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Preface

In recent years there has been explosive growth in the computational power
of computers, in the ease of access to these computers, and in computer
graphics. The development of some of the techniques used in computer
graphics relies on a wide range of mathematical methods for curve and
surface fitting. Since access to computers requires very little training in
mathematics, many of these methods may not be easily understood by the
great variety of people who are now able to use powerful computing
equipment. The purpose of this book is to reveal to the interested (but
perhaps mathematically unsophisticated) user the foundations and major
features of several basic methods for curve and surface fitting that are
currently in use. In this way, the authors hope to help bridge the gap
between the users and designers of curve and surface fitting methods.

The intended readership includes a great variety of users of computer
graphics, such as geographers, cartographers, surveyors, geophysicists,
engineers, computer scientists, and applied mathematicians. For most of
the subject matter, the mathematical preparation required of the reader
does not exceed the level of first-year university courses. Indeed, beginning
with a review chapter of basic ideas from calculus and algebra (written in
a geometrically intuitive way), the reader is brought to some understanding
of progressively more advanced topics. The presentation is such that this
book can be used as a reference and learning source for any of the users
described above. Also, it could very well form the basis of a course for
students in any of these disciplines. In fact, this book originated as lecture
notes for a course given to practising geophysicists.

In some respects, the book is written in a mathematical style (reflecting
the authors’ profession), but we hope that the reader will not find this
forbidding. We have tried to be precise and, at the same time, to be
discursive and to develop a geometrical understanding of the mathematics.
We have formulated important statements as theorems because we see this
as a good way to give emphasis in a precise and brief form. In general, the
theorems are stated without formal proof, although their meaning and the
concepts involved are fully explained. From the mathematical point of view
we do not strive for the greatest possible generality in the formulation of
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theorems (to be found elsewhere in the mathematical literature); the degree
of generality is simply dictated by the level of mathematical sophistication
admitted in this presentation.

The development of our subject matter has many original features and
takes advantage of some unifying ideas. Almost all of the methods presented
depend on the use of polynomial functions and, although the more classical
methods are seen to be inflexible and inadequate in many ways, the
more advanced methods using “‘piecewise’’ polynomials have extraordinary
power and flexibility. Thus, there is first a progression from polynomial,
to piecewise polynomial, to spline methods for curve fitting. A careful
development of these univariate techniques then admits an efficient pres-
entation of a corresponding progression for surface fitting in the later
chapters.

To be more specific, Chapter 1 contains review material and summarizes
the minimal information that readers need to have at their fingertips. Of
course, the better prepared reader should go directly to Chapter 2 in which
the classical approach to interpolation and smoothing with polynomial
functions is presented. Chapter 3 is an introduction to the use of piecewise
polynomial functions leading up to the notion of spline curves and their
uses, which are the subject matter of Chapter 4. The presentation here is
a little unusual in that natural cubic splines appear as a mix of two more
primitive curve fitting methods. This “mixing” is further clarified and
formalized in Chapter 5 with the introduction of projectors and Boolean
sums of projectors. The approach taken to the description of cubic splines
facilitates the discussion of blending and surface spline methods in sub-
sequent chapters.

In Chapter 6 we discuss, in general terms, the criteria that might be used
in comparing different methods for curve and surface fitting and then
continue, in Chapter 7, with a presentation of classical techniques using
polynomial methods in two variables. In Chapter 8 we show how any curve
fitting technique (or pair of techniques) can be combined to generate
surface fitting methods. These are the so-called tensor product and blending
methods. We also show how these are conveniently described in terms of
projectors.

Chapter 9 contains a presentation of finite element methods. Although
finite elements were developed by engineers and numerical analysts as part
of a technique for the solution of differential equations, they appear here
simply as the basic units in surface construction methods. These can be
seen as a generalization of some of the piecewise polynomial techniques
for curve fitting introduced in Chapter 3. Least squares, ‘“moving” least
squares, and some hybrid methods are the subject matter of Chapter 10.
In Chapter 11 we consider “surface splines” by which we understand
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bivariate methods having the same general form as spline curves, par-
ticularly with regard to their representation as Boolean sums of projectors.
They are presented here in a more elementary way than can be found
elsewhere in the mathematical literature.

We should conclude this description with some comment on what we do
not attempt to do in this book. We have not been exhaustive. We have
chosen to exclude more sophisticated methods such as Bernstein—-Bézier
curves and surfaces, splines in tension, methods preserving monotonicity,
parametric splines, isoparametric finite elements, and so on. The reader
will understand these methods more readily after absorbing the relevant
ideas from this work. Readers interested in further developments are
referred, in the first instance, to review papers by Barnhill (1977), Boehm
et al. (1984), Franke (1979, 1982), Lawson (1977), and Schumaker (1976).

We have also avoided reference to any but the most primitive techniques
using statistics. There have recently been important developments in this
area [see Wahba (1981) and Olea (1975), for example]. Although kriging
is usually seen as a probabilistic method, we have been at pains to present
a simplified deterministic approach to this process in Chapter 11.

We do not provide specific algorithms for obtaining fitted curves and
surfaces. In view of the great variety of methods considered and the
difficulty in producing reliable and portable codes, this was considered to
be an unrealistic objective. However, we do give some guidance on the
relative merits of different computational lines of attack. It is also the case
that many software packages are readily available which incorporate the
methods we describe. One of our purposes in writing the book is to equip
the reader with the knowledge to make judgements on the relative merits of
different methods and packages in the light of the user’s own requirements.

The authors have been ably assisted by Gisele Vezina and Pat Dalgetty
in the preparation of the final typescript and by M. Paolucci and J.
Reddekop in computer graphics. Also, our colleague Len Bos has given
invaluable assistance in programming, advice, and proofreading. Our sin-
cere thanks go to all of them. Both authors have received some support
from the Canadian Natural Sciences and Engineering Research Council for
which we are duly grateful.
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Functions and Graphs

1.1 Functions of a single variable

The need for fitting curves and surfaces arises principally from the fact
that many physical phenomena are deemed to be continua, although our
measurement of them is discrete. From such discrete information, often
using the tools of mathematics, we try to reconstruct the continuum in
order to learn about its features. In order to apply mathematical techniques,
it is necessary to be able to describe the phenomenon quantitatively. The
phenomenon in question may be the depth of a geological layer, the
deflection of the wing of an aircraft under loading, the population density
in an urban area, the proportion of a particular genotype in a population,
and so on. We assume that the magnitude of the phenomenon, expressed as
anumber, depends on some underlying variables (the so-called independent
variables), which can likewise be assigned numerical values. Not all of the
independent variables can be taken into account; in fact, we may be
unaware of some of them. For example, the elevations of the surface of
the earth above some datum depend more or less continuously on the
longitude and latitude, at least piecewise, and perhaps the position of the
planet in its orbit and the state of its tides. For many purposes, however,
it is sufficient to regard the elevation as a “function” of two independent
variables representing the longitude and latitude, say. In order to make the
ideas of “variable”, “function”, etc. more precise, we need some definitions.

We begin with some terminology and notation associated with the real-
number system. The absolute value or modulus of a real number a is a
measure of the distance of a from the origin measured on the real line and
is denoted by |a|. Thus, |2| = 2, |-13.5| = 13.5, |0| = 0, and so on. A formal
definition is given by

a if a=0,
ol ={

a if a<O0.
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It is easily seen that for any two real numbers a and b, |a — b| represents
the distance between the corresponding points on the real line.

It will be necessary for us to have a precise notation for intervals of real
numbers, that is, sets of real numbers corresponding geometrically to
segments of the real line. The symbol [a, b] with real numbers a, b satisfying
a < b denotes the set of all numbers, say x, for which a < x and x < b. Such
a set is a closed interval. In contrast, the set of all numbers x, for which
a<x and x <b, does not contain the numbers corresponding to the
endpoints of the segment; it is called an open interval and is written (a, b).

The symbols [a, b) and (a, b] denote half-open intervals in a notation
hybridized from that for closed and open intervals, and each contains just
one endpoint, as the notation indicates.

We have already begun to talk about “sets” (set is an undefined primitive
term), and in order to abbreviate statements about membership in a set,
we introduce the symbol that means “belongs to” or “is a member of” or
“is in”. Thus, if S is a set of objects, then x € § reads “x belongs to the set
$”. or “x is in S.” For example, x € [1, 2] means that x is a real number
between 1 and 2 and possibly equal to 1 or 2. Here S = [1, 2]. Similarly, if
S is the set of all bearded persons in Inuvik, then x € § means that x is a
bearded person in Inuvik.

We turn to the concept of function. Let S be a set and let a rule be given
so that for every x € §, a real number is uniquely assigned to x. Such a rule
is called a (real valued) function with domain S. Note that the function is
not a number but assigns numerical values to objects in S. It is customary
to name functions by letters or groups of letters; for example, f, g, cos,
exp, log. If x € S, the value assigned to x by a function f is written f(x) and
is called the value of f at x. We will here be dealing frequently with sets S
that are intervals or sets of singletons of real numbers or else with sets of
pairs of real numbers. The quantities in S are values of the independent
variable, whereas the function value is the dependent variable.

We consider first functions of a single independent variable in which
S is an interval, which may be the whole real line. Normally, functions
are defined by stating how they affect the independent variable x.
We may have, for example, f(x) = x + 1 or g(x) = V x. In the first case, it
does not matter what the domain § is, although it may be convenient to
restrict x for some reason or other. In the second case, however, S may
not contain any negative numbers. These are examples of algebraic func-
tions; their values may be calculated by using a finite number of algebraic
operations, such as addition, multiplication, and obtaining roots. We often
refer to the class of algebraic functions. This class contains polynomials,
rational functions (quotients of polynomials) and a multitude of others.
Other familiar classes of functions are those of trigonometric functions
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and the so-called transcendental functions, etc. Indeed, we may classify
functions according to some attributes and then use functions of a given
class to accomplish a certain task. We shall introduce some classes of
functions, useful for our purposes, in more detail as we progress. In curve
and surface fitting, desirable attributes are continuity and smoothness. We
shall therefore introduce classes of functions based on these ideas. A class
of functions will generally have a common domain S, and we often need
to consider combinations of such functions.

First, if f and g are functions with a common domain S, then the sum of
the two functions is again a function, denoted by f+ g, and its value at
each x € § is defined by

(f + 8) (x) = f(x) + g(x).

Next, the product function, written fg, is also defined on § and is given by
taking the pointwise product of function values:

(f8) (x) = f(x)g(x),

for each x € S. Finally, if « is any real number, we define a function written
af on § and called a scalar multiple of f by

(of) (x) = of(x),

for each x € S. This is, of course, consistent with addition of functions in
the sense that f + f and 2f define the same function, for example.

We turn now to an introduction to the notions of continuity and
smoothness.

1.2 Graphs and continuity

In order to represent a function of one real variable pictorially we make
use of a graph. We set up a Cartesian coordinate system, labelling the axes
x and y. The domain S of the function then corresponds to a set of points
on the x-axis. The collection of all points (x, f(x)) as x varies over S is the
graph of f; it may or may not be a curve. For the graph to be a smooth
curve, it is, of course, necessary that S be an interval. In contrast, the
curve-fitting problem begins with an S that is a set of discrete points. We
form an interval, say 7, containing S and look for a “reasonable” function
f defined on T that comes close in some sense to the data when x € S (see
Fig. 1.1). A “reasonable” function may have to be continuous and/or
smooth and should not display features other than those that are known to
be present in the physical event giving rise to the data.
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T

FiG. 1.1 Domains S, T with S contained in T.

When the domain is an interval, the idea of a continuous function has a
precise mathematical meaning. Intuitively it can be described as follows:
Let f be a function with domain S and let a € S. Then f is continuous at a if
the values f(x) approach the value f(a) as x approaches a from either side of
a.

In Fig. 1.2, f is continuous at a in the left-hand diagram but not in the
right-hand diagram, where the value f(a) is indicated by the dot and is
approached by the values f(x) when x approaches a from the right. However,

} > X + > X
0] a 0] a
(a) (b)

F1G. 1.2 (a) Continuity and (b) discontinuity at x = a.

as x approaches a from the left, f(x) approaches the value b # f(a). Inci-
dentally, b is not a value of f(x).
A more precise description of continuity lies in the following.

Definition Let f be a function with domain S, where S is an interval. Then
f is continuous at a point a € S if, given any number € > 0, however small,
there exists a number § > 0, and depending on ¢, such that whenever x € S
and satisfies |x — a| < 8, f(x) satisfies |f(x) — f(a)| < &.

Recall that the absolute value |u — v| of the difference of two numbers
u and v is the distance between u and v, so the definition states that the
distance between f(x) and f(a) is less than £ whenever x is sufficiently close
(within 0) to a. This definition is frequently abbreviated by introducing the
term “limit” as follows: The function f is continuous at a point x inside an
interval of the domain S if limg_, , f(&) exists and is equal to f(x). If x is an
endpoint of the interval §, the formal definition implies that the limit is
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taken only from one side. Thus, if f is continuous on [a, b], then the “one-
sided” limits lim,_, ,+ f(§) and lim,_, ,- f(x) exist and equal f(a) and f(b),
respectively.

For practical purposes, it is sufficient to observe that discontinuities will
generally arise in one of two ways:

(1) when the denominator of a quotient vanishes. For example, the
function f(x) = 1/x is not defined at x = 0. It has a discontinuity at this
point.

(2) by defining f differently in parts of S, e.g. f(x) =0 whenO<x=<1
and f(x) = 1 when x > 1. This results in f not being continuous at x = 1.

We shall be using (2) in subsequent chapters. An interval will be sub-
divided into contiguous subintervals, and a function will be constructed
piecewise, subinterval by subinterval. On each subinterval, the function
will be given by an expression having some “degrees of freedom”, and
these will be adjusted to make the total function continuous where the
pieces join. If f; is the function in the interval S, and f, is the function in
S,, and if a is the point at which §; and §, join, we will require f,(a) =
f2(a) so as to avoid a jump there.

1.3 Derivatives and smoothness

The requirement that a function be continuous is not sufficient to make it
smooth. For example, the important function f defined on all the real
numbers by f(x) = |x| has the graph indicated in Fig. 1.3. It is, in fact,
continuous at every real number a, but would we wish to describe it as
“smooth” at a = 0?7 The mathematical concept of smoothness involves the
notion of “derivative of a function”, as well as second and higher derivatives,
which we shall now describe.

FiG. 1.3 Function f(x) = |x|.
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Let x be a number (point) in S, the domain of f. If the graph of f does
not have a sharp corner at the point with abscissa x, and f is continuous at
x, we may draw a unique tangent line to the graph there and compute its
slope. This may be done by calculating the quotient “rise”/“run” for the
tangent, or by calculus, where we find the derivative of f and then find the
value of the derivative at the number x. In any event, the slope depends
on x and is therefore a function of x.

Let T be the set of points in S at which the slope of the graph of f exists
and is unique:

The function whose value at x € T is the slope of the graph of f at x is
called the derivative of f (or derived function of f) and is denoted by the
symbol f'. The function f is said to be differentiable at each point of T.

As in the discussion of continuity, geometric intuition can be subsumed
in a definition using the idea of limit as follows:

Definition Consider a function f whose domain is an interval S. The
function f is differentiable at a point x, € S if lim,_, o A~ (f(xo + k) — f(x;))
exists, where h is restricted to those values for which xo+ h€S. The
derivative of f at x, f'(x,), is defined to be the value of this limit.

The restriction on the permissible values of 4 in this definition implies that
derivatives at endpoints of S, if any, are determined by appropriate one-
sided limits.

Note that the set T is just the set of points in S at which the limit exists.
Note also that the limit is taken of the difference quotient

flxo + h) — f(xo)

(xo +h) — xq

?

1.e. the difference of ordinates divided by the difference of abscissas. When
the derivative at x, exists but is not known numerically, such a quotient is
frequently used as an approximation for f'(x,), provided that 4 is sufficiently
small in absolute value. The quotient is then the slope of the chord of the
graph of y = f(x), as indicated by AB in Fig. 1.4 (for h > 0). As h decreases,
we anticipate that the slope of the chord will approach the slope of the
tangent at x.

As noted earlier, the set T is just the domain of the derived function f’
of f. Other notations for the derivative of f are f'(x), if we choose not to
make any distinction between a function and its value at x, or d(f(x))/dx
or dy/dx if we set y = f(x). When fis given by an explicit formula involving
elementary functions, calculus often enables one to obtain a formula for

f'(x).
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i
T

$ » X
X0 Xo* h

FIG. 1.4 Slope of a chord and tangent.

We may now begin to classify functions as to their continuity and
smoothness over an interval [a, b]. Note first, however, that, since f’ is a
function, we may well ask whether it is continuous and whether this new
function f’ has a derivative at any point of its domain.

Definition €[a, b] denotes the class of functions that are continuous at
every point of [a, b). 6![a, b] denotes the class of functions that are continuous
and have a continuous derivative at every point of [a, b).

As we shall see later, the closed interval [a, b] of this definition may be
replaced by an open or half-open interval, as convenient.

To illustrate, the function f(x) = |x| with domain [—1, 1] (see Fig. 1.3) is
in the class 6[—1, 1] but is not in the class 6![—1, 1], because it has no
derivative at x = 0; i.e. the graph does not have a unique tangent at this
point. In Fig. 1.5, we sketch the graph of the function f(x) =1 + x"/2 on
[0, 1]. We can say that f € €[0, 1]. We can also differentiate f to obtain
f'(x) = $x~12, and the graph of this function is also sketched in Fig. 1.5.
This function is continuous at every point of (0, 1], so that f' € 46(0, 1] and
hence f € 6'(0, 1]. However, f ¢ 6'[0, 1]. Note that the graph of f’ has a
vertical asymptote at x = 0, and since f' is not defined there, it certainly
cannot be continuous at this point.

