PC with 1 GB
main memory, running RedHat 7.3. In each experiment, we show the performance
of an Apriori-based approach, a revised version of FSG, and a pattern growth based

1http://dtp.nci.nih.gov/docs/aids/aids data.html.

110 DISCOVERY OF FREQUENT SUBSTRUCTURES

approach, gSpan. We also depict the performance of a closed frequent graph mining
algorithm, CloseGraph.

We run these three algorithms to find frequent structures in class CA and CM
compounds. All the hydrogens in these compounds are removed. The most popular
atoms in these two datasets are C, O, N, and S. There are 21 kinds of atoms in class
CA compounds, whereas 25 kinds can be found in class CM. Three kinds of bonds
are popular in these compounds: single bond, double bond, and aromatic bond. On
average, each compound in class CA has 40 vertices and 42 edges. The maximum
one has 188 vertices and 196 edges. Each compound in class CM has 32 vertices
and 34 edges on average. The maximum one has 221 vertices and 234 edges.

Figure 5.8(a) shows the runtime with min support varying from 5 to 10%.
Figure 5.8(b) shows the memory consumption of these three algorithms. CloseGraph
and gSpan consume less main memory than FSG. The reduction is between 1 and 2
orders of magnitude. The number of frequent graphs and frequent closed graphs is
shown in Figure 5.8(c). CloseGraph generates fewer patterns than gSpan and FSG.
The ratio between the number of frequent graphs and closed ones is close to 100 : 1.
It demonstrates that closed graph mining can deliver compact mining results.

Figure 5.9 shows the largest graph patterns we discovered in three different
minimum support thresholds: 20% in Figure 5.9(a) (14 edges), 10% in Figure 5.9(b)
(21 edges), and 5% in Figure 5.9(c) (42 edges). The second structure in Figure 5.9

0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11

10
1

10
2

10
3

Minimum Support

R
un

tim
e

(s
)

FSG
gSpan
CloseGraph

(a)

0.04 0.05 0.06 0.07 0.08 0.09 0.1

10
1

10
2

10
3

Minimum Support

M
em

or
y

(M
)

FSG
gSpan
CloseGraph

(b)

0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11
10

2

10
3

10
4

10
5

10
6

10
7

Minimum Support

N
um

be
r

of
 P

at
te

rn
s

Frequent Graphs
Closed Frequent Graphs

(c)

Figure 5.8. Mining patterns in class CA compounds: (a) runtime, (b) memory, and (c) number

of patterns.

OH

ON

O

N

(a)

OHO

N

N+

NH

N

O

N

HO

(b)

N

N

S

OH

S

HO
O

O

N

N

O

O

(c)

Figure 5.9. Discovered patterns in class CA: (a) 20%, (b) 10%, and (c) 5%.

5.6 EXPERIMENTS AND PERFORMANCE STUDY 111

is a compound of class azido pyrimidines, a known inhibitor of HIV-1, as reported
by Borgelt and Berthold [6].

Next, we conduct experiments on class CM compounds. Figure 5.10 shows the
performance and the number of discovered patterns. The ratio between frequent
graphs and closed ones is around 10 : 1. The largest pattern with 5% support has
23 edges. That means the compounds in class CA share a small group of larger
chemical fragments whereas the compounds in class CM are very diverse. This
explains why CloseGraph does not achieve a similar speedup in this dataset.

We then test these algorithms on a series of synthetic graph datasets. Table 5.1
shows the major parameters and their meanings, as described in [17]. The synthetic
data generator works as follows: First, it generates a set of L potential frequent
graphs as seeds. They have I edges on average. Then, it randomly picks several
seeds and merges them (overlaps these seeds as much as possible) to construct a
new graph in the dataset. A user can set parameters to decide the number of graphs
(D) wanted and their average size (T). For example, we may have the following
setting in a synthetic dataset: It has 10,000 graphs, each graph has 20 edges on
average, each potential frequent graph has 10 edges on average, and there are in
total 200 potential frequent graphs and 40 available labels. We denote this dataset
by D10kN40I10T 20L200.

Figure 5.11 shows the runtime and the mining result for dataset
D10kN40I12T20. The synthetic graphs have 27 edges and 16 vertices on average.
Compared with the real dataset, CloseGraph has a similar performance gain in this

0.020.030.040.050.060.070.080.09 0.1 0.11
10

0

10
1

10
2

10
3

10
4

Minimum Support

R
un

tim
e

(s
)

FSG
gSpan
CloseGraph

(a)

0.020.030.040.050.060.070.080.09 0.1 0.11
10

0

10
1

10
2

10
3

10
4

Minimum Support

M
em

or
y

(M
)

FSG
gSpan
CloseGraph

(b)

0.020.030.040.050.060.070.080.09 0.1 0.11
10

2

10
3

10
4

10
5

10
6

Minimum Support

N
um

be
r

of
 P

at
te

rn
s

Frequent Graphs
Closed Frequent Graphs

(c)

Figure 5.10. Mining patterns in class CM compounds: (a) performance, (b) memory, and

(c) number of patterns.

TABLE 5.1 Parameters of Synthetic Graph Generator

Notation Description

D Total number of graphs in a dataset
N Number of possible labels
T Average size of graphs in terms of edges
I Average size of potentially frequent graphs
L Number of potentially frequent graphs

112 DISCOVERY OF FREQUENT SUBSTRUCTURES

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
10

1

10
2

10
3

Minimum Support

R
un

tim
e

(s
)

FSG
gSpan
CloseGraph

(a)

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
10

1

10
2

10
3

Minimum Support

M
em

or
y

(M
)

FSG
gSpan
CloseGraph

(b)

0 0.02 0.04 0.06 0.08
10

0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Minimum Support

N
um

be
r

of
 P

at
te

rn
s

(x
1k

)

Frequent Graphs
Closed Frequent Graphs

(c)

Figure 5.11. Varying support for D10kN40I12T20L200: (a) performance, (b) memory, and

(c) number of patterns.

7 8 9 10 11 12 13 14 15

10
2

10
3

10
4

Average Size of Seeds (Edges)

R
un

tim
e

(s
)

FSG
gSpan
CloseGraph

(a)

20 25 30 35 40

10
2

10
3

Average Size of Graphs (Edges)

R
un

tim
e

(s
)

FSG
gSpan
CloseGraph

(b)

Figure 5.12. Performance vs. varying parameters: (a) D10kN40I?T20L200: 1% and

(b) D10kN40I12T?L200: 2%.

synthetic dataset. The revised version of FSG now works well when the min support
is above 1%. At 1% min support, we aborted computation because FSG exhausted
the main memory, which is around 1 GB.

We then test the performance by changing some major parameters in the syn-
thetic data. Two parameters in Table 5.1 are selected: One is the average size of
potentially frequent graphs (seeds), and the other is the average size of graphs in
the dataset. For each experiment, only one parameter varies. Figure 5.12 shows the
experimental results, where FSG was aborted when I ≥ 12 or T ≥ 40 because it
used up the 1-GB main memory.

5.7 CONCLUSIONS

Discovery of frequent substructures is one of the fundamental tasks in structured
data mining since the discovered patterns can be used for characterizing structure

REFERENCES 113

datasets, classifying and clustering complex structures, building graph indices, and
performing similarity search in large graph databases.

In this chapter, we overview the methodologies for efficient mining of frequent
substructures and present a pattern growth approach for frequent substructure min-
ing. Our experimental study on two typical such methods, gSpan and CloseGraph,
demonstrates the efficiency and scalability of the pattern growth approach. More-
over, we discussed methods for discovery of variant substructure patterns, including
closed frequent substructure, approximate substructure, contrast substructure, coher-
ent substructure, discriminative frequent substructure, and dense substructure.

There are still many interesting issues to be further studied in graph and com-
plex structured data mining, including mining of frequent subgraphs in a large single
graph (such as Web or large social network), further development of graph classifica-
tion, clustering and multidimensional analysis methods based on the mined patterns,
and mining of the interactions among multiple social and biological networks.

REFERENCES

1. R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In Proceedings
of 1994 International Conference Very Large Data Bases (VLDB’94), pp. 487–499,
Santiago, Chile, Sept. 1994.

2. T. Asai, K. Abe, S. Kawasoe, H. Arimura, H. Satamoto, and S. Arikawa. Efficient sub-
structure discovery from large semi-structured data. In Proceedings of 2002 SIAM
International Conference Data Mining (SDM’02), Arlington, VA, April 2002.

3. R. Attias and J. E. Dubois. Substructure systems: Concepts and classifications. Journal
of Chemical Information and Computer Sciences, 30:2–7, 1990.

4. D. M. Bayada, R. W. Simpson, and A. P. Johnson. An algorithm for the multiple
common subgraph problem. Journal of Chemical Information and Computer Sciences,
32:680–685, 1992.

5. R. J. Bayardo. Efficiently mining long patterns from databases. In Proceedings of
1998 ACM-SIGMOD International Conference on Management of Data (SIGMOD’98),
pp. 85–93, Seattle, WA, June 1998.

6. C. Borgelt and M. R. Berthold. Mining molecular fragments: Finding relevant substruc-
tures of molecules. In Proceedings of 2002 International Conference on Data Mining
(ICDM’02), pp. 211–218, Maebashi, Japan, Dec. 2002.

7. D. Burdick, M. Calimlim, and J. Gehrke. MAFIA: A maximal frequent itemset algorithm
for transactional databases. In Proceedings of 2001 International Conference on Data
Engineering (ICDE’01), pp. 443–452, Heidelberg, Germany, April 2001.

8. M. Deshpande, M. Kuramochi, and G. Karypis. Automated approaches for classify-
ing structures. In Proceedings of 2002 Workshop on Data Mining in Bioinformatics
(BIOKDD’02), Edmonton, Canada, July 2002.

9. K. Gouda and M. J. Zaki. Efficiently mining maximal frequent itemsets. In Proceedings
of 2001 International Conference on Data Mining (ICDM’01), pp. 163–170, San Jose,
CA, Nov. 2001.

10. J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation. In
Proceedings of 2000 ACM-SIGMOD International Conference on Management of Data
(SIGMOD’00), pp. 1–12, Dallas, TX, May 2000.

114 DISCOVERY OF FREQUENT SUBSTRUCTURES

11. L. B. Holder, D. J. Cook, and S. Djoko. Substructure discovery in the subdue system.
In Proceedings of AAAI’94 Workshop Knowledge Discovery in Databases (KDD’94),
pp. 169–180, Seattle, WA, July 1994.

12. H. Hu, X. Yan, H. Yu, J. Han, and X. J. Zhou. Mining coherent dense subgraphs
across massive biological networks for functional discovery. In Proceedings of 2005
International Conference on Intelligent Systems for Molecular Biology (ISMB’05),
pp. 213–221, Ann Arbor, MI, June 2005.

13. J. Huan, W. Wang, D. Bandyopadhyay, J. Snoeyink, J. Prins, and A. Tropsha. Mining
spatial motifs from protein structure graphs. In Proceedings of 8th International Confer-
ence on Research in Computational Molecular Biology (RECOMB), pp. 308–315, San
Diego, CA, March 2004.

14. J. Huan, W. Wang, and J. Prins. Efficient mining of frequent subgraph in the pres-
ence of isomorphism. In Proceedings of 2003 International Conference on Data Mining
(ICDM’03), pp. 549–552, Melbourne, FL, Nov. 2003.

15. A. Inokuchi, T. Washio, and H. Motoda. An apriori-based algorithm for mining frequent
substructures from graph data. In Proceedings of 2000 European Symposium Principle
of Data Mining and Knowledge Discovery (PKDD’00), pp. 13–23, Lyon, France, Sept.
2000.

16. M. Koyuturk, A. Grama, and W. Szpankowski. An efficient algorithm for detecting
frequent subgraphs in biological networks. Bioinformatics, 20:I200–I207, 2004.

17. M. Kuramochi and G. Karypis. Frequent subgraph discovery. In Proceedings of 2001
International Conference on Data Mining (ICDM’01), pp. 313–320, San Jose, CA, Nov.
2001.

18. D. Lin and Z. Kedem. Pincer-search: A new algorithm for discovering the maximum
frequent set. In Proceedings of 1998 International Conference on Extending Database
Technology (EDBT’98), pp. 105–119, Valencia, Spain, Mar. 1998.

19. B. Liu, G. Cong, L. Yi, and K. Wang. Discovering frequent substructures from hierar-
chical semi-structured data. In Proceedings of 2002 SIAM International Conference on
Data Mining (SDM’02), Arlington, VA, April 2002.

20. S. Nijssen and J. Kok. A quickstart in frequent structure mining can make a difference. In
Proceedings of 2004 ACM SIGKDD International Conference on Knowledge Discovery
in Databases (KDD’04), pp. 647–652, Seattle, WA, Aug. 2004.

21. N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discovering frequent closed itemsets
for association rules. In Proceedings of 7th International Conference on Database Theory
(ICDT’99), pp. 398–416, Jerusalem, Israel, Jan. 1999.

22. J. Pei, J. Han, and R. Mao. CLOSET: An efficient algorithm for mining frequent closed
itemsets. In Proceedings of 2000 ACM-SIGMOD International Workshop Data Mining
and Knowledge Discovery (DMKD’00), pp. 11–20, Dallas, TX, May 2000.

23. J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal, and M.-C. Hsu. PrefixS-
pan: Mining sequential patterns efficiently by prefix-projected pattern growth. In Proceed-
ings of 2001 International Conference on Data Engineering (ICDE’01), pp. 215–224,
Heidelberg, Germany, April 2001.

24. J. Prins, J. Yang, J. Huan, and W. Wang. Spin: Mining maximal frequent subgraphs from
graph databases. In Proceedings of 2004 ACM SIGKDD International Conference on
Knowledge Discovery in Databases (KDD’04), pp. 581–586, Seattle, WA, Aug. 2004.

25. K. Shearer, H. Bunke, and S. Venkatesh. Video indexing and similarity retrieval
by largest common subgraph detection using decision trees. Pattern Recognition,
34:1075–1091, 2001.

REFERENCES 115

26. S. Su, D. J. Cook, and L. B. Holder. Knowledge discovery in molecular biology: Iden-
tifying structural regularities in proteins. Intelligent Data Analysis, 3:413–436, 1999.

27. Y. Takahashi, Y. Satoh, and S. Sasaki. Recognition of largest common fragment among
a variety of chemical structures. Analytical Sciences, 3:23–28, 1987.

28. N. Vanetik, E. Gudes, and S. E. Shimony. Computing frequent graph patterns from
semistructured data. In Proceedings of 2002 International Conference on Data Mining
(ICDM’02), pp. 458–465, Maebashi, Japan, Dec. 2002.

29. E. K. Wong. Model matching in robot vision by subgraph isomorphism. Pattern Recog-
nition, 25:287–304, 1992.

30. X. Yan and J. Han. gSpan: Graph-based substructure pattern mining. In Proceedings
of 2002 International Conference on Data Mining (ICDM’02), pp. 721–724, Maebashi,
Japan, Dec. 2002.

31. X. Yan and J. Han. CloseGraph: Mining closed frequent graph patterns. In Proceedings
of 2003 ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD’03), pp. 286–295, Washington, D.C., Aug. 2003.

32. X. Yan, J. Han, and R. Afshar. CloSpan: Mining closed sequential patterns in large
datasets. In Proceedings of 2003 SIAM International Conference on Data Mining
(SDM’03), pp. 166–177, San Fransisco, CA, May 2003.

33. X. Yan, P. S. Yu, and J. Han. Graph indexing: A frequent structure-based approach. In
Proceedings of 2004 ACM-SIGMOD International Conference on Management of Data
(SIGMOD’04), pp. 335–346, Paris, France, June 2004.

34. X. Yan, X. J. Zhou, and J. Han. Mining closed relational graphs with connectivity con-
straints. In Proceedings of 2005 ACM SIGKDD International Conference on Knowledge
Discovery in Databases (KDD’05), pp. 324–333, Chicago, IL, Aug. 2005.

35. M. J. Zaki. Efficiently mining frequent trees in a forest. In Proceedings of 2002 ACM
SIGKDD International Conference on Knowledge Discovery in Databases (KDD’02),
pp. 71–80, Edmonton, Canada, July 2002.

36. M. J. Zaki and C. J. Hsiao. CHARM: An efficient algorithm for closed itemset mining.
In Proceedings of 2002 SIAM International Conference on Data Mining (SDM’02),
pp. 457–473, Arlington, VA, April 2002.

6
FINDING TOPOLOGICAL

FREQUENT PATTERNS FROM
GRAPH DATASETS

MICHIHIRO KURAMOCHI AND GEORGE KARYPIS
Department of Computer Science & Engineering

University of Minnesota

6.1 INTRODUCTION

Efficient algorithms for finding frequent patterns—both sequential and nonsequen-
tial—in very large datasets have been one of the key success stories of data mining
research [1, 2, 26, 54, 60, 69]. Nevertheless, as data mining techniques have been
increasingly applied to nontraditional domains, there is a need to develop efficient
and general-purpose frequent pattern discovery algorithms that are capable of cap-
turing the spatial, topological, geometric, and/or relational nature of the datasets
that characterize these domains. In many application domains, there exist datasets
that possess inherently structural or relational characteristics, which are suitable for
graph-based representations, and can greatly benefit from graph-based data min-
ing algorithms [e.g., network topology, very large scale integration (VLSI) circuit
design, protein–protein interactions, biological pathways, Web graph, etc.].

The power of graphs to model complex datasets has been recognized by various
researchers [4, 9, 13, 18, 24, 31, 38, 46, 55, 62, 66] as it allows us to represent
arbitrary relations among entities and solve problems that we could not previously
solve. One way of formulating the frequent pattern discovery problem for graph
datasets is that of discovering subgraphs occurring frequently in the given input
graph dataset. For instance, consider the problem of mining chemical compounds

Mining Graph Data, Edited by Diane J. Cook and Lawrence B. Holder
Copyright c© 2007 John Wiley & Sons, Inc.

117

118 FINDING TOPOLOGICAL FREQUENT PATTERNS FROM GRAPH DATASETS

to find recurrent substructures. We can achieve that using a graph-based pattern dis-
covery algorithm by creating a graph for each one of the compounds whose vertices
correspond to different atoms, and whose edges correspond to bonds between them.
We can assign to each vertex a label corresponding to the atom involved (and poten-
tially its charge) and assign to each edge a label corresponding to the type of the
bond [and potentially information about their relative three-dimensional (3D) orien-
tation]. Once these graphs have been created, recurrent substructures across different
compounds become frequently occurring subgraphs. In fact, within the context of
chemical compound classification, such techniques have been used to mine chemical
compounds and identify the substructures that best discriminate between the differ-
ent classes [8, 14, 40, 61], and were shown to produce superior classifiers than more
traditional methods [27].

In this chapter we focus on the problem of finding frequently occurring topo-
logical subgraphs. We explore various ways of formally defining the problems that
are suited for different types of graphs and applications and have varying complex-
ity–completeness trade-offs. Our exposition of the rather large problem formulation
space is followed by a description of a number of illustrative algorithms developed
by our group for finding such subgraphs and a brief survey of the related research
in this field.

6.2 BACKGROUND DEFINITIONS AND NOTATION

A graph G = (V, E) is made of two sets, the set of vertices V and the set of edges
E. Each edge itself is a pair of vertices, and throughout this chapter we assume
that the graph is undirected, that is, each edge is an unordered pair of vertices.
Furthermore, we will assume that the graph is labeled. That is, each vertex and
edge has a label associated with it that is drawn from a predefined set of vertex
labels (LV) and edge labels (LE). Each vertex (or edge) of the graph is not required
to have a unique label, and the same label can be assigned to many vertices (or
edges) in the same graph.

Given a graph G = (V, E), a graph Gs = (Vs, Es) will be a subgraph of G

if and only if Vs ⊆ V and Es ⊆ E, and it will be an induced subgraph of G if
Vs ⊆ V and Es contains all the edges of E that connect vertices in Vs . A graph is
connected if there is a path between every pair of vertices in the graph. Two graphs
G1 = (V1, E1) and G2 = (V2, E2) are isomorphic if they are topologically identical
to each other, that is, there is a mapping from V1 to V2 such that each edge in E1

is mapped to a single edge in E2 and vice versa. In the case of labeled graphs, this
mapping must also preserve the labels on the vertices and edges. An automorphism
is an isomorphism mapping where G1 = G2. Given two graphs G1 = (V1, E1) and
G2 = (V2, E2), the problem of subgraph isomorphism is to find an isomorphism
between G2 and a subgraph of G1, that is, to determine whether or not G2 is
included in G1. The canonical label of a graph G = (V, E), cl(G), is defined to
be a unique code (i.e., a sequence of bits, a string, or a sequence of numbers) that
is invariant on the ordering of the vertices and edges in the graph [20]. As a result,
two graphs will have the same canonical label if they are isomorphic. Examples of

6.2 BACKGROUND DEFINITIONS AND NOTATION 119

TABLE 6.1 Notation Used Throughout Chapter

Notation Description

k subgraph A connected subgraph with k edges (also written as a size-k
subgraph)

Gk,Hk (Sub)graphs of size k

E(G) Edges of a (sub)graph G

V (G) Vertices of a (sub)graph G

cl(G) A canonical label of a graph G

a, b, c, e, f edges
u, v Vertices
d(v) Degree of a vertex v

l(v) The label of a vertex v

l(e) The label of an edge e

H = G − e H is a graph obtained by the deletion of edge e ∈ E(G)

D A dataset of graph transactions
{D1,D2, . . . ,DN } Disjoint N partitions of D (for i and j , i �= j , Di ∩ Dj = ∅ and⋃

i Di = D)
T A graph transaction
G A single input graph
C A candidate subgraph
Ck A set of candidates with k edges
C A set of all candidates
F A frequent subgraph
Fk A set of frequent k subgraphs
F A set of all frequent subgraphs
k∗ The size of the largest frequent subgraph in D
LE A set of all edge labels in D
LV A set of all vertex labels in D

different canonical label codes and details on how they are computed are presented
in Section 6.2.1. Both canonical labeling and determining graph isomorphism are
not known to be either in P or NP-complete [20].

The size of a graph G = (V, E) is the number of edges (|E|). Given a size-k
connected graph G = (V, E), by adding an edge we will refer to the operation in
which an edge e = (u, v) is added to the graph so that the resulting size-(k + 1)

graph remains connected. Similarly, by deleting an edge we refer to the operation
in which e = (u, v) such that e ∈ E is deleted from the graph and the resulting
size-(k − 1) graph remains connected. Note that depending on the particular choice
of e, the deletion of the edge may result in deleting at most one of its incident
vertices if that vertex has only e as its incident edge. Finally, the notation that we
will be using throughout the chapter is shown in Table 6.1.

6.2.1 Canonical Labeling

One of the key operations required by any frequent subgraph discovery algorithm
is a mechanism by which to check whether two subgraphs are identical or not.

120 FINDING TOPOLOGICAL FREQUENT PATTERNS FROM GRAPH DATASETS

v2

v0 v1

x y

za

a

a

(a) G3

a

a

a

a a a

z

z

y

y

x

x

(b)

v0

v1

v2

v2v1v0

code = aaa zxy

a

a

a

a a a

y

y

x

z

z

x

(c)

v0

v1

v2

v2v0v1

code = aaa zyx

Figure 6.1. Simple examples of codes and canonical adjacency matrices.

One way of performing this check is to perform a graph isomorphism operation.
However, in cases in which many such checks are required among the same set of
subgraphs, a better way of performing this task is to assign to each graph a unique
code (i.e., a sequence of bits, a string, or a sequence of numbers) that is invariant
on the ordering of the vertices and edges in the graph. Such a code is referred
to as the canonical label of a graph G = (V, E) [20, 56], and we will denote it
by cl(G). By using canonical labels, we can check whether or not two graphs are
identical by checking to see whether they have identical canonical labels. Moreover,
by comparing the canonical labels we can obtain a complete ordering of a set of
graphs in a unique and deterministic way, regardless of the original vertex and edge
ordering.

A simple way of defining the canonical label of an unlabeled graph is to use
the string obtained by concatenating the upper triangular elements1 of the graph’s
adjacency matrix when this matrix has been symmetrically permuted such that this
string becomes the lexicographically largest (or smallest) among the strings obtained
from all such permutations. This is illustrated in Figure 6.1 that shows a graph G3

and the permutation of its adjacency matrix2 that leads to its canonical label aaazyx.
In this code, aaa was obtained by concatenating the vertex labels in the order that
they appear in the adjacency matrix and zyx was obtained by concatenating the
columns of the upper triangular portion of the matrix. Note that any other permuta-
tion of G3’s adjacency matrix will lead to a code that is lexicographically smaller
(or equal) to aaazyx. If a graph has |V | vertices, the complexity of determining
its canonical label using this scheme is in O(|V |!), making it impractical even for
moderate size graphs. Note that the problem of determining the canonical label of
a graph is equivalent to determining isomorphism between graphs, because if two
graphs are isomorphic with each other, their canonical labels must be identical. Both
canonical labeling and determining graph isomorphism are not known to be either
in P or NP-complete [20].

In practice, the complexity of finding a canonical labeling of a graph can be
reduced by using various heuristics to narrow down the search space or by using
alternate canonical label definitions that take advantage of special properties that
may exist in a particular set of graphs [20, 48, 49]. As part of our earlier research

1For a directed graph, the string obtained by using all the elements in the adjacency matrix can be used,
instead of the elements in the upper triangle.
2The symbol vi in the figure is a vertex ID, not a vertex label, and blank elements in the adjacency
matrix means there is no edge between the corresponding pair of vertices.

6.2 BACKGROUND DEFINITIONS AND NOTATION 121

we have developed such a canonical labeling algorithm that fully makes use of
edge and vertex labels for fast processing and various vertex invariants to reduce
the complexity of determining the canonical label of a graph [41, 42]. Our algorithm
can compute the canonical label of graphs containing up to 50 vertices extremely
fast and will be the algorithm used to compute the canonical labels of the different
subgraphs in this chapter.

6.2.2 Maximum Independent Set

Some of our frequent subgraph discovery algorithms that will be discussed later
in this chapter focus on finding subgraphs whose embeddings are edge-disjoint.
A critical step in obtaining this set of edge-disjoint embeddings for a particular
subgraph is to find the maximum independent set of its overlap graph. Given a graph
G = (V, E), a subset of vertices I ⊂ V is called independent if no two vertices
in I are connected by an edge in E. An independent set I is called a maximal
independent set if for every vertex v in I there is an edge in E that connects v to
a vertex in V \ I . A maximal independent set I is called the maximum independent
set (MIS) if I contains as many vertices of V as possible.

The problem of finding the MIS of a graph was among the first problems proved
to be NP-complete [21] and remains so even for bounded degree graphs. Moreover,
it has been shown that the size of MIS cannot be approximated even within a factor
of n1−o(1) in polynomial time [19]. However, the importance of the problem and
its applicability to a wide range of domains has attracted a considerable amount
of research. This research has been focused on developing both faster exact algo-
rithms as well as approximate algorithms. The fastest exact algorithm to date is the
algorithm by Robson [57] that solves the MIS problem in time O(1.211n), making
it possible to solve in reasonable amount of time problem instances containing up
to around 100 vertices. In this thesis, we used a fast implementation of the exact
maximum clique (MC) problem solver wclique [51] instead of those fast exact MIS
algorithms. Because the MIS problem on a graph G is equivalent to the MC prob-
lem on G’s complement graph G, we can use wclique as a fast exact MIS (EMIS)
algorithm. Heuristic algorithms focus on finding maximal independent sets whose
size is bounded in terms of the size of the optimal solution, and a number of such
methods have been developed [6, 25, 29, 39].

One of the most widely used heuristics is the greedy algorithm (GMIS), which
selects a vertex of the minimum degree, deletes that vertex and all of its neighbors
from the graph, and repeats this process until the graph becomes empty. A recent
detailed analysis of the GMIS algorithm has shown that it produces reasonably good
approximations of the MIS for bounded and low-degree graphs [25]. In particular,
for a graph G with a maximum degree � and an average degree d , the size |I | of
the MIS satisfies the following:

|I | ≤ min

(
� + 2

3
|GMIS(G)|, d + 2

2
|GMIS(G)|

)
(6.1)

where |GMIS(G)| is the size of the approximate MIS found by the GMIS algorithm.

122 FINDING TOPOLOGICAL FREQUENT PATTERNS FROM GRAPH DATASETS

6.3 FREQUENT PATTERN DISCOVERY FROM GRAPH
DATASETS—PROBLEM DEFINITIONS

There are three key axes regarding the problem definitions, and depending on the
combinations of the axes, different problems may exist. Those axes are the type of
graphs that these algorithms operate on, the type of subgraphs that we would like
to find, and whether or not we want to find the complete set of patterns or just a
subset of them.

There are two distinct forms of the input to a frequent subgraph discovery
algorithm, which are referred to as the graph-transaction setting and the single-
graph setting. In the graph-transaction setting, the input to a pattern mining algorithm
is a set of relatively small graphs (called transactions), whereas in the single-graph
setting the input data is a single large graph. The difference affects the way the
frequency of the various patterns is determined. For the graph-transaction setting,
the frequency of a pattern is determined by the number of graph transactions that
the pattern occurs in, irrespective of how many times a pattern occurs in a particular
transaction, whereas in the single-graph setting the frequency of a pattern is based
on the number of its occurrences (i.e., embeddings) in the single graph. Due to the
inherent differences of the characteristics of the underlying dataset and the problem
formulation, algorithms developed for the graph-transaction setting cannot be used
to solve the single-graph setting, whereas the latter algorithms can be easily adapted
to solve the former problem.

There are a number of different ways of defining the types of subgraphs that
we would like to discover. These definitions themselves are primarily divided along
three dimensions. The first has to do with the topology of the subgraph itself and
deals with patterns of specified topology. Examples include arbitrary subgraphs,
induced subgraphs, trees, and paths. The second dimension has to do with their
relation within the context of the frequent pattern lattice and contain subgraphs that
are frequent, maximal, or closed. Finally, the third dimension has to do with whether
or not there is a relation between the various embeddings of the discovered pat-
terns and contain subgraphs whose embeddings can have arbitrary overlaps, partial
overlaps, and being vertex- and/or edge-disjoint.

Frequent pattern discovery algorithms can be classified into two categories
depending on the their completeness. Complete algorithms find all frequent pat-
terns that satisfy a given specification (typically the minimum support threshold).
On the other hand, heuristic algorithms return only a subset of all frequent patterns.
The reason we are interested in heuristic algorithms is because depending on the
problem formulation, complete algorithms may simply become unfeasible. For those
problems, heuristic algorithms can be useful practical solutions.

6.3.1 Several Possible Problem Definitions

Complete and Exact Discovery from Graph Transactions. The first problem
formulation is for finding frequently occurring connected subgraphs in a set of
graphs, which is defined as follows:

6.3 FREQUENT PATTERN DISCOVERY FROM GRAPH DATASETS 123

Definition 6.1 (Complete Subgraph Discovery from a Set of Graph Transac-
tions) Given a set of graphs D each of which is an undirected labeled graph, and
a parameter σ such that 0 < σ ≤ 1, find all connected undirected graphs that are
subgraphs in at least σ |D| of the input graphs.

We will refer to each of the graphs in D as a graph-transaction or simply transaction
when the context is clear, to D as the graph-transaction dataset, and to σ as the
support threshold.

There are two key aspects in the above problem statement. First, we are only
interested in subgraphs that are connected. This is motivated by the fact that the
resulting frequent subgraphs will be encapsulating relations (or edges) between some
of the entities (or vertices) of various objects. Within this context, connectivity is a
natural property of frequent patterns. An additional benefit of this restriction is that it
reduces the complexity of the problem, as we do not need to consider disconnected
combinations of frequent connected subgraphs. Second, we allow the graphs to be
labeled, and input graph transactions and discovered frequent patterns can contain
multiple vertices and edges carrying the same label. This greatly increases our
modeling ability, as it allow us to find patterns involving multiple occurrences of
the same entities and relations, but at the same time makes the problem of finding
such frequently occurring subgraphs nontrivial. This is because in such cases, any
frequent subgraph discovery algorithm needs to correctly identify how a particular
subgraph maps to the vertices and edges of each graph transaction, that can only be
done by solving many instances of the subgraph isomorphism problem, which has
been shown to be NP-complete [21].

Three Exact Discovery Problems from a Single Graph. A fundamental issue
that needs to be considered by any frequent subgraph discovery problem formulation
similar to the single-graph setting is the counting method of the occurrence fre-
quency. In general, there are two possible methods of frequency counting. According
to the first method, two embeddings of a subgraph are considered different, as
long as they differ by at least one edge (i.e., nonidentical). As a result, arbitrary
overlaps of embeddings of the same subgraph are allowed. On the other hand,
by the second method, two embeddings are considered different, only if they do
not share edges (i.e., they are edge-disjoint). These two methods are illustrated in
Figure 6.2. In this example, there are three possible embeddings of the subgraph
shown in Figure 6.2(a) in the input graph of Figure 6.2(b). Two of these embed-
dings [Figs. 6.2(c) and 6.2(e)] do not share any edges, whereas the third embedding

(a) (b) (c) (d) (e)
Embedding 2

Embedding 3

Embedding 1

(f)

Figure 6.2. Overlapped embeddings: (a) subgraph, (b) input graph, (c) embedding 1,

(d) embedding 2, (e) embedding 3, and (f) overlaps.

124 FINDING TOPOLOGICAL FREQUENT PATTERNS FROM GRAPH DATASETS

(a) (b) (c)

Figure 6.3. Patterns with the nonmonotonic frequency: (a) size-12 graph D, (b) size-7 graph

G7, and (c) size-6 subgraph G6.

[Fig. 6.2(d)] shares edges with the other two. Thus, if we allow overlaps, the fre-
quency of the subgraph is (c), and if we do not it is (b).

These two ways of counting the frequency of a subgraph lead to problems
with dramatically different characteristics. If we allow arbitrary overlaps between
nonidentical embeddings, then the resulting frequency is not any longer downward
closed (i.e., the frequency of a subgraph does not monotonically decrease as a func-
tion of its length). This is illustrated in Figure 6.3. Both G7 and G6 are subgraphs
of D. Although the smaller subgraph G6 has only one nonidentical embedding, the
larger G7 has six nonidentical embeddings. On the other hand, if we determine the
frequency of each subgraph by counting the maximum number of its edge-disjoint
embeddings, then the resulting frequency is downward closed [63].

Being able to take advantage of a frequency counting method that is down-
ward closed is essential for the computational tractability of most frequent pattern
discovery algorithms. For this reason, our problem formulation uses edge-disjoint
embeddings. Given this, one way of formulating the frequent subgraph discovery
problem for the single-graph setting is defined as follows [63]:

Definition 6.2 (Complete Discovery from a Single Graph) Given an input
graph D that is undirected and labeled, and a parameter f , find all connected
undirected labeled subgraphs that have at least f edge-disjoint embeddings in D.

Unfortunately quite often this problem can be intractable. By this definition, to
determine if a subgraph is frequent or not, we need to find whether the overlap
graph of its nonidentical embeddings contain an independent set whose size is at
least f . When a subgraph is relatively frequent compared to the frequency threshold
f , by using approximate MIS algorithms we can quickly tell that such a subgraph
is actually frequent. However, in the cases in which the approximate MIS algo-
rithm does not find a sufficiently large independent set, the exact MIS needs to be
computed before a pattern will be kept or discarded. Depending on the resulting
size of the maximum independent set, the subgraph will be identified as frequent or
infrequent. Also, if we need not only to find frequent subgraphs but also to find their
exact frequency, then the exact MIS needs to be computed on the overlap graph of
every pattern. In both cases, because solving the exact MIS problem is NP-complete
(see Section 6.2.2), the above definition of the frequent subgraph discovery problem
cannot be tractable, even for a relatively simple input graph.

6.3 FREQUENT PATTERN DISCOVERY FROM GRAPH DATASETS 125

To make the problem more practical, we propose two alternative formulations
that can find frequent subgraphs without solving the exact MIS problem.

Definition 6.3 (Subset Discovery from a Single Graph) Given an input graph
D that is undirected and labeled, and a parameter f , find as many connected undi-
rected labeled subgraphs as possible that have at least f edge-disjoint embeddings
in D.

Definition 6.4 (Superset Discovery from a Single Graph) Given an input
graph D that is undirected and labeled, and a parameter f , find all connected undi-
rected labeled subgraphs such that an upper bound on the number of its edge-disjoint
embeddings is above the threshold f .

Essentially the solutions for these two problems become a subset and a superset
of the solution for Definition 6.2, respectively. The first formulation, Definition 6.3,
which asks for a subset of the solution of Definition 6.2, requires that the embeddings
of each subgraph form an overlap graph that has an approximate MIS whose size is
greater than or equal to f . The second formulation, Definition 6.4, which asks for a
superset of the solution of Definition 6.2, requires that an upper bound on the size
of the exact MIS of this overlap graph is greater than or equal to f . Note that as
discussed in Section 6.2.2, such upper bounds can be easily obtained for both the
GMIS algorithm as well as for other approximate algorithms.

Heuristic Discovery from a Single Graph. Although existing algorithms [8, 30,
33, 35–37, 41, 44, 64] for the graph-transaction problem formulation have improved
the performance and scalability over recent years, the fact still remains that those
complete algorithms based on exact graph matching can handle only a limited class
of problems in practice. For example, in any of those studies, the average size of
input graph transactions tested never exceeds 1000 edges and the average vertex
degree is almost always around two. In other words, input graph transactions and
frequent subgraphs from them are sparse and quite often they are even trees. While
it is still useful, for example, to find common substructures from a set of chemical
compounds as that type of datasets is repeatedly tested in those studies, it is also
clear that algorithms with such scalability limitations cannot process larger or denser
datasets.

Nevertheless, there are many graph or relational datasets that are either large
or dense, or both, and existing complete and exact algorithms are useless. In fact,
even SUBDUE [31] cannot handle dense graphs at all. For example, given a random
graph of 1000 vertices and 49,852 edges (the average vertex degree 100) with 10
distinct vertex labels and no edge labels, the only patterns SUBDUE could find were
single vertices, after spending 755 ss. At this moment, regardless of being complete
or heuristic, there is no generic algorithm that can find frequently occurring patterns
from a massive graph dataset.

Another serious issue with those complete frequent subgraph algorithms is their
use of exact matching. Those algorithms can find a large number of frequent sub-
graphs efficiently. Yet, all the embeddings of a frequent subgraph must be exactly

126 FINDING TOPOLOGICAL FREQUENT PATTERNS FROM GRAPH DATASETS

identical. Even though there are two frequent subgraphs that are similar to each
other, they are treated as two distinct ones. This makes those algorithms difficult to
use. For example, if there is noise in an input dataset, or if a frequent pattern has
minor variation in topology, according to those exact-matching-based algorithms,
each of the variations is treated as a distinct pattern and therefore its frequency
decreases and eventually we may miss the pattern. As another example, consider
finding topological structures of amino acids in protein sequences. We can model
a protein sequence as a graph where a vertex corresponds to an amino acid and
an edge shows the proximity between the two amino acids as the endpoints of the
edge. It is common that for a well-known frequently occurring substructure, some
amino acids are missing or superfluous depending on a protein sequence. Exact-
matching-based algorithms have difficulty to find frequent substructures under this
type of situations. Users of a pattern finding algorithm are typically interested in a
relatively small number of nontrivial frequent patterns that represent or character-
ize input datasets. If two subgraphs look alike, they should be treated as the same
pattern.

To overcome the shortcomings of the existing frequent subgraph discovery
algorithms, our proposed research will focus on the following two problems.

Definition 6.5 (Heuristic and Exact Subgraph Discovery from a Single
Graph) Given an input undirected graph D with vertex and edge labels, and a
parameter f as the minimum frequency threshold, find frequent subgraphs that sat-
isfy the threshold so that the discovery process maximizes a predefined objective
function fobj(D,F, t) where t is the runtime of the discovery process.

The objective function is the measure of the quality and the efficiency of a discovery
algorithm. Needless to say it is the ultimate goal of our research for this problem
to find as many frequent subgraphs as possible. Because of the NP-hardness of
approximating the subgraph isomorphism problem, we cannot expect any sort of
guarantee on the coverage of the solution (i.e., how much fraction of truly frequent
subgraphs can be discovered). We will evaluate our methods by comparing them
against the existing algorithms such as SUBDUE [31] or the complete algorithms
such as SEuS [22] and SiGraM [43] in the quality of the output (i.e., the coverage)
and the efficiency in runtime and memory. In the proposed research, in addition
to the design of discovery algorithms for this problem definition, we will also
investigate various objective function definitions including the minimum description
length (MDL) principle.

The goal of the second problem is not only to discover frequent subgraphs
approximately but also to generalize the frequent subgraphs embedded in the given
graph.

6.3.2 Representative Algorithms for Different
Problem Formulations

In the following section, we will briefly describe three algorithms (FSG, SiGraM,
and Grew), which are designed for the different problem formulations explained

6.4 FSG FOR THE GRAPH-TRANSACTION SETTING 127

above. FSG is an algorithm for finding all frequent connected subgraphs from a
set of labeled graphs, which is, in other words, a complete algorithm in the graph-
transaction setting. FSG works in the level-by-level fashion starting from smaller
patterns toward larger ones. It traverses the search space of frequent subgraphs
in the breadth-first manner, by generating candidates with joining and counting
the frequencies of the generated candidate patterns. SiGraM, which is a pair of a
horizontal (hSiGraM) and a vertical (vSiGraM) algorithms, is designed for finding
all frequent connected subgraphs from single-label sparse graphs. hSiGraM can
be considered an extension of FSG to the single-graph setting, while vSiGraM
is a novel depth-first algorithm using efficient pruning strategies and heuristics.
As an example of an efficient incomplete algorithm, we will present Grew in
Section 6.6.

6.4 FSG FOR THE GRAPH-TRANSACTION SETTING

In developing our frequent subgraph discovery algorithm, we decided to follow the
level-by-level structure of the Apriori [2] algorithm used for finding frequent item-
sets. The motivation behind this choice is the fact that the level-by-level structure of
Apriori requires the smallest number of subgraph isomorphism computations during
frequency counting, as it allows it to take full advantage of the downward closed
property of the minimum support constraint and achieves the highest amount of prun-
ing when compared with the most recently developed depth-first-based approaches
such as dEclat [69], Tree Projection [1], and FP-growth [26]. In fact, despite the
extra overhead due to candidate generation incurred by the level-by-level approach,
recent studies have shown that because of its effective pruning, it achieves compara-
ble performance with that achieved by the various depth-first-based approaches, as
long as the dataset is not dense or the support value is not extremely small [23, 28].
Table 6.2 illustrates the performance of FSG when it is applied to the PTC dataset
(see Section 6.8 for the dataset description). FSG is able to operate efficiently up
to 0.75% of the minimum support threshold, which corresponds to the absolute

TABLE 6.2 FSG Results for the PTC Dataseta

Supportb t (s)c |F|d k∗e |F|/tf

5.0 0.2 310 9 1,550
2.0 3.9 7,811 20 2,003
1.0 26 49,475 24 1,374
0.75 333 404,028 36 1,213

aMeasured on a dual Intel Xeon 3.2-GHz machine with 2
Gbytes main memory, running the Linux operating system.
bThe minimum support threshold (%).
cThe runtime in seconds.
dThe total number of frequent subgraphs discovered.
eThe size of the largest frequent subgraphs discovered.
f The number of frequent subgraphs found per second.

128 FINDING TOPOLOGICAL FREQUENT PATTERNS FROM GRAPH DATASETS

frequency of 3. As shown in this table, the number of frequent subgraphs discov-
ered in a unit time decreases moderately as the minimum support is lowered, which
shows that the scalability of FSG is well maintained even for very low support
threshold.

FSG starts by enumerating all frequent single- and double-edge subgraphs.
Then, it enters its main computational phase, which consists of a main iteration
loop. During each iteration, FSG first generates all candidate subgraphs whose
size is greater than the previous frequent ones by one edge and then counts the
frequency for each of these candidates and prunes subgraphs that do no satisfy
the support constraint. FSG stops when no frequent subgraphs are generated for
a particular iteration. Details on how FSG generates the candidates subgraphs
and on how it computes their frequency are provided in Sections 6.4.1 and 6.4.2,
respectively.

To ensure that the various graph-related operations are performed efficiently,
FSG stores the various input graphs and the various candidate and frequent sub-
graphs that it generates using an adjacency list representation.

6.4.1 Candidate Generation

FSG generates candidate subgraphs of size k + 1 by joining two frequent size-
k subgraphs. In order for two such frequent size-k subgraphs to be eligible for
joining, they must contain the same size-(k − 1) connected subgraph. The sim-
plest way to generate the complete set of candidate subgraphs is to join all pairs
of size-k frequent subgraphs that have a common size-(k − 1) subgraph. Unfor-
tunately, the problem with this approach is that a particular size-k subgraph can
have up to k different size-(k − 1) subgraphs. As a result, if we consider all
such possible subgraphs and perform the resulting join operations, we will end
up generating the same candidate pattern multiple times, and generating a large
number of candidate patterns that are not downward closed. The net effect of
this is that the resulting algorithm spends a significant amount of time identify-
ing unique candidates and eliminating non-downward-closed candidates (both of
which are nontrivial operations as they require to determine the canonical label of
the generated subgraphs). Note that candidate generation approaches in the con-
text of frequent itemsets (e.g., Apriori [2]) do not suffer from this problem because
they use a consistent way to order the items within an itemset (e.g., lexicographi-
cally). Using this ordering, they only join two size-k itemsets if they have the same
(k − 1)-prefix. For example, a particular itemset {A, B,C,D} will only be gener-
ated once (by joining {A,B, C} and {A,B,D}), and if that itemset is not downward
closed, it will never be generated if only its {A, B,C} and {B,C, D} subsets were
frequent.

Fortunately, the situation for subgraph candidate generation is not as severe
as the above discussion seems to indicate, and FSG addresses both of these prob-
lems by only joining two frequent subgraphs if and only if they share a certain,
properly selected, size-(k − 1) subgraph. Specifically, for each frequent size-k sub-
graph Fi , let P(Fi) = {Hi,1, Hi,2} be the two size-(k − 1)-connected subgraphs of

6.4 FSG FOR THE GRAPH-TRANSACTION SETTING 129

b

a

a

ca

G5
1

a

a c

b
G4

1
a

a c

b
G4

2

+

ba

a c

G5
2

Join

(a)

Join

G6
1

a

a

a

a

b

c

G6
2

a

a a

a

b c

b
G6

3

a

a

a

a

cG5
1

a

a a

a

b

G5
2

a

a a

a

c

+

(b)

Figure 6.4. Two cases of joining: (a) by vertex labeling and (b) by multiple automorphisms

of a single core

Fi such that Hi,1 has the smallest canonical label and Hi,2 has the second small-
est canonical label among the various connected size-(k − 1) subgraphs of Fi .
We will refer to these subgraphs as the primary subgraphs of Fi . Note that if
every size-(k − 1) subgraph of Fi is isomorphic to each other, Hi,1 = Hi,2 and
|P(Fi)| = 1. FSG will only join two frequent subgraphs Fi and Fj , if and only if
P(Fi) ∩ P(Fj) �= ∅, and the join operation will be done with respect to the common
size-(k − 1) subgraph(s). The completeness of this candidate generation approach is
shown in [44]. This candidate generation approach dramatically reduces the number
of redundant and non-downward-closed patterns that are generated and leads to sig-
nificant performance improvements over the naive approach (originally implemented
in [41]).

The actual join operation of two frequent size-k subgraphs Fi and Fj that have
a common primary subgraph H is performed by generating a candidate size-(k + 1)

subgraph that contains H plus the two edges that were deleted from Fi and Fj

to obtain H . However, unlike the joining of itemsets in which two frequent size-k
itemsets lead to a unique size-(k + 1) itemset, the joining of two size-k subgraphs
may produce multiple distinct size-(k + 1) candidates. This happens for the follow-
ing two reasons. First, the difference between the common primary subgraph and
the two frequent subgraphs can be a vertex that has the same label. In this case, the
joining of such size-k subgraphs will generate two distinct subgraphs of size k + 1.
This is illustrated in Figure 6.4(a) where the pair of graphs G4

a and G4
b generates

two different candidates G5
a and G5

b. Second, the primary subgraph itself may have
multiple automorphisms and each of them can lead to a different size-(k + 1) can-
didate. In the worst case, when the primary subgraph is an unlabeled clique, the
number of automorphisms is k!. An example for this case is shown in Figure 6.4(b)
in which the primary subgraph—a square of four vertices labeled with a—has four
automorphisms resulting in three different candidates of size 6. Finally, in addition
to joining two different subgraphs, FSG also needs to perform self-join in order
to correctly generate a size-(k + 1) candidate subgraph whose all size-k-connected
subgraphs are isomorphic to each other.

6.4.2 Frequency Counting

The simplest way to determine the frequency of each candidate subgraph is to scan
each one of the dataset transactions and determine if it is contained or not using

130 FINDING TOPOLOGICAL FREQUENT PATTERNS FROM GRAPH DATASETS

subgraph isomorphism. Nonetheless, having to compute these isomorphisms is par-
ticularly expensive, and this approach is not feasible for large datasets. In the context
of frequent itemset discovery by Apriori, the frequency counting is performed sub-
stantially faster by building a hash tree of candidate itemsets and scanning each
transaction to determine which of the itemsets in the hash tree it supports. Devel-
oping such an algorithm for frequent subgraphs, however, is challenging as there is
no natural way to build the hash tree for graphs.

For this reason, FSG instead uses transaction identifier (TID) lists, proposed
by [17, 59, 68]. In this approach for each frequent subgraph FSG keeps a list
of transaction identifiers that support it. Now when FSG needs to compute the
frequency of Gk+1, it first computes the intersection of the TID lists of its frequent
k subgraphs. If the size of the intersection is below the support, Gk+1 is pruned,
otherwise FSG computes the frequency of Gk+1 using subgraph isomorphism by
limiting the search only to the set of transactions in the intersection of the TID lists.
The advantages of this approach are twofold. First, in the cases where the intersection
of the TID lists is below the minimum support level, FSG is able to prune the
candidate subgraph without performing any subgraph isomorphism computations.
Second, when the intersection set is sufficiently large, FSG only needs to compute
subgraph isomorphisms for those graphs that can potentially contain the candidate
subgraph and not for all the graph transactions.

Reducing Memory Requirements of TID Lists. The computational advantages
of TID lists come at the expense of higher memory requirements for maintain-
ing them. To address this limitation we implemented a database-partitioning-based
scheme that was motivated by a similar scheme developed for mining frequent
itemsets [58]. In this approach, the database is partitioned into N disjoint parts
D = {D1,D2, . . . ,DN }. Each of these subdatabases Di is mined to find a set of fre-
quent subgraphs Fi , called local frequent subgraphs. The union of the local frequent
subgraphs C = ⋃

i Fi , called global candidates, is determined and their frequency
in the entire database is computed by reading each graph transaction and finding the
set of subgraphs that it supports. The subset of C that satisfies the minimum sup-
port constraint is output as the final set of frequent patterns F. Since the memory
required for storing the TID lists depends on the size of the database, their overall
memory requirements can be reduced by partitioning the database in a sufficiently
large number of partitions.

One of the problems with a naive implementation of the above algorithm is
that it can dramatically increase the number of subgraph isomorphism operations
that are required to determine the frequency of the global candidate set. To address
this problem, FSG incorporates three techniques: (i) a priori pruning the number
of candidate subgraphs that need to be considered; (ii) using bitmaps to limit the
frequency counting of a particular candidate subgraph to only those partitions that
this frequency has not already being determined locally; and (iii) taking advantage
of the lattice structure of C to check each graph transaction only against the sub-
graphs that are descendants of patterns that are already being supported by that
transaction.

6.5 SIGRAM FOR THE SINGLE-GRAPH SETTING 131

The a priori pruning of the candidate subgraphs is achieved as follows. For
each partition Di , FSG finds the set of local frequent subgraphs and the set of
local negative border subgraphs3 and stores them into a file Si along with their
associated frequencies. Then, it organizes the union of the local frequent and local
negative border subgraphs across the various partitions into a lattice structure (called
a pattern lattice), by incrementally incorporating the information from each file Si .
Then, for each node v of the pattern lattice it computes an upper bound f ∗(v) of
its occurrence frequency by adding the corresponding upper bounds for each one
of the N partitions, f ∗(v) = f ∗

1 (v) + · · · + f ∗
P (v). For each partition Di , f ∗

i (v) is
determined using the following equation:

f ∗
i (v) =

{
fi(v) if v ∈ Si

minu

(
f ∗

i (u)
)

otherwise

where fi(v) is the actual frequency of the pattern corresponding to node v in Di ,
and u is a connected subgraph of v that is smaller from it by one edge (i.e., it is
its parent in the lattice). Note that the various f ∗

i (v) values can be computed in a
bottom-up fashion by a single scan of Si , and used directly to update the overall
f ∗(v) values. Now, given this set of frequency upper bounds, FSG proceeds to
prune the nodes of the pattern lattice that are either infrequent or fail the downward
closure property.

6.5 SIGRAM FOR THE SINGLE-GRAPH SETTING

We developed two algorithms, called hSiGraM and vSiGraM, which find all fre-
quent subgraphs according to Definitions 6.2–6.4 described in Section 6.3.1.4 In
both algorithms, the frequent patterns are conceptually organized in a form of a
lattice that is referred to as the lattice of frequent subgraphs. The kth level of
this lattice contains all frequent subgraphs with k edges (i.e., size-k subgraphs),
and a node at level k representing a subgraph Gk is connected to at most k

nodes at level k − 1, each corresponding to a distinct (i.e., nonisomorphic) con-
nected size-(k − 1) subgraph of Gk. The goal of both hSiGraM and vSiGraM
is to identify the various nodes of this lattice and the frequency of the associated
subgraphs.

The difference between the two algorithms is the method they use to discover
(i.e., generate) the nodes of the lattice. hSiGraM follows a horizontal approach
and discovers the nodes in a breadth-first fashion, whereas vSiGraM follows a
vertical approach and discovers the nodes in a depth-first fashion. Both horizontal
and vertical approaches have been previously used to find frequent subgraphs in
the graph-transaction setting [8, 37, 44, 64] and have their origins on algorithms
developed for finding frequent itemsets and sequences [2, 3, 26, 70].

3A local negative border subgraph is the one generated as a local candidate subgraph but does not satisfy
the minimum threshold for the partition.
4SiGraM stands for Single-Graph Miner.

132 FINDING TOPOLOGICAL FREQUENT PATTERNS FROM GRAPH DATASETS

A detailed description of hSiGraM and vSiGraM is provided in the rest of
this section.

6.5.1 Horizontal Algorithm: HSIGRAM

The general structure of hSiGraM is shown in Algorithm 6.1 (the notation used in
the pseudocode is shown in Table 6.1). hSiGraM takes as input the graph G, the
minimum frequency threshold f , and the parameter Problem Type that specifies the
particular problem definition (as discussed in Section 6.3.1). It starts by enumerating
all frequent single- and double-edge subgraphs in G and then enters its main compu-
tational loop (lines 7–13). During each iteration, hSiGraM first generates all can-
didate subgraphs of size k + 1 by joining pairs of size-k frequent subgraphs (line 8)
and then computes their frequency (hSiGraM-Count in line 11). The candidate
subgraphs whose frequency is lower than the minimum threshold f are discarded,
and the remaining are kept for the next level of the algorithm. The computation
terminates when no frequent subgraphs are generated during a particular iteration.

The two key components of the hSiGraM algorithm that significantly affect
its overall computational complexity are the methods used to perform candidate
generation and to compute the frequency of the candidate subgraphs. The candidate
generation is basically identical to the method used for FSG, which was described
in Section 6.4.1 in detail. In the rest of this section we provide additional details on
how the frequency counting is performed and describe various optimizations that
are designed to reduce their runtime.

Algorithm 6.1 hSiGraM(G,Problem−Type,f)

1:
 f is the minimum frequency threshold.
2:
 Problem Type is either subset, complete, or

superset.
3: F ← ∅
4: F1 ← all frequent size-1 subgraphs in G
5: F2 ← all frequent size-2 subgraphs in G
6: k ← 2
7: while Fk �= ∅ do
8: Ck+1 ← HSIGRAM-GEN(Fk−1,Fk,f)
9: Fk+1 ← ∅
10: for each candidate C in Ck+1 do
11: C.freq ← HSIGRAM-COUNT(C,G,Problem Type)
12: if C.freq ≥ f then
13: add C to Fk+1
14: end if
15: end for
16: F ← F ∪ Fk+1
17: k ← k+ 1
18: end while
19: return F

6.5 SIGRAM FOR THE SINGLE-GRAPH SETTING 133

Frequency Counting. hSiGraM-Count in Algorithm 6.2 computes the frequency
of a candidate subgraph C by first identifying all of its embeddings, constructing the
overlap graph of these embeddings, and then, based on the Problem Type param-
eter, finding an approximate or exact MIS of this overlap graph. The outline of
this process is shown in Algorithms 6.2 and 6.3. In the rest of this section we first
describe how the various embeddings are identified. Then, we explain the method
used to efficiently compute the desired maximal independent sets.

Embedding Identification. To identify all the embeddings of a candidate C,
hSiGraM-Embed shown in Algorithm 6.3 needs to solve the subgraph isomor-
phism problem. Performing the subgraph isomorphism for every candidate from
scratch may be expensive, especially when an input graph is large. hSiGraM-
Embed reduces this computational requirement by using anchor edges. An anchor
edge is a partial embedding of a candidate C and works as a constraint of the sub-
graph isomorphism problem, which narrows down the search space only around the
anchor edge.

More specifically, hSiGraM-Embed creates and uses anchor edges as follows.
First, the list of anchor edges are created right after frequency counting for size-
(k − 1) frequent subgraphs, by converting the list of its nonidentical embeddings.
These edges will be used later for counting a candidate of size k. Let Fi denote a
frequent subgraph of size k − 1 and suppose Fi has N nonidentical embeddings in
total. After the frequency counting, Fi has a list of all its embeddings M(Fi) =
{m1, . . . , mN }. An anchor edge e of an embedding mi of F is an edge in E(G) that

Algorithm 6.2 hSiGraM-Count(Ck+1,G, Problem Type)

1: (M(Ck+1),A(Ck+1)) ← HSIGRAM-EMBED(C,G)
2: G ← build an overlap graph from M(Ck+1,G)
3: {G1,G2, . . .,Gm} ← decompose G
4: fMIS ← 0
5: for each Gi in {G1,G2, . . .,Gm} do
6: if Gi is easy to handle then
7: fMIS ← fMIS + |EMIS(Gi)|
8: else if Problem Type = approximate then
9: fMIS ← fMIS + |GMIS(Gi)|
10: else if Problem Type = exact then
11: fMIS ← fMIS + |EMIS(Gi)|
12: else if Problem Type = upper bound then
13: fMIS ← fMIS + |GMIS(Gi)|min((� + 2)/3,(d+ 2)/2)
14: end if
15: end for
16:
 S(Ck+1) is a set of all connected size-k subgraphs

in Ck+1
17: fp ← the lowest frequency among S(Ck+1)
18: return min(fMIS,fp)

134 FINDING TOPOLOGICAL FREQUENT PATTERNS FROM GRAPH DATASETS

Algorithm 6.3 hSiGraM-Embed(C,G)

1:
 A: a set of all anchor edges of C
2: A ← intersection of anchor edges across S(C)
3:
 collect all unique embeddings of C into M
4: M ← ∅
5: for each anchor edge e in A do
6: Me ← all embeddings of C that includes the edge e
7: M ← M ∪ Me

8: end for
9:
 collect all unique anchor edges of C into A
10: A ← ∅
11: for each embedding m in M do
12: e ← choose one edge from m arbitrarily
13: add e to A
14: end for
15: return (M,A)

is also a part of mi . For every mi , hSiGraM-Embed arbitrarily chooses an edge
and adds it to A(Fi) (line 11 in Algorithm 6.3). Because of overlapped embeddings,
some embeddings may lead to the same anchor edge.

Now, in the next iteration, suppose a k-candidate C contains a frequent (k − 1)-
subgraph Fi . Because there are k edges in E(C), C may have up to k distinct such
frequent subgraphs of size k − 1, and each Fi holds the anchor edge list. Before
starting the frequency counting of C, first hSiGraM-Embed selects one of Fi whose
frequency is the lowest among {Fi}. For each en ∈ A(Fi), hSiGraM-Embed checks
if there is an edge em ∈ A(Fj) for all j �= i such that the shortest path length
between en and em, denoted by d , is within the diameter of C, denoted by dia(C).
If there is such an edge em from every A(Fj) for j �= i, en may be a part of an
embedding of C, because if C is a frequent subgraph of size k, there must be a set
of frequent subgraphs of size k − 1 inside the same embedding of C. To compute
the exact path length between edges en and em in Gi requires all pairs shortest paths,
which may be computationally expensive when |E(Gi)| is large. hSiGraM-Embed
bounds this length d by the difference between two lengths, |dn − dm|, where dn

and dm are the shortest path lengths from an arbitrarily chosen vertex v ∈ V (Gi)

to en and em, respectively. If en and em are in the same embedding of Ci , always
d ≤ dia(C) holds and dn ≤ dm + d . Thus, if |dn − dm| ≤ dia(C) is true, then en

and em may belong to the same embedding of C, otherwise en and em cannot be
in the same embedding (see Fig. 6.5). If en cannot find such em from every A(Fj)

for j �= i, em is removed from A(Fi) (line 2). Because the subgraph isomorphism
will be performed for each en, this pruning procedure can effectively reduce the
runtime.

Finally, after removing unnecessary anchor edges, for each of the remaining
anchor edges, all the subgraph isomorphisms of C are repeatedly identified and the
set of embeddings M is built (line 6).

6.5 SIGRAM FOR THE SINGLE-GRAPH SETTING 135

dia(G)

en

v dn

em

dm d

Figure 6.5. Distance estimation between two edges.

Computing the Frequency. The frequency of each subgraph Ck+1 is computed
by the hSiGraM-Count function shown in Algorithm 6.2. In particular, hSiGraM-
Count computes two different frequencies. The first, denoted by fMIS, is computed
based on the size of the MIS of the overlap graph created from the embeddings of
Ck+1. The second, denoted by fp, is the least frequency of all the connected size-k
subgraphs of Ck+1 (line 15), which represents an upper bound on Ck+1’s frequency
derived entirely from the lattice of frequent subgraphs. In the case in which fMIS is
computed using Definition 6.4 in Section 6.3.1, the frequency bound provided by
fp may actually be tighter, and thus may lead to more effective pruning. For this
reason, the overall frequency of Ck+1 is obtained by taking the minimum of fMIS

and fp.
The frequency fMIS is computed as follows (lines 2–13). Given a pattern

and all of its nonidentical embeddings, hSiGraM-Count generates its overlap
graph G. Then, hSiGraM-Count decomposes G into its connected components
G1,G2, . . . ,Gm (m ≥ 1). Next, for each connected component Gi , it checks the
maximum degree of its vertices, and, if it is less that or equal to 2 (a cycle or a
path), it computes its maximum independent set directly by the EMIS algorithm
because it is trivial to compute the exact MIS for this class of graphs (line 7). If
the maximum degree is greater than 2, hSiGraM-Count uses either the result of
the GMIS algorithm (line 9), the result of the EMIS algorithm (line 11), or the
upper bound on the size of the exact MIS [Eq. (6.1)]. The summation of those MIS
sizes for the components is the final value of fMIS. Note that the decomposition of
the overlap graph into its connected components allow us to take advantage of the
properties of the special graphs and also obtain tighter bounds for each component
as the maximum degree for some of them will be lower than the maximum degree
of the entire overlap graph.

In addition, every edge is marked if it is included in any embedding of a frequent
subgraph. Unmarked edges are removed before proceeding to the next iteration.

6.5.2 Vertical Algorithm: VSIGRAM

The most computationally expensive step in the hSiGraM algorithm is frequency
counting as it needs to repeatedly perform subgraph isomorphism computations.
The overall time can be greatly reduced if instead of storing only the anchor edges
we store the complete set of embeddings across successive levels of the algorithm.
Because of hSiGraM’s level-by-level structure, these complete embeddings need

136 FINDING TOPOLOGICAL FREQUENT PATTERNS FROM GRAPH DATASETS

to be stored for the entire set of frequent and candidate patterns of each succes-
sive pair of levels. This substantially increases the memory requirements of this
approach, making it impractical for the most interesting of datasets. On the other
hand, within the context of a vertical algorithm, storing the complete set of embed-
dings is feasible since we need to do that only for the subgraphs along the path
from the current node to the root. Thus, a vertical algorithm has potentially a com-
putational advantage over a horizontal algorithm, which motivated the development
of vSiGraM.

However, before developing efficient algorithms that generate the lattice of fre-
quent subgraphs in a depth-first fashion, two critical steps need to be addressed. The
first step is the method that is used to ensure that the same node of the lattice and
the depth-first subtree rooted at that node should not be discovered and explored
multiple times. This is important because each node at level k will be connected
to up to k different nodes at level (k − 1). As a result, if there are no mechanisms
by which to prevent the repeated generation of the same node, a depth-first algo-
rithm will end up performing redundant computations (i.e., generating the same
nodes multiple times), adversely impacting the overall performance of the algo-
rithm. vSiGraM eliminates these redundant computations by assigning each node
at level k (corresponding to a subgraph Fk) to a unique parent node at level k − 1
(corresponding to a subgraph F k−1), such that only Fk−1 is allowed to create Fk.
The subgraph F k−1 is called the generating parent of Fk. Details on how this is
achieved is provided in Section 6.5.2.

The second step is the method that is used to create successor nodes in the course
of the traversal. In the case of hSiGraM, this corresponds to the candidate generation
phase and is performed by joining the frequent subgraphs of the previous level.
However, since the lattice is explored in a depth-first fashion, such a joining-based
approach will not work, as the algorithm may not have yet discovered the required
frequent subgraphs. To address this problem, vSiGraM creates the successor nodes
(i.e., extended subgraphs) by analyzing all the embeddings of the current subgraph
F k, and identifying the distinct one-edge extensions to these embeddings that are
sufficiently frequent. The frequent extensions for which Fk is the generating parent
are then used as the successor nodes during the depth-first traversal.

The general structure of vSiGraM is shown in Algorithm 6.4. vSiGraM starts
by determining all frequent size-1 patterns and then uses each one of them as
the starting point of a recursive depth-first extension (vSiGraM-Extend function).
vSiGraM-Extend takes as input a size-k frequent subgraph Fk and all of its embed-
dings M(F k) in G and proceeds as follows. For each size-k embedding m ∈ M(F k),
it identifies and stores every possible size-(k + 1) subgraph in G that contains m.
From this set of subgraphs, it extracts all size-(k + 1) subgraphs that are not iso-
morphic to each other and stores them in Ck+1. Then, vSiGraM-Extend eliminates
from Ck+1 all the subgraphs that do not have Fk as their generating parent (lines 5
and 6) or are infrequent (lines 7 and 8). The subgraphs remaining in Ck+1 are the
frequent subgraphs of size (k + 1) obtained by a one-edge-extension of F k and are
used as input for the next recursive call. The recursion terminates when Ck+1 = 0,
and the depth-first search backtracks.

6.5 SIGRAM FOR THE SINGLE-GRAPH SETTING 137

Algorithm 6.4 vSiGraM

vSiGraM(G,Problem Type,f)

1: F ← ∅
2: F1 ← all frequent size-1 subgraphs in G
3: for each F1 in F1 do
4: M(F1) ← all embeddings of F1

5: end for
6: for each F1 in F1 do
7: F ← F ∪ VSIGRAM-EXTEND(F1,G,Problem Type,f)
8: end for
9: return F

vSiGraM-Extend(Fk,G,Problem Type,f)

1: F ← ∅
2: for each embedding m in M(Fk) do
3: Ck+1 ← Ck+1 ∪ {all (k+ 1)-subgraphs of G containing m}
4: end for
5: for each Ck+1 in Ck+1 do
6: if Fk is not the generating parent of Ck+1 then
7: continue
8: end if
9: compute Ck+1.freq from M(Ck+1)
10: if Ck+1.freq < f then
11: continue
12: end if
13: add Ck+1 to F
14: end for
15: return F

In the rest of this section we provide additional details on how the various
operations are performed and describe various optimizations that are designed to
reduce vSiGraM’s runtime.

Generating Parent Identification. The scheme that vSiGraM uses to determine
the generating parent of a particular subgraph is as follows. Suppose a size-(k + 1)

frequent subgraph F k+1 is just created by extension from a size-k frequent subgraph
F k. By the canonical labeling, the order of edges and vertices in Fk+1 is uniquely
determined. vSiGraM removes the last edge that does not disconnect F k+1 and
obtains another size-k subgraph F .

If F is isomorphic to F k then Fk becomes the generating parent of Fk+1, and
vSiGraM keeps the further exploration from F k+1. Similar types of approaches
have been used earlier in the context of vertical algorithms for the graph-transaction
setting [63, 64]. All of these share the same idea, which avoids redundant frequent
pattern generation and traverses the lattice of patterns as if it were a tree.

138 FINDING TOPOLOGICAL FREQUENT PATTERNS FROM GRAPH DATASETS

Efficient Subgraph Extension. Starting from a frequent size-k subgraph, vSi-
GraM obtains the extended subgraphs of size k + 1 by adding an additional edge
(while preserving connectivity) to all of its possible embeddings. Specifically, for
each embedding m of a frequent k-subgraph F , vSiGraM enumerates all the edges
that can be added to m to form a size-(k + 1) extended subgraph. Each of those
edges is represented by a tuple of five elements s = (x, y, u, v, e), called a stem,
where x and y are the vertex IDs of the edge in G, u and v, u < v, are the corre-
sponding vertex IDs in F , and e is the label of the edge. For u and v, if there is no
corresponding vertex in F , −1 is used to show that it is outside the subgraph F .

However, because of the automorphism of the subgraph F , we cannot use this
stem representation directly. For a particular embedding m of a frequent subgraph
F in G, there may be more than one vertex mapping of the subgraph onto the
embedding. If we simply used a pair of vertex IDs of the subgraph to represent
a stem, depending on the mapping, the same edge addition might be considered
a different stem, which would result in the wrong frequency of the subgraph. To
avoid this problem, every time a stem is generated, its representation is normalized
as follows: vSiGraM enumerates all possible automorphisms of F , denoted by {φi}.
By an appropriate φi , we obtain the canonical vertex ID for every vertex v ∈ V (F).
The canonical ID of a vertex v, denoted by cvid(v), is defined as

cvid(v) = min
i

φi(v)

The automorphism with the least subscript that gives the canonical ID for v is called
the canonical automorphism, denoted by φ∗

v .

φ∗
v = arg min

φi

φi(v) i < j if φi(v) = φj (v)

For example, given the size-6 graph G shown in Figure 6.6(a), cvid(v3) = v1 and
φ∗

v3
= φ2. Figure 6.6(b) shows cvid and φ∗ for every vertex in G. Note that although

φ3(v3) is also v1, because φ2 has the smaller subscript, 2, φ∗
v3

is φ2.
Now for each stem s = (x, y, u, v, e), φ∗(u, v) = (u′, v′) are defined as follows.

u′ ≡ cvid(u) v′ ≡ φ∗
u(v) if cvid(u) ≤ cvid(v)

u′ ≡ φ∗
v (u) v′ ≡ cvid(v) otherwise

v2

v3

v4v1

v0 v5

φ0

cvid

φ1

φ2

φ3

φ °

v1

v1

v3

v3

φ0

v1

v0

v0

v0

v0

v0

φ0

v2

φ0

v2

v2

v2

v2

v3

φ2

v1

v3

v1

v1

v4

φ1

v4

v5v5

v5

v4

(b)(a)

Figure 6.6. (a) Size-6 graph G and (b) canonical vertex IDs and canonical automorphism.

6.5 SIGRAM FOR THE SINGLE-GRAPH SETTING 139

Then, stem s is rewritten as (x, y, u′, v′, e), which is an automorphism-invariant
representation of s and is used by vSiGraM to properly determine the frequency
of size-(k + 1) extended subgraphs.

Frequency Counting. In the vertical algorithm, when a size-(k + 1) extension is
processed, there is only one size-k frequent subgraph visible, the generating par-
ent. vSiGraM’s frequency counting is similar to hSiGraM-Count, except for the
computation of fp (see line 15 in Algorithm 6.2). hSiGraM enforces the down-
ward closure property on the frequency of a size-(k + 1) candidate, by using the
least frequency of all size-k subgraphs of the candidate. vSiGraM cannot take the
same step because vSiGraM does not hold all size-k frequent subgraphs at the time
a size-(k + 1) extended subgraph is created. Instead vSiGraM simply uses the fre-
quency of the size-k generating parent from which the current size-(k + 1) extension
is obtained. As a result, vSiGraM’s pruning is looser than that of hSiGraM.

6.5.3 Interplay of the Two Search Paradigms and Three
Problem Formulations

In this section, we show and compare the performance of the two algorithms with
various parameters and real datasets. All experiments were done on dual AMD
Athlon MP 1800+ (1.53 GHz) machines with 2 GB main memory, running the
Linux operating system. All the runtimes reported are in seconds.

Intractability of Solving the Exact MIS. Table 6.3 shows the results obtained by
the hSiGraM and vSiGraM algorithms for the VLSI dataset. For all the frequency
thresholds, both hSiGraM and vSiGraM could not finish the computation because
solving the exact MIS became intractable. On the other hand, both the subset and
superset discovery based on the approximate and upper bound MIS can be solved
efficiently.

Superset Discovery and Pruning. In the superset discovery problem (see Defini-
tion 6.4), the key is how effectively we can reduce the number of potential frequent
patterns because some of the potential patterns may not be actually frequent enough
by definition. As shown in Table 6.4, often hSiGraM achieves superior performance
over vSiGraM because of its tighter pruning strategies based on the downward clo-
sure property. In other words, for certain datasets, when the superset formulation is
used, vSiGraM ends up generating significantly more patterns than those generated
by hSiGraM. For example, in the case of the DTP dataset and f = 20, vSiGraM
generates almost 16 times more patterns than hSiGraM. In such cases, the amount
of time required by vSiGraM is substantially greater than that required by hSi-
GraM (32.4 times greater in the DTP example). The reason for that is the fact that
because of its depth-first nature, vSiGraM cannot take advantage of the frequent
subgraph lattice to get a tight upper bound on the frequency of a subgraph based
on the frequency of all of its subgraphs, and it bases its upper bound only on the
frequency of the generating parent. On the other hand, because of its level-by-level

140 FINDING TOPOLOGICAL FREQUENT PATTERNS FROM GRAPH DATASETS

TABLE 6.3 Results for the VLSI Dataseta

Runtime t (s) Number of Patterns |F| Largest Size k∗

Subset Superset Subset Superset Subset Superset

f H V H V H V H V H V H V

300 0 0 1 1 10 10 19 22 1 1 5 5
250 1 0 1 1 17 17 25 33 2 2 5 5
200 11 3 37 8 137 137 347 415 5 5 5 5
150 13 4 46 9 156 156 437 503 5 5 5 5
100 42 7 54 10 379 379 519 609 5 5 5 5
75 49 8 56 10 409 409 571 679 5 5 5 5
50 236 15 282 17 683 683 946 1051 5 5 5 5
25 428 18 469 20 1452 1452 1907 2131 5 5 5 5

af : the minimum frequency threshold. |F|: the total number of frequent subgraphs discovered. k∗: the size of the
largest frequent subgraphs discovered. H and V: hSiGraM and vSiGraM, respectively.
Subset (using the approximate MIS), Complete (using the exact MIS), and Superset (using the upper bound MIS) cor-
respond to problem definitions 6.3 (subset discovery) 6.2 (complete discovery), and 6.4 (superset discovery) described
in Section 6.3.1, respectively.

TABLE 6.4 Superset Discovery Resultsa

Runtime t (s) No. of Patterns |F| k∗

Dataset f H V H V H V

Citation 100 0.1 0.0 7 11 2 5
50 0.6 — 113 — 7 —
20 139 — 12,203 — 16 —

Contact Map 500 3 — 106 — 7 —
400 10 — 246 — 8 —
300 183 — 2,358 — 10 —

DTP 1,000 78 26 48 80 10 11
500 96 30 153 226 12 13
200 115 38 641 916 15 15
100 169 64 2,484 3,788 16 18
50 247 103 8,295 13,622 18 21
20 616 19,998 52,180 824,702 20 81
10 2,018 — 232,810 — 21 —

a —: the computation was aborted because of the too long runtime or memory exhaustion. f : the minimum frequency
threshold. t : the runtime in seconds. |F|: the total number of potentially frequent patterns found. H and V: hSiGraM
and vSiGraM, respectively. k∗: the size of the largest potentially frequent patterns found.

nature, hSiGraM can use the information from all its subpatterns and obtains better
upper bounds (see discussion in Section 6.5.1).

Subset and Complete Discovery. In the subset and complete discovery problems
(see Definitions 6.3 and 6.2 in Section 6.3.1), as shown in Table 6.5, generally vSi-
GraM outperforms hSiGraM with respect to runtime. In fact, as the value of the
frequency threshold decreases, vSiGraM is up to five times faster than hSiGraM.
This is true across all datasets for the subset and complete problem formulations,

6.6 GREW SCALABLE FREQUENT SUBGRAPH DISCOVERY ALGORITHM 141

TABLE 6.5 Subset and Complete Discovery Resultsa

Runtime t (s) Number of Patterns |F| Largest Size k∗

Subset Complete Subset Complete Subset Complete

Dataset f H V H V H V H V H V H V

Aviation 2,000 308 130 306 130 833 833 833 833 8 8 8 8
1,750 779 342 787 342 2,249 2,249 2,249 2,249 9 9 9 9
1,500 1,603 743 1,674 745 5,207 5,207 5,207 5,207 10 10 10 10
1,250 2,726 1,461 2,720 1,496 11,087 11,087 11,087 11,087 12 12 12 12
1,000 5,256 3,667 5,158 3,683 30,331 30,331 30,331 30,331 13 13 13 13

Citation 100 0.1 0.0 0.1 0.0 6 6 6 6 1 1 1 1
50 0.1 0.1 0.1 0.1 39 39 39 39 2 2 2 2
20 0.6 0.3 0.9 0.5 266 266 266 266 3 3 3 3
10 4.0 1.5 4.2 1.9 986 986 988 988 5 5 5 5

Contact 500 1 1 1 1 62 62 62 62 2 2 2 2
map 400 3 2 3 2 100 100 100 100 2 2 2 2

300 10 3 10 3 186 186 186 186 2 2 2 2
200 44 9 45 9 505 505 505 505 3 3 3 3
100 362 63 356 71 3,183 3,183 3,186 3,186 5 5 5 5
50 3,505 607 3,532 632 29,237 2,9237 29,298 29,298 6 6 6 6

Credit 500 0 0 0 0 24 24 24 24 3 3 3 3
200 10 4 10 4 1,325 1,325 1,325 1,325 7 7 7 7
100 49 20 45 21 11,696 11,696 11,696 11,696 9 9 9 9
50 169 78 172 80 73,992 73,992 73,992 73,992 11 11 11 11
20 2,019 461 1,855 468 613,884 613,884 613,884 613,884 13 13 13 13

DTP 1,000 70 19 71 20 31 31 31 31 6 6 6 6
500 92 20 86 21 109 109 109 109 7 7 7 7
200 101 23 100 24 414 414 415 415 9 9 9 9
100 113 27 114 27 1,244 1,244 1,244 1,244 12 12 12 12
50 145 34 134 35 4,028 4,028 4,028 4,028 14 14 14 14
20 243 86 249 83 21,477 21,477 21,478 21,478 16 16 16 16
10 813 311 882 294 112,535 112,535 112,539 112,539 21 21 21 21

a —: the computation was aborted because of the too long runtime or memory exhaustion. f : the minimum frequency threshold. t : the
runtime in seconds. |F|: the total number of potentially frequent patterns found. k∗ : the size of the largest potentially frequent patterns
found. Subset (using the approximate MIS) and Complete (using the exact MIS) correspond to problem definitions 6.3 (subset discovery)
and 6.2 (complete discovery) described in Section 6.3.1, respectively. H and V: hSiGraM and vSiGraM, respectively.

and for those datasets for which the superset formulation leads to the same number
of frequent patterns for both algorithms. As discussed in Section 6.5.2, the reason
for that performance advantage is the fact that by keeping track the embeddings
of the frequent subgraphs along the depth-first path, vSiGraM spends significantly
less time in subgraph isomorphism-related computations than hSiGraM does.

6.6 GREW—SCALABLE FREQUENT SUBGRAPH
DISCOVERY ALGORITHM

Grew is a heuristic algorithm designed to operate on a large graph and to find
patterns corresponding to connected subgraphs that have a large number of vertex-
disjoint embeddings. Specifically, the patterns that Grew finds satisfy the following
two properties:

142 FINDING TOPOLOGICAL FREQUENT PATTERNS FROM GRAPH DATASETS

Property 6.1 The number of vertex-disjoint embeddings of each pattern is guar-
anteed to be at least as high as the user-supplied minimum frequency threshold.

Property 6.2 If a vertex contributes to the support of multiple patterns {G1,

G2, . . . ,Gk} of increasing size, then Gi is a subgraph of Gi+1 for i = 1, . . . , k − 1.

The first property ensures that the patterns discovered by Grew will be frequent.
However, Grew is not guaranteed to find all the vertex-disjoint embeddings of
each pattern that it reports, nor is it guaranteed to find all the patterns that have
a sufficiently large number of vertex-disjoint embeddings. As a result, Grew will
tend to undercount the frequency of the patterns that it discovers and will miss
some patterns. Moreover, the second property imposes some additional constraints
on the types of patterns that it can discover, as it does not allow each vertex
to contribute to the support of patterns that do not have a subgraph/supergraph
relationship. As a result of these properties, the number of patterns that Grew
discovers is significantly smaller to those discovered by complete algorithms such
as SiGraM [45].

Grew discovers frequent subgraphs in an iterative fashion. During each itera-
tion, Grew identifies vertex-disjoint embeddings of subgraphs that were determined
to be frequent in previous iterations and merges certain subgraphs that are con-
nected to each other via one or multiple edges. This iterative frequent subgraph
merging process continues until there are no such candidate subgraphs whose com-
bination will lead to a larger frequent subgraph. Note that unlike existing subgraph
growing methods used by complete algorithms [36, 44, 45, 64], which increase
the size of each successive subgraph by one edge or vertex at a time, Grew, in
each successive iteration, can potentially double the size of the subgraphs that it
identifies.

The key feature that contributes to Grew’s efficiency is that it maintains the
location of the embeddings of the previously identified frequent subgraphs by rewrit-
ing the input graph. As a result of this graph rewriting, the vertices involved in
each particular embedding are collapsed together to form a new vertex (referred
to as multivertex), whose label uniquely identifies the particular frequent subgraph
that is supported by them. Within each multivertex, the edges that are not part
of the frequent subgraph are added as loop edges. To ensure that the rewritten
graph contains all the information present in the original graph, these newly cre-
ated loop edges, as well as the edges of the original graph that are incident to a
multivertex, are augmented to contain information about (i) the label of the inci-
dent vertices and (ii) their actual endpoint vertices within each multivertex (with
respect to the original graph). Using the above representation, Grew identifies the
sets of embedding pairs to be merged by simply finding the frequent edges that have
the same augmented edge label. In addition, Grew obtains the next level rewritten
graph by simply contracting together the vertices that are incident to the selected
edges.

6.6 GREW SCALABLE FREQUENT SUBGRAPH DISCOVERY ALGORITHM 143

6.6.1 Graph Representation

Grew represents the original input graph G as well as the graphs obtained after each
successive rewriting operation in a unified fashion. This representation, referred to
as the augmented graph, is designed to contain all necessary information by which
we can recover the original input graph G from any intermediate graph obtained
after a sequence of rewriting operations.

Each vertex v and edge e of the augmented graph Ĝ has a label associated with
it, which is denoted by l̂(v) and l̂(e), respectively. In addition, unlike the original
graph that is simple, the augmented graph can contain loops. Furthermore, there can
be multiple loop edges associated with each vertex, and there can be multiple edges
connecting the same pair of vertices. However, whenever there exist such multiple
loops or edges, the augmented label of each individual edge will be different from
the rest.

The label of each vertex v in the augmented graph depends on whether or not it
corresponds to a single vertex or a multivertex obtained after collapsing together a
set of vertices that are used by an embedding of a particular subgraph. In the former
case the label of the vertex is identical to its label in the original graph, whereas
in the latter case its label is determined by the canonical labeling (Section 6.2.1) of
its corresponding subgraph. This canonical-labeling-based approach ensures that the
multivertices representing the embeddings of the same subgraphs will be uniquely
assigned the same label.

To properly represent edges that are connected to multivertices, the augmented
graph representation assigns a label to each edge that is a tuple of five elements. For
an edge e = uv in an augmented graph Ĝ, this tuple is denoted by (l̂(u), l̂(v), l(e),
e. epid(u), e. epid(v)), where l̂(u) and l̂(v) are the labels of the vertices u and v

in Ĝ, l(e) is the original label of the edge e, and e. epid(u) and e. epid(v) are two
numbers, referred to as endpoint identifiers, that uniquely identify the specific pair
of G’s vertices within the subgraphs encapsulated by u and v to which e is incident.
The endpoint identifiers are determined by first ordering the original vertices in u

and v according to their respective canonical labeling and then using their rank as
the endpoint identifier. If an endpoint is not a multivertex, but just a plain vertex,
the endpoint identifier is always set to zero.

Since the endpoint identifiers are derived from the canonical labels of u and v,
it is easy to see that this approach will correctly assign the same five elements to all
the edges that have the same original label and connect the same pair of subgraphs
at exactly the same vertices. However, to ensure that topologically equivalent edges
can be quickly identified by comparing their tuple representation, the order of the
tuple’s elements must be determined in a consistent fashion. For this reason, given
an edge e = uv, the precise tuple representation is defined as follows:

(l̂(u), l̂(v), l(e), e. epid(u), e. epid(v)) if l̂(u) < l̂(v), or

if l̂(u) = l̂(v) and e. epid(u) ≤ epid(v)

or

144 FINDING TOPOLOGICAL FREQUENT PATTERNS FROM GRAPH DATASETS

(l̂(v), l̂(u), l(e), e. epid(v), e. epid(u)) if l̂(u) > l̂(v), or

if l̂(u) = l̂(v) and e. epid(u) > epid(v)

This consistent tuple representation ensures that all the edges that share the same
label in the augmented graph correspond to identical subgraphs in the original
graph.

Note that loops and multiple edges can also be represented by these five-
element tuples, and the augmented graph representation treats them like ordinary
edges.

6.6.2 Grew-se —Single-Edge Collapsing

The simplest version of Grew, which is referred to as Grew-se, operates on the
augmented graph and repeatedly identifies frequently occurring edges and contracts
them in a heuristic fashion.

The overall structure of Grew-se is shown in Algorithm 6.5. It takes as input
the original graph G and the minimum frequency threshold f , and on completion,
it returns the set of frequent subgraphs F that it identified. During each iteration
(loop starting at line 5), it scans the current augmented graph Ĝ and determines the
set of edge types E that occur at least f times in Ĝ. This is achieved by comparing
the labels of the various edges in Ĝ and determining those edge types that occur at
least f times.

From the discussion in Section 6.6.1, we know that each of these edge types rep-
resents identical subgraphs, and as a result each edge type in E can lead to a frequent
subgraph. However, because some vertices can be incident to multiple embeddings
of the same (or different) frequent edge types, the frequencies obtained at this step
represent upper bounds, and the actual number of the vertex-disjoint embeddings
can be smaller. For this reason, Grew-se further analyzes the embeddings of each
edge type to select a maximal set of embeddings that do not share any vertices with
each other or with embeddings selected previously for other edge types. This step
(loop starting at line 8) is achieved by constructing the overlap graph Go for the
set of embeddings of each edge type e and using a greedy maximal independent
set algorithm [25] to quickly identify a large number of vertex-disjoint embeddings.
If the size of this maximal set is greater than the minimum frequency threshold,
this edge type survives the current iteration and the embeddings in the indepen-
dent set are marked. Otherwise the edge type is discarded as it does not lead to a
frequent subgraph in the current iteration. After processing all the edge types, the
contraction operations are performed, graph Ĝ is updated, and the next iteration
begins.

To illustrate some of the steps performed by Grew-se, let us take the sim-
ple example shown in Figure 6.7 in which the original graph [Fig. 6.7(a)] contains
two squares connected to each other by an edge. Assume all the edges have the
same label at the beginning, while there are two distinct vertex labels (the white
and the slightly shaded ones). Edge contraction process proceeds as illustrated in

6.6 GREW SCALABLE FREQUENT SUBGRAPH DISCOVERY ALGORITHM 145

Algorithm 6.5 Grew-se(G, f)

1:
 G is the input graph.
2:
 f is the minimum frequency threshold.
3: F ← ∅
4: Ĝ ← augmented graph representation of G
5: while true do
6: E ← all edge-types in Ĝ that occur at least f times
7: order E in decreasing frequency
8: for each edge-type e in E do
9: Go ← overlap graph of e
10:
 each vertex in Go corresponds to an embedding

of e in Ĝ
11: MMIS ← obtain MIS for Go
12: e.f ← |MMIS|
13: if e.f ≥ f then
14: F ← F ∪ {e}
15: for each embedding m in MMIS do
16: mark m
17: end for
18: end if
19: end for
20: if no marked edge in Ĝ then
21: break
22: end if
23: update Ĝ by rewriting all of its marked edges
24: end while
25: return F

X
U

TS STP

Q

Q Q

Q

R R

R

(b)

P

Q: 4, R: 3, P: 2
(a) (c)

V V
W

(d) (e)
S: 2, T : 2, U : 1 V : 2, W : 1 X : 1

Figure 6.7. Sequence of edge collapsing operations performed by GREW-SE.

Figures 6.7(b)–(e), assuming the edge types are selected in decreasing order of
the raw frequency (each edge type is represented by a capital letter and the raw
frequency of each edge type is also shown in the figure). Every time an edge
is contracted, a new multivertex is created whose label identifies a subgraph that
the multivertex represents (shown by the difference in shading and filling pattern
of vertices). Note that at the end of this sequence of edge collapsing, the two
squares originally existed in Figure 6.7(a) are represented by two black vertices in
Figure 6.7(e).

146 FINDING TOPOLOGICAL FREQUENT PATTERNS FROM GRAPH DATASETS

6.6.3 GREW-ME—Multiedge Collapsing

As discussed in Section 6.6.1, a result of successive graph rewriting operations is
the creation of multiple loops and multiple edges in Ĝ. In many cases, there may
be the same set of multiple edges connecting similar pairs of vertices in Ĝ, all
of which can be collapsed together to form a larger frequent subgraph. Grew-
se can potentially identify such a subgraph by collapsing a sequence of single
edges (which after the first iteration, each successive iteration will involve loop
edges). However, this will require multiple iterations, and, owing to the heuristic
nature of the overall algorithm, it may fail to orchestrate the proper sequence of
steps.

To address this problem, we developed the Grew-me algorithm that in addition
to collapsing vertices connected via a single edge, it also analyzes the sets of multi-
ple edges connecting pairs of vertices to identify any frequent subsets of edges. This
is achieved by using a traditional frequent closed itemset mining algorithm (e.g.,
[52, 53, 71]) as follows. For each pair of vertices that are connected via multiple
edges (or a single vertex with multiple loops), Grew-me creates a list that con-
tains the multiple edge types that are involved and treats each list as a transaction
whose items correspond to the multiple edges. Then, by running a closed frequent
itemset mining algorithm, Grew-me finds all the frequent sets of edges whose raw
frequency is above the minimum threshold. Each of these multiple sets of edges is
treated as a different edge type, and Grew-me proceeds in a fashion identical to
Grew-se.

6.6.4 Mining a Large Graph Using GREW—Two
Randomized Schemes

A key limitation of Grew is that it tends to find a very small number of frequent
subgraphs compared to complete algorithms [45, 47]. This is primarily due to the
fact that its graph rewriting-based approach substantially constraints the sets of
frequent subgraphs that are allowed to have overlapping embeddings (Property 6.2
in Section 6.6), and secondary due to the fact that it underestimates the frequency
of each subgraph and consequently it may miss subgraphs that are actually frequent.

However, because of its low computational requirements, Grew can be used
as a building block to develop meta-strategies, which can be used to effectively
mine very large graphs in a reasonable amount of time. The key to such schemes
is the observation that the particular set of frequent subgraphs that Grew discovers
is determined by the order in which the different edge types are listed up, and by
the maximal independent set algorithm. The order of the edge-types is important
because during each iteration, a vertex of Ĝ can only participate in a single con-
traction operation. As a result, edge types examined earlier have a greater chance in
having a larger number of vertex-disjoint embeddings and thus resulting in a frequent
subgraph. At the same time, a particular set of maximal independent embeddings
can directly or indirectly impact the discovered subgraphs. The direct impact occurs
when the size of the selected maximal independent set happens to be smaller than
the minimum frequency threshold (when the maximum size independent set is above

6.6 GREW SCALABLE FREQUENT SUBGRAPH DISCOVERY ALGORITHM 147

the threshold), in which case the subgraph will not be identified as frequent. The
indirect impact occurs when the chosen independent set negatively affects the num-
ber of vertex-disjoint embeddings of some of the edge types that are examined
afterward.

Grew performs each of these steps by employing relatively simple heuristics
that are designed to maximize the frequency of the discovered patterns. How-
ever, each of these two steps can be performed using different heuristics that can
guide/bias Grew to find/prefer one set of subgraphs over the others. This ability
makes it possible to develop approaches that invoke Grew multiple times, each
time biasing it toward discovering a different set of frequent subgraphs, and return
the union of the frequent subgraphs that were found across the multiple runs.

We developed two different schemes for biasing each successive run. Both of
them rely on the observations made in Section 6.6.4, which identified Grew’s key
operations that affect the set of subgraphs that it identifies. The first scheme, instead
of considering the different edge types in decreasing order of their raw frequency,
it considers them in a random order, which is different for each successive run.
Since each run of Grew will tend to favor different sets of edge types, the fre-
quent subgraphs identified in successive runs will be somewhat different. We will
refer to this as the simple randomization scheme. The second scheme uses the same
random traversal strategy as before but also tries to bias the patterns to different
edges from those used earlier. This is done by maintaining statistics as to which
and how many times each edge was used to support a frequent subgraph identified
by earlier iterations, and biases the algorithm that selects the maximal independent
set of embeddings so that it will prefer edges that have not been used (or used
infrequently) in previously discovered subgraphs. Thus, this scheme tries to learn
from previous invocations, and for this reason it will be referred to as the adaptive
randomization scheme.

Table 6.6 shows the performance and characteristics of the subgraphs discovered
by multiple runs (ranging from 1 to 10) of Grew-se and Grew-me for the cases
in which these multiple runs were performed using the simple and the adaptive
randomization schemes.

From these results we can see that the two randomization schemes are quite
effective in allowing Grew to find a larger number of frequent subgraphs. As the
number of runs increases, both the number of frequent patterns and the size of
the largest frequent patterns increase monotonically. As expected, there is a certain
degree of overlap between the patterns found by different runs, and for this reason
the distinct number of subgraphs does not increase linearly. In addition, the set of
vertices and edges of the original graph that are covered by the discovered fre-
quent subgraphs also increases with the number of runs. For all the datasets, after
invoking Grew-se and Grew-me 10 times, the resulting set of frequent subgraphs
cover more than 50% of the vertices and/or edges of the input graph. This suggests
that Grew is able to find a diverse set of frequent subgraphs that captures a good
fraction of the input graph.

Comparing the relative performance of Grew-se and Grew-me within the con-
text of this randomization framework, we can see that Grew-me tends to find a

148 FINDING TOPOLOGICAL FREQUENT PATTERNS FROM GRAPH DATASETS

TABLE 6.6 Simple and Adaptive Randomizationa

Simple Randomization Adaptive Randomization

Dataset f Method Runs t (s) |F| k∗ RV RE t (s) |F| k∗ RV RE

Aviation 100 Grew-se 1 23 245 14 54 67 18 245 14 54 67
2 46 386 14 44 59 35 386 14 44 59
5 261 795 17 28 47 166 793 19 30 48

10 423 1426 22 20 39 260 1476 19 19 39

Grew-me 1 49 233 14 55 68 37 233 14 55 68
2 193 363 22 44 59 144 363 22 44 59
5 345 754 22 28 47 252 754 22 23 47

10 615 1422 22 19 40 634 1434 40 18 39

Citation 10 Grew-se 1 39 659 5 54 94 41 659 5 54 94
2 82 881 5 45 92 86 881 5 44 92
5 231 1340 7 36 88 224 1365 5 35 87

10 461 1912 7 31 82 453 1940 8 30 80

Grew-me 1 188 658 5 56 94 189 658 5 56 94
2 367 940 6 46 92 358 936 7 46 92
5 899 1527 7 37 88 916 1519 9 36 87

10 1843 2311 8 32 82 2683 2319 9 30 80

VLSI 10 Grew-se 1 12 394 20 6 73 12 389 21 6 73
2 25 712 20 2 61 24 674 34 1 58
5 74 1372 20 1 42 62 1452 34 0 34

10 146 2335 21 0 27 140 2416 34 0 16

Grew-me 1 37 509 20 10 73 37 509 18 10 74
2 83 959 22 3 58 74 933 21 3 57
5 235 2049 30 1 38 202 1925 22 0 31

10 440 3547 30 0 25 362 3403 27 0 14

Web 10 Grew-se 1 298 2716 9 74 86 199 2716 9 74 86
2 393 3268 9 69 82 395 3273 13 67 80
5 992 4095 15 62 74 994 4155 13 58 70

10 1970 4871 15 56 67 1974 4881 13 51 61

Grew-me 1 805 2719 14 74 86 550 2719 14 74 86
2 1084 3249 14 69 82 978 3257 14 67 80
5 2578 4138 16 62 74 2464 4158 14 58 70

10 5074 4945 16 57 67 5175 4979 15 51 61

af : the minimum frequency threshold. Runs: the number of randomized runs. t : the runtime in seconds. |F|: the number of frequent
patterns discovered. k∗: the size of the largest frequent patterns found. RV , RE : the fraction of vertices and edges (%), respectively, in
the input graph that are not covered by any of the frequent patterns discovered.

larger number of distinct frequent subgraphs whose maximum size is larger than
the subgraphs discovered by Grew-se. This indicates that Grew-me’s ability to
identify multiple edges and collapse vertices that are connected by them becomes
more effective in increasing the diversity of the discovered patterns in the context
of this randomization strategy.

Finally, comparing the relative performance of the two randomization schemes,
we can see that, as expected, the adaptive randomization scheme improves the pat-
tern discovery process as it finds a larger number of distinct patterns than the simple
randomization. However, the overall size of the patterns identified by both schemes
remains the same, as they both cover similar fractions of the vertices and/or edges
of the input graph.

6.7 RELATED RESEARCH 149

6.7 RELATED RESEARCH

6.7.1 Related Work on Algorithms for the
Graph-Transaction Setting

In recent years, a number of efficient and scalable algorithms have been developed to
find patterns in the graph-transaction setting [8, 32, 33, 44, 64, 65]. These algorithms
are complete in the sense that they are guaranteed to discover all frequent subgraphs
and were shown to scale to very large graph datasets. However, developing algo-
rithms that are capable of finding patterns in the single-graph setting has received
much less attention, despite the fact that this problem setting is more generic and
applicable to a wider range of datasets and application domains than the other. More-
over, existing algorithms that are guaranteed to find all frequent patterns [22, 63]
or algorithms that are heuristic, such as GBI [67] and SUBDUE [31], which tend
to miss a large number of frequent patterns, are computationally expensive and do
not scale to large datasets.

Different algorithms have been developed capable of finding all frequently
occurring subgraphs in a database of graphs with reasonable computational effi-
ciency. Some of these are the AGM algorithm developed by Inokuchi et al. [35, 37],
the FSG algorithm developed by Kuramochi and Karypis [41, 42], the chemical
substructure discovery algorithm developed by Borgelt and Berthold [8], the gSpan
algorithm developed by Yan and Han [64], FFSM by Huan et al. [33], and GASTON
by Nijssen and Kok [50].

The AGM algorithm was initially developed to find frequently induced sub-
graphs [35]. After Kuramochi and Karypis proposed FSG [41], Inokuchi et al. [37]
extended AGM to find arbitrary frequent subgraphs and discovered the frequent
subgraphs using a breadth-first approach and grew the frequent subgraphs one ver-
tex at a time. To distinguish a subgraph from another, it uses a canonical labeling
scheme based on the adjacency matrix representation.

The FSG algorithm initially presented in [41], with subsequent improvements
presented in [42], is the first work on finding frequent connected subgraphs from a
set of labeled graph transactions. Many algorithms proposed afterward are following
the problem formulation first presented in [41]. FSG uses a breadth-first approach
to discover the lattice of frequent subgraphs. The size of these subgraphs is grown
by adding one edge at a time, and the frequent pattern lattice is used to prune
non-downward-closed candidate subgraphs. FSG employs a number of techniques
to achieve high computational performance including efficient canonical labeling,
efficient candidate subgraph generation algorithms, and various optimizations during
frequency counting.

The chemical substructure mining algorithm developed by Borgelt and Berthold
[8] finds frequent substructures (connected subgraphs) using a depth-first approach
similar to that used by dEclat [69]. To reduce the number of subgraph isomorphism
operations, it keeps the embeddings of previously discovered subgraphs and tries
to extend the embeddings by one edge. However, despite these optimizations, the
reported speed of the algorithm is slower than that achieved by FSG and gSpan. This
is mainly due to the fact that their candidate subgraph generation scheme does not

150 FINDING TOPOLOGICAL FREQUENT PATTERNS FROM GRAPH DATASETS

ensure that the same subgraph is generated only once, and the algorithm generates
and counts the frequency of the same subgraph multiple times.

The gSpan algorithm finds the frequently occurring subgraphs also following a
depth-first approach. However, unlike the previous algorithm, every time a candidate
subgraph is generated, it is checked against previously discovered subgraphs to
determine whether or not it has already been explored. To ensure that these subgraph
comparisons are done efficiently, they use a canonical labeling scheme based on
depth-first traversals. According to the reported performance in [42, 64], gSpan
and FSG are comparable on real datasets corresponding to chemical compounds
(the PTE chemical dataset5), whereas gSpan performs better than FSG on synthetic
datasets. FFSM incorporates the join operation that is commonly used in horizontal
frequent mining algorithms in the depth-first search scheme for efficient execution.
GASTON focuses on enumerating simple frequent structures first, such as paths
and trees, and then moves to identifying general graphs. Yan and Han [65] and
Huan et al. [34] proposed closed and maximal frequent subgraph mining algorithms,
respectively.

6.7.2 Related Work on Algorithms for the Single-Graph Setting

In the rest of this section, we will describe related research for the single-graph
setting as it is directly related to the topic of this chapter.

The most well-known algorithm for finding recurring subgraphs in a single large
graph is the SUBDUE system, originally developed in 1994 and improved over
the years [10–12, 31]. SUBDUE is an approximate algorithm and finds patterns
that can compress the original input graph by substituting those patterns with a
single vertex. In evaluating the extent to which a particular pattern can compress
the original graph, it uses the minimum description length (MDL) principle and
employs a heuristic beam search to narrow the search space. These approximations
improve its computational efficiency but at the same time it prevents it from finding
subgraphs that are indeed frequent. GBI [67] is another greedy heuristics-based
algorithm similar to SUBDUE.

Ghazizadeh and Chawathe [22] developed an algorithm called SEuS that uses
a data structure called summary to construct a lossy compressed representation of
the input graph. This summary is obtained by collapsing together all the vertices
of the input graph that have the same label and is used to quickly prune infrequent
candidates. As the authors indicate, this summary data–structure is useful only when
the input graph contains a relatively small number of frequent subgraphs with high
frequency and is not effective if there are a large number of frequent subgraphs
with low frequency.

Vanetik et al. [63] presented an algorithm for finding all frequently occurring
subgraphs from a single labeled undirected graph using the maximum number of
edge-disjoint embeddings of a graph as a measure of its frequency. Each subgraph
is represented by its minimum number of edge-disjoint paths (path number) and

5ftp://ftp.comlab.ox.ac.uk/pub/Packages/ILP/Datasets/carcinogenesis/progol/carcinogenesis.tar.Z.

6.8 CONCLUSIONS 151

uses a level-by-level approach to grow the patterns based on their path number.
Their emphasis is on efficient candidate generation and no special attention is paid
for frequency counting.

Motoda et al. developed an algorithm called GBI [66] that is similar to SUB-
DUE and later proposed the improved version called B-GBI [47] adopting the beam
search. B-GBI is the closest algorithm to our study, in the sense that both perform
the same basic operation to identify frequent patterns based on edge contraction.
However, while B-GBI focuses on one edge type at a time when collapsing the
embeddings of the edge type in a greedy manner, Grew identifies and contracts
more than one edge type concurrently using a greedy MIS algorithm. Because B-GBI
works on a single edge type at at time, it uses the beam search to compensate the
greedy nature of the algorithm. On the other hand, we adopted the randomized
process to increase the diversity of frequent patterns to be found, on top of the
concurrent edge collapsing scheme of Grew. Furthermore, our algorithm employs
various heuristics such as multiedge collapsing and the adaptive and sequential
schemes to ensure the coverage of the input graph by the frequent patterns. Unfor-
tunately, because the current implementation of B-GBI is mainly designed for a set
of graphs, not for a single large graph, it cannot be directly compared with Grew.

6.8 CONCLUSIONS

In this chapter, we described different problem definitions and formulations for
finding frequent topological patterns from graph datasets. We also showed three
representative approaches for both the graph-transaction setting and the single-graph
setting, illustrating their performance and scalability using experimental results with
real datasets from various application domains.

