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Preface

This book is aimed at those using colour image processing or researching
new applications or techniques of colour image processing. It has been clear
for some time that there is a need for a text dedicated to colour. We foresee a
great increase in the use of colour over the coming years, both in research and
in industrial and commercial applications. We are sure this book will prove
a useful reference text on the subject for practicing engineers and scientists,
for researchers, and for students at doctoral and, perhaps masters, level. It is
not intended as an introductory text on image processing, rather it assumes
that the reader is already familiar with basic image processing concepts such
as image representation in digital form, linear and non-linear filtering, trans-
forms, edge detection and segmentation, and so on, and has some experience
with using, at the least, monochrome equipment. There are many books cov-
ering these topics and some of them are referenced in the text, where appro-
priate.

The book covers a restricted, but nevertheless, a very important, subset
of image processing concerned with natural colour (that is colour as per-
ceived by the human visual system). This is an important field because it
shares much technology and basic theory with colour television and video
equipment, the market for which is worldwide and very large; and with the
growing field of multimedia, including the use of colour images on the Inter-
net.

The book is structured into four parts. The first deals with colour princi-
ples and is aimed at readers who have very little prior knowledge of colour
and colour science. Chapter 2 outlines the theory of human colour vision,
because this is what defines colour. Chapter 3 gives an overview of the field
of colour science relevant to image processing, and Chapter 4 describes vari-
ous possible mathematical spaces or coordinate systems in which colour may
be represented, including the equations and coefficients required to convert
colour pixel values between different colour spaces. The second part of the
book covers colour video technology (Chapter 5), colour image sources and
image acquisition (Chapter 6 and Chapter 7). This part is intended to convey
the need for care in acquiring images if the results of subsequent processing
are to have the best chance of success. As these chapters show, there is much



xiv Preface

more to colour image acquisition than in the case of monochrome. The third
part of the book (Chapters 9 to 13) is its core, and covers the main fields of
processing so far established, some of them quite mature, others still in the
early stages of development. The fourth, and final, part covers some specific
applications of colour image processing, including the use of colour in the
textile and graphics arts industries, and some industrial and medical applica-
tions of colour measurement and analysis.

No book is ever free from errors, and we would welcome comments and
corrections, for use in what we hope will be the next edition.

S. J. SANGWINE
Reading and

October 1997 R. E. N. HORNE
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The present state and the future of
colour image processing

Colour image processing, the subject of this book, is concerned with the ma-
nipulation of digital colour images on a computer, and is a branch of the
wider field of digital image processing, which is itself a branch of the more
general field of digital signal processing. Digital colour images occur very
widely in the modern world, indeed few contemporary images are not digi-
tally processed. All images on the Internet are in digital form; most images
seen in the press have been in digital form at some point between reality and
paper; and images seen on television have often been generated, processed
and transmitted digitally. Images may be observed simply for the immediate
information they convey, or they may be processed to extract useful informa-
tion, such as the position, size or orientation of an object; or detail, such as a
vehicle licence number.

Itis obvious that a colour image has the potential to convey more informa-
tion than a monochrome or black and white image, and that some information
in an image cannot easily be extracted from a monochrome representation.
Some colours, for example, will reproduce as almost the same shade of grey
in a monochrome image, whereas, seen in colour, the two colours will be
readily separable by the human eye and/or by computer processing. Televi-
sion and video can be regarded simply as sequences of images, so that digital
colour video processing can be seen as an extension of digital colour image
processing. Of course, processing of video in real time (that is processing
each frame or image in less time than the interval between frames) is a chal-
lenging application of digital signal processing. Some processing operations
can be performed by commercially available hardware, including relatively
straightforward geometrical manipulations and other effects which are seen
regularly on television.

Digital image processing is a well-established discipline with a large body

S.J. Sangwine et al. (eds.), The Colour Image Processing Handbook
© Chapman & Hall 1998



2 The present state and the future of colour image processing

of theory and many practical applications in fields as diverse as industrial in-
spection, medicine, publishing and multimedia. Many applications require no
more than monochrome images, indeed in some applications (X-ray and ul-
trasonic imaging, for example) the images are inherently monochromatic and
the question of colour does not arise. However, in many other applications,
colour could be used with advantage and yet is not. Examples include agri-
cultural quality control (e.g. fruit sorting), surveillance of vehicles or crowds,
and industrial handling. Until recently, the extensive exploitation of colour
image information has been prevented partly by cost and partly by the rela-
tively immature development of appropriate processing algorithms.

The history of research work in colour goes back over 20 years to the
work of Tenenbaum, Kender and others, whose works are cited in this book.
They worked with colour images at a time when even a modest-sized image
required far more computer memory than was available in many minicomput-
ers of the time (a typical 1970s minicomputer had 128 kB of RAM, whereas
the cheapest personal computer (PC) today has at least 8 MB, a factor of 64
greater). In the last few years it has become possible to store very large num-
bers of colour images on a personal computer and to process those images
quite easily. Indeed, processing power and memory are no longer serious
problems for most researchers, and in many applications. Much work re-
mains to be done on colour processing algorithms. Later chapters in this
book show that in some areas there are already good techniques available for
practical applications. In other areas, the practical techniques are emerging
and the chapters in this book survey the current state of development.

The last decade has seen a global convergence in the technologies of
computers, telecommunications and broadcasting. Historically, colour image
processing has been based on the technology of colour television which was
developed in the 1950s. Colour video cameras, which were, until the recent
advent of digital still cameras, the main means of capturing natural scenes
digitally, are based on colour television technology. This is made clear in
Chapter 4 and in Chapter 5. The convergence of many technologies can only
strengthen the link between colour image processing, colour television, mul-
timedia and digital video, and the cost of image acquisition equipment based
on common standards of colour representation is likely to fall further. This
means that applications of colour image processing will usually be based on
the standard trichromatic nature of these technologies, which is itself based
on the human colour visual system discussed in Chapter 2. If the images
resulting from digital processing are to be interpreted by the human eye, as
many are, this could not be otherwise. But in many industrial applications
the images need not be seen by the human eye: the computer extracts some
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information, such as the position and orientation of an object, that is used to
control a machine, and there is no reason to use a visual system based on hu-
man vision. Some researchers have thought along these lines, and it is possi-
ble, using specialized equipment, to capture multi-spectral images which are
not based on the human trichromatic vision system. This has been common
practice for decades in astronomy and remote sensing, and much theory has
been developed in multi-spectral imaging which could be applied to natural
colour imaging and processing.

Some of the topics presented in this book are at an early stage of devel-
opment. Morphology, discussed in Chapter 11 could be developed further,
and this is only one example of a field where the use of colour has great po-
tential. There are, almost certainly, other fields where existing techniques
from monochrome image processing could be generalized to handle colour.
Equally, there are fields where colour processing will have no monochrome
analogue. A clear example is the emerging field of chromatically sensitive
linear filters which is mentioned at the end of Chapter 12 but which has not
yet advanced far enough to be reported fully in this book.

FURTHER READING

Research in image processing is reported in many conferences, but few are
specifically devoted to colour, or have sessions devoted to colour. A notable
exception is the series of workshops organized in Germany, the most recent of
which (at the time of writing) was held in Erlangen in September 1997. These
workshops have been held in German, which unfortunately excludes many
researchers. Two major conferences of note are those organized by the IEE
(International Conference on Image Processing and its Applications) held
every two years, usually in July, and by the IEEE (International Conference
on Image Processing) held annually, usually in September.

Industrial and commercial applications are presented in the magazines
Advanced Imaging published in the USA, and Image Processing published in
the UK.
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COLOUR



2

Colour vision

William Mcllhagga

2.1 WHAT IS COLOUR?

Everything appears coloured. One cannot look at grass, for example, without
seeing green, or look at the sky without seeing blue. The pervasiveness of
colour, and its impact on our senses, makes it seem as if it is an aspect of
reality, but of course it is not. Neither the light reflected from grass, nor the
light scattered from the sky, has colour; both are just collections of photons.
The colours are created in our minds as a response to the light. Since the final
sensation of colour is not at all similar to a physical description of light in
terms of photons and wavelengths, there must obviously be a great deal of
interpretation occurring. Fortunately, this interpretation is mostly indepen-
dent of higher-order processes, such as object recognition, consciousness or
emotion, so a comprehensive theory of colour is possible.

To progress, it helps to have a definition of colour. Since colour is how
a human observer interprets light, any definition has to involve an observer.
Colour can’t be defined in physical terms, since it is not a physical property,
but once a behavioural definition is in place, it can be used to deduce the
correlations between colour sensation and the physical properties of the light.
The following definition is simple and appealing: take a colour sample, for
example a paint square. Place the sample under a variable intensity light.
When the intensity of the light is varied, the colour of the sample stays the
same. Colour must therefore be something which is invariant with respect to
light intensity.

S.J. Sangwine et al. (eds.), The Colour Image Processing Handbook
© Chapman & Hall 1998



8 Colour vision
2.1.1 Theoretical background

It is worth beginning by asking what measurements of light have the intensity-
invariant property. Light, either from a radiant source or reflected from a sur-
face, can be described by a power distribution P(A) which gives the power (in
watts, say) of the light around wavelength A. An obvious intensity-invariant
measure of P(A) is the normalized distribution Py () given by dividing P(A)
by the total power:
P(A)

N = Tman

When P(A) changes by a multiplicative factor (i.e. a change in intensity)
Py(A) remains unchanged. Clearly, any sum or ratio of functionals based
on Py must also be intensity-invariant. Considering only linear functionals,
any measure of the following form

H (/A,-(?»)P(?»)dk) for constants n; satisfying Zn,- =0

where the functions A;(A) are distinct, is also intensity invariant. The loga-
rithm:

;m’ log ( / A,-(?»)P(k)dk) 2.1)

is likewise. Although important, intensity invariance cannot be the only cri-
terion to apply to colour vision. A colour description should also be able to
distinguish between two power distributions that differ by something other
than a change in intensity. The ability to distinguish such distributions de-
pends on the number of invariants that are computed. At least one is neces-
sary, but more are better. The normalized power Py(A) is an infinite number
of invariants, one for each wavelength. As we shall see later, human colour
vision uses only two invariants.

2.1.2 Human colour perception

How closely does human colour perception match the theoretical outline pre-
sented above? Given that the theoretical outline is directly inspired by the
intensity invariance of human colour vision, it would be surprising if it were
very different. Indeed, parallels between the colour descriptor defined in
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equation (2.1) and the human colour system are quite direct. The compu-
tation of a descriptor like equation (2.1) can be broken into three stages:

e the integration of P(A) with 4;(A);
e a logarithmic transform; and
e asummation weighted by coefficients n;.

Each of these stages has a corresponding stage in the human colour pathway
(described in the next section). The integration step is implemented in the
retina, where the light is absorbed by photoreceptors (section 2.3). An ap-
proximate logarithmic transform is implemented by the response nonlinear-
ity that occurs at the photoreceptors (section 2.3.2), and the opponent process
channels (section 2.4) are weighted summations of cone responses, which are
implemented in the cortex.

2.2 THE VISUAL PATHWAY

Colour perception occurs in stages. Each stage has a different location in the
brain and visual apparatus. The pipeline of stages is called the visual path-
way and is represented in Fig. 2.1. Conventionally, the pathway is divided
into three parts: the retina; the lateral geniculate nucleus; and the cortex.
The cortical stage of visual processing is itself composed of many stages, but
much less is known about them, and it has only recently been possible to map
human visual areas and relate them to their function. Most of the information
about the visual pathways comes from investigations using the macaque mon-
key, which as far as we know has a similar visual system to humans. For a
short but comprehensive review of visual pathways, see van Essen, Anderson,
and Felleman (1992). For introductory material, see Shepherd (1988).

The first stage in the visual pathway is the retina. Light is focused by the
cornea and lens onto the retina, a thin layer of tissue at the back of the eye.
(The retina is in fact an outgrowth of the brain attached to the back of the
eyeball.) The retina is composed of a number of layers. Specialized cells in
one layer of the retina, called photoreceptors, absorb the light and.convert it
into a neural signal. These neural signals are collected and further processed
by cells in other layers of the retina before being passed to the brain along
a nerve bundle, or cable, called the optic nerve. The layering of the retina
is oddly engineered. The photoreceptors lie in the outer layer, furthest from
the light. The other cells in the retina lie in layers on top of them, partially
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Right hemisphere Left hemisphere

Eye
Optic nerve

Optic chiasm

LGN

Vi

Fig. 2.1 The visual pathway in humans. The eyes are connected to the LGN by the
optic nerves. Signals from the LGN pass to visual area 1 (V1). The diagram shows
the brain as viewed from below.

obscuring that light, although in the fovea, where visual acuity is greatest, the
inner layers of the retina have all but disappeared to give the photoreceptors
an unobstructed view. The optic nerve connects to the cells in the innermost
layer, called the retinal ganglion cells, so it must punch through the outer
(photoreceptor) layer to escape the eye; and this leaves a small spot on the
eye which has no photoreceptors - the blind spot. The cells in the inner retinal
layer can be divided into two classes, called M (for magnocellular, or large-
bodied) and P (for parvocellular, or small-bodied) cells. Only the P cells
carry a colour signal. The optic nerve passes from the eye to a pair of small
midbrain structures called the lateral geniculate nuclei (LGN). These do not
seem to process the nerve signals in any significant way. From the LGN, the
visual signal passes to V1 (Visual area 1, also called area 17) which lies in
the cleft between the two brain hemispheres at the back of the brain. V1 is
laid out like a map of the retina: each point in V1 processes signals from a
corresponding point on the retina. Each hemisphere of the brain carries half
of V1. The left brain holds the part of V1 that deals with the right visual field,
and the right brain holds the part that deals with the left. Within V1, there
are a subgroup of cells that are colour sensitive. These cells are distributed
throughout V1 in clumps, called ‘blobs’ and receive input from the P cells
(Livingstone and Hubel 1984). From V1, the colour signal from the blobs
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passes to other visual areas, imaginatively named v2, v3, and v4. Of these,
V4 is the most crucial. It is clearly identified as being colour specific in PET
and functional MRI! images of the human brain, and damage to this area
reduces or eliminates the ability to see colour. However, V4 also seems to be
involved in other kinds of visual processing. The colour signal does not pass
to some areas of the brain, most notably v5, which deals with the detection
of motion.

2.3 LIGHT ABSORPTION AND TRICHROMACY

Colour perception begins with light absorption by the photoreceptors in the
retina. There are two main kinds of photoreceptors, called rods and cones.
Rods, which are long and thin, function only in darkness, and do not con-
tribute to colour perception. Cones, which have a tapered shape, do not re-
spond very well in dim lighting; their purpose is to handle vision during day-
light. Colour perception is based on the activity of the cones. There are three
different types of cone, called L, M, and S, which stand for Long, Medium,
and Short wavelength. Each cone type absorbs light over a broad range of
wavelengths, but has its peak absorption at a different wavelength. The L
cones peak at ~570 nm, the M cones at ~545 nm, and the S cones at ~440 nm
(Fig. 2.2). Cone absorption is minimal outside the range 400-700 nm, which
therefore defines the visible spectrum. The cones are occasionally called R,
G, and B, instead of L, M, and S, but this nomenclature is misleading. A red
sensation is not due to activity in the R cone, but to a comparison of R and
G (L and M) cones. The cone absorption curves give the proportion of light
absorbed at each wavelength. The total power absorbed by these cones, when
illuminated by light with power distribution P(A), is

a, = [ L(A) P(A)dh,
ay = [M(A) P(\) dA, 2.2)
as = [ S(A)P(A)dM,

'pET (Positron Emission Tomography) locates brain activity by following a weak radioac-
tive tracer, usually an oxygen isotope, injected into the cranial blood supply. Decay events
are detected and used to build up an image of oxygen concentration (and therefore brain
metabolism) in the head. Functional MRI (Magnetic Resonance Imaging) produces three-
dimensional images of the blood oxygenation level (and hence brain metabolism), by measur-
ing differences in the decay of spin-coherence of hydrogen nucleii between oxygenated and
deoxygenated blood.
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M cone absorption curve '

S cone absorption curve
L cone absorption curve

400 500 600 700
Wavelength (nm)

Fig. 2.2 Absorption curves for the L, M, and S cones, from Vos, Estevez and Wal-
raven (1990). The curves have been normalized to produce equal cone absorption
rates when shown ‘equal energy white’ (CIE coordinates X =Y = Z).

where L(A), M(X) and S(A) are the absorption curves shown in Fig. 2.2, and
ay, ay, and ag are the total absorbed power in the respective cone types. Once
light is absorbed by the cones, no further information about the light is avail-
able to the visual system. In particular, the cones do not retain information
about the wavelengths of the light they absorb. Although it is possible to
distinguish different wavelengths by comparing cone absorptions, this is not
the purpose of colour vision. The power distributions of light reflected from
real objects contain power across the entire visible spectrum, and colour vi-
sion is designed to detect and characterize these broad spectra, not individual
wavelengths.
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2.3.1 Trichromacy

Suppose two power distributions P;(A) and P; () yield exactly the same cone
absorption rates ay, ay, and as. From equation (2.2), this implies:

J LAY (P(A) — P(A))dr = 0

M) (PL(A) — Po(2))dA 0 (2.3)
J S (P(A) = P(A))dh = 0

These constraints do not mean that P;(A) = P>(), so it is possible for dif-
ferent power distributions to yield exactly the same cone absorptions. Such
pairs of power distributions would therefore have exactly the same colour,
and could not be distinguished under any circumstances. Different but in-
distinguishable power distributions are called metamers. Metamers are the
basis for colour matching in film, video, and print: these technologies attempt
to produce metamers of natural colours by the combination of a fixed set of
mixing colours, called primaries. The way in which this works is outlined
below.

Consider a set of three lights, called primaries. These lights can be mixed
together by, for example, projecting them onto the same point on a screen, or
by pointillistic mixing, as in colour TV. Let the normalized power distribu-
tions of the primaries be A(A), B(A), C(A), and their respective total powers
be a, b, c, so that the power distribution of the mixed light is:

P(A) =aA(A) +bB(A) +cC(A) ;
The absorption rates of the L, M, and S cones from the mixed light are then:

ar = [ LAPO)d:
= af LWAMN AL + bf LA)BM)AL + cf L(A)C(A)dA
av = [MQ)P(X)
= afMMAAMNAL + bfMMA)BMA)dL + cfM(A)C(A)d\
as = [ S(\)P(L)dr
(MAR)

= af SO)AMNAL + bf SAMBMN AL + cf SA)C()dA

Once the primaries are chosen, all the integrals on the right hand side are
constants, and only the powers a, b and ¢ can vary. These equations can
be used forwards or backwards. Forwards, we specify powers a, b and ¢ and

compute the cone absorptions that result. Backwards, we specify a set of cone
absorptions and work out the primary powers a, b and ¢ needed to produce



14  Colour vision

them. The latter case is the most interesting. Every light yields only three
cone absorptions, so every light can in theory be matched by an appropriate
mixture of the three primaries. The match is perfect: the original light and the
matching primary mixture have exactly the same colour and they can never
be distinguished. The fact that any light can be matched by a combination of
three other lights is called trichromacy.

There are, however, practical limits to trichromacy. Suppose that one
or more of the powers a, b or ¢ needed to reproduce a particular colour is
negative. Since negative power is impossible, that colour cannot be repro-
duced. Only colours which have positive primary powers a, b and ¢ can be
reproduced, and the set of all reproducible colours is called the gamut of the
primaries. The trick is to choose primaries which have the widest possible
gamut, but unfortunately no set of three real primaries has a gamut which
covers all possible colours?. In some applications, it is important to cover all
possible colours, which can only be achieved using primaries that are phys-
ically impossible. This is the approach taken by the CIE system which is
described in section 3.2. Of course, with physically impossible primaries
one can specify physically impossible colours, which is a drawback the CIE
system lives with,

2.3.2 Response compression

When the cones absorb light they generate a neural signal. The neural sig-
nal in photoreceptors (and indeed most other nerve cells) has a limited dy-
namic range: less than two orders of magnitude separate the smallest from
the largest signal. The absorption rate, on the other hand, can vary over six
orders of magnitude without any problem. Thus, the range of the absorption
rate must be compressed when it is converted to a neural signal. Psycholog-
ical studies on humans, and physiological studies on monkey retina (which
is very similar to human retina) suggest that the neural response r from an
absorption rate a, follows a Michelis—Menten equation:

. _(a/Ay
" (a/A)"+o

2Colour matching experiments use another trick to overcome this limitation. In a colour
matching experiment, we have two fields, one containing the colour to be matched, and the
other containing the primary mixture. If one primary, say primary A, needs a negative power
—a, we simply add +a of primary A to both fields. The net effect is that primary A disappears
from the mixture field and is added to the matching field. If we allow this trick, then all colours
can be matched by a combination of three primaries.

2.4)
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where © is the semi-saturation constant (¢ = 1) and A is a scaling term called
the adaptation level;  is just a free variable used to fit the equation; usually,
n = 0.7 (Naka and Rushton, 1966). The adaptation level A is normally mod-
elled as the moving average of the absorption rate, with an integration time in
the order of seconds. Since the eye is in constant motion, the temporal mov-
ing average of the absorption rate a is much the same as the spatial average
of a. Over a small range of absorptions (from a = 0.14 to a = 3A) this curve
is similar to a logarithmic curve.

The purpose of the adaptation level A is to scale the sensitivity of the
photoreceptor to the amount of available light. Adaptation can be seen in
action when we move from bright daylight to a dark interior. At first, the
cone absorption rates in the dark interior are so much less than the adaptation
value that the cone responses immediately fall to very small values, and it
is difficult to see anything (a < A). Slowly, however, the adaptation value
approaches the average of the available light, and the responses increase. As
a result, the scene appears to lighten somewhat, and we see again. When we
move back into bright light, everything appears whited out (a > A) until the
adaptation value A catches up. The pupil of the eye adjusts to help in both
circumstances, but the variation in its size (from about 1 mm to say 6 mm in
diameter) is insufficient to cope with the full range of possible absorptions on
all but the most overcast of days.

2.3.3 Colour blindness

A small number of people have no L-type cones in their retina (they are re-
placed by more M cones). They cannot therefore distinguish colours which
differ only in the amount of L cone absorption, so they are blind to certain
colour differences that normal individuals can see. This kind of visual defect
is called protanopia. Another group of people have no M cones; they are said
to have deuteranopia. Since distinctions between red and green are based on
a comparison of L and M cone activity (section 2.4.1), both protanopes and
deuteranopes are colloquially termed red—green colourblind. A rarer form of
colourblindness, tritanopia, results when the S cones are missing. Calling
any of these people colour-blind is a little misleading. Colour blind people
can see colours; it is just that they tend to mix up colours that normal people
see as different, and the colours they do see are not easy to relate to the colours
that normal individuals see. On the other hand, if someone is unlucky enough
to be both tritanopic and, say, deuteranopic, they truly are colour blind.
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2.4 COLOUR APPEARANCE AND OPPONENT PROCESSES

Trichromacy says that when two lights yield the same cone responses, they
have the same colour. It does not tell us what happens when two colours have
different cone responses. Obviously, they look different, but how different?
And, more importantly, what colour are they? Colours are qualities like red,
green, blue, and so on, not vectors (ar,ap,as) of cone absorptions. Answer-
ing these questions needs a different account of colour from that provided by
trichromacy. The outlines of the answer were supplied by Hering (1964) in
his Opponent process theory of colour.

Opponent process theory is based on the observation that some colours
are more similar than others. Start with a wide selection of colour samples
scattered on a table, and rearrange them so that similar colours sit next to
each other. Inevitably, the best way to arrange the colours is in a wheel.
(Sometimes they can be arranged in a line, but this is the colour wheel cut
at one point and straightened. The opposite ends of the line invariably have
similar colours.) Hering noticed that the colours on the wheel can be moved
around the rim so that all the colours on one side of the wheel contain some
red, while all colours on the other side contain some green. The colours can
also be rearranged so that all the colours on half of the wheel have some blue
content, while the colours that remain in the opposite half appear yellowish.
This second rearrangement can occur independent of the first.

This arrangement of colours yields two crucial points. The first is that
all colours can be described as containing red, or containing green, but never
as containing both sensations simultaneously: red and green are exclusive
colour sensations. Similarly, blue and yellow are exclusive colour sensations;
one never sees a colour that appears to be slightly blue and slightly yellow
at the same time. (Do not get confused here with mixing paints. A mix-
ture of blue and yellow paint is green; while it might end up bluish-green
or yellowish-green, it never ends up bluish-yellowish-green. Green is not a
mixture of a blue sensation and a yellow sensation.) The second crucial point
is that one cannot say this of any other pair of colours. Thus, classifying the
colour as either red or green, and then independently as blue or yellow, is a
complete description of the colour.

Opponent process theory says that our sensation of colour is organized
along two axes, or processes. The first axis encodes the redness or greenness
of a colour. Imagine the axis having positive numbers for red and negative
numbers for green. The position along the axis encodes the intensity (or sat-
uration) of the red/green sensation. The second independent axis, which we
can draw perpendicularly, encodes the blueness or yellowness of a colour.
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Red

Red/green

Yellow I Blue

Blue/yellow

Green

(a) (b)

Fig. 2.3 (a) The opponent colour wheel. The upper semicircle contains all colours
that appear reddish, the lower semicircle all colours that appear greenish; the left
semicircle contains all yellowish colours, and the right semicircle all bluish colours.
(b) Diagram of the cone contributions to opponent processes, according to zone theo-
ries. L and M cones are differenced to yield a red/green signal. S cones are compared
with a sum of L and M cones to yield a blue/yellow signal.

Again, imagine the axis having positive numbers for blue and negative num-
bers for yellow. The position on this axis encodes the blue or yellow satu-
ration. The complete colour sensation is the red/green and blue/yellow co-
ordinates of that colour (Fig. 2.3). Sometimes a third axis is added, which
describes the achromatic luminance (whiteness to blackness) of the colour.

Opponent process theory is supported by many observations. If we stare
intently at an object, then look away at a blank wall or screen, we see an
afterimage of that object. If the object is bright red, the afterimage is green,
and vice versa. If the object is bright yellow, the afterimage is bluish, and
vice versa. This strict pairing of colour and afterimage lends some support to
the idea that red and green are associated (by being opposites, in this case),
as are blue and yellow. Simultaneous contrast also demonstrates a red/green
and blue/yellow association. A thin, grey, colourless line running over a red
background appears slightly green, while running over a blue background
it appears slightly yellow. Opponent process theory also implies that there
should be ‘pure’ colours: a red or a green that has no blue or yellow in it, a
blue or a yellow that has no red or green in it. Pure colours can be produced
quite easily in the laboratory, and only red, green, blue, and yellow can be
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made pure. There is no such thing as, for example, a pure orange, since
orange always looks like a mix of red and yellow.

2.4.1 Zone theories

Trichromacy and opponent process theory describe the analysis of colour at
different stages in the visual pathway. Trichromacy is a model of the retina.
Opponent process theory is a model of more central mechanisms in the brain.
The opponent processes are a transformation of the cone responses, and Zone
Theories (Judd, 1949; Hurvich and Jameson, 1955), describe how this trans-
formation takes place. The simplest zone theory assumes that the opponent
processes are just linear combinations of cone responses. The red/green op-
ponent process is a difference of L and M cone responses:

red/green signal = ou(rp — ry) (2.5)

where r;, and rys are the L and M cone responses, and o is an arbitrary scaling
constant. This difference automatically leads to opponency. When rp > ry,
the red/green signal is positive, and this is interpreted to mean that the colour
appears reddish. The magnitude of the signal is a measure of the colour sat-
uration (the intensity of the colour experience). When r;, < ryy, the red/green
signal is negative, and this is interpreted to mean that the colour is greenish.
When r;, = ry, the red/green signal is zero, and the colour appears neither
red nor green. A colour is never simultaneously red and green; likewise the
difference given by equation (2.5) is never simultaneously positive and nega-
tive.

The blue/yellow opponent process is a difference between the S cone
response and a sum of the L and M cone responses:

blue/yellow signal = B(rs — (6rp + (1 — 8)ry)), 2.6)

with 8 = 0.7 and where B is another arbitrary scaling constant. When this
is positive, the colour is blue; when negative, the colour is yellow. There
remains continuing argument about the correct mix of cone responses in the
opponent processes. The phenomenon of short-wavelength redness suggests
that there should be some S cone input to the red/green process, and the
blue/yellow process is almost certainly not linear; instead, it is better mod-
eled as rs — (8rp + (1 — 8)ry) + €|rL — ry| for some small constant € (Burns,
Elsner, Pokorny and Smith, 1984). Nonetheless, the simple linear equations
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given above provide a convenient way of remembering the opponent pro-
cesses. Finally, the third axis of a colour description — the light/dark axis —
is usually modeled as a combination of the L and M cone responses:

light/dark signal = yry, + (1 —y)ry 2.7

with y around 0.66.

The zone theory equations (2.5), (2.6) and (2.7) have been written as
combining the cone responses, which is what must actually happen in the
brain. Normally, however, zone theory equations are more commonly written
as combining cone absorption rates, which means that the coefficients will
depend on the choice of normalization of the cone absorption curves, and the
adaptive state of the cones (that is, the values of A in equation (2.4) for all
three cone types). The curves in Fig. 2.2 have been normalized to have equal
area. An alternative normalization is to give the L cone curve twice the area
of the M cone curve (Smith and Pokorny, 1975); this will have the effect of
changing the L and M cone coefficients in the zone theory equations and, in
particular, will change equation (2.7) to simply a; + ay.

Finally, zone theories do not have an explicit representation for white.
White is the absence of colour, so white must yield a zero signal in both
the red/green and the blue/yellow opponent processes. This can only occur
when rp = ry = rs, so any light which yields equal cone responses will be
colourless. In this case, only the light/dark process will respond. In the zone
theories, therefore, white is a derived sensation, caused by the absence of
colour; there is no channel which explicitly signals the amount of whiteness
in an object, although anything which activates the light/dark process only,
must be white.

2.4.2 Theoretical background revisited

Compare equations (2.5) and (2.6) to the theoretical colour descriptor defined
in equation (2.1). If r, defined in equation (2.4) is approximately logarithmic,
then substituting r = log(a/A) into the red/green equation (2.5) yields:

(1/o)red/green =log(a.) —log(ay) — [log(AL) — log(Am)],
and into the blue/yellow equation (2.6) yields:

(1/B)blue/yellow =  log(as) —8log(ar) — (1 — 8)log(an)
—[log(As) — 8log(AL) — (1 — 8) log(Aw)]
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The first part of each equation has the form of equation (2.1). The second
part of each equation, in square brackets, is a kind of colour-balance correc-
tion. These measure the average colour of the entire image, assuming that the
adaptation terms are space-averages of the cone absorptions. When the image
is, on average, white (as is the case when there is a wide sample of colours)
the colour-balance terms vanish, since A; = Ay; = Ag. When there is a colour
cast to the scene, for example at dawn or dusk, or under fluorescent lighting,
the colour balance terms can partially compensate for this. They are in fact a
kind of colour constancy (described in section 2.5.1).

