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Abstract—Computer vision applications have come to rely increasingly on

superpixels in recent years, but it is not always clear what constitutes a good

superpixel algorithm. In an effort to understand the benefits and drawbacks of

existing methods, we empirically compare five state-of-the-art superpixel

algorithms for their ability to adhere to image boundaries, speed, memory

efficiency, and their impact on segmentation performance. We then introduce a

new superpixel algorithm, simple linear iterative clustering (SLIC), which adapts a

k-means clustering approach to efficiently generate superpixels. Despite its

simplicity, SLIC adheres to boundaries as well as or better than previous methods.

At the same time, it is faster and more memory efficient, improves segmentation

performance, and is straightforward to extend to supervoxel generation.

Index Terms—Superpixels, segmentation, clustering, k-means

Ç

1 INTRODUCTION

SUPERPIXEL algorithms group pixels into perceptually meaningful
atomic regions which can be used to replace the rigid structure of
the pixel grid (Fig. 1). They capture image redundancy, provide a
convenient primitive from which to compute image features, and
greatly reduce the complexity of subsequent image processing
tasks. They have become key building blocks of many computer
vision algorithms, such as top scoring multiclass object segmenta-
tion entries to the PASCAL VOC Challenge [9], [29], [11], depth
estimation [30], segmentation [16], body model estimation [22], and
object localization [9].

There are many approaches to generating superpixels, each
with its own advantages and drawbacks that may be better suited
to a particular application. For example, if adherence to image
boundaries is of paramount importance, the graph-based method
of [8] may be an ideal choice. However, if superpixels are to be
used to build a graph, a method that produces a more regular
lattice, such as [23], is probably a better choice. While it is difficult

to define what constitutes an ideal approach for all applications,
we believe the following properties are generally desirable:

1. Superpixels should adhere well to image boundaries.
2. When used to reduce computational complexity as a pre-

processing step, superpixels should be fast to compute,
memory efficient, and simple to use.

3. When used for segmentation purposes, superpixels should
both increase the speed and improve the quality of the
results.

We therefore performed an empirical comparison of five state-

of-the-art superpixel methods [8], [23], [26], [25], [15], evaluating

their speed, ability to adhere to image boundaries, and impact on

segmentation performance. We also provide a qualitative review of

these, and other, superpixel methods. Our conclusion is that no

existing method is satisfactory in all regards.

To address this, we propose a new superpixel algorithm: simple

linear iterative clustering (SLIC), which adapts k-means clustering to

generate superpixels in a manner similar to [30]. While strikingly

simple, SLIC is shown to yield state-of-the-art adherence to image

boundaries on the Berkeley benchmark [20], and outperforms

existing methods when used for segmentation on the PASCAL [7]

and MSRC [24] data sets. Furthermore, it is faster and more memory

efficient than existing methods. In addition to these quantifiable

benefits, SLIC is easy to use, offers flexibility in the compactness

and number of the superpixels it generates, is straightforward to

extend to higher dimensions, and is freely available.1

2 EXISTING SUPERPIXEL METHODS

Algorithms for generating superpixels can be broadly categorized

as either graph-based or gradient ascent methods. Below, we

review popular superpixel methods for each of these categories,

including some that were not originally designed specifically to

generate superpixels. Table 1 provides a qualitative and quanti-

tative summary of the reviewed methods, including their relative

performance.

2.1 Graph-Based Algorithms

Graph-based approaches to superpixel generation treat each pixel as

a node in a graph. Edge weights between two nodes are proportional

to the similarity between neighboring pixels. Superpixels are

created by minimizing a cost function defined over the graph.

NC05. The Normalized cuts algorithm [23] recursively parti-

tions a graph of all pixels in the image using contour and texture

cues, globally minimizing a cost function defined on the edges at

the partition boundaries. It produces very regular, visually pleasing

superpixels. However, the boundary adherence of NC05 is

relatively poor and it is the slowest among the methods

(particularly for large images), although attempts to speed up the

algorithm exist [5]. NC05 has a complexity of OðN 3
2Þ [15], where N

is the number of pixels.