These examples suggest that, in a certain sense, functions of class 6! are
smoother than those that are in %[a, b] but not also in 6![a, b]. We can
carry the process further to describe classes of functions that may be
smoother than those of €¢![a, b]. If the derived function f’ itself has a
derivative, we denote it by f” and call it the second derivative of f. The
function f" measures the rate of change of f', the slope of the tangent, just
as f' measures the rate of change of f. We denote by €?[a, b] the class of
continuous functions with continuous first and second derivatives at every
point of [a, b]. These are smoother than functions that are only in ¢![a, b].
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A primitive but very important class of examples is given by functions of
the kind f(x) = o + Bx, where «, § are any fixed real numbers. The graph
of such a function is necessarily a straight line. Furthermore, f'(x) = 8, so
that f' is a constant function (whose graph is a horizontal straight line), and
f"(x) = 0for all x. Thus, for any such function, we certainly have f € €?[a, b]
for any interval [a, b].

FiG. 1.5 Function f(x) = 1 + x'2,

An interesting example of a function that is in €'[0, 2] but not in ¢?[0, 2]
is a curve made up of the following parabolic arc joined to a straight line
tangent to it. This function is defined by

x2, O0<x=<l1,

0= {1, rexs
and its graph is sketched in Fig. 1.6. This function is certainly continuous
when x # 1. As x approaches 1 from the left, the rule f(x) = x2 applies, and
this quantity approaches 1 as x approaches 1. When x approaches 1 from
the right, we use the rule f(x) = 2x — 1, and again, 2x — 1 approaches 1.
Therefore the function f € €[0, 2]. Using calculus, we compute the func-
tion f' and obtain

, O0=sx<1,
Fw=1{

1<xs<s?2.

b
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FIG. 1.6 Function of class ¢! [0, 2]. The asterisk indicates the point of discontinuity in the
second derivative.

By an argument similar to that above, f' is continuous at x = 1, as well as
at the other points of [0, 2], so f € €![0, 2]. We compute f” now and have

2, O=sx=1,

fre) = {

0, 1<x=2.

There is no way in which we can make f” continuous at x = 1 because of
the jump (or discontinuity) in the value of f” at x = 1.

F1G. 1.7 Function f(x) = e*.
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It should be observed that, although the curve in this example is math-
ematically not very smooth because of its failure to have a continuous
second derivative, it may be deemed smooth enough visually.

An example of a very smooth function is illustrated in Fig. 1.7. The
function f(x) = e* is in class 6[a, b] for any interval [a, b] and has the
interesting property that also f'(x) = e*;i.e. f' = f. Consequently, f" = f' =
f and so f € €?[a, b).

It is useful to define derivatives of higher order than 2 by the statement:
The nth derivative of f, when it exists, is the (first) derivative of the (n — 1)-
th derivative of f and is denoted by the symbol f™. Thus, f* = f*~1' Note
that we generally write f* for f) and f” for f@.

Definition (a) ‘€"[a, b] denotes the class of functions that are continuous
and have continuous derivatives of orders 0, 1,2,...,n on [a, b].

(b) 6%[a, b] denotes the class of functions that are continuous and have
continuous derivatives of all orders 0, 1, 2,. .. on [a, b]; i.e. are infinitely
differentiable.

We often omit the [a, b] in the previous notation when [a, b] is obvious
from the context or is all of the (extended) real line.Thus, we may write
e* € 6~. Note also that €° is just 6.

It is easily verified that for each n (from 0 to =), the class ‘6"[a, b] has
the following properties: If f, g € €"[a, b] and « is any real number, then
the sum f + g and the scalar multiple of (cf. Section 1.1) are also in 6"[a, b].
These properties of the class of functions are known as closure under
addition and scalar multiplication, respectively, and they define the useful
mathematical concept of a vector space. Thus, €"[a, b] is the first of several
examples of vector spaces that we shall encounter.

In mathematics, among the smoothest curves are those defined by func-
tions that are infinitely differentiable. Examples of functions in €~ are €*,
sinx, logx (x> 0), and polynomials. Visually, however, it seems that
requiring continuous second derivatives is enough, and even a continuous
first derivative may suffice. We shall make extensive use of such functions
in Chapters 3 and 4.

1.4 Derivatives and the shape of a curve

If the curve under consideration is the graph of a function having a
continuous first and second derivative on some interval [a, b] (i.e.
f € €[a, b)), then some of its shape characteristics may be described using
derivatives of the function.

Let us recall once more that the first derivative of a function f is a
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function f’ whose value at x is the slope of the graph of f at x. The second
derivative f" is the function whose value at x is the slope of the graph of f’
at x. In terms of rate of change, f' is the rate of change of f, whereas f” is
the rate of change of f', as the independent variable increases.

In order to fix these ideas geometrically, consider the following example.
In Fig. 1.8 there are sketches of the graphs of f, f', f” for the function
depicted in the first sketch.

The terms increasing and decreasing must be interpreted in the context
of the ordering of the real numbers, so that negative slopes are less than
positive ones. In Fig. 1.8, the slope at A is positive and hence larger than
the slope at B (which is negative). The function is increasing where its slope
is positive, decreasing where the slope is negative, and is stationary where
the slope is zero. In Fig. 1.8, one of the stationary points is at a local
maximum, whereas the other (at C) is a local minimum of the function.

The function is concave up where the second derivative is positive (B to
D) and concave down where the second derivative is negative (A to B).
The changeover occurs at the point of inflection B; there the second
derivative has value zero.

Fic. 1.8 Function with its first and second derivatives.
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We conclude Section 1.4 with an introduction to the idea of “curvature”,
which also plays a role in discussions of the smoothness and shape of a
curve. Consider any function f € 6*a, b], let x, be any point of [a, b] and
let P be the point (x, f(xo)) (Fig. 1.9). Let C be any circle that passes
through P and has a common tangent with the graph of y = f(x) at P.

In some neighbourhood of P, an arc of such a circle is the graph of a
function y = g(x), and by construction we have g(x,) = f(x,) and g'(x,) =
f'(x0). It can be shown that there is a unique circle C, of this type satisfying
the additional condition that the second derivatives of f and g also agree at
P, i.e. the condition g"(x,) = f"(x,) holds. This circle is called the osculating
circle at P, and its radius p is the radius of curvature at P. The reciprocal
of this radius, k = 1/p, is the curvature of the graph of f at P. Thus, the
curvature is large (p is small) at x, if the tangent to y = f(x) is turning
“rapidly” with x as x increases through x,. The curvature is small (p is
large) at x, when the tangent is turning “slowly” as x increases through x,.
In particular, the curvature is zero (p is infinite) if the graph of y = f(x) is
a straight line.

It turns out that the curvature can be represented by

K = |f"(xo)l AL + £ (x0)*F2. (1.1)

The surd in the denominator is troublesome, but if it is known that f’'(x) is
small at x,, then we may be able to use |f"(x,)| as an approximation for the
curvature.

0 X

Fi1G. 1.9 Osculating circle.
1.5 Integration
In this section we give a heuristic introduction to the idea of integral and

the important result known as the Fundamental Theorem of Calculus. A
careful definition of the “definite integral” of a function requires the use
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of a limiting process, as in the cases of continuity and differentiability of a
function at a point. The theory (due to Riemann in the nineteenth century)
begins with the concept of the area of a rectangle and the idea that
the definite integral of a positive function f € €[a, b] represents the area
between the graph of y = f(¢) and the t-axis, as in the hatched area of Fig.
1.10. Asindicated in Fig. 1.10, the area under the curve can be approximated
by using a set of rectangles. By carefully constructing sequences of such
approximations and then applying a suitable limiting process, a math-

y
A

N\

-
77

A

N

FiG. 1.10 Integral and area.

ematically viable definition is reached for a number representing the area
under the graph of y = f(f). This number is written as [ bf(t)dt. 1t is, of
course, to be expected intuitively that if the graph of y = f(r) is reasonably
smooth on [a, b], then there really is a unique real number representing
this area. More generally, a function f defined on (a, b) is said to be
integrable on (a, b) if this number, [} f(f) dt, defined by the limiting process
exists.

Note that where the function takes negative values in (a4, b), cor-
responding contributions to the definite integral will also be negative. The
following statements will then come as no surprise (cf. Fig. 1.3):

1 1
f tdt=0, I |t| dt = 1.
-1 -1

We mention some important properties of the definite integral. First, the
“range of integration” [the interval (a, b) in the previous discussion] can
be broken down into subintervals. In symbols, if f is integrable on (a, b)
and c is a number between a and b, then

f c f(t) dt + f ’ f(t)dt = fa ’ f(¢) dt. (1.2)
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The next two properties refer to the integral of sums and scalar multiples
of functions (as described in Section 1.1). If f and g are integrable on (a, b)
and « is a real number, then

b b b
[0 +sora=[ a+ [ soa, (1.3

b b
f of () dt = o f £ dt (1.4)

Taking advantage of a notion introduced in Section 1.3, the last two
statements can be abbreviated to the fact that the class of all integrable
functions on (a, b) forms a vector space.

It is important to note that all functions in %[a, b] are integrable on
(a, b), but the converse statement is not true. For example, the step function
defined by f(x) =1 on [0, 1], f(x) =2 on (1, 2), is integrable on [0, 2] (in
fact, f3 f(¢) dt = 3), and f is not continuous at 1.

As we might expect, a function that is integrable on (a, b) is also
integrable on any subinterval of (a, b). In particular, if a<x <b and fis
integrable on (a, b), then [} f(t) dt exists. In fact, this will allow us to define
a new function F on [a, b] by the rule

F(x) = f " f) . (1.5)

Now the important idea is that forming a function F from f in this way
can, under widely useful hypotheses, be seen as an operation that is the
inverse of the operation of forming the derived function from a function.
A simple but more precise statement of this kind is the following: if
f € €[a, b), then the function F defined by Eq. (1.5) is differentiable at each
point of (a, b) and its derivative is f. Thus, F' = f or

d [~ x
o f fOdt=f(x) or f F'(¢) dt = F(x) — F(a).

In particular, if f € €[a, b], then F € 6[a, b].

In other words, we can start with a function f € 6[a, b] and use integration
to form a new function F as in Eq. (1.5); differentiation of F then returns
the original function f.

A somewhat more general point of view starts with the following defini-
tion: let f € €[a, b]; then any function F for which F' = f on (a, b) is called
an antiderivative or indefinite integral of f, and is written F(x) = [ f(x) dx.
(Note that a definite integral is a number, and an indefinite integral is a
function.) Our definition [Eq. (1.5)] of a particular function F, together
with the result in italics ensures that there is at least one indefinite integral.
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We note that, in the standard calculus course, a lot of time is spent in
studying indefinite integrals (and derived functions) of the elementary
functions.

Being assured of the existence of one indefinite integral of f, it is then
reassuring to find that every indefinite integral of f is closely related to the
one we already have. In fact, if f € €[a, b], then every indefinite integral
of f differs from the function F of Eq. (1.5) by a constant function (which
is generally known as “the constant of integration”).

We are now in a position to remind the reader of the Fundamental
Theorem of Calculus.

Theorem 1.5.1. If f € €[a, b] and F is any indefinite integral of f, then
b
J f¢) dt = F(b) — F(a).

This result summarizes the most important idea used in the evaluation of
definite integrals. Note that because there is a difference of F values on the
right, the same conclusion obtains whatever indefinite integral F is chosen.

1.6 Functions of two independent variables

In Sections 1.1-1.5, we have used the xy-plane for the purpose of displaying
the graph of a function of a single independent variable. We may, however,
use the same device for “coordinatizing” the plane, that is, for assigning to
each point of the plane a pair of numbers that locate that point with respect
to the x- and y-axes. The first number is the oriented distance to the
point parallel to the x-axis and measured from the y-axis. The second
measurement is taken parallel to the y-axis.

B A X B B{ ¢------ +

p--------¢
p------t 4+
P-—-——--——- + »

|

F1G. 1.11 Cartesian products.
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Given a set S of points in the plane, we may have a rule assigning
numerical values to the points. We then say that a function, say f, is defined
on S. If Pis a point in S, then f(P) is the value of f at P. Previously, points
were real numbers denoted by x, for example. Now P may be replaced by
its number pair (x, y), and instead of f(P) we write f(x, y).

The set S has to be described in each case. If S consists of a number of
discrete points, then its description just consists of a list. If S is a region
with a boundary, then we may try to mathematically describe the boundary,
and we check whether a point is in § by testing whether it lies within the
boundary. There is so much flexibility in the plane, that no systematic
symbolism can represent every kind of region.

However, there is a special notation for rectangular regions whose edges
are parallel to the axes. Then the x-coordinate may lie between some
numbers a and b;i.e. x € [a, b], whereas y € [c, d]. In this case we denote
S by the symbol [a, b] X [c, d], the Cartesian product of the two intervals.
The whole plane may be thought of as an infinite rectangle, with
X € (—>,*)and y € (—», ). The notation R = (— %, ®) suggests the use
of R X R or R? for the plane. This notation may be generalized to the case
where x can take values in some set A of numbers, and y takes values in
B. Then the points (x, y) € A X B, as in Fig. 1.11. In the second example,
§ = A X B contains a finite number of points, and a function on S may
be defined by a list of function values. This is of course the case when the
function is obtained by measurement. The problem of surface fitting then
consists in taking a region containing S and finding a function on this region
that agrees with the data to some extent and behaves reasonably between
data points. The reasonableness often includes continuity and smoothness.

As in the case of functions of a single variable, the notion of continuity
for functions of two variables can be given a precise, formal definition.
Intuitively, it can be expressed by the statement:

A function f is continuous at a point P in its domain S, if the values f(P)
approach the value f(P,) as P approaches Pyalong any path in S whatsoever.

Discontinuities often arise where division by zero can occur in the
mathematical formula for the function or where a region is subdivided into
patches with different formulas for the function on each patch. Such a
patchwork is a very useful device and will be employed in some later
chapters. Suppose that A and B are regions with common boundary C.
Suppose that f is a continuous function defined on A, and g is continuous
on B. We will have a continuous function on the union of A and B (see
Fig. 1.12) if f(P) = g(P) for every point P € C.
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F1G. 1.12  Union of patches A and B.

The graph of a function is constructed by establishing a scale per-
pendicular to the xy-plane. We usually draw a z-axis through the inter-
section of the x- and y-axes, and for each (x,y) € § plot a point distance
f(x, y) from the coordinate plane, either above or below (x.y) depending
on whether f(x, y) is positive or negative. The coordinates of such a point
relative to the three axes are the ordered triple (x. y, f(x. y)) (see Fig. 1.13).

Ve
\l/

~— A

(x,y)
FiG. 1.13 Surface given by z = f(x. v).

For the collection of all such points to be a surface. it is necessary but not
sufficient for S to be a region. We say that the equation of the surface is
z = f(x.y).

It is important to note that strict adherence to this convention restricts
the nature of the surfaces we can describe, for we admit only one value of
f for each pair (x, y). To illustrate, the whole surface of a sphere cannot be
represented in this way, but a hemisphere obtained by slicing the sphere

through the equator parallel to the (x, y) coordinate plane is the graph of
a function.
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The question of smoothness can be discussed with reference to tangent
planes. For our purposes it is sufficient to look first at slopes of tangent
lines in the x- and y-directions. Given a point P in the xy-plane, we
consider the two planes containing P and parallel to the xz- and yz-planes,
respectively (Fig. 1.14). These intersect the surface in two curves, along
which only the first (x) or second (y) of the independent variables can vary,

\

F1G. 1.14 Slope of the surface at P.

respectively. We compute the slopes of these curves as before in the case
of functions of a single variable. These slopes are themselves functions of
P [or (x, y), where (x, y) are the coordinates of P]. If these slope functions

are continuous at some point P, = (x, y,) in the domain of f, then we can
assert the following.

(1) The graph of f has a uniquely defined tangent plane at the point
(%0, Yor f(%0,¥0)),

(2) The graph of fis locally flat at the point (x,, o, f(xo, ¥o)) in the sense
that if we move away from this point in any direction whatsoever, the graph
of f stays close to the tangent plane, provided only that we do not go too
far. This heuristic statement can be made precise by the introduction of
suitable limiting processes.
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If there is no slope at a point P, the surface is not smooth there in the
sense of having slope on every direction through the point P. In calculus,
the slope is computed with partial derivatives, but the ratio rise/run gives
the correct result if these are read off the tangent lines. Geometrically,
slopes are not calculable where the graph is vertical, where there is a
“fault”, or where there is a sharp ridge on which the “tangent lines” can
rock. In later chapters the piecewise construction of surfaces will be such
that along the “seams” where patches are joined up, slopes exist and vary
in a continuous manner. Since the functions will be constructed from
functions of a single variable, they will inherit some smoothness from the
latter.

For future purposes, we introduce the notations used in calculus to
describe the slopes of the curves C; and C, defined by the point P (Fig.
1.14). Along C,, only x varies, so the slope of C;, where it exists, can be
obtained by computing the derivative (Section 1.3) of the function f defining
the surface, treating y as a constant.

Similarly, along C,, only y varies, so we may compute the slope by
computing the derivative of f, treating x as a constant. We make the
following geometric definitions.

Definition The function, whose value at point P € S is the slope of the
surface defined by z = f(x, y) in the x-direction evaluated at P, is called the
partial derivative of f with respect to x, and is denoted by the symbol f,.
Similarly, the function whose value at P is the slope of the surface in the y-
direction evaluated at P is called the partial derivative with respect to y, and
is denoted by f,.

Other notations are f; and f, to denote derivatives with respect to the
first and second variables, respectively, or af(x, y)/dx and af(x, y)/dy, or
0z/dx, 3z/dy. These are referred to as (partial) derivatives of order one.
More generally, we can define a directional derivative. This is done by
considering any plane through P that is perpendicular to the xy-plane. This
plane of section intersects the surface in a curve that may have a tangent
at P lying in the plane of section. On the line of intersection of the xy-
plane and the plane of section, we choose a positive direction and denote
distance by s. Then the slope of the tangent is the directional derivative,
denoted by af/ds.

At points corresponding to the boundary of the domain § of the function,
directional derivatives are defined by one-sided limits analogously with the
situation for functions of one variable.