In recent years, frequent subgraph mining has been attracting strong attention
and various algorithms have been proposed mainly for the graph-transaction set-
ting, and the efficiency and scalability have been improved significantly (e.g., [33,
36, 44, 50, 64]). For a certain type of graph datasets such as chemical graphs,
those algorithms have shown excellent performance. Furthermore, frequent sub-
graph methodology has been shown to be promising when the frequent patterns
discovered by those methods are used as features in the chemical compound classi-
fication or virtual screening tasks. For example, in [15, 16], frequent subgraphs are
used as features for chemical compound classification, and the resulting classifica-
tion accuracy is equivalent or even superior to the accuracy based on fingerprints.
We should note that those fingerprints can be considered a collection of domain
expertise, whereas frequent subgraphs do not require much domain-specific knowl-
edge. However, it is yet unclear whether those algorithms can operate efficiently on
other types of graph datasets as they do on chemical graphs. Chemical graphs are
easy to handle in the sense that vertex degree is bound to a small constant (normally
at most 4), that there are relatively diverse vertex and edge labels, and that the size
of each graph is reasonably small (typically around 20–25 edges). It is possible that
those algorithms have overfit for chemical graph datasets.

152 FINDING TOPOLOGICAL FREQUENT PATTERNS FROM GRAPH DATASETS

The issue of overfitting is also related to the lack of significant applications.
Other than chemical compound classification or virtual screening, there have not
been important real applications that require frequent subgraph mining. This is partly
because those existing frequent subgraph mining methods may not be able to scale
efficiently on different kinds of graph datasets (e.g., larger or denser graphs with
less variety of edge/vertex labels). Without needs for other practical applications, it
may be inevitable to concentrate on the only killer application domain.

One possible direction for future research is to focus on a certain type of
subgraph and develop complete algorithms that can find all frequent subgraphs of
that kind, although it may be difficult to rationalize focusing on a particular class
of subgraphs from an application user standpoint. Another approach will be to find
reasonably large sets of frequent patterns heuristically so that one can handle more
difficult graphs (i.e., larger, denser, or less labeled). In this direction, it will be
crucial to define theoretically well the characteristics of the frequent subgraphs to
be discovered.

Datasets

We briefly describe the source and characteristics of the datasets used in the experi-
ments shown in this chapter. The PTC dataset6 used with FSG contains 417 chemical
compounds. From the description of chemical compounds in the dataset, we cre-
ated a transaction for a compound, a vertex for an atom, and an edge for a bond.
Each vertex has a label assigned for its atom type and each edge has an edge label
assigned for its bond type. There are 27 atom types and 4 bond types. On average
the size of the graph transactions in the dataset is 15 edges.

The basic characteristics of the datasets used with hSiGraM and vSiGraM
and with Grew are shown in Tables 6.7 and 6.8, respectively. Note that we created
different graph datasets from the same source for SiGraM and for Grew because
SiGraM can handle only sparse graph datasets.

The Aviation and Credit datasets are obtained from the website of SUBDUE.7

The Aviation dataset is originally from the Aviation Safety Reporting System Data-
base and the Credit dataset is from the UCI machine learning repository [7]. The
directed edges in the original graph data were converted into undirected ones. For
the experiments using hSiGraM and vSiGraM, we removed undirected edges to
show “near to” relation between two vertices because those edges form cliques that
make this graph difficult to mine, while for Grew the graph is used as is.

The Citation dataset was created from the citation graph used in KDD Cup
2003.8 For hSiGraM and vSiGraM, each vertex in this graph corresponds to a
document and each edge corresponds to a citation. Because our algorithms are for
undirected graphs, the direction of these citations was ignored. Since the original
dataset does not have any meaningful label for vertices, we generated vertex labels
as follows. We first used a clustering algorithm to form clusters of the document

6http://www.predictive-toxicology.org/ptc/.
7http://cygnus.uta.edu/subdue/databases/index.html.
8KDD Cup 2003, http://www.cs.cornell.edu/projects/kddcup/datasets.html.

6.8 CONCLUSIONS 153

TABLE 6.7 Datasets Used with HSIGRAM and VSIGRAMa

Dataset |V (G)| |E(G)| |LV | |LE | C

Aviation 101,185 196,964 6,173 51 2,703
Credit 14,700 28,000 59 20 700
Citation 29,014 42,064 50 12 16,999
Contact map 33,443 224,488 21 2 170
DTP 41,190 86,140 58 3 2,319
VLSI 12,752 23,084 23 1 2,633

a |V (G)|: the total number of vertices. |E(G)|: the total number of edges. |LV |: the total number of
distinct vertex labels. |LE |: the total number of distinct edges labels. C: the total number of connected
components.

TABLE 6.8 Datasets Used with GREWa

Dataset |V (G)| |E(G)| |LV | |LE | C

Aviation 101,185 133,113 6,173 52 1,049
Citation 29,014 294,171 742 1 3,018
VLSI 29,347 81,353 11 1 1
Web 255,798 317,247 3,438 1 25,685

a |V (G)|: the total number of vertices. |E(G)|: the total number of edges. |LV |: the total number of
distinct vertex labels. |LE |: the total number of distinct edges labels. C: the total number of connected
components.

abstracts into 50 thematically coherent topics and then assigned the cluster ID as the
label to the corresponding vertices. For the edges, we used as labels the difference
in the publication year of the two papers. For example, if two papers were published
in 1997 and 2002, an edge is created between those two document vertices with the
label “5.” Finally, because some of the vertices in the resulting graph had a very
high degree (i.e., authorities and hubs), we kept only the vertices whose degree was
less or equal to 15. On the other hand, for Grew, we assigned only vertices labels
obtained from the subdomains of the first author’s email address, since the original
graph has no meaningful labels on either the vertices or the edges. Self-citations
based on this vertex assignment were removed.

The Contact Map dataset is made of 170 proteins from the Protein Data Bank [5]
with pairwise sequence identity lower than 25%. The vertices in these graphs cor-
respond to the different amino acids, and the edges connect two amino acids if
they are either at consecutive sequence positions or they are in contact in their 3D
structure. Amino acids are considered to be in contact if the distance between their
Cα atoms is less than 8 Å. Furthermore, while creating the graphs we only consid-
ered nonlocal contacts that are defined as the contacts between amino acids whose
sequence separation is at least six amino acids.

The DTP dataset is a collection of 2319 chemical compounds randomly selected
from the dataset of 223,644 chemical compounds provided by the Developmental

154 FINDING TOPOLOGICAL FREQUENT PATTERNS FROM GRAPH DATASETS

Therapeutics Program (DTP) at National Cancer Institute.9 Note that each chemical
compound forms a connected component and there are 2319 such components in
this dataset. Each vertex corresponds to an atom and its label represents the atom
type. An edge is formed between two vertices if the corresponding two atoms are
connected by a bond. The type of a bond is used as an edge label, and there are
three distinct edge labels.

The VLSI dataset was obtained from the International Symposium on Physical
Design ’98 (ISPD98) benchmark suite10 and corresponds to the netlist of a real
circuit. For hSiGraM and vSiGraM, the netlist was converted into a graph by first
removing any nets that are longer than four and then using a star-based approach
to replace each net (i.e., hyperedge) by a set of edges. We also limited the size
of the largest discovered pattern to five edges. This is because for the values of
the frequency threshold used in our experiments, the only frequent patterns that
contained more than five edges were paths, and because of the highly connected
nature of the underlying graph, there were a very large number of such paths, making
it hard to find these longer path patterns in a reasonable amount of time. For Grew,
the netlist was converted into a graph by using a star-based approach to replace
each net (i.e., hyperedge) by a set of edges.

The Web dataset was obtained from the 2002 Google Programming Contest.11

The original dataset contains various Web pages and links from various “edu”
domains. We converted the dataset into an undirected graph in which each ver-
tex corresponds to a Web page and an edge to a hyperlink between Web pages. In
creating this graph, we kept only the links between “edu” domains that connected
sites from different subdomains. Every edge has an identical label (i.e., unlabeled),
whereas each vertex was assigned a label corresponding to the subdomain of the
Web server.

REFERENCES

1. R. C. Agarwal, C. C. Aggarwal, and V. V. V. Prasad. A tree projection algorithm
for generation of frequent item sets. Journal of Parallel and Distributed Computing,
61(3):350–371, 2001.

2. R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In J. B. Bocca,
M. Jarke, and C. Zaniolo, eds. Proceedings of the 20th International Conference on Very
Large Data Bases (VLDB), pp. 487–499. Morgan Kaufmann, September 1994.

3. R. Agrawal and R. Srikant. Mining sequential patterns. In P. S. Yu and A. L. P. Chen,
eds. Proceedings of the 11th International Conference on Data Engineering (ICDE), pp.
3–14. IEEE Press, 1995.

4. Y. Amit and A. Kong. Graphical templates for model registration. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 18(3):225–236, 1996.

9DTP 2D and 3D Structural Information. http://dtp.nci.nih.gov/docs/3d database/structural information/
structural data.html.
10http://vlsicad.cs.ucla.edu/∼cheese/ispd98.html.
11http://www.google.com/programming-contest/.

REFERENCES 155

5. H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N.
Shindyalov, and P. E. Bourne. The protein data bank. Nucleic Acids Research,
28:235–242, 2000.

6. P. Berman and T. Fujito. On the approximation properties of independent set problem
in degree 3 graphs. In Proceedings of Workshop on Algorithms and Data Structures, pp.
449–460, 1995.

7. C. L. Blake and C. J. Merz. UCI repository of machine learning databases. 1998.
8. C. Borgelt and M. R. Berthold. Mining molecular fragments: Finding relevant substruc-

tures of molecules. In Proceedings of 2002 IEEE International Conference on Data
Mining (ICDM), pp. 51–58, 2002.

9. C.-W. K. Chen and D. Y. Y. Yun. Unifying graph-matching problem with a practi-
cal solution. In Proceedings of International Conference on Systems, Signals, Control,
Computers, September 1998.

10. D. J. Cook and L. B. Holder. Substructure discovery using minimum description length
and background knowledge. Journal of Artificial Intelligence Research, 1:231–255, 1994.

11. D. J. Cook and L. B. Holder. Graph-based data mining. IEEE Intelligent Systems,
15(2):32–41, 2000.

12. D. J. Cook, L. B. Holder, and S. Djoko. Knowledge discovery from structural data.
Journal of Intelligent Information Systems, 5(3):229–245, 1995.

13. L. Dehaspe, H. Toivonen, and R. D. King. Finding frequent substructures in chemical
compounds. In R. Agrawal, P. Stolorz, and G. Piatetsky-Shapiro, eds, Proceedings of the
4th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(KDD-98), pp. 30–36. AAAI Press, 1998.

14. M. Deshpande, M. Kuramochi, and G. Karypis. Automated approaches for classifying
structures. In Proceedings of the 2nd Workshop on Data Mining in Bioinformatics
(BIOKDD ’02), 2002.

15. M. Deshpande, M. Kuramochi, and G. Karypis. Frequent sub-structure based approaches
for classifying chemical compounds. In Proceedings of 2003 IEEE International Con-
ference on Data Mining (ICDM), pp. 35–42, 2003.

16. M. Deshpande, M. Kuramochi, N. Wale, and G. Karypis. Frequent sub-structure-based
approaches for classifying chemical compounds. IEEE Transactions on Knowledge and
Data Engineering (TKDE), Special Issue on Mining Biological Data, 2005.

17. B. Dunkel and N. Soparkar. Data organization and access for efficient data mining.
In Proceedings of the 15th IEEE International Conference on Data Engineering, pp.
522–529, March 1999.

18. D. Dupplaw and P. H. Lewis. Content-based image retrieval with scale-spaced object
trees. In M. M. Yeung, B.-L. Yeo, and C. A. Bouman, eds. Proceedings of SPIE: Storage
and Retrieval for Media Databases, Vol. 3972, pp. 253–261, 2000.

19. U. Feige, S. Goldwasser, L. Lovasz, S. Safra, and M. Szegedy. Approximating clique
is almost NP-complete. In Proceedings of the 32nd IEEE Symposium on Foundations
of Computer Science (FOCS), pp. 2–12, 1991.

20. S. Fortin. The graph isomorphism problem. Technical Report TR96-20, Department of
Computing Science, University of Alberta, Edmonton, Canada, 1996.

21. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman, New York, 1979.

22. S. Ghazizadeh and S. Chawathe. SEuS: Structure extraction using summaries. In Pro-
ceedings of the 5th International Conference on Discovery Science, pp. 71–85, 2002.

23. B. Goethals. Efficient Frequent Pattern Mining. Ph.D. thesis, University of Limburg,
Diepenbeek, Belgium, December 2002.

156 FINDING TOPOLOGICAL FREQUENT PATTERNS FROM GRAPH DATASETS

24. J. Gonzalez, L. B. Holder, and D. J. Cook. Application of graph-based concept learn-
ing to the predictive toxicology domain. In Proceedings of the Predictive Toxicology
Challenge Workshop, 2001.

25. M. M. Halldórsson and J. Radhakrishnan. Greed is good: Approximating independent
sets in sparse and bounded-degree graphs. Algorithmica, 18(1):145–163, 1997.

26. J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation. In
Proceedings of ACM SIGMOD International Conference on Management of Data, pp.
1–12, Dallas, TX, May 2000.

27. C. Hansch, P. P. Maolney, T. Fujita, and R. M. Muir. Correlation of biological activity
of phenoxyacetic acids with hammett substituent constants and partition coefficients.
Nature, 194:178–180, 1962.

28. J. Hipp, U. Güntzer, and G. Nakhaeizadeh. Algorithms for association rule mining–-a
general survey and comparison. SIGKDD Explorations, 2(1):58–64, July 2000.

29. D. S. Hochbaum. Efficient bounds for the stable set, vertex cover, and set packing
problems. Discrete Applied Mathematics, 6:243–254, 1983.

30. H. Hofer, C. Borgelt, and M. R. Berthold. Large scale mining of molecular fragments
with wildcards. In Proceedings of the 5th International Symposium on Intelligent Data
Analysis (IDA 2003), Vol. 2810 of Lecture Notes in Computer Science, pp. 376–385,
2003.

31. L. B. Holder, D. J. Cook, and S. Djoko. Substructure discovery in the SUBDUE system.
In Proceedings of the AAAI Workshop on Knowledge Discovery in Databases, pp.
169–180, 1994.

32. M. Hong, H. Zhou, W. Wang, and B. Shi. An efficient algorithm of frequent connected
subgraph extraction. In Proceedings of the 7th Pacific-Asia Conference on Knowledge
Discovery and Data Mining (PAKDD-03), Vol. 2637 of Lecture Notes in Computer Sci-
ence, pp. 40–51. Springer, 2003.

33. J. Huan, W. Wang, and J. Prins. Efficient mining of frequent subgraph in the presence
of isomophism. In Proceedings of 2003 IEEE International Conference on Data Mining
(ICDM’03), pp. 549–552, 2003.

34. J. Huan, W. Wang, J. Prins, and J. Yang. Spin: Mining maximal frequent subgraphs from
graph databases. In Proceedings of the 10th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD-2004), pp. 581–586, 2004.

35. A. Inokuchi, T. Washio, and H. Motoda. An apriori-based algorithm for mining frequent
substructures from graph data. In Proceedings of the 4th European Conference on Prin-
ciples and Practice of Knowledge Discovery in Databases (PKDD’00), pp. 13–23, Lyon,
France, September, 2000.

36. A. Inokuchi, T. Washio, and H. Motoda. Complete mining of frequent patterns from
graphs: Mining graph data. Machine Learning, 50(3):321–354, March 2003.

37. A. Inokuchi, T. Washio, K. Nishimura, and H. Motoda. A fast algorithm for mining
frequent connected subgraphs. Technical Report RT0448, IBM Research, Tokyo Research
Laboratory, 2002.

38. H. Kälviäinen and E. Oja. Comparisons of attributed graph matching algorithms for
computer vision. In Proceedings of STEP-90, Finnish Artificial Intelligence Symposium,
pp. 354–368, Oulu, Finland, June, 1990.

39. S. Khanna, R. Motwani, M. Sudan, and U. V. Vazirani. On syntactic versus computa-
tional views of approximability. In Proceedings of IEEE Symposium on Foundations of
Computer Science, pp. 819–830, 1994.

40. R. D. King, S. H. Muggleton, A. Srinivasan, and M. J. E. Sternberg. Structure-activity
relationships derived by machine learning: The use of atoms and their bond connectivities

REFERENCES 157

to predict mutagenicity by inductive logic programming. In Proceedings of the National
Academy of Sciences, Vol. 93, pp. 438–442, 1996.

41. M. Kuramochi and G. Karypis. Frequent subgraph discovery. In Proceedings of 2001
IEEE International Conference on Data Mining (ICDM), pp. 313–320, November 2001.

42. M. Kuramochi and G. Karypis. An efficient algorithm for discovering frequent sub-
graphs. Technical Report 02-026, University of Minnesota, Department of Computer
Science, 2002.

43. M. Kuramochi and G. Karypis. Finding frequent patterns in a large sparse graph. Tech-
nical Report 03-039, University of Minnesota, Department of Computer Science, 2003.

44. M. Kuramochi and G. Karypis. An efficient algorithm for discovering frequent sub-
graphs. IEEE Transactions on Knowledge and Data Engineering, 16(9):1038–1051,
2004.

45. M. Kuramochi and G. Karypis. Finding frequent patterns in a large sparse graph. In
Proceedings of the 2004 SIAM International Conference on Data Mining (SDM04),
2004.

46. T. K. Leung, M. C. Burl, and P. Perona. Finding faces in cluttered scenes using random
labeled graph matching. In Proceedings of the 5th IEEE International Conference on
Computer Vision, June 1995.

47. T. Matsuda, H. Motoda, T. Yoshida, and T. Washio. Mining patterns from structured data
by beam-wise graph-based induction. In Proceedings of the 5th International Conference
on Discovery ScienceDiscoveery (DS 2002), Vol. 2534 of Lecture Notes in Computer
Science, pp. 422–429. Springer, 2002.

48. B. D. McKay. Nauty users guide. http://cs.anu.edu.au/∼bdm/nauty/.
49. B. D. McKay. Practical graph isomorphism. Congressus Numerantium, 30:45–87, 1981.
50. S. Nijssen and J. N. Kok. A quickstart in frequent structure mining can make a difference.

In Proceedings of the 10th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD-2004), pp. 647–652, 2004.

51. P. R. J. Östergård. A fast algorithm for the maximum clique problem. Discrete Applied
Mathematics, 120:195–205, 2002.

52. N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discovering frequent closed itemsets
for association rules. In Proceedings of International Conference on Database Theory
(ICDT), pp. 398–416, 1999.

53. J. Pei, J. Han, and R. Mao. CLOSET: An efficient algorithm for mining frequent closed
itemsets. In ACM SIGMOD Workshop on Research Issues in Data Mining and Knowl-
edge Discovery, pp. 21–30, 2000.

54. J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal, and M.-C. Hsu. Pre-
fixSpan: Mining sequential patterns efficiently by prefix-projected pattern growth. In
Proceedings of 2001 International Conference on Data Engineering (ICDE’01), pp.
215–226, 2001.

55. E. G. M. Petrakis and C. Faloutsos. Similarity searching in medical image databases.
Knowledge and Data Engineering, 9(3):435–447, 1997.

56. R. C. Read and D. G. Corneil. The graph isomorph disease. Journal of Graph Theory,
1:339–363, 1977.

57. J. M. Robson. Algorithms for maximum independent sets. Journal of Algorithms,
7:425–440, 1986.

58. A. Savasere, E. Omiecinski, and S. B. Navathe. An efficient algorithm for mining asso-
ciation rules in large databases. In Proceedings of the 21st International Conference on
Very Large Data Bases (VLDB), pp. 432–444, 1995.

158 FINDING TOPOLOGICAL FREQUENT PATTERNS FROM GRAPH DATASETS

59. P. Shenoy, J. R. Haritsa, S. Sundarshan, G. Bhalotia, M. Bawa, and D. Shah. Turbo-
charging vertical mining of large databases. In Proceedings of ACM SIGMOD Interna-
tional Conference on Management of Data, pp. 22–33, May 2000.

60. R. Srikant and R. Agrawal. Mining sequential patterns: Generalizations and performance
improvements. In Proceedings of the 5th International Conference on Extending Database
Technology (EDBT), Vol. 1057, pp. 3–17, 1996.

61. A. Srinivasan and R. D. King. Feature construction with inductive logic programming:
A study of quantitative predictions of biological activity aided by structural attributes.
Data Mining and Knowledge Discovery, 3(1):37–57, 1999.

62. A. Srinivasan, R. D. King, S. H. Muggleton, and M. Sternberg. The predictive toxicol-
ogy evaluation challenge. In Proceedings of the 15th International Joint Conference on
Artificial Intelligence (IJCAI), pp. 1–6. Morgan-Kaufmann, 1997.

63. N. Vanetik, E. Gudes, and S. E. Shimony. Computing frequent graph patterns from
semistructured data. In Proceedings of 2002 IEEE International Conference on Data
Mining (ICDM), pp. 458–465, 2002.

64. X. Yan and J. Han. gSpan: Graph-based substructure pattern mining. In Proceedings of
2002 IEEE International Conference on Data Mining (ICDM), pp. 721–724, 2002.

65. X. Yan and J. Han. CloseGraph: Mining closed frequent graph patterns. In Proceedings
of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD-2003), pp. 286–295, 2003.

66. K. Yoshida and H. Motoda. CLIP: Concept learning from inference patterns. Artificial
Intelligence, 75(1):63–92, 1995.

67. K. Yoshida, H. Motoda, and N. Indurkhya. Graph-based induction as a unified learning
framework. Journal of Applied Intelligence, 4:297–328, 1994.

68. M. J. Zaki. Scalable algorithms for association mining. IEEE Transactions on Knowledge
and Data Engineering, 12(2):372–390, 2000.

69. M. J. Zaki and K. Gouda. Fast vertical mining using diffsets. Technical Report 01-1,
Department of Computer Science, Rensselaer Polytechnic Institute, 2001.

70. M. J. Zaki and K. Gouda. Fast vertical mining using diffsets. In Proceedings of the
9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(KDD-2003), 2003.

71. M. J. Zaki and C.-J. Hsiao. CHARM: An efficient algorithm for closed association
rule mining. Technical Report 99-10, Department of Computer Science, Rensselaer
Polytechnic Institute, October 1999.

7
UNSUPERVISED AND

SUPERVISED PATTERN
LEARNING IN GRAPH DATA

DIANE J. COOK, LAWRENCE B. HOLDER, AND NIKHIL KETKAR

School of Electrical Engineering & Computer Science Washington State
University Pullman, Washington∗

7.1 INTRODUCTION

The success of machine learning and data mining for business and scientific purposes
has fueled the expansion of its scope to new representations and techniques. Much
collected data is structural in nature, containing entities as well as relationships
between these entities. Compelling data in bioinformatics [32], network intrusion
detection [15], Web analysis [2, 8], and social network analysis [7, 27] has become
available that requires effective handling of structural data. The ability to learn
concepts from relational data has also become a crucial challenge in many security-
related domains. For example, the U.S. House and Senate Intelligence Committees’
report on their inquiry into the activities of the intelligence community before and
after the September 11, 2001, terrorist attacks revealed the necessity for “connecting
the dots” [28], that is, focusing on the relationships between entities in the data rather
than merely on an entity’s attributes.

In this chapter we describe an approach to mining concepts from graph-based
data. We provide an algorithmic overview of the approach implemented in the
Subdue system and describe its uses for unsupervised discovery and supervised

∗Part of this work was done while the authors were at the University of Texas at Arlington, Arlington,
Texas

Mining Graph Data, Edited by Diane J. Cook and Lawrence B. Holder
Copyright c© 2007 John Wiley & Sons, Inc.

159

160 UNSUPERVISED AND SUPERVISED PATTERN LEARNING IN GRAPH DATA

concept learning. This book details several different approaches for performing these
same tasks. To assist in understanding the relationships between these approaches,
we also perform experimental comparisons between Subdue and frequent subgraph
miners and inductive logic programming (ILP) learning methods. We observe that
each type of approach offers unique advantages for certain classes of applications
and all face challenges that will drive future research.

7.2 MINING GRAPH DATA USING SUBDUE

The Subdue graph-based relational learning system1 [3, 4] encompasses several
approaches to graph-based learning, including discovery, clustering, and supervised
learning, which will be described in this section. Subdue uses a labeled graph G =
(V, E,µ, ν) as both input and output, where V = {v1, v2, . . . , vn} is a set of vertices,
E = {(vi, vj)|vi, vj ∈ V } is a set of edges, and µ and ν represent node and edge
labeling functions, as described in Chapter 2 by Bunke and Neuhaus. The graph
G can contain directed edges, undirected edges, self-edges [i.e., (vi, vi) ∈ E], and
multiedges (i.e., more than one edge between vertices vi and vj). The input graph
need not be connected, but the learned patterns must be connected subgraphs (called
substructures) of the input graph. The input to Subdue can consist of one large graph
or several individual graph transactions, and in the case of supervised learning, the
individual graphs are classified as positive or negative examples.

7.2.1 Substructure Discovery

As an unsupervised discovery algorithm, Subdue searches for a substructure, or
subgraph of the input graph, that best compresses the input graph. Subdue uses a
variant of beam search for its main search algorithm, as summarized in Figure 7.1.
A substructure in Subdue consists of a subgraph definition and all its instances
throughout the graph. The initial state of the search is the set of substructures
consisting of all uniquely labeled vertices. The only operator of the search is the
ExtendSubstructure operator. As its name suggests, it extends a substructure in all
possible ways by a single edge and a vertex, or by only a single edge if both vertices
are already in the subgraph.

The search progresses by applying the ExtendSubstructure operator to each
substructure in the current state. The resulting state, however, does not contain all
the substructures generated by the ExtendSubstructure operator. The substructures
are kept on a queue and are ordered based on their compression (or sometimes
referred to as value) as calculated using the minimum description length (MDL)
principle described below. Only the top beam substructures remain on the queue for
expansion during the next pass through the main discovery loop.

The search terminates upon reaching a limit on the number of substructures
extended (this defaults to half the number of edges in the graph) or upon exhaustion
of the search space. Once the search terminates and Subdue returns the list of

1Subdue source code, sample datasets, and publications are available at http://ailab.uta.edu/subdue.

7.2 MINING GRAPH DATA USING SUBDUE 161

SUBDUE(Graph,BeamWidth,MaxBest,MaxSubSize, Limit)
ParentList = Null;
ChildList = Null;
BestList = Null;
ProcessedSubs = 0;
Create a substructure from each unique vertex label

and its single-vertex instances;
Insert the resulting substructures in ParentList;
while ProcessedSubs ≤ Limit

and ParentList not empty
do

while ParentList is not empty
do

Parent = RemoveHead(ParentList);
Extend each instance of Parent in all possible ways;
Group the extended instances into Child substructures;

for each Child
do

if SizeOf(Child) less than MaxSubSize
then

Evaluate Child;
Insert Child in ChildList in order by value;
if BeamWidth < Length(ChildList)
then

Destroy substructure at end of ChildList;
Increment ProcessedSubs;
Insert Parent in BestList in order by value;
if MaxBest < Length(BestList)
then

Destroy substructure at end of BestList;
Switch ParentList and ChildList;

return BestList;

Figure 7.1. Subdue’s discovery algorithm.

best substructures, the graph can be compressed using the best substructure. The
compression procedure replaces all instances of the substructure in the input graph by
single vertices, which represent the substructure definition. Incoming and outgoing
edges to and from the replaced instances will point to or originate from the new
vertex that represents the instance. The Subdue algorithm can be invoked again on
this compressed graph. This procedure can be repeated multiple times and is referred
to as an iteration.

Subdue’s search is guided by the MDL [26] principle given in Eq. (7.1), where
DL(S) is the description length of the substructure being evaluated, DL(G|S) is the
description length of the graph as compressed by the substructure, and DL(G) is
the description length of the original graph. The best substructure is the one that
minimizes this compression ratio:

Compression = DL(S) + DL(G|S)

DL(G)
(7.1)

162 UNSUPERVISED AND SUPERVISED PATTERN LEARNING IN GRAPH DATA

S1

S1

S1

S1

S1

S2

S2 S2

Figure 7.2. Example of Subdue’s substructure discovery capability.

As an example, Figure 7.2 shows the four instances that Subdue discovers of a
pattern S1 in the example input graph and the resulting compressed graph, as well as
the pattern S2 found in this new graph and the resulting compressed graph. To allow
slight variations between instances of a discovered pattern (as is the case in Fig. 7.2),
Subdue applies an error-tolerant graph match between the substructure definition and
potential instances (see Chapter 2 by Bunke and Neuhaus for more details on this
topic). The discovery algorithm can be biased by incorporating prior knowledge in
the form of predefined substructures or preference weights on desirable (undesirable)
edge and vertex labels. As shown by Rajappa, Subdue’s run time is polynomial in the
size of the input graph [25]. Substructure discovery using Subdue has yielded expert-
evaluated significant results in domains including predictive toxicology, network
intrusion detection, earthquake analysis, Web structure mining, and protein data
analysis [16, 23, 30].

7.2.2 Graph-Based Clustering

Given the ability to find a prevalent subgraph pattern in a larger graph and then
compress the graph with this pattern, iterating over this process until the graph can
no longer be compressed will produce a hierarchical, conceptual clustering of the
input data. On the ith iteration, the best subgraph Si is used to compress the input
graph, introducing new vertices labeled Si in the graph input to the next iteration.
Therefore, any subsequently discovered subgraph Sj can be defined in terms of one
or more Si , where i < j . The result is a lattice, where each cluster can be defined
in terms of more than one parent subgraph. For example, Figure 7.3 shows such
a clustering extracted from the graph representation of a DNA (deoxyribonucleic
acid) molecule (visualized in Fig. 7.4) [10]. Note that in this cluster hierarchy, for
example, subgraph S4 is composed of an S1 and an S2 together with a CH2.

7.2.3 Supervised Learning

Extending a graph-based discovery approach to perform supervised learning intro-
duces the need to handle negative examples (focusing on the two-class scenario). In

7.2 MINING GRAPH DATA USING SUBDUE 163

DNA

OO

P OHO

O

P OHO

CH2 O
CH3

CH3

CH2
N

O

N

N
O

S S S

S S

S

1 2 3

4 5

6

Figure 7.3. Subdue’s hierarchical cluster generated from DNA data.

CH2

P OHO

O

O

O

CH2

N

N

N

N CH3

N
N

N
N

CH3

O

O

CH2
O

O

O

CH2

O

P OHO

O

2

CH2

O

N
N

O

O

O N

H

H

H

O

N
N

O

H N

H
N H O

N

H

N

H N

H

H N

O

O

O

O

OHPO

N
N

N

O

P OHO

O

P OHO

O

CH

O

P OHO

O

Figure 7.4. Visualization of a portion of DNA.

164 UNSUPERVISED AND SUPERVISED PATTERN LEARNING IN GRAPH DATA

+

−

Figure 7.5. Visualization of graph-based data with four positive and four negative examples.

the case of a graph the negative information can come in two forms. First, the data
may be in the form of numerous small graphs, or graph transactions, each labeled
either positive or negative. Second, data may be composed of two large graphs: one
positive and one negative.

The first scenario is closest to the standard supervised learning problem in that
we have a set of clearly defined examples. Figure 7.5 depicts a simple set of positive
(G+) and negative (G−) examples. One approach to supervised learning is to find
a subgraph that appears in many positive graphs but in few negative graphs. This
amounts to replacing the compression-based measure with an error-based measure.
For example, we would find a subgraph S that minimizes

|{g ∈ G+|S �⊆ g}| + |g ∈ G−|S ⊆ g}|
|G+| + |G−| = FN + FP

P + N
(7.2)

where S ⊆ g means S is isomorphic to a subgraph of g (although we do not actu-
ally perform a subgraph isomorphism test during learning). The first term of the
numerator is the number of false negatives, and the second term is the number of
false positives.

This approach will lead the search toward a small subgraph that discriminates
well, for example, the subgraph on the left in Figure 7.6. However, such a subgraph
does not necessarily compress well, nor represent a characteristic description of the
target concept. We can bias the search toward a more characteristic description by
using the compression-based measure to look for a subgraph that compresses the
positive examples, but not the negative examples. If DL(G) represents the descrip-
tion length (in bits) of the graph G, and DL(G|S) represents the description length
of graph G compressed by subgraph S, then we can look for an S that minimizes
DL(G+|S) + DL(S) + DL(G−) − DL(G−|S), where the last two terms represent
the portion of the negative graph incorrectly compressed by the subgraph. This

7.4 COMPARISON TO FREQUENT SUBSTRUCTURE MINING APPROACHES 165

Shape

Shape

On

Shape

Shape

On

On

Square

TriangleObj

Obj Square

TriangleObj

Obj

Obj

Figure 7.6. Two possible graph concepts learned from example data.

approach will lead the search toward a larger subgraph that characterizes the pos-
itive examples, but not the negative examples, for example, the subgraph on the
right in Figure 7.6.

Finally, this process can be iterated in a set-covering approach to learn a
disjunctive hypothesis. Using the error measure, any positive example contain-
ing the learned subgraph would be removed from subsequent iterations. Using the
compression-based measure, instances of the learned subgraph in both the positive
and negative examples (even multiple instances per example) are compressed to a
single vertex.

7.3 COMPARISON TO OTHER GRAPH-BASED
MINING ALGORITHMS

Because graph-based data mining has demonstrated success for a variety of tasks
in structural domains (see Chapters 14–17 of this book for examples), a num-
ber of varied techniques and methodologies have arisen for mining interesting
subgraph patterns from graph datasets. These include mathematical graph theory-
based approaches like FSG ([14] and Chapter 6 of this book), gSpan ([33] and
Chapter 5 of this book), greedy search-based approaches like Subdue or GBI [17],
ILP approaches such as used by WARMR [6], and kernel function-based approaches
([11] and Chapter 11 of this book). In this chapter we contrast the methodologies
employed by Subdue with frequent substructure and ILP approaches and attempt
to highlight differences in discoveries that can be expected from the alternative
techniques.

7.4 COMPARISON TO FREQUENT SUBSTRUCTURE
MINING APPROACHES

Mathematical graph theory-based approaches mine a complete set of subgraphs
mainly using a support or frequency measure. The initial work in this area was the
AGM [9] system, which uses the Apriori levelwise approach. FSG takes a similar
approach and further optimizes the algorithm for improved running times. gFSG

166 UNSUPERVISED AND SUPERVISED PATTERN LEARNING IN GRAPH DATA

[12] is a variant of FSG that enumerates all geometric subgraphs from the database.
gSpan uses depth-first search (DFS) codes for canonical labeling and is much more
memory and computationally efficient than previous approaches. Instead of min-
ing all subgraphs, CloseGraph [34] only mines closed subgraphs. A graph G is
closed in a dataset if there exists no supergraph of G that has the same support
as G. In comparison to mathematical graph theory-based approaches that are com-
plete, greedy search-based approaches use heuristics to evaluate the solution. The
two pioneering works in the field are Subdue and GBI. Subdue uses MDL-based
compression heuristics, and GBI uses an empirical graph size-based heuristic. The
empirical graph size definition depends on the size of the extracted patterns and the
size of the compressed graph.

Methodologies that focus on complete, frequent subgraph discovery, such as
FSG and gSpan, are guaranteed to find all subgraphs that satisfy the user-specified
constraints. Although completeness is a fundamental and desirable property, a side
effect of the complete approaches is that these systems typically generate a large
number of substructures, which by themselves provide relatively less insight about
the domain. As a result, interesting substructures have to be identified from the
large set of substructures either by domain experts or by other automated methods
to achieve insights into this domain. In contrast, Subdue typically produces a smaller
number of substructures that best compress the graph dataset and that can provide
important insights about the domain.

A thorough comparison of Subdue with these approaches is difficult because
most frequent subgraph discovery approaches are designed to look for patterns
that are frequent across a disjoint set of graph transactions, rather than to find
patterns that are frequent or interesting within a single graph (see [13, 31] for
some representation-limited exceptions). Another key distinction of Subdue from
many other graph-based methods is that Subdue can accommodate a free-form
graph representation, where others often have a specific representation tailored to
transactional data, which is a restricted form of relational data. Table 7.1 lists for
Subdue, FSG, and gSpan, whether these systems can process directed graphs, multi-
graphs, graphs with self-edges, as well as restrictions on labels or graph size. These
restrictions are based on the original algorithm and could be superseded by modifi-
cations.

TABLE 7.1 Acceptable Input Graphs

Types of Graphs

Directed Labels Multigraph Self-edges Number of
Vertices/

Edges

Subdue
√

Alphanumeric
√ √

Unlimited
FSG

√
Alphanumeric × × Unlimited

gSpan × Numeric × × Max 254/254

7.4 COMPARISON TO FREQUENT SUBSTRUCTURE MINING APPROACHES 167

v1

v1v1 v1

v1

v2

v4

v4

v4v4 v4

v2

v2

v3

v3

v3 v3 v3

v2

v2 v1

(e)

c2 c1
c1

c1 c3c2

v2

c2

c2 c2c2

(a) (b)

(d)

c2c1

c3
v2

(f)

(c)

v4v3 c2c1 c3

c1

c1

c2c2
c3

v4

v1 v1

c2 c2 c2

c2

c4

c4

Figure 7.7. Embedded substructures.

7.4.1 Experiments Using Synthetic Datasets

We demonstrate the advantage of Subdue’s compression-based methodology by per-
forming an experimental comparison of Subdue with the graph-based data mining
systems FSG and gSpan on a number of artificial datasets. We generate graph
datasets with 500, 1000, 1500 and, 2000 transactions by embedding one of the 6
substructures shown in Figure 7.7. Each of the generated 24 datasets (6 different
embedded substructures, each with 500, 1000, 1500, and 2000 transactions) have
the following properties:

1. Of the transactions 60% have the embedded substructure: The rest of the
transactions are generated randomly.

2. For all the transactions that contain the embedded substructure, 60% of the
transaction is the embedded substructure, that is, coverage of the embedded
substructure is 60%.

Since each of the 24 datasets have both properties listed above, it is clear that the
embedded substructure is the most interesting substructure in each of the datasets.
Using these datasets, we now compare the performance of Subdue, FSG, and gSpan.
For each of the 24 datasets, Subdue was run with the default parameters and FSG
and gSpan were run at a 10% support level. We want to determine if Subdue can find
the best substructure despite its greedy search approach. We also want to compare
quality of the reported substructure based on an interestingness factor, for which
we use compression. This is motivated by work in information theory that uses this

168 UNSUPERVISED AND SUPERVISED PATTERN LEARNING IN GRAPH DATA

measure to identify the pattern that best describes the information in the data. We
use a slightly different calculation of compression in the experiments than the one
employed by the Subdue algorithm in order to remove a level of bias in the results.
Lastly, we want to compare the runtimes of the three algorithms on a variety of
datasets.

Table 7.2 summarizes the results of the experiments and Table 7.3 summarizes
the runtimes of Subdue, FSG, and gSpan. The results indicate that Subdue discovers
the embedded substructure and reports it as the best substructure about 80% of the
time. Both FSG and gSpan generate approximately 200,000 substructures among
which there exists the embedded substructure. The runtime of Subdue is intermediate
between FSG and gSpan. Subdue clearly discovers and reports fewer but more
interesting substructures. Although it could be argued that setting a higher support
value for FSG and gSpan can lead to fewer generated substructures, it should be
noted that this can cause FSG and gSpan to miss the interesting pattern. We observed
that the increase in runtime for Subdue is nonlinear when we increase the size of
the dataset. Increase for FSG and gSpan was observed to be linear (largely because
of various optimizations). The primary reason for this behavior is the less efficient
implementation of graph isomorphism in Subdue than in FSG and gSpan. A more
efficient approach for graph isomorphism, with the use of canonical labeling, needs
to be developed for Subdue.

7.4.2 Experiments Using Real Datasets

In addition, we performed an experimental comparison of Subdue with gSpan and
FSG on the chemical toxicity and the chemical compounds datasets that are provided
with gSpan. The chemical toxicity dataset has a total of 344 transactions. There are

TABLE 7.2 Results (Average) on Six Artificial Datasets

Number of Cases Subdue Reported Number of Substructures
Transactions Embedded Substructure as Best (%) Generated by FSG/gSpan

500 66 233495
1000 83 224174
1500 83 217477
2000 78 217479
Average 79 223156

TABLE 7.3 Runtimes (Seconds) on Six Artificial Datasets

Number of Transactions FSG gSpan Subdue

500 734 61 51
1000 815 107 169
1500 882 182 139
2000 1112 249 696
Average 885 150 328

7.4 COMPARISON TO FREQUENT SUBSTRUCTURE MINING APPROACHES 169

TABLE 7.4 Results from the Chemical Toxicity Dataset

Compression from Subdue’s best substructure 16%
Best compression from any FSG/gSpan substructure 8%
Number of substructures reported by FSG/gSpan 844
Runtime Subdue (s) 115
Runtime FSG (s) 8
Runtime gSpan (s) 7

1

1

0

0

0

0

1

0

0

3

3

3

3

3

0

0

0

3

Figure 7.8. Best compressing substructure discovered by Subdue on the chemical toxicity

dataset.

66 different edge and vertex labels in the dataset. FSG and gSpan results were
recorded based on a 5% support threshold. From our experiments we determined
the support of any best compressing substructure should be greater than 10% for the
dataset of size greater than 50. Therefore, we selected 5% support. If support is set
to a lesser value, large numbers of random and insignificant patterns are generated.

Table 7.4 summarizes the results of the experiment, and Figure 7.8 shows the
best compressing substructure discovered by Subdue. Because gSpan supports only
numeric labels, atom and bond labels have been replaced by unique identifying
numbers in this database. As the results indicate, Subdue discovered frequent pat-
terns missed by FSG and gSpan that resulted in greater compression. However, the
runtime of Subdue is much larger than that of FSG and gSpan.

The chemical compounds dataset has a total of 422 transactions. There are 21
different edge and vertex labels in the dataset. The results for FSG and gSpan were
recorded based on a 10% support threshold. We selected 10% support because if
support is set to a lesser value, large numbers of random and insignificant patterns
are generated. Table 7.5 summarizes the results of the experiment, and Figure 7.9
shows the best compressing substructure discovered by Subdue. Again, Subdue
found better-compressing substructures but required a greater runtime.

170 UNSUPERVISED AND SUPERVISED PATTERN LEARNING IN GRAPH DATA

TABLE 7.5 Results from the Chemical Compounds Dataset

Compression from Subdue’s best substructure 19%
Best compression from any FSG/gSpan substructure 7%
Number of substructures reported by FSG/gSpan 15966
Runtime Subdue (s) 142
Runtime FSG (s) 21
Runtime gSpan (s) 4

2

2

2

2

2

2

3 3

3

3 3

3

Figure 7.9. Best compressing substructure discovered by Subdue on the chemical compound

dataset.

7.5 COMPARISON TO ILP APPROACHES

Logic-based mining, popularly known as inductive logic programming (ILP) [18],
is characterized by the use of logic for the representation of structural data. ILP
systems represent examples, background knowledge, hypotheses, and target concepts
in Horn clause logic. The core of ILP is the use of logic for representation and the
search for syntactically legal hypotheses constructed from predicates provided by
the background knowledge. ILP systems such as FOIL [24], CProgol [20], Golem
[22], and WARMR [6] have been extensively applied to supervised learning and to
a certain extent to unsupervised learning.

In contrast, graph-based approaches are characterized by representation of struc-
tural data in the form of graphs. Graph-based approaches represent examples, back-
ground knowledge, hypotheses, and target concepts as graphs. Here we perform a
qualitative comparison of Subdue and logic-based mining approaches.

By performing a comparison of the graph-based and logic-based approaches,
we intended to analyze the ability of the approaches to efficiently discover complex
structural concepts and to effectively utilize background knowledge. To do so, we
must establish some notions on the complexity of a structural concept and identify
the types of background knowledge generally available for a mining task.

The complexity of a multirelational, or structural, concept is a direct conse-
quence of the number of relations in the concept. For example, learning the concept
of arene (a chemical compound with a six-member ring as in benzene), which
comprises learning six relations, involves the exploration of a larger portion of the

7.5 COMPARISON TO ILP APPROACHES 171

hypothesis space than learning the concept of hydroxyl (oxygen connected to hydro-
gen as in methanol), which comprises learning one relation. The concept of arene
is thus more complex than that of hydroxyl.

Although the number of relations in the concept is a key factor in the complexity
of the concept, there are also other factors such as the number of relations in the
examples from which the concept is to be learned. For example, learning the concept
of hydroxyl from a set of phenols (hydroxy group attached to an arene) involves the
exploration of a larger hypothesis space than learning the same hydroxyl concept
from a set of alcohols (hydroxy group attached to an alkyl). The concept of a
hydroxyl group is thus more complex to learn from phenols than it is from a set of
alcohols. We identify this complexity as structural complexity.

To learn a particular concept, it is essential that the representation used by a
data mining system be able to express that particular concept. For a representation to
express a particular concept, it is beneficial to have both the syntax that expresses the
concept and the semantics that associates meaning to the syntax. A relational concept
can be said to have a greater complexity than some other relational concept if it
requires a more expressive representation. To learn numerical ranges, for example,
it is essential to have the syntax and the semantics to represent notions such as
“less than,” “greater than,” and “equal to.” We identify this complexity as semantic
complexity.

A relational learner can be provided background knowledge that condenses
the hypothesis space. For example, if the concept to be learned is “compounds
with three arene rings” and the concept of an arene ring is provided as a part of
the background knowledge, then the arene rings in examples could be condensed
to a single entity. This would cause a massive reduction in the hypothesis space
required to be explored to learn the concept, and the mining algorithm would perform
more efficiently than without the background knowledge. We identify such back-
ground knowledge as background knowledge intended to condense the hypothesis
space.

A mining algorithm can also be provided background knowledge that augments
the hypothesis space. For example, consider that the algorithm is provided with back-
ground knowledge that allows it to learn concepts such as “less than,” “greater than,”
and “equal to.” In this case, the algorithm would explore a hypothesis space larger
than what it would explore without the background knowledge. Thus, introduc-
ing background knowledge has augmented the hypothesis space and has facilitated
the learning of concepts that would not be learned without the background knowl-
edge. We identify such background knowledge as background knowledge intended
to augment the hypothesis space.

Using these notions, we now identify the factors on the basis of which the
graph-based and logic-based approaches can be compared. They are:

1. Ability to learn structurally large relational concepts
2. Ability to learn semantically complex relational concepts or the ability to

effectively use background knowledge that augments the hypothesis space
to learn semantically complex relational concepts

172 UNSUPERVISED AND SUPERVISED PATTERN LEARNING IN GRAPH DATA

3. Ability to effectively use background knowledge that condenses the hypoth-
esis space

7.5.1 CProgol

The representative for ILP systems that we will use for our experiments is CPro-
gol [19], which is characterized by the use of mode-directed inverse entailment
and a hybrid search mechanism. Inverse entailment is a procedure that generates a
single, most specific clause that, together with the background knowledge, entails
the observed data. The inverse entailment in CProgol is mode-directed, that is, uses
mode declarations. A mode declaration is a constraint that imposes restrictions on the
predicates and their arguments appearing in a hypotheses clause. These constraints
specify which predicates can occur in the head and the body of hypotheses. They
also specify which arguments can be input variables, output variables, or constants,
as well as the number of alternative solutions for instantiating the predicate.

In CProgol, user-defined mode declarations aid the generation of the most spe-
cific clause. CProgol first computes the most specific clause that covers the seed
example and belongs to the hypothesis language. The most specific clause can
be used to bound the search from below. The search is now bounded between
the empty clause and the most specific clause. The search proceeds within the
bounded-subsumption lattice in a general-to-specific manner, bounded from below
with respect to the most specific clause. The search strategy is A* guided by a
weighted compression and accuracy measure. The A* search returns a clause that
covers the most positive examples and maximally compresses the data. Any arbitrary
Prolog program can serve as background knowledge for CProgol.

7.5.2 Experiments Using Structurally Large Concepts from the
Mutagenesis Dataset

The Mutagenesis dataset [29] has been collected to identify mutagenic activity in
a compound based on its molecular structure and is considered to be a benchmark
dataset for multirelational data mining. The Mutagenesis dataset consists of the
molecular structure of 230 compounds, of which 138 are labeled as mutagenic and
92 as nonmutagenic. The mutagenicity of the compounds has been determined by
the Ames test. The task is to distinguish mutagenic compounds from nonmutagenic
ones based on their molecular structure. The Mutagenesis dataset basically consists
of atoms, bonds, atom types, bond types, and partial charges on atoms. The dataset
also consists of the hydrophobicity of the compound (log P), the energy level of
the compound’s lowest unoccupied molecular orbital (LUMO), a Boolean attribute
identifying compounds with 3 or more benzyl rings (I1), and a Boolean attribute
identifying compounds that are acenthryles (Ia). Ia, I1, log P , and LUMO are rel-
evant properties in determining mutagenicity. When run on the entire Mutagenesis
dataset, as described above, using 10-fold cross validation, Subdue achieved 63%
accuracy with an average learning time per fold of 94 min, while CProgol achieved
60% accuracy with an average learning time per fold of 24 min. The difference in
accuracy was not statistically significant.

7.5 COMPARISON TO ILP APPROACHES 173

Element Atom
Element

Element Atom
Element

(a) (b)

Bond

atom(example_id, atom_id, element).

bond(example_id, atom_id, atom_id).

Figure 7.10. Representation for structurally large concepts: (a) graph representation and

(b) logic representation.

To compare the performance of the approaches while learning structurally large
concepts, we ran Subdue and CProgol on a variant of the Mutagenesis dataset. Since
we intended to compare the ability of the approaches to learn large structural con-
cepts, both the mining algorithms were provided only with the basic information of
the atoms, the elements, and the bonds without any other information or background
knowledge. This is shown in Figure 7.10. The algorithms are not provided with any
additional information or any form of background knowledge because we intended
to compare the ability to learn large structural concepts. The introduction of any
additional information or background knowledge would prevent this from happen-
ing. If systems were provided with the partial charge on the atoms and background
knowledge to learn ranges, the systems would learn ranges on partial charges that
would contribute to the accuracy. This would make it difficult to analyze how the
approaches compared while learning structurally large concepts. Hence the partial
charge information and the background knowledge to learn ranges was not given to
either system.

The atom type and bond type information was also not provided to either sys-
tem. The reasoning behind doing so is that we view the atom-type and bond-type
information as a propositional representation of relational data. Such information
allows the relational learners to learn propositional representations of relational
concepts rather than the true relational concept. Consider, for example, the rule
found by CProgol on the Mutagenesis dataset [29], atom(A,B,c,195,C). This rule
denotes that compounds with a carbon atom of type 195 are mutagenic. The atom
type 195 occurs in the third adjacent pair of 3 fused 6-member rings. Therefore all
compounds with 3 fused 6-member rings are labeled active. Thus, a rule involving
15 relations (3 fused 6-member rings) has been discovered by learning a single
relation. Discovering such a rule has allowed CProgol to learn a propositional rep-
resentation of a relational concept rather than the true relational concept. Providing
atom-type and bond-type information would allow both systems to learn proposi-
tional representations of structurally large relational concepts rather than the true
relational concepts. We do not consider the learning of such concepts equivalent to
the learning of structurally large relational concepts, and therefore do not provide
either system with the atom-type and bond-type information.

The results of the experiment are shown in Table 7.6. For the training set, the
accuracy for one run on the entire dataset and the learning time are shown. For the

174 UNSUPERVISED AND SUPERVISED PATTERN LEARNING IN GRAPH DATA

TABLE 7.6 Results on Mutagenesis Structurally Large Concepts

CProgol training set accuracy 60.00%
Subdue training set accuracy 86.00%
CProgol training set runtime (s) 2010
Subdue training set runtime (s) 1876
CProgol 10-fold CV accuracy 61.74%
Subdue 10-fold CV accuracy 81.58%
CProgol 10-fold CV runtime (average, s) 1940
Subdue 10-fold CV runtime (average, s) 2100
CProgol—Subdue, �error ± δ 20.84% ± 12.78%
CProgol—Subdue, confidence 99.94%

C Atom

Atom

C

C

Atom

Atom

Atom

C

C

Atom

Atom

Atom

Atom

Atom

BondElement

Element

Bond

Element

Bond
Bond

Element

Element

Bond

Bond

Bond

Bond

Bond

Figure 7.11. Rule discovered by Subdue on the mutagenesis dataset while learning struc-

turally large concepts.

10-fold cross validation (CV), average learning time over 10-fold is shown. The
results show that Subdue performs significantly better than CProgol. Subdue learns
17 graphs representing 17 rules. One of the rules discovered by Subdue is shown in
Figure 7.11. This rule has an accuracy of 76.72% and a coverage of 81.15%. The
hypotheses learned by CProgol mostly consisted of a single atom or bond predicate.
These results give a strong indication that a graph-based approach can perform better
than a logic-based approach when learning structurally large concepts.

7.5.3 Experiments Using Structurally Large Concepts from
Artificial Data

We performed additional experiments using artificially generated Bongard prob-
lems [1] to reinforce the insights from the experiments on the Mutagenesis dataset.
Bongard problems were introduced as an artificial domain in the field of pattern
recognition. A simplified form of Bongard problems has been used as an artificial
domain in the field of ILP [5]. We use a similar form of Bongard problems for
our artificial domain experiments. We use a Bongard problem generator to generate
datasets as shown in Figure 7.12. Each dataset consists of a set of positive and neg-
ative examples. Each example consists of a number of simple geometrical objects
placed inside one another. The task is to determine the particular set of objects, their
shapes, and their placement, which can correctly distinguish the positive examples
from the negative ones.

7.5 COMPARISON TO ILP APPROACHES 175

(a)

(b)

(c)

Figure 7.12. A Bongard problem: (a) positive examples; (b) negative examples; and (c)

concept.

Figure 7.13 shows the representations used for Subdue and CProgol. We system-
atically analyzed the performance of Subdue and CProgol on artificially generated
Bongard problems with increasing numbers of objects in the concept and increasing
numbers of objects in the examples. In the first experiment, the number of objects
in the Bongard concept was varied from 5 to 35. The number of additional objects
in each example (objects that are not part of the concept) were kept constant at 5.
For every concept size from 5 to 35, 10 different concepts were generated. For each
of the 10 concepts a training set and a test set of 100 positive and 100 negative
examples were generated. CProgol and Subdue were run on the training sets and
were tested on the test sets.

Figure 7.14(a) shows the average accuracy achieved by CProgol and Subdue
on 10 datasets for every concept size ranging from 5 to 35. It is observed that
Subdue clearly outperforms CProgol. To further analyze the performance of the
systems, we reran the same experiment, but in this case the systems were iteratively
given increased resources (this was achieved by varying the “nodes” parameter
in CProgol and the “limit” parameter in Subdue) so that we could determine the
number of hypotheses each system explored before it learned the concept (a cutoff
accuracy of 80% was decided). Figure 7.14(b) shows the number of hypotheses
explored by each system to achieve an accuracy of 80% (this experiment was
only performed for concept sizes varying from 5 to 18 as a significantly large

176 UNSUPERVISED AND SUPERVISED PATTERN LEARNING IN GRAPH DATA

Object Object Object

Shape Shape Shape

Square

(a)

(b)

(c)

Oval Oval

Inside

Boundary
in_boundary

in_boundary object(example1,object1,oval).
object(example1,object2,oval).
object(example1,object3,square).
in_boundary(example1,object1).
inside(example1,object2,object1).
in_boundary(example1,object3).

Figure 7.13. Representation for Bongard problems: (a) Bongard example; (b) graph repre-

sentation; and (c) logic representation.

amount of time was required). A snapshot of the experiment for concept size 10 is
shown in Figure 7.14(c). The results show that CProgol explores a larger number
of hypotheses than Subdue.

An analysis of CProgol indicates that it first generates a mostspecific clause
from a randomly selected example using the mode definitions. Mode definitions
together with the background knowledge form a user-defined model for generation of
candidate hypotheses. After generation of the mostspecific clause, CProgol performs
a general-to-specific search in the bounded-subsumption lattice guided by the mode
definitions. The most general hypothesis is the empty clause, and the most specific
hypothesis is the clause generated in the previous step. The process of hypothesis
generation is affected more by the mode definitions and the background knowledge
than the examples, first because a single example is used to construct the most
specific clause, and second because the mode definitions have a major effect on
the process of hypothesis generation. Thus, CProgol makes more use of the mode
definitions and background knowledge and less use of the examples.

This observation about CProgol can be partially generalized to other logic-based
approaches such as top-down search of refinement graphs [24], inverse resolution
[21], and relative least general generalization [22]. An analysis of Subdue indicates
that hypotheses are generated only on the basis of the examples. The candidate
hypotheses are generated by extending the subgraph by an edge and a vertex or
just an edge in all possible ways as in the examples. As Subdue generates the
hypotheses only on the basis of the examples, it is more example driven. This
observation about Subdue can be partially generalized to other graph-based systems
such as FSG, AGM, and gSpan because there is more use of the examples and less
use of the model. Graph-based approaches tend to explore the hypothesis space more
efficiently because they use only the examples to generate candidate hypotheses and
thus can search a larger portion of the smaller hypothesis space with a given amount
of resources, which is essential in learning structurally large relational concepts.

7.5.4 Experiments Using Semantically Complex Concepts from the
Mutagenesis Dataset

To compare the performance of the approaches for learning semantically complex
concepts, we ran Subdue and CProgol on the Mutagenesis dataset. Each system was

7.5 COMPARISON TO ILP APPROACHES 177

100

90

80

70

60

50
5 5

10 15 20 25 30 35

6 7 8 9 10 11 12 13 14 15 16 17 18 1910

100

10 15 20 25 30 35 40 100 600 1100 1600 2100 2600 3100

1100 2100 3100 4100 5100

15 20
Objects in Bongard Concept

(a)

Hypotheses Explored

(c)

Objects in Bongard Example

(d)

Objects in Bongard Example

(e)

Hypotheses Explored

(f)

Objects in Bongard Concept

(b)

%
 A

cc
ur

ac
y

100

90

80

70

60

50

%
 A

cc
ur

ac
y

100

90

80

70

60

50

%
 A

cc
ur

ac
y

100

90

80

70

60

50

%
 A

cc
ur

ac
y

5100

4600

3600

2600

1600

4100

3100

2100

1100

600

100

H

yp
ot

he
se

s
R

eq
ui

re
d

5100

4600

3600

2600

1600

4100

3100

2100

1100

600

100

H

yp
ot

he
se

s
R

eq
ui

re
d

25 30 35

CProgol

Subdue
CProgol

Subdue

CProgol

Subdue

CProgol

Subdue

CProgol

Subdue
CProgol

Subdue

Figure 7.14. Results for structurally large Bongard problems.

178 UNSUPERVISED AND SUPERVISED PATTERN LEARNING IN GRAPH DATA

provided with background knowledge so that numerical ranges could be learned.
For CProgol this was achieved by introducing Prolog-based background knowledge.
For Subdue this was achieved by explicitly instantiating the background knowledge,
that is, additional structure was added to the training examples. This is shown in
Figure 7.15.

The results of this experiment are shown in Table 7.7. The results indicate
that CProgol uses the background knowledge and shows an improved performance
while Subdue has achieved a lower accuracy than what it achieved without the
background knowledge. These results give a strong indication that a logic-based
approach performs better than a graph-based approach when learning semantically
complex concepts.

In general, graph-based mining algorithms explore only those hypotheses that
are explicitly present in the examples. For hypotheses to be explicitly present in
the examples, it is essential that the targeted semantically complex concepts be
explicitly instantiated in the examples. The drawbacks of the data-driven approach
are that explicit instantiation is cumbersome in most cases and also that explicit
instantiation is not a generalized methodology to learn complex semantic con-
cepts. For example, suppose a domain expert were to suggest that the ratio of

Value
lesser_than

equal_to

gteq(X,Y):-
not(var(X)),
not(var(Y)),
float(X), float(Y),
X >= Y, !.

gteq(X,X):-
not(var(X)),
float(X).

Iteq(X,Y):-
not(var(X)),
not(var(Y)),
float(X), float(Y),
X =< Y, !.

Iteq(X,X):-
not(var(X)),
float(X).

greater_than

For all unique values in a compound.

Value

(a) (b)

Charge Atom

Value

Figure 7.15. Representation for learning semantically complex concepts: (a) graph repre-

sentation and (b) logic representation.

TABLE 7.7 Results on Mutagenesis Semantically Complex
Concepts

CProgol training set accuracy 82.00%
Subdue training set accuracy 80.00%
CProgol training set runtime (s) 960
Subdue training set runtime (s) 848
CProgol 10-fold CV accuracy 78.91%
Subdue 10-fold CV accuracy 77.39%
CProgol 10-fold CV runtime (average, s) 810
Subdue 10-fold CV runtime (average, s) 878
CProgol—Subdue, �error ± δ 1.52% ± 11.54%
CProgol—Subdue, confidence 31.38%

REFERENCES 179

the number of carbon atoms to the number of hydrogen atoms in a molecule has an
effect on the mutagenicity. CProgol with some added background knowledge could
use this information to classify the molecules. Subdue, on the other hand, would
require making changes to the representation such that the pattern would be found
in terms of a graph. Logic-based approaches allow the exploration of hypotheses
through implicitly defined background knowledge rather than explicit instantiation
in the examples. This is essential in learning semantically complex multirelational
concepts.

7.6 CONCLUSIONS

The comparisons that were performed in this project highlight features of alternative
approaches to graph mining and point to directions for continued research. We
have observed that Subdue is preferred over FSG or gSpan when data is presented
in one large graph or when a pattern is dominantly present in small or medium-
size datasets. However, for large databases and those that exhibit a high degree
of randomness, FSG or gSpan will likely be better choices because Subdue may
not find the best pattern. Subdue can discover concepts that are less frequent but
potentially of greater interest. However, Subdue needs to make use of techniques
such as canonical labeling and approximate algorithms for graph isomorphism in
order to scale to larger datasets.

In addition, we can conclude that graph-based mining algorithms tend to explore
the concept hypothesis space more efficiently than logic-based algorithms, which
is essential for mining structurally large concepts from databases. However, logic-
based systems make more efficient use of background knowledge and are better
at learning semantically complex concepts. These experiments point out the need
for graph mining algorithms to effectively use background knowledge. Additional
features such as generalizing numeric ranges from graph data will further improve
these algorithms.

In addition to these comparisons, we are currently in the process of comparing
Subdue to graph kernel learning algorithms. By performing these comparisons we
hope to define a unifying methodology for mining graph-based data.

Acknowledgment

This work is partially supported by the National Science Foundation grants IIS-
0505819 and IIS-0097517.

REFERENCES

1. M. Bongard. Pattern Recognition. Spartan Books, New York, New York, 1970.
2. S. Chakrabarti, M. van den Berg, and B. Dom. Focused crawling: A new approach to

topic-specific web resource discovery. In Proceedings of the International World Wide
Web Conference, 1999.

180 UNSUPERVISED AND SUPERVISED PATTERN LEARNING IN GRAPH DATA

3. D. Cook and L. Holder. Graph-based data mining. IEEE Intelligent Systems, 15(2):
32–41, 2000.

4. D. J. Cook and L. B. Holder. Substructure discovery using minimum description length
and background knowledge. Journal of Artificial Intelligence Research, 1:231–255,
1994.

5. L. de Raedt and W. V. Laer. Inductive constraint logic. In Proceedings of the Workshop
on Algorithmic Learning Theory, pp. 80–94, 1995.

6. L. Dehaspe and H. Toivonen. Discovery of frequent datalog patterns. Data Mining and
Knowledge Discovery, 3(1):7–36, 1999.

7. P. Domingos and M. Richardson. Mining the network value of customers. In Proceedings
of the International Conference on Knowledge Discovery and Data Mining, p. 5766, San
Francisco, California, 2001.

8. G. W. Flake, S. Lawrence, C. L. Giles, and F. Coetzee. Self-organization of the web
and identification of communities. IEEE Computer, 35(3):66–71, 2000.

9. A. Inokuchi, T. Washio, and H. Motoda. Complete mining of frequent patterns from
graphs: Mining graph data. Machine Learning, 50(3):321–354, 2003.

10. I. Jonyer, L. B. Holder, and D. J. Cook. Hierarchical conceptual structural clustering.
International Journal on Artificial Intelligence Tools, 10(1–2):107–136, 2001.

11. R. I. Kondor and J. D. Lafferty. Diffusion kernels on graphs and other discrete input
spaces. In Proceedings of the International Conference on Machine Learning, pp.
315–322, 2002.

12. M. Kuramochi and G. Karypis. Discovering frequent geometric subgraphs. In Proceed-
ings of the International Conference on Data Mining, pp. 258–265, 2002.

13. M. Kuramochi and G. Karypis. Finding frequent patterns in a large sparse graph. In
Proceedings of the SIAM Data Mining Conference, 2003.

14. M. Kuramochi and G. Karypis. An efficient algorithm for discovering frequent sub-
graphs. IEEE Transactions on Knowledge and Data Engineering, 16(9):1038–1051,
2004.

15. W. Lee and S. Stolfo. Data mining approaches for intrusion detection. In Proceedings
of the Seventh USENIX Security Symposium, 1998.

16. N. Manocha, D. J. Cook, and L. B. Holder. Structural web search using a graph-based
discovery system. Intelligence Magazine, 12(1), pages 20–29, 2001.

17. T. Matsuda, H. Motoda, T. Yoshida, and T. Washio. Mining patterns from structured
data by beam-wise graph-based induction. In Proceedings of the Fifth International
Conference on Discovery Science, pp. 422–429, 2002.

18. S. Muggleton, ed. Inductive Logic Programming. Academic, London, 1992.
19. S. Muggleton. Inverse entailment and Progol. New Generation Computing, 13:245–286,

1995.
20. S. Muggleton. Stochastic logic programs. In L. de Raedt, ed. Advances in Inductive

Logic Programming. IOS Press, Amsterdam, 1996.
21. S. Muggleton and W. Buntine. Machine invention of first-order predicates by inverting

resolution. In Proceedings of the Fifth International Conference on Machine Learning,
pp. 339–352, 1988.

22. S. Muggleton and C. Feng. Efficient induction of logic programs. In Proceedings of the
Workshop on Algorithmic Learning Theory, pp. 368–381, 1990.

23. C. Noble and D. Cook. Graph-based anomaly detection. In Proceedings of the Interna-
tional Conference on Knowledge Discovery and Data Mining, 2003.

24. J R Quinlan. Learning logical definitions from relations. Machine Learning, 5:239–266,
1990.

REFERENCES 181

25. S. Rajappa. Data mining in nonuniform distributed databases. Master’s thesis, The
University of Texas, 2003.

26. J. Rissanen. Stochastic Complexity in Statistical Inquiry. World Scientific, Singapore,
1989.

27. M. F. Schwartz and D. C. M. Wood. Discovering shared interests using graph analysis.
Communications of the ACM, 36(8):7889, 1993.

28. U.S. Senate and House Committees on Intelligence. Joint inquiry into intelligence com-
munity activities before and after the terrorist attacks of September 11, 2001, U.S.
Government Printing Office, December 2002.

29. A. Srinivasan, S. Muggleton, M. J. E. Sternberg, and R. D. King. Theories for muta-
genicity: A study in first-order and feature-based induction. Artificial Intelligence,
85(1–2):277–299, 1996.

30. S. Su, D. J. Cook, and L. B. Holder. Knowledge discovery in molecular biology: Iden-
tifying structural regularities in proteins. Intelligent Data Analysis, 3:413–436, 1999.

31. N. Vanetik, E. Gudes, and S. Shimony. Computing frequent graph patterns from semi-
structured data. In Proceedings of the IEEE International Conference on Data Mining
(ICDM), 2002.

32. J. T. L. Wang, M. J. Zaki, H. T. T. Toivonen, and D. Shasha. Data Mining in Bioinfor-
matics. Springer, New York, 2004.

33. X. Yan and J. Han. gSpan: Graph-based substructure pattern mining. In Proceedings of
the International Conference on Data Mining, 2002.

34. X Yan and J Han. CloseGraph: Mining closed frequent graph patterns. In Proceedings
of the Conference on Knowledge Discovery and Data Mining, pp. 286–295, 2003.

8

GRAPH GRAMMAR LEARNING
ISTVAN JONYER

Department of Computer Science, Oklahoma State University,
Stillwater, Oklahoma

8.1 INTRODUCTION

Graphs offer an effective approach to representing and mining relational and com-
plex data sets. They have the ability to represent the most diverse and complex
relationships we may find in such databases. However, even current graph-based
data mining approaches are somewhat limited in their expressivity and ability to
generalize from the data. The majority of current approaches discover frequent
itemsets (subgraphs) from an input set of disjoint graphs (see [11, 16] as well
as Chapters 6 and 9 of this book). The result is a set of association rules linking
grounded subgraphs or subgraphs actually occurring in the input data. Variations
in the graph pattern are not allowed. One approach allows variability in the graph
structure and labels [6] by finding imperfect instances of a subgraph. The generality,
however, is lost since information stored in the imperfect instances is typically not
recovered or is impractical to examine.

Graph grammars enable the specification of elaborate graphs using simple pro-
duction rules. In this work, we propose to merge the expressive power of grammars
with the representational power of graphs to provide a hierarchical decomposition
of relational databases that also allow for variations of the learned patterns. Namely,
graph grammars can provide increased generalization over extracted subgraphs

Mining Graph Data, Edited by Diane J. Cook and Lawrence B. Holder
Copyright c© 2007 John Wiley & Sons, Inc.

183

184 GRAPH GRAMMAR LEARNING

found in the data, while representing desirable features such as recursion and
disjunctive rules.

8.2 RELATED WORK

In this section we survey work related to our approach. These include graph-based
discovery algorithms, grammar induction algorithms, and inductive logic program-
ming approaches.

Many existing graph mining algorithms are largely based on the Apriori algo-
rithm [1]. These approaches restrict themselves to sets of disjoint graphs called
graph transactions, and they are not able to work with arbitrary graphs. One sys-
tem by Inokuchi and colleagues [11] is called Apriori-based graph mining (AGM).
Another system by Kuramochi and Karypis [16], called frequent subgraph (FSG),
further develops AGM by applying an edge-growing strategy. FSG employs a num-
ber of techniques for fast graph matching, avoiding the need for graph isomorphism
tests. The gSpan algorithm by Yan and Han [28] (also see Chapter 5 of this book)
takes the ideas in FSG one step further by parting with the candidate generation
approach of the Apriori algorithm for a faster, generate-evaluate approach using
depth-first search. While such approaches can exploit the disconnected property of
some graphs for fast frequent itemset discovery, domains involving single connected
graphs are left unaddressed.

Recent work on grammar induction includes learning string grammars with a
bias toward those that minimize description length [17], inferring compositional
hierarchies from strings in the Sequitur system [20], and learning search control
from successful parses [29]. In contrast, work on graph grammar induction is almost
nonexistent. Computational uses of graph grammars have been reported in the annual
journal Graph Grammars and Their Application to Computer Science [8] and more
recently in the International Conference on Graph Transactions, which was first
held in 2002. Despite the large number of articles on graph grammars, only a small
number of them address the problem of inferring graph grammars from examples.
An enumerative method for inferring a very limited class of context-sensitive graph
grammars is due to Bartsch-Spörl [2]. Other algorithms utilize a merging technique
for hyperedge replacement grammars [18] and regular tree grammars [4]. None of
these are as general and comprehensive as our approach, which is based on a
method for discovering interesting substructures in graphs (see [5] and Chapter 7
of this book).

Inductive logic programming (ILP) systems are important to mention as related
work since they work well with complex data. They represent databases in first-
order logic (FOL), not as graphs, and perform induction on the world of logic
statements. Several approaches have emerged since the idea was first introduced
by Plotkin [21], along with the inductive mechanism of relative least general gen-
eralization (RLGG). One prominent representative of ILP systems is First Order
Inductive Logic (FOIL) [22], which learns sets of Horn clause-like first-order rules.
It has been applied to learning search-control rules [29] and learning patterns in
hypertext domains [25]. A different approach is realized by Progol [18], which uses

8.3 GRAPH GRAMMAR LEARNING 185

inverse entailment to generate a specific bound to its general-to-specific search.
Progol has been applied to chemical carcinogenicity [26] and three-dimensional
protein structure [27], among others.

8.3 GRAPH GRAMMAR LEARNING

A distinct direction in graph-based knowledge discovery research is toward find-
ing more efficient algorithms. This is driven by the high complexity associated
with graph isomorphism computations. While this line of research is important, we
must also pursue the expansion of the expressive power of graph-based hypotheses.
We recognize that graph-based data structures exhibit characteristics that may be
exploited in the effort of finding regularities in graphs, and that such regularities
can be expressed using graph grammars.

8.3.1 Graph Grammars

In this research we are addressing the problem of inferring graph grammars from
positive and, optionally, negative examples. In other words, we seek to design a
machine learning algorithm in which the learned hypothesis is a graph grammar.
Machine learning algorithms, in general, attempt to learn theories that generalize
beyond the seen examples, so that new, unseen data can be accurately categorized.
Translated to grammar terms, we would like to find grammars that accept more
than just the training language. Therefore, we would like to learn parser grammars,
which have the power to express more general concepts than the sum of the positive
examples.

In this research we are concerned with graph grammars of the set-theoretic or
expression approach [19]. In this approach a graph is a pair of sets G = 〈V, E〉
where V is a set of labeled vertices or nodes, and E is a set of labeled edges. Graph
grammar rules are of the form S → P , where S and P are graphs. Such rules can
be applied in both directions, depending on whether we want to parse or generate
a graph. When generating a new graph, an isomorphic copy of S is removed from
the existing graph along with all its incident edges, and is replaced with a copy
of P , together with edges connecting it to the graph. The new edges are given
new labels to reflect their connection to the subgraph instance. When parsing, all
instances of P are removed from the existing graph and each are replaced with S.
Again, occurrences of S are connected to the rest of the graph according to a specific
embedding function.

A special case of the set-theoretic approach is the node-label-controlled gram-
mar, in which S consists of a single labeled node [9]. This is the type of grammar
on which we are focusing. In our case, S is always a nonterminal, but P can be any
graph and can contain both terminals and nonterminals. Since we are focusing on
parser grammars, the embedding function is trivial: External edges that are incident
on a vertex in the subgraph being replaced (P) always get reconnected to the single
vertex S being inserted in its place.

This research focuses on identifying recursive and disjunctive productions. We
would like to take advantage of these features both in discovery and in concept

186 GRAPH GRAMMAR LEARNING

learning tasks, and on both flat domains that consist of a number of data instances
and structural domains that can be represented as one big graph. As we will see,
we cannot learn all possible kinds of graph grammar rules. The most important
obstacle in discovering graph grammars is computational cost, which must be kept
under control if our algorithm is to be practical.

8.3.2 Graph Grammar Learning

According to the intuition we gave previously, graph grammar induction (GGI)
expands on the expressive power of frequent subgraphs. Therefore, a graph grammar
learner algorithm can use a subgraph learning algorithm as its basis, which can be
extended with additional capabilities for learning recursive rules, disjunctive rules,
and logical relationships. In our research we used the Subdue graph mining algorithm
and extended it as described below. We refer to our grammar learning algorithm as
SubdueGL. We give the complete pseudocode for our algorithm in Figure 8.1.

SubdueGL (graph G, int Beam, int Limit)
 grammar = {}

repeat
 queue Q = { v | vertex v has a unique label in G }
 bestSub = first substructure in Q

repeat
 newQ = {}

for each substructure S in Q
 newSubs = ExtendSubstructure(S)
 recursiveSubs = RecursifySubstructure(S)
 newQ = newQ U newSubs U recursiveSubs
 Limit = Limit - 1
 evaluate substructures in newQ by MDL or SetCover
 Q = substructures in newQ with top Beam compression scores

if best substructure in Q better than bestSub
then bestSub = best substructure in Q

until Q is empty or Limit <= 0
 grammar = grammar U bestSub
 G = G compressed by bestSub

until bestSub cannot compress the graph G
return grammar

ExtendSubstructure (substructure S
newSubs = S extended by an adjacent edge in all possible ways
// Discover variables
varSubs = S extended by an adjacent edge in all possible ways,

 replacing the added vertex with a non-terminal
// Disco s
for each substructure V in varSubs

ver relationship

for each variable w in V
if relationship ‘<=’ or ‘=’ holds between w and any other vertex in V

 add relationship to V
return newSubs U varSubs

RecursifySubstructure (substructure S)
 recSubs = all possible chains of instances of S, linked by a
 single edge
return recSubs

Figure 8.1. The SubdueGL algorithm.

8.3 GRAPH GRAMMAR LEARNING 187

The two learning modes supported by the algorithm are discovery mode and
concept learning mode (or unsupervised learning and supervised learning, respec-
tively). In discovery mode the algorithm attempts to find grammar rules in the input
graph, which need not be a connected graph. In some domains, such as market bas-
ket analysis, a set of connected graphs may be used. In concept learning mode the
input consists of two graphs. In this case the algorithm seeks to identify grammar
rules in one graph, called the positive graph, such that the rules identified should
not be found in the other graph, called the negative graph. Our evaluation heuris-
tics, which are discussed next, penalize for dances of grammar rules in the negative
input.

The last consideration before we give the details is the heuristic that drives
the search, that is, the method of evaluation that designates a grammar rule to be
better or worse than another. By default, we use the minimum description length
(MDL) principle to drive the search [24]. The evaluation heuristic based on the
MDL principle assumes that the best substructure is the one that minimizes the
description length of the input graph when compressed by the substructure [6]. The
description length of the substructure S given the input graph G is calculated as
DL(S, G) = DL(S) + DL(G|S), where DL(S) is the description length of the sub-
graph, and DL(G|S) is the description length of the input graph compressed by the
subgraph. We are looking for a minimum set of grammar rules that compress the
graph the best. The formula for computing the description length in concept learn-
ing, given positive and negative inputs, is DL(G+, G−|S) = DL(G+|S) + DL(S) +
DL(G−) − DL(G−|S), where DL(S) is the description length of the grammar rule,
G+ is the positive input, G− is the negative input, DL(G+|S) is the positive input
compressed by the grammar rule, DL(G−|S) is the negative input compressed by the
grammar rule, and DL(G+, G−|S) is the positive and negative inputs compressed
by the grammar rule. DL(S) + DL(G+|S) expresses the number of bits needed to
encode the grammar rule plus parts of the positive input that are not described by
the rule. DL(G−) − DL(G−|S) is the number of bits needed to describe the portion
of the negative input that is described by the grammar rule.

An alternative heuristic, called set cover, drives the search toward minimal
error (maximal accuracy), especially in concept learning tasks, by covering as many
positive examples as possible while covering as few negative examples as possible.
In this heuristic the concept value is computed as SC(S) = E(S)/X(G), where
E(S) is the error (examples not covered) by subgraph S, and X(G) is the total
number of examples (both positive and negative) in graph G. Then E(G) is defined
E(S) = X+(G) − C+(S) + C−(S), where X+(G) is the total number of positive
examples in G, C+(S) is the number of positive examples covered by S, and C−(S)

is the number of negative examples covered by S.

Basic Rules. The most basic of grammar rules consists only of a connected, static
graph. Such rules can be identified by the Subdue system. A grammar consisting
only of such rules provides a hierarchical decomposition of the input graph [13]. To
identify each rule, Subdue searches for interesting subgraphs using a computationally
constrained beam search. It starts by identifying all one-vertex substructures in

188 GRAPH GRAMMAR LEARNING

the input graph and all their occurrences. The search progresses by applying the
ExtendSubgraph operator to each substructure. The resulting substructures are kept
on a queue and are ordered based on their description length. The top few—4, by
default—are further extended. By the repeated application of the ExtendSubgraph
operator the most interesting substructure is found. The substructure identified in
this way will comprise the right side of the first grammar rule.

The next step in the grammar learning process is to remove all occurrences of
the previously identified substructure, and replace them with a single nonterminal
vertex. The process starts over and a new grammar rule is identified. This process
can be repeated until the graph is exhausted (reduced to a single nonterminal vertex),
or until a user-specified limit is reached.

Figure 8.1 shows the complete SubdueGL algorithm. A description of recursive
and disjunctive rules follow next.

Recursion. Before we describe the details of the algorithm for learning recursive
rules, let us examine the motivation behind such rules and their possible char-
acteristics. Recursion comes in two flavors: structural and functional. As graph
representation is mainly used to take advantage of the structural relationships in
data, our research focuses on structural recursion. We seek to learn graph gram-
mars, where the left side of each production is only a single nonterminal. We do
not address functional recursion in this work.

Structural recursion can also be divided into several subtypes based on the num-
ber of recursive nonterminals and their way of embedding on the right side of a
production rule. We restrict our grammars to have only one recursive nonterminal
on the right side of a production, although any number of nonrecursive nonterminals
may appear on the right side. This restriction is due to the additional computational
complexity needed to identify such grammars.

This limited type of recursion also has two variations, chained and embedded,
based on the number of neighbors a recursive nonterminal has. Chained recursion
occurs when a specific motif repeats in a sequence. This mostly happens with
sequential data, as in a DNA (deoxyribonucleic acid) sequence, but is also possible
in complex structures. Rules of the chained recursion allow only a single neighbor
to the nonterminal. In graph terms this means only a single edge can connect to the
nonterminal.

Embedded recursion occurs when a motif is removed from a structure and
its surroundings, when moved into its place, form the same pattern as the removed
one. This is perhaps most familiar to computer scientists in the parenthesis matching
problem. When removing the innermost matching set of parentheses, the ones just
outside of them move in to take their place. Rules of the embedded-recursion type
allow two or more edges to connect to the nonterminal.

Figure 8.2 shows two examples of embedded recursion. The first one describes
a graph grammar for generating DNA, and the second grammar generates match-
ing parentheses. Figure 8.3 shows a chained recursive rule. Recognizing embed-
ded recursion is computationally expensive, especially in graphs where the higher
number of connections between objects creates a combinatorial explosion of possible

8.3 GRAPH GRAMMAR LEARNING 189

A

CTA

S1 CTS1

(

)(

S1)S1

Figure 8.2. Sample embedded recursive rules.

1S S2a b

c d

ba S2

S2

S1

Figure 8.3. Sample chained graph grammar rules.

patterns. In this research we do not seek to find embedded recursion and focus
exclusively on chained recursion.

In our specification, recursive productions are of the form S → PS. The non-
terminal S is on both sides of the production, and P is linked to S via a single
edge. If the grammar is used for graph generation, this rule would generate an
infinitely long sequence of the graph P . If the language is to be finite, a stopping
alternative production is required. One such production is S → PS|∅, which reads
“replace S with PS or nothing.” For our purposes, however, we use the production
S → PS|P . The rule S → PS|∅, when used for parsing, would imply that nothing
can be replaced with S, introducing an arbitrary number of S’s. At the same time,
it cannot parse a chain of P ’s of finite length as it would have no starting point,
since PS does not exist in the input graph. Remember that the stopping alternative
of a graph generator rule is the starting point of a parser rule.

When parsing a graph, we start from the complete graph and work toward a
single nonterminal. This is done by removing subgraphs from the graph that match
the right side of a production and inserting the nonterminal on the left side. In our
example, replace PS with S, and finally, P with S. An example of a recursive
production is shown in Figure 8.3 (S1).

Recursive productions are created in SubdueGL by the RecursifySubstructure
operator. It is applied to each substructure after the ExtendSubstructure operator.
RecursifySubstructure checks each instance of the substructure to see if it is con-
nected to any other instances by a single edge. If so, a recursive production is
possible. The operator adds the connecting edge to the substructure definition and
collects all possible chains of instances. If a recursive production emerges to be the
best at the end of an iteration, it will compose the next grammar rule, and each
recursive chain of subgraphs is replaced by a single nonterminal vertex.

190 GRAPH GRAMMAR LEARNING

Variables. Disjunctive rules—or variables—are another feature of the grammars,
which we include in our graph grammars. The first step toward discovering vari-
ables is discovering commonly occurring structures, since variability in the data is
defined by the surrounding static data. Another way to look at this is that structures
that are very different from each other are not interesting. Most machine learning
algorithms attempt to construct hypotheses by searching for regularities in the data.
Accounting for slight variations in a model based on high regularity may enhance
the performance of the model. ILP systems, for example, recognize this and allow
the specification of variables by single-sided bounds for numeric variables. Decision
tree learners take a similar approach.

Variable productions are of the form S → P1|P2| . . . |Pn for discrete variables
and S → [Pmin . . . Pmax] for numeric variables. The nonterminal graph S can be
thought of as a variable having possible discrete values P1, P2, . . . , Pn or numeric
values in the range Pmin to Pmax. If S is a single vertex, and Pi are also single
vertices, then S is synonymous with a regular nongraph variable whose values
are the vertex labels, which can be alphanumeric values like numbers (discrete or
continuous) or string descriptions. An example of a variable is shown in Figure 8.3,
where S2 has possible values c and d .

A variable S can have many values. It is possible to create a number of different
substructures from a subset of these values that may evaluate better according to
our evaluation measure. Many techniques exist for selecting values that are descrip-
tive of one class and not the other. Information gain has been utilized in decision
tree induction, regression, and other statistical methods are used to build statistical
models, and the list goes on. Even description length has been utilized for guiding
the search for hypotheses [3]. Linear and surface-based separation techniques can
be useful but only in numeric domains or where categorical values can be ordered
naturally. Problems can still arise if the classes cannot be separated in such a man-
ner, as in the case of a normal distribution where the negative class consists of
outliers. Neural networks and-nearest neighbor algorithms may overcome this, but
human expertise is essential for good results. More sophisticated statistical methods
can achieve better results, but they only work on flat, numeric domains. We show
a comparison on the performance of 15 such techniques on the Wisconsin Breast
Cancer domain.

SubdueGL discovers variables inside the ExtendSubstructure search operator.
As mentioned before, Subdue extends each instance of a substructure in all possible
ways and groups the resulting subgraphs that are alike. In addition, SubdueGL
also groups subgraphs that result from the same extension (extended by the same
edge from the same vertex), regardless of what vertex they point to. For example,
let (v1, e, v2) represent edge e from vertex v1 to vertex v2. Vertex v1 is part of
the original substructure, which was extended by e and v2. For variable creation,
instances are grouped using (v1, e, V), where V is a variable (nonterminal) vertex
whose values include the labels of all matching v2’s. The substructure so created is
then evaluated and competes with others for top placement on the extension queue.

As mentioned earlier, variable V can have many values. It is possible to create
other substructures from a subset of these values that may evaluate better according

8.3 GRAPH GRAMMAR LEARNING 191

to a given heuristic. Even though the number of possible subsets of values is expo-
nential, we can apply the observation that the greatest reduction in description length
is provided by values that occur more frequently. Hence, we can create a ranking
of values based on their frequency. This frequency is based only on occurrences in
the positive input. That is, it does not take into account instances in the negative
input, and does not assume anything about the global performance of the variable.
This ranking, however, allows us to consider only a number of subsets of values
that is linear in the number of occurrences of the values in the positive input. The
substructure is evaluated by successively removing the lowest ranked variable value.
The set of variable values that evaluates the best is kept.

For continuous values such a ranking may not be practical since each value
may be unique. Here, we use a heuristic that assumes that numeric variables have a
central tendency, and we seek to eliminate outliers. That is, we compute the mean
of the variable’s values and successively eliminate the value that is the farthest from
the mean. We detect continuous variables by checking to see if each variable value
is a number. If so, the variable is handled as continuous, otherwise as discrete. The
GetBestVariableValues search operator finds the best values for a variable. When
appropriate, the user may control the search process by specifying a minimum
percentage of substructure instances that must contain the variable value for it to be
kept as part of the variable definition.

Relationships. Relationships increase the expressive power of grammars by iden-
tifying variables in production rules that are equivalent or, in the case of numerical
variables, have a less-than or equal-to relationship. Relationships are logical entities
and are signified by special relationship edges. This is in contrast with structural
components of graph grammars, which are vertices and structural edges.

Graph grammars typically do not include logical components or relationship
edges specifically. At the same time we have to realize that graph grammars have
not been used for machine learning purposes before or to construct models for
databases represented as graphs. Relationships, however, are used widely in machine
learning. ILP systems, for example, allow ≤ relationships between two variables and
also between a variable and a static value [3]. Building on the experience of ILP
systems, we allow ≤ and = relationships. The < relationship will be part of future
investigation.

A precondition for the existence of relationships is variables. At least one vertex
participating in a relationship has to be a variable nonterminal since relationships
between nonvariables are trivial. The only relationship that can occur between a
variable and a nonvariable vertex is the less-than or equal-to relationship. Equal-to
relationships must be between two variables, as they had no value between two
static vertices.

A relationship edge is identified by comparing a newly discovered variable’s
values in each instance of a substructure to every other one of its vertices. If the
same relationship holds between the variable and another vertex in every instance
of a substructure, a relationship edge is created. Figure 8.4 shows an example of a

192 GRAPH GRAMMAR LEARNING

Lighting On
Air Crash

X1

X2

1.5

V1

Landing Gear Out

Air Speed

<=
Windspeed

=
S

Figure 8.4. Graph grammar production with relationships.

production that contains two relationships. The relationship edges are marked with
dotted arrows and are labeled ≤ and =.

Relationships only show up in concept learning mode. Although not explicitly
prohibited, they do not show up in grammar rules in discovery mode because they
do not help cover additional examples on their own. Relationships are logical com-
ponents of hypotheses and serve only to increase their accuracy. They do add to the
description length of the hypothesis, so a hypothesis without a relationship evaluates
better than with one, everything else being equal. In concept learning this added
cost pays off if it helps to eliminate negative examples from the coverage of the
hypothesis. Therefore, relationships can only make a contribution by improving the
accuracy of hypotheses in concept learning. This is done not by additional reward
on the positive examples but by the reduced penalty from the negative ones.

8.3.3 Class of Grammars Learned

Earlier we discussed some aspects of the graph grammars to be learned in terms
of graph transactions. That is, we know that the graph grammars are node-label
controlled, where the embedding function is trivial. We have not discussed, however,
the exact class of graph grammars to be learned. We have stated that the grammar
is context free, but further details are in order.

According to the Chomsky hierarchy, in unrestricted grammars, both sides of
production rules can be any string, including terminal and nonterminal symbols.
Context-sensitive grammars are restricted such that the left side of a production
must be no longer than the right side. Context-free grammars are further restricted
such that there must be only one nonterminal on the left side of productions. Regular
grammars introduce restrictions on the right side of productions as well. There are
two types of regular grammars: right linear and left linear. If all productions of
a grammar are of the form A → wB or A → w, it is called a right linear regular
grammar, where A and B are nonterminals and w is a string of terminals. A grammar
consisting of productions of the form A → Bw or A → w is called a left-linear
regular grammar.

This discussion was presented with string grammars in mind, but the concepts
transfer easily to graph grammars. Examining the restrictions we are placing on
the learning process, we can see that the resulting grammars fall within the class
of regular grammars. In SubdueGL, which stands for Subdue Grammar Learner,
recursive productions are restricted to those that include the recursive nonterminal
at one end of a single edge originating from an arbitrary graph. This restriction is
introduced to make the algorithm computationally tractable (and hence, practical)

8.4 EMPIRICAL EVALUATION 193

since identifying recursive rules is exponential in the number of edges allowed
around the nonterminal. This structure restricts the production to generate only
linear sequences of subgraphs, much like in string grammars. Therefore, it can be
thought of as a regular graph grammar. Since we do not place any restrictions on
the direction of the edge, the grammar can be both right and left linear.

The single-edge connection restriction can easily be removed to enable Sub-
dueGL to learn context-free graph grammars. There are no fundamental limitations
that prevent this. For the additional expressive power, however, we would naturally
incur additional computational cost. Whether this additional cost is fundamentally
prohibitive or not will have to be the subject of further investigation.

8.4 EMPIRICAL EVALUATION

This section describes the empirical evaluation of our system on real-world domains.
The algorithm is also compared to existing systems both on flat and structured
domains.

8.4.1 Flat Domains

Although addressing flat databases was not a primary objective of this research, a
good performance on these domains demonstrates our goal of creating a general-
purpose data mining tool. Even more importantly, comparing SubdueGL’s perfor-
mance to accepted systems on well-known domains confirms the validity of our
approach.

Converting flat, or feature-vector-based datasets to graphs is straightforward.
Each feature vector forms a starlike pattern, with a general central vertex (perhaps
“object” or “event”), from which attributes and their values originate. Attributes
correspond to edges while attribute values correspond to vertices pointed to by the
attribute edge. Hence, the entire dataset is a collection of disconnected, starlike
graphs.

We were particularly interested in how SubdueGL compared against other sys-
tems on flat data that were specifically designed for relational domains, just like
SubdueGL. We selected FOIL [3] and Progol [18], which are prominent inductive
logic learning systems. Both have had great success in a wide variety of domains.
We also wanted to know how our approach measures up against an algorithm that
was designed for flat domains. For this, we used C4.5 [23].

We selected the vote, diabetes, and credit domains to serve as the basis for
our comparison, which are available from the UCI machine learning repository
[17]. The vote domain is the Congressional Voting Records Database. It con-
tains 16 discrete-valued attributes, having values y, n, and u (for yes, no, and
unknown). The diabetes domain is the Pima Indians Diabetes Database, which con-
tains 7 continuous-valued attributes. The credit domain is the German Credit Dataset
from the Statlog Project Databases. The credit data set contains 13 discrete and 7
continuous-valued attributes.

194 GRAPH GRAMMAR LEARNING

TABLE 8.1 Comparison of FOIL, Progol, C4.5, Subdue, and SubdueGL

Vote (%) Diabetes (%) Credit (%)

FOIL 93.02 70.66 68.60
Progol 94.19 63.68 63.20
C4.5 94.48 74.62 70.90
Subdue 89.07 61.71 70.50
SubdueGL 94.23 70.94 71.30

Predictive accuracies are shown in Table 8.1, which were generated using
10-fold cross validation. As is evident from the table, SubdueGL outperformed
the two ILP systems and Subdue in all three domains and was the best on the credit
domain. C4.5, however, did significantly better on the diabetes domain than the
other three systems.

The difference in performance may lie in the way these systems handle contin-
uous values. As the table shows, all systems did equally well on the vote domain,
which has only discrete-valued attributes. Subdue is an exception, which is unable
to incorporate multiple values into rules without graph grammar induction. When
creating rules for continuous attributes, FOIL can only create one-sided intervals,
while SubdueGL can create two-sided intervals. The success of FOIL’s strategy
depends on the data, since it may be able to create a perfect separation of positive
and negative examples only if the values of one class is greater than those of the
other for an attribute. For detecting a central tendency versus outliers, FOIL must
include outliers on one side and can only make a determination as to how many
negatives to cover. SubdueGL, on the other hand, is able to handle a central distri-
bution with outliers as well as a splitting of values. Based on this reasoning, FOIL
should do no better than SubdueGL, at least on domains with continuous values.
This is evidenced by Table 8.1.

In the case of Progol, which is biased to learn clauses that entail a particular
positive example, the bias causes Progol to make guesses and overcommit to partic-
ular numerical constants based on the evidence of a single positive example. Since
numerical constants are ordered, which may be interpreted as part of an interval,
the inclusion of new constant symbols, not already present in the training sample or
background knowledge, is justified. At the same time this strategy is less success-
ful on numerical constants than nonnumerical ones, which may be the reason why
Progol did much worse than SubdueGL and FOIL once continuous attributes were
introduced into the database.

C4.5 is a decision tree learning algorithm, which creates a hierarchical rule in
the form of a tree in which items can be classified by starting at the top of the
tree and answering questions posed at each of the nodes encountered. Even though
C4.5 handles continuous values using one-sided intervals, like FOIL, it can employ
two one-sided intervals in succeeding nodes of the decision tree to create two-sided
intervals. This strategy proves to be the most successful one on the diabetes domain,
which contains continuous attributes exclusively. SubdueGL outperformed C4.5 on
the credit domain, which contains mixed attribute types.

8.4 EMPIRICAL EVALUATION 195

8.4.2 Complex Domains

In this section we describe a series of experiments that have real-world applications
and are structural, not flat, in nature. First we show experiments from biochem-
istry that deal with finding common patterns in myoglobin and hemoglobin primary
and secondary structures. Then, we present an experiment inspired by Defense
Advanced Research Project Agency (DARPA’s) Evidence Extraction and Link Dis-
covery (EELD) project.

Biochemistry. To show SubdueGL’s applicability to the sequence-structured
domains, we analyzed the primary and secondary structure of the proteins myoglobin
and hemoglobin. Myoglobin and hemoglobin are hemeproteins whose physiological
importance is principally related to their ability to bind molecular oxygen. Myo-
globin is found mainly in muscle tissue where it serves as an intracellular storage
site for oxygen. Its secondary structure is unusual in that it contains a very high
proportion (75%) of α-helical secondary structure. Hemoglobin is found in erythro-
cytes where it is responsible for binding oxygen in the lung and transporting the
bound oxygen throughout the body [15]. These proteins are used widely to illustrate
nearly every important feature of protein structure, function, and evolution [10].

The primary structure of proteins is represented as a sequence of amino acids,
which have three-letter acronyms. These compose the vertices of the input graph,
which are connected by edges labeled “next.” A small part of the input graph is
shown in Figure 8.5.

The grammar induced from the primary sequence of myoglobin is shown in
Figure 8.6, where graph vertices are only shown by their labels. The arrow (→) is
the production operator, while (−) signifies the edge labeled “next” in the graph.
We show a representative number of rules while omitting others (S7 through S17).
The expressive power of the grammar is apparent at the first glance. Production S

VAL VALLEUGLNTRPGLUGLYGLUSERLEU ……

Figure 8.5. Part of the myoglobin primary sequence.

S → S2 – S3 – S4 – S5 – S6 – S7 – S8 – S9 – S10 – S11 – S12 – S13 – S14 – S15 – S16 – S17 – GLU – S
S2 → VAL | SER | HIS | LYS
S3 → LEU | GLY | HIS | PHE | PRO
S4 → GLY | GLN | ALA | ASP | THR
S5 → ALA | ASP | ARG | THR | ASN
S6 → LEU | LYS | ILE | PHE
…
S20 → S21 – S22 – S23 – S24 – S25 – S26 – S27 – S28 – S29 – LEU
S21 → VAL | GLY | ARG | S
S22 → LEU | LYS | PRO | S
S23 → LEU | SER | ASP
S24 → LEU | GLU | ALA | ASP | ILE

Figure 8.6. Partial grammar induced by SubdueGL on myoglobin primary sequence data.

196 GRAPH GRAMMAR LEARNING

h_1_15 – h_1_15 – h_1_6 – h_1_6 – h_1_19 – h_1_8 – h_1_18 – h_1_23

S → S2 – S3 – h_1_6 – S4 – h_1_19 – h_1_8 – h_1_18 – S5

S2 → h_1_14 | h_1_15
S3 → h_1_14 | h_1_15
S4 → h_1_6 | h_1_1
S5 → h_1_20 | h_1_23

Figure 8.7. Partial grammar SubdueGL on hemoglobin secondary structure.

S → h_1_15 – h_1_15 – h_1_6 – h_1_6 – h_1_19 – S2 – h_1_18 – S3

S2 → h_1_9 | h_1_8
S3 → h_1_25 | h_1_23

Figure 8.8. Partial grammar SubdueGL on myoglobin secondary structure.

contains 16 variables and it is recursive. Rules S21 and S22 are both variables and
contain S as one of their values.

For the next example we use the secondary structure of hemoglobin, which is
represented in graph form as a sequence of helices and sheets along the primary
sequence. Each helix is a vertex connected via edges labeled “next”. Each helix is
encoded in the form h t l, where h stands for helix, t is the helix type, and l is
the length of the helix. Part of the grammar identified by SubdueGL is shown in
Figure 8.7. This grammar only involves helices of type 1 (right-handed α helix).
This grammar can generate the most frequently occurring helix sequences that are
unique to hemoglobin. It can also generate others as well, for instance, ones that also
occur in myoglobin. The grammar generated for myoglobin secondary sequence is
shown in Figure 8.8. We can see that the two sequences have the same length and
the languages generated by them intersect in the following sequence:

h 1 15 − h 1 15 − h 1 6 − h 1 6 − h 1 19 − h 1 8 − h 1 18 − h 1 23

This is interesting since researchers have long been speculating that a common
evolutionary path exists for these proteins. In February of 2000, Hou and col-
leagues reported on myoglobin-like proteins that are prime candidates to be common
ancestors [10].

CounterTerrorism. In recent years the U.S. government has sponsored an in-
creased number of research projects directed toward counterterrorism. Many projects
center on social network analysis in which social interactions and relationships are
represented and analyzed. In the following example will show one such example to
highlight the ability of our system to pinpoint hard to find patterns that could not
be identified previously.

Our example domain was inspired by the Russian Contract Killing problem in
which various events are represented in a social network among which are murders.
They seek to identify events leading up to a contract killing event in order to predict
and prevent such events in the future. A portion of the input is depicted in Figure 8.9.

8.4 EMPIRICAL EVALUATION 197

Event

ReportOnSituation

Meeting

Person 1 Person 2

InformationSource InformationSource InformationSource

Sender

…ReportOnSituation

PhoneCall

Person 2 Person 3

ContainsInformation

ReceiverSender

ContainsInformation

Killerski

Perpetrator Victim

Victimski

Murder

ReportOnSituationnextEvent nextEvent nextEvent

Receiver

ContainsInformation

Figure 8.9. Portion of the RCK domain.

As we can see in the figure, the domain consists of a series of communication
events that can be a face-to-face meeting, a phone call, or an email communication,
which is followed by a murder event. The actual input contains four chains of events,
two of which have three communications and two have two communications. The
names of the persons involved are different in the actual input.

We applied SubdueGL to this domain. The resulting graph grammar is shown
in Figure 8.10. Rule S6 contains only one of the four subgraphs that remain in the
database after the input graph is parsed by rules S through S5. In reality, there are
four of these subgraphs.

Inspecting the results, we can see that rule S describes a series of general
communications. These are of different types and involve different people. Rule S5
describes the murder event. In this example the name of the killer and victim were
always the same, but if we change these, SubdueGL returns a more general rule that
has variables in place of these names. Looking at rule S6 we can see that a series
of communication events (inferred from the recursive nature of rule S) are followed
by a murder event (rule S4), which is exactly the type of information that can help
predict crime and, in this case, murder.

Even though the number and type of communications change, SubdueGL is
able to identify a general pattern that is useful in identifying the events leading up
to a murder. An algorithm that can only identify static patterns would not be able
to discern any usable information from this type of data.

8.4.3 Discussion

In this section we have demonstrated the practical utility of grammar learning
in graphs on biochemistry and counterterrorism domains. Our examples were
specific, but other configurations of both data and the learning system are
possible.

In the counterterrorism domain, for instance, we could also represent and track
the money trail that is sure to trace from the contractor of the murder to the assassin.
This may involve bank-to-bank transactions, Internet-assisted payments between
persons, and so on. Other accessories that may be involved in the contract killing

198 GRAPH GRAMMAR LEARNING

ReportOnSituation

S2 S2

S3 S3S4 S4

ContainsInformation

Receiverr

S ReportOnSituation

ContainsInformation

Sender

S

S2
Meeting

Person 1

PhoneCall

Person 2

E-Mail

Person 3

Person 2 Person 3 Killerski

S3

Receiver

S4

ReportOnSituation

Murder

Killerski Victimski

ContainsInformation

VictimPerpetrator

S5

S5

InformationSource
InformationSource

nextEvent
S

EventS6

Sende

Figure 8.10. Graph grammar induced from the RCK domain.

may also be tracked, such as purchase and transport of weapons and raw materials
needed to make weapons. In all cases, a series of events may be found and modeled
similarly to the series of contacts shown in the example. These events may also
be intermixed in occurrence and may also contain events that are irrelevant to the
contract killing scenario.

Similarly, other approaches may be employed in finding useful patterns in bio-
chemistry. For instance, experts are already aware of some patterns and the role
of various amino acids, which are assigned into groups based on their role and
chemical properties. It may be useful to incorporate this background information
into the database to jump start or steer the discovery process. The same is true for
counterterrorism domains, where certain information may be available to govern-
ment agents, information that can be used as background knowledge to help the
discovery algorithm.

REFERENCES 199

8.5 CONCLUSION

In this work we developed a machine learning algorithm for learning graph gram-
mars. Using the representational power of graphs and the ability of graph grammars
to generalize, we developed an approach that extends the expressive power of
hypotheses learned from examples. Our main goal was to achieve a better perfor-
mance over algorithms that learn static patterns only, and to develop a graph-based
algorithm that is competitive in performance with those of inductive logic sys-
tems. This was partially motivated by the emergence of specific problems that we
determined could benefit from the increased expressive power of graph grammars.
Previous works on graph-based systems lack the ability to learn structurally recursive
concepts.

Our approach includes the ability to learn recursive concepts, concepts that
include variable data points, and relationships between data points. We extended
our approach for both discovery and concept learning modes. We found that the
class of graph grammars learned by our algorithm is equivalent to the class of
regular graph grammars, which is the most restricted form of grammars.

We evaluated the system on several real-world examples. We compared Sub-
dueGL to ILP systems as well since they are known to perform well on rela-
tional domains. Hence, we performed experiments on publicly available databases
using SubdueGL and two of the most prominent ILP systems: FOIL and Progol.
Our approach outperformed these systems significantly about half the time and
marginally in the remaining experiments.

We experimented with real-world domains as well. We found interesting results
in protein sequences, which demonstrated that the additional expressive power of
graph grammars have practical utility. We applied our approach to a counterterrorism
domain, where the task involved recognizing a sequence of events leading up to a
murder. Our system found such a pattern, which, again, verifies the practicality of
the approach.

REFERENCES

1. R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In Proceedings
of the International Conference on Very Large Databases, pp. 487–499, Santiago, Chile,
1994.

2. B. Bartsch-Spörl. Grammatical inference of graph grammars for syntactic pattern recog-
nition. Lecture Notes in Computer Science, 153:1–7, 1983.

3. R. M. Cameron-Jones and J. R. Quinlan. Efficient top-down induction of logic programs.
SIGART Bulletin. 5(1):33–42, 1994.

4. R. C. Carrasco, J. Oncina, and J. Calera. Stochastic inference of regular tree languages.
Lecture Notes in Artificial Intelligence, 1433:187–198, 1998.

5. D. J. Cook and L. B. Holder. Graph-based data mining, IEEE Intelligent Systems,
15:32–41, 2000.

6. D. J. Cook and L. B. Holder. Substructure discovery using minimum description length
and background knowledge. Journal of Artificial Intelligence Research, 1: 231–255,
1994.