2.5 OTHER PHENOMENA
2.5.1 Colour constancy

Colours seem to be invariant not just to changes of illuminant intensity, but
also to changes of illuminant colour. For example, in direct sunlight a sur-
face is illuminated by light from the sun and by light scattered from the sky.
Moving into the shade, direct sunlight is cut off, and the scattered light from
the sky and ground is the main illuminant. The scattered light has less long-
wavelength light than the direct sunlight, so there is a change in the illuminant
colour as well as the intensity. Nevertheless, no colour change is seen when
an object moves from sun to shadow. This invariance of colour to general
changes in the illuminant spectrum is called colour constancy.

Consider the physics behind the problem of colour constancy. The light
distribution P(A) that reaches the eye is a multiplication of the illuminant
distribution I(A), and the reflectance function of a surface R(A), as follows:

PO =I()R(\) 2.8)

The reflectance function, R(A), gives the fraction of light reflected from the
object around wavelength A. If a colour descriptor is invariant to arbitrary
changes in I(A), this is in effect saying that it describes the reflectance func-
tion R(A). Thus colour constancy implies that the colour vision system is try-
ing to describe reflectance functions independent of illuminant colour. This
is obviously useful, since the reflectance function is a property of the ma-
terial that an object is made of, and can be used to detect and discriminate
objects of different material. Unfortunately, the task of extracting R(A) from
equation (2.8) is so ill-posed as to be nearly meaningless. However, under
certain fairly natural restrictions on R(A) and I(1), a reasonable degree of
colour constancy is theoretically attainable (Gershon and Jepson, 1989).
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That is theory; in practice, the most important fact about colour constancy
is that, in spite of our intuitive feeling that our perceptions are colour constant,
they are not. A perceptible change in illuminant colour generally leads to per-
ceptible changes in the colour of surfaces under that illuminant. However, the
change in perceived colour is less than would be expected from the change
in cone absorptions. There is some process which compensates, albeit imper-
fectly, for changes in illuminant colour. It is widely believed that most of the
colour constancy effects we have are due to the adaptation in cones (so-called
von Kries constancy) (Walraven, Benzschawel and Rogowitz, 1989). This
was noted in section 2.4.2 as a colour-balance term. The remaining constancy
may be due to a complex analysis of the spatial layout of the visual image,
to prior knowledge of the colours of some surfaces (e.g. one’s own skin), and
to the fact that colour constancy is usually perceived by comparing a current
colour with one in memory, yet the memory for colours is rather poor.

2.5.2 Focal colours, colour memory

Our sense of colour is so sensitive that we can distinguish many millions of
different colours. However, we cannot remember these differences. That is,
if two colours are not shown simultaneously, our ability to distinguish them
diminishes dramatically. It is probable that we normally remember only a
few colours, for example the eleven focal colours (in English: red, green,
blue, yellow, violet, orange, pink, brown, grey, white and black) (Berlin and
Kay, 1991), and other colour memories are stored as a coarse blend between
the focal colours. However, under certain conditions, up to thirty can be re-
membered (Derefeldt and Swartling, 1995) and with training it is possible to
remember and distinguish up to fifty different colours. Remembered colours
also tend to be more saturated (that is, more intense) than they actually were;
this may be the reason why the lurid colour reproduction of Fujichrome™
and Kodachrome Gold™ photographic film is so popular. These films in-
crease the saturation of the colours, bringing them more in line with how we
remembered the scene.

2.5.3 Spatial and temporal factors
The red/green signal depends on the difference of the L and M cone re-

sponses. Unfortunately, the absorption curves of the L and M cones are
so similar that their responses normally differ by only a few percent, so the
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red/green signal at any point is intrinsically small. It needs to be amplified,
and this is done by averaging the signal over a wide area of space, and a long
duration of time. The averaging occurs in the visual cortex, not the retina, be-
cause the colour sensitive cells of the retina are the P-cells, with the smallest
averaging area. The averaging over space means that the spatial resolution of
the colour channels is rather low, by comparison with the luminance channel
(which does not average as much). The averaging over time means that the
colour channels are less sensitive to motion, and indeed cannot ‘see’ moving
objects very well, because they tend to get blurred.

The spatial resolution of the colour system can be measured by means of
its contrast sensitivity function (CSF), which is a close relative of the mod-
ulation transfer function (MTF). The MTF of an optical system is computed
by measuring the output amplitude for a sinusoidal input signal of fixed am-
plitude. The MTF could equally well be computed by varying the input am-
plitude to yield a criterion output amplitude. This is effectively how the CSF
is measured®. The CSF is plotted as a function of the number of sinusoidal
cycles per degree of visual angle. The human CSF can be measured for both
luminance sinusoids (which vary between black and white) and coloured si-
nusoids (which vary between, say, red and green). When displaying a colour
sinusoid, it is vital that there be absolutely no luminance variation, so the
sinusoid must be ‘equiluminant’. Techniques exist to guarantee this (Anstis
and Cavanagh, 1983). When all confounding factors are accounted for, the
human CSF for colour and luminance appears as in Fig. 2.4, replotted from
Mullen (1985). The two CSFs are very different. The luminance CSF peaks at
about two cycles per degree (roughly two black and two white stripes painted
on your thumb and viewed at arm’s length) and extends out to over 40 cycles
per degree (indeed, all the way to the limit imposed by the optics of the eye).
The colour CSF on the other hand dies out at about 5 cycles per degree, and
the colour system seems most sensitive at near to zero cycles per degree; that
is, broad flat colour fields. The blue/yellow signal is the difference between
an S cone response and a combination of L and M cone responses. Since the
S cone absorption curve is different from that of the L or M cone, there is less
need for spatiotemporal summation. However, the S cones are distributed
sparsely in the retina; only about 10% of cones are S cones, and they are en-

3When human observers are shown an extremely faint sinusoidal pattern, they have trouble
detecting its presence. When their probability of detection is at a fixed level, say 80%, we
suppose that the internal signal is at a constant level. Thus, we merely vary the contrast of the
sinusoidal pattern until 80% correct detection is obtained. The reciprocal of this detectable
contrast is the sensitivity, and we plot this as a function of the frequency of the sinusoid in
cycles per degree of visual angle.
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Fig. 2.4 Human CSF (contrast sensitivity function) for luminance (yellow/black)
and isoluminant red/green sinusoidal patterns, replotted from Mullen (1985).

tirely absent from the central field of view (the fovea). Thus the blue/yellow
signal is only sparsely sampled by comparison with the luminance signal,
and indeed aliasing in the blue/yellow channel can be experimentally demon-
strated.

Finally, it should be noted that not all parts of the retina have equal sensi-
tivity to colour. The red/green signal is strongest in the fovea, and diminishes
towards the periphery of the retina. The blue/yellow signal follows a similar
pattern, except that it is completely absent in the fovea, because there are no
S cones there.

2.6 THE USES OF COLOUR

Having said what colour is, it might be worthwhile ending by considering
what colour is used for. It is clear that colour is not critical to our percep-
tion of the world. Colour blind people can survive without it, and people
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with normal colour vision have no difficulty interpreting black and white pho-
tographs. But the existence of colour vision suggests that at some time in our
evolution, it was important. It has been suggested that the purpose of colour
is to estimate the reflectance functions of objects (in section 2.5.1). Both
the intensity invariance of colour vision and partial colour constancy point
to this. There are a number of reasons why estimating reflectance might be
important, but evolutionarily, perhaps one is central. A common feature of
all terrestrial animals with colour vision (insects, birds, and most primates)
is that they are involved in the reproductive cycle of plants, either by landing
on flowers, or by eating fruit. Equally, the flowers and fruit of plants are the
most brightly coloured natural objects. This suggests that colour vision co-
evolved with coloured fruit (Mollon, 1989). If the fruit began with a slightly
different colour from the rest of the plant, and some animals had a rudimen-
tary colour vision that could, at least to some extent, detect that difference,
then firstly those animals with better colour vision could harvest more fruit,
and secondly those plants with more contrasting fruit could have more of it
harvested. There is then evolutionary pressure for animals with good colour
vision, and for brightly coloured plants.

Of course, once colour vision is established, it can be used for other pur-
poses. Many monkeys use colour signals to indicate sexual receptiveness, and
birds use brightly coloured plumage as a sexually attractive feature. Colour
can also be exploited in more mundane applications, such as scene segmen-
tation (Mullen and Kingdom, 1991). If two parts of a scene have different
reflectance functions, then they probably belong to different objects, since
they are made of different material. If two nearby parts of the image are the
same colour, they are probably part of the same object. Thus we can see ob-
jects whose image is partially occluded by associating the same colours. This
grouping-by-colour phenomenon is exploited in colour vision tests (e.g. the
Ishihara test) and also by animal camouflage.

FURTHER READING

There are some very good texts on colour vision from trichromacy to oppo-
nent processes, for example Boynton (1989), Hurvich (1981) and the volume
edited by Gouras (1991). A short review by Lennie and D’Zmura (1988)
is particularly comprehensive. There is a fascinating literature on colour
constancy, for example Maloney and Wandell (1986), Rubner and Schul-
ten (1989). Some interesting views on the purpose of the opponent colour
code are given by Buchsbaum and Gottschalk (1983) and colour in general
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by Rubin and Richards (1982). Mention should also be made of the Web
site http: //www-cvrl.ucsd.edu, maintained by Andrew Stockman,
which contains a library of useful colour data bases.
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Colour science

M. Ronnier Luo

3.1 INTRODUCTION

In 1666, Isaac Newton performed his famous experiment showing that white
light can be separated by a prism to form a strip of light, named the visi-
ble spectrum, which includes all visible colours ranging from red, orange,
yellow, green and blue to violet. Subsequently, white light was formed by di-
recting the visible spectrum to pass through a second prism. This experiment
shows that spectral colours in the visible spectrum are the basic components
of white light. This important finding opened the door for the discipline of
Colour Science.

Light is a form of electromagnetic radiation. Its physical property is
described in terms of wavelength (symbol A) in units of nanometers (nm),
which is 107" m. Figure 3.1 shows the range of electromagnetic radiation
from the shortest cosmic rays (1076 nm) up to radio waves with wavelengths
of many thousands of metres. It can be seen that the visible spectrum from
380 to 780 nm accounts for a very small part of the electromagnetic spectrum.
Colour science concerns all aspects of quantifying colour stimuli and it can
be divided into many branches such as radiometry, colorimetry, photometry,
psychophysics, colour vision. It covers a wide range of sciences associated
with how human beings perceive colour. These include physics, chemistry,
physiology and psychology. It also covers many engineering subjects associ-
ated with the generation of colour and the application of colorants to different
materials; such as colour displays, illuminating, printing, dyeing, paint, plas-
tics, colorant manufacturing. As with all science and engineering subjects,
measurement plays an important part. This chapter is focused on colorime-
try, which numerically specifies a colour stimulus in relation to human colour
perception.

S.J. Sangwine et al. (eds.), The Colour Image Processing Handbook
© Chapman & Hall 1998
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Fig. 3.1 The electromagnetic spectrum. The visible spectrum is expanded to show
the spectral colours associated with different wavelengths.

Colorimetry has been widely used in various colour industries. Recently,
it has also been increasingly used in the field of image processing due to the
widespread development of cheaper and more advanced computer-controlled
colour displays, printing and scanning devices. This chapter describes the
concepts and methods of colorimetry in a practical way. Readers can easily
implement these methods in their own applications.

Colorimetry can be divided into three areas: colour specification, colour
difference and colour appearance. The basis of colorimetry is that developed
by the Commission Internationale de I’Eclairage (CIE), known as the CIE
system. This is covered in section 3.2. Section 3.3 introduces different types
of equipment for measuring colours. An overview of uniform colour spaces
and colour difference formulae is given in section 3.4. Finally section 3.5
covers the latest developments in the field of colour appearance modelling.
This topic is most useful for readers performing colour image processing and
digital colour reproduction.

3.2 THE CIE SYSTEM

Although there are some other colour specification systems, by far the most
important of all colour specification systems is that developed by the CIE.
The CIE system provides a standard method for specifying a colour stimulus
under controlled viewing conditions. It originated in 1931 and was further
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supplemented in 1964. These are known as the CIE 1931 and CIE 1964 sup-
plementary systems (CIE, 1986).

The CIE system standardizes three key elements of colour perception:
light, object and eye. The details are given in the following sections.

32.1 Light

Light is an essential element of all colour perceptions. Without light there is
no colour. A light source can be quantified by measuring its spectral power
distribution (SPD, symbol S(A)) using a spectroradiometer (section 3.3.2).
The SPD described here is the relative spectral power distribution. The abso-
lute SPD is not essential for colorimetric calculation.

There are many different kinds of light sources. The most important
and common one is daylight, which is a mixture of direct and sky-scattered
sunlight. Its SPD varies from quite blue (zenith skylight) to quite red (sun-
set). This is affected by latitute, position, time of year and day, and weather
conditions. Artificial light sources are also widely used such as fluorescent,
incandescent, gas discharge and xenon arc lamps. Again, there is a large
variation in their SPDs. It is not possible and is not necessary to make colour
measurements using all possible light sources. Hence, the CIE recommended
a set of standard illuminants for industrial applications. (A light source is
a physical body capable of emitting light produced by a transformation of
energy. The illuminant is a table of SPD values for calculating colorimetric
values and may not have a corresponding light source.)

Colour temperature

A light source can also be quantified in terms of colour temperature (in
kelvins, K). There are three types of colour temperatures. Distribution tem-
perature is the temperature of a Planckian (or black-body) radiator whose
radiation is the same as that of the radiation considered. When the Planckian
radiator, an ideal furnace, is maintained at a particular temperature, it emits
radiation of constant spectral composition. Colour temperature is the tem-
perature of a Planckian radiator whose radiation has the same chromaticity
(see section 3.2.4) as that of a given colour stimulus. This is mainly used to
define a light source whose SPD is very similar to, but not exactly the same as
that of a Planckian radiator. Correlated colour temperature is the tempera-
ture of a Planckian radiator whose colour appears to be the nearest match to a
given colour stimulus. This is commonly used for light sources whose SPDs
are quite different from that of Planckian radiators such as fluorescent lamps.
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Fig. 3.2 Relative sSPDs of CIE standard illuminants: A, B, C and D65.

CIE Standard Illuminants

In 1931, the CIE recommended the use of three standard illuminants, known
as A, B and C, which are the representations of incandescent light, direct sun-
light, and average daylight respectively. Their colour temperatures are 2856,
4874 and 6774 K respectively and their SPDs are given in Fig. 3.2. The CIE
also recommended standard sources to correspond to these illuminants. For
source A, a gas-filled tungsten filament lamp is applied to give a colour tem-
perature of 2856 K. The standard sources B and C can be produced by using
the standard source A in conjunction with liquid colour filters of specified
chemical compositions and thickness. However, at a later stage, it was found
that the illuminants B and C were unsatisfactory for some applications. This
is because of too little power in the ultraviolet region. This is important for
measuring materials with fluorescent colorants. Hence, the CIE also recom-
mended a series of the D illuminants in 1964. The SPD of the D65 illuminant
is shown in Fig. 3.2. It clearly illustrates that there are large differences be-
tween the illuminants D65 and B or C in the blue end (less than 400 nm).
Currently, there is still some use of illuminant C, but illuminant B is obso-
lete. The most widely used D illuminants are D65 and D50 for the surface
colour industries (including textiles, paint and plastics) and the graphic arts
industry respectively. In addition, the CIE also provided the SPD values of
representative fluorescent lamps. These are divided into 12 types: F1 to F12,
in which the F2 (Cool White Fluorescent, CWF), F7 (a D65 simulator), F8 (a
D50 simulator) and F11 (TL84) are the most frequently used. Some of these
SPDs measured using the actual sources are given in Figs. 3.3 to 3.6.
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Fig. 3.4 Relative sPD of fluorescent lamp F7 (a D65 simulator).
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Fig. 3.6 Relative SPD of fluorescent lamp F11 (TL.84).
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Fig. 3.7 Specular and diffuse reflection.

3.22 Object

The colour of an object is defined by the reflectance (symbol R(A)), a func-
tion of wavelength. Reflectance is the ratio of the light reflected from a sam-
ple to that reflected from a reference white standard. Reflectance can be
divided into two types: specular and diffuse. Figure 3.7 shows that if a
sample is illuminated at 45°, part of the light will be directly reflected from
the surface in the reverse angle, which is called specular reflection. The other
part of the light will initially penetrate into the object, and then be partly ab-
sorbed and partly scattered back to the surface. The latter is called diffuse
reflection. Specular reflection depends upon the characteristics of the sur-
face considered; it will be small for a matt surface, large for a glossy surface.
The instrument used for measuring reflectance is called a spectrophotome-
ter (section 3.3.3). The CIE specified standard methods for helping to achieve
instrumental precision and accuracy. Firstly, a perfect reflecting diffuser is
recommended as the reference white standard. It is an ideal isotropic diffuser
with a reflectance equal to unity. Secondly, the CIE has recommended four
different types of illuminating and viewing geometries: 45°/Normal (symbol
45/0), Normal/45° (0/45), Diffuse/Normal (d/0) and Normal/Diffuse (0/d).
These are illustrated in Fig. 3.8. An integrating sphere is used for the 0/d and
d/0 geometries. The gloss trap in the integrating sphere is used to include or
exclude the specular component. The four illuminating and viewing geome-
tries can be divided into two groups: with and without an integrating sphere.
The two geometries in the same group should give the same measurement
results, but not for different groups. Hence, it is important to report results by
referring to the viewing geometry and illumination together with the inclu-
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Fig. 3.8 Schematic diagram showing the four CIE standard illuminating and viewing
geometries for reflectance measurement.

sion or exclusion of specular reflectance. The CIE also defines the tolerance
angles for the axis and spreads for each geometry. The axis is defined as the
angle between the central ray of a beam and the normal to the surface to be
measured. The spreads define the maximum deviation of the rays of the beam
from the central ray.

3.2.3 Eye

The most important component in the CIE system is the colour matching
functions, which define how human eyes match colour stimuli using a set of
red, green and blue reference primaries. They represent the colour matching
properties of the CIE Standard Colorimetric Observers.
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Additive colour mixing

The derivation of the CIE colour matching functions is based on the laws of
additive colour mixing. A colour match can be expressed algebraically by:

C[C] = R[R] + G[G] + B[B]

where the sign = represents a colour match. R, G and B are the amounts
of red [R], green [G] and blue [B] reference stimuli (primaries) required to
match the C units of [C] target stimulus. Stimuli of the same colour produce
identical appearance in mixtures regardless of their spectral compositions.

If a colour is a mixture of two stimuli 1 and 2, it can be expressed by:

Stimulus 1 G[Cl = Ri[R]+ G1[G] + B, (B]
Stimulus 2 G[C = Ry[R]+ G, [G] + B,[B]
Resultant colour (Cy + G;)[C] = (R; + R2)[R] + (G1 + G2)[G] + (B1 + B,)|B]

A common way to represent a particular colour is to use its chromaticity
coordinates, r, g and b which are calculated using:

R/(R+G+B)
g = G/(R+G+B)
b = B/(R+G+B)

where r, g, b are the proportions of the three primaries [R], [G] and [B]; and
r+g+b = 1. Figure 3.9 illustrates an experimental arrangement for additive
colour mixing. The divided inner circle and the shaded annular surround
represent the viewing field seen by the observer. The right half of the inner
circle provides the target stimulus produced by passing incandescent light
through a filter. The left half of the inner circle provides a mixture of red,
green and blue stimuli originating from three spotlights. The shaded area is
the surround field for adaptation purposes. A panel of observers are asked to
match a target stimulus (right half) by adjusting the matching stimulus (left
half) using the [R], [G] and [B] primaries.

In 1931, the CIE recommended a set of standard colour matching func-
tions, known as the CIE 1931 standard colorimetric observer (or 2° Ob-
server) for use with visual colour matching of field sizes between 1° and 4°.
The functions were derived from two different but equivalent sets of visual
results from experimental work carried out by Wright (1928-29) and Guild
(1931) based upon 10 and 7 observers respectively. The two sets of results
were normalized and averaged to form a combined set. The functions are
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Fig. 3.9 A typical experimental arrangement for additive colour mixing.

designated 7(A), (1) and b(A) which are expressed in terms of colour stim-
uli of wavelengths 700 nm, 546.1 nm and 435.8 nm for the red, green and
blue primaries respectively. Their units were adjusted to match an equal en-
ergy white, which has a constant SPD over the spectrum. The 7(A), g(A) and
b(\) functions of the CIE 1931 standard colour matching observer are plotted
in Fig. 3.10. Negative amounts indicate that the light was added to the test
colour instead of to the red, green and blue mixture. The 7(A), g(A) and b(A)
functions were later linearly transformed to a new set of functions, (), y(A)
and Z(A) so as to avoid negative coefficients in the former set of functions.
The latter functions were recommended for reasons of more convenient ap-
plication in practical colorimetry. The %(A), §(A) and Z(A) functions of the
CIE 1931 standard colour matching observer are plotted in Fig. 3.11. A fur-
ther set of colour matching functions were recommended in 1964 by the CIE
for use whenever a more accurate correlation with visual colour matching of
fields of large angular subtense (more than 4° at the eye of the observer) is
desired. They were derived from the experimental data supplied by Stiles
and Burch (1959) and by Speranskaya (1959). This set of colour matching
functions is called the CIE 1964 supplementary standard colorimetric ob-
server (or 10° Observer), and is denoted as %0(A), 710(A) and Z19(A). These
functions are also plotted in Fig. 3.11.
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Fig. 3.10 The colour matching functions for the CIE 1931 standard colorimetric
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Fig. 3.11 The CIE colour matching functions for the 1931 standard colorimetric
observer (solid lines) and for the 1964 supplementary standard colorimetric observer
(dashed lines).
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3.2.4 Tristimulus values

In the preceding sections, the three key elements of colour perception have
been quantified in terms of functions of the visible spectrum. The stan-
dard colorimetric observer is defined by the functions %(A), $(A) and Z(A);
or X19(A), 10(A) and Z10(A), to represent the human population having nor-
mal colour vision. A number of illuminants are standardized in terms of the
SPD, S(A). Additionally, the CIE standardized the illuminating and viewing
conditions for measuring a reflecting surface. Each surface is defined by the
reflectance, R(A). Thus any colour can be specified by a triple of numbers
(X,Y,Z) called tristimulus values as given in equation (3.1), which quantify
a colour by defining the amounts of the red, green and blue CIE primaries
required to match a colour by the standard observer under a particular CIE
illuminant. These are the integration of the products of the functions in three
components over the visible spectrum.

X = k[S(M)R(\) Z(A)dA

Y = k[ S(MR(A) F(A)dA (3.1)
Z = k[S(\)R(L) Z(A)dA

N )

The k constant was chosen so that ¥ = 100 for the perfect reflecting diffuser.
If the CIE 1964 supplementary standard colorimetric observer is used in equa-
tion (3.1), all terms except S(A) and R(A) should have a subscript of 10.

For measuring self-luminous colours such as light-emitting colour dis-
plays, and light sources, equation (3.2) should be used instead of equation
(3.1). This is due to the fact that the object and the illuminant are not defined.
The P function represents the spectral radiance or spectral irradiance of the
target stimulus. The areas of colours considered in display applications usu-
ally have quite small angular subtense and the CIE 1931 standard colorimetric
observer is the appropriate one to use.

X = k[ P(\) x(A)dA
Y = k[ P(A) §(\)dr (3.2)
Z = k[P(A) Z(A)dr

The k constant is chosen so that Y = 100 for the appropriate reference white.

Colour as described in the CIE system is commonly plotted on the chro-
maticity diagram shown in Fig. 3.12. Chromaticity coordinates are calcu-
lated using equation (3.3). The region of all perceptible colours is bounded
by the horseshoe-shaped locus of pure monochromatic spectral colours (the
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Fig. 3.12 The CIE chromaticity diagrams for the 1931 standard colorimetric ob-
server (solid lines) and for the 1964 supplementary standard colorimetric observer
(dashed lines).

spectrum locus), with a straight line connecting the chromaticity coordinates
of extreme red and blue (the purple line). Whites lie near the centre of the
figure (E, equal energy illuminant), and colours become more saturated to-
wards the periphery. It is conventional to use x, y and Y to represent a colour.

x=X/X+Y+2Z)
y=Y/(X+Y+2) 3.3)
2=Z/(X+Y+Z) and x+y+z=1

A feature of the chromaticity diagram is that a point representing an additive
mixture of two coloured lights falls on the straight line joining the points
representing the chromaticity coordinates of the two lights. As illustrated in
Fig. 3.13, a mixture produced by the stimuli N and D will always be located
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Fig. 3.13 Points plotted on the CIE 1931 chromaticity diagram to illustrate the
calculation of the dominant wavelength, complementary wavelength and excitation
purity.

on the line ND. By knowing the amounts of N and D, the position of the
mixture can be calculated. This feature is important for measuring colour in
colour displays, TV and the lighting industry.

Tristimulus values and chromaticity coordinates are measures for colour
specification. However, they do not describe colour appearance attributes
such as lightness, saturation and hue. In other words, it is difficult to visual-
ize a colour accurately using these measures. The Y tristimulus value is an
approximation of the lightness, i.e. a lighter colour has a higher Y value than
a darker colour. The CIE also recommended dominant wavelength and exci-
tation purity to correlate with the hue and saturation appearance attributes.
Again, the points in Fig. 3.13 are taken as an example. Consider a surface
colour (C) viewed under a particular illuminant (N). A line is drawn from N
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through C to join the spectrum locus at D for defining its dominant wave-
length. In this case, it is about 485 nm corresponding to a greenish blue
colour. The excitation purity (Pe) is calculated using NC divided by ND.
A value for Pe close to one corresponds to a very saturated spectral colour. In
this case, the Pe of colour C is about 0.46 representing a medium saturation
colour.

For some colours close to the purple line like the colour C', the line be-
tween N and C’ does not join the spectral locus. In these cases, the line should
be extended in the opposite direction until it joins the spectral locus. This is
called the complementary wavelength. Its excitation purity is calculated
using NC' divided by ND'.

3.3 COLOUR MEASUREMENT INSTRUMENTS

Colour measuring instruments are designed to measure colours in terms of
reflectance, radiance, and the CIE colorimetric values such as tristimulus val-
ues. A variety of instruments are available. Each instrument is designed for
measuring a different form of colour, i.e. self-luminance, surface colours, or
both. Also, each includes a set of optical elements such as: a light source
for illuminating the sample; a monochromator for dispersing the light into a
spectrum; a detector for receiving the dispersed monochromatic light. The
arrangement of these elements, such as the viewing and illuminating geome-
tries described in section 3.2.2, may be different. These instruments can be
categorized into three types:

e Tristimulus Colorimeter
e Spectroradiometer
e Spectrophotometer

Figure 3.14 illustrates the key elements for each type of colour measuring
instrument.

3.3.1 Tristimulus colorimeter
Tristimulus colorimeters can only measure colour in terms of tristimulus val-

ues under a fixed set of illuminant and observer conditions, e.g. D65/2°.
They are very useful for quantifying the colour difference between pairs of
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Fig. 3.14 The key elements for each type of colour measuring instrument. (a) a
0/d tristimulus colorimeter measuring surface colour, (b) a tristimulus colorimeter
measuring a monitor colour, (¢) a tele-spectroradiometer measuring a surface colour
in a viewing cabinet, and (d) a 0/d spectrophotometer.
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samples for colour quality control purposes and they cost much less than
spectroradiometers and spectrophotometers. The uses of the instrument may
be divided into two groups: measuring surface colours and measuring self-
luminous colours. Fig. 3.14(a) illustrates a 0/d tristimulus colorimeter mea-
suring a surface sample (see Fig. 3.8 for the other viewing and illuminating
geometries). The key optical elements include a light source, an integrat-
ing sphere and a detector. The latter includes three or four filters intended
to have a close match to the CIE %, j and Z colour matching functions. The
instrument responses correspond closely to equation (3.1). Figure 3.14(b) il-
lustrates a tristimulus colorimeter measuring a stimulus from a monitor. A
light source is not included for the tristimulus colorimeter measuring self-
luminous colours.

In general, the tristimulus colorimeter is easy to use and inexpensive.
However, the instrumental agreement and repeatability of the tristimulus col-
orimeter is poor due to ageing of the detectors (filters) and poor reproducibil-
ity of the filters to agree with the CIE colour matching functions.

3.3.2 Spectroradiometer

Spectroradiometers are designed to measure radiometric quantities: irradi-
ance (in units of W/m?) or radiance (in units of W/m2Sr). The radiometric
energy is measured over the visible spectrum with a fixed interval such as
5nm, 10 nm or 20 nm. Their colorimetric values are expressed by luminance
(in units of cd/m?) and illuminance (in units of lux) for radiance and irradi-
ance units respectively.

The tele-spectroradiometer (TSR) is the most frequently used instrument
in this category. Figure 3.14(c) shows a tele-spectroradiometer measuring
a surface colour presented in a viewing cabinet. The key components are
a telescope, a monochromator and a detector. The TSR is used to measure
the colour of a distant object in its usual observing position and common
viewing conditions. Any tele-spectroradiometer is capable of measuring both
self-luminous and surface colours. For measuring surface colours, an external
light source is required as shown in Fig. 3.14(c). There is no need to have a
source for measuring self-luminous stimuli.

The advantage of this instrument is that the measurement results can cor-
respond to the actual conditions of viewing. In addition, it can measure all
forms of colour (surface and self-luminous), which are particularly important
for cross-media colour reproduction, say to match an image displayed on a
monitor with the output from a printer.
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3.3.3 Spectrophotometer

Spectrophotometers are usually used for measuring surface colours and are
designed to measure the ratio between the incident light and light reflected
from the measured surface across the visible spectrum with a fixed interval
such as 5nm, 10nm or 20nm. The results are expressed by reflectance of a
surface colour. Figure 3.14(d) shows a 0/d spectrophotometer. Its optical el-
ements are a light source, a monochromator and a detector. As mentioned in
section 3.2.2, its geometry of illumination (light source) and viewing (detec-
tor) should conform to one of the four CIE recommendations: 0/45, 45/0, 0/d
and d/0. In practice, 45/0 and 0/45 geometries are widely used in the graphic
arts industry, and 0/d and d/O geometries for surface colour (textiles, paint,
plastics) industries.