The first-order derivatives, when they exist, are themselves functions of
two variables, and if their graphs also have slopes, these may be computed



20 1 Functions and graphs

via derivatives. Thus, if f, has at some point P a slope both in the x- and y-
directions, these are denoted variously by

3% f(x,y) 9%z
fo=fu= a2 =6x2 and fxy =f=

Observe that the order of the subscripts is not the same as the order of the
variables in the notation using 4. Now, if f, has slope in the x- and y-
directions, then these are similarly denoted by

O’f(x,y) 9%z

f(x,y) 9%z
fyx =fu = = and fyy =fn= 6y2 ay?’

dx dy dax dy
It turns out that if f,, and f,, are continuous, then they are equal; then the
order in which the derivatives are taken is not important. In this (very
common) case, the three functions f,,, f,,, f,, are all of the second-order
(partial) derivatives of f.

For a function of two variables, this idea can be generalized to any
number of derivatives with respect to x and y, as long as the function is
sufficiently well behaved. Then the notation using 9 is advantageous,
provided that the order in which the operations are performed does not
matter, and that is indeed the case when all the derivatives are continuous.

*f(x,y) _ 8%z
dy ox 9y ox’

Then, an nth-order derivative of f, p times with respect to x and q times with
respect to y, is denoted by

0"f(x,y)/axP ay?, p+gq=n.
There are n + 1 such derivatives of order n, obtained by putting p =
0,1,...,n.

We are now in a position to generalize the concept of €"[a, b], the class
of functions (of one variable) having continuous derivatives of all orders
up to and including n on the interval [a, b].

In our uses of the following definitions, the region S will have a simple
closed polygon as its boundary.

Definition Let S be a region in the xy-plane.

(a) €"(S) denotes the class of functions that are continuous and have n

continuous partial derivatives of orders 0, 1,2,...,non 8.

(b) 6*(S) denotes the class of functions that are continuous and have
continuous derivatives of all orders 0, 1, 2, . . ., on S, i.e. are infinitely
differentiable.

These definitions should be compared with those at the end of Section 1.3.
As in the case of functions of a single variable, each class €"(S) turns out
to be a vector space.



1.7 Polynomial functions 21
1.7 Polynomial functions

In any study of curve and/or surface fitting there is one class of functions
that plays a supremely important role. This is the class of polynomial
functions, and we now present a brief introduction to the nature of these
functions.

The main reason for their popularity is undoubtedly that it is easy to
compute with them. Evaluation at a point, addition and multiplication, and
differentiation and integration are all readily performed. The definition
shows, in particular, that to evaluate a polynomial at a point it is only
necessary to multiply and add real numbers together finitely many times.

Definition (a) A function p defined for all real numbers x by

x)=ayxVN +ay_ XNV +... +ax+a,, 1.6
pP

where N is a non-negative integer and a,, a,, . . ., ay are fixed real numbers,
is called a polynomial.
(b) If p(x) has this representation and ay # 0, then p(x) has degree N.

(c) If all coefficients ay, a,, . . ., ay are zero, then p(x) is called the zero
polynomial.

Polynomials of degree one, two, three, . . ., are also known as linear,
quadratic, cubic, ..., polynomials, respectively. Thus 2x2+1,

(3.1) x* — x = (3.1) x2 + (—1)x are polynomials of degree two or quadratic
polynomials.

Polynomials of degree zero (p(x) = aq, ay # 0), together with the zero
polynomial, are called the constant polynomials. Their graphs are straight
lines parallel to the x-axis.

It will be very useful for us to be able to talk easily of certain classes, or
sets, of polynomials. For this purpose, we introduce a symbol ?,, which
denotes the set of all polynomials p with degree not exceeding N, together
with the zero polynomial. Thus, a function p is in the class Py, (i.e. p € Py)
if and only if

px)=anx¥ +ay_xN ' +... +ax+ag,

for some real numbers ay, a;, . . ., ay (and here we make no conditions on
their being zero or non-zero). For example, the class P; contains all
constant, linear, quadratic, and cubic polynomials. Also, if p € %;, then
four parameters (coefficients in the previous expression) are needed to
determine p precisely.

Polynomials can be added together in a natural way to produce a new
polynomial. Thus, if p, g € P, then the sum p + g (as defined in Section
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1.1) is also in Py and is obtained by adding corresponding terms in the
expressions for p and q. Thus, if

p(x)=ayxN +ay_xN ' +.. . +ax+a,,
gx) =byxN +by_ XNV +. .. +bx+ by,
then p + q is defined by

(P +q)(x) = p(x) + q(x) = (ay + by)x" + (ay-; + by )N
+...+ (a, + b))x + (ag + by).

Note that, given the degrees of p and g, say d, and d,, respectively, there
is, in general, little that can be said about the degree of p + q. The best
general statement to be made is that either p + q is the zero polynomial or

0 < deg(p + q) < max{degp, deg q} = max{d,, d,}.
for example (where = means “implies”),
plx) =x+2, g =-x-2, > P+ =0,
px)=x>-2x+3, qx)=x*-3, > (p+q9)(x) =x>+x*-2

For a scalar multiple (cf. Section 1.1) of a polynomial p (as above) we
have that, for any real number «, the function ap is defined by

ap(x) = alayx™ + ... +a;x + ay) = (aay)xV + ... + (aa))x + (aay).

Several important properties of polynomials are summarized in the
Theorem 1.7.1. The terms “vector space” and “dimension” used in the
theorem have precise mathematical meanings which we will not pursue in
detail. For the first term (as noted in Section 1.3) a class of functions (or
vectors, or other objects) ¥ with the property that p,q €F implies
p+ q € ¥ and ap € & for all real numbers «, is called a vector space. This
property is certainly enjoyed by the class Py where N is any fixed positive
integer. The dimension of Py, is, in effect, determined by the number of
coefficients ay, ay, . . ., ay needed to pin-down a particular function in Py.

Theorem 1.7.1 The vector space Py has dimension N + 1.

Note that, in contrast to this statement, no mention is made of “dimension”
in the corresponding statements concerning €"[a, b] (in Section 1.3) and
%"(S) (in Section 1.6). The reason for this is that, in the last two examples
of vector spaces, all the functions in the space cannot be described in terms
of any finite number of parameters. Consequently, they are said to be
spaces of infinite dimension.
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Before completing this introduction, we should note that our definition
of a polynomial function does not give a good method to evaluate a
polynomial computationally. If we work directly with the definition, the
powers of x up to the Nth would be computed, multiplied by the coefficients
a;, and then summed. This is found to take $N(N + 1) multiplications and
N additions. In contrast, Horner’s scheme requires only N multiplications
and N additions. This scheme can be described by introducing multiple
parentheses in the expression for p that indicate the order in which opera-
tions are to be performed:

px)=(...((ayx +ay_)x +any_)x +... +a)x+ay. (1.7)

1.8. Polynomials as products

Polynomials can also be multiplied together in the familiar term-by-term
fashion. Thus,

px)=x-1, qx) =x+3, = (pq)(x) =px)q(x)
=x2+2x -3,

px)=(0.Dx*— (1.8)x, q(x)=2, = (pg)(x)=p(x)q(x)
= (0.2)x* — (3.6)x.
If f is a function with domain $ and the number x, € § is such that
f(xo) = 0, then x, is called a zero of f, or a root of the equation f(x) = 0.
Clearly, if f is continuous on S, then the graph of f crosses or touches the
x-axis at x,. For a polynomial p of degree one, we can write p(x) =ax + b
for some numbers a, b with a # 0. Such a polynomial [defined on (— <, )]

has one and only one zero, namely at x, = —b/a.
Consider two such polynomials of the form

pi(x)=x—xy, P2(x) =x — x,.

The product polynomial, say g, is in %, and has the form

q(x) = (x —x;)(x — x3) = x% = (X1 +Xx)x + x1X,.

Thus, g has zeros at x; and x,, where x,x, are the zeros of p,,p,,
respectively. This situation is shown in Fig. 1.15. More generally, if
Xi,. .., Xy are real numbers, then we can define a polynomial g € P, by

N
g(x) = (x —x)(x —x3). .. (x—x~)=i=Hl(x—xi),
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pl(x)

q(x)

/pz(x)

> X

FiG. 1.15 Product of two first-degree polynomials.

and g will inherit the zeros x, x,, . . ., xy from its linear factors. This point
is illustrated in Fig. 1.16, where the graphs of three polynomials from %;
are shown.

FiG. 1.16 Three cubic polynomials on [—1.3, 2.2]. (a) x3, (b) —x*+3x+2, and (c)
x3 = x? - 2x.
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We have been considering the construction of polynomials of degree N
as products of N polynomials of degree one (i.e. of linear polynomials).
Can every polynomial of degree N with real coefficients be expressed in
this way? It is very important to realize that the answer is No—not if we
confine our attention to factors that also have real coefficients.

y
A

F1G. 1.17 Quadratic polynomial with no real zeros.

To illustrate this, consider the quadratic p(x) = x? + 1. Figure 1.17 shows
that p(x) has no real zero, and this suggests immediately that p(x) cannot
be factored into the product of two products of two linear polynomials;
otherwise the graph would have to meet the x-axis somewhere. The same
conclusion is reached when one tries to solve the equation x>+ 1 =0 by
the formula method.

In order to express every real polynomial of degree N as a product of N
polynomials of degree one, it is necessary to extend the concept of number
to admit the complex numbers. Then it can be done. For example, x? + 1 =
(x —i)(x +1). This is a consequence of the Fundamental Theorem of
Algebra, which states that every polynomial of positive degree with real or
complex coefficients has at least one (generally complex) zero. Once this
important fact is given, it is relatively easy to show that every (complex)
polynomial of degree N > Q0 has N (generally complex and possibly multiple)
zeros. In Section 1.9, we investigate a little more closely the relationship
between the zeros of a polynomial and the existence of linear factors.

1.9 The division process and zeros of polynomials

The division of one polynomial by another is a fundamental idea of algebra,
and a technique for performing such a process is included in the high school
curriculum. Given polynomials a(x) and (non-zero) b(x), the objective is
to find a quotient polynomial g(x) and a remainder polynomial r(x) whose
degree is less than that of b(x), or is the zero polynomial, for which

a(x)/b(x) = q(x) + [r(x)/b(x)],
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or, which is the same, for which a(x) = q(x)b(x) + r(x). A process for
finding g(x) and r(x) is called a division algorithm.

In order to clarify the significance of this process, the following result is
needed and can be found in college or first-year university texts on algebra.

Theorem 1.9.1 Let a(x), b(x) be polynomials, b(x) # 0. Then there exist
unique polynomials q(x) and r(x) for which

a(x) = q(x)b(x) + r(x),
and either r(x) = 0 or r(x) has degree less than that of b(x).

A particularly important case of this result is that in which b(x) = x — x,
for some fixed real number x, — a polynomial of degree one. Then the
result says that there are unique polynomials g(x) and r(x) for which

a(x) = q(x)(x — xo) + r(x),

where r(x) = 0 or r(x) has degree zero; i.e. in either case, r(x) is a constant
polynomial, say r. Thus,

a(x) = q(x)(x — xo) +r.

If we now substitute x, for x, it is found that r = a(x,). This is the gist of
another important result known as the remainder theorem.

Theorem 1.9.2 The remainder on division of the polynomial a(x) by x — x,
is a(x,).

The following factor theorem is an immediate consequence of the remain-
der theorem:

Corollary 1.9.3 The number x is a zero of the polynomial a(x) if and only
if a(x) has a factor x — x,,.

Thus, x, is a zero of the polynomial a(x) if and only if a(x) = g(x)(x — x,)
for some polynomial g(x). Recall that there may be no real x, that is a zero
of a given polynomial. This is the case for polynomials 2x?> + 3 and 1 (the
constant polynomial), for example. In order to make a more general
statement about the existence of a zero of a polynomial, it is necessary (as
in Section 1.8) to introduce the study of complex numbers and polynomials
whose coefficients are complex numbers. We shall not go into this.

Suppose that a(x) has a zero at xy. Then, a(x) = g(x)(x — x). It is possible
that the quotient polynomial q(x) also has a zero at x(, and it is important
for us to introduce some terminology for this situation. Thus, we say that
X is a simple zero of a(x) if a(x) = g(x)(x — x,) and g(x,) # 0; i.e. x; is not
a zero of the quotient g(x).
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On the other hand, if x, is a simple zero of g(x) [as well as being a zero
of a(x)], then we have g(x) = q,(x)(x — x,) with g,(xo) #0 and a(x) =
q(x)(x — x,). Substituting for g(x) from the first equation, we deduce that

a(x) = q(x)(x — xo)z,

and q,(x,) # 0. In this case, we say that a(x) has a double zero at x,,.

More generally, if a(x) = q(x)(x — xo)™, where g(x) is a polynomial with
q(xo) # 0, we say that a(x) has a zero of order m at x,. If m > 1, then a(x)
is said to have a multiple zero at x,,.

1.10 Graphs of polynomials

We shall see many examples of graphs of polynomials in the sequel. In
Section 1.10, a few points are made that are generally useful in sketching
or reading such graphs.

(1) The graph of every polynomial of degree one is a straight line.
Polynomials of degree zero, i.e. constant polynomials, also have straight-
line graphs; these are parallel to the x-axis (horizontal).

(2) The graph of every polynomial of degree two is a parabola with axis
of symmetry vertical. If a, > 0, the parabola opens upward; if a, <0, it
opens downward (cf. Fig. 1.18).

a,> 0]

02<O

FiG. 1.18 Parabolas.

(3) It is a consequence of the Fundamental Theorem of Algebra that
the graph of a polynomial of degree N can cross the x-axis at most N times;
i.e. a polynomial of degree N has at most N zeros. Consequently, graphs
of high-degree polynomials can display numerous oscillations.
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(4) A polynomial of degree N behaves very much like its leading term
ayx¥ when x is large and positive or negative. As a consequence, poly-
nomials become large in value when x becomes large (+ or —). This
phenomenon is illustrated in Fig, 1.19.

[/

FiG. 1.19 Cubic polynomial and its leading term.

(5) A polynomial p(x) crosses the x-axis at x = c only if p(x) has a zero
of odd order at ¢ (Section 1.9). If p(x) has a factor (x — c), then the graph
of p(x) has a horizontal tangent at x = c if and only if c is a multiple zero
of p(x) (see Section 1.9 and Fig. 1.19).



2

Curve Fitting with Polynomials

2.1 Polynomial interpolation

The most primitive and important class of functions for the purpose of
curve fitting is undoubtedly the class of polynomial functions introduced in
Sections 1.7-1.10. The most elementary notion of curve fitting is that of
interpolation, and so we begin by combining these with a discussion of
polynomial interpolation.

In applications, we frequently come across a set of data that is thought to
be derivable from some underlying function that also fills in the gaps
between the data in some way. More precisely, we often have a set of
function values (e.g. elevations) at some points, perhaps slopes at the same
or other points, and wish to find the function that fits this data. This problem
is still not sufficiently well stated. In the first place, the meaning of “fits”
is not given, and if this were to be clarified, then “the function” is most
likely far from unique. Let us examine a situation where this happens. Let
two distinct x-values x,and x, be given together with corresponding function
values f, and f|. There exists a unique first-degree polynomial a,x + g, that
fits the data in the sense that a,x, + ay = fyand a\x, + a, = f,; i.€. its graph
is a straight line passing through the points (x,, fy) and (x|, f;). However,
there are infinitely many second-degree polynomials (parabolas) that fit
the same data in the same way. In order to clarify this issue, we must state
at least

(1) what concept of fit we are using, and
(2) what kinds of functions we shall use to achieve this fit.

If (1) and (2) are properly chosen, there may exist a unique function of the
kind allowed in (2), achieving the type of fit required in (1).
In the case of the simplest kind of polynomial interpolation, the data

29
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consist of distinct x-values and corresponding f-values; let us denote them
by

{xo.x1,...,xn}, {fo.fi... ..k

As illustrated above, the fit consists of the requirement that the function
f(x) employed interpolate; that is, it must satisfy

fx) =1, i=0,1,...,N.

This means that the graph of f(x) must pass through the points (x;, f), i =
0,1,..., N, in the xy-plane. The functions permitted are those in P, i.e.
polynomials of degree N or less. In this situation there is a fundamental
result that shows that we have made a happy choice for (1) and (2).

Theorem 2.1.1 If {x,, x,, ..., xn} is a set of N + 1 distinct numbers then,
for any set of numbers {f,, fi, . . ., fn} there exists a unique polynomial in
the class Py, say p(x), such that p(x;) =f,,i=0,1,..., N, i.e. whose graph
passes through the N + 1 distinct points (x;, f;),i=0,1,..., N.

Note carefully that the polynomial has degree N or less. Thus, if the
N + 1 data points lie on a straight line, the polynomial in P, will look like

OxM +0x¥"1+ ...+ 0x2 +a;x + a,,

where a, and a, have appropriate values.

Note also that the general Nth-degree polynomial contains N + 1 con-
stants ay, . . ., ay that have to be found. The theorem says that the N + 1
interpolation conditions determine these uniquely.

As an example, consider first the geometrically obvious case of just two
points. Let xog = 0. x, = 1; f, = 1, f; = 3. Since there are two distinct points
(N+1=2), N=1, and so there exists a unique first-degree polynomial
that interpolates. Let it be p(x) = a.x + a,. Imposition of the interpolation
conditions yields the two equations a, = 1 and a, + a, = 3. Solving, we get
a,=1,a; =2, and so p(x) = 2x + 1.

Next, consider polynomial interpolants as approximations for the func-
tion 1/(1 + x?) on the interval [—4, 4]. For N=3, 6, 12, .. ., we choose
for the N + 1 abscissas x; equally spaced points placed on the interval [ -4,
4], with xo = —4 and xy = 4. Then, for each x; take f; = 1/(1 + x?). The
resulting polynomial interpolants of degrees 3, 6, and 12 are shown in Fig.
2.1.

It will be observed that, as N increases, the approximation seems to
improve near the centre of the interval, although oscillatory behaviour is
pronounced, particularly at the ends of the interval.
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P <

- X

; 3 2 R 0
3 2 ] 0
3 2 0 0

FiG. 2.1 Polynomial interpolants.