GS04. Felzenszwalb and Huttenlocher [8] propose an alter-

native graph-based approach that has been applied to generate

superpixels. It performs an agglomerative clustering of pixels as

nodes on a graph such that each superpixel is the minimum

spanning tree of the constituent pixels. GS04 adheres well to image

boundaries in practice, but produces superpixels with very

irregular sizes and shapes. It is OðN logNÞ complex and fast in

2274 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 34, NO. 11, NOVEMBER 2012
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practice. However, it does not offer an explicit control over the

amount of superpixels or their compactness.
SL08. Moore et al. propose a method to generate superpixels

that conform to a grid by finding optimal paths, or seams, that split
the image into smaller vertical or horizontal regions [21]. Optimal
paths are found using a graph cuts method similar to Seam Carving
[1]. While the complexity of SL08 is OðN 3

2 logNÞ according to the
authors, this does not account for the precomputed boundary
maps, which strongly influence the quality and speed of the output.

GCa10 and GCb10. In [26], Veksler et al. use a global

optimization approach similar to the texture synthesis work of

[14]. Superpixels are obtained by stitching together overlapping

image patches such that each pixel belongs to only one of the

overlapping regions. They suggest two variants of their method, one

for generating compact superpixels (GCa10) and one for constant-

intensity superpixels (GCb10).

2.2 Gradient-Ascent-Based Algorithms

Starting from a rough initial clustering of pixels, gradient ascent

methods iteratively refine the clusters until some convergence

criterion is met to form superpixels.
MS02. In [4], mean shift, an iterative mode-seeking procedure

for locating local maxima of a density function, is applied to find
modes in the color or intensity feature space of an image. Pixels
that converge to the same mode define the superpixels. MS02 is an
older approach, producing irregularly shaped superpixels of
nonuniform size. It is OðN2Þ complex, making it relatively slow,
and does not offer direct control over the amount, size, or
compactness of superpixels.

QS08. Quick shift [25] also uses a mode-seeking segmentation
scheme. It initializes the segmentation using a medoid shift
procedure. It then moves each point in the feature space to the
nearest neighbor that increases the Parzen density estimate. While it
has relatively good boundary adherence, QS08 is quite slow, with an
OðdN2Þ complexity (d is a small constant [25]). QS08 does not allow
for explicit control over the size or number of superpixels. Previous
works have used QS08 for object localization [9] and motion
segmentation [2].

WS91. The watershed approach [28] performs a gradient ascent
starting from local minima to produce watersheds, lines that separate
catchment basins. The resulting superpixels are often highly
irregular in size and shape, and do not exhibit good boundary
adherence. The approach of [28] is relatively fast (OðN logNÞ
complexity), but does not offer control over the amount of
superpixels or their compactness.

TP09. The Turbopixel method progressively dilates a set of seed

locations using level-set-based geometric flow [15]. The geometric

flow relies on local image gradients, aiming to regularly distribute

superpixels on the image plane. Unlike WS91, TP09 superpixels are

constrained to have uniform size, compactness, and boundary

adherence. TP09 relies on algorithms of varying complexity, but in

practice, as the authors claim, has approximately OðNÞ behavior

[15]. However, it is among the slowest algorithms examined and

exhibits relatively poor boundary adherence.

3 SLIC SUPERPIXELS

We propose a new method for generating superpixels which is

faster than existing methods, more memory efficient, exhibits

state-of-the-art boundary adherence, and improves the perfor-

mance of segmentation algorithms. Simple linear iterative clustering

is an adaptation of k-means for superpixel generation, with two

important distinctions:

1. The number of distance calculations in the optimization is
dramatically reduced by limiting the search space to a
region proportional to the superpixel size. This reduces the
complexity to be linear in the number of pixels N—and
independent of the number of superpixels k.

2. A weighted distance measure combines color and spatial
proximity while simultaneously providing control over the
size and compactness of the superpixels.

SLIC is similar to the approach used as a preprocessing step for

depth estimation described in [30], which was not fully explored in

the context of superpixel generation.

3.1 Algorithm

SLIC is simple to use and understand. By default, the only
parameter of the algorithm is k, the desired number of approxi-
mately equally sized superpixels.2 For color images in the CIELAB
color space, the clustering procedure begins with an initialization
step where k initial cluster centers Ci ¼ ½li ai bi xi yi�T are sampled
on a regular grid spaced S pixels apart. To produce roughly
equally sized superpixels, the grid interval is S ¼

ffiffiffiffiffiffiffiffiffiffi
N=k

p
. The

centers are moved to seed locations corresponding to the lowest
gradient position in a 3� 3 neighborhood. This is done to avoid
centering a superpixel on an edge and to reduce the chance of
seeding a superpixel with a noisy pixel.