The spectrophotometer is usually the preferred instrument for surface
colours. It can be used for quality control and recipe formulation. It may
also be used to evaluate the metamerism of a pair of samples, i.e. the change
of colour differences under different illuminants. (Metamerism is discussed
in section 2.3.1 on page 13.) Also, spectrophotometers are quite stable over
time and accurate against an absolute standard. However, they are expensive
in comparison with tristimulus colorimeters.

3.3.4 Instrumental calibration

Each colour measuring instrument has its own calibration standard such as
a white ceramic tile for measuring surface colours, and a standard lamp for
measuring self-luminous colours. The white tile has been calibrated against
the perfect reflecting diffuser specified by the CIE. They are usually obtained
from the instrument manufacturer. This process is essential to calibrate the
instrumental results to agree with the international standard in order to ensure
a high degree of accuracy and repeatability.

It is also recommended that reference materials be used for checking the
instrumental working condition, especially repeatability. The 12 CERAM tiles
(Malkin and Verrill, 1983) are commonly used for checking surface colour
measuring instruments and standardized filters can be used for checking self-
luminous colour measuring instruments.
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3.4 UNIFORM COLOUR SPACES AND COLOUR DIFFERENCE FOR-
MULAS

The CIE system offers a means of measuring a colour under a standard set
of viewing conditions, thus making it an excellent choice as a reference for
industrial colour communication. Another important use of colorimetry is
to evaluate colour differences for industrial colour quality control. Many
sets of experimental results for colour discrimination have been published
and show that the CIE colour space has poor uniformity, i.e. some colour
differences perceptually equal in size could give a ratio of 20 to 1 in the
x,y diagram. In 1976, the CIE recommended a new chromaticity diagram,
named the CIE 1976 uniform colour scale diagram, or the CIE 1976 ucCs
diagram, which gives a perceptually more uniform space than that of the
x,y diagram. It is a projective transformation of the tristimulus values or
chromaticity coordinates using the following equation:

W = 4X /(X +15Y +3Z) = 4x/(—2x+ 12y + 3)

v = 9Y /(X +15Y +3Z) = 9y/(—2x+12y+3) (3.4)

Figure 3.15 shows the CIE 1976 ucCs diagram, which preserves the feature of
additive mixing discussed on page 38, in which colours lying on a straight
line are the mixtures of two colours represented by two end points.

3.4.1 CIELAB and CIELUV colour spaces

Two uniform colour spaces were also recommended by the CIE in 1976:
CIE L*a*b* (or CIELAB) and CIE L*u*v* (or CIELUV). CIELAB is a non-
linear transformation of the tristimulus space to simplify the original ANLAB
(Adams, 1942) formula which was already widely used in the colorant indus-
try. CIELUV is used for industries considering additive mixing such as colour
displays, TV and lighting. ‘

Equations defining the CIELAB and CIELUV colour spaces are given be-
low. Both colourspaces have the same lightness scale, L*, and opponent
colour axes, approximately red-green versus yellow-blue, i.e. a* versus b*,
and u* versus v* for CIELAB and CIELUV respectively.

CIELAB colour space

L' = 116f(Y£)—16 3.5)

n
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(3.6)

where
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X3, x> 0.008856
fx) = 16 .
7.787x+ 115 otherwise,

and X,Y, Z and X,,, Y,,, Z, are the tristimulus values of the sample and a spe-
cific reference white considered. It is common to use the tristimulus values
of the perfect diffuser illuminated by a CIE illuminant or a light source as the
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Fig. 3.15 The CIE u'v’ chromaticity diagram.
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X,, Y, Z, values. Table 3.1 provides the tristimulus values for some com-
monly used CIE illuminants and light sources. Correlates of hue and chroma
are also defined by converting the rectangular a*, b* axes into polar coordi-
nates as given by equation (3.7). These scales together with lightness (L*)
correspond to perceptual colour appearance.

hap* = tan~!(b*/a*) 37)
Cop* =V a*? +b*? .

Colour difference can be calculated using:

AE, = \/AL*2+Aa*2+Ab*2

or

AEq = \/ AL + ACy** + AH 2

where

AHgp* = P\/Z(Cab,l*cab,z* —ary*ay* — by*by")
and

_ -1 if al*b2*>a2*b1*
P= 1 otherwise

and subscripts 1 and 2 represent the standard and sample of the pair consid-
ered respectively.

Table 3.1 Tristimulus values for some commonly used CIE illuminants and light
sources (ASTM, 1996).

cT X Y VA X0 Yo Zio
Hluminant
A 2856 109.85 100.0 3556 111.14 100.0 35.20
C 6774 98.07 1000 118.23 97.29 100.0 116.15
D50 5000 96.42 100.0 82.49 96.72 100.0 81.41
D65 6500 95.05 1000 108.88 94.81 100.0 107.30
Source
F2 (Cool white) 4230 99.19 100.0 67.39 103.28 100.0 69.03
F11 (TL84) 4000 10096 100.0 64.35 103.86 100.0 65.61

Note: CT represents Colour Temperature (see section 3.2.1).
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CIELUYV colour space

L* in CIELUV colour space is defined identically to L* in CIELAB colour space
as given in equation (3.5). The opponent colour space coordinates are given
by: '

w* =13L*(u —u))
v =13L4(V —V))
hy* = tan~ (v* /u¥)

Cuv* — /u*2+v*2

where ', V', Y and u,, V), Y, are the u/, Vv coordinates of samples and a
suitable chosen white (if the latter is unknown, the values for one illuminant
or source in Table 3.1 can be used as an approximation).

Colour difference can be calculated using:

AE = \/AL*2+AM*2+AV*2

or

AE,, = \/AL? 1+ AC," + AH,,

where

AH* = p\/z(cuv,l*cuv,Z* —ur*up* — VI*VZ*)
and

_ -1 if wu*va* > u*vi*
p= 1 otherwise

and subscripts 1 and 2 represent the standard and sample of the pair consid-
ered respectively.

An additional attribute, saturation, is also provided for the CIELUV colour
space:

sw = 139/ (0 — )2 + (v, = v1)?

A three dimensional representation of the CIELAB colour space is shown in
Fig. 3.16. The neutral scale is located in the centre of the colour space. The L*
values of 0 and 100 represent a black and a reference white respectively. The
a* and b* values represent the redness-greenness, and yellowness-blueness
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Fig. 3.16 A three-dimensional representation of the CIELAB colour space.

attributes respectively. The C,* scale is an open scale with a zero origin
(including all colours in the neutral scale, which do not exhibit hue). The hue
angle, hgp, lies between 0° and 360°. The colours are arranged following the
colour sequence of the rainbow. The four psychological hues (section 3.5.3),
which are pure red, yellow, green and blue colours, do not lie exactly at the
hue angles of 0°, 90°, 180°, and 270° respectively. The CIELUV space is
similar to the CIELAB space, except that it has a saturation scale.

3.4.2 Advanced colour difference formulae

Many sets of experimental results on colour discrimination have been pub-
lished since 1976. Most of them were conducted using large surface sam-
ples viewed under typical industrial viewing conditions. These results show
that the two CIE recommended formulae do not accurately quantify small to
medium-sized colour differences. Three main sets of experimental data were
produced by McDonald (1980a), Luo and Rigg (1986), and by RIT-Dupont
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(Berns, Alman, Reniff, Snyder and Bolonon-Rosen, 1991) in 1991. These
were used to develop more advanced formulae. Three colour difference for-
mulae are described here: CMC(l:¢), BFD(l:c), and CIE94.

CMC(l:c) colour difference formulae

McDonald (1980a) produced over 600 coloured polyester thread pairs sur-
rounding fifty-five colour standards. The visual pass/fail colour matching
assessments were carried out by a panel of eight professional colourists.
In addition, he accumulated a large set of data involving over 8000 pairs
around 600 colour centres assessed by a single observer. These visual re-
sults were used to derive the JPC79 formula (McDonald, 1980b; McDonald,
1980c). At a later stage, the JC79 formula was further modified by members
of the Colour Measurement Committee (CMC) of the Society of Dyers and
Colourists (SDC) due to the fact that some anomalies were found for colours
close to neutral and black. This modified formula is named cMC(l:c) (Clarke,
McDonald and Rigg, 1984) and currently is the international standard for the
textile industry. The formula is:

AL*\?  [ACw*\%  [AH*\?
AE =
\/(ISL) +< cSc) +< S

where

| 0.040975L,*/(1+0.01765L,*) L;* > 16
L= o511 Li* <16
and

Sc = 0.0638Cp,1* /(1 +0.0131C,p1*) + 0.638
Su=Sc(Tf+1-f)

where

£ =/ (Can1*)*/(Ca*)* +1900)

and

T =0.36+(0.4cos(hgp,1 +35)|
unless  164° < hy, 1 < 345°, when

T =0.56+[0.2cos(hqp,1 + 168)]
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Li*, Cap1*, and hgp 1 refer to the standard of a pair of samples. The [ (light-
ness weight) and ¢ (chroma weight) should equal 2 and 1 respectively for
predicting the acceptability of colour differences. For predicting the percep-
tibility of colour differences, both should equal 1.

BFD(l:c) colour difference formula

Luo and Rigg (1986) accumulated the available experimental data relating to
small to medium colour differences between pairs of surface colours to form
a combined data set, which contains about 4000 pairs of samples. Supple-
mentary experiments were conducted including over 500 wool textile sample
pairs. The new results were used to allow all the previous results to be brought
onto a common scale. A new colour-difference formula, BFD(l:c), (Luo and
Rigg, 1987a; Luo and Rigg, 1987b) was developed from this set of data. The
new formula, given below, is similar in structure to the CMC(l:c) formula in
most respects. However, it was found that a new term was required to take
into account the fact that when chromaticity ellipses calculated from exper-
imental data are plotted in the CIELAB a*b* diagram, they do not all point
towards the neutral point as assumed in the CMC(l:c) formula. This effect is
most obvious in the blue region.

AL(BFD)\* [ACx*\* [AHn*\? AC* AH
AE = _— R - -
\/< l ) +( 0. ) "\ Du ) T\ " DcDa

where:

L(BFD) = 54.6log(Y+1.5)—9.6
Dc = 0.035C,"/(1+0.0365C,,") +0.521
Dy = D¢(GT'+1-G)

G = 1/(Ca")*/I(Cas’)* +14000]

T = 0.627 +
0.055cos(hgp — 254°) —0.040c0s(2hap — 136°) +
0.070cos(3ha, — 32°) +0.049cos(4hyp + 114°) —
0.015c0s (5hyy — 103°)

Rr = RcRy

Ry = —0.260 +
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0.055cos(hap —308°) —0.379c0s(2hg, — 160°) —
0.636cos(3hgp + 254°) +0.226 cos (4hyy, + 140°) —
0.194cos(5hgp + 280°)

Re = \/(Ca")8/[(Cap’)6+7 % 107]

The terms C," and Ay refer to the mean for the standard and sample. The
I (lightness weight) and ¢ (chroma weight) should equal 1.5 and 1 respec-
tively for predicting the acceptability of colour differences. For predicting
the perceptibility of colour differences, both should equal one.

CIE%4 colour difference formula

Berns, Alman, Reniff, Snyder and Bolonon-Rosen (1991) also conducted vi-
sual assessments using glossy acrylic paint pairs. A data set including 156
visual colour tolerances (19 colour centres) perceptually equivalent to a near-
grey anchor pair of 1 CIELAB unit was generated. A formula was derived
again by modifying the CIELAB formula and was recommended by CIE for
field trials in 1994 (CIE, 1995). This is named the CIE94 colour difference
formula. It has a similar structure to that of CMC(l:c) with simpler weighting
functions:

AE = \/(AL* /Ky S1)? + (ACu" [KcSc)? + (AHus* /K Sh)?
where

St =1
Sc =1+ 0-045Cab,1*
Sp=1 +O.015Cab,1*

Cap,1" refers to the Cyp* of the standard of a pair of samples. Ky, K¢ and Ky
are parametric factors to correct for variation in experimental conditions. For
all applications except the textile industry, a value of 1 is recommended for
all parametric factors. For the textile industry, the K; factor should be 2, and
the K¢ and Kp factors should be 1, i.e. CIE94(2:1:1). These factors may be
defined by industry groups to correspond to typical experimental conditions
for that industry.
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3.5 COLOUR APPEARANCE MODELLING

The colour appearance of an object, or an image, changes according to dif-
ferent viewing conditions such as media, light sources, background colours,
and luminance levels. This phenomenon causes severe problems in industrial
colour control. For example, in the surface industries colourists need to know
the degree of colour change across a wide range of illumination conditions.
Lighting engineers need to evaluate the colour rendering property between a
test and a reference illuminant. Colour reproduction engineers want to repro-
duce faithfully the original presented on a different medium. The media in-
volved might include original scenes, transparencies, monitors, photographs
or reflection prints. All these tasks require visual judgement by experienced
workers. This process is subjective and expensive. Hence, there has long
been a great demand by industrialists for the ability to quantify accurately
changes in colour appearance so as to minimize observer dependencies.

In colorimetry, measures such as tristimulus values, chromaticity coor-
dinates, dominant wavelength and excitation purity, were used to indicate
whether two stimuli match each other. On the other hand, the measures used
to quantify colour differences such as CIELAB and CIELUV are also devel-
oped so that equal scale intervals represent approximately equally perceived
differences in the attributes considered. However, all the above measures are
limited to being used under fixed viewing conditions: the two stimuli in ques-
tion should be presented using identical media and be viewed under the same
daylight viewing conditions defined by the CIE. Hence, these two classes
of measures do not provide a satisfactory means of solving the above prob-
lems. The solution is to devise an international standard colour appearance
model, which is capable of predicting the colour appearance of colours under
a wide range of viewing conditions. Various models have been developed
over the years. In general, four colour appearance models are considered to
be most promising. These are Hunt (1991b) and (1994), Nayatani (1997),
RLAB (Fairchild, 1996) and LLAB (Luo, Lo and Kuo, 1996).

At the CIE Expert Symposium 96 on Color Standards for Image Technol-
0gy, held in Vienna in 1996 (Cen, 1996), there was demand from industrialists
to ask the CIE to recommend a colour appearance model for industrial appli-
cation. The agreement was reached that Hunt and Luo should examine the
existing colour appearance models, try to combine the best features of these
models into a high performance model for general use, and test its perfor-
mance against available experimental data. It was also agreed that the model
should be available in a comprehensive version, and in a relatively simple ver-
sion for use in limited conditions. At its meeting held in Kyoto in 1997, CIE
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Technical Committee TC1-34 (Testing colour appearance models), agreed to
adopt the simple version, which is named CIECAM97S. The ‘S’ stands for
‘simple’. The inclusion of the year 97 in the designation is intended to indi-
cate the interim nature of the model, depending upon the availability of better
models which are expected to emerge in the future. The full CIECAM97S
model including its forward and reverse models together with its test data is
given in section 3.5.4. It is recommended that the model should be uniformly
applied for colour image processing to achieve successful colour reproduc-
tion across different media such as prints, monitors and transparencies.

3.5.1 Techniques for assessing colour appearance

Colour appearance models are based on colour vision theories but also must
fit experimental results. Hence, CIE Technical Committee 1-34 was formed
to gather as many experimental data sets as possible in order to test the per-
formance of models. The best model can then be recommended as an in-
ternational standard for industrial applications. This section describes the
experimental techniques used to generate these data sets. They can be di-
vided into three categories: haploscopic matching, memory matching, and
magnitude estimation.

Haploscopic matching is the most widely used experimental technique.
This technique requires specially designed viewing apparatus which presents
a different adapting stimulus to each of the observer’s two eyes. His or her
task is to adjust the stimulus at one eye to match that at the other eye. The task
is relatively simple and the results in general have higher precision than the
other two techniques. However, its validity is dependent on an assumption:
that the adaptation of one eye does not affect the sensitivity of the other eye.
The technique imposes unnatural viewing conditions with constrained eye
movement. In addition, when two eyes are presented with two stimuli under
different adapting fields, observers tend to bias towards one field rather than
the other. This is known as binocular rivalry. The haploscopic technique
can be improved to overcome some of the above shortcomings by using a
complex field with free eye movement.

Memory matching is carried out under normal viewing conditions using
both eyes and without the interposition of any optical devices. This technique
provides a steady-state of adaptation with free eye movement. Observers are
first trained to describe colours using the three colour appearance attributes
of a colour descriptive system such as Munsell or the Natural Colour Order
System (NCS). This means that they are able to describe with reasonable
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accuracy and precision the colour of any object in these terms under any
viewing conditions. However, this is not a widely used technique and has
drawbacks such as a substantial training period, complicated procedures for
data analysis, lower precision than that of the haploscopic technique, limited
capacity for retaining information, and memory distortion.

Magnitude estimation has been used increasingly in recent years. Ob-
servers are asked to scale some colour appearance attributes such as lightness,
colourfulness and hue under fully adapted viewing conditions. Its only dis-
advantage is in having lower precision than the haploscopic technique. Many
advantages are associated with this technique such as: normal viewing condi-
tions using both eyes; steady-state of adaptation; results described in terms of
perceived attributes which can be directly compared with the colour appear-
ance models’ predictions; and shorter training period than that of memory
matching. The author and his coworkers have conducted a large set of exper-
iments using this technique. This is named the LUTCHI data set (Luo, Clarke,
Rhodes, Schappo, Scrivener and Tait, 1991a; Luo, Clarke, Rhodes, Schappo,
Scrivener and Tait, 1991b; Luo, Gao, Rhodes, Xin, Clarke and Scrivener,
1993a; Luo, Gao, Rhodes, Xin, Clarke and Scrivener, 1993b). The results
were used to develop the Hunt and LLAB colour appearance models.

3.5.2 Structure of a colour appearance model

Figure 3.17 shows the generic structure of a colour appearance model. These
usually comprise three parts: a chromatic adaptation transform; a dynamic
response function; and a colour space for representing the colour appearance
attributes. The differences between the four colour appearance models are
also described below.

A chromatic adaptation transform is capable of predicting the correspond-
ing colour in terms of a colorimetric specification (such as tristimulus values)
from one set of illumination conditions to another. A pair of corresponding
colours would look the same when viewed under the two illuminants in ques-
tion, say standard illuminants A and D65. The earliest, and still a very useful
chromatic adaptation transform was that devised by von Kries which is used
in the Hunt, Nayatani and RLAB models, however the more recent transform
used in the LLAB and CIECAM97S models shows a better performance than
that of the von Kries transform in predicting many experimental data sets
(Luo and Hunt, 1998).
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Fig. 3.17 Generic structure of a colour appearance model.
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The dynamic response functions are used to predict the extent of changes
of responses of stimuli of different luminance factors across a wide range
of luminance levels, i.e. from very dark scotopic to very light photopic vi-
sion. A cube-root function was used for the RLAB model, hyperbolic in the
Hunt, LLAB and CIECAM97S models, and logarithmic in the Nayatani model.
The colour spaces used in these models are similar in that they all provide
redness-greenness and yellowness-blueness scales to form rectangular coor-
dinates (similar to that in Fig. 3.16 of the CIELAB space), ratios of which are
used to derive hue angle from 0° to 360°. The distance away from neutral is
used to represent the colourfulness, saturation or chroma, while a non-linear
function of an achromatic signal is used to derive a lightness attribute. Some
of the models also provide a brightness attribute. The colour space is based
upon a reference set of illumination conditions. For the Nayatani model, it
refers to the CIE D65 illuminant and 2° conditions. The equal energy illumi-
nant is used for the other colour appearance models.

The differences in the chromatic adaptation transforms, in the dynamic
response functions, and in the colour spaces, all contribute to the differences
between the predictions made by the different models.

3.5.3 The predicted colour appearance attributes

This section describes the meaning of the colour appearance attributes and
what viewing parameters would affect each attribute. Many of the latter
phenomena have been taken into account by each colour appearance model.
Their definitions can also be found in the CIE International Lighting Vocabu-
lary (CIE, 1989).

Brightness

This is a visual sensation according to which an area exhibits more or less
light. This is an open ended scale with a zero origin defining black. The
brightness of a sample is affected by the luminance of the light source used.
A surface colour illuminated by a higher luminance would appear brighter
than the same surface illuminated by a lower luminance.
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Lightness

This is the brightness of an area judged relative to the brightness of a similarly
illuminated reference white. The lightness scale runs from black, 0, to white,
100 (see Fig. 3.16). The lightness of the background used can cause a change
of the lightness of the sample. This is called the lightness contrast effect.
For example, a colour appears lighter against a dark background than against
a light background.

Colourfulness

Colourfulness is the attribute of a visual sensation according to which an area
appears to exhibit more or less of its chromatic content. This is an open ended
scale with a zero origin defining the neutral colours. Similar to the brightness
attribute, the colourfulness of a sample is also affected by luminance. A sur-
face colour illuminated by a higher luminance would appear more colourful
than when illuminated by a lower luminance.

Chroma

This is the colourfulness of an area judged as a proportion of the brightness
of a similarly illuminated reference white. This is an open ended scale with a
zero origin representing neutrals with no hue. Fig. 3.16 shows its relationship
with lightness and hue angle in CIELAB colour space.

Saturation

This is the colourfulness of an area judged in proportion to its brightness. This
scale again runs from zero representing neutral colours with an open end. It
can be considered as the ratio of colourfulness to lightness, like that defined
in the CIELUV space (s,y) on page 47. When adding a coloured pigment to
a white paint, the resultant colour increases its saturation by decreasing its
brightness and increasing colourfulness.

Hue

Hue is the attribute of a visual sensation according to which an area appears
to be similar to one, or to proportions of two, of the perceived colours red,
yellow, green and blue. Each model predicts hue with two measures: hue
angle (see Fig. 3.16) ranged from 0° to 360°, and hue composition ranged
from 0, 100, 200, 300 and 400 corresponding to psychological hues of red,
yellow, green, blue and back to red. These four hues are the psychological
hues, which cannot be described in terms of any combinations of other colour
names.
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Most of the above attributes are predicted by the colour appearance mod-
els considered here. Apart from the above visual phenomena, the chromatic
adaptation transformation is considered to be at the heart of each model (sec-
tion 3.5.2). Also, all models except the Nayatani model predict the effect
caused by the luminance of the surround such as a 35 mm projected image
viewed against a dark surround, a monitor image against a dim surround,
and a printed image against a brighter surround than the above two (desig-
nated ‘average’ surround here). The brightness and colourfulness contrasts
are smaller under the dim and dark surrounds in comparison with that under
an average surround. There are more specific parametric effects predicted by
different models.

3.54 Computation procedures for the CIECAM97S colour appearance
models

The CIECAM97S colour appearance model is given in this section. The con-
dition of viewing field (called test field hereafter) used in the colour appear-
ance model are shown in Fig. 3.18. A test sample and a reference white are
viewed against an achromatic background under a particular luminance of a
test illuminant.

Test illuminant with a
particular luminance

-t~ L\ '
7 \
/ \
’ \

Reference®
7 white \
’ \

/ \

/ \

/ — \
/ Test sample \
/ \
/ \
/ \

Achromatic background ‘

Fig. 3.18 Condition of viewing in test field.
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Forward CIECAMY97S colour appearance model

Table 3.2 defines the input values required by the model, and Table 3.3 defines
the parameters of the model.

Computational procedures

Step 1 Calculate cone responses of test sample (R, G, B), similarly, for the
reference whites (R,,, Gy, By) and (Ryr, Gyr,Bwr):

R X/Y
G = Mprp Y/Y
B Z/)Y

Table 3.2 Variables used in the CIECAM975 colour appearance model.

Symbol Definition
x,y,Y Colorimetric values of sample under test field.
X, Yws Yo Colorimetric values of reference white under test field.

XwryYwr, Ywr  Colorimetric values of reference white under reference field (equal
energy illuminant, X, = yy, = % and Y,,, = 100).

Y, Y of achromatic background (%).
Ly Luminance of reference white in cd/m?.
Ly Luminance of achromatic background in cd/m?

(calculated by LwY,,/100).

Table 3.3 Parameters of the CIECAM97S colour appearance model.

Surround parameters F c Fu N,
Average with sample over 4° viewing field 1.0 069 00 1.0
Average with sample over < 4° viewing field 1.0 0.690 10 1.0
Television and VDU displays in dim surrounds 0.9 0.590 1.0 1.1
Projected photographs in dark surrounds 09 0525 10 08
Large cut-sheet transparency 09 0410 1.0 038
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0.8951 0.2664 -0.1614
where Mprp = | —0.7502 1.7135 0.0367
0.0389 —0.0685 1.0296

Step 2 Calculate corresponding cone responses of test sample (R.,G,,B.),
similarly, for the reference white (Ry.c, Gy, Buc):

R. = [D(Ru./Ry)+1-D]R
G. = [D(Guw/Gy)+1-D]G

[D(B.,/B})+1—-D] BP, B.>0
~[D(Byr/BL)+1-D] |B|P otherwise

P = (Bw/Bwr)0.0834
D = F—F/[1+2(L})+(L2)/300]

Step 3 Calculate luminance level adaptation factor (Fg), chromatic back-
ground induction factor (N.) and brightness background induction factors
(Nbb).

Fp = 0.2k*(5L4) +0.1(1 — k*)2(5L4) 3
where

k=1/(5Ls+1)

N = Npp = 0.725(1/n)%2

where n =Y, /Y,,.

Step 4 Calculate corresponding tristimulus values of test sample (R, G', B'),
and similarly, for the reference white (R),,G/,,B.,).

R' RY

G | =MyMzi, | GY
B B.Y
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where

0.38971 0.68898 —0.07868
My = |-0.22981 1.18340  0.04641
0.00000 0.00000  1.00000

and

0.9870 —0.1471 0.1600
Mzl = 04323 05184 0.0493
—0.0085  0.0400 0.9685

Step 5 Calculate cone responses after adaptation of test sample (R.,G,,B.,),

similarly, for the reference white (R.,,,G.,,,B.,,)-

, _ 40(FLR'[100)7

R =
¢ (FLR'/100)073 4.2

+1

and similarly for G/, and B),. If R/, is less than zero use:

—40(—R'/100)%73
R, = ] 0.73 +1
(—R'/100)073 2

and similarly for R}, and for the G/, and B, equations.

Step 6 Calculate the red-green (a), and yellow-blue (b) opponent correlates.
a = R,—12G,/11+B,/11

1
b = §(R;+G;—ZB§,)

Step 7 Calculate hue angle (h):

h=tan"}(b/a)
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Step 8 Calculate Eccentricity factor (e) and Hue quadrature (H):
100(h—h1)/e1
(h—h)/e1+ (h2 —h)/ey

h—h
hy —h

H=H +

e=e +(e2—ep)

where H; is 0, 100, 200, or 300, according to whether red, yellow, green, or
blue, respectively, is the hue having the nearest lower value of 4. The values
of h and e for the four unique hues are:

Red Yellow Green Blue
H 0 100 200 300
h 20.14 90.00 164.25 237.53
e 0.8 0.7 1.0 1.2

e; and h; are the values of e and A, respectively, for the unique hue having
the nearest lower value of 4; and e, and A, are these values for the unique hue
having the nearest higher value of A.

Hp is the part of H after its hundreds digit, if:

H= Hp,, the hue composition is H, Yellow, 100 — H,Red

H =100 + H,, the hue composition is H,Green, 100 — H,Yellow
H =200+ Hp, the hue composition is H,Blue, 100 — H,Green
H =300+ Hp, the hue composition is H,Red, 100 — H,Blue

Step 9 Calculate the achromatic response of the sample (A) and reference
white (A,):

A = [2R, +G, +%B, —2.05Np
— ! ! 1 pt
A, = [2Raw +Gaw +EBaw —2.05]1\/1,1,

Step 10 Calculate Lightness (J):
J =100(A/A, ) where z=14+F,;v/n

Step 11  Calculate Brightness (Q):
Q = (1.24/¢)(J/100)%7 (A,, +3)%°
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Step 12 Calculate Saturation (s):

_5000(a? + b?)2¢(10/13)N.N,
~ R,+G,+(21/20)B,

Step 13  Calculate Chroma (C):
C = 2.445%%%(7/100)%6""(1.64 — 0.29")

Step 14 Calculate Colourfulness (M):
M =CF®

Reverse CIECAM97S colour appearance model

The reverse CIECAM97S colour appearance model is used to calculate the
corresponding tristimulus values (X,Y,Z) from the colour appearance at-
tributes computed from the forward CIECAM97s model, i.e. Q or J, M or
C,Horh.

Step 1 Calculate Lightness (J) from Brightness (Q):
J= IOO(CQ/1'24)1/O.67/(AW+3)0.9/0.67

Step 2 Calculate Achromatic response (A) from Lightness (J):

A=A, (J/100)!/

Step 3 Use Hue composition to determine ki, hy, e; and ey (see Step 8 in
the previous section).

Step 4 Calculate h:

(H—Hl)(hl/el —hz/ez) - 100h1/€1

h= (H—Hy)(1/e1 — 1/e3) — 100/,

where H, is 0, 100, 200, or 300 according whether red, yellow, green, or blue,
respectively, is the hue having the nearest lower value of .

Step 5 Calculate e as given in Step 8 of the forward model.

Step 6 Calculate C = M/FP-15.
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Step 7 Calculate s:

C1/0.69
* = [2.44(J/100)067 (1.64 — 0.297)7] /0
where n =Y, /Y,,.

Step 8 Calculate a and b:
s(A/Npp +2.05)
V1 + tan? h(50000eN,N,5/13) + s[(11/23) + (108/23) tan 4]

b=atanh

a=

In calculating v/1 + tan?  the result is to be taken as positive if 0 < k& < 90;
negative if 90 < h < 270; positive if 270 < h < 360.

Step 9 Calculate R, G, B;:
R, = 2(A/Nyp, +2.05) + £ (11/23)a + B8 Lp
G, = 2(A/Nw+2.05) — 81 (11/23)a — 21 L
B, = 2 (A/Ny» +2.05) — 2%(

(=[S 1=y
182

61 2
1

11/23)a— 2 35p

W

Step 10 Calculate R', G', B':

R' = 100[(2R,, —2)/(41 — R,)] /073
If R, — 1 <0, then

R = —100[(2—-2R’)/(39+R.)]'/07

and similarly for the G’ and B’ equations.

Step 11 Calculate R.Y, G.Y and B.Y:

RY R/F,
G.Y | =MprpMy' | G'/F,
B.Y B'/F;
where

1.91019 —1.11214 0.20195
My'=] 037095  0.62905 0.00000
0.00000  0.00000 1.00000
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Step 12 Calculate (Y /Y,)R, (Y /Y,)G and (Y /Y,)B:

(Y/YC)R = (Y/YC)RC/[D(Rwr/RW) +1- D]
(Y/YC)G = (Y/YC)GC/[D(GWI‘/GW) +1 —D]
(Y/Y.)B = |(Y/Y.)B.|"/? /[D(By»/B%) + 1 —D]!/»

where, if B, is negative, (Y/Y,)'/?B is negative; and ¥, = 0.43231R.Y +
0.51836G.Y +0.04929B.Y .