200 GRAPH GRAMMAR LEARNING

7. R. E. Dickerson and I. Geis. Hemoglobin: Structure, Function, Evolution, and Pathology.
Benjamin/Cummings, Boston, 1982.

8. H. Ehrig, H.-J. Kreowski, and G. Rozenberg, eds. Graph Grammars and Their Applica-
tion to Computer Science, Lecture Notes Computer Science, Vol. 532. Springer, Berlin,
1991.

9. J. Engelfriet and G. Rozenberg. Graph Grammars Based on Node Rewriting: An Intro-
duction to NLC Grammars. Lecture Notes in Computer Science, Vol. 532, pp. 12–23.
Springer, Berlin, 1991.

10. S. Hou, R. W. Larsen, D. Boudko, C. W. Riley, E. Karatan, M. Zimmer, G. W. Ordal,
and M. Alam. Myoglobin-like aerotaxis transducers in Archaea and Bacteria. Nature
403:540–544, 2000.

11. A. Inokuchi, T. Washio, and H. Motoda. An apriori-based algorithm for mining frequent
substructures from graph data. Proceedings of the European Conference on Principles
and Practice of Knowledge Discovery in Databases, Lyon, France, 2000.

12. E. Jeltsch and H. J. Kreowski. Grammatical inference based on hyperedge replacement.
Lecture Notes in Computer Science, 532:461–474, 1991.

13. I. Jonyer, L. B. Holder, and D. J. Cook, Graph-based hierarchical conceptual cluster-
ing, Proceedings of the Thirteenth Annual Florida AI Research Society, Orlando, FL,
pp. 91–95, 2000.

14. E. Keogh, C. Blake, and C. J. Merz. In UCI Repository of Machine Learning Databases,
Irvine, 1998.

15. M. W. King. Hemoglobin and myoglobin. The Internet. Indiana State University, Terre
Haute, http://www.indstate.edu/thcme/mwking/hemoglobin-myoglobin.html.

16. M. Kuramochi and G. Karypis. An Efficient Algorithm for Discovering Frequent Sub-
graphs. Technical Report 02-026, Department of Computer Science, University of Min-
nesota, Twin Cities, 2002.

17. P. Langley and S. Stromsten. Learning context-free grammars with a simplicity bias.
Proceedings of the Eleventh European Conference on Machine Learning, pp. 220–228.
Springer, Barcelona, 2000.

18. S. Muggleton. Inductive logic programming: Derivations, successes and shortcomings.
SIGART Bulletin, 5:1, 1994.

19. M. Nagl, 1987. Set theoretic approaches to graph grammars. In H. Ehrig, M. Nagl,
G. Rozenberg, and A. Rozenfeld, eds., Graph grammars and their application to Com-
puter Science, 41–54.

20. C. G. Nevill-Manning and I. H. Witten. Identifying hierarchical structure in sequences:
A linear-time algorithm. Journal of Artificial Intelligence Research, 7:67–82, 1997.

21. G. D. Plotkin. Automatic methods of inductive inference. Ph.D. thesis. Edinburgh Uni-
versity, 1971.

22. J. R. Quinlan. Learning logical definitions from relations. Machine Learning, 5: 239–266,
1990.

23. J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, San Francisco,
1993.

24. J. Rissanen. Stochastic Complexity in Statistical Inquiry. World Scientific, New Jersey,
1989.

25. S. Slattery and M. Craven. Combining statistical and relational methods for learn-
ing in hypertext domains. Proceedings of the Eighth International Conference on ILP,
pp. 38–52, 1998.

REFERENCES 201

26. A. Srinivasan, R. D. King, S. H. Muggleton, and M. J. E. Sternberg. Carcinogenesis
predictions using ILP. Proceedings of the Seventh International Conference on Inductive
Logic Programming, Amherst, MA, pp. 273–88; 1997.

27. M. Turcotte, S. H. Muggleton, and M. J. E. Sternberg. Application of inductive logic pro-
gramming to discover rules governing the three-dimensional topology of protein structure.
Proceedings of the Eighth International Conference on Inductive Logic Programming,
Madison, Wisconsin, pp. 53–64, 1998.

28. X. Yan and J. Han. gSpan: Graph-based substructure pattern mining. Proceedings of the
International Conference on Data Mining (ICDM), Maebashi City, Japan, 2002.

29. J. M. Zelle and R. J. Mooney. Combining FOIL and EBG to speedup logic programs.
Proceedings of the Thirteenth International Joint Conference on Artificial Intelligence,
Chambery, France, pp. 1106–1111, 1993.

9
CONSTRUCTING DECISION

TREE BASED ON
CHUNKINGLESS GRAPH-BASED

INDUCTION
KOUZOU OHARA, PHU CHIEN NGUYEN, AKIRA MOGI, HIROSHI

MOTODA, AND TAKASHI WASHIO

Institute of Scientific and Industrial Research, Osaka University,
Osaka, Japan

9.1 INTRODUCTION

Over the last few years there has been much research work on data mining in seeking
for better performance. Better performance includes mining from structured data,
which is a new challenge. Since structure is represented by proper relations and
a graph can easily represent relations, knowledge discovery from graph-structured
data poses a general problem for mining from structured data.

On one hand, from this background, discovering frequent patterns of graph-
structured data, that is, frequent subgraph mining or simply graph mining, has
attracted much research interest in recent years because of its broad application
areas such as bioinformatics [2, 11, 17], cheminformatics [13, 15, 27], and the like.
Apriori-based Graph Mining (AGM) [13] and a number of other methods includ-
ing Apriori-based connected Graph Mining (AcGM) [12], FSG ([15] and Chapter
6 of this book), graph-based substructure pattern mining (gSpan) ([27] and Chapter
5 of this book), Fast Frequent Subgraph Mining (FFSM) [10], and the like have
been developed for the purpose of enumerating all frequent subgraphs of a graph
database. However, the computation time increases exponentially with input graph

Mining Graph Data, Edited by Diane J. Cook and Lawrence B. Holder
Copyright c© 2007 John Wiley & Sons, Inc.

203

204 CONSTRUCTING DECISION TREE BASED ON CL-GBI

size and minimum support. This is because the kernel of frequent subgraph mining
is subgraph isomorphism, which is known to be NP-complete [6].

To avoid the complex subgraph isomorphism problem, heuristic algorithms,
which are not guaranteed to find the complete set of frequent subgraphs, such as
SUBDUE ([5] and Chapter 7 of this book) and graph-based induction (GBI) [28]
have also been proposed. They tend to find an extremely small number of patterns
based on greedy search. GBI extracts typical patterns from graph-structured data by
recursively chunking two adjoining nodes. Later an improved version called beam-
wise graph-based induction (B-GBI) [17] adopting the beam search was proposed to
increase the search space, thus extracting more discriminative patterns while keep-
ing the computational complexity within a tolerant level. Since the search in GBI is
greedy and no backtracking is made, which patterns are extracted by GBI depends
on which pairs are selected for chunking. This means that patterns that overlap each
other have no longer been extracted and that there can be many patterns that are
not extracted by GBI. B-GBI can help alleviate this problem but cannot solve it
completely because the chunking process is still involved.

On the other hand, a majority of methods widely used for data mining are for
data that do not have structure and that are represented by attribute-value pairs.
Decision trees [21, 22] and induction rules [4, 18] relate attribute values to target
classes. Association rules often used in data mining also uses this attribute-value pair
representation. These methods can induce rules such that they are easy to understand.
However, the attribute-value pair representation is not suitable to represent a more
general data structure such as graph-structured data. This means that most of useful
methods in data mining are not directly applicable to graph-structured data.

In the domain of inductive logic programming (ILP) [19], there are two systems
that can construct a decision tree from structured data: Top-down Induction of Log-
ical Decision trees (Tilde) [1] and Structural Classification and Regression Trees
(S-Cart) [14]. Although they were developed independently, they share the same
theoretical framework and can construct a first-order logical decision tree, which is a
binary tree where each node in the tree is associated with either a literal or a conjunc-
tion of literals. Namely, each node can represent a relational or structured data. They
can utilize a substructure represented by one or more literals to generate a new node
in a decision tree, but available structures are limited to those that are predefined.

In this chapter, for the purpose of constructing a decision tree for graph-
structured data, we propose two algorithms: One is an algorithm to extract typical
patterns from graph-structured data, called chunkingless graph-based induction (Cl-
GBI), and the other is an algorithm to construct a decision tree from graph-structured
data using Cl-GBI. Although Cl-GBI is an improved version of B-GBI, it does
not employ the pairwise chunking strategy. Instead, the most frequent pairs are
regarded as new nodes and given new node labels in the subsequent steps but none
of them are chunked. In other words, they are used as pseudonodes, thus allow-
ing extraction of overlapping subgraphs. We evaluate Cl-GBI on two datasets, the
PTE dataset from the Predictive Toxicology Evaluation Challenge [20, 23] and the
hepatitis dataset provided by Chiba University, and show that Cl-GBI can extract
more typical substructures than B-GBI.

9.2 GRAPH-BASED INDUCTION REVISITED 205

The decision tree construction algorithm, called decision tree chunkingless
graph-based induction (DT-ClGBI), is a revised version of our previous algorithm
called decision tree graph-based induction (DT-GBI) [7, 9] and can construct a
decision tree for graph-structured data while simultaneously constructing substruc-
tures used as attributes for classification task by means of Cl-GBI instead of B-GBI
adopted in DT-GBI. In this context, substructures means subgraphs or patterns that
appear in a given graph database. Patterns extracted by Cl-GBI are regarded as
attributes of graphs, and their existence/nonexistence is used as attribute values.
Namely, in contrast to Tilde and S-Cart, DT-ClGBI does not require the user to
define available substructures in advance. Since attributes (features) are constructed
while a classifier is being constructed, DT-ClGBI can be conceived as a method for
feature construction. Using both synthetic and real-world datasets, we experimen-
tally show DT-ClGBI can construct decision trees from graph-structured data that
achieve reasonably good predictive accuracy.

This chapter is organized as follows: Section 9.2 briefly describes the framework
of GBI. Section 9.3 points out the problem caused by the nature of chunking in GBI.
Section 9.4 describes the details of Cl-GBI and reports the results of experimental
evaluation. Section 9.5 explains DT-ClGBI and its working mechanism of how a
decision tree is constructed using a simple example, and reports experimental results
for both synthetic and real-world datasets. Section 9.6 concludes the chapter.

9.2 GRAPH-BASED INDUCTION REVISITED

9.2.1 Principle of GBI

Graph-based induction employs the idea of extracting typical patterns by stepwise
pair expansion as shown in Figure 9.1. In the original GBI, an assumption is made
that typical patterns represent some concepts/substructures, and “typicality” is char-
acterized by the pattern’s frequency or the value of some evaluation function of
its frequency. We can use statistical indices as an evaluation function, such as fre-
quency itself, information gain [21], gain ratio [22] and Gini index [3], all of which
are based on frequency. In Figure 9.1 the shaded pattern consisting of nodes 1, 2,
and 3 is thought typical because it occurs three times in the graph. GBI first finds

1
3

2

4
1

3
2

1
3

2
7 8

5

96

7

5

4

11

11

11

5
7

4

6 9

4

7 8

5

1

3
2

1

3
2

1110
2

Figure 9.1. Principle of GBI.

206 CONSTRUCTING DECISION TREE BASED ON CL-GBI

the 1 → 3 pairs based on its frequency, chunks them into a new node 10, then in
the next iteration finds the 2 → 10 pairs, chunking them into a new node 11. The
resulting node represents the shaded pattern.

It is possible to extract typical patterns of various sizes by repeating the above
three steps. Note that the search is greedy and no backtracking is made. This means
that in enumerating pairs no pattern that has been chunked into one node is restored
to the original pattern. Because of this, all the “typical patterns” that exist in the
input graph are not necessarily extracted, and patterns that partially overlap are
never generated, that is, any two patterns are either disjoint or perfect inclusion. The
problem of extracting all the isomorphic subgraphs is known to be NP-complete.
Thus, GBI aims at extracting only meaningful typical patterns of a certain size. Its
objective is not finding all the typical patterns nor finding all the frequent patterns.

As described earlier, GBI can use any criterion that is based on the frequency of
paired nodes. However, for finding a pattern that is of interest, any of its subpatterns
must be of interest because of the nature of repeated chunking. In Figure 9.1 the
pattern 1 → 3 must be typical for the pattern 2 → 10 to be typical. Said differently,
unless pattern 1 → 3 is chunked, there is no way of finding the pattern 2 → 10.
The frequency measure satisfies this monotonicity property. However, if the criterion
chosen does not satisfy this monotonicity property, repeated chunking may not find
good patterns even though the best pair based on the criterion is selected at each
iteration. To resolve this issue GBI was improved to use two criteria, one based on
frequency measures for chunking and the other for finding discriminative patterns
after chunking. The latter criterion does not necessarily exhibit the monotonicity
property. Any function that is discriminative can be used, such as information gain
[21], gain ratio [22] and Gini index [3], and some others.

9.2.2 Beamwise Graph-Based Induction (B-GBI)

Since the search in GBI is greedy and no backtracking is made, which patterns
(subgraphs) are extracted by GBI depends on which pair is selected for chunking.
There can be many patterns that are not extracted by GBI. In Figure 9.2, if the pair
B–C is selected for chunking beforehand, there is no way to extract the substructure
A–B–D even if it is a typical pattern.

A beam search is incorporated into GBI in B-GBI [17] within the framework of
greedy search in order to relax this problem, increase the search space, and extract
more discriminative patterns while still keeping the computational complexity within
a tolerant level. A certain number of pairs ranked from the top are selected to be

A

B D

C

A

B D

(a) (b)

Figure 9.2. Missing patterns due to chunking order.

9.3 PROBLEM CAUSED BY CHUNKING IN B-GBI 207

A

A

A A

A

A

Figure 9.3. Two different pairs representing identical patterns.

chunked individually. To prevent each branch from growing exponentially, the total
number of pairs to be chunked (the beam width) is fixed at every time of chunking.
Thus, at any iteration step, there are always a fixed number of chunking steps
performed in parallel.

Another improvement made in conjunction with B-GBI is canonical labeling.
GBI assigns a new label to each newly chunked pair. Because it recursively chunks
pairs, it happens that the new pairs that have different labels are the same pattern.
A simple example is shown in Figure 9.3. They represent the same pattern but the
ways they are constructed are different. To identify if two pairs represent the same
pattern, each pair is represented by its canonical label [6], and they are considered
to be identical only when the labels are the same.

9.3 PROBLEM CAUSED BY CHUNKING IN B-GBI

As described in Section 9.2.2, B-GBI increases the search space by running GBI in
parallel. As a result, B-GBI can help alleviate the problem of overlapping subgraphs
but cannot solve it completely because the chunking process is still involved. It
happens that some of the overlapping patterns are not discovered by B-GBI. For
example, suppose in Figure 9.2 the pair B–C is most frequent, followed by the pair
A–B. When b = 1, there is no way that the pattern A–B–D is discovered because
the pair B–C is chunked first, but by setting b = 2, the pair A–B can be chunked
in the second beam and if the substructure A–B–D is frequent enough, there is a
chance that the pair (A–B)–D is chunked at next iteration. However, setting b very
large is prohibitive from a computational point of view.

Any subgraph that B-GBI can find is along the way in the chunking process.
Thus, it happens that a pattern found in one input graph is unable to be found in
the other input graph even if it does exist in the graph. An example is shown in
Figure 9.4, where even if the pair A–B is selected for chunking and the substructure

D

A B

C D

A B

C

B

(a) (b)

Figure 9.4. Pattern is found in one input graph but not in the other.

208 CONSTRUCTING DECISION TREE BASED ON CL-GBI

D–A–B–C exists in the input graphs, we may not find that substructure because an
unexpected pair A–B is chunked [see Figure 9.4(b)]. This causes a serious problem
in counting the frequency of a pattern.

Complete graph mining algorithms such as AGM [13], AcGM [12], FSG ([15]
and Chapter 6 of this book), gSpan ([27] and Chapter 5 of this book), FFSM [10],
and the like do not face the problem of overlapping subgraphs since they can find all
frequent patterns in a graph database. However, these methods are designed to find
existence or nonexistence of a certain pattern in one transaction and not to count
how many times a certain pattern appears in one transaction. They also cannot give
information on the positions of each pattern in any transaction of the graph database,
which is required by domain experts.

Heuristic algorithms for graph mining such as SUBDUE ([5] and Chapter 7
of this book), GBI [28] and GREW [16], on the other hand, are designed for the
purpose of enumerating typical patterns in a single large graph. Specially, B-GBI
[17] can find (not all) typical patterns in either a single large graph or a graph
database. However, all of them are not designed to detect the positions of patterns
in any graph transaction. In Section 9.4, we will introduce a novel algorithm that
can overcome the problem of overlapping subgraphs incurred by both GBI and B-
GBI. The proposed algorithm, called Cl-GBI (chunkingless graph-based induction),
employs a “chunkingless chunking” strategy, where frequent pairs are never chun-
ked but used as pseudonodes in the subsequent steps, thus allowing extraction of
overlapping subgraphs. It can also give the positions of patterns present in each
graph transaction as well as find frequent patterns in either a single large graph or
a graph database.

9.4 CHUNKINGLESS GRAPH-BASED INDUCTION (CL-GBI)

9.4.1 Approach

The basic ideas of Cl-GBI are described as follows. Those pairs that connect two
adjoining nodes in the graphs are counted for their frequencies and a certain fixed
number of pairs (the beam width) ranked from the top are selected. In B-GBI, each
of the selected pairs is registered as one node and this node is assigned a new label.
Then, the graphs in the respective state are rewritten by replacing all the occurrences
of the selected pair with a node with the newly assigned label (pairwise chunking).

In Cl-GBI, we also register the selected pairs as new nodes and assign new labels
to them. But those pairs are never chunked and the graphs are not “compressed”
nor copied into respective states as in B-GBI. In the presence of the pseudonodes
(i.e., newly assigned label nodes), we count the frequencies of pairs consisting of at
least one new pseudonode. The other is either one of pseudonodes including those
already created in the previous steps or an original one. In other words, the other
is one of the existing nodes. Among the remaining pairs (after selecting the most
frequent pairs) and the new pairs that have just been counted for their frequencies,
we select the most frequent pairs with the number equal to the beam width specified
in advance.

9.4 CHUNKINGLESS GRAPH-BASED INDUCTION (CL-GBI) 209

These steps are repeated for a predetermined number of times, each of which is
referred to as a level. Those pairs that satisfy a typicality criterion (e.g., pairs whose
information gain exceeds a given threshold) among all the extracted pairs are the
output of the algorithm.

A frequency threshold is used to reduce the number of pairs being considered
to be typical patterns. Another possible method to reduce the number of pairs is to
eliminate those pairs whose typicality measure is low even if their frequency count
is above the frequency threshold. The two parameters, beam width and number
of levels, control the search space. The frequency threshold is another important
parameter.

As in B-GBI, the Cl-GBI approach can handle both directed and undirected
graphs as well as both general and induced subgraphs. It can also extract typical
patterns in either a single large graph or a graph database and can use both document
and total frequency optionally. Document frequency of a pattern is the number of
graphs that contain the pattern or its ratio to the total number of graphs in the graph
database, while total frequency is the total number of occurrences of the pattern
in the graph database. Usually, we use document frequency for extracting typical
patterns from a graph database, and total frequency for enumerating typical patterns
in a single graph.

9.4.2 Algorithm of Cl-GBI

Given a graph database, two natural numbers b (beam width) and Ne (number of
levels), and a frequency threshold θ , the new “chunkingless chunking” strategy
repeats the following three steps.

Step 1 Extract all the pairs consisting of two connected nodes in the graphs,
register their positions using node id (identifier) sets, and count their
frequencies. From the second level on, extract all the pairs consist-
ing of two connected nodes with at least one node being a new
pseudonode.

Step 2 Select the b most frequent pairs from among the pairs extracted at
step 1 (from the second level on, from among the unselected pairs
in the previous levels and the newly extracted pairs). Each of the b

selected pairs is registered as a new node. If either or both nodes of
the selected pair are not original but pseudonodes, they are restored
to the original patterns before registration.

Step 3 Assign a new label to each pair selected at step 2 but do not rewrite
the graphs. Go back to step 1.

These steps are repeated Ne times (Ne levels). All the pairs extracted at step 1
in all the levels (i.e., level 1 to level Ne), including those that are not used as
pseudonodes, are ranked based on a typicality criterion using a discriminative func-
tion such as information gain, gain ratio, or Gini index. Note that those pairs that
have frequency count below a frequency threshold θ are eliminated, which means
that there are three parameters b, Ne, and θ to control the search in Cl-GBI.

210 CONSTRUCTING DECISION TREE BASED ON CL-GBI

The output of Cl-GBI algorithm is a set of ranked typical patterns, each of
which comes together with the positions of every occurrence of the pattern in each
transaction of the graph database (given by the node id sets) as well as the number
of occurrences.

9.4.3 Implementation Issues of Cl-GBI

The first issue concerns frequency counting. To count the number of occurrences of
a pattern in a graph transaction, the canonical labeling employed in [17] is adopted.
However, canonical labeling alone cannot solve the problem completely as shown
in Figure 9.5. Suppose that the pair A → B is registered as a pseudonode N in the
graph shown in Figure 9.5(a). How many times should the pair N → B be counted
here? If only the canonical label is considered, the answer is 2 because there are
two pseudonodes N1 and N2 as shown in Figure 9.5(b), and both N1 → B and
N2 → B are counted separately. However, the pair N → B should be counted once.
Our solution is to incorporate the canonical label with the node id set. If both the
canonical label and the node id set are identical for two subgraphs, we regard that
they are the same and count once.

The second issue regards the relations between a pseudonode and those nodes
that are embedded inside. Think of the pseudonode C and the two embedded nodes
A, B in Figure 9.6(a). What are the relations between C and A or C and B? In the
case of enumerating frequent induced subgraphs, there is not any relation between
C and A nor C and B. This is because a pair in this case must consist of two nodes
and all links between them. However, in the case of extracting frequent general
subgraphs, there is still a link between C and A as well as a link between C and
B. To differentiate between the graphs shown in Figures 9.6(a) and 9.6(b), a flag
indicating whether it is a self-loop or not is required. In summary, a pair consists of
six elements: labels of two nodes and label of the link between them, information
of which two nodes inside the pair the link is connected to, and a self-loop flag. In
the case of enumerating frequent induced subgraphs, all links between two nodes
should be considered.

The third issue involves the problem of how to reduce the computation cost.
To avoid multiple extractions of the same pattern, we only consider those pairs that
connect two disjoint nodes/pseudonodes. This is because for any pattern consisting
of two overlapping nodes/pseudonodes, there exists a pair of disjoint nodes/pseudo-
nodes that can construct that pattern. This simple strategy helps reduce the number

A

B

B

A

B

B

(a) (b)

N1

N2

N

Figure 9.5. Example of frequency counting.

9.4 CHUNKINGLESS GRAPH-BASED INDUCTION (CL-GBI) 211

B

1

BA
2

C

A

1

BA
2

C

(a)

1

(b)

Figure 9.6. Relations between a pseudonode and its embedded nodes.

A A

A

A A

A

A A

A

A A

A

(a) (b)

(c) (d)

Figure 9.7. Three occurrences but counted once.

of pairs to be extracted significantly, and the computation cost is thus reduced
accordingly.

9.4.4 Unsolved Problem of Cl-GBI

We found that there is still a problem in frequency counting that the use of both the
canonical label and the node id set cannot solve. Think of the graph in Figure 9.7(a).
The three subgraphs A–A–A illustrated in Figures 9.7(b), 9.7(c), and 9.7(d) share
the same canonical label and the same node id set. Our current Cl-GBI cannot
distinguish between these three. However, this problem arises only when extracting
general subgraphs. It causes no problem in the case of enumerating frequent induced
subgraphs.

9.4.5 Experimental Evaluation of Cl-GBI

To assess the performance of the Cl-GBI approach, we conducted some experiments
on both synthetic and real-world graph-structured datasets. The proposed Cl-GBI
algorithm was implemented in C++. It should be noted that all graphs/subgraphs
reported here are connected ones.

In the first experiment, we verify that Cl-GBI is capable of finding all frequent
patterns in a single graph that other graph mining algorithms cannot. An example
of such a single graph is shown in Figure 9.8(a). Suppose that the problem here
is to find frequent induced subgraphs that occur at least three times in the graph.

212 CONSTRUCTING DECISION TREE BASED ON CL-GBI

A A

A

A A

A

A

A

A

(a)

A A

A

A AA A

A

(b) (c)

Figure 9.8. Example of finding frequent patterns in a single graph.

Figure 9.8(c) shows an example of frequent induced subgraph which occurs three
times in the graph (support = 3).

The current algorithms that are designed for extracting frequent patterns in a
single graph such as GBI [28], B-GBI [17], SUBDUE ([5] and Chapter 7 of this
book), or GREW [16] cannot discover the pattern shown in Figure 9.8(c) because
three occurrences of this pattern are not disjoint but overlapping. The complete
graph mining algorithms like AcGM [12], FSG ([15] and Chapter 6 of this book),
gSpan ([27] and Chapter 5 of this book), FFSM [10], and so forth in the case that
they are adapted to find frequent patterns in a single graph, also cannot find that
pattern because of the antimonotonicity property they use to prune the search. Since
the pattern shown in Figure 9.8(b) occurs only once in the graph and thus cannot
be extracted, the pattern shown in Figure 9.8(c), which is one of its supergraphs, is
also unable to be found. The proposed Cl-GBI algorithm, on the other hand, can
find all 36 frequent induced subgraphs, including the one shown in Figure 9.8(c),
with b = 3, Ne = 5.

In the second experiment, we show that Cl-GBI can extract all the frequent
patterns of a graph database. This experiment was conducted on the PTE dataset
[20], which contains the molecular structure data of carcinogenic compounds. This
dataset was originally provided for the Predictive Toxicology Evaluation Challenge
[23], and it contains information on 340 chemical compounds. There are 4 different
types of bonds (1, 2, 3 and 7) and 24 different atoms (As, Ba, Br, C, Ca, Cl, Cu, F,
H, Hg, I, K, Mn, N, Na, O, P, Pb, S, Se, Sn, Te, Ti and Zn). In addition, the atoms
take some different states, and thus the total number of atom types is 66.

Each compound was converted to an undirected graph as in [15]. Thus, there
are 340 graph transactions in total. Each node corresponds to an atom, whose label
is made of a pair of the atom element and the atom type. Each link is placed for
every bond. Link label directly corresponds to the bond type. By the conversion,
there are 66 node labels and 4 link labels produced in total. The average size of this
graph database is 27.0 in terms of the number of nodes, and 27.4 in terms of the
number of links. The largest graph transaction contains 214 nodes and 214 links.

Tables 9.1 and 9.2 show the number of levels Ne needed to enumerate all
frequent general and induced subgraphs, respectively, of the PTE dataset given var-
ious values of θ and the same beam width of 10. The number of frequent patterns
extracted from the PTE dataset, for both cases, is verified by the AcGM [12] algo-
rithm, which can find all frequent patterns in a graph database. As is easily predicted,

9.4 CHUNKINGLESS GRAPH-BASED INDUCTION (CL-GBI) 213

TABLE 9.1 Extracting Frequent General Subgraphs
from PTE Dataset Using Cl-GBI

Frequency
Threshold (θ) 30% 20% 10%

Number of frequent
patterns

68 190 844

Beam width (b) 10 10 10
Number of levels

(Ne) needed
12 18 84

TABLE 9.2 Extracting Frequent Induced Subgraphs
from PTE Dataset Using Cl-GBI

Frequency
Threshold (θ) 30% 20% 10%

Number of frequent
patterns

49 139 537

Beam width (b) 10 10 10
Number of levels

(Ne) needed
4 7 18

this Cl-GBI algorithm can find all the frequent patterns by setting b and Ne large
enough.

In the third experiment we compare the performance of the Cl-GBI and B-GBI
[17] algorithms with respect to the number of frequent induced subgraphs extracted
from the hepatitis dataset. This dataset, which was provided by Chiba University,
contains long time-series data (from 1982 to 2001) on laboratory examination of
771 patients of hepatitis B and C. In this experiment, we used the information on
those patients as to whether the interferon therapy was effective or not in case they
underwent the therapy. Information on each patient was converted to a directed graph
after some preprocesses such as cleansing, averaging, and discretizing resulting
values of examinations, and the obtained graph database has 142 graph transactions.
The average size of this graph database is 111.6 in terms of the number of nodes,
and 116.5 in terms of the number of links. The details of this data preparation can
be found in [8].

We set θ = 20% and b = 5. Table 9.3 shows some experimental results obtained
from the hepatitis dataset. It is shown that Cl-GBI can find much more frequent pat-
terns than B-GBI given the same beam width. It should be noted that one of the nice
aspects of B-GBI is that the size of the input graph keeps reducing progressively
as the chunking proceeds, and thus the number of pairs to be considered also pro-
gressively decreases accordingly. In the case of Cl-GBI, the number of pairs to be
considered keeps increasing because the number of pseudonodes keeps increasing as
the search proceeds. Thus, it is important to select appropriate values for b and Ne.

214 CONSTRUCTING DECISION TREE BASED ON CL-GBI

TABLE 9.3 Number of Frequent Induced
Subgraphs Extracted from Hepatitis Dataset Using
Cl-GBI by Setting θ = 20% and b = 5

Number of Number of
Algorithm Levels Ne Frequent Patterns

B-GBI N/A 2186
Cl-GBI 5 3147
Cl-GBI 10 12489

9.5 DECISION TREE CHUNKINGLESS GRAPH-BASED INDUCTION
(DT-CLGBI)

9.5.1 Decision Tree for Graph-Structured Data

As mentioned in Section 9.1, the attribute–value pair representation is not suitable
for graph-structured data, although both attributes and their values are essential for
a classification or prediction task because a class is related to some attribute values
in most cases. In a decision tree, each node and a branch connecting the node to its
child node correspond to an attribute and one of its attribute values, respectively.
Thus, to formulate the construction of a decision tree for graph-structured data, we
define attributes and their values as follows:

• Attribute: a pattern/subgraph in graph-structured data
• Value of an attribute: existence/nonexistence of the pattern in each graph

Since the value of an attribute is either yes (the pattern corresponding to the attribute
exists in the graph) or no (the pattern does not exist), the resulting decision tree
is represented as a binary tree. Namely, data (graphs) are divided into two groups:
one consists of graphs with the pattern, and the other consists of graphs with-
out it. Figure 9.9 illustrates the decision tree constructed based on this approach.
One remaining question is how to determine patterns that are used as attributes

Graph Data

Class A Class B

Class C Class A Class B Class C

Y N

1
3

2

4

6
6

3
2

4

3
2

4

3
6

1

4

Y N Y N

Y N Y N

Decision Tree

Figure 9.9. Decision tree for classifying graph-structured data.

9.5 DECISION TREE CHUNKINGLESS GRAPH-BASED INDUCTION (DT-CLGBI) 215

for graph-structured data. Our approach to this question is described in the next
subsection.

9.5.2 Feature Construction by Cl-GBI

The algorithm we propose here, called decision tree chunkingless graph-based induc-
tion (DT-ClGBI), utilizes Cl-GBI to extract patterns from graph-structured data and
uses them as attributes for a classification task, whereas our previous algorithm,
decision tree graph-based induction (DT-GBI), adopted B-GBI to extract patterns.
Namely, DT-ClGBI invokes Cl-GBI at each node of a decision tree and selects
the most discriminative pattern from those which were extracted by Cl-GBI. Then
the data (graphs) are divided into two groups, that is, one with the pattern and the
other without the pattern as described above. For each group, the same process is
recursively applied until the group contains graphs of a single class like the ordinary
decision tree construction method such as C4.5 [22]. The algorithm of DT-ClGBI
is summarized in Figure 9.10

In DT-ClGBI, each of the parameters of Cl-GBI, b, Ne, and θ , can be set to
different values at different nodes in a decision tree. All patterns extracted at a
node are inherited to its descendant nodes to prevent a pattern that has already been
extracted in the node from being extracted again in its descendants. This means
that, as the construction of a decision tree progresses, the number of patterns to
be considered at a node progressively increases, and the size of a pattern newly
extracted can be larger than existing patterns. Thus, although initial patterns at the

DT-ClGBI(D)

INPUT

D: a graph database

begin

Create a node DT for D

if termination condition reached

return DT

else

P := Cl-GBI(D) (with b, Ne, and θ specified)

Select the most discriminative pattern p from P

Divide D into Dy (with p) and Dn (without p)

for Di := Dy, Dn
DTi := DT-ClGBI(Di)

Augment DT by attaching DTi as its child

along yes (no) branch

return DT

end

Figure 9.10. Algorithm of DT-ClGBI.

216 CONSTRUCTING DECISION TREE BASED ON CL-GBI

start of search consist of two nodes and the link between them, attributes useful for
the classification task can be gradually grown up into larger patterns (subgraphs)
by applying Cl-GBI recursively. In this sense, DT-ClGBI can be conceived as a
method for feature construction, since features, that is, attributes (patterns) useful
for the classification task, are constructed during the application of DT-ClGBI. Note
that it is possible to extract all the patterns at the root node using all the data by
setting Ne large enough and inherit them to the lower nodes. Patterns that are to
be used at lower nodes should give smaller discriminative power at the root node,
but Cl-GBI retains them and passes down to the lower node. The question is how
to find this pattern where it is needed without running Cl-GBI using all the dataset.
Recursive calling of Cl-GBI with inheritance facilitates this.

However, recursive partitioning of data until each subset in the partition contains
data of a single class often results in overfitting to the training data and thus degrades
the predictive accuracy of resulting decision trees. To avoid overfitting, and improve
predictive accuracy, DT-ClGBI incorporates “pessimistic pruning” used in C4.5
[22] that prunes an overfitted tree based on the confidence interval for binomial
distribution. This pruning is a postprocess that follows the algorithm in Figure 9.10.
DT-ClGBI is also implemented in C++.

Note that the criterion for selecting a pair that becomes a pseudonode in Cl-GBI
and the criterion for selecting a discriminative pattern in DT-ClGBI can be different.
In the following, document frequency of a pair is used as the former criterion, and
information gain of a pattern is used as the latter criterion.1

9.5.3 Working Example of DT-ClGBI

Suppose DT-ClGBI receives a set of 4 graphs in the upper left-hand side of
Figure 9.11. Both the beam width b and the number of levels Ne of Cl-GBI are set
to 1 at every node of a decision tree to simplify the working of DT-ClGBI in this
example, and the frequency threshold θ is set to 0%. Cl-GBI called inside of DT-
ClGBI enumerates all the pairs in these graphs and extracts 11 kinds of pairs from
the data. These pairs are: a→a, a→b, a→c, a→d, b→a, b→b, b→c, b→d, d→a,
d→b, d→c. The existence/nonexistence of the pairs in each graph is converted into
the ordinary table representation of attribute–value pairs, as shown in Figure 9.12.
For instance, graph 1, graph 2, and graph 3 have the pair a→a but graph 4 does
not have it. This is shown in the first column in Figure 9.12.

Then Cl-GBI selects the most frequent pair “a→a,” assigns new label “e” to
it to generate a pseudonode as shown in the upper right-hand side of Figure 9.11,
and terminates. Next, DT-ClGBI selects the most discriminative pattern, that is, the
pattern (pair) with the highest evaluation for classification (i.e., information gain)
from the enumerated pairs, and uses it to divide the data into two groups at the
root node. In this example, the pair “a→a” is selected. As a result, the input data
is divided into two groups: one consisting of graph 1, graph 2, and graph 3 and the
other consisting of only graph 4.

1We did not use information gain ratio because DT-ClGBI constructs a binary tree.

9.5 DECISION TREE CHUNKINGLESS GRAPH-BASED INDUCTION (DT-CLGBI) 217

Y N
a a

class Ca a d

NY

class Bclass A

a a

a a d

d b c

a a c

b d a

b b

ad a

b b a

c

Graph1(class A)

c

a a d

d b c

a a c

b d a

b b

ad a

b b a

c

c

a a d

d b c a a c

b d ab b

ad a

c

e

e

ef

f

e

ee

f

Graph2(class B)

Graph3(class A) Graph4(class C) Graph3(class A)

Graph1(class A) Graph2(class B)

Graph4(class C)

Graph1(class A)

Graph3(class A)

Graph2(class B)

(a→a)=e

(a→d)=f

Figure 9.11. Example of decision tree construction by DT-ClGBI.

1

0

0

0

0

1

1

0

0

1

0

0

1

0

0

0

0

0

1

1

0

0

1

1

0

0

1

0

1

1

1

0

0

1

1

0

1

1

0

1

1

1

1

0

1 (class A)

2 (class B)

3 (class A)

4 (class C)

Graph a→a a→b a→c a→d b→a b→b b→c b→d d→a d→b d→c

Figure 9.12. Attribute–value pairs at the first step.

The above process is applied recursively at each node to grow up the decision
tree while constructing attributes (patterns) useful for the classification task at the
same time. In this example, since the former group consists of graphs belonging
to different classes, again Cl-GBI is applied to it, while the latter group is no
longer divided because it contains a single graph of class C. For the former group,
pairs in graph 1, graph 2, and graph 3 are enumerated and the attribute–value
table is updated as shown in Figure 9.13. Note that the pairs included in the table
for the parent node are inherited. In this case, the pair “a→d” is selected by Cl-
GBI as the most frequent pair to be a pseudonode “f,” while the pair “e→d” is
selected as the most discriminative pattern by DT-ClGBI. Consequently, the graphs
are separated into two partitions, each of which contains graphs of a single class as
shown in the lower left-hand side of Figure 9.11. The constructed decision tree is
shown in the lower right-hand side of Figure 9.11.

9.5.4 Classification Using the Constructed Decision Tree

Unseen new graph data must be classified once the decision tree has been con-
structed. Here again, the problem of subgraph isomorphism arises to test if the
input graph contains the pattern (subgraph) specified in the test node of the tree.
To alleviate this problem, we utilize Cl-GBI again. Theoretically, if the test pattern
actually exists in the input graph, Cl-GBI can find it by setting the beam width b

and the number of levels Ne large enough and by setting the frequency threshold to

218 CONSTRUCTING DECISION TREE BASED ON CL-GBI

1

0

0

0

1

1

0

1

0

1

0

0

0

0

1

0

0

1

0

0

1

1

1

1

0

1

1

1

1

0

1 (class A)

2 (class B)

3 (class A)

Graph a→b a→c a→d b→a b→b b→c b→d d→a d→b d→c

0

1

0

0

0

1

1

0

1

0

1

1

1

1

0

e→b e→c e→d b→e d→e

Figure 9.13. Attribute–value pairs at the second step.

0. However, note that nodes and links that never appear in the test pattern are never
used to form the test pattern in Cl-GBI. Therefore, we can remove such nodes and
links from the input graph before applying Cl-GBI to reduce its running time. This
approach is summarized as follows:

Step 1 Remove nodes and links that never appear in the test pattern from the
input graph.

Step 2 Apply Cl-GBI to the resulting input graph setting the parameters b

and Ne large enough, while setting the parameter θ to 0.
Step 3 Test if one of the canonical labels of extracted patterns with the same

size as the test pattern is equal to the canonical label of the test pattern.

In general, step 1 results in a small graph and Cl-GBI can run very quickly
without any constraints on Ne and b. However, if we need to set these constraints,
we may not be able to obtain the correct answer because we do not know how
large these parameters should be. In that sense, this procedure can be regarded as
an approximate solution to the subgraph isomorphism problem.

9.5.5 Experimental Evaluation of DT-ClGBI

To evaluate the performance of DT-ClGBI, we conducted some experiments on
both synthetic and real-world datasets consisting of connected graphs. As for the
synthetic datasets, we randomly generated three kinds of datasets having the average
size of 30, 40, and 50, respectively, in terms of the number of nodes in a graph. We
denote them by T30, T40, and T50, respectively. Every dataset has 300 connected
graphs as transactions. The links were attached randomly with the probability of
20%. The number of node and link labels are 5 and 10, respectively, and each label
was randomly assigned with equal probability. Then we equally divided each dataset
into two classes, namely “active” and “inactive,” and randomly embedded similarly
generated 4 kinds of basic patterns in each transaction of the class “active,” which
are connected subgraphs having the average size of 4. The number of basic patterns
to be embedded in a transaction of the class “active” was randomly selected in the

9.5 DECISION TREE CHUNKINGLESS GRAPH-BASED INDUCTION (DT-CLGBI) 219

E

E

D

C

D

c

b
a

i

ee
d

A B

C D

f

c

h

a

a
C D

D C

c

b

j

h

i

d

D

A

B

C

E

g

i

c

d

b

b

g

(a) (b) (c) (d)

Figure 9.14. Basic patterns.

range between 1 and 4, each of which was in turn chosen from the set of 4 basic
patterns by equal probability. Thus each transaction of the class “active” includes
from 1 to 4 basic patterns, and some of them may happen to be the same. The basic
patterns embedded are shown in Figure 9.14.

We also check if there is any basic pattern included in a graph of the class “inac-
tive” by Cl-GBI as described in Section 9.5.4. If there is, the corresponding node and
link labels are changed in a way that the basic pattern no longer exists in the transac-
tion. In other words, basic patterns are those that help discriminate the two classes.

In the first experiment, to confirm that DT-ClGBI can achieve good predictive
accuracy on the synthetic datasets, we applied DT-ClGBI to the three datasets with
two different settings, limiting the total number of levels of Cl-GBI to 8 to save
computation time. This limit was determined based on our estimation that running
Cl-GBI with Ne = 8 could be enough to extract the basic patterns. In the first setting,
that is, setting 1, Cl-GBI was invoked only at the root node with Ne = 8. At the
other nodes, we simply recalculated information gain for those patterns that have
already been extracted at the root node. In the second setting, that is, setting 2,
Cl-GBI was invoked at the root node with Ne = 4 and at every other node with
the half value of Ne at its parent node. The minimal value of Ne retains 1 until the
limitation of the total number of levels is violated, which was always the case in
this experiment. In all the experiments for the synthetic datasets, the parameters b

and θ are fixed to 5 and 10%, respectively.
Table 9.4 summarizes the error rate and computation time for both settings.

Each value in this table is the average obtained by 10-fold cross validation, and
the computation times are wall-clock runtimes on PC with Athlon MP 1900+ and

TABLE 9.4 Comparisons of Different Settings for DT-ClGBI in Average Error Rate for Test
Sets and Computation Time of 10-fold Cross Validation

Setting 1 Setting 2

Test Computation Test Computation
Datasets Error (%) Time (s) Error (%) Time (s)

T30 0 2,063 0 913
T40 0.67 12,262 0.67 5,003
T50 0.67 44,500 1.00 19,957

220 CONSTRUCTING DECISION TREE BASED ON CL-GBI

3 GB memory. The error rates of both settings are very low and almost the same,
but the computation time of setting 2 is much smaller than that of setting 1 on
every dataset. The reason for this difference in computation time is that in setting
2 the number of pairs to be considered in Cl-GBI at the root node of a decision
tree is much less than that in setting 1, and as we go down the tree, some branches
terminate and the total number of data that Cl-GBI has to work on becomes less
and less. From these results, it is said that DT-ClGBI can achieve good accuracy on
the synthetic datasets, but setting Ne to a large value at the root node of a decision
tree is not a good approach from the viewpoint of computation time.

Figures 9.15 and 9.16 show the decision trees constructed at the final cycle of
the 10-fold cross validation on the dataset T50 with setting 1 and 2, respectively.
In this cycle, the tree constructed with setting 1 was more accurate than the tree
constructed with setting 2, but the difference between them was not significant. From
this figure, it is found that most test patterns of the decision trees are subgraphs of
the basic patterns. In addition, we observed that they were extracted at the root node
even in the case of setting 2. For example, the fourth test pattern in Figure 9.16,
that is, pattern 530485 is a subgraph of the basic pattern (a) and was extracted at

Figure 9.15. Example of decision trees in the case of the setting 1.

Figure 9.16. Example of decision trees in the case of the setting 2.

9.5 DECISION TREE CHUNKINGLESS GRAPH-BASED INDUCTION (DT-CLGBI) 221

TABLE 9.5 Comparisons of Different Settings for DT-ClGBI in Average Error Rate for Test
Sets and Average Size of Resulting Decision Trees of 10-fold Cross Validation

Setting 3 Setting 4

Datasets Test Error (%) Tree Size Test Error Tree Size

T30 1.33 17.2 0 9.2
T40 5 18.0 3.33 12.8
T50 9.67 26.8 7.67 22.8

the root node of the tree. This means that such subgraphs of the basic patterns are
discriminative enough to classify the synthetic datasets we generated and Ne = 4
is enough to extract them at the root node. However, it is noted that generally it is
impossible to know an appropriate value for Ne at the root node in advance.

The results in the above experiment may raise a question: Can DT-ClGBI really
find discriminative patterns at intermediate nodes even if it cannot find them at the
root node of a decision tree? To answer this question, in the next experiment, we
applied DT-ClGBI to the same synthetic datasets with two other different settings,
limiting Ne to 2 at the root node of a decision tree, and compared resulting decision
trees in the average error rate and size obtained by 10-fold cross validation. The
limit of Ne prohibits many discriminative subgraphs of the basic patterns from being
extracted at the root node. We took this method for this experiment because it is
very difficult to embed patterns in a transaction ensuring that their subgraphs are
not discriminative enough. In the first setting, that is, setting 3, Cl-GBI was only
invoked at the root node with Ne = 2 similarly to setting 1. In the second setting,
that is, setting 4, Cl-GBI was invoked at the root node with Ne = 2 and at every
other node with Ne = 1. In addition, the total number of levels of Cl-GBI in setting
4 was limited to 6.

Table 9.5 shows the average error rate and the average size of decision trees
constructed by 10-fold cross validation of DT-ClGBI with both settings. We can find
that for every dataset the error rate with setting 4 is better than that with setting 3,
and the resulting decision trees with setting 4 are much smaller than those with
setting 3. This means that patterns extracted at intermediate nodes of a decision
tree with setting 4 are very effective for improving the predictive accuracy and for
simplifying the resulting decision tree. Thus, it is said that in DT-ClGBI calling
Cl-GBI at intermediate nodes is effective for extracting discriminative patterns that
are useful for classification. This also contributes to reducing computation time as
is the case for settings 1 and 2 (see Table 9.4).

Finally, we verified DT-ClGBI can construct decision trees that achieve rea-
sonably good predictive accuracy also on a real-world dataset. For that purpose, we
used the hepatitis dataset used in Section 9.4.5 again. The classification task here
is to classify patients into two classes, LC (liver cirrhosis) and non-LC (non-liver
cirrhosis) based on their fibrosis stages, which are categorized into five stages in the
dataset: F0 (normal), F1, F2, F3, and F4 (severe = liver cirrhosis). All 43 patients at
F4 stage were used as the class LC, while all 4 patients at F0 stage and 61 patients

222 CONSTRUCTING DECISION TREE BASED ON CL-GBI

at F1 stage were used as the class non-LC. This ratio of LC to non-LC was deter-
mined based on [26]. The records for each patient were converted into a directed
graph as mentioned in Section 9.4.5. The resulting graph database has 108 graph
transactions. The average size of a graph transaction in this database is 316.2 in
terms of the number of nodes and 386.4 in terms of the number of links.

Through some preliminary experiments on this database using DT-ClGBI, we
found that existence of some graphs often makes the resulting decision tree too
complicated and worsen the predictive accuracy. This has led us to adopt a two-
step approach, first to divide the patients into “typical” and “nontypical,” and second
to construct a decision tree for each group of the patients. To divide the patients in
the first step, we ran 10-fold cross validation of DT-ClGBI on this database, varying
its parameters b and Ne in the ranges of {5, 6, 8, 10} and {6, 8, 10, 12}, respectively.
The frequency threshold θ was fixed to 10%. Namely, we conducted 10-fold cross
validation 16 times with different combinations of these parameters and obtained
totally 160 decision trees in this step. Note that we ran Cl-GBI only at the root node
of a decision tree and used those patterns that have been extracted at the root node
for the succeeding nodes by recalculating their information gain to save computation
time. Then we classified graphs whose average error rate is 0% into typical and the
others into nontypical. As a result, for the class LC, 28 graphs are classified into the
subset typical and the other 15 graphs into nontypical, while for the class non-LC,
48 graphs are classified into typical and 17 graphs into nontypical.

In the second step, we applied DT-ClGBI to each subset again adopting the best
parameter setting in the first step with respect to the predictive accuracy, where b = 8
and Ne = 10. Also in this step, we ran Cl-GBI only at the root node. The contingency
tables for test sets of the 10-fold cross validation are reported in Table 9.6, and
examples of decision trees constructed for each subset in this step and patterns that
appear in them are shown in Figures 9.17 and 9.18.

The predictive accuracy (average of 10-fold cross validation) for the subset
“typical” is 97.4%, and that for “nontypical” is 78.1%. And then the overall accuracy
is 91.7%, which is much better than the accuracy obtained by applying DT-ClGBI to
the original dataset with b = 8 and Ne = 10, that is, 83.4%. The resulting decision
trees in Figures 9.17 and 9.18 are very simple and thus have good interpretability.
We can find typical features for a patient with liver cirrhosis in the extracted patterns
such as “GOT is High” or “PLT is Low.” From these results, we can say that
DT-ClGBI can achieve reasonably good predictive accuracy on a real-world dataset
and extract discriminative features embedded in the dataset as a subpattern.

TABLE 9.6 Contingency Table with the Number of Instances

Predicted Class (LC = F4, non-LC = {F0 + F1})
for “Typical” for “Nontypical” Overall

Actual
Class LC non-LC LC non-LC LC non-LC

LC 27 1 12 3 39 4
non-LC 1 47 4 13 5 60

9.5 DECISION TREE CHUNKINGLESS GRAPH-BASED INDUCTION (DT-CLGBI) 223

Figure 9.17. Example of decision trees constructed in the second step for the class

‘‘typical.’’

Pattern 1767
LC=13, nLC=16

(2, 1)

Pattern 4
LC=10, nLC=1

(0, 1)

Y

NY

Pattern 1072
LC=3, nLC=15

(2, 0)

NY
LC

LC=3, nLC=0
(0, 0)

non-LC
LC=0, nLC=1

(0, 1)

non-LC
LC=0, nLC=15

(2, 0)

LC
LC=10, nLC=0

(0, 0)

H H
D-BILZTT

1072

N
TTT

4

N H

N

TP

CHEGOT

1767

N

Figure 9.18. Example of decision trees constructed in the second step for the class

‘‘nontypical.’’

The underlying assumption of our problem setting of graph data classifica-
tion is the existence of discriminative substructures in the graph. There are other
attempts to construct features without using the graph mining approach. One success-
ful approach is the TFS (topological fragment spectra) method [24] that is used in
the domain of drug molecule classification. The TFS method represents a molecule
(graph transaction) by a multidimensional vector called TFS that is obtained by (1)
enumerating all the possible fragments (paths including branches) smaller than a
specified size and (2) quantifying each fragment by a numerical score such as the
total mass numbers of atoms contained in the fragment. As a result, a TFS forms
a spectrum of frequencies of these scores for a molecule. Thus, it is expected that
if the spectrums of two molecules are similar, these molecules are similar. We can
regard that each numeric score is an attribute and its frequency is its value. It is
reported that with this representation a support vector machine (SVM) achieved
good classification accuracy [25]. However, the problem of the TFS approach is its
interpretability. Different fragments can result in the same numeric score. Further,
SVM does not give insight into the discriminative substructures. Thus, we did not
attempt to compare DT-ClGBI with the TFS method. Another successful approach
is to enumerate linear fragments of a molecule and use them as its attributes and
their existence/nonexistence as their values (see Chapter 14 of this book). This may
not work for general graphs. Since a molecule can be regarded as a single connected

224 CONSTRUCTING DECISION TREE BASED ON CL-GBI

graph and a linear fragment as one of its subgraphs, it is obvious that this feature
construction method can be covered by DT-ClGBI.

9.6 CONCLUSIONS

In this chapter, we proposed a novel algorithm called Cl-GBI, which can dis-
cover typical patterns in either a single large graph or a graph database, and also
an algorithm called DT-ClGBI, which can construct a decision tree for graph-
structured data using Cl-GBI. Cl-GBI employs a “chunkingless chunking” strategy
that helps overcome the problem of overlapping subgraphs. Experiments conducted
on both synthetic and real-world graph-structured data confirmed its effectiveness.
Also, Cl-GBI can give the correct number of occurrences of a pattern as well
as their positions in each transaction of the graph database, which are very use-
ful for algorithms such as DT-ClGBI that need correct counting. In DT-ClGBI,
substructures, or patterns useful for a classification task are constructed on the
fly by means of Cl-GBI during the construction process of a decision tree. The
experimental results using synthetic and real-world datasets showed DT-ClGBI can
construct decision trees that achieve good predictive accuracy for graph-structured
data.

As future work, we plan to employ some heuristics to speed up the Cl-GBI
algorithm in order to extract larger typical subgraphs at an early stage in the search
process. This could also improve the performance of DT-ClGBI. Construction of a
decision tree to divide a graph database into two groups in the two-step approach we
took for the hepatitis dataset should also be considered. Moreover, it is necessary to
experimentally compare DT-ClGBI with other methods, especially with ILP-based
ones such as Tilde and S-CART.

REFERENCES

1. H. Blockeel and L. De Raedt. Top-down induction of first-order logical decision tree.
Artificial Intelligence, 101:285–297, 1998.

2. C. Borgelt and M. R. Berthold. Mining molecular fragments: Finding relevant substruc-
tures of molecules. In Proceedings of the 2nd the IEEE International Conference on Data
Mining (ICDM 2002), Maebashi City, Japan, pp. 51–58, 2002.

3. L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and Regres-
sion Trees. Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove,
California, 1984.

4. P. Clark and T. Niblett. The CN2 Induction Algorithm. Machine Learning, 3(4):261–283,
1989.

5. D. J. Cook and L. B. Holder. Substructure discovery using minimum description length
and background knowledge, Artificial Intelligence Research, 1:231–255, 1994.

6. S. Fortin. The graph isomorphism problem, Technical Report TR96-20, Department of
Computer Science, University of Alberta, Edmonton, Canada, 1996.

REFERENCES 225

7. W. Geamsakul, T. Matsuda, T. Yoshida, M. Motoda, and T. Washio. Classifier con-
struction by graph-based induction for graph-structured data, In Proceedings of the 7th
Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD 2003),
pp. 52–62, 2003.

8. W. Geamsakul, T. Yoshida, K. Ohara, H. Motoda, H. Yokoi, and K. Takabayashi.
Constructing a decision tree for graph-structured data and its applications, Journal
of Fundamenta Informatiae, Special issue on Advances in Mining Graphs, Trees and
Sequence, 66(1–2):131–160, 2005.

9. W. Geamsakul, T. Matsuda, T. Yoshida, H. Motoda, and T. Washio. Performance evalua-
tion of decision tree graph-based induction, Proceedings of the International Conference
on Discovery Science, pp. 128–140, 2003.

10. J. Huan, W. Wang, and J. Prins. Efficient Mining of Frequent Subgraphs in the Presence
of Isomorphism. In Proceedings of the 3rd IEEE International Conference on Data Mining
(ICDM 2003), pp. 549–552, 2003.

11. J. Huan, W. Wang, A. Washington, J. Prins, R. Shah, and A. Tropsha. Accurate classifi-
cation of protein structural families using coherent subgraph analysis. In Proceedings of
the 9th Pacific Symposium on Biocomputing, pp. 411–422, 2004.

12. A. Inokuchi, T. Washio, K. Nishimura, and H. Motoda. A fast algorithm for mining fre-
quent connected subgraphs, IBM Research Report RT0448, Tokyo Research Laboratory,
IBM, Japan, 2002.

13. A. Inokuchi, T. Washio, and H. Motoda. Complete mining of frequent patterns from
graphs: Mining graph data. Machine Learning, 50(3):321–354, 2003.

14. S. Kramer and G. Windmer. Inducing classification and regression trees in first order
logic. In Relational Data Mining (Sašo Džeroski, Nada Lavrač Eds.), Chapter 6, Springer,
Berlin, 140–159, 2001.

15. M. Kuramochi and G. Karypis. An efficient algorithm for discovering frequent subgraphs.
IEEE Trans. Knowledge and Data Engineering, 16(9):1038–1051.

16. M. Kuramochi and G. Karypis. GREW–A scalable frequent subgraph discovery algo-
rithm. In Proceedings of the 4th IEEE International Conference on Data Mining (ICDM
2004), pp. 439–442, 2004.

17. T. Matsuda, H. Motoda, T. Yoshida, and T. Washio. Mining patterns from structured data
by beam-wise graph-based induction. In Proceedings of the 5th International Conference
on Discovery Science (DS 2002), pp. 422–429, 2002.

18. R. S. Michalski. Learning flexible concepts: Fundamental ideas and a method based
on two-tiered representation. Machine Learning: An Artificial Intelligence Approach,
3:63–102, 1990.

19. S. Muggleton, L. de Raedt. Inductive logic programming: Theory and methods. Journal
of Logic Programming, 19(20):629–679, 1994.

20. http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/PTE/.
21. J. R. Quinlan. Induction of decision trees. Machine Learning, 1:81–106, 1986.
22. J. R. Quinlan. C4.5: Programs for Machine Learning, Morgan Kaufmann, San Mateo,

California, 1993.
23. A. Srinivasan, R. D. King, S. H. Muggleton, and M. Sternberg. The predictive toxicol-

ogy evaluation challenge. In Proceedings of the 15th International Joint Conference on
Artificial Intelligence (IJCAI-97), pp. 1–6, 1997.

24. Y. Takahashi, H. Ohoka, and Y. Ishiyama. Structural similarity analysis based on topo-
logical fragment spectra. Advances in Molecular Similarity, 2:93–104, 1998.

25. Y. Takahashi, S. Fujishima, K. Nishikoori, H. Kato, and T. Okada. Identification of
dopamine D1 receptor agonists and antagonists under existing noise compounds by

226 CONSTRUCTING DECISION TREE BASED ON CL-GBI

TFS-based ANN and SVM. Journal of Computational Chemistry, Japan, 4(2):43–48,
2005.

26. Y. Yamada, E. Suzuki, H. Yokoi, and K. Takabayashi. Decision-tree induction from
time-series data based on a standard-example split test. In Proceedings of the 12th
International Conference on Machine Learning, pp. 840–847, 2003.

27. X. Yan and J. Han. gSpan: Graph-based structure pattern mining. In Proceedings of the
2nd IEEE International Conference on Data Mining (ICDM 2002), pp. 721–724, 2002.

28. K. Yoshida and M. Motoda. CLIP: Concept learning from inference patterns. Artificial
Intelligence, 75(1): 63–92, 1995.

10
SOME LINKS BETWEEN FORMAL

CONCEPT ANALYSIS AND
GRAPH MINING

MICHEL LIQUIÈRE

LIRMM, Montpellier, France

10.1 PRESENTATION

This chapter presents a formal model to learning from examples represented by
labeled graphs. This formal model is based upon lattice theory and in particular
Galois lattices. We widen the domain of formal concept analysis by the use of
the Galois lattices model with structural descriptions of examples and concepts.
The operational implementation of our model, called “Graal” (for GRAph And
Learning), constructs a Galois lattice for any description language provided that
the operations of comparison and generalization are determined for that language.
These operations exist in the case of labeled graphs satisfying a partial order relation
(homomorphism).

This chapter is concerned as well with the known problems regarding proposi-
tionalization (i.e., the transformation of a structural description into a propositional
description). Using classical lattice results, we have a formal model for the trans-
formation of a structural machine learning problem into a propositional one.

Mining Graph Data, Edited by Diane J. Cook and Lawrence B. Holder
Copyright c© 2007 John Wiley & Sons, Inc.

227

228 SOME LINKS BETWEEN FORMAL CONCEPT ANALYSIS AND GRAPH MINING

10.2 BASIC CONCEPTS AND NOTATION

10.2.1 Labeled Graphs

Let L denote set of labels. A labeled digraph (for labeled directed graph) G =
(V, E, α) is a 3-tuple where V is the finite set of vertices, E ⊆ V × V is the set
of edges, α: V → L is a function assigning labels to each vertex. Edge (v, v′) ∈ E

originates at node v ∈ V and terminates at node v′ ∈ V . For a vertex v ∈ V , we
note N+(v) = {v′|(v, v′) ∈ E} and N−(v) = {v′|(v′, v) ∈ E}.

For two labeled graphs G1 = (V1, E1, α1), G2 = (V2, E2, α2), a homomorphism
h is a mapping h : V1 → V2 for which ∀v ∈ V1, α1(v) = α2(h(v)), and ∀(v1, v2) ∈
E1 ⇒ (h(v1), h(v2)) ∈ E2. A subgraph isomorphism is a homomorphism with an
injective mapping (see Fig. 10.1). An isomorphism is a homomorphism with a bijec-
tive mapping.

10.2.2 Order

A preorder on a set X is a binary relation ≤ on X that is reflexive and transitive.
If x ≤ y and y ≤ x, then we shall write x ∼= y and say that x and y are equivalent
elements.

A partial order (or poset) on a set X is an anty-symmetric preorder. If x ≤ y and
y ≤ x, then x = y (isomorphic element). Given a preorder on X and an equivalence
relation ∼= on X, the preorder induces a partial order in the quotient space X/∼=.

A lattice is a partial order (L, ≤, ∨, ∧) where every pair of elements (x,y) has
a unique meet (also named inf for infimum) x ∧ y and a unique join (also named
sup for supremum) x ∨ y [5] and satisfying the following properties: ∀x, y, z ∈ L.

x ∧ (y ∧ z) = (x ∧ y) ∧ z x ∨ (y ∨ z) = (x ∨ y) ∨ z (associativity)
x ∧ y = y ∧ x x ∨ y = y ∨ x (commutativity)
x ∧ x = x x ∨ x = x (idempotence)
x ∧ (y ∨ z) = x x ∨ (y ∧ z) = x (absortion).

a

b

b

c

a b c

a

b

b

c

d

d

G

G1

G2

Subgraph Isomorphism

Homomorphism

Figure 10.1. Homomorphism and subgraph isomorphism.

10.3 FORMAL CONCEPT ANALYSIS 229

10.3 FORMAL CONCEPT ANALYSIS

“Formal concept analysis (FCA) has been introduced by Wille [32] and applied in
many quite different realms like psychology, sociology, anthropology . . . ” [11].
An important contribution of FCA is a mathematical definition of a concept. From
a philosophical point of view, a concept is a unit of thought consisting of two parts,
the extension and the intension. The extension covers all objects belonging to the
concept and the intension comprises all attributes valid for each of those objects.
Hence objects and attributes play a prominent role together with several relations
such as the incidence relation, the hierarchical “subconcept–superconcept” relation
between concepts, and the implication between attributes (or objects). We know
[32] that, from a context (E,A,R) where E is a set of objects (examples), A a set of
properties (attributes), and R a binary relation between E and A, we can construct
a minimal ordered set named a concept lattice [32], or Galois lattice [10].

We have the following formal definitions: With e ∈ E, a ∈ A, eR a is asserting
that “the object e verifies the attribute a” equivalent to “the attribute a is true for
the object e”.

In a context (E,A,R), each concept (E,A), with E ⊆ E and A ⊆ A, follows the
properties:

• E contains each of the objects e ∈ E verifying all the attributes in A.
With A ⊆ A, e(A) = {e ∈ E|eR a,∀a ∈ A} represents the extension part
of A.

• A contains each of the attributes a ∈ A true for the objects in E.
With E ⊆ E, d(E) = {a ∈ A|eR a, ∀e ∈ E} represents the intention part
of E.

• A pair (E,A) with E ⊆ E and A ⊆ A, is a concept iff d(E) = A and e(A) =
E.

For a context (E,A,R), the structure L(E,A,R) = {(E,A)|(E,A) is a concept
of (E,A,R)} ordered by (E1, A1) ≥ (E2, A2) ⇔ A1 ⊆ A2 (formally equivalent to
E2 ⊆ E1) is a concept lattice [32]. This classical partial order relation between
concepts is the relation “to be more general then” used in the machine learning
community.

For a context (E,A,R) and two concepts (E1, A1), (E2, A2), the operations ∧
and ∨ are:

(E1, A1) ∨ (E2, A2) = (E,A) with E = e(A1 ∩ A2) and A = A1 ∩ A2

(E1, A1) ∧ (E2, A2) = (E,A) with E = E1 ∩ E2 and A = d(E1 ∩ E2).

The ∧ operation (going down in the lattice) is defined from the intersection of
the extensions while the ∨ operation (going up in the lattice) corresponds to the
intersection of the intensions (see Fig. 10.2). Using machine learning terminology,
the construction of the Galois lattice using the ∨ operation is a generalization search.
From two concepts the ∨ operation builds a more general concept. If we base our
search on the ∧ operation, we have a specialization search.

230 SOME LINKS BETWEEN FORMAL CONCEPT ANALYSIS AND GRAPH MINING

(E1, A1) (E2, A2)

(e(A1 A2),A1 A2)

(E1 E2,d(E1 E2)) is the ≥ relation
between concepts

Where

Join (sup)

Meet (inf)

Figure 10.2. Classical Galois lattice operations.

10.3.1 Galois Lattice Construction from a Binary Relation

There are many algorithms for the construction of the Galois lattice for a con-
text (E,A,R) [11, 17]. In this chapter we present the algorithm [25] because it
is simple, it uses general lattice operations, and it is incremental (online algo-
rithm): It computes the lattice at step n + 1 from the lattice at step n and the
description of a new example (at the first step we begin with an empty lattice).
In the next section we generalize this algorithm for a general description of the
examples.1

The presentation of Norris’s algorithm uses the ∨ operation. In this case, it is
a generalization algorithm: We begin from some specific descriptions and construct
some less specific description. Inversely, if we want to construct the lattice from
the general descriptions to specific descriptions, we have to replace the R relation
by the inverse R−1 relation, and we have to give to the algorithm the couples
({a}, E) where a ∈ A, and E ⊆ E. This is named “the duality principle for concept
lattice” [11].

Algorithm 10.1 Norris’s Algorithm: Concept Lattice Construction Algorithm

Procedure: maximal

Data: A couple (E,A)
Data: A list Ln of concepts
Result: A Boolean
if (there is a (Ej,Aj) ∈ Ln with Aj = A) then

return false;
else

return true;
end

1In fact, for this purpose, we may use directly any Galois lattice construction algorithms that uses general
operations ∨ between descriptions. This is the case for [13, 25, 26] but not for [6].

10.4 EXTENSION LATTICE AND DESCRIPTION LATTICE GIVE CONCEPT LATTICE 231

Procedure: AddExample

Data: A new Example: a couple ({e},A), with e an
identifier of an example, and A ⊆ A the
description of the example e.

Data: A list Ln of concepts
Result: A list Ln+1 of concepts
Ln+1 ← Ln ;
for each concept (Ei,Ai) ∈ Ln do

if (Ai ⊆ A) then
Replace (Ei,Ai) in Ln by (Ei ∪ {e},Ai);

else
// ∨ operation;
compute (E′,A′) ← (e(Ai ∩ A),(Ai ∩ A));
if maximal((E′,A′),Ln+1) then

add (E′,A′) to Ln+1 ;
end

end
end
if maximal(({e},A),Ln+1) then

add ({e},A) to Ln+1 ;
end
return Ln+1;

Algorithm: Norris’s Algorithm:

Data: A context (E,A,R)
Result: The list L of all concepts in (E,A,R)
L ← ∅;
for each example e ∈ E do

L ← AddExample(({e},d({e})),L);
end
return L;

Let us consider the relation R between E = {e0, e1, e2, e3, e4} and A = {a0, a1,

a2, a3, a4, a5, a6} defined by the table in Figure 10.3.
This binary relation gives the Galois lattice of Figure 10.4.

10.4 EXTENSION LATTICE AND DESCRIPTION LATTICE GIVE
CONCEPT LATTICE

In this paragraph, we give another formalization of a Galois lattice based on a Galois
connection between a lattice X and a lattice D. The lattice X is defined from a set
of examples E, with X = ∏

(E), the power set of the finite set E. We name this

232 SOME LINKS BETWEEN FORMAL CONCEPT ANALYSIS AND GRAPH MINING

a0 a1 a2 a3 a4 a5 a6
e0 1 0 0 0 1 1 1
e1 0 0 1 0 1 1 1
e2 0 0 0 1 1 1 0
e3 0 1 0 0 1 0 1
e4 0 0 1 1 0 1 1

Figure 10.3. Relation R.

({},
{a0,a1,a2,a3,a4,a5,a6})

({e1},

{a2,a4,a5,a6})

({e2},

{a3,a4,a5})

({e3},

{a1,a4,a6})

({e4},

{a2,a3,a5,a6})

({e0},

{a0,a4,a5,a6})

({e1,e4},

{a2,a5,a6})

({e2,e4},

{a3,a5})

({e0,e1},

{a4,a5,a6})

({e0,e1,e3},

{a4,a6})

({e0,e1,e4},

{a5,a6})

({e0,e1,e2},

{a4,a5})

({e0,e1,e2,e4},

{a5})

({e0,e1,e3,e4},

{a6})

({e0,e1,e2,e3},

{a4})

({e0,e1,e2,e3,e4},

{})

Figure 10.4. Galois lattice of R, on the form of its Hasse diagram.

lattice the extension lattice. The lattice D named description lattice comes from a
description language L, which is a set of well-formed expressions with:

≥L: A partial order between the expressions in L. We note =L the equality
between two expressions of L. For example, for graphs this equality can be
an isomorphism relation.

⊗L: L × L → L a product operator with for D1 ∈ L and D2 ∈ L, D = D1 ⊗L
D2 of L verify: D ≥L D1, D ≥L D2 and ∀D′|(D′ ≥L D1) and (D′ ≥L
D2) ⇒ D′ ≥L D.

This is a classical least general generalization operator [27].
The relation between these two lattices is given by the two mappings d : X → D

and e: D → X (see Fig. 10.5). We now generalize the notion of context in FCA
into the notion of structural context [21] also named general context in [7].

10.4 EXTENSION LATTICE AND DESCRIPTION LATTICE GIVE CONCEPT LATTICE 233

d

e

Extension Lattice Description Lattice
Give

Concept Lattice

Figure 10.5. Relations between the two spaces.

A structural context C is a triplet (E,L, d) where E is a set of examples, L
is a description language, and d:

∏
(E) → L a mapping. This mapping gives also

the intension (also named description) d({e}) for an example e ∈ E. We can easily
transform each context (E,A,R) into a structural context (E,L, d), where L is the
power set of A.

For a structural context (E,L, d) a concept is a pair (E,D) with:

• D ∈ L|D = ⊗
L d({e}) for e ∈ E.

• E ∈ ∏
(E)|E = {ei ∈ E|D ≥L d(ei)}.

For two concepts (E1, D1), (E2,D2) we have the partial order relation: (E1, D1) ≥c

(E2, D2) ⇔ E1 ⊇ E2 and D1 ≥L D2.

Proposition 10.1 For a structural context (E,L, d) the set of concepts, ordered by
the relation ≥c, is a Galois lattice [21].

From the previous definitions, we can define the lattice operations ∧ (meet)
and ∨ (join). (E1, D1) ∨ (E2,D2) = (E,D) with D = (D1 ⊗L D2) and E = {e ∈
E|d({e}) ≤L D}. (E1, D1) ∧ (E2, D2) = (E,D) with E = E1

⋂
E2 and D = ⊗L

d(ei), for all ei ∈ E. We denote this structural Galois lattice G(E,L, d). With this
result we can generalize the Norris’s algorithm and use it a for the generation of a
Galois lattice from a structural context:

234 SOME LINKS BETWEEN FORMAL CONCEPT ANALYSIS AND GRAPH MINING

Algorithm 10.2 Structural Concept Lattice Construction Algorithm

Procedure: maximal

Data: A couple (E,D)
Data: A list Ln of concepts
Result: A Boolean
if (there is a (Ej,Dj) ∈ Ln with Dj =L D) then

return false;
else

return true;
end

Procedure: AddExample

Data: A new Example: a couple ({e},D), with e an
identifier of an example, and D ∈ L a
description of the example e

Data: A list Ln of concepts
Result: A list Ln+1 of concepts
Ln+1←Ln ;
for each concept (Ei,Di) ∈ Ln do

if (Di ≥L D) then
Replace (Ei,Di) in Ln by (Ei ∪ {e},Di);

else
// ∨ operation;
compute (E′,D′) ← (e(Di ⊗L D),(Di ⊗L D));
if maximal((E′ ,D′),Ln+1) then

add (E′,D′) to Ln+1 ;
end

end
end
if maximal(({e},D),Ln+1) then

add ({e},D) to Ln+1 ;
end
return Ln+1;
Algorithm: Norris’s algorithm for structural
language:

Data: A structural context (E,L,d)
Result: The list L of all concepts in (E,L,d)
L ← ∅;
for each example e ∈ E do

L ← AddExample(({e},d(e)),L);
end
return L;

10.5 GRAPH DESCRIPTION AND GALOIS LATTICE 235

This algorithm uses the operators ≥L, =L,2 and ⊗L. This is a generalization
method; if we want to use it on a specialization search, we need an initial set of
graphs. This remark is further developed in Section 10.6.

The complexity of the construction of a Galois lattice with this algorithm for a
description language L is a function of:

1. The time and space complexity of the operations (≥L, ⊗L).
2. The number of nodes in the lattice.
3. The algorithm used: In our case, for a description language L and a lattice

L, the complexity of the AddExample function is O(|L|2 × P + |L| × T)
where P represents the complexity of the ≥L and T represents the com-
plexity of the ⊗L operation.

We will see in the next section an application of this formalization to a graph
description of the examples, and we will evaluate the complexity of the method in
this case.

10.5 GRAPH DESCRIPTION AND GALOIS LATTICE

For a description language we want to use labeled digraphs. This representation
is interesting because it is used in many applications [8]; furthermore, conceptual
graphs [29] are a specific case of labeled digraphs.

Now we have to select the partial order we consider between labeled directed
graphs (digraphs). A classical partial order relation is the subgraph isomorphism
relation. The interpretation of such a relation between graphs is natural but there
are two drawbacks: the complexity of the search of such a relation between two
graphs and the definition of a product operator for this relation. There is another
classical preorder relation between graphs based on the homomorphism projec-
tion. This preorder is also used in inductive logic programming (ILP) under the
name θ -subsumption [27] and in conceptual graph models with the term “projec-
tion” [29]. Now, our goal is to choose the operators ≥g and ⊗g for our labeled
digraphs.

10.5.1 ≥g for Labeled Graphs

For two labeled digraphs G1 and G2, we note G1 ≥g G2 ⇔ there is a homomor-
phism from G1 into G2. For a set of labeled digraphs, the homomorphism relation
is only a preorder because the antisymmetric property is not fulfilled [34]. In order
to use Algorithm 10.2, a partial order between elements of the description language
is not necessary, but it is better for the interpretation of the results. For the homo-
morphism relation we have the following equivalence relation so we can construct

2With a preorder we can replace =L by another equivalence relation ∼=L.

236 SOME LINKS BETWEEN FORMAL CONCEPT ANALYSIS AND GRAPH MINING

a

b

b

c

d

b a

a b

c

d

b a

G R(G)

Figure 10.6. Labeled graph G and its core graph R(G).

a quotient space with this relation. For this purpose, we use the class of core labeled
graphs [34].

Equivalence relation ∼=g: For two labeled digraphs G1 and G2, we note G1
∼=g

G2 if both G1 ≥g G2 and G2 ≥g G1.

Definition 10.1 (Core) A labeled graph G is called a core iff it has no strict
labeled subgraph G′ ⊂ G with G′ ∼= G.

Proposition 10.2 Concerning the equivalence relation defined above (∼=g), an
equivalence class of labeled graphs contains one and only one core labeled graph,
which is the (unique) labeled graph with the smallest vertex number [34].

We can construct the core graph of a graph as proved by [23]. This operation
is called reduction (notation R), and we have the following property:

Proposition 10.3 If, for a class of labeled graphs, the homomorphism is polyno-
mial, then the reduction operation R is polynomial [23]. We use R(G) to represent
the core labeled graph of a labeled graph G (Fig. 10.6).

A labeled graph description of an example can be converted to an equivalent
(∼=) core labeled graph, using the R operation.

Proposition 10.4 The restriction of ≥g to the set of core labeled graphs is a
lattice [34].

For this lattice, the ∧ operation is based on the disjoint sum ⊕ of two graphs,3

G1 ∧ G2 = R(G1 ⊕ G2).4 The ∨ operation is more complex and is defined in the
following discussion.

3We construct G : (V ,E, α) from G1 : (V1, E1, α1) G2 : (V2, E2, α2) with V = V1 ∪ V2, E = E1 ∪ E2.
4We do not use this operation in the algorithm.

10.5 GRAPH DESCRIPTION AND GALOIS LATTICE 237

10.5.2 Homomorphism and Product Operator ⊗g

For a description language L we need a product operator (⊗L), and there is a
classical product operator for the homomorphism relation between labeled digraphs.

Definition 10.2 (⊗g operation) For two labeled digraphs G1 = (V1, E1, α1),
G2 = (V2, E2, α2) we define G : G1 ⊗g G2 by G = (V, E, α) with: V = V1 × V2

with α1(V1) = α2(V2) and ((x1, x2),(y1, y2)) ∈ E ⇔ (xi , yi) ∈ Vi(i = 1, 2).

Proposition 10.5 For the homomorphism relation, G1 ⊗g G2 is the product of G1

and G2.

Proof. A proof of this proposition can be found in [4].

Given the core labeled digraph G2, G2 the product is ⊗gc with G1 ⊗gc G2 =
R(G1 ⊗g G2), and we have a partial order [21].

10.5.3 Complexity

Using the generalization relation ≥g , the product ⊗g and Algorithm 10.2 we can
build the Galois lattice for a set of examples described by labeled digraphs. But the
complexity of the operation ≥g is NP-hard for this kind of graphs.

Size of Galois Lattice. Given a context (E,A,R), the number of nodes in the lattice
is less than or equal to 2min(|E|,|A|). This property comes from the relation between
the two spaces (partition space and description space).

In the case of a general description of the example, the size of the Galois lattice
is min(2|E|, SD) (where SD is the size of the description lattice). In general, for a
structural description of the example we have SD � 2|E| [15].

Complexity of the ⊗g operation. For two labeled graphs G1 = (V1, E1, α1) and
G2 = (V2, E2, α2), a time complexity of the product ⊗g is O(|V1| × |V2| × (|E1| +
|E2|)) the size can be O(|E1| × |E2|).

So for a set of labeled digraphs � the size of ⊗gGi with Gi ∈ � can be
exponential. For core graphs reduction operation R, in the ⊗gc operator, is NP-hard
and the size can be also O(|E1| × |E2|).

Complexity of the ≥g Operation. For general labeled digraphs the complexity
of the homomorphism operation is NP-hard. However, the homomorphism is poly-
nomial for paths, trees, and locally injective digraphs (see Definition 10.3). Then
the product operator is also polynomial for these type of graphs.

238 SOME LINKS BETWEEN FORMAL CONCEPT ANALYSIS AND GRAPH MINING

10.5.4 Locally Injective Digraph

We define a large class of labeled graphs, named LIG graphs, where the operations
≥lig and ⊗lig have a polynomial complexity.

Definition 10.3 [Locally Injective Digraph (LIG Digraph)] A labeled digraph
G : (V, E, α) is locally injective ⇔ for each vertex v ∈ V, ∀v1, v2 ∈ N+(v), v1 �=
v2 ⇒ α(v1) �= α(v2) and ∀v1, v2 ∈ N−(v), v1 �= v2 ⇒ α(v1) �= α(v2).

In Figure 10.7, G1 is a LIG digraph, G2 is not a LIG digraph because, for the
node labeled with c, there are two neighbors labeled with the same label b.

Proposition 10.6 The homomorphism operation is polynomial for locally injec-
tive digraphs.

In fact, the subgraph isomorphism relation is also polynomial for this class of
digraphs [21].

Proposition 10.7 For two LIG digraphs G1,G2 : G = G1 ⊗g G2 is a LIG digraph.

These properties are interesting because for LIG we can use the operations ≥g and
⊗g with a polynomial complexity.

We can use the previous algorithm directly on LIG digraphs, but the product
operator is redundant. In many cases we obtain a digraph where some part is equiva-
lent to or more general than other parts. To avoid this drawback we can use the core
LIG graph and the ⊗gc operator, which is polynomial for LIG graphs. This kind
of graph is used in the examples in Figure 10.8. In this figure the nodes with gray
background are ∧-irreducible elements (nodes with one and only one predecessor).
We use this element in Section 10.6.

a

b c

b

a

b c

b

G1 G2

Figure 10.7. Example of LIG digraphs and not LIG digraphs.

10.5 GRAPH DESCRIPTION AND GALOIS LATTICE 239

Rectangle

On

{E0,E1,E2,E3,E4}

Rectangle

{E0,E1,E2,E3}

On Rectangle

On

{E0,E1,E2,E4}

Rectangle

On

Circle

{E0,E1,E3,E4}

Rectangle

On Rectangle

{E0,E1,E2}

On
Circle

Rectangle

{E0,E1,E3}

On
Rectangle

On

Circle Right

{E0,E1,E4}

Rectangle

On

Rectangle

Right

Circle

{E0,E1}
{E1,E4}

Rectangle

On

Circle Right

Rectangle

On

Square

{E2,E4}

Rectangle

On

Rectangle

Right

Circle

{E0}

Rectangle

On

Circle

Right

Rectangle

{E1}

Square

On

Rectangle On

Square

{E2}

Rectangle

On

Circle Square

right

{E4}

{}

Circle

On

Rectangle

{E3}

Figure 10.8. Structural Galois lattice in the form of its Hasse diagram.

10.5.5 Complexity for Some Description languages

In this section we give some complexity results for the construction of a structural
Galois lattice when examples are described by an expression of a description lan-
guage (see Fig. 10.9). There are many description languages L; we present here a
small subset and give the time and size complexity of the operations ≥L,⊗L. In

240 SOME LINKS BETWEEN FORMAL CONCEPT ANALYSIS AND GRAPH MINING

≥ O(≥) ⊗ O(⊗) Size
Set ⊆ P

⋂
P P

String Lexical order P maximal common prefix P P
Rooted Tree Rooted tree Inclusion P maximal common prefix tree P P
LIG Graph Homomorphism P graph product and Reduction P ?
Automata Homomorphism P automata product and Minimization P E
Graph Homomorphism NP graph product and Reduction NP E
Clause �-subsumption NP rlgg operator [27] NP E
Graph Subgraph isomorphism NP no product operator

where P = polynomial, NP = NP-hard, and E = Exponential

Figure 10.9. Relation R.

fact, for some language, the size of the description generalizing two descriptions
increases just by a factor. However, several utilizations of the ⊗L operation can
produce a description exponential in size, so we give also this complexity.

For the classical subgraph isomorphism relation there is no product opera-
tor. For two graphs we cannot have a graph that is the unique generalization of
these two graphs. In this case we have to extend the description from a graph to
a set of graphs. Then we can define a partial order between the set of graphs
and have a product operator between sets of graphs. To do this, we consider
each graph as the representation of the set of all the subgraphs of this graph
(itself included). In this case the generalization of two graphs is the set con-
structed by the intersection of the two associated sets. We will use this idea in
the next paragraphs. We can use the same methodology with strings if we want
to use the inclusion as the partial order between a set of strings. In this case
there is a very good algorithm for the search of all repeated substrings in a set
of strings [9].

10.6 GRAPH MINING AND FORMAL PROPOSITIONALIZATION

In the previous section we used a product operator. As a consequence the algo-
rithm, for the construction of the lattice, uses a generalization operator (general-
ization method). We begin with specific graphs and build generalizations of the
graphs. In many practical application we need a specialization method. We begin
with some general graphs and construct some more specific graphs using a spe-
cialization operator. Using this top-down search, we can select concepts by the
cardinality of their extension part. This defines a semilattice [22] named iceberg
lattice [30].

For a propositional description of the examples, and a context (E,A,R),
(A, E,R−1) is also a context and we can use the classical concept lattice algo-
rithm on this dual context. “In other words: if we exchange the roles of objects
and attributes, we obtain the dual concept lattice” [11]. For a structural context,

10.6 GRAPH MINING AND FORMAL PROPOSITIONALIZATION 241

we have not the duality principle directly; however, using some fundamental lattice
properties we can overcome this problem.

Many machine learning problems have a solution in a propositional description
of the examples, for example, the Q-learning [28]. When we want to deal with a
structural description, many new complexities appear (time and size complexity of
the generalization and matching operations). For this problem, a natural idea is to
convert the structural problem into a propositional one. This transformation does
not change the complexity of the problem, but classical methods can be used with
this new description.

For our problem: Structural FCA and specialization search, this methodology
seems really promising. To do this transformation we need a set SP of structural pat-
terns (features). Then, we can use this set to recode each example with a Boolean
vector. Each boolean in this vector gives the information about the presence or
absence of a feature of SP in the description of the example. For a description
language L, the test of presence or absence uses a ≥L operator. Such a trans-
formation from a structural machine learning problem to a propositional problem
is called propositionalization [16]. There are many recent works in this domain
[2, 16, 18]. These methods search the “best” features. Most of the authors define
this problem as being the selection of a subset of m attributes from a set of n

attributes. This gives a theoretical complexity of Cm
n that renders the model unus-

able in the general case. Then the propositionalization methods use heuristics for
the selection of the attributes, like the stochastic selection [2] or syntactic selec-
tion [19].

Our purpose has a great proximity but proposes to consider the problem from
another point of view. The idea is to find a propositional language for a prob-
lem of classification equivalent to a description language. This equivalence is not
an expressiveness equivalence of the languages. This has already been studied in
first-order logic with the universal relationship notion.

In this chapter, using a fundamental theorem (Theorem 10.1 thereafter), we
define a new equivalence between languages. This equivalence uses the structure of
our classifications spaces. We consider that, for a set of examples, two description
languages are equivalent if they give the same concept lattice.

To show our solution, we have to define how two languages will be con-
sidered as equivalent for a set of examples. Then, it will be possible to search
for a propositional language equivalent, in the specified senses, to the structural
language.

10.6.1 Some Properties of Lattices and Galois Lattices

The elements ∨-irreducible (resp. ∧-irreducible) in a lattice are the elements with
exactly a lower neighbor (resp. upper neighbor). We note J (L) [resp. M(L)] the
set of all ∨-irreducible (∧-irreducible) elements of a lattice L.

242 SOME LINKS BETWEEN FORMAL CONCEPT ANALYSIS AND GRAPH MINING

For a lattice L, we can construct a binary relation B(L) between J (L) and
M(L) with B(ji,mj) = 1 ⇔ ji ≤ mj (for ji ∈ J (L) and mj ∈ M(L)).

The ∧-irreducible (resp. ∨-irreducible) elements are the element that cannot
be derived from a ∧ (resp. ∨) operation between elements of the lattice. So other
elements are not essential because we can reconstruct them.

Proposition 10.8 In a finite lattice each element is the meet (resp. join) of ∧-
irreducible (resp. ∨-irreducible) elements.

THEOREM 10.1 (Lattice and Galois Lattice) All finite lattice L is isomorph with
the Galois lattice build from the binary relation B(L) = (J (L), M(L), ≤).

This result has been known since 1970 [3] and is also a fundamental theorem in
FCA [11].

For a context (E,A,R) the set A (resp. E) is a superset of the set of ∧-
irreducible (resp. ∨-irreducible) elements. So from a given context we can remove
all the reducible elements. The new context (named reduced context [11]) gives a
Galois lattice, which is isomorphic with L(E,A,R). This property is also true if we
remove only a subset of the reducible elements and, in particular, a subset of the
reducible attributes. We develop this point of view in the next section and give a
methodology for formal propositionalization.

10.6.2 Language Equivalence for a Set of Examples

In the real world, the choice of a good description language has been one of the most
important tasks of human knowledge acquisition. In fact, the search of a simpler
compact language, allowing to express the differences and resemblances between
objects, is the foundation of many domains. For example, in the area of chess, a
good player (computer or human) needs a set of concepts (like open column, center
domination, etc.) to evaluate a position.

One of the simplest languages is the propositional language. Therefore, we
are interested in the problem to know if there exists, for a set of examples, a
propositional language equivalent to a given structural language. And more precisely
what are the conditions for the emergence of this propositional language.

In the framework of our model, we obtain the following definition:

Definition 10.4 (Context Equivalence) Two structural contexts (E,L1, d1) and
(E,L2, d2) are called equivalent iff G(E,L1, d1) ≡ G(E,L2, d2) where ≡ is a lattice
isomorphism that conserve the extension part.

So, for the same set of examples, all classifications of the examples (exten-
sion part of the concept) obtained with the language L1 and with the language L2

are the same. We have the same definition between a structural context (E,L, d)

and a propositional context (E,A,R). They are called equivalent iff G(E,L, d) ≡
L(E,A,R).

10.6 GRAPH MINING AND FORMAL PROPOSITIONALIZATION 243

Using this definition and Theorem 10.1, we can now give a property on the
existence of a propositional language equivalent to a structural description language
for a set of examples.

Proposition 10.9 For a structural context (E,L, d) there is a propositional context
(E,A,R) equivalent.

Partial proof : Proposition 10.8 and Theorem 10.1 show that each of the elements
in the lattice can be characterized from the ∧-irreducible elements. This is therefore
also true in the case of structural Galois lattice. Thus the concepts of (E,L, d) are in
one-to-one correspondence with the concepts of (E,A,R) where A is the set M(L)

of ∧-irreducible elements of L : G(E,L, d).

10.6.3 Search for ∧-Irreducible Elements

Definition 10.8 gives a formal definition of propositionalization and Proposition 10.9
proves the existence of a propositional context equivalent to a structural context.
Now the problem is the search for the set of ∧-irreducible elements (or a subset
for an approximation). A theorical method can build the complete structural Galois
lattice for a structural context, then we can easily find the ∧-irreducible elements
(all element with only one predecessor in the Hasse diagram). In Figure 10.8, we
show a distribution of the ∧-irreducible elements in the lattice (nodes with gray
background).

With this method, we can find the set of irreducible elements. However, even
for simple structural description languages L, the complexity of the ⊗L and ≥L
operations and the size of the lattice limit this method to a small set of examples.

In fact three other considerations induce the use of a specialization method:

1. Since all element in a complete lattice are the meet (∧) of ∧-irreducible
element, the ∧-irreducible elements are (statistically) more “on the top” of
the lattice.

2. We can limit the exploration to ∧-irreducible elements seen on “enough”
examples (classical support data mining heuristic).

3. We can use classical pattern mining for the construction, from general to
specific, of set of patterns.

In [11] there are some important properties for the search of ∧-irreducible (or
∨-irreducible) elements in the case of a propositional context.

Proposition 10.10 (∧-irreducible) For a context (E,A,R) where ∀a1, a2 (a1 �= a2)

e(a1) �= e(a2), a ∈ A is a ∧-irreducible attribute ⇐⇒ {e ∈ E|¬(eRa) and ∀a′ �=
a ∈ d(e(a))5 eRa} �= ∅. We note irre(a) this set.

5Closure of a, noted a′′ by Wille [32].

244 SOME LINKS BETWEEN FORMAL CONCEPT ANALYSIS AND GRAPH MINING

We can see that a ∧-irreducible attribute a is characterized by this set of
examples (irre(a)). The example in irre(a) does not verify the attribute a but is
true for all attribute b with e(a) ⊂ e(b). In fact the a attribute is fundamental for
the separation of the examples of irre(a) and the set of other examples.

Proposition 10.10 gives a polynomial algorithm for seeking the ∧-irreducible
element of a binary relation R. But for a propositionalisation problem, the number
of attributes we have to test can be exponential. Then the relation R can be really
big. Furthermore, in some application, like reinforcement learning [28], the pattern
occurs step after step. So an incremental algorithm is better for this case.

Definition 10.5 A context (E,A,R) is ∧-reduce iff all the attributes a ∈ A are
∧-irreducible.

Proposition 10.11 For a ∧-reduce context (E,An,Rn), the context (E,An+1,Rn+1),
built by the addition of a new attribute an+1 to the context (E,An,Rn) with An+1 =
An ∪ an+1 and Rn+1 is the new binary relation between E and An+1.

The context (E,An+1,Rn+1) is ∧-reduce iff the three following properties are
verified:

i. � ∃ak ∈ An|e(ak) = e(an+1).
ii. an+1 is a ∧-irreducible for the context (E,An+1,Rn+1).

iii. ∀ak ∈ An|e(ak) ⊂ e(an+1) ⇒ irre(ak)
⋂

e(an+1) �= ∅.

Property 10.11 gives Algorithm 10.3.

Algorithm 10.3 Incremental addFeature method

Procedure: update

Data: Cn:(E,An,Rn)
Data: attribute a
Result: Cn modified
F ← {ak ∈ An|e(ak) ⊆ e(a)};
for ak in F do

irre(ak)←irre(ak) ∩ e(a);
if irre(ak) = ∅ then

Cn ← Cn - ak;
end

end
return Cn;

10.6 GRAPH MINING AND FORMAL PROPOSITIONALIZATION 245

Procedure: is-Irreducible

Data: Cn:(E,An,Rn)
Data: attribute a
Result: True if a is ∧-irreducible else False;
Result: We compute also irre(a) if a is

∧-irreducible;
F ← {ak ∈ An|e(a) ⊆ e(ak)};
if F = ∅ then

irre(a)←E - e(a)
else

//Initialization of irre(a);
irre(a)← e(aj) - e(a) // With aj one element in
F;
F ← F - aj ;
for ak in F do

if e(ak)=e(a) then
return False;

else
irre(a)← irre(a) ∩ e(ak) ;
if irre(a) = ∅ then

return False;
end

end
end

end
return irre(a) �= ∅;
Algorithm: addFeature: (Incremental Algorithm)

Data: A structural context (E,L,d)
Data: Cn:(E,An,Rn)
Data: feature a ∈ L
Result: Cn+1 : (E,An+1,Rn+1)
if is-Irreducible(Cn,a) then

Cn+1 ← update(Cn,a);
else

Cn+1 ← Cn;
end
return Cn+1;

246 SOME LINKS BETWEEN FORMAL CONCEPT ANALYSIS AND GRAPH MINING

10.6.4 ∧-Irreducibles and Pattern Mining

The idea is to use the algorithm addFeature on features extracted from graph descrip-
tions of examples by a graph mining method. In fact, each graph is replaced by the
set (or a subset) of its subgraphs. The graph mining algorithms are optimized for a
complete specialization search, they build the graphs at step n from graphs of step
n − 1. These methods use different parameters and principally a support parameter
that is, for a given pattern, the minimum number of examples where this pattern is
present. In our algorithm Apropos (given thereafter), we will use the pattern mining
method as a feature generator. We name it PatternMiningMethod() and consider that
the result of this method is a set of expressions of the description language L.

Algorithm 10.4 APropos Algorithm

Procedure: Apropos

Data: A structural context (E,L,d)
Data: s: support parameter
Data: m: maximal depth
Result: A context (E,A,R) (then a set of

features A)
n ← 0;
C0←(E,∅,R0);
while (n ≤ m) do

F ← PatternMiningMethod((E,L,d), s, n, .. and
other specific parameters)
for f in F do

Cn+1←addFeature((E,L,d),Cn,f)
end
n ← n+ 1;

end
return Cn+1;

In the algorithm Apropos, we can employ any pattern mining method that uses
the expression of a description language L. For the description of the example by
graphs, there is now a large set of graph mining methods [14, 24, 31]. To reduce
the number of features, we are tempted to replace the expressions with less specific
even if that results in some loss of information. For FCA, this transformation is
formalized in [12].

In 1989 we have proposed a machine learning method for the search of repeated
elementary paths present in a set of graphs [20]. This method is a levelwise method
(Apriori method [1]) that used the classical support criteria and with no limitation
on the structure of the graph. Some more recent methods on the same problem are
found in [24, 33]. We use this graph mining method in the algorithm APropos for
the set of examples in Figure 10.8. If we limit the search to path with 3 nodes
maximum, seen 3 times or more on the set of example in Figure 10.8, we obtain
the set of features shown in Figure 10.10.

10.6 GRAPH MINING AND FORMAL PROPOSITIONALIZATION 247

E0 E1 E2 E3 E4
Rectangle 1 1 1 1 1

on 1 1 1 1 1
right 1 1 0 0 1
Circle 1 1 0 1 1

Rectangle → on 1 1 1 0 1
on → Rectangle 1 1 1 1 0
on → Circle 1 1 0 0 1

Rectangle → on → Circle 1 1 0 0 1

Figure 10.10. Paths with maximal length 2 with support 3.

E0 E1 E2 E3 E4
Circle 1 1 0 1 1

Rectangle → on 1 1 1 0 1
on → Rectangle 1 1 1 1 0

right, on → Circle, Rectangle → on → Circle 1 1 0 0 1

Figure 10.11. ∧-Irreducible path elements.

Using the Apropos algorithm, on this set of paths we obtain the following
∧-reduced context (Fig. 10.11):

For this example, we have limited our search to paths where we have only a
subset of all ∧-irreducible elements since:

1. All the graphs are not explored (path length 2).
2. The support parameters reduce the set of paths.

With a support of 1, we have the set of ∧-irreducible path elements (length
< 2) shown in Figure 10.12.

The Galois lattice construct from this binary relation is the Galois lattice of
Figure 10.4 because the binary relation is the binary relation of Figure 10.3. For
this example, the Galois lattice constructed will be isomorph to the structural Galois
lattice of Figure 10.8 since the set of ∧-irreducible elements are the same. So in
this case, the description of the examples with labeled graph or by path of length 2
are equivalent.

10.6.5 Experimentation

We have made another experimentation on real data. These data are the classical
mutagenesis problem described with graphs [8]. For this experimentation we do
not use the example/counterexample knowledge. To reduce the complexity, for the

248 SOME LINKS BETWEEN FORMAL CONCEPT ANALYSIS AND GRAPH MINING

E0 E1 E2 E3 E4
Rectangle → on 1 1 1 0 1
on → Rectangle 1 1 1 1 0

Circle 1 1 0 1 1
Square, on → Square 0 0 1 0 1

Circle → right 0 1 0 0 1
right → circle,Rectangle → right 1 0 0 0 0

Circle → on 0 0 1 0 0

Figure 10.12. ∧-Irreducible path elements (lenght < 2, support 1).

0

200

400

600

800

1000

1200

1400

01020304050607080

Patterns

-irreducibles

Support Parameter

Figure 10.13. Experimentation on mutagenesis data: modification of the support

parameter.

search of patterns, we use, here also, two parameters: the support number s [this
would mean that the corresponding pattern (path or tree) occurs in s graphs in the
original database] and the maximal size of the patterns m (specify that the largest
pattern to be examined has m nodes). We have made one experimentation where s

varies from 70 to 4 where m is 6 (see Fig. 10.13). In the second experimentation
(Fig. 10.14) s is 20 and m changes from 2 to 8.

From the set of patterns extracted from the graphs by the algorithm Gaston [24],
we have merged in one pattern all the patterns with exactly the same extension. This
gives a more precise idea on the set of ∧-irreducibles. For example, with parameters
s = 20, m = 8, we obtain 63,487 patterns from Gaston, but there are only 1121
patterns with different extensions.

The vertical axis gives the number of patterns. The horizontal axis is the sup-
port parameter. We have 230 examples and the support varies from 70 (30.4%) to
4 (1.7%). The upper curve (Patterns) is the number of patterns [for each couple
of patterns p1 �= p2, e(p1) �= e(p2)] extracted by Gaston. The lower curve (∧-
irreducibles) is the number of ∧-irreducible elements for the corresponding set of

10.7 CONCLUSION 249

Patterns

-irreducibles

Maximal Size Parameters

1200

1000

800

600

400

200

0
0 1 2 3 4 5 6 7 8 9

Figure 10.14. Experimentation on mutagenesis data: modification of the maximal size

parameter.

patterns. The memory space needed is less then 600k and the time for the search
of all the ∧-irreducibles elements varies from 2 to 6 s on an IMac G5 1.8 MHz
computer.

For the first experimentation, the reduction factor is 3.5 for 1027 patterns and
5.2 for 3781 patterns. For the second experimentation, the reduction factor is 1.1
for 10 patterns (with 1 or 2 nodes) to a reduction of 3, 4 for 1121 patterns (with a
maximum of 8 nodes).

From these experimentations, we find an augmentation of the reduction factor
that reduces the exponential augmentation of the number of patterns. We think that
this property comes from the position of the ∧-irreducible elements in a lattice.

We have for an element x of (a lattice) L denote by Jx the subset of ∧-
irreducibles below x and let Mx , dually, be the set of ∨-irreducibles above x. A
fundamental if obvious remark is that the higher is x, the larger is Jx while Mx

is smaller. From a technical viewpoint, the structure of a lattice L is obviously
encoded into the order relation on irreducibles by the bijection x → (Jx ,Mx) (all
x ∈ L, since x is less than or equal to y iff Mx is a superset of My and Mx∨y =
Mx ∩ My [10].

Now, if we consider Property 10.10, we can say (with only an empirical proof
here) that the ∧-irreducible elements are “statically more” near the top of the lattice.
So the specialization search is a good heuristics for the research of a subset of the
∧-irreducible elements.

10.7 CONCLUSION

In this chapter we have given some links between formal concept analysis and
graph mining. The generalization of the formal concept analysis to general descrip-
tion of the examples, and in particular graph description, gives a formal definition
of the search space. We prove that, with specific graph description of the examples,
we can have a partial order and a product operator. In this case the structure of the
classification space is a lattice. The structure of this space allows the use of classical

250 SOME LINKS BETWEEN FORMAL CONCEPT ANALYSIS AND GRAPH MINING

algorithms for the construction of all the general concepts. But the construction of
this lattice is made by a generalization operator. In many real-world applications,
we need a specialization operator. In the second part of the chapter we proposed
an answer to this problem with the definition of an equivalence between descrip-
tion language. This equivalence uses some particular elements of the lattice: the
irreducible elements. These elements allow a re-description of the example into a
propositional description, but the research of these elements is a new problem. We
propose an online algorithm for the search of a subset of the set of ∧-irreducible
elements. So we can remove from the set of patterns found with a graph mining
algorithm all the patterns that are redundant for the classification task. An exper-
imentation follows that prove the validity of the approach for the reduction of a
large number of patterns to a more practical size.

ACKNOWLEDGMENTS

We greatly thank Stephano Cerri and Diane Cook for their helpful comments and
suggestions on an earlier version of this manuscript.

REFERENCES

1. R. Agrawal, T. Imelinsky, and A. Swami, Mining association rules between sets of items
in large database. In Proceedings of ACM SIGMOD ’93 Conference, pp. 207–216, May
26–28, Washington, DC, 1993.

2. E. Alphonse and C. Rouveirol. Lazy propositionalization for relational learning in
horn W. 14th European Conference on Artificial Intelligence, (ECAI’00), pp. 256–260,
IOS Press, Berlin, 2000.

3. M. Barbut and B. Monjardet, Ordre et classification. In Hachette, Paris, Hachette, 1970,
p. 174,.

4. C. Berge, Graphes and Hypergraphes, In Bordas, North-Holland Pub. Co., Paris, pp. xiv,
528, 1973.

5. G. Birkhoof. Lattice theory, 3rd ed. American Mathematical Society, Providence, RI,
1967.

6. J. P. Bordat. Calcul pratique du treillis de Galois d’une correspondance. Math. Sci.
Humaines. 24◦ année, 96:31–7, 1986.

7. L. Chaudron and N. Maille, Generalized formal concept analysis, ICCS’2000, Lecture
Notes in Artificial Intelligence, Vol. No. 1867, pp. 357–370, 2000.

8. D. J. Cook and L. B. Holder. Graph-based data mining. IEEE Intelligent Systems,
15(2):32–41, 2000.

9. M. Crochemore and W. Rytter. Usefulness of the Karp-Miller-Rosenberg algorithm in
parallel computations on strings and arrays. Theoretical Computer Science, 88:(1) 59–82,
1991.

10. V. Duquenne. Latticial structure in data analysis. Theoritical Computer Science, 217:407–
436, 1999.

11. B. Ganter and R. Wille. Formal Concept Analysis, Mathematical Foundation. Springer,
Heidelberg, 1998.

REFERENCES 251

12. B. Ganter and S. Kuznetsov. Pattern structures and their projections. ICCS’2001 Lecture
Notes in Computer Science, Vol. 2120, Proceedings of the 9th International Conference
on Conceptual Structures, pp. 129–142, 2001.

13. R. Godin and R. Missaoui. An incremental concept formation approach for learning from
databases. Theoritical Computer Science. 133:387–419, 1994.

14. A. Inokuchi, T. Washio, and H. Motoda. Complete mining of frequent patterns from
graphs: Mining graph data. Journal of Machine Learning, 50:321–354, 2003.

15. J. Kearns. The Computational Complexity of Machine Learning. MIT Press, Cambridge,
Massachusetts, 1994.

16. S. Kramer, N. Lavrac, P. A. Flach, S. Kramer, N. Lavrac, and P. A. Flach. Proposi-
tionalization approaches to relational data mining. In N. Lavrac and S. Dzeroski, eds.
Relational Data Mining. Springer, Berlin Heidelberg New York, 2001.

17. S. Kuznetsov and S. Obiedkov. Algorithms for the construction of concept lattices and
their diagram graphs. Principles of Data Mining and Knowledge Discovery (PKDD
2001), Freiburg, Germany, 2001.

18. N. Lavrac, F. Zelezny, and P. A. Flach. RSD: Relational subgroup discovery through first-
order feature construction. Inductive Logic Programming Conference. Springer, Sydney,
2002.

19. N. Lavrac and P. Flach. An extended transformation approach to inductive logic pro-
gramming. ACM Trans. Comput. Log. 2(4):458–494, 2001.

20. M. Liquière and J. Sallantin. INNE: A structural learning algorithm for noisy Data. First
Conference Tools for AI, IEEE International Workshop, Fairfax,VA, pp. 70–76, 1989.