Next, in the assignment step, each pixel i is associated with the
nearest cluster center whose search region overlaps its location, as
depicted in Fig. 2. This is the key to speeding up our algorithm
because limiting the size of the search region significantly reduces
the number of distance calculations, and results in a significant
speed advantage over conventional k-means clustering where each
pixel must be compared with all cluster centers. This is only
possible through the introduction of a distance measure D, which
determines the nearest cluster center for each pixel, as discussed in
Section 3.2. Since the expected spatial extent of a superpixel is a
region of approximate size S � S, the search for similar pixels is
done in a region 2S � 2S around the superpixel center.

Once each pixel has been associated to the nearest cluster

center, an update step adjusts the cluster centers to be the mean

½l a b x y�T vector of all the pixels belonging to the cluster. The

L2 norm is used to compute a residual error E between the new

cluster center locations and previous cluster center locations. The

assignment and update steps can be repeated iteratively until the

error converges, but we have found that 10 iterations suffices for

most images, and report all results in this paper using this criteria.

Finally, a postprocessing step enforces connectivity by reassigning

disjoint pixels to nearby superpixels. The entire algorithm is

summarized in Algorithm 1.
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2. Optionally, the compactness of the superpixels can be controlled by
adjusting m, which is discussed in Section 3.2.

Fig. 1. Images segmented using SLIC into superpixels of size 64, 256, and 1,024
pixels (approximately).



Algorithm 1. SLIC superpixel segmentation

/� Initialization �/
Initialize cluster centers Ck ¼ ½lk; ak; bk; xk; yk�T by sampling

pixels at regular grid steps S.

Move cluster centers to the lowest gradient position in a 3� 3

neighborhood.

Set label lðiÞ ¼ �1 for each pixel i.

Set distance dðiÞ ¼ 1 for each pixel i.

repeat

/� Assignment �/
for each cluster center Ck do

for each pixel i in a 2S � 2S region around Ck do

Compute the distance D between Ck and i.

if D < dðiÞ then

set dðiÞ ¼ D
set lðiÞ ¼ k

end if

end for

end for

/� Update �/
Compute new cluster centers.

Compute residual error E.

until E � threshold

3.2 Distance Measure

SLIC superpixels correspond to clusters in the labxy color-image

plane space. This presents a problem in defining the distance

measure D, which may not be immediately obvious. D computes

the distance between a pixel i and cluster center Ck in Algorithm 1.

A pixel’s color is represented in the CIELAB color space ½l a b�T,

whose range of possible values is known. The pixel’s position

position ½x y�T, on the other hand, may take a range of values that

varies according to the size of the image.
Simply defining D to be the 5D euclidean distance in labxy

space will cause inconsistencies in clustering behavior for different

superpixel sizes. For large superpixels, spatial distances outweigh

color proximity, giving more relative importance to spatial

proximity than color. This produces compact superpixels that do

not adhere well to image boundaries. For smaller superpixels, the
converse is true.

To combine the two distances into a single measure, it is
necessary to normalize color proximity and spatial proximity by
their respective maximum distances within a cluster, Ns and Nc.
Doing so, D0 is written

dc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlj � liÞ2 þ ðaj � aiÞ2 þ ðbj � biÞ2

q
;

ds ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxj � xiÞ2 þ ðyj � yiÞ2

q
;

D0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dc
Nc

� �2

þ ds
Ns

� �2
s

:

ð1Þ

The maximum spatial distance expected within a given cluster
should correspond to the sampling interval, NS ¼ S ¼

ffiffi
ð

p
N=KÞ.

Determining the maximum color distance Nc is not so straightfor-
ward, as color distances can vary significantly from cluster to
cluster and image to image. This problem can be avoided by fixing
Nc to a constant m so that (1) becomes

D0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dc
m

� �2

þ ds
S

� �2
s

; ð2Þ
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Fig. 2. Reducing the superpixel search regions. The complexity of SLIC is linear in
the number of pixels in the image OðNÞ, while the conventional k-means algorithm
is OðkNIÞ, where I is the number of iterations. This is achieved by limiting the
search space of each cluster center in the assignment step. (a) In the conventional
k-means algorithm, distances are computed from each cluster center to every
pixel in the image. (b) SLIC only computes distances from each cluster center to
pixels within a 2S � 2S region. Note that the expected superpixel size is only
S � S, indicated by the smaller square. This approach not only reduces distance
computations but also makes SLIC’s complexity independent of the number of
superpixels.