This example suggests that, if the x; are free for choice, then one may
do better in the approximation process if, instead of choosing evenly spaced
abscissas, we allow them to cluster near the ends of the interval. This is
indeed the case. In Fig. 2.2 we show comparable results where, for each
N, the numbers x, x;, . . ., Xy are proportional to the zeros z,, z;, ..., 2y
(known to be all real and distinct) of the Chebyshev polynomial of degree
N + 1. For convenience, the constant of proportionality is chosen such that
xo = —4 and xy = 4. [We refer the interested reader to any standard text
on Numerical Analysis, such as Conte and de Boor (1980) for further
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—P <

-4 -3 2 A
o : .
‘4 -3 2 -
= N=12
— X
-4 -3 -2 -1 0] | 2 3 4

FiG. 2.2 Polynomial interpolants at the (extended) Chebyshev abscissas.

details.] The point of view of the present volume, that of curve fitting,
applies most frequently when the data is prescribed and the abscissas are
not free for choice. The reduction in error of approximation by the choice
of abscissas is a topic of approximation theory that is not investigated here.

We next introduce some examples that will be used repeatedly throughout
this volume in order to facilitate comparisons between different methods
of curve (and, subsequently, surface) fitting. The data for curve-fitting
procedures are sampled from mathematically defined functions that can be
thought of, in a picturesque way, as a “mountain” on a plain together
with a “ramp/mountain” combination. The graphs of these functions are
common to the several parts of Figs. 2.3 and 2.4, respectively.

In Fig. 2.3, we illustrate polynomial interpolants of degrees 4, 8, and 16
for the mountain example when abscissas are equally spaced (on the left)
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2.2 Computation of polynomial interpolants 35

and randomly selected (on the right). The irregular spacing is likely to be
representative of many practical situations. In Fig. 2.4, comparable results
are illustrated for the ramp/mountain case. The sets of abscissas used are
just those of Fig. 2.3. The oscillatory behaviour and large swings in value
of the higher degree polynomials are discouraging and indicate that “high
degree” is not to be equated with “good”. Consider the comments in (3)
and (4) of Section 1.10.

2.2 Remarks on the computation of polynomial interpolants

Let us consider briefly the numerical implementation of the theorem stated
in Section 2.1. The most natural way of finding the value of the interpolating
polynomial p at an arbitrary value of x is first to find the coefficients a, a;,
.. ., ay in the definition of p (Section 1.7) and then to evaluate p(x) by the
Horner scheme [cf. Eq. (1.7)].

To find the coefficients of p we have the N + 1 conditions p(x;) = f,,
i=0,1,..., N, and if we write these out in full, we have

a0+a1x0+a2x(2,+.. . +aNX6V=f0,

ap + ax,; +a2x%+.. . +aNx11V=f1, (21)
ag + ayxy + ayxy + ... +ayx¥ = fn.

It is customary, useful, and convenient to write this system of N + 1
equations in the N + 1 unknowns, ay, a,, . . ., ay in matrix form. We define
the following matrices:

1 X0 x% “ e xON ap fo
1 Xy x% ... X{V a fl
V= _ , a=1|_ |, f=| |, (2.2
_1 XN XN oo XN an J fNJ

(the last two are also known as column vectors), and the set of equations
can then be abbreviated to Va = f, where V, f are known, and a is to be
found.

Now the computational task of solving equations in this form is a familiar
one. The fact that the abscissas are distinct means that the inverse matrix
V! exists and (as our theorem asserts) there is a unique solution to the
equations, which can be written a= V! f.
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Every computer installation that has a commitment to scientific work
will have a package program available for this task, and as long as N is not
too large and the x;’s not too close together, the package program will
doubtless give a sufficiently accurate solution. However, the coefficient
matrix V, known as a Vandermonde matrix, is notorious. For modest sizes
of N, it is very ill-conditioned (in particular, its determinant is very small),
and solutions may be subject to severe accumulation of round-off error, or
the program may fail altogether. Thus, this direct algebraic attack on the
problem is not recommended for a general-purpose computer code.

Note also that, for essentially the same reason, when some abscissas are
very close together, then the polynomial interpolant, even when accurately
computed, will be very sensitive to errors in the corresponding values f;.
This is a geometrically obvious phenomenon.

Thus, although theoretically important, this natural approach to eval-
uating p is not suitable for large-scale computation. The process to be
described next in Section 2.3 not only has considerable theoretical interest,
it is also computationally much more satisfactory. From the strictly com-
putational point of view, however, even this is not the best. The interested
reader is referred to appropriate algorithms, depending on divided dif-
ference representations for some strong competitors [and to be found in
texts on numerical analysis, such as Conte and de Boor (1980)].

2.3 Lagrange’s method for interpolation

In this section we describe a method attributed to the French mathematician
Lagrange (1736-1813) for finding the polynomial interpolant p € P to the
data pairs (x;, f;),i=0, 1, ..., N. Instead of calculating the coefficients a,
a,...,ayof p, we begin by considering a set of N + 1 different problems,
each of which is relatively easy to solve and which can subsequently be
combined to solve the problem posed initially.

The idea is to solve the N + 1 simple interpolation problems obtained

by taking the distinct abscissas xy, x;, ..., x5 as already presented, but
taking the N + 1 primitive sets of f values,
{1,0,...,0 {0,1,0,...,0}, ..., {0,...,0,1} (2.3)

in turn. According to the basic theorem (Theorem 2.1.1), each of these
problems has a unique solution.

Before considering the general case, let us examine a primitive example
with just two data points (xg, fy) = (0, 1) and (x4, f;) = (1, 3).

There are now two primitive sets of f-values:

{1, 0} and {0, 1}.
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We solve first for the polynomial in %, passing through (0,1) and
(1, 0). We denote this by L,. It is found that Ly(x) = —x + 1 [check that
Lo(xo) = 1 and L(x;) = 0; subscripts identical corresponds to the value 1,
subscripts different corresponds to the value 0].

Then, we solve for the polynomial L, in P, passing through (0, 0) and
(1,1). It is found that this polynomial is L,(x) =x [check again that
L,(0) = 0 and L,(1) =1].

It is now clear that the original interpolation problem is solved by the
simple linear combination of L, and L, given by

p(x) =foLo(x) + fiLi(x) =1(—x+ 1)+ 3(x) =2x + 1.

In fact, we can say more. For any pair of ordinates f,, f;, the polynomial
in P, given by

p(x) = foLo(x) + fiL(x)

solves the interpolation problem with data (0, fy) and (1, f;) because

P(xo) = foLo(xo) + fiL1(xo) = fo(1) + f1(0) = fo,
p(x1) = foLo(x1) + fiLy(x1) = fo(0) + f1 (1) = f;.

The functions L, L, are known as the fundamental Lagrange polynomials
determined by the pair of abscissas 0 and 1. They are also called the cardinal
functions for polynomial interpolation at these two abscissas.

Let us return now to the general case in which N + 1 distinct abscissas

X, X1, - . ., Xy are given. Using the N + 1 data sets [Eq. 2.3], we are to
construct N + 1 cardinal functions L, L, ..., Ly in the class P with the
properties
T (2.4)
i X:) = .
o, i#j

When these are found, the original problem is solved by defining

N
p(x) =foLo(x) + fiLy(x) + ... + fyLn(x) = zof:Li(x), (2.5)

for, using Eq. (2.4), we have p(x;)) =f;,i=0,1,..., N, and since L, L,
..., Ly are in Py and P, is a vector space, it follows that p is also in Py,

It only remains to find the cardinal functions, and this can be done
explicitly. Note that, by Eq. (2.4), L; has N distinct zeros at xg, Xy, . . .,
Xi—1, Xi+1, - - - » Xy- As pointed out in Section 1.9, this means that L(x) has
factors (x — x;), (x — x;), and so on. Since L; has degree at most N, it
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follows that we may write

Li(x) =k(x —xo)(x = x1) ... (¥ = X-1)(* = Xis1) . .. (¥ — xp)

N
=kl (- x), (2.6)
i
for some real number k. To evaluate k, we use the remaining piece of data
about L;, namely that L,(x;) = 1. Thus,

N
Li(x,') =1= k 2 (x,- "'x])
=
Solve for k and substitute back into Eq. (2.6) to obtain the result

Li(x) = (x=x¢)...(x—x;))x—x;41) ... (x — xx)
(xi — Xo) - .- (x; —Xi-)(x — X))o (x5 — xN)

N N
=le-x) /IT@-x), i=01,...,N (27
j=0 j=0
j#i j#i
Note that the factor x — x; is missing from the numerator and x; — x; from
the denominator.

EXAMPLE The cardinal functions for polynomial interpolation at the three
abscissas x, = 0, x; = 1, x, = 3 are [using Eq. (2.7)] as follows:

(- Dx—-3) 3
Ly(x) = 0=1)0=3)" 3(x? — 4x + 3),
__(x—O)(x—3)___ 3
L](x) - (1 _ 0)(1 _ 3) - %(xz 3X),
_(x=0)(x—=1) 3
L,(x)= G-0G-1) 3(x? —x).

The interpolating polynomial for function values f,, f,, f, at 0, 1, 3,
respectively, is then given by Eq. (2.5):

p(x) = fo 3(x* = 4x + 3) = fi #(x? = 3x) + fL4(x* — x).

The three cardinal functions are shown in Fig. 2.5.

It is clear from Eq. (2.7) that each cardinal function has degree N
(N = 2 in the example). However, if the data points should lie on a straight
line, then the summation in Eq. (2.5) will have cancellations in such a way
that the interpolating polynomial p will be in P,.
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L1(X)

FiG. 2.5 Three cardinal functions: N = 2.

In fact, it can be proved that every polynomial in P, can be expressed
in the form of Eq. (2.5). The summation in Eq. (2.5) is described as a linear
combination of the functions L,, L,, ..., Ly, so in other words. every
polynomial in P is some linear combination of the fundamental Lagrange

K Lg(x)
M/\VAVA\VAV/\ .
y

-
F -y
x
~

y
e
| e

FiG. 2.6 Three polynomial cardinal functions of degree 16.
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polynomials. Since these functions enjoy another technical property known
as linear independence, they are said to form a basis for Py (a cardinal
basis in this case). This particular basis has the defining property that if

N
p(x) = X b;L;(x), thenp(x) = b,,j=0,1,...,N.
i=0

If we return to the defining expression [Eq. (1.6)] for a member p of
Py, we observe that p is expressed there as a linear combination of N + 1
other functions. In this case, the functions in question are the power
functions given by 1, x, x2, ..., x". These are also linearly independent,
and so they also form a basis for Py. (Indeed, any non-trivial real vector
space will always have infinitely many bases.) It is important to realize that,
although Egs. (1.6) and (2.5) may look very different, any given function
in Py can be represented in either way.

In Fig. 2.6, we illustrate some polynomial cardinal functions associated
with 17 equally spaced abscissas. They show how the presence of data at
the point where the function has the value 1 is incorporated into the
complete polynomial p(x). Here, the L(x) terms oscillate and grow as |x|
grows. This behaviour demonstrates again (what are often seen as) some
unfortunate characteristics of high-degree polynomial interpolation (cf. the
examples of Section 2.1).

2.4 Hermite or osculatory interpolation

The method by which the polynomial interpolation problem was solved in
Section 2.1 is attributed to Lagrange. The name of Hermite (1822-1901) is
associated with a more general polynomial interpolation problem that
can also be solved by means of cardinal functions, although there are other
methods. In its simplest form, the data is given at N + 1 distinct points x,,
Xy, ..., Xy as before, and at these we are given not only ordinates f, f;,
..., fybut also slopes fy, f1, . . ., fy. We are to find a polynomial p(x) with
the properties

p(xi)zfi’ p'(xi)=f;$ i=0’1’°--’N-

There are 2(N + 1) = 2N + 2 conditions here, so p(x) will require that
many degrees of freedom [i.e. coefficients in Eq. (1.6)]—its degree must
be 2N + 1. It turns out that the function class P,y is, in fact, a happy
match with this set of interpolating constraints.

Theorem 2.4.1 There exists a unique polynomial in class P,y ., satisfying
the above conditions.
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The full generality of this theorem is seldom used in computational
practice. So, for the purpose of illustration, and for future reference, we
restrict attention to the case N =1, i.e. two points only. There are four
pieces of data, two at each point, and the degree of p(x) may be as high as
three. To solve this problem, we first construct four cardinal functions H,,
Ko, H;, K,. These are determined by Hermite interpolation at the points
xo and x; with four primitive data sets. In fact, we impose the interpolatory
conditions

Ho(xo) =1,  Ko(xo) =0, Hy(x)=0, Ki(x0)=0,
Hj(xo) =0, Ko(xo)=1, Hi(xo)=0, Ki(xo)=0,
Hy(x,) =0, Koy(x,) =0, Hy(x;) =1, K(x;) =0,
Hi(x,) =0, Ko(x,) =0, Hi(x,) =0, Ki(x) =1

Ho H,

e %

F1G. 2.7 Hermite cardinal functions; N = 1.

Each of these cardinal functions is a cubic and is not hard to construct. The
graphs are shown in Fig. 2.7. The interpolating polynomial is then

p(x) = foHy(x) + foKo(x) + fiH(x) + f1 K, (x). (2.8)

In order to construct the cardinal functions, observe that each is a
polynomial of degree three. Now H, has a double zero at x = x; (cf. Section
1.9), so

Ho(x) = a(x + b)(x — x,)?,
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where a and b still have to be determined from the conditions Hy(x,) = 1
and Hy(xo) = 0. These yield

a(xo + b)(xo —x1) =1,
a(xg — x1)% + 2a(xy + b)(xy — x;) =0.
From the second equation, we may cancel out a and (x, — x,) to get

(xo — x1) +2(xo + b) =0,

and so b = (x; — 3x,)/2. Substitute this into the first equation and solve for
a:

L 1 2 2
_(xo—xl)z[x0+%(x1—3x0)] (xO—xl)z(xl—xO)— (xo—x1)*

If we put x, — x, = h, then a and b simplify to a = 2/h® and b = $h — x,,
and H, is completely determined.
It is easier to construct Ky(x). Here we observe that x; is a single zero
of K, whereas x; is a double zero, so
Ko(x) = c(x — xo)(x — x1)?,

and c is determined from the slope condition at x: K¢ (xo) = 1. This gives

c(xg —x1)% + 2c(xo — x0)(xo — x1) =1,
and so
c=(xg—x) =h"2

The remaining two cardinal functions are obtained in a similar way. Here
they are set out in full:

2 h h
How) =35 (3= x0+3) G=m), Hi@) == G=xo)? (-5 -3),

K@= e x)E-n)?, K@= E-x o). @9

Recall that for any four pieces of data f,, fo, fi, fi at xo and x,, the
unique Hermite interpolating polynomial from %, is now given by sub-
stitution in Eq. (2.8). As a simple example, the interpolant determined by
fo=fi=1, fo=f1=—1is shown in Fig. 2.8.
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F1G. 2.9 Lagrange and Hermite interpolants to sin (27x) on four abscissas; N = 3.
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As a second example, consider the Lagrange and Hermite interpolants
to f(x) = sin(27x) at four abscissas, x =0, 3, %, 1. The graph of f(x) is
indicated by the solid curve in Fig. 2.9, and the four points on the curve at
which we are to interpolate are indicated by crosses. The Lagrange inter-
polant reproduces the four function values only and is in the class of
polynomials ;. The Hermite interpolant reproduces both function and
slope values at the four abscissas and is in %,. The Lagrange interpolant
deviates from f(x) by as much as 30% in [0, 1], whereas the error in the
Hermite interpolant on this interval is not visible on the graph and, in fact
does not exceed 0.002. In both cases, note the rapidly increasing error as
x increases beyond the extreme abscissa, x; = 1. In general, if there are
N + 1 abscissas, we may expect the Hermite interpolant (of degree 2N + 1)
to follow the trend of the data better than the Lagrange interpolant (of
degree N).

One way of avoiding high-degree polynomials is to join adjacent pairs
of data points with polynomials of some degree, different from point to
point, perhaps, and to make sure that where these join, a certain amount
of “smoothness” is achieved. Spline functions offer such a possibility
and are discussed in Chapter 4. Other forms of piecewise polynomial
interpolation are dealt with in Chapter 3.

There is no difficulty in principle in the treatment of polynomial inter-
polation when the number of consecutive derivatives assigned varies from
one abscissa to another [call f(x,) a zeroth-order derivative at x;}. [For
discussion and implementation of algorithms for this case, see Section 2.7
of Conte and de Boor (1980).}

2.5 Minimizing the sum of squared deviations

The concept of fit of a curve used so far in this chapter has been that of
interpolation. We now consider another idea that also qualifies as a method
of fitting a curve. The data consists of N + 1 distinct abscissas x, x,, X3,
..., xy at which ordinates f,, f,, f>. . . ., fy are assigned. The functions we
admit in making the fit are those of ?,, where m < N. We consider a
typical function p € ?,, and call p(x,) — f, the deviation of p from the data
at x; (cf. Fig. 2.10). If a function were to interpolate the data, then each
deviation would be zero. Our point of view now is to settle for less and
admit non-zero deviations for the sake of using a simple function p, i.e. we
anticipate that m will be very much less than N. This introduction will be
empirical, and we shall return subsequently to some discussion of the
philosophy of the approach adopted.
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For any p € ®,,, we consider the sum of the squared deviations:

N
E(p) = 20 [p(x:) - fi]2. (2.10)

The notation E(p) resembles that used for function values but stands for
a somewhat more sophisticated idea. Here p is a function rather than a
point of some domain S. In this context, E is called a functional and assigns
a number to p according to the rule indicated in Eq. (2.10).
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FIG. 2.10 Deviations of p(x) from the data.

Our concept of fit is now prescribed as follows: find a polynomial p € %,
for which E is minimized. We shall see that there is only one such minimizing
polynomial. This polynomial is, of course, determined by m + 1 coefficients
ay, ai, - . ., a,. We can view E of Eq. (2.10) as a function of the m + 1
coefficients of p and use multivariable calculus to formulate necessary
conditions for E to be minimized. This approach to fitting was also intro-
duced by Lagrange, and he named it the method of least squares.