21. M. Liquiere and J. Sallantin. Structural machine learning with Galois lattice and graphs.
Machine Learning: Proceedings of the 1998 International Conferences. Margan Kauf-
mann, (ICML 98), pp. 305–313, San Francisco, CA, USA, 1998.

22. E. Mephu Nguifo. Galois lattice: A framework for concept learning—design, evaluation
and refinement. pp. 461–467, 6◦ Tool with AI, New Orleans TAI, 1994.

23. M. L. Mugnier. Knowledge representation and reasoning based on graph homomor-
phisms. Proceedings 8th International Conference on Conceptual Structures, ICCS’2000,
Lecture Notes in Artificial Intelligence, Vol. 1867, pp. 172–192, 2000.

24. S. Nijssen and J. Kok. A quickstart in frequent structure mining can make a difference.
Proceedings of the SIGKDD. http://www.liacs.nl/home/snijssen/gaston/, 2004.

25. E. M. Norris. An algorithm for computing the maximal rectangles of a binary relation.
Journal of ACM, 21:356–366, 1974.

26. L. Nourine and O. Raynaud. A fast algorithm for building lattices. Information Processing
Letters. 71:199–204, 1999.

27. G. D. Plotkin. A further note on inductive generalization. In B. Meltzer and D. Michie,
eds. Machine Intelligence, Vol. 6, Edinburgh University Press, Edinburgh, pp. 101–124,
1971.

28. M. Ricordeau. Q-concept-learning: Generalization with concept lattice representation in
reinforcement learning. Proceedings of the 15th IEEE International Conference on Tools
with Artificial Intelligence, IEEE Computer Society, 2003.

29. J. F. Sowa. Conceptual Structures: Information Processing in Mind and Machine.
Addison-Wesley, Reading, MA, 1984.

30. G. Stumme, R. Taouil, Y. Bastide, and L. Lakhal. Computing iceberg concept lattices
with TITANIC. Data Knowl. Eng. 42(2):189–222, 2002.

31. T. Washio and H. Motoda. State of the art of graph-based data mining. ACM SIGKDD
Explorations Newsletter 5(1):59–68, 2003.

252 SOME LINKS BETWEEN FORMAL CONCEPT ANALYSIS AND GRAPH MINING

32. R. Wille. Knowledge acquisition by methods of formal concept analysis. In E. Diday, ed.
Data Analysis, Learning Symbolic and Numeric Knowledge. ISBN:0-941743-64-0. Nova
Science Publishers, pp. 365–380, New York, 1989.

33. M. Zaki. SPADE: An efficient algorithm of mining frequent sequences. Machine Learning
Journal. 42(1/2):31–60, 2001.

34. H. Zhou. Multiplicativity. Part I. Variations, multiplicative graphs and digraphs. Journal
of graph Theory. 15(5):469–488, 1991.

11

KERNEL METHODS FOR
GRAPHS

THOMAS GÄRTNER,1 TAMÁS HORVÁTH,1 QUOC V. LE,2 ALEX
J. SMOLA,2 AND STEFAN WROBEL1,3

1Fraunhofer AIS, Schloß Birlinghoven, Sankt Augustin, Germany
2Statistical Machine Learning Program, NICTA and ANU Canberra, Australia

3Department of Computer Science III, University of Bonn, Bonn Germany

11.1 INTRODUCTION

Supervised learning is one of the most commonly considered data mining scenarios.
The supervised learning problem—which we will concentrate on in this chapter—is
to find a function that estimates a fixed but unknown functional or conditional depen-
dence between objects and one of their properties—given some exemplary objects
for which this property has been observed. The objects with observed property are
called training instances and those for which the property has to be estimated are
test instances. In the most common setting, known as induction, a good model of
the dependence has to be found without knowing the test instances. A less common
but nevertheless important problem is—given training and test instances—to find a
model that has good predictive performance on the test data. This setting is known
as transduction. In both cases, whenever the property takes one of a finite set of
possible values, we speak of classification; whenever it takes real values, we speak
of regression.

Mining Graph Data, Edited by Diane J. Cook and Lawrence B. Holder
Copyright c© 2007 John Wiley & Sons, Inc.

253

254 KERNEL METHODS FOR GRAPHS

Traditionally, machine learning research has focused on data that can directly
be represented in a Euclidean space. Today, such methods are frequently applied in
the analysis of business and scientific data. However, it has turned out that more
and more of the collected data has a structure that hinders direct representation in a
Euclidean space. Two powerful languages that can be used to represent such data are
first- or higher-order logic [27] and graphs. Although graphs are special relational
structures, for complexity reasons it is useful to consider them separately. In this
chapter, we focus on graphs as our representation language only.

Two of the most frequently occurring machine learning problems involving
graph structures are classification of vertices in a graph and classification of graphs
in a graph database, that is, a set of disjoint graphs. A simple example of the first
problem is the classification of Web pages on the World Wide Web, given the links
between the pages. A simple example of the second problem is the classification
of chemical compounds, given their atom bond structure. Both of these learning
problems will be tackled in later parts of this chapter.

Our approach is to adapt kernel methods [32], a class of well-established
learning algorithms, to graphs, rather than developing a new learning algorithm
for graph-structured data from scratch. Today kernel methods are one of the most
widely—and most successfully—applied classes of learning algorithms. Interest-
ingly, one can look at two parts of kernel methods almost independently: a kernel
function and a kernel-based learning algorithm. The kernel function is a positive
definite function on the instances and “isolates” the learning algorithm from the
instances, that is, the learning algorithm does not need to access any particular
aspect of an instance—it relies on kernels between instances only. Hence, kernel
methods can be applied to any data structure by defining a suitable kernel function.
The main purpose of this chapter is to review some recent advances in the rapidly
developing research area of kernel methods for graphs. This chapter is based on the
work previously reported in [11–14, 18, 19] and is organized as follows: Section
11.2 presents recent results on making the classification of graphs tractable. Section
11.3 presents recent work on making transductive multiclass classification of vertices
in a large graph tractable. Section 11.4 concludes.

11.2 GRAPH CLASSIFICATION

In this section we consider the classification of instances that have a natural rep-
resentation as labeled graphs. That is, each instance is described by a graph g =
(V, E, α, β), where the elements of V and E are labeled by the symbols of some
appropriately chosen alphabets LV and LE , respectively (i.e., α : V → LV and
β : E → LE). Depending on the set E of edges, g is either directed (i.e., when
E ⊆ V × V) or undirected (i.e., when E ⊆ {X ∈ 2V : |X| = 2}). For a set G of
graphs, we assume without loss of generality that the elements of G are all defined
over the same vertex and edge alphabets, and that the graphs in G are either all
directed or all undirected. For further basic notions and notations on graphs, the
reader is referred to the introductory chapter of this book.

11.2 GRAPH CLASSIFICATION 255

To classify graph-structured instances with kernel methods, for example, support
vector machines [6], it suffices to define a valid (positive definite) kernel function
k : G × G → R, also referred to as graph kernel. In the design of practically use-
ful graph kernels, one would require them to be computable in polynomial time
in the size of the graphs and to distinguish between nonisomorphic graphs, that is,
the underlying embedding function φ : g �→ k(g, ·) to be injective modulo isomor-
phism. Such graph kernels are called complete graph kernels. For the computation
of complete graph kernels, the following result holds [13].

Proposition 11.1 Computing any complete graph kernel is at least as hard as
deciding whether two graphs are isomorphic.

Since the graph isomorphism problem is believed to be not in P (and thus most
likely not efficiently solvable, even though it is also probably not NP-complete),
one has to resort to graph kernels where the underlying embedding functions may
map some nonisomorphic graphs to the same point. Although this may seem to be
a severe relaxation, empirical results indicate that several incomplete graph kernels
have excellent predictive performance on real-world datasets. In the subsequent
sections, for example, we also present some noncomplete graph kernels that have
good predictive performance on a large benchmark chemical graph dataset.

The design of most graph kernels is based on the following general idea:

1. Map each graph to some distinguished, not necessarily finite, (multi)set of
patterns occurring in the graph.

2. Define the graph kernel for each pair g1, g2 of graphs as a kernel on the
(multi)sets assigned to g1 and g2.

As an example of this approach, we mention the family of graph kernels based
on mapping each graph to a certain set of subgraphs occurring frequently in the set
of graphs representing the instances. Encouraging empirical results have recently
been reported for this approach (see [8] and Chapter 7 of this book). Such frequent
pattern-based graph kernels, however, involve the problem of choosing a trade-
off between predictive power and runtime, as both these conflicting requirements
depend on the choice of the frequency threshold. As an alternative to graph kernels
based on frequent subgraphs, in this section we describe two graphs kernels, the
walk kernel (WK) [13] and the cyclic pattern kernel (CPK) [18, 19], which do not
depend on such a frequency threshold.

11.2.1 Walk-Based Graph Kernels

Following the general methodology sketched above, in this section we define two
kernels for labeled directed graphs. Both kernel definitions are based on mapping
graphs to multisets of label sequences corresponding to walks in the graphs. Such
graph kernels are called walk kernels.

256 KERNEL METHODS FOR GRAPHS

To go into the technical details, we need some basic definitions. Let G be
a set of labeled directed graphs (i.e., each graph in G is defined over the same
alphabets of vertex and edge labels) and let g = (V, E, α, β) be a graph in G. A
walk w in g is a sequence of vertices w = v1, v2, . . . v�+1 such that (vi, vi+1) ∈ E

for every i = 1, . . . , �. The length of the walk is equal to the number of edges in
this sequence, that is, � in the above case. To compute walk kernels in a compact
way, we use the adjacency matrix Mg of g, defined by

[Mg]ij =
{

1 if (vi, vj) ∈ E

0 otherwise

for every vi, vj ∈ V .
Another central concept for the definition of walk kernels is the notion of prod-

ucts of labeled directed graphs. Let g1 = (V1, E1, α1, β1) and g2 = (V2, E2, α2, β2)

be directed graphs over the same alphabets LV and LE of vertex and edge labels,
respectively. Then the direct product of g1 and g2 is the directed graph g1 × g2 =
(V, E, α, β) over the alphabets LV and LE , where

V = {(v1, v2) ∈ V1 × V2 : α1(v1) = α2(v2)}
E = {((u1, u2), (v1, v2)) ∈ V × V :

(u1, v1) ∈ E1, (u2, v2) ∈ E2, and β1(u1, v1) = β2(u2, v2)}

and α (resp. β) maps each vertex (resp. each edge) to the common label of its
components.

The Direct Product Kernel. The walk kernel described first in this section is
based on defining one feature for every possible label sequence and then counting
how many walks in a graph match this label sequence. The inner product in this
feature space can be computed with the following closed form: Let G be a set of
directed graphs and let g1 = (V1, E1, α1, β1) and g2 = (V2, E2, α2, β2) be graphs
in G. Let Mg1×g2 and Vg1×g2 denote the adjacency matrix and the vertex set of
the direct product g1 × g2, respectively. With a sequence of weights λ0, λ1, . . .

(λi ∈ R; λi ≥ 0 for all i ∈ N) the direct product kernel is defined as

k×(g1, g2) =
|Vg1×g2 |∑
i,j=1

[∞∑
�=0

λ�M
�
g1×g2

]

ij

if the limit exists. Note that every entry
[
M�

g1×g2

]
ij

of the �th power of Mg1×g2

is the number of walks of length � from vi = (vi,1, vi,2) to vj = (vj,1, vj,2) in the
product graph g1 × g2. This is in turn equal to the number of all possible pairs of
walks of length � from vi,1 to vj,1 in g1 and from vi,2 to vj,2 in g2 with the same
label sequence.

11.2 GRAPH CLASSIFICATION 257

To compute this kernel function one can make use of polynomial time-compu-
table closed forms or resort to approximations by short walks on the graphs (see
[13] for further details).

The Noncontiguous Sequence Kernel. A variant of the above kernel function
that can be used whenever the label sequences are unlikely to match exactly is
the following kernel. Let g1 and g2 be the graphs as defined above and let g1 ◦ g2

be their direct product when ignoring the labels in g1 and g2. With a sequence of
weights λ0, λ1, . . . (λi ∈ R; λi ≥ 0 for all i ∈ N) and a factor 0 ≤ µ ≤ 1 penalizing
gaps, the noncontiguous sequence kernel is defined as

k∗(g1, g2) =
|Vg1×g2 |∑
i,j=1

[∞∑
�=0

λ�

(
(1 − µ)Mg1×g2 + µMg1◦g2

)�
]

ij

if the limit exists.
This kernel is very similar to the direct product kernel. The only difference

is that instead of Mg1×g2 , the matrix (1 − µ)Mg1×g2 + µMg1◦g2 is used. The rela-
tionship can be seen by adding—parallel to each edge—a new edge labeled # with
weight

√
µ in both factor graphs.

11.2.2 Cycle-Based Graph Kernels

In this section we present another graph kernel, called the cyclic pattern kernel
(CPK), which is based on mapping graphs into a distinguished set of cycles and
trees. Using the labels of vertices and edges, these cycles and trees are then mapped
to strings called cyclic and tree patterns. For two graphs, CPK is defined as the
cardinality of the intersection of their cyclic and tree patterns. Although below we
define CPK for undirected graphs, we note that the approach can easily be adapted
to directed graphs as well.

To simplify the description, we first define a function that will be used many
times in what follows. Let U be a set and k∩ : 2U × 2U → R be the function defined
by

k∩ : (S1, S2) �→ |S1 ∩ S2| (11.1)

for every S1, S2 ⊆ U . The proof of the next proposition follows directly from the
definition.

Proposition 11.2 k∩ is a kernel.

In order to define CPK, we recall some basic notions related to graphs. Let
g = (V, E, α, β) be an undirected graph. Two vertices of g are adjacent if they
are connected by an edge. The degree of a vertex v ∈ V is the number of vertices
adjacent to v. A graph g′ = (V ′, E′, α′, β ′) is a subgraph of g, if V ′ ⊆ V , E′ ⊆ E,

258 KERNEL METHODS FOR GRAPHS

α′(v) = α(v) for every v ∈ V ′, and β ′(e) = β(e) for every e ∈ E′. A walk of g is
a sequence w = v1, v2, . . . , v�+1 of vertices of g such that {vi, vi+1} ∈ E for every
i = 1, . . . , �. If there is a walk between any pair of its vertices, g is connected. A
connected component of g is a maximal subgraph of g that is connected. A vertex
v ∈ V is an articulation vertex if its removal increases the number of connected
components of g. If it contains no articulation vertex, g is biconnected. A bicon-
nected component of g is a maximal subgraph that is biconnected. A subgraph c of
g forms a simple cycle if it is connected and each of its vertices has degree 2. We
denote by S(g) the set of simple cycles of g. We note that the number of simple
cycles can grow faster than 2|V |.

It holds that the biconnected components of a graph g are pairwise edge disjoint
and thus form a partition on the set of edges of g. This partition, in turn, corresponds
to the following equivalence relation on the set of edges: Two edges are equivalent
if and only if they belong to a common simple cycle. This property of biconnected
components implies that an edge of a graph belongs to a simple cycle if and only
if its biconnected component contains more than one edge. Edges not belonging to
simple cycles are called bridges. The subgraph of a graph g formed by its bridges is
denoted by Bg. Clearly, each bridge of a graph is a singleton biconnected component,
and B(g) is a forest.

11.2.2.1 CPK Defined by the Set of All Simple Cycles. Let G be a set of
undirected graphs over the vertex and edge alphabets LV and LE , respectively. We
assume without loss of generality that LV and LE are disjoint. Let � = LV ∪ LE ,
� be an alphabet, and let π be a mapping from the set of simple cycles and trees
labeled by � to �∗ such that

(i) π is injective modulo isomorphism on the set of cycles and trees,
(ii) π can be computed in polynomial time.

We note that such a π always exists and can easily be constructed (see, e.g., [19, 39]).
Using π , the set of cyclic and tree patterns of a graph g ∈ G is defined by

C(g) = {π(C) : C ∈ S(g)} (11.2)

T(g) = {π(T) : T is a connected component of B(g)} (11.3)

respectively. The cyclic pattern kernel for G is then defined by

kS(g1, g2) = k∩(C(g1), C(g2)) + k∩(T(g1), T(g2)) (11.4)

for every g1, g2 ∈ G. Since the sets C(g) and T(g) are disjoint for every g ∈ G, kS
is a kernel by Proposition 11.2.

As mentioned previously, kernels can often be computed efficiently using some
closed form, that is, without explicitly performing the embedding into the feature
space. Unfortunately, unless P = NP, kS cannot be computed in polynomial time.
In fact, one can show the following stronger negative result.

11.2 GRAPH CLASSIFICATION 259

Algorithm 11.1 Computing CPK

Require: labeled undirected graphs g1 and g2

Ensure: kS(g1, g2)

1: for i = 1, 2 do begin
2: compute B(gi)

3: compute T(gi) from B(gi)

4: compute S(gi)

5: compute C(gi) from S(gi)

6: end
7: return |C(g1) ∩ C(g2)| + |T(g1) ∩ T(g2)|

THEOREM 11.1 Computing kS is at least as hard as counting simple cycles of
length k in a graph.

This problem is, however, unlikely to be fixed-parameter tractable [10]. That is, for
any graph with n vertices, most likely there is no algorithm counting simple cycles
of length k in time f (k) · nc, where f : N → N is some computable function and
c is some constant.

Based on the above negative complexity result, one can consider
Algorithm 11.1, which calculates CPK by explicitly performing the embedding of
graphs into the feature space. Since the biconnected components of a graph can
be computed efficiently [34] and their number is bounded by the size (i.e., num-
ber of vertices) of the graph, steps 2 and 3 of Algorithm 11.1 can be computed
in polynomial time. Since the set of simple cycles of a graph can be enumerated
with polynomial delay [29], steps 4 and 5 can be performed in time polynomial in
the sizes of g1 and g2, and in their number of simple cycles, which in turn can be
exponential in the size of these graphs. Thus Algorithm 11.1 provides an efficient
way of computing kS for well-behaved graph databases, that is, for sets of disjoint
graphs containing graphs with a small number of simple cycles.

The restriction to such well-behaved graph databases is necessary as while S(g)

can be listed in time polynomial in |S(g)| [29], for the enumeration of the set C(g)

of cyclic patterns the following negative result holds [19].

Proposition 11.3 If P �= NP, the set of cyclic patterns of a labeled undirected
graph cannot be enumerated in output-polynomial time.

Hence, although kS depends only on cyclic patterns defined in (11.2), in steps 3
and 4 of Algorithm 11.1 we compute the set of all simple cycles. Algorithm 11.1 is
thus polynomial in |S(g1)| and |S(g2)| rather than in |C(g1)| and |C(g2)|.

Restricting CPK to well-behaved graph databases is a theoretically rather severe
restriction because graphs containing exponentially many simple cycles may only
have polynomially or even constantly many cyclic patterns. As an example, let g

be the biconnected graph defined in Figure 11.1 such that g’s vertices and edges

260 KERNEL METHODS FOR GRAPHS

�
1

�

2

�
3

�
4

�

5

�
6

�
7

� 3n − 2
�

3n − 1

�
3n

�3n + 1���
������

������
������

������
���

. . . ���
���
���
������

���

Figure 11.1. Graph of order 3n + 1 such that edges and vertices are labeled by the same

symbol (not shown in the figure). It contains 2n + n simple cycles but only 2 cyclic patterns.

are labeled by the same symbol. Also g is made up of 3n + 1 vertices and contains
2n + n simple cycles, which in turn form, however, only two different cyclic pat-
terns. Despite the worst-case exponential number of simple cycles, it turns out in
practice that there are large-scale real-world graph databases that are well-behaved,
for example, the NCI-HIV dataset consisting of more than 42,000 molecules, that
we will use to evaluate our graph kernels.

In the next sections we present two approaches relaxing the above computational
limitation of CPK.

11.2.2.2 CPK for Graphs with Bounded Treewidth. The proof of Proposi-
tion 11.3 is based on a polynomial-time reduction from the NP-complete Hamilto-
nian cycle problem. This and many other NP-hard computational problems dealing
with graphs become, however, polynomially solvable when restricted to graphs with
bounded treewidth (see, e.g., [3] for an overview). Treewidth [31] is a measure of
tree-likeness of graphs. More precisely, let g = (V , E, α, β) be a graph. A tree
decomposition of g is a pair (T ,V), where T = (I, F) is a tree and V = {Vi ⊆ V :
i ∈ I } is a family of subsets of V such that

(i)
⋃

i∈I Vi = V ,
(ii) For every {u, v} ∈ E there is an i ∈ I such that {u, v} ⊆ Vi

(iii) For every i, j, k ∈ I it holds that if j is on the path from i to k in T , then
Vi ∩ Vk ⊆ Vj .

The width of a tree decomposition (T ,V) of g is maxi∈I |Vi | − 1, and the treewidth
of g is the width of a tree decomposition of g with the smallest width. Clearly, the
treewidth of a tree is 1, and the treewidth of a simple cycle is 2.

The class of bounded treewidth graphs includes many practically relevant graph
classes (see, e.g., [4] for an overview). We also note that graphs with small treewidth
may have exponentially many simple cycles. As an example, consider again the
graph given in Figure 11.1. This graph has treewidth 2 for every n > 0 and one of
its tree decompositions with minimum treewidth is shown in Figure 11.2.

Using the positive result on the regular-language-constrained simple path prob-
lem for bounded treewidth graphs given in [1], the following positive result can be
shown.

11.2 GRAPH CLASSIFICATION 261

�{3n − 2, 3n − 1, 3n + 1} � {3n − 2, 3n, 3n + 1}
� {3n − 2, 3n + 1}

�� ��

�{3n − 5, 3n − 4, 3n − 2} � {3n − 5, 3n − 3, 3n − 2}
� {3n − 5, 3n − 2, 3n + 1}

�� ��

�
�
�

�{4, 5, 7} � {4, 6, 7}
� {4, 7, 3n + 1}

�� ��

�{1, 2, 4} � {1, 3, 4}
� {1, 4, 3n + 1}

�� ��

Figure 11.2. Tree decomposition of width 2 for the graph given in Figure 11.1.

�B �

C
�

Br

�

B
�

B
�

B
�

B

�

B
�

B
�

B
�

B

�
Br

�
C

�
C

�B

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�
��

�
�

�

�
�
�
�
��

�
�

�
��

�
�
�

�
�
�

�
�
�
��

�
�

�
��

�
�
�

�
�
�

�
�
�
��

Figure 11.3. Chemical compound C3H2B10Br2 from the NCI-HIV dataset (NSC Id: 676529).

THEOREM 11.1 ([18]) For i = 1, 2, let gi = (Vi, Ei, αi, βi) be graphs with con-
stant bounded treewidth. Then kS(g1, g2) can be computed in time polynomial in

max{|V1|, |V2|, |C(g1), |C(g2)|}

We omit the proof of this theorem and refer the reader to [18] for further details.

11.2.2.3 CPK Based on Relevant Cycles. Consider the chemical structure graph
depicted in Figure 11.3. This graph has a single biconnected component with 12
vertices, containing 12,878 simple cycles. To avoid the computation of such a big
set of simple cycles, in this section we empirically investigate whether another,
possibly smaller set of cyclic structures can be employed without significant loss of
predictive performance. For that we consider cyclic patterns based on the relevant
cycles [28] of a graph. For instance, the molecular graph in Figure 11.3 has only
19 relevant cycles, each with length 3. (Note that this graph contains altogether 20
simple cycles of length 3.)

262 KERNEL METHODS FOR GRAPHS

To recall the definition of relevant cycles, we start by some basic notions from
algebraic graph theory. Let g = (V, E, α, β) be a biconnected graph. A subgraph c

of g is a cycle if each vertex of c has even degree. Note that simple cycles are a
special case of cycles. Each cycle c = (V ′, E′, α′, β ′) of g can be represented by the
incidence vector c of its edges. That is, the components of c are indexed by E, and
for every e ∈ E, ce = 1 if e ∈ E′ and it is 0 otherwise. The vectors corresponding
to cycles in g form a vector space over the binary field GF(2), called the cycle space
(or cycle vector space). Addition in GF(2) is defined by 0 ⊕ 0 = 0, 0 ⊕ 1 = 1, and
1 ⊕ 1 = 0. Multiplication is given by 0 ⊗ 0 = 0, 0 ⊗ 1 = 0, and 1 ⊗ 1 = 1. Thus,
vector addition in the cycle space corresponds to the symmetric difference of the
sets of edges of the cycles represented by the vectors. The dimension of the cycle
space of g is its cyclomatic number ν(g) = |E| − |V | + 1 (g consists of a single
connected component). To represent the cycle space of g, one can consider any
of its bases with minimum length, where the length of a basis is the sum of the
number of edges of the cycles represented by the vectors belonging to the basis.
Since the minimum basis of a graph’s cycle space is not necessarily unique, the
cyclic structure of a graph is described by the union of all minimum bases of its
cycle space [28]. This canonical set of cycles is called the set of relevant cycles. In
[37], it is shown that relevant cycles can be enumerated with polynomial delay and
counted in time polynomial in the order of G. Although the set of relevant cycles
of a graph can be exponential in the number n of its vertices in the worst case, its
cardinality is typically only cubic in n [15].

To measure the predictive performance of CPK based on relevant cycles, in
our experiments we used monotone increasing subsets of simple cycles that can be
generated by relevant cycles. More precisely, for a graph g and integer k ≥ 1, let
Rk(g) denote the set

Rk(g) =
{

set of relevant cycles of g if k = 1

{c ⊕ c′ ∈ S(g) : c ∈ Rk−1(g) and c′ ∈ R1(g)} otherwise

Since R1(g) ⊆ S(g), it holds that R1(g) ⊆ R2(g) ⊆ · · · ⊆ Rν(g)(g) = S(g). We
note that the set of relevant cycles of a graph is the union of the relevant cycles of its
biconnected components. Since biconnected components of a graph are enumerable
in linear time [34], and relevant cycles of a biconnected graph are enumerable with
polynomial delay [37], Rk(g) can be computed in time polynomial in |Rk(g)| for
any arbitrary graph g.

For a graph database G and integer k ≥ 1, the CPK based on Rk(g), denoted
kRk

, is then defined by

kRk
(g1, g2) = k∩(PRk

(g1), PRk
(g2)) + k∩(T(g1), T(g2))

for every g1, g2 ∈ G, where PRk
(g) = {π(c) : c ∈ Rk(g)} and T(g) is defined by

(11.3) for every g ∈ G. The remarks above along with Proposition 11.2 imply that
kRk

is a kernel that can be computed in time polynomial in max{n1, |Rk(g1)|, n2,

|Rk(g2)|}, where n1 and n2 denote the number of vertices of g1 and g2, respectively.

11.2 GRAPH CLASSIFICATION 263

11.2.3 Empirical Evaluation

In this section, we evaluate the predictive power of walk-based and cyclic pattern
kernels on the NCI-HIV dataset1 of chemical compounds that has frequently been
used in the empirical evaluation of graph mining approaches (see, e.g., [5, 7, 8, 25]).
Each compound in this dataset is described by its chemical structure and classified
into one of three categories based on its capability to inhibit the HIV virus: confirmed
inactive (CI), moderately active (CM), or active (CA). The dataset contains 42,689
molecules, 423 of which are active, 1081 are moderately active, and 41,185 are
inactive. Since more than 99% of the corresponding 42,689 chemical graphs contain
less than 1000 cycles, the cyclic and tree patterns for the whole dataset can be
computed in about 10 min.

Practical Considerations for the Walk Kernel. For molecule classification the
number of vertex labels is limited by the number of elements occurring in natural
compounds. It is therefore reasonable to not just use the element of the atom as its
label. Instead, we use the pair consisting of the atom’s element and the multiset of
all neighbors’ elements as the label.2 In the HIV dataset this increases the number
of different labels from 62 to 1391.

The size of this dataset, in particular the size of the graphs in this dataset, hinders
the computation of walk-based graph kernels by means of eigendecompositions on
the product graphs. The largest graph contains 214 atoms (not counting hydrogen
atoms). If all had the same label, the product graph would have 45,796 vertices.
As different elements occur in this molecule, the product graph has less vertices.
However, it turns out that the largest product graph (without the vertex coloring step)
still has 34,645 vertices. The vertex coloring above changes the number of vertices
with the same label, thus the product graph is reduced to 12,293 vertices. For each
kernel computation, either eigendecomposition or inversion of the adjacency matrix
of a product graph has to be performed. With cubic time complexity, such operations
on matrices of this size are not feasible.

The only chance to compute graph kernels in this application is to approximate
them. There are two choices. First we consider counting the number of walks in the
product graph up to a certain depth. In our experiments it turned out that counting
walks with 13 or less vertices is still feasible. An alternative is to explicitly construct
the image of each graph in the feature space. In the original dataset 62 different
labels occur and after the vertex coloring 1391 different labels occur. The size of the
feature space of label sequences of length 13 is then 6213 > 1023 for the original
dataset and 139113 > 1040 with the vertex coloring. We would also have to take
into account walks with less than 13 vertices, but at the same time not all walks
will occur in at least one graph. The size of this feature space hinders explicit
computation. We thus resorted to counting walks with 13 or less vertices in the
product graph.

1http://cactus.nci.nih.gov/ncidb/download.html.
2We note that more sophisticated vertex coloring algorithms are frequently employed in isomorphism
tests.

264 KERNEL METHODS FOR GRAPHS

Experimental Methodology and Results. We compare our approach to the
results presented in [7] and [8]. The classification problems considered there were:
(1) distinguish CA from CM, (2) distinguish CA and CM from CI, and (3) distinguish
CA from CI. Additionally, we will consider (4) distinguish CA from CM and CI.
For each problem, the area under the ROC curve (AUC), averaged over a five-fold
cross validation, is given for different misclassification cost settings.

To choose the parameters of the walk-based graph kernel (to be precise, we use
the direct product kernel) we proceeded as follows. We split the smallest problem
(1) into 10% for parameter tuning and 90% for evaluation. First we tried different
parameters for the exponential weight (10−3, 10−2, 10−1, 1, 10) in a single nearest–
neighbor algorithm (leading to an average AUC of 66, 66, 67.4, 75.9, and 33.8%)
and decided to use 1 from now. Next we needed to choose the complexity (regular-
ization) parameter of the SVM. Here we tried different parameters (10−3, 10−2, 10−1

leading to an average AUC of 69.4, 71.6, and 70.8%) and found the parameter 10−2

to work best. Evaluating with an SVM and these parameters on the remaining 90%
of the data, we achieved an average AUC of 82.0% and standard deviation 0.024.

For cyclic pattern kernels, only the complexity constant of the support vector
machine has to be chosen. Here, the heuristic as implemented in SVM light [20] is
used. Also, we did not use any vertex coloring with cyclic pattern kernels.

To compare our results to those achieved in previous work, we fixed these
parameters and reran the experiments on the full data of all four problems. Table 11.1
summarizes these results and the results with FSG reported in [7]. In [8] the authors
of [7] describe improved results (FSG∗). There, the authors report results obtained
with an optimized threshold on the frequency of patterns.3 Clearly, the graph kernels
proposed here outperform FSG and FSG∗ over all problems and misclassification
cost settings.

To evaluate the significance of our results we proceeded as follows: As we did
not know the variance of the area under the ROC curve for FSG, we assumed the
same variance as obtained with graph kernels. Thus, to test the hypothesis that graph
kernels significantly outperform FSG, we used a pooled sample variance equal to
the variance exhibited by graph kernels. As FSG and graph kernels were applied in
a five-fold cross validation, the estimated standard error of the average difference is

the pooled sample variance times
√

2
5 . The test statistic is then the average difference

divided by its estimated standard error. This statistic follows a t distribution. The
null hypothesis—graph kernels perform no better than FSG—can be rejected at the
significance level α if the test statistic is greater than the corresponding percentile
of the t distribution.

Table 11.1 shows the detailed results of this comparison. Walk-based graph
kernels perform always better or at least not significantly worse than any other
kernel. Cyclic pattern kernels are sometimes outperformed by walk-based graph
kernels but can be computed much more efficiently. For example, in the classification

3In [8] also including a description of the three-dimensional shape of each molecule is considered. We do
not compare our results to those obtained using the three-dimensional information. We are considering
to also include three-dimensional information in our future work and expect similar improvements.

11.2 GRAPH CLASSIFICATION 265

TABLE 11.1 Area under the ROC Curve (AUC) in Percentage for Different Costs and
Problemsa

Walk-Based Cyclic Pattern
Kernels Kernels FSG FSG∗

Task Cost (AUC in %) (AUC in %) (AUC in %) (AUC in %)

(1) 1.0 81.8(±2.4) 81.3(±1.4) 77.4 �w �c 81.0
(1) 2.5 82.5(±3.2) 82.7(±1.3) 78.2 <w �c 79.2 <w�c

(2) 1.0 81.5(±1.5) 77.5(±1.7) �w 74.2 �w �c 76.5 �w

(2) 35.0 79.9(±1.1) 80.1(±1.7) 77.8 �w <c 79.4
(3) 1.0 94.2(±1.5) 91.9(±1.1) <w 86.8 �w �c 83.9 �w�c

(3) 100.0 94.4(±1.5) 92.9(±1.0) <w 91.4 �w <c 90.8 �w �c

(4) 1.0 92.6(±1.5) 90.8(±2.4) <w — —
(4) 100.0 92.8(±1.3) 92.1(±2.6) — —

a<w , significant loss against walk-based kernels at 10%; �w , significant loss against walk-based kernels
at 1%; <c, significant loss against cyclic pattern kernels at 10%; �c , significant loss against cyclic pattern
kernels at 1%.

TABLE 11.2 Area under the ROC Curve (AUC) in Percentage for Different Costs and
Problems [�X (resp. >X) Significant Win at 5% (resp. 10%) Level wrt kRX

]

kR1 kR2 kR3 kR∞ = kS
Task Cost (AUC in %) (AUC in %) (AUC in % (AUC in %)

(1) 1.0 80.1(±4.5) 81.5(±3.1) �1 81.4(±3.2) 81.3(±3.3)
(1) 2.5 82.1(±4.6) 83.0(±4.1) �1 82.9(±3.9) 82.7(±4.2)
(2) 1.0 75.4(±2.2) 77.1(±2.3) �1 77.8(±1.8) �1 77.8(±1.9) �1

(2) 35.0 79.5(±2.8) 80.0(±2.7) 80.4(±2.4) �1 80.5(±2.5) �1,2

(3) 1.0 91.1(±3.4) 92.5(±2.9) �1 92.5(±2.7) �1 92.6(±2.8) �1

(3) 100.0 93.7(±2.4) 93.9(±1.9) 93.6(±1.8) 93.4(±2.0)
(4) 1.0 89.2(±3.2) 90.7(±2.5) �1 90.8(±2.7) �1 90.8(±2.7) �1

(4) 100.0 92.9(±2.6) 92.9(±3.2) >∞ 92.6(±2.9) �∞ 92.2(±3.0)

problem (4) fivefold cross validation with walk-based graph kernels finished in about
8 h while cyclic pattern kernels needed only 20 min.

Empirical Evaluation of kRk
. To evaluate CPK based on relevant cycles, we

looked at the predictive performance of kR1 ,kR2 ,kR3 , and kS. We used the above-
described dataset and compared the different kernels with a paired t test on the
same folds.4 The results are given in Table 11.2. They indicate that kR2 can be used
in most of the cases without a significant loss of predictive performance wrt (with
respect to) kS and that kR3 was never outperformed by kS. Hence, the alternative
definition of CPK allows one to apply it to graph databases containing graphs even
with exponentially many simple cycles.

4However, note that the folds were different from the ones used in the above experiments.

266 KERNEL METHODS FOR GRAPHS

11.3 VERTEX CLASSIFICATION

In this section we consider the classification vertices in a graph. That is, the ver-
tices represent the instances of the learning problem, and we want to make use
of our knowledge about common properties or relations between instances. While
kernel functions between graphs (Section 11.2) can be used pretty directly with
most available kernel methods, kernels for vertices raise somewhat different com-
putational challenges. In this section we first give an overview of several kernels
for vertices that have been defined in the literature. It turns out that for some of
these more efficient learning is possible in a transductive setting. We thus develop an
algorithm for transductive Gaussian processes classification of vertices that exploits
this and perform an empirical evaluation on several datasets.

11.3.1 Kernels for Vertices

To apply Bayesian and other kernel methods to instances represented as vertices in
a graph, we (only) need to define a covariance kernel on these instances. Hence,
in this section we describe kernels that are based on knowledge about common
properties of instances or relations between instances. We begin with a review of
several kernels defined in the literature and discuss some efficiency issues later.

Kernel Definitions. The best known kernel in this class is the diffusion kernel [24].
The motivation behind this and similar kernel functions is that it is often easier to
describe the local neighborhood of an instance than to describe the structure of the
whole instance space. For example, the neighborhood of an instance could be all
instances that differ from this one only by the presence or absence of one property.
When working with molecules such properties might be bonds, functional groups, or
particular chemical properties. The neighborhood relation obviously induces global
information about the make up of the instance space. The approach taken in the
kernels described in this section is to try to capture this global information in a kernel
function merely based on the neighborhood description. To model the structure of
instance spaces, undirected graphs or hypergraphs can be used. While the use of
hypergraphs is less common in the literature, it appears more natural.

A hypergraph is defined by a set of vertices V —the instances—and a set of
edges E, where each edge is a subset of vertices. Each edge of the hypergraph can
be interpreted as some property that all vertices of the edge have in common. For
documents, for example, the edges could correspond to words or citations that they
have in common; in a metric space the hyperedge could include all vertices with
distance less than a given threshold from some point. By a walk in a hypergraph
we understand a sequence of vertices and edges v1, e1, v2, . . . v�+1 where vi, vi+1 ∈
ei ∈ E for all 1 ≤ i ≤ �.

For a hypergraph we define the |V | × |E| matrix B by Bij = 1 if and only
if vi ∈ ej and Bij = 0, otherwise. Let then the |V | × |V | matrix D be defined
by Dii =∑j

[
B�B

]
ij

=∑j

[
B�B

]
j i

. The matrices B�B and L = D − B�B are

11.3 VERTEX CLASSIFICATION 267

positive definite by construction. The matrix L is known as the graph Laplacian.
Often the normalized Laplacian is used.

Conceptually, kernel matrices are then defined as the limits of matrix power
series of the form

K =
∞∑
i=0

λi

(
B�B

)i
or K =

∞∑
i=0

λi (−L)i

with suitable parameters λi . These power series can be interpreted as measuring the
number of walks of different lengths between given vertices. Sometimes the limit
is approximated by a finite sum.

Limits of such power series can be computed by means of an eigenvalue decom-
position of B�B or −L, and a “recomposition” with modified eigenvalues. The
modification of the eigenvalues is usually such that the order of eigenvalues is kept,
while all eigenvalues are forced to become positive.

Examples for such kernel functions are the diffusion kernel [24]

K =
∞∑
i=0

βi

i!
(−L)i

the von Neumann kernel [23]

K =
∞∑
i=1

γ i−1 (B�B
)i

and the regularized Laplacian kernel [33]

K =
∞∑
i=1

γ i(−L)i

For exponential power series like the diffusion kernel, the limit can be computed
by exponentiating the eigenvalues, while for geometrical power series, the limit can
be computed by the formula 1/(1 − γ e), where e is an eigenvalue of B�B or −L,
respectively. Instead of computing K by manipulating the eigenvalues, one can
alternatively compute kernels like the regularized Laplacian by inverting the matrix
1 + γL (1 denotes the identity matrix). A general framework and analysis of these
kernels can be found in [33].

Efficiency Issues. While kernel functions between graphs (Section 11.2) can be
used pretty directly with most available kernel methods, kernels for vertices raise
somewhat different computational challenges. If the instance space is big, the com-
putation of the kernels as defined above might be too expensive. Most kernel
methods rely on computing Kv for some vector v several times in the course

268 KERNEL METHODS FOR GRAPHS

of the algorithm. Obtaining K by matrix inversion or eigenvalue decomposition is
expensive and even if L is sparse, K hardly is, making Kv expensive as well.

However, there is another issue: Assume that we are given the inverse kernel
matrix K−1 on training and test set and we wish to perform induction only. In this
case we need to compute the kernel matrix (or its inverse) restricted to the training
set. Let

K−1 =
[

A B

B� C

]

Then the upper left-hand corner (representing the training set part only) of K is
given by the Schur complement

(
A − B�C−1B

)−1
. Computing the latter is costly

as it involves the inversion of C and we usually assume a very large amount of
unlabeled data. Moreover, neither the Schur complement nor its inverse are typically
sparse.

Here we have a nice connection between graphical models and graph kernels.
Assume that the target property t is a normal random variable with conditional inde-
pendence properties. In this case the inverse covariance matrix has nonzero entries
only for variables with a direct dependency structure. This follows directly from
an application of the Clifford–Hammersley theorem to Gaussian random variables
[26]. In other words, if we are given a graphical model of normal random variables,
their conditional independence structure is reflected by K−1.

In the same way as in graphical models marginalization may induce depen-
dencies, computing the kernel matrix on the training set only may lead to dense
matrices, even when the inverse kernel on training and test data combined is sparse.
The bottom line is there are cases where it is computationally cheaper to take both
training and test set into account and optimize over a larger set of variables rather
than dealing with a smaller dense matrix (which is expensive to obtain).

Later in this chapter we develop a transductive algorithm that can use the
inverse kernel matrix instead of the kernel matrix—thus avoiding expensive matrix
inversion or eigenvalue decompositions with graph kernels—and exploit the sparsity
of the graph.

11.3.2 Bayesian Kernel Methods

Before we describe our transductive Gaussian processes classifier in detail, in this
section we give a brief introduction to Bayesian kernel methods.

Exponential Family Distributions. We begin with a brief review of exponential
family distributions. For the purpose of learning algorithms we are usually inter-
ested in the joint density p(x, y|θ) or the conditional density p(y|θ, x) of random
variables x, y with parameters θ . A density p(x, y|θ) with (x, y) ∈ X × Y is in the
exponential family whenever it can be expressed as

p(x, y|θ) = exp
[〈φ(x, y), θ〉 − g(θ)

]

11.3 VERTEX CLASSIFICATION 269

where

g(θ) = log
∫
X×Y

exp
[〈φ(x, y), θ〉] dx dy

is called the log-partition function, φ(x, y) are sufficient statistics of (x, y), and
〈·, ·〉 denotes the inner product. It holds then that

∂

∂θ
g(θ) = Ep(x,y|θ)

[
φ(x, y)

]

∂2

∂θ ∂θ t
g(θ) = Ep(x,y|θ)

[
φ(x, y)φ(x, y)t

]− Ep(x,y|θ)

[
φ(x, y)

]
Ep(x,y|θ)

[
φ(x, y)t

]

= Covp(x,y|θ)

[
φ(x, y)

]

and it can directly be seen that p(x, y|θ) is convex in θ .
From the joint exponential densities above, we can derive the conditional expo-

nential densities as

p(y|x, θ) = exp
[〈φ(x, y), θ〉 − g(θ |x)

]

where

g(θ |x) = log
∫
Y

exp (〈φ(x, y), θ〉) dy

is the conditional log-partition function. It holds then that

∂

∂θ
g(θ |x) = Ep(y|x,θ)

[
φ(x, y)

]

∂2

∂θ ∂θ t
g(θ |x) = Covp(y|x,θ)

[
φ(x, y)

]

and it can directly be seen that p(y|x, θ) is convex in θ .

Bayesian Parameter Estimation. To estimate the label y of a new test point x

from data (X, Y) = {(x1, y1), . . . , (x|X|, y|X|)} under the assumption of a parame-
terized family of distributions, like the exponential, we need to compute

p(y|x, X, Y) =
∫

p(y|x, θ)p(θ |X, Y) dθ

To avoid the integral over θ , we can alternatively use

p(y|x, θ∗)

where

θ∗ = arg max
θ

p(θ |X, Y)

270 KERNEL METHODS FOR GRAPHS

The quantity p(θ |X, Y) is known as the posterior of the parameters and is related
to the likelihood of the parameters p(X, Y |θ) as follows:

p(θ |X, Y) = p(X, Y |θ)
p(θ)

p(X, Y)

As p(X, Y) is independent of θ , we can maximize the posterior p(θ |X, Y)

by maximizing the likelihood p(X, Y |θ) times the prior p(θ) or—equivalently—
minimize the negative log-posterior:

− log p(θ |X, Y) = − log
n∏

i=1

exp
[〈φ(xi, yi), θ〉 − g(θ |xi)

]− log p(θ) + c′

=
n∑

i=1

g(θ |xi) −
n∑

i=1

〈φ(xi, yi), θ〉 − log p(θ) + c′

where c′ = log p(X, Y) − log(X|θ) = log p(X, Y) − log(X) = p(Y |X) is indepen-
dent of θ . Hence, it is a constant in the optimization problem and can be ignored.

Bayesian Kernel Methods. It turns out that under certain—rather general—
conditions on the prior of the above minimization problem, it can be shown that
the optimal parameters lie in the span of the sufficient statistics of the training data.
This observation is known as the representer theorem. Thus we can replace θ by

θ =
∑

j

∫
Y

αjyφ(xj , y) dy

and minimize

n∑
i=1

g(θ |xi) −
n∑

i,j=1

∫
Y

αjy

〈
φ(xi, yi), φ(xj , y)

〉
dy − log p(θ)

Assuming, for example, an uncorrelated Gaussian prior p(θ) ∼ N(0, σ 21) imp-
lies a Gaussian process on the random variable t (x, y) := 〈φ(x, y), θ〉 with covari-
ance kernel k

σ 2k((x, y), (x′, y′)) := σ 2 〈φ(x, y), φ(x′, y′)
〉 = Cov

[
t (x, y), t (x ′, y′)

]
(11.5)

We thus obtain the minimization problem

n∑
i=1

g(θ |xi) −
n∑

i,j=1

∫
Y

αjyk
(
(xi, yi), (xj , y)

)
dy

−
n∑

i,j=1

∫
Y×Y

αiy′αjyk
(
(xi, y

′), (xj , y)
)

dy dy′

11.3 VERTEX CLASSIFICATION 271

with

g(θ |x) = log
∫
Y

exp

∑

j

∫
Y

αjyk
(
(xi , y

′), (xj , y)
)

dy

 dy′

It remains to define a suitable joint covariance kernel k : (X × Y) × (X × Y) →
R. Usually this problem is simplified to the problem of defining the covariance
of the instances kX : X × X → R based on the domain and the problem of defin-
ing the covariance of the labels based on the learning task kY : Y × Y → R. For
regression often kY(y, y′) = yy′ is used; for classification often kY(y, y′) = δyy′ is
used. The joint covariance kernel is then simply the product k((x, y), (x′, y′)) =
kX(x, x′)kY(y, y′). In the remainder of this section we will focus on kX(·, ·) =
〈φX(·), φX(·)〉 and usually refer to it as k and φ.

11.3.3 Multiclass Transduction

A common problem of many transductive approaches is that they scale badly with
the amount of unlabeled data, which prohibits the use of massive sets of unlabeled
data. In this section, we thus present a transductive Gaussian process classifier for
multiclass estimation problems. It performs particularly effective on graphs and
other data structures for which the kernel matrix or its inverse have special numer-
ical properties that allow fast matrix vector multiplication. An empirical evaluation
of this algorithm shows improved predictive performance compared to both stan-
dard Gaussian process classification as well as transductive algorithms. We perform
classification on a dataset consisting of a massive digraph with 75,888 vertices
and 508,960 edges. To the best of our knowledge it has so far not been possible
to perform transduction on graphs of this size in reasonable time (with standard
hardware). On standard data our method shows competitive or better performance.

11.3.3.1 Gaussian Processes. We begin with a brief overview over Gaussian
process multiclass classification [38] recast in terms of exponential families. Denote
by X × Y with Y = {1, . . . , |Y|} the domain of observations and labels. Moreover
let X := {x1, . . . , x|X|

}
and Y := {y1, . . . , y|X|

}
be the set of observations. It is our

goal to estimate y|x via

p(y|x, θ) = exp (〈φ(x, y), θ〉 − g(θ |x))

where

g(θ |x) = log
∑
y∈Y

exp (〈φ(x, y), θ〉)

φ(x, y) are the joint sufficient statistics of x and y and g(θ |x) is the conditional
log-partition function that takes care of the normalization. We impose a normal prior

272 KERNEL METHODS FOR GRAPHS

on θ , leading to the following negative joint likelihood in θ and Y :

P := − log p(θ, Y |X) =
|X|∑
i=1

[
g(θ |xi) − 〈φ(xi, yi), θ〉]+ 1

2σ 2
‖θ‖2 + c (11.6)

for some constant c independent of θ and Y . For transduction purposes, p(θ, Y |X)

will prove more useful than p(θ |Y, X).

Parametric Optimization Problem. In the following we assume isotropy5 among
the class labels, that is,

〈
φ(x, y), φ(x′, y′)

〉 = δy,y′
〈
φ(x), φ(x ′)

〉
where δ is the Kro-

necker δ. This allows us to decompose θ into θ1, . . . , θ|Y| such that

〈φ(x, y), θ〉 = 〈φ(x), θy

〉
and ‖θ‖2 =

|Y|∑
y=1

‖θy‖2 (11.7)

Applying the representer theorem in conjunction with (11.7) gives

θy =
|X|∑
i=1

αiyφ(xi) (11.8)

where α ∈ R
|X|×|Y|.

Let µ ∈ R
|X|×|Y| with µij = 1 if yi = j and µij = 0 otherwise, and

K ∈ R
|X|×|X| with Kij = 〈φ(xi), φ(xj)

〉
. The joint log-likelihood (11.6) can then

be expressed in terms of α and K , yielding

P :=
|X|∑
i=1

log
|Y|∑
y=1

exp
(
[Kα]iy

)− tr µ�Kα + 1

2σ 2
tr α�Kα + c (11.9)

where tr denotes the trace. Equivalently we could expand (11.6) in terms of t := Kα:

− log p(θ |X, Y) =
|X|∑
i=1

log
|Y|∑
y=1

exp
(
[t]iy

)− tr µ�t + 1

2σ 2
tr t�K−1t + c (11.10)

This is commonly done in Gaussian process literature, and we will use both
formulations, depending on the problem we need to solve: If Kα can be com-
puted effectively, as is the case with string kernels, we use the α parameterization.
Conversely, if K−1α is cheap, as, for example, with graph kernels, we use the t

parameterization.

5This is not a necessary requirement for the efficiency of our algorithm, however, it greatly simplifies
the presentation.

11.3 VERTEX CLASSIFICATION 273

DERIVATIVES. Second-order methods such as conjugate gradient require the com-
putation of derivatives of − log p(θ, Y |X) with respect to θ in terms of α or t . Using
the shorthand π ∈ R

m×n with πij := p(y = j |xi, θ) we have

∂αP = K(π − µ + σ−2α) (11.11a)

∂tP = π − µ + σ−2K−1t (11.11b)

To avoid spelling out tensors of fourth order for the second derivatives (since α ∈
R

|X|×|Y|), we state the action of the latter as bilinear forms on vectors β, γ, u, v ∈
R

|X|×|Y|:

∂2
αP[β, γ] = tr(Kγ)�(π. ∗ (Kβ)) − tr(π. ∗ Kγ)�(π. ∗ (Kβ))

+ σ−2 tr γ �Kβ (11.12a)

∂2
t P[u, v] = tr u�(π. ∗ v) − tr(π. ∗ u)�(π. ∗ v) + σ−2 tr u�K−1v. (11.12b)

We used the Matlab notation of .∗ to denote element-wise multiplication of matrices.
Let L · |Y| be the computation time required to compute Kα and K−1t , respec-

tively. One may check that L = O(|X|) implies that each conjugate gradient (CG)
descent step can be performed in O(|X|) time. Combining this with rates of conver-
gence for Newton-type or nonlinear CG solver strategies yields overall time costs in
the order of O(|X| log |X|) to O(|X|2) worst case, a significant improvement over
conventional O(|X|3) methods.

11.3.3.2 Transductive Inference by Variational Methods. As we are inter-
ested in transduction, the labels Y (and analogously the data X) decompose as
Y = Ytrain ∪ Ytest. To directly estimate p(Ytest|X, Ytrain) we would need to integrate
out θ , which is usually intractable. Instead, we now aim at estimating the mode
of p(θ |X, Ytrain) by variational means. With the KL divergence D and an arbitrary
distribution q the well-known bound (see, e.g., [22])

− log p(θ |X, Ytrain) ≤ − log p(θ |X, Ytrain) + D(q(Ytest)‖p(Ytest|X, Ytrain, θ))

(11.13)

= −
∑
Ytest

(log p(Ytest, θ |X,Ytrain) − log q(Ytest)) q(Ytest)

(11.14)

holds. This bound (11.14) can be minimized with respect to θ and q in an iterative
fashion. The key trick is that while using a factorizing approximation for q we
restrict the latter to distributions that satisfy balancing constraints. That is, we require
them to yield marginals on the unlabeled data, which are comparable with the labeled
observations.

274 KERNEL METHODS FOR GRAPHS

DECOMPOSING THE VARIATIONAL BOUND. To simplify (11.14) observe that

p(Ytest, θ |X,Ytrain) = p(Ytrain, Ytest, θ |X)/p(Ytrain|X) (11.15)

In other words, the first term in (11.14) equals (11.9) up to a constant independent
of θ or Ytest. With qij := q(yi = j), we define µij (q) = qij for all i > |Xtrain| and
µij (q) = 1 if yi = 1 and 0 otherwise for all i ≤ |Xtrain|. In other words, we are
taking the expectation in µ over all unobserved labels Ytest with respect to the
distribution q(Ytest). We have

∑
Ytest

q(Ytest) log p(Ytest, θ |X,Ytrain) =
|X|∑
i=1

log
|Y|∑
j=1

exp
(
[Kα]ij

)

− tr µ(q)�Kα + 1

2σ 2
tr α�Kα + c (11.16)

which we can of course also expand in t = Kα as in (11.10). The second term in
(11.14) is the entropy of q. Since q factorizes, we have

∑
Ytest

q(Ytest) log q(Ytest) =
|X|∑

i=|Xtrain|+1

qij log qij (11.17)

For fixed q the optimization over θ proceeds as in the previous section for fully
observed models. We now discuss optimization over q.

MARGINAL CONSTRAINTS ON q. It is unreasonable to assume that q may be
chosen freely from all factorizing distributions (the latter would lead to a straightfor-
ward EM algorithm for transductive inference): If we observe a certain distribution
of labels on the training set, for example, for binary classification we see 45% pos-
itive and 55% negative labels, then it is very unlikely that the label distribution on
the test set deviates significantly. Hence we should make use of this information.

If |X| � |Xtrain|, a naive application of the variational bound can lead to cases
where q is concentrated on one class—the increase in likelihood for a resulting very
simple classifier completely outweighs any balancing constraints implicit in the data.
This is confirmed by experimental results. It is, incidentally, also the reason why
SVM transduction optimization codes [21] impose a balancing constraint on the
assignment of test labels. We impose the following conditions:

r−
j ≤

|X|∑
i=|Xtrain|+1

qij ≤ r+
j for all j ∈ Y

and

|Y|∑
j=1

qij = 1 for all i ∈ {|X|r , . . . , |X|}

11.3 VERTEX CLASSIFICATION 275

Here the constraints r−
j = pemp(y = j) − ε and r+

j = pemp(y = j) + ε are chosen
such as to correspond to confidence intervals given by finite sample size tail bounds.
In other words we set pemp(y = j) = |Xtrain|−1|{i : 1 ≤ i ≤ |Xtrain| ∧ yi = j}| and
ε such as to satisfy

Pr

∣∣∣∣∣∣|Xtrain|−1

|Xtrain|∑
i=1

ξi − |Xtest|−1
|Xtest|∑
i=1

ξ ′
i

∣∣∣∣∣∣ > ε

 ≤ δ (11.18)

for iid {0, 1} random variables ξi and ξ ′
i with mean p. This is a standard ghost-

sample inequality. It follows directly from [17, Eq. (2.7)] after application of a
union bound over the class labels that

ε ≤
√

log(2|Y|/δ)|X|/ (2|Xtrain||Xtest|) (11.19)

11.3.3.3 Optimization. Optimization in α and t: P is convex in α (and in t since
t = Kα). This means that Newton–conjugate gradient (NCG) and Newton–Raphson
(NR) can be used for optimization. We use the following procedure [9]:

• Compute updates α ←− α − η∂2
αP

−1
∂αP via

• Solve the linear system approximately by conjugate-gradient iterations.
• Find optimal η by line search.

• Repeat until the norm of the gradient is sufficiently small.

Key is the fact that the arising linear system is only solved approximately, which
can be done using very few CG iterations. Since each of them is O(|X|) for fast
kernel-vector computations the overall cost is a subquadratic function of |X|.

OPTIMIZATION IN q. Is somewhat less straightforward: We need to find the
optimal q in terms of KL divergence subject to the marginal constraint. Denote
by τ the part of Kα pertaining to test data, or more formally τ ∈ R

|Xtest|×|Y| with
τij = [Kα]i+|Xtrain|,j . We have

Minimize
q

tr q�τ +
∑
i,j

qij log qij (11.20a)

Subject to q−
j ≤

∑
i

qij ≤ q+
j for all j ∈ Y (11.20b)

∑
j

qij = 1 for all i ∈ {1, . . . , |X|} and qij ≥ 0 (11.20c)

Using Lagrange multipliers, one can show that q needs to satisfy qij = exp(−τij)

bicj where bi, cj ≥ 0. Solving for
∑|Y|

j qij = 1 yields

qij = exp(−τij)cj∑|Y|
l=1 exp(−τil)cl

276 KERNEL METHODS FOR GRAPHS

This means that instead of an optimization problem in |Xtest| × |Y| variables, we only
need to optimize over |Y| variables subject to 2|Y| constraints. Using γj = log cj ,
it is

Minimize
c

∑
i,j

exp(γj − τij)∑|Y|
l=1 exp(γl − τil)

γj − log

|Y|∑
l=1

exp(γl − τil)

 (11.21a)

Subject to q−
j ≤

∑
i

exp(γj − τij)∑|Y|
l=1 exp(γl − τil)

≤ q+
j (11.21b)

This problem now only depends on |Y| variables. It can be solved by standard
second-order methods. As initialization we choose γi such that the per class averages
match the marginal constraint while ignoring the per sample balance. After that a
small number of Newton steps suffices for optimization.

11.3.4 Related Work

String Kernels:. Efficient computation of string kernels using suffix trees was
described in [36]. In particular, it was observed that expansions of the form

∑|X|
i=1

αik(xi, x) can be evaluated in linear time in the length of x, provided some prepro-
cessing for the coefficients α and observations xi is performed. This preprocessing is
independent of x and can be computed in O(

∑
i |xi |) time. The efficient computation

scheme covers all kernels of type

k(x, x′) =
∑

s

ws#s(x)#s (x
′) (11.22)

for arbitrary ws ≥ 0. Here, #s(x) denotes the number of occurrences of s in x and
the sum is carried out over all substrings of x. This means that computation time
for evaluating Kα is again O(

∑
i |xi |) as we need to evaluate the kernel expansion

for all x ∈ X. Since the average string length is independent of m, this yields an
O(m) algorithm for Kα.

VECTORS. If k(x, x′) = φ(x)�φ(x′) and φ(x) ∈ R
d for d � |X|, it is possible

to carry out matrix vector multiplications in O(|X|d) time. This is useful for cases
where we have a sparse matrix with a small number of low-rank updates (e.g., from
low-rank dense fill-ins).

EXISTING TRANSDUCTIVE APPROACHES. For SVMs use nonlinear programming
[2] or EM-style iterations for binary classification [21]. Moreover, on graphs various
methods for unsupervised learning have been proposed [40, 41], all of which are
mainly concerned with computing the kernel matrix on training and test set jointly.
Other formulations impose that the label assignment on the test set be consistent
with the assumption of confident classification [35]. Others again exploit the fact
that training and test set have similar marginal distributions [21].

11.3 VERTEX CLASSIFICATION 277

The approach described in this chapter takes advantage of all three properties.
Our formulation is particularly efficient whenever Kα or K−1α can be computed in
linear time, where K is the kernel matrix and α is a coefficient vector. We approach
the problem as follows:

• We require consistency of training and test marginals. This avoids problems
with overly large majority classes and small training sets.

• Kernels (or their inverses) are computed on training and test set simultane-
ously. On graphs this can lead to considerable computational savings.

• Self-consistency of the estimates is achieved by a variational approach. This
allows us to make use of Gaussian process multiclass formulations.

11.3.5 Empirical Evaluation

Unfortunately, we are not aware of other multiclass transductive learning algorithms.
To still be able to compare our approach to other transductive learning algorithms, we
performed experiments on some benchmark datasets. To investigate the performance
of our algorithm in classifying vertices of a graph, we choose the WebKB dataset.

BENCHMARK DATASETS. Table 11.3 reports results on some benchmark datasets.
To be able to compare the error rates of the transductive multiclass Gaussian process
classifier proposed in this chapter, we also report error rates from [2] and compare
to a simple Gaussian process classifier. The reported error rates are for 10-fold cross
validations. Parameters were chosen on a single split inside each training fold.

GRAPH MINING. To illustrate the effectiveness of our approach on graphs we
performed experiments on the well-known WebKB dataset. This dataset consists of
8275 Web pages classified into 7 classes. Each Web page contains textual content
and/or links to other Web pages. As we are using this dataset to evaluate our graph
mining algorithm, we ignore the text on each Web page and consider the dataset
as a labeled directed graph. To have the data set as large as possible, in contrast to
most other work, we did not remove any Web pages.

Table 11.4 reports the results of our algorithm on different subsets of the WebKB
data as well as on the full data. We use the co-linkage graph and report results for
“inverse” 10-fold stratified cross validations, that is, we use 1 fold as training data
and 9 folds as test data. Parameters are the same for all reported experiments and
were found by experimenting with a few parameter sets on the “Cornell” subset
only. It turned out that the class membership probabilities are not well-calibrated
on this dataset. To overcome this, we predict on the test set as follows: For each
class the instances that are most likely to be in this class are picked (if they have
not been picked for a class with lower index) such that the fraction of instances
assigned to this class is the same on the training and test set. We will investigate
the reason for this in future work.

The setting most similar to ours is probably the one described in [40]. Although a
directed graph approach outperforms an undirected approach, we resorted to kernels

278 KERNEL METHODS FOR GRAPHS

TABLE 11.3 Error Rates on Some Benchmark Datasets (Mostly from UCI)

Transd. GP S3VMmip
Dataset #Inst. #Attr Ind. GP (%) (%) (%)a

cancer 699 9 3.4 ± 4.1 2.1 ± 4.7 3.4
cancer (progn.) 569 30 6.1 ± 3.7 6.0 ± 3.7 3.3
heart (cleave.) 297 13 15.0 ± 5.6 13.0 ± 6.3 16.0
housing 506 13 7.0 ± 1.0 6.8 ± 0.9 15.1
ionosphere 351 34 8.6 ± 6.3 6.1 ± 3.4 10.6
pima 769 8 19.6 ± 8.1 17.6 ± 8.0 22.2
sonar 208 60 10.5 ± 5.1 8.6 ± 3.4 21.9
glass 214 10 20.5 ± 1.6 17.3 ± 4.5 —
wine 178 13 19.4 ± 5.7 15.6 ± 4.2 —
tictactoe 958 9 3.9 ± 0.7 3.3 ± 0.6 —
cmc 1473 10 32.5 ± 7.1 28.9 ± 7.5 —
USPS 9298 256 5.9 4.8 —b

aThe last column is the error rates reported in [2].
bIn [2] only subsets of USPS were considered due to the size of this problem.

TABLE 11.4 Results on WebKB for ‘‘inverse’’ 10-fold Cross Validation

Error Error
Dataset |V | |E| (%) Dataset |V | |E| (%)

Cornell 867 1793 10 Misc 4113 4462 66
Texas 827 1683 8 All 8275 14370 53
Washington 1205 2368 10 Universities 4162 9591 12
Wisconsin 1263 3678 15

for undirected graphs, as those are computationally more attractive. We will inves-
tigate computationally attractive digraph kernels in future work and expect similar
benefits as reported by [40]. Though we are using more training data than [40], we
are also considering a more difficult learning problem (multiclass without removing
various instances). To investigate the behavior of our algorithm with less training
data, we performed a 20-fold inverse cross validation on the “wisconsin” subset and
observed an error rate of 17% there.

To show that the runtime performance of our algorithm is sufficient for classi-
fying the vertices of massive graphs, we also performed initial experiments on the
Epinions dataset [30]. The dataset is a social network consisting of 75,888 people
connected by 508,960 “trust” edges. Additionally the dataset comes with a list of
185 “to previewers” for 25 topic areas. We tried to predict these but only got 12%
of the top reviewers correct. As we are not aware of any predictive results on this
task, we suppose this low accuracy is inherent to this task. However, the main point
is that the experiments prove that the algorithm can be run on very large graph
datasets.

11.4 CONCLUSIONS AND FUTURE WORK 279

11.4 CONCLUSIONS AND FUTURE WORK

In this chapter we reviewed some recent advances in the area of kernel methods
for graphs. On the one hand we described kernels that can be used for graphs
in a graph database. On the other hand we reviewed kernels that can be used
for vertices in a single graph and introduced a transductive algorithm that allows
efficient classification of vertices in a graph.

11.4.1 Graph Classification

The obvious approach to define kernels on objects that have a natural representation
as a graph is to map each graph to a set of subgraphs and measure the intersection of
the two sets. As mentioned above, such graph kernels cannot be computed efficiently
if the mapping is required to be unique up to isomorphism.

In the literature different approaches have been tried to overcome this problem.
Graepel [16] restricted the image of the graph to paths up to a given size, and [7]
only considers the set of connected graphs that occur frequently as subgraphs in the
graph database.

In this work we presented two effectively computable kernels for graphs.
Although the underlying decompositions are not unique up to isomorphism, our
experiments on a large chemical dataset indicate that the above complexity limitation
does not hinder successful classification of molecules.

In future work we consider investigating more specialized kernels for molecules:
Often more important than the chemical structure graph for the activity of a molecule
is the three-dimensional (3D) structure of the molecule. Depending on the energy
level, graphs can take different conformations and thus different 3D structures.
Developing kernels that take 3D information into account might facilitate better
predictive performance in such domains.

11.4.2 Vertex Classification

Current kernel methods for graphs do not scale very well with the available amount
of unlabeled data. It turned out that for certain graph kernels it is more efficient to
perform transduction than induction. We presented a transductive Gaussian process
classifier for multiclass estimation problems. It performs particularly effectively on
graphs and other data structures for which the kernel matrix or its inverse has special
numerical properties that allow fast matrix vector multiplication. That said, also on
standard dense problems we observed very large improvements (typically a 10%
reduction of the training error) over standard induction.

Structured Labels and Conditional Random Fields are a clear area where one
could extend the transductive setting. The key obstacle to overcome in this context
is to find a suitable marginal distribution: With increasing structure of the labels the
confidence bounds per subclass decrease dramatically. A promising strategy is to
use only partial marginals on maximal cliques and enforce them directly, similarly
to an unconditional Markov network.

280 KERNEL METHODS FOR GRAPHS

Other Marginal Constraints than matching marginals are also worth exploring.
In particular, constraints derived from exchangeable distributions such as those used
by latent dirichlet allocation are a promising area to consider. This may also lead
to connections between GP classification and clustering.

Sparse O(m1.3) Solvers for Graphs have recently been proposed by the theo-
retical computer science community. It is worth exploring their use for inference
on graphs.

Acknowledgments
The authors thank Mathew Richardson and Pedro Domingos for collecting the

Epinions data and Deepayan Chakrabarti and Christos Faloutsos for providing a pre-
processed version. Parts of this work were carried out when TG was visiting NICTA.
National ICT Australia is funded through the Australian government’s Backing Aus-
tralia’s Ability initiative, in part through the Australian Research Council. This work
was partially supported by grants of the ARC, the Pascal Network of Excellence,
and by the DFG project (WR 40/2-1) Hybride Methoden und Systemarchitekturen
für heterogene Informationsräume.

REFERENCES

1. C. Barrett, R. Jacob, and M. Marathe. Formal-language-constrained path problems.
SIAM Journal on Computing, 30(3):809–837, 2000.

2. K. Bennett. Combining support vector and mathematical programming methods for
classification. In Advances in Kernel Methods—Support Vector Learning, pp. 307–326,
MIT Press, Cambridge, 1998.

3. H. L. Bodlaender. A tourist guide through treewidth. Acta Cybern., 11(1–2):1–22, 1993.
4. H. L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. Theoretical

Computer Science, 209(1–2):1–45, 1998.
5. C. Borgelt and M. R. Berthold. Mining molecular fragments: Finding relevant substruc-

tures of molecules. In Proceedings of the 2002 IEEE International Conference on Data
Mining. IEEE Computer Society, 2002.

6. B. E. Boser, I. M. Guyon, and V. N. Vapnik. A training algorithm for optimal margin
classifiers. In D. Haussler, ed. Proceedings of the Annual Conference on Computational
Learning Theory, pp. 144–152, ACM Press, New York, 1992.

7. M. Deshpande, M. Kuramochi, and G. Karypis. Automated approaches for classifying
structures. In Proceedings of the 2nd ACM SIGKDD Workshop on Data Mining and
Bioinformatics, 2002.

8. M. Deshpande, M. Kuramochi, and G. Karypis. Frequent sub-structure based approaches
for classifying chemical compounds. In Proceedings of the 3rd IEEE International Con-
ference on Data Mining, pp. 35–42. IEEE Computer Society, 2003.

9. R. Fletcher. Practical Methods of Optimization. Wiley, New York, 1989.
10. J. Flum and M. Grohe. The parameterized complexity of counting problems. SIAM

Journal on Computing, 33(4):892–922, 2004.
11. T. Gärtner. A survey of kernels for structured data. SIGKDD Explorations, 5(1):49–58,

July 2003.
12. T. Gärtner. Predictive graph mining with kernel methods. In Advanced Methods for

Knowledge Discovery from Complex Data. Springer, Berlin, 2005.

REFERENCES 281

13. T. Gärtner, P. A. Flach, and S. Wrobel. On graph kernels: Hardness results and efficient
alternatives. In Proceedings of the 16th Annual Conference on Computational Learning
Theory and the 7th Kernel Workshop, 2003.

14. T. Gärtner, Q. V. Le, S. Burton, A. J. Smola, and S. V. N. Vishwanathan. Large-
scale multiclass transduction. Advances in Neural Information Processing Systems, 18:
411–418, 2006.

15. P. M. Gleiss and P. F. Stadler. Relevant cycles in biopolymers and random graph. In
Proceedings of the 4th Slovene International Conference in Graph Theory, 1999.

16. T. Graepel. PAC-Bayesian pattern classification with kernels. Ph.D. thesis, TU Berlin,
2002.

17. W. Hoeffding. Probability inequalities for sums of bounded random variables. Journal
of the American Statistical Association, 58:13–30, 1963.

18. T. Horváth. Cyclic pattern kernels revisited. In Proceedings of Advances in Knowledge
Discovery and Data Mining, 9th Pacific-Asia Conference, PAKDD 2005, Vol. 3518 of
LNAI, pp. 791–801. Springer, Berlin, 2005.

19. T. Horváth, T. Gärtner, and S. Wrobel. Cyclic pattern kernels for predictive graph min-
ing. In Proceedings of the 10th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 158–167, 2004.

20. T. Joachims. Making large-scale SVM learning practical. In B. Schölkopf, C. J. C.
Burges, and A. J. Smola, eds. Advances in Kernel Methods—Support Vector Learning,
pp. 169–184, MIT Press, Cambridge, MA, 1999.

21. T. Joachims. Learning to Classify Text Using Support Vector Machines: Methods, Theory,
and Algorithms. The Kluwer International Series in Engineering and Computer Science.
Kluwer Academic, Boston, 2002.

22. M. I. Jordan, Z. Ghahramani, Tommi S. Jaakkola, and L. K. Saul. An introduc-
tion to variational methods for graphical models. Machine Learning, 37(2):183–233,
1999.

23. J. Kandola, J. Shawe-Taylor, and N. Cristianini. Learning semantic similarity. In
Advances in Neural Information Processing Systems, Vol. 15. MIT Press, Cambridge,
MA, 2003.

24. I. R. Kondor and J. D. Lafferty. Diffusion kernels on graphs and other discrete structures.
In Proceedings of the 19th International Conference on Machine Learning, pp. 315–312,
2002.

25. S. Kramer, L. De Raedt, and C. Helma. Molecular feature mining in HIV data. In
Proceedings and the Seventh ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 136–143, 2002.

26. S. L. Lauritzen. Graphical Models. Oxford University Press, Oxford, 1996.
27. J. W. Lloyd. Logic for Learning. Springer, Berlin, 2003.
28. M. Plotkin. Mathematical basis of ring-finding algorithms at CIDS. J. Chem. Doc.,

11:60–63, 1971.
29. R. C. Read and R. E. Tarjan. Bounds on backtrack algorithms for listing cycles, paths,

and spanning trees. Networks, 5(3):237–252, 1975.
30. M. Richardson and P. Domingos. Mining knowledge-sharing sites for viral marketing.

In Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2002.

31. N. Robertson and P. D. Seymour. Graph minors. II. Algorithmic aspects of tree-width.
Journal of Algorithms, 7(3):309–322, 1986.

32. B. Schölkopf and A. J. Smola. Learning with Kernels. MIT Press, Cambridge, MA,
2002.

282 KERNEL METHODS FOR GRAPHS

33. A. J. Smola and I. R. Kondor. Kernels and regularization on graphs. In B. Schölkopf and
M. K. Warmuth, eds. Proceedings of the Annual Conference on Computational Learning
Theory, Lecture Notes in Computer Science. Springer, Berlin, 2003.

34. R. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on Computing,
1(2):146–160, 1972.

35. V. Vapnik. Statistical Learning Theory. Wiley, New York, 1998.
36. S. V. N. Vishwanathan and A. J. Smola. Fast kernels for string and tree matching.

In K. Tsuda, B. Schölkopf, and J.P. Vert, eds. Kernels and Bioinformatics, MIT Press,
Cambridge, MA, 2004.

37. P. Vismara. Union of all the minimum cycle bases of a graph. Electronic Journal of
Combinatorics, 4(1):73–87, 1997.

38. C. K. I. Williams and D. Barber. Bayesian classification with Gaussian processes. IEEE
Transactions on Pattern Analysis and Machine Intelligence PAMI, 20(12):1342–1351,
1998.

39. M. Zaki. Efficiently mining frequent trees in a forest. In Proceedings of the 8th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 71–80,
ACM Press, New York, 2002.

40. D. Zhou, J. Huang, and B. Schölkopf. Learning from labeled and unlabeled data on a
directed graph. In International Conference on Machine Learning, 2005.

41. X. Zhu, J. Lafferty, and Z. Ghahramani. Semi-supervised learning using gaussian fields
and harmonic functions. In International Conference on Machine Learning ICML’03,
2003.

12

KERNELS AS LINK ANALYSIS
MEASURES

MASASHI SHIMBO AND TAKAHIKO ITO
Nara Institute of Science and Technology

Ikoma, Nara 630-0192, Japan

12.1 INTRODUCTION

Citations have been a major source of information for analyzing the relationship
between scientific papers, authors, and journals from the early days of bibliometric
studies. With the recent proliferation of hypertext documents on the Web, many
attempts have been made to apply the methods proposed in bibliometrics to the
structural analysis of the Web and also to develop new methods. Two notable meth-
ods, PageRank [5] and HITS (Hypertext-Induced Topic Search) [15], have emerged
from the research and are used extensively to evaluate the importance, or popularity,
of Web pages.

Another type of link analysis measure has been studied in bibliometrics, with
an intention to quantify the relatedness, or similarity, of two given documents.
Co-citation coupling [22] is one such classical measure of relatedness. This method
is still widely used, for example, by the well-known scientific literature search
system CiteSeer [4] to recommend related papers to users.

These two lines of link analysis measures, namely, importance and relatedness,
have been discussed independently in the literature. One of the objectives of this
chapter is to present a unified framework that accounts for both importance and
relatedness and to make it possible to define measures intermediate between the two.

Mining Graph Data, Edited by Diane J. Cook and Lawrence B. Holder
Copyright c© 2007 John Wiley & Sons, Inc.

283

284 KERNELS AS LINK ANALYSIS MEASURES

Our approach is based on a parametric family of positive semidefinite kernels
[21] defining an inner product of nodes in a graph. In particular, we show that the
parameterization of Kandola et al.’s Neumann kernels [12] allows us to identify
the co-citation and bibliographic coupling [14] relatedness as an extreme of the
parameter range and the HITS importance as the other extreme. Between these
established relatedness and importance measures lies a spectrum of intermediate
link analysis measures, obtained by tuning a single parameter.

Another topic addressed in this chapter is the limitation of the standard re-
latedness measures of co-citation and bibliographic coupling. These methods are not
capable of computing relatedness if the documents have no common citations (in the
case of bibliographic coupling) or if they are not jointly cited by any document (in
co-citation). Even in these situations, the Neumann kernels can give nonzero scores
to the pair of documents, unless they belong to different connected components.
However, these scores are biased toward importance at the same time, making them
unsuitable for evaluating relatedness. This limitation is overcome with different
kernels based on the graph Laplacian (the regularized Laplacian kernels [23] and
diffusion kernels [16]), which give a relatedness measure consistently over their
parameter range. By introducing a new parameter to the Laplacian-based kernels,
we obtain link analysis measures that are intermediate between the HITS importance
and the relatedness measure given by the Laplacian-based kernels.

While several kernels on graph nodes have been proposed, their utility were dis-
cussed mainly in the context of machine learning, and their usage and characteristics
as link analysis measures have not been fully investigated. We analyze some proper-
ties of these kernels that are essential for them to be used as link analysis measures.
We also discuss the practical issues that may be encountered in the application of
these kernels, including parameter tuning and approximation methods.

12.2 PRELIMINARIES

Most of the existing link analysis measures can be classified into two types: re-
latedness and importance. Relatedness measures quantify the similarity of two nodes
in a graph or the relevance of one node to another. Importance, on the other hand, is
the measure for ranking a given group of nodes in order of their significance, impact,
or popularity within the group. In this section, we review several link analysis
methods of relatedness and importance that are relevant to subsequent discussions.
For more comprehensive surveys on link analysis, see [8] and [2, Chapter 5].

We assume that nodes in the graph are indexed by natural numbers and iden-
tify a node with its index, but when it is necessary the ith node is denoted by
ni . Throughout this chapter, uppercase letters denote matrices, and boldface letters
denote column vectors. For a matrix A and a vector v, AT and vT respectively,
denote the transpose of A and v. All matrices are square unless noted otherwise.
For integers i and j , A(i, j) represents the (i, j)-element of a matrix A, and v(i)

represents the ith component of vector v. We denote by 1 the vector of all 1’s. For
any matrix A, let ρ(A) be the spectral radius of A.

12.2 PRELIMINARIES 285

12.2.1 Relatedness: Co-citations and Bibliographic Couplings

A general assumption underpinning link analysis is that in graphs modeling a
network structure such as bibliographic citations and the Web, an edge (a citation
or hyperlink) between a pair of nodes (papers or Web pages) signifies the nodes
being in some sense related. Hence the degree of relatedness can be inferred from
the node proximity induced by the existence of edges.

Co-citation [22] and bibliographic coupling [14] are the standard methods of
computing relatedness between documents from citation network, or, more gener-
ally, between nodes in a graph.

Co-citation coupling defines relatedness between documents as the number of
other documents citing them both. And bibliographic coupling defines relatedness
between two documents as the number of common references cited by the two.
These measures can be formally defined in terms of the adjacency matrix of a cita-
tion graph. Given an adjacency matrix A, the number of co-citations between nodes
i and j is given by the (i, j)-element of the co-citation matrix ATA. Similarly, bib-
liographic coupling matrix AAT gives the values of bibliographic coupling. Because
these matrices are symmetric, their graph counterparts, the co-citation graph and
bibliographic coupling graph, are undirected. Figure 12.1 illustrates a citation graph
and its induced co-citation and bibliographic coupling graphs.

12.2.2 Importance: Kleinberg’s HITS

Because of the difficulty in computing the importance of documents from their
contents, citation counts have long been used as the index of document importance.
A support for this approach was provided by several researchers; even though cita-
tions are made for various reasons, a positive correlation was observed between the
number of citations and the significance or impact of the cited work. See [17] for
the list of literature.

Kleinberg’s HITS [15], along with PageRank [5], is a more recent and sophisti-
cated method for evaluating document importance. HITS assigns two scores to each
document (node), called the authority and hub scores. The assumption behind HITS
is the existence of the mutual reinforcement relation between authorities and hubs.
That is, authoritative documents are the ones that are cited by many hub documents,
and hub documents are the ones that cite many authorities. Let A be the adjacency
matrix of a citation graph. The HITS algorithm computes the following recursion
over n = 0, 1, . . . starting from a(0) = h(0) = 1.

a(n+1) = ATh(n)

|ATh(n)| h(n+1) = Aa(n+1)

|Aa(n+1)| (12.1)

The ith component of the authority vector limn→∞ a(n) represents the authority
score of node i. Similarly, the hub vector limn→∞ h(n) gives the hub scores. It is
well known that if the multiplicity of the dominant eigenvalue of ATA and AAT is
1 (i.e., if it is a simple eigenvalue), the authority and hub vectors exist and equal the
dominant eigenvectors of ATA and AAT, respectively. Moreover, it can be shown
that these scores are all nonnegative.

286 KERNELS AS LINK ANALYSIS MEASURES

n4n2 n3n1

n5 n6 n7 n8

(a)

1 1 2
n4n2 n3n1

n5 n6 n7 n8

1 2 3 2

(b)

2

1

2

1

2

2

2
1

n4n2 n3n1

n5 n6 n7 n8

(c)

Figure 12.1. (a) Citation graph, and (b) the induced co-citation and (c) bibliographic cou-

pling graphs.

12.3 KERNEL-BASED UNIFIED FRAMEWORK FOR IMPORTANCE
AND RELATEDNESS

In this section and the next, we present some formulations of link analysis measures
that are intermediate between importance of nodes and their relatedness. These
formulations are based on the family of symmetric positive semidefinite kernels
[21], which define an inner product of nodes in a graph.

The concept of an intermediate between importance and relatedness might sound
ill-defined since importance is a measure defined on individual nodes, whereas
relatedness is defined between them. However, given an importance score vector v
such as the HITS authority vector, vvT defines a matrix in which every row (and
column) i gives a ranking of nodes identical to the one given by v except for1 an
i such that v(i) �= 0. Importance can thus be treated as a function over a pair of
nodes, or a matrix, as well.

1The assumption of v(i) �= 0 is weaker than it appears. For example, HITS assigns an authority score
v(i) �= 0 to every node i if the co-citation graph is connected.

12.3 KERNEL-BASED UNIFIED FRAMEWORK FOR IMPORTANCE AND RELATEDNESS 287

12.3.1 Neumann Kernels

Kandola et al. [12] proposed the Neumann kernels for computing document sim-
ilarity from terms occurring in documents analogously to latent semantic analysis
[7]. We discuss the interpretation of these kernels in the context of link analysis.

The Neumann kernel in its original form is defined in terms of the term-by-
document (rectangular) matrix X whose (i, j)-element is the frequency of the ith
term occurring in document j . To compute the kernel matrices, document correlation
matrix K = XTX and term correlation matrix M = XXT are first constructed. The
Neumann kernel matrices are then derived from K and M as follows.

Definition 12.1 Let X be a term-by-document matrix, and let K = XTX and
M = XXT. The Neumann kernel matrices with diffusion factor γ (≥ 0), denoted by
K̂γ and M̂γ , are defined as the solution to the following system of equations.

K̂γ = γXTM̂γ X + K M̂γ = γXTK̂γ X + M (12.2)

The similarity between documents i and j is given by the (i, j)-element of K̂γ , and
the term similarity is given by M̂γ .

Equation (12.2) implies an alternative representation based on the Neumann
series:

K̂γ = K

∞∑
n=0

γ nKn M̂γ = M

∞∑
n=0

γ nMn (12.3)

Hence, when γ is less than the reciprocal of the spectral radius of K and M , the
solution exists and is given by

K̂γ = K(I − γK)−1 M̂γ = M(I − γM)−1 (12.4)

12.3.2 Link Analysis with Neumann Kernels

The recurrence over K̂ and M̂ in Eq. (12.2) implies that the Neumann kernels
evaluate similarity between documents from term similarity, and vice versa. This
complementary relation is reminiscent of the recursion in Eq. (12.1) between the
authorities and hubs in HITS. We apply the Neumann kernels to link analysis on the
basis of this particular similarity to HITS. Specifically, we use the adjacency matrix
A of a citation graph in place of the term-by-document matrix X. Hence we have
K = ATA and M = AAT, which coincide with the co-citation and bibliographic
coupling matrices, respectively. Plugging them into Eq. (12.3) yields the Neumann
kernels based solely on citation information. For convenience, we introduce the
shorthand

Nγ (B) = B

∞∑
n=0

(γB)n (12.5)

288 KERNELS AS LINK ANALYSIS MEASURES

and write

K̂γ = Nγ (ATA) = ATA

∞∑
n=0

γ n(ATA)n (12.6)

M̂γ = Nγ (AAT) = AAT
∞∑

n=0

γ n(AAT)n (12.7)

As seen from Eqs. (12.6) and (12.7), M̂γ can be obtained simply by transposing A

in Eq. (12.6). For this reason, our discussion below focuses on K̂ = Nγ (ATA).
The relationship between HITS and the Neumann kernels thus obtained from

citation graph turns out much deeper than just the superficial resemblance of their
recursive forms. We will show that when viewed as a ranking method, the Neumann
kernels subsume the HITS importance ranking as a special case.

12.3.3 Interpretation

Equation (12.5) shows that the Neumann kernel matrix Nγ (ATA) is a weighted
sum of (ATA)n over every n = 1, 2, Given that the (i, j)-element of the term
(ATA)n represents the number of paths of length n between nodes i and j in the
co-citation graph, we see that each element of the kernel matrix equals the weighted
sum of the number of paths between nodes.

Each term (ATA)n can be further interpreted as follows. When length n is
small, the number (ATA)n(i, j) of paths between i and j is nonzero only if their
distance is less than n. In other words, (ATA)n with small n captures the degree
of proximity between any two nodes. Since relatedness is a measure based on
proximity, (ATA)n(i, j) can be interpreted as indicating relatedness between nodes
i and j . In particular, (ATA)1 is exactly the co-citation matrix.

In contrast, it is not clear what this quantity indicates when n is sufficiently
large. The following theorem and corollary state that the number of paths of length
n between i and j is an indicator of the importance of these nodes.

THEOREM 12.1 Let λ be the dominant eigenvalue of a nonnegative symmetric
matrix ATA. If λ is a simple eigenvalue (i.e., λ has a multiplicity of one), there exists
a unit eigenvector v corresponding to λ such that (ATA/λ)n → vvT as n → ∞.

Proof. Let ATA = ∑m
i=1 λivivT

i be a spectral decomposition of ATA, with λ = λ1,
v = v1, and vT

i vj = 0 for every i �= j , 1 ≤ i, j ≤ m. By raising both sides to the
power of n, we have for each n = 1, 2, . . .,

(
ATA

)n =
m∑

i=1

λn
i vivT

i

12.3 KERNEL-BASED UNIFIED FRAMEWORK FOR IMPORTANCE AND RELATEDNESS 289

Dividing both sides of the equation by λn
1 yields

(
ATA

λ1

)n

= v1vT
1 +

m∑
i=2

(
λi

λ1

)n

vivT
i

Because λ = λ1 > λi for every i = 2, . . . , m, the second term on the right-hand
side vanishes as n → ∞. ��
Corollary 12.1 Let the dominant eigenvalue of nonnegative symmetric matrix
ATA be simple, and let v be an eigenvector corresponding to the dominant eigen-
value. For any node i with v(i) �= 0 and any node pair (j, k) such that v(j) > v(k),
there exists an integer m satisfying (ATA)n(i, j) > (ATA)n(i, k) for all n ≥ m.

When the co-citation graph is connected (or equivalently, ATA is irreducible), Corol-
lary 12.1 tells us that for every row (and column) vector of (ATA)n, the node ranking
induced by the magnitude of its components tends toward the HITS authority rank-
ing (determined by the dominant eigenvector v of ATA). The similar argument is
possible for bibliographic coupling and the Neumann kernels Nγ (AAT)n.

Putting the above discussions together, we see that summing (ATA)n and
(AAT)n over n = 1, 2, . . . as in Eqs. (12.6) and (12.7) can be interpreted as the
mixture of relatedness (when n is small) and importance (when n is large). As a
special case, the Neumann kernels subsume co-citation and bibliographic coupling at
γ = 0. Near the opposite extreme of the parameter range, that is, γ 	 1/ρ(ATA), the
rankings induced by the Neumann kernels are also identical to the HITS importance,
as stated by the following theorem.

THEOREM 12.2 Let λ be the dominant eigenvalue of a nonnegative symmetric
matrix ATA. If λ is a simple eigenvalue, there exists a unit eigenvector v corre-
sponding to λ such that

(
λ−1 − γ

)
Nγ (ATA) → vvT as γ → λ−1 − 0

Proof. Let ATA = ∑m
i=1 λivivT

i be a spectral decomposition of ATA, with λ = λ1

the dominant eigenvector and v = v1. By the infinite series representation of the
Neumann kernels [Eq. (12.6)], we have

Nγ (ATA) =
m∑

i=1

(∞∑
n=1

γ n−1λn
i

)
vivT

i =
m∑

i=1

λi

1 − γλi

vivT
i

Multiplying both sides by (1/λ1 − γ) and rearranging terms yields

(
1

λ1
− γ

)
Nγ (ATA) = v1vT

1 +
m∑

i=2

λi(1 − γλ1)

λ1(1 − γλi)
vivT

i

where the second term on the right-hand side vanishes as γ → (1/λ1) − 0. ��

290 KERNELS AS LINK ANALYSIS MEASURES

12.4 LAPLACIAN KERNELS AS A RELATEDNESS MEASURE

12.4.1 Limitations of Co-citation Relatedness

In Section 12.3, we argued that the Neumann kernels provide a unifying framework
that subsumes both the HITS importance and the co-citation and bibliographic cou-
pling relatedness. Unfortunately, this means the measures induced by the Neumann
kernels inherit not only the advantages of co-citation and bibliographic coupling but
also their limitations. The two limitations we address are as follows.

Limitation 12.1 Co-citation coupling assigns a nonzero relatedness score to a
pair of documents only if they are commonly referenced by a document.

In the citation graph of Figure 12.1(a), documents n1 and n3 are not jointly
cited by any document, and this results in the absence of an edge between n1 and
n3 in the co-citation graph of Figure 12.1(b). They are hence unrelated to each other
in terms of co-citation coupling. Because real-world graphs are typically sparse, it
is often desirable to capture even weak relationship between nodes, such as n1 and
n3 in this case. The relationship between these nodes might not be as strong as n1

and n2, or n2 and n3, but the fact that they are both co-cited with n2 by other nodes
still conveys valuable information.

Limitation 12.2 Co-citation coupling determines the relatedness between nodes
i and j only on the basis of the number of nodes commonly citing the two. Nodes
citing only one of i and j are neglected, and in effect, the number of citations from
those nodes does not affect the relatedness between i and j in any way.

The following example illustrates why Limitation 12.2 is an issue.

EXAMPLE 12.1 In the graph depicted in Figure 12.2, n3 represents a frequently
linked web page such as Google and Yahoo. By contrast, n1 is a much less popular
page cited only by page n4. Nodes n1 and n2 are co-cited by n4, and nodes n2 and
n3 by n5. Our intuition dictates that n2 is more related to n1 than to n3, as one would
not conclude a page is related (or similar) to Google or Yahoo (n3) just because it
is jointly cited with them. However, because each of the page pairs (n1, n2) and
(n2, n3) has a co-citation count of one (owing to n4 and n5, respectively), n1 and
n3 are estimated as equally related to n2 in terms of co-citation relatedness.

n4

n2 n3n1

n5

Figure 12.2. Citation graph illustrating a limitation of co-citation relatedness.

12.4 LAPLACIAN KERNELS AS A RELATEDNESS MEASURE 291

The Neumann kernels, when viewed as relatedness measures, do not provide a
solution to the above problems. They count the paths of any length between two
nodes (see Section 12.3.3), so at first sight they appear to alleviate Limitation 12.1
if parameter γ > 0. However, increased γ biases the induced measures toward
importance at the same time, making them unsuitable for evaluating relatedness.
This bias also incurs Limitation 12.2. When applied to the graph of Figure 12.2,
the Neumann kernels with nonzero γ assign a greater score to n3 than to n1 with
respect to node n2, which contradicts our intuition even further than co-citation.
For example, the submatrix of a Neumann kernel for nodes n1 through n3 is shown
below. Here, γ = 0.18 	 0.9λ−1 where λ is the spectral radius of the co-citation
coupling matrix:

N0.18 =

1.89 3.05 3.40

3.05 8.34 15.49
3.40 15.49 46.12

 (12.8)

In this submatrix, N0.18(2, 1) = 3.05 < 15.49 = N0.18(2, 3). The same holds for
smaller γ ; at γ = 0.02 	 0.1λ−1, for instance, N0.02(2, 1) = 1.06 < 1.13 =
N0.02(2, 3).

12.4.2 Regularized Laplacian Kernels

We argue that the kernels based on the graph Laplacian [6] overcomes the limitations
of Section 12.4.1.

Definition 12.2 Let B be the adjacency matrix of an undirected graph G with
positive edge weights. The (combinatorial) Laplacian of G is defined as L(B) =
D(B) − B, where D(B) is a diagonal matrix with diagonals

D(B)(i, i) =
∑

j

B(i, j) (12.9)

Smola and Kondor define the regularized Laplacian kernels [23]) as follows.

Definition 12.3 Let B be a nonnegative symmetric matrix and let γ ≥ 0. The
matrix

Rγ (B) = (I + γL(B))−1 (12.10)

is called the regularized Laplacian kernel on the graph induced by B with diffusion
factor γ .

To apply this kernel to link analysis, we take as B the co-citation matrix ATA or
the bibliographic coupling matrix AAT to ensure the symmetry of B.

292 KERNELS AS LINK ANALYSIS MEASURES

1 1 2
n4n2 n3n1

n5 n6 n7 n8

−1 −2 −3 −2

Figure 12.3. Graph induced by the negative Laplacian of the co-citation graph of

Figure 12.1(b).

When γλ < 1, where λ = ρ(L(B)), the right-hand side of (12.10) is the
closed-form solution to the infinite series

Rγ (B) =
∞∑

n=0

γ n (−L(B))n (12.11)

It is also possible to obtain this formula by using −L(B) in place of the adjacency
matrix B and dropping the first factor B from Eq. (12.5).

Note that the series in Eq. (12.11) converges only if γλ < 1, where
λ = ρ(L(B)), or the spectral radius of L(B); the matrix (12.10) may exist even
when (12.11) does not converge. From the practical standpoint, however, restricting
the parameter range to γλ < 1 has some merits in that an approximate computation
method based on infinite series representation is applicable (see Section 12.5.2).

As a bonus, the infinite series representation admits the interpretation of kernel
computation as path counting, paralleling the discussion of Section 12.3.3. In the
case of the regularized Laplacian kernels, counting takes place not in a co-citation
or a bibliographic coupling graph but in the graph induced by taking the negative
of their Laplacian as the adjacency matrix. The difference is that self-loop edges in
the latter graph have negative weights. Figure 12.3 depicts an example of the graph
induced by −L(B), where B is the adjacency matrix of the co-citation graph of
Figure 12.1(b).

12.4.3 Relatedness Measure Induced by the Regularized
Laplacian Kernels

Unlike the Neumann kernels, the regularized Laplacian kernels do not suffer from
the limitations mentioned Section 12.4.1.

Both kernels count all paths regardless of length, and thus assign a nonzero
value to any pair of nodes as long as they are connected. The regularized Laplacian
kernels remain a relatedness measure even if diffusion factor γ is increased, by virtue
of negative weights assigned to self-loops. During path counting, paths through
these self-loops are also taken into account. This effectively reduces the score of
authoritative nodes because the self-loops at these nodes typically have heavier
weights; as seen from Eq. (12.9), the weight of a self-loop at a node is the negated
sum of the edge weights incident to the node.

12.4 LAPLACIAN KERNELS AS A RELATEDNESS MEASURE 293

For the Neumann kernels, paths are counted in the co-citation graph. In this
case, self-loops have positive weights, and hence in the Neumann kernels, counting
paths through self loops amounts to amplifying the inner products (scores) involving
authoritative nodes.

EXAMPLE 12.2 Recall the graph depicted in Figure 12.2 As argued in
Example 12.1, it is more natural to regard n2 as more related to n1 than to n3.
The regularized Laplacian kernel matches this intuition by assigning a greater relat-
edness score to n1 than to n3 relative to n2. Below is the regularized Laplacian kernel
with γ = 0.18 	 0.9λ−1, where λ is the spectral radius of the negative Laplacian
of the co-citation matrix.

R0.18 =

0.87 0.12 0.01

0.12 0.76 0.08
0.01 0.08 0.62

Again, only the submatrix of the kernel for nodes n1 through n3 is shown. Here,
we have R0.18(2, 1) > R0.18(2, 3).

If discounting high-degree nodes is all that is needed to overcome Limita-
tion 12.2, one may argue that there should be simpler ways. However, straightfor-
ward discounting methods often fail to provide a relatedness measure that matches
our intuition consistently over the parameter range; these methods may work at a
relatively small γ , but as γ gets larger, they are either biased toward importance or
give a measure inconsistent with our intuition on relatedness.

For example, it is easily verified that simply normalizing the Neumann kernel
matrices (12.8) by N(i, j) = N(i, j)/

√
N(i, i)N(j, j) does not solve the problem,

for N0.18(2, 1) = 0.77 < 0.79 = N0.18(2, 3). Using the distance of nodes in the ker-
nel feature spaces does not work either.

Another alternative is to use the column transition matrix A, obtained by
normalizing the adjacency matrix A so that its column sums equal to one2 and
applying the Neumann kernels to the co-citation matrix A

T
A. This scheme appears

to work at first sight. At γ = 0.68 	 0.9λ−1, it gives

N0.68(A
T
A) =

9.25 5.67 0.87

5.67 3.80 0.81
0.87 0.81 1.31

and this matrix evaluates n2 as more related to n1 than to n3 as desired. Note
however that n3 is more related to n1 than to n2, that is, N0.68(A

T
A)(3, 1) >

N0.68(A
T
A)(3, 2). This is against intuition since the relatedness between n3 and

n1 must be deduced from the paths from n3 to n1 in the co-citation graph, all
of which pass through n2 on the way. Indeed, using the same proof technique as

2The column transition matrix A is used in [11] to derive weighted co-citation matrix A
T
A.

294 KERNELS AS LINK ANALYSIS MEASURES

Theorem 12.2, we can show that Nγ (A
T
A) in the limit γ → 1/λ gives identical

ranking n1 > n2 > n3 to all of the nodes n1, n2, and n3.
This anomaly suggests that although using column transition matrices may

be a handy heuristic, it discounts the score of high-degree nodes too severely. In
consequence, it does not provide a relatedness measure consistently over its parame-
ter range, nor a framework for providing intermediate measures between relatedness
and importance that match our intuition.

By contrast, such anomaly does not occur in the regularized Laplacian kernels
even in the limit of γ . The following theorem states that these kernels in the limit
assign a uniform score to all the nodes in the same connected component of the
co-citation graph B = ATA.

THEOREM 12.3 Let B ∈ R
m×m be a nonnegative symmetric matrix whose graph

counterpart is connected. The regularized Laplacian kernel Rγ (B) converges to
(1/m)11T as γ → ∞.

Proof. (Sketch) First note that (0, 1/m1/2) is an eigenpair of L(B). By combining
this fact with the technique similar to Theorem 12.2, we have the theorem. ��

Another question regarding the regularized Laplacian kernels is whether they
yield a nonnegative score vector. This is obvious for the Neumann kernels, which
are based on the powers of the (nonnegative) adjacency matrix, but the regularized
Laplacian kernels are defined as the power series of (the negative of) the Laplacian,
which contains negative elements. However, for the cases in which γλ < 1, the
proof of their nonnegativity can be obtained as follows.

THEOREM 12.4 The regularized Laplacian kernel Rγ,α(B) is nonnegative if
γρ(L(B)) < 1.

Proof. It suffices to show that the matrix P = I + γL(B) is an M-matrix [3, 19];
that is, P(i, j) ≤ 0 for every i �= j and P −1 ≥ 0. Furthermore, a standard theorem
in matrix analysis tells us that P is an M-matrix iff there exists a nonnegative
matrix Q = sI − P such that s > ρ(P). Below, we show that such Q (and s)
exists. Let D(B) be the diagonal matrix as defined in Definition 12.2, and let d =
maxi D(B)(i, i). If s ≥ 1 + γ d , then (s − 1)I − γD(B) is nonnegative, and so is
Q, because

Q = sI − P

= sI − (I + γL(B))

= (s − 1)I − γ (D(B) − B)

= [
(s − 1)I − γD(B)

] + γB

12.4 LAPLACIAN KERNELS AS A RELATEDNESS MEASURE 295

We also have s > ρ(Q) since

ρ(Q) = ρ((s − 1)I − γL(B))

= ‖(s − 1)I − γL(B)‖2

≤ ‖(s − 1)I‖2 + ‖γL(B)‖2

= s − 1 + γ ‖L(B)‖2

= s − 1 + γρ(L(B))

< s

Here, ‖A‖2 denotes the 2-norm of a matrix A, which equals to the spectral radius
ρ(A) when A is symmetric. ��

12.4.4 Controlling Bias in the Regularized Laplacian Kernels

While parameter γ controls the bias between importance and relatedness in the
Neumann kernels, it does not serve the same purpose in the regularized Laplacian
kernels. We will verify this claim in the experiment of Section 12.7.3. As an alter-
native way to control bias in the regularized Laplacian kernels, we introduce a new
parameterization scheme.

Definition 12.4 Let B be the adjacency matrix of an undirected graph G with
positive weights, and let 0 ≤ α ≤ 1. The modified Laplacian Lα(B) of G is defined
as Lα(B) = αD(B) − B, where D(B)(i, i) = ∑

j B(i, j) as in Definition 12.2.

Definition 12.5 Let B be a nonnegative symmetric matrix, and G be its induced
graph. For γ ≥ 0 and 0 ≤ α ≤ 1, the following infinite series, if convergent, is
called the modified regularized Laplacian kernel on G:

Rγ,α(B) =
∞∑

n=0

γ n (−Lα(B))n (12.12)

where Lα(B) is the modified Laplacian of G.

Note that we defined the modified Laplacian kernels as a series, so Rγ,α(B) is
defined only when the series converges, that is, γρ(Lα(B)) < 1.

When α = 1, Rγ,α(B) reduces to the (original) regularized Laplacian ker-
nel Rγ (B), and hence their elements represent relatedness between nodes. As α

decreases toward 0, each row (column) vector of the kernel matrix bears more and
more the character of an importance vector, provided that γ is sufficiently large. In
particular, at α = 0, Rγ,α(B) reduces to I + γNγ (B), where Nγ (B) is the Neumann
kernel given by Eq. (12.5).

We can also show that the modified regularized Laplacian kernels are posi-
tive semidefinite, meaning that they indeed define an inner product and hence are

296 KERNELS AS LINK ANALYSIS MEASURES

compatible with support vector machines and other state-of-the-art kernel-based
machine learning tools. To show their positive semidefiniteness, we first need a
lemma.

LEMMA 12.1 Let A ∈ R
m×m be a symmetric matrix, and let f (·) be a function

such that f (A) is convergent. If f (λ) is nonnegative for all eigenvalues λ of A,
then f (A) is symmetric positive semidefinite.

Proof. Let A = UT�U be an eigendecomposition of A, where U is an orthog-
onal matrix and � is a diagonal matrix with all its diagonals being eigenvalues
of A. Hence by assumption, f (�(i, i)) ≥ 0 for all i = 1, . . . ,m. We also have
f (A) = UTf (�)U , where f (�) is a diagonal matrix with f (�)(i, i) = f (�(i, i)).
Therefore, f (�) is a nonnegative diagonal matrix, and C = f (�)1/2 exists. Substi-
tuting f (�) = CTC in f (A), we have f (A) = (CU)T(CU). ��

THEOREM 12.5 For any nonnegative symmetric matrix B, the modified regu-
larized Laplacian kernel Rγ,α(B), defined as a convergent series in Eq. (12.12), is
symmetric positive semidefinite.

Proof. Let f (x) = ∑∞
n=0(−γ x)n. The convergence of Rγ,α(B) implies |γλ| < 1

for any eigenvalue λ of Lα(B). Hence we have f (λ) = (1 + γλ)−1 ≥ 0 for any
eigenvalue λ of Lα(B). Now that f (Lα(B)) = Rγ,α(B) by Definition 12.5 and
Lα(B) is symmetric, the symmetric positive semidefiniteness of Rγ,α(B) follows
from Lemma 12.1. ��

We can also prove the modified regularized Laplacian kernels are nonnegative.

THEOREM 12.6 The modified regularized Laplacian kernel Rγ,α(B) is nonneg-
ative.

Proof. Omitted. The proof mostly parallels that of Theorem 12.4, using Lα(B) in
place of L(B). ��

From this theorem, it follows that each column vector of these kernel matrices
can be viewed as a nonnegative score vector, just like the HITS importance vectors.

12.4.5 Diffusion Kernels

The kernels presented above are based on the Neumann series,3 but other series
can be used. Using the matrix exponential in place of the Neumann series yields
the so-called diffusion (heat) kernels, originally developed in the context of spectral
graph theory [6]. It was first introduced to machine learning community by Kondor
and Lafferty [16].

3The reason we presented the kernels based on the Neumann series first is mainly for the ease of
exposition; that is, it is easier to show the connection of the Neumann series based kernels to the
existing measures of relatedness and importance, namely, co-citation coupling and HITS.

12.5 PRACTICAL ISSUES 297

Definition 12.6 Let G be an undirected graph with positive weights, and B be
its adjacency matrix. The diffusion kernel matrix Hγ on G with diffusion factor
γ ≥ 0 is given by

Hγ (B) = exp(−γL(B)) =
∞∑

n=0

γ n (−L(B))n

n!
(12.13)

It can be shown that Hγ (B) also converges to a uniform matrix as γ → ∞. This
property suggests that diffusion kernels can also be considered as a relatedness
measure.