TABLE 1
Summary of Existing Superpixel Algorithms

The ability of a superpixel method to adhere to boundaries found in the Berkeley data set [20] is measured according to two standard metrics: under-segmentation error
and boundary recall (for � 500 superpixels). We also report the average time required to segment images using an Intel Dual Core 2.26 GHz processor with 2 GB RAM,
and the class-averaged segmentation accuracy obtained on the MSRC data set using the method described in [11]. Bold entries indicate best performance in each
category. Ability to specify the amount of superpixels, control their compactness, and ability to generate supervoxels is also provided.



which simplifies to the distance measure we use in practice:

D ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dc

2 þ ds
S

� �2

m2

s
: ð3Þ

By defining D in this manner, m also allows us to weigh the

relative importance between color similarity and spatial proximity.

When m is large, spatial proximity is more important and the

resulting superpixels are more compact (i.e., they have a lower

area to perimeter ratio). When m is small, the resulting superpixels

adhere more tightly to image boundaries, but have less regular

size and shape. When using the CIELAB color space, m can be in

the range ½1; 40�.
Equation (3) can be adapted for grayscale images by setting

dc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlj � liÞ2

q
:

It can also be extended to handle 3D supervoxels, as depicted in

Fig. 3, by including the depth dimension to the spatial proximity

term of (3):

ds ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � xjÞ2 þ ðyi � yjÞ þ ðzi � zjÞ2

q
: ð4Þ

3.3 Postprocessing

Like some other superpixel algorithms [8], SLIC does not explicitly

enforce connectivity. At the end of the clustering procedure, some

“orphaned” pixels that do not belong to the same connected

component as their cluster center may remain. To correct for this,

such pixels are assigned the label of the nearest cluster center using

a connected components algorithm.

3.4 Complexity

By localizing the search in the clustering procedure, SLIC avoids

performing thousands of redundant distance calculations. In

practice, a pixel falls in the neighborhood of less than eight

cluster centers, meaning that SLIC is OðNÞ complex. In contrast,

the trivial upper bound for the classical k-means algorithm is

OðkNÞ [17], and the practical time complexity is OðNkIÞ [6], where

I is the number of iterations required for convergence. While

schemes to reduce the complexity of k-means have been proposed

using prime number length sampling [27], random sampling [13],

local cluster swapping [12], and by setting lower and upper

bounds [6], these methods are very general in nature. SLIC is

specifically tailored to the problem of superpixel clustering.

Finally, unlike most superpixel methods and the aforementioned

approaches to speed up k-means, the complexity of SLIC is linear

in the number of pixels, irrespective of k.

4 COMPARISON WITH STATE-OF-THE-ART

We performed a quantitative comparison of SLIC and five state-of-
the-art superpixel methods using publicly available source code.
These algorithms include GS04,3 NC05,4 TP09,5 QS09,6 and two
versions of the algorithm proposed in [26], GCa10 and GCb10.7

Examples of superpixel segmentations produced by each method
appear in Fig. 7.

4.1 Adherence to Boundaries

Arguably, the most important property of a superpixel method is its
ability to adhere to image boundaries. Boundary recall and under-
segmentation error are standard measures for boundary adherence
[15], [26]. In Figs. 4a and 4b, SLIC, GS04, NC05, TP09, QS09, and
GC10 are compared using these measures on the Berkeley database
[20]. In addition, a baseline performance obtained by segmenting the
image into uniform squares is denoted as “Squares.” The Berkeley
data set contains 300 321� 481 images, and approximately 10
human-annotated ground truth segmentations corresponding to
each image.

Boundary recall measures what fraction of the ground truth
edges fall within at least two pixels of a superpixel boundary. The
boundary recall of each method is plotted in Fig. 4a for increasing
numbers of superpixels. A high boundary recall indicates that
very few true edges were missed. Superpixels generated by SLIC
and GS04 demonstrated the best boundary recall performance. If
we reduce SLIC’s compactness m from its default value of 10, SLIC
shows superior performance to GS04.