The necessary conditions referred to are (Thomas, 1972, p. 522) that
the partial derivatives 9 E/da; vanish for i=0,1,...,m. (Indeed, this is
necessary for any stationary value of E.) Observe that, since E is considered
a function of ay,.. ., a,,, these derivative conditions will provide m + 1
equations in these m + 1 coefficients. We proceed to formulate these
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equations. For j=0,1,...,m, we have [recalling that p(x) = a, +
ax + ...+ ax™):
N N
OE p( i) :
=3—=§2[ plx) = f1=5.7 =2 2 xl[p(x.) = ]

- N N

=2 xi(ag +ayx; +...+a,x") — > x{-f,-]
[ i=0 i=0

_ N N N N
=2 (2 x’,'-) a, + (2 x’}“) a, +...+ (2 x’,3+’">am — (2 x{f,-)].
L\i=0 i=0 i=0 i=0
Observe that these equations are in fact linear in aq,...,a, and the

coefficients are prescribed by the data. We rewrite them as an array (recall
that for any real number a, we define a° = 1):

fi,

M=

N N N
aozx?+012x,~+...+amzx?’ =
i=0 i=0 i=0

0

-~

N

N N
G 2 x;i+ay 2 x4 .. +a, 2t =
i=0 i=0

i=0

( Xifi,  (2.11)

||Mz

N

N N
a, %x,’-" +a; %x',"ﬂ t...tay %x?m = %x?"fi-
= {= 1= 1=

These are known as the normal equations for the problem. It is reassuring
to know that this algebraic system always has a unique solution and that
this solution defines a minimum of E(p).

Theorem 2.5.1 If xo, x,,. .., xy are distinct points and m < N, then there
is a unique polynomial p(x) € P,, for which E(p) is minimized, and the
coefficients of this polynomial are given by the solution of the normal
equations (2.11).

An interesting special case is that in which m = N. Here, the number of
coefficients equals the number of data points and the minimum value of
E(p) is zero. This is because the minimizing polynomial is precisely the
interpolating polynomial from %, for which each deviation in the sum of
Eq. (2.10) is zero. The algebraic reason for the coincidence will be indicated
shortly. First let us consider a simple example.

ExXAMPLE Fit a straight line (m = 1) to the following data by the least
squares method.
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i X f,

2 6.91
4 9.62
6 9.74
8 10.01
0 11.48
2 11.90

WV LW =O

1
1

Here N =35, Zx; =42, Zx? =364, Zf, = 59.66, and Zxf; = 448.42. The
normal equations are

6a, + 42a, = 59.66,
42a, + 364a, = 448.42,
giving
ap = 6.683, a, = 0.4400,
and the best least squares straight line is (cf. Fig. 2.11)
p(x) = 0.4400x + 6.863.

2 6 10
FIG. 2.11 Least squares fit of a straight line
(i.e. a polynomial p(x) from P,).

Another example is illustrated in Fig. 2.12 for which we omit the com-
putational details. The data are taken from the ramp/mountain function
of Fig. 2.4. The abscissas are 17 equally spaced points (N = 16). Figure
2.12 indicates two least squares fits, one of sixth degree (m = 6) and the
other of ninth degree (m = 9).
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F1G. 2.12 Two least squares fits to the ramp-and-mountain function; N = 17.

2.6 Matrix-vector form of the normal equations

It is illuminating, and will subsequently be useful, to describe the normal
equations in matrix form. Thus, if X is the (m + 1) X (m + 1) matrix with
elements

N
x,s=2x,”’, r,s=0,1,...,m,
i=0

and we introduce column vectors

ao‘} Ef: | —fo-
a=|"" | = zf"’f" e (2.12)
~a.'”— _E ;Cf"fid _jN_

then Eq. (2.11) are simply Xa = f. Define an N X (m + 1) matrix V in
terms of the abscissas by

1 Xo X(z) x{,"
1 x, x} ... xT
V= . . (2.13)
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Then it is easily verified, by using the definition of matrix multiplication,
that X = V7V and f = V'f. Thus, the normal equations Xa = f can also be
written in the factored form:

VTVa=VTt. (2.14)

It is no accident that the matrix V is a more general form of the
Vandermonde matrix introduced in Eq. (2.2) in connection with polynomial
interpolation. Note, in particular, that if m = N then V is square and (as
noted in Section 2.2) has an inverse. It follows that (V7)™! also exists in
this case, and so multiplying Eq. (2.14) on the left by (V7)~!, we obtain
Va=f and then a = V~f, the solution of the polynomial interpolation
problem. Thus, as remarked above, the least squares fit is just the poly-
nomial interpolant in this special case.

The warning remarks made in Section 2.2 concerning direct computation
with V are doubly appropriate when applied to the normal equations. The_
factorization X = VTV of the coefficient matrix can lead to fiercely ill-
conditioned numerical problems. It is necessary to design general-purpose
computer codes for this problem with great care. The interested reader is
referred to Lawson and Hanson (1974) or chapter 7 of Forsythe et al. (1977)
for detailed discussion and codes.

2.7 The rationale for least squares methods: polynomial regression

Our introduction of the least squares process has been empirical—as a
process which, by minimizing the sum of squared deviations, provides a
function that may represent a mean value (or even the value) of a function
from which the data has been sampled. There are other ways of finding
such a mean function, however, which may look quite different from the
least squares fit. For example, if we continue working with the deviations,
we could equally well choose to find p(x) € ®,, so as to minimize

N
2 px) = fil, or  max |p(x) - fil,
i=0 O0<isN

instead of E(p) of Eq. (2.10).

The primary reason for choosing E(p) is simply computational
convenience. In the absence of a good reason for choosing another of these
criteria, one would choose E(p) because the resulting least squares fit is
much the easiest to compute. The other two criteria suggested here have
been the subjects of analysis, but they give rise to nonlinear equations for
the coefficients of p, requiring rather more mathematical expertise for their
solution than the confines of this volume allow us to present.
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There are, however, certain problems where the least squares technique
has a rational justification. The relevant process is of a statistical nature
and is known as polynomial regression. To give a quick introduction to this
we first need the notion of a normal probability distribution. Here, it is
supposed that the outcome of a statistical experiment can take any real
numerical value. A probability distribution is then a function n(x) defined
for x € (—«, ) with the property that the probability that a measured
outcome y of the experiment is between & and B (for any real « and f) is
(where P is probability)

B
P(a<y < B) =f n(x) dx.

o

Since certainty is measured by a probability 1 and all probabilities are non-
negative, a probability distribution must satisfy the conditions

fx n(x) dx =1, (2.15)

- %

and n(x) = 0 for all real x.

n{x)

0.6

021

P X

-l | K 3 5

FiG. 2.13 Three normal distributions.



2.7 Rationale for least squares methods 51

The normal probability distribution with mean u and variance o? is
defined by the function

n(x) = (V2m0) ™' exp{—(x — n)?/20%. (2.16)

Three such functions are plotted in Fig. 2.13. Changing u simply shifts the
curve to the right or left without changing its shape. Thus, the distributions
illustrated have the same mean with different variances.

The verification of property (2.15) for the normal distribution is a
mathematical nicety that the reader will find in books on the theory of
statistics or of probability.

The point of view of regression theory is to interpret a piece of data
(x;, f;) as follows: x; is a (precisely known) value of an independent variable
or parameter, and f; is the outcome of an experiment conducted at x = x;
in which the probability distribution is normal. The mean of this distribution
is supposed to be a function of the independent variable x, whereas the
variance is constant. Polynomial regression is then a process that requires
that u be a polynomial function of x, say,

u(x) = Daxed,, (2.17)
i=0
so that the probability distribution at x has the form
n.(y) = (V2mo)~" exp{—(y — u(x))*/20%}. (2.18)

The situation is illustrated in Fig. 2.14 in which y = u(x) is the regression
curve.

The primary purpose of regression theory is then to obtain estimates of
the coefficients aq, . . ., a,, in Eq. (2.17), which determine u(x), and of the
variance o®. This is done by observing that the probability that f;is observed
at x;, where i =0,1,2,...,Nis

N . N
i]';-[()nxi(fi) T Qm)NFDRGN+1 CxXp {_ 120 (fi - H(xi))z/zoz}-

Then an estimate of the regression curve is determined by that choice of
function u(x) € ?,, which maximizes this probability of the N + 1 actual
observations. This is seen to be equivalent to minimizing the exponent on
the right, and this in turn is equivalent to minimizing E(u) [cf. Eq. (2.10)].
Thus, the estimated regression curve u(x) is just the polynomial in %,
determined by the method of least squares.

Note that this process determines estimates of the coefficients of the
regression curve and of o2, which themselves have associated probability
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distributions. Following up this observation leads to an “unbiased” estimate
of o%

0 =S (- atx)y
TN—m=& Vi ;x:))°,

where f(x) = 2™, d;x' and dq,..., 4, are given by the solution of the
normal equations. The summation in &? is, not unnaturally, called the
residual sum of squares.

y

A

0 X X2

Fi1G. 2.14 Model for polynomial regression.

The polynomial fi(x) has two convenient properties, namely,

and

N N
EO A(x,)? = i;)f.-a(xi).
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(These can be confirmed using equation (2.14) and the fact that
[(xo), - . ., fi(xy)] = aTVT.) The first implies that the mean of the values of
the fitted curve at the data points is equal to the mean of the values f,
fi,. .., fy at the same points. Using the second of these, it is not difficult
to see that & can be written in a more easily computed form:

62=——1—(§f-2—§f‘( ) 2.19
N-m\&li == imXx;) |- (2.19)

The advantage of this approach, when it applies, is that there is a more
objective theory behind it than the simple least squares argument. This
theory admits statistical evaluation of the goodness of the fit and confidence
intervals for the coefficients of u(x). In numerical practice, when the best
choice of m is not clear from the data or the underlying phenomenon, a
value of & is obtained from Eq. (2.19) for a few integers m, and the
smallest m making &2 reasonably small may be chosen as most appropriate.
This choice makes the distribution curves on Fig. 2.14 narrower and more
peaked. More sophisticated tests are available based on significance tests
of the hypothesis that some coefficients a, . . ., a,, are zero. A useful survey
is given by Hemmerle (1967). For the statistical theory, we refer the reader
to Mood and Graybill (1963).

To conclude this account of the (polynomial) regression approach, let
us review once more the usual working assumptions that are made: the
ordinates f; are subject to random error; with each x there is an associated
probability distribution (usually the normal distribution) with mean u
depending on x and variance o? independent of x; there is a priori infor-
mation allowing one to say that, for some m (usually as small as possible),
u(x) € P,

2.8 Smoothing, or finding a trend?

The preceding discussion of regression introduces a notion of statistical
variation into the data. This may be appropriate in some physical situations
and not in others. This point serves to illustrate the distinction between
smoothing of the data and finding a trend in the data, both of which are
widely used ideas.

The point of view of smoothing is that the data is subject to error, but
that there is some underlying relationship between abscissas and ordinates
that would have certain properties not apparent in the perturbed data. For
example, there may be good reason to believe that there is an underlying
function that has slope varying only slowly in the x-domain of interest. An
interpolant to the perturbed data may, however, have a wildly fluctuating
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slope and therefore be unacceptable as a model for the underlying phenom-
enon. To get an acceptable representation of slopes, it may then be
necessary to smooth the data. The smoothing process itself may simply be
empirical or, if there is a theory (such as regression) whose hypotheses are
satisfied by the phenomenon being modelled and which is computationally
acceptable, then this would likely be preferred.

The process of smoothing is sometimes referred to as graduation, and is
perhaps best known under this name in actuarial work. A great deal of this
work uses the hypothesis that the abscissas xg,x;,...,xy are equally
spaced. This is an assumption that we do not care to make at this point.
Furthermore, several classical methods can now be superseded by moving
least squares techniques and by spline function methods, both of which will
be discussed in the sequel. Consequently, we shall not linger on these
topics, but refer the reader to Chapter 11 of the classic work by Whittaker
and Robinson (1944) or to the more modern presentation of Davis (1973).
There are also points of contact here with methods of moving averages
used in “filtering” techniques. We shall omit specific discussion of these
for similar reasons.

The point of view of the analysis of trends is rather different, although
the process for numerical implementation (via the normal equations, for
example) could be exactly the same as for smoothing. In this case, the data
need not be seen as being subject to error, but there is some reason for
seeing the ordinates as the sum of two components. There may be a good
physical reason for this, each component being the result of a different
physical process, probably on different scales [of the independent
variable(s), x in this case]. The component varying more slowly with the
independent variable is then conveniently described as the trend and the
other as the residual or deviation from the trend. In the parlance of
geophysics, the trend may be known as the “regional” component.

On the other hand, this separation into two components may be simply
for convenience. For example, the detection and removal of a trend may
facilitate computation with a residual that is thought to contain all the
information of interest. From the point of view of frequency analysis, one
may attempt to remove undesirable low-frequency components in this way.

Whether the appropriate context is smoothing or trend analysis, the
following quantity is frequently used empirically as a measure of the degree
to which the trend, of a smoothed curve, fits the data. Define

_E(i— ) _E(f - )’
= (f, - f)? 2(fi—-H

where f= (Zf)/(N + 1) is just the arithmetic mean of the N+ 1 data

R*=

(2.20)
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values. The expression in the denominator of these fractions is then just
the variance of all the observations about this mean, often written in the
alternative form (2 f?) — (Z f)*/(N + 1).

Note that 0 < R?<1, and when R = 1 we have fi(x;) = f; for each i so
that all of the data lies on the smoothed, or regression, curve; i.e. this curve
interpolates the data, and there is no residual or deviation. On the other
hand, when R = 0, fi(x;) = f (a constant) for each i, and the analysis has,
in effect, failed to show any trend. Thus, values of R? between 0.8 and 1
are often thought to show a marked or significant trend in the data, and
values of R% between 0 and 0.2 suggest that the trend is not well established.

The parameter R? is also significant from the point of view of statistical
theory, but this is in the context of maximum likelihood estimation rather
than the regression theory introduced above. This means, of course, a
different theory and a different set of statistical hypotheses to satisfy [See
Hemmerle (1967) for accessible comments on statistical theory and Unwin
(1975) for the point of view of a geographer on trend surface analysis.]

2.9 Moving least squares

In this section we introduce a variant of the method of least squares. What
we describe here is not recommended as a viable fitting procedure in its
own right. The discussion is purely expository and leads to interesting
interpolation procedures whose descriptions are completed next in Section
2.10. The “weighted least squares” method to be presented here and the
“interpolating moving least squares” method of Section 2.10 find their main
application in (multivariate) surface interpolation with scattered data and
are discussed in that context in Chapter 10.

We first modify the point of view adopted in Section 2.5 for the method
of least squares and propose that, if g is to be the function associated with
the fitted curve, then the value of g at a point x should be most strongly
influenced by the data (the numbers f;) at those points x; that are closest to
x. For the same reason, it is proposed that as the distance of x; from x
increases, the influence of the data on g at x should decrease. This can
be accomplished very easily if, instead of minimizing a sum of squared
deviations, as formulated in Eq. (2.10), we associate positive weights w;
(which will depend on x) with each deviation and minimize

N
E.(p) = 2) wi(x)[p(x) — £i]%. (2.21)

For the time being, we assume that the numbers wy(x) are to be chosen
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so that they are positive, relatively large for the x; close to x, and relatively
small for the more distant x;. More precisely, we assume that w;(x) decreases
monotonically as |x — x| increases. As in Section 2.5, we assume here that
p is a polynomial in &,,, say p(x) = 2, a;x'.

The normal equations are found just as before by consideration of
the m + 1 necessary conditions 0E,/da; =0,i=0,1,. .., m. The resulting
normal equations for the coefficients ay, a,, . . ., a,, look very much like
Eq. (2.11). The latter are modified by insertion of the weights under the
summation signs as follows:

(2 WiX?)aO +...+ (2 w,-x?")am =2 wifi’

2 X : +...+ 2 ,'X?H’l am=2wixi is
(Z wix;)ao (Zwixr™?) I (2.22)

EwixMay+...+ Ewxt™)a, =Zwxlf.

In Eq. (2.22), we have abbreviated w;(x) as w;, and as long as all of these
numbers are positive, a theorem such as Theorem 2.5.1 obtains. That is,
we are guaranteed a unique solution for ay, a4, . . ., a,,, say 4y, . . ., 4,,, and
the polynomial p that they define does indeed give the least value to E, of
all polynomials in %,,. Note also that Eq. (2.11) can be obtained from
(2.22) by the choice of weights w;(x) =1,i=0,1,2,....N.

Since the coefficients of (2.22) depend on x (through the w;), the solution

dy, . . ., 4, will also depend on x. For the ordinate of the function g at x
(which we are now constructing), we take
g(x) = p(x). (2.23)

Now this prescription for the value of g(x) applies for any x whatever.
Thus, we have given a constructive definition of the function g, defined on
the whole real line. The snag is, that to evaluate g we have to be prepared
to expend the effort of solving a set of normal equations for each x. For
this reason, the process is generally only applied for small values of m, say,
0, 1, or 2. This function g may be described as a moving least squares fit to
the data.

It is important to keep in mind that, in spite of the relation (2.23), valid
for fixed x, g will not generally be a polynomial function. This is because
the coefficients of p in Eq. (2.23) also depend on x. To illustrate the point,
we consider the data of Fig. 2.11 again. As with the least squares fit in that
illustration we take m = 1. To calculate a moving least squares fit we have
to specify a distribution of weights for each x.

Consider the function e™**, also written as exp(—x2). For x =0, it is
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a monotonically decreasing function of x. In view of the abscissas of our
example. it is convenient to consider the function exp{—x2/50} for x =0
(shown in Fig. 2.15) and then to define

W,(.’C) = exp{—(x - X,)Z/SO}, (224)

P
o

y = exp(-x2/50)

0.6+

y = exp(-x2/20)

0.2+

2 6 10 14

Fi.. 2.15 Two exponential functions.

In this way we use the same underlying exponential function for each i;
only its centre of symmetry depends on i. [Note that this ubiquitous function
has already appeared in Eq. (2.16).] The resulting moving least squares fit
f is illustrated in Fig. 2.16.