Step 13 Calculate Y':

Y' = 0.43231RY +0.51836 GY +0.04929BY, (Y /Y,)'/?

Step 14 Calculate X" /Y., Y" /Y. and Z"/Y,:

X"/Y, | (Y/Y)R

Y'/Y, | =Mgpp (Y/Y.)G

Z'/Y. | (v /Y,)/PB/(¥'Y,)1/P~1)
where

0.9870 —0.1471 0.1600
Mgip=| 04323 05184 0.0493
| —0.0085  0.0400 0.9685

Step 15 Multiply each by Y, to obtain X", Y and Z", which equal X, Y, Z
to a very close approximation.

Working examples for the CIECAM97S colour appearance model

The data in Tables 3.4 to 3.7 is given to assist readers to implement the
CIECAM97S model. One sample is viewed under the standard illuminant A
and four different levels of adapting luminance, L4. The viewing conditions
are: luminous factor (Y,) of the background — 18.0; luminances Lj, in cd/m?
of the achromatic background — 2000, 200, 20 and 2 (4 different levels).
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Table 3.4 Colorimetric input data for the test sample, reference whites.

x y Y
Sample under test field 0.3618 0.4483  23.93
Reference white in test field 0.4476 0.4074  90.00

Reference white in reference field 0.3333 0.3333 100.00

Table 3.5 Model parameters for average surround.

F c Fir N,
1.0 069 10 1.0

Table 3.6 Results: prediction for the reference white.

Luminances, La 2000 200 20 2
Hue angle, h 41.8 574 588 595
Hue quadrature, H 283 50.0 52.0 53.0
Lightness, J 100.0 100.0 100.0 100.0
Brightness, O 70.1 527 379 2638
Saturation, s 0.0 0.5 126 259
Chroma, C 0.1 1.3 12.1 19.8
Colourfulness, M 0.1 1.3 10.8 15.7

Table 3.7 Results: prediction for the test sample.

Luminance, Ly 2000 200 20 2
Hue angle, h 190.2 190.0 183.5 175.7
Hue quadrature, H  239.7 2394 2299 218.2
Lightness, J 53.0 482 452 442
Brightness, Q 458 323 223 155
Saturation, s 120.0 1259 114.0 96.5
Chroma, C 524 535 495 440

Colourfulness, M 58.8 53.5 44.1 349
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Representations of colour images in
different colour spaces

Henryk Palus

Colour spaces (other terms: colour coordinate systems, colour models) are
three-dimensional arrangements of colour sensations. Colours are specified
by points in these spaces. The colour spaces presented in this chapter are
the most popular in the image processing community. Equations describ-
ing transformations between different colourspaces and the reasons for us-
ing colour spaces other than RGB are presented. Based on examples from
the literature, the applicability of individual colour spaces in image process-
ing systems is discussed. Spaces used in image processing are derived from
visual system models (e.g. RGB, opponent colour space, IHS etc.); adopted
from technical domains (e.g. colorimetry: XYZ, television: YUV, etc.) or de-
veloped especially for image processing (e.g. Ohta space, Kodak PhotoYCC
space etc.).

4.1 BASIC RGB COLOUR SPACE

The RGB space is the most frequently used colour space for image processing.
Since colour cameras, scanners and displays are most often provided with
direct RGB signal input or output, this colour space is the basic one, which
is, if necessary, transformed into other colour spaces. However, the RGB
primaries of these devices are not always consistent. The colour gamut in
RGB space forms a cube (Fig. 4.1). Each colour, which is described by its
RGB components, is represented by a point and can be found either on the
surface or inside the cube. All grey colours are placed on the main diagonal
of this cube from black (R = G = B = 0) to white (R = G = B = max). When

S.J. Sangwine et al. (eds.), The Colour Image Processing Handbook
© Chapman & Hall 1998
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Blue(0,0,Bmax) Cyan(0,Gmax,Bmax)
Magenta White
{Rmax,0,Bmax) (Rmax,Gmax ,Brfax)
Line L —— Green
of greys| (0,Gmax,0)
P Black(0,0,0) y -
// 'Red (Rmax,0,0) Yellow(Rmax,Gmax,0)

Fig. 4.1 Representation of colour in RGB colour space.

the output signal from a camera is encoded for a TV system, either standard
decoders, such as PAL/RGB or NTSC/RGB are used, or the space utilized by
a given system is applied, such as YUV space (see section 4.3.1) in the case
of the PAL system or YIQ (see section 4.3.2) in the case of the NTSC system.
The main disadvantage of RGB colour space in applications involving natural
images is a high correlation between its components: about 0.78 for B — R,
0.98 for R — G and 0.94 for G — B components. This makes the RGB space
unsuitable for compression. Other disadvantages of RGB space are:

o psychological non-intuitivity, i.e. it is hard to visualize a colour based
on R, G, B components,

e non-uniformity, i.e. it is impossible to evaluate the perceived differ-
ences between colours on the basis of distance in RGB space.

The RGB components for a given image are proportional to the amount of
light incident on the scene represented by the image. In order to eliminate
the influence of illumination intensity, so-called chromaticity coordinates



XYZ colour space 69

(normalized colours) were introduced in colorimetry (Wyszecki and Stiles,
1982):

R

R+G+B
G

R+G+B
B

R+G+B

g =

b = l—r—g

Since each of the normalized colours is linearly dependent, the rgb space may
be represented by two normalized colours. Coordinate b can be calculated
for verification. As could be easily shown, the chromaticity coordinates rgb
remain unchanged unless the spectral distribution of the scene-illuminating
light is varied (Andreadis, Browne and Swift, 1990).

Values of rgb coordinates are much more stable with changes in illumina-
tion level than RGB coordinates. This was verified experimentally by Ailisto
and Piironen (1987) and Berry (1987). In a computer vision system, transla-
tion from RGB space to rgb space more than doubles colour discriminability
(Ailisto and Piironen, 1987). When a colour image is segmented, dark pixels
can give incorrect rgb values, because they are affected by noise (R+ G+ B
is near 0). These pixels should be omitted during segmentation (Gunzinger,
Mathis and Guggenbuehl, 1990). Normalized colours were also tried for anal-
ysis of aerial photographs (Ali, Martin and Aggarwal, 1979), edge detection
(Nevatia, 1977) and image segmentation (Healey, 1992).

42 XYZ COLOUR SPACE

The XYZ colour space was accepted by the CIE in 1931 and is described in
detail in section 3.1 and it has been used in colorimetry ever since. It was
designed to yield non-negative tristimulus values for each colour. In this
system, Y represents the luminance of the colour. The tristimulus values
XYZ are related to CIE RGB tristimulus values by the following equations
(Wyszecki and Stiles, 1982):

X = 0.490R+0.310G +0.200B
Y 0.177R+0.812G+0.011B
Z = 0.000R+0.010G +0.990B
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The above relationships result from defining three spectral colours with the
following chromaticity coordinates as reference stimuli in CIE RGB space:

xg=0.735  yg=0.265
x6=0274 yg=0.717
xg=0.167  yp=0.009

together with reference white, with coordinates:
Xw = 0.333 Yw = 0.333

In colorimetry, the following transformation equations for chromaticity coor-
dinates x, y, z were introduced (Wyszecki and Stiles, 1982);

X
X = ————s
X+Y+Z
Y
Yy = oo
X+Y+Z
= Z =1—-x
2T X¥rex~ Y

In image processing, other versions of RGB space called EBU RGB (European
Broadcasting Union) and FCC RGB (Federal Communications Commission,
USA) are used, which have been accepted for colour reproduction in colour
cameras. These spaces are based on the tristimulus values of cathode ray tube
phosphors given in Table 4.1. and reference white with values:

Xw = 0.313 Yw = 0.329
for illuminant D65 (for EBU RGB) and:
Xw =0.310 Yw =0.316

Table 4.1 EBU and FCC tristimulus values of CRT phosphors.

EBU FCC
x y X y

R 0.640 0.330 0.670 0.330
0.290 0.600 0.210 0.710

B 0.150 0.060 0.140 0.080




Television colour spaces 71

for illuminant C (for FCC RGB). Appropriate transformations from RGB to
XYZ can be found in TV engineering textbooks (Benson, 1992; Slater, 1991).
For the EBU RGB space the transformation is:

X=0430R+0.342G +0.178 B
Y=0222R+0.707 G+ 0.071 B “.1)
Z=0.020R +0.130 G+ 0.939 B

while that for FCC RGB space is:

X=0.607R 4+ 0.174 G+ 0.200 B
Y=0.299R+0.587 G+ 0.114 B “4.2)
Z=0.000R +0.066 G+ 1.116 B

The role of XYZ space in image processing systems is rather supplementary.
In the work of Slaughter and Harrell (1987), it is required to determine the
threshold values of hue and saturation (necessary to recognize an object: an
orange). From the spectral reflectance curves for the orange the tristimu-
lus values XYZ were first calculated. Then, applying the inverse transform,
RGB values were determined and hence, after further transformations, H and
s threshold values. In this colour space, a stereo correspondence algorithm
(Koschan, 1993) and colour image segmentation algorithms (Lim and Lee,
1990) were tested. Quite often the XYZ colour space is an intermediate space
in the process of determining a perceptually uniform colour space such as
CIELAB (sometimes denoted as L*a*b*) (Celenk, 1995) or CIELUV (some-
times denoted as L*u*v*).

4.3 TELEVISION COLOUR SPACES

The television colour spaces! (e.g. YUV, YIQ) are in fact, opponent colour
spaces (see section 4.4), because they define a luminance component and
two chrominance components based on colour-difference signals: R —Y and
B —Y. They were designed to minimize the bandwidth of the composite
signals, i.e. to enable transmission of colour-difference signals within the ex-
isting bandwidth for black and white television. The human visual system is
far less sensitive to spatial details in chrominance than in luminance (Slater,
1991) for reasons discussed in section 2.5.3. Because of this, the bandwidth
of the chrominance signals can be, and is, significantly smaller than for the

I'Television colour spaces are also discussed in section 5.3 on page 108.
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luminance signal, e.g. in the case of YIQ the required bandwidth is as fol-
lows: Y —4 MHz, I - 1.5 MHz and Q - 0.5 MHz. The advantages of television
colour spaces are their simplicity of transformation and the separability of
luminance and chrominance information.

4.3.1 YUYV colour space

In Europe the YUV colour space (the basis of the PAL TV signal coding sys-
tem) is used (Slater, 1991):

Y = 0.299R+0.587G+0.114B
U =—0.147R — 0.289G +0.437B =0.493(B — Y)
V= 0.615R—0.515G —0.100B=0.877(R—Y)

The Y (luminance) component is identical to the Y component in XYZ space.
YUV space can be transformed into an IHS-type space (see section 4.6):

Hyy = tan_’(V/U)
Suyy = VUZ+V2

The uv plane has been used for colour image segmentation (Ferri and Vi-
dal, 1992). The YUV space is widely used in coding of colour images and
in colour video. Because the colour representation of an image sequence re-
quires less detail than the luminance, the data rate can be shared as follows:
80% to the Y component and 10% each to the U and V components (Monro
and Nicholls, 1995). Special chips for digital video processing and other im-
age compression hardware often use YUV components with reduced spatial
resolution for chrominance (Y:U:V 4:2:2 or Y:U:V 4:1:1).

4.3.2 YIQ colour space

The YIQ colour space (the basis of the American NTSC TV signal coding
system) is related to FCC RGB coordinates by the equations given below, the

Y component being identical to the Y component of YUV space (Benson,
1992):

I =0.596R — 0.274G — 0.322B=0.74(R—Y) — 0.27(B—Y)
0=0.211R —0.523G +0.312B=0.48(R—Y) + 0.41(B—Y)
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As with the YUV space, the ¥ (luminance) component is identical to Y in
XYZ space, while the / component (in-phase, an orange-cyan axis) and the Q
component (quadrature, a magenta-green axis) express jointly hue and satu-
ration. By introducing cylindrical coordinates, YIQ space is transformed into
an IHS-type space (see section 4.6):

H]Q = tan‘l(Q/I)

Sip = VP+Q?

Transformations such as the above were applied by Slaughter and Harrell
(1987) to determine threshold hue and saturation values used for object recog-
nition and also in Solinsky (1985) for edge detection.

In this colour space, colour image segmentation algorithms (Lim and Lee,
1990) were tested. The I component was used for extraction of faces from
colour images (Dai and Nakano, 1996). The YIQ space is also useful for
colour image coding (Overturf, Comer and Delp, 1995).

4.3.3 YC,C, colour space

This colour space is independent of TV signal coding systems. It is appro-
priate for digital coding of standard TV images (525/625 lines) (ITU, 1994b)
and is given as follows, the Y component being identical to that for YUV and
YIQ:

Cp=—0.169R — 0.331G + 0.500B = 0.564(B —Y)
C,= 0.500R — 0.418G — 0.081B =0.713(R—Y)

This colour space was used in a process of video sequences encoding on
videodisks (Watson, 1994). Other current applications in image compression
(e.g. JPEG format) often employ YC,C, space as a quantization space. Greater
compression is achieved using reduced spatial resolution and coarser quanti-
zation for C, and C, than for the Y component.

4.4 OPPONENT COLOUR SPACE

Opponent colour space has been inspired by the physiology of the human
visual system (colour opponent processes) and therefore is sometimes called
physiologically motivated colour space (Pomierski and Gross, 1996). In
the late 19th century the German physiologist Ewald Hering proposed colour
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Cones Opponent signals
1
(+) (+)—=— R+G+B
G T (/—\) —» R-G
B ! (-) = 2B-R-G

Fig. 4.2 Schematic representation of opponent colour stage of human visual system.

opponency theory?, which explained some perceptual colour phenomena in-
explicable by classical trichromatic theory (Hering, 1964). Illusions called
‘negative after-images’ and observations during colour naming experiments
that reddish-green and yellowish-blue colours are not identified, led Hering to
suppose that red must be the ‘opposite’ colour to green and likewise blue must
be ‘opposite’ to yellow. He presumed the existence of three opponent chan-
nels (processes) in the human visual system: red-green R-G channel, yellow-
blue Ye-B channel and achromatic (white-black) Wh-Bl channel. Hering’s
opponent process theory was one of the first approaches to separate lumi-
nance from chrominance. At present multi-stage models of colour vision are
used with a second opponent stage (De Valois and De Valois, 1993). Fig. 4.2
and equation (4.3) show how RGB ‘cone’ signals are transformed to three
channels — one hypothesized achromatic channel, and two opponent colour
channels.

RG = R-G
Ye B = 2B—-R-G 4.3)
WhBl = R+G+B

Opponent colour spaces have found numerous applications in different fields
of image processing:

2Colour opponency theory is also discussed in section 2.4
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e interactive computer graphics (Naiman, 1985),

e real-time colour edge detection by using a visual processor (Masaki,
1988),

e colour stereopsis (Brockelbank and Yang, 1989),
e digital colour image sequence coding (Watson and Tiana, 1992),

e detection of colour contrast (Schmid and Truskowski, 1993),

chromatic adaptation of the image (Pomierski and Gross, 1996).

Much research has been devoted to the use of opponent colour spaces for
multi-colour object recognition tasks (Wixson and Ballard, 1989; Swain,
1990; Brock-Gunn and Ellis, 1992). 3-D or 2-D opponent colour histograms
were applied as a signature (template) for the representation of object colours.
Sometimes modified versions of opponent colour spaces are used. Yamaba
and Miyake (1993) presented a system which recognizes characters and their
colours using opponent colour space with a modified second equation:

YeB = 0.4(R+G)—B

Because the responses of the cones in the human visual system are propor-
tional to the logarithm of the stimulus intensity, the following ‘logarithmic’
version of opponent space was developed (Fleck, Forsyth and Bregler, 1996):

RG = logR—1logG
YeB = logB— (logR+1ogG)/2
WhBlI = logG

There is a long tradition behind this ‘logarithmic’ approach in image process-
ing (Faugeras, 1979).

4.5 OHTA 11,13 COLOUR SPACE

The definition of the Ohta colour space is presented in the form of the follow-
ing equations (Ohta, Kanade and Sakai, 1980):

L = (R+G+B)/3

L (R—B)/2

L = (2G—R-B)/4
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The I; component represents the intensity information, I, and I3 represent
chromatic information. Ohta et al. derived these components as a result of a
search of completely statistically independent components on a representative
sample of images. The Ohta components are good approximations of the
results of the Karhunen-Loeve transformation, which is best in respect of
decorrelation of RGB components (Pratt, 1991).

Subsequently, Ohta’s proposal has been introduced for:

e a colour recognition algorithm for measurement of oxide thickness in
microelectronic structures (Barth, Parthasarathy and Wang, 1986),

e colour image segmentation with very low probability of error (Lim and
Lee, 1990),

e colour image compression (Deknuydt, Smolders, Van Eycken and
Oosterlinck, 1992),

e stereo correspondence based on block matching (Koschan, 1993),

e analysing liver tissue images (Sun, Wu, Lin and Chou, 1993).

4.6 THS AND RELATED PERCEPTUAL COLOUR SPACES

Although colour receptors in the human eye (cones) absorb light with the
greatest sensitivity in the blue, green and red part of the spectrum, the signals
from the cones are further processed in the visual system (Levine, 1985). As
a result of this processing, an inexperienced and not specially trained person
cannot make intuitive estimates of blue, green and red components. In the
perception process, however, a human can easily recognise basic attributes of
colour: intensity (brightness, lightness) I, hue H and saturation S. The hue
H represents the impression related to the dominant wavelength of the colour
stimulus. The saturation corresponds to relative colour purity (lack of white
in the colour) and in the case of a pure colour it is equal to 100%. For exam-
ple, for a vivid red $=100% and for a pale red (pink) S=50%. Colours with
zero saturation are grey levels. Maximum intensity is sensed as pure white,
minimum intensity as pure black as shown in Fig. 4.3. The IHS components
are calculated from formulae expressing approximately the psychophysical
sense of these notions. The formulae are given in the literature in differ-
ent forms, in particular for the hue. The reason is a compromise between
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Intensity

Fig. 4.3 Cylindrical nature of 1HS colour space.

transformation accuracy and computational simplicity. The original formula,
derived by Tenenbaum, Garvey, Weyl and Wolf (1974) and accepted as ba-

sic (Haralick and Shapiro, 1991) is fairly complex and thus often cited with
eITors:

1 2r—g—b
Volr— 2+ (g = H2+ (b - 1)

where, if b > g, then H := 360 — H, H being expressed in degrees. The
version for RGB components is:

H =cos™

] 0.5[(R— G)+ (R—-B)]
v/(R—G)(R—G)+(R—B)(G—B)

and again, if B > G, then H := 360 —H.

The exact derivation of these equations, resulting from converting the
RGB Cartesian coordinate system to the 1HS cylindrical one, is given by Led-
ley, Buas and Golab (1990) and by Gonzalez and Woods (1992). Kender
(1976) proposed a fast version of the transformation, containing fewer multi-
plications and avoiding square root operations:

H =cos™
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if R=G=B then H :=undefined {achromatic case}
else
begin {chromatic case}
if R>B and G>B then {B -- minimum}
_n.o-1[__V3(G=R)
H =73+t [(G—B)+(R—B)
elsif G>R then {R -- minimum}
_ [ __V3(B-0)
else {G -- minimum}
_5n,..-1]__V3(R-B)
H =3+t [(R——G)+(B—G)
end if
end
end if

Some simpler formulae for calculation of hue are cited in the literature, but
the results they yield are somewhat different from those obtained with Tenen-
baum’s and Kender’s formulae. Using the version of the transformation from
RGB to IHS proposed in 1985 by Bajon, Cattoen and Kim (1985), one obtains
numerical results slightly different from the classical ones. In Bajon’s trans-
formation, formulae for hue were further simplified and they now contain no
trigonometric functions:

if min(R,G,B) =B then
— G-B
H=3®+c-28)
elsif min(R,G,B) =R then
B—R 1

H=35615-mm "3

elsif min(R,G,B) =G then
_ R-G 2
H=3®+8-20 "3
end

There were attempts at applying Bajon’s transformation in practice (Bajon,
Cattoen and Liang, 1986; Massen, Bottcher and Leisinger, 1988). These pa-
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pers described applied research (automation in electronics and a biotechno-
logical robot respectively) and no attempt was made to evaluate the RGB/IHS
transformations. Both were real-time hardware realizations of the transfor-
mation. Massen, Bottcher and Leisinger (1988) used a 256 kB x 18-bit look-
up table for the transformation, i.e. 6 bits for each RGB component.

As far as the S component is concerned, apart from two basic equivalent
versions of the formula:

S =1-3min(r,g,b)

min(R, G, B)

§=1-3
R+G+B

there are a few variants which aim at reducing saturation instability in the
neighbourhood of point S = (0,0,0) (Gordillo, 1985):

if I <Ilpx/3 then
min(lmax - R,Imax _ Ga Imax - B)

S = lnax =3 3-(R+G¥+B)
else

S =Ly — 3mln_*(_R, i,g)
end

The value I is derived from the formula:

_R+G+B

I
3

or, less frequently, as:
I=R+G+B

Two other IHS colour spaces are applied in computer graphics, where they
are called colour models: HSV and HLS (Foley and van Dam, 1982). Figure
4.4 illustrates the geometric interpretation of these models. They differ in the
formulae for the values of intensity and saturation given overleaf:
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Fig. 4.4 The HSV and HLS models.

HSV

min := minimum(r,g,b)
max := maximum(r,g,b)
V := max

if max#0 then

§ ;= Max—min
T max

else
S:=0

end

HLS

min := minimum(r,g,b)
max := maximum(r,g,b)
[ :— Max+ min

if max =min then
§:=0
end if
if L<0.5 then
§ .= Max —min
max + min
else
§.= . Mmax—min_
"7 2 —max —min
end
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These models demonstrate that colours become less saturated when the in-
tensity approaches minimal or maximal levels. However not all such percep-
tual phenomena have been implemented into these models. Fully saturated
colours with different hues have the same values V = 1 in the case of HSV
and the same lightness L = 0.5 in the case of HLS space. However, in hu-
man perception this is not always true. For example, fully saturated yellow is
always lighter than fully saturated blue.

Both transformations, especially HSV, are also used in computer vision:
(Taylor and Lewis, 1992; Priese and Rehrmann, 1993; Liu and Yang, 1994).
All 1HS-based models applied in computer graphics were integrated into one
generalised colour model: GLHS (Levkowitz and Herman, 1993).

Important advantages of the IHS space over other colour spaces are: good
compatibility with human intuition; separability of chromatic values from
achromatic values; and the possibility of using one feature (H) only for seg-
mentation and recognition (Gagliardi, Hatch and Sarkar, 1985). The H and S
attributes, particularly useful for recognition, describe a colour object inde-
pendently of intensity changes. The HS plane has been applied for recognition
of technical as well as biological objects. In many cases hue is invariant to
shadows, shading and highlights (Perez and Koch, 1994). However, the IHS
colour space has some significant drawbacks:

o the irreducible singularities of the RGB to IHS transformation (H for all
achromatic colours and S for black),

e sensitivity to small deviations of RGB values near singularities,
e perceptual non-uniformity, in spite of perceptual orientation,

e problems with some operations on angular values of hue e.g. averaging
(Crevier, 1993).

The aim of applying IHS space may be the separation of chromatic values
from achromatic values using S (Gordillo, 1985; Bajon, Cattoen and Liang,
1986). Sometimes, instead of performing a feature-based segmentation on
three channels (RGB), only one feature (H) may be used, allowing the use
of much faster algorithms. The IHS space is very convenient for colour im-
age processing. 1HS-based algorithms for colour image enhancement make a
good example. Median filtering (Zheng, Valavanis and Gauch, 1993) as well
as different methods of contrast improvement (Toet, 1992; Kim, Shim and
Ha, 1992; Yang and Rodriguez, 1996) use components of IHS space.
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Machine vision systems employing the advantages of IHS space have been
constructed for the purposes of:

e identification of colour-coded electronic components (Gordillo, 1985;
Bajon, Cattoen and Liang, 1986),

e quality control of frozen vegetable mixtures (Gagliardi, Hatch and
Sarkar, 1985),

e robotic fruit harvesting (Slaughter and Harrell, 1987),
e bacteria culture manipulations (Massen, Bottcher and Leisinger, 1988),
o fruit sorting and classification (Kay and De Jager, 1992),

e recognition of road landmarks (Kehtarnavaz, Griswold and Kang,
1993),

e discrimination of bottle crates (Milvang and Olafsdottir, 1993).

Due to the vast number of existing variants of the RGB to IHS transforma-
tion, we may talk of IHS-type colour spaces. This class includes the spaces
which result from direct transformation and those created in the effect of a
double transformation: e.g. RGB to YUV to IHS (Berry, 1987), RGB to YIQ to
IHS (Slaughter and Harrell, 1987) or RGB to I1 /5 to 1HS (Sandini, Buemi,
Massa and Zucchini, 1990). Moreover, new modifications of the IHS space
are constantly being created. Yagi et al. proposed two new versions of the
HSV transformations, which should be more convenient for segmenting of
colour images (Yagi, Abe and Nakatani, 1992). For object recognition goals
new perceptual attributes, similar to H and S, i.e. hue ratio and colour purity
have been defined (Pritchard, Horne and Sangwine, 1995). The possibility of
free choice of colour with H = 0 has in some applications certain importance
(Palus, 1996). Some state-of-the-art framegrabbers are equipped with real-
time RGB to IHS converter chips.

47 PERCEPTUALLY UNIFORM COLOUR SPACES

Although perceptual IHS colour spaces provide a more intuitive description
of colour than, for example, RGB, they are based on simplifying assumptions
and do not constitute perceptually uniform colour spaces (Robertson, 1988).
It has been an old idea to construct a colour space in which perceived colour
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differences recognized as equal by the human eye would correspond to equal
Euclidean distances. As perceptually uniform colour spaces of this kind, two
spaces recommended by the CIE in 1976 are mainly used. These are the so-
called CIELAB space with L*a*b* values (for reflected light) and so-called
CIELUV with L*u*v* values (mainly for emitted light) (Wyszecki and Stiles,
1982). A perceptually uniform colour space may also be realised as a set of
samples, e.g. the Munsell colour atlas.

4.7.1 CIELAB colour space
The CIELAB space, one of the approximately uniform colour spaces, is de-

fined by the following expressions, where (Xo,Yo,Zo) represents reference
white:

Lr = 116f(-1—/Y—)—16 (4.4)

0

o = l(E)-nE)

o (2 a2

where

4.5)

X3, x> 0.008856
flx) = 16 :
7.7187x+ 17¢  otherwise,

L* stands for lightness value and is orthogonal to a* and b* as shown in
Fig. 4.5. L* takes into consideration the non-linear relation between the
lightness and the luminance of a point. The component a* denotes relative
redness-greenness and b* yellowness-blueness (see section 4.4). The follow-
ing formula is used to determine colour difference between two sets of L*a*b*
coordinates (L*;,a*1,b*1) and (L*;,a*,,b*,):

AEpa = \/(AL* + (Aa*)? + (Ab*)2

where AL* = L*; — L* etc.. The AE}, colour difference is widely used for the
evaluation of colour reproduction quality in an image processing system e.g.
colour image compression processes (Deknuydt, Smolders, Van Eycken and
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Fig. 4.5 CIELAB colour space coordinates.

Oosterlinck, 1992). It corresponds to human judgements of perceived colour
difference, and colour errors represent the human threshold of perceptibil-
ity (‘just noticeable colour difference’ or JND) (Stokes, Fairchild and Berns,
1992).

Sometimes cylindrical coordinates are introduced in CIELAB space:

L* = L*
H° = tan~!(b*/a*)

ct = a2+ (4.6)

Perceptually uniform colour spaces with a Euclidean metric are particularly
useful in colour image segmentation of natural scenes using clustering algo-
rithms. This holds true for rectangular coordinates (CIELAB): (Tominaga,
1992; Marcu and Abe, 1995) as well as for cylindrical coordinates (Baker,
Hwang and Aggarwal, 1989; Celenk, 1995). Hue H° was applied as the prin-
cipal feature in a method of detecting regions matching a given colour (Gong
and Sakauchi, 1995). Recently a modified version of CIELAB was proposed
(Connolly, 1996). It uses the natural logarithmic function instead of the cube
root function in the CIELAB chromaticity equations and is anticipated to be
useful for the image segmentation of three-dimensional scenes. Tremeau,
Lozano and Lager (1995) addressed the problem of non-uniform digitizing
of individual components of CIELAB and L*H°C* spaces.
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Fig. 4.6 CIELUV colour space coordinates.

4.7.2 CIELUYV colour space

The CIELUV space, whose coordinates are depicted in Fig. 4.6, is recom-
mended by the CIE for applications in additive light source conditions (e.g.
displays). The definition of L* is the same as for the CIELAB colour space as
given in equation (4.4)). The «* and v* coordinates are defined as follows:

w* = 13L*(d —up)
vio= 1300 (Y — )
where
o 4x

T X+15Y+3Z
. oY

- X+15Y+3Z

Values with subscript 0 correspond to reference white. It should be noted that
the components u* and v* are unrelated to U and V in YUV space. Sometimes
cylindrical coordinates are introduced in the CIELUV space exactly as for the
CIELAB space as given in equation (4.6).

The following formula is used to determine the perceptual colour differ-
ence between two luminous sources:

AEpy = /(AL*)? + (Au*)2 + (Av*)?
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The CIELUV colour space is very useful in colour image segmentation meth-
ods which use a clustering approach (Schettini, 1993; Uchiyama and Arbib,
1994). CIELUV space was recommended for the recognition and localization
of two-dimensional objects on a known background (Schettini, 1994). Since
it is a device-independent colour space it is also used for generation of colour
scales on image displays (Della Ventura and Schettini, 1992). Strachan, Nes-
vadba and Allen (1990) presented a colour calibration procedure in CIELUV
space.