It is conceivable to use the modified Laplacian Lα(B) = αD(B) − B in place
of the Laplacian L(B) with diffusion kernels. The resulting kernel Hγ,α(B) allows
for controlling the bias between relatedness and importance just like the modified
regularized Laplacian kernels.

THEOREM 12.7 For any nonnegative symmetric matrix B, Hγ,α(B) = exp
(−γLα(B)) is symmetric positive semidefinite.

Proof. First observe that exp(A) is positive semidefinite for any symmetric matrix
A, which follows from Lemma 12.1 by setting f (A) = exp(A) and the fact that
f (x) = exp(x) ≥ 0 for any x ∈ R. Since −γLγ,α(B) is symmetric, Hγ,α(B) =
f (−γLγ,α(B)) is symmetric positive semidefinite. ��

Using a technique similar to the one used for Theorem 12.2, we can also show
that when v is the HITS authority vector of a citation graph A, and λ is the dominant
eigenvector of ATA, the matrix H0,γ (ATA)/ exp(γ λ) converges to vvT as γ → ∞.

12.5 PRACTICAL ISSUES

In this section, we discuss some issues that may be encountered in the practical
application of the kernel-based link analysis.

12.5.1 Parameter Tuning

The suitable values of the bias parameters, γ and α, must be chosen according
to the objective of the task. As White and Smyth [24] put it (in regard to similar
parameters in their proposed link analysis methods), the choices for the parame-
ters are inherently subjective, and there appears to be no general methodology for
determining parameter values.

For instance, consider a recommendation system for scientific literature. Given a
small list of the “root” papers a user found interesting, the system should recommend
other papers that may be of interest to the user. In this case, the degree of the user’s
acquaintance with the field of the given papers is likely to affect how much the
system should bias (through parameter tuning) its decision toward authoritative

298 KERNELS AS LINK ANALYSIS MEASURES

papers in the field, but such knowledge on the user is often outside the scope of
link analysis.

Given that choosing the “right” parameter requires user modeling that itself
constitutes a difficult problem, a practical alternative should be to present to the
user (or an external user-modeling module) a set of ranking lists (kernel matri-
ces) under various parameter values, and let her choose the one that best fits their
needs.

An issue with this approach is how we determine sample points efficiently. As
we will see in Section 12.7, the character of the link analysis measures induced
by these kernels turns out to be far from linear in the parameters. To this end, the
derivatives of the kernel matrices with respect to the bias parameter can serve this
purpose. For some kernels, the derivatives can be analytically computed from the
kernel matrices at a given point γ as follows. We regard B as fixed and hence write
d/dγ instead of ∂/∂γ .

dNγ (B)

dγ
= (

Nγ (B)
)2

(12.14)

dRγ (B)

dγ
= −L(B)

(
Rγ (B)

)2
(12.15)

dHγ (B)

dγ
= −L(B)Hγ (B) (12.16)

Let us take the Neumann kernel Nγ as an example. When we have Nγ for some γ at
hand, we can compute the first-order approximation Ñγ+�γ of the matrix Nγ+�γ by

Nγ+�γ (B) 	 Ñγ+�γ (B) = Nγ (B) + �γ
dNγ (B)

dγ
(12.17)

where dNγ (B)/dγ is given by Eq. (12.14). By comparing the rankings induced by
Ñγ+�γ (B) and Nγ (B), we can estimate how likely a change may occur in a given
range [γ, γ + �γ].

The cost of this estimation is that of multiplication and summation in
Eqs. (12.14) and (12.17). There is no need to compute Nγ+�γ (B) from scratch,
until a suitable sampling interval is fixed. The feasibility of this approximation
method will be empirically examined in Section 12.7.5.

12.5.2 Computational Issues

Computing the entire kernel matrix requires matrix inversion or exponentiation.
Hence the computational complexity is roughly O(|V |3) where |V | is the number
of nodes in the graph, and this may be a computational burden when the graph is
large. However, the standard techniques for matrix computation [10, Section 11.2]
allow the approximation of kernel computation with the sum of the first k terms of

12.6 RELATED WORK 299

the infinite series in Eqs. (12.6), (12.10), and (12.12). In Section 12.7.6, we evaluate
the quality of these approximations using real data.

Furthermore, if one is concerned with the importance of nodes relative to a sin-
gle node i rather than the entire kernel matrix, or if the entire kernel matrix cannot be
kept on memory, we can reduce the space requirement by summing

(
γATA

)n ui over
n = 1, . . . , k, where ui is a unit vector with only 1 at the ith component; the com-
putation now reduces to that of vector sums and the matrix–vector multiplication
similar to HITS.

12.6 RELATED WORK

12.6.1 Relative Importance

“Relative importance” is a new link analysis measure recently proposed by White
and Smyth [24]. This measure is defined as the “importance of nodes in a graph
relative to one or more root nodes.” In this view, HITS and PageRank are “global”
importance algorithms. White and Smyth made a convincing argument that simply
applying global importance algorithms to the subgraph surrounding the root nodes
does not yield a precise estimate of relative importance because the root nodes are
not given any special preference during importance computation.

The Neumann and modified Laplacian kernels fit naturally as relative impor-
tance, and as a bonus clarify the relationship between relative importance and
relatedness (namely, the co-citation and bibliographic coupling relatedness).

12.6.2 Kernel-Based Link Analysis

Smola and Kondor [23] pointed out the connection between kernels on graph
nodes and some importance computation methods including HITS. Their formu-
lation appears quite different from the formulation presented in this chapter. They
state that for a given node in a regular graph, its HITS score is given by the
length of its corresponding vector in the feature space induced by Laplacian-based
kernels. In the formulation presented in this chapter, by contrast, the HITS impor-
tance scores are obtained as an extremum of the Neumann kernels, which relies
on an adjacency matrix instead of the Laplacian. In addition, the formulation takes
the components of the kernel matrices directly as the scores indicating related-
ness or importance, instead of the distance of nodes in the kernel-induced feature
space.

Saerens and his colleagues [20] have recently proposed to use the average
commute time as a distance measure between nodes in a graph. This quantity is
based on the Markov-chain model of random walks and is shown to be computable
from the pseudoinverse of the Laplacian. Since the graph Laplacian is positive
semidefinite, so is its pseudoinverse.

300 KERNELS AS LINK ANALYSIS MEASURES

12.6.3 Katz Status Index and Other Link Analysis Measures

The Katz status index4 [13] is defined as the column sum of the infinite series

Zγ (A) =
∞∑

n=1

(γA)n = (I − γA)−1 − I

where A is a (possibly asymmetric) adjacency matrix and 0 ≤ γ ≤ 1 is called the
attenuation parameter. Since Zγ (A) = γNγ (A), Zγ (A) is also a symmetric positive
semidefinite kernel provided that A is symmetric. Although the matrix Zγ (A) is
sometimes used as the “similarity” matrix, our analysis of the Neumann kernels in
Section 12.4 implies that Zγ (A) is also biased toward importance as n gets greater.

Acharyya and Ghosh [1] discuss computing node importance similar to the Katz
status index. They use the (row) transition matrix5 Â obtained by normalizing the
rows of the given adjacency matrix A, instead of A itself.

Unlike the kernel-based formulation developed in this chapter, Acharyya and
Ghosh [1] do not use the components of the matrix as indicating the relative merit
of nodes with respect to a root node, but they use the dominant eigenvector of the
matrix as the importance vector.

In the same paper, Acharyya and Ghosh [1] also pursued an automatic parameter
tuning method, and they succeeded in detecting a stable parameter range using the
maximum-entropy principle. Although a principled approach to parameter tuning
is quite attractive, stability is only one of the many criteria for optimality, and we
believe there is much room for further research.

12.7 EVALUATION WITH BIBLIOGRAPHIC CITATION DATA

To evaluate the characteristics of the kernel-based link analysis measures introduced
in the previous sections, we applied them to a co-citation network of papers on
natural language processing (NLP), which is a connected graph consisting of 2280
nodes (papers).

The reason for using this rather small graph is to make it possible to compute
the exact kernel matrices. We evaluate the quality of the approximated computation
method in Section 12.5.2, but this requires the exact kernel matrices as the baseline,
whose computation would be infeasible with larger graphs.

To build this co-citation graph, we first collected the bibliographic references in
the papers from major NLP journals and conferences, which resulted in a citation
digraph consisting of 2867 nodes (papers). This citation digraph is then converted
to a co-citation graph, and finally we extracted its largest connected component with
2280 nodes.

4We thank Prof. Marco Saerens for pointing out the similarity of the Neumann kernels and the Katz
status index to us.
5Note the row transition matrix Â is different from the column transition matrix A discussed in
Section 12.4.3.

12.7 EVALUATION WITH BIBLIOGRAPHIC CITATION DATA 301

Note that we employed only the connected component because of the limi-
tation in HITS. If there were multiple connected components, only nodes in one
component would have nonzero HITS authority scores, since the scores are based
on the dominant eigenvector; the rest of the nodes in the other components would
have zero scores. In contrast, the kernel methods, which compute not a vector but
a matrix, have no problem in assigning nontrivial scores between any node pairs in
each connected components, regardless of the number of connected components.

After the co-citation graph is built, kernel matrices were computed with
MATLAB from the closed-form representation of individual kernels; for example,
ATA(I − γATA)−1 for the Neumann kernels. Each kernel matrix was treated as a
ranking method by taking the ith row vector of the matrix as the score vector for
the ith node (paper). Given the ith score vector, or the ranking induced thereof, we
call the ith node as the root node of this ranking, borrowing the terminology from
[24].

We examine the results as follows. To gain intuition about the characteristics
of individual kernels, we first present the ranking lists with respect to a certain
root node. Note, however, that we are not trying to draw any conclusion about
the general properties of the kernels from this specific example; when we observed
some trends in this example, they were subsequently verified using the entire data.

12.7.1 An Illustrating Example

We first present the ranking lists for a root paper “Empirical Studies in Discourse”
by M. A. Walker and J. D. Moore, Computational Linguistics 23(1):1–12, 1997 in
Table 12.1. This table lists all 24 papers that are ranked as top 10 in at least one
of the 11 ranking lists shown in the right-hand side of the table. The “Topic” field
shows the topic category of the papers, parsing (P), word-sense disambiguation (W),
machine translation (T), standard corpus (data set) (C), and discourse (D). An—in
column CC (co-citation coupling) indicates that the paper was not co-cited with
the root paper. The diffusion factor γ for kernels is shown as a normalized factor
relative to the reciprocal λ−1 of the spectral radius λ = ρ(B), where B is the co-
citation matrix for the Neumann kernel (NK), or the negative of its Laplacian for the
regularized Laplacian (RLK) and diffusion (DK) kernels. Hence the admissible range
of parameter γ is 0 ≤ γ < 1/λ for Neumann kernels. For the regularized Laplacian
kernels to have infinite series representation (12.11), the same parameter range is
required (but this time λ is the spectral radius of the Laplacian). In this experiment,
we used this parameter range for the regularized Laplacian to save space, for the
character of the regularized Laplacian for larger γ is mostly similar to the diffusion
kernels. And 0 ≤ γλ < 1 is also the range in which the approximated computation
of Section 12.5.2 is applicable.

Before analyzing the results, let us clarify the reason we selected this root
paper, “Empirical Studies in Discourse,” as an illustrating example. It is a paper on
discourse processing, and presumably, the papers most related to it must be those on
discourse processing as well. In contrast, papers on discourse are not ranked among
the top 10 HITS authority list (column H in Table 12.1). Hence we can expect

TA
B

LE
12

.1
Ra

nk
in

g
Li

st
Re

la
tiv

e
to

th
e

Pa
pe

r‘
‘E

m
pi

ric
al

St
ud

ie
s

in
Di

sc
ou

rs
e’

’a

N
K

(γ
λ

)
R

L
K

(γ
λ

)
D

K
(γ

λ
)

Pa
pe

r
T

itl
e

To
pi

c
H

C
C

0.
1

0.
9

0.
99

0.
1

0.
99

9
0.

1
1

10
10

0

B
ui

ld
in

g
a

la
rg

e
an

no
ta

te
d

co
rp

us
of

E
ng

lis
h:

T
he

Pe
nn

T
re

eb
an

k
C

1
2

2
1

1
7

7
7

7
7

50

A
st

oc
ha

st
ic

pa
rt

s
pr

og
ra

m
an

d
no

un
ph

ra
se

pa
rs

er
fo

r
un

re
st

ri
ct

ed
te

xt
P

2
—

12
7

2
12

23
12

16
13

3
41

9

St
at

is
tic

al
de

ci
si

on
-t

re
e

m
od

el
s

fo
r

pa
rs

in
g

P
3

—
8

5
3

8
8

8
9

46
34

1
A

ne
w

st
at

is
tic

al
pa

rs
er

ba
se

d
on

bi
gr

am
le

xi
ca

l
de

pe
nd

en
ci

es
P

4
—

9
6

4
10

10
9

10
47

35
5

U
ns

up
er

vi
se

d
w

or
d

se
ns

e
di

sa
m

bi
gu

at
io

n
ri

va
lin

g
su

pe
rv

is
ed

m
et

ho
ds

W
5

—
62

15
5

75
13

4
75

92
29

3
52

7

W
or

d-
se

ns
e

di
sa

m
bi

gu
at

io
n

us
in

g
st

at
is

tic
al

m
od

el
s

of
R

og
et

’s
ca

te
go

ri
es

tr
ai

ne
d

W
6

—
36

5
12

6
32

54
32

44
15

0
37

7

T
he

m
at

he
m

at
ic

s
of

st
at

is
tic

al
m

ac
hi

ne
tr

an
sl

at
io

n
T

7
—

37
4

26
9

55
1

55
3

54
4

55
2

62
3

98
1

T
hr

ee
ge

ne
ra

tiv
e,

le
xi

ca
lis

ed
m

od
el

s
fo

r
st

at
is

tic
al

pa
rs

in
g

P
8

—
11

11
7

11
14

11
11

61
38

1

T
ra

ns
fo

rm
at

io
n-

ba
se

d
er

ro
r-

dr
iv

en
le

ar
ni

ng
an

d
na

tu
ra

l
la

ng
ua

ge
pr

oc
es

si
ng

P
9

—
21

14
8

24
47

24
28

20
1

59
4

In
te

gr
at

in
g

m
ul

tip
le

kn
ow

le
dg

e
so

ur
ce

s
to

di
sa

m
bi

gu
at

e
w

or
d

se
ns

e
W

10
—

63
18

10
74

11
3

74
87

23
4

44
2

A
tte

nt
io

n,
in

te
nt

io
ns

,
an

d
th

e
st

ru
ct

ur
e

of
di

sc
ou

rs
e

D
50

2
3

3
25

6
6

6
6

6
11

302

A
ss

es
si

ng
ag

re
em

en
t

on
cl

as
si

fic
at

io
n

ta
sk

s:
T

he
ka

pp
a

st
at

is
ti

c
D

76
2

4
4

41
5

5
5

5
5

5

C
en

te
ri

ng
:

A
fr

am
ew

or
k

fo
r

m
od

el
in

g
th

e
lo

ca
l

co
he

re
nc

e
of

di
sc

ou
rs

e
D

96
—

10
33

90
9

9
10

8
9

80

C
om

bi
ni

ng
m

ul
tip

le
kn

ow
le

dg
e

so
ur

ce
s

fo
r

di
sc

ou
rs

e
se

gm
en

ta
tio

n
D

11
5

—
14

62
11

0
13

13
13

12
10

75

A
pr

os
od

ic
an

al
ys

is
of

di
sc

ou
rs

e
se

gm
en

ts
in

..
.

D
19

8
—

15
96

18
2

15
11

15
13

8
14

T
he

re
lia

bi
lit

y
of

a
di

al
og

ue
st

ru
ct

ur
e

co
di

ng
sc

he
m

e
D

20
1

2
5

8
94

4
4

4
4

4
4

M
es

sa
ge

U
nd

er
st

an
di

ng
C

on
fe

re
nc

e
te

st
s

of
di

sc
ou

rs
e

pr
oc

es
si

ng
D

60
4

2
6

9
15

6
3

3
3

3
3

3

D
is

co
ur

se
se

gm
en

ta
tio

n
by

hu
m

an
an

d
au

to
m

at
ed

m
ea

ns
D

68
5

—
62

33
6

69
1

52
31

52
42

12
8

E
m

pi
ri

ca
l

st
ud

ie
s

in
di

sc
ou

rs
e

D
77

1
1

1
2

95
1

1
1

1
1

1
A

pr
op

os
al

fo
r

in
cr

em
en

ta
l

di
al

og
ue

ev
al

ua
tio

n
D

78
0

—
14

2
51

4
84

5
10

1
79

10
1

96
30

9

H
um

an
-m

ac
hi

ne
pr

ob
le

m
so

lv
in

g
us

in
g

sp
ok

en
la

ng
ua

ge
sy

st
em

s
D

10
26

—
20

3
78

6
11

71
14

6
13

3
14

6
14

6
77

10

E
xp

er
im

en
ts

in
ev

al
ua

tin
g

in
te

ra
ct

iv
e

sp
ok

en
la

ng
ua

ge
sy

st
em

s
D

10
46

—
20

4
80

5
11

99
14

4
13

1
14

4
14

4
69

7

Pr
ev

en
tin

g
fa

ls
e

in
fe

re
nc

es
D

10
54

—
20

5
81

2
12

13
14

5
13

2
14

5
14

5
70

6
E

ff
ec

ts
of

va
ri

ab
le

in
it

ia
ti

ve
on

li
ng

ui
st

ic
be

ha
vi

or
in

hu
m

an
-c

om
pu

te
r

sp
ok

en
na

tu
ra

l
la

ng
ua

ge
di

al
og

ue

D
10

61
2

7
10

20
5

2
2

2
2

2
2

a
H

IT
S

(H
),

co
-c

ita
tio

n
(C

C
),

an
d

th
e

N
eu

m
an

n
(N

K
),

re
gu

la
ri

ze
d

L
ap

la
ci

an
(R

L
K

)
an

d
di

ff
us

io
n

(D
K

)
ke

rn
el

s.
To

p-
10

ra
nk

s
ar

e
sh

ow
n

in
bo

ld
fa

ce
.

303

304 KERNELS AS LINK ANALYSIS MEASURES

the set of globally authoritative papers to be quite distinct from the set of papers
most related to this specific paper. Consequently, we can observe whether a given
ranking is inclined toward importance or relatedness, by comparing the ranking list
with those of HITS and co-citation. Indeed, except for one paper, most of the papers
with nonzero co-citation scores deal with discourse, as seen from their titles and
the topic column. The only exception is the most authoritative paper, the one on a
standard NLP dataset (“Penn Treebank”).

The root node having a co-citation with the authoritative paper unrelated to
discourse processing also helps to grasp the characteristics of the ranking methods.
By examining where this authoritative paper is ranked relative to the other (presum-
ably more related) co-cited papers on discourse, we can see whether the ranking
list is biased toward importance or not. Moreover, we can regard these co-cited
papers as a real-world example of the graph structure depicted in Figure 12.2 (in
Section 12.4.1); the root paper is n2, the Penn Treebank paper corresponds to n3,
and each of the other co-cited papers on discourse corresponds to n1.

12.7.2 Neumann Kernels

Looking at the columns for the Neumann kernels (NK) in Table 12.1, we see that
at γλ = 0.1, the top-ranked paper is the root paper itself, followed by six papers
that are co-cited with the root paper. As γ is increased, the ranking is more inclined
toward that of HITS. At γλ = 0.99, the top-10 list of papers is almost identical to
HITS, while the ranking of the root paper drops to 95th.

The trend observed above is consistent with the role of γ we claimed in
Section 12.3.3; as γ tends toward λ−1, the measures induced by the Neumann
kernels deviate away from the co-citation relatedness toward the HITS importance.

To confirm that this trend is not specific to this example, we evaluated the
correlation between the top-10 paper lists produced by HITS and the Neumann
kernels, for all 2280 root papers in the graph. Following White and Smyth [24],
we use the minimizing Kendall (K-min) distance [9] to evaluate the correlation.
Table 12.2 shows the K-min distance between the top-10 lists induced by the Neu-
mann kernels and HITS, averaged over all 2280 root nodes. A small K-min distance
means the two rankings are similar. It is equal to 0 if all top-10 items are identical,
and takes the maximum value of 100 if there are no common items in the top-10
lists.

Table 12.2 indicates that the rankings induced by the Neumann kernels are
indeed biased toward the HITS ranking as γ is increased.

TABLE 12.2 K-min Distance Between the Neumann Kernels and HITS, Averaged over
2280 Root Nodes

γ λ 0.1 0.5 0.9 0.99 0.999 0.9999 0.99999

Average K-min 87.3 86.3 72.0 26.4 5.5 1.1 0.0

12.7 EVALUATION WITH BIBLIOGRAPHIC CITATION DATA 305

12.7.3 Regularized Laplacian and Diffusion Kernels

Consider the column labeled 0.1 below “RLK” in Table 12.1, that is, the ranking
list induced by the regularized Laplacian kernel with γ = 0.1λ−1. We will compare
this ranking with that of the Neumann kernel with γ = 0.1λ−1. In these ranking
lists, the set of the top seven papers is identical, which also matches those with
nonzero co-citation scores. However, even though both methods rank the root paper
itself at the top, the ordering of the other six is completely reversed. The regularized
Laplacian kernel ranks the most authoritative “Penn Treebank” paper at the seventh,
while the Neumann kernel ranks it as the second.

This result seems to suggest the property of the Neumann kernels that their
ranking is biased toward importance even when diffusion rate γ is relatively small
(0.1λ−1). By contrast, the regularized Laplacian kernels seem less prone to the HITS
ranking, even when γ is as large as 0.999λ−1.

We again verify whether this trend is generic to the entire data. Table 12.3
lists the average K-min distance among the rankings of the regularized Laplacian
kernels, diffusion kernels, and HITS, with the average taken over 2280 root nodes.
The rankings of the regularized Laplacian kernels seem to be extremely stable; the
difference in K-min between γ = 0.01λ−1 and 0.999λ−1 is only 0.5. All over this
parameter range, these rankings do not resemble that of HITS; the K-min distances
are consistently above 95 over this parameter range, while the distance between the
Neumann kernel at γ = 0.1 is 87.3 (see Table 12.2).

To see if the regularized Laplacian kernels really is a relatedness measure,
we need to measure the correlation between this kernel and co-citation. However,
this time we cannot use the K-min distance for top-10 lists, as the number of co-
citations can be less than 10. Instead, we have verified that for every root paper in
the dataset, all the papers that are co-cited with the root paper are ranked topmost
by the regularized Laplacian kernels with γ = 0.1λ−1 and 0.01λ−1.

TABLE 12.3 K-min Distance Between the Regularized Laplacian Kernels and HITS,
Averaged over 2280 Root Nodes

RLK (γ λ) DK (γ λ)

γ λ 0.01 0.1 0.5 0.999 0.01 0.1 1 10 100

RLK 0.01 0.0 0.1 0.1 0.5 3.5 0.6 0.2 5.5 24.0
0.1 0.0 0.1 0.4 3.5 0.7 0.2 5.4 23.9
0.5 0.0 0.4 3.7 0.7 0.2 5.4 23.9
0.999 0.0 4.0 1.0 0.5 5.1 23.7

DK 0.01 0.0 3.5 3.6 8.9 27.4
0.1 0.0 0.6 5.9 24.5
1 0.0 5.4 24.0
10 0.0 20.3
100 0.0

HITS 95.7 95.7 95.8 96.1 95.7 95.7 95.8 99.3 99.8

306 KERNELS AS LINK ANALYSIS MEASURES

TABLE 12.4 Average K-min Distance Between the Modified Regularized Laplacian
Kernels and Other Link Analysis Measures: HITS (as a Baseline Measure of Importance), and
the Original Regularized Laplacian Kernel with γ = 0.1λ−1 (as a Measure of Relatedness)

α 0.01 0.05 0.1 0.15 0.2 0.3 0.5 0.75

HITS 0.0 12.9 35.0 51.8 89.6 94.7 96.0 96.1
Original RLK 95.0 93.3 95.3 94.3 33.5 17.3 8.2 4.1

The trends observed in the regularized Laplacian kernels are evident in the
diffusion kernels as well. The ranking of the diffusion kernels with γ = 0.1λ−1

for “Empirical Studies in Discourse” is mostly identical to that of the regularized
Laplacian kernel with the same γ , shown in Table 12.1. By increasing γ to 100λ−1,
we see that the diffusion kernels undervalue authoritative papers such as “The Penn
Treebank” more severely. Although this paper is co-cited with the root paper, it is
left out of the top-10 list in this case. This explains the trend that K-min distance
between the diffusion kernels and HITS increases as γ is increased (see Table 12.3).
Although it is not shown in the table, this trend continues for γ > 100λ−1 because
increased γ makes a “uniform” relatedness measure as we mentioned earlier, which
does not resemble the relatedness measures given by co-citation or the regularized
Laplacian kernels at small γ .

12.7.4 Modified Regularized Laplacian Kernels

We now examine the effect of parameter α on the modified regularized Lapla-
cian kernels. To see if this parameter controls the trade-off between relatedness and
importance as claimed, we compare the rankings induced by these kernels with those
of HITS and the regularized Laplacian kernel with γ = 0.1λ−1. The latter two are
used as the benchmark of the importance and relatedness measures, respectively.6

We again use the average K-min distance over all 2280 root nodes to assess the
correlation. The diffusion rate γ is set to 0.99999λ−1, where λ is the spectral radius
of the modified Laplacian of the co-citation graph.

The result is shown in Table 12.4. The modified regularized Laplacian kernels
tend to be more similar to the HITS ranking as α is decreased. We see that the top-
10 ranking induced by the modified regularized Laplacian kernel with α = 0.01 is
identical to that of HITS. When α is large, the rankings of the modified regularized
Laplacian kernels are similar to the relatedness measure induced by the (unmodified)
regularized Laplacian kernel.

6We did not use co-citation as the baseline for relatedness because of the same reason stated in
Section 12.7.3; that is, the number of co-citations are often less than 10 and K-min distance cannot
handle this case. The regularized Laplacian kernel was used instead, on the basis of the argument in
Section 12.7.3.

12.7 EVALUATION WITH BIBLIOGRAPHIC CITATION DATA 307

TABLE 12.5 Average K-min Distance Between the Top-10 Rankings Induced by the
Neumann Kernels at γ and γ + �γ , Using the Exact Value of Nγ+δγ and Estimated
Values of Ñγ+δγ by Eq. (12.17)

(a) �γ = 0.099λ−1

γ λ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Exact 0.27 0.20 0.30 0.47 0.88 1.32 2.32 7.11 70.26
Approx. 0.07 0.13 0.22 0.34 0.65 0.99 1.56 3.31 9.74

(b) �γ = 0.009λ−1

γ λ 0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99

Exact 1.38 1.49 1.77 2.21 2.81 3.38 4.51 6.45 9.93 26.27
Approx. 1.23 1.32 1.61 1.89 2.33 3.14 3.42 4.85 5.49 7.73

12.7.5 Estimating Parameter Sensitivity

This subsection verifies the feasibility of the method described in Section 12.5 for
estimating the parameter range in which kernel matrices (or, to be precise, the
rankings they induce) are sensitive to parameter change.

The row labeled “Exact” in Table 12.5(a) shows the average K-min distance
between the top-10 rankings induced by the Neumann kernel Nγ and Nγ+�γ for
each γ (shown as the factor of 1/λ), where �γ = 0.099λ−1. This quantity mea-
sures how much the top-10 rankings change as the diffusion factor changes from
γ to γ + �γ . Similarly, the row labeled “Approx.” shows the average K-min
distance between Nγ and the first-order approximation Ñγ+�γ of Nγ+�γ by for-
mula (12.17). As we see from the table, the K-min for the approximation is larger
in regions (i.e., γλ = 0.9) where actual values of K-min are larger, relative to
the regions where they are not (cf. Table 12.2). Note that the large discrepancy
in the value of K-min at this point (70.26 vs. 9.74) is only because the step
size �γ = 0.009λ−1 is too large to capture the change of kernel matrices in this
region. When one finds a surge in the value of estimated K-min in a region as
in this case, the region must be sampled with a finer-grained step size. The dis-
crepancy in the K-min distance between the actual and estimated kernels in the
parameter range γλ = 0.9 to 0.99, with step size �γ = 0.009λ−1 are shown in
Table 12.5(b).

12.7.6 Approximation

In the final experiment, we examine the feasibility of approximating kernel matrices
with the sum of the first k terms of their power series representations. These rep-
resentations are given by Eq. (12.6) for the Neumann kernels, and Eq. (12.11) for
the regularized Laplacian kernels. The average K-min distances between the kernel
matrix obtained from the closed form and the approximations with various step size
k are shown in Table 12.6. Although not present in the table, the standard deviation
at k = 1000 is 5 for the Neumann kernel with γλ = 0.999 and is less than 1 for the

308 KERNELS AS LINK ANALYSIS MEASURES

TABLE 12.6 Average K-min Distance Between the Exact and Approximate Solutions:
Neumann Kernels (NK), the Regularized Laplacian Kernels (RLK) and Diffusion Kernels (DK)a

NK (γ λ) RLK (γ λ) DK (γ λ)

k 0.1 0.9 0.99 0.999 0.1 0.9 0.99 0.999 0.1 1 10

5 0.0 10.0 50.7 75.1 0.0 0.4 1.1 1.3 0.5 0.1 14.4
10 0.0 6.0 42.5 66.5 0.0 0.4 0.6 0.6 0.5 0.1 21.1
50 0.0 0.1 14.9 31.6 0.0 0.0 0.5 0.5 0.5 0.1 0.1

100 0.0 0.0 6.5 21.2 0.0 0.0 0.4 0.5 0.5 0.1 0.1
500 0.0 0.0 0.1 4.8 0.0 0.0 0.1 0.4 0.5 0.1 0.1

1000 0.0 0.0 0.0 1.6 0.0 0.0 0.0 0.3 0.5 0.1 0.1

aThe approximations are given by the sum of the first k terms of their power series representation.

other kernel/parameter pairs. The values for diffusion kernels (DK) not converging
to 0 is due to round-off errors.

12.8 SUMMARY

Although several kernels on graph nodes have been proposed in the context of
machine learning, their property as link analysis measures was not previously dis-
cussed in depth. This chapter has demonstrated the merit of viewing these kernels
as link analysis measures.

The Neumann kernels, when applied to citation graphs, yield a link analysis
measure intermediate between co-citation/bibliographic coupling relatedness and the
HITS importance, providing a new account of the relationship between these well-
known measures. The parameter of the Neumann kernels allows us to tune the
bias of the induced measure between relatedness and importance depending on the
application.

The kernels based on the graph Laplacian, including the regularized Laplacian
and diffusion kernels, have some favorable properties as a relatedness measure that
are missing not only from the co-citation and bibliographic coupling but also from
the Neumann kernels.

With these frameworks connecting the link analysis methods and graph kernels,
it might be possible to transfer the expertise gained on the link analysis methods to
the graph kernels, and vice versa. For example, it has been pointed out that HITS
suffers from the “tightly knit community effect” [18], and now that the Neumann
kernels are shown to subsume HITS as a special case, it would be interesting to see
whether and how the limitation carries over to the Neumann kernels.

REFERENCES

1. S. Acharyya and J. Ghosh. A maximum entropy framework for higher order link analysis
on discrete graphs. In Workshop on Link Analysis for Detecting Complex Behavior
(LinkKDD 2003), Washington, DC, August 27, 2003.

REFERENCES 309

2. P. Baldi, P. Frasconi, and P. Smyth. Modeling the Internet and the Web: Probabilistic
Methods and Algorithms. Wiley, Hoboken, NJ, 2003.

3. A. Berman and R. J. Plemmons. Nonnegative Matrices in the Mathematical Sciences.
Classics in Applied Mathematics 9. SIAM, Philadelphia, PA, 1994.

4. K. D. Bollacker, S. Lawrence, and C. L. Giles. CiteSeer: An autonomous web agent
for automatic retrieval and identification of interesting publications. In Proceedings of
the 2nd International ACM Conference on Autonomous Agents, pp. 116–123, 1998.

5. S. Brin and L. Page. The anatomy of a large-scale hypertextual (web) search engine.
Computer Network and ISDN Systems, 30(1–7):107–117, 1998.

6. F. R. K. Chung. Spectral Graph Theory. American Mathematical Society, Providence,
RI, 1997.

7. S. C. Deerwester, S. T. Dumais, T. K. Landauer, G. W. Furnas, and R. A. Harshman.
Indexing by latent semantic analysis. Journal of the American Society for Information
Science, 41(6):391–407, 1990.

8. D. Dhyani, W. K. Ng, and S. S. Bhowmick. A survey of Web metrics. ACM Computing
Surveys, 34(4):469–503, 2002.

9. R. Fagin, R. Kumar, and D. Sivakumar. Comparing top k lists. SIAM Journal on
Discrete Mathematics, 17(1):134–160, 2003.

10. G. H. Golub and C. F. Van Loan. Matrix Computation, 3rd ed. Johns Hopkins University
Press, Baltimore, MD, 1996.

11. T. Joachims. Text categorization with support vector machines: Learning with many
relevant features. Technical Report LS-8 Report 23, Computer Science Department,
University of Dortmund, Dortmund, Germany, 1997.

12. J. Kandola, J. Shawe-Taylor, and N. Cristianini. Learning semantic similarity. In NIPS
15, 673–680. MIT Press, Cambridge, MA, 2003.

13. L. Katz. A new status index derived from sociometric analysis. Psychmetrika, 18(1):
39–43, 1953.

14. M. M. Kessler. Bibliographic coupling between scientific papers. American Documen-
tation, 14(1):10–25, 1963.

15. J. M. Kleinberg. Authoritative sources in a hyperlinked environment. Journal of the
ACM, 46:604–632, 1999.

16. R. Kondor and J. Lafferty. Diffusion kernels on graphs and other discrete input spaces.
In Proceedings of the 18th International Conference on Machine Learning, pp. 21–24,
2001.

17. C. le Pair. The citation gap of applicable science. In A. F. J. van Raan, ed., Handbook
of Quantitative Studies of Science and Technology, Chapter 17, pp. 537–553, North-
Holland, Amsterdam, 1988.

18. R. Lempel and S. Moran. The stochastic approach for link-structure analysis. ACM
Transactions on Information Systems, 19(2):131–160, 2001.

19. C. D. Meyer. Matrix Analysis and Applied Linear Algebra. Society for Industrial and
Applied Mathematics, Philadelphia, PA, 2001.

20. M. Saerens, F. Fouss, L. Yen, and P. Dupont. The principal component analysis of a
graph, and its relationship to spectral clustering. In Proceedings of ECML, pp. 371–383,
Springer, Berlin, Germany, 2004.

21. B. Schölkopf and A. J. Smola. Learning with Kernels: Support Vector Machines, Reg-
ularization, Optimization, and Beyond. MIT Press, Cambridge, MA, 2002.

22. H. Small. Co-citation in the scientific literature: A new measure of the relationship
between two documents. Journal of the American Society for Information Science,
24:265–269, 1973.

310 KERNELS AS LINK ANALYSIS MEASURES

23. A. J. Smola and R. Kondor. Kernels and regularization of graphs. In Proceedings of
COLT’03, pp. 144–158, 2003.

24. S. White and P. Smyth. Algorithms for estimating relative importance in networks. In
Proceedings of the KDD’03, pp. 266–275, 2003.

13

ENTITY RESOLUTION
IN GRAPHS

INDRAJIT BHATTACHARYA AND LISE GETOOR
University of Maryland, College Park, Maryland

13.1 INTRODUCTION

In many applications, there are a variety of ways of referring to the same underlying
real-world entity. For example, J. Doe, Jonathan Doe, and Jon Doe may all refer to
the same person. In addition, entity references may be linked or grouped together.
For example, Jonathan Doe may be married to Jeanette Doe and may have depen-
dents James Doe, Jason Doe, and Jacqueline Doe, and Jon Doe may be married to
Jean Doe and J. Doe may have dependents Jim Doe, Jason Doe, and Jackie Doe.
Given such data, we can build a graph from the entity references, where the nodes
are the entity references and edges (or often hyperedges) in the graph indicate links
among the references.

However, the problem is that for any real-world entity there may well be more
than one node in the graph that refers to that entity. In the example above, we may
have three nodes all referring to the individual Jonathan Doe, two nodes referring to
Jeanette Doe, two nodes referring to each of James Doe, Jason Doe, and Jacqueline
Doe. Further, because the edges are defined over entity references, rather than enti-
ties themselves, the graph does not accurately reflect the relationships between enti-
ties. For example, until we realize that Jon Doe refers to the same person as Jonathan
Doe, we may not think that Jon Doe has any children, and until we realize that J. Doe
refers to the same person as Jonathan Doe, we will not realize that he is married.

Mining Graph Data, Edited by Diane J. Cook and Lawrence B. Holder
Copyright c© 2007 John Wiley & Sons, Inc.

311

312 ENTITY RESOLUTION IN GRAPHS

Thus an important first step in any graph mining algorithm is transforming
such a reference graph, where nodes are entity references and edges are among
entity references, into an entity graph, where nodes are the entities themselves and
edges are among entities. Given a collection of references to entities, we would like
to (a) determine the collection of “true” underlying entities, (b) correctly map the
entity references in the collection to these entities, and (c) correctly map the entity
reference relationships (edges in the reference graph) to entity relationships (edges
in the entity graph).

This problem comes up in many guises throughout computer science. Examples
include computer vision, where we need to figure out when regions in two different
images refer to the same underlying object (the correspondence problem); natural
language processing, when we would like to determine which noun phrases refer
to the same underlying entity (co-reference resolution); and databases, where, when
merging two databases or cleaning a database, we would like to determine when
two tuple records are referring to the same real-world object (deduplication and/or
record linkage).

Why do these ambiguities in entity references occur? Oftentimes data may
have data entry errors, such as typographical errors. Or multiple representations are
possible, such as abbreviations, alternate representations, and so on. Or in a database,
we may have different keys—one person’s database may use social security numbers
while another uses name and address. Regardless, an exact comparison does not
suffice for resolving entity references in such cases.

In data cleaning, deduplication [18, 27] is important for both accurate analy-
sis, for example, determining the number of customers, and for cost effectiveness,
for example, removing duplicates from mailing lists. In information integration,
determining approximate joins [9] is important for consolidating information from
multiple sources; most often there will not be a unique key that can be used to join
tables in distributed databases, and we must infer when two records from different
databases, possibly with different structures, refer to the same entity.

Traditional approaches to entity resolution and deduplication are based on
approximate string matching criteria. These work well for correcting typograph-
ical errors and other types of noisy references, but do not make use of domain
knowledge, such as common abbreviations, synonyms, or nicknames, and do not
learn mappings between values. More sophisticated approaches can make use of
domain-specific attribute similarity functions and mapping functions and consider
the reference not just as a string but as a more structured object, such as a person
entity that has first name, middle name, last name, address, and so on.

More recent approaches make use of attribute similarity measures but, in addi-
tion, take graph (i.e., relational) similarity into account. For example, if we are
comparing two census records for Jon Doe and Jonathan Doe, we should be more
likely to match them if they are both married to Jeannette Doe and they both have
dependents James Doe, Jason Doe and June Doe. In other words, the string similarity
of the attributes is taken into account, but so too is the similarity of the people to
whom the person is related.

13.1 INTRODUCTION 313

The problem becomes even more interesting when we do not assume that the
related entities have already been resolved. In fact, when the relations are among
entities of the same type, determining that two references refer to the same individual
may in turn allow us to make additional inferences. In other words, the resolution
process becomes iterative.

As mentioned earlier, the problem may be viewed in terms of a graph where
the nodes represent the entity references that need to be resolved and the edges
correspond to the observed relations among them. We will call this the reference
graph capturing relations among the entity references. Our census example is shown
in Figure 13.1(a). Before this graph can be mined for potential patterns or features,
it needs to be “cleaned.” Many nodes in this graph are duplicates in that they refer
to the same underlying entity. The task is to identify which references correspond to
the same entity and then consolidate them to create the entity graph. Figure 13.1(b)
shows the entity graph after the references in the reference graph have been resolved.
First, note that even in this simple graph, the entity graph is much smaller than the
reference graph. In addition to the reduction in graph size that comes with resolving
references, resolution is necessary for discovering the true patterns in the entity
graph as well. Reference graphs are often collections of disconnected subgraphs.
Unless they are resolved, the edges involving the same entity will be dispersed
over its many references. Models built from such a graph will be inaccurate. In the
example, the connections from the Jeanette Doe entity to the Jacqueline Doe entity
can only be seen in the resolved entity graph.

Graph-based approaches for entity resolution take the edges into account as well
for resolving references. In the above example, we may decide that the two Jason
Doe references are the same, based on the fact that there is an exact string match
and their fathers’ have similar last names (though in general, we would not want to
always do this; certainly two J. Does do not necessarily refer to the same person).
Having done this, we may make use of the fact that both J. Doe and Jonathan Doe
have a common dependent, to merge them.

Using the relational evidence provided in the graph has the potential benefit
that we may produce more accurate results than if we use only attribute similarity
measures. In particular, we may be able to decrease the false-positive rate because
we can set our string match threshold more conservatively. But it has the downside

Jonathan Doe

James Doe

Jeanette Doe

Jason Doe

Jaqueline Doe

Jon Doe

Jean Doe

Jonathan Doe

James Doe

Jeanette Doe

Jason Doe

Jacqueline Doe

Jim Doe

Jason Doe

Jackie Doe

J. Doe

Jon Doe

Jean Doe

Jonathan Doe

James Doe

Jeanette Doe

Jason Doe

Jacqueline Doe

Jim Doe

Jason Doe

Jackie Doe

J. Doe

(a) (b)

Figure 13.1. Example of (a) a reference graph for simple example given in the text and

(b) the resolved entity graph.

314 ENTITY RESOLUTION IN GRAPHS

that the process is more expensive computationally; first, as we go beyond simply
comparing attributes to comparing edges and subgraphs, the similarity computation
becomes more expensive. Second, as we iterate, we must continue to update the
similarities as new resolutions are made.

In the next section, we review related work on entity resolution; most of the
work that we describe does not take a graph-based approach. In Section 13.3, we
introduce another more realistic motivating example for graph-based entity reso-
lution. In Section 13.4, we formalize the graph-based entity resolution problem in
Section 13.5, we define several similarity measures appropriate for entity resolution
in graphs, and in Section 13.6 we describe a clustering algorithm that uses them to
perform entity resolution. In Section 13.7, we describe some experimental results
using the different similarity measures on two real-world datasets.

13.2 RELATED WORK

There has been a large body of work on deduplication, record linkage, and co-
reference resolution. Here we review some of the main work, but the review is not
exhaustive. For a nice summary report, see [40].

String Similarity. The traditional approach to entity resolution looks at textual
similarity in the descriptions of the entities. For example, whether or not two cita-
tions refer to the same paper depends on the similarity measure such as edit distance
between the two citation strings. There has been extensive work on defining approx-
imate string similarity measures [8, 11, 27, 29] that may be used for unsupervised
entity resolution. The other approach is to use adaptive supervised algorithms that
learn string similarity measures from labeled data [6, 12, 36, 39]. One of the diffi-
culties in using a supervised method for resolution is constructing a good training
set that includes a representative collection of positive and negative examples. One
approach that avoids the problem of training set construction is active learning [37,
39], where the user is asked to label ambiguous examples by the learner.

Theoretical Bounds. Cohen et al. [10] studies the theoretical problem of “harden-
ing a soft database” that has many co-referent entries. Hardening refers to the task of
figuring out which pairs of soft identifiers refer to the same real-world object. Given
the likelihood of being co-referent for each soft pair and a probability distribution
of possible hard databases, hardening is defined as the optimization problem of find-
ing the most likely hard model given the soft facts. A cost is associated with each
hard tuple that is added to the database and for each co-reference decision made.
They show that this optimization problem is NP-hard even under strong restric-
tions. They propose a greedy agglomerative clustering approach for an approximate
solution. This algorithm’s complexity is linear in the number of entries in the soft
database.

13.2 RELATED WORK 315

Efficiency. Given that solving the entity resolution problem optimally is computa-
tionally expensive, an important focus is on efficiency issues in data cleaning, where
the goal is to come up with inexpensive algorithms for finding approximate solutions
to the problem. The key mechanisms for doing this involve computing the matches
efficiently and employing techniques commonly called “blocking” to quickly find
potential duplicates and eliminate nonduplicates from consideration [18, 19, 25, 28].
The merge/purge problem was posed by Hernández and Stolfo [18] with efficient
schemes to retrieve potential duplicates without resorting to quadratic complexity.
They use a “sorted neighborhood method” where an appropriate key is chosen for
matching. Records are then sorted or grouped according to that key and potential
matches are identified using a sliding window technique. However, some keys may
be badly distorted so that their matches cannot be spanned by the window and such
cases will not be retrieved. The solution proposed is a multipass method over dif-
ferent keys and then merging the results using transitive closure. Monge and Elkan
[28] combine the union find algorithm with a priority queue lookup to find con-
nected components in an undirected graph. McCallum et al. [25] propose the use
of canopies to first partition the data into overlapping clusters using a cheap dis-
tance metric and then use a more accurate and expensive distance metric for those
data pairs that lie within the same canopy. Gravano et al. [17] propose a sampling
approach to quickly compute cosine similarity between tuples for fast text-joins
within an SQL framework. Chaudhuri et al. [8] use an error-tolerant index for data
warehousing applications for probabilistically looking up a small set of candidate
reference tuples for matching against an incoming tuple. This is considered “proba-
bilistically safe” since the closest tuples in the database will be retrieved with high
probability. This is also efficient since only a small number of matches needs to be
performed.

Probabilistic Modeling. The groundwork for posing entity resolution as a proba-
bilistic classification problem was done by Fellegi and Sunter [14], who extend the
ideas of Newcombe et al. [31] for labeling pairs of records from two different files to
be merged as “match” or “nonmatch” on the basis of agreement among their differ-
ent fields. They estimate the conditional probabilities of these field agreement values
given that the pair is really from the match class or the nonmatch class. They show
that if the agreement values for the different fields are conditionally independent
given the class, then these probabilities can be estimated in an unsupervised fashion.
Winkler [41] builds upon this work for cases when the conditional independence
assumption cannot be made and uses a generalized expectation maximization algo-
rithm for estimating parameters to separate matches and nonmatches. More recently,
hierarchical graphical models have been proposed [35] that use a separate match
variable for each attribute and an overall match variable that depends on all of these
lower level matches.

Graph-Based Approaches. Approaches that take into account relational struc-
ture of the entities for data integration have been proposed [1, 4, 13, 20, 21, 30].
Ananthakrishna et al. [1] introduce relational deduplication in data warehouse appli-
cations where there is a dimensional hierarchy over the relations. They augment

316 ENTITY RESOLUTION IN GRAPHS

the string similarity measure between two tuples with the similarity between their
foreign key relations across the hierarchy which they call children sets. To avoid
comparison between all pairs of tuples in a relation, they propose a grouping strategy
that makes uses of the relational hierarchy as well.

Kalashnikov et al. [21] enhance feature-based similarity between an ambiguous
reference and the many entity choices for it with relationship analysis between the
entities, like affiliation and co-authorship. They propose a “content attraction prin-
ciple” hypothesizing that an ambiguous reference will be more strongly connected
via such relationships to its true entity compared to other entity choices for it. They
translate this principle to a set of nonlinear equations that relate all the connection
strengths in the entity graph and those between a reference and its choice entities.
A solution to this nonlinear optimization problem yields the connection strengths
and the strongest connection determines the entity choice for each reference.

Neville et al. [30] explore different graph partition schemes for clustering in
graphs where the edge weights reflect attribute similarity between nodes. By vary-
ing the edge weights and edge existence probabilities conditioned on the cluster
labels, they compare algorithms that consider only attributes and those that combine
attribute and relational evidence. They report that spectral techniques for partition-
ing [38] work better than other min-cut and k-clustering approaches, but combining
attribute and relational information proves detrimental for clustering.

The Subdue system proposed by Jonyer et al. (see [20] and Chapter 8 of this
book) is a scheme for conceptual clustering of structured data. In addition to parti-
tioning the data, conceptual clustering also summarizes the clusters with conceptual
descriptions of objects contained in them. Subdue generates a hierarchical conceptual
clustering by discovering substructures in the data using the minimum description
length principle. This helps to compress the graph and represent conceptual structure
as well.

Doan et al. [13] explore a profiler-based approach for tying up disjoint attributes
for sanity checks using domain knowledge. For example, on merging two objects
(9, John Smith) and (John Smith, 120k) from two tables with schemas (age, name)
and (name, salary), we get a person whose age is 9 years and whose salary is 120K.
This would be deemed an unlikely match by a profiler.

In earlier work of our own [4], we propose different measures for relational
similarity in graphs and show how this can be combined with attribute similarity
for improved entity resolution in collaboration graphs. We also relate the problem
of graph-based entity resolution to discovering groups of collaborating entities in
graph [3] and suggest that the two tasks may be performed jointly so that a better
solution for one of these tasks leads to improvements in the other as well.

Probabilistic Inference in Graphs. Probabilistic models that take into account
interaction between different entity resolution decisions have been proposed for
named entity recognition in natural language processing and for citation matching.
McCallum and Wellner [24] use conditional random fields for noun co-reference and
use clique templates with tied parameters to capture repeated relational structure.
They do not directly model explicit links among entities.

13.2 RELATED WORK 317

Li et al. [23] address the problem of disambiguating “entity mentions,” poten-
tially of multiple types, in the context of unstructured textual documents. They
propose a probabilistic generative model that captures a joint distribution over
pairs of entities in terms of co-mentions in documents. In addition, they include
an appearance model that transforms mentions from the original form. They evalu-
ate a discriminative pairwise classifier for the same task that is shown to perform
well. However, they show both empirically and theoretically that direct clustering
over the pairwise decisions can hurt performance for the mention matching task
when the number of entity clusters is more than two.

Parag and Domingos [32] use the idea of merging evidence to allow the flow
of reasoning between different pairwise decisions over multiple entity types. They
are able to achieve significant benefit from generalizing the mapping of attribute
matches to multiple references, for example, being able to generalize from one
match of the venue “Proc. of SIGMOD” with “Proceedings of the International
Conference on Management of Data” to other instances.

Pasula et al. [33] propose a generic probabilistic relational model framework
for the citation matching problem. Because of the intractability of performing exact
probabilistic inference, they propose sampling algorithms for reasoning over the
unknown set of entities. Milch et al. [26] propose a more general approach to the
identity uncertainty problem. They present a formal generative language for defining
probability distribution over worlds with unknown objects and identity uncertainty.
This can be seen as a probability distribution over first-order model structures with
varying number of objects. They show that the inference problem is decidable for a
large class of these models and propose a rejection sampling algorithm for estimating
probabilities.

In other work of our own [5], we have adapted the latent dirichlet allocation
model for documents and topics and extended it to propose a generative group
model for joint entity resolution. Instead of performing a pairwise comparison task,
we use a latent group variable for each reference, which is inferred from observed
collaborative patterns among references in addition to attribute similarity to predict
the entity label for each reference.

Tools. A number of frameworks and tools have been developed. Galhardas et al.
[15] propose a framework for declarative data cleaning by extending SQL with
specialized operators for matching, clustering, and merging. The WHIRL system
[9] integrates a logical query language for doing “soft” text joins in databases with
efficient query processing. Potter’s Wheel [34], Active Atlas [39], and D-Dupe [7]
are some other data cleaning frameworks that involve user interaction.

Application Domains. Data cleaning and reference disambiguation approaches
have been applied and evaluated in a number of domains. The earliest application
is on medical data [31]. Census data is an area where detection of duplicates poses
a significant challenge, and Winkler [41] has successfully applied his research and
other baselines to this domain. A great deal of work has been done making use of
bibliographic data [4, 19, 22, 25, 33, 37]. Almost without exception, the focus has

318 ENTITY RESOLUTION IN GRAPHS

been on the matching of citations. Work in co-reference resolution and disambiguat-
ing entity mentions in natural language processing [23, 24] has been applied to text
corpora and newswire articles such as the TREC corpus. For detailed evaluation
of algorithm performance, researchers have also resorted to synthetic [4, 30] and
semisynthetic [1, 8] datasets where various features of the data can be varied in a
controlled fashion.

Evaluation Metrics. As has been pointed out by Sarawagi and Bhamidipaty [37],
the choice of a good evaluation metric is an issue for entity resolution tasks. Mostly,
resolution has been evaluated as a pairwise classification problem. Accuracy may not
be the best metric to use since datasets tend to be highly skewed in their distribution
over duplicate and nonduplicate pairs; often less than 1% of all pairs are duplicates.
In such a scenario, a trivial classifier that labels all pairs as nonduplicates would
have 99% accuracy. Though accuracy has been used by some researchers [8, 27, 30,
41], most have used precision over the duplicate prediction and recall over the entire
set of duplicates. Observe that a classifier that indiscriminately labels all pairs as
nonduplicates will have high precision but zero recall. The two measures are usually
combined into one number by taking their harmonic mean. This is the so-called F1
measure. Another option that has been explored is weighted accuracy, but this may
report high accuracy values even when precision is poor. Cohen et al. [11] rank all
candidate pairs by distance and evaluate the ranking. In addition to the maximum
F1 measure of the ranking, they consider the noninterpolated average precision and
interpolated precision at specific recall levels.

Some other approaches to this problem have posed it as a clustering task,
where references that correspond to the same entity are associated with the same
cluster. Performance measures that evaluate the qualities of the clusters generated
compared to the true clusters are more relevant in such cases. Monge and Elkan
[28] use a notion of cluster purity for evaluation. Each of the generated clusters
may either match a true cluster, be a subset of a true cluster, or include references
from more than one cluster. They treat the first two cases as pure clusters while
the third category of clusters is deemed impure. They use the number of pure and
impure clusters generated as the evaluation metric. We have proposed an alternative
evaluation metric for this clustering task where we measure the diversity of each
constructed cluster of entity references in terms of the number of references to
different real entities that it contains [4] and the dispersion of each entity over the
number of different clusters. We show that dispersion-diversity plots capture the
quality of the clusters directly and can be used to evaluate the trade-off in a fashion
similar to precision recall curves.

13.3 MOTIVATING EXAMPLE FOR GRAPH-BASED
ENTITY RESOLUTION

Throughout the rest of this chapter, we will motivate the problem of entity resolution
in graphs using an illustrative entity resolution task from the bibliographic domain.

13.3 MOTIVATING EXAMPLE FOR GRAPH-BASED ENTITY RESOLUTION 319

Consider the problem of trying to construct a database of papers, authors, and
citations from a collection of paper references, perhaps collected by crawling the
Web. A well-known example of such a system is CiteSeer [16], an autonomous
citation indexing engine. CiteSeer is an important resource for CS researchers and
makes searching for electronic versions of papers easier. However, as anyone who
has used CiteSeer can attest, there are often multiple references to the same paper,
citations are not always resolved, and authors are not always correctly identified
[33, 37].

An Example. The most commonly studied bibliographic entity resolution task is
resolving paper citations. Consider the following example from [37]:

• R. Agrawal, R. Srikant. Fast algorithms for mining association rules in large
databases. In VLDB-94, 1994.

• Rakesh Agrawal and Ramakrishnan Srikant. Fast Algorithms for Mining Asso-
ciation Rules. In Proc. of the 20th Int’l Conference on Very Large Databases,
Santiago, Chile, September 1994.

These very different strings are citations of the same paper and clearly string
edit distance alone will not work. However, if we extract the different fields or
attributes of the paper, we may have better luck. Sometimes, paper resolution can
be done based simply on the title. We can use one of the many existing methods for
string matching, perhaps even tuned to the task of title matching. However, there
is additional relational information, in terms of the venue, the authors of the paper,
and the citations made by the paper; this additional information may provide further
evidence to the fact that the two references are the same.

13.3.1 Issues in Graph-Based Entity Resolution

Multitype Entity Resolution. In the above example and in the earlier census
example, we had one type of entity (e.g., papers, people) and we were trying to
resolve them. We refer to this as single-type entity resolution. But note that while
the above two citation strings are used to motivate the paper resolution problem,
it is more interesting to see that they present an illustrative example of multitype
entity resolution, the problem of resolving entity references when there are different
types of entities to be resolved. The citations refer to papers, but in addition to the
paper title, they contain references to other types of entities, which themselves may
be ambiguous. In particular, the strings refer to author and venue entities in addition
to paper entities. This brings up a scenario where multiple types of entities need to
be resolved simultaneously. Assuming that the strings have been correctly parsed
to separate out the different fields—which is a difficult problem by itself—the first
citation string mentions R. Agrawal and R. Srikant as the authors and VLDB-94,
1994 as the venue, while the second has Rakesh Agrawal and Ramakrishnan Srikant
as the authors and Proc. of the 20th Int’l Conference on Very Large Databases,
Santiago, Chile, September 1994 as the venue reference. Not all of these pairs

320 ENTITY RESOLUTION IN GRAPHS

are easy to disambiguate individually. While it may not be too difficult to resolve
R. Srikant and Ramakrishnan Srikant, Agrawal is an extremely common Indian last
name, and it is certainly not obvious that R. Agrawal refers to the same author entity
as Rakesh Agrawal. As for the venue references, unless one knows that for two
resolved papers their venues must be the same, it is very difficult, if not impossible,
to resolve the two venue references without specialized domain knowledge.

Collective Entity Resolution. For our example, it is not hard to observe the
dependence among the different resolution decisions across multiple classes. We
can make the resolution decisions depend on each other in cases where they are
related. When the resolution decisions are made collectively, they can be much easier
to make. In the citation domain the relevant entities are papers, authors, and venues
and the relevant relationships are write and published in, that is, authors write papers
that get published in venues. An author is a co-author of another author if they write
the same paper. We can use these relations to make one resolution decision lead
to another. We may begin by resolving R. Srikant and Ramakrishnan Srikant, of
which we are most confident. This may lead us to believe R. Agrawal and Rakesh
Agrawal are the same author, since they are co-authors with the resolved author
entity Srikant. Now we can go back to the paper citations that, in addition to having
very similar titles, have now been determined to be written by the same author
entities. This makes us more confident that the two paper references map to the
same paper entity. Following the same thread, two identical papers citations must
have identical venue citations. So we may resolve the apparently disparate venue
references.

Graph-Based Evidence for Entity Resolution. It is now easier to see how
graphs help in representing these dependencies. The reference graph has nodes for
each entity reference. If the references correspond to multiple entity classes, then
we have multiple node types. Edges represent the relations that hold between the
references. We may also have more than one type of edge to represent the different
types of relations that exist. The co-author relation illustrates the need for hyperedges
that may involve more than two references. Since all observed authors of a paper
are co-authors, this relation is naturally captured as a hyperedge that spans all the
author references from a paper. Note that this may alternatively be captured using
a quadratic number of binary edges, but this leads to a dramatic increase in the
graph size.

Local Versus Global Resolution. When we resolve two references, such as the
resolution of two venue strings Proc. of the 20th Int’l Conference on Very Large
Databases, Santiago, Chile, September 1994 and VLDB-94, 1994, we should prob-
ably resolve all other occurrences of these venue references. In other words, once
we have decided the two references are the same, we should also resolve any other
venue references that exactly match these two references. We call this type of res-
olution global resolution. For certain entity references it makes the most sense and
can speed things up significantly. However, it may not always be appropriate. In the

13.3 MOTIVATING EXAMPLE FOR GRAPH-BASED ENTITY RESOLUTION 321

case of names, for example, R. Agrawal may refer to the Rakesh Agrawal entity in
one case, while some other instance of R. Agrawal might refer to a different entity
Rajeev Agrawal. We refer to this latter resolution strategy as local resolution.

Additional Sources of Relational Evidence. Other bibliographic relations can
also potentially be used when available. Papers are cited by other papers and two
papers are co-cited if they are cited by the same paper entity. If two similar paper
references are co-cited by the same paper entity, that may serve as additional evi-
dence that they are the same. However, graph-based evidence may also be negative
in some cases. For example, two paper references that are cited by the same paper
entity are unlikely to be duplicates, as are two author references that are co-authors
of the same paper entity.

13.3.2 Author Resolution in Graphs

Within the context of entity resolution in bibliographic data, we first look at the
problem of resolving author references in graphs leveraging co-author relationships.
Suppose that we have two different papers, and we are trying to determine if there
are any authors in common between them. We can do a string similarity match
between the author names, but often references to the same person vary significantly.
The most common difference is the variety of ways in which the first name and
middle name are specified. For an author entity Jeffrey David Ullman, we may see
references J. D. Ullman, Jeff Ullman, Ullman, J. D. and so on. For the most part,
these types of transformations can be handled by specialized code that checks for
common name presentation transforms. However, we are still presented with the
dilemma of determining whether a first name or middle name is the same as some
initial; while the case of matching J. D. Ullman and Jeffrey D. Ullman seems quite
obvious, for common names such as J. Smith or X. Wang the problem is more
difficult. Existing systems take name frequency into account and will give unusual
names higher matching scores. But this still leaves the problem of determining
whether a reference to J. Smith refers to James Smith or Jessica Smith.

As mentioned before, additional context information can be used in the form
of co-author relationships. If the co-authors of J. Smith for these two papers are the
same, then we should take this into account and give the two references a higher
matching score. But in order to do this we must have already determined that the
other two author references refer to the same individual; thus it becomes a chicken
and egg problem.

Consider the example shown in Figure 13.2(a), where we have four paper ref-
erences, each with a title and author references. In order to resolve these references,
we may begin by examining the author references to see which ones we consider to
be the same. In the first step, we might decide that all of the Aho references refer
to the same author entity because Aho is an unusual last name. This corresponds
to resolving all of the Aho references into a single entity. However, suppose based
on name information alone, we are not quite sure that the Ullman references are to
the same author, and we are certainly not sure about the Johnson references, since

322 ENTITY RESOLUTION IN GRAPHS

P1::Code generation for machines
with multi-register operations

P2: The universality of
database languages

P3: Optimal partial-match
retrieval when fields are
independently specified

P4: Code generation for
expressions with common
sub-expressions

P1: Code generation for machines
with multi-register operations

P2: The universality of
database languages

P3: Optimal partial-match
retrieval when fields are
independently specified

P4: Code generation for
expressions with common
sub-expressions

Alfred V Aho

Alfred V Aho

Alfred V Aho A V AhoA V Aho

A V AhoA V Aho

S C Johnson

Scott Johnson

S C Johnson

Scott Johnson

Jeffrey D Ullman

Jeffrey D Ullman

J D UllmanJeffrey D Ullman

Jeffrey D Ullman

J D Ullman

J D Ullman

Alfred V Aho

J D Ullman

(a) (b)

Figure 13.2. (a) An example author/paper resolution problem. Each box represents a paper

reference (in this case unique) and each oval represents an author reference. (b) The resolved

entities corresponding to the example author/paper resolution problem.

Johnson is a very common name. But, deciding that the Aho references correspond
to the same entity gives us additional information for the Ullman references. We
know that the references share a common co-author. Now with higher confidence we
can consolidate the Ullman references. Based solely on the Aho entity consolidation,
we do not have enough evidence to consolidate the Johnson references. However,
after making the Ullman consolidations, we may decide that having two co-authors
in common is enough evidence to tip the balance, and that all the Johnson references
correspond to the same Johnson entity. Figure 13.2(b) shows the final result after
all the author references have been correctly resolved, where references to the same
entity are shaded accordingly.

As illustrated in the above example, the problem of graph-based author res-
olution is likely to be an iterative process: As we identify co-author/collaborator
relationships among author entities, this will allow us to identify additional poten-
tial co-references. We can continue in this fashion until all of the entities have
been resolved. Figure 13.3(a) shows the reference graph for this example and
Figure 13.3(b) shows the resulting entity graph.

13.4 GRAPH-BASED ENTITY RESOLUTION: PROBLEM
FORMULATION

In the graph-based entity resolution problem, we have a reference graph—a graph
over some collection of references to entities—and from this graph we would like
to identify the (unique, minimal) collection of individuals or entities to which they
should be mapped, and the induced entity graph. In other words, we would like
to find a many-to-one mapping from references to entities. Figure 13.3(a) shows
the reference graph for the author resolution example and Figure 13.3(b) shows the
resulting entity graph.

In what follows, lowercase characters e and r denote entities and references
and qualified uppercase letters such as e.A and r.E denote attributes of the variables,
and we will use e.a and r.e to denote particular values of variables (short-hand for

13.4 GRAPH-BASED ENTITY RESOLUTION: PROBLEM FORMULATION 323

Alfred V Aho Jeffrey D Ullman

S C Johnson

A V Aho J D Ullman

Jeffrey D Ullman

Scott JohnsonA V Aho J D Ullman

Alfred V Aho

(a)

Jeffrey D Ullman

Scott Johnson

Alfred V Aho

(b)

Figure 13.3. (a) Reference graph and (b) entity graph for the author resolution example.

e.A = a). In the single-entity resolution problem, we are given a set of references
R = {ri}, where each reference r has its attributes r.A. The references correspond to
entities E = {ei} so that each reference r has a hidden entity label r.E. Each entity
e also has its own attributes e.A, but the entities are not directly observed. What
we observe are the attributes r.A of individual references. We can imagine r.A to be
generated by some distortion process from the attributes of the corresponding entity
r.E. Obviously, the entity labels of the references are not observed. The problem is
to recover the hidden set of entities E = {ei} and the entity labels r.E of individual
references given the observed attributes of the references.

We use relational information among references to help us in collective entity
resolution. We will assume that the references are observed, not individually, but
as members of hyperedges. We are given a set of hyperedges H = {hi}, and the
membership of a reference in a hyperedge is captured by its hyperedge label r.H.
In general, it is possible for a reference to belong to multiple hyperedges, and all
of our approaches can be extended to handle this. However, in this chapter, we will
consider a simpler scenario where each reference occurs in a single hyperedge. If
reference r occurs in hyperedge h, then r.H = h. Note that unlike the entity labels,
we know the association of hyperedges and references. The hyperedges can help us
make better predictions if we assume that they are indicative of associative patterns
among the entities. In other words, the entity labels of references that occur in the
same hyperedge are related to each other. Now the resolution decisions are not
independent. Instead of finding the entity labels for each reference individually, our
task is to predict the entity labels of the references collectively, where the entity
label r.E of any reference r is directly influenced by the choice of entity label r ′.E

324 ENTITY RESOLUTION IN GRAPHS

e1: r1, r4, r6, r8

e2: r2, r9

e1: r1, r4, r6, r8

h1

h2

h3

h4

r1 r 3

r 2

r4 r5

r10

r9r 6 r7

r8

h1 h2

h3

h4

(a) (b)

Figure 13.4. (a) More abstract representation of the reference graph for the author reso-

lution example; the r’s are references and the h’s are hyperedges. (b) Abstract representation

for the entity graph for the author resolution example; the e’s are entities, the references they

correspond to are listed, and the h’s are hyperedges.

for another reference r ′ if they are associated with the same hyperedge, that is,
r.H = r ′.H .

To make this more concrete, consider our earlier example. Figure 13.4(a) shows
the references and hyperedges. Each observed author name corresponds to a ref-
erence, so there are 10 references r1 through r10. In this case, the attributes are
the names themselves, so, for example, r1.A is Alfred Aho, r2.A is S.C. John-
son, and r3.A is Jeffrey Ullman. The set of true entities ε is {e1, e2, e3} as shown
in Figure 13.4(b), where e1.A = Alfred V. Aho, e2.A = S.C. Johnson, and e3.A =
Jeffrey D. Ullman. Clearly, r1, r4, r6, and r8 correspond to Alfred V. Aho, so that
r1.E = r4.E = r6.E = r8.E = e1. Similarly, r3.E = r5.E = r7.E = r10.E = e2 and
r2.E = r9.E = e3. There are also the hyperedges, which correspond to each set of
authors for a paper. There are four papers, so that H = {h1, h2, h3, h4}. The refer-
ences r1 through r3 are associated with hyperedge h1 since they are the observed
author references in the first paper. This is represented as r1.H = r2.H = r3.H =
h1. We may similarly capture the hyperedge associations of the other references.
The problem here is to figure out from the attributes r.A and the hyperedge labels
r.h of the references that there are three distinct entities such that r1, r4, r6, and r8

correspond to one entity, r3, r5, r7, and r10 correspond to the second, and r2 and
r9 correspond to the third. Here we have introduced the notation assuming that all
references correspond to the same class of entities. It may be extended to handle
multiple entity classes and multiple types of hyperedges between references. In the
rest of this chapter, we will use the term edge as a substitute for hyperedge. It
will be understood that an edge may involve more than two nodes unless explicitly
stated otherwise.

Entity Resolution as a Clustering Problem. Alternatively, the task of collec-
tive entity resolution may be viewed as a graph-based clustering problem where
the goal is to cluster the references so that those that have identical entity labels
are in the same cluster. One approach to finding this mapping is to use a greedy
agglomerative clustering approach. At any stage of the clustering algorithm, the set
of entity clusters reflect our current beliefs about the underlying entities. In other
words, each constructed entity cluster should correspond to one underlying entity,

13.5 SIMILARITY MEASURES FOR ENTITY RESOLUTION 325

and all references in that cluster should be to that entity. To start off, each reference
belongs to a separate cluster, and at each step the pair of clusters (or entities) that
are most likely to refer to the same entity are merged. The key to the success of
a clustering algorithm is the similarity measure that is employed. In graph-based
clustering for entity resolution, we want to use a similarity measure that takes into
account the similarity in the attributes of the references in the two clusters as well
as the relational similarity. In addition, the measure should take into account the
related resolution decisions that have been made previously. Accordingly, similarity
measures are extended to consider both reference attributes and edge-based patterns.

The attribute similarity component of the similarity measure takes into account
the similarity of the attributes r.A of the references in the two clusters. In the
author resolution case, it measures the similarity between two observed reference
names. In addition, the graph-based similarity component takes into account the
similarity of the relations that the two entities or clusters participate in. Each cluster
is associated with a set of references, and through these references the cluster is
associated with a set of edges to other references. But what is it about these other
references that we want to consider? We want to look not at their attributes but
at the resolution decisions that have been taken on them. Specifically, we want to
look at the entity cluster labels of these references, or which clusters they currently
belong to. To illustrate this using our example from Figure 13.2, suppose we have
already resolved the Aho and Ullman references in clusters c1 and c2, respectively,
and we are looking at the current similarity of the two Johnsons, which are yet to be
resolved and still belong to separate entity clusters, say c3a having r2 and c3b having
r9. The two clusters are associated with one edge each, h1 and h4, respectively. We
want to factor into the similarity measure not the names of the other references in
the two edges but the fact that both of them are associated with the same resolved
entity clusters c1 and c2, which is what makes them similar.

An issue that is brought out by the above discussion is the dynamic nature of the
graph-based similarity component. Initially, when all references belong to distinct
entity clusters, the two Johnson clusters will not be considered similar enough. But
their graph-based similarity goes up in stages as first the Aho references and then
the Ullman references are resolved. In the following section, we describe an iterative
clustering algorithm that leverages this dynamic nature of graph-based similarity.

13.5 SIMILARITY MEASURES FOR ENTITY RESOLUTION

In this section, we define the similarity measure between two entity clusters as a
weighted combination of the attribute similarity and graph-based similarity between
them and highlight the computational and other algorithmic issues that are involved.

For two entity clusters ci and cj , their similarity may be defined as

sim(ci, cj) = (1 − α) × simattr(ci, cj) + α × simgraph(ci, cj) 0 ≤ α ≤ 1

where simattr() is the similarity of the attributes and simgraph() is the graph-based
similarity between the two entity clusters, and they are linearly combined with

326 ENTITY RESOLUTION IN GRAPHS

weights α and 1 − α. In the following two subsections, we discuss the two similarity
components in detail.

13.5.1 Attribute Similarity

We assume the existence of some basic similarity measure that takes two reference
attributes and returns a value between 0 and 1 that indicates the degree of similarity
between them. A higher value indicates greater similarity between the attributes. We
are not making any other assumptions about the attribute similarity measure. Any
measure that satisfies these assumptions can be used. This is particularly helpful
since such similarity measures are often tuned for specific domains and may be
available as library functions. Depending on the domain, it is possible to adapt a
different attribute measure and tie it in with our algorithm seamlessly.

However, we need simattr() to define the similarity of attributes between two
entity clusters. Each entity cluster is a collection of references with their own
attributes. So we need to use the similarity measure that takes two attributes to
define the similarity between two clusters of attributes. This is similar to finding the
aggregate distance between two clusters given a pairwise distance measure. Many
approaches like single link, average link, and complete link have been proposed [2]
where some aggregation operation is used to combine the pairwise distances between
the two clusters. The duplicate relation is typically transitive: If references ri are
rj are duplicates, then all other duplicates of ri will also be duplicates of rj . So
the single link measure that takes the minimum pairwise distance (or the maximum
pairwise similarity) between two clusters is the most relevant for our purposes.

The first issue with a cluster linkage metric is that it is computationally intensive.
The number of attribute similarity computations involved in finding the similarity
between two clusters is quadratic in the average number of references in each clus-
ter. So pairwise comparison is a problem for larger clusters. Further, as clusters
merge and new references are added to a cluster, similarities need to be recom-
puted. This repeated similarity computation adds to the complexity. There are a
number of ways this problem may be addressed. First, updating the cluster simi-
larities is not computationally challenging when using the single link metric. They
may be incrementally modified as clusters merge. Specifically, when two clusters
ci and cj are merged to create a new cluster cij , the similarity to a third cluster
ck may be updated as simattr(cij , ck) = max(simattr(ci, ck), simattr(cj , ck)). Second,
when we are dealing with attributes such as names, though a cluster may contain
hundreds of references, there will be very few distinct names. So for two clusters
ci and cj , computing attribute similarity involves |distinct(ci)| × |distinct(cj | sim-
ilarity computations, rather than |ci| × |cj | computations, where distinct(c) is the
number of unique reference attribute values in cluster c. Finally, if we have some
way of finding an “average” attribute value for each of the clusters, the problem is
much simpler.

This last point also touches on the issue of the semantics of the attribute simi-
larity in the case where we are clustering in order to perform entity resolution. By
design, each cluster corresponds to one resolved entity e. This entity may have been

13.5 SIMILARITY MEASURES FOR ENTITY RESOLUTION 327

referred to using many different attributes, as is evident from the attributes r.A of
the references belonging to that cluster. But if we assume this attribute to be single
valued, then there really is one true value of the entity attribute e.A. For instance,
the reference attributes may have been A. Aho, Alfred V. Aho, A.V Aho, and so
on, but the true entity attribute is Alfred V. Aho. We may define this representative
cluster attribute as the most likely one given the reference attributes in that cluster.
So, when computing the attribute similarity of the two entity clusters, it makes more
sense to look at the similarity of the two representative attributes for the clusters,
rather than considering all of the attributes in each cluster. This makes a difference
in situations where we have detected differences that may be due to typographical
errors in reference attributes within an entity cluster but have still been able to
resolve them correctly. When computing similarity values for this entity cluster, we
possibly do not want these noisy reference attributes to play a role.

13.5.2 Graph-Based Similarity

Next, we address the graph-based similarity measure between two entity clusters
considering the entities that they are related to via the observed edges. There are
many possible ways to define this similarity. We explore some possibilities here and
focus on relevant issues.

13.5.2.1 Edge Detail Similarity. Just as in the case of the attributes, each entity
cluster is associated with a set of edges to which the references contained in it
belong. Recall that each reference r is associated with an observed hyperedge r.H.
Then the edge set c.H for an entity cluster c may be defined as c.H = {h|r.H =
h, r ∈ c}. To ground this in terms of our example in Figure 13.4, after we have
resolved all the entities so that cluster c1 refers to the Aho entity, cluster c2 to the
Ullman entity, and cluster c3 to the Johnson entity, then the edge set for the Aho
cluster is c1.H = {h1, h2, h3, h4} having the edges corresponding to the four papers
written by Aho. The edge set c2.H for Ullman is identical while that for Johnson
is c3.H = {h1, h4}.

We define a similarity measure for a pair of edges so that given this pairwise
similarity measure, we can again use a linkage metric like single link to measure
the relational similarity between two clusters. First, we define a pairwise similarity
measure between two hyperedges. We have already noted that what we want to
consider for relational similarity are the cluster labels of the references in each
edge, and not their attributes. So for an edge, we consider the multiset of entity
labels, one for each reference associated with it.1 We will employ the commonly
used Jaccard similarity measure over these multisets of entity labels. Specifically,
let label(hi) be the set of entity labels for an edge h. Then for a pair of edges hi

and hj , we define their similarity as

sim(hi, hj) = |label(hi)
⋂

label(hj)|
|label(hi)

⋃
label(hj)|

1Though in general we can have a multiset of entity labels for an edge, all the labels are likely to be
distinct when the edges represent co-authorship relations.

328 ENTITY RESOLUTION IN GRAPHS

Given this pairwise similarity measure for edges, we can use an aggregation opera-
tion such as max to calculate the graph-based similarity between two entity clusters
as follows:

simgraph(ci, cj) = max(hi ,hj){sim(hi, hj)} hi ∈ ci.H hj ∈ cj .H

This we will call the edge detail similarity between two clusters since it explicitly
considers every edge associated with each entity cluster. Observe that computing
the similarity between two edges is linear in the average number of references in
an edge, while computing the edge detail similarity of two clusters is quadratic in
the average number of edges associated with each cluster. An issue with using max
as the aggregation function is that a high similarity between a single pair of edges
may not always be a strong evidence for determining duplicates in domains where
the edges can be noisy as well. In the absence of noise, however, it is very likely
that two authors with similar names are duplicates if both are observed to write just
one paper with the same set of collaborating authors. Another advantage of using
max, as compared with other functions like avg, is that it allows cluster similarities
to be updated efficiently when related clusters merge.

13.5.2.2 Neighborhood Similarity. Clearly, an issue with edge detail similarity
is the computational complexity. The solutions discussed in the context of attribute
similarity cannot be extended for edges. It is not trivial to incrementally update edge
detail similarity when clusters merge. Also, the reduction due to repeating entity
patterns in edges is not expected to be as significant as for attributes.

A second and more pertinent issue is whether the detailed pairwise similarity
computation for edges is really necessary for the task at hand. While it may make
sense for some applications, it may not be necessary to look at the structure of each
edge separately for the task of graph-based entity resolution. Using a more concrete
example, for two author entities e1 and e′

1 to be considered similar, it is not necessary
for both of them to co-author a paper with entities e2, e3, and e4 together. Instead, if
e1 participates in an edge {e1, e2, e3, e4} and e′

1 participates in three separate edges
{e′

1, e2}, {e′
1, e3}, and {e′

1, e4}, then that also should count as significant graph-based
evidence for their being the same author entity (if they have similar attributes as
well). In other words, whether or not two entity clusters with similar attributes have
the same edge structures, if they have the same neighbor clusters to which they have
edges, that is sufficient graph-based evidence for bibliographic entity resolution.

We will now formalize the notion of neighborhood clusters for an entity cluster.
Recall that we have defined label (l) as the multiset of entity labels for an edge h

and for an entity cluster c; and c.H is the set of edges associated with it. Then we
can formally define the neighborhood multiset c.N for c as follows:

c.N =
⋃
m

label(hi) hi ∈ c.H

where
⋃

m is the multiset union operator. Intuitively, we collapse the edge structure
and just look at how many times c has participated in the same edge with another

13.5 SIMILARITY MEASURES FOR ENTITY RESOLUTION 329

entity cluster. Note that we do not include c itself among its neighbors. Returning to
our example from Figure 13.2, once the entities have been resolved and clusters c1,
c2, and c3 correspond to entities Aho, Ullman, and Johnson, respectively, the labels
of the edges for cluster c1 are {c1, c2, c3} for h1, {c1, c2} for h2, {c1, c2} for h3,
and {c1, c2, c3} for h4. Then the neighborhood multiset c1.N is the collection of all
cluster labels occurring in these four edges: c1.N = {c2, c2, c2, c2, c3, c3}. Now, for
the graph-based similarity measure between two entity clusters, we take the Jaccard
similarity between their neighborhood multisets:

simgraph(ci, cj) = |ci.N
⋂

cj .N |
|ci.N

⋃
cj .N |

We will call this the neighborhood similarity between the two entity clusters. Com-
puting and updating neighborhood similarity is significantly cheaper computationally
compared to the edge detail similarity. It is linear in the average number of neighbors
per entity. Note that the neighborhood of an entity cluster has a natural interpretation
for author entities and collaborator relationships. The neighborhood is the multiset
of collaborators for an author entity. Also, by avoiding looking at individual links,
neighborhood similarity is less susceptible to noisy edges than edge detail similarity.

Observe that when all edges are binary, the similarity measure between two
edges becomes Boolean, as does the edge detail similarity between two clusters.
Also, the edges can be mapped directly to the neighborhood set. Accordingly using
the edge detail similarity is not appropriate any more and neighborhood similarity
is sufficient.

13.5.3 Negative Evidence from Graphs

So far, we have considered graph structure as additional evidence for two author
references actually referring to the same underlying author entity. However, graph-
based evidence can be negative as well. A “soft” aspect of negative evidence is
directly captured by the combined similarity measure. Imagine two references with
identical names. If we only consider attributes, their similarity would be very high.
However, if they do not have any similarity in their edge structures, then we are
less inclined to believe that they correspond to the same entity. This is reflected by
the drop in the their overall similarity when the graph-based similarity measure is
factored in as well.

We may also imagine stronger graph-based constraints for clustering. In many
relational domains, there is the constraint that no two references appearing in the
same edge can be duplicates of each other. To take a real bibliographic example, if a
paper is observed to be co-authored by M. Faloutsos, P. Faloutsos, and C. Faloutsos;
then probably these references correspond to distinct author entities. We have such
constraints for every edge that has more than one reference. This can be taken into
account by the graph-based similarity measure. The similarity between two cluster
pairs is zero if merging them violates any relational constraint.

330 ENTITY RESOLUTION IN GRAPHS

13.6 GRAPH-BASED CLUSTERING FOR ENTITY RESOLUTION

Given the similarity measure for a pair of entity clusters, we can use a greedy
agglomerative clustering algorithm that finds the closest cluster pair at each step
and merges them. Here we discuss several implementation and performance issues
regarding graph-based clustering algorithms for entity resolution (GBC-ER).

13.6.1 Blocking to Find Potential Resolution Candidates

Initially, each reference belongs to a distinct entity cluster, and the algorithm iter-
atively looks to find the closest pair of clusters. Unless the datasets are small, it is
impractical to consider all possible pairs as potential candidates for merging. Apart
from the scaling issue, most pairs checked by an O(n2) approach will be rejected
since usually about 1% of all pairs are true duplicates. Blocking techniques are
usually employed to rule out pairs that are certain to be nonduplicates. Bucketing
algorithms may be used to create groups of similar reference attributes, and only
references within the same bucket are considered as potential duplicates.

The algorithm inserts all of these potential duplicate pairs into a priority queue
considering their similarities. Then it iteratively picks the pair with the highest
similarity and merges them. The algorithm terminates when the similarity for the
closest pair falls below a threshold.

13.6.2 Graph-Based Bootstrapping for Entity Clusters

The graph-based clustering algorithm begins with each reference assigned to a sep-
arate entity cluster. So to start with, the clusters are disconnected and there is
no graph-based evidence to make use of between clusters. As a result, all initial
merges occur based solely on attribute similarity, but we want to do this in a rela-
tively conservative fashion. One option is to assign the same initial cluster to any
two references that have attributes v1 and v2, where either v1 is identical to v2, or
v1 is an initialed form of v2. For example, we may merge Alfred Aho references
with other Alfred Aho references or with A. Aho references. However, for domains
where last names repeat very frequently, like Chinese, Japanese, or Indian names,
this can affect precision quite adversely. For the case of such common last names,2

the same author label can be assigned to pairs only when they have document co-
authors with identical names as well. For example, two X. Wang references will be
merged when they are co-authors with Y. Li. (We will also merge the Y. Li refer-
ences.) This should improve bootstrap precision significantly under the assumption
that while it may be common for different authors to have the same (initialed) name,
it is extremely unlikely that they will collaborate with the same author, or with two
other authors with identical names.

In addition to using a secondary source for determining common names, a data-
driven approach may also be employed. A [last name, first initial] combination in

2A list of common last names is available at http://en.wikipedia.org/wiki/List of most popular
family names.

13.6 GRAPH-BASED CLUSTERING FOR ENTITY RESOLUTION 331

the data is ambiguous, if there exist multiple first names with that initial for the last
name. For example, though Zabrinsky is not a common last name, K. Zabrinsky
will be considered ambiguous if Ken Zabrinsky and Karen Zabrinsky occur as
author references in the data. Ambiguous references or references with common
last names are not bootstrapped in the absence of relational evidence in the form of
co-authorships, as described above.

13.6.3 Finding the Closest Entity Clusters

Once potential duplicate entity clusters have been identified and clusters have been
bootstrapped, the algorithm iterates over the following steps. At each step, it identi-
fies the currently closest pair of clusters (ci , cj) from the candidate set and merges
them to create a new cluster cij . It removes from the candidate set all pairs that
involve either ci or cj and inserts relevant pairs for cij . It also updates the similar-
ity measures for the “related” cluster pairs. All of these tasks need to be performed
efficiently to make the algorithm scalable.

For efficient extraction of the closest pairs and updating of the similarities, an
indexed max-heap data structure can be used. In addition to the actual similarity
value, each entry in the max-heap maintains pointers to the two clusters whose
similarity it corresponds to. Also, each cluster ci indexes all the entries in the max-
heap that stores similarities between ci and some other cluster cj . The maximum
similarity entry can be extracted from the heap in O(1) time. For each entry whose
similarity changed because of the merge operation, the heap can be updated in O(log
n) steps, where n is the number of entries in the heap. The requirement therefore
is to be able to efficiently locate the entries affected by the merge. First, the set
includes all entries that involve ci or cj . These are easily retrieved by the indexes
maintained by ci and cj , and then one of the entries is replaced by cij and similarities
are recomputed. The other set of entries whose similarities are affected are those
that are related to ci or cj as neighbors. These may be retrieved efficiently as well
if each cluster maintains indexes to its neighbors. For the initial set of clusters,
the neighbors are those that correspond to references in the same edge. As clusters
are merged, the new cluster inherits the neighbors from both of its parents. It also
inherits the heap indexes from its two parents.

13.6.4 Evaluation Measures

Most approaches to entity resolution have viewed the problem as a pairwise clas-
sification task. However, the duplicate relation semantically defines an equivalence
partitioning on the references and our approach is to find clusters of duplicate refer-
ences. From this perspective, it would be preferable to evaluate the clusters directly
instead of an evaluation of the implied binary duplicate predictions.

Given the author entity label li ∈ L for each reference in the evaluation, if the
resolution is perfect, then each generated cluster will exactly correspond to one
author entity. When this is not the case, we may imagine two different scenar-
ios—either a cluster includes references that have different entity labels or it fails
to capture all references that have a particular entity label.

332 ENTITY RESOLUTION IN GRAPHS

The first measure is defined over generated clusters ci ∈ C. Ideally, each cluster
should be homogeneous—all references in a cluster should have the same entity
label. The greater the number of references to different entities in a cluster, the worse
the quality of the cluster. Rather than naively counting the different entity labels in a
cluster, we can measure the entropy of the distribution over entity labels in a cluster.
This we call cluster diversity. As an example, suppose there are 10 references in
a generated entity cluster; five of them correspond to one entity, three to a second
entity, and the remaining two to a third entity. Then the probability distribution over
entity labels for the references in this cluster is 〈0.5, 0.3, 0.2〉. In general, if this
distribution is 〈p1, p2, . . . , pk〉, then the entropy is defined as

∑
k −pi log pi . Note

that the entropy is 0 when all references have the same real entity label and the
label distribution is 〈1.0〉. The entropy is highest for a uniform distribution. Also,
a uniform distribution over k + 1 labels has higher entropy than that over k labels.
The weighted average of the diversity of clusters is considered as the first quality
measure, where the entropy of each cluster is weighted by the number of references
in it. To be more precise, the combined diversity over a clustering C is

Div(C) =
∑
ci∈C

|ci |
N

div(ci)

where N is the total number of references, and div (ci) is the entropy of the entity
label distribution in cluster ci .

However, just minimizing the cluster diversity is not enough since zero diversity
can be achieved by assigning each reference to a distinct cluster. Obviously, this
is not a good clustering since references that correspond to the same entity are
dispersed over many different clusters. So a second measure of cluster quality is
entity dispersion defined over each entity label li . Here for each entity, we consider
the distribution over different cluster labels assigned to the references for that entity.
As for cluster diversity, the entropy is measured for the distribution over cluster
labels for each entity. We look at the weighted average of the entity dispersions,
where the weight of an entity label is the number of references that have that label:

Disp(C) =
∑
li∈L

|li |
N

disp(li)

where disp (li) is entropy of the cluster label distribution for the references having
entity label li .

Note that lower values are preferred for dispersion and diversity. A perfect clus-
tering will have zero cluster diversity and zero entity dispersion. This is practically
not achievable in most cases and a decrease in one will usually mean an increase in
the other. We can plot the dispersion–diversity curve for each set of generated clus-
ters. This shows the value of diversity achieved for any value of dispersion. Also,
we can observe how the dispersion and diversity change as clusters are merged
iteratively.

13.7 EXPERIMENTAL EVALUATION 333

13.7 EXPERIMENTAL EVALUATION

To illustrate the power of graph-based entity resolution, we present evaluations on
two citation datasets from different research areas and compare an implementation
of the graph-based entity resolution algorithm (GBC-ER) with others based solely
on attributes.

The first of the citation datasets is the CiteSeer dataset containing citations to
papers from four different areas in machine learning, originally created by Giles
et al. [16]. This has 2892 references to 1165 authors, contained in 1504 documents.
The second dataset is significantly larger; arXiv (HEP) contains papers from high
energy physics used in KDD Cup 2003.3 This has 58,515 references to 9200 authors,
contained in 29,555 papers. The authors for both datasets have been hand labeled.4

To evaluate the algorithms, we measure the performance of the algorithms for
detecting duplicates in terms of the traditional precision, recall, and F1 on pairwise
duplicate decisions in addition to our proposed dispersion–diversity measure for
clusters. It is practically infeasible to consider all pairs, particularly for HEP, so a
“blocking” approach is employed to extract the potential duplicates. This approach
retains ∼99% of the true duplicates for both datasets. The number of potential dupli-
cate pairs of author references after blocking is 13,667 for CiteSeer and 1,534,661
for HEP.

As our baseline (ATTR), we compare with the hybrid SoftTF-IDF measure [11]
that has been shown to outperform other unsupervised approaches for text-based
entity resolution. Essentially, it augments the TF-IDF similarity for matching token
sets with approximate token matching using a secondary string similarity measure.
Jaro-Winkler is reported to be the best secondary similarity measure for SoftTF-IDF.
We also experiment with the Jaro and the Scaled Levenstein measures. However,
directly using an off-the-shelf string similarity measure for matching names results
in very poor recall. From domain knowledge about names, we know that first and
middle names may be initialed or dropped. A black-box string similarity measure
would unfairly penalize such cases. To deal with this, ATTR uses string similarity
only for last names and retained first and middle names. In addition, it uses drop
probabilities pDropF and pDropM for dropped first and middle names, initial proba-
bilities pFI and pMI for correct initials, and pFIr and pMIr for incorrect initials. The
probabilities we used are 0.75, 0.001, and 0.001 for correctly initialing, incorrectly
initialing, and dropping the first name, while the values for the middle name are
0.25, 0.7, and 0.002. We arrived at these values by observing the true values in the
datasets and then hand-tuning them for performance. Our observation is that base-
line resolution performance does not vary significantly as these values are varied
over reasonable ranges.

ATTR only reports pairwise match decisions. Since the duplicate relation is
transitive, we also evaluate ATTR∗, which removes inconsistencies in the pairwise

3http://www.cs.cornell.edu/projects/kddcup/index.html.
4We would like to thank Aron Culotta and Andrew McCallum for providing the author labels for the
CiteSeer dataset and David Jensen for providing the author labels for the HEP dataset. We performed
additional cleaning for both.

334 ENTITY RESOLUTION IN GRAPHS

match decisions in ATTR by taking a transitive closure. Note that this issue does not
arise with GBC-ER; it does not make pairwise decisions. All of these unsupervised
approaches ATTR, ATTR∗, and GBC-ER need a similarity threshold for deciding
duplicates. We consider the best F1 that can be achieved over all thresholds.

Table 13.1 records F1 achieved by the four algorithms with various string sim-
ilarity measures coupled with SoftTF-IDF, while Table 13.2 shows the best F1 and
the corresponding precision and recall for the four algorithms for each dataset over
all secondary similarity measures. The recall includes blocking so that the highest
recall achievable is 0.993 for CiteSeer and 0.991 for HEP.

The best baseline performance is with Jaro as secondary string similarity for
CiteSeer and Scaled Levenstein for HEP. It is also worth noting that a baseline with-
out initial and drop probabilities scores below 0.5 F1 using Jaro and Jaro-Winkler for
both datasets. It is higher with Scaled Levenstein (0.7) but still significantly below
the augmented baseline. Transitive closure affects the baseline differently in the two
datasets. While it adversely affects precision for HEP, reducing the F1 measure as
a result, it improves recall for CiteSeer and thereby improves F1 as well.

GBC-ER outperforms both forms of the baseline for both datasets. Also, for each
secondary similarity measure GBC-ER with neighborhood similarity outperforms
the baselines with that measure and is in turn outperformed by GBC-ER using edge
detail similarity. For CiteSeer, GBC-ER gets close to the highest possible recall
with very high accuracy. Improvement over the baseline is greater for HEP. While
the improvement may not appear large in terms of F1, note that GBC-ER reduces

TABLE 13.1 Performance of ATTR, ATTR∗, and GBC Using Neighborhood and Edge Detail
Similarity in Terms of F1 Using Various Secondary Similarity Measures with SoftTF-IDFa

CiteSeer HEP

SL JA JW SL JA JW

ATTR 0.980 0.981 0.980 0.976 0.976 0.972
ATTR∗ 0.989 0.991 0.990 0.971 0.968 0.965
GBC(Nbr) 0.994 0.994 0.994 0.979 0.981 0.981
GBC(Edge) 0.995 0.995 0.995 0.982 0.983 0.982

aThe measures compared are Scaled Levenstein (SL), Jaro (JA), and Jaro Winkler (JW).

TABLE 13.2 Best F1 and Corresponding Precision and Recall for ATTR, ATTR∗, and
GBC-ER with Neighborhood and Edge Detail Similarity for CiteSeer and HEP Datasets

CiteSeer HEP

P R F1 P R F1

ATTR 0.990 0.971 0.981 0.987 0.965 0.976
ATTR∗ 0.992 0.988 0.991 0.976 0.965 0.971
GBC(Nbr) 0.998 0.991 0.994 0.990 0.972 0.981
GBC(Edge) 0.997 0.993 0.995 0.992 0.974 0.983

13.7 EXPERIMENTAL EVALUATION 335

error rate over the baseline by 44% for CiteSeer (from 0.009 to 0.005) and by 29%
for HEP (from 0.024 to 0.017). Also, HEP has more than 64, 6000 true duplicate
pairs, so that a 1% improvement in F1 translates to more than 6400 correct pairs.

Looking more closely at the resolution decisions from CiteSeer, we were able
to identify some interesting combinations of decisions by GBC-ER that would be
difficult or impossible for an attribute-only model. There are instances in the dataset
where reference pairs are very similar but correspond to different author entities.
Examples include (liu j, lu j) and (chang c, chiang c). GBC-ER correctly predicts
that these are not duplicates. At the same time, there are other pairs that are not any
more similar in terms of attributes than the examples above and yet are duplicates.
These are also correctly predicted by GBC-ER using the same similarity threshold
by leveraging common collaboration patterns. The following are examples: (john m
f, john m st), (reisbech c, reisbeck c k), (shortliffe e h, shortcliffe e h), (tawaratumida
s, tawaratsumida sukoya), (elliott g, elliot g l), (mahedevan s, mahadevan sridhar),
(livezey b, livezy b), (brajinik g, brajnik g), (kaelbing l p, kaelbling leslie pack),
(littmann michael l, littman m), (sondergaard h, sndergaard h), and (dubnick cezary,
dubnicki c). An example of a particularly pathological case is (minton s, minton
andrew b), which is the result of a parse error. The attribute-only baselines cannot
make the right prediction for both these sets of examples simultaneously, whatever
the decision threshold, since they consider names alone.

Figures 13.5 and 13.6 show how performance varies for GBC-ER for the two
datasets with varying combination weight α for attribute and graph-based similarity.
Recall that when α is 0, the similarity is based only on attributes, and when α is
1 it is wholly graph-based. The plots show that GBC-ER with both neighborhood
and edge detail similarity outperform the baselines over all values of α. Note that
GBC-ER takes advantage of graph-based bootstrapping in these experiments, which
explains why it is better than the baseline even when α is 0. The best performance
for CiteSeer is around 0.5 while for HEP performance peaks around 0.1 and then
trails off. It can also be observed that edge detail similarity is more stable in per-
formance over varying α than neighborhood similarity. Significantly, once clusters
have been bootstrapped using attribute and graph-based evidence, GBC-ER out-
performs the baselines even when α is 1, which means that attributes are being
overlooked altogether and clusters are merged using graph-based evidence alone.

The first row of plots in Figure 13.5 use single-link criterion for attribute sim-
ilarity while those in the second measure similarity between representative cluster
attributes. The differences in the two plots are observable for low values of α when
attribute similarity plays a more dominant role. It can be seen that the single-link
approach performs better than the cluster representative approach for all secondary
similarity measures. The curves become identical for higher values of α when
attributes matter less. A similar trend was observed for HEP as well.

Figure 13.7 shows performance of GBC-ER without using graph-based boot-
strapping. When α is 0, GBC-ER is identical to ATTR∗, which is verified by the
results. As α increases from 0, performance improves over the baseline and then
drops again. For HEP, performance falls sharply with higher α with neighborhood
similarity. Edge detail similarity, however, still performs surprisingly well. Even

336 ENTITY RESOLUTION IN GRAPHS

 0.98

 0.982

 0.984

 0.986

 0.988

 0.99

 0.992

 0.994

 0.996

 0 0.2 0.4 0.6 0.8 1

B
es

t F
1

alpha

Varying a: Scaled Lev. for CiteSeer w/ Cl. Rep.

GBC-ER (Nbr)
GBC-ER (Edge)
ATTR
ATTR*

 0.98

 0.982

 0.984

 0.986

 0.988

 0.99

 0.992

 0.994

 0.996

 0 0.2 0.4 0.6 0.8 1

B
es

t F
1

alpha

Varying a: Scaled Levenstein for CiteSeer

GBC-ER (Nbr)
GBC-ER (Edge)
ATTR
ATTR*

 0.978

 0.98

 0.982

 0.984

 0.986

 0.988

 0.99

 0.992

 0.994

 0.996

 0 0.2 0.4 0.6 0.8 1

B
es

t F
1

alpha

Varying a: Jaro Winkler for CiteSeer

GBC-ER (Nbr)
GBC-ER (Edge)
ATTR
ATTR*

 0.978

 0.98

 0.982

 0.984

 0.986

 0.988

 0.99

 0.992

 0.994

 0.996

 0 0.2 0.4 0.6 0.8 1

B
es

t F
1

alpha

Varying a: Jaro Winkler for CiteSeer w/ Cl. Rep.

GBC-ER (Nbr)
GBC-ER (Edge)
ATTR
ATTR*

 0.98

 0.982

 0.984

 0.986

 0.988

 0.99

 0.992

 0.994

 0.996

 0 0.2 0.4 0.6 0.8 1

B
es

t F
1

alpha

Varying a: Jaro for CiteSeer w/ Cl. Rep.

GBC-ER (Nbr)
GBC-ER (Edge)
ATTR
ATTR*

 0.98

 0.982

 0.984

 0.986

 0.988

 0.99

 0.992

 0.994

 0.996

 0 0.2 0.4 0.6 0.8 1

B
es

t F
1

alpha

(b)(a)

(d)(c)

(f)(e)

Varying a: Jaro for CiteSeer

GBC-ER (Nbr)
GBC-ER (Edge)
ATTR
ATTR*

Figure 13.5. Best F1 measures achieved by GBC-ER with neighborhood and edge detail

similarities over varying combination weight α for CiteSeer. Plots (a), (c), and (e) use single

link for attribute similarity with Jaro, Jaro-Winkler, and Scaled Levenstein, respectively, as

secondary similarity while plots (b), (d), and (f) use representative attributes for clusters with

the same three secondary similarity measures.

13.7 EXPERIMENTAL EVALUATION 337

 0.965

 0.97

 0.975

 0.98

 0.985

 0 0.2 0.4 0.6 0.8 1

B
es

t F
1

a

Varying a: Jaro Winkler for HEP

GBC-ER (Nbr)
GBC-ER (Edge)
ATTR
ATTR* 0.965

 0.97

 0.975

 0.98

 0.985

 0 0.2 0.4 0.6 0.8 1

B
es

t F
1

a

Varying a: Jaro for HEP

GBC-ER (Nbr)
GBC-ER (Edge)
ATTR
ATTR*

 0.965

 0.97

 0.975

 0.98

 0.985

 0 0.2 0.4 0.6 0.8 1

B
es

t F
1

a

Varying a: Scaled Levenstein for HEP

(b)(a) (c)

GBC-ER (Nbr)
GBC-ER (Edge)
ATTR
ATTR*

Figure 13.6. Best F1 measures achieved by GBC-ER with neighborhood and edge detail

similarities over varying combination weight α for HEP. Plots (a)–(c) are with Jaro, Jaro-Winkler,

and Scaled Levenstein, respectively, as secondary similarity for attributes.

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 0.2 0.4 0.6 0.8 1

B
es

t F
1

a

Varying a: Sc. Lev. for CiteSeer w/o BootStrap

GBC-ER (Nbr)
GBC-ER (Edge)
ATTR
ATTR*

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 0.2 0.4 0.6 0.8 1

B
es

t F
1

a

Varying a: Sc. Lev. for HEP w/o BootStrap

GBC-ER (Nbr)
GBC-ER (Edge)
ATTR
ATTR*

(b)(a)

Figure 13.7. Effect of not using bootstrapping for initializing the entity clusters for

(a) CiteSeer and (b) HEP using Scaled Levenstein as secondary similarity.

when α is 1, it does better than the baseline for CiteSeer and is able to achieve
close to 0.9 F1 for HEP. This suggests that edge detail is a reliable indicator of
identity even without considering attributes. It should, however, be noted that these
results include blocking, which uses attributes to find potential duplicates. This sug-
gests that given people with similar names, it is possible to identify duplicates with
a high degree of reliability using edge detail similarity alone.

Figure 13.8 shows the precision–recall characteristics for the four algorithms
with Jaro as secondary similarity. Plot 13.8(a) shows that all algorithms perform
well for CiteSeer. Plot 13.8(b) concentrates on the region of difference between the
algorithms. Still the curves for edge detail and neighborhood similarity are almost
identical, as is the case for HEP in plot 13.8(c). But they consistently remain over
the baselines for both datasets. Observe that ATTR∗ dominates ATTR for CiteSeer
but the roles reverse for HEP. Note that GBC-ER starts above 90% recall. This
is by virtue of graph-based bootstrapping. The corresponding precision is high as
well validating the effectiveness of our graph-based bootstrapping scheme. The
characteristics with other secondary similarity measures are similar.

Figure 13.9 illustrates how dispersion–diversity measures may be used. We
show the results only for HEP with Jaro similarity. Other plots are similar. Recall that

338 ENTITY RESOLUTION IN GRAPHS

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.7 0.75 0.8 0.85 0.9 0.95 1

R
ec

al
l

Precision

Precision vs. Recall: Jaro for HEP

GBC-ER (Nbr)
GBC-ER (Edge)
ATTR
ATTR*

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.7 0.75 0.8 0.85 0.9 0.95 1

R
ec

al
l

Precision

Precision vs. Recall: Jaro for CiteSeer

GBC-ER (Nbr)
GBC-ER (Edge)
ATTR
ATTR*

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0.96 0.965 0.97 0.975 0.98 0.985 0.99 0.995 1

R
ec

al
l

Precision

(a)

(c)

(b)

Precision vs. Recall: Jaro for CiteSeer (Zoomed)

GBC-ER (Nbr)
GBC-ER (Edge)
ATTR
ATTR*

Figure 13.8. Precision–recall characteristics for (a)–(b) CiteSeer and (c) HEP using Jaro

similarity. Plot (b) highlights the difference between the algorithms from plot (a).

while values closer to 1 are preferred for precision and recall, values closer to 0 are
better for dispersion and diversity so that points on the dispersion–diversity curves
in plot 13.9(a) that are closer to (0, 0) indicate better performance. Plot 13.9(a)
shows that dispersion–diversity curves are very similar to precision–recall curves,
but they evaluate the clusters directly. Note that since ATTR makes pairwise deci-
sions and does not generate clusters of duplicate references, it cannot be evaluated
using this approach. Figures 13.9(b)–(d) plot diversity and dispersion against num-
ber of clusters. Again, observe how graph-based bootstrapping significantly lowers
the initial number of clusters for GBC-ER, thereby starting off with much lower dis-
persion. The initial number of clusters is lowered by 83% for HEP and by 58% for
CiteSeer. That it is accurate can be inferred from the significantly lower diversity at
the same number of clusters compared to ATTR∗. The number of real author entities
for HEP is 8967, which is shown using a vertical line in plots 13.9(b)–(d). Plot
13.9(b) highlights the difference in dispersion between the three algorithms, and we
can see that GBC-ER improves dispersion over ATTR∗ at the correct number of
entity clusters and that edge detail performs better than neighborhood similarity.