What desirable properties does a function g constructed by the moving
least square process possess? First, it has a reproducing property (which it
shares with the least squares fit). Namely, if the data all happen to be on
the graph of a function from &,, (and polynomials p from %, are used in
the construction of g), then g will be this same polynomial from &,,.
Second, the function g is smooth in the sense that it can be differentiated
repeatedly (for as many times as w is differentiable). Thus, we have g € €~.

To complete this preparatory section, it will also be useful to examine
the matrix-vector form of Egs. (2.22) in anticipation of a generalization of
Eq. (2.14). In addition to the definitions of Eqgs. (2.12) and (2.13), we
introduce an (N + 1) X (N + 1) diagonal matrix:

W(x) = diag[w,y(x), w,(x), wy(x), ..., wy(x)] (2.25)
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PR
P

w;(x) = exp[—(x - x;)2/20]

w;(x) = expl-(x - x;)2/50]

FIG. 2.16 Two moving least squares fits (data of Fig. 2.11; M = 1).

The matrix product V’WVisthen (m + 1) X (m + 1), and itis easily verified
that, in matrix form, the normal equations [Eqs. (2.22)] are, more concisely,

VIW(x)Va = VTW(x)f. (2.26)

This obviously reduces to Eq. (2.14) when W(x) is the identity matrix (and
so is independent of x).

2.10 Interpolating moving least squares (IMLS) methods

Comparing Figs. 2.11 and 2.16 to contrast the least squares and moving
least squares fits, we observe that the effect of introducing variable weights
has been to draw the fitted curve towards each data point. The idea behind
the interpolation process is to assign weights in such a way that this trend
towards interpolation of the data is carried to its limit. This is achieved by
readjustment of the relative weights.
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To see the effect of such a readjustment consider the function
exp{—x?/20}, also illustrated in Fig. 2.15, which is more peaked than
exp{—x2/50}. If we assign weights, as before, by putting

wi(x) = exp{—(x — x;)?/20},

this will put relatively higher weights on points x; close to x and lower
weights on points far removed from x. The resulting fitted curve shown in
Fig. 2.16 comes closer to interpolating the data then that obtained with
more evenly distributed weights. Note that, because the weights appear in
a similar way on both sides of Eq. (2.22) or Eq. (2.24), the w;’s can be
scaled (i.e. all multiplied by the same positive number) without affecting
the solution of the equations and hence the fitted curve defined by g.

To go to the extreme and ensure interpolation at x;, the trick is to use a
weight function w(x) that becomes infinite at x;, a property which will also
be invariant under scaling. By assigning different weight functions to
different points, some with vertical asymptotes and some without, we can
even arrange for interpolation at some points and not at others.

For simplicity, we shall always assume [as in Eq. (2.24)] that a simple
function w(x) is prescribed that is monotonically decreasing for x > 0 and
then assign weight functions w;(x) by defining

wix)=w(x—x), i=01,2.....N. (2.27)

In this way, if w(x) — > as x — 0, then we will have w;(x) — * as x — x; for
every I.

From the point of view of analysis, one might anticipate difficulties in
the solution of Egs. (2.22) and (2.26) near a data point x;, because the
coefficients “blow up” near x;. However, this does not necessarily lead to
difficulties, largely as a result of the homogeneity in the weights already
referred to. Indeed, it can be proved that under quite general assumptions
about the weight function and in spite of singularities in the weights, the
equations have a unique solution for every x, that these solutions define a
curve given by y = g(x), and that the function g retains the reproducing
and smoothness properties described in Section 2.9 for the non-interp-
olating case [cf. Lancaster and Salkauskas (1981)].

For interpolating moving least squares methods, the exponential func-
tions used previously in Section 2.9 are no longer candidates for weight
functions since they do not have the right asymptotic behaviour as |x| — 0.
The most popular choices probably involve inverse even powers of |x|. In
particular, if w(x) = 1/x* or 1/x*, we would obtain either

wi(x) =1/(x = x;)? or wi(x) = 1/(x — x;)*.
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Alternatively, w(x) = exp(—x?)/x? would have similar properties to w(x) =
1/x* near x = 0 but would attenuate more rapidly as |x| increases. In general,
the user of the technique must decide on the proper weight function on
such qualitative grounds as the rate of attenuation in relation to density of
abscissas, the need for interpolation, and the nature of the singularity at
x = 0. Fortunately, these are the only important questions since in general
the shape of the fitted curve is not sensitive to the precise nature of the
chosen weight function.

More generally, considering inverse distance weight functions of the form
w(x) =x7%, k>0, it is found that the smoothness of g (in the sense of
differentiability) depends critically on k. We shall return to this point in
Section 2.11 where we discuss Shepard’s method. For the time being, we
assume that g is always to be differentiable, and for this to be the case it is
necessary that k > 1. In fact, this should be seen as a necessary condition
on the nature of the singularity introduced into the weight function to
ensure differentiability of g at the data points. If the function g is to be €~,
it is necessary that k be a positive, even integer.

For example, the formula

w(x) = a exp(—Bx?)/x*, (2.28)

defines a family of weight functions dependent on three positive parameters
a, B, and k. Since exp(—px?) is a function with horizontal tangent at
x = 0 (cf. Fig. 2.15), the nature of the singularity in w at x = 0 is determined
by the exponent k. As with a simple inverse power law (when g = 0),
differentiability of g will be retained as long as k > 1. The main disadvantage
of a choice such as Eq. (2.28) with >0 is the added computational
expense implied by many evaluations of the exponential function.

Before going on to discuss examples, there is one other freedom in the
choice of weight function that is very important to applications. The idea
here is to consider the extreme case of attenuation of the weight function
for large x. Instead of arranging for w to become very small for large |x|,
we arrange for w to be zero for all sufficiently large x. For interpolation
we would like to retain the infinity in w at x = 0, and for cosmetic reasons,
we would like w to be at least once differentiable for all x # 0. A function
w that satisfies these three desiderata is, for example,

{ax"‘{l - |x|/d}?,  for |x|=<d,

w(x) =
0, for |x|>d,

(2.29)

Note that w involves three parameters, a, d, and k, all assumed to be
positive, and w(x) = 0 for |x| > d. As indicated earlier, it would generally
be the case that k is a positive, even integer. The function is said to have
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support (—d, d), i.e. w is non-zero for any x in this set and is zero otherwise,
and the support is assigned when we fix d. The parameter a is convenient
and simply allows us to scale w, having no effect on the final fitted
curve. Two such weight functions are illustrated in Fig. 2.17. The function
(1 — |x|/d)? is also indicated for comparison.

Similar truncated weight functions are described by the family
ax % cos?(nx/2d), for |x|<d,
w(x) = (2.30)
0, for |x|>d,

although these will be rather more expensive in computer time due to the
presence of the cosine function.

b

wix) = (I -Ixl/d)?

FiG. 2.17 Two truncated weight functions.

Careful adjustment of the diameter of support for the weight function
(i.e. of the parameter d) is most important. It must be large enough so
that, for every x at which g is to be defined, the interval (x — d, x + d)
contains at least m + 1 data points. At an x where this is not satisfied, the
normal equations will have a singular coefficient matrix and the process
will break down.
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In terms of the matrices V and W(x) of Eq. (2.24), we must have m + 1
non-vanishing weights w;(x) appearing on the diagonal of W. In this case,
the (m + 1) X (m + 1) matrix VIW(x)V will be invertible, and the moving
least squares calculations can be completed.

There are two principal advantages in truncation of the weight function.
The first has to do with economy of computation. In formulating the
coefficients of the normal equations [in the form of Eq. (2.22)], the
summations can be restricted to only those i for which w; is non-zero. It
must be noted, however, that this can only be done at the expense of
careful programming. We must have a good procedure to decide for which
values of i it is true that |x — x| < d.

The second advantage is qualitative and can be stated concisely by saying
that it produces a local interpolation scheme. This means that the value of
g (determining the fitted curve) at x is determined only by the data
sufficiently close to x. For example, we can be quite sure that if the weight
function at x has support (x — d, x + d), then perturbations in the data
outside this interval will not affect g(x).

2.11 Examples of the IMLS methods

(a) The case m =0. Shepard’s scheme. When m =0, the normal
equations of Eq. (2.22) reduce to a single equation:

N

N
a(x) = 2 wilx)f,/ 2 wilx), (2.31)
so that the computational effort in the solution of the normal equations is
no longer so important. The family of methods in which the weights are
determined by inverse powers of the distance, i.e. w(x) =x* with k>0
together with Eq. (2.27), are associated with the name of Shepard (1968).
The differentiability of the interpolating function is relatively easy to
determine in this case.

It can be shown that for 0 < k < 1, the interpolating curve has cusps at
the data points (being otherwise €*), and if k = 1, the fitted curve has
corners at the data points. Thus, we have g(x) = f; for each i, but g is not
differentiable at x; as long as 0 <k =<1. For k>1, g is at least once
differentiable everywhere, i.e. g € €'. These facts seem to argue in favour
of even integers for k where the choice of k is open and, for simplicity,
k = 2 is to be preferred. Some examples ( particularly with k < 1) together
with analysis are to be found in the paper of Gordon and Wixom (1978);
see also the survey of Barnhill (1977).
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Before looking at some examples of Shepard’s method, note some simple
special cases of Eq. (2.31): First, if w(x) =1fori=0,1,2,..., N and all
x, then Eq. (2.31) reduces to ag = (Z f;)/(N + 1) which is the average, or
arithmetic mean of the ordinates, and the fit is simply a straight line parallel
to the x-axis. If the w; are different but independent of x, a, is also
independent of x and is a weighted average of the ordinates.

A moving average is obtained if we choose, for example,

1 if x;,€x-a,x+al,
wi@) = {

0 if xiE(x—a,x+ a,
where « is some fixed positive number. In this case ay(x) does depend on
x and is a piecewise constant (or step) function. The result of applying this
process to the data of Fig. 2.11 with a = 3 is illustrated in Fig. 2.18. The
weight function in this case is truncated, as in Eq. (2.29) or Eq. (2.30), but
without the smoothness properties of those examples at the frontier of the

" 'y
L) ]

0 2 4 6 8 10 12

F1G. 2.18 Moving average to the data of Fig. 2.11.
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+ > X

0 2 a 6 8 10 12

FiG. 2.19 Shepard interpolants with w(x) = x7%, k =14,1, 2.

support [and hence no smoothness in ay(x)] and without the singularity at
x = x; (and hence no interpolation, in general).

Figure 2.19 shows three Shepard interpolants to the data of Fig. 2.11.
The interpolant corresponding to k = 2 is at least once differentiable, it
exhibits the “flat-spot” phenomenon: The derivative of the interpolant is
zero at every data point. This is true for every Shepard interpolant with
k > 1 and severely limits its usefulness.

(b) The case m =1. Now a pair of normal equations stemming from
Eq. (2.22) must be solved for each abscissa x of the interpolant. They are

(Zwi(x))ay + (Ew;(x)x)a;  =Zwi(x)f;,
(Z wi(x)x;)ag + (2 w;(x)x})a; = Z w;(x)x; f;.

The computational effort is now bigger. As in the Shepard interpolant,
care must be exercised when the calculations are carried out near a data
point in view of the singularity of w(x) there. The interpolating curve
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resulting from the weight w(x) = x™2 is shown in Fig. 2.20. The flat-spot

phenomenon is no longer present.
(c) The case m =2. Here, a quadratic fit involving three normal

equations 1s carried out for each point of the graph. For the data of Fig.
2.20, and with the same weight function as in (b), namely w(x) = x2, the
resulting interpolant is also shown in Fig. 2.20. There is not much change

from the curve using m = 1.

F1G. 2.20 Interpolating moving least squares fits with N =1, 2.






3

Interpolation with Piecewise
Polynomial Functions

3.1 Introduction

From the preceding discussion of polynomial interpolation, it is evident
that as the number of interpolation points increases, the necessary flexibility
of the interpolating polynomial is obtained by increasing both the degree
and the risk of severe oscillations of the fitted curve.

In the following sections we shall consider alternatives that allow the
degree of the polynomials involved to be kept low and provide flexibility
by making use of a sufficient number of polynomial segments joined in a
smooth way. The resulting interpolating or smoothing function is called a
piecewise polynomial function. Perhaps the most famous of these is the
cubic spline, which is introduced in this chapter but discussed in more detail
in Chapter 4. Before proceeding to these rather sophisticated functions,
we shall consider the more simple situation involving piecewise linear
functions, or linear splines, which lack smoothness but serve to prepare the
ground for our later discussion as well as being useful themselves in some
cases.

3.2 Piecewise linear functions: linear splines

In Section 1.7 we introduced the family of functions Py (a vector space)
consisting of polynomials of degree less than or equal to N. There they
were defined as linear combinations of the N + 1 very simple functions
1,x,x2,...,xN [cf. Eq. (1.6)]. Subsequently, either an interpolant or
smoothing function was chosen from this family. Here we shall proceed in
a similar manner, although a few more complications are necessary. First,
we shall insist that the piecewise linear functions that we use be continuous
so that their graphs are basically zigzags. Thus, the location of the corners

67
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is relevant; we shall call their abscissas knots, and they will of course be
distinct. In describing graphs of this kind mathematically, the translates of
the absolute-value function of Fig. 1.3 can play a useful role. The graph of
such a function, |x — k| (there is a simple knot at k) is illustrated in Fig.
3.1. We shall take advantage of such functions in the following definition.

y

N

Fic. 3.1 Translate of the absolute-value function.

Definition Let K denote the set {ky, . . ., ky} of knots (real numbers) satis-
fying ko <k, <...<ky. A function | defined for all real numbers x by

I(x) = aglx — ko| + ay|x — k| + ... +ay|x — kyl,

where ay,a,,. . .,ay are fixed real numbers, is a (continuous) piecewise
linear function (or linear spline) with knot sequence K.

In order to see that [ is a function of the desired kind, we observe that
lx —k|,i=0,1,...,N,is the absolute value function of Fig. 1.3, translated
so as to have its corner at x = k;. Observe that / is a linear combination of
the continuous functions |x — k|, ..., |x — kx| and as a result [ is itself
continuous. Between any two knots, each of the functions |x — k|, i =
0, ..., N, contributes a straight-line segment to the graph, and thus, / has
a graph consisting of straight-line segments joined at the knots. It will have
a continuous first derivative for all x € [a,b] only if ay=a;=...ay=0.
Following the discussion in Section 1.7, we find:

Theorem 3.2.1 The set of all linear splines | with fixed knot sequence K
containing N + 1 knots is a vector space of dimension N + 1.
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We denote the space of piecewise linear functions of Theorem 3.2.1 by
EMK). Observe that every function of £,(K) is in the class 6[a, b] intro-
duced in Section 1.3, and so L\(K) is known as a subspace of €[a, b].

In our further work we assume that the required interpolation or smooth-
ing is carried out on a finite interval [a, b]. Flexibility outside [a, b] is of no
interest; however, in order to avoid certain technical difficulties, it will be
assumed that k;, = a and ky = b so that all the knots of K are in [a, b].

3.3 Interpolation with linear splines

As in Section 2.1, we are required to find a function, this time from £(K),
that interpolates the data (x;, f;), i=0,1,..., N, the abscissas x; being
distinct points in [a, b]. This is particularly easy if the points x; are simply
the knots k;, which determine the space £y (K). In this case we have
Theorem 3.3.1.

Theorem 3.3.1 Let a knot sequence K = {xy, x,, . . ., x5} and arbitrary real
numbers f,, f1,. .., fy be given. Then, there is a unique spline | in £\(K)
that satisfies l(x;) = f; for j=0,1,...,N.

The nature of this interpolant is of course quite obvious: One connects
the data points from left to right by a broken-line segment, bearing in mind
that we have adopted the convention a = x,<x; <...<xy=b. On the
other hand, if the number of knots exceeds N + 1, or if they are unfor-
tunately located with respect to the x;’s, a unique (or indeed any) interpolant
may fail to exist.

In order to determine the coefficients a;, i = 0, . . ., N of the interpolant
of Theorem 3.3.1 we may proceed as in Section 2.2 and find that in view
of the interpolation conditions,

aolxo — xo| + ... + anlxo — xn| = fo,

aglxn — xo| + ... +anlxy — x5l = f,

and thus in matrix form,

-0 o —x1] ... Po—xnl |[ao ] [fo]

le —:xOI 0 — : , (31)

|xN—1 "‘xN| |
ey — x| len — x5 ... 0 Land Lfal

the matrix being invertible (non-singular).
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A much more convenient representation results if a cardinal basis is
chosen at the outset. This is a set of functions /; from £,(K) such that each
l; solves the elementary interpolation problem

l,-(xk)=<5,-k, k=0,1,,N, l=0,1,,N

Here § is the useful Kronecker symbol, taking the value 1 when i = k and
the value 0 when i# k. Although the functions [y, /,,.. ., Iy could be
constructed by selecting the vectors [1,0,...,0]7, [0,1,0,...,0]7, ...,
[0,...,0,1]7 as the right-hand members of Eq. (3.1) in turn, it is geo-
metrically clear what these functions are. They are the pyramid or tent
functions illustrated in Fig. 3.2 and defined by Eq. (3.2) in which j takes
the values 1,2,..., N —1:

X — X3
, =X S X=X),
lo(x) =<X0 — X
0, X, <x<b,
( 0, anij_l.
X—Xj_
—I=1 xasxsx,
Xj = Xj 3.2
j j+1 (3.2)
X —X;
___u’ x1$x<x]+1,
Xj — Xj+1
L 0, Xiy1 SXSDb,
0, a<x<xy_,,
X —XN-1
IN(X)= —_—, XN_]sxst=b.
XN T XN-1

In terms of this basis, the interpolant has the simple form
I(x) = lo(xX)fo + ... + IN(X)fN
fo
=[lo(x),. ..., InNM]| :
n
= 1(x)f,

in which the values of the function being interpolated appear explicitly,
and it is not necessary to solve equations of the form of Eq. (3.1). Indeed,
we may represent any function in £5(K) by the form

I(x) = lLy(x)yo + ... + In(x)yn =1(x)7y, (3.3)
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t + f = X
a X, L b
F1G. 3.2 Tent functions.
the values y,, . . ., yy being parameters controlling the form of /(x). This is
completely analogous with the Lagrange interpolation process (cf. Section

2.3).