4.8 MUNSELL COLOUR SYSTEM

The Munsell Colour System, known from colorimetry (Wyszecki and Stiles,
1982) is another example of a system based on colour attributes close to hu-
man perceptions: hue (H) and value (V) corresponding to luminance; and
chroma (C) corresponding to saturation. The vertical axis of the Munsell
colour solid is a line of v values, which run from black to white, and it is
divided into perceptually equal shades of grey. Hue (H) changes along each
of the circles perpendicular to the vertical axis, while chroma (C) starts at
zero on the Vv axis and changes along the radius of each circle as indicated in
Fig. 4.7. For a long time no analytical relationship existed between the Mun-
sell attributes HVC and the RGB or XYZ components. Tables expressing Yxy
values for Munsell colours under illuminant C may be found in handbooks
of colorimetry, for example (Wyszecki and Stiles, 1982). The transforma-
tion was done by look-up-tables. In order to avoid implementing such tables,
the mapping into the HVC space has been realized experimentally (Tominaga,
1987). In 1988 an algorithmic method of transformation from RGB to HVC
was proposed by Miyahara and Yoshida (1988).

However, the Munsell system has a drawback. Instead of a Euclidean
metric, Godlove’s (1951) colour difference formula usually defines a distance
in the Munsell colour system between two coordinates H;V,C; and H,V2Cy:

AE, = /2C1Ca(1 — cos(RAH /180)) + (AC)? + (4AV)?

where:
AH = |H|—H,|
AV = |V -V,

AC = |Ci—GC
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Fig. 4.7 Munsell colour system.

This formula was used for the evaluation of the quality of 2D vector median
filters (Bartkowiak and Domariski, 1995). Sometimes in practice a simpli-
fied formula (e.g. Tominaga (1988)) is used. The Munsell colour system
was applied to colour image segmentation by using one-dimensional his-
tograms of Munsell attributes and merging the homogeneous regions (Tom-
inaga, 1987; Tominaga, 1988) and by implementing a k-means clustering
algorithm (Hachimura, 1995). In image database applications Munsell at-
tributes can be a convenient tool for matching the object colours to predefined
colour zones (Gong, Zhang and Chua, 1994).

4.9 KODAK PhotoYCC COLOUR SPACE

PhotoCDs are becoming a de facto standard for low-cost image archiving.
Kodak has developed a special colour space known as PhotoYCC for writing
and storage of colour images on PhotoCDs (Kodak, 1992).

The PhotoYCC colour space has its roots in colour television and is a
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type of luminance-chrominance colour space: Y is a luminance component
and the two C components represent chrominance (ITU, 1994b). PhotoYCC
allows efficient image compression and the space is based on TV and HDTV
standards. PhotoYCC pixel values are the result of a three-step transforma-
tion from RGB values from a standardized and calibrated scanner. The RGB
colour space uses reference primaries and D65 reference white defined by the
ITU (1990). Because the scanned RGB values are not constrained to positive
values, not all colour information can be shown on currently used displays.
The three steps to transform RGB values to PhotoYCC values are:

1. gamma correction;
2. linear transformation;
3. quantization of ¥ CC to 8-bit data.
The first step is needed because colour displays have a non-linear character-

istic, whereas the RGB scanner is almost linear. The same equations apply to
each of the RGB channels: that is x denotes R, G or B.

1.099x%4  —0.099 x> 0.018
X =< 4.5x . —0.018<x< 0.018
—1.099|x|%45 +-0.099 : x < —0.018

The gamma-corrected RGB values are then transformed to unquantized Y CC
values:

Y = 0299R +0.587G' +0.114B'
Cl'=—-0.299R' — 0.587G’ + 0.886 B’
C2'= 0.701R' - 0.587G' — 0.114B’

Finally, the Y CC values are quantized to eight bits:

Y = (255/1.402)Y'
Cl = 111.40Cl' +156
C2 = 135.64C2 +137

Values in the PhotoYCC colour space can be transformed to other colour
spaces, €.g. RGB display colour space, CIELAB and CMYK for printing. The
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transformation from PhotoYCC to RGB is not exactly the inverse of the trans-
formation from RGB to PhotoYCC. First, the Y’, C1' and C2' components are
recovered from their 8-bit representations:

Y = 1.3584Y
cr 2.2179(C1 — 156)
c2 1.8215(C2—137)

il

If the chromaticities of the display phosphors are close to the standard chro-
maticities (ITU, 1990) then the following equations are correct:

RDisplay = Y +C2
Gpisplay = Y' —0.194C1' —0.509C2’
BDisplay =Y + cl

As the last step of the transformation the values may be quantized to lie in
the range 0 to 255. Sometimes clipping during the quantization process will
result in a loss of highlight information.

For details about compression and storage techniques used for the Kodak
PhotoYCC colour space see Kodak (1992). ’

4.10 SUMMARY OF COLOUR SPACE PROPERTIES

The reasons for applying colour space transformations are very varied. The
choice of an appropriate colour space can be an important factor determining
the results of processing on a colour image (e.g. the quality of image seg-
mentation, compression ratio ezc.). In practice there is no ideal colour space
for all image processing applications. The decision on which colour space to
use depends on the processing task. An optimal decision can be very hard to
find. A good example is the work on a comparison of colour image segmen-
tation algorithms by Gauch and Hsia (1992). This paper shows that no single
colour space exists which would be the best for all three segmentation algo-
rithms tested. However, knowledge of the properties of the various colour
spaces makes the choice easier. Some examples of segmentation algorithms
applied in different colour spaces are given in Chapter 9 on page 173.

Some of the properties of the various transformations between RGB and
other colour spaces described in this chapter are summarized in Table 4.2.
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Table 4.2 Properties of transformations between RGB and other colour spaces.

Colour space  Linearity of Stability of  Perceptual
transformation  calculations  uniformity

rgb No No No
XYZ Yes Yes No
Xyz No No No
YUV Yes Yes No
YIQ Yes Yes No
YC,C:, Yes Yes No
Opponent Yes Yes No
Ohta Yes Yes No
IHS No No No
CIELAB No Yes Yes
CIELUV No Yes Yes
Munsell No Yes Yes
PhotoYCC No Yes No
FURTHER READING

More and more books on image processing include a chapter devoted to
colour image processing and in it information about representations of colour
images. Among them, Pratt’s (1991) book covers the widest range of colour
spaces and is recommended.

The book by Wyszecki and Stiles (1982) is a good guide to the CIE colour
spaces. Readers interested in the origins of colour television spaces should
refer to contemporary television technique handbooks, e.g. Benson (1992)
or Slater (1991). The properties of perceptual colour spaces (e.g. IHS) are
widely presented in monographs on computer graphics, for example Foley
and van Dam (1982).
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Colour video systems and signals

Robin E. N. Horne

Colour image processing is usually performed on visual information which
has been collected electronically. The principles and practice of this sort of
information acquisition derive from techniques which were developed pri-
marily for television applications. Whilst some aspects of television tech-
nology are inappropriate, or result in non-ideal images from the processing
point of view, nevertheless the fundamental principles of scanning and base-
band video signal production are sufficiently important to be included here.
This chapter seeks to show how the scanning process generates time-
varying signals representing the parameters of colour and brightness variation
over an image. Subsequent sampling of such signals results in digital data
which is frequently the raw material of colour image processing operations.

5.1 VIDEO COMMUNICATION
5.1.1 The scanning process

The process of scanning a two-dimensional image usually consists of a left-
to-right sweep (line scan) repeated many times during a single top-to-bottom
sweep (field scan). By this means, the two-dimensional spatial image infor-
mation may be converted to a uni-dimensional electronic signal consisting of
a time-varying voltage.

For a simple image, it is easy to relate its appearance to that of its repre-
sentative video signal. Scanning imposes a repetitive structure upon both the
waveform of the signal and upon the image which is to be reproduced, and it
is instructive to make an intuitive connection between the two.

The greyscale image represented by the waveform shown in Fig. 5.1 con-
sists of a set of vertical bars whose brightness value decreases from peak

S.J. Sangwine et al. (eds.), The Colour Image Processing Handbook
© Chapman & Hall 1998
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Brightness

One visible line period

Fig. 5.1 Line waveform for greyscale image

white on the left to black on the right. Since the image signal is generated by
scanning from left to right, it is clear that the waveform of this signal for the
period of one scan line will be a time-varying voltage consisting of a descend-
ing staircase of brightness values. The pattern of brightness variation is the
same for all the horizontal lines in the picture, so the line waveform shown
is what would be displayed on an appropriately triggered oscilloscope. Since
each bar has a uniform brightness, the signal for each bar period is a DC level.
No high frequencies exist in this case. The technique of scanning to produce
a raster pattern evolved in conjunction with the development of the vidicon
camera and the cathode ray tube (CRT). In each of these devices, an electron
beam is focused on to a target and deflected horizontally and vertically in a
systematic way such that the image is repeatedly traversed.

In the case of the camera (source), the target is a light sensitive plate upon
which a lens focuses an image of a scene, as shown in Fig. 5.2. A focused
electron beam is deflected in the horizontal (X) direction and in the vertical
(Y) direction by line and field generators respectively. As the electron beam
traverses the image on the target, a variable current is generated in the resis-
tor R, dependent on the instantaneous light value at the point in the image
which is being scanned. A time-varying voltage is developed across R, form-
ing a luminance signal. The luminance signal representing typical images
from a video camera is much more complex than that of the simple pattern
of Fig. 5.1, of course, and has a frequency spectrum extending typically to
5.5MHz.
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Fig. 5.2 Vidicon camera.

In the case of the CRT (display), the target is a phosphor-coated screen
upon which the image from the source is reproduced. A continuous beam of
electrons is produced by the electron gun, focused and accelerated towards
the screen where it produces a fluorescent dot on the phosphor. Rapid move-
ment of this dot generates visible lines and if sufficient such lines are gen-
erated in close enough proximity to each other it is possible to produce an
apparently continuous two-dimensional image. The beam is deflected hori-
zontally (the line scan) and vertically (the field scan) by an arrangement of
electromagnets situated on the flare of the tube to produce a pattern of hor-
izontal raster lines on the screen. Sequential current waveforms (X and Y
drives) generated in the electromagnets effect the repetitive deflections. The
intensity of the electron beam varies with the applied luminance signal volt-
age Z such that the instantaneous light output from the phosphor screen is
proportional to the light value of the corresponding point in the scan of the
source image. It is necessary of course to ensure that the timing of the X
and Y scans at the source corresponds to those at the display, in order for the
source image to be reproduced correctly. For this reason it is necessary to
convey additional, timing (synchronization) signals as well as the time vary-
ing brightness information.
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5.1.2 Synchronization

This is usually achieved by the incorporation of pulses at points in the wave-
form corresponding to the start of the line and field scans. Figures 5.4 and
5.5 show these line (horizontal scan) and field (vertical scan) synchronizing
pulses respectively. In this example, the time scales correspond to the Euro-
pean CCIR standard. Those for RS170 (USA) are very similar. Line pulses
occur every 64 us and are responsible for triggering the horizontal retrace of
the display. The field synchronizing pulse sequence (FPS) occurs every 20 ms
and triggers the vertical retrace. Synchronization pulses (‘line sync’ and ‘field

Line synchronizing pulses

N

Y S
Y _ =

64 us
One line period

Fig. 5.4 Line synchronization pulses:

Field synchronizing sequence
(FPS) /

Line pulses

/i N

One field period

Fig. 5.5 Field synchronization pulses.
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Fig. 5.6 Composite video line waveform.

sync’) may be conveyed as separate signals, as in the connection between a
PC and its monitor for example, or they may be combined with the luminance
and/or chrominance signals in the form of a compeosite video signal.

The waveform shown in Fig. 5.6 represents one line period of a CCIR
composite video signal. Notice that the overall amplitude of the signal is 1 V
peak-to-peak, with black represented by a nominal 0V level. Peak white is
at +0.7V and the negative-going synchronizing pulses have an amplitude of
-0.3V. The luminance signal only exists in the active period (52 us in the
CCIR standard) between line pulses.

5.1.3 Blanking

The X and Y deflection drives are both ramp waveforms. In each case there
is a finite retrace period during which there should be no illumination on the
screen. Of course, the composite video signal should not exhibit any level
greater than black during these periods (and sync pulses are ‘blacker than
black’). However, the luminance drive is turned off during retrace to ensure
that there there can be no visible interference from spurious noise. Figure
5.7 shows a deflection ramp waveform, and the specific representations of
ramps for line and field scan. To clarify the distinction between the two,
the field deflection drive waveform is shown as negative-going. These drive
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waveforms are generated from line and field rate oscillators at the display and
their timing is determined by the received synchronizing pulses. The sync
pulses occur in the flyback period of each scan and control the frequency and
phase of the oscillators. Geometric distortion occurs if the ramp waveforms
depart from linearity.

5.1.4 Interlacing

Some video applications, including broadcast television, employ the tech-
nique of interlacing. In order to increase the flicker (picture repetition) fre-
quency, and thus render it less objectionable, the picture is generated in two
halves.

Two fields, each with half the total number of lines, are interleaved to-
gether to form one complete frame (picture). The pattern of interleaving is
a continuous process with so-called ‘odd’ and ‘even’ fields alternating. The
electron beam deflection follows the paths shown in Fig. 5.6, where the ar-
rows indicate a simplified flyback motion. Whilst the field repetition rate
(which determines the flicker frequency) in this example is 50 Hz, the whole
picture repetition rate (which determines the bandwidth of the signal) is only
25Hz.

Interlacing is therefore a technique for increasing flicker frequency with-
out increasing the picture frequency which would otherwise extend the signal
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Fig. 5.8 Raster scan pattern in interlaced fields.

bandwidth. Although this benefit is only of real value when a video signal
is to be modulated on to a carrier for broadcast television purposes, it is the
case that, for economic reasons, many image processing applications derive
images from sources operating to broadcast standards which may incorporate
interlacing.

Figure 5.8 shows the pattern of lines for odd and even fields respectively,
and the structure of a complete frame with the two sets of lines interlaced
together. The advantage of this arrangement (increased flicker frequency with
no increase in signal bandwidth) is achieved at the cost of the introduction of
some complexity to the signal.

To achieve the interlaced scan pattern, it is necessary to introduce a rel-
ative delay of one half-line period between the set of lines in an even field



Video communication 101

and those in an odd field. As a consequence, one set of lines is displaced
vertically to appear midway between the lines in the other set, and the line
synchronizing pulses are timed accordingly.

In order to maintain line synchronization throughout the transition from
one field to another, it is necessary to ‘break up’ the field synchronizing pulse
so that pulse edges appear as a continuation of line synchronizing pulses.
Additionally, groups of pulses occuring at twice line frequency (‘equalization
pulses’) are introduced in the field pulse sequence to facilitate the transition
between the two possible nominal positions for the interlaced line pulses.
These features of the field pulse sequence are shown in detail in Fig. 5.9.

It should be emphasized that interlacing confers no advantage as far as
image processing is concerned, since signal bandwidth is not usually a prob-
lem in situations which do not involve radio transmission. However, the avail-
ability of relatively inexpensive cameras operating to interlaced standards
means that signals of this type may sometimes need to be accommodated.

Field blanking period
- (25 lines)

One line
(blank)

! W I Luminance

FPS

Fig. 5.9 Field synchronizing waveform for interlaced fields.
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5.2 COLOUR REPRODUCTION
5.2.1 Three-colour source

A given colour may be synthesized by appropriate admixture of three primary
colours as discussed in section 2.3.1 and in section 3.2.4. The simple prin-
ciple of employing three camera tubes, each of which is made sensitive to a
specified primary colour, allows full-colour images to be conveyed or stored.
In the camera shown in Fig. 5.10, the three tubes share a common lens sys-
tem. Light from the scene is split by an arrangement of dichroic mirrors, M1
and M2, into three components: red, green and blue (RGB), and the chromatic
response of each tube to its intended spectral colour is refined by individual
optical filters. Each light component is directed to one of the camera tubes
and three separate signals Er, Eg and Ep are obtained from variable gain
amplifiers. The three tubes scan the scene synchronously, under the control
of a common sync generator. Mixed synchronization pulses (line and field
pulses combined) may be derived from this generator and conveyed as a sep-
arate signal. The operation of most colour cameras used for image processing
follows this essential principle, though the nature of the video signal output
may vary between types.

Solid state cameras using charge-coupled device (CCD) technology have
replaced vidicons for most applications. These instruments have arrays of
metal oxide semiconductor (MOS) elements upon which the image is focused.
Charge is generated in each element proportional to the incident radiation.
Subsequent output of the charge packets line-by-line using the shift regis-
ter principle produces an electrical signal corresponding to the instantaneous
light value of the scanned image. RGB versions of this type of camera have
triple CCD arrays with colour mosaic filters.

It is possible to produce a colour picture from a single-chip CCD array
with a colour stripe filter in front of it, as shown in Fig. 5.11. The filter has
equal pitch stripes of green, cyan and white. The output of the CCD array
is modified by the effect of the stripe filter on the incoming light and by the
effect of low-pass and band-pass filters on the ensuing video signal. The
combined effect of the optical and electronic filters is to provide separate
output signals corresponding to luminance and two colour difference values
R Y and B —Y which may be encoded as described in section 5.3.3.

The spatially discrete elements of this sort of array can be mapped di-
rectly on to computer arrays for image processing purposes. However, the
standard outputs from CCD cameras are analogue signals which need subse-
quent digitization.
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5.2.2 Three-colour display

Colour displays are based on variants of the shadowmask CRT (RCA) in
which three separate rasters (red, green and blue) are produced by three sep-
arate scanned electron beams which activate corresponding elements of red,
green and blue phosphor patterns deposited in a matrix over the inside of the
screen (Fig. 5.12). The instantaneous intensity of each individual beam is
determined by the applied R, G or B signal.

The accuracy with which each beam lands on the appropriately coloured
phosphor elements is termed purity and the accuracy with which all three
rasters are superimposed is convergence. High resolution displays need to
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have a large number of very small phosphor elements with a high degree of
purity and precise convergence.

5.2.3 RGB video system

The three signal outputs from an RGB source are conveyed as three separate
channels. Line and field sychronizing pulses may be output as distinct signals
(LS and Fs) or combined as mixed sync (MS). The mixed sync combination
is sometimes incorporated with the G signal in composite video form for con-
venience.

If the gains of the respective sources and display amplifiers are adjusted
correctly, the system exhibits chromatic linearity ; that is to say, any colour
produced at the source will be accurately reproduced by the display. Since the
three RGB signals are full—bandwidth, each channel must have the appropriate
bandwidth capability.

In practical terms, the camera amplifiers are adJusted to give equal am-
plitude output signals (Eg, Eg, Eg) when a uniform reference white object is
being observed, and the display amplifiers are adjusted so that the reference
white is reproduced when equal amplitude input signals are applied.

5.24 Colour mixing (RGB colour bar example)

A simple example of colour mixing is provided by the standard colour bar
test pattern. This pattern consists of vertical bars of primary and secondary
colours with white and black as shown in Fig. 5.13. The bars have the
same arrangement of descending luminance values as was seen in the ear-
lier greyscale and are produced by RGB drives which consist of synchronous
square waveforms. Each secondary colour is produced by the combination of
two of the primaries, and white results from the combination of all three.

5.2.5 Spatial and colour resolution

An image represented in an analogue video system may be considered to have
a spatial resolution of 4 X v picture elements (pixels). The vertical resolution,
v, is limited by the line structure of the raster while the horizontal resolution
h, is determined by the video signal. Since the scanning process corresponds
to a sampled-data system, the theoretical maximum number of reproducible
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vertical elements is half the number of visible lines. In a 625-line system
for example, there are 575 visible lines so the theoretical vertical resolution
v =575/2. In practice, a rather larger figure may be achieved for a wide range
of typical images. In broadcast television the vertical resolution is calculated
from the expression:

y=K(N—1Ib)

where N is the total number of lines per frame (e.g. 625 in the CCIR system),
I is the interlace ratio (2), b is the number of lines lost in each field flyback
(25) and K is the Kell factor (usually specified as 0.7).

The Kell factor is an empirically-derived figure based on subjectively
acceptable results for average observers of displays at average viewing dis-
tances. Thus ‘broadcast quality’ images have a vertical resolution of approx-
imately 402 (pixels).

The horizontal resolution is related to the video signal frequency:

h=2fT

where £ is the maximum number of discernible horizontal elements, f is the
maximum video signal frequency (signal bandwidth) and T is the visible line
period.

For broadcast quality video the maximum video frequency (for luminance
or for R, G, and B components) is 5.5 MHz. In the CCIR system the visible
line period is 52 us. This corresponds to a horizontal resolution of 575 pixels.
The parameters for RS170 are similar.

The spatial resolution of digitally derived images is not subject to the
above limitations since discrete pixel positions are determined by coordinates
in image arrays. Maximum vertical resolution in this case is equal to the total
number of visible lines (usually slightly less than the total number of raster
lines due to the need to impose a border so as not to lose any image detail).
Horizontal resolution of a digital image is limited by the physical character-
istics of the display, which may be expected to be significantly superior to
one intended for analogue use since computer and processing applications
require reproduction of text and pictorial images in fine detail. Additionally,
in the digitally-derived image, the brightness and/or colour values of each
pixel take discrete values, unlike the analogue case where there is a contin-
uous grey level or set of colour component levels. The higher the number
of quantization levels the better the image quality. 24-bit colour (16 million
possible values for each pixel) represents a reasonably high specification for
colour images at the present time.
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5.3 ENCODED-COLOUR SYSTEMS

5.3.1 Luminance/chrominance representation

Representation of colour video in RGB form is inconvenient for many applica-
tions such as broadcast television since three separate full bandwidth signals
are involved. Instead, the source information may be encoded ultimately into
the form of just a single, composite, baseband signal representing combined
brightness, colour and synchronization information. This combined baseband
signal may then be used to modulate a main carrier whose frequency is ap-
propriately chosen for terrestrial or satellite radio transmission, or it may be
used in baseband form for convenience.

The three main analogue encoded-colour systems used throughout the world
are:

NTSC (National Television Standards Committee, USA)
PAL (Phase Alternation by Line, Germany)
SECAM (Séquential Couleur 2 Mémoire, France)

Although somewhat long in the tooth, each of these systems has proved to
be reliable, robust and popular. The huge distributed investment in consumer
systems tends to inhibit radical change and it is expected that these stalwarts
of the analogue age of broadcast television will be around for many years,
notwithstanding the introduction and parallel operation of digital systems for
both terrestrial and satellite television. An incidental advantage of the mass
nature of the television market is that cameras and other equipments which
may be used for image processing purposes are available cheaply. For this
reason, commercial framegrabbers, processors etc., frequently accommodate
encoded colour signals although, as will be seen, the format is not ideal.

Each of the above systems converts original RGB component information
into a combination of luminance and chrominance. The advantage of this
representation is that luminance and chrominance components may be treated
as separate entities; a situation which accords more closely with the process
of human visual perception in which two types of sensor exist, rods and cones
as discussed in section 2.3.
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5.3.2 YUV format

The main requirements of an encoded colour system are that the chrominance
signal should be incorporated as a separate ‘optional extra’ signal, thus pre-
serving compatibility with monochrome displays, and if possible it should
be transmitted within the same frequency band as the luminance in order
to conserve transmission bandwidth. Since the eye/brain combination does
not perceive fine detail in colour, as discussed in section 2.5.3, it is advanta-
geous to assign a lower bandwidth to the chrominance than to the luminance.
Perhaps the most common form of this type of coding is YUV, in which a
full-bandwidth luminance signal, Y, is combined with two subsidiary lower
bandwidth chrominance signals U and v which together convey the colour
(hue and saturation) information. Equations for the YUV colourspace are
given in section 4.3.

5.3.3 The PAL system

The YUV format was originated for the PAL broadcast television system. In
the PAL system, a full-bandwidth luminance signal, Ey, is generated by com-
bining the RGB source components in appropriate proportions:

Ey =IlEgr+mEg+nEpg

where [, m and n are luminosity coefficients whose values are chosen to
simulate the relative sensitivity of the standard human eye to the respective
chosen primaries, thus ensuring a panchromatic representation. This signal is
equivalent to that derived from a monochrome camera and therefore provides
a complete greyscale image.

Chrominance is conveyed separately by two colour difference signals.
These are generated by the subtraction of Ey from two of the original RGB
components:

ER—EY and EB—EY

These signals have no particular physical significance but they are used since
they represent colour only and play no part in the transmission of luminance
information. Additionally, since the colour-difference values fall to zero for
black, white or grey and are of low amplitude for conditions of low satura-
tion, they may be combined with the luminance signal with minimum cross-
interference.
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Fig. 5.14 Phasor representation of quadrature-modulated chrominance subcarrier.

In the PAL system, these two colour-difference signals modulate sinu-
soidal subcarriers which are identical in frequency but exist in phase quadra-
ture. Combination of the two modulated carriers results in a single subcarrier
which is effectively modulated simultaneously in amplitude and in phase.
The instantaneous amplitude of the modulated signal corresponds to the sat-
uration at a given point in the image and the instantaneous phase corresponds
to the hue at that point.

The phasor diagram of Fig. 5.14 illustrates the production of the mod-
ulated subcarrier by the two colour-difference signals Eg — Ey and Er — Ey
which are designated U and V respectively for the modulation process. The
magnitude of the resultant subcarrier C (saturation) is proportional to (V2 +
U?) and the phase (hue) is proportional to tan~!(V /U). The quadrature mod-
ulation is achieved by arranging for the v signal to modulate a sinusoidal
subcarrier E sin w;.t, while U modulates a quadrature subcarrier Es. cos 0;t.
The expression for the single modulated chrominance signal is therefore:

U (E;ccos Wyet) + V(Eq, sin @yt)

The acronym ‘PAL’ (Phase Alternation by Line) is derived from an additional
mechanism whereby the phase of the v modulated subcarrier is inverted on
alternate scan lines, and subsequently reinverted at the receiving end. This
operation enables the cancellation of possible hue errors resulting from phase
shifts in the transmission path.
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To reduce cross-modulation effects, the subcarrier is suppressed before
transmission. This means that it is necessary to incorporate a sample of un-
modulated subcarrier in the signal at regular intervals to provide a phase ref-
erence and to facilitate demodulation. A ‘colour burst’ is inserted in each line
flyback period immediately after the line synchronizing pulse and consists of
10 cycles of unmodulated subcarrier in a reference phase corresponding to a
position along the -U axis. Absolute phase (hue) is determined with reference
to this angular position.

Incorporation of the modulated subcarrier into the luminance signal fre-
quency band is made possible by the existence of ‘gaps’ in the frequency
spectrum which result from the scanning process. These gaps occur through-
out the signal spectrum at harmonics of line frequency (fz, 2f1, etc.) with
luminance frequency components grouped at field frequency intervals. Care-
ful specification of the subcarrier frequency so as to incorporate fractional
offsets of line and field frequency ensures that the similarly-spaced chromi-
nance components are positioned in these gaps across the spectrum. This fre-
quency multiplexing is imperfect and results in some cross-modulation (for
example, artificial colour scintillation in images containing regular patterns
such as checks and stripes). However, the minimization of the amplitude and
bandwidth of the modulated chrominance signal achieves a subjectively ac-
ceptable result. The diagram of Fig. 5.15 shows a detail of the frequency
spectrum of the luminance signal, and the positioning of the chrominance
components in the luminance gaps.

5.3.4 PAL colour bars

It is instructive to consider the PAL line waveform for the colour bar image of
Fig. 5.13 produced by RGB coding as discussed on page 105. Again, every
line in the field is the same, resulting in a display of 8 vertical bars each of
duration approximately 6.5 us. The waveform of Fig. 5.16 clearly illustrates
the distinction within the signal of the luminance and chrominance compo-
nents. The luminance is the greyscale staircase of descending values from
white to black (as observed in Fig. 5.1), and onto this is superimposed the
modulated chrominance subcarrier. In PAL, the subcarrier has a frequency
of 4.43361875 MHz which is precisely specified to incorporate the fractional
offsets of line and field frequency referred to earlier.

The six coloured bars of this test signal exhibit portions of subcarrier of
equal amplitude (since they all have the same saturation), but different phase
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Fig. 5.15 Frequency spectrum of luminance/chrominance.

(they all have a different hue). The colour burst is seen in the line flyback
period.

5.3.5 NTSC chrominance signal

The NTSC chrominance signal is similar to that of PAL in that it consists of
a quadrature-modulated subcarrier. The quadrature modulating components
are termed / and Q and again are derived from colour difference signals but
this time in a slightly more complex way:

1=0.74(Eg — Ey) — 0.27(Eg — Ey)
Q = 0.48(Eg — Ey) — 0.41(Ep — Ey)

The rationale for this arrangement is that, since the eye is more sensitive to
colour detail in orange and cyan hues than it is to those in green and magenta,
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Fig. 5.16 PAL colour bar line waveform.

it is possible to optimize the signal bandwidth allocation for the two compo-
nents. Thus the 7 signal is transmitted with a significantly higher bandwidth
than Q.

The phase reference for the subcarrier is again carried as a colour burst in
the line flyback period and the appearance of an NTSC signal waveform for
standard colour bars is superficially indistinguishable from that for PAL.

5.3.6 Other analogue encoding methods

Other encoded-colour formats which may be encountered in colour imaging
systems are SECAM, Separated Video (S-Video) and Multiplexed Analogue
Components (MAC).

In the SECAM system, which is in use in some parts of Europe, sep-
arate colour difference signals are conveyed sequentially on alternate lines
using frequency modulation of a chrominance subcarrier. Subsequent recom-
bination is achieved with a one-line period delay-line to allow both signals
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to be available simultaneously. The advantage claimed for this modulation
method is that phase distortion in the transmission path is not a problem
so it is not subject to hue error as PAL and NTSC are. However, the lumi-
nance/chrominance intermodulation effects are significantly worse than they
are in the quadrature modulation systems.

S-Video is employed in the SVHS videotape recording system, which is
a possible source of colour images for processing. It is another quadrature
modulation system but in this case a subcarrier frequency is chosen which
results in the chrominance band being situated outside that of the luminance
(i.e. ‘separated’). This means that a higher overall bandwidth is required (not
an embarrassment if the signal does not have to be broadcast) but there are
no intermodulation effects and luminance and chrominance detail is better
preserved. The separation of the signals results in a corresponding separation
of luminance and chrominance channels, so multi-way connectors and cables
are needed.

The MAC format was developed specifically for satellite broadcasting and
achieves good separation of luminance and chrominance by multiplexing
these components in the time domain rather than in the frequency domain.
Its use in image processing is rare.

None of the above systems are compatible in terms of the signals used
between source and display. With the advent of digital methods (e.g. MPEG)
for encoding luminance and chrominance, it is likely that all these analogue
systems will become redundant. However, as has already been mentioned, a
great deal of analogue equipment will be around for many years to come and
much processing will be performed on colour images derived therefrom.
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Image sources

Christine Connolly

6.1 OVERVIEW OF SOURCES FOR IMAGE PROCESSING

The basic function of an image source is to represent the distribution of light
energy in an ‘image’ as an electronic signal which may be communicated
to a computer for storage and subsequent analysis or enhancement. Thus a
two-dimensional light intensity function f(x,y) ultimately undergoes conver-
sion to an array of numbers representing light amplitudes at a set of points.
The output of the source is usually a unidimensional, time-varying signal v(z)
which results from the process of scanning as described in Chapter 5. Appli-
cation areas for image processing are very wide (ranging from microscopy to
astronomy) and source types are correspondingly varied.
Sources may be classified as:

e area scan or line scan;
e standard or non-standard scan format;

e visible or non-visible spectral response.