Under-segmentation error, shown in Fig. 4b, is another measure
of boundary adherence. Given a region from the ground truth
segmentation gi and the set of superpixels required to cover it,
sjjsj

T
gi, it measures how many pixels from sj “leak” across the

boundary of gi. If j:j is the size of a segment in pixels, M is the
number of ground truth segments, and B is a minimum number of
pixels in sj overlapping gi, under-segmentation error is expressed
as

U ¼ 1

N

XM
i¼1

X
sj jsj
T

gi>B

jsjj

0
B@

1
CA�N

2
64

3
75: ð5Þ

B is set to 5 percent of jsjj in our experiments to account for
ambiguities in the ground truth. Superpixels that do not tightly fit
the ground truth result in a high value of U .

4.2 Computational and Memory Efficiency

Superpixels are often used to replace the pixel-grid to help speed up
other algorithms. Thus, it is important that superpixels can be
generated efficiently in the first place. In Fig. 4c, we compare the
time required for the various superpixel methods to segment
images of increasing size on an Intel Dual Core 2.26 GHz processor
with 2 GB RAM. SLIC, with its OðNÞ complexity, is the fastest
superpixel method, and its advantage increases with the size of the
image. While GS04 is competitive, with OðNÞ logN complexity, the
remaining methods show a significant gap in processing speed.

It is also important that a superpixel algorithm be memory
efficient in order to handle large images. SLIC is the most memory
efficient method, requiring only N floats to store the distance from
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Fig. 3. SLIC supervoxels computed for a video sequence. (Top) Frames from a
short video sequence of a flag waving. (Bottom left) A volume containing the video.
The last frame appears at the top of the volume. (Bottom right) A supervoxel
segmentation of the video. Supervoxels with orange cluster centers are removed
for display purposes.

3. http://people.cs.uchicago.edu/~pff/segment/.
4. http://www.cs.sfu.ca/~mori/research/superpixels/.
5. http://www.cs.toronto.edu/~babalex/turbopixels_supplementary.

tar.gz.
6. http://www.vlfeat.org/download.html.
7. http://www.csd.uwo.ca/faculty/olga/Code/superpixels1pt1.zip.



each pixel to its nearest cluster center. Other methods have

comparatively high memory requirements: GS04 and GC10 require

5N floats to store edge weights and thresholds for four-connectivity

(or 9N for eight-connectivity).

4.3 Segmentation Performance

Superpixels are commonly used as a preprocessing step in

segmentation algorithms. A good superpixel algorithm should

improve the performance of the segmentation algorithm that uses

it. We compared the segmentation resulting from SLIC, GS04,

NC05, TP09, QS09, and GC10 on the MSRC data set [24]. These

results were obtained using the method of [11], which uses

superpixels to compute color, texture, geometry, and location

features. It then trains classifiers for the 21 object classes and

learns a CRF model. The results appearing in Table 1 show that

SLIC superpixels yield the best performance. SLIC also reduces

the computational time by a factor of over 500 over NC05, the

method used in [11]. Example images segmented using SLIC are

shown in Fig. 5.
We also tested on the PASCAL VOC 2010 data set [7] using the

approach of [10]. As shown in Table 2, SLIC provided a boost in

segmentation accuracy over QS09 and reduced the time spent

generating superpixels by an order of magnitude.

4.4 Discussion

In addition to the properties discussed above, other considerations

should factor into the quality of a superpixel algorithm. One such

consideration is the ease of use. Superpixel methods with many

difficult-to-tune parameters can result in lost time or poor

performance. Another consideration is the ability to specify the

amount of superpixels, which not all methods provide. Finally, the

ability to control the compactness of the superpixels is important.

Compact, regular superpixels are often desirable because their
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Fig. 5. Multiclass segmentation. (Top) Images from the MSRC data set. (Middle)
Ground truth annotations. (Bottom) Results obtained using SLIC superpixels in
place of NC05, following the method proposed in [11].

TABLE 2
Multiclass Object Segmentation on the PASCAL VOC 2010 Data Set

Results for the method of [10], using SLIC and QS09 superpixels.