Finally, we look at the execution times of the algorithms. All experiments were
run on a 1.1-GHz Dell PowerEdge 2500 Pentium III server. Table 13.3 records the
execution times in CPU seconds of the baselines and different versions of GBC-ER

13.7 EXPERIMENTAL EVALUATION 339

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 4000 5000 6000 7000 8000 9000 10000

D
is

pe
rs

io
n

Number of Entity Clusters

Disp. vs. #Entity Clusters: Jaro for HEP (Zoomed)

GBC-ER (Nbr)
GBC-ER (Edge)
ATTR*

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 10000 20000 30000 40000 50000 60000

D
iv

er
si

ty

Number of Entity Clusters

Diversity vs. No. of Entity Clusters: Jaro for HEP

GBC-ER (Nbr)
GBC-ER (Edge)
ATTR*

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

D
iv

er
si

ty

Dis

(a)

(c) (d)

(b)

persion

Dispersion vs. Diversity: Jaro for HEP

GBC-ER (Nbr)
GBC-ER (Edge)
ATTR*

 0

 0.5

 1

 1.5

 2

 2.5

 10000 20000 30000 40000 50000 60000

D
is

pe
rs

io
n

Number of Entity Clusters

Dispersion vs. No. of Entity Clusters: Jaro for HEP

GBC-ER (Nbr)
GBC-ER (Edge)
ATTR*

Figure 13.9. Performance measure using dispersion and diversity for HEP with Jaro simi-

larity. The plots show (a) dispersion against diversity, (b) diversity and (c)–(d) dispersion over

changing number of entity clusters.

TABLE 13.3 Execution Time of GBC-ER, ATTR, and
ATTR∗ in CPU Seconds for CiteSeer and HEP Datasets

CiteSeer HEP

ATTR 1.88 162.13
ATTR∗ 2.30 217.37
GBC(Nbr w/ Single Link) 3.14 543.83
GBC(Edge w/ Single Link) 3.18 690.44
GBC(Nbr w/ Cluster Rep.) 3.65 402.68
GBC(Edge w/ Cluster Rep.) 3.75 583.58

on the CiteSeer and HEP datasets. GBC-ER expectedly takes more time than the
baselines. But it is quite fast for CiteSeer taking only twice as much time as ATTR∗.
It takes longer for HEP; about 7 times as long compared to the baseline. While
using edge detail is more expensive than neighborhood similarity, it does not take
significantly longer for either dataset. The complexity of edge detail depends on a
number of factors. It grows quadratically with the average number of edges per entity

340 ENTITY RESOLUTION IN GRAPHS

and linearly with the average number of references in each edge. While the average
edge size is the same for both datasets, the average number of edges per entity is
2.5 for CiteSeer and 6.36 for HEP, which explains the difference in execution times.
In contrast, complexity of neighborhood similarity is linear in the average number
of neighbors per entity, which is 2.15 for CiteSeer and 4.5 for HEP. Separately,
we expected single-link clustering to be more expensive than using representative
attributes for clusters. While this is true for HEP, the trend reverses for CiteSeer. This
may be explained by taking into account the added overhead of updating the cluster
representative every time new references are added to a cluster. Since CiteSeer only
has an average of 2.5 references per entity, the cost of a naive updation scheme for
cluster representatives overshadows the small gain in computing attribute similarity
for clusters.

To see how the algorithms scale with increasing number of references in the
dataset, we used a synthetic generator for ambiguous data. We preserved features of
the real datasets wherever possible, like the average number of references and edges
per entity, the degree of neighborhood for each entity and the average number of
references per edge. The execution times of ATTR∗ and different versions of GBC-
ER are plotted in Figure 13.10 against varying number of references in the dataset.
We would like to stress that the execution time depends on other factors as well like
the number of potential duplicate pairs in the data, which we were not able to control
directly. So these numbers should not be compared with the execution times on the
real datasets but instead should serve only for a comparative study of the different
algorithms. The curves confirm that GBC-ER takes longer than the baseline, but
they also show that the trend is roughly linear in the number of references for all

0

 200

 400

 600

 800

 1000

 1200

0 10 20 30 40 50 60

C
P

U
 T

im
e

(s
)

Number of References (in Thousands)

Execution Time

ATTR *
GBC (Nbr) with Bootstrap
GBC (Nbr) w/o Bootstrap
GBC (Edge) with Bootstrap
GBC (Edge) w/o Bootstrap

Figure 13.10. Execution time for ATTR∗ and GBC-ER with neighborhood and edge detail

similarity over varying number of references in synthetic datasets.

13.8 CONCLUSION 341

versions of it. The plots also show the significant speedup that is achieved with
graph-based bootstrapping in addition to the performance benefits that it provides.

13.8 CONCLUSION

In this chapter, we have seen how graph-based entity resolution may be posed
as a clustering problem that augments a general category of attribute similarity
measures with graph-based similarity among the entities to be resolved. We looked
at two different similarity measures based on graphs and a graph-based clustering
algorithm (GBC-ER) that shows performance improvements over attribute-based
entity resolution in two real citation datasets. The combined similarity measure
allows a smooth transition from an attribute-only measure at one extreme to one
that is based just on graph-based similarity at the other. Depending on the reliability
of the attributes or the relations in the application domain or the particular dataset,
it is possible to attach higher weights to either of them.

The graph-based similarity measures are intended to capture the dependencies
between resolution decisions. They do so by looking at the current entity labels
of related entities. We presented two different graph-based similarity measures that
consider relations between entities at different levels of detail. Edge-detail simi-
larity explicitly considers each edge in which an entity participates. Neighborhood
similarity reduces the computational complexity involved by collapsing the edge
structure and just looking at the set of neighborhood entities for each entity cluster.
The execution times for the similarity measures depends on the graph structure in
the data. In general, edge detail takes more time than neighborhood similarity but
is a more reliable indicator of identity. Even without considering attributes at all in
the similarity measure, edge detail is able to achieve high accuracy in determining
duplicates. In fact, in one of our datasets, even without using attributes at all, it does
better than attribute-only baselines. This suggests that in domains where attributes
are extremely unreliable or perhaps unavailable, it may still be possible to discover
identity going by the graph patterns alone.

We consider two different options for measuring attribute similarity between
entity clusters. The first is the single linkage criterion that looks at all pairwise
attribute similarities between two clusters and chooses the highest one. This reduces
to transitive closure over pairwise attribute decisions that is appropriate for entity
resolution. This measure is expected to be computationally intensive, and, therefore,
we propose an alternative measure that constructs the representative attribute for
each entity cluster and then measures similarities between these representatives only.
However, our experiments show that the single-linkage measure performs better in
practice. Also, unless the representatives are recomputed quickly as clusters expand,
this approach does not come with significant improvements in execution time either.

We evaluate a graph-based bootstrapping approach for initializing the entity
clusters quickly and accurately. Experimental results show that bootstrapping reduces
the initial number of clusters by 83% on our larger dataset without significantly
compromising on precision. We show that graph-based bootstrapping also improves

342 ENTITY RESOLUTION IN GRAPHS

performance by uncovering patterns quickly that the graph-based similarity measures
can leverage.

Since GBC-ER considers relational similarities that are expensive to compute
and updates similarities iteratively, it is expectedly more costly than performing
attribute similarity. However, our experiments on synthetic data show that both
graph-based similarity measures scale gracefully over increasing number of refer-
ences in the dataset. Also, the added cost clearly reaps bigger benefits, as shown
by the performance plots. Database cleaning is not an operation that is likely to
be performed very frequently and the increased computation time is not expected
to be too critical. There may, of course, be situations where this approach is not
likely to prove advantageous, for example, where distinctive cliques do not exist for
the entities or if references for each edge appear randomly. There the user has the
choice of falling back on traditional attribute similarity or setting α to assign lower
weights for graph-based similarity.

In summary, entity resolution is an area that has been attracting growing atten-
tion to address the influx of structured and semistructured data from a multitude
of heterogeneous sources. Accurate resolution is important for a variety of reasons
ranging from cost effectiveness and reduction in data volume to accurate analysis
for critical applications. In the case of graph data, it is especially important to look
at entity resolution from a graph-based perspective. We have found graph-based
entity resolution to be a powerful and promising approach that combines attribute
similarity with relational evidence and shows improved performance over traditional
approaches.

REFERENCES

1. R. Ananthakrishna, S. Chaudhuri, and V. Ganti. Eliminating fuzzy duplicates in
data warehouses. In Proceedings of the 28th International Conference on Very Large
Databases (VLDB-2002), Hong Kong, China, 2002.

2. P. Berkhin. Survey of clustering data mining techniques. Technical Report, Accrue Soft-
ware, 2002.

3. I. Bhattacharya and L. Getoor. Deduplication and group detection using links. In Pro-
ceedings of the 10th ACM SIGKDD Workshop on Link Analysis and Group Detection
(LinkKDD-04), August 2004.

4. I. Bhattacharya and L. Getoor. Iterative record linkage for cleaning and integration. In
Proceedings of the SIGMOD 2004 Workshop on Research Issues on Data Mining and
Knowledge Discovery, June 2004.

5. I. Bhattacharya and L. Getoor. A latent dirichlet model for entity resolution. Technical
Report, University of Maryland, College Park, MD, 2005.

6. M. Bilenko and R. J. Mooney. Adaptive duplicate detection using learnable string sim-
ilarity measures. In Proceedings of the Ninth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD-2003), Washington, DC, 2003.

7. M. Bilgic, L. Licamele, L. Getoor, and B. Shneiderman. D-dupe: An interactive tool
for entity resolution in social networks. In The 13th International Symposium on Graph
Drawing (Poster), Limerick, Ireland, September 2005.

REFERENCES 343

8. S. Chaudhuri, K. Ganjam, V. Ganti, and R. Motwani. Robust and efficient fuzzy match
for online data cleaning. In Proceedings of the 2003 ACM SIGMOD International Con-
ference on Management of Data, pp. 313–324, San Diego, CA, 2003.

9. W. Cohen. Data integration using similarity joins and a word-based information repre-
sentation language. ACM Transactions on Information Systems , 18:288–321, 2000.

10. W. W. Cohen, H. Kautz, and D. McAllester. Hardening soft information sources. In
Proceedings of the Sixth International Conference on Knowledge Discovery and Data
Mining (KDD-2000) pp. 255–259, Boston, August 2000.

11. W. W. Cohen, P. Ravikumar, and S. E. Fienberg. A comparison of string distance metrics
for name-matching tasks. In Proceedings of the IJCAI-2003 Workshop on Information
Integration on the Web, pp. 73–78, Acapulco, Mexico, August 2003.

12. W. W. Cohen and J. Richman. Learning to match and cluster large high-dimensional
data sets for data integration. In Proceedings of the Eighth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD-2002), Edmonton, Alberta,
2002.

13. A. Doan, Y. Lu, Y. Lee, and J. Han. Object matching for data integration: A profile-
based approach. In Proceedings of the IJCAI Workshop on Information Integration on
the Web, Acapulco, Mexico, August 2003.

14. I. P. Fellegi and A. B. Sunter. A theory for record linkage. Journal of the American
Statistical Association , 64:1183–1210, 1969.

15. H. Galhardas, D. Florescu, E. Simon, and D. Shasha. An extensible framework for
data cleaning. In ICDE ’00: Proceedings of the 16th International Conference on Data
Engineering, p. 312. IEEE Computer Society, 2000.

16. C. Lee Giles, K. Bollacker, and S. Lawrence. CiteSeer: An automatic citation indexing
system. In Proceedings of the Third ACM Conference on Digital Libraries, pp. 89–98,
Pittsburgh, PA, June 23–26 1998.

17. L. Gravano, P. Ipeirotis, N. Koudas, and D. Srivastava. Text joins for data cleansing and
integration in an rdbms. In 19th IEEE International Conference on Data Engineering,
2003.

18. M. A. Hernández and S. J. Stolfo. The merge/purge problem for large databases. In
Proceedings of the 1995 ACM SIGMOD International Conference on Management of
Data (SIGMOD-95) pp. 127–138, San Jose, CA, May 1995.

19. J. A. Hylton. Identifying and merging related bibliographic records. Master’s thesis,
Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA,
1996.

20. I. Jonyer, L. B. Holder, and D. J. Cook. Graph-based hierarchical conceptual clustering.
Journal of Machine Learning Research , 2(1–2):19–43, 2001.

21. D. V. Kalashnikov, S. Mehrotra, and Z. Chen. Exploiting relationships for domain-
independent data cleaning. In SIAM International Conference on Data Mining (SIAM
SDM), Newport Beach, CA, April 21–23 2005.

22. S. Lawrence, K. Bollacker, and C. L. Giles. Autonomous citation matching. In Proceed-
ings of the Third International Conference on Autonomous Agents, New York, May 1999.
ACM Press.

23. X. Li, P. Morie, and D. Roth. Semantic integration in text: From ambiguous names to
identifiable entities. Al Magazine. Special Issue on Semantic Integration, 2005.

24. A. McCallum and B. Wellner. Conditional models of identity uncertainty with application
to noun coreference. In Neural Information Processing Systems (NIPS), 2004.

25. A. K. McCallum, K. Nigam, and L. Ungar. Efficient clustering of high-dimensional data
sets with application to reference matching. In Proceedings of the Sixth International

344 ENTITY RESOLUTION IN GRAPHS

Conference on Knowledge Discovery and Data Mining (KDD-2000), pp. 169–178,
Boston, MA, August 2000.

26. B. Milch, B. Marthi, D. Sontag, S. Russell, D. L. Ong, and A. Kolobov. Blog: Proba-
bilistic models with unknown objects. In Proceedings IJCAI, 2005.

27. A. E. Monge and C. P. Elkan. The field matching problem: Algorithms and applications.
In Proceedings of the Second International Conference on Knowledge Discovery and
Data Mining (KDD-96), pp. 267–270, Portland, OR, August 1996.

28. A. E. Monge and C. P. Elkan. An efficient domain-independent algorithm for detecting
approximately duplicate database records. In Proceedings of the SIGMOD 1997 Work-
shop on Research Issues on Data Mining and Knowledge Discovery, pp. 23–29, Tuscon,
AZ, May 1997.

29. G. Navarro. A guided tour to approximate string matching. ACM Computing Surveys ,
33(1):31–88, 2001.

30. J. Neville, M. Adler, and D. Jensen. Clustering relational data using attribute and link
information. In Proceedings of the Text Mining and Link Analysis Workshop, Eighteenth
International Joint Conference on Artificial Intelligence, 2003.

31. H. B. Newcombe, J. M. Kennedy, S. J. Axford, and A. P. James. Automatic linkage of
vital records. Science, 130:954–959, 1959.

32. Parag and P. Domingos. Multi-relational record linkage. In Proceedings of 3rd Workshop
on Multi-Relational Data Mining at ACM SI GKDD, Seattle, WA, August 2004.

33. H. Pasula, B. Marthi, B. Milch, S. Russell, and I. Shpitser. Identity uncertainty and
citation matching. In Advances in Neural Information Processing Systems 15. MIT Press,
Cambridge, MA, 2003.

34. V. Raman and J. M. Hellerstein. Potter’s wheel: An interactive data cleaning system. In
Proceedings VLDB, 2001.

35. P. Ravikumar and W. W. Cohen. A hierarchical graphical model for record linkage. In
UAI 2004, Banff, CA, July 2004.

36. E. Ristad and P. Yianilos. Learning string edit distance. IEEE Transactions on PAMI ,
20(5):522–532, 1998.

37. S. Sarawagi and A. Bhamidipaty. Interactive deduplication using active learning. In
Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining (KDD-2002). Edmonton, Alberta, 2002.

38. J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 22(8):888–905, 2000.

39. S. Tejada, C. A. Knoblock, and S. Minton. Learning object identification rules for infor-
mation integration. Information Systems Journal , 26(8):635–656, 2001.

40. W. E. Winkler. The state of record linkage and current research problems. Technical
Report, Statistical Research Division, U.S. Census Bureau, Washington, DC, 1999.

41. W. E. Winkler. Methods for record linkage and Bayesian networks. Technical Report,
Statistical Research Division, U.S. Census Bureau, Washington, DC, 2002.

Part III

APPLICATIONS

345

14

MINING FROM CHEMICAL
GRAPHS
TAKASHI OKADA

Department of Informatics, School of Science & Engineering,
Kwansei Gakuin University, Sanda, Japan

14.1 INTRODUCTION AND REPRESENTATION OF MOLECULES

This chapter provides an overview of developments in chemical graph mining, with
a focus centered somewhere between computer science and chemistry, reflecting
the author’s background. After a brief introduction to the representation of chemi-
cal structure, we discuss mining issues and developments in this field. Those who
require further details about chemical information should consult a chemoinformatics
textbook.

14.1.1 Molecular Structure and Structure Diagrams

Chemistry is fundamentally the science of molecules. Its main subjects are the eluci-
dation of molecular structures, the establishment of relationships between structures
and various properties, and the conversion of chemical structures (chemical reac-
tions). Molecules consist of atoms and the bonds linking them. For example, a
carbon atom has four valences, which can be used to form various stable bonds
with other atoms, such as carbon, oxygen, and nitrogen. There are infinite combina-
tions of atoms and bonds, and a huge number of chemical compounds have already
been synthesized. In fact, more than 40 million compounds are currently registered

Mining Graph Data, Edited by Diane J. Cook and Lawrence B. Holder
Copyright c© 2007 John Wiley & Sons, Inc.

347

348 MINING FROM CHEMICAL GRAPHS

with the Chemical Abstracts Service. Since each molecule must be identified sep-
arately, chemists have expended a great deal of time and energy expressing and
naming unique structures since the nineteenth century.

Before beginning a discussion of detailed structure expression, it is important
to point out that there are many levels to their representation, including structure
diagrams, three-dimensional steric conformations, and electronic and vibrational
structures. Our observations of molecules involve mixtures of various conformations,
and the lifetime of a conformation is very short. The excited states of electronic
and vibrational structures also have short lifetimes, and we cannot isolate them.
Therefore, molecular structure diagrams have played a central role in chemistry, as
the descriptive level of the diagrams matches the concept of a stable molecule. This
means of expression has been used since the nineteenth century, and it is really
the international language of chemistry, akin to the mathematical formulas in other
sciences.

The chemical formula is another means of expressing a molecule; it describes
the composition of elements. For example, two compounds with the chemical for-
mula C2H6O can exist: dimethyl ether and ethanol; Figure 14.1 shows their structure
diagrams. These two molecules are called isomers; their conversion does not occur
at room temperature unless they are placed under certain reactive conditions.

In these diagrams, an atom is denoted by its element symbol. Each element has
a unique number of valences (C, 4; H, 1; O, 2), which are used to constitute bonds
between atoms. All the bonds in this figure are single bonds in which the atoms
at each end use one valence. However, many molecules contain bonds using two
or three valences, as shown in Figure 14.2. Here, acetic acid has a double bond
using two valences each from C and O, and acetylene has a triple bond between
two carbons. Sometimes, an atom has a positive or negative charge, as seen in the
lower oxygen atom of the acetic acid anion. The charge of an atom usually affects
the number of valences.

It is easy to understand that structure diagrams are undirected, labeled graphs
in which atoms are nodes and bonds are the edges of the graph. Sometimes we
find arrows in a structure diagram, which denote shifting of an electron pair from
one atom to its neighbor. However, such arrows should be interpreted as a kind of
edge label and should not be treated as a directed graph. Examples appear in many

C2H6O

O

C C

H

H

H H

H

H H

C CH

H

H

H

O

H

Dimethylether Ethanol

Figure 14.1. Isomers with the chemical formula C2H6O.

14.1 INTRODUCTION AND REPRESENTATION OF MOLECULES 349

Acetic Acid Acetic Acid Anion Acetylene

H

H

H

C

O

O H

H

H

H

C

O

O

H C C H

Figure 14.2. Various structure diagrams.

C2H6O

O

C C

H

H

H H

H

H H

C CH

H

H

H

O

H

H3C

O

CH3 H3C CH2

OH

O OH

Dimethylether Ethanol

Figure 14.3. Abbreviation of hydrogen and carbon atoms.

inorganic and organometallic compounds, and their expression as a graph is not yet
well established, so we confine ourselves to using structure diagrams of organic
molecules.

Hydrogen atoms are often considered attachments to fill open atom valences,
and they are aggregated in CH3 and CH2 groups in the second row of Figure 14.3.
Carbon atoms, which are so common, are also abbreviated in the third row. These
three structure diagrams have the same meaning for chemists.

The diagrams of most structures contain rings, as shown in Figure 14.4. The
bonds in the nonaromatic rings are single or double. By contrast, the single and
double benzene bonds can be described in two different ways, as shown in the lower
left graphs. These bonds are delocalized and exhibit a very different character from
single and double bonds; they are called “aromatic” bonds, and chemists sometimes
emphasize their nature by drawing a circle in the ring. This aromatic nature is also
found in many rings, for example, pyridine and furan. When a structure diagram is
given, an algorithm can determine whether a ring is aromatic. However, a furan ring
can exhibit dual characteristics of aromatic bonds or single/double bonds, depending
on the context under discussion.

350 MINING FROM CHEMICAL GRAPHS

N
H

N
O

Nonaromatic rings

Aromatic Rings

Benzene Benzene Pyridine Furan

Figure 14.4. Molecules with nonaromatic and aromatic rings.

Combinations of atoms and bonds with a variety of labels allow potentially
infinite numbers of molecules, all of which can be expressed using a labeled graph.
There are naming rules for these structure diagrams, which chemists have used in
many documents, but currently the compound name has a limited role, and chemists’
ways of thinking depend solely on structure diagrams. The compelling need for
storage and retrieval of structure diagrams was the mother of chemoinformatics, and
the connection table described in the next section is the basic tool for exchanging
information on structure diagrams.

14.1.2 Connection Table

Figure 14.5 depicts a typical connection table for acetic acid. Here, the first line
contains the numbers of atoms (= 4) and bonds (= 3). The following four lines
(a1–a4) show atom coordinates and element symbols, using an arbitrary numbering
of atoms. For example, the first atom at line a1 is carbon, located at position:
x = −0.665, y = −0.0248, z = 0.0. These coordinates are only used to illustrate
the structure diagram and have no physical reality. The last three lines (b1–b3) are
used to denote bonds among atoms; line b3 indicates that there is a single bond
(1) between atoms 2 and 4.

Hydrogen atoms are usually considered attachments to heavy atoms and are not
included as a separate line in connection tables, which helps to decrease the order
of a graph. However, chemists always consider veiled hydrogen atoms because they
play important roles in all chemical phenomena.

An atom line sometimes has modifiers displaying information about charges
and isotopes, as well as the number of attached hydrogen atoms. We can also attach
flags to bond entries, denoting whether the bond is aromatic, and whether it is in

14.1 INTRODUCTION AND REPRESENTATION OF MOLECULES 351

4 3
a1 -0.6650 -0.0248 0.0000 C
a2 0.1600 -0.0248 0.0000 C
a3 0.5935 0.6771 0.0000 O
a4 0.6650 -0.6771 0.0000 O
b1 1 2 1
b2 2 3 2
b3 2 4 1

H3C C

O

OH

1

2

3

4

Figure 14.5. Sample connection table for acetic acid.

a ring. Usual datasets do not contain this information, however, and software must
infer it from a simple connection table and the number of atom valences.

Most chemists consider a nitrogen atom to have two kinds of valence, depending
on the molecular environment. For example, a nitrogen atom has three valences in
methylamine and five in nitromethane, as shown in Figure 14.6. However, nitro-
methane can also be written as a resonance hybrid of two ionized structures in
which the cationic nitrogen atom can be interpreted as having three valences (the
valences in methylamine) plus one (modification by a positive charge). The latter
assumes that neutral nitrogen always has three valences, and this scheme is usually
used in connection tables because of its computational simplicity. The interpretation
that the real molecule is a resonance hybrid of two ionized structures, like the acetic
acid anion in Figure 14.6, is left to the minds of chemists.

Depending on the commercial software used, there are a variety of exchange
formats for connection tables. MDL molfile [24] is the most frequently used format,
and most commercial software can import/export files in this format.

H3C N

H

H

H3C N

O

O

H3C N+

O–

O

H3C N+

O–

O

H3C C

O

O

H3C C

O–

O

H3C C

O

O–

Methyl Amine Nitromethane

Acetic Acid Anion

Figure 14.6. Multiple valence numbers and resonance.

352 MINING FROM CHEMICAL GRAPHS

14.1.3 Stereochemistry

Some stereochemical features cannot be described as a graph, including two major
features: geometric isomers and chiral centers. Figure 14.7 shows an example of
the former in which the same graph expresses maleic acid and fumaric acid, but
they are different molecules, because the double bond at the center cannot rotate.
There are two COOH groups: one has a cis configuration, and the other has a trans
configuration. These geometric isomers have very different physical and chemical
properties, between which we need to discriminate.

Figure 14.8 shows an example of a chiral center, another major feature. Here,
wedge-shaped and dashed bonds are used to denote the relative positions of the
attached groups. In these molecules, there are four different groups attached to the
central carbon atom, and we cannot superimpose Figure 14.8(a) and 14.8(b). The
central carbon atom in these molecules is called a chiral center, and it appears
when there is no mirror symmetry in the structure of a molecule. In physical reality,
wedge-shaped/dashed bonds are a single bond, and these expressions are useful only
when a chiral center is specified. Therefore, diagrams 14.8(b) and 14.8(c) express the
same molecule. Many biological molecules are chiral, which greatly affects their
interactions with other biological molecules. Therefore, the expression of chiral
molecules is an important subject in chemoinformatics.

H

H

COOH

COOH

H

HOOC

COOH

H

Maleic Acid
(cis configuration)

Fumaric Acid
(trans configuration)

Figure 14.7. Geometric isomers.

COOH

HO
H

F

COOH

OH
H

F
H F

COOH

OH

(a) (b) (c)

Figure 14.8. Chiral isomers.

14.1 INTRODUCTION AND REPRESENTATION OF MOLECULES 353

One way to code stereochemical information is to use three-dimensional coor-
dinates in a connection table, which allows us to detect cis–trans isomers using a
written structure diagram. To express chirality, we usually annotate a wedge-shaped/
dashed property in the bond entry, where the order of the constituent atoms has
a meaning, as in a directed graph. These expressions are sometimes called 2.5-
dimensional structure expressions, as compared to two-dimensional (pure graph)
and full three-dimensional expressions. However, these stereochemical features cre-
ate many difficulties for the storage and retrieval of molecular structures, which will
be discussed later.

Three-dimensional molecular coordinates are also important in all aspects of
chemistry. For example, we can estimate the docking ability of a molecule with
proteins by using their coordinates to evaluate the energy of the interaction between
them. However, the experimental determination of stable geometry requires signif-
icant effort. Even if we could determine the geometry, real compounds exist as
thermodynamic mixtures of various conformations, and interactions with water and
other molecules might change these conformations. Therefore, data mining research
using three-dimensional coordinates requires consideration of the coordinates them-
selves and is best left to the hands of chemists.

14.1.4 Structure and Substructure Search

Chemists often need to retrieve a variety of molecular properties and synthetic
methods, and the structure diagram is a key to their retrieval. They may also wish to
retrieve information about molecules with similar structures sharing some common
skeleton, which also makes a substructure search indispensable. Since structure
diagrams are basically stored as graphs, computations for graph isomorphism and
subisomorphism are necessary.

The largest molecular database found at the Chemical Abstracts Service cur-
rently includes 40 million chemical compounds that have appeared in articles or
patents, along with links to abstracts. The service has a monopoly on the market
and provides access to chemists worldwide, so they have made a big effort toward
the efficient retrieval of molecular structures.

The Morgan algorithm is the core of the molecular registry system; it assigns
canonical numbers to the atoms in a molecule [26]. In this algorithm, atoms of the
same element in a molecule are differentiated by considering neighboring atoms.
Once the atom numbering has been determined, it is easy to create a canonical name
string that can be used as a hash key during retrieval. The system provides a filter
for substructure searches, which involve thousands of small fragment structures.
Prescreening using this filter decreases the number of candidate molecules that
must be processed by the subgraph isomorphism algorithm.

The SEMA algorithm [43] has accomplished a similar naming of stereochemi-
cal information; the search for a substructure with stereochemical features is more
difficult and is still under investigation (for an example of a recent development,
see [39]).

354 MINING FROM CHEMICAL GRAPHS

14.1.5 SMILES and Markush Structures

Connection tables play a central role in structure diagrams, but chemists have made
serious efforts to develop linear string notation that describes structure diagrams
accurately. If chemists can read/write string notation easily, it could provide a con-
venient input method and a simple output method for structures in working text.

Of the variety of string notations so far proposed, some chemists currently
prefer to use SMILES [6], which is also used as the core expression in a commercial
chemical database management system, and has affected some fragment notations
designed for attributes to be used in data mining.

SMILES uses simple compact notation; for example, dimethyl ether and ethanol
(Fig. 14.1) are written as COC and CCO (or OCC), respectively. Here, hydrogen
atoms and default single bonds are omitted and parentheses are used to indicate
branching, so acetic acid (Fig. 14.5) is written as CC(=O)O. Branches may be
stacked and acetic acid can also be coded as C(C)(O)=O. Bonds can also be
represented using pairs of matching digits, for example, to denote ring closures.
Therefore, the three-ring structures from the upper row of Figure 14.4 are denoted by
N1CC=CC1, C1C=C2C(=CCC2)CC1, and C1CC2CCCC(C2)CC1. We can write
benzene as C1=CC=CC=C1 or c1ccccc1, if we use the option of showing aromatic
atoms using lowercase letters.

SMILES even allows stereochemistry to be described by introducing special
characters such as “/” and “\” (for cis and trans configurations, respectively) and
“@” (for chiral centers). We will not explain these characters here; there is a good
SMILES tutorial on the Web, which also provides a function to generate structure
diagrams from SMILES strings interactively [6].

Markush structures are another important way to express chemical structures.
They appear mainly in patents when chemists make a claim to protect compounds
related to an invention. Figure 14.9 shows an example. The structure includes three

n(H2C)

X

R1

R2

R1 = H or small alkyl, halogen, OH
R2 = H, CH3

 X = O, NH

HOOC

n = 8 –12

Figure 14.9. Sample Markush structure.

14.2 ISSUES FOR MINING 355

variable substituents and contains many specific structures. The substituent at the
left has a variable attachment position, and even a vague term like small alkyl is
contained in R1. We can use more complex expressions using conditional clauses or
substituents defined by physical properties, so this type of expression is essentially a
natural language. Retrievals from patent databases suffer from significant noise and
incomplete answers, but this type of expression would be valuable if a mining system
could return a Markush structure to summarize a cluster of molecular structures.

14.2 ISSUES FOR MINING

There are two ways to investigate relationships between a chemical structure and
various molecular properties, including bioactivity and chemical reactions. One way
is based on physical chemistry and uses computational methods to estimate prop-
erties. When we can get an accurate estimate, the resulting properties are used
directly. Sometimes calculated results are not accurate enough, in which case the
results can be used to develop a model to elucidate theoretical relationships between
structures and properties. However, these theory-based methods encounter problems
when examining the molecules found in a biological system.

The other way is based on data. The collection of experimental results is at the
core of chemistry, which is why academic databases were first developed in this
field. Experimental chemists survey data and create their own lines of investigation,
so data mining has been essential for them. However, advances in experimental
techniques and database development have dramatically increased the amount of
available data, and data mining technology is expected to contribute to the work of
all chemists.

With regard to relevant structures, molecular properties can be classified into
three categories: local properties arising from a specific local substructure, additive
properties to which all components of a molecule contribute, and complex properties
affected by various factors. The next sections describe typical properties and mining
issues related to these categories.

14.2.1 Local Properties

Typical examples of local properties include peak positions on various spectra
[infrared (IR), nuclear magnetic resonance (NMR), and electron spin resonance
(ESR)] and the acidity of a molecule. Chemists understand the fundamental the-
ories behind these phenomena well, but the surrounding molecular environment
affects these properties. For example, a carbonyl group (C=O) has an IR absorption
band between 1650–1800 cm−1, and a carboxylic group (COOH) has a medium
level of acidity, but atoms connected to these groups can change the peak position
and acidity.

Quantitative estimation continues to be a problem, and techniques such as
regression or artificial neural networks can be useful if we limit molecules to those
with a common skeleton.

356 MINING FROM CHEMICAL GRAPHS

14.2.2 Additive Properties

All of the components of a molecule contribute to its additive properties. Molecu-
lar weight is the simplest example; it is simply the sum of atomic weights. Most
thermodynamic properties fall into this group, and interactions among constituents
produce changes in this property. Chemically important properties in this category
include hydrophobicity (log P : octanol/water partitioning coefficient) and solubility
in water.

The group contribution method usually allows the quantitative estimation of
these properties; a least-square technique can be used to determine estimates from
a component. However, when a property is a result of strong interactions among
molecular constituents, only an estimate that is based on physicochemical theo-
ries can be made. A typical example in this class is the electronic energy of the
ground/excited states of a molecule.

14.2.3 Complex Properties

Many important properties are affected by multiple factors; most of the biological
activities of chemical compounds fall into this category. For example, a chemical
compound must meet several conditions in order to be used as a drug clinically. First,
it must not decompose in the stomach; it must be absorbed in the small bowel, move
to the appropriate body site, and finally bind adequately to the target protein. Even
when we limit our study to protein–drug interactions, protein structures are often
unknown, and interactions between proteins and chemical compounds can change
the conformations of both. Many physicochemical properties essential to functional
materials have a similarly complex nature, and in this complex domain we need
to have not only quantitative estimates of a property but also an understanding of
related molecular structural characteristics.

The above discussions highlight the important issues of data mining: the eval-
uation of local properties and an understanding of the structural characteristics of
a complex property. The following sections discuss examples of acidity and bioac-
tivity (for more information on some of the bioactivity databases used in these
examples, see [5, Database]).

14.3 CASE: A PROTOTYPE MINING SYSTEM IN CHEMISTRY

Klopman’s CASE system was one of the first examples of chemical graph mining
research [19]. While this system was intended to analyze bioactivity, for the sake
of simplicity we introduce it by applying it to acidity analysis.

CASE automatically generates its attributes (called descriptors in the study of
structure–activity relationships) from a learning set composed of active and inactive
molecules. Attributes are normally linear fragments, although they include the effects
of some branches. Table 14.1 shows fragments of lengths 3 and 4 generated from
aspartic acid (its structure diagram is shown in the table).

14.3 CASE: A PROTOTYPE MINING SYSTEM IN CHEMISTRY 357

TABLE 14.1 List of Fragments (Length = 3, 4)
using CASEa

HO C

O

CH2 C
H

NH2

C

O

OH

3 4

C′′ –CH2 –CH– C′′ –CH2 –CH–C=
C′′ –AH–CH2 – C′′ –AH–CH2 –C=
NH2 –CH–CH2 – NH2 –CH–CH2 –C=
NH2 –CH–C= OH–C′′ –AH–CH2 –
O=C–OH C=C–AH–CH2 –
OH–K′′ –CH– OH–K′′ –CH–CH2 –
OH–K′′ –CH2 – OH–K′′ –CH2 –CH–
O=K–CH– O=K–CH–CH2 –
O=K–CH2 – O=K–CH2 –CH–

OH–K′′ –CH–NH2

O=K–CH–NH2

aA and K indicate carbon atoms to which an amine and a
side oxygen are attached, and a double prime indicates that
the atom is unsaturated.

Once all the molecules are entered, the fragment distribution is analyzed statis-
tically, assuming a binomial distribution. Any considerable deviation of a fragment
from a random distribution among active and inactive classes indicates potentially
significant activity (the F partial statistic is used at the 95% confidence level).
Fragments are characterized as activating (biophore) and inactivating (biophobe).

Table 14.2 shows sample fragments from an acidity analysis using a small
database of 100 miscellaneous organic compounds, of which 40 were acids. As
expected, COOH (a carboxyl acid group) appeared as the strongest candidate as the
component responsible for acidity. In this case, deactivating fragments (biophobe)
were also detected for two groups containing NH2; these are basic and prevent
potential acidity through formation of a zwitterion in the molecule.

Klopman applied the CASE system to a carcinogenicity analysis of 38 unsub-
stituted polycyclic aromatic hydrocarbons; he recognized the two biophores and one
biophobe shown in Figure 14.10. The biophores explained the famous bay region
substructure established in carcinogenicity research.

Klopman used a naı̈ve Bayes technique to estimate the activity of new com-
pounds, where fragments were selected using an F statistic at a predetermined
threshold (e.g., 99 or 85%). Later, a multiple regression capability was applied to
allow quantitative estimation of the activity, where the numbers of biophores and
biophobes were used as explanatory variables.

This CASE method can be considered the starting point of various mining meth-
ods that handle structure diagrams directly. Here, a relatively small number of linear

358 MINING FROM CHEMICAL GRAPHS

TABLE 14.2 Sample Fragments from Acidity Analysisa

Fragment Inactives Actives

CH3 –CH2 –CH2 – 16 9
CH2 –CH2 –CH2 – 35 28
CH=CH–CH2 – 7 4
C′′ –CH2 –CH– 7 7
O=C–CH2 – 25 30 +
O=C–OH 4 38 + + +
CH=C–OH 2 6 +
CH2 –CH–Cl 6 4
NH2 –CH–CH2 – 6 1 −
NH2 –CH–C= 3 0 −
aTotal number of molecules = 100. Number of actives = 40.

Bay Region Bay Region

Biophore Biophore Biophobe

Figure 14.10. Fragments from polycyclic aromatic hydrocarbons using CASE.

fragments explains the activity, and no conjunctive conditions are introduced. Later
developments might include more quantitative estimates, extensions of biophore
expressions using a general graph, the introduction of conjunctive combinations
of various features, and a system that uses a more user-friendly human–computer
interaction.

14.4 QUANTITATIVE ESTIMATION USING GRAPH MINING

Acidity estimation is not so important in chemistry, but it can be used as a model of
local properties. When we study molecules that share a common skeleton, classical
regression studies provide good estimates using substituent parameters as explana-
tory variables. However, they cannot handle a database with a variety of structures.
Another well-used method depends on quantum chemical computations applicable
to any group of structures, but these are outside the scope of this book.

In a previous work, we proposed a discrimination net of molecular graphs
[36]. The objective was to provide a general framework for quantitative analogi-
cal reasoning methods for various properties. We subsequently applied this system
to acidity estimation [28]. The oxygen atom in an OH group is the key ele-
ment determining acidity and is called the “anchor atom” of the molecule. We

14.4 QUANTITATIVE ESTIMATION USING GRAPH MINING 359

introduced a new restricted graph subisomorphism, named anchored subisomor-
phism, in which the anchor atom, O, must be matched first. In this formulation,
C–O is a subgraph of C–C–O, but C–C is not. Here, graphs do not include hydro-
gen atoms.

We used this relationship as the basis for partial ordering, and we could arrange
molecular graphs for several oxy acids in a lattice, as shown in Figure 14.11, where
the anchor OH group is underlined. Following this scheme, a molecule with two
OH groups has two anchors, and the molecule appears at two positions in the lattice,

H OH

H3C OH

H2C OH C
OH

O
H

C
OH

O
H3C

C
OH

O
H2C

H3C
O OH

H3C

O OH

CH3

O OH O OH O OH O OH

OH

O2N
NO2

Cl

O OH

NO2

OH

O OH

O2N

OH

O OH

CH3

CH3

OH

OH

O OH

O OH

CH3

O OH

OH

Cl

Q1

Q2

Q2

Q1

1

2

3
4

5

6
7

8

9

10 11 12 13

14 15

16

17

Figure 14.11. Sample discrimination net for oxy acids.

360 MINING FROM CHEMICAL GRAPHS

such as 10 and 17 in this figure. Such organization is reasonable since this molecule
has two pKa values (dissociation constants of an acid).

An algorithm was developed to locate a new molecule at the appropriate location
in the net. Figure 14.11 shows two query molecules and their final location in
the net. Therefore, we could use this net as a database of chemical graphs. The
connecting link retained mapping of atoms between molecules, and molecule storage
and retrieval using the discrimination net was fast.

When pKa values are stored along with structures in the net, we can use them
to infer an unknown pKa value for a query molecule. We proposed two inference
methods: The first was called the direct method and simply used the average pKa

of the neighboring molecules connected by links. For example, in Figure 14.12, the
estimated pKa of Q1 is 3.772. If there are sufficient molecules with similar structures
in the net, this method provides good estimates. Nevertheless, this method can lead
to erroneous estimates since acetic acid and ethanol are connected in the net, but
they have very different pKa values.

The other method was named the parallelogram method and is illustrated in
Figure 14.13. Here, Q2 is the query molecule, and we select molecule 13 as the
reference structure. In this case, the structural change from 13 to Q2 is the substi-
tution of OH for H at the position neighboring the anchor COOH. We can find the
same type of change at three positions: 7–10, 11–14, and 12–15.

Now, we can see three parallelograms in the net. If we assume that identical
structural changes cause identical pKa changes, we can make three estimates of
the pKa value, as shown in Table 14.3. To detect a parallelogram in the net, we
must express a structural change between a pair of molecules and judge the equality
among them. We used a tree expression for the structural change; paths from the
anchor atom to the changed component were placed at the tree trunk, and changing

O OH

CH3

O OH

CH3

CH3

Q1

8

9

O OH

pK -8 = 3.908

pK -9 = 3.635

pK -Q1(estimated)
= (3.908+3.635)/2
= 3.772

pK -Q1(observed)
= 3.793

CH3

a

a

a

a

Figure 14.12. Direct method of estimation. The property value is estimated to be the

median of all the property values on the adjacent nodes.

14.4 QUANTITATIVE ESTIMATION USING GRAPH MINING 361

O OH

O OH O OH O OH O OH

OH

O2N
NO2

Cl

O OH

NO2

OH

O OH

O2N

OH

O OH

OH

Cl

Q2

7

10 11 12 13

14 15

Figure 14.13. Parallelogram method of estimation.

TABLE 14.3 Estimated Values Using the Parallelogram Method

pKa(mol ID) pKa(mol ID) pKa-13 Estimated Errora
pKa-Q2

4.200 (7) 2.754 (10) 3.821 2.375 −0.254
3.493 (11) 2.121 (14) 3.821 2.449 −0.180
3.425 (12) 2.231 (15) 3.821 2.627 −0.002

aThe observed pKa-Q2 is 2.629.

components were placed at leaves. When there were rings in the structure, we
approximated them using linear structures formed by cutting the rings at the farthest
position. The search range of parallelograms in the net was limited to a small number
of intervening links.

We examined the accuracy of the results provided by these two inference meth-
ods using acidity data for 160 oxyacids listed in a chemistry handbook. Table 14.4

362 MINING FROM CHEMICAL GRAPHS

TABLE 14.4 Accuracy of Leave-One-Out Estimation of pKa Values

Inference Number of Number of Median of
Method Molecules Estimations Errors

Direct Method 160 160 0.63
Parallelogram Method 37 153 0.12

shows the results of leave-one-out pKa estimation. The parallelogram method gave
very good results, although the number of parallelograms was limited to 153 for 37
query molecules.

14.5 EXTENSION OF LINEAR FRAGMENTS TO GRAPHS

One of the straightforward developments from the CASE method is the use of
graphs instead of linear fragments as attributes. Originally, the maximal common
subgraph from a group of active compounds was thought to give chemists a good
substructure suggesting a biophore. However, when the data contained various types
of skeleton, attempts often resulted in trivial graphs. Therefore, researchers learned
that the system needed to generate multiple candidate graphs for the biophore. This
section introduces some methods related to this direction and typical results.

14.5.1 Clusmol

CLUSMOL was an early example of such trials; it was a hierarchical conceptual
molecular clustering system [37]. Given a set of molecular graphs, the system con-
structed a set of trees, in which given graphs were placed at leaf nodes, and other
nodes expressed subgraphs shared by some of the starting graphs.

The example shown in Figure 14.14 provides a brief overview of the system.
It shows the results of applying CLUSMOL to penicillin molecules in which nine
molecules are clustered in two trees. Here, the nine leaf nodes in the two trees show
individual penicillin molecules. They share the pc substructure shown at the right,
and its substituent R varies in each molecule. The diagrams located at the upper
nodes illustrate characteristic substructures shared by descendent molecules.

N

S

O

H
N

O

R

OHO

C C pc

DMPPC MCIPC MDIPC MFIPC MPIPC

**

HC pc

Ph O

HC pc

PCV PEPC PPPC

PCG

**

*

pc:

Figure 14.14. Conceptual clustering of penicillin. An asterisk shows a free valence on the

atom, and pc denotes the skeleton on the right.

14.5 EXTENSION OF LINEAR FRAGMENTS TO GRAPHS 363

The computation of a maximal common subgraph plays an essential role in tree
construction. If we compute a maximal common subgraph from a pair of graphs,
then we can postulate a new tree. Its root node expresses the maximal common
subgraph obtained and this is linked to two leaf nodes that contain the original
graphs. We can interpret this new tree as a kind of Markush structure, the length
of which can be used as a measure to judge the quality of the expression using
techniques such as the minimal description length.

In the example shown in Figure 14.14, the system first accepted nine molecular
graphs and constructed nine trivial trees with only one node in each tree. Then,
the system computed all the candidate trees constructed from all pairs of starting
molecules. These candidate trees were sorted by their scores, and a kind of beam
search was used to construct the best tree. Here, the maximal common subgraph on
the root node of the new tree replaced those of the old smaller trees. The recursive
construction of a larger tree continued until there were no further improvements in
the tree set score.

Another scoring scheme was added so that the clustering of molecules in
the same class is favored over clustering that mixes together. Using this scheme,
five penicillinase-resistant forms of penicillin G were placed in the left tree in
Figure 14.14, while basic forms of penicillin G were placed in the right tree. Inspec-
tion of the substructures appearing on the root nodes of these trees showed that a
hydrogen atom does not appear at the adjacent position to pc in the left tree. The
absence of this hydrogen atom was actually the cause of the penicillinase-resistant
feature.

The CLUSMOL system succeeded in extracting important information discrim-
inating activity classes. However, although the system reused previously computed
results, the method still suffered from a long CPU (central processing unit) time
when computing the many maximal common subgraphs.

14.5.2 Frequent Subgraph Approach

Finding subgraphs that appear in a set of molecules frequently is a naı̈ve idea that
is still attractive to computer scientists and chemists. In fact, some pharmaceutical
companies have recently used ClassPharmer, which identifies frequently appearing
skeletons and gives hints to chemists [3]. This is a commercial product and its
detailed algorithm is therefore not public knowledge, but its results are favorites
with chemists. The association rule mining proposed by Agrawal stimulated various
extensions, including the study of graph mining [1]. These modern approaches are
introduced here from a chemist’s viewpoint.

Greedy Approach: Subdue and GBI. Cook and Holder developed the Subdue
system, which extracts molecular substructures (see [4] and Chapter 7 of this book).
They applied the system to the repetitive substructures found in rubber, cortisone,
and DNA (deoxyribonucleic acid) databases, and succeeded in finding subgraphs
such as the benzene ring and isoprene, although these concepts were already well
established in chemistry.

364 MINING FROM CHEMICAL GRAPHS

This approach has two shortcomings: The search space is limited since it uses
a greedy search, and it can produce small, trivial subgraphs. The system grows a
subgraph starting from an atom, and an inadequate search direction tends to result
in meaningless subgraphs.

Motoda et al. attempted a similar approach by developing the GBI system
(see [12, 44] and Chapter 9 of this book), which expands a subgraph by chunk-
ing neighboring atoms that appear frequently. They also added a function to favor
the chunking with the greatest capability to discriminate class labels of molecules.
However, chemical properties are often specified by atoms separated by several
bonds, and this strategy does not work well in many problems. Therefore, the
researchers shifted their focus to the use of A priori-based graph mining (AGM),
which is described below.

Molfea. De Raedt and Kramer proposed Molfea for efficient mining of molecular
fragments [8]. Although their work did not extend linear fragments to general sub-
graphs, their methodology was a pioneer in this domain and can be easily extended
to more general graphs. It analyzed a relatively large human immunodeficiency
virus (HIV) dataset [22], a capability that is necessary in current chemistry mining
tasks. Their method is also closely connected to methods discussed in the following
subsection.

Their algorithm uses a levelwise version space search of frequent fragments,
which constitutes nodes in the lattice. Fragment expression uses both SMILES cod-
ing and an extension using SMARTS language. This language can also describe
rings and apply generic elements to atoms and bonds, although they did not use
these functions.

The core idea was to use various constraints for fragments, that is, if fragment
f 1 is more specific than fragment f 2, the support for f 1 should be lower than
that for f 2. Furthermore, the database was divided into active, moderately active,
and inactive compounds, and the researchers set a minimum support for the active
compounds of 13 and a maximum support for the inactive compounds of 515.

The resulting lattice contained many fragments, and they proposed eight signif-
icant fragments, including N–C–c:c:c:o (21 active, 25 inactive), and N=N=N–C–
C–C–n:c:c:c=O (51 active, 11 inactive), which were selected using statistical
significance and accuracy. Although they do not provide detailed inspections of
significant fragments from a chemist’s viewpoint, they can identify substructures
related to the famous azidothymidine group.

Methods of Constructing a Subgraph Lattice. Several attempts at graph mining
have extended the association rule to graphs. Since this type of methodology can
recognize all subgraphs with more than minimum support, it is likely that this
direction will aid in discovering substructures responsible for complex bioactivities.

A priori-based graph mining (AGM) was the first attempt [14, 15]. It attempted
to generate general subgraphs, including unconnected ones, but suffered from the
problem of combinatorial explosion in lattice size. Later, Kuramochi proposed the
frequent subgraph (FSG) algorithm, which used the same levelwise search, but

14.5 EXTENSION OF LINEAR FRAGMENTS TO GRAPHS 365

C

C

H H

N

H

H

Support=7.3%
pos=6, neg=19

Support=6.2%
pos=17, neg=4

W

X

Z

Y

X

W=C, N
X=H, C,O, N
Y=C, N, S
Z=C, S

Active= 8/182
Inactive= 38/155

(a) (b) (c)

Figure 14.15. Results of Inokuchi’s analysis on the PTC dataset.

limited the target to connected subgraphs (see [23] and Chapter 6 of this book).
Borgelt proposed a different kind of method that used a depth-first search [2],
unfortunately the search space was incomplete. They also attempted to detect a
subgraph containing a wild card atom. This type of graph could be considered a kind
of Markush structure that gives a concise representation of many sorts of chemical
graphs, and it is likely to improve the ability to discriminate between active and
inactive compounds. Inokuchi later improved his system along similar lines and
identified a chemically essential substructure from a group of active compounds
[16]. The following paragraphs describe a few results.

Inokuchi applied his method to the Predictive Toxicology Challenge (PTC)
and to HIV datasets. Figures 14.15(a) and 14.15(b) show the resulting subgraph
obtained from the PTC data, but these results are not particularly interesting to
chemists. However, Inokuchi was able to obtain a generic structure [Fig. 14.15(c)],
which might still be too general to be useful to chemists but is nonetheless more
informative. This result shows that incorporating the Markush structure can be very
useful when summarizing a group of structures.

By contrast, Figure 14.16 shows that with the HIV dataset, Inokuchi was able
to obtain a pair of subgraphs showing active and inactive substructures, where the

O

N

O

N

O

N

N

N

O

With Phenyl
Active = 0 / 422

Inactive = 3 / 41,884

Without Phenyl
Active = 64 / 422

Inactive = 16/ 41884

Figure 14.16. Results of Inokuchi’s analysis on the HIV dataset.

366 MINING FROM CHEMICAL GRAPHS

O
O

O O

N

O

N

O

N

O

O

N

O

O

N

O

O
O

O

N

O

O

N

O

O

N

O

O

O

O

N

O

O

O

O

N

O

Colchicines

Figure 14.17. Expression of frequent subgraphs in the analysis by Borgelt.

steric hindrance caused by a phenyl ring (depicted by the dashed substructure) likely
prevents activity.

The density of similar molecules seems to cause the contrast between these two
datasets. Since the HIV dataset contains many compounds with the azidothymidine
skeleton (shown in Fig. 14.16), the system was able to detect a meaningful difference
between active and inactive substructures. Conversely, the structures in the PTC
dataset have a variety of skeletons, and there are too few compounds with a specific
skeleton to clearly distinguish between active and inactive molecules.

Borgelt also found an interesting result [2]. After discriminative fragments were
discovered, they not only identified the most discriminative subgraph but also a
group of related subgraphs. Figure 14.17 shows how the fragments that they found
were organized into a treelike format. This format is very helpful to chemists because
it aids in the selection of the most meaningful fragments. In the example shown
in Figure 14.17, chemists select colchicines but may also draw valuable informa-
tion from variants that are also displayed. If the distributions of active/inactive
compounds are shown along with structures, this might be more helpful.

14.6 COMBINATION OF CONDITIONS

The next group of chemical graph mining systems uses a conjunction of structural
descriptors to express a target concept. Descriptor complexity ranges from a simple
atom and bond to linear fragments. This section introduces three groups of systems
in this category.

14.6 COMBINATION OF CONDITIONS 367

14.6.1 MultiCASE

This system is the successor to CASE [20]. MultiCASE is now a commercial
product, and it is currently one of the best mining systems for practical use. The
MCASE/MC4PC system, developed in cooperation with the U.S. Food and Drug
Administration, is used in routine day-to-day drug evaluation [42].

The CASE system generated linear fragments and selected biophores and bio-
phobes. It treated all the selected fragments equally and was not able to differentiate
between the substructures responsible for an activity and those that influenced the
activity. For example, the F–CH–F fragment shown in Figure 14.18 dramatically
increases the acidity of the COOH fragment but does not itself have acidic function-
ality. CASE used this fragment as a biophore, if there were such pairs of fragments
in the database. This type of modulation is also common in various bioactivities.

A major improvement made in MultiCASE was the construction of a hierar-
chical model to solve this problem. As an example, let us examine the MultiCASE
procedure for oxyacids data. Starting with a small database of 121 miscellaneous
organic compounds, of which 42 are acidic and 79 are not, MultiCASE gener-
ates several candidate biophores. The system first identifies the strongest biophore
fragment and performs a CASE analysis to detect modulators.

The first biophore identified in the oxyacid database was COOH, which appeared
in 45 molecules. Table 14.5 lists the modulator fragments detected in this subset
and the regression coefficients for these modulators. Compounds containing the first
biophore were eliminated from the database, and the remaining compounds were
used in a new analysis until all molecules were eliminated or no statistically signifi-
cant fragments were found. Table 14.6 shows the six resulting biophore candidates.
Therefore, we can summarize the MultiCASE system as a combination of a decision
list and statistical analysis using linear fragments.

CH C

O

OH

F

F

Acidic Functionality: COOH

Moduation of Acidity: F-CH-F

Figure 14.18. Two fragments from difluoroacetic acid.

TABLE 14.5 List of Modulators Found in Molecules Containing COOHa

Fragment No In Ma Ac QSAR

1 NH2 –CH– 10 7 0 3 2.97
2 F–CH–F 1 0 0 1 −3.34
3 CO–C–F 1 0 0 1 −2.47
4 CO–C–Cl 1 0 0 1 −2.13
5 CO–CH–Cl 2 0 0 2 −1.70
6 CO–CH2 –NH2 1 1 0 0 22.70

aIn, inactive; Ma, marginally active; Ac, active; QSAR, regression coefficient.

368 MINING FROM CHEMICAL GRAPHS

TABLE 14.6 List of MultiCASE Biophores for Acidity

Fragment No In Ma Ac Av. pKa

1 CO–OH– 45 8 0 37 4.5 +++
2 NO2 –CH2 – 2 0 0 2 2.9
3 NO2 –CH– 1 0 0 1 0.0
4 CO–CH–CO– 1 0 0 1 6.0
5 SO2 –CH–SO2 – 1 0 0 1 0.0
6 N SC–CH–C SN 1 0 0 1 0.0

MultiCASE also incorporates some new expressions for fragments. It can des-
cribe the cis–trans configuration of a fragment as well as the measure of congestion.
It also introduces a sophisticated algorithm that uses biophore fragments that are
chemically similar to the known biophore but do not have enough support in the
database.

Klopman used MultiCASE to propose characteristic substructures relevant to
many bioactivities. Figure 14.19 shows the results of a dopamine D2 agonist study
[21]. Six biophores (illustrated by the bold lines in the upper part of the figure)

HN

N

HN

N

H
N

HO

HO

HO

OH

N

100.0

82/2/5

99.98

54/3/6

93.75

14/1/0

93.75

18/0/0

100.0

22/1/0

93.75

9/1/0

NR

Proposed generic structure
for dopamine agonists

R: electron-donating group

Figure 14.19. Characteristic substructures that Klopman found in D2 agonists. Numbers

show the calculated probability of relevancy, as well as the numbers of compounds with

active/inactive/marginal compounds.

14.6 COMBINATION OF CONDITIONS 369

were detected. After consulting the supporting molecular structures, representative
skeletons (depicted by dotted bonds) containing these biophores were found. Finally,
the generic substructure shown in Figure 14.19 was proposed as a characteristic
substructure to explain this activity. This result seems reasonable, although the
proposed structure does not seem to cover all important biophores.

14.6.2 Inductive Logic Programming

Inductive logic programming (ILP) methodology is well known for its flexibility,
as it can incorporate any kind of background knowledge in the learning pro-
cess. Researchers consider its main drawback to be the huge search space, which
might limit its application. Mining from chemical graphs was originally considered
intractable, if ILP begins its learning with elementary atoms and bonds.

In 1966, King et al. used Progol to find the characteristic substructures respon-
sible for mutagenicity [18]. This was surprising because they predicted several
characteristic substructures, and their accuracy was comparable to results obtained
using conventional methods. Their results were published in one of the top-rated nat-
ural science journals. This success further stimulated structure–activity relationship
(SAR) research using ILP.

King et al. [18] used a mutagenicity dataset of 230 aromatic nitro compounds
collected by Debnath et al. [7]. The molecules contained a variety of structures,
although when compared to the entire range of organic molecules, the domain was
restricted to a relatively narrow region. Figure 14.20 shows the resulting character-
istic substructures.

The resulting substructures contained relatively large skeletons and a distribu-
tion of partial charges estimated using Quanta software. The success and weakness
of this result seem to be a result of the partial charges. Chemists often perceive
partial charges, and they use terms like electron-donating and -withdrawing groups.
However, the charges in the example shown in Figure 14.20 are too detailed to

O H

W X

U

V Y Z

δ > 0.01

δ > −0.406

δ > 0.005

δ = 0.146

Figure 14.20. Characteristic substructures found in a mutagenicity dataset.

370 MINING FROM CHEMICAL GRAPHS

discriminate, and it is difficult for a chemist to imagine molecules supporting these
substructures. By contrast, the introduction of a partially charged atom should restrict
the search space to a tractable size. This shows the potential of ILP since the method
can utilize any kind of knowledge, including that provided by chemists.

Researchers have devised various extensions of ILP, such as three-dimensional
pharmacophore recognition [10], the inclusion of found substructures as variables
in a regression analysis [17], and the construction of rules that occasionally use
regression using knowledge of the regression method itself [40]. However, most
chemists have hesitated to use these systems because they are difficult to use and the
process of analysis is very sophisticated in comparison with conventional methods.

Lastly, a recent study incorporated the existing top-down ILP system (FOIL) and
applied a multiple-instance-based measure to find common characteristics among
parts of positive examples [27]. In addition to the usual atom and bond predicates,
the researchers added a link predicate to describe the relationship between two atoms
that are a specified distance apart within molecules. This relatively simple search
method is accurate for mutagenesis and dopamine data. Furthermore, a rule derived
from the dopamine dataset suggested an important feature: An atom has one link to
oxygen (length ≥ 3.7 Å) and another link to nitrogen (length ≥ 3.3 Å). Finding this
feature depends on knowing the three-dimensional molecular structure, so it is not
always applicable, but combined with background knowledge provided by domain
experts, it is a good way to utilize the flexibility of the ILP systems.

14.6.3 Cascade Model

We developed the cascade model, an extension of association rule mining, and
applied it to SAR analysis. We used linear fragments extracted from structural formu-
las as attributes and used the conjunction of their presence/absence as rule conditions.
It was first applied to a mutagenicity dataset [31], and to analyze carcinogenicity
in the Predictive Toxicology Challenge [34]. The early applications provided some
characteristic substructures and received high marks at the PTC challenge [13].

Recently, effort has focused on the analysis of dopamine agonists and antago-
nists. Unfortunately, our original method did not provide results sufficient to explain
the pharmacophore of these drugs. After trying to improve the resulting rule set in
various ways, we finally succeeded in extracting valuable knowledge about the
pharmacophore.

This section shows the latest results for characteristic substructures obtained for
D1 agonist activity. In our opinion, these represent state-of-the-art chemical struc-
ture mining results, and we introduce a detailed mining framework and interpretation
process.

We used the MDDR database [25], which contains more than 100,000 phar-
maceuticals, and extracted 369 records with dopamine (D1, D2, and Dauto) agonist
activities. First, we extracted 4626 linear fragments with lengths under 10. We con-
sidered fragments appearing in 3–97% of molecules as attributes and applied a
correlation-based scheme to select 306 fragments [35]. Finally, hand selection by
chemists provided 345 fragments for analysis using the cascade model. The model

14.6 COMBINATION OF CONDITIONS 371

expresses linear fragments in a similar way to CASE and Molfea, but we omit atom
symbols except for the two terminal elements on each end. We also attach an atom
flag that shows whether a hydrogen atom is connected [38].

The cascade model can be considered an extension of association rule mining.
It creates an itemset lattice in which an [attribute: value] pair is used as an item to
constitute itemsets. Links in the lattice are selected and interpreted as rules [29, 30];
that is, we observe the distribution of activity (y/n) along all links, and if a distinct
change in distribution appears along some link, then we focus on the two terminal
nodes of the link. Suppose that the itemset at the upper end of a link is [A: y], and
item [B: y] is added along the link. If a marked activity change occurs along this
link, we can write the following rule:

Cases: 200 ==> 50, BSS=12.5
IF [B: y] added on [A: y]
THEN [Activity]: (.80 .20) ==> (.30 .70) (y n)
THEN [C]: (.50 .50) ==> (.94 .06) (y n)
Ridge: Pre outside [A: n]: (.70 .30)/100 ==> (.70 .30)/50 (y n)

where the added item [B: y] is the main condition of the rule, and the items at the
upper end of the link ([A: y]) are preconditions. The main condition changes the
ratio of active compounds from 0.8 to 0.3, while the number of supporting instances
decreases from 200 to 50. BSS refers to the between-groups sum of squares, which
is derived from the decomposition of the sum of squares for a categorical variable.
Its value can be used to measure the strength of a rule. The second THEN clause
indicates that there is also a sharp change in the distribution of attribute [C] values
when the main condition is applied. This description is called collateral correlation.

Usually, too many links with large BSS values are detected to be interpreted
by human analysts, so we introduced two schemes to decrease the number of rules
[32]. First, a rule candidate link found in the lattice is optimized greedily in order to
produce the rule with the local maximum BSS value. Since many rules converge on
the same rule expression, this optimization is useful for decreasing the number of
resulting rules. The second step involves the facility to organize rules into principal
and relative rules. A group of rules that share a relatively large number of supporting
instances is expressed as one principal rule (with the largest BSS value) and its
relative rules. This function can be used to decrease the number of principal rules
that must be inspected and to indicate relationships among rules.

We also added ridge information, shown on the last line of the previous example
[33]. This describes [A: n] as the ridge region detected at the outside of the current
precondition. A change of “activity” distribution is denoted in this ridge region.
Compared to the large change in activity distribution for instances with [A: y],
the distribution on this ridge does not change. This means that the BSS value
decreases sharply if we expand the rule region to include this ridge region. This
ridge information is expected to guide the datascape survey.

Using these schemes, we inspected 2 principal and 14 relative final rules;
Table 14.7 shows the four most important. Rules not cited in the table were inter-
preted as paraphrases of rule R1.

TA
B

LE
14

.7
Ru

le
s

Su
gg

es
tin

g
Ch

ar
ac

te
ris

tic
s

of
D 1

Ag
on

is
tA

ct
iv

ity

R
ul

e
ID

N
um

be
r

of
C

om
po

un
ds

an
d

C
on

di
tio

ns
of

a
R

ul
e

D
is

tr
ib

ut
io

n
C

ha
ng

es
in

D
1A

g
an

d
C

ol
la

te
ra

l
C

or
re

la
tio

ns
D

es
cr

ip
to

r
B

ef
or

e
A

ft
er

R
1

N
um

be
r

of
co

m
po

un
ds

36
9

�
52

D
1A

g:
17

%
�

96
%

D
A

uA
g:

50
%

�
0%

C
4H

-C
4H

-:
::c

3-
O

2H
19

%
�

92
%

M
ai

n
co

nd
iti

on
[O

2H
-c

3:
c3

-O
2H

:
y]

C
4H

-C
4H

-:
:c

3-
O

2H
:

18
%

�
98

%
N

3H
-C

4H
–

:::
c3

-O
2H

:
14

%
�

67
%

N
3H

-C
4H

–
::c

3-
O

2H
:

10
%

�
69

%
Pr

ec
on

di
tio

ns
N

on
e

N
3H

-C
4H

-C
4H

-c
3:

18
%

�
81

%
C

4H
-N

3H
–

C
4H

-c
3

15
%

�
62

%

R
id

ge
1:

ne
w

in
si

de
[N

3H
-C

4H
–

:::
c3

-O
2H

:
y]

66
%

in
53

�
97

%
in

35

R
1-

U
L

9
N

um
be

r
of

co
m

po
un

ds
28

8
�

16
D

1A
g:

19
%

�
10

0%
D

A
uA

g
51

%
�

0%
D

2A
g:

36
%

�
10

0%
M

ai
n

co
nd

iti
on

[C
4H

-N
3

—
-:

c3
-O

2H
:

y]
C

4H
-N

3
—

:::
c3

-O
2H

:
5%

�
87

%
C

4H
-N

3
—

C
4H

-c
3:

11
%

�
10

0%
Pr

ec
on

di
tio

ns
[N

3H
:

y]
O

2H
-c

3:
c3

-O
2H

:
17

%
�

10
0%

372

R
1-

U
L

12
N

um
be

r
of

co
m

po
un

ds
17

0
�

12
D

1A
g:

14
%

�
10

0%
D

A
uA

g
40

%
�

0%
M

ai
n

co
nd

iti
on

[N
3H

-C
4H

—
::c

3-
O

2H
:

y]
D

2A
g:

50
%

�
0%

C
4H

-N
3H

—
:::

c3
-O

2H
:

8%
�

10
0%

C
4H

-N
3H

—
C

4H
-c

3:
7%

�
10

0%
C

4H
-N

3H
-C

4H
-c

3:
8%

�
10

0%

Pr
ec

on
di

tio
ns

[N
3H

-C
4H

–
:c

3H
:c

3H
:

n]
O

2H
-c

3:
c3

-O
2H

12
%

�
10

0%
[O

2-
c3

:c
3:

n]
O

2H
-c

3:
::-

C
4H

-c
3:

7%
�

10
0%

O
2H

-c
3:

:-
C

4H
-c

3:
7%

�
10

0%

R
14

N
um

be
r

of
co

m
po

un
ds

72
�

11
D

1A
g:

15
%

�
9%

M
ai

n
co

nd
iti

on
[C

4H
-C

4H
-O

2-
c3

:
n]

D
A

uA
g:

72
%

�
0%

[L
U

M
O

:
1

–
3]

C
O

2-
O

2-
c3

:c
3H

:
31

%
�

64
%

Pr
ec

on
di

tio
ns

[C
4H

-N
3

—
c3

:c
3:

n]
O

2-
c3

:c
3-

O
2:

22
%

�
64

%
[O

2-
c3

:c
3:

c3
H

:
y]

N
3H

-C
4H

—
:c

3H
:c

3H
:

7%
�

45
%

373

374 MINING FROM CHEMICAL GRAPHS

Rule R1 is the strongest rule derived from the D1 agonist study. There do
not appear to be any preconditions, and the activity ratio (D1Ag) increases from
17% in 369 compounds to 96% in 52 compounds by including a catechol structure
(O2H-c3:c3-O2H). Use of this main condition depresses Dauto activity (DAuAg) to
0%. Other collateral correlations suggest that N3H-C4H-C4H-c3, and OH groups
likely exist at the positions meta and para to this ethylamine substituent. However,
this ethylamine group is not an indispensable substructure, as the presence of N3H-
C4H-C4H-c3 is limited to 81% of the compounds. This observation is also supported
by the ridge information. That is, selection of a region inside the rule on adding
a new condition [N3H-C4H–:::c3-O2H: y] results in 53 (35 actives, 18 inactives)
and 35 (34 actives, 1 inactive) compounds before and after the main condition is
applied, respectively. This means that when the catechol structure is absent, there
are 17 inactive and 1 active compounds, and N3H-C4H–:::c3-O2H cannot show
D1Ag activity without the catechol substructure. Therefore, we can construct a
hypothesis for D1Ag activity: catechol is the active site and the appearance of
activity is supported by an ethylamine substituent at the meta and para positions
as the binding site.

A catechol supported by an ethylamine substituent is the structure of dopamine
molecule I in Figure 14.21, and it covers 50 out of 63 D1 agonists. Therefore, this
hypothesis seems rational.

At first glance, the third entry in Table 14.7, R1-UL12, seems to provide new
substructures. Its collateral correlations indicate an N3H group at the atoms 1, 2, and
3 positions away from an aromatic ring, as well as a diphenylmethane substructure
(c3-C4H-c3). However, visual inspection of the supporting structures found skeleton
II in these molecules. Therefore, we do not need to change our hypothesis since it
contains dopamine structure I.

HO

HO

NH2

I

NH

S

HO

HO

II

N
H
N Ph

OH

HO

n m

III

n=6, 8 m=2, 3, 4

O

O

NH2

IV

O

O

Figure 14.21. Characteristic substructures of dopamine D1 agonists.

14.7 CONCLUDING REMARKS 375

The only exceptional relative rule was R1-UL9, the second entry in Table 14.7,
which could not be explained by structure I. Interesting aspects of this rule include
the 100% co-appearance of D2 agonist activity, as well as the tert-amine structure
(N3) in the main condition. These points markedly contrast with those found in
R1, where prim- and sec-amines (N3H) aided the appearance of D1Ag activity, and
D2Ag activity was found in 38% of 52 compounds. The precondition and collateral
correlations also suggest the importance of prim- or sec-amines, an ethylamine
substituent, and a catechol structure. Inspection of the supporting structures showed
that this rule was derived from compounds with skeleton III. In some compounds,
we found a dopamine structure around the phenyl ring at the right, but this could not
explain the D1Ag activity in all the supporting compounds. Therefore, we proposed
a new hypothesis: The active site is the catechol (O2H-c3:c3-O2H) in the left ring,
but the binding site is the sec-amine in the middle of the long chain. This sec-amine
can locate itself close to the catechol ring by folding the (CH2)n (n = 6, 8) chain.
The characteristic substructure proposed by MultiCASE, shown in Figure 14.19,
seems to have identified this group of compounds.

Rule R14 is the second and last principal rule leading to D1Ag activity. Unlike
the R1 group rules, the substitution of OHs on an aromatic ring, which plays an
essential role in the above hypothesis, does not appear. It was difficult to inter-
pret this rule as the main condition and the second precondition are designated
by the absence of ether and tert-amine substructures. However, we found that 6
out of 11 compounds had skeleton IV, where catechol OHs were transformed to
esters. These esters likely decompose into OHs after absorption to cells and act as
prodrugs.

The analyses of other activities were much more difficult and depended heav-
ily on the insights of chemists. However, their efforts have led to the discovery
of many important skeletons from many compounds with a variety of structures.
Without the combination of cascade model analysis and the insights of chemists,
these discoveries would have been impossible.

14.7 CONCLUDING REMARKS

This section begins with a description of various chemical graph treatments that are
not mentioned in the preceding sections. The chemical reaction is an important class
of information that has not yet been mentioned in this chapter. Essentially, a reaction
can be described by chemical graphs of reactants and products, along with additional
information about solvents, temperatures, catalysts, yields, and selectivity. There are
a few commercial databases of chemical reactions used by many organic chemists.
However, mining from these databases has not been successful. The sparseness of
reaction data may explain this; a database usually contains a prototype of successful
chemical reactions. When a reaction condition changes, the reaction itself may often
be useless because its yield or selectivity decreases. Unfortunately, these negative
data are not described in the database, which may cause the sparseness of the
database.

376 MINING FROM CHEMICAL GRAPHS

It is worth noting an interesting new expression for chemical reactions that gives
a new type of chemical graph. An atom in a molecule after a chemical reaction cor-
responds to some atom before the reaction. Consequently, we can superimpose the
chemical graphs from before and after the reaction to obtain a new graph in which an
edge between two atoms has a label specified by a pair of bond types (before/after
the reaction), for example, double → single, single → none, and none → sin-
gle. This expression, named an imaginary transition structure, does not add new
information but can be useful in ordering various types of chemical reaction [11].

Researchers have used regression analysis in a variety of fields in chemomet-
rics and chemoinformatics. The method can be very useful when molecules share a
common skeleton, and researchers can use some substituent properties as explana-
tory variables during a regression. The success of the regression method has led to
many trials in which researchers have mapped a chemical graph onto some numeri-
cal variables expressing the topological characteristics of the graph; these numerical
variables are called topological indices. In early attempts, researchers succeeded in
correlating a physical property (e.g., the boiling point of hydrocarbons) to a topolog-
ical index. Many indices were invented, and some were widely used in quantitative
structure–activity relationship studies. However, these indices have a well-known
shortcoming: It is difficult for chemists to understand the meaning of regression
formulas including these indices (for details, see [9]).

Takahashi et al. [41] proposed topological fragment spectra (TFS), which are
sets of numerical attributes generated from the fragments contained in a molecule.
They generated every fragment smaller than a specified size and generated some
characteristic numbers (such as mass or the number of valences) from the con-
stituting atoms. When the number of fragments is counted along with the char-
acteristic number, the resulting plot, the TFS, can be considered a spectrum that
shows molecular characteristics, and spectrum heights can be used as attributes for
mining. Combining the support vector machine and TFS, they were able to pre-
dict dopamine-related activities with high accuracy [41]. However, each peak in
a spectrum corresponds to multiple fragments. Even if some peak height deter-
mined the activity, they could not identify fragments important to the activity
directly. Nevertheless, they did develop a fragment inspection system for each
TFS peak and succeeded in finding a fragment important to dopamine D4 agonist
activity.

Medicinal chemists have long awaited a mining system that grasps characteristic
substructures to active compounds. Recently, they have adopted a decision tree
method (called recursive partitioning) in day-to-day work, but they are generally not
satisfied with this system and are looking forward to a more useful and convenient
mining system.

As we have discussed, various mining systems have succeeded in finding com-
mon skeletons. However, chemists already know the major skeletons responsible
for important activities, although these are seldom published in research articles.
Chemists’ visions for these systems are unlimited, and they are not satisfied by the
rediscovery of known skeletons. They wish to find exceptional molecules, which
might be the basis for a new drug. The hypotheses proposed by a system must cover

REFERENCES 377

the most active compounds and must also show exceptions. Although data contain
substantial noise, quantitative treatments of activities are also necessary.

Chemical mining systems also need to handle a vast number of molecules.
High-throughput screening technology can provide more than 100,000 of SAR data
daily. A chemical genomics project that began recently is collecting data on a variety
of genome expressions for one million compounds. Computer scientists will need
to provide very fast, user-friendly data mining systems in the future.

REFERENCES

1. R. Agrawal and R. Srikant. Fast algorithms for mining association rules in large
databases, Proc. VLDB 1994, pp. 487–499, 1994.

2. C. Borgelt, H. Hofer, and M. Berthold. Finding discriminative molecular fragments.
Workshop Information Mining—Navigating Large Heterogeneous Spaces of Multimedia
Information, German Conference on Artificial Intelligence, Hamburg, Germany, 2003.

3. Bioreason: ClassPharmer. http://www.bioreason.com/.
4. D. J. Cook and L. B. Holder. Substructure discovery using minimum description length

and background knowledge. Journal of Artificial Intelligence Research, 1:231–255, 1994.
5. Database: (a) Mutagenicity data: http://www.clab.kwansei.ac.jp/mining/datasets/

PAKDD2000/okd.htm. (b) Predictive Toxicology Challenge (PTC): http://www.
predictive-toxicology.org/ptc/. (c) Anti-HIV activity: http://dtp.nci.nih.gov/docs/aids/
aids data.html. (d) MDDR: http://www.mdl.com/products/knowledge/drug data report/
index.jsp. MDDR is a commercial product.

6. Daylight: http://www.daylight.com/smiles/f smiles.html.
7. A. K. Debnath, R. L. Lopez de Compadre, G. Debnath, A. J. Shusterman and C. Hansch.

Structure-activity relationship of mutagenic aromatic and heteroaromatic nitro com-
pounds. J. Med. Chem. 34:786–797, 1991.

8. L. De Raedt and S. Kramer. The levelwise version space algorithm and its application
to molecular fragment finding. Proc. IJCAI 2001, pp. 853–862, 2001.

9. J. Devillers and A. T. Balaban, eds. Topological Indices and Related Descriptors in QSAR
and QSPR. Gordon and Breach, Amsterdam, 1999.

10. P. Finn, S. Muggleton, D. Page, and A. Srinivasan. Pharmacophore discovery using the
inductive logic programming. Machine Learning, 30:241–270, 1998.

11. S. Fujita. Computer-Oriented Representation of Organic Reactions. Yoshioka Shoten,
Kyoto, Japan, 2001.

12. W. Geamsakul, T. Matsuda, T. Yoshida, H. Motoda, and T. Washio. Classifier Con-
struction by Graph-Based Induction for Graph-Structured Data, Advances in Knowledge
Discovery and Data Mining: Proc. PAKDD 2003, pp. 52–62, LNCS 2637, Springer,
Berlin, 2003.

13. C. Helma, R. D. King, S. Kramer, and A. Srinivasan. The Predictive Toxicology Chal-
lenge (PTC) for 2000–2001: http://www.predictive-toxicology.org/ptc/.

14. A. Inokuchi, T. Washio, and H. Motoda. An Apriori-Based Algorithm for Mining Frequent
Substructures from Graph Data. Proc. PKDD 2000, pp. 13–23, LNAI 1910, Springer,
Berlin, 2000.

15. A. Inokuchi, T. Washio, and H. Motoda. Complete mining of frequent patterns from
graphs: Mining graph data, Machine Learning, 50(3):321–354, 2003.

16. A. Inokuchi, T. Washio, and H. Motoda. A general framework for mining frequent
subgraphs from labeled graphs. Fundamenta Informaticae, 66:53–82, 2005.

378 MINING FROM CHEMICAL GRAPHS

17. R. D. King and A. Srinivasan. The discovery of indicator variables for QSAR using
inductive logic programming. Journal of Computer-Aided Mol. Design, 11:571–580,
1997.

18. R. D. King, S. H. Muggleton, A. Srinivasan, and M. J. Sternberg. Structure-activity rela-
tionships derived by machine learning. Proc. Natl. Acad. Sci. USA, 93:438–442, 1996.

19. G. Klopman. Artificial intelligence approach to structure-activity studies. Journal of
American Chemical Society, 106:7315–7321, 1984.

20. G. Klopman. MULTICASE 1. A hierarchical computer automated structure evaluation
program. Quant. Struct.-Act. Relat., 11:176–184, 1992.

21. G. Klopman and A. Sedykh. An MCASE approach to the search of a cure for Parkinson’s
disease. BMC Pharmacology, 2:8, 2002.

22. S. Kramer, L. De Raedt, and C. Helma. Molecular feature mining in HIV data, Proc.
KDD ’01, pp. 136–143, ACM Press, Addison-Wesley, Boston, 2001.

23. M. Kuramochi and G. Karypis. Frequent subgraph discovery, Proc. 2001 IEEE Interna-
tional Conference on Data Mining (ICDM01), pp. 313–320, 2001.

24. CTfile formats: http://www.mdl.com/solutions/white papers/ctfile formats.jsp.
25. Drug Data Report: http://www.mdl.com/products/knowledge/drug data report/index.jsp.
26. H. L. Morgan. The generation of a unique machine description for chemical structures:

A technique developed at Chemical Abstracts Service. J. Chem. Doc., 5:107–113, 1965.
27. C. Nattee, S. Sinthupinyo, M. Numao, and T. Okada. Learning first-order rules from

data with multiple parts: Applications on mining chemical compound data. Proc. ICML
2004, No. 77, ACM Press, Addison-Wesley, Boston, 2004.

28. T. Okada. Similarity and analogy based on discrimination net. In W. A. Warr, ed. Chem-
ical Structures 2, pp. 389–398, Springer, Berlin, 1993.

29. T. Okada. Rule induction in cascade model based on sum of squares decomposition.
Proc. PKDD 1999, pp. 468–474, LNAI 1704, Springer, Berlin, 1999.

30. T. Okada. Efficient detection of local interactions in the cascade model. Proc. PAKDD
2000, pp. 193–203, LNAI 1805, Springer, Berlin, 2000.

31. T. Okada. Discovery of structure activity relationships using the cascade model: The
mutagenicity of aromatic nitro compounds. Journal of Computer Aided Chemistry,
2:79–86, 2002.

32. T. Okada. Datascape survey using the cascade model. Discovery Science 2002, LNCS
2534, pp. 233–246, Springer, Berlin, 2002.

33. T. Okada. Topographical expression of a rule for active mining. In H. Motoda, eds.
Active Mining, pp. 247–257, IOS Press, Amsterdam, 2002.

34. T. Okada. Characteristic substructures and properties in chemical carcinogens studied by
the cascade model, Bioinformatics, 19:1208–1215, 2003.

35. T. Okada. Attribute selection in chemical graph mining using correlations among lin-
ear fragments. Proc. Workshop on Mining Graphs, Trees and Sequences (MGTS’04).
http://hms.liacs.nl/mgts2004/.

36. T. Okada and T. Kawai. Analogical reasoning in chemistry. Tetrahedron Computer
Methodology, 2(part 1):327–336; (part 2):337–347, 1989.

37. T. Okada and W. T. Wipke. CLUSMOL: A system for the conceptual clustering of
molecules, Tetrahedron Computer Methodology, 2:249–264, 1989.

38. T. Okada, M. Yamakawa, and H. Niitsuma. Spiral mining using attributes from 3D molec-
ular structures. Active Mining: Second International Workshop, AM 2003, pp. 287–302,
LNCS 3430, Springer, Berlin, 2005.

39. H. Satoh, H. Koshino, and T. Nakata. Extended CAST coding method for exact search
of stereochemical structures. Journal of Computer Aided Chemistry, 3:48–55, 2002.

REFERENCES 379

40. A. Srinivasan and R. D. King. Using inductive logic programming to construct structure-
activity relationships. AAAI Spring Symposium, Predictive Toxicology of Chemicals:
Experiences and Impact of AI Tools, pp. 64–73, AAAI SS-99-01, 1999.

41. Y. Takahashi, S. Fujishima, K. Nishikoori, H. Kato, and T. Okada. Identification of
dopamine D1 receptor agonists and antagonists under existing noise compounds by TFS-
based ANN and SVM, J.Comput. Chem. Jpn., 4:43–48, 2005.

42. U.S. FDA, Center for Drug Evaluation and Research: http://www.fda.gov/cder/
Offices/OPS IO/ICSAS.htm.

43. W. T. Wipke and T. M. Dyott. Stereochemically unique naming algorithm. Journal of
American Chemical Society, 96:4834–4842, 1974.

44. K. Yoshida and H. Motoda. CLIP: Concept learning from inference patterns, Artificial
Intelligence, 75:63–92, 1995.

15
UNIFIED APPROACH TO
ROOTED TREE MINING:

ALGORITHMS AND
APPLICATIONS

MOHAMMED ZAKI
Department of Computer Science, Rensselaer Polytechnic Institute,

Troy, New York

15.1 INTRODUCTION

Tree patterns typically arise in applications such as bioinformatics, Web mining,
mining semistructured documents, and so on. For example, given a database of
XML documents, one might like to mine the commonly occurring “structural” pat-
terns, that is, subtrees, that appear in the collection. As another example, given
several phylogenies (i.e., evolutionary trees) from the Tree of Life [15], indicating
evolutionary history of several organisms, one might be interested in discovering if
there are common subtree patterns.

Recently, there has been tremendous interest in mining increasingly complex
pattern types such as trees [1, 2, 4–6, 18, 26, 30] and graphs [12, 14, 27]. For
example, several algorithms for tree mining have been proposed recently, which
include TreeMiner [30], which mines embedded, ordered trees; SLEUTH [31],
which mines embedded, unordered trees; FreqT [1], which mines induced ordered
trees, FreeTreeMiner [4], which mines induced, unordered, free trees (i.e., there is no
distinct root); TreeFinder [22], which mines embedded, unordered trees (but it may
miss some patterns; it is not complete); and PathJoin [26], uFreqt [18], uNot [2],
CMTreeMiner [6], and HybridTreeMiner [5], which mine induced, unordered trees.

Mining Graph Data, Edited by Diane J. Cook and Lawrence B. Holder
Copyright c© 2007 John Wiley & Sons, Inc.

381

382 UNIFIED APPROACH TO ROOTED TREE MINING

In this chapter we extend SLEUTH1 to obtain an efficient, unified algorithm
for the problem of mining frequent subtrees. The key contributions of our work
are as follows: (1) We present a unified approach to tree mining that can handle
both ordered and unordered and both induced and embedded trees. (2) We propose
a new self-contained equivalence class extension scheme to generate all candidate
trees. Only potentially frequent extensions are considered, but some redundancy
is allowed in the candidate generation to make each class self-contained. We study
the trade-off between nonredundant versus potentially frequent candidate generation.
(3) We extend the notion of scope-list joins (first proposed in [30]) for fast frequency
computation for unordered/induced trees. (4) We also propose a method to count
only distinct tree occurrences, instead of all mappings. (5) Finally, we conduct
performance evaluation on several synthetic datasets and a real Web log dataset to
show that SLEUTH is an efficient algorithm for different types of tree patterns. We
present applications of tree mining in bioinformatics, such as mining frequent RNA
(ribonucleic acid) structures and common phylogenetic tree patterns.

15.2 PRELIMINARIES

A rooted tree T = (V, E) is a directed, acyclic, graph with vertex set V =
{0, 1, · · · , n}, edge set E = {(x, y)|x, y ∈ V }, and with one distinguished vertex
r ∈ V called the root such that for all x ∈ V , there is a unique path from r to x. In
a labeled tree, l : V → L is a labeling function mapping vertices to a set of labels
L = {�1, �2, . . .}. In an ordered tree the children of each vertex are ordered (i.e.,
first child, second child, etc.), otherwise, the tree is unordered.

If x, y ∈ V and there is a path from x to y, then x is called an ancestor of y

(and y a descendant of x), denoted as x ≤p y, where p is the length of the path
from x to y. If x ≤1 y (i.e., x is an immediate ancestor), then x is called the parent
of y, and y the child of x. If x and y have the same parent, x and y are called
siblings, and if they have a common ancestor, they are called cousins.

We also assume that vertex x ∈ V is synonymous with (or numbered according
to) its position in the depth-first (preorder) traversal of the tree T (e.g., the root r

is vertex 0). Let T (x) denote the subtree rooted at x, and let y be the rightmost
leaf (or highest numbered descendant) under x. Then the scope of x is given as
s(x) = [x, y]. Intuitively, s(x) demarcates the range of vertices under x.

As suggested in [30], we represent a tree T by its string encoding, denoted
T, generated as follows: Add vertex labels to T in a depth-first preorder traver-
sal of T , and add a unique symbol $ �∈ L whenever we backtrack from a child
to its parent. For example, for T shown in Figure 15.1, its string encoding is
A B A C $ B $ $ C $ $ C $. We use the notation T [i] to denote the element at
position i in T, where i ∈ [1, |T |], and |T | is the length of the string T.

Given a tree S = (Vs, Es) and tree T = (Vt , Et), we say that S is an isomorphic
subtree of T iff there exists a one-to-one mapping ϕ : Vs → Vt , such that (x, y) ∈ Es

1SLEUTH is an anagram of the bold letters in the phrase: Listing “Hidden” or Embedded/induced
(Un)ordered SubTrees).

15.2 PRELIMINARIES 383

A

B C

T S

[5, 5]

[6, 6]

[0, 6]

[1, 5]

[2, 4]

[4, 4][3, 3]

induced sub-tree match labels

embedded sub-tree match labels:

String Encoding
A B $ C $

A

B

A C

C

BC

6

0

1

2

3 4

5

0

1 2

A B A C $ B $ $ C $ $ C $
String Encoding

ordered: {016}
unordered: {016, 243}

ordered: {016, 045, 046}
unordered: {016, 045, 046, 043, 243}

Figure 15.1. An example: Tree and subtree.

iff (ϕ(x), ϕ(y)) ∈ Et . If ϕ is onto, then S and T are called isomorphic. S is called
an induced subtree of T = (Vt , Et), denoted S �i T , iff S is an isomorphic subtree
of T , and ϕ preserves labels, that is, l(x) = l(ϕ(x)), ∀x ∈ Vs . That is, for induced
subtrees ϕ preserves the parent–child relationships, as well as vertex labels. The
induced subtree obtained by deleting the rightmost leaf in T is called an immediate
prefix of T . The induced tree obtained from T by a series of rightmost node deletions
is called a prefix of T . In the sequel we use prefix to mean an immediate prefix,
unless we indicate otherwise.

S = (Vs, Es) is called an embedded subtree of T = (Vt , Et), denoted as S �e T

iff there exists a 1-to-1 mapping ϕ : Vs → Vt that satisfies: (i) (x, y) ∈ Es iff
ϕ(x) ≤p ϕ(y), and (ii) l(x) = l(ϕ(x)). That is, for embedded subtrees ϕ preserves
ancestor–descendant relationships and labels. A (sub)tree of size k is also called a
k-(sub)tree. If S �e T , we also say that T contains S or S occurs in T . Note that
each occurrence of S in T can be identified by its unique match label, given by the
sequence ϕ(x0)ϕ(x1) · · · ϕ(x|S|), where xi ∈ Vs . That is, a match label of S is given
as the set of matching positions in T .

Let δT (S) denote the number of occurrences (induced or embedded, depending
on context) of the subtree S in a tree T . Let dT be an indicator variable, with
dT (S) = 1 if δT (S) > 0 and dT (S) = 0 if δT (S) = 0. Let D denote a database (a
forest) of trees. The support of a subtree S in the database is defined as σ(S) =∑

T ∈D dT (S), that is, the number of trees in D that contain at least one occurrence
of S. The weighted support of S is defined as σw(S) = ∑

T ∈D δT (S), that is, total
number of occurrences of S over all trees in D. Typically, support is given as a
percentage of the total number of trees in D. A subtree S is frequent if its support is
more than or equal to a user-specified minimum support (minsup) value. We denote
by Fk the set of all frequent subtrees of size k. In some domains one might be
interested in using weighted support, instead of support. Both of them are allowed
using our mining approach, but we focus mainly on support.

384 UNIFIED APPROACH TO ROOTED TREE MINING

Given a collection of trees D and a user-specified minsup value, several rooted
tree mining tasks can be defined, depending on the choices among ordered/unordered
or induced/embedded trees. Consider Figure 15.1, which shows an example tree T

with vertex labels drawn from the set L = {A, B,C}, and vertices identified by
their depth-first number. The figure shows for each vertex, its label, depth-first
number, and scope. For example, the root is vertex 0, its label l(0) = A, and since
the rightmost leaf under the root is vertex 6, the scope of the root is s(0) = [0, 6].
Consider S; it is clearly an induced subtree of T . If we look only at ordered subtrees,
then the match label of S in T is given as: 012 → ϕ(0)ϕ(1)ϕ(2) = 016 (we omit
set notation for convenience). If unordered subtrees are considered, then 243 is also
a valid match label. S has additional match labels as an embedded subtree. In the
ordered case, we have additional match labels 045 and 046, and in the unordered
case, we have on top of these two, the label 043. Thus the induced weighted support
of S is 1 for ordered and 2 for the unordered case. The embedded weighted support
of S is 3, if ordered, and 5, if unordered. The support of S is 1 in all cases.

15.3 RELATED WORK

Recently, tree mining has attracted a lot of attention. Zaki proposed TreeMiner [30]
to mine labeled, embedded, and ordered subtrees. The notions of scope lists and
rightmost extension were introduced in that work. TreeMiner was also used in build-
ing a structural classifier for XML data [32]. XSpanner [24] is a pattern-growth-
based method for mining embedded ordered subtrees. Asai et al. [1] presented
FreqT, an Apriori-like algorithm for mining labeled ordered trees; they indepen-
dently proposed the rightmost candidate generation scheme. Wang and Liu [25]
developed an algorithm to mine frequently occurring subtrees in XML documents.
Their algorithm is also reminiscent of the levelwise Apriori approach, and they
mine induced subtrees only. There are several other recent algorithms that mine
different types of tree patterns, which include FreeTreeMiner [4], which mines
induced, unordered, free trees (i.e., there is no distinct root); SingleTreeMining [21],
which mines rooted, unordered trees, with application to phylogenetic tree pat-
tern mining; and PathJoin [26], uFreqt [18], uNot [2], and HybridTreeMiner [5],
which mine induced, unordered trees. CMTreeMiner [6] mines maximal and closed
induced, unordered trees. TreeFinder [22] uses an inductive logic programming
(ILP) approach to mine unordered, embedded subtrees, but it is not a complete
method, that is, it can miss many frequent subtrees, especially as support is lowered
or when the different trees in the database have common node labels. Dryade [23] is
a recent method to mine embedded unordered subtrees, with the restriction that no
two siblings have the same labels. In recent work, Zaki [31] proposed SLEUTH, the
first complete algorithm to mine embedded unordered trees. Our focus here is on an
efficient, unified approach to mine the complete set of frequent, induced/embedded,
ordered/unordered trees.

Frequent tree mining is also related to tree isomorphism [20] and tree pattern
matching [7]. The tree inclusion problem was studied in [13], that is, given labeled

15.4 GENERATING CANDIDATE SUBTREES 385

trees P and T , can P be obtained from T by deleting nodes? This problem is
equivalent to checking if P is embedded in T . Here we are interested in enumerating
all common subtrees in a collection of trees.

There has also been recent work in mining frequent graph patterns. The AGM
algorithm (see [12] and Chapter 9 of this book) discovers induced (possibly dis-
connected) subgraphs. The FSG algorithm (see [14] and Chapter 6 of this book)
improves upon AGM, and mines only the connected subgraphs. Both methods fol-
low an Apriori-style levelwise approach. Recent methods to mine graphs using a
depth-first tree-based extension have been proposed in [27, 28] (see also Chapter
5 of this book). Another method uses a candidate generation approach based on
Canonical Adjacency Matrices [11]. GASTON [17] adopts an interesting stepwise
approach using a combination of path, free tree, and finally graph mining to dis-
cover all frequent subgraphs. The Subdue system (see [8] and Chapter 7 of this
book) also discovers graph patterns using the minimum description length principle
(MDL). An approach termed graph-based induction (GBI) was proposed in [29],
which uses beam search for mining subgraphs. In contrast to these approaches, we
are interested in developing efficient, complete algorithms for tree patterns.

15.4 GENERATING CANDIDATE SUBTREES

There are two main steps for enumerating frequent subtrees in D. First, we need
a systematic way of generating candidate subtrees whose frequency is to be com-
puted. The candidate set should be nonredundant to the extent possible; ideally,
each subtree should be generated at most once. Second, we need efficient ways of
counting the number of occurrences of each candidate tree in the database D, and
to determine which candidates pass the minsup threshold. The latter step is data
structure dependent and will be treated in Section 15.5. We begin with the problem
of candidate generation in this section.

An automorphism of a tree is an isomorphism with itself. Let Aut(T) denote
the automorphism group, that is, the set of all label preserving automorphisms, of
T . Henceforth, by automorphism, we mean label preserving automorphisms. The
goal of candidate generation is to enumerate only one canonical representative from
Aut(T). For an unordered tree T , there can be many automorphisms. For example,
Figure 15.2 shows some of the automorphisms of the same tree. On the other hand,
ordered trees have either only one automorphism (the trivial one that maps T to

B

C B A

BD

B

C B A

B D

B

A

B D

C B

B

A

B D

B C

0

1 2 3

4 5

0

1 2 3

4 5

0

1

2 3

4 5

0

1

2 3

4 5

T1 T2 T3 T4

Figure 15.2. Some automorphisms of the same tree.

386 UNIFIED APPROACH TO ROOTED TREE MINING

itself) or, if there are several of them, they are indistinguishable (e.g., when some
node has at least two identical subtrees). Whether a tree is induced or embedded
does not impact its automorphism group.

Let there be a linear order ≤ defined on the elements of the label set L. Given
any two trees X and Y , we can define a linear order ≤, called tree order between
them, recursively as follows: Let rx and ry denote the roots of X and Y , and
let c

rx
1 , . . . , crx

m and c
ry
1 , . . . , c

ry
n denote the ordered list of children of rx and ry ,

respectively. Also let T (c
rx
i) denote the subtree of X rooted at vertex c

rx
i . Then

X ≤ Y [alternatively, T (rx) ≤ T (ry)] iff either:

1. l(rx) < l(ry), or

2. l(rx) = l(ry), and either (a) n ≤ m and T (c
rx
i) = T (c

ry
i) for all 1 ≤ i ≤ n,

that is, Y is a prefix (not necessarily immediate prefix) of or equal to X, or
(b) there exists j ∈ [1, min(m, n)], such that T (c

rx
i) = T (c

ry
i) for all i < j ,

and T (c
rx
j) < T (c

ry
j).

This tree ordering is essentially the same as that in [18], although their tree coding
is different.

We can also define a code order on the tree encodings directly as follows:
Assume that the special backtrack symbol $ > � for all � ∈ L. Given two string
encodings X and Y. We say that X ≤ Y iff either:

(i) |Y| ≤ |X| and X[k] = Y[k] for all 1 ≤ k ≤ |Y|, or
(ii) There exists k ∈ [1, min(|X|, |Y|)], such that for all 1 ≤ i < k, X[i] = Y[i]

and X[k] < Y[k].

Incidentally, a similar tree code ordering was independently proposed in CMTree-
Miner [6].

LEMMA 15.1 X ≤ Y iff X ≤ Y.

Proof. Condition (i) in code order holds if X and Y are identical for the entire length
of Y, but this is true iff Y is a prefix of (or equal to) X.

Condition (ii) holds if and only if X and Y are identical up to position k − 1,
that is, X [1, . . . , k − 1] = Y[1, . . . , k − 1]. This is true iff both X and Y share a
common prefix tree P with encoding P = X[1, . . . , k − 1]). Let vi

X (and v
j

Y) refer to
the node in tree X (and Y), which corresponds to position X[i] �= $ (and Y[j] �= $).

If k = 1, then P is an empty tree with encoding P = ∅. It is clear that l(rx) <

l(ry) iff X[1] < Y[1]. If k > 1, then X[k] < Y[k], iff one of the following cases is
true: (a) X[k] �= $ and Y[k] �= $: We immediately have X[k] < Y[k] iff T (vk

X) <

T (vk
Y) iff X < Y . (b) X[k] �= $ and Y[k] = $: let v

j

X be parent of node vk
X (j <

k), and let v
j

Y be the corresponding node in Y (which refers to Y[j] �= $). We
then immediately have that T (v

j

Y) is a prefix of T (v
j

X), since X[j, . . . , k − 1] =
Y[j, . . . , k − 1], and v

j

X has an extra child vk
X, whereas v

j

Y does not. 	

15.4 GENERATING CANDIDATE SUBTREES 387

Equivalence Class

Element List: (label, attached to position)

x

x

xx

Class Prefix

3

C

D

2

1

0

BA

Prefix String: C D A $ B

 (x, 3) // attached to 3: C D A $ B x $ $ $

 (x, 1) // attached to 1: C D A $ B $ x $ $

(x, 0) // attached to 0: C D A $ B $ $ x $

Figure 15.3. Prefix extension and equivalence class.

Given Aut(T) the canonical representative Tc ∈ Aut(T) is the tree, such that
Tc ≤ X for all X ∈ Aut(T). For any P ∈ Aut(T) we say that P is in canonical
form if P = Tc. For example, Tc = T1 for the automorphism group Aut(T1), four
of whose members are shown in Figure 15.2. We can see that the string encoding
T1 = BAB$D$$BC is smaller than T2 = BAB$D$$CB and also smaller than
other members.

LEMMA 15.2 A tree T is in canonical form iff for all vertices v ∈ T , T (cv
i) ≤

T (cv
i+1) for all i ∈ [1, k], where cv

1, c
v
2, . . . , c

v
k is the list of ordered children of v.

Proof. T is in canonical form implies that T ≤ X for all X ∈ Aut(T). Assume that
there exist some vertex v ∈ T such that T (ci) > T (ci+1) for some i ∈ [1, k], where
c1, c2, . . . , ck are the ordered children of v. But then, we can obtain tree T ′ by
simply swapping the subtrees T (ci) and T (ci+1) under node v. However, by doing
so, we make T ′ < T , which contradicts the assumption that T is canonical. 	

Let R(P) = v1v2, . . . , vm denote the rightmost path in tree P , that is, the path
from root Pr to the rightmost leaf in P . Given a seed frequent tree P , we can
generate new candidates P i

x obtained by adding a new leaf with label x to any vertex
vi on the rightmost path R(P). We call this process as prefix-based extension since
each such candidate has P as its prefix tree.

It has been shown that prefix-based extension can correctly enumerate all
ordered trees [1, 30]. SLEUTH follows the same strategy for ordered, embed-
ded trees. For unordered trees, we only have to do a further check to see if the
new extension is the canonical form for its automorphism group, and if so, it is
a valid extension. For example, Figure 15.3 shows the seed tree P , with encoding
P = CDA$B (omitting trailing $’s). To preserve the prefix tree, only rightmost
branch extensions are allowed. Since the rightmost path is R(P) = 013, we can
extend P by adding a new vertex with label x any of these vertices, to obtain a
new tree P i

x (i ∈ {0, 1, 3}). Note, how adding x to node 2 gives a different prefix
tree encoding CDAx, and is thus disallowed, as shown in Figure 15.3.

388 UNIFIED APPROACH TO ROOTED TREE MINING

In [18] it was shown that for any tree in canonical form its prefix is also
in canonical form. Thus starting from vertices with distinct labels, using prefix
extensions, and retaining only canonical forms for each automorphism group, we
can enumerate all unordered trees nonredundantly. For each candidate, we can count
the number of occurrences in database D to determine which are frequent. Thus
the main challenges in tree extension are to: (i) efficiently determine whether an
extension yields a canonical tree, and (ii) determine extensions that will potentially
be frequent. The former step considers only valid candidates, whereas the latter step
minimizes the number of frequency computations against the database.

15.4.1 Canonical Extension

To check if a tree is in canonical form, we need to make sure that for each vertex
v ∈ T , T (ci) ≤ T (ci+1) for all i ∈ [1, k], where c1, c2, . . . , ck is the list of ordered
children of v. However, since we extend only canonical trees, for a new candidate,
its prefix is in canonical form, and we can do better.

LEMMA 15.3 Let P be a tree in canonical form, and let R(P) be the rightmost
path in P . Let P k

x be the tree extension of P when adding a vertex with label
x to some vertex vk in R(P). For any vi ∈ R(P k

x), let c
vi

l−1 and c
vi

l denote the
last two children of vi .2 Then P k

x is in canonical form iff for all vi ∈ R(P k
x),

T (c
vi

l−1) ≤ T (c
vi

l).

Proof. Let R(P) = v1v2 · · · vkvk+1 · · · vm be the rightmost path in P . By
Lemma 15.2, P is in canonical form implies that for every node vi ∈ R(P), we
have T (c

vi

l−1) ≤ T (c
vi

l).
When we extend P to P k

x , we obtain a new rightmost path R(P k
x) =

v1v2, . . . , vkvn, where vn is the new last child of vk (with label x). Thus both
R(P) and R(P k

x) share the vertices v1v2, . . . , vk in common. Note that for any
i > k, vi ∈ R(P) is unaffected by the addition of vertex vn. On the other hand,
for all i < k, the last child c

vi

l of vi ∈ R(P) [i.e., vi ∈ R(P k
x)] is affected by vn,

whereas c
vi

l−1 remains unchanged. Also for i = k, the last two children of vk change
in tree P k

x ; we have c
vk

l−1 = vk+1 and c
vk

l = vn.
Since P is in canonical form, we immediately have that for all vi ∈

{v1, v2, . . . , vk}, T (c
vi

j) ≤ T (c
vi

l−1) for all j < l − 1. Thus we only have to com-
pare the new subtree T (c

vi

l) with T (c
vi

l−1). If T (c
vi

l−1) ≤ T (c
vi

l) for all vi ∈ R(P k
x),

then by Lemma 15.2, we immediately have that P k
x is in canonical form. On the

other hand if T (c
vi

l−1) > T (c
vi

l) for some vi ∈ R(P k
x), then P k

x cannot be in canon-
ical form. 	

According to Lemma 15.3 we can check if a tree P k
x is in canonical form by

starting from the rightmost leaf in R(P k
x) and checking if the subtrees under the

last two children for each node on the rightmost path are ordered according to ≤.
By Lemma 15.1 it is sufficient to check if their string encodings are ordered by ≤.

2If vi is a leaf, then both children are empty, and if vi has only one child, then c
vi

l−1 is empty.

15.4 GENERATING CANDIDATE SUBTREES 389

B

A

B

C

B

A

B

C

A

B

C

A

C

D

C

0

1

4

5

6

7

10 12

13

11

3

2

8

9 x

14

15

Figure 15.4. Check for canonical form.

For example, given the candidate tree P 12
x shown in Figure 15.4 which has a new

vertex 15 with label x attached to node 12 on the rightmost path, we first compare
15 with its previous sibling 13. For T (13) ≤ T (15), we require that x ≥ C. After
skipping node 11 (with empty previous sibling), we reach node 0, where we compare
T (5) and T (11). For T (5) ≤ T (11) we require that x ≥ D, otherwise P 12

x is not
canonical. Thus for any x < D the tree is not canonical. It is possible to speed-
up the canonicality checking by adopting a different tree coding [18], but here we
will continue to use the string encoding of a tree. The corresponding checks for
canonicality based on Lemma 15.1 among the subtree encodings are shown below:

T(13) vs. T(15): BAAC$$B$$ABCC $$D $$B $$ABCC $$x
T(5) vs. T(11): BAAC$$B$$ABCC $$D $$B $$ABCC $$x

Based on the check for canonical form, we can determine which labels are
possible for each rightmost path extension. Given a tree P and the set of frequent
edges F2 (or the frequent labels F1), we can then try to extend P with each edge
from F2 (or each item in F1) that leads to a canonical extension. Even though all
of these candidates are nonredundant (i.e., there are no isomorphic duplicates), this
extension process may still produce too many candidate trees, whose frequencies
have to be counted in the database D, and many of the candidates may not be
frequent. To reduce the number of such trees, we try to extend P with a vertex that
is more likely to result in a frequent tree, using the idea of a prefix equivalence class.