6.1.1 Area scan or line scan

Although the great majority of commercially manufactured sources use two-
dimensional sensors, linear arrays represent a means of obtaining high reso-
lution (typically 8000 pixels) at relatively low cost. A single-pixel wide array
of x elements produces image data by relative movement of the object in the y
direction. The continuous motion of items on a production line, for example,
may provide the necessary transverse ‘scan’. Alternatively, the linear array

S.J. Sangwine et al. (eds.), The Colour Image Processing Handbook
© Chapman & Hall 1998
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itself may be progressively moved across a static object as in the case of a
document scanner. Colour line scan devices use triplets of sensing elements
and optical filters.

6.1.2 Standard or non-standard scan format

Standard scan formats correspond to those derived from broadcast television
systems. Sources which operate with standard scan parameters are cheap and
readily available but are unsuitable for certain applications. Where an image
is to be built up in non-real time (as in slow-scan geographic surveillance, for
example) the source will produce trigger or scan synchronizing pulses at non-
standard rates and the acquisition system must be able to accommodate them.
Other non-standard applications include monoshot operation and multi-frame
scanning.

6.1.3 Visible or non-visible spectral response

Visible sources are covered in the following section on cameras. Non-visible
sources (responsive to infra-red, ultra-violet, X-radiation etc) may or may not
operate to standard scan parameters. CCD devices are inherently sensitive to
infra-red and this part of the spectrum may be deliberately included or ex-
cluded by the addition of appropriate filters to standard cameras. However,
specialist non-visible sources (for example body scanners) may be required
to have very high resolution and will nearly always have non-standard scan
rates. To allow for human interpretation of images derived from sources op-
erating in non-visible regions of the spectrum, it is common for processing
systems to assign specific colours to values of intensity for display. This
technique is known as ‘false colour’.

6.2 CAMERAS
6.2.1 Types of camera

There is a wide selection of cameras available from many manufacturers,
and consequently many decisions to make when considering a purchase, for
example:
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¢ analogue or digital output;

e continuous or monoshot operation;

e single chip or three-chip CCD sensor;

e composite video or RGB outputs;

e size of sensor (number of pixels horizontally and vertically);
e type of lens mount.

The choice will be influenced by budget, and it is possible currently to spend
anything from a few hundred pounds to £30000 or so on a camera. Choice is
also influenced by technical needs. Each of the options listed above will now
be considered, and the technical ramifications set out.

Analogue or digital format

Currently, the choice of analogue or digital output has the greatest impact on
camera cost. Digital cameras are relatively new, and still very costly. How-
ever, if high spatial resolution is needed, a digital camera is the only way
of achieving it, short of using multiple cameras or repeated image capture
by a camera on a scanning rig. Standard analogue cameras produce about
700 x 500 pixels; digital cameras give 4000 x 3000 or more. Another advan-
tage of digital cameras is their ability to provide more than 8 bits per channel
of colour resolution. Most colour framegrabbers digitize to 8 bits per chan-
nel, and this effectively limits the colour resolution which is obtainable with
an analogue camera (see Table 7.1 on page 137). If 8 bits per channel is
sufficient for the application, an analogue camera with a signal-to-noise ratio
(SNR) in the incoming video signal of 48 dB will suffice. Cameras of higher
SNR are readily obtainable, but are more expensive, and it is difficult to obtain
any advantage since the system SNR is effectively limited by the framegrab-
ber. Digital cameras often produce 12 bits per channel, the equivalent of a
72dB SNR. The pixel data is input directly to the computer’s RAM through a
digital interface, and it is not degraded by the extra circuitry of a framegrab-
ber. This is achieved, of course, by putting the ADC in the camera, close to
the CCD sensor. Even in a digital camera, the output from each CCD element
is analogue (a quantity of charge which can be converted into a voltage ready
for analogue-to-digital conversion). It is sound practice in digital signal pro-
cessing to digitize any analogue signal close to its source because this gives
minimum opportunity for noise to corrupt the signal.
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Continuous or monoshot

This choice is decided by the nature of the scenes to be captured. Continuous
cameras are suitable for capturing images of stationary scenes, or of slow-
moving objects. Each image is built up by a raster scan taking typically 1/25
second, so if there is significant movement during this time, the image will
be blurred. For applications involving rapidly moving objects, such as the
on-line inspection of items moving past the camera at 3ms™!, a camera with
a high-speed electronic shutter will be needed. A monoshot camera is useful
if the image capture is to be triggered by an external event, such as an item
interrupting a light beam on a conveyor belt. Using external triggering, the
item to be imaged will always be in the same position within the captured im-
age, and this simplifies subsequent processing. An application at the opposite
extreme is the imaging of slides on a microscope. This could require the in-
tegration of many frames in order to cope with the low light levels. Specialist
cameras are available for this purpose.

Single chip or three-chip sensor

For accurate colour reproduction coupled with good spatial resolution, it is
necessary to use a three-chip camera. The reasons for this are explained in
section 6.2.5. This adds considerably to the cost of the camera and makes it
bulkier and heavier.

Composite video or RGB

This is treated in detail in section 6.2.5. If a three-chip camera has been se-
lected, it is necessary to ensure that the separate RGB signals can be accessed
before they are encoded into composite video. With a single-chip camera,
composite video will probably give a better signal-to-noise ratio than RGB.

Size of sensor

CCD arrays come in one-third, half and two-third inch sizes. The larger the
chip, the better the spatial resolution, but the larger the camera and its lens.
This subject is well explained by JVC (1996).

Type of lens mount

C-mount lenses were designed to give interchangeability between cameras
produced by different manufacturers. They screw into the camera. They are
cheap and in widespread use. However, since they were originally designed
for 16 mm motion film cameras, they produce significant lens aberrations if
they are used with large sensors. Their chief selling point is their low cost,
and it is difficult to find a C-mount lens which is of high quality.



Cameras 119

Bayonet lenses attach to the camera by a push-and-turn technique. Each
manufacturer has its own fitting, so these lenses may not be interchanged
between different manufacturers’ cameras. Good bayonet lenses are very ro-
bust; but small cheap ones are poorly secured, and can defocus if subject to vi-
bration. In both C-mount and bayonet, a wide variety of lenses are available,
ranging from fixed focus to motorized zoom, wide angle and narrow angle.
The use of close-up lenses makes it possible to enlarge the view of objects,
and this means that small areas of colour can be studied. This gives colour
image processing an advantage over colorimeters and spectrophotometers,
which have observation ports of 3 mm diameter or more.

6.2.2 Settings

Whichever type and model of camera is selected, care should be taken in its
adjustment and positioning relative to the scene to be studied. The camera
needs to be properly focused and positioned, and the zoom setting of the lens
(if applicable) appropriately adjusted so that the object of interest is wholly
within the field of view and important features appear at adequate size. Pre-
cise measurements cannot be expected if too few pixels are used. The ge-
ometry of camera, light source and surfaces within the scene greatly affect
the appearance of the image, in particular the rendering of colour. Specular
reflections (where the angle of reflection equals the angle of incidence) are
usually better avoided, since they carry no information about the colour of the
surface. In specular reflection, the light reflects from the outermost boundary
of the surface, and is not affected by the pigments or dyes within as explained
in section 3.2.2. The colour of specular reflection (‘highlight’ colour) is the
colour of the light source, not the colour of the reflecting surface. Specular
reflections may be avoided by arranging the geometry of lighting and cam-
era so as to avoid mirror-like angles. For example, the light can be incident
normal to the reflecting surface, and the camera at 45° to the normal - this
imitates the arrangement in colorimeters. If this is not practicable, or if the
scene contains surfaces at many different angles, polaroid filters are a possi-
ble way of blocking specular reflections: if a polaroid filter is placed between
the light source and the reflecting surface (e.g. fitted over the light source it-
self), and a differently oriented polaroid filter is placed in front of the lens
specular reflections may be attenuated.

For some applications, a set of objects at different distances from the cam-
era must be in focus — this requires a large depth of field which is achieved
by using a small iris setting. This then necessitates either bright lighting or a
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long exposure time.

The publication by JVC (1996) presents a clear summary of lens defects.
The chief problems are spherical and chromatic aberration. These problems
are more severe when the optical path is short, necessitating greater curvature
in the lenses. In some small cameras, chromatic aberration is corrected by
electronic means. Whilst this produces an image which is acceptable to the
eye, the chromatic errors are still significant at pixel level. So for colour
image processing, it is best to specify a larger lens system.

6.2.3 Applications

The camera is the only image-acquisition device which is able to capture im-
ages of three-dimensional scenes or of heavily textured surfaces. Since the
camera captures images in the same way as the human eye - complete with
ambient lighting effects - it opens up new fields of research. For example,
recent studies of the reflecting properties of objects and the response of the
human vision system have led to fascinating findings concerning the evo-
lution of human vision, and have led to a more logical approach to image
processing. The field is called ‘physics-based vision’ (Klinker, 1993; Healey,
Shafer and Wolff, 1992). Of particular interest is the relationship between
our perception of colour, and the spectral properties of the light entering the
eye. This relationship was quantified empirically in the 1960’s using spec-
trophotometer measurements, and the resulting ‘colour difference equations’
provided a much-needed tool for the dyeing and paint industries to assess ac-
ceptability of their product batches. A brief account of these developments
is given by McDonald and Smith (1995). Using colour video cameras, this
work has been extended by Connolly (1996).

Until recently, the only way of measuring colour has involved the use
of contact instruments - colorimeters and spectrophotometers. However, the
camera captures images without contact with the objects involved. This
makes it very useful for some specific application areas:

¢ In the measurement of a multicoloured object, such as food packaging
material or printed fabric.

To use a colorimeter for this purpose would require it to be brought into
contact with each different coloured area in turn, and this takes time
and considerable care by the operator; on the other hand, the camera
captures the whole scene at once, and can process all the different areas
rapidly.
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o In measuring the colour of items in a production environment.

Using a contact instrument, a sample must be taken from the produc-
tion line and perhaps be carried to a laboratory to make the measure-
ments, The delay between sampling and obtaining the colour mea-
surement result can lead to high product wastage rates. By using a
camera with a high-speed electronic shutter, images can be captured as
the products move past on the conveyor. With today’s high speed com-
puters, decisions about the colours present in the product are available
within seconds.

¢ In the inspection of very small areas.

Colorimeters have a sensing port of about 3 mm diameter or more. This
makes it impossible to measure very small areas. However, with a
close-up lens, a camera can enlarge the view of the object and make
colour inspection possible.

e In the inspection of non-solid materials.

Some objects are unsuitable for measurement by contact instruments,
e.g. dog food, chocolate, blancmange.

6.2.4 Camera configurations

There are four basic approaches:

1. Use of a digital camera, with a SCSI interface to the computer — this
inputs digital values directly into the computer’s RAM. This is simple,
fast and relatively free from electronic noise. However, digital colour
cameras are currently very expensive, and the computer requires large
amounts of RAM. This is the best approach if high spatial resolution is
required (e.g. 4000 x 3000 pixels, requiring about 128 MB of RAM for
the image and the processing software).

2. Use of an analogue video camera, connected to a framegrabber within
the computer. The framegrabber samples and digitizes the video signal,
quantizing the signal spatially into pixels and also quantizing the mag-
nitude of the signal into (usually) 256 levels. This approach produces
images of about 750 x 500 pixels. Historically, this technique has long
been available. Colour framegrabbers are now available from a variety
of manufacturers, and are consequently quite cheap. Three-chip CCD
cameras cost about £4000 (about $6500) at the time of writing.
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3. Use of a still camera, with film developed and printed and the print
scanned to produce a digital image. This approach introduces colour
distortions arising from the different colour primaries used in the film,
the print and the scanner. A more direct use of the still camera is to
have the transparency or negative scanned using a slide scanner. This
avoids the problems of the photographic print. A commercial service of
this type is available from Kodak, marketed as the Photo CD process,
giving a digital image on a CD ROM disk — but this is still subject to
mismatches between film and scanner primaries. The Kodak Photo CD
colourspace is discussed in section 4.9. The still camera provides the
cheapest method of acquiring digital colour images and it has the ad-
vantage of portability and freedom from electrical power supplies.

4. Use of a digital still camera based on the 35 mm format popular for
film-based imaging, but using a CCD sensor and digital storage into
RAM or magnetic disk inside the camera, with later transfer of the im-
ages to a computer.

6.2.5 Analogue camera quality

Analogue colour cameras have been available for a long time, and their design
has evolved in line with the requirements of television broadcasting. They
provide a relatively cheap source of colour images, but their design was not
originally intended for image processing, and the user should be aware of
their limitations and peculiarities. Three specific issues will be addressed
here:

o the difference between composite video signals and RGB signals;
e single chip versus three-chip cameras;
o signal-to-noise ratio.

Composite video requires some historical explanation. A colour camera pro-
duces three times as much information as a monochrome camera, but the in-
formation somehow has to be broadcast in the same bandwidth. A description
of how encoded colour signals are produced is given in section 5.3. The im-
age is later reconstructed on a monitor, by using each camera channel to drive
a separate electron gun. The first complication is that the display phosphors in
the monitor produce light whose intensity is proportional to the square of the
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signal. To compensate for this, the RGB signals are given a square root trans-
fer function, by a special gamma correction amplifier within the camera. For
colour image processing, this is a nuisance, since the relationship between
different colours in the scene is distorted. Gamma correction is still used in
solid state cameras, although it is often possible to turn it off, or switch to a
gamma value of unity, although even when unity gamma is selected there is
still usually some residual non-linearity which may require further correction,
as discussed in section 7.3.3.

A second complication arises from the fact that the camera’s signals are
intended to be broadcast. When colour television was first introduced, it was
necessary to work within the following constraints:

o the colour broadcast signals must fit into the same bandwidth as mono-
chrome signals;

e the colour broadcast signals must drive both monochrome and colour
TV receivers.

To fulfil these historical requirements, the gamma-corrected RGB signals are
encoded into YUV form, for example, as described in section 5.3.2. In the
PAL system (discussed in section 5.3.3), Y, U, and V are derived as follows:

Y = 0.222R+0.707G+0.071B
U = 0493(B-Y) (6.1)
V = 0877(R-Y)

Y is the luminance signal, and it is allocated the same 5.5 MHz bandwidth
as for monochrome signals. Chrominance signals U and V carry the colour
information in a 2 MHz sub-carrier within the same bandwidth. Thus, the
colour information is ‘compressed’ during the processing to composite video.

The weightings in equation (6.1) for luminance are the UK PAL system
weightings. From 1953 until 1974, NTSC weightings 0.299, 0.587, 0.114,
were used in the calculation of luminance for NTSC, PAL and SECAM tele-
vision systems, but the PAL weightings were then changed. Sproson (1978)
explains why. Unfortunately, some television and image processing textbooks
published since this change attach the incorrect weightings to the PAL system,
and many papers do not make it clear whether they are using PAL or NTSC
equipment. Care should be taken to avoid confusion in this matter. If possi-



124 Image sources

ble, R, G and B signals should be used for image acquisition for colour image
processing. Because of the chrominance compression, composite video sig-
nals carry much less detailed colour information than the original RGB sig-
nals. It is important that the RGB signals are output from the camera before
processing - some camera designs process the signals immediately to pro-
duce composite video, and later reprocess them to give separate RGB signals
again! This is an unsatisfactory arrangement for colour image processing ap-
plications, since the signal-to-noise ratio is severely degraded by this double
processing.

Nowadays, charge-coupled device (CCD) cameras have replaced tube
cameras in virtually all applications. The camera’s target consists of an array
of discrete charge-coupled devices (approximately 0.25 million of them on a
chip half an inch square), so the image data is inherently spatially quantized.
However, because CCD cameras needed to be compatible with the tube cam-
eras which they replaced, they produce standard video output by scanning the
CCD cells and interpolating the signal in the gaps between the cells. This con-
tinuously varying signal is then quantized again by the sampling at the front
end of the framegrabber! This obviously gives scope for errors to arise, and it
is important to match the sampling rate of the framegrabber to the bandwidth
of the camera.

Another factor influencing the quality of colour images obtained from a
camera is the number of CCD chips in the camera. The best colour cameras
have three separate CCD arrays, one responding to red light, one to green
and one to blue, very similar to the three-tube camera of Fig. 5.10. This
allows the colour of a precise spot to be described in terms of its R, G and B
components. Cheaper cameras use one CCD array, with finely striped colour
filters to produce the YUV signals, as shown in Fig. 5.11.

6.2.6 Colorimetric principles

A video camera is designed to produce colour images which appear correct
when displayed on a video monitor or television screen. The chief require-
ment is that the spectral response curves of the colour camera match the chro-
maticities of the display phosphors. In the early days of colour television,
different manufacturers used different phosphors in their television screens,
but in 1970 a standard was agreed for use in the PAL system described in sec-
tion 5.3.3 (Sproson, 1978). The xy chromaticities of the phosphors and the
white point were defined, using the CIE 10° standard observer data, as listed
in Table 4.1 on page 70. (In the USA FCC standards apply, as also listed in this
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Fig. 6.1 Chromaticity diagram (10° observer) showing gamut for PAL phosphors.

table.) Figure 6.1 shows the gamut of colours which may be reproduced by
these standard phosphors in the PAL system. The three phosphors are plotted
at points R, G and B, and a triangle is drawn joining these points. All colours
whose chromaticities lie within this triangle can be reproduced by the additive
mixing of light from the three phosphors. The reproduction of a colour whose
chromaticity coordinates lie outside the triangle would require a ‘negative’
amount of light from one or two of the phosphors. For example, to reproduce
the appearance of light from a monochromatic source of wavelength 500 nm,
positive light output would be required from the blue and green phosphors,
and negative output would be required from the red phosphor. Therefore this
colour cannot be reproduced. This is not a serious limitation in practice, since
most surface colours have broad spectral reflectance curves with significant
contributions from many wavelengths, and under these conditions the major-
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Fig. 6.2 Ideal spectral response curves of PAL camera.

ity of colours can be reproduced accurately. It is only the reproduction of
near-spectral colours that gives problems.

Now that the phosphor chromaticities are standardized, the required re-
sponse curves of the three channels of the camera may be calculated. Cameras
can be designed in the knowledge that they will produce good colour render-
ing on all television and monitor screens using the standard phosphors. The
camera response curves are shown in Fig. 6.2, following the diagram given by
Sproson (1978). Each of the three curves has both positive and negative re-
sponse regions. The actual transmission characteristics of the analysis filters
in a camera have only positive lobes, and a technique of matrixing is used to
mix the signals to imitate the correct response. This ensures that all in-gamut
colours are accurately reproduced on the screen.

So the major goal of camera and display designers has been achieved:
coloured scenes are acceptably reproduced. In colour image processing, we
want to go further, and make use of the colour data present in the image
pixels to give a numerical measure of colour in different parts of the image.
Our numerical values must correspond to international standards for colour
measurement. So we need to convert the red, green and blue signals to CIE
values. From the phosphor chromaticities and the D65 whitepoint, it is pos-
sible to calculate a matrix relating the camera’s theoretical RGB values to
CIE tristimulus values, as shown in equations (4.1) and (4.2) on page 71 in
Chapter 4.
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6.2.7 Signal-to-noise ratio (SNR)

The precision of a camera, or its freedom from random errors, is measured
by its signal-to-noise ratio. This is the root mean square (RMS) signal voltage
divided by the RMS noise voltage, with the ratio expressed in decibels:

\/ZV?/N
\/Zvﬁ/N

where v; is the signal voltage and v, is the noise voltage. In the standard com-
putation of signal-to-noise ratio, the RMS voltage is calculated by averaging
over time. However, an equivalent approach in an imaging situation is to cap-
ture an image of a uniformly coloured surface under uniform illumination,
and find the average over a collection of N pixels. The standard deviation (G)
of the pixel values provides a practical measure of noise in an image:

Z(Vs - vs)z
N

In fact, the standard deviation is the RMS value of the deviation from the
mean — in other words, the RMS of the noise. By measuring the standard
deviation in the image, a rapid check can be made on whether the signal-to-
noise ratio claimed by the camera’s specification is borne out in the practical
imaging set-up being employed. Sometimes, the camera’s quoted precision
is degraded as the video signals pass through other parts of the system — the
cables, the framegrabber, even the computer bus.

For example, a 54 dB camera produces a ratio approximately equivalent
to 9-bit precision:

g =

RMS signal

105 =501.1
RMS noise

In an 8-bit image, where the signal may range from 0 to 255, the RMS value
of the signal is equal to 147.2. The standard deviation among pixel values
should therefore be 147.2/501.1 = 0.29. However, if the camera’s signals are
digitized by an 8-bit per channel framegrabber, they are likely to be degraded
to 8-bit precision by the introduction of electronic noise from the framegrab-
ber circuitry, since analogue to digital converters are usually designed to give
noise just less than their quantization error. This would give an effective
system signal-to-noise ratio of only:

20log,,(256) = 48.2dB
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(a decrease of 6 dB corresponds to a doubling of the noise). The correspond-
ing standard deviation among pixels would be 147.2/256 = 0.57.

Most cameras have a signal-to-noise ratio of between 48 and 60 dB. Man-
ufacturers use two methods of improving the signal-to-noise ratio:

1. cooling the CCD array to reduce the ‘dark current’ (that is, the noise);
2. extending the exposure time to increase the signal at low light levels.

Cooled cameras are more expensive than conventional CCD cameras, but they
have significantly better signal-to-noise ratio.
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Practical system considerations

Christine Connolly and Henryk Palus

7.1 IMAGE ACQUISITION TECHNIQUE
7.1.1 Introduction

The importance of careful image acquisition technique is often neglected in
image processing. Since it is so easy to manipulate the image, it is sometimes
assumed that all acquisition errors may be corrected in later processing. As
a general rule in any branch of signal processing, however, it is better to
avoid errors at source. This gives the advantage of controlling errors more
effectively, and also simplifies and speeds up the processing stage. There
are in fact some acquisition errors which cannot be corrected accurately, for
example colour clipping. This occurs when the aperture or gain settings
of the camera are such that some areas of the image are overexposed, and
one or more of the colour channels reaches saturation, giving an unbalanced
rendering of the colour. It is not possible to correct this error properly, since
there is no means of knowing by how much the signal exceeded the saturation
value.

To acquire a good colour image, it is necessary to set up the camera and
the lighting environment so as to use the full dynamic range of the camera,
i.e. black objects in the scene should produce very low pixel values, and white
objects should produce pixel values just below the maximum permitted. It is
also necessary to balance the colour channels correctly. Experiments should
be carried out on the camera adjustments and lighting conditions in order
to achieve a good image. It should be noted that framegrabbers often have
programmable gain and offset settings which may be adjusted independently
on the three colour channels.

In this chapter, the characteristics of cameras, framegrabbers and light-

S.J. Sangwine et al. (eds.), The Colour Image Processing Handbook
© Chapman & Hall 1998
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ing are examined and advice given on how to use them in such a way as to
give good colour images. There is a brief section about image file formats,
since it is often required to port image data to other computers, or to commer-
cial application packages. Colorimetric calibration of acquisition hardware is
discussed.

7.1.2 Capturing images with good colour quality

Whilst the design of colour video cameras is underpinned by sound col-
orimetric principles, various precautions are necessary to ensure optimum
colour fidelity in the captured image. This section discusses the sources of
error and the practical steps which can be taken to optimize colour accuracy
in video camera images. Unless special precautions are taken, video cam-
eras may produce different signals on different occasions when pointing at
the same object. A detailed study of the errors in colour video cameras has
been undertaken (Connolly and Leung, 1995). Some errors may be readily
avoided, once their source is understood; others are unavoidable, but their
effects may be minimized by appropriate techniques.

Avoidable errors

Modem video cameras are sophisticated devices with many built-in features
which, whilst making the camera easier to use, do not necessarily lead to
accurate colour reproduction. Readers should be aware of the features listed
below.

Gamma Although CCD cameras produce a linear response to light inten-
sity, they are usually equipped with a gamma correction amplifier to output
signals which are proportional to the square root of the light intensity. This
compensates for the fact that display phosphors produce light whose intensity
is proportional to the square of the voltage signal. For accurate colour repro-
duction, the gamma correction facility must be turned off, since in addition
to the non-linear response it also causes an increase in electronic noise.

Automatic iris If fitted, this aims to ensure that the camera is always cor-
rectly adjusted to the lighting conditions, and is useful when filming out of
doors. The iris is usually controlled by a signal derived from the integrated
response over the whole field of view. Unfortunately, this often means that
small areas of bright colour are prone to colour clipping, that is the satura-
tion of one or more of the three colour signals. A related effect is blooming,
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where CCD cells near such saturated areas are also affected. These effects are
noted by Klinker (1993). To avoid clipping and blooming, the camera should
be used with manual iris, set by experiment to avoid saturation in all regions
of the captured image (section 7.3.3).

Automatic white balance If fitted, this aims to compensate for changing
illuminants. The relative gains of the red and blue channels of the camera are
automatically adjusted in line with a signal obtained by integrating the red
and blue responses over the whole field of view. Unfortunately, this means
that if the same object is viewed first against a blue background and later
against a red background the signals from the object itself will change. For
accurate colour reproduction, an automatic white balance facility should not
be used.

Unavoidable errors

Pixel — pixel noise Whilst the overall appearance of an image may be ac-
ceptable to the human eye, the RGB values of neighbouring pixels may differ
markedly from each other, although all represent areas of the same uniformly
coloured object. Experiments have also shown that the RGB value of an in-
dividual pixel varies randomly with successive exposures. This variation is
related to the signal-to-noise ratio of the system. Whenever it is necessary to
establish the RGB value of a region of interest in the image, a more precise
value will be obtained if a mean is computed over as many pixels as possible,
whilst avoiding variations caused by non-uniformity of illumination. Statis-
tical theory shows that the error of the mean decreases in proportion to the
square root of the number of pixels averaged.

Camera drift 'The signals from a video camera are affected by the temper-
ature of the camera and tend to vary with time. The greyscale values over
the whole image drift up and down together, although the camera may be
pointed at an unchanging scene, under fixed lighting conditions. The errors
are worst during the first 30 minutes after the camera is switched on, but
never settle down completely. A way round this problem is to include in the
scene an object whose RGB values are known, and to measure their variation
every time an image is captured, and to correct the whole image in proportion
to the change. This can be done conveniently using a framegrabber’s look-
up tables, if fitted. (Some framegrabbers have input look-up tables between
the ADCs and RAM which can be loaded with correction data. If there are
no look-up tables in the framegrabber, the equivalent operation can be per-
formed in software.) This technique is based on the ‘double beam’ system of
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colour analysis which is well-established in colorimetry and spectrophotom-
etry. The drawback is that if the correction is made after image capture, the
camera may be operating outside its optimum range, and the corrections may
not fully overcome all errors. A better technique is to adjust the camera so
as to hold the RGB values on target. This system for stabilizing the camera
measurements has been patented (Connolly and Leung, 1994).

7.1.3 Lighting

Lighting is a very important component in the rendering of colour. At any
particular wavelength, the light entering the eye is the product of the intensity
of the illuminant and the reflectance of the surface. If changes occur, either
in the surface colour or in the lighting, then the colour sensation in the eye is
affected. The human vision system automatically compensates for changes
in lighting when we move, say, from a room with artificial light out into
daylight, and we are not normally aware of the effect of lighting on surface
colour!. In contrast, a camera makes no such compensation, and the pixel
RGB values in a colour image are drastically affected by changes in lighting.
It is therefore important to provide stable lighting for the objects or scenes to
be studied. The lighting should be constant both in spectral composition and
in intensity.

The first way to provide constant lighting is to build an enclosure with
light sources inside. It is possible to purchase standard lighting cabinets,
specially designed for the visual assessment of colours, and equipped with
standard illuminant tubes D65, A, etc. (GretagMacbeth’s ‘Judge’™ lighting
cabinets, for example).

However, these are quite expensive, so many researchers prefer to build
their own lighting enclosures. The important thing is to ensure that the scene
is lit by a controlled light source, and stray ambient light is cut out. This
avoids the variations inherent in natural illumination, where the intensity and
colour of the ambient light is affected by the position of the sun and the
cloudiness of the sky. The lighting enclosure also helps avoid shadows of
moving observers, and the changing reflectivity of their clothing. When light
reflects from the object viewed, only a fraction of it reflects towards the sen-
sor. The rest reflects in many different directions, and goes on to reflect again
from the walls of the room, and other objects within it, and some of this
eventually gets back to the object and thence into the camera. A few simple

I'This topic is discussed in section 2.5.1.
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Fig. 7.2 Side view of controlled lighting enclosure.

experiments will convince you that the illumination of the scene viewed by
the camera is affected by the proximity of reflecting objects — try standing
close to the scene wearing first a white shirt, and then a dark jumper. Whilst
it is not possible to see any change in illumination a change will be seen in
the colour image pixel values. In standard colour-matching lighting cabinets,
the walls are painted with a neutral grey of approximately 50% reflectance,
in order to diffuse the light and control the colour effect of multiple reflec-
tions. Figure 7.1 shows a lighting cabinet, viewed from the front. The light is
incident normal to the sample on the floor of the cabinet. To avoid specular
reflections, the camera may be placed outside the cabinet, tilted down at an
angle of 45°, as shown in Fig. 7.2.

The operator should be aware of the effects caused by the ageing of lamps.
Most light sources change both their intensity and their spectral balance dur-
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ing their lifetime. GretagMacbeth, for example, recommend that lamps be
changed after 5000 hours running time. It is also worth noting that strobo-
scopes or flash sources have a different intensity and spectral balance between
one flash and the next.

Uniformity of lighting is very difficult to achieve, and an object may
change its appearance when moved relative to the lighting. This effect is
difficult to detect by eye, because the human vision system seems to com-
pensate automatically for this type of change; however, it is obvious in the
pixel values of any image. To achieve reasonable uniformity, the light source
should be large compared with the object under study - for example, a bank
of 1.2 m fluorescent tubes would be suitable for lighting an A4 size sheet of
paper. Fluorescent tubes are reasonably uniform in the centre, but their inten-
sity falls off significantly towards their ends. Davies (1997) uses the analogy
of Helmbholtz coils (which produce a fairly uniform magnetic field) to pro-
pose lighting arrangements whereby good uniformity may be achieved by the
careful positioning of two parallel fluorescent tubes. Specialist companies are
now offering fibre optic solutions to uniform lighting problems, but generally
they attempt to light only small regions.