Functions of this kind can also be used to carry out least squares
approximation rather than interpolation. In this event one must work with
the vector space £y(K) in which 1 <M < N, and the only restriction on
the knot sequence K is that kg = a, kyy = b, and ko < k; <. .. < ky. Thus,
the interior knots k;, k5, . . ., kp—; that define the space /,(K) may bear
no relation to the more numerous interior points x;, x5, . . ., Xy_; at which
data are assigned. This idea will be developed next in Section 3.4.

3.4 Least squares approximation by linear splines

The simplest least squares approximation problem in the present context
results when we choose M = 1. Then there are no knots between a and b,
and the general function /(x) has the form
i) = =y, + ——L .
Xo — XN XN — X

This is an arbitrary function of the form A + Bx, and so this least squares
approximation problem is identical with the usual linear regression
problem, as discussed in Chapter 2. Therefore the first case of interest
occurs when M = 2, and there is an interior knot k, between a and b. For
the time being we assume that the position of the interior knot, or knots,
is fixed a priori: The approximating function has the form of Eq. (3.3), and
the sum of the squares of its deviations from the data f; at the points x;, j =
0,1,...,N,is

N M 5
B0 =3 {3yl — 1} 34

Keep in mind that there are now N + 1 distinct points at which data are
given and also M + 1 distinct knots, which may or may not coincide with
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data points at which the deviations are calculated. In view of the small
support property of the cardinal functions /;, many of the values /(x;) in
Eq. (3.4) will be zero. In order for y; to be actually present in E(J), it is
necessary to locate the knots so that each /; contains some data in its support
[that is, the points x at which [(x) # 0].

Now the necessary conditions for a minimum of E(/) are

N M
aE(l)=22{l=0y,~l,-(x,-)—f]-}lk(xj)=0 for k=0...,M. (3.5)

9y j=0 Li

The required values of the parameters y,, . .., yy can be obtained from
these equations, which can be rearranged into the form

ay eoo Qom Yo bo

(3.6)

where

M
0y = 2 Lx)h(x), ki=0,1,..., M,
j=0

M
b, = Z)f,-lk(x,-), k=0,1,....M
“

In view of the small support property of /;, the product /,/; = 0 whenever
|k — i| = 2, and hence the matrix [a,;] in Eq. (3.6) is tridiagonal. This feature
makes the invertibility of the coefficient matrix easy and the solution of
Eq. (3.6) inexpensive.

Concerning the placement of knots and the choice of M, we can follow
the algorithm of Ichida et al. (1976) and begin by selecting M =2 and
placing the only interior knot k; such that there are nearly as many data
points as possible to the left as to the right of k;. The best approximation
is computed, and the sum of squared deviations is evaluated to the left and
to the right of k;. Whichever of the intervals [a, k], [k, b] has the larger
sum is again subdivided by the insertion of a knot. The insertion of knots
is terminated when the value of §, defined by

8= E()/(N - M), (3.7)

where E(J) is as in Eq. (3.4), reaches a plateau, at which point additional
knots do not significantly reduce & [See Ichida et al. (1976) and de Boor
(1978), p. 267]. The quantity 6 should be compared with &* defined in Eq.
(2.19).
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Figure 3.3 shows a number of approximations to experimentally obtained
data, the abscissa being the travel time below the surface of the earth of a
sonic signal and the ordinate being the velocity of sound in the rock at that
time.

FiG. 3.3 Piecewise linear least squares fits. (a) M =5, N =25, § =0.005; (b) M =8, N=
25, 6 =0.002; and (c) M =15, N= 25, 6 = 0.001.

3.5 An alternative construction of the space of linear splines

Clearly, every linear spline / with knot sequence K has a derivative /' that
is piecewise constant. Typical graphs of a linear spline / together with its
derivative /' are shown in Fig. 3.4.

The function /' illustrated in Fig. 3.4 is known as a step function. A very
primitive step function is the jump function illustrated in Fig. 3.5. It is
defined by

-1, x<0,

J(x) = {

1, x=0.



(a) L

(b)
A

F1G. 3.4 (a) Linear spline / and (b) its derivative ['.
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FIG. 3.5 Jump function J(x).

It is important to observe here that J(x) is the derivative of |x|, except at
x = 0, where |x| is not differentiable because of its sharp corner. The jump
function can be used to generate more general step functions, such as that
in Fig. 3.6. This function has the representation a + a,J(x — k;). Observe
also that |x — k;| is an antiderivative or indefinite integral of J(x — x;). Using
this idea, /' can now be expressed in the form

N-1

I'(x)=A+ X alJ(x - k),
i=1

since the first jump occurs at the knot k, and the last at ky _ . The values
2la|, i=1, ..., N—1, are precisely the magnitudes of the jumps. By
integration we find that

N-1

I(x)=Ax+ B+ X a;|x — ki, (3.8)
i=1

where B is the integration constant. In this expression we see that the
number of parameters is now N + 1, which confirms the claim of Theorem
3.2.1 that the dimension of £y(K) is N + 1.



76 3 Interpolation with piecewise polynomial functions
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FiG. 3.6 Step function.

3.6 Piecewise cubic functions

Although the nature of the linear spline precludes its being smooth, in the
sense of having at least one derivative for every x, it is possible to obtain
piecewise cubic functions that have at least a continuous first derivative
and in some cases, even a continuous second derivative. As in Theorem
3.2.1, let K be the set of knots k;, satisfyinga = kg < k; <...<ky=b. Let
us first observe that, if function values and first derivatives are prescribed at
the knots, then a technique for constructing a piecewise cubic interpolating
function with continuous first derivative is already at our disposal. The
technique developed in Section 2.4 must simply be applied to each segment
ki1, k] fori=1,2,..., N[see especially Egs. (2.8) and (2.9)]. The fact
that the same slope is used at k; for intervals [k;_,, k;] and [k;, k. ] i =1,
2, ..., N — 1) guarantees continuity of slope for the interpolating function
at all interior knots.

We shall return to this procedure shortly; initially, a more general
approach is to be taken to the construction of piecewise cubics with at least
one continuous derivative at the interior knots.

Let us construct a representation for any function in the family (in fact,
the vector space) of all functions that are ordinary cubic polynomials
between consecutive knots and are not only continuous but also possess a
continuous derivative on [a, b], i.e. they are to belong to 6'[a, b]. If S(x)
is such a function, then its second derivative has the form

N-1

S"(x) = I(x) + X bJ(x — k), (3.9)
i=1
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in which /(x) is as in Section 3.5. The justification for this form for $"(x) is
that S(x) is assumed to be piecewise cubic and at least once differentiable
at the knots. Hence its second derivative is piecewise linear, though not
necessarily continuous at the knots. Now /(x) is piecewise linear and
continuous, and the term with the jump functions serves to introduce jumps
of as yet arbitrary size 2|b;| at the knots.

By integrating Eq. (3.9) twice, taking advantage of the expression (3.8)
for I’ (x) and denoting the integration constants by C and D, we obtain

2 N-1

Ax* B
s(x)=—éx—+7x+Cx+D+ E a; §|x — k;|?
N1 i=1
+ > b Yx — k;|PI(x — k). (3.10)
i=1

Here we have also used the facts that |x| is the second derivative of 4|x|?,
and J(x) is the second derivative of 4|x|%J(x). It follows that a typical function
4|x — k;|* under the first summation is twice continuously differentiable at
k;; its second derivative is simply |x — k;|, which is continuous at k;. On the
other hand, the function 4|x — k;|*J(x — k;) has only a first derivative at k;,
We see that S(x) contains 2(N — 1) + 4 = 2N + 2 parameters.

Theorem 3.6.1 Let K denote the set of knots {ky, ..., kn}, with a=
ky<k <...<ky=Db. The set of all (piecewise cubic) functions of the
form of Eq. (3.10) is a vector space of dimensions 2N + 2.

We denote the space of Theorem 3.6.1 by 6,(K) and note that it is a
subspace of 6![a, b].

The fact that the space €5(K) has dimension 2N + 2 can be made
plausible by the following argument: The knot sequence K defines N
subintervals and a cubic polynomial having four coefficients is defined on
each of these, so there are 4N coefficients in all. To obtain ¢! continuity,
we apply two constraints at each interior knot—a total of 2N — 2 constraints.
The number of coefficients minus the number of constraints is simply
2N + 2, the dimension of 6,(K).

3.7 Interpolation with piecewise cubic functions

Clearly, the dimension of €(K) is too large to permit unique interpolation
if, as is usual, the abscissas x; of the data coincide with the knots k;. If,
however, the slopes m; of the interpolant are also specified at the points x;,
then the number of conditions of interpolation is equal to the number of
free parameters in a typical function S € €(K) and, furthermore, a unique
interpolant exists.
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Theorem 3.7.1 There exists a unique function S in 6\(K) that has prescribed
values f; and prescribed slopes m;, i=0, 1, ..., N, at the knots k.

We shall examine the nature of this interpolation scheme in a moment,
but first let us make a further comment on Eq. (3.10) that will be important
in Chapter 4. Theorem 3.7.1 leads to the construction of an interpolant in
%[a, b], and, although the form [Eq. (3.10)] of S(x) is not convenient for
computation, it shows explicitly the conditions under which S(x) will be
twice differentiable. For, if there are to be no discontinuities in $”, then all
the coefficients b, = 0 in Eqgs. (3.6.1) and (3.6.2). In this case, the resulting
S(x) is called a cubic spline. (Unless otherwise stated, it is understood
throughout this book that a cubic spline is twice differentiable at the knots.)
Denote by ¥5(K) the family of such functions. Thus S(x) is a cubic spline
on the set of knots K if and only if it has the form

N-1

S(x) = 4Ax} + B> + Cx + D +4 X a;lx — k|
i=1

, (3.11)

for some constants A, B, C, D, a,, a,, ..., ay_,.

Theorem 3.7.2 If Kis aset of N + 1 distinct knots on [a, b], then the family
Fn(K) is a vector space of dimension N + 3 and is a subspace of 6%[a, b).

We conclude that unique interpolation at N + 1 knots in [a, b] with cubic
splines is also not possible. There remain two degrees of freedom. We shall
pursue this topic in Chapter 4 and concentrate in the remainder of this
chapter on piecewise cubics with just one continuous derivative. As in the
case of piecewise linear interpolation, the use of cardinal functions leads
to very convenient and transparent representation of interpolants.

Consider interpolation in the context of Theorem 3.7.1, in which the
knots k; = x;, and two distinct types of data are supplied at each knot. Thus
it is necessary to construct 2N + 2 cardinal functions. Theorem 3.7.1 assures
us of the existence of unique functions ®;,, ¥;, i =0, 1, ..., N, in G5(K)
with the properties

q)i(xj)=5ij’ (D;(xj)=0, lpi(xj)'—'o, ‘pf(x;)=5ij- (3.12)

fori, j=0,1,..., N. Each of these functions has prescribed values and
slopes at the knots. Now an interpolant can be written immediately:
N N
S() = 2 ®,(x)f + 2 Wi(x)m,. (3.13)
i=0 i=0

The precise form of these cardinal functions could be obtained from Eg.
(3.10) by imposing the conditions in Eq. (3.12). However, it is easier to
exploit the fact that the ®; and W, are piecewise cubic polynomials and can
be constructed with the aid of the technology of Section 2.4.
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It has been shown in Section 2.4 that a cubic is uniquely determined by
its values and slopes at the ends of an interval. Consequently, fori=1, 2,
.., N—1, ®(x) =0 when x <x;_; or x >x;,, (see Fig. 3.7).

— t ' + 4 1 — X
a X X X; Xigl AN-1 b

F1G. 3.7 Cardinal functions ®,.

Also, ®(x) = 0 when x > x|, and ®5(x) =0 when x < xy_,. Hence the
®; enjoy the small support property. Now, for i=1,..., N—1, ®, on
[xi—1, Xi+1] is composed of left and right segments; these are essentially the
Hy and H, functions of Section 2.4. Several of these cardinal functions are
shown in Fig. 3.7. Thus, fori=1,...,N—1, with h;=x;, — x;_,,

r

O’ x<xi—1,

—2/h)(x —x;_1)*(x —x; — $h;), Xiog <x<ux;,
®,(x) =+ /h3)( 1)( ) 1 (3.14)
(2/h}, (x=x; +3h ) (x—xi41)?, X SX<Xiyg,

0, X = Xiyq-

-

For i = 0, only the last two parts of this definition of ®; apply, whereas if
i = N, only the first two parts are needed.

FiG. 3.8 Cardinal functions W¥,.

In a similar way we can determine the W;, shown in Fig. 3.8, from K|,
and K, of Section 2.4. For i = 1_, ..., N—1,

f
Oa x<xi—la

h) '(x—x;_1)%(x—x,), Xiog <x<ux;,
‘I’i(x)=<( )7 1)( ) 1 (3.15)
(hE ) P —x)(x—xi41)%, X <x<Xi4,

0, XZXipy

-~

When i =0 or N, the remarks concerning ®, and ®, apply.
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We emphasize here that, although they appear visually quite smooth,
these cardinal functions are only in 6![x,, xy] and not in 6*[x,, xy]. In many
applications, only the values f; are available. The slopes m; are then
parameters whose values can be manipulated in order to adjust the shape
of the interpolating curve.

In some interpolation methods, the slopes are determined from the
ordinates in a linear way. That is, the method involves a matrix M such
that

my fo
=M1 : (3.16)

my fn

Then we can write S(x) [cf. Eq. (3.13)] in the form,

fo [m
S(x) = [@y(x), ..., Px®] | 1 | + (o), ..., ¥n(x)]
fn | MmN
fo
= ([@o(x), . .., PN(X)] + [Po(x),. .., Un()IM) | - (3.17)
i
fs
=[po(x), ..., o ()] | -
fx

where we have put
Pi(x) = @,(x) + [Wy(x),. .., ¥n(0)]M,, (3.18)
and M, is the ith column of M.

The matrix M thus makes the interpolant unique and determines a
corresponding set of cardinal functions ¢;,i =0, .. ., N. The function ¢,(x)
will not have the small support feature unless M; has non-zero elements
only near the ith row. Even if the small support is lost, it is important that
¢:(x) at least attenuate strongly as x moves away from x;. The reason for
this is revealed by examining the effect on S(x) of a perturbation € in the
value of one ordinate, say f;. Then the perturbed interpolant is

Se(x)= gm,-(x) +(fi + €) i (x) = S(x) + € (x).

i#k
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Consequently, the effect of the perturbation at x, is localized near x; only
when ¢, attenuates rapidly.

An especially important choice of M is that which renders S(x) twice
differentiable. There is a two-parameter family of such matrices in view of
the dimensionality comment in Theorem 3.7.2. It then turns out that M~}
can be tridiagonal, but M itself is “full”, with the result that the cardinal
functions of the resulting cubic spline do not have small support. They
do, however, have good attenuation. Cubic splines are the subject of
Chapter 4.

It is also possible to make non-linear choices for the determination of
(my, . .., my) in the form

my

=F(fo,..-,fn), (3.19)

my

where F is a vector-valued function of f,, . . ., fy. In that event the cardinal
functions ¢;(x) can no longer be used for a simple representation of an

interpolant. We present some linear and non-linear schemes next in Section
3.8.

3.8 Choice of slopes in piecewise cubic interpolation

In the case of computer aided design, numerical values can be assigned to
the slopes, the interpolating function can be examined and then modified
in shape by readjusting the slopes. Clearly, a reasonable initial choice is
necessary and can be made on the basis of the schemes discussed below.
The result may then be accepted or rejected on the basis of visual and
frequently unquantifiable criteria.

If a linear scheme of the form of Eq. (3.16) is desired, then perhaps the
simplest choice for m;, i=1, ..., N—1, is the slope at x; of the unique
parabola that interpolates at x;_;, x;, x;;1. This is easily found to be

m. = [(fiss = fi)/Risa ] + [(fi = fi-)/hilhis

i hivy + h;

where h; = x; — x;_;. For end slopes we may use

my = (f; —fO)/hl’ mN=(fN_fN—l)/hN-
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It is convenient to set
Ai=hi[(hi+hic), wi=1-A;=h/(h;+hy,), i=1,...,N-1,
and Ao =0, Ay=1, uy=1, uy=0. Then
m; = [(fis1 — [ i i + [(fi = fi-0)/Hi)A;, i=0,1,...,N.

The associated matrix M is

B I I B
- — —_ 0 0 . . 0 0 0
hl hl
1 A .“1] [
- ;l_l [h, hs hy 0 ’ ’ ' 0 0
0 e [f__ﬁ_} R . 0
h: h: h_'A h_]
0 n . . .
Ay Ayvoo us -2 N -2
0 0 - A2 Vo2 M _] HN-2 0
N hy_: haoy hn-y
’ An— An- - -
0 0 0 _MN-l [ N I_HN |] HUN-1
hnoy hx-yv  hy hn
1 1
¢ 0 0 0 -— -—
hn hn
L .

Since M is tridiagonal, the cardinal function ¢;(x) has the form

P xX)=P;(x)+m;_ ¥, (x)+m; W, (x)+m ;Wi (x),
i=0,1,...,N,

where m; ; is the element in row i, column j of M, and we use the convention
that m; ; with some subscripts outside the range 1, ..., N are set equal to
zero. Thus, the support of ¢,(x) is [x;_,, X;,,] wheni=2,..., N—2 and
somewhat smaller when i =0, 1, N — 1, N, making this a local method. 1t
is sometimes referred to as Bessel’s method.

A non-linear choice, suggested by Akima (1970), is

m. = 1Siv2 = Sivt|Si +1Si — Siz1Siss
' 1Siv2 = Siva| +1Si = Szt

where S, is the slope of the line segment joining the points (x;_;, fx-) and
(X, i) fork=i—1,i,i+1,i+2.

When i = 0 or N, m; requires the provision of an auxiliary point outside
the interval. It is also possible to choose M so that the curve S(x) has a
continuous second derivative. The resulting function is the classical cubic
spline which is to be discussed in Chapter 4.



FiG. 3.9 Akima’s method.

FiG. 3.10 Bessel’s method.