15.4.2 Equivalence Class-Based Extension

We say that two k-subtrees X, Y are in the same prefix equivalence class iff they
share the same prefix tree. Thus any two members of a prefix class differ only in
the last vertex. For example, Figure 15.3 shows the class template for subtrees with

390 UNIFIED APPROACH TO ROOTED TREE MINING

the same prefix subtree P with string encoding P = C D A $ B. The figure shows
the actual format we use to store an equivalence class; it consists of the class prefix
string and a list of elements. Each element is given as a (x, i) pair, where x is the
label of the last vertex, and i specifies the vertex in P to which x is attached. For
example (x, 1) refers to the case where x is attached to vertex 1. The figure shows
the encoding of the subtrees corresponding to each class element. Note how each
of them shares the same prefix up to the (k − 1)th vertex. These subtrees are shown
only for illustration purposes; we only store the element list in a class.

Let P be a prefix subtree of size k − 1; we use the notation [P] to refer to its
class (we will use P and its string encoding P interchangeably). If (x, i) is an ele-
ment of the class, we write it as (x, i) ∈ [P]. Each (x, i) pair corresponds to a subtree
of size k, sharing P as the prefix, with the last vertex labeled x, attached to vertex
i in P . We use the notation P i

x to refer to the new prefix subtree formed by adding
(x, i) to P . Let P be a (k − 1) subtree, and let [P] = {(x,i)|P i

x is frequent} be the
set of all possible frequent extensions of prefix tree P . Then the set of potentially
frequent candidate trees for the class [P i

x] [obtained by adding an element (x, i) to
P], can be obtained by prefix extensions of P i

x with each element (y, j) ∈ [P], given
as follows: (i) cousin extension: If j ≤ i and |P | = k − 1 ≥ 1, then (y, j) ∈ [P i

x],
and in addition (ii) descendant extension: If j = i then (y, k − 1) ∈ [P i

x].
Consider Figure 15.5, showing the prefix class P = AB, which contains 2 ele-

ments, (C, 1) and (D, 0). Let us consider the extensions of first element, that is, of
[P 1

C] = [ABC]. First we must consider element (C, 1) itself. As descendant exten-
sion, we add (C, 2) (tree C1), and as cousin extension, we add (C, 1) (tree C2).

A

B

C D

A

B

A A A

B B B

C C C

A A

B BD D
D

C
C

D

D

Element List: (C,1) (D,0)
Prefix: A B

Prefix: A B C
Element List: (C,2) (C,1) (D,0)

Prefix: A B $ D
Element List: (D,2) (D,0)

C1

C4

P2

C3C2

C5

P1

2 2

1

2

3

1

2

1

2

1 2

3

1 2 3

0

P1
0

P2

11

0
C1

0
C2

0

C3

3

3

0 0 C5C4

Figure 15.5. Equivalence-class-based extension.

15.4 GENERATING CANDIDATE SUBTREES 391

Extending with (D, 0), since 0 < 1, we only add cousin extension (D, 0) (tree C3)
to [ABC]. When considering extensions of [P 0

D] = [AB$D], we consider (C, 1)

first. But since C is attached to vertex 1, it cannot preserve the prefix tree PD . Con-
sidering (D, 0), we add (D, 0) as a cousin extension and (D, 2) as a descendant
extension, corresponding to trees C4 and C5.

15.4.3 Discussion

Note that for ordered and embedded tree mining, we can guarantee that each equiva-
lence class is complete, that is, all potential embedded, ordered (k + 1) subtrees can
be obtained by joining two embedded, ordered k subtrees in the class. For unordered
subtrees, we have to allow noncanonical subtrees to preserve completeness. Thus
any embedded, unordered (k + 1) subtree can be obtained by joining two embedded,
unordered k subtrees in the class, where the tree being extended is canonical. For
induced subtrees also the equivalence class is not complete, if we only keep induced
subtrees as class members. For example, in Figure 15.1, there are two induced 2
subtrees with B as a root, namely, BA$ and BC$. Thus [B] = {(A, 0), (C, 0)}. It
is clear that we cannot obtain the pattern BAB$$ by joining only two elements
within the class [B]. To guarantee completeness, we must allow embedded subtrees
to be class members. For example, if we add the embedded pattern BB$ to [B],
then we will be able to obtain BAB$$ by joining only two elements within the
class [B]. In general, we can obtain any induced, (un)ordered (k + 1) subtree, from
two k subtrees within a class, provided the tree being extended is both canonical
and induced. Thus the main observation behind equivalence class extension is the
Fk × Fk candidate generation process, where only known frequent k elements from
the same class are used for extending P i

x . Furthermore, we only extend P i
x , if it is

in canonical form and satisfies the given tree properties. However, to guarantee that
all possible extensions are members of [P], we have to relax the canonicality or
induced requirements.

As opposed to equivalence class extensions, for pure canonical extensions, an
equivalence class contains only canonical members, and only those members that
satisfy the tree properties (embedded or induced). To guarantee that all possible
extensions will be tried, we extend [P i

x] by considering all members of the form
(x, y) ∈ F2, which itself stores only canonical or embedded/induced elements as the
case may require. Canonical extension thus corresponds to an Fk × F2 (or Fk × F1)
candidate generation process. In essence canonical and equivalence class extensions
represent a trade-off between the number of redundant (isomorphic) candidates
generated and the number of potentially frequent candidates to count. Canonical
extensions generate nonredundant candidates, but many of which may turn out not
to be frequent. On the other hand, equivalence class extension generates redundant
candidates, but considers a smaller number of (potentially frequent) extensions.
In our experiments we found equivalence class extensions to be more efficient
(see Section 15.8). One consequence of using equivalence class extensions is that
SLEUTH does not depend on any particular canonical form; it can work with any
systematic way of choosing a representative from an automorphism group. Pro-
vided only one representative is extended, its class contains all information about

392 UNIFIED APPROACH TO ROOTED TREE MINING

the extensions that can be potentially frequent. This can provide a lot of flexibility
on how tree enumeration is performed.

15.5 FREQUENCY COMPUTATION

The candidate generation step allow us to enumerate potentially frequent ordered/
unordered subtrees in a systematic manner. The goal of the frequency counting step
is to quickly find the support of a candidate. We first look at the task of finding
the frequency of embedded subtrees, and then extend the method to compute the
support of induced subtrees.

15.5.1 Embedded Subtrees

In SLEUTH, we represent the database in the vertical format [30] in which for
every distinct label we store its scope-list, which is a list of tree IDS and vertex
scopes where that label occurs. For label �, we denote its scope list as L(�); each
entry in the scope list is a pair (t, s), where t is a tree ID (TID) in which � occurs,
and s is the scope of a vertex with label � in TID t . Figure 15.6 shows a database
of three trees, and the scope lists for each label. Consider label A; since it occurs
at vertex 0 with scope [0, 3] in tree T0, we add (0, [0, 3]) to its scope list. A also
occurs in T1 with scope [1, 3], and in T2 with scopes [0, 7] and [4, 7]. Thus we add
(1, [1, 3]), (2, [0, 7]) and (2, [4, 7]) to L(A). In a similar manner, the scope lists for
other labels are created.

We also use the scope lists to represent the list of occurrences in the database,
for any k-subtree S. Let x be the label of the rightmost leaf in S. The scope list
of S consists of triples (t, m, s), where t is a TID where S occurs, s is the scope
of vertex with label x in TID t , and m is a match label for the prefix subtree of
S. Thus the vertical database is in fact the set of scope lists for all 1 subtrees (and
since they have no prefix, there is no match label).

SLEUTH uses scope-list joins for fast frequency computation for a new embed-
ded extension. We assume that each element (x, i) in a prefix class [P] has a scope
list that stores all occurrences of the tree P i

x [obtained by extending P with (x, i)].
The vertical database contains the initial scope lists L(�) for each distinct label �.
To compute the scope lists for members of [P i

x], we need to join the scope lists
of (x, i) with every other element (y, j) ∈ [P]. If the resulting tree is frequent, we
insert the element in [P i

x].
Let sx = [lx, ux] be a scope for vertex x, and sy = [ly, uy] a scope for y. We

say that sx is strictly less than sy , denoted sx < sy , if and only if ux < ly , that is, the
interval sx has no overlap with sy , and it occurs before sy . We say that sx contains
sy , denoted sx ⊃ sy , if and only if lx < ly and ux ≥ uy , that is, the interval sy is a
proper subset of sx .

Recall from the equivalence class extension that when we extend element [P i
x]

there can be at most two possible outcomes, that is, descendant extension or cousin
extension. The use of scopes allows us to compute in constant time whether y is

15.5 FREQUENCY COMPUTATION 393

D in Vertical Format: (TID, scope) pairs

0, [0, 3]
1, [1, 3]
2, [0, 7]
2, [4, 7]

1, [0, 5]
1, [2, 2]
1, [4, 4]
2, [2, 2]
2, [5, 5]

1, [5, 5]
2, [1, 2]
2, [6, 7]

0, [3, 3]
1, [3, 3]
2, [7, 7]

2, [3, 7]

A B C D E

0, [1, 1]0, [2, 3]

Tree T1

Database D of 3 Trees

Tree T0 Tree T2

A

D

B

A

B D

B C

A

C

B

E

A

B C

D

[1,1]

[4,7]

[2,2]

[4, 4] [5,5]

[1,3]

[0,5]

[0,3]

[3,3]

[2,3]

[2,2]

[1,2]

[0,7]

[3,7]

[5,5]

[7,7]

[6,7]

[3, 3]

BC

0

1

3

0

1

2 3

4 5

1

2

3

4

5 6

7

2

0

Figure 15.6. Scope lists.

a descendant of x or y is a cousin of x. We describe below how to compute the
embedded support for (un)ordered extensions, using the descendant and cousin tests.

Descendant Test. Given [P] and any two of its elements (x, i) and (y, j). In a
descendant extension of P i

x the element (y, j) is added as a child of (x, i). For
embedded frequency computation, we have to find all occurrences where label y

occurs as a descendant of x, sharing the same prefix tree P i
x in some T ∈ D, with

TID t . This is called the descendant test. To check if this subtree occurs in an
input tree T with TID t , we search if there exists triples (ty, my, sy) ∈ L(y) and
(tx ,mx, sx) ∈ L(x), such that:

1. ty = tx = t , that is, the triples both occur in the same tree, with TID t .
2. my = mx = m, that is, x and y are both extensions of the same prefix occur-

rence, with match label m.

394 UNIFIED APPROACH TO ROOTED TREE MINING

3. sy ⊂ sx , that is, y lies within the scope of x. If the three conditions are
satisfied, we have found an instance where y is a descendant of x in some
input tree T . We then extend the match label my of the old prefix P , to get
the match label for the new prefix P i

x (given as my ∪ lx), and add the triple
(ty, {my ∪ lx}, sy) to the scope list of (y, |P |) in [P i

x].

Cousin Test. Given [P] and any two of its elements (x, i) and (y, j). In a cousin
extension of P i

x the element (y, j) is added as a cousin of (x, i). For embedded
frequency computation, we have to find all occurrences where label y occurs as
a cousin of x, sharing the same prefix tree P i

x in some input tree T ∈ D, with
TID t . This is called the cousin test. To check if y occurs as a cousin in some
tree T with TID t , we need to check if there exists triples (ty, my, sy) ∈ L(y) and
(tx, mx, sx) ∈ L(x), such that:

1. ty = tx = t , that is, the triples both occur in the same tree, with TID t .
2. my = mx = m, that is, x and y are both extensions of the same prefix occur-

rence, with match label m.
3. sx < sy or sx > sy , that is, either x comes before y or y comes before x in

depth-first ordering, and their scopes do not overlap. This allows us to find
the unordered frequency and is one of the crucial differences compared to
ordered tree mining, as in TreeMiner [30], which only checks if sx < sy .
If these conditions are satisfied, we add the triple (ty , {my ∪ lx}, sy) to the
scope list of (y, j) in [P i

x].

Figure 15.7 shows an example of how scope-list joins work, using the database
D from Figure 15.6. The initial class with empty prefix consists of four frequent
labels (A,B,C, and D), with their scope lists. All pairs (not necessarily distinct)
of elements are considered for extension. Two of the frequent trees in class [A] are
shown, namely AB$ and AC$. AB$ is obtained by joining the scope lists of A and
B and performing descendant tests, since we want to find those occurrences of B

1, 1, [2, 2]
2, 0, [2, 2]
2, 0, [5, 5]
2, 4, [5, 5]

A

B

A

C

0, 0, [2, 3] 0, 0, [1, 1]
2, 0, [1, 2]

2, 0, [6, 7]
2, 4, [6, 7]

A

B C

0, 02, [1, 1]

2, 02, [6, 7]

2, 45, [6, 7]
2, 05, [6, 7]

2, 05, [1, 2]

Figure 15.7. Scope-list joins: embedded.

15.5 FREQUENCY COMPUTATION 395

that are within some scope of A (i.e., under a subtree rooted at A). Let sx denote a
scope for label x. For tree T0 we find that sB = [2, 3] ⊂ sA = [0, 3]. Thus we add
the triple (0, 0, [2, 3]) to the new scope list. Similarly, we test the other occurrences
of B under A in trees T1 and T2. If a new scope list occurs in at least minsup TIDS,
the pattern is considered frequent. The next candidate shows an example of testing
frequency of a cousin extension, namely, how to compute the scope list of AB$C

by joining L(AB) and L(AC). For finding all unordered embedded occurrences,
we need to test for disjoint scopes, with sB < sC or sC < sB , which have the same
match label. For example, in T0, we find that sB = [2, 3] and sC = [1, 1] satisfy
these condition. Thus we add the triple (0, 02, [1, 1]) to L(AB$C). Notice that the
new prefix match label (02) is obtained by adding to the old prefix match label (0),
the position where B occurs (i.e., 2). The other occurrences are noted in the final
scope list.

15.5.2 Induced Subtrees

For counting the support of only induced trees, SLEUTH extends the scope list to
be a five-tuple of the form (t, m, s, d, i), where in addition to the tid t , prefix match-
label m, and last node scope s, we keep the last node’s depth d (i.e., the number of
edges on the path from the root to the given node), and a Boolean flag i indicating
whether this tuple contributes to the induced support of the candidate. Initially, for
single items, d is the actual depth of the item in tree t , but for k subtrees (k ≥ 2), d

denotes the depth of the node in the candidate subtree. Figure 15.8 shows the single
item scope lists for induced mining; only the triples (t, s, d) are shown for single
items, since the match-label m = ∅, and the induced flag i = 1 for all elements. For
example, in tree T0, A occurs at vertex 0 with scope [0, 3] and at depth 0, in tree
T0, we add (0, [0, 3], 0) to its scope list. In tree T1, A occurs at node 1 with scope
[1, 3] and at depth 1, so we add (1, [1, 3], 1) to its scope list, and so on.

Instead of cousin and descendant tests, for induced mining, we have to con-
sider only sibling and child tests. Let [P] be an equivalence class, let (x, i) ∈ [P].
For canonical extensions, let (y, j) ∈ F2, and for equivalence class extensions, let
(y, j) ∈ [P].

Child Test. In a child extension of P i
x the element (y, j) is added as a child

of (x, i). For induced frequency computation, we first find all occurrences where
label y occurs as a descendant of x, but we increment the support only for those
tuples where y is a direct child of x. Note that we keep all embedded occurrences
to preserve the equivalence-class completeness property. Thus for induced support
counting, like in the embedded case, we begin by searching if there exists tuples
(ty ,my, sy, dy, iy) ∈ L(y) and (tx, mx, sx, dx, ix) ∈ L(x), such that the TIDS (ty =
tx = t) and match labels (my = mx = m) are equal, and y lies within the scope of
x (sy ⊂ sx). In addition, we compute the difference in the depth of nodes y and
x, δ = dy − dx . If ix = 1, then x represents an induced subtree, and therefore, if
δ = 1, then y must also be an induced extension of x. In this case we add the new
tuple (ty, {my ∪ lx}, sy, d, 1) to the scope list of (y, |P |) in [P i

x], where d = δ when

396 UNIFIED APPROACH TO ROOTED TREE MINING

A B C D

A

B C

A

B

A

C

1, [1, 3]

2, [4, 7]

0, [0, 3], 0

, 1

2, [0, 7], 0

, 1

0, [2, 3], 1

1, [0, 5], 0

1, [2, 2], 2

1, [4, 4], 1

2, [2, 2], 2

2, [5, 5], 2

0, [1, 1], 1

1, [5, 5], 1

2, [1, 2], 1

2, [6, 7], 2

0, [3, 3], 2

1, [3, 3], 2

2, [7, 7], 3

0, 0, [2, 3], 1, 1

1, 1, [2, 2], 1, 1

2, 0, [2, 2], 2, 0

2, 0, [5, 5], 2, 0

2, 4, [5, 5], 1, 1

0, 02, [1, 1], 1, 1

2, 05, [1, 2], 1, 0

2, 02, [6, 7], 2, 0

2, 05, [6, 7], 2, 0

2, 45, [6, 7], 1, 1

0, 0, [1, 1], 1, 1

2, 0, [1, 2], 1, 1

2, 0, [6, 7], 2, 0

2, 4, [6, 7], 1, 1

Figure 15.8. Scope-list joins: induced.

transitioning from absolute depth of y in t to relative depth of y in the candidate,
that is, for 2 subtrees, otherwise d = dy (for k > 2). If ix �= 1, then y cannot be
an induced extension of x, but rather is an embedded extension. In this case we
add the new tuple (ty, {my ∪ lx}, sy, d, 0) to the scope list, but only if we are using
equivalence-class extensions.

Cousin Test. In a cousin extension of P i
x the element (y, j) is added as a cousin

of (x, i). For induced support counting, we require that both y and x are induced
extensions of the same parent node. That is we look for tuples (ty,my, sy, dy, iy) ∈
L(y) and (tx, mx, sx, dx, ix) ∈ L(x), such that ty = tx = t , my = mx = m, and sx <

sy for ordered trees, and in addition if sx > sy for unordered trees. Further, if ix =
iy = 1, then it is an induced extension, and we add the tuple (ty, {my ∪ lx}, sy, dy, 1)

to the scope list of (y, j) in [P i
x]. Otherwise, if we are using equivalence-class

extensions, we add (ty, {my ∪ lx}, sy, dy, 0) to the scope list. Note that since a cousin
test can only be applied to k subtrees, with k ≥ 3, the depth dy is already relative
to the root of the candidate.

Figure 15.8 shows an example of how induced scope-list joins work, using the
database D from Figure 15.6. It shows the initial scope lists for the four frequent
items. Consider the candidate AB$ obtained by joining the scope lists of A and B

15.6 COUNTING DISTINCT OCCURRENCES 397

and performing child tests. Consider (0, [2, 3], 1) ∈ L(B) and (0, [0, 3], 0) ∈ L(A).
We find that sB = [2, 3] ⊂ sA = [0, 3], and δ = dy − dx = 1 − 0 = 1, which means
it is an induced occurrence of the pattern, so we add the tuple (0, 0, [2, 3], 1, 1) to the
new scope list L(AB). As another example, for T2 we have (2, [2, 2], 2) ∈ L(B) and
(2, [0, 7], 0) ∈ L(A), with sB = [2, 2] ⊂ sA = [0, 7], and δ = dy − dx = 2 − 0 = 2,
which means it is only an embedded extension, so we add (2, 0, [2, 2], 2, 0) to the
new scope list. In a similar manner we compute other elements of L(AB) and of
L(AC). For induced support we only count those tuples with the induced flag i = 1.
Thus the induced support of AB$ is 3 (since there is at least one element with i = 1
for each t), and the induced support of AC$ is 2. As an example of cousin testing,
consider the scope list of AB$C, obtained by joining L(AB) and L(AC). For finding
all (un)ordered induced occurrences, we need to test for disjoint scopes, with sB <

sC or sC < sB , which have the same match label, and where both tuples are induced.
For example, for T0, we find that the tuple (0, 0, [2, 3], 1, 1) and (0, 0, [1, 1], 1, 1),
in L(AB) and L(AC), respectively, satisfy these conditions. Thus we add the tuple
(0, 02, [1, 1], 1, 1) to L(AB$C). If we were interested only in ordered subtrees, this
tuple would not be valid, since [1, 1] < [2, 3]. Note also that tuples (2, 0, [5, 5], 2, 0)

and (2, 0, [1, 2], 1, 1), in L(AB) and L(AC), respectively, represent a sibling, rather
than a cousin extension. So we add the tuple (2, 05, [1, 2], 1, 0) to the new list, The
other tuples are obtained similarly, and the induced support of AB$C is 2. In this
example, we showed the scope lists assuming equivalence class extensions; for pure
canonical extension, all those tuples with i = 0 will not be added to the scope lists.

15.6 COUNTING DISTINCT OCCURRENCES

SLEUTH is inherently a very efficient method for weighted support computation
since it counts all embeddings of a frequent pattern within each database tree, using
the scope-list joins. Many applications, however, may require only the support, that
is, instead of finding all embeddings of a subtree in the entire database, we may sim-
ply want to know the number of database trees that contain at least one embedding
of a subtree. If there are relatively few embeddings per tree, SLEUTH continues
to be very effective for support counting. On the other hand, if there are many
duplicate labels, and if the tree is highly branched, the number of embeddings can
get large, resulting in long scope lists and increased running time. If the application
calls for the use of weighted support, the increased cost is acceptable, but if we want
only support, it is possible to optimize SLEUTH to count only distinct occurrences
of each pattern.

To count only distinct occurrences SLEUTH uses a different scope-list repre-
sentation for computing pattern frequency. It does not maintain the match labels,
which keep track of all embeddings. Instead, it stores the scopes for all nodes on
the rightmost path within a tree; we call the new scope lists as scope-vector lists
or SV lists for short. Thus each element of the new list is a pair of the form (t , s),
where t is a tree ID and s = {s1, s2, . . . , sm} is the scope vector of matching node
scopes si on the rightmost path. Furthermore, s represents a minimal occurrence of

398 UNIFIED APPROACH TO ROOTED TREE MINING

the pattern within a database tree, that is, there does not exist another scope-vector
s′ strictly contained in s, 3 such that the pattern also occurs at nodes with scopes
given by s′. Note that for induced mining, we can extend the tuple to be of the form
(t, s, d, i), where d is the depth information, and i is an induced flag, as previously
described in Section 15.5.2. For simplicity, we only illustrate the embedded case
below; it is straightforward to extend it to the induced case.

15.6.1 SV-List Joins

Given two trees (x, i) and (y, j) within the same equivalence class [P], we perform
SV list as follows: Let (tx, sx) and (ty, sy) be any SV-list elements for nodes x and y,
respectively. Let sx = {s1

x , s
2
x , . . . , s

m
x } and sy = {s1

y , s
2
y , . . . , s

n
y }.

Descendant Test. For the descendant test we first make sure that tx = ty , that is,
both nodes x and y occur in the same database tree. Next, we look at the last node
scope of scope vectors sx and sy , namely sm

x and sn
y . If sn

y ⊂ sm
x , and there does not

exist another last node scope, say sm′
x , in another element of x’s SV list, such that

sn
y ⊂ sm′

x ⊂ sm
x (i.e., this is a minimal occurrence of the pattern), then we add the

pair (tx, s′ = {s1
x , . . . , s

k
x , . . . , s

n
y }) new SV list (where s′ represents the scope vector

for only those nodes on the rightmost path of the extended pattern).

Cousin Test. After checking tx = ty , we make sure that sm
x < sn

y or sm
x > sn

y , that
is, the last nodes of each element are disjoint. Note that when extending P i

x with
(y, j) we obtain a new tree with prefix P i

x , and which has y as the label of the
rightmost node, attached to node j in the prefix. The next step in the cousin test is
to compare the scopes at position j in both x and y (i.e., s

j
x and s

j
y) and sn

y . There

are two cases to consider: (a) sn
y ⊂ s

j
x and either sn

y > s
j+1
x or sn

y < s
j+1
x [i.e., the

last node of y is contained within the j th node of x (say, with label z), but it is
not contained within the (j + 1)th node’s scope], or (b) either sn

y > s
j
x or sn

y < s
j
x ,

and s
j
x ⊂ s

j
y , that is, the last node of y is before or after the j th node of x and the

j th node of x is contained in the j th node of y. If (a) is true, then we add the pair
(tx, {s1

x , . . . , s
j
x , sn

y }) to the SV list of the new candidate, or if (b) is true, we add

(tx, {s1
y , . . . , s

j
y , sn

y }). To maintain minimality, we store the pair only for the nearest
j th node to y in a database tree.

Figure 15.9 shows an example of how SV-list joins work, using the database
D from Figure 15.6. The initial SV lists are the same as the item scope lists in
Figure 15.6. While computing the new SV lists for the subtrees AB$ and AB$, we
have to perform only descendant tests. The key is to keep only minimal occurrences.
For example, in tree T2, the node scopes [0, 7] and [4, 7] for label A both contain
the scope [5, 5] for label B. In this case, the SV list for AB$ contains only the
pair (2, [4, 7], [5, 5]). In a similar manner the complete SV lists for both patterns

3We say that a scope-vector s′ = {s′
1, s

′
2, . . . , s

′
n} is contained within another scope-vector s =

{s1, s2, . . . , sm} if (s1 < s′
1 ∧ s′

n ≤ sm) or (s1 ≤ s′
1 ∧ s′

n < sm).

15.7 THE SLEUTH ALGORITHM 399

1

4

2, [4,7], [7,7]

4

0, [0,3], [3,3]
1, [1,3], [3,3]
2, [4,7], [7,7]

1

2

1

2

0, [0,3] [3,3]
1, [1,3] [3,3]

0, [0,3], [1,1]

2, [4,7], [5,5]

2, [0,7], [2,2]

1, [1,3], [2,2]

Elements = (2,0), (4,0)
Prefix = 1

Infrequent Elements
(1,0) : 1 1 1
(3,0) : 1 3 1

Prefix = 12
Elements = (4,0)

Infrequent Elements
(2,0) : 1 2 1 2
(2,1) : 1 2 2 1 1
(4,1) : 1 2 4 1 1

Figure 15.9. SV-list joins.

are obtained, as shown in Figure 15.9 These two lists are joined to compute the
frequency of ABD, using the cousin test. In our example, all tree IDS belong
to case (a) of the cousin test. For example, for T2, node label D has scope [7, 7],
whereas node label B has occurrences at scopes [2, 2] and [5, 5]. Here j = 0 and
thus D’s scope [7, 7] is contained in B’s j th node’s scope [0, 7], and also it is after
B’s (j + 1)th node’s scope [2, 2]. The cousin test is true, but it is not minimal since
the test is also satisfied for B’s scope [4, 7], and thus we add (2, [4, 7], [7, 7]) to
the new candidate’s SV list.

15.7 THE SLEUTH ALGORITHM

Figure 15.10 shows the high-level structure of SLEUTH. The main steps include the
computation of the frequent labels (1 subtrees) and 2 subtrees, and the enumeration
of all other frequent subtrees via recursive (depth-first) equivalence-class extensions
of each class [P]1 ∈ F2. We will now describe each step in some more detail.

Computing F1 and F2. SLEUTH assumes that the initial database is in the hor-
izontal string encoded format. To compute F1 (line 1), for each label i ∈ T (the
string encoding of tree T), we increment i’s count in a count array. This step also
computes other database statistics such as the number of trees, maximum number
of labels, and so on. All labels in F1 belong to the class with empty prefix, given
as [P]0 = [∅] = {(i,), i ∈ F1}, and the position indicates that i is not attached
to any vertex. Total time for this step is O(n) per tree, where n = |T |.

For efficient F2 counting (line 2) we compute the supports of all candidates by
using a two-dimensional integer array of size F1 × F1, where cnt[i][j] gives the
count of the candidate (embedded) subtree with encoding (i j $). Total time for this
step is O(n2) per tree. While computing F2 we also create the vertical scope-list
representation for each frequent item i ∈ F1, and before each call of Enumerate-
FrequentSubtrees ([P]1 ∈ E) (line 4) we also compute the scope lists of all frequent
elements (2 subtrees) in the class.

400 UNIFIED APPROACH TO ROOTED TREE MINING

SLEUTH (D, minsup):
1. F1 = { frequent 1-subtrees };
2. F2 = { classes [P]1 of frequent 2-subtrees };
3. for all [P]1 ∈ F2 do
4. Enumerate-Frequent-Subtrees([P]1);

ENUMERATE-FREQUENT-SUBTREES([P]):
5. for each element (x,i) ∈ [P] do
6. if check-canonical(Pix) then
7. [Pix] = ∅;
8. for each element (y,j) ∈ [P] do
9. if do-descendant-extension then

Ld = descendant-scope-list-join((x, i),(y,j));
10. if do-cousin-extension then

Lc = cousin-scope-list-join((x, i),(y,j));
11. if descendant or cousin extension is frequent then
12. Add (y,j) and/or (y,k− 1) & their scope-lists

to equivalence class [Pix];
13. Enumerate-Frequent-Subtrees([Pix]);

Figure 15.10. SLEUTH algorithm.

Computing Fk(k ≥ 3). Figure 15.10 shows the pseudocode for the recursive
(depth-first) search for frequent subtrees (Enumerate-Frequent-Subtrees). The input
to the procedure is a set of elements of a class [P], along with their scope lists (or
SV lists). Frequent subtrees are generated by joining the scope lists (SV lists) of all
pairs of elements.

Before extending the class [P i
x] we first make sure that P i

x is the canonical
representative of its automorphism group (line 6). If not, the pattern will not be
extended. If yes, we try to extend P i

x with every element (y, j) ∈ [P]. We try both
descendant and cousin extensions, and perform descendant or cousin tests during
scope-list join or SV-list join (lines 9–10). If any candidate is frequent, it is added
to the new class [P i

x]. This way, the subtrees found to be frequent at the current level
form the elements of classes for the next level. This recursive process is repeated
until all frequent subtrees have been enumerated. If [P] has n elements, the total
cost is given as O(qn2), where q is the cost of a scope-list join. The cost of scope-
list join is O(me2), where m is the average number of distinct TIDs in the scope
list of the two elements, and e is the average number of embeddings of the pattern
per tid. The total cost of generating a new class is therefore O(m(en)2).

In terms of memory management, we need memory to store classes along a path
in Depth First Search (DFS) search. In fact we need to store intermediate scope lists
for two classes at a time, that is, the current class [P], and a new candidate class
[P i

x]. Thus the memory footprint of SLEUTH is not much, unless the scope lists
become too big, which can happen if the number of embeddings of a pattern is
large. If the lists are too large to fit in memory, we can do joins in stages. That

15.8 EXPERIMENTAL RESULTS 401

is, we can bring in portions of the scope lists for the two elements to be joined,
perform descendant or cousin tests, and write out portions of the new scope list.

LEMMA 15.4 SLEUTH correctly generates all possible induced/embedded,
ordered/unordered, frequent subtrees.

15.7.1 Equivalence Class versus. Canonical Extensions

As described above, SLEUTH uses equivalence class extensions to enumerate the
frequent trees. For comparison we also implemented the pure-canonical extension
in a method called SLEUTH-FKF2. The main idea is to extend a canonical and
frequent (induced/embedded) subtree, with a known frequent (induced/embedded)
subtree from F2. The main difference is that Enumerate-Frequent-Subtrees takes
as input a class [P], all of whose elements are known to be both frequent and
canonical. Each member (x, i) of [P] is either extended with another element of
[P] or with elements in [x], where [x] ∈ F2 denotes all possible frequent 2 subtrees
of the form xy$; to guarantee correctness we have to extend [P i

x] with all y ∈ [x].
Note that elements of both [P] and [x] represent canonical subtrees, and if the
descendant or cousin extension is canonical, we perform descendant and cousin
joins, and add the new subtree to [P i

x] if is is frequent. This way, each class only
contains elements that are both canonical and frequent and is induced/embedded as
the case requires.

As we mentioned earlier pure canonical and equivalence-class extensions denote
a trade-off between the number of redundant candidates generated and the number
of potentially frequent candidates to count. Canonical extensions generate nonre-
dundant candidates, but many of which may turn out not to be frequent (since, in
essence, we join Fk with F2 to obtain Fk+1). On the other hand, equivalence-class
extension generates redundant candidates but considers a smaller number of (poten-
tially frequent) extensions (since, in essence, we join Fk with Fk to obtain Fk+1). In
Section 15.8 we compare these two methods experimentally; we found SLEUTH,
which uses equivalence-class extensions to be more efficient, than SLEUTH-FKF2,
which uses only canonical extensions.

15.8 EXPERIMENTAL RESULTS

All experiments were performed on a 3.2-GHz Pentium 4 processor with 1-GB main
memory, and with a 200-GB, 7200-rpm disk, running RedHat Linux 9. Timings are
based on total wall-clock time and include all preprocessing costs (such as creating
scope lists).

Synthetic Datasets. We used the synthetic data generation program to create a
database of artificial website browsing behavior [30]. The program constructs a
master website browsing tree W based on parameters supplied by the user. These
parameters include the maximum fanout F of a node, the maximum depth D of the

402 UNIFIED APPROACH TO ROOTED TREE MINING

tree, the total number of nodes M in the tree, and the number of node labels N .
For each node in master tree W , the generator assigns probabilities of following its
children nodes, including the option of backtracking to its parent, such that sum of
all the probabilities is 1. Using the master tree, one can generate a subtree Ti � W

by randomly picking a subtree of W as the root of Ti and then recursively picking
children of the current node according to the probability of following that link.

We used the following default values for the parameters: the number of labels
N = 100, the number of vertices in the master tree M = 10,000, the maximum depth
D = 10, the maximum fanout F = 10, and total number of subtrees T = 100,000.
We use three synthetic datasets: D10 dataset had all default values, F5 had all
values set to default, except for fanout F = 5, and for T 1M we set T = 1,000,000,
with remaining default values.

CSLOGS Dataset. Consists of Web log files collected over 1 month at the CS
department [30]. The logs touched 13,361 unique Web pages within the department’s
website. After processing the raw logs 59,691 user browsing subtrees of the CS
department website were obtained. The average string encoding length for a user
subtree was 23.3.

15.8.1 Performance Evaluation

We first compare four options for SLEUTH for different types of tree mining tasks,
namely SLEUTH-EU (embedded, unordered), SLEUTH-EO (embedded, ordered),
SLEUTH-IU (induced, unordered), and SLEUTH-IO (induced, ordered). Note that
SLEUTH-EO is essentially the same as the TreeMiner algorithm [30] (which also
uses vertical scope lists to mine embedded, ordered trees). Figure 15.11 shows
the length distribution of the different types of frequent trees for the highest min-
sup value. Figure 15.12 shows their performance on different datasets for different
values of minimum support.

Let us consider the F5 dataset. We find that for embedded trees, there is a gap
between unordered and ordered pattern mining. Ordered pattern mining (SLEUTH-
EO) is slower, even though unordered pattern mining (SLEUTH-EU) needs to check
for canonical forms, whereas SLEUTH-EO does not. The reason this happens is
because there are more ordered rather than unordered frequent patterns for this
dataset (as shown in Fig. 15.11). Looking at the length distribution, we find it to
be mainly symmetric across the support values, and also, generally speaking more
ordered trees are found as compared to unordered ones, especially as minimum
support is lowered. Similar trends are obtained for the D10 and T 1M datasets.

Comparing the induced, unordered (SLEUTH-IU) and ordered (SLEUTH-IO)
mining methods, we see once again that SLEUTH-IU is slightly faster then SLEUTH-
IO; the difference is not large since there is little difference in the length distributions
of these pattern types. Similar trends are obtained for the D10 and T 1M datasets.

Comparing embedded versus induced trees, we find a very big difference in
the running times (embedded mining can be four to five times slower than induced
mining). One look at the length distributions explains why this is the case. We see

15.8 EXPERIMENTAL RESULTS 403

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 0 2 4 6 8 10 12 14 16

N
um

be
r

of
 P

at
te

rn
s

Length of Patterns

F 5 (minsup = 0.025%)

SLEUTH-EU
SLEUTH-EO
SLEUTH-IU
SLEUTH-IO

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0 2 4 6 8 10 12 14 16

N
um

be
r

of
 P

at
te

rn
s

Length of Patterns

D10 (minsup = 0.025%)

SLEUTH-EU
SLEUTH-EO
SLEUTH-IU
SLEUTH-IO

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 2 4 6 8 10 12 14 16

N
um

be
r

of
 P

at
te

rn
s

Length of Patterns

T1M (minsup = 0.025%)

SLEUTH-EU
SLEUTH-EO
SLEUTH-IU
SLEUTH-IO

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 1 1.5 2 2.5 3 3.5 4 4.5 5

N
um

be
r

of
 P

at
te

rn
s

Length of Patterns

CSLOGS (minsup = 1.75%)

SLEUTH-EU
SLEUTH-EO
SLEUTH-IU
SLEUTH-IO

Figure 15.11. Distribution of patterns.

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
ot

al
 T

im
e

(s
)

Minimum Support (%)

F5

SLEUTH-EU
SLEUTH-EO
SLEUTH-IU
SLEUTH-IO

 0

 5

 10

 15

 20

 25

 30

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
ot

al
 T

im
e

(s
)

Minimum Support (%)

D10

SLEUTH-EU
SLEUTH-EO
SLEUTH-IU
SLEUTH-IO

 20

 40

 60

 80

 100

 120

 140

 160

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
ot

al
 T

im
e

(s
)

Minimum Support (%)

T1M

SLEUTH-EU
SLEUTH-EO
SLEUTH-IU
SLEUTH-IO

 5

 10

 15

 20

 25

 30

 35

 40

 1.5 2 2.5 3 3.5 4 4.5 5

T
ot

al
 T

im
e

(s
)

Minimum Support (%)

CSLOGS

SLEUTH-EU
SLEUTH-EO
SLEUTH-IU
SLEUTH-IO

Figure 15.12. SLEUTH-EU vs. SLEUTH-EO vs. SLEUTH-IU vs. SLEUTH-IO.

404 UNIFIED APPROACH TO ROOTED TREE MINING

that the number of induced patterns is orders of magnitude smaller than the number
of embedded patterns. The shape of the distribution is also symmetric.

The Web log dataset CSLOGS has different characteristics than the synthetic
ones. Looking at the pattern length distribution, we find that the number of pat-
terns keep decreasing as length increases. Like before there are more ordered,
than unordered patterns, and the timing trends remain the same as in the synthetic
datasets. That is, SLEUTH-EO is slower than SLEUTH-EU, there is not much dif-
ference between SLEUTH-IO and SLEUTH-IU, and induced mining is faster than
embedded mining.

Figure 15.13 compares SLEUTH-EO (which uses equivalence class extensions)
with SLEUTH-D (which mines only distinct occurrences) and with SLEUTH-FKF2
(which uses pure canonical extensions). We evaluate the case only for embedded,
ordered trees since the results are similar for other pattern types.

Comparing SLEUTH-EO with SLEUTH-FKF2, for all the datasets, we find that
there is a big performance loss for the pure canonical extensions due to the joins
of Fk with F2, which result in many infrequent candidates; SLEUTH-FKF2 can
be five times slower than SLEUTH-EO. This shows clearly that the equivalence-
class-based strategy of generating some redundant candidates, but extending only
canonical prefix classes, is superior to generating many infrequent but purely canon-
ical candidates. Comparing SLEUTH-EO with SLEUTH-D, we find that for the

 0

 20

 40

 60

 80

 100

 120

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
ot

al
 T

im
e

(s
)

Minimum Support (%)

F5

SLEUTH-D
SLEUTH-EO

SLEUTH-FkF2

 0

 50

 100

 150

 200

 250

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
ot

al
 T

im
e

(s
)

Minimum Support (%)

D10

SLEUTH-D
SLEUTH-EO

SLEUTH-FkF2

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
ot

al
 T

im
e

(s
)

Minimum Support (%)

T1M

SLEUTH-D
SLEUTH-EO

SLEUTH-FkF2

 5

 10

 15

 20

 25

 30

 35

 40

 45

 1.5 2 2.5 3 3.5 4 4.5 5

T
ot

al
 T

im
e

(s
)

Minimum Support (%)

CSLOGS

SLEUTH-D
SLEUTH-EO

SLEUTH-FkF2

Figure 15.13. SLEUTH-EO vs. SLEUTH-D vs. SLEUTH-FKF2.

15.9 TREE MINING APPLICATIONS IN BIOINFORMATICS 405

synthetic datasets, SLEUTH-D is slightly slower. This happens because, for these
datasets, the number of possible embeddings is small, and SLEUTH-EO requires
potentially smaller memory (since an SV-list element can be twice the size of a
scope-list element). On the other hand, CSLOGS has highly branched trees, and
consequently, there are many embeddings, as support is lowered. In this case, we
find that SLEUTH-D can be about seven times faster than SLEUTH-EO, confirming
that counting distinct occurrences is clearly beneficial when the number of mappings
increases rapidly.

Summarizing from the results over synthetic and real datasets, we can conclude
that SLEUTH is an efficient, complete, unified algorithm for mining ordered/unor-
dered, induced/embedded trees. Furthermore, it has optimizations to mine only
distinct occurrences, and its equivalence-class extension scheme is more effective
than a pure canonical extension process.

15.9 TREE MINING APPLICATIONS IN BIOINFORMATICS

In this section we look at two applications of tree mining within the domain of
bioinformatics: RNA structure and phylogenetic tree analysis.

15.9.1 RNA Structure

RNA molecules perform a variety of important biochemical functions, including
translation; RNA splicing and editing, and cellular localization. Predicting RNA
structure is thus an important problem; if a significant match to an RNA molecule
of known structure and function is found, then a query molecule may have a sim-
ilar role. Here we are interested in finding common motifs in a database of RNA
structures [10].

Whereas RNA has a three-dimensional (3D) shape, it can be viewed in terms
of its secondary structure, which is composed mainly of double-stranded regions
formed by folding the single-stranded RNA molecule back on itself. To produce
these double-stranded regions a subsequence of bases (made up of four letters:
A,C,G,U) must be complementary to another subsequence so that base pairing can
occur (G-C and A-U). It is these pairings that contribute to the energetic stability
of the RNA molecule. Moreover, bulges may also form, for example, when the
middle portion of a complementary subsequence does not participate in the base
pairing. Thus there are different RNA secondary structures that are possible, such
as single-stranded RNA, double-stranded RNA helix, stem and loop or hairpin loop,
bulge loop, interior loop, junction and multiloops, and so on [16]. In addition there
may be tertiary interactions between RNA secondary structures, for example, pseu-
doknots, kissing hairpins, hairpin-bulge contacts, and so on. Figure 15.14 shows a
two-dimensional (2D) representation of a (transfer) RNA secondary structure. There
are 5 loops (as numbered in the center); loop 1 is a bulge loop, 3, 4, and 5 are hairpin
loops, and 2 is a multijunction loop.

To mine common RNA motifs or patterns, we use a tree representation of
RNA secondary structure obtained from the RNA Matrix method used in the RAG

406 UNIFIED APPROACH TO ROOTED TREE MINING

1 2

3 4

5

1

2

3 4 5

Free Tree Rooted Ordered Tree

Figure 15.14. Example RNA structure and its tree representation.

(RNA-as-graph) database [9]. In the RNA tree, a nucleotide bulge, hairpin loop, or
internal loop is considered a vertex if there is more than one unmatched nucleotide
or noncomplementary base pair. The 3′ and 5′ ends of a helical stem are considered
vertices and so is a junction. An RNA stem with complementary base pairs (more
than 1) is considered an edge. The resulting free tree captures the topological aspects
of RNA structure. To turn the free tree into a rooted labeled tree, we label each
vertex from 1 to n, numbered sequentially from the 5′ to the 3′ end of the RNA
strand. We choose the root to be vertex 1, and children of a node are ordered by
their label number. For example, Figure 15.14 shows the RNA free tree representing
the RNA secondary structure and its rooted version.

We took 34 Eukarya RNA structures from the Ribonuclease P (Rnase P) data-
base [3]. Rnase P is the ribonucleoprotein endonuclease that cleaves transfer (and
other) RNA precursors. Rnase P is generally made up of two subunits, an RNA and
a protein, and it is the RNA subunit that acts as the catalytic unit of the enzyme.
The RNase P database is a compilation of currently available RNase P sequences
and structures. For a given RNase P RNA subunit, we obtained a free tree using
the RNA Matrix program 4 and then converted it into a rooted ordered tree. The
resulting RNA tree dataset has 34 trees, with the smallest having 2 vertices and
the largest having 12 vertices. We then ran SLEUTH on this RNA tree dataset.
Figure 15.15 shows the total time taken to mine the dataset and the number of
patterns found at different values of minimum support. We observe that mining at
minimum support of one occurrence took less than 0.1 s, and found 5593 total pat-
terns. An example of a common topological RNA pattern is also shown (rightmost
figure); this pattern appears in at least 10 of the 34 Eukarya RNA. By applying
tree mining, it is thus possible to analyze RNA structures to enumerate all the
frequent topologies. Such information can be a useful step in characterizing exist-
ing RNA structures and may help in structure prediction tasks [10]. Enumerating

4http://monod.biomath.nyu.edu/rna/analysis/rna matrix.php.

15.9 TREE MINING APPLICATIONS IN BIOINFORMATICS 407

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0 5 10 15 20 25 30 35

T
o

ta
l
T

im
e

 (
s
)

Absolute Minimum Support

Running Time

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 5 10 15 20 25 30 35

N
u

m
b

e
r
 o

f
P

a
tt

e
r
n

s

Absolute Minimum Support

Num Frequent Patterns 1

2

3

4

5

6

7 8 9

10

11

Figure 15.15. RNase P database: (a) time, (b) number patterns, and (c) example pattern.

frequent RNA trees also helps in cataloging the kinds of RNA structures seen in
nature [9].

15.9.2 Phylogenetic Trees

Given several phylogenies (i.e., evolutionary trees) from the Tree of Life [15],
indicating evolutionary history of several organisms, one might be interested in
discovering if there are common subtree patterns. This is an important task, since
there are many algorithms for inferring phylogenies, and biologists are often inter-
ested in finding consensus subtrees (those shared by many trees) [19]. Tree mining
can also be used to mine cousin pairs in phylogenetic trees [21]. A cousin pair
is essentially a pair of siblings, and mining pairs that share common ancestors
give important clues about the evolutionary divergence between two organisms or
species.

TreeBASE is a relational database designed to manage and explore information
on phylogenetic relationships.5 It stores phylogenetic trees and data matrices used to
generate them from published research papers. It includes bibliographic information
on phylogenetic studies, as well as details on taxa, methods, and analyses performed;
it contains all types of phylogenetic data (e.g., trees of species, trees of populations,
trees of genes) representing all biotic taxa. The database is ideally suited to allow
retrieval and recombination of trees and data from different studies; it thus provides
a means of assessing and synthesizing phylogenetic knowledge.

Figure 15.16 shows part of the evolutionary relationship between organisms
of the plylum Nematoda taken from the TreeBase site. This tree was produced
using a parsimony-based phylogenetic tree construction method [16]; using different
algorithms may produce several variants of the evolutionary relationships. Tree
mining can help infer the parts of the phylogeny that are common among many
alternate evolutionary trees.

5http://www.treebase.org/.

408 UNIFIED APPROACH TO ROOTED TREE MINING

Nippostrongylus brasiliensis [1]

Ostertagia ostertagi [1]

Haemonchus contortus [1]

Syngamus trachea [1]

Heterorhabditis bacteriophora [1]

Pellioditis typica [3]

Rhabditella axei [3]

Caenorhabditis briggsae [3]

Caenorhabditis elegans [11]

Diploscapter [1]

Rhabditis blumi [2]

Dolichorhabditis [1]

H
. c

o
n
to

rtu
s

N
. b

ra
silie

n
sis

O
. o

ste
rta

g
i

S
. tra

c
h
e
a

H
. b

a
c
te

rio
p
h
o
ra

D
o
lic

h
o
rh

a
b
d
itis

P
. ty

p
ic

a

R
. a

x
e
i

R
. b

lu
m

i

C
. b

rig
g
sa

e

D
ip

lo
sc

a
p
te

r

C
. e

le
g
a
n
s

1 2 3 4 5 6 7 8 9 10 11 12

0

0

0

0

0

0

0

0

0

0

0

Figure 15.16. (a) Part of phylogenetic tree of phylum nematoda and (b) tree for mining.

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 2 4 6 8 10 12

T
o

t
a

l
T

im
e

(
s
)

Num of Internal Nodes

Running Time

minsup=40

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0 2 4 6 8 10 12

N
u

m
b

e
r

o

f

P

a
t
t
e

r
n

s

Num of Internal Nodes

Num Frequent Patterns

minsup=40

143 145 146 147135 136 138 139 144 148 149

O
u
tg

ro
u
p

C
. c

o
rd

a
ta

C
. re

p
e
n
s

C
.L

. c
a
n
a
d
e
n
sis

C
. m

o
llis

C
.A

. a
lp

in
a

C
.A

. a
n
g
u
stifo

lia

C
.A

. c
a
u
le

sc
e
n
s

C
.A

. im
a
ic

o
la

C
.A

. m
ic

ra
n
th

a

C
.A

. p
a
c
ific

a

Figure 15.17. Phylogenetic data: (a) runtime and number patterns and (b) example pattern.

We took 1974 trees from the TreeBase dataset and converted them into a format
suitable for mining. We give each organism a unique label (e.g., C. elegans has
label 2), and we give each internal node the same label (e.g., 0). Given the resulting
database of 1974 trees, we mine for frequent patterns. To prevent combinatorial
effects, we also impose a constrain on the number of internal nodes allowed in the
mined patterns; this constrain is incorporated during mining for efficiency reasons
(as opposed to postprocessing). Figure 15.17 shows the running time and number
of patterns found for an absolute support value of 40, as the number of internal
nodes increase from 1 to 12. As we allow more internal nodes, more patterns are
found. An example of a mined frequent pattern (with frequency 42) is also shown;
this pattern shows the evolutionary relationship between members of the Circaea
plant family. Notice how the most closely related organisms, for example, Circaea
alpina (C.A.), group together (right branch under the root).

REFERENCES 409

15.10 CONCLUSIONS

In this chapter we presented SLEUTH, a unified algorithm to mine induced/embed-
ded, ordered/unordered subtrees and the procedure for systematic candidate subtree
generation using self-contained equivalence prefix classes. All frequent patterns are
enumerated by scope-list joins via the descendant and cousin tests. Our experiments
show that SLEUTH is highly effective in mining various kinds of tree patterns.
We studied two applications of tree mining: finding common RNA structures and
mining common phylogenetic subtrees.

For future work we plan to extend our tree mining framework to incorporate
user-specified constraints. Given that tree mining, though able to extract informative
patterns, is an expensive task, performing general unconstrained mining can be too
expensive and is also likely to produce many patterns that may not be relevant
to a given user. Incorporating constraints is one way to focus the search and to
allow interactivity. We also plan to develop efficient algorithms to mine maximal
frequent subtrees from dense datasets that may have very large subtrees. Finally,
we plan to apply our tree mining techniques to other compelling applications, such
as the extraction of structure from XML documents and their use in classification,
clustering, and so on.

ACKNOWLEDGMENTS

This work was supported in part by NSF Career Award IIS-0092978, DOE Career
Award DE-FG02-02ER25538, and NSF grants EIA-0103708 and EMT-0432098.

REFERENCES

1. T. Asai, K. Abe, S. Kawasoe, H. Arimura, H. Satamoto, and S. Arikawa. Efficient sub-
structure discovery from large semi-structured data. In 2nd SIAM Int’l Conference on
Data Mining, April 2002.

2. T. Asai, H. Arimura, T. Uno, and S. Nakano. Discovering frequent substructures in large
unordered trees. In 6th Int’l Conf. on Discovery Science, October 2003.

3. J. W. Brown. The ribonuclease p database. Nucleic Acids Research, 27(1):314–315, 1999.
4. Y. Chi, Y. Yang, and R. R. Muntz. Indexing and mining free trees. In 3rd IEEE Inter-

national Conference on Data Mining, 2003.
5. Y. Chi, Y. Yang, and R. R. Muntz. Hybridtreeminer: An efficient algorihtm for min-

ing frequent rooted trees and free trees using canonical forms. In 16th International
Conference on Scientific and Statistical Database Management, 2004.

6. Y. Chi, Y. Yang, Y. Xia, and R. R. Muntz. Cmtreeminer: Mining both closed and maxi-
mal frequent subtrees. In 8th Pacific-Asia Conference on Knowledge Discovery and Data
Mining, 2004.

7. R. Cole, R. Hariharan, and P. Indyk. Tree pattern matching and subset matching in
deterministic o(n log3 n)-time. In 10th Symposium on Discrete Algorithms, 1999.

8. D. Cook and L. Holder. Substructure discovery using minimal description length and
background knowledge. Journal of Artificial Intelligence Research, 1:231–255, 1994.

410 UNIFIED APPROACH TO ROOTED TREE MINING

9. H. H. Gan, D. Fera, J. Zorn, N. Shiffeldrim, M. Tang, U. Laserson, N. Kim, and
T. Schlick. RAG: RNA-As-Graphs database–concepts, analysis, and features. Bioin-
formatics, 20(8):1285–91, 2004.

10. H. H. Gan, S. Pasquali, and T. Schlick. Exploring the repertoire of rna secondary motifs using
graph theory with implications for rna design. Nucleic Acids Res., 31:2926–2943, 2003.

11. Jun Huan, Wei Wang, and Jan Prins. Efficient mining of frequent subgraphs in the
presence of isomorphism. In IEEE Int’l Conf. on Data Mining, 2003.

12. A. Inokuchi, T. Washio, and H. Motoda. An apriori-based algorithm for mining frequent
substructures from graph data. In 4th European Conference on Principles of Knowledge
Discovery and Data Mining, September 2000.

13. P. Kilpelainen and H. Mannila. Ordered and unordered tree inclusion. SIAM J. of Com-
puting, 24(2):340–356, 1995.

14. M. Kuramochi and G. Karypis. Frequent subgraph discovery. In 1st IEEE Int’l Conf. on
Data Mining, November 2001.

15. V. Morell. Web-crawling up the tree of life. Science, 273(5275):568–570, aug 1996.
16. D. W. Mount. Bioinformatics: Sequence and Genome Analysis. Cold Spring Harbor

Press, 2001.
17. S. Nijssen and J. N. Kok. A quickstart in frequent structure mining can make a difference.

In ACM SIGKDD Int’l Conf. on KDD, 2004.
18. Siegfried Nijssen and Joost N. Kok. Efficient discovery of frequent unordered trees. In

1st Int’l Workshop on Mining Graphs, Trees and Sequences, 2003.
19. R. D. Page and E. C. Holmes. Molecular Evolution: A Phylogenetic Approach. Blackwell

Science, 1998.
20. R. Shamir and D. Tsur. Faster subtree isomorphism. Journal of Algorithms, 33:267–280,

1999.
21. D. Shasha, J. Wang, and S. Zhang. Unordered tree mining with applications to phy-

logeny. In International Conference on Data Engineering, 2004.
22. A. Termier, M-C. Rousset, and M. Sebag. Treefinder: a first step towards xml data

mining. In IEEE Int’l Conf. on Data Mining, 2002.
23. A. Termier, M-C. Rousset, and M. Sebag. Dryade: a new approach for discovering closed

frequent trees in heterogeneous tree databases. In IEEE Int’l Conf. on Data Mining, 2004.
24. C. Wang, M. Hong, J. Pei, H. Zhou, W. Wang, and B. Shi. Efficient pattern-growth

methods for frequent tree pattern mining. In Pacific-Asia Conference on KDD, 2004.
25. K. Wang and H. Liu. Discovering typical structures of documents: A road map approach.

In ACM SIGIR Conference on Information Retrieval, 1998.
26. Y. Xiao, J.-F. Yao, Z. Li, and M. H. Dunham. Efficient data mining for maximal frequent

subtrees. In International Conference on Data Mining, 2003.
27. X. Yan and J. Han. gspan: Graph-based substructure pattern mining. In IEEE Int’l Conf.

on Data Mining, 2002.
28. X. Yan and J. Han. Closegraph: Mining closed frequent graph patterns. In ACM SIGKDD

Int. Conf. on Knowledge Discovery and Data Mining, August 2003.
29. K. Yoshida and H. Motoda. CLIP: Concept learning from inference patterns. Artificial

Intelligence, 75(1):63–92, 1995.
30. M. J. Zaki. Efficiently mining frequent trees in a forest. In 8th ACM SIGKDD Int’l Conf.

Knowledge Discovery and Data Mining, July 2002.
31. M. J. Zaki. Efficiently mining frequent embedded unordered trees. Fundamenta Infor-

maticae, 66(1-2):33–52, 2005.
32. M. J. Zaki and C. C. Aggarwal. Xrules: An effective structural classifier for xml data.

In 9th ACM SIGKDD Int’l Conf. Knowledge Discovery and Data Mining, August 2003.

16

DENSE SUBGRAPH
EXTRACTION

DAVID GIBSON,∗ RAVI KUMAR,†

KEVIN S. MCCURLEY,‡ AND ANDREW TOMKINS†

∗IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120.
Email: davgib@us.ibm.com

†Yahoo! Research, 701 First Avenue, Sunnyvale, CA 94089. Part of this work
was done while the author was at the IBM Almaden Research Center.

Email: {ravikumar,atomkins}@yahoo-inc.com
‡Google, Inc. 1600 Amphitheatre Parkway, Mountain View, CA 94043.

Part of this work was done while the author was at the
IBM Almaden Research Center, mccurley@digicrime.com

Oh, what a tangled web we weave, when first we practice to weave!
—Mignon McLaughlin

16.1 INTRODUCTION

A clique in a graph is a collection of vertices such that each pair of vertices in
the collection has an edge between them. A clique is the extreme form of a dense
subgraph: Every possible edge within the subgraph exists. In this chapter, we will
consider weakening this notion by searching for collections of vertices such that
many, but not necessarily all, pairs within the collection have an edge between
them. We will call such a collection of vertices and the edges between them a dense
subgraph. The particular definition we use will depend on the situation; we consider
several variants.

Dense subgraphs arise frequently in real-world analysis of graphs and represent
clusters within the graph. In social networks, they represent collections of interlinked

Mining Graph Data, Edited by Diane J. Cook and Lawrence B. Holder
Copyright c© 2007 John Wiley & Sons, Inc.

411

412 DENSE SUBGRAPH EXTRACTION

individuals such as groups of friends or co-workers. In citation graphs, they represent
collections of authors who co-cite one another’s work. In hyperlink graphs such as
the World Wide Web, they represent communities of Web pages or websites that link
together in a dense manner. In other graphs they may have more specific meanings;
for example, in a graph whose vertices are products and whose edges indicate that
some individual bought both products, the dense subgraphs are taken to be groups
of products that are commonly purchased together, often because they fall into the
same category—dense subgraphs within books might represent genres like “science
fiction” or “romance.”

Algorithmically, the discovery of dense subgraphs in large graphs is notoriously
difficult. We begin with a discussion of efficiency in the context of large disk-resident
graphs.

16.1.1 Efficient Algorithms for Massive Graphs

Consider a small crawl of the Web containing 1 billion vertices and 10 billion
edges, and an algorithm that simply tries pairs of vertices to see whether they have
a significant number of neighbors in common. Such an algorithm will explore 1018/2
pairs, each of which will require two random accesses to extract the neighbor set.
On a modern computer, such an operation will take approximately 95 million years
to complete. Thus, the traditional view that algorithms are efficient if they operate
in polynomial time is not appropriate in the world of massive graphs—the above
example shows that quadratic-time operations are problematic. Indeed, even linear-
time operations that must access the vertices in an unknown order must perform a
single disk seek per vertex; this operation will require about 1 month on a modern
computer with a single disk.

On the other hand, the graph described above can be streamed from disk in a
relatively snappy 15 min or so, due to the disparity between sequential and random
input/output (I/O) speeds. Similarly, a merge sort may be implemented using a
small number of sequential scans, so sorting is also an operation we may consider.
Finally, the concern around performing a random access for each vertex is quite
valid, but in special cases the overhead can be reduced: If we are able to request
many such random accesses at a time, say 100 accesses simultaneously per disk as a
rule of thumb, then we may apply multiple threads or asynchronous I/O to send all
these requests to the disk at once. The disk contains optimizations to reorder these
requests for more efficient access, returning us again to the realm of sequential
access speeds. Thus, the operations that we may realistically allow ourselves for
massive disk-resident graphs are the following:

• Sequential scans through the vertices
• Sort operations, since these can be implemented in terms of sequential scans
• Linear numbers of random access operations, but only if we are able to request

many such operations at once, allowing the disk to reorder the requests for
more efficient processing

16.1 INTRODUCTION 413

16.1.2 Preliminaries

A graph G = (V, E) consists of a set V of vertices, and a set E ⊆ V × V of edges. If
(u, v) ∈ E whenever (v, u) ∈ E, we called the graph undirected ; otherwise, we call
it directed. For directed graphs, the out-neighbors of a vertex v are out(v) = {u ∈
V | (u, v) ∈ E}. The in-neighbors in(v) are defined analogously. The in-degree
and out-degree of a vertex are the number of in- and out-neighbors, respectively:
din(v) = |in(v)|, and dout(v) = |out(v)|. A path of length k from u to v is a sequence
of k + 1 vertices u = w1, w2, . . . , wk+1 = v such that (wi, wi+1) ∈ E. Vertex u is
said to be connected to vertex v if there is a path of any length between them; for
directed graphs, this relation need not be symmetric, so a path from u to v does not
imply a path from v to u. A connected component C ⊆ V is a set of vertices such
that u is connected to v for every (u, v) ∈ C × C.

We identify a few common graphs by name. A Kj is a clique of size j ; that
is, a graph with j vertices and an edge from every vertex of the clique to every
other vertex. A Ki,j is a bipartite clique consisting of i + j vertices such that each
of the first i vertices contains a link to every one of the j remaining vertices, and
no other edges exist.

To simplify our presentation, whenever we specify that a graph is undirected,
we will use nbr(v) to refer to the neighbors of vertex v, and deg(v) to refer to the
degree: deg(v) = |nbr(v)|.

16.1.3 Overview of Results

We begin with a detailed discussion of a commonly used measure in the theoretical
algorithms literature and cover exact and provably approximate algorithms to find
dense subgraphs under this measure. From there, we discuss three algorithms for
dense subgraph extraction. The first algorithm is trawling, a procedure for automat-
ically identifying fine-grained communities within a graph, using a measure based
on local footprints [36, 37]. The procedure is motivated by the World Wide Web
graph, in which hub Web pages exist, providing links to interesting content of a
particular flavor. Observe that two hub pages linking to the same j pages of content
will represent a K2,j in the graph. Based on this observation, the trawling algorithm
identifies small complete bipartite graphs as the “signature” of communities, and
then expands those signatures to find the full community.

From this automated approach to determining small-scale communities, we
move to graph shingling, an approach to finding larger-scale dense subgraphs [25].
This approach is based on the observation that the vertices of a large dense subgraph
tend to have significant overlap in their out-neighbors. By finding small patterns of
common out-neighbors, it is possible to characterize each vertex of a large graph
in terms of the out-neighbor patterns it contains. This representation induces a new
type of graph in which dense subgraphs have become denser, while sparse sub-
graphs have become sparser. Repeated application of this procedure results in the
discovery of dense subgraphs.

These two approaches are batch algorithms in the sense that they process the
entire graph in order to produce a comprehensive list of dense subgraphs. The

414 DENSE SUBGRAPH EXTRACTION

remaining topic we discuss covers a technique that may be applied in real time to
produce a dense subgraph with certain properties in response to a user query. The
algorithm is designed in the context of social network graphs in which vertices are
people and edges are relationships denoting, for example, that one person is the
friend of another. Given a query consisting of two vertices, the algorithm must pro-
duce a connection subgraph, or a dense subgraph that best captures the connections
between the two vertices (see [19, 20] and Chapter 5 of this book).

16.2 RELATED WORK

16.2.1 Data Mining Applied to Graphs

Traditional data mining research, for instance [1], focuses largely on algorithms
for inferring association rules and other statistical correlation measures in a given
dataset. These notions may be applied to graphical data, but the algorithms are not
by default tuned for Web-like graphs, and hence are not practical in those domains,
even with efficient methods such as Apriori [1] or Query Flocks [50]. Unlike market
baskets, where there are at most about a million distinct items, there are between
two and three orders of magnitude more “items,” that is, Web pages, in our case.

The relationship we will exploit, namely co-citation, is effectively the join of the
Web ”points to” relation and its transposed version, the Web ”pointed to by” relation.
This approach suggests that a database-style query language might be able to express
certain types of subgraph extraction, and in fact a view of the Web as a semistruc-
tured database has been advanced by many authors. In particular, LORE [42] and
WebSQL [43] use graph-theoretic and relational views of the Web. These views sup-
port a structured query interface to the Web (Lorel and WebSQL, respectively) which
is evocative of and similar to SQL. An advantage of this approach is that many inter-
esting queries, including methods such as HITS [32], can be expressed as simple
expressions in the very powerful SQL syntax. The associated disadvantage is that the
generality comes with a computational cost that is prohibitive in our context. Indeed,
LORE and WebSQL are but two examples of projects in this space. Some other
examples are W3QL [33], WebQuery [11], Weblog [38], and ParaSite [48]. For a sur-
vey of database techniques on the Web and the relationships between them, see [22].

Algorithmic and memory bottleneck issues in graph computations are addressed
in [3, 28]. The focus in this work is in developing a notion of data streams, a model
of computation under which data in secondary memory can be streamed through
main memory in a relatively static order. They show a relationship between these
problems and the theoretical study of communication complexity. They use this
relationship mainly to derive impossibility results.

16.2.2 Web-Based Community Finding

Flake et al. [21] define a density-based notion of communities. Given an undirected
graph G, a community is a subset C of vertices such that for all vertices v ∈ C, v

has at least many edges connecting to vertices in C as it does to vertices in V \ C.

16.2 RELATED WORK 415

They show that a community can be identified by calculating the s − t minimum cut
of G and identifying vertices that are reachable from s to be the community. While
the ideal method requires random access to in-links and out-links for the underlying
graph, they approximate this by directing a focused crawler along link paths that
are highly relevant to the community. They also augment the crawler by using a
version of the Expectation-Maximization (EM) algorithm to reseed the crawler with
relevant sites.

Kumar et al. [34] take a more combinatorial approach to finding communities.
Their motivation was to discover storylines from search results, where storylines are
windows that offer glimpses into interesting themes that are latent among the top
search results for a query. To do this, they work with a term–document relation. The
goal is then to find as many pairs (D1, T1), . . . , (Dk, Tk) as possible, where the Di’s
and Ti’s are fairly large subsets, respectively, of documents and terms, such that most
terms in Ti occur in most documents in Di , and very few terms in Ti occur in the doc-
uments in Dj , for j �= i. Each (D, T) pair in the collection will represent a storyline.
This combinatorial formulation is a generalization of the maximum induced bipartite
matching problem [49] and is hence NP-hard. Nevertheless, they show that simple
algorithms based on local search and dynamic programming work well in practice.

Gibson et al. [24] describe experiments on the Web in which they use spec-
tral methods to extract information about ”communities” on the Web. They use
the nonprincipal eigenvectors of matrices arising in Kleinberg’s HITS algorithm
to define their communities. They give evidence that the nonprincipal eigenvec-
tors of the co-citation matrix reveal interesting information about the fine structure
of a Web community. While eigenvectors seem to provide useful information in
the contexts of search and clustering in purely text corpora (see also Deerwester
et al. [16]), they can be relatively computationally expensive on the scale of the
Web. In addition they need not be complete, that is, interesting structures could be
left undiscovered. The second issue is not necessarily a show-stopper, as long as not
too many communities are missed. The complementary issue, “false positives”, can
be problematic. In contrast, the techniques described in Section 16.4 almost never
find “coincidental” false positives.

Kumar et al. [35] give an algorithm for dense subgraph extraction in the context
of Web logs, with an eye to watching how these communities of blogs evolve over
time. Their algorithms are similar to (and in fact motivated by) the trawling algo-
rithms described below, but do not make use of the bipartite structure characteristic
of Web pages, as observed by Kleinberg [32], in which good resources pages, or
“hubs,” tend to link to good authoritative pages.

Communities in graphs may be viewed as clusters, which gives rise to a broad set of
techniques from graph clustering, partitioning, and matrix reordering [7, 17, 30, 51, 52].
We do not describe this work in detail but merely observe that it remains a rich source
of ideas and approaches for bringing together densely interlinked vertices.

16.2.3 Searching the Web Graph

The information foraging paradigm was proposed in [47]. In their study, the authors
argue that Web pages fall into a number of types characterized by their role in helping

416 DENSE SUBGRAPH EXTRACTION

an information forager find and satisfy his or her information need. The thesis is that
recognizing and annotating pages with their type provides a significant “value add”
to the browsing or foraging experience. The categories they propose are much finer
than the hub and authority view taken in [32] and in the Clever project [13]. Their
algorithms, however, appear unlikely to scale to sizes that are interesting to us.

A number of search engines and retrieval projects have used links, and in partic-
ular densely linked regions, to provide additional information regarding the quality
and reliability of search results. See, for instance [5, 8, 13, 32, 45]. Link analy-
sis has become popular as a search tool, and a number of algorithmic extensions
have it possible to apply the approach in an increasingly efficient and personal-
ized manner [27, 29]. However, our focus in this article is in using these dense
regions for a different purpose: to understand and mine community structure on
the Web.

16.2.4 Communities and Connections in Social Networks

The approaches to community finding that we discuss in Section 16.6 make use
of a notion of distance between two vertices in the graph in order to estimate
the relationship between two people. Many such measures have been proposed;
see, for example, the work of Kleinberg and Liben-Nowell [40] and Palmer and
Faloutsos [46].

Similarly, there is a deep theory connecting walks on undirected graphs to
electrical circuits, and this work suggests that community relationship between ver-
tices may be estimated by computing the expected numbers of steps to travel from
one vertex to the other and back following a random walk; if this number is small,
the vertices are taken to belong to the same community. See [14, 18, 46] for a
review of this literature.

Finally, simpler combinatorial notions of connectedness, such as betweenness
indices [6], may also be employed to study the role of a particular vertex in a
community of vertices.

16.3 FINDING THE DENSEST SUBGRAPH

In this section we address the problem of finding the densest subgraph in a given
graph. We first define the notion of density in an undirected graph and then describe
two algorithms to find the densest subgraph. The first is an exact algorithm but is
not very efficient to implement in practice. The second algorithm is highly efficient,
and while it might not output the densest subgraph, it is still guaranteed to output
a subgraph whose density is not far off from the best. Finally, we briefly describe
the notion of density in directed graphs.

Let G= (V, E) be an undirected graph and for S, T ⊆ V , let e(S, T)={(u, v) ∈
E | u ∈ S, v ∈ T }, that is, the set of edges with one endpoint in S and another in T .
For S ⊆ V , let S = V \ S, and for a vertex v ∈ V , let degS(v) denote the degree of v

in the subgraph of G induced by S ∪ {v}. For a subset S ⊆ V , the edge density ρ(S)

16.3 FINDING THE DENSEST SUBGRAPH 417

is given by ρ(S) = |e(S, S)|/|S|, that is, the ratio of the number of edges inside S

and the size of S. Clearly, the edge density of Kk, the k clique, is k − 1/2. The
densest subgraph problem is to find a subset S of vertices in a graph that maximizes
ρ(S), and the densest k subgraph problem is the densest subgraph problem with the
additional requirement that |S| = k.

The densest k-subgraph problem is NP-hard since it generalizes the maximum
clique problem. Recently, Khot [31] showed that, under reasonable complexity-
theoretic assumptions, the densest-k subgraph problem does not even admit a poly-
nomial-time approximation scheme. On the other hand, the densest subgraph problem
is solvable exactly in polynomial time. We illustrate this algorithm below (cf.
[23, 39]).

The algorithm proceeds by checking if there exists a nonempty subset S of
vertices such that ρ(S) > c; the densest subgraph can then be found by a binary
search on c. The former can be checked in the following manner. First, note that
2|e(S, S)| = [∑

u∈S deg(u)
] − |e(S, S)|. Then, the condition ρ(S) > c is equivalent

to
[∑

u∈S deg(u)
] − |e(S, S)| − 2c|S| > 0. Adding and subtracting

∑
u∈S deg(u) to

this expression and noting that
∑

u∈V deg(u) = 2|E|, it follows that ρ(S) > c if and
only if

∑
u∈S

deg(u) + 2c|S| + |e(S, S)| < 2|E| (16.1)

The existence of a nonempty S satisfying the left hand side of (16.1) can be
ascertained by a weighted minimum cut computation in the following way. Con-
struct a graph G′ = (V ′, E′), where V ′ = V ∪ {s, t} and E′ consists of all the edges
in E each with a cost of 1, an edge from s to each vertex in V with a cost of
deg(u), and an edge from each vertex u ∈ V to t with a cost of 2c(u). The (s, t)-
minimum cut in G′, which can be computed in polynomial time, is of the form
({s} ∪ S, S ∪ {t}) with cost equal to the left-hand side of (16.1). Thus, ρ(S) > c if
and only if S �= ∅ satisfies (16.1).

The above algorithm, though it runs in polynomial time, is expensive because of
the minimum cut subroutine. Charikar [15] obtained a very efficient greedy algorithm
for the densest subgraph problem that computes a solution S̃ such that ρ(S̃) ≥(1

2

)
ρ(S∗), where S∗ is the optimal solution—in other words, a 2-approximation.

His iterative algorithm maintains a subset Si of vertices at the ith step. Initially,
S1 = V . At the i step of the iteration, a vertex with the least degree in the subgraph
induced by Si is removed from Si to yield Si+1. The algorithm terminates when
Si = ∅. The final output of the algorithm is S̃ = arg maxi ρ(Si), that is, Si that
maximizes ρ(Si) for i = 1, 2,

Using simple data structures, the above algorithm can be implemented in linear
time, that is, O(|V | + |E|). To do this, maintain lists of vertices with the same
degree; this can be constructed in linear time. In each iteration, the minimum degree
vertex is removed and the degrees of its neighbors are reduced by 1; the total time
to do this is O(|E|). Since the minimum degree drops by at most 1, if the minimum

418 DENSE SUBGRAPH EXTRACTION

degree in the current iteration is d , the minimum degree for the next iteration is
either d − 1, d , or d + 1. The time taken to do this is O(|V |).

To analyze the performance of this algorithm, first note that the degree of each
vertex in S∗ has to be large, otherwise we could always remove this vertex and
obtain a solution that is better than S∗. Formalizing this, for any vertex v ∈ S∗,

|e(S∗)|
|S| = ρ(S∗) ≥ ρ(S∗ \ {v}) = |e(S∗ \ {v})| − degS∗(v)

|S∗| − 1

which yields degS∗(v) ≥ |e(S∗)|/|S∗|. Let i be the first step in the iteration when
some vertex v in the optimal solution S∗ is deleted; there is always such an i since
the algorithm iterates until Si = ∅. By the choice of i, Si ⊃ S∗ and so for every
u ∈ Si ∩ S∗, degSi

(u) ≥ degS∗(u). Since the algorithm chose v with the least degree
and v ∈ Si ∩ S∗, for all vertices u ∈ Si , we have degSi

(u) ≥ degSi
(v) ≥ |e(S∗)|/|S∗|.

Now,

ρ(Si) = |e(Si)|
|Si | =

∑
u∈S∗ degSi

(u) + ∑
u∈Si\S∗ degSi

(u)

2|Si |

≥
∑

u∈S∗ degS∗(u) + ∑
u∈Si\S∗ degSi

(u)

2|Si |

≥ 2e(S∗) + |Si \ S∗| · |e(S∗)|/|S∗|
2|Si |

≥ |e(S∗)|
|S∗| · 2|S∗| + |Si \ S∗|

2|Si |

≥ |e(S∗)|
2|S∗| = ρ(S∗)

2

Charikar also considers the densest subgraph problem in directed graphs. The
definition of densest subgraph is modified as follows. For S, T ⊆ V , let ρ(S, T) =
|e(S, S)|/√|S||T | and the densest directed subgraph problem is to choose S, T to
maximize ρ(S, T). He obtains an exact algorithm for this problem; this algorithm
is based on Linear programming (LP). He also obtains a greedy algorithm (similar
in spirit as above) that obtains a 2-approximation to the optimum solution.

16.4 TRAWLING

In this section we describe heuristic approaches to automatically enumerate Web
communities. Our main focus is the trawling algorithm proposed in [37] to do such
an enumeration.

The graph under consideration is the Web graph where Web pages correspond to
vertices and directed edges correspond to hyperlinks from one page to another. The
main observation is the following: websites that should be part of the same commu-
nity frequently do not reference one another. This could be because of competition,

16.4 TRAWLING 419

or because the sites do not share a common point of view, or simply because the
sites are not aware of each other. In these situations, the footprint of a Web com-
munity can be recognized by co-citation, where pages that are related are frequently
referenced together. Kumar et al. [37] postulate that co-citation is a characteristic
of well-developed and explicitly known communities. Furthermore, they argue that
co-citation is an early indicator of emerging communities.

Mathematically posed, this is a characterization of Web communities by dense
directed bipartite subgraphs. Recall that a bipartite graph G = (U, V, E) is a graph
whose vertex set can be partitioned into two sets denoted U and V and every
directed edge in E is directed from a vertex u ∈ U to a vertex v ∈ V . A bipartite
graph is dense if many of the possible edges between U and V are present; a
bipartite graph is complete if E = U × V . As mentioned earlier, we refer to a
complete bipartite graph with |U | = i and |V | = j as a Kij . An (i, j) core is a
Kij that optionally contains additional edges beyond those from U to V . Formally,
a community contains an (i, j) core if it contains an edge-induced subgraph with
i + j vertices that is isomorphic to a Kij .

The trawling algorithm is built on the following pair of assumptions:

1. Any sufficiently strong online community will almost surely contain an (i, j)

core.
2. Almost all (i, j) cores appear due to the presence of a community rather

than as a spurious event.

The first assumption states that finding all the cores is sufficient to find almost
all the communities. The second assumption states that finding all the cores is
necessary to find all the communities. The main idea behind trawling is to find a
community by finding its core, and then to expand the core to find the rest of the
community. This latter step can be done, for instance, by using an algorithm derived
from the HITS/Clever algorithm [13, 32].

The following simple fact about random bipartite graphs lends support to the
first assumption above. Let G = (U, V, E) be a random bipartite graph where E is
a set of uniformly chosen random edges. Then, there exist i, j that are functions of
|U |, |V |, |E| such that with high probability, G contains an (i, j) core. For instance,
it is easy to show that if |U | = |V | = 10 and |E| = 50, then with probability more
than 0.99, i and j will be at least 5. That is, for a community of 10 “hub-like” pages
each of which links at random to 5 out of 10 candidate “authority-like” pages, there
will almost certainly be a (5, 5) core. While the Web cannot be modeled as a ran-
dom graph, the above fact informally suggests that every community almost surely
contains a large core. Thus, even though one cannot argue about the distribution of
links in a Web community, the following hypothesis is plausible: A random large
enough and dense enough bipartite directed subgraph of the Web almost surely has
a core.

Conversely, we may ask whether cores form spuriously as people who are not
members of communities simply happen to link to the same content. A quick thought
experiment shows that this is unlikely. Consider a graph without communities in

420 DENSE SUBGRAPH EXTRACTION

which each vertex links to 10 other vertices chosen uniformly at random from the
entire vertex set. We ask whether such a random graph is likely to contain an (i, j)

core, and for concreteness, we consider a (2, 3) core; clearly, any larger core will
be increasingly unlikely. It is easy to show that as the size of the graph grows to
infinity, the expected number of (2, 3) cores drops to zero. This suggests that the
presence of a core is not due to random chance—there must be some reason that
the vertices of U chose to perform the unlikely event of individually linking to the
vertices of V .

Together, these observations motivate the trawling approach and give some
intuition behind the two assumptions above.

Note that the cores are directed—there is a set of i pages all of which hyperlink
to a set of j pages, while no assumption is made of links out of the latter set.
Intuitively, the former are pages created by members of the community, focusing
on what they believe are the most valuable pages for that community (of which the
core contains j). For this reason the i pages that contain the links are called fans
and the j pages that are referenced are called centers.

For the rest of this section, we will focus on how to efficiently find the cores
from the Web graph using the trawling algorithm. The main idea is to do pruning on
the Web graph in a way that eliminates as many vertices as possible, while simulta-
neously ensuring that pruned vertices or edges cannot be part of any yet-unidentified
core. Each step of the algorithm is implementable in the data stream model aug-
mented with sorting.

There are three main steps in the trawling algorithm.

• Iterative pruning: The idea here is that when looking for (i, j) cores, potential
fans with out-degree less than j and potential centers with in-degree less than
i can be deleted along with their edges from the graph. This process can be
iteratively applied since deleting a vertex will affect the in- and out-degrees of
its neighbors. Iterative pruning thus cuts down the size of the graph without
outputting any cores.

This pruning can be implemented in the data stream model with sorting, as
follows. Suppose the graph is represented as a set of directed edges. First, the
edges are sorted according to source and fans with low degree are eliminated.
Next, the edges are sorted according to destination and centers with low
degree are eliminated. This process can be iteratively applied. In fact, the
number of sort passes can be reduced by holding a small in-memory index
of the pruned vertices.

• Inclusion–exclusion pruning: The idea is that at each step, we either eliminate
a page from contention or we output a new (i, j) core. The fans that are
chosen in this step are the ones with out-degrees equal to i. Let u be a fan
with out-degree exactly j and let �(u) be the centers to which it points. Then,
u is in an (i, j) core if and only if there are i − 1 other fans all pointing to
each center in �(u). If i and j are small, this condition can be checked quite
easily. An analogous condition can be applied to choose potential centers

16.5 GRAPH SHINGLING 421

in this step. Thus, inclusion–exclusion pruning also reduces the size of the
graph while outputting cores.

Again, by careful engineering, these steps can be implemented in the data
stream model with sorting.

• Exhaustive enumeration: After running a series of the above pruning steps
until no further progress can be made, the size of the graph has shrunk
dramatically and remaining cores can be enumerated using naive exhaustive
techniques. Fix j and consider all (1, j) cores; this is the set of vertices with
out-degree at least j . Now, construct (2, j) cores by checking every fan that
also links to any center in a (1, j) core. Proceeding in a similar manner, all
the (3, j) cores can be enumerated and so on.

Their experiments suggest that trawling a copy of the Web might result in the
discovery of many more communities that will become explicitly recognized in the
future. For more details, see [37].

16.5 GRAPH SHINGLING

The trawling and dense subgraph algorithms discussed above are intended for graphs
of arbitrary size, but they typically discover relatively small structures. When the
goal is to discover subgraphs that themselves are large, we need different techniques.
The algorithm described here relies on the central idea of shingling [10] and achieves
its scalability by following the data stream paradigm.

As a motivating example for this form of subgraph extraction, consider the
problem of identifying collusion on the Web. Many search engines rely on link-
based relevance calculation schemes, such as PageRank [45] and HITS [32]. These
schemes begin with the notion that pages should be ranked highly if many pages
link to them, and refine this notion by attempting to determine the quality of the
originating pages. Many individuals and institutions, then, attempt to improve their
search engine ranking by manipulating the link graph to their advantage. Typically
this form of “spamming” involves creating a large number of links to their target
sites. Search engines usually disregard nepotistic links, which are links within the
pages on a single site, and so link spamming will be visible in the Web graph as a
large set of originating sites, which behave as if they were colluding: Each links to
many or all of a large set of target sites. Of course, this collusion may not actually be
collusion between individuals, but rather that all the originating sites are controlled
by the same entity. The goal is to identify these large colluding structures, so as to
reduce or possibly eliminate their contributions to search engine ranking.

These large bipartite structures may also arise if an institution, wittingly or
not, creates a large number of sites with very similar content. These deliberate or
accidental mirrors then need to be treated as copies, so that they do not artificially
inflate the ranking of the sites to which they link. On a much smaller scale than
either spamming or mirroring, we also find genuine community structures, where a
large community of individuals share many links.

422 DENSE SUBGRAPH EXTRACTION

The input to the algorithm, then, is a large directed graph G = (V, E). The
output is a set of dense subgraphs C = {S ⊆ V | S is dense}. The density of the
subgraphs found depends upon the parameters to the algorithm and the nature of
the input graph.

16.5.1 Shingling

Shingling was introduced in [10] for identifying near duplicates in a corpus of text.
They have since seen wide usage to estimate the similarity of Web pages, and they
were also used to detect mirror sites (see Chakrabarti [12] and Bharat et al. [4]).
We will employ the shingling technique to solve the following problem: Given
subsets of a universe U of elements, generate a constant-size fingerprint such that
two subsets A and B may be compared by simply comparing their fingerprints.

The name shingling refers to the way that housing shingles overlap, as illustrated
by the following application to detecting near-duplicate text documents. Each docu-
ment is first converted to a set of elements corresponding to overlapping sequences
of words in the document, as follows:

Element 1: ‘overlapping subsequences of’
Element 2: ‘subsequences of words’
Element 3: ‘of words in’
Element 4: ‘words in the’
Element 5: ‘in the document’

Using this representation, some of the information about word sequence is retained,
even though the set itself is simply an unordered bag of sequences. Two documents
are declared near duplicate if they have many elements in common.

A simple and natural measure of the similarity of two sets is the Jaccard
coefficient, defined as the size of the intersection of the sets divided by the size of
their union: J (A, B) = |A ∩ B|/|A ∪ B|. Formally, if π is a random permutation
of the elements in the ordered universe U from which A and B are drawn, then it
can be shown that

Pr[π−1(min
a∈A

{π(a)}) = π−1(min
b∈B

{π(b)})] = |A ∩ B|
|A ∪ B| = J (A, B)

That is, the probability that the smallest element of A and B is the same, where
smallest is defined by the permutation π , is exactly the similarity of the two sets
according to the Jaccard coefficient J (A, B). Using this observation, we compute
the fingerprint of A by fixing a constant number c of permutations π1, . . . , πc of U ,
and producing a vector whose ith element is mina∈A πi(a). The similarity of two
sets is then estimated to be the number of positions of their respective fingerprint
vectors that agree.

This formulation is not yet sufficient for our needs and we need a generalization.
The formulation as given may be viewed as follows: Consider every one-element
set contained entirely in A or B and measure agreement by the fraction of these

16.5 GRAPH SHINGLING 423

one-element subsets that appear in both sets. Generalizing, by analogy to subse-
quences of words, we consider every s-element set contained entirely within either
set and measure similarity by the fraction of these s-element subsets that appear in
both. This is identical to measuring the similarity of A and B by computing the
Jaccard coefficient of two sets As and Bs , where As = {{a1, a2, a3} | ai ∈ A} and Bs

is defined likewise. The same fingerprinting scheme applies unchanged to As and
Bs . We will refer to each of the s-element subsets as a shingle and to the algorithm
that produces the set as an (s, c) shingling algorithm. Thus, we imagine creating a
fingerprint of a set by applying an (s, c) shingling in which each individual shingle
is computed as a hash of s elements of the set, and c such shingles are kept as
the fingerprint. These two parameters give a way to adjust the shingle computation
so that overlapping sets generate a reasonable number of identical shingles. When
s is small, more shingles will be identical. By increasing c, the opportunities for
shingles to match is increased. In particular, if J (A, B) = p, then the function

h(s, c, p) = 1 − (1 − ps)c

captures the probability that at least one shingle is shared when using (s, c) shingling.
Figure 16.1 illustrates the behavior of this function. We can see, for example, that
if two sets are 20% similar, then (3, 90) shingling will result in a shared shingle
with probability about 0.5.

Fortunately, it is not necessary to consider all possible permutations π in the
choice of c such permutations; a more succinct family of min-wise independent
permutations will accomplish the task. For more details, see [9, 10]. In practice,
two universal hash functions have been shown to work well.

In the first step of the algorithm, each set will represent the out-links of a
particular vertex, and two vertices will be considered similar if they share many

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

P
r[

at
 le

as
t o

ne
 s

ha
re

d
sh

in
gl

e]

p

h(s,c,p)

(3,90) shingles
(4,16) shingles
(4,32) shingles
(4,64) shingles

Figure 16.1. Effect of s, c on the correctness of shingles.

424 DENSE SUBGRAPH EXTRACTION

Algorithm Shingle (X, s, c)

Let H be a hash function from strings to integers
Let p be a sufficiently large random prime (e.g., near 232)
Let a1,b1, . . .,ac,bc be random integers in [1 . . .p]

For j = 1 . . .c do
Let Sj = {(aj · H(x)+ bj) mod p | x ∈ X}
Let zj = H(min(s,Sj)) Hash the concatenation of s minimal elements in Sj

Return z1, . . .,zc

Figure 16.2. An efficient shingler.

out-links. In later stages of the algorithm, exactly the same formulation is employed
recursively to determine the similarity between two shingles in terms of the set of
vertices that reference each shingle.

A time and memory efficient (s, c) shingling algorithm for a set X is given
in Figure 16.2. To avoid the computation of a hash function for every s-element
subset, we apply a weakly distributed integer residue function to each element, which
suffices for choosing minimal elements uniformly, and then apply a well-distributed
hash function to the resulting set of minimal elements.

16.5.2 High-Level Description

The algorithm seeks clusters of vertices that tend to link to the same destinations
and proceeds as follows. First, for each vertex in the graph, it applies an (s, c)

shingling algorithm to the set of destinations linked to from that vertex, resulting
in c shingles per vertex. For each distinct shingle created by this process, it pro-
duces a list of all vertices referencing that shingle. We have now succeeded in
bringing together the vertices that share a particular shingle (and therefore a partic-
ular set of s out-links). To begin clustering vertices together, the goal is find sets
of vertices that jointly share a sufficiently large number of shingles. In the next
phase, we would like to perform one further level of analysis, grouping together
shingles that tend to occur on the same vertices, so that these sets of commonly
co-occurring shingles may be used as the defining patterns of a dense subgraph.
Such an analysis is yet another application of the (s, c) shingling algorithm, this
time to the set of vertices associated with a particular shingle, and results in bring-
ing together shingles that have significant overlap in the vertices on which they
occur. If necessary, the sequence of operations may be repeated for as many lev-
els as required. In practice, two levels of this algorithm suffice to convert dense
subgraphs of arbitrary size (i.e., hundreds or hundreds of millions of vertices) into
constant-size fingerprints that can then be recognized in a straightforward manner.
The particular density threshold captured by the scheme is determined by parameters
s and c.

16.5 GRAPH SHINGLING 425

Algorithm UnionFind (V, W,E)

Let C = {{w} | w ∈ W}
For v ∈ V do
Merge the sets {Find(w) | w ∈ E[v]}

Return C

Figure 16.3. Performing a UnionFind.

16.5.3 Algorithm Details

We need two subroutines: the shingling algorithm given above in Figure 16.2 and the
classic UnionFind algorithm in Figure 16.3. The Find operation returns the element
of C, which contains the given w. This can be implemented in the usual in-memory
fashion where the Find operation traces pointers to a canonical element of the
set, simultaneously linking all elements thus traversed to the canonical element,
while Merge links all subsequent canonical elements to the canonical element of
the first set. However, the multiple levels of recursive shingling are able to reduce
the problem size and avoid the need for out-of-core implementations.

The main algorithm is shown in Figure 16.4. The algorithm recurses up to a
depth given by the value �max; in practice, �max will be typically 2 or 3. For each
level � we can control the shingler parameters s� and c�.

Unwinding the recursion, we see that RecursiveShingle proceeds in three phases:

• Produce shingles up to level �max

• Cluster the level (�max − 1) shingles according to their shared level �max

shingles.
• Map these clusters back to the original source vertices.

16.5.4 An Example

Figure 16.5 illustrates the data maintained by the algorithm as it progresses. It
shows the recursion up to �max = 3. As input we have the source vertices V , the
set of destination vertices W , and the links relation E. The set W is transformed
using the shingler with parameters (s1, c1). For the next step of the recursion, this
becomes V ′. The new E relation is found by transposing the shingles relation. The
recursion continues until � = �max, at which point the clusters are determined by
UnionFind.

As the recursion unwinds, the clusters of level (�max − 1) shingles are mapped
back using the successive E relations until we have clusters of source vertices.

As an illustration of the behavior of the algorithm, consider its performance
on a graph containing a complete subgraph (clique) of size n. The data needed to
represent this subgraph is illustrated in Figure 16.6.

426 DENSE SUBGRAPH EXTRACTION

Algorithm RecursiveShingle (�, V, W, E)

Fix �max, s1, c1, . . .,s�max, c�max

If � = �max then
Return UnionFind(V,W,E) Partition W by links from V

else
For v ∈ V do
S[v] = Shingle(E[v],s�+1, c�+1)

V′ = ∪v∈VS[v]

For v′ ∈ V′ do Transpose S : V → V′ into E′

E′[v′] = {v | S[v]v′}
clusters = RecursiveShingle(� + 1,V′,V,E′)

If � = 0 then Map back, as far as source vertices
Return clusters

else
Return {∪v∈CE[v] | C ∈ clusters}

Figure 16.4. RecursiveShingle algorithm. To be invoked as RecursiveShingle (0, V, V, E),

where V is the vertex set and E[v] lists the out-links of v. Returns a collection of sets C of

vertices of V, where (C, Uc∈C E[c]) is a dense bipartite graph.

:

:

:

:
2 2(s ,c)

E ′′

E ′

E (s ,c)1 1

(s ,c)3 3

Level 1 Shingles

Level 3 Shingles

Destination Nodes

Level 2 Shingles

Source Nodes
V

V ′′

V ′

E ′′′

W

V ′′′

Figure 16.5. Data structures maintained by the recursive shingling algorithm.

Initially, the subgraph consists of n vertices v1, . . . , vn, each of which contains
n out-links w1, . . . , wn. At this point, the representation of the subgraph, in the
E relation, requires quadratic space. We apply our (s, c) shingling algorithm to
the out-links of each vertex, creating c shingles of multiplicity s for each vertex.
Since all the vertices of the clique will occur in each set of out-links, the same c

shingles will occur for each vertex. The storage required in the E′ relation is now
O(c·n).

In the particular case of a clique, the algorithm could stop at �max = 1, or even
0, since UnionFind will already bring together all the clique vertices. However,

16.5 GRAPH SHINGLING 427

Original Graph Matrix After First-Level Shingling After Second-Level Shingling
E is size n × n E′ is c × n E′′ is c × c

v1 : w1, w2, · · · wn

v2 : w1, w2, · · · wn

· · · · · · · · · · · · · · ·
vn : w1, w2, · · · wn

v′
1 : v1, v2, · · · vn

v′
2 : v1, v2, · · · vn

· · · · · · · · · · · · · · ·
v′

c : v1, v2, · · · vn

v′′
1 : v′

1, v′
2, · · · v′

c

v′′
2 : v′

1, v′
2, · · · v′

c

· · · · · · · · · · · · · · ·
v′′

c : v′
1, v′

2, · · · v′
c

Figure 16.6. Reduction of data by recursive shingling.

recursing further will reduce the size of the data set. In E′ every first-level shingle
v′ refers to the same set of source vertices v, and so the same set of c third-level
shingles v′′ will be created. The original n × n representation now requires O(c2)

storage.
Thus, for any graph, any clique of any size will be converted into a constant-

size set of shingles. The process behaves similarly for subgraphs above a certain
density (dependent on the count and size of shingles being produced at each level),
giving us small representations of large dense subgraphs in the original graph.

16.5.5 Implementation

The stages of the RecursiveShingle algorithm are easy to implement efficiently in
the data stream paradigm. As Figure 16.5 illustrates, the algorithm requires multiple
passes over successive generations of the E relation. All the computations can
be performed directly on relations, which can be stored in text files and handled
using standard line-oriented sorting utilities. Storing these relations using simple
compression requires about 10 MB per million edges. The sets V and W need not
be maintained explicitly. All the steps in the algorithm are linear operations, with
the exception of the transposition, which requires a sort.

16.5.6 Study of the Web Host Graph

To illustrate of the behavior of RecursiveShingle in practice, it was run on a large
graph from a Web crawl. IBM’s WebFountain project [26] crawls the Web and
performs many forms of analysis and builds various databases. In particular, it builds
a site database that includes a graph consisting of the links between websites. (In this
context, a website is defined to be all the pages that are retrieved from a particular
host name. While some sites may span multiple or only partial hosts, this heuristic
works correctly in most cases.)

The dataset from September 2004 was used, representing 2.1 billion pages and
50 million sites. It contains 11 billion edges, implying a mean out-degree of 220.

Table 16.1 reports the sizes of the dataset processed by the successive phases
of the algorithm, over two runs. In the first run, the (4, 16) shingling parameters
were used throughout. UnionFind produced a total of 2.8 million components, each
containing an average of 24 hosts.

428 DENSE SUBGRAPH EXTRACTION

TABLE 16.1 Two Runs of RecursiveShingle on Host Grapha

(s1, c1) = (3, 90),

(s1, c1) = (s2, c2) = (4, 16) (s2, c2) = (s3, c3) = (4, 16)

|V | = 50 |E| = 11000 |V | = 50 |E| = 11000
|V ′| = 275 |E′| = 420 |V ′| = 957 |E′| = 2500
|V ′′| = 60 |E′′| = 98 |V ′′| = 1000 |E′′| = 1200

|V ′′′| = 700 |E′′′| = 750

aAll sizes are in millions.

In the second run, the first-level shingling was performed using (3, 90) shin-
gling. Running UnionFind at the second level produced a giant component of 1.8
million first-level shingles, indicating that the reduced s parameter caused too many
shingles to be generated. However, recursing to depth 3 succeeded in removing the
giant component.

Figure 16.7 shows how the out-degree of E is reduced by successive recursions.
At the first level there are some enormous shingles, some occurring in excess of
100K hosts. But the out-degree reduction as discussed in Section 16.5.4 comes into
play at higher levels. The second-level shingles all have out-degree at most 100,
although this graph still has a giant component, and the third level has out-degree
at most 10.

A strikingly large fraction of the dense subgraphs found turn out to be link
spam. Random clusters were sampled, biased by cluster size, and the destination
vertex with the highest in-degree, but which was not shared by other clusters, was
examined. Of these vertices 88% were found to be link spam.

1

10

100

1,000

10,000

100,000

1 × 106

1 × 107

1 10 100 1,000 10,000 100,000 1 × 106

N
um

be
r

of
 S

hi
ng

le
s

w
ith

 T
hi

s
O

ut
-d

eg
re

e

Out-degree of Level i Shingles

(3,90) shingling, level 1
(3,90) shingling, level 2
(3,90) shingling, level 3

Figure 16.7. Recursion reduces the out-degree of E.

16.6 CONNECTION SUBGRAPHS 429

16.6 CONNECTION SUBGRAPHS

We have considered algorithms for finding small-scale bipartite cores in huge graphs,
and for finding larger dense subgraphs in huge graphs using shingling. Both of these
techniques are applied in a batch processing mode: The graph is sorted and streamed
through memory some number of times, and the overall running time may be quite
significant. We turn now to an algorithm that may be applied in response to a
user query in order to return a result in real time over huge graphs. The goal of the
previous algorithms is to enumerate dense subgraphs: that is, to create a more or less
exhaustive list of dense subgraphs in the graph. In the current section, we explore
instead the idea of producing a single carefully chosen dense subgraph based on the
particular query sent by the user.

We will discuss this algorithm in the context of social network graphs in which
the vertices correspond to people, and the edges correspond to relationships such as
friendship; a survey by Newman [44] gives an introduction to the field of analysis
of such graphs. Social network graph analysis is an important tool for understanding
social relationships between entities and has been employed with great success on
very small graphs that are edited by hand. At this scale, visualization is a very useful
tool for analysis, but it is very difficult to gain much from visualization of graphs
of more than a few dozen vertices. Thus, when dealing with a huge social network
graph such as a telephone call graph or a global email graph, we are faced with the
task of extracting a subgraph that best captures the social relationships between a
small number of vertices.

We will treat the social network as a graph G = (V, E) with a weight function
w that assigns a weight to each edge e ∈ E corresponding to the strength of the
relationship. There is a great deal of ambiguity in the problem of modeling the
strength of social relationships in small subgroups of a larger population, but if we
leave that aside for a moment, an abstract problem can be formulated as follows:

Connection Subgraph Problem. Given a weighted undirected connected graph
G, a pair of distinguished vertices s and t , and an integer budget b, find a b-vertex
connected subgraph H of G that contains both s and t and optimizes a “goodness”
function g(H).

In this section we discuss several aspects of this problem:

• We identify a candidate goodness function g(·) that we believe provides a
good model of strength of connections in social networks.

• We describe a heuristic algorithm for computing the optimal subgraph that
satisfies the optimality constraint and analyze its behavior.

• We further describe some heuristic optimizations for the algorithm that make
the technique usable in an interactive situation.

16.6.1 Measure of Connection Strength in Social Networks

The definition of an “important relationship” in a connection subgraph is an
inherently subjective notion, and one might imagine several such definitions. We

430 DENSE SUBGRAPH EXTRACTION

begin by describing two well-known notions of “good connections” and explain
why they fail to capture the notion of strength in social networks. By convention
we consider the edge weights wuv in the graph to indicate a strength of connec-
tion between the endpoints u, v of the edge (e.g., it might represent the volume of
communication between the two, or the number of shared interests, etc).

The first such candidate notion for strength in social networks is that of sim-
ple path length. It seems intuitively obvious that short paths are more significant
than long paths, and certainly direct connections are more important than third-
party connections. In an edge-weighted graph in which the edge weights indicate
strength of connection, we might replace path length by the sum of the reciprocal
edge weights. Unfortunately we believe that such measures are insufficiently sensi-
tive to a crucial feature of social networks, namely the fact that gregarious people
tend to form many weak connections rather than a few very strong connections.
Consider the example of Figure 16.8 in which the edge weights are equal to 1.
In this case both paths s → 3 → t and s → 4 → t are of length 2, but the path
through vertex 4 is intuitively less significant than the path through 3, since s and t

are one of many neighbors of vertex 4, but vertex 3 has only the neighbors s and
t , indicating that these connections are probably more important to vertex 3 than
the connections are to vertex 4. Since both paths are the same length, the shortest
path metric somehow fails to discriminate between the relative strength of social
connections.

Another notion that one might consider for measuring the strength of con-
nections in social networks is that of network flow. In this paradigm, the edge
weights indicate a capacity of an edge, and the flow along a path is the mini-
mum capacity of an edge on this path. Once again we see that the example shows
how this fails to accurately capture the notion of connection strength in social net-
works, since the paths s → 1 → 2 → t and s → 3 → t both have flow equal to
1, and yet somehow our intuition tells us that the path through 3 is more signif-
icant than the path through 1 and 2 since the former is of length 2 rather than
length 3.

16.6.1.1 Intuition from Random Walks. From these examples, it is apparent
that a measure of strength of a connection in social networks needs to incorporate
both the degrees of the intervening vertices as well as the length of the path. While
it is possible to design ad hoc measures that mix these two features, we claim that

s t

1 2
3

4

...5
6 99

100

Figure 16.8. Example illustrating why both shortest path and network flow measures are

inadequate to measure strength in social networks.

16.6 CONNECTION SUBGRAPHS 431

there is a natural measure of the strength of connection in a subgraph that arises
from thinking of the likelihood that information would flow from s to t in the entire
graph without leaving the subgraph, or alternatively that a message that follows a
random walk from s to t would remain within the subgraph. Here we think of the
edge weights as inducing a probability distribution for each vertex, in which the
probability of leaving a vertex along a given edge emanating from the vertex is
proportional to the weight of the edge.

Unfortunately, the paradigm of random walks suffers from the same defect as
that of network flow, namely that short paths are not favored over longer paths of the
same edge weight. In the case of random walks there is a very simple modification
to the basic paradigm that compensates for this. Specifically, at each stage of the
random walk from s to t we admit a small probability that the random walk will
fail. This favors short paths over long paths since each step in the path has a
nonnegligible chance of starting over again.

For specificity, we can define a random walk as follows. We start at s and
proceed along the edges of the graph to t . We introduce a universal sink vertex z to
the graph and make both z and t absorbing states, in the sense that once the walk
encounters these states it never leaves. We then introduce a parameter α, and for
every vertex u �= z, s we add edges (u, z) of weight α

∑
v w(u, v), so that the edge

from u to z carries a fixed fraction of the weight of all edges emanating from u.
In our experiments, we used α = 1, but other choices can be used to vary the bias
toward short paths. We now define a random walk along the graph as follows. We
start at vertex s, and at each step of the way we follow an edge with probability
proportional to its weight.

For the random walk defined in this way, we could define several measures
of an optimal subgraph in the network, including the paradigm of maximizing the
probability of remaining with the subgraph while walking from s to t . In the remain-
der of the discussion we will develop a slightly different alternative that follows the
same kind of motivation.

16.6.1.2 Electrical Networks. The theory of random walks on graphs is well
studied, and there is an elegant correspondence between the theory of random walks
on undirected graphs and that of current flow in electrical networks, in which edges
have conductance specified by the edge weights (or equivalently, a resistance equal
to the reciprocal of the weight). For surveys on the relationship between electrical
current flow and random walks on graphs, see [2, 18, 41]. Assume that we apply a
voltage of 1 V to vertex s, and ground vertices z and t (voltage = 0), and let V (u)

denote the induced voltage at vertex u. The voltages are known to satisfy Ohm’s
law, which states that the current flow along an edge is equal to the difference in
potentials times the conductance of the edge. Let I (u, v) be the current flow from
u to v. Then Ohm’s law states that

∀u, v : I (u, v) = wuv(V (u) − V (v)) (16.2)

432 DENSE SUBGRAPH EXTRACTION

Moreover, we must also satisfy Kirchoff’s law, which states that the current flow
on edges incident to a vertex must sum to zero, or

∀v �= s, t, z :
∑

u

I (u, v) = 0 (16.3)

Together these conditions imply that V is a harmonic function with poles s, z, t . By
this we mean that if �(u) denotes the neighbors of u, and wv = ∑

u∈�(v) wuv , then

V (u) =
∑

v∈�(u)

wuvV (v)

wv

(16.4)

for every u �= z, s, t . The function V (u) also has a natural interpretation in this case
(see [2, Section 3.2]), namely that it represents the probability that a walk that starts
at v will reach u before it reaches either of the absorbing states z or t .