It has been noted above that the human vision system compensates au-
tomatically for changes in lighting intensity across the field of view. We
also tend not to notice changes in intensity across the surface of a uniformly
coloured three-dimensional object — we tend to see a red coffee mug as a sin-
gle, well-defined object, rather than as separate vertical regions of dark red
and bright red. In a coloured image, these different areas are easily detectable,
and cause problems in image segmentation in most colour space representa-
tions. Studies have been carried out on the ability of different colour spaces
to segment natural scenes (Connolly, 1996), and some interesting relation-
ships have been noted between the behaviour of the human vision system
and the reflective properties of different materials (Healey, 1992; Tominaga,
1994; Connolly, 1996).

7.1.4 Digitization and framegrabbers

An analogue video signal from a camera is quantized in two ways when it
enters a framegrabber:

1. sampling produces spatial quantization;

2. analogue-to-digital conversion produces magnitude quantization,
converting an analogue voltage to a particular digital ‘greyscale’ level.
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The sampling frequency determines the number of pixels across each hor-
izontal line of the image. This should be chosen to match the horizontal
resolution of the camera (see JVC (1996) for a helpful explanation of camera
resolution). The pixels produced in the digitized image will, even so, proba-
bly not coincide with the original cCD elements, and this mismatch degrades
the pixel data to a certain extent.

ADC resolution

The majority of framegrabber boards use 8-bit analogue-to-digital converters
(ADCs) on each input channel. This produces 256 possible greyscale levels
per channel, or over 16 million possible colours. However, this large num-
ber of colours is not uniformly distributed perceptually. Whilst some areas
of colour space — neutral greys and pastel shades — are over-populated with
colours too similar to be distinguished by the human eye, other areas are
sparsely populated. In particular, there is insufficient resolution in the bright
and dark colours. It has been shown by Ikeda, Dai and Higaki (1992a) that the
maximum quantization error for 8-bit digitization of the R, G and B signals is
10 CIELAB units. This has two repercussions:

1. a pair of very dark shades, differing from each other by 10 CIELAB
units, could in certain circumstances produce identical pixel RGB val-
ues;

2. a colour measured on different occasions can appear to vary by 10
CIELAB units, due to very small changes in the image capturing condi-
tions.

Methods of improving colour resolution

There are several ways in which the resolution of dark and bright colours
can be improved; including averaging; and enhancing the ADC resolution,
combined with non-linear compression.

Even though individual pixels are quantized into 256 levels per channel, it
is possible by averaging over many pixels to obtain a more accurate measure
of the R, G and B values. The average should be calculated for a block of
pixels from the same area of surface colour, uniformly illuminated.

Monochrome framegrabbers are often available with 10-bit ADCs. If the
image is captured channel by channel, switching the input from the red chan-
nel of the colour camera to the green channel and finally to the blue channel,
a 30-bit colour image can be built up. The 10-bit ADC produces 1024 pos-
sible levels per channel, a 64-fold increase in the total number of colours.
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Fig. 7.3 Nonlinear compression of 10-bit per channel image.

However, because the red, green and blue images must be captured sequen-
tially, this technique is only suitable for stationary scenes. A better option,
but considerably more expensive, is to use a digital camera, giving say 12
bits per channel. The digital camera option has the additional advantage that
each pixel in the final image corresponds spatially with a particular CCD ele-
ment in the camera’s array, so no spatial smoothing and resampling errors are
introduced.

Most image-processing software, and all graphics display cards, are de-
signed for a maximum of 8 bits per channel. So if the camera and ADC pro-
duce 10 or 12-bit per channel images, the data has to be compressed before it
can be displayed or processed. This compression may be performed in a non-
linear way, keeping the high resolution at low signal values and sacrificing
resolution at high values, as shown in Fig. 7.3. In this way, the distribution of
the 16 million colours is made perceptually more uniform.

Limitations on colour resolution

Spectrophotometers make use of increased measurement resolution at low re-
flectance values, to imitate the eye’s response to light, and it is necessary to
do something similar with a camera if serious errors are to be avoided. How-
ever, the resolution is restricted by the camera’s signal-to-noise ratio, which
varies in practice from about 48 dB to 72 dB. Table 7.1 indicates the relation-
ship between signal-to-noise ratio and bit resolution and the corresponding
quantization error in CIELAB units. For example, 10 bits of resolution pro-
vide 1024 possible levels. If the error is less than 1 level, this corresponds to
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Table 7.1 Effect of ADC resolution and signal-to-noise ratio on colorimetric error.
(The information in the first two columns is taken from JVC (1996), and that in the
final column from Ikeda, Dai and Higaki (1992a).)

Resolution  Signal-to-noise ratio  Worst case colorimetric error

(bits) (dB) (CIELAB units)
8 48 10

9 54 5

10 60 2.5

11 66 1.3

12 72 0.6

a signal-to-noise ratio of 1024, or 60 dB. The graphs in Ikeda, Dai and Higaki
(1992a) show that the maximum quantization error for 10-bit RGB data is 2.5
CIELAB units. Table 7.1 is a very powerful summary of performance, and
is helpful in specifying camera and framegrabber requirements for different
applications.

7.2 IMAGE STORAGE
7.2.1 Image files

Images take up a lot of memory. A 768 x 512 pixel colour image with 8 bits
per channel, occupies:

768 x 512 x 3 = 1179648 bytes

that is, most of a 1.44 MB floppy disk. Many applications save image files as
raw byte data, but there are many ways of doing it. For example, R, G and
B pixel values may be stored consecutively in the order RGB (or sometimes
BGR), followed by the next pixel, and so on. Alternatively, the whole red
image can be stored, followed by the whole green image, efc. Pixels can be
stored in raster scan order, odd lines followed by even lines, or ordered by
column position.

If just one image processing package is being used, this is acceptable. The
file layout is known, and programs may be written to read the file if needed.
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However, another user would need the file plus a lot of detailed information
— number of pixels, number of channels, arrangement of data on the file.

There is frequently a requirement to pass image information to other re-
searchers, or to access the image with commercial image manipulation and
editing packages. To make images portable, standard image file formats have
been developed. The existence of standards also allows images to be dis-
played by different devices (e.g. monitors, plotters and printers) and sourced
from different hardware (cameras or scanners). Sharma and Trussell (1997)
give an excellent account of the development of different imaging input and
output devices, with many useful references and an overview of the devel-
opment of colour knowledge. Scanners, digital cameras and digitizer pads
provide bitmapped or raster image information, and monitors and graphics
printers can handle this. Computer aided design (CAD) packages produce
vector files, where shapes are made up from line segments, in order to drive
plotters. The most common image file formats encountered in image process-
ing are TIFF and GIF.

The TIFF (Tagged Image File Format) was developed by Aldus (TIFF,
1992) and is widely used in the PC market. The tags are extra header infor-
mation added to the image data, containing the type of detailed information
identified above as necessary. This makes the file slightly longer, but much
more portable.

GIF (Graphics Interchange Format) was developed by Compuserve in
1987. Full details of the file layout are given by Held and Marshall (1996).
For up to date information on new standards currently being developed, see
Nier (1996). Nier also reviews the imaging needs of various industries in-
cluding prepress, photographic, graphic arts, high definition TV, multimedia
and video conferencing.

Images often have to be compressed for storage and/or transmission and
Chapter 13 discusses this subject in detail. Many of the common file formats,
e.g. TIFF, support compression of the pixel data.

7.2.2 Trends in host computers

For a long time, serious image processing was done on computers designed
around the VME bus — Sun, Apollo, etc. Framegrabbers compatible with the
VME bus tended to be large robust devices, and in the 1980’s only one com-
pany produced a colour framegrabber. The recent development of the PCI bus
in the Pentium™ computer has brought a new generation of framegrabber
boards which give excellent performance on the PC platform, making cheap
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image processing available at last. Many manufacturers produce colour PCI
framegrabber boards, with the result that the boards have also become much
cheaper. For real-time machine vision applications, there are PCI framegrab-
bers with on-board signal processing hardware, such as the Matrox Gene-
sis™. In response to the need for pipelined architecture and RISC operation,
the Pentium processor has brought this into practical, affordable form. There
has never been a better time for getting into colour image processing.

7.2.3 General observations

Cameras bring their own particular advantages to the study of colour. With
colorimeters and spectrophotometers, the only instruments available for the
measurement of colour until recent years, only flat objects can be studied,
and the object has to be in contact with the measuring instrument, lit by the
instrument’s light source. Cameras, on the other hand, see scenes as humans
do, without contact, and lit by the ambient illumination. Therefore it is pos-
sible to study the role which colour plays in our perception and interaction
with the physical world.

Recent work in physics-based vision shows that, under certain condi-
tions, the light reflected by a three-dimensional object with uniform surface
colour has constant spectral balance, but varies in intensity. This provides
the basis for distinguishing between different objects in a three-dimensional
scene. The spectral balance idea has been tested explicitly by Lee, Breneman
and Schulte (1990) using a tele-spectroradiometer (section 3.3.2), and exam-
ined in regard to the theories of physical optics. Healey (1992) developed
a general ‘approximate colour-reflectance model’, applicable to dielectrics
and metals, which allowed geometric effects in a scene to be ‘factored out’
of the colour pixel values. In the case of dielectrics, Klinker (1993) used
the dichromatic reflection model to develop an algorithm to segment scenes
whilst ignoring colour changes due to highlights and shading, and Tominaga
(1994) applied the dichromatic reflection model to a wider variety of mate-
rials. The effectiveness of various colour difference equations in segmenting
three-dimensional scenes has been investigated. It emerges that equations
based on band ratios are good for the segmentation of three-dimensional
scenes.

Physics-based vision is a very valuable development. Image process-
ing traditionally involves a lot of statistically-based techniques — histogram
equalizations, smoothing, efc. Images are regarded as a collection of random
data containing signals and noise, requiring statistics and signal processing
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techniques to make sense of them. Physics-based vision recognizes that im-
ages actually contain a lot of information which varies in a logical, structured
way and relates very precisely to the geometry of the surface from which it
reflects. So by looking for expected patterns in the image we can get informa-
tion about the composition of the scene and the shape of individual objects.

Of particular interest is the study of colour in three-dimensional objects.
Colour provides a very rapid way of segmenting objects in a scene (Chap-
ter 9). A logarithmic colour space has been proposed, which combines the
advantages of rapid colour segmentation of three-dimensional scenes with
the convenience of being uniform relative to human colour vision (Connolly,
1996).

7.3 COLORIMETRIC CALIBRATION OF ACQUISITION HARDWARE
7.3.1 Introduction

Fidelity of colour in an image acquisition process is a necessary condition of
further image processing. Generally, colour cameras are not built for measur-
ing colours: they are designed to render an acceptable image of a scene for
human viewing.

In many applications of colour image processing systems, repeatability
of measured RGB values is very important (Strachan, Nesvadba and Allen,
1990; Connolly and Leung, 1995). Sometimes the requirements are strin-
gent. For example, the absolute measurement of object colour in an im-
age needs a colorimetric calibration i.e. a mapping transformation between
the colour space of the camera and a standardized colour space (e.g. XYZ,
CIELAB, CIELUV). The general idea of colorimetric calibration is presented
in Fig. 7.4. Using calibration equipment, e.g. colour targets (charts), the
RGB colour values are measured and mapped to new, calibrated values in the
same space or in one of the CIE standardized spaces.

7.3.2 Sources of error in colour image acquisition

Any element of an image processing system (colour camera, framegrabber,
illumination system etc.) can be a source of errors during colour image acqui-
sition. The non-stability of the parameters of colour cameras (noise, drifts,
residual autogain etc.) are widely described (Dalton, 1988; Connolly and Le-
ung, 1995). In the case of a framegrabber, a colorimetric error may be caused
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Fig. 7.4 The principle of colorimetric calibration of a colour image processing
system.

by quantization — 10AE,, for 8-bit resolution of RGB components (Ikeda, Dai
and Higaki, 1992a).

Colour image acquisition should be preceded by adjustment of the cam-
era and framegrabber parameters to make the system work within its dynamic
range and to avoid adverse effects such as clipping, blooming or colour imbal-
ance. Correction of these effects after the image acquisition stage is very dif-
ficult. Clipping is a result of colour signal limitation by reason of exceeding
the dynamic range of the system. Since clipping does not appear in all three
colour channels simultaneously, this effect can degrade colour reproduction.
For example, for a colour with maximal G component, clipping appears first
in this channel. Continued increase in the other two components will cause
colour errors. When the colour signal exceeds the clipping limit, blooming
can occur, although many new CCD cameras incorporate anti-blooming cir-
cuits. For an image processing system to work within its dynamic range, the
lens aperture should be controlled.
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7.3.3 Procedure for calibration of an image acquisition system

The following arrangement allows compensation for the imperfections of a
colour image processing system. (Initially the automatic gain control (AGC)
of the camera and other correctors should be turned off.)

Black and white balance
The output level which results from analogue-to-digital conversion of a cam-
era’s dark current is designated black level. Black levels can be measured for
each of the RGB channels with a closed or covered camera lens. For some
colour camera/framegrabber combinations, black levels may be found equal
to O but it may be that the signal from the camera is less than the zero voltage
level for which the ADC output would be zero (‘blacker than black’). This
situation requires a reduction of the reference voltage of the ADC or, if possi-
ble, an increase in the black level. Sometimes, a final black balance requires
some adjustment inside the camera. Some framegrabbers have an option of
software control over the reference voltages of the ADCs. This is a great ad-
vantage for precise black and white balance. Black balance, unlike white
balance (described below), is independent of illumination.

White balance implies equality of the three RGB output signals from
a colour camera obtained for an achromatic object in the camera’s field of
view. White imbalance can stem from non-uniform sensitivity of the CCD
elements and different transmission characteristics of the colour mosaic filter
in different parts of the spectrum. The white balance of the three channels
of a camera may be achieved by manual or automatic gain control. However,
a change in illumination conditions makes new white balancing necessary.
Various white balance methods are presented in the literature. Some colour
cameras have built-in automatic white balancing. In the work of Strachan,
Nesvadba and Allen (1990) and in the MAVIS instrument described in Chapter
16 a reference white tile was used as a target achromatic object for white
balance. Neutral filters were applied for white balance of a monochrome
camera with RGB filters (Andreadis, Browne and Swift, 1990). The black and
white levels of an image processing system are used (Dalton, 1988; Strachan,
Nesvadba and Allen, 1990) to correct the measured RGB components in the
following way (for 8-bit resolution):
R=— M25 5

Ryn — Rpi
where: R,, is the measured value of the R component, Ry, is the value of the
black level in the R channel, and R,,;, is the value of the white level in the red
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channel; and similarly for the green and blue channels.

Linearization of transfer functions (photometric calibration)

Although the photoelectric effect used in CCD image sensors is linear, colour
cameras usually have non-linear transfer characteristics. As discussed ear-
lier, cameras sometimes have a gamma correction circuit, which introduces
a complementary non-linearity to compensate for monitor non-linearity (No-
vak, Shafer and Wilson, 1990) and also discussed earlier in this chapter:

L=kU"Y

where L is the luminance of the monitor’s screen, U is the monitor input
voltage, k is a constant, and Y is a number between 2.0 and 3.0.

The gamma correction circuit can be turned off (y = 1) in some types of
camera. However the linearity of such a camera is poor and applied lineariza-
tion is useful. For linearization it is necessary first to determine the transfer
characteristics for the three camera channels. Transfer characteristics are ob-
tained as a result of measurement of the RGB components for several viewed
samples with different grey levels (grey charts or neutral filters) and known
Y values. The following equations allow the calculation of the values of non-
linearity coefficients Yg, Y and yp (Strachan, Nesvadba and Allen, 1990):

1
Y =R

and similarly for green and blue. Hence:

__logR
~ logY

YR

and similarly for green and blue.

On the basis of system transfer characteristics the correction coefficients
can be calculated. These coefficients, when loaded into a framegrabber’s
input look-up table (LUT) or applied by software after image acquisition, will
make linear operation of an image processing system possible as illustrated
in Fig. 7.5.

7.3.4 Methods of colorimetric calibration

Lee (1988) was the first to propose a procedure for colorimetric calibration
in CIE XYZ colour space. However, this procedure needs a knowledge or
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Fig. 7.5 Transfer functions of a colour image processing system using a one-chip
camera. Top: before linearization; bottom: after linearization using a look-up table.
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measurement of the spectral characteristics of a lighting system and colour
chart. If the Macbeth? ColorChecker™ (18 coloured and 6 grey samples) is
used as the chart, then the spectral characteristics can be found (McCamy,
Marcus and Davidson, 1976). The measurement of the spectral distribution
of a lighting system requires a spectroradiometer, which is a disadvantage.

With regard to spectral characteristics, a method for colour calibration in
CIELUV colour space presented in (Strachan, Nesvadba and Allen, 1990) is
much simpler. Here the spectral characteristics were not used. Instead, the
L*u*v* values were measured by colorimeter for samples from the Macbeth
ColorChecker™ chart. The transformation matrix from RGB space to XYZ
space was found as a result of minimization of the average colour difference
calculated for colour samples in CIELUV uniform colour space. Similarly, in
the work by Kollhoff and Kempe (1995) the correction matrix for RGB com-
ponents was calculated iteratively in a process of minimization of the average
colour difference for colour samples in CIELAB uniform colour space.

The procedures for colorimetric calibration discussed above apply to im-
age processing systems working in fixed illumination conditions. Marsza-
lec and Pietikdinen (1994) have recently developed a real-time procedure for
colour camera calibration that is independent of changing illumination. This
work incorporated the results of research on colour constancy. The new as-
pect of this procedure is the use of a colour chart for the reconstruction of
the spectral distribution of a given illumination system. However, at the start
of the procedure, the spectral characteristics of the image processing system
and spectral reflectances of the samples must be known. First experimen-
tal results indicate smaller errors than in the case of a calibration procedure
which assumes fixed illumination.

Other equipment used for colour image reproduction also requires cal-
ibration (colour scanners, printers efc.). These procedures can be adopted
for colour image processing systems. Colour scanners (Kang and Anderson,
1992; Schettini, Barolo and Boldrin, 1995) are, like cameras, image acqui-
sition devices and sometimes need translation from their non-colorimetric
RGB spaces into one of the defined CIE colour spaces (most often CIELAB).
The use of neural networks to realize calibrating transformations is playing
an increasingly important role in scanner calibration (Kang and Anderson,
1992; Schettini, Barolo and Boldrin, 1995). Calibration of printers is dis-
cussed in Chapter 15.

In some approaches, colorimetric calibration is not realized but repeata-
bility of RGB measurements in changing illumination conditions can be as-

2http: / /www.macbethdiv.com/
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sumed (colour calibration: (Austermeier, Hartmann and Hilker, 1996)). Al-
ternatively, correcting the variations in RGB values caused by components of
a system (RGB calibration: (Chang and Reid, 1996)) is possible.

7.3.5 Colour targets and charts for calibration

Apart from the Macbeth ColorChecker™ already mentioned, other colour
targets, charts and samples from colour atlases may be used in colorimetric
calibration procedures. For example, in the work of Frey and Palus (1993)
using a light box, Kodak neutral gelatine filters for linearization and chips
from the Richter colour atlas for colour balance were applied. Asano, Ken-
wood, Mochizuki and Hata (1986) used 10 grey Munsell papers for soft-
ware white balance. For their on-line calibration procedure Marszalec and
Pietikédinen (1994) used Labsphere samples in addition to the Macbeth chart.
The ANSI IT8 colour target was specially developed for input scanner cali-
bration (Schettini, Barolo and Boldrin, 1995; ANSI, 1993a) and could also
be used for camera calibration.

Conclusions

A colorimetric calibration procedure can be performed as a preprocessing
stage in some image processing systems. Together with the possibility of
absolute colour measurement it gives additional positive results. For example,
in IHS colour space, hue (H) and saturation (S) are independent of intensity (I)
only if the camera works linearly (Frey, 1988). Frey and Palus (1993) showed
that colorimetric calibration improves the rg and xy independence of changes
in intensity of lighting.
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Noise removal and contrast
enhancement

John M. Gauch

The objective of noise removal is to detect and remove unwanted noise from
a digital image. The difficulty is in determining which features in an image
are genuine and which are caused by noise. In general, it is assumed that vari-
ations in intensity and colour will be gradual in an image, so points which are
significantly different from their neighbours can often be attributed to noise.
Hence, the central idea behind many noise removal algorithms is to replace
anomalous pixels with values derived from nearby pixels. Local averaging is
commonly used for this purpose, which has the side effect of smoothing the
output image. Many noise removal algorithms have parameters which can
be adjusted to trade off noise level versus smoothing, so the ideal image for
subsequent processing can be interactively selected.

The goal of contrast enhancement is to process images to increase the vis-
ibility of the features of interest. Since the human visual system has limited
ability to detect small variations in pixel intensity or colour within homoge-
neous regions in an image, as discussed in section 2.5.3, these variations will
be very difficult to perceive. For this reason, most contrast enhancement al-
gorithms operate by amplifying local variations in colour or intensity within
an image. One side effect of this sharpening process is that any noise which
is present in an image is typically amplified too. Fortunately, most contrast
enhancement methods have parameters which can be manually adjusted to
specify the amount of enhancement to be performed, so the appropriate con-
trast level for image display can be obtained.

Processing colour images presents several challenges for noise removal
and contrast enhancement methods which were originally devised for mono-
chromatic images. Care must be taken to retain chromatic information, par-

S.J. Sangwine et al. (eds.), The Colour Image Processing Handbook
© Chapman & Hall 1998
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ticularly hue, whenever possible. Methods which operate on colour channels
separately are in most danger of introducing unwanted shifts in colour. Tech-
niques which manipulate image intensity, or work directly with vector-valued
pixels are most effective in this regard.

8.1 NOISE REMOVAL

The process of digitizing colour images often introduces random variations
in pixel values due to imperfect electronics or optics. These errors are col-
lectively known as noise. When the magnitude of image noise is low, it is
typically not a problem for most image analysis applications. When noise is
moderately high, images begin to look rough or grainy. When the magnitude
of noise is greater than the magnitude of the image itself, it often becomes
difficult to recognize anything in the image.

The most obvious way to reduce the effects of noise is to improve the dig-
itizing process. Manufacturers of digital cameras and scanning devices have
made significant improvements in this area over the last ten years. Unfortu-
nately, many image analysis applications require the use of low illumination
or high magnification where problems associated with image noise persist.
For this reason, noise removal continues to be an important image processing
task. Before we can describe algorithms for noise removal, we must have a
better understanding of what noise looks like in an image.

8.1.1 Noise models

The simplest noise model is additive noise. Each pixel in the observed image
g(x,y) is modelled as a combination of the true image f(x,y) plus a noise
image n(x,y). In most cases, noise can be modelled as a random variable
with zero mean and a Gaussian distribution. Other possible noise models
use uniform, Poisson, or exponential distributions. Impulse noise consisting
of isolated intensity spikes can also occur in an image. For colour images,
noise is typically added to each colour component separately. In RGB space,
the resulting model would be:

&r(%,y) = fr(x,y) +n.(x,y)

gg(x,y) = fg(xa)’) + ng(x,y)
gb(x,y) = fo(x,y) +np(x,y)
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The level of noise is typically expressed by its variance. For example, if a
colour image has been digitized with RGB values in the range 0..255, addi-
tive Gaussian noise with 62 = 1 would be almost impossible to detect visu-
ally. Moderate noise levels with 62 = 100 begin to look grainy, while high
levels with 62 = 10000 obscure the original image considerably. Similar ef-
fects are observed for other noise distributions as variance increases. This
is demonstrated in Plate I. The range of pixel intensities in the underlying
image plays an important role in how additive noise is perceived. For this rea-
son the signal-to-noise ratio (SNR) is often used to characterize noise. SNR
is defined in decibels (dB) as

62
I

SNR = 1010g10 (85)
n

where the variance of the image f(x,y) is given by 6}. When this value is
not known, it can be approximated by squaring the range of intensities in the
image. Using this definition, the variance for the images in Plate I would be
65025 and the SNRs of the three images with Gaussian noise would be 48,
28 and 8 dB respectively.

8.1.2 Binomial smoothing

Averaging is one way to remove noise in an image. When is possible to
obtain K independent observations of an image f(x,y) which has been cor-
rupted with zero mean Gaussian noise with variance 62, the average of these
observations

K
B) = & X 8k(63) = £(5) +7(x)
where
1 K
ﬁ(xay) = E znk(x7y)

,,
1l

1

will have zero mean Gaussian noise with variance 6% = %6,21. The SNR of the
averaged image will increase by 101log;,(K), which in many cases may make
the noise unobservable.

When separate observations of g(x,y) are not available, noise can still be
reduced by averaging K values in the neighbourhood of each point (x,y) in
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the noisy image. This will smooth the image and remove part of the noise.
Weighted averages of pixels can also be easily computed. For example, if we
use an M x M array of weights m(x,y), a smoothed image can be obtained
using the following:

M-1M-1

gx,y) = 26 26 m(i, j)g(x—i,y — j) = m(x,y) * g(x,y)
i=0 j=

This double summation is known as convolution, and * is called the con-
volution operator. The matrix m(x,y) is typically known as the convolution
mask in this context. The size and contents of the mask will determine how
much smoothing takes place. Normally, a small mask will remove part of the
noise and cause little smoothing, whereas a large mask will remove most of
the noise and produce a very smooth image. Hence, it is possible to trade off
noise and smoothness to suit the needs of specific applications.

Variable amounts of smoothing may be achieved by repeatedly convolv-
ing an image with a convolution mask whose weights correspond to binomial
coefficients:

11241
m(x,y) =242
112]1

Convolution is associative, that is:

m(x,y) * [m(x,y) * g(x,y)] = [m(x,y) * m(x,y)] * g(x,y)

so smoothing an image twice with m(x,y) would be the same as convolution
with the following 5 x 5 mask:

1| 47 6| 4|1
1(2]1 1({2]1 411624 (16| 4
214 (2| 214|2|=|6|24|36]124|6
11211 1121 4116|2416 4
1| 4] 6| 4|1

Notice that the central values of these masks are higher than their neigh-
bours, and they gradually fall off towards the perimeter. Binomial convolu-
tion masks are also approximately circularly symmetric which is desirable
because it ensures that smoothing will be invariant to image rotation.
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To ensure that the average intensity in an image remains the same af-
ter smoothing, the weights in a convolution mask need to be normalized by
dividing by their sum. For example, the 3 x 3 and 5 x 5 masks should be
normalized by Tlg and 2;—6 respectively. Since the weights in the 3 x 3 mask
are powers of two, bitwise shift operations can be used instead of multiplica-
tions and division when applying the weights to pixels in the image. Thus,
software and hardware implementations of binomial smoothing are typically
very fast. The application of binomial smoothing to Gaussian and impulse
noise removal is shown in Plate II.

8.1.3 Gaussian smoothing

Operations which can be defined using convolution alone are called linear.
Among the many important properties of linear operators is the fact that con-
volution in the spatial domain can be implemented by using filtering in the
frequency domain. If we let M (u,v) = F{m(x,y)} represent the Fourier trans-
form of the mask m(x,y) and let G(u,v) = F{g(x,y)} represent the Fourier
transform! of the noisy image g(x,y), the smoothed image can be computed
as:

g(xy) =F 7 {M(u,v)G(u,v)}

It is important to note that the N x N images M(u,v) and G(u,v) are mul-
tiplied together on a point-by-point basis, not using matrix multiplication.
Hence, the bulk of the computational effort associated with this approach is
spent performing the Fourier transforms. The fast Fourier transform (FFT) al-
gorithm is a divide-and-conquer method which performs O(N?log, N) steps
to process an N X N image. Convolution with an M x M mask requires
O(N?’M?) operations. Hence, for large M, it is often faster to perform fil-
tering in the frequency domain than it is to use convolution. The precise
break-even point depends on implementation details, but M is commonly in
the range [10..15].

One interesting property of repeated convolution with any smoothing
mask is that the effective convolution mask eventually converges to a Gaus-
sian function. Hence, instead of applying 25 iterations of binomial smooth-
ing, we can convolve the image once with a Gaussian convolution mask.
Gaussians have another property which makes them a popular choice for fre-
quency domain smoothing. The Fourier transform of a Gaussian with stan-
dard deviation o is another Gaussian with standard deviation oo = 1/2n6 and

IFourier transforms are discussed in Chapter 12.



154  Noise removal and contrast enhancement

amplitude A = V2162, Gaussian smoothing can be performed using the fol-
lowing frequency domain filter:

2,2
M(u,v) = Aexp (—u——%—)

Different amounts of smoothing can be obtained by varying the standard de-
viation. Unlike binomial convolution, the time needed to perform Gaussian
filtering remains fixed.

To remove noise from colour images using either convolution or filtering,
the natural choice is to apply a linear smoothing operation to each colour
component separately. This is very effective when the additive noise can
be modelled using a uniform or Gaussian distribution. This approach is less
successful for impulse noise. When an image contains impulse noise, most of
the image is noise free, and isolated points are significantly different from the
underlying image. Linear smoothing in this case averages noise pixels with
adjacent noise free pixels. This reduces the magnitude of the noise pixel,
but it corrupts the colour and intensity of adjacent points. The application of
Gaussian smoothing to Gaussian and impulse noise removal is illustrated in
Plate III.

8.1.4 Maedian filtering

One problem with linear smoothing is that it tends to spread out errors caused
by impulse noise rather than removing them from an image. In addition, the
edges of objects are often over-smoothed while noise is removed. Both of
these issues can be addressed by applying median filtering (Tukey, 1974).
As the name suggests, median filtering operates by calculating the median
value within a specified neighbourhood in an image and using this value in
the output image. This is accomplished by collecting K pixel values in the
neighbourhood of pixel (x,y) and sorting these values. The value in location
K /2 in the sorted list is the median.

For images with uniform or Gaussian noise, the median value is often
very close to the weighted average obtained using linear smoothing, so me-
dian filtering reduces noise and increases SNR as desired. When impulse
noise is present in an image g(x,y), noise pixels are almost always at the
beginning or end of the sorted list, and seldom appear at location K /2. Con-
sequently, the median value is a better estimate of the original image f(x,y)
than any local average which contains the noise pixel. For this reason, median
filtering is the preferred method for impulse noise removal.
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Median filtering also does a better job of retaining the edges of objects in
an image than linear smoothing. If we consider the K pixels in the neighbour-
hood of an edge point (x,y), some fraction A will lie inside the object and the
remainder (1 — A) will be from the object’s background. When A is greater
than 0.5, the median of the K pixels will be a value which is representative of
the object. Correspondingly, when A is less than 0.5, the median will be cho-
sen from among the pixels which lie outside the object. Thus, as we process
points in the neighbourhood of an edge, the transition between object pixel
values and background pixel values is retained in the median filtered image.