FiG. 3.11 Akima’s method.
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In Figs. 3.9-3.11, we show interpolants by Bessels’ and Akima’s methods
for the data of Fig. 3.3 as well as for other data, which exhibit great
variation and can cause difficulties for many interpolation methods.

Figures 3.12 and 3.13 show the piecewise cubic interpolants to the
mountain and ramp-mountain data introduced in Section 2.5. Bessel’s
method is used to obtain the necessary slopes, and both the underlying
function and interpolant are shown.



4

Curve Fitting with Cubic Splines

4.1 Introduction

It has been indicated in Chapter 3 that in many curve-fitting problems,
curves constructed as “piecewise” polynomials have significant advantages
over simple polynomials of high degree. There are, of course, many ways
of forming piecewise polynomial fits, but the history of the past several
years shows that cubic splines take pride of place as the most widely useful.
Recall that, with a given knot sequence K, a =k < k;<...<ky=0b, a
cubic spline S(x) is a cubic polynomial in each subinterval [k, k], [k, k3],
..., [kn-1, kn], but these cubic segments of the function are joined together
at the interior knots k;, k,, ..., ky—-; in such a way that S(x) has two
continuous derivatives on [a, b], i.e. so that S(x) € 6?[a, b].
It is easily verified that if x, € (a, b), the function

i) = |x = xf

is in 6?[a, b]. Indeed, we can compute

- 2 =
o) = { 3(x — xp) for x=x,, ) = 6lx x4,

—3(x —x0)®?  for x=<ux,,

and observe that f”(x) is continuous on [a, b]. In particular, f"(xo) is well
defined and has the value zero. In Fig. 4.1 we sketch f, f, and f".
It has been shown in Section 3.7 that every cubic spline can be written
in the form
N-1

Sx)=ax®+ Bt +yx+6 + X ailx — k;|?, (4.1)
i=1

87
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A
y

X

Xo

FIG. 4.1 Function f(x) = |x — x¢|* and its derivatives.

[cf. Eq. (3.11)] for some constants «, B, ¥, J, a;, a,, . . ., ay-,. With the
above observation, it is clear that S(x) € 6?[a, b] and also that S(x) is a
cubic polynomial on each subinterval [k;, k;,] for i=0,1, ..., N-1.
Indeed, S(x) is simply a linear combination of the functions

X3, %% x, 1, |x =k, ..., |x—kyoo?,

i.e. any S(x) can be formed by multiplying each of these functions by a
constant and summing, as in Eq. (4.1).

In Chapter 2 we have emphasized the point that, although a polynomial
function in Py is a linear combination of the primitive functions 1, x, x2,

., XV, in finding a particular polynomial p(x) = £, a;x’, which fits
certain data, it is generally not a good idea to try to calculate the coefficients
a,, a,, . . ., aydirectly. The same applies to the representation of Eq. (4.1)
for a cubic spline.* Thus, the Sections 4.2 and 4.3 are devoted to the
presentation of two very different approaches to the representation and
computation of cubic splines.

* For the same reason we have also omitted a discussion of the so-called truncated power
functions for the representation of a cubic spline.
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4.2. Finding slopes from function values

Our first approach to the representation of interpolating cubic splines takes
advantage of Eq. (3.13) in which any piecewise cubic function defined on
[a, b], which is also in 6'[a, b] (note only one continuous derivative), is
written in terms of the 2N + 2 primitive cardinal functions
Dy, Py,..., 0N, ¥y, ¥,,..., ¥y

defined by Eq. (3.12). The representation (3.13) contains 2N + 2 par-
ameters and the condition that S(x) takes the values fy, fi, . . ., fv at ko,
ki, ..., ky, respectively, applies N + 1 constraints. The remaining N + 1
constraints include the N — 1 conditions that $”(x) be continuous at the
interior knots kq, k5, . . ., ky_;. These ensure that S(x) € 6?[a, b] and not
merely 6![a, b].

We show first that these higher smoothness constraints allow us to express
the slope parameters m; in Eq. (3.13) explicitly in terms of the function
values fy, f; ..., fv- Once this is done, the spline is determined for all
x € [a, b] by means of Eq. (3.13). As in this equation, we assume that
ki=x;,i=0,1,...,N.

For a general function with the form of Eq. (3.13), we first calculate the
jumps in second derivative at the interior knots k;, . . ., ky_; and equate
these to zero. We do this by calculating the difference in values between
S"(xx) computed from the left segment of the piecewise cubic and denoted
by 8"(xx),* and the similar quantity S”"(x{ ) obtained from the segment to
the right of x;. Thus,

§"(xic) — §"(x¥) (4.2)

N N
= gof,-[cbz' (7)) — @1 (xi)] + E m[ W) (x;) — W (x)]

k+1 k+1
= 3 flOIeR) - @G+ 2 mil¥i(E) - W] =0,

The sums have three terms each because of the small support of the cardinal
functions. When the indicated computations are carried out, we find that
the N + 1 slopes satisfy the N — 1 equations

1 1 1 1 fie = fr-1 Jiev1 — fi

— My +2(—+ ) + —m =35 43—

Ry K e heei) TET By hi i,
k=1,...,N—1. (4.3)

* In the notation of Section 1.2, §"(x;) = lim $"(x) and $"(x}) = lim S$"(x).

X=>xi x—=xF
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There remain two degrees of freedom, as claimed in Theorem 3.7.2. It
is customary to select values for m, and my in order to define the remaining
slopes uniquely, or more generally, one may supply two more equations
involving m, and my. These are normally written in the form

2my + pom; = co, Anmy_y +2my =cy, (4.4)

where uo, Ay, co, and cy are parameters at our disposal.
With the notation

b = Ry /(hye + hierr), e =1-— A,
¢k = 30[(fe = fe-D)/Pie] + 3l (i1 — f)/hesn], k=1,...,N—-1, S
Eqgs. (4.3) and (4.4) can be written in the form )
2 u 0 ... O 0 0 1[ mo T [ co
A 2w ... 0 0 0 m, 1
0 4 2 ... 0 0 0 m, Cy
2 Bl IR B CXO)
O 0 0 ... 2 Un-2 0 my., CN-2
0 0 0 ... An—g 2 un-1|l I my-1 éN_l
(00 0 0 ... 0 A 21lmy] Len]

More details concerning the derivation of this system can be found in
Ahlberg et al. (1967), who also give a convenient algorithm for solving this
tridiagonal system. This algorithm can also be used for the least squares:
linear spline.

Concerning Eqs. (4.4), various end conditions can be imposed on the
spline by specializing the values of ug, Ay, ¢y, and cy. For example, if the
numerical value of the slope of S(x) at the left end is given, then we set
to = 0 and ¢y = 25'(x,) to obtain my = S§’'(x,). A corresponding strategy at
the right end, when S’(xy) is known, is to set Ay = 0 and cy = 25'(xy).

The two extra freedoms of the interpolating cubic spline can also be used
to specify the second derivative of S(x) at the two end points. If the
second derivative of the spline is given at x,, the choices uy = Ay = 1, and
appropriate choices for ¢, and cy yield, at the left end,

2mg + my = 3[(f1 — fo)/h1] — (h1/2)S"(xo), 4.7)
and at the right end,

my_y +2my = 3[(fy = fn-1)/hn] + (AN /2)S"(xy). (4.8)
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A particularly important spline is obtained on setting the second derivatives
(and hence the curvatures) equal to zero at the end points.

Definition A natural cubic spline S is a cubic spline with the additional
properties S"(xq) = S"(xy) = 0.

Accordingly, an interpolating natural cubic spline satisfies Eq. (4.6) in
which the first and last equations are simply Eqs. (4.7) and (4.8), with
S"(x¢) = $"(xn) = 0. In other words, it satisfies Eq. (4.6) together with

wo=1, ¢co=3[(fi —fo)/m]; Axn=1, cn=3[(fx = fn-1)/hN].

In Theorem 4.2.1, we summarize some of the most common end con-
ditions giving rise to a unique interpolating cubic spline. Note that the
natural cubic spline interpolant is covered by case (2) (on putting S"(x,) =
S"(xn) = 0). It is often necessary to construct interpolants for periodic data,
in which case the interpolant should also be periodic. This can be achieved
in the following way: The end conditions and ordinates are determined in
such a way that if S(x) is translated through the distance xy — x, to the left
or right, the translates join up in a 6> way at x, and xy. This means that
S(x) satisfies the periodic end conditions

fo=fn="S8(x0) =S(xn), S'(x0) =S(xn),  §'(x0) = S"(xn),
together with the periodicity condition

S(x +n(xy —x9))=S(x), n=0,%1,%2,... .

Theorem 4.2.1 There exists a unique cubic spline satisfying the conditions
of interpolation S(x;) =f; for j=0, 1, . . ., N together with one of the
following sets of end conditions:

(1) prescribed slopes my, my at x4, x5, respectively;

(2) prescribed second derivatives S"(x,) and S"(xy);

(3) end conditions of the form of Eq. (4.4) with Ay <4 and uy < 4;
(4) periodic end conditions.

In Fig. 4.2 we illustrate a cardinal natural cubic spline. The rapid
attenuation is evident. Natural cubic spline interpolants to the mountain
and ramp-mountain data are shown in Figs. 4.3 and 4.4, and should be
compared with the polynomial interpolants in Figs. 2.3 and 2.4.

Rather than impose end conditions exclusively, one or the other can be
replaced by a not-a-knot condition at x; or xy_, [see de Boor (1978)]. This
is simply the requirement that the third derivative be continuous at the
selected knot. The result of this is that the two cubic segments that join at
the knot are portions of one and the same cubic polynomial, which is 6%,



92 4 Curve fitting with cubic splines

- B # =
FIG. 4.2 Cardinal natural cubic spline.

and the knot has effectively vanished. The appropriate equations relating
the slopes are obtained by evaluating Eq. (4.2) with third, instead of
second, derivatives, and then using the second and next-to-last equation
from Eq. (4.6) to eliminate m, and my _,, respectively. The resulting choice
for the parameters ug, ¢y, Ay, cy in Eq. (4.4) is then

L2 2+ k)~ fo) | 2K = £)
0 h, ’ ° (hy + hy)hy hy(hy +hy)’
for third-derivative continuity at x,, and
1. = 2(hy_y + hy)
N — ’
hn-1
o = 2h5(fv-1 — fn-2) + 22hy_1 + 3hN)(fn — fn-1)
N hny-1(An-1 + hy) (hn-1 + hy)hy ’

for third-derivative continuity at xy_;.

//////\ A
M —a 5 points —

/\ 9 points A .

A 17 points /\

Uniform date points Random data points

FIG. 4.3 Natural cubic spline interpolants: mountain.
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Using the definitions of Eq. (4.5), the right-hand side of the system (4.6)
can be written in the matrix form,

[co ] 0 0 0 0 ... 01Tfo | [a
A A
¢ et o ... of|n 0
c 0 fs 0
N | : 1+ @9
n-2 _ An-1 An-y BN+ BNy fr-2 0
CN-1 hnv-y  hw- hn hy fn- 0
| cn . 0 ... 0 0 JULA Jd LA

a and B being determined by the specific end conditions of the form
(4.4) that are selected. If the slopes S’(xo) and S’(xy) of the interpolating
spline are created linearly from the function values, e.g. if S'(xo) =
(f, — fo)/h, and S'(xy) = (fy — fv—1)/hn, then the vector [«,0, .. .,0, B]"
above can be absorbed into the matrix-vector product by changing the
first row of the matrix to [—%(1/h,), §(1/h,), 0, . . ., 0] and the last row to
[0,...,0, —%(1/hy), %(1/hy)]. If a natural cubic spline is desired then in

X j_/\ 5 pomnts X /\

N N N TN

Uniform data points Random data points

Fi1G. 4.4 Natural cubic spline interpolants: ramp plus mountain.
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view of Egs. (4.7) and (4.8), the top row becomes [—1/h;, 1/h,,0,...,0],
and the last row is [0,...,0, —1/hy, 1/hy). In both of these cases, Eq.
(4.9) takes the form

c = Cf,
with an appropriate choice of the square matrix C. Then we may write
m= A"ICf,

where A denotes the coefficient matrix in Eq. (4.6). Thus, the matrix M of
Eq. (3.15) is given by
M=A"C. (4.10)

Even though A is tridiagonal, this product is full, and hence the associated
cardinal splines, which could be constructed by setting f=(1,0,...,0),
0,1,0,...,0),...,(0,0,...,0,1) in turn in Eq. (3.17), are not of small
support. Because the small-support property is advantageous for compu-
tation, one is led to enquire whether there exist non-cardinal spline basis
functions having minimal support. That is indeed the case—the basis
functions are known as B-splines.

4.3 B-splines

We have seen that the tent functions of Section 3.3 form a convenient basis
for £5(K), the vector space of linear splines. We are now to construct an
analogous basis for the space ¥y(K) of cubic splines. The underlying idea
is the generation of a basis of minimal support.

We observe that the support of the tent functions that belong to interior
knots is two intervals. As well, the functions /, and /y can be viewed as
restrictions to [xo,xy] of tent functions with support [x_;,x,] and
[xn-1,Xn+1], Tespectively, x_; and xy, being exterior knots that play no
role in the interpolation process.

Consider now the parallel situation with cubic splines. It turns out that
the (twice differentiable) smoothness of a cubic spline requires it to have

a support of at least four consecutive intervals.

Theorem 4.3.1 Let K be a knot sequence satisfying ko< k,<...<ky.
Forj=2,3,..., M — 2, there exists a choice of non-zero ordinates fi-1, [
fi+1 such that the natural cubic spline with knot sequence K that satisfies

is i=._1’.a.+1’
S(k,) = f J—1,7,j
0, otherwise,

vanishes outside the interval (k;,, k;.,) (and has zero slope at k;_,, k;..,).
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We denote such a B-spline by B;_,. A spline with the property of
Theorem 4.3.1 is shown in Fig. 4.5.

We shall demonstrate this theorem in the case when the knots are equally
spaced A units apart and when M = 4. In Eq. (4.6),set N=M =4, my=
m, =0, fo=f; =0, and select the natural spline end conditions via Eqgs.
(4.7) and (4.8), and Definition 4.2.1. The right-hand side of Eq. (4.6) can
be calculated by using Eq. (4.9) with the comments following Eq. (4.9)
taken into account. The resulting system is

2 1 0 0 o]fo
1 24 0 0||m
0 8 2 % 0|m,
0 0 % 2 %}|{m,
0 0 0 1 2]|o _
—1/h 1/h 0 0 0 ][0
-1/2h 0 1/2n 0 0 fi
=310 -12h 0 1/2h 0 f21. (4.11)
0 0 -1/2h 0 1/2n|]| f;
| 0 0 0 -1/h  1/n ]|0_

If f1, f>, f5 are chosen arbitrarily, the corresponding natural cubic spline
will not have m, = m, = 0. The first and last rows of Eq. (4.11) immediately
yield

m; =3f,/h,  m5 = -3f;/h, (4.12)
whereas the remaining ones condense to the system

2 3 0f|m f2

1 2 3||m; =-2§}; fz — fil- (4.13)

0 % 2||m ~f3

We must arrange fi, f3, f3 so that the values m,, m; coming from Eq. (4.13)
coincide with those given in Eq. (4.12). On solving Eq. (4.13) for m, and
ms, we obtain

3 (14 3 14

=2 Bnen-n) m=o - Then-n),

my
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FiG. 4.5 A B-spline.

which must be equated to 3f,/h and —3f3/h, respectively. The resulting
equations can be solved for f; and f; in terms of f, and give

fi=4%f..  fi=%fa, f, non-zero, arbitrary.

We could choose f, = 1; then, f, = f; = . Thus, this minimal support B-
spline B, is defined by the ordinates fy=f,=0, fi=f;=1%, f,=1, and
the slopes my=m, =0, m, = —m; — 3/4h, m, = 0, and its values can be
computed by using these in conjunction with the cardinal basis in the form
of Eq. (3.12). A better choice of f, will be made shortly.

We are now in a position to construct all of the B-splines that are non-
zero on the interval [a, b] = [k, ky] on which interpolation is being carried
out. For simplicity we retain the hypothesis of equally spaced knots. First,
we define the B-spline By, defined for all real numbers, by attaching
identically zero extensions to B:

0, -—OC<x<k0,
B()(x) = Bo(X), kO sxsk‘ta (414)
0, k4 <x<<x,

This is a piecewise cubic, degenerately so outside [kg, k4], and has a
continuous second derivative everywhere, because by definition the cubic
spline By(x) is twice differentiable on (ko, k4). Furthermore, Bg(kg) =
By (ki) = 0, and the second derivative is identically zero outside [k, k).
Now we define all of the B-splines whose support is entirely within [k, kx]
by translating B, to the right:

Bj(x)=B()(x—fh), j=0,1,...,N—4, k,-=jh+k0. (4.15)

There are a few more B-splines whose support is not entirely in [k, ky]
and which either “start” at the knots k_;, k_,, k_; to the left of k,, or
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terminate at the knots ky ., ky+2, Ky, 3 to the right of ky (Fig. 4.6). Thus,
the complete set of B-splines that have at least part of their support in
[ko, kn] are the restrictions to [k, ky] of the following translates of By:

Bi(x) = Bo(x —jk), j=-3,-2,-1,0,1,...,N—1. (4.16)

We see now that at any point of [k, ky], there are at most four B-splines
that are not zero there (Fig. 4.6). In particular, consider any point x in
[ki, ki+1]. The non-identically zero B-splines at this point are B;_;, B;_,,
B;_,, and B;. It is interesting that the values of these four B-splines at x
sum to a constant, which is independent of x, just as the tent functions sum
to unity in the case of the linear spline.

FIG. 4.6 B-splines.

Assuming the last assertion to be true, we can see what this sum
must be by examining the sum at k; (Fig. 4.6). We get

B;_3(ki) + B;_»(k;) + B;_y(k;)) + Bi(k)=1+1+1+0=3

We can get these splines to have a sum of unity by readjusting the value
of f, in our construction of the minimal support prototype B-spline B,.
What we want is

L+ifi+ifai=1

from this,

fzz?f, f1=f3=%
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