Fig. 4. Boundary adherence and segmentation speed. (a) Boundary recall
measures the fraction of the ground truth edges that fall within at least two pixels
of a superpixel boundary. While GS04 demonstrates the best boundary recall,
reducing m from the default value increases the boundary recall of SLIC over that
of GS04. (b) Under-segmentation error measures the amount of superpixel “leak”
for a given ground truth region. SLIC outperforms the other methods, showing the
lowest under-segmentation error for most of the useful operating regime. (c) Time
required to generate superpixels for images of increasing size. SLIC is the fastest
superpixel method, followed closely by GS04, and then a significant gap. NC05 is
not plotted due to its particularly slow speed.



bounded size and few neighbors form a more interpretable graph
and can extract more locally relevant features. However,
compactness comes at the expense of boundary adherence, and
the ability to control this tradeoff can be useful. In the following, we
review the performance of each superpixel method with respect to
boundary adherence, speed, memory efficiency, segmentation
quality, parameter tuning, ability to specify the amount of super-
pixels, and ability to control superpixel compactness.

TP09. While TP09 produced some of the most compact and
consistently sized superpixels, it fared the worst among all methods
in both boundary recall and under-segmentation error. TP09 also
suffers from a slow running time and resulted in poor segmentation
performance. Next to NC05, it is the slowest superpixel algorithm; it
is almost 100 times slower than SLIC for a 2;048� 1;536 image,
taking 800 s. On the other hand, TP09 has only one parameter to tune
and offers direct control over the number of superpixels.

NC05. Normalized cuts showed only a small improvement
over TP09. The superpixels produced by NC05 are even more
compact than those of TP09, making them attractive for graph-
based applications. However, the boundary adherence is very
poor, ranking sixth in boundary recall and fifth in under-
segmentation error. Despite this, the segmentation quality was
surprisingly high. The running time of NC05 is prohibitively
slow, and the method failed to segment 2;048� 1;536 images,
producing “out of memory” errors.

GCa10 and GCb10. These two methods showed similar
performance despite their differences in design (compact versus
constant intensity superpixels). GCb10’s “compact” superpixels
are more compact than GCa10, though much less than TP09 and
NC05. In terms of boundary recall, GCa10 and GCb10 ranked in
the middle of the pack, fifth and fourth, respectively. Their
standing improved slightly for under-segmentation error (third
and fourth). While GCa10 and GCb10 are faster than NC05 and
TP09, their slow runtime still limits their usefulness (requiring
235 s and 315 s, respectively), and they reported one of the worst
segmentation performances. GC10 has three parameters to tune,
including patch size, which can be difficult to set. On the positive
side, GC10 allows for control of the number of superpixels, and
can produce supervoxels.

QS09. QuickShift performed well in terms of under-segmenta-
tion error and boundary recall, ranking second and third overall.
However, QS09 showed relatively poor segmentation perfor-
mance, and other limitations make it a less-than-ideal choice. It
has a slow runtime (181 s), requires several nonintuitive para-
meters to be tuned, and does not offer control over the amount or
compactness of superpixels. Finally, the source code fails to ensure
that superpixels are completely connected components, which can
be problematic for subsequent processing.

GS04. Adheres well to image boundaries, although the super-
pixels are very irregular. It ranks first in boundary recall,
outperforming SLIC by a small margin. It is the second fastest
method, segmenting a 2;048� 1;536 image in 18.19 s (without
performing a parameter search). However, GS04 showed relatively
poor segmentation performance and under-segmentation error,
likely because its large, irregularly shaped superpixels are not
suited to segmentation methods such as [11]. Last, GS04 does not
allow the number of superpixels or compactness to be controlled
with its three input parameters.

SLIC. Among the superpixel methods considered here, SLIC
is clearly the best overall performer. It is the fastest method,
segmenting a 2;048� 1;536 image in 14.94 s, and most memory
efficient. It boasts excellent boundary adherence, outperforming
all other methods in under-segmentation error, and is second
only to GS04 in boundary recall by a small margin (by adjusting
m, it ranks first). When used for segmentation, SLIC showed the
best boost in performance on the MSRC and PASCAL data sets.
SLIC is simple to use, its sole parameter being the number of
desired superpixels, and it is one of the few methods to produce

supervoxels. Finally, among existing methods, SLIC is unique in
its ability to control the tradeoff between superpixel compactness
and boundary adherence if desired, through m.