16.6.1.3 Algorithms for Voltages. From Eq. (16.4) we see that the calculation
of V reduces to an eigenvector calculation of the form

[
A B

0 I

]
V = V (16.5)

where B represents the boundary conditions connecting vertices to s, z, and t ; I is a
3 × 3 identity matrix, and aij = wij/wj . The simplest algorithm allows us to solve
this set of linear equations in time O(n3) for a graph with n vertices, but in practice
it can be solved approximately in O(|E|) time, where |E| denotes the number
of edges in the graph. The reason is that we only need to calculate the principal
eigenvector and under suitable nondegeneracy conditions, the power method can be
employed, with a running time that is dependent on the desired precision and the
gap between the second largest and the largest eigenvalues.

16.6.1.4 Connection Subgraphs. We are now prepared to define our measure of
connection strength for connection subgraphs. We phrase it in terms of the electrical
paradigm, but the previous section illustrates that it could as easily be phrased in
terms of random walks. We begin with several definitions:

Definition 16.1 Vertex v is downhill from u (u →d v), if I (u, v) > 0.

We can then define Iout (u), the total flow leaving vertex u:

Definition 16.2 Total out-flow from vertex u: Iout (u) = ∑
{v | u→dv} I (u, v).

Definition 16.3 (Prefix Path) A prefix path is any downhill path P that starts
from the source s, that is, P = (s = u1, . . . , ui) where uj →d uj+1.

16.6 CONNECTION SUBGRAPHS 433

Obviously, a prefix path has no loops because of the downhill requirement.

Definition 16.4 (Delivered Current) The delivered current Î (P) over a prefix-
path P = (s = u1, . . . , ui) is the volume of electrons that arrive at ui from s, strictly
through P. Formally, we define Î () inductively as follows, beginning with a single
edge as base case:

Î (s, u) = I (s, u)

Î (s = u1, . . . , ui) = Î (s = u1, . . . , ui−1)
I (ui−1, ui)

Iout (ui−1)

In words, to estimate the delivered current to vertex ui through path P, we are
pro-rating the delivered current to vertex ui−1 proportionately to the outgoing current
I (ui−1, ui). We are now ready to define the current delivered by a subgraph; notice
that this definition is intentionally quite different from the current delivered by
applying voltages and computing current flows on the subgraph alone.

Definition 16.5 (Captured Flow) We say the captured flow CF(H) of a sub-
graph H of G is the total delivered current, summed over all source-sink prefix paths
that belong to H.

CF(H) ≡ g(H) =
∑

P=(s,...,z)∈H
Î (P) (16.6)

Note that any individual positron may traverse only a single prefix path, so this
measure does not double-count any flow.

EXAMPLE 16.1 Consider the graph shown in Figure 16.9. For simplicity of
exposition, and without loss of generality, we do not have a universal sink z (i.e.,
we set α = 0). After the voltages of the source and sink have been fixed to 1
and 0, respectively, the resulting voltages are shown for each other vertex. These
voltages induce currents along each edge as shown. There are five downhill source-
to-sink paths in the graph. These paths, with their delivered current are shown in
Table 16.2. The path that delivers the most current (and the most current per vertex)
is s → b → z. We can compute the 2/5 A delivered by this path by observing that,
of the 0.5 A that arrive at vertex b on the s → b edge, 1/5 departs toward vertex
c, while 4/5 depart toward vertex z. Thus, 4/5 × 0.5A gives the 2/5 A we seek.

Consider the {s, b, c, z} subgraph. We can compute its captured flow by adding
the delivered current of all paths that travel exclusively through the subgraph;
namely, s → b → c → z and s → b → z; these paths together capture 2/5 + 1/10 =
0.5 A of total current. We observe that this is one of two optimal 4-vertex subgraphs
that could be produced.

434 DENSE SUBGRAPH EXTRACTION

1

s

a

b

c

t

1

1

11

1
1

(a)

1/2

3/8

1

5/8

1/2

0

1/4

1/8
3/8

1/2

3/8
1/8

(b)

1/10

s

a

b

c

t
2/5

(c)

Figure 16.9. (a) Sample network, showing (b) voltages, current, and (c) paths with delivered

current.

TABLE 16.2 Current Flow
along Paths in Figure 16.9

s → b → z 2/5
s → a → c → z 1/4
s → b → c → z 1/10
s → a → b → z 1/10
s → a → b → c → z 1/40

16.6.2 Algorithms for Connection Subgraphs

Our optimization problem is now to find a subgraph that maximizes the captured
flow over all subgraphs of its size. For this we apply a greedy heuristic, as follows.
First, it initializes an output graph to be empty. Next, it iteratively adds end-to-end
paths (i.e., from source s to sink z) to the output graph. Since the output graph
is growing, a new path may include vertices that are already present in the output
graph; the algorithm will favor such paths. Formally, at each step the algorithm
adds the path with the highest marginal flow per capita. That is, it chooses the path
P that maximizes the ratio of flow along the path, divided by the number of new
vertices that must be added to the output graph.

Notice that the inductive definition of delivered current given above could easily
be computed using dynamic programming. We will modify this computation in order
to compute the path that maximizes our measure.

We begin with a definition of entries in our dynamic programming table Dv,k

(for “delivery matrix”), to be interpreted in the context of a partially built output
graph.

16.6 CONNECTION SUBGRAPHS 435

Definition 16.6 Dv,k is the current delivered from s to v along the prefix path
P = (s = u1, . . . , u� = v) such that:

1. P has exactly k vertices not in the present output graph.
2. P delivers the highest current to v among all such paths that end at v.

To compute D we exploit the fact that the electric current flows I (∗, ∗) form an
acyclic graph. Formally, we arrange the vertices into a sequence u1 = s, u2, u3, . . .,
z = un such that if vertex uj is downhill from ui (ui →d uj), then uj follows ui in
our ordering (i < j). That is, the vertices are sorted in descending order of voltage,
and so electric current always flows from left to right in the ordering. We will fill
in the table D in the order given by the topological sort above, guaranteeing that
when we compute Dv,k , we will already have computed Du,∗ for all u →d v. The
entries of D are computed in Algorithm 6.1.

Algorithm 16.1 DisplayGraphGeneration

Initialize output graph Gdisp = ∅
Let P be the maximum allowable path length
While output graph is not big enough do
For i = 1 to |G| do
Let v = ui
For k = 2 to P do
If v is already in the output graph then k′ = k else k′ = k− 1
Let Dv,k = maxu | u→dv(Du,k′I(u,v)/Iout(u))

Add the path maximizing Dt,k/k,k �= 0

Intuitively, I (u, v)/Iout(u) represents the fraction of flow arriving at u that
continues to v. Multiplying this by Du,k′ gives the total flow that can be delivered
to v through a simple path. The path maximizing our measure is then the path that
maximizes Dz,k/k over all k �= 0; it can be computed by tracing back the maximal
value of D from z to s.

16.6.3 Optimization Heuristics for Interactive Environments

The primary motivation for the connection subgraph problem is one of cognitive
understanding of relationships by humans, and the primary use of such techniques
is in interactive environments. Unfortunately, in the case of global social structures,
we can easily imagine graphs with millions of vertices, which presents a challenge
for rapid calculations on such graphs. Thus, while the algorithm described in the
previous section is polynomial time in the size of the input, it is still too expensive to
compute for extremely large graphs. Hence there is a need for algorithms that work
with extremely low latency on extremely large graphs. Our approach is to employ a
heuristic that quickly extracts a subgraph of the original graph that contains the most
important paths from s to t , upon which we run the algorithm of Section 16.6.2.
We call this subgraph the candidate graph.

436 DENSE SUBGRAPH EXTRACTION

Formally, the candidate generation process takes vertices s and t in the original
graph G and produces a much smaller graph (Gcand) by carefully growing neigh-
borhoods around s and t . Because our intent is to apply this to graphs that are
extremely large, we assume that vertices are discovered incrementally during the
execution of the algorithm. In the framework, candidate generation algorithms strate-
gically expand the neighborhoods of s and t until there is a significant overlap.
We start by knowing only s and t , and we explore vertices further by retrieving
their neighbor set. Thus a vertex in our Gcand graph may exist in one of two
states: We may know the neighbors of the vertex, or we may only know the vertex
as the neighbor of a vertex whose neighbors we already know. The operation of
expanding a vertex consists of retrieving its neighbor set, and we think of this as
a relatively expensive operation (since it will likely have to go to disk for a very
large graph).

Let D(s) be the set of vertices first discovered through a series of expansions
beginning at s; we say that s is the root of all vertices in D(s). We define E(s) as
the set of expanded vertices within D(s), that is, those for which we have already
retrieved their list of neighbors. Likewise, let P(s) be the set of pending vertices
within D(s) that have not yet been expanded. Similarly, define D(t), E(t), and P(t).
Note that D(s) is disjoint from D(t) since each vertex is discovered only once, by
expanding a vertex whose root is either s or t . Recall that for weighted graphs, we
use wuv as the weight of the edge from u to v. We define deg(u) to be the degree
(number of neighbors) of u. Algorithm 16.2 shows CandidateGeneration.

Algorithm 16.2 CandidateGeneration

Set P(s) = {s} and P(t) = {t}
While not stoppingCondition() do
v = pickHeuristic()
Let r be the root of v
Expand v, moving it from P(r) to E(r)
Add all neighbors of v that are not already in E(r) to P(r)

Thus, the details of the algorithm lie in the process of deciding which vertex
to expand next and when to terminate expansion. Our algorithm repeatedly expands
carefully selected, unexpanded vertices, chosen by the pickHeuristic(), until a stop-
ping condition stoppingCondition() is reached. These are the two major routines,
and there is a lot of opportunity for experimentation within this framework. In
effect, pickHeuristic() strives to suggest a vertex for expansion, estimating how
much delivered current this vertex will carry. Thus, the heuristic favors vertices
that are (a) close to the source s or the sink t (b) with strong connections (high
conductance) and (c) low degree, to avoid the “famous-vertex” effect (recall vertex
4 of Figure 16.8.)

One appealing heuristic for pickHeuristic() is to run a real random walk on
D(s) and D(t) and keep track of which vertices in P(s) and P(t) are hit most
often. If we select a vertex u from P(s) or P(t) as the next vertex to be explored,

16.6 CONNECTION SUBGRAPHS 437

and u had previously been visited k times in random walks, then before choosing
the next vertex we should run k random walks from s or t to vertices in P(s) and
P(t), so that we keep a constant number of walks distributed among the vertices
that are yet to be expanded. Alternative approaches to selecting a vertex that is in
some sense closest to the root are described in [19], but we omit details on these
techniques.

The stoppingCondition() puts limits on the size of the output graph Gcand (count
of expansions, count of distinct vertices discovered, etc.). In our experiments, we
defined three thresholds for termination; the algorithm will stop as soon as any
threshold is exceeded. First, we adopt a threshold on total expansions to limit the
total number of disk accesses. Second, we adopt a larger threshold on discovered
vertices, even if those vertices have not yet been expanded, to limit memory usage.
And finally, we adopt a threshold on number of cut edges [edges between D(s) and
D(t)], as a measure of the connectedness of the set of vertices with the src as a
root with the set of vertices with the sink as a root.

16.6.4 Experiments

The optimization techniques described in Section 16.6.3 turn out to be remarkably
effective in practice. We performed our experiments on a graph that we call the Web
names graph. This graph was constructed from a crawl of the World Wide Web and
represents a social network graph between names of people. The first step in this
is to run an entity extraction tool on the pages of the World Wide Web in order to
recognize whenever a person’s name is recognized. Techniques for devising such
tools are fairly well developed and can extract names with high probability. The
names that are discovered in this way become the vertices in our graph, and we
create an edge between two names of weight w if in our crawl we find w distinct
pages in which the two names are mentioned together in close proximity to each
other. In our experiments, we used a window of 50 text tokens, declaring an edge
if the two names appear within this many tokens of each other. From our crawl,
we were able to recognize nearly 78 million distinct names, with approximately
1.4 billion edges between them.

It should be noted that the vertices in our graph are not people but rather the
names of people. Thus when we find a connection graph between two names, we
may be confused by names that represent two different people from relatively dis-
connected social groups. This might be troubling at first, but in practice this is
always the case with real-world data since in nearly every application area there
is difficulty in distinguishing people from each other based on only information
stored in a database. This is particularly true in the case of fraud or other criminal
investigations in which individuals strive to deliberately conceal or confuse their
identity.

Even with the problem of confusing common names for different people, the
techniques we have developed are remarkably effective, even for finding connec-
tions between people who are apparently disconnected from each other socially. An
example subgraph from our dataset is shown in Figure 16.10 in which we show

438 DENSE SUBGRAPH EXTRACTION

Alan Turing

Gillian Anderson

0.9931 (1)

Harry Potter
1.995 (2)

Kate Winslet

1.996 (2)

Sharon Stone
0.6036 (881)

0.5765 (48)

0.23684 (94)

Figure 16.10. Connection subgraph example from a social network graph extracted from

the World Wide Web. In this example we see connections between two people who might

be expected to have nothing to do with each other, namely the scientist Alan Turing and

the actress Sharon Stone. In fact the algorithm was able to identify that Kate Winslett is the

actress who is probably most closely related to Alan Turing.

a connection from the actress Sharon Stone to the computer scientist Alan Tur-
ing. At first glance these people might be thought to have nothing to do with each
other, but in fact our system discovered some very interesting connections that were
not immediately apparent. From the nearly 78 million vertices in our database, it
selected the two names Kate Winslett and Gillian Anderson. These are actresses
that might appear to have nothing to do with Alan Turing, but in fact these are
the actresses that are probably best connected to Alan Turing. In the case of Kate
Winslett, she starred in a movie titled Enigma whose title refers to the famous Ger-
man cipher machine of World War II. It turns out that Alan Turing was one of the
mathematicians who was most instrumental in breaking this cipher system, which
changed the course of the war. In the case of Gillian Anderson, she stars in a science
fiction television show that appeals strongly to a scientific audience that is likely to
know who Alan Turing was.

16.7 CONCLUSIONS

Discovering dense subgraphs is an important problem with a wide variety of appli-
cations. While this problem is not easy, there are several heuristics that work very
well in practice, even on massive graphs. Many of these heuristics are tailored
to a particular application/dataset. It will be interesting to develop more efficient
and effective heuristics, perhaps even with some provable guarantees, assuming
an underlying model for graph generation. It will also be interesting to study the
effectiveness of spectral methods for finding dense subgraphs.

REFERENCES

1. R. Agrawal and R. Srikant. Fast algorithms for mining association rules in large
databases. In Proceedings of 20th International Conference on Very Large Data Bases,
Santiago, Chile, pp. 487–499, 1994.

2. D. Aldous and J. A. Fill. Reversible markov chains and random walks on graphs, 2001,
unpublished.

3. N. Alon, Y. Matias, and M. Szegedy. The space complexity of approximating the fre-
quency moments. Journal of Computer and System Sciences, 58(1):137–147, 1999.

REFERENCES 439

4. K. Bharat, A. Broder, J. Dean, and M. R. Henzinger. A comparison of techniques to find
mirrored hosts on the WWW. Journal of the American Society for Information Science,
51(12):1114–1122, 2000.

5. K. Bharat and M. Henzinger. Improved algorithms for topic distillation in hyperlinked
environments. In Proceedings of 21st International ACM SIGIR Conference on Research
and Development in Information Retrieval, pp. 104–111, 1998.

6. U. Brandes. A faster algorithm for betweenness centrality. Journal of Mathematical
Sociology, 25:163–177, 2001.

7. U. Brandes, M. Gaertler, and D. Wagner. Experiments on graph clustering algorithms.
In Proceedings of 11th European Symposium on Algorithms, pp. 568–579, 2003.

8. S. Brin and L. Page. The anatomy of a large scale hypertextual web search engine.
Computer Networks, 30(1–7):107–117, 1998.

9. A. Broder, M. Charikar, A. Frieze, and M. Mitzenmacher. Min-wise independent per-
mutations. Journal of Computer and System Sciences, 60:630–659, 2000.

10. A. Broder, S. C. Glassman, M. S. Manasse, and G. Zweig. Syntactic clustering of the
web. WWW6/Computer Networks, 29(8–13):1157–1166, 1997.

11. J. Carriere and R. Kazman. Webquery: Searching and visualizing the web through con-
nectivity. Computer Networks, 29(8–13):1257–1267, 1997.

12. S. Chakrabarti. Mining the Web: Discovering Knowledge from Hypertext Data. Morgan
Kaufmann, San Francisco, CA, 2002.

13. S. Chakrabarti, B. Dom, D. Gibson, R. Kumar, P. Raghavan, S. Rajagopalan, and
A. Tomkins. Experiments in topic distillation. In SIGIR Workshop on Hypertext Infor-
mation Retrieval on the Web, 1998.

14. A. K. Chandra, P. Raghavan, W. L. Ruzzo, R. Smolensky, and P. Tiwari. The electrical
resistance of a graph captures its commute and cover times. Computational Complexity,
6(4):312–340, 1997.

15. M. Charikar. Greedy approximation algorithms for finding dense components in a graph.
In Proceedings of 3rd International Workshop on Approximation Algorithms for Com-
binatorial Optimization (APPROX), pp. 84–95, 2000.

16. S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer and R. Harshman. Indexing
by Latent Semantic Analysis. Journal of the American Society for Information Science,
41(6): 391–407.

17. I. S. Dhillon, S. Mallela, and D. S. Modha. Information-theoretic co-clustering. In
Proceedings of 9th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pp. 89–98, 2003.

18. P. G. Doyle and J. L. Snell. Random Walks and Electric Networks. Carus Mathematical
Monographs. Mathematical Association of America, Washington, DC, 1984.

19. C. Faloutsos, K. McCurley, and A. Tomkins. Fast discovery of Connection Subgraphs .
In Proceedings of 10th ACM SIGKDD Conference on Knowledge Discovery and Data
Mining, pp. 118–127, 2004.

20. C. Faloutsos, K. S. McCurley, and A. Tomkins. Connection subgraphs in social net-
works. In Workshop on Link Analysis, Counterterrorism, and Privacy. SIAM Interna-
tional Conference on Data Mining, 2004.

21. G. Flake, S. Lawrence, and C. Lee Giles. Efficient identification of web communities. In
Proceedings of 6th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pp. 150–160, 2000.

22. D. Florescu, A. Y. Levy, and A. O. Mendelzon. Database techniques for the world-wide
web: A survey. SIGMOD Record, 27(3):59–74, 1998.

440 DENSE SUBGRAPH EXTRACTION

23. G. Gallo, M. D. Grigoriadis, and R. Tarjan. A fast parametric maximum flow algorithm
and applications. SIAM Journal on Computing, 18:30–55, 1989.

24. D. Gibson, J. Kleinberg, and P. Raghavan. Inferring web communities from link topol-
ogy. In Proceedings of 9th ACM Conference on Hypertext and Hypermedia, pp.
225–234, 1998.

25. D. Gibson, R. Kumar, and A. Tomkins. Extracting large dense subgraphs in massive
graphs. In Proceedings of 31st International Conference on Very Large Data Bases,
2005.

26. D. Gruhl, L. Chavet, D. Gibson, J. Meyer, P. Pattanayak, A. Tomkins, and J. Zien. How
to build a WebFountain: An architecture for very large-scale text analytics. IBM Systems
Journal, 43(1):64–77, 2004.

27. T. H. Haveliwala. Topic-sensitive pagerank. Proceedings of 11th International World
Wide Web Conference, pp. 517–526, 2002.

28. M. Henzinger, P. Raghavan, and S. Rajagopalan. Computing on data streams. In
DIMACS series in Discrete Mathematics and Theoretical Computer Science, 50:107–118,
1999.

29. G. Jeh and J. Widom. Scaling personalized web search. Proceedings of 12th International
World Wide Web Conference, pp. 271–279, 2003.

30. G. Karypis and V. Kumar. Parallel multilevel k-way partitioning for irregular graphs.
SIAM Review, 41(2):278–300, 1999.

31. S. Khot. Ruling out PTAS for graph min-bisection, densest subgraph, and bipartite clique.
In Proceedings of 45th IEEE Annual Symposium on Foundations of Computer Science,
pp. 136–145, 2004.

32. J. Kleinberg. Authoritative sources in a hyperlinked environment. Journal of the ACM,
46(5):604–632, 2000.

33. D. Konopnicki and O. Shmueli. Information gathering in the world-wide web: The
W2QL query language and the W3QS system. ACM Transactions on Database Systems,
23(4):369–410, 1998.

34. R. Kumar, U. Mahadevan, and D. Sivakumar. A graph-theoretic approach to extract
storylines from search results. In Proceedings of 10th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 216–225, 2004.

35. R. Kumar, J. Novak, P. Raghavan, and A. Tomkins. Structure and evolution of
blogspace. Communications of the ACM, 47(12):35–39, 2004.

36. R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins. Extracting large scale knowl-
edge bases from the web. In Proceedings of 25th International Conference on Very Large
Databases, pp. 639–650, 1999.

37. R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins. Trawling the web for emerg-
ing cyber-communities. WWW/Computer Networks, 31(11–16):1481–1493, 1999.

38. L. V. S. Lakshmanan, F. Sadri, and S. N. Subramanian. SchemeSQL: An extension
of SQL for multidatabase interoperability. ACM Transactions on Database Systems,
26(4):476–519, 2001.

39. E. Lawler. Combinatorial Optimization: Networks and Matroids. Holt, Rinehart, and
Winston, New York, 1976.

40. D. Liben-Nowell and J. Kleinberg. The link prediction problem for social networks.
In Proceedings of 12th ACM International Conference on Information and Knowledge
Management, pp. 556–559, 2003.

REFERENCES 441

41. L. Lovász. Random Walks on Graphs: A Survey, pp. 353–398. Janos Bolyai Mathemat-
ical Society, Budapest, 1996.

42. J. McHugh, S. Abiteboul, R. Goldman, D. Quass, and J. Widom. LORE: A database
management system for semistructured data. SIGMOD Record, 26(3):54–66, 1997.

43. A. O. Mendelzon, G. A. Mihaila, and T. Milo. Querying the world wide web. Interna-
tional Journal on Digital Libraries, 1(1):54–67, 1997.

44. M. E. J. Newman. Fast algorithm for detecting community structure in networks. Phys-
ical Review E, 69:066133, 2003.

45. L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank citation ranking: Bring-
ing order to the web. Technical Report, Stanford Digital Library Technologies Project,
Palo Alto, CA, 1998.

46. C. R. Palmer and C. Faloutsos. Electricity based external similarity of categorical
attributes. In Proceedings of 7th Pacific-Asia Conference on Advances in Knowledge
Discovery and Data Mining, pp. 486–500, 2003.

47. P. Pirolli, J. Pitkow, and R. Rao. Silk from a sow’s ear: Extracting usable structures
from the web. In Proceedings of ACM Conference on Human Factors in Computing
Systems, pp. 118–125, 1996.

48. E. Spertus. Parasite: Mining structural information on the web. Computer Networks,
29(8–13):1205–1215, 1997.

49. L. Stockmeyer and V. Vazirani. NP-completeness of some generalizations of the maxi-
mum matching problem. Information Processing Letters, 15(1):14–19, 1982.

50. D. Tsur, J. D. Ullman, S. Abiteboul, C. Clifton, R. Motwani, S. Nestorov, and
A. Rosenthal. Query Flocks: A generalization of association-rule mining. In Proceedings
of 17th ACM SIGMOD International Conference on Management of Data, pp. 1–12,
1998.

51. S. van Dongen. Graph Clustering by Flow Simulation. Ph.D. thesis, University of
Utrecht, 2000.

52. S. Virtanen. Clustering the Chilean web. In Proceedings of 1st Latin American Web
Conference, pp. 229–233, 2003.

17

SOCIAL NETWORK ANALYSIS
SHERRY E. MARCUS, MELANIE MOY, AND THAYNE COFFMAN

21st Century Technologies, Inc. Austin, TX

17.1 INTRODUCTION

In this chapter, we would like to provide a brief introduction to social network
analysis (SNA) as a graph mining tool. In Section 17.2, we introduce the basic
concepts of social network analysis and the descriptions of a number of useful SNA
metrics. In the following section, we discuss group detection as an application of
SNA, including the introduction of a novel group detection algorithm implemented
within the Terrorist Modus Operandi Detection System (TMODS) [5, 6, 11, 13]
platform. We continue with a discussion of the TMODS platform, including graph
matching and SNA capabilities. Section 17.5 presents the results of applying group
detection to a small selection of representative datasets and, finally, we provide our
conclusions.

17.2 SOCIAL NETWORK ANALYSIS

Social network analysis is an approach to the study of human social interactions.
SNA can be used to investigate kinship patterns, community structure, or the orga-
nization of other formal and informal social networks [16, 19]. These “social”

Mining Graph Data, Edited by Diane J. Cook and Lawrence B. Holder
Copyright c© 2007 John Wiley & Sons, Inc.

443

444 SOCIAL NETWORK ANALYSIS

networks may be associated with corporations, family groups, filial groups, com-
mand and control structures, or covert organizations.

Two important problems in social network analysis are determining the func-
tional roles of individuals in a social network and diagnosing network-wide condi-
tions or states. Different individuals in a social network often fulfill different roles.
Examples of intuitive roles include leaders, followers, regulators, “popular people,”
and early adopters. SNA researchers have also identified other roles that are less
intuitive but are still common in normal and abnormal networks, like bridges, hubs,
gatekeepers, and pulse takers. We would like to be able to automatically determine
the role(s) that a particular actor fills in a social network.

Social network theorists have also identified characteristics that can be used to
differentiate healthy organizations from those with underlying organizational prob-
lems, or to differentiate normal social network structures from those typically used
for illicit activity, and we would like to classify networks into various “healthy”
and “unhealthy” categories. Some of these characteristics are quantifiable as SNA
metrics, while others lack simple indicators.

Social network analysts often represent the social network as a graph, and
we follow this approach. In its simplest form, a social network graph (sometimes
called an “activity graph”) contains nodes representing actors (generally people or
organizations) and edges representing relationships or communications between the
actors. Analysts then reason about the individual actors and the network as a whole
through graph-theoretic approaches, including (of particular interest to this study)
SNA metrics that take different values at different nodes in the graph.

17.2.1 Bestiary of SNA Metrics1

In this subsection, we define a number of SNA metrics useful for the analysis of
datasets. These metrics are:

• Betweenness centrality
• Closeness centrality
• Average path length
• Average cycle length
• Characteristic path length
• Global efficiency
• Clustering coefficient
• Cliqueishness
• Homogeneity
• E-to-I ratio
• Degree
• Density

1Bestiary: a descriptive or anecdotal treatise on various real or mythical kinds of animals, especially a
medieval work with a moralizing tone.

17.2 SOCIAL NETWORK ANALYSIS 445

B
A

C
Figure 17.1. Betweenness centrality and average path length.

• Girth
• Diameter
• Radius
• Radiality and integration
• Circumference

All of these metrics (among others) are implemented within the TMODS plat-
form, as described below.2

17.2.1.1 Brandes Betweenness Centrality (BR). Brandes Betweenness cen-
trality (BR) is a measure of the amount to which a given node lies on the shortest
paths between other nodes in the graph. Figure 17.1 shows some examples of vary-
ing betweenness—node A has high betweenness because the shortest paths (called
geodesics) between many pairs of other nodes in the graph pass through node A.
Nodes B and C have low betweenness because most of the geodesics in the graph
do not pass through them.

Formally, global betweenness centrality is defined, for a graph G with nodes
{s, t, v} ∈ N(G), as

�(s, t) = {Number of distinct geodesics from s to t}
�v(s, t) = {Number of geodesics from s to t that pass through v}

Cb(v) =
∑
s,t �=v

�v(s, t)

�(s, t)

Typically, betweenness centrality is normalized to the range [0, 1] within an
individual graph. We use one of the more common (and efficient) known algorithms
for computing betweenness centrality, developed by Ulrik Brandes [2].

2Some of these computations, such as finding cycles and cliques, are NP-complete.

446 SOCIAL NETWORK ANALYSIS

17.2.1.2 Closeness Centrality. Closeness centrality is a category of algorithms
that rates the centrality of a node by its closeness (distance) to other nodes. “Close-
ness” has different definitions.

This feature implements a measure of closeness centrality defined as

CLC(G, keyNode) = N2
R

N
∑

i distance(keyNode, ni)

where N = number of nodes in G

NR = number of nodes in G reachable from
keyNode (with the maximum possible

NR = N − 1)

distance(keyNode, ni) = N for all nodes not reachable from keyNode.

As fewer nodes are reachable from keyNode, CLC goes down. Also, as the
distances between keyNode and nodes that are reachable increases, CLC goes down.

It is possible that this is a standard SNA metric, but enough assumptions and
“tweaks” have been made that this is unlikely to be exactly the same as what other
people refer to as closeness centrality.

Distances (and reachability) may be calculated using either directed or undi-
rected edges.

17.2.1.3 Average Path Length (APL). Average path length computes the aver-
age distance between the key node and any other node in the neighborhood. Thus

APL(G, keyNode) = averagei(distance(keyNode, Ni))

for all nodes Ni in the neighborhood. This gets a little more complicated when not
all nodes are reachable from the keyNode (because the graph is disconnected or
because computation is being done in a directed fashion). There are three possible
settings for how to handle unreachable nodes:

Ignore: The average is taken only over nodes reachable from keyNode.
Count as zero: The distance to unreachable nodes is considered to be zero.
Count as N : The distance to unreachable nodes is considered to be N , the

size of the neighborhood.

In Figure 17.1, node B has a relatively high average path length, while nodes
A and C have relatively low average path lengths.

17.2.1.4 Average Cycle Length (ACL). Average cycle length computes the aver-
age length of all the cycles in the graph. Only cycles of length ≤ 3 are considered.
Average cycle length is always computed using directed edges.

17.2 SOCIAL NETWORK ANALYSIS 447

17.2.1.5 Characteristic Path Length (CPL). Characteristic path length is a mea-
sure of the average distance between any two nodes in the graph. Thus

CPL(G) = averagei,j (distance(Ni, Nj))

for all nodes Ni , Nj in the graph. The definition gets a bit more complicated when
not all nodes are reachable from each other (because the graph is disconnected or
because computation is being done in a directed fashion). There are three possible
settings for how to handle unreachable nodes:

Ignore: The average is taken only over nodes reachable from each other.
Count as zero: The distance between unreachable nodes is considered to be

zero.
Count as N : The distance between unreachable nodes is considered to be N ,

the size of the graph.

17.2.1.6 Global Efficiency (GE). Global efficiency is a measure of the rate at
which nodes can be reached from each other in the graph. It is approximately
inversely related to characteristic path length. Global efficiency will always range
[0..1]. Intuitively, high global efficiency means the distance between nodes is gen-
erally short (GE = 1 means every node can be reached from every other in one
step), and low global efficiency means many steps must be taken between nodes:

GE(G) = averagei,j

(
1

distance(Ni,Nj)

)

Unreachable nodes can be treated two ways: They can be ignored (equivalent to
treating them as if they were at distance zero), or they can be treated as if they were
at distance N (which imposes the maximum possible penalty on global efficiency
for unreachable nodes), depending on configuration settings.

17.2.1.7 Clustering Coefficient (CC). Clustering coefficient (CC) measures the
density of the distance-one neighborhood around the keyNode (even if the search
group is larger than this neighborhood). It is a measure of the likelihood of “If
A knows B and B knows C, then A knows C” for fixed B = keyNode. It is,
equivalently, a measure of the percentage of closed triangles in the neighborhood
immediately around keyNode. Thus you would have CC(n) = 1.0 for nodes in a
clique, and CC(n) = 0.0 for the center of a star (or a hub in a hub-and-spoke
network).

To compute CC, find the subgraph Glocal = all nodes at distance exactly 1
from keyNode, and all edges between them. Note that this subgraph does not
include the keyNode. Then compute the density (directed or undirected, depending
on configuration) of that graph.

448 SOCIAL NETWORK ANALYSIS

In this context, directed density is defined as

Dd(G) = E(G)

N(G)(N(G) − 1)

where N(G) and E(G) are the number of nodes and edges in the graph, respectively.
Note that this allows the possibility that Dd(G) > 1.0 for multigraphs. The definition
of undirected density is a bit more complex because we are operating on a directed
multigraph representation. In this context, undirected density is defined as

Du(G) = E(G)

(N(G)(N(G) − 1)/2)

where

E(G) =
∑

n(Size(Neighbors(n)))

2

Note that this is not the same definition of undirected density as used in the density
feature.

17.2.1.8 Cliqueishness. Cliqueishness is a measure of how much the node in
question appears to belong to a clique. A clique is loosely defined as a group of
nodes that is highly connected internally but loosely connected to nodes outside
the clique. Determining whether a node is a member of an ideal (or pure) clique
is relatively easy—the difficult part is quantifying a node’s membership in groups
that are “almost” cliques.

To compute cliqueishness on a node N , the metric takes the ratio of how similar
the distribution sequence of N is to two archetypical distribution sequences—one for
a node in an ideal clique and the other for a node in an ideal nonclique (a K-regular
graph). The closer N ’s distribution sequence is to the ideal clique sequence, the
larger the numerator is and the closer cliq(N) is to +∞. The closer N ’s distribution
sequence is to the ideal nonclique, the larger the denominator is and the closer
cliq(N) is to 0.0.

The distribution sequence for node N , γ (N), is a sequence that contains in each
element the number of nodes at exactly that distance from N . For a node with 1
adjacent node, 2 nodes at distance 1, 5 nodes at distance 3, and 12 nodes at distance
4, the distribution sequence would be γ (N) = [1 1 2 5 12] (because one node, N ,
is at distance zero).

The archetypical distribution sequences depend on the number of nodes in the
graph. The archetypical clique distribution sequence is [1 k 0 0 0 . . .] for a k-
member clique. This signifies a completely connected clique with no connections to
any other nodes. The archetypical nonclique distribution sequence is formed by two
factors. In an infinitely large graph, the sequence would grow exponentially, that is,
[1 k k2 k3 k4 . . .]. However, in a finite graph the sequence growth is limited by the
fact that you will run out of nodes, so we model it as a binomial distribution with
parameter 0.45.

17.2 SOCIAL NETWORK ANALYSIS 449

Similarity between two distribution sequences is measured by the correlation
between those sequences.

17.2.1.9 Homogeneity. Homogeneity measures how many nodes in a neighbor-
hood share the same attribute values on selected attributes. As a simple example,
a group of 10 nodes that all have the value “Colombian” for their “Nationality”
attribute would be considered very homogeneous. A group of 10 nodes each with
a different value for the “Nationality” attribute would be considered very heteroge-
neous. A group of 10 nodes with 5 “Colombian” and 5 “Chinese” would be some-
where in between. Attribute values are considered either equal or unequal—there
is no notion of “almost equal” or “similar” values.

The homogeneity metric builds a histogram of attribute values in a neighbor-
hood, normalizes it to sum to 1, and measures the heterogeneity of that histogram.
That heterogeneity result is normalized over the maximum possible heterogeneity
(a completely flat histogram) and then subtracted from 1 to yield the homogene-
ity measure, which will always fall between 0 (maximally heterogeneous) and 1
(maximally homogeneous).

The metric used to measure histogram heterogeneity can be any of entropy
impurity, Gini impurity, or misclassification impurity. Each of these are a little
different, primarily in how sharply they peak around the extreme homogeneity value
of 1. The sharper the peak, the less “forgiving” the metric is about histograms that
are not quite the ideal homogeneous group (all the attribute values are the same).
They are listed here in decreasing order of the sharpness of that peak.

Misclassification Impurity: Mis(H) = 1 − maxi[H(i)]
Gini Impurity: Gini(H) = 1

2 (1 − ∑
i[H(i)H(i)])

Entropy Impurity: Ent(H) = −∑
i[H(i) log2(H(i))]

17.2.1.10 E-to-I Ratio. External-to-internal (E-to-I) ratio measures the number
of edges from a node in group A to a node not in A versus the number of edges
from a node in A to a node in A. As a simple example, a graph representing a
small community “Smallville” might have several nodes. An edge from node A

to node B represents a communication from person A to person B. Within this
graph, there exists a smaller group, “farmers,” that consists of some number of
nodes less than the size of the entire community. The E-to-I ratio measures the
amount of communication that occurs between farmers and nonfarmers versus the
communication that occurs between farmers.

• An E-to-I ratio of 1:1 indicates a group that communicates as often with
people outside the group as within.

• An E-to-I ratio of 0:1 indicates a group that communicates ONLY with mem-
bers inside the group.

• An E-to-I ratio of 1:0 indicates a group that communicates ONLY with mem-
bers outside the group.

450 SOCIAL NETWORK ANALYSIS

• An E-to-I ratio of 0:0 indicates that members of the group do not communicate
with anyone in the community.

17.2.1.11 Degree. The degree of a node is the number of edges on the node.
Depending on its configuration settings, degree can consider only edges starting at
this node (outgoing degree), only edges ending at this node (incoming degree), or
both (undirected degree). Also, depending on its configuration settings, degree can
be computed either considering or ignoring the weights on the edges.

17.2.1.12 Density. Density measures the ratio of existing edges to potentially
existing edges. Undirected density is defined as

Denundirected(G) = E(G)

(N(G)(N(G) − 1))

Directed density is defined as

Dendirected(G) = E(G)

2N(G)(N(G) − 1)

Note that multigraphs may have densities greater than 1.0 or could result in a density
of 1.0 on a not completely connected graph.

17.2.1.13 Girth. The girth of a graph is the length of the shortest cycle (of length
≥ 3) in the graph. Girth is always computed directed.

17.2.1.14 Diameter. Diameter is one measure of the “size” of a graph. The
diameter is defined as

D(G) = maxi (maxj (distance(Ni,Nj))

Diameter measures the maximum number of steps ever necessary to get from
any node in the graph to any other node in the graph. Starting at any node, you are
guaranteed that you can reach any other reachable node in at most D(G) steps.

Unreachable nodes can be treated two ways: They can be ignored or they can be
treated as if they were at distance N , depending on configuration settings. Treating
them as if they were at distance N ensures that diameter decreases monotonically
as you add edges to the graph. It also has the effect that the diameter for any graph
where one or more nodes are unreachable from each other will always be N from
each other will always be N .

17.2 SOCIAL NETWORK ANALYSIS 451

17.2.1.15 Radius. Radius is another measure of the “size” of a graph. The radius
is defined as

R(G) = mini (maxj (distance(Ni, Nj))

The radius implicitly defines which nodes in the graph are “central” nodes. A node
is central when it can reach any other node in the graph in the minimum number
of steps, compared to other nodes in the graph. Stated another way, any noncentral
node will require more steps to reach some other node in the graph than a central
node requires to reach any other node in the graph.

Unreachable nodes can be treated two ways: They can be ignored or they can be
treated as if they were at distance N , depending on configuration settings. Treating
them as if they were at distance N ensures that radius is decreased monotonically
as you add edges to the graph.

17.2.1.16 Radiality and Integration. Radiality is a centrality measure that char-
acterizes the degree to which a node’s outward nominations reach out into the
network. Similarly, integration is a centrality measure that characterizes the degree
to which a node’s inward nomination integrates it into the network. The radiality
of agent A increases when the agents connected to A are not connected together
[7, 18]. A server connected to many clients would be very radial since most clients
connect only with the server for information and not with each other. For a given
node v, radiality computes [3]:

R(v) =
∑
t∈V

diameter(G) + 1 + δ(v, t)

n − 1

and integration computes [3]:

I (v) =
∑

t ∈ V
diameter(G) + 1 + δ(t, v)

n − 1

where G = graph containing v

V = set of vertices in the graph
t = node in V that is not v

δ(v, t) = shortest distance from node v to node t

diameter(G) = diameter of graph G where diameter is
another social analysis metric

n = number of nodes in V

17.2.1.17 Circumference. The circumference of a graph is the length of the
longest cycle (of length ≥ 3) in the graph. Circumference is always computed
directed.

452 SOCIAL NETWORK ANALYSIS

17.3 GROUP DETECTION

In its usual context, group detection refers to the discovery of underlying organiza-
tional structure that relates selected individuals with each other. In a broader context,
it refers to the discovery of underlying structure relating instances of any type of
entity among themselves. We could be looking for firms banding together to form
a cartel, mixed drinks that can be grouped according to ingredients, or basketball
teams that may be grouped into conferences.

17.3.1 Group Detection Using SNA

17.3.1.1 Best Friends Group Detection Algorithm. We can think of the Best
Friends Group Detection algorithm as a computationally efficient approach to detect-
ing groups based upon concepts similar to the E-to-I ratio. The Best Friends Group
Detection algorithm uses user-defined parameters to form an initial group. A group
begins with a “seed” node, and nodes with associations/ties to the seed node are
used to form an initial group. The group is pruned according to user-defined parame-
ters. For example, nodes that are not well-connected to the group may be removed.
Finally, the group must meet the requirements specified in a user-defined fitness
function. If the group meets these requirements, it is stored as a potential group.

Instructions regarding how to run Best Friends Group Detection either interac-
tively or through TMODS batch scripts may be found in [15].

17.4 TERRORIST MODUS OPERANDI DETECTION SYSTEM

The Terrorist Modus Operandi Detection System (TMODS) automates the tasks of
searching for and analyzing instances of particular threatening activity patterns. With
TMODS, the analyst can define an attributed relational graph (ARG) to represent the
pattern of threatening activity he or she is looking for. TMODS then automates the
search for that threat pattern through an input graph representing the large volume of
observed data. TMODS pinpoints the subsets of data that match the threat pattern
defined by the analyst, transforming an arduous manual search into an efficient
automated tool. It is important to note that the activity graph analyzed by TMODS
can be derived from multiple sources, allowing for an analysis of information across
several domains without extra effort. TMODS is a mature, distributed Java software
application that has been under development by 21st Century Technologies since
October 2001. Before we describe TMODS capabilities in further detail, a brief
overview of graph matching is provided below.

Graph matching is often known as subgraph isomorphism [10, 12] and is a
well-known problem in graph theory. Informally, graph matching finds subsets of
a large input graph that are “equivalent to” a pattern graph (threat pattern). These
sections of the input graph, called matches, are “equivalent” in the sense that their
nodes and edges correspond one-to-one with those in the pattern graph. Figure 17.2
illustrates a sample pattern graph and an inexact match highlighted within one

17.4 TERRORIST MODUS OPERANDI DETECTION SYSTEM 453

Observed Activity (Input Graph)

Threatening Activity
(Pattern Graph)

observe

observe

observe 21 West St

Harry

Acme, Inc.

Richard

Tom

Honda 34 East StFactory

reside

reside

reside

reside

rent

rent

Truck

Jennifer

Ben

Bentley

123 Main St

Phone call

Phone call

Gasoline Bill

Fertilizer

Fertilizer

House

buy

buy

Ted

Truck

Person Person

Figure 17.2. Inexact match to a pattern graph in an activity graph.

possible input graph. The match is inexact because there is a missing edge between
Bill and Acme Inc.

As defined formally, subgraph isomorphism is an ‘NP’-complete problem (no
known polynomial-time solution exists) first identified in 1978. An adjacency matrix
is one representation for an abstract graph. For a graph G = (N, E) with nodes in
set N and edges in set E, the adjacency matrix is a matrix where each element
G(i, j) equals 1 if there is an edge from node ni to node nj , and 0 otherwise.
Inputs to the subgraph isomorphism problem are a pattern graph with adjacency
matrix Gp, and an input graph with adjacency matrix Gi . The solutions to the
problem (the matches) are expressed in the form of a permutation matrix, M , such
that Gp = MGiM

T . Because M is a permutation matrix, elements of M must be
in the set {0, 1} and M may have at most one nonzero element in each row and
column. See Chapter 2 for an in-depth discussion of graph matching.

The TMODS turns its ability to solve the subgraph isomorphism problem into
a powerful tool for intelligence analysts. Figure 17.3 shows a typical usage scenario

454 SOCIAL NETWORK ANALYSIS

Figure 17.3. Typical TMODS usage pattern.

for TMODS. First, the analyst defines a pattern graph to represent activities they
consider threatening based on past results or an idea they have about a potential
threat. The analyst also specifies a set of data sources from which TMODS imports
and fuses information on observed activity to form the input graph. The analyst then
selects, configures, and executes the search algorithms. TMODS highlights matches
to the threat pattern against surrounding activity in the input graph. Finally, the
analyst views the set of matches and decides (possibly based on further investigation)
which need to be acted on.

In the asymmetric threat detection domain there is a core set of graph patterns
that are of general interest to the counterterrorist (CT) analyst because they represent
known methods of illicit operations. In many such transactions, there are a multitude
of middlemen or “front organizations or persons” used to shield and protect the

17.4 TERRORIST MODUS OPERANDI DETECTION SYSTEM 455

leaders involved. These graph patterns may be implemented as: (1) the movement of
money or physical objects between several organizations and persons over a period
of time, (2) the shipment of physical assets between multiple “front” countries to
deflect suspicion of those assets, or (3) the churning of identifies for a specific
individual. The key point behind the development of these patterns is that there are
really only a handful of methods by which an organization or individual can operate
covertly. These graph patterns are genuinely different than that of normal business
activity. This is true not only for terrorist detection but for narcotics detection as well
as transnational criminal activity. While TMODS will never detect all these patterns
nor will the analyst be able to define all possible threat patterns in advance, the
ability to detect unexpected variations of known threat patterns, within a reasonable
period of time, is a significant achievement. Analysts have the ability to draw graph
patterns that are stored within TMODS and as graph patterns are matched, alerts
are sent to the analyst.

17.4.1 TMODS Extensions to Standard Graph Matching

The TMODS capabilities have been extended beyond approximations to the standard
subgraph isomorphism problem to provide additional capabilities to the analyst.

17.4.1.1 Inexact Matching. Perhaps the most important extension to the basic
subgraph isomorphism problem that TMODS supports is inexact matching. When
analysts define a pattern they are looking for, TMODS will find and highlight activity
that exactly matches that pattern. It will also, however, find and highlight activity
that comes close to the pattern, but is not an exact match. The analyst can define a
cutoff score that defines the quality of matches that he or she wishes to be informed
about.

Inexact matching provides huge practical benefits in the world of intelligence
analysis. First, analysts never have a perfect view of all activity. Inexact match-
ing lets TMODS detect threats even when some activity is hidden. While not all
the information about preparations for an attack may be present, often enough tell-
tale signs are visible that an incomplete picture can still be constructed. Second,
inexact matching lets the analyst find variations on earlier attack strategies—it
prevents them from always fighting yesterday’s war. Even if terrorist groups are
varying their strategies (either intentionally or because of practical considerations),
their overall plan will have to be at least somewhat similar to previous plans
because the goals they are trying to achieve will be similar. Those similarities,
combined with inexact matching, give TMODS enough of a match to alert ana-
lysts to variations of previous attacks. Finally, inexact matching insulates TMODS
from analyst error, where some aspects of the pattern may simply be defined incor-
rectly. Inexact matching is an important capability for counterterrorism and related
homeland security activities. Inexact matching finds sections of the graph that are
“almost like” the target graph the analyst is searching for. Target graphs (or threat
patterns) are representations of suspicious or illicit activity, potential terrorists,

456 SOCIAL NETWORK ANALYSIS

or criminal organizations. The input graph represents the real-world data where
TMODS searches for patterns.

Graph matching can be compared to regular expression matching; where regular
expressions search for patterns in text files, graph matching searches for patterns
in abstract graphs. Inexact graph matching provides analogous capability to “wild-
cards” in regular expression matching and is vital for coping with real-world data.

We define a weighted graph edit distance [4] between a pattern and its returned
match, which formally defines the similarity measure. Figure 17.4 shows an abstract
representation of the progression from an exact match to inexact matches. Inexact
matches may have missing edges or nodes, missing or incorrect attribute values,
missing or incorrect edge labels, or any combination of these. Partial graph matches
refer to a subset of the pattern graph identified within the input graph. Based on
the weighted edit distance criteria, a 95% match in this case represents an inexact
match on an edge attribute (e.g., in the target pattern we are looking for an “arrest”
edge attribute and in the pattern returned by TMODS we find “killer” as the edge
attribute).

However, the ranking is still high because we are able to find a connection
between two entities. In the 90% match case, we can only indirectly (through an
intermediate node) link a “weapon” to an individual, and thus the ranking is lower
at 90%. TMODS has the capability to allow the analyst to assign ranking criteria
for inexact matches.

17.4.1.2 Multiple Choices and Abstractions. TMODS patterns support vari-
ations on how the pattern may be instantiated. For example, a communication
between two individuals might be achieved through email, a face-to-face meeting,
or a phone call. For an analyst’s particular purposes, the medium through which
the communication occurred may not matter. TMODS lets the analyst define multi-
ple alternative graphs for each pattern, called choices. Regardless of which choice
graph was matched, the match is represented by its abstraction, which defines the
salient aspects of the match (usually a subset of the full match information). In our
previous example, for instance, the salient information is likely the identities of the
two people involved. Regardless of how they communicated—be it email, meeting,

Exact MatchPattern Graph

Exact vs. Inexact Matching

Exact with Missing Edge
and an Incorrect
Node Attribute

Two Missing Edges
and an Incorrect
Node Attribute

Figure 17.4. TMODS exact and inexact matching capability.

17.4 TERRORIST MODUS OPERANDI DETECTION SYSTEM 457

or phone call—the analyst can define the pattern such that their matches would be
presented uniformly.

17.4.1.3 Hierarchical Patterns. TMODS allows analysts to define patterns that
are built from other patterns. Rather than requiring analysts to describe their entire
pattern in one graph, TMODS lets the analyst modularize their patterns.

Figure 17.5 shows an example from the counterterrorism domain, where the
pattern actually represents a composition of multiple graph-based patterns. When
combined with TMODS’ capabilities for multiple choices and abstractions, the abil-
ity to match hierarchical patterns is extremely powerful. Take, for example, the
problem of representing a “murder for hire” in a pattern. All such contract killings
will have a customer, a killer, and a victim, but aside from that, there may be a
wide variety of possible instantiations. The customer may plan the killing directly
with the killer or the planning may be done through a middleman. Planning might
entail a single communication or a number of communications, and each communi-
cation could be made through any number of media. The combination of multiple
choices, abstractions, and the ability to define hierarchical patterns lets TMODS
represent extremely complicated and varied activity patterns while controlling algo-
rithmic complexity and the complexity presented to the user. In one specific model
of contract killings, TMODS was able to represent 13 million different variations
on how a contract kill could be executed. The top-level pattern had 11 subpatterns
with a total of 31 choices, and each instantiation had an average of 75 total nodes.
The use of hierarchical patterns changes an exponential complexity into an additive

Figure 17.5. TMODS exact and inexact matching capability.

458 SOCIAL NETWORK ANALYSIS

complexity,3 to great advantage. A discussion of specific algorithms used can be
found in Section 17.4.2.

The TMODS is able to process approximately 900,000 graph elements per hour
using an average desktop computer (i.e., 3-GHz Pentium 4). A previous benchmark
exercise, in a specific problem domain, showed that TMODS can achieve 55% recall
and 71.6% precision in search results at the stated processing rate; these results are
without fusion algorithms. With fusion algorithms added, TMODS achieves 83.8%
recall and 65% precision.

17.4.1.4 Constraints. TMODS lets the analyst define constraints between
attribute values on nodes and edges. Constraints restrict the relationships between
attributes of actors, events, or relationships. Using constraints, the analyst can restrict
timing or relative ordering and represent stateful threat patterns. In a counterterror-
ism context, constraints can be used to specify restrictions like:

• The event must have occurred within 50 miles of Houston.
• The intelligence must have come from a reliable source in country X.
• The person observed must belong to the same organization as person Y.
• The money must come from an organization with at least $10M/year in

income.
• The quantity must be larger than 10,000.

Support for constraints in TMODS patterns offer a number of advantages, all of
which stem from the fact that constraints make the TMODS pattern representation
richer. Constraints refine the pattern to yield fewer false positives. The additional
restrictions on what is considered a match also help to reduce the search space,
which reduces memory requirements and required search time.

Within TMODS, constraints are implemented in a proprietary language and are
attached to individual patterns. Under the default behavior of TMODS, constraints
are interpreted when patterns are used in a search. In the case of large, complex
searches that may be repeated, it is more efficient to compile constraints. The built-in
compiler generates Java code from constraints and compiles them automatically.

17.4.1.5 Use of Ontologies. Ontologies are an explicit formal specification of
how to represent the objects, concepts, and other entities that are assumed to exist
in a particular area of interest, as well as the relationships that exist among them.
Ontologies can be thought of as a set of type-subtype relationships (with multiple
inheritance) that define a classification hierarchy for a particular set of concepts, as
well as a set of invariants about what characteristics each specific type has (e.g.,
“Mammals are a type of animal.” “Every mammal breathes oxygen.” “Humans are
a type of mammal.”).

3Hierarchical patterns are composed of subpatterns, and subpatterns are composed of variants. While
the complexity is exponential in the number of nodes in the largest variant, it is only additive in the
total number of variants.

17.4 TERRORIST MODUS OPERANDI DETECTION SYSTEM 459

The use of ontologies in TMODS allows for patterns that refer to general object
or event types, instead of specific instances of those types. As a result, patterns can
be written very generally, so that they cover many different types of threat or
many variants of a threat. This lets the analyst define fewer patterns and makes
those patterns more flexible. For performance purposes, 21st Century Technologies
primarily uses domain-specific ontologies. Occasionally, a TMODS user can use an
ontology previously defined for the domain of interest, but it is usually necessary
to work with a domain expert to create an ontology that supports the application.

Figure 17.6 is an example from the counterterrorism domain. Instead of writing
a pattern that only matches a specific combination of activities leading to compro-
mised security (and having to write new patterns for each new combination), the
analyst writes the single “generic compromised security” pattern. The criminal act
and criminal record events in the pattern are tied to specific classes in a terrorism
ontology. Any specialization of those classes will trigger a pattern match.

17.4.2 Algorithms

The field of graph isomorphism detection dates back to the early 1970s. The most
relevant proposal for a general solution was that of Berztiss [1] in 1973; his algo-
rithm performed favorably against Ullman’s algorithm, but he only handled the case
of full graph isomorphism. Ullman [17] published the seminal work in subgraph iso-
morphism in 1976. Ullman’s algorithm dominated the field for two decades, and
in fact most approaches since that time borrow heavily from Ullman, first in that
they perform an exhaustive search that matches nodes one by one, and second in
that they rely heavily on edge-based pruning to winnow out the search space. In
a practical sense, because of the complexity of the problem, it is not currently
expected that exhaustive algorithms such as those listed above will be able to solve
the problem in reasonable time for particularly large graphs [8, 9, 14]. As a result,
nonexhaustive, local search techniques are used in practical implementations in order
to achieve results quickly. TMODS employs two major algorithms. The Merging
Matches algorithm is an exhaustive search used for small input patterns. For larger
patterns, TMODS uses a fast genetic search.

17.4.2.1 Merging Matches. Merging Matches is an algorithm developed by
21st Century Technologies to search for matches with small to medium size input
patterns. It is a complete search; that is, the matches it finds are guaranteed to be
the best matches possible. Any other potential matches must be worse.

Merging Matches operates by building up a list of potential matches. The initial
entries to the list match one node from the input pattern to one node in the pattern
graph. The algorithm then iteratively merges matches with each other until the
best matches are found. At each step, any two entries that differ by exactly one
node are combined if all the nodes they match are connected by an edge in the
pattern graph. The resulting entry is guaranteed to be internally connected and
to contain exactly one more node than either of its parents. These entries are then
ranked according to their probability of matching the input graph. Entries that cannot

460 SOCIAL NETWORK ANALYSIS

Figure 17.6. Subset of a terrorist ontology.

17.4 TERRORIST MODUS OPERANDI DETECTION SYSTEM 461

constitute a reasonable match under the best circumstances are pruned, and the
process of merging continues until the entire pattern is matched or no new candidate
matches can be generated. At this point, if any of the entries are reasonably similar
to the input pattern, the algorithm selects these entries and provides them to the
analyst to examine.

As mentioned, Merging Matches is complete and executes fairly quickly for
medium size input graphs. For large input graphs, however, the list of entries grows
too rapidly for this approach to be practical, and other, less exhaustive methods are
needed.

17.4.2.2 Genetic Search. As mentioned, the Merging Matches algorithm is
insufficient to handle searches involving large input patterns. Yet analysts may need
to search for patterns that contain more than a dozen nodes in activity graphs with
thousands of nodes and tens of thousands of edges. In such cases, TMODS lever-
ages a Genetic Search algorithm to efficiently search for input patterns within the
activity graph.

Genetic search algorithms are modeled on the Darwinian theory of evolution.
This approach involves the creation of a population of representative members of
the state space and the successive development of this population through processes
modeling reproduction and natural selection. In TMODS, the initial population is
generated by randomly selecting nodes in the pattern graph to create potential
matches. These matches are then ranked by a fitness function to determine their
closeness to the input pattern, and the members of the population with the highest
scores reproduce with a randomly selected member of the general population. A new
member is next added to the population by combining aspects of each parent. This
new match may undergo stochastic variation, or mutation, in which a node in the
match is altered so that it does not reflect the content of either of the parents. Finally,
the algorithm ranks the new population, consisting of all the previous members plus
newly generated children. The population size is maintained constant at this point
by culling the lowest ranking members. The process of reproduction is then repeated
through successive generations, until the average fitness of the population ceases
to increase in a statistically significant manner. At this point, the best specimens
are selected as the result of the search. While genetic algorithms are not complete
and may not find every possible solution within the search space, they have proven
effective at efficiently locating solutions to large problems within enormous search
spaces.

The fitness measure used by TMODS calculates a probability of a match based
on the weighted edit distance between a potential match and the search pattern.
To compute the weighted edit distance, a cost is assigned to each node, edge, and
attribute in the search pattern. The probability that a generated pattern matches the
search input is a ratio between the total cost of all nodes, edges, and attributes and
the cost of those elements that the potential match lacks. Some attributes in the
search pattern may be designated as required, in which case the probability of a
match is zero unless these necessary attributes are present.

462 SOCIAL NETWORK ANALYSIS

17.4.2.3 Distributed Genetic Search. TMODS distributes its genetic search
over several processes to increase the speed and completeness of the search. TMODS
assigns a limited search domain to each process, potentially running on different
computer systems. These limited domains require a particular node or nodes in
the pattern graph to be included at a fixed position in any potential match. Each
process then performs its own genetic search on the limited domain, and if any of its
candidate matches are reasonably similar to the input pattern, the process returns its
findings. Once all subordinate processes have reported their results, TMODS passes
on all acceptable matches to the analyst.

This distributed approach performs several searches at once on multiple pro-
cessors, delivering final results much faster. The efficiency of TMODS’ search is
further enhanced by using a reduced candidate set (the set of possible matches to
a pattern), which allows the exclusion of many possible matches without an actual
search, so that considerably less computation will have to be performed.

17.4.3 Other TMODS Capabilities

While the core technologies of TMODS are stable and mature, new facilities con-
tinue to be added to complement TMODS’ ability to detect threatening patterns.
Two major recent additions are statistical classification and analysis based on social
network analysis (SNA) and pattern layering.

17.4.3.1 Social Network Analysis. Social network analysis (SNA) is a tech-
nique used by intelligence analysts to detect abnormal patterns of social interaction
[3, 10, 12]. SNA arose out of the study of social structure within the fields of social
psychology and social anthropology in the 1930s [15]. It can be used to investi-
gate kinship patterns, community structure, or the organization of other formal and
informal networks such as corporations, filial groups, or computer networks.

Social network analysts typically represent the social network as a graph. In
its simplest form, a social network graph (sometimes called an “activity graph”)
contains nodes representing actors (generally people or organizations) and edges
representing relationships or communications between the actors. Analysts then rea-
son about the individual actors and the network as a whole through graph-theoretic
approaches, including SNA metrics that take different values at different nodes in
the graph. This approach is similar to and compatible with TMODS and other graph
matching technology.

Central problems in social network analysis include determining the functional
roles of individuals and organizations in a social network (e.g., gatekeepers, leaders,
followers) and diagnosing network-wide conditions [19]. For example, studies of
interlocking directorships among leading corporate enterprises in the 1960s have
shown that banks were the most central enterprises in the network.

17.4.3.2 TMODS SNA Capabilities. TMODS has been developed to identify
characteristics that differentiate normal social networks from those used for illicit
activity. Many of these characteristics are quantifiable with multivariate SNA met-
rics. For example, in legitimate organizations, there are usually many redundant

17.4 TERRORIST MODUS OPERANDI DETECTION SYSTEM 463

communication paths between individuals. If an individual wants to get informa-
tion to A, he may contact her directly, or go through B or C. Covert organizations
generally do not have many paths of communications flow between individuals.
Redundant paths lead to increased risk of exposure or capture. Redundancy is one
of many properties that TMODS can recognize, represent, and exploit.

The TMODS can compute the functional roles of individuals in a social network
and diagnose network-wide conditions or states. Different individuals in a social
network fulfill different roles. Examples of intuitive roles include leaders, followers,
regulators, “popular people,” and early adopters. Other roles that are less intuitive
but are still common in both normal and covert/abnormal social networks include
bridges, hubs, gatekeepers, and pulse takers.

Much of our work in SNA metrics focuses on distilling complex aspects of a
communications graph into simple numerical measures, which can then be used with
traditional statistical pattern classification techniques to categorize activity as threat-
ening or nonthreatening. TMODS can then measure communications efficiency and
redundancy, identify which participants are “central” to the communication struc-
ture, and single-out those groups of participants that form tightly knit cliques. SNA
metrics are a unique approach to quantifying and analyzing human interpersonal (or
online) communication that provide TMODS with novel detection abilities.

17.4.3.3 Event Detection via Social Network Analysis. The unifying goal of
the various applications of SNA described above is to quickly differentiate between
threatening and nonthreatening activity. These approaches use abnormal group struc-
ture, behavior, and communication patterns as the indicators of threatening activity.
In some cases, static SNA is sufficient to characterize a group’s structure as nor-
mal or abnormal. In other cases, dynamic SNA is required to differentiate between
normal and abnormal group structure and behavior, based on a group’s evolution
over time. These approaches require user-specified a priori models (which are often
but not always available) of both normal and abnormal behavior; equivalently, they
require labeled training data. This places them in the general category of supervised
learning algorithms. When we do not have a sufficient amount of labeled training
data, we must use unsupervised learning techniques, which perform the task of event
detection (also called anomaly detection).

The goal of SNA event detection is to flag any significant changes in a group’s
communication patterns, without requiring users to specify a priori models for nor-
mal or abnormal behavior. Where supervised learning techniques perform the task
of “Tell me which groups behave in this particular way,” SNA event detection per-
forms the task of “Tell me if any group begins to significantly change its behavior.”
As described in the sections above and in many counterterrorism studies, the lead-
up to major terrorist events is almost always preceded by significant changes in the
threat group’s communication behavior. SNA event detection finds these internal
indicators and gives the intelligence analyst the chance to alert decision makers in
time for preemptive action.

21st Century Technologies has developed an initial prototype of our SNA event
detection capability, as well as many of the building blocks required to move that

464 SOCIAL NETWORK ANALYSIS

capability to the next level. The application of SNA event detection to predicting
terrorist activity is very similar to the application of SNA event detection to detecting
anomalous digital network behavior.

The SNA event detection begins by tracking the SNA metric values of various
groups over time, just as it is done for dynamic SNA. The left half of Figure 17.7
shows two visualizations of SNA metric values gathered over time. The figure shows
a time-series view and a scatterplot view.

As information is gathered over time, TMODS automatically builds its own
models of normal behavior for the groups being observed.

The right half of Figure 17.7 shows observed SNA metric values. This is
TMODS’ model of behavior. The figure also shows five points (circled) that do
not fit with the other observed behavior. These are the anomalies we are looking
for—previously unmanifested communication patterns that may indicate internal
threats. There are a number of approaches for deciding if an alert should be raised,
given observations and a learned behavior model.

Supervised learning algorithms are used when we have labeled training data, and
unsupervised learning algorithms are used when we have unlabeled training data. A
third approach is called “learning with a critic.” As TMODS raises detections via
the unsupervised event detection algorithms, the analyst can make a case-by-case
decision on whether the detection is a true or false positive. This feedback can be
incorporated in the event detection algorithms to tune or train them to improve their
results. Ultimately, this set of case-by-case decisions and corresponding evidence can
constitute a labeled training dataset, which can be used by our supervised learning
methods.

Figure 17.7. SNA event detection: (left) SNA metric history and (right) anomaly detection.

17.5 COMPUTATIONAL EXPERIMENTS 465

17.5 COMPUTATIONAL EXPERIMENTS

In this section, we will present a few illustrative examples of the use of Best Friends
Group Detection.

The first example is determining conference membership of NCAA basketball
teams based upon the schedule of games. Teams play more often within their own
conferences than they do against teams outside the conference. This sort of problem
is extremely well suited to an SNA-based algorithm because the connections between
teams are explicitly related to the conference structure. In Figure 17.8, we can see
that the subgraph made up of a conference’s members is quite dense, but there are
few links between conferences.

In Figure 17.9, we can see that the detected group of papers all are related to
gravitation. However, the algorithm does not look at titles of papers or keywords.
It strictly concentrates on the edge structure of the data. The edges involved are
citations. When one paper cites another, an edge is present in the graph. Intuitively,
it makes sense that many of the citations of a particular paper would point to papers
with a closely related topic. In effect, citations are acting as a proxy for topic.

As with many structure-based methods, Best Friends Group Detection does
not perform as well when observability is limited. In other words, if important
information connecting entities is not included in the graph, then the algorithm
cannot take advantage of that information. Data can be omitted due to data entry

Figure 17.8. NCAA basketball conferences.

466 SOCIAL NETWORK ANALYSIS

Figure 17.9. Group of gravity papers.

errors, collection errors, or sampling errors. A good example of this sort of behavior
is shown in Figure 17.10. As we view the entire graph from the 30,000-ft level,
we can see that the data is very clumpy. If fact, there are many graph components
that are not connected to each other. We could, naively, assume that each of these
isolated components are groups. Perhaps some of them are, but we could also have
important information connecting the components missing from the graph. We could
run Best Friends on each of the components and see if they contain any groups as
subgraphs of the components. However, if there are important connections between
components missing from the dataset, the groups found may be spurious, and groups
spanning multiple components will not be detected at all.

17.6 CONCLUSION

Social network analysis can be useful in the exploration of datasets represented as
graphs. Even though the origins of SNA are based in the study of the interactions
and roles of individuals, the techniques are equally applicable in a wide variety of
other domains.

Work is actively being done to define new SNA-based metrics and signatures to
be used in an ever-increasing range of applications. New interpretations of metrics

17.6 CONCLUSION 467

Figure 17.10. Zdata overview.

for increased understanding of the new domains are constantly being fleshed out.
New representations of the underlying graphs are enabling the development of new
algorithms, effectively addressing the requirements of larger and more complex
datasets. This evolution will allow SNA techniques to remain relevant for a long
time to come.

17.6.1 Acknowledgment

This research was managed by the Air Force Research Laboratory in Rome, New
York. The views and conclusions contained in this document are those of the authors
and should not be interpreted as necessarily representing the official policies, either
expressed or implied, of Rome Laboratory, the United States Air Force, or the
United States government.

468 SOCIAL NETWORK ANALYSIS

REFERENCES

1. A. T. Berztiss. A backtrack procedure for isomorphism of directed graphs. Journal of
ACM, 20(3):365–377, 1973.

2. U. Brandes. A faster algorithm for betweenness centrality. Journal of Mathematical
Sociology, 25(2):163–177, 2001.

3. Michael Jünger and Petra Mutzel (Eds.): Graph Drawing Software, pp. 321–340.
c© Springer-Verlag, 2004.

4. H. Bunke and M. Neuhaus. Graph matching—exact and error-tolerant methods and the
automatic learning of edit costs. In L. B. Holder and D. J. Cook, eds. Mining Graph
Data, Chapter 2, this volume.

5. T. Coffman, S. Greenblatt, and S. Marcus. Graph-based technologies for intelligence
analysis. Communications of the ACM, 47(3):45–47, March 2004.

6. T. Coffman and S. Marcus. Pattern classification in social network analysis: A case
study. In Proceedings of the 2004 IEEE Aerospace Conference, March 2004.

7. Agriculture Commission of the European Communities and Fisheries. Final report:
Images project.

8. L. P. Cordella, P. Foggia, C. Sansone, and M. Vento. An improved algorithm for match-
ing large graphs. In Proceedings of the 3rd IAPR-TC-15 International Workshop on
Graph-based Representations, pp. 149–159, 2001.

9. D. G. Corneil and C. C. Gotlieb. An efficient algorithm for graph isomorphism. Journal
of ACM, 17(1):51–64, 1970.

10. R. Diestel. Graph Theory. Springer, New York, 2000.
11. S. Greenblatt, T. Coffman, and S. Marcus. Emerging information technologies and

enabling policies for counter terrorism. In Behavioral Network Analysis for Terrorist
Detection. Wiley-IEEE Press, Hoboken, NJ, 2005.

12. A. S. LaPaugh and R. R. Rivest. The subgraph homeomorphism problem. Annual ACM
Symposium on Theory of Computing, Proceedings of the tenth annual symposium on
Theory of Computing, San Diego, CA pgs. 40–50, 1978.

13. S. Marcus and T. Coffman. Terrorist modus operandi discovery system 1.0: Functionality,
examples, and value. 21st Century Technologies Internal Publication, January, Austin,
TX, 2002.

14. B. T. Messmer. Efficient graph matching algorithms for preprocessed model graphs.
Ph.D. thesis, Institut fur Informatik und Angewandte Matheatik, Universitat Bern,
Switzerland, 1995.

15. M. Moy. Using tmods to run the best friends group detection algorithm. 21st Century
Technologies Internal Publication, May 2005.

16. J. Scott. Social Network Analysis: A Handbook, 2nd ed. SAGE, London, 2000.
17. J. R. Ullman. An algorithm for subgraph isomorphism. Journal of the ACM, 23(1):31–42,

1976.
18. T. W. Valente and R. K. Foreman. Integration and radiality: Measuring the extent of an

individual’s connectedness and reachability in a network. Social Networks, 20:89–105,
1998.

19. S. Wasserman and K. Faust. Social Network Analysis: Methods and Applications.
Cambridge University Press, New York, NY, 1994.

INDEX

Abnormalities, R-MAT generator detection, 65
Application domains, entity resolution, 317–318
Approximate substructure, variant substructure

patterns, frequent substructures, 107–108
Apriori-based graph mining (AGM) approach and

algorithm, 184
chemical graphs, 364–365
frequent substructures discovery, 100,

101–103, 102
frequent topological patterns, 149
graph grammar learning, 184
rooted tree mining, 385

Artificial data experiments, Subdue
system/inductive logic programming (ILP)
compared, 174–176

Attribute similarity, graph-based entity
resolution, 326–327

Automorphism:
defined, 118
rooted tree mining, subtree generation,

385–386
Autonomous systems, Internet analysis, 50–55
Average cycle length (ACL), defined, 446
Average path length (APL), defined, 446

Bayesian kernel methods, vertex classification,
268–271. See also Kernel-based link
analysis

Beamwise graph-based induction (B-GBI),
chunkingless graph-based induction decision
tree (CL-GBI), 206–207

Bias control, Laplacian kernels, regularized,
290–296

Biochemistry, graph grammar learning, 194–195
Bioinformatics applications (rooted tree mining),

405–408

Mining Graph Data, Edited by Diane J. Cook and Lawrence B. Holder
Copyright c© 2007 John Wiley & Sons, Inc.

phylogenetic trees, 407–408
RNA structure, 405–407

Bipartite cores, community effects, R-MAT
generator, 69, 70

Bipartite graphs, R-MAT generator experiments,
86

Blocking, clustering, graph-based entity
resolution, 330

Bootstrapping, clustering, graph-based entity
resolution, 330–331

Border routers, autonomous systems, Internet
analysis, 53

Brandes betweenness centrality (BR), defined,
445

Candidate generation, FSG algorithm, frequent
topological patterns, 128–129

Canonical extension (rooted tree mining):
SLEUTH algorithm, 401
subtree generation, 388–389

Canonical labeling:
defined, 118
frequent topological patterns, 119–121

Cascade model, chemical graphs, 370–375
CASE system, chemical graphs, 356–358
Characteristic path length (CPL), defined, 447
Chemical graphs, 347–379

CASE system, 356–358
combinations, 366–375

cascade model, 370–375
inductive logic programming (ILP),

369–370
MultiCASE, 367–369

commentary, 375–377
linear fragments, 362–366
mining issues, 355–356

469

470 INDEX

Chemical graphs, (continued)
molecular representation, 347–355

connection table, 350–351
SMILES and Markush structures, 354–355
stereochemistry, 352–353
structure and structure diagrams, 347–350
structure and substructure search, 353

quantitative estimation, 358–362
Child test, rooted tree mining, frequency

computation, 395–396
Chomsky hierarchy, graph grammar learning, 192
Chunkingless graph-based induction (CL-GBI).

See also Decision tree chunkingless
graph-based induction (DT-CLGBI)

algorithm, 209–210
approach, 208–209
experimental evaluation, 211–214
feature construction by, 215–216
implementation issues, 210–211
unsolved problem, 211

Chunking problem, decision tree construction
(CL-GBI), 207–208

Circumference, defined, 451
Class of grammars, graph grammar learning,

192–193
Clique, defined, 411
Cliqueishness, defined, 448–449
Closed frequent substructure, variant substructure

patterns, frequent substructures, 107
Closeness centrality, defined, 446
CLUSMOL, chemical graphs, 362–363
Clustering:

defined, 3
graph-based entity resolution, 330–332

Clustering coefficient, community effects,
R-MAT generator, 69, 70

Coherent substructure, variant substructure
patterns, frequent substructures, 108

Collective entity resolution, graph-based, 320
Color code, rooted tree mining, subtree

generation, 386
Community effects:

dense subgraph extraction, 416
R-MAT generator, 69–70

Compaction, topology-shape-metrics graph
visualization, 46

Complex domains, graph grammar learning,
194–197

Complexity, Galois lattice, graph description,
237, 239–240

Compression, R-MAT generator detection, 66
Computational biology, graph visualization

applications, 38

Concept lattice, formal concept analysis (FCA),
231–235

Connected graph, defined, 118
Connection strength measurement, dense

subgraph extraction, connection subgraphs,
429–434

Connection subgraphs:
commentary, 438
dense subgraph extraction, 429–438

algorithms for, 434–435
connection strength measurement, 429–434
experiments, 437–438
optimization heuristics, 435–437

Connection table, molecular representation,
350–351

Constraints, graph matching, Terrorist Modus
Operandi Detection System (TMODS), 458

Contrast substructure, variant substructure
patterns, frequent substructures, 108

Core, defined, 236
Counterterrorism, graph grammar learning,

195–196. See also Terrorist Modus
Operandi Detection System (TMODS)

Cousin test (rooted tree mining):
distinct occurrences counting, 398–399
frequency computation, 394–395, 396–397

CProgol, Subdue system/inductive logic
programming (ILP) compared, 172

Crossing reduction, hierarchical graph
visualization methods, 43

CSLOGS dataset experiments, rooted tree
mining, 402

Cycle-based graph kernels:
empirical evaluation, 263–265
kernel methods, 257–262

Cycles removal, hierarchical graph visualization
methods, 42–43

Data mining:
defined, 2
field of, xiii, 2
graph representation, 1–2
graph visualization applications, 36–38
terminology in, 2–3

Decision tree chunkingless graph-based induction
(DT-CLGBI), 203–226. See also
Chunkingless graph-based induction
(CL-GBI)

chunkingless graph-based induction (CL-GBI),
208–214
algorithm, 209–210
approach, 208–209
experimental evaluation, 211–214

INDEX 471

implementation issues, 210–211
unsolved problem, 211

chunking problem, 207–208
classification, 217–218
experimental evaluation, 218–224
feature construction by CI-GBI, 215–216
graph-based induction (GBI), 205–207

beamwise graph-based induction (B-GBI),
206–207

principles, 205–206
graph-structured data, 214–215
overview, 203–205
working example, 216–217

Degree, defined, 450
Degree distribution:

defined, 68
R-MAT generator, 90–91

Dense subgraph:
defined, 411
occurrence of, 411–412

Dense subgraph extraction, 411–441
connection subgraphs, 429–438

algorithms for, 434–435
connection strength measurement, 429–434
experiments, 437–438
optimization heuristics, 435–437

densest subgraph location, 416–418
graph shingling, 421–428

algorithm details, 425
example, 425–427
high-level description, 424–425
implementation, 427
shingling, 422–424
Web host graph, 427–428

massive graph algorithms, 412
overview, 411–414
preliminaries, 412–413
related work, 414–416

communities in social networks, 416
graph mining, 414
web-based community finding, 414–415
web graph searching, 415–416

trawling, 418–421
Dense substructure, variant substructure patterns,

frequent substructures, 109
Density, defined, 450
Descendant test (rooted tree mining):

distinct occurrences counting, 398
frequency computation, 393–394

Description lattice, formal concept analysis
(FCA), 231–235

DFS code, frequent substructures discovery,
pattern growth approach, 106

Diameter, defined, 450

Diffusion kernels, relatedness measure,
kernel-based link analysis, 296–297

Directed graphs, R-MAT generator experiments,
85

Discovery of frequent substructures. See
Frequent substructures

Discriminative frequent substructure, variant
substructure patterns, 108–109

Distinct occurrences counting, rooted tree
mining, 397–399

Distributed genetic search algorithm, Terrorist
Modus Operandi Detection System
(TMODS), 462

DNA:
graph grammar learning, 188
Mutagenesis dataset, 6–8

Duplicate graph, frequent substructures
discovery, pattern growth approach, 104

Edge betweenness (stress), R-MAT generator, 71
Edit path, defined, 22–23
Effective diameter, defined, 69
Efficiency, entity resolution, 315
Efficient subgraph extension, vertical SiGraM

algorithm, frequent topological patterns,
138–139

Electrical networks, connection strength
measurement, dense subgraph extraction,
connection subgraphs, 431–432

Embedded subtrees, rooted tree mining,
frequency computation, 392–395

Embedding identification, horizontal SiGraM
algorithm, frequent topological patterns,
133–134

Entity resolution, 311–344
commentary, 341–342
graph-based, 318–341

author resolution, 321–322
clustering, 330–332
experimental evaluation, 333–341
generally, 318–319
issues in, 319–321
problem formulation, 322–325
similarity measures, 325–329

overview, 311–314
related work, 314–318

application domains, 317–318
efficiency, 315
evaluation matrices, 318
graph-based approaches, 315–316
probabilistic inference, 316–317
probabilistic modeling, 315
string similarity, 314

472 INDEX

Entity resolution, (continued)
theoretical bounds, 314
tools, 317

Equivalence class-based extension (rooted tree
mining):

SLEUTH algorithm, 401
subtree generation, 389–391

Error-tolerant graph matching, graph matching
methods, 22–24

Evaluation matrices, entity resolution, 318
Event detection, Terrorist Modus Operandi

Detection System (TMODS), 463–464
Exact graph matching, graph matching methods,

19–21
Exponential family distributions, Bayesian kernel

methods, vertex classification, 268–269
Extension lattice, formal concept analysis (FCA),

231–235
External-to-internal (E-to-I) ratio, defined,

449–450
Extrapolation, R-MAT generator detection, 66

FFSM, frequent topological patterns, 150
First-order logic (FOL), inductive logic

programming (ILP) systems, 184
Flat domains, graph grammar learning, 193–194
Forced-directed methods, graph visualization

techniques, 39–41
Formal concept analysis (FCA), 227–251

commentary, 249–250
concepts and notation, 228
defined, 229
extension lattice and description lattice give

concept lattice, 231–235
Galois lattice, 230–231
graph description and Galois lattice, 235–240

complexity, 237, 239–240
homomorphism and product operator, 237
labeled graphs, 235–236
locally injective digraph, 238

graph mining, 240–249
experimentation, 247–249
generally, 240–241
irreducible elements, 243–245
irreducible elements and pattern mining,

246–247
language equivalence, 242–243
lattice properties, 241–242

overview, 227
Frequency computation:

horizontal SiGraM algorithm, frequent
topological patterns, 135

rooted tree mining, 392–397
embedded subtrees, 392–395

induced subtrees, 395–397
Frequency counting:

FSG algorithm, frequent topological patterns,
129–131

horizontal SiGraM algorithm, frequent
topological patterns, 133

vertical SiGraM algorithm, frequent
topological patterns, 139

Frequent graph, defined, 100–101
Frequent subgraph (FSG), graph grammar

learning, 184. See also FSG algorithm
Frequent substructures, 99–115

apriori-based approach, 101–103
commentary, 112–113
concepts, 100–101
experiments, 109–112
overview, 99–100
pattern growth approach, 103–107
Subdue system and, 165–170

real dataset experiments, 168–170
synthetic dataset experiments, 167–168

variant substructure patterns, 107–109
approximate substructure, 107–108
closed frequent substructure, 107
coherent substructure, 108
contrast substructure, 108
dense substructure, 109
discriminative frequent substructure,

108–109
Frequent topological patterns, 117–158

canonical labeling, 119–121
commentary, 151–152
datasets, 152–154
definitions, 118
FSG algorithm, 127–131

candidate generation, 128–129
frequency counting, 129–131
generally, 127–128

Grew algorithm, 141–148
graph representation, 143–144
meta-strategies, 146–148
multiedge collapsing, 146
properties of, 141–142
single-edge collapsing, 144–145

maximum independent set, 121
notations, 119
overview, 117–118
problem definitions, 122–127

algorithms for, 126–127
possibilities in, 122–126

related work, 149–151
SiGraM algorithms, 131–141

generally, 131–132
horizontal, 132–135

INDEX 473

interactions between, 139–141
vertical, 135–139

FSG algorithm. See also Frequent subgraph
(FSG)

frequent topological patterns, 127–131, 149,
150
candidate generation, 128–129
frequency counting, 129–131
generally, 127–128

rooted tree mining, 385

Galois lattice:
extension lattice and description lattice give

concept lattice, 231–235
formal concept analysis (FCA), 230–231
graph description, 235–240

complexity, 237, 239–240
homomorphism and product operator, 237
labeled graphs, 235–236
locally injective digraph, 238

properties of, graph mining, 241–242
GASTON:

frequent topological patterns, 149
rooted tree mining, 385

Gaussian processes, multiclass transduction,
kernel methods, vertex classification,
271–272

Generalized linear preference (PLP), R-MAT
generator experiments, 84

Genetic search algorithm, Terrorist Modus
Operandi Detection System (TMODS),
461–462

Geographical models, graph generators, 73
Girth, defined, 450
Global efficiency (GE), defined, 447
Global resolution, local resolution and,

graph-based entity resolution, 320
Grammar learning. See Graph grammar learning
Graph, defined, 2, 18–19
Graph-based algorithms, Subdue system

compared, 165
Graph-based data mining. See Mining graph data
Graph-based entity resolution, 318–341. See also

entity resolution
Graph-based induction (GBI):

chemical graphs, 363–364
decision tree construction (CL-GBI), 205–207

beamwise (B-GBI), 206–207
principles, 205–206

frequent topological patterns, 149
Graph classification (kernel methods), 254–265

commentary, 279
cycle-based graph kernels, 257–262
empirical evaluation, 263–265

generally, 254–255
walk-based graph kernels, 255–257

Graph databases, 3–10
Internet Movie Database (IMDb), 3–6
Mutagenesis dataset, 6–8
World Wide Web, 8–10

Graph drawing. See Graph visualization
Graph edit distance, defined, 23–24
Graph generators:

generally, 71–72
geographical models, 73
optimization-based models, 78
preferential attachment models, 72–73
random graph models, 72
taxonomy of, summary table, 74–77

Graph grammar learning, 183–201
class of grammars, 192–193
empirical evaluation, 193–198

commentary, 197–199
complex domains, 194–197
flat domains, 193–194

graph grammars, 185–186
heuristics, 186–192

generally, 186–187
recursion, 188–189
relationships, 191–192
rules, 187–188
variables, 190–191

overview, 183–184
research summary, 184–185

Graph grammars, graph grammar learning,
185–186

Graph isomorphism, defined, 19–20
Graph matching, 17–34

commentary, 31–32
experimental evaluation, 28–31
learning edit costs, 24–28

learning probabilistic edit costs, 25–26
self-organizing edit costs, 27–28

methods, 18–24
error-tolerant graph matching, 22–24
exact graph matching, 19–21

overview, 17–18
Terrorist Modus Operandi Detection System

(TMODS), 455–459
constraints, 458
hierarchical patterns, 457–458
multiple choices and abstractions, 456–457
ontologies, 458–459

Terrorist Modus Operandi Detection System
(TMODS), inexact matching, 455–456

Graph mining:
chemical graphs, 355–356
dense subgraph extraction, 414

474 INDEX

Graph mining: (continued)
formal concept analysis (FCA), 240–249

experimentation, 247–249
generally, 240–241
irreducible elements, 243–245
irreducible elements and pattern mining,

246–247
language equivalence, 242–243
lattice properties, 241–242

Graph partitions, community effects, R-MAT
generator, 69, 70

Graph representation, data mining, 1–2
Graph shingling (dense subgraph extraction),

421–428
algorithm details, 425
example, 425–427
high-level description, 424–425
implementation, 427
shingling, 422–424
Web host graph, 427–428

Graph subisomorphism, defined, 20
Graph transactions, graph grammar learning, 184
Graph visualization, 35–63

commentary, 55–57
data mining applications, 36–38
defined, 3, 35
examples, 48–55

Internet analysis, 50–55
web searching, 48–50

overview, 35–36
techniques, 38–48

forced-directed methods, 39–41
generally, 38–39
hierarchical methods, 41–44
topology-shape-metrics method, 44–48

Greedy algorithm (GMIS):
chemical graphs, 363–364
frequent topological patterns, maximum

independent set, 121
Grew algorithm, 141–148

graph representation, 143–144
meta-strategies, 146–148
multiedge collapsing, 146
properties of, 141–142
single-edge collapsing, 144–145

Group detection, social network analysis (SNA),
452

GSpan:
frequent substructures discovery, pattern

growth approach, 104
frequent topological patterns, 149–150

Hierarchical methods:
graph grammar learning, 192–193

graph matching, Terrorist Modus Operandi
Detection System (TMODS), 457–458

graph visualization techniques, 41–44
HITS:

evaluation, 304
kernel-based link analysis, 285–289

Homeland security, graph visualization
applications, 37. See also Terrorist Modus
Operandi Detection System (TMODS)

Homogeneity, defined, 449
Homomorphism, product operator and, Galois

lattice, graph description, 237
Hop-plot, defined, 69
Horizontal coordinate assignment, hierarchical

graph visualization methods, 43–44
Horizontal SiGraM algorithm:

frequent topological patterns, 132–135
problem formulations, 139–141

Induced subgraph, defined, 118
Induced subtrees, rooted tree mining, frequency

computation, 395–397
Inductive logic programming (ILP):

chemical graphs, 369–370
decision tree construction (CL-GBI), 204
graph grammar learning, 184, 194, 199
Subdue system compared, 170–179

artificial data experiments, 174–176
CProgol, 172
generally, 170–172
Mutagenesis dataset experiments, 172–174,

176–179
Inexact matching, graph matching, Terrorist

Modus Operandi Detection System
(TMODS), 455–456

Information systems, graph visualization
applications, 37

Integration, defined, 451
Internet analysis, graph visualization example,

50–55. See also World Wide Web
Internet computing, graph visualization

applications, 36
Internet Movie Database (IMDb), described, 3–6
Irreducible elements:

graph mining, formal concept analysis (FCA),
243–245

pattern mining and, graph mining, formal
concept analysis (FCA), 246–247

Isomorphic graph, defined, 118

Kandisky drawing convention,
topology-shape-metrics graph visualization,
48

Katz Status Index, kernel-based link analysis, 300

INDEX 475

Kernel-based link analysis, 283–310
classification, 284–286

importance, 285–286
relatedness, 285

commentary, 308
evaluation, 299–308

approximation, 307–308
example, 300–304
Neumann kernels, 304
parameter sensitivity estimation, 307
regularized Laplacian and diffusion kernels,

305–306
overview, 283–284
practical issues, 297–299

computational issues, 298–299
parameter tuning, 297–298

relatedness measure, 290–297
diffusion kernels, 296–297
limitations, 290–291
regularized, 290–296

related work, 299–300
unified framework, 286–289

Kernel methods, 253–282
commentary, 279–280
graph classification, 254–265

cycle-based graph kernels, 257–262
empirical evaluation, 263–265
generally, 254–255
walk-based graph kernels, 255–257

overview, 253–254
vertex classification, 266–278

Bayesian kernel methods, 268–271
empirical evaluation, 277–278
generally, 266–268
multiclass transduction, 271–276
string kernels, 276–277

Knowledge discovery, defined, 3

Labeled graph:
defined, 118
formal concept analysis, 228

Language equivalence, graph mining, formal
concept analysis (FCA), 242–243

Laplacian kernels:
evaluation, 305–306
relatedness measure, 290–297

limitations, 290–291
regularized, 290–296

Lattice, defined, 228. See also specific lattices
Lattice properties, formal concept analysis

(FCA), graph mining, 241–242
Layer assignment, hierarchical graph

visualization methods, 43
Learning edit costs (graph matching), 24–28

learning probabilistic edit costs, 25–26
self-organizing edit costs, 27–28

Learning probabilistic edit costs, graph matching,
25–26

Linear fragments, chemical graphs, 362–366
Link analysis. See Kernel-based link analysis
Locally injective digraph, Galois lattice, graph

description, 238
Local resolution, global resolution and,

graph-based entity resolution, 320
Low diameter, graph generators, 73

Markush structures, SMILES and, molecular
representation, 354–355

Maximum common subgraph (MCS), defined,
20–21

Maximum common subgraph (MCS) distance,
defined, 21

Maximum independent set, frequent topological
patterns, 121

Memory requirements reduction, frequency
counting, FSG algorithm, 130–131

Merging Matches algorithm, Terrorist Modus
Operandi Detection System (TMODS),
459–461

Meta-strategies, Grew algorithm, 146–148
Metrics, defined, 447–448
Min-cut plots:

NetMine, 79–80, 86
R-MAT generator experiments, 83

Minimum description length (MDL):
graph grammar learning, 188
rooted tree mining, 385
variant substructure patterns, discriminative

frequent substructure, 108
Mining graph data, defined, 2
Modified Laplacian kernels, evaluation, 306
Molecular representation, 347–355

connection table, 350–351
SMILES and Markush structures, 354–355
stereochemistry, 352–353
structure and structure diagrams, 347–350
structure and substructure search, 353

Molfea, chemical graphs, 364
MultiCASE, chemical graphs, 367–369
Multiclass transduction, kernel methods, vertex

classification, 271–276
Multiedge collapsing, Grew algorithm, 146
Multiple choices, graph matching, Terrorist

Modus Operandi Detection System
(TMODS), 456–457

Mutagenesis dataset:
described, 6–8
Subdue system/inductive logic programming

(ILP) compared, 172–174, 176–179

476 INDEX

Multitype entity resolution, graph-based,
319–320

NetMine system, 79–82
components of, 66
min-cut plots, 79–80
properties, 80–82

Neumann kernels:
evaluation, 304
unified framework, 287–289

Ontologies, graph matching, Terrorist Modus
Operandi Detection System (TMODS),
458–459

Optimization, multiclass transduction, kernel
methods, vertex classification, 275–276

Optimization-based models, graph generators, 78
Optimization heuristics, dense subgraph

extraction, connection subgraphs, 435–437
Order, defined, 228
Orthogonal drawing:

graph visualization, 36
topology-shape-metrics graph visualization,

44–46
Orthogonalization, topology-shape-metrics graph

visualization, 46

Parameter sensitivity estimation, kernel-based
link analysis, 307

Parameter tuning, kernel-based link analysis,
297–298

Parametric optimization problem, multiclass
transduction, kernel methods, vertex
classification, 272–273

Parent identification generation, vertical SiGraM
algorithm, 137

Partial order, defined, 228
Pattern growth approach, frequent substructures

discovery, 103–107
Pattern mining, irreducible elements and, graph

mining, formal concept analysis (FCA),
246–247

Peering session, autonomous systems, Internet
analysis, 53

Performance evaluation, rooted tree mining,
402–405

Phylogenetic trees, rooted tree mining,
bioinformatics applications, 407–408

Planarization, topology-shape-metrics graph
visualization, 46

Polyline drawing, graph visualization, 36
Power law(s), R-MAT generator, 68–69
Power law degree distributions, graph generators,

72

Preferential attachment models, graph generators,
72–73

Preorder, defined, 228
Probabilistic inference, entity resolution,

316–317
Probabilistic modeling, entity resolution, 315
Procedural method, graph generators, 73
Product operator, homomorphism and, Galois

lattice, graph description, 237

Quantitative estimation, chemical graphs,
358–362

Radiality, defined, 451
Radius, defined, 451
Random graph models, graph generators, 72
Randomized scheme, Grew algorithm,

146–148
Random walks, connection strength

measurement, dense subgraph extraction,
connection subgraphs, 430–431

Readability, graph visualization, 36
Real dataset experiments, Subdue system/frequent

substructure approaches compared,
168–170

Realism, R-MAT generator detection, 66
Real-world graph comparisons, R-MAT generator

experiments, 83–86
Relatedness measure (kernel-based link analysis),

290–297
diffusion kernels, 296–297
limitations, 290–291
regularized, 290–296

Resilience:
graph generators, 73
R-MAT generator, 71

R-MAT generator, 65–95
commentary, 86–89
community effects, 69–70
degree distribution, 90–91
edge betweenness (stress), 71
experiments, 82–86

min-cut plots, 83
real-world graph comparisons, 83–86

graph generators, 71–78
generally, 71–72
geographical models, 73
optimization-based models, 78
preferential attachment models, 72–73
random graph models, 72
taxonomy of, summary table, 74–77

NetMine, 79–82
min-cut plots, 79–80
properties, 80–82

INDEX 477

overview, 65–67
power laws, 68–69
relational learning, 78
resilience, 71
singular vector value, 71
small diameters, 69
terminology, 65

RNA structure, rooted tree mining,
bioinformatics applications, 405–407

Rooted tree mining, 381–410
bioinformatics applications, 405–408

phylogenetic trees, 407–408
RNA structure, 405–407

commentary, 409
described, 382–384
distinct occurrences counting, 397–399
experimental results, 401–405

CSLOGS dataset experiments, 402
performance evaluation, 402–405
synthetic dataset experiments, 401–402
synthetic datasets, 401–402

frequency computation, 392–397
embedded subtrees, 392–395
induced subtrees, 395–397

overview, 381–382
related work, 384–385
SLEUTH algorithm, 399–401
subtree generation, 385–392

canonical extension, 388–389
commentary, 391–392
equivalence class-based extension, 389–391

Scree plot, defined, 68
Self-organizing edit costs, graph matching,

27–28
Self-organizing map (SOM), graph matching,

27–28
Shingling, graph shingling, dense subgraph

extraction, 422–424
SiGraM algorithm, 131–141

generally, 131–132
horizontal, 132–135
interactions between, 139–141
vertical, 135–139

Similarity measures, graph-based entity
resolution, 325–329

Simulation studies, R-MAT generator detection,
66

Single-edge collapsing, Grew algorithm,
144–145

Singular vector value, R-MAT generator, 71
SLEUTH algorithm, 382, 384, 391, 392, 397,

399–405, 409. See also Rooted tree mining
Small diameters, R-MAT generator, 69

SMILES, Markush structures and, molecular
representation, 354–355

Social network(s):
community effects, dense subgraph extraction,

416
connection strength measurement, dense

subgraph extraction, connection subgraphs,
429–434

Social network analysis (SNA), 443–468
Best Friends Group Detection algorithm, 452
commentary, 466–467
defined, 443–444
experiments, 465–466
group detection, 452
metrics, 444–451

average cycle length (ACL), 446
average path length (APL), 446
brandes betweenness centrality (BR), 445
characteristic path length (CPL), 447
circumference, 451
cliqueishness, 448–449
closeness centrality, 446
clustering coefficient (CC), 447–448
degree, 450
density, 450
diameter, 450
External-to-internal (E-to-I) ratio, 449–450
girth, 450
global efficiency (GE), 447
homogeneity, 449
radiality and integration, 451
radius, 451

overview, 443
problems in, 444
Terrorist Modus Operandi Detection System

(TMODS), 452–464
algorithms, 459–462
distributed genetic search algorithm, 462
event detection, 463–464
generally, 452–455
genetic search algorithm, 461
Merging Matches algorithm, 459–461
social network analysis capability, 462–463
standard graph matching extension,

455–459
constraints, 458
hierarchical patterns, 457–458
inexact matching, 455–456
multiple choices and abstractions,

456–457
ontologies, 458–459

Social sciences, graph visualization applications,
36–37

478 INDEX

Software engineering, graph visualization
applications, 37

Stereochemistry, molecular representation,
352–353

Straight-line drawing, graph visualization, 36
Stress plot, R-MAT generator, 71
String kernels, vertex classification, 276–277
String similarity, entity resolution, 314
Structure-activity relationship (SAR),

Mutagenesis dataset, 6–8
Subdue system, 159–181

approaches, 160–165
Subgraph clustering, 162
substructure discovery, 160–162
supervised learning, 162–165

chemical graphs, 363–364
commentary, 179
frequent substructure approaches compared,

165–170
real dataset experiments, 168–170
synthetic dataset experiments, 167–168

frequent topological patterns, 149, 150–151
graph-based algorithms compared, 165
graph grammar learning, 194, 197
inductive logic programming (ILP) compared,

170–179
artificial data experiments, 174–176
CProgol, 172
generally, 170–172
Mutagenesis dataset experiments, 172–174,

176–179
overview, 159–160

Subgraph, defined, 19. See also Connection
subgraphs

Subgraph clustering, Subdue system, 162
Subgraph extension, efficient, vertical SiGraM

algorithm, frequent topological patterns,
138–139

Subgraph isomorphism, defined, 118
Substructure discovery, Subdue system, 160–162
Subtree generation (rooted tree mining), 385–392

canonical extension, 388–389
commentary, 391–392
equivalence class-based extension, 389–391

Supervised learning:
kernel methods, 253–254
Subdue system, 162–165

SV-list joins, rooted tree mining, distinct
occurrences counting, 398–399

Synthetic dataset experiments:
rooted tree mining, 401–402
Subdue system/frequent substructure

approaches compared, 167–168

Terrorist Modus Operandi Detection System
(TMODS), 452–464

algorithms, 459–462
distributed genetic search algorithm, 462
event detection, 463–464
generally, 452–455
genetic search algorithm, 461
Merging Matches algorithm, 459–461
social network analysis capability, 462–463
standard graph matching extension, 455–459

constraints, 458
hierarchical patterns, 457–458
inexact matching, 455–456
multiple choices and abstractions, 456–457
ontologies, 458–459

Theoretical bounds, entity resolution, 314
Topological frequent patterns. See Frequent

topological patterns
Topology-shape-metrics method, graph

visualization techniques, 44–48
Transaction identifier (TID) lists, frequency

counting, FSG algorithm, 130–131
Transductive inference, multiclass transduction,

kernel methods, vertex classification,
273–275

Trawling, dense subgraph extraction, 418–421
Tree mining. See Rooted tree mining

Undirected graphs, R-MAT generator
experiments, 86

Unsupervised learning, defined, 3

Variant substructure patterns (frequent
substructures), 107–109

approximate substructure, 107–108
closed frequent substructure, 107
coherent substructure, 108
contrast substructure, 108
dense substructure, 109
discriminative frequent substructure, 108–109

Vertex classification:
commentary, 279–280
kernel methods, 266–278

Bayesian kernel methods, 268–271
generally, 266–268
multiclass transduction, 271–276
string kernels, 276–277

Vertical SiGraM algorithm:
frequent topological patterns, 135–139
problem formulations, 139–141

Voltage algorithms, connection strength
measurement, dense subgraph extraction,
432

INDEX 479

Walk-based graph kernels:
empirical evaluation, 263–265
graph classification, 255–257

Waxman model, graph generators, 73
Web-based community finding, dense subgraph

extraction, 414–415
Web graph searching, dense subgraph extraction,

415–416

Web searching:
graph visualization applications, 37
graph visualization example, 48–50

World Wide Web, graph databases, 8–10. See
also Dense subgraph extraction; Internet
analysis

XML data, rooted tree mining, 384

	Cover
	Copyright
	Contents
	Preface
	Acknowledgments
	Contributors
	1 Introduction
	1.1 Terminology
	1.2 Graph Databases
	1.3 Book Overview
	References

	Part I Graphs
	2 Graph Matching--Exact and Error-Tolerant Methods and the Automatic Learning of Edit Costs
	2.1 Introduction
	2.2 Definitions and Graph Matching Methods
	2.3 Learning Edit Costs
	2.4 Experimental Evaluation
	2.5 Discussion and Conclusions
	References

	3 Graph Visualization and Data Mining
	3.1 Introduction
	3.2 Graph Drawing Techniques
	3.3 Examples of Visualization Systems
	3.4 Conclusions
	References

	4 Graph Patterns and the R-mat Generator
	4.1 Introduction
	4.2 Background and Related Work
	4.3 NetMine and R-MAT
	4.4 Experiments
	4.5 Conclusions
	References

	Part II Mining Techniques
	5 Discovery of Frequent Substructures
	5.1 Introduction
	5.2 Preliminary Concepts
	5.3 Apriori-based Approach
	5.4 Pattern Growth Approach
	5.5 Variant Substructure Patterns
	5.6 Experiments and Performance Study
	5.7 Conclusions
	References

	6 Finding Topological Frequent Patterns from Graph Datasets
	6.1 Introduction
	6.2 Background Definitions and Notation
	6.3 Frequent Pattern Discovery from Graph Datasets--Problem Definitions
	6.4 FSG for the Graph-Transaction Setting
	6.5 SIGRAM for the Single-Graph Setting
	6.6 GREW --Scalable Frequent Subgraph Discovery Algorithm
	6.7 Related Research
	6.8 Conclusions
	References

	7 Unsupervised and Supervised Pattern Learning in Graph Data
	7.1 Introduction
	7.2 Mining Graph Data Using Subdue
	7.3 Comparison to Other Graph-Based Mining Algorithms
	7.4 Comparison to Frequent Substructure Mining Approaches
	7.5 Comparison to ILP Approaches
	7.6 Conclusions
	References

	8 Graph Grammar Learning
	8.1 Introduction
	8.2 Related Work
	8.3 Graph Grammar Learning
	8.4 Empirical Evaluation
	8.5 Conclusion
	References

	9 Constructing Decision Tree Based on Chunkingless Graph-Based Induction
	9.1 Introduction
	9.2 Graph-Based Induction Revisited
	9.3 Problem Caused by Chunking in B-GBI
	9.4 Chunkingless Graph-Based Induction (Cl-GBI)
	9.5 Decision Tree Chunkingless Graph-Based Induction (DT-ClGBI)
	9.6 Conclusions
	References

	10 Some Links between Formal Concept Analysis and Graph Mining
	10.1 Presentation
	10.2 Basic Concepts and Notation
	10.3 Formal Concept Analysis
	10.4 Extension Lattice and Description Lattice Give Concept Lattice
	10.5 Graph Description and Galois Lattice
	10.6 Graph Mining and Formal Propositionalization
	10.7 Conclusion
	References

	11 Kernel Methods for Graphs
	11.1 Introduction
	11.2 Graph Classification
	11.3 Vertex Classification
	11.4 Conclusions and Future Work
	References

	12 Kernels as Link Analysis Measures
	12.1 Introduction
	12.2 Preliminaries
	12.3 Kernel-based Unified Framework for Importance and Relatedness
	12.4 Laplacian Kernels as a Relatedness Measure
	12.5 Practical Issues
	12.6 Related Work
	12.7 Evaluation with Bibliographic Citation Data
	12.8 Summary
	References

	13 Entity Resolution in Graphs
	13.1 Introduction
	13.2 Related Work
	13.3 Motivating Example for Graph-Based Entity Resolution
	13.4 Graph-Based Entity Resolution: Problem Formulation
	13.5 Similarity Measures for Entity Resolution
	13.6 Graph-Based Clustering for Entity Resolution
	13.7 Experimental Evaluation
	13.8 Conclusion
	References

	Part III Applications
	14 Mining from Chemical Graphs
	14.1 Introduction and Representation of Molecules
	14.2 Issues for Mining
	14.3 CASE: A Prototype Mining System in Chemistry
	14.4 Quantitative Estimation Using Graph Mining
	14.5 Extension of Linear Fragments to Graphs
	14.6 Combination of Conditions
	14.7 Concluding Remarks
	References

	15 Unified Approach to Rooted Tree Mining: Algorithms and Applications
	15.1 Introduction
	15.2 Preliminaries
	15.3 Related Work
	15.4 Generating Candidate Subtrees
	15.5 Frequency Computation
	15.6 Counting Distinct Occurrences
	15.7 The SLEUTH Algorithm
	15.8 Experimental Results
	15.9 Tree Mining Applications in Bioinformatics
	15.10 Conclusions
	References

	16 Dense Subgraph Extraction
	16.1 Introduction
	16.2 Related Work
	16.3 Finding the densest subgraph
	16.4 Trawling
	16.5 Graph Shingling
	16.6 Connection Subgraphs
	16.7 Conclusions
	References

	17 Social Network Analysis
	17.1 Introduction
	17.2 Social Network Analysis
	17.3 Group Detection
	17.4 Terrorist Modus Operandi Detection System
	17.5 Computational Experiments
	17.6 Conclusion
	References

	Index