4.5 More Complex Distance Measures

The reader may wonder if more sophisticated distance measures
improve SLIC’s performance, considering the simplicity of the
approach described in Section 3. We investigated this question by
replacing the distance in (3) with an adaptively normalized distance
measure (ASLIC) and a geodesic distance measure (GSLIC).
Perhaps surprisingly, the simple distance measure used in (3)
outperforms ASLIC and GSLIC in terms of speed, memory, and
boundary adherence.

Adaptive-SLIC, or ASLIC, adapts the color and spatial normal-
izations within each cluster. As described in Section 3.2, S and m in
(3) are the assumed maximum spatial and color distances within a
cluster. These constant values are used to normalize color and
spatial proximity, so they can be combined into a single distance
measure for clustering. Instead of using constant values, ASLIC
dynamically normalizes the proximities for each cluster using its
maximum observed spatial and color distances ðms;mcÞ from the
previous iteration. Thus, the distance measure becomes

D ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dc
mc

� �2

þ ds
ms

� �2
s

: ð6Þ

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 34, NO. 11, NOVEMBER 2012 2279

Fig. 6. SLIC applied to segment mitochondria from 2D and 3D EM images of
neural tissue. (a) SLIC superpixels from an EM slice. (b) The segmentation result
from the method of [18]. (c) SLIC supervoxels on a 1;024� 1;024� 600 volume. (d)
Mitochondria extracted using the method described in [19]. (e) Segmentation
performance comparing SLIC supervoxels versus cubes of similar size for the
volume in (c).



As before, constant normalization factors are used for the first
iteration, but the algorithm subsequently keeps track of the
maximum distances for each cluster. The advantage of this
approach is that the superpixel compactness is more consistent,
and it is never necessary to setm. This comes at the price of reduced
boundary recall performance, as shown in Fig. 4a.

Geodesic-SLIC, or GSLIC, replaces the distance of (3) with a
geodesic distance. The unsigned geodesic distance from one pixel
IðpiÞ to another IðpjÞ is defined as

GðIðpiÞ; IðpjÞÞ ¼ min
P2�

dðP Þ; ð7Þ

where � is the set of all paths between IðpiÞ and IðpjÞ and dðP Þ is
the cost associated to path P , given by

dðP Þ ¼
Xn
i¼2

kIðpiÞ � Iðpi�1Þk; ð8Þ

where kIðpiÞ � Iðpi�1Þk is the euclidean distance between the
CIELAB color vectors of pixels pi and pi�1. This approach has the
advantage that the connectivity in the xy plane is guaranteed,
eliminating the need for the postprocessing step. However, the
computation cost is higher and the boundary adherence perfor-
mance suffers, as seen in Fig. 4a.

5 BIOMEDICAL APPLICATIONS

Many popular graph-based segmentation approaches such as
graph cuts [3] become increasingly expensive as more nodes are
added to the graph, limiting image size in practice. For some
applications, such as mitochondria segmentation from electron
micrographs (EM), the images are large but reducing the resolution
is not an option. In such cases, segmentation on a graph defined
over the pixel-grid would be intractable. In [18], SLIC superpixels
significantly reduce the complexity of the graph, making the
segmentation tractable. Segmented mitochondria from [18] are
shown in Figs. 6a and 6b.

In [19], this approach is extended to 3D image stacks, which can
contain billions of voxels. Only the most frugal of algorithms can
operate on such large volumes of data without reducing the size of
the graph in some manner. SLIC supervoxels reduce the memory
requirements and complexity by over three orders of magnitude,
and significantly increases performance over regular cubes as
shown in Figs. 6c, 6d, and 6e.

6 CONCLUSION

Superpixels have become an essential tool to the vision commu-
nity, and in this paper we provide the reader with an in-depth
performance analysis of modern superpixel techniques. We
performed an empirical comparison of five state-of-the-art algo-
rithms, concentrating on their boundary adherence, segmentation
speed, and performance when used as a preprocessing step in a
segmentation framework. In addition, we proposed a new method
for generating superpixels based on k-means clustering, SLIC,
which has been shown to outperform existing superpixel methods
in nearly every respect.

Although our experiments are thorough, they come with a

caveat. Certain superpixel methods, specifically, GC10 and TP09,

do not consider color information, while the other methods do. This

may adversely impact their performance.
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