Median filtering can be extended to colour images in a number of ways.
The easiest approach is to perform median filtering on each colour component
separately. Unfortunately, the resulting RGB combination may not correspond
to any colour pixel in the filtering neighbourhood. Chromatic shifts are often
visible, particularly near edges.

A better approach is to treat RGB values at each point as vectors and cal-
culate the vector median (Astola, Haavisto and Neuvo, 1990). Since there
is no natural way to sort vectors in RGB space, the vector median is com-
puted using the property that the sum of distances between all vectors and the
median is less than the sum of the distances to any other vector in the set:

K K
Sm:zuvm_vt'”<Z“Vj_vi“a for Vj#m
i=1 i=1

When vectors are in RGB space, the Euclidean distance between values is
given by:

lvi—vjll = \/ (Vir =vjr)? + (vig = vjg)? + (vip = vj)?

where v;, is the red component of v; and so on. Since N?Z distance calcula-
tions are needed to determine the minimum value for S associated with v,,,
computing the vector median can be relatively time consuming. One way to
save time is to approximate the vector median using the pixel which is clos-
est to the mean value ¥ in the specified neighbourhood (Valavanis, Zheng and
Gauch, 1991):

Sn =l =91l < llv; = 7ll, forVj#m

As with convolution, the shape and size of the sorting neighbourhood deter-
mines how smoothing is performed. For example, ‘plus sign’ shaped neigh-
bourhoods are often more effective for retaining object corners than circular
neighbourhoods. Also, larger neighbourhoods result in more smoothing than
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small neighbourhoods. For Gaussian noise, median filtering is comparable
to binomial smoothing or Gaussian smoothing. On the other hand, median
filtering often outperforms binomial smoothing and Gaussian smoothing for
removing impulse noise, particularly for colour images. This is demonstrated
in Plate IV. Vector filtering is discussed in more detail in Chapter 10 and also
in Chapter 11.

8.1.5 Other smoothing methods

Median filtering is one example of a nonlinear image processing technique.
Since there is sorting involved, there is no way to express median filtering in
terms of convolution. Because median filtering is very successful in exclud-
ing noise points when obtaining smoothed pixels, there has been considerable
effort to develop other nonlinear smoothing methods with similar objectives.
Although a full history of nonlinear algorithms is beyond the scope of this
book, two approaches are particularly noteworthy: anisotropic diffusion and
mathematical morphology.

The central idea behind anisotropic diffusion is to vary the size and shape
of smoothing neighbourhoods in different parts of the image based on im-
age content. Since edges are important for visual and automatic image anal-
ysis, it is desirable to prevent smoothing which blurs edges. This can be
accomplished by applying smoothing parallel to edges and not perpendicu-
lar to edges. Although it is possible to define anisotropic Gaussian masks
at each point to smooth an image, this approach is computationally infeasi-
ble. Alternative formulations of anisotropic smoothing have been proposed
which operate by iteratively solving nonlinear partial differential equations
(Perona and Malik, 1990; Shah, 1991). This nonlinear smoothing approach
has also been extended to vector-valued images, with very good results (Pien
and Gauch, 1995; Whitaker and Gerig, 1994).

Mathematical morphology encompasses a broad range of nonlinear im-
age processing operations which are based on set theory (Serra, 1982;
Dougherty, 1993). Operations which are related to image smoothing are ero-
sion and dilation, which operate by treating the image as a surface and pass-
ing a structuring element over the image to fill in the dents or remove peaks.
Combinations of erosion followed by dilation, or dilation followed by erosion
can be very effective for noise removal if the size and shape of the structur-
ing element are carefully chosen. Mathematical morphology was originally
developed to process binary or greyscale images. Extending this approach to
vector valued colour images requires special care to avoid hue shift artifacts.
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An approach to morphological processing of colour images is presented in
Chapter 11.

8.2 CONTRAST ENHANCEMENT

Image contrast is a measure of sharpness. An image with high contrast will
typically have large intensity or colour variations separating different objects
in an image, so it is easy to visually locate object boundaries and distinctive
features within objects. An image with poor contrast has variations which
are gradual and difficult to detect visually. Contrast enhancement methods
amplify the local intensity or colour variations within an image, thereby in-
creasing feature visibility. Since there are a number of causes for poor image
contrast, a variety of enhancement algorithms have been devised. In this
section, we describe representative algorithms from three very different ap-
proaches: point operators; linear operators; and nonlinear operators.

8.2.1 Windowing

A point operator is an image processing transformation that determines the
value of a pixel in the output image g(x,y) by the value of a single pixel in
the input image f(x,y). Contrast enhancement can be performed by defining
a mapping function g(x,y) = m(f(x,y)) such that local intensity or colour
variations in the output image are greater than in the input image.

When the objects of interest in an image all lie within a known range
of intensities (/min .. Jmax], there is little need to display image pixels which
lie outside this range. Pixels whose intensities are greater than I, can be
mapped to the maximum display value Dy,.x. Similarly, pixels below the
minimum intensity /mi, are mapped to the minimum display value Dyyn. In-
tensities within the specified range can be windowed to utilize the entire
display range using the following formula:

Dmax - Dmin)

Imax - Imin

m(i) = Drin + (i ~ Ipin) (

This has the effect of amplifying the differences between adjacent pixels
which lie within (/pin . . Imax], SO contrast is enhanced for these regions. Pix-
els above and below this range are mapped to a single intensity so contrast is
clearly lost in these regions. Low contrast details in different intensity ranges
in an image can be explored by interactively adjusting I, and Iyax.
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Windowing can be applied to colour images by selecting a desired vol-
ume of colour space [Ruin - - Rmaxs Gmin - - Gmax, Bmin - - Bmax| and performing
windowing on each of the colour channels separately. One potential problem
with this approach is that the colours in the output image may be very dif-
ferent from the colours in the input image. For example, different shades of
green may be mapped to a range of colours from yellow to red, depending
on which window of RGB values is chosen. Images of natural scenes such as
trees would look very unnatural as a result.

When hue or saturation in an image have been incorrectly captured or
accidentally corrupted, it is common to transform the image into IHS space
and perform interactive windowing or scaling of hue or saturation to restore
the image. This is one application where changing chromatic information is
beneficial.

8.2.2 Histogram equalization

The mapping function for windowing is linear. This causes the contrast to
be uniformly enhanced only within the specified range. In certain images,
there may be several intensity ranges which need to be enhanced by differ-
ent amounts. To process these images, it is possible to define the necessary
mapping functions interactively using piecewise linear functions or low or-
der polynomials. A less labour-intensive approach is to define the mapping
function automatically based on properties of the intensity histogram.

For a monochromatic image, the intensity histogram A(i) is defined to be
the number of pixels in the image with intensity equal to i.

hi) = Z{ 1 if flxy) =i

0 otherwise
(xy)

If we consider an image containing several large objects with nearly uniform
intensities, the corresponding histogram would have several peaks near the
mean intensities of these objects. To enhance contrast within these objects,
we must apply a mapping function which increases the separation of inten-
sities near peaks in the histogram. This will widen and lower the peaks in
the histogram and make small intensity variations within these objects more
visible. If this contrast stretching process is applied to all peaks in the initial
histogram, the histogram of the output image will be flattened. Hence, this
contrast enhancement approach is called histogram equalization (Hummel,
1975).
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To implement histogram equalization, we must define a mapping function
m(i) which yields a flat histogram. The first step is to calculate the cumulative
histogram H (i), which is defined to be the number of pixels in the image with
intensity less than or equal to i. H (i) can be easily obtained by numerically
integrating h(i):

H(i) =Y h())
j=0

When a particular A(i) is flat the corresponding H (i) will be linear. Thus, to
perform histogram equalization, we need to make the cumulative histogram
linear. This can be accomplished using the following mapping function:

H(i)
H (Inax)

When output pixels are computed using g(x,y) = m(f(x,y)), the range of
display intensities is used more effectively, making small image variations
easier to see.

To amplify contrast even further, local properties of an image must be
considered. One way to do this is to divide the image into small regions and
calculate the h(i), H (i), and m(i) for each region separately. Enhancement
can then be done in each region separately or by interpolating region his-
tograms to obtain a mapping function m(i) for each point in the image. The
amount of enhancement performed at each point is determined by the size
of the regions used to calculate h(i) and H(i). Smaller regions yield greater
enhancement. This contrast enhancement approach is called adaptive his-
togram equalization (AHE) (Pizer, 1983; Gauch, 1992).

When histogram equalization and AHE are applied to each of the colour
channels in an image separately, chromatic information in an image is often
distorted. Therefore, it is preferable to convert the image to IHS space and
apply enhancement only to image intensity 1. The image can then be trans-
formed back to RGB space for display. Colour image enhancement using
histogram equalization and AHE are shown in Plate V.

m(i) = Dmjin + Dmax

8.2.3 Unsharp masking

Earlier we saw that linear operators can be used to remove noise and small
details in an image by smoothing. As the amount of blurring increases, more



160 Noise removal and contrast enhancement

and more detail is removed from the image until eventually the output image
is almost uniform.

Since the goal of contrast enhancement is to increase the visibility of
small details in an image, the information removed when smoothing an image
is precisely what we want to see in an enhanced image. Thus, one way to
perform contrast enhancement is to subtract a smoothed version of an input
image from the original data. This approach is known as unsharp masking.
When a single application of binomial smoothing is used for this purpose, the
resulting 3 x 3 convolution mask is given by:

1 —-1|-2|-1
m(x,y)=1—6- =2 12} -2
—1—2]-1

Notice that the sum of the convolution mask weights in this case is equal to
zero. This causes the average intensity of an image after unsharp masking to
have zero mean. For colour images with RGB values in the range [0..255],
output values are normally in the range {—128..127]. Windowing must be
applied to bring these values back into the desired range. To avoid potential
hue shifts associated with windowing, it is important to apply the same win-
dowing function to all three colour channels, rather than defining a mapping
function for each channel separately.

Multiple applications of binomial smoothing also yield convolution
masks with a positive central value surrounded by negative weights. Since
more image detail is removed as blurring increases, subtracting a very blurred
image from the original will yield an image very similar to the input image.
Conversely, if an image which is only slightly smoothed is subtracted, the
resulting image will contain mostly noise and very fine image details. There-
fore, the amount of contrast enhancement associated with unsharp masking is
inversely proportional to the amount of blurring performed prior to subtrac-
tion. The use of unsharp masking for contrast enhancement is illustrated in
Plate VI.

8.2.4 Constant variance enhancement

The amount of contrast enhancement provided by unsharp masking can be
further amplified by considering the local statistical properties of pixels in
an image. If we let our input image be given by f(x,y), an image smoothed
with a convolution mask containing all 1’s can be viewed as an estimate of
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the mean intensity at each point. Hence, unsharp masking produces an output
image g(x,y) using:
g(X,y) = f(xay) _f(xay)
The visual significance of local changes in intensity may vary considerably
in different parts of an image. For example, if one object in an image is
highly textured while another object is relatively smooth, a value g(x,y) =
10 might represent a modest change or a significant difference in intensity
depending on the pixel location. If we compare the value of g(x,y) with a
local estimate of the standard deviation of intensity values, we can determine
how significant a particular value of g(x,y) is. This is the principle behind
constant variance enhancement (CVE).

If we calculate local variance in the neighbourhood of each point using

. N 7 2
G(x,y) = Z (f(x" Ly— ]) _f(xay))
(i)
an image with high contrast can be obtained by calculating:

foy) = Flxy

o(ny) = LN =S %)

o(x,y)

Since this formula tends to over-enhance an image, the amount of enhance-
ment can be reduced by adding back a fraction k of the average image. Thus,
the general formula for CVE becomes:

goy) = LEA=TEN igiey), keo..

Other statistical methods are also possible which take the global mean or stan-
dard deviation of the input image into consideration (Wallace, 1976). When
any of these CVE approaches are applied to colour images, it is desirable to
apply the same contrast boost to each colour component in the image. Aver-
aging the local standard deviations in each colour channel is one way to ob-
tain 6(x,y). Separate estimates for the means should be used for each colour
component. The use of CVE to enhance colour images is shown in Plate VIIL.

8.2.5 Other enhancement methods

In addition to windowing and histogram equalization, a number of other
point operations are useful for enhancing contrast. For example, the map-
ping function m(i) can be a function which emphasizes low values, such as
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m(i) = log(i), or high intensities, such as m(i) = i? with p > 1. These for-
mulas are best applied in situations where the distribution of pixel values is
known a priori.

By looking at linear image processing methods in the frequency domain,
any filter which reduces the contribution of low frequencies and boosts high
frequencies will emphasize small details in an image. A number of high-pass
and band-pass filtering techniques have been developed which achieve this
objective. Detailed descriptions of these filtering approaches can be found
in any digital image processing reference, e.g. Gonzalez and Woods (1992).
Overall, the behaviour of these linear methods is comparable to unsharp
masking provided care is taken to select filters which do not cause ringing
or other artifacts in the spatial domain.

Certain combinations of linear methods and point operations have also
proved to be successful for enhancing image contrast. Of particular note
is homomorphic filtering, which applies a point operation to the Fourier
transformation of an image prior to filtering to reduce the effects of vary-
ing illumination in an image (Stockham, 1972). Although this approach is
very successful for monochromatic images, it produces unsatisfactory results
when applied to each colour component in an image separately. This is again
a situation where the image must be converted to 1HS space to enhance only
image intensity.
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Segmentation and edge detection

John M. Gauch

The goal of image segmentation is to partition an image into disjoint regions
which correspond to objects of interest in the image. For example, if we have
a digital image of an apple and several leaves lying on the ground, a natu-
ral partitioning would be to have all red pixels labeled as ‘apple’, all green
pixels labeled as ‘leaf’ and the remaining brown pixels labeled as ‘ground’.
If the objects in the image have very distinct colours and are well separated,
this task is relatively straightforward. On the other hand, if the scene has
many complex objects with less distinct colours, the problem becomes very
challenging. For example, when leaves change colours in autumn this ap-
proach might incorrectly classify red leaves as ‘apple’ and brown leaves as
‘ground’. Objects may also contain gradual variations of colour, which must
be considered when performing segmentation.

In many ways, edge detection can be considered the dual of image seg-
mentation. Instead of finding the regions associated with various objects, the
goal of edge detection is to find the boundaries of objects of interest. Once
the edges have been found, the interior can be filled in to obtain the region
associated with an object. The primary hypothesis used in edge detection is
that there is a change in pixel colour or intensity at pixels on the boundary
of the object. When this change is large relative to pixel variations within
objects, edge detection is relatively easy. For example, the colour change
from pixels on an apple to pixels on a leaf or the ground would be very large.
When adjacent objects have similar colours and intensities the problem of lo-
cating boundary points becomes much more difficult. For example, finding
the edges of two overlapping leaves of approximately the same colour can be
quite challenging.

Once image segmentation or edge detection has been performed, it is
often possible to perform computer-based analysis of the position, size or

S.J. Sangwine et al. (eds.), The Colour Image Processing Handbook
© Chapman & Hall 1998
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shapes of objects in an image. This information can be directly useful in ap-
plications where object measurement is the primary task, for example, grad-
ing the sizes of fruit while they are moving down a conveyor belt. In order to
make use of this type of quantitative information, it is important to evaluate
‘quality’ of the image segmentation or edge detection algorithm you use with
the particular class of images you are processing. As we shall see, many algo-
rithms have one or more parameters which control their sensitivity to regions
or edges. These parameters can be tuned to achieve the highest quality image
segmentation or edge detection results for the images being processed.

9.1 PIXEL-BASED SEGMENTATION

As discussed above, colour is one of the easiest ways to identify which pixels
belong to which object. When we associate a range of colours with each of
the expected objects in the image, we can perform a colour lookup operation
to determine what object label should be recorded for each pixel in the image.
There are a number of ways to calculate and represent the colour lookup
function and each has its relative advantages and disadvantages.

9.1.1 Object colour specification

Before we can perform pixel-based segmentation, we need to examine the
distribution of colours within an image. The colour histogram is the most
common approach used for this purpose. It is a discrete approximation to the
probability density function for colours in an image. A colour histogram 4(c)
is calculated by counting the number of pixels in the image /(x,y) with each
distinct colour c:

h(c)zZ{l if I(x,y)=c

(o) 0 otherwise

To normalize for image area it is common to divide each value of 4(c) by the
number of pixels in the image. The size of the colour histogram depends on
the number of colours in the input image and also the needs of the application
using the colour histogram. In the case where we are given an 8-bit pseudo-
colour image as input, the number of colours in the image has been drastically
reduced via colour quantization. We can represent the colour histogram of
such an image using an array of 256 counters.
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When we are given a 24-bit RGB image with 8 bits for each of red, green
and blue, a complete colour histogram would require a 256 x 256 x 256 array
of counters. This would require far more memory than is typically available,
so it is common to discard the least significant bits of each colour byte to
reduce the size of the colour histogram. For example, by using the most
significant four bits for each red, green and blue value, a 16 x 16 x 16 array
can be used (4096 counters). Another popular choice is to use three bits for
red and green and two bits for blue, resulting in an 8 x 8 x 4 colour histogram
(256 counters). This reduction in space does come at a cost. By calculating
the histogram using quantized colour values we lose information about the
subtle variations in colour which occur in most natural images.

In applications where user input can be easily obtained, it is possible to
have the user specify the associations between colours and different objects
in the image. There are two basic approaches used to obtain this information:
the user can select colours of interest from the colour histogram, or the user
can specify typical colours by outlining objects in the input image. Both
approaches yield excellent colour information, but require user input.

If the colour histogram is displayed visually as a bar chart or a scatter
plot, the user can manually select histogram entries which correspond to ob-
jects of interest. For example, in our apple and leaf image we would expect
significant peaks in the colour histogram near ‘apple red’ and ‘leaf green’.
Images with multiple objects with distinct colours will result in images with
clearly separated histogram peaks, but images with very small objects or non-
uniformly coloured objects will produce colour histograms whose peaks will
be less distinct, and more difficult to identify visually.

Another way to specify the colour associated with each object is to have
the user manually outline regions in the image which contain representative
pixel colours for each object of interest. It is not essential to outline the
whole object since the goal is to obtain a sample of typical object colours.
This approach avoids problems associated with colour histogram display and
also enables users to specify colours of small objects whose histogram peaks
are hard to identify.

9.1.2 Distance-based pixel classification

Once the range of colours in the colour histogram or in the image have been
specified for each object in the image, a distance-based pixel classification
function can be defined. The first step of this process is to calculate the mean
colour ¢, for each object in the image. If we are given an image region R,
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containing a sample of pixels for each object o, the mean can be calculated
using:

Co = z I(X’y)

(x,y)ER,

If a collection of histogram entries H, has been selected for object o, the mean
colour can be calculated using:

&=, c h(c)

cEH,

Once mean colours ¢, have been calculated for all objects, the process of
classifying pixels in the image reduces to the problem of finding which mean
colour is closest in colour space to the given pixel. If pixel /(x,y) has colour
¢ in RGB space, this distance is given by:

d, = \/(Cr - Eo,r)z + (Cg - é;o,g)z + (Cb - Eo,b)z

The point (x,y) is classified as being part of object o if its colour is closer
to ¢, than to any other object colour. As the number of object colours to be
considered increases, the classification time increases linearly. Notice that
the classification of nearby pixels has no effect on the classification of pixel
(x,y). Hence, if we observe a single red pixel in the middle of a large green
leaf region, it will be incorrectly identified as part of an apple.

This classification method will yield slightly different results if differ-
ent colour spaces are used to represent pixel colours. For example, if IHS
colour space is chosen, the expected range of values for hues are H € [0.. 2n]
whereas intensity has a range of / € [0..1]. As a result, differences in hue
have more weight in the distance between colours. For this reason, a percep-
tually uniform colour space such as CIELAB may be more appropriate.

Distance-based classification essentially divides colour space into O dis-
joint regions where all points in region o are closest in colour space to &,,.
In areas where the mean colours are relatively close together, these regions
can be quite small. On the other hand, certain distributions of mean colours
may result in very large portions of colour space being assigned to a single
object class. This may produce very large differences in classification error
for different objects based on their colours and the colours of other objects.

One solution to this problem is to restrict the size of the colour space
region about each colour mean using either a distance cutoff or a bounding
box. For example, we could say that only colours within a distance D of
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colour ¢, belong to object 0. Any points whose minimal distance d,(c) > D
could then be classified as ‘unknown’.
Alternatively, we could say that all colours within the range

¢ € [(€or = D,Cog — D, p — D) ..(Cor +D,Co g+ D,Eop+ D)]

are associated with object o . Points which are not within one of the bounding
boxes in colour space would again be classified as ‘unknown’. The bound-
ing box approach can be implemented using only six comparisons, so it is
typically faster than using a distance cutoff, even when the square root calcu-
lation is avoided. Another advantage is that the width of the bounding box in
each colour dimension can be adjusted to reflect the dynamic range of each
colour channel. For example, if colours are represented in 1HS coordinates,
the width of the bounding box in the hue dimension can be made 2n wider
than in the intensity dimension.

9.1.3 Maximum likelihood pixel classification

In order to automate pixel-based segmentation, a method is needed to select
the colour ranges associated with each object in an image. In cases where
the colour histogram has distinct peaks, a natural choice would be to select
the colours at these peaks as our estimates of ¢,. Unfortunately, the direct
approach of scanning the colour histogram for the N largest local maxima
does not always work. Consider our apple and leaf example. If the three
largest peaks in the colour histogram are h(c;) = 40, h(c2) = 35 and h(c3) =
20, this algorithm would choose c¢; and c¢; as the colours of the two major
objects. If ¢ and c; are very similar colours of green, and c3 is red, then this
automatic colour selection method will not separate the image into leaf and
apple regions.

To avoid this problem, we need to explicitly consider the position and
shape of peaks in the colour histogram when selecting our estimates of C,,.
This can be accomplished using maximum likelihood (ML) pixel classifica-
tion (Duda and Hart, 1973). Assume that an image contains a mixture of K
objects with relative areas given by wy. If the colour range of each object
is modeled as a Gaussian distribution with mean gy and colour covariance
matrix Vy, then the expected distribution of colours in the image can be rep-
resented as a sum of weighted Gaussians as:

K
g(c) =Y wipk(c)
k=1
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where
1
pr(c) = agexp —E(c - uk)TVk(c — Uy)

and
_3 ~1
ar = (2m) 72|V, 2.
The colour covariance matrix is defined as:

Vr,r,k Vr,g,k Vr,b,k
V= Verk Vegk Vebik
Vork Vogk Vo

where the diagonal terms specify the variance of each RGB colour component
in object &, and the off-diagonal terms give the cross correlation of colour
components.

When the number of objects K and the distribution parameters wy, ux, and
V have been chosen correctly, the observed colour histogram #(c) should be
very similar to the estimated colour distribution g(c). Now we must quantify
this similarity. If we assume that all pixel values in the image are independent,
the likelihood for the image given the distribution parameters is given by:

G (11w,4,V) = ({y[)g(l(x,y))-

When g(c) matches 4(c) the value for G will be maximized. Thus, the search
for distribution parameters can be written as an iterative optimization prob-
lem. Given an initial estimate of wy, uy, and Vy, it is possible to refine param-
eters for each class k and colour component i, j € (r, g,b) using the following:

we= Y pe(l(x,y))

(%)

Ujp = (Z) Pl (x,y)) 1(x,y)i/wi
x5y

Vi,j,k = 2 pk(](xay))[](xay)i“ uki][l(xay)j'—ukj]/wk
(%)
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The stopping criteria for this iterative process can be based on the rate of
change of the likelihood function G or some fixed number of iterations can
be used.

Once the distribution parameters wy, uy, and V; have been calculated,
pixels in the image can be classified by determining which object k has the
highest probability pi(I(x,y)). This is very similar to selecting the object &
whose mean value i is closest to the intensity /(x,y) with one very important
difference. The covariance matrix Vy specifies the shape and width of the re-
gion in colour space which contains colours most likely to belong to object k.
This feature is particularly useful when segmentation is performed in a colour
space with different ranges of values in different colour dimensions (e.g. IHS
colour space). For this reason, ML pixel classification is a big improvement
on the bounded box classification approach, although at greater computa-
tional expense. The use of ML segmentation is demonstrated in Fig. 9.1 using
an image of a red ball on a table. Both the ball and the background have vari-
ations in illumination which make colour distance-based pixel segmentation
very difficult. On the other hand, ML segmentation can be quite effective,
particularly when the correct colour space is chosen. In Fig. 9.1(b) the image
is segmented into three ML classes based on intensity alone. Notice that the
bright red portions of the ball and bright blue pixels in the background are
assigned to the same class. Figure 9.1(c) demonstrates the use of a colour ML
algorithm in RGB space. The ball and the background are no longer assigned
to the same class, although the ball is divided into bright and dark regions.
The use of CIELAB colour space is shown in Fig. 9.1(d). Here the ball and its
reflection on the table are assigned to a single segmentation class.

9.2 REGION-BASED SEGMENTATION

Pixel-based segmentation suffers from the fundamental problem that spatial
information is ignored when classifying pixels. Isolated noise or minor colour
fluctuations within an object may cause points inside an object to be improp-
erly classified. Our example where a red pixel inside a leaf region is labelled
as ‘apple’ is a result of this problem. A more serious problem arises when
the colours in an object vary gradually across the object. Here, a statistical
model consisting of a mean colour vector u; and covariance matrix Vj may
be insufficient to describe the object. Segmentation algorithms which focus
on regions of pixels can avoid these problems.
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Fig. 9.1 (a) A simple colour image. See Plate VIII for a colour version. (b) Regions
generated by the maximum likelihood (ML) algorithm applied to image intensity. (c)
Regions generated by a colour ML algorithm in RGB space. (d) Regions generated
by a colour ML algorithm in CIELAB space. The number of output classes for each
case is three. Visually CIELAB space provides the best results.
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9.2.1 Homogeneity measurement

The first step in developing a region-based segmentation algorithm is to de-
cide which properties you wish regions in the segmented image to possess.
One natural choice is to have the pixels within each region be homogeneous.
For example, we expect most pixels within a leaf region to be a similar shade
of green. We can also expect a small percentage of points within the leaf to
have different colours as a result of natural variations. If we locate a region of
pixels which meet this criterion we can assign the label ‘leaf” to the whole re-
gion, including the isolated points within the region which are not leaf green.
A successful region-based segmentation algorithm is one which partitions the
input image into disjoint regions all of which meet an appropriate homogene-
ity criterion,

There are several popular measurements of region homogeneity. The sim-
plest measurement is similar to the bounding box classification described in
section 9.1.2. If all points within an image region lie within a small region
of colour space, the image region can be declared homogeneous. This can be
quantified by measuring the volume B, of the bounding box in colour space
which contains all pixels within the region r. If the image is in RGB space
this can be calculated using:

B, = (max,(r) — min,(r))(max,(g) — min,(g))(max,(b) — min,(b)).

A similar measurement calculates the radius R, of the colour space sphere
which contains all of the colours of pixels in the image region. The centre
of the sphere is typically chosen to be the mean colour ¢, of the region and
the radius is calculated by finding the pixel whose colour is furthest in colour
space from this mean. The Euclidean distance metric is typically used for this
purpose.

Perhaps the most common region homogeneity measurement is variance.
For colour images, we can calculate the colour covariance matrix V, as de-
scribed in section 9.1.3 and use either the trace tr(V,) or determinant det(V,)
of this matrix to quantify region homogeneity. The trace is simply the sum
of the diagonal elements corresponding to the variance of each of the colour
components in the region, so it is often chosen for its computational simplic-
ity.

If a region contains pixels from two or more objects with very different
colour ranges, the values of B,, R, and #r(V,) will be large and the region
will be identified as not homogeneous. Each of these measures also depends
on the colour space chosen to represent the image. To devise a region ho-
mogeneity measure which corresponds well to what the human visual system
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considers homogeneous, it would be wise to consider converting images from
RGB space to IHS or CIELAB.

9.2.2 Seed-based region growing

Seed-based region growing is a bottom-up segmentation approach (Yaki-
movsky, 1976). A seed point within an object of interest is selected, and
adjacent pixels are added to the region as long as the region satisfies the de-
sired homogeneity property. The output of this procedure is a single con-
nected region in the image. To fully partition the image into N regions, seed
points in each region must be selected and the region growing process must
be repeated N times.

The selection of seed points for region growing is often accomplished by
manually selecting points within objects of interest. Although this is labour
intensive, it does ensure that the resulting regions meet the needs of the appli-
cation. An alternative is to automatically scan the image for seed points based
on some expected properties of regions of interest. For example, if objects
are brighter than their background, local intensity maxima could be used as
seed points.

Once a seed point (x,y) has been chosen, the neighbours of that point
(x+1,y), (x—1,y), (x,y+1), and (x,y — 1) must be examined to see which
belong in the region. If we say that all pixels whose colour is within radius
Rmax of the mean region colour ¢, are part of the region, then these points
should be added to the region and their neighbours considered. A new value
for the mean region colour ¢, can also be computed. As the region grows, the
list of adjacent pixels will also grow. Eventually, the region will stop growing
when all of the neighbouring pixels lie outside the colour radius Rpax.

Although region growing is conceptually simple, there are several subtle
points to consider. First, how should the list of adjacent pixels be represented
and processed when adding points to the region? One approach would be
to iteratively search the list of points to find the point which is closest to the
mean colour and add this point to the region. To reduce searching time, points
could be stored in a priority queue with priority based on the colour distance
of the pixel to the current mean colour ¢,. Another approach is to perform
one scan of the neighbour list and add all points to the region which meet the
homogeneity criteria. For large regions, this approach will be much faster.
Depending on which seed point is chosen and the order in which neighbours
are examined there may be slight differences in the final region.

A second issue is the selection of the initial mean colour ¢, and the colour
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radius Rpax. In images where the texture of objects varies significantly, it
may be desirable to base the initial value of ¢, on some small neighbourhood
of pixels about the seed point. This estimate will be more robust to image
noise and our choice of an initial seed point. For Ry, it may be reasonable
to base this value on the colour variance in this neighbourhood. When an
object is relatively smooth, the corresponding radius will be low. When an
object has significant texture, a higher value of Ry,x will be used. If this
approach is taken, care must be taken to select seed points which are not
near the boundary of the object of interest, since the colour variance near
object boundaries is much larger than in the interior of the object. Seed-based
region growing is illustrated in Fig. 9.2, which depicts a bowl of fruit on a
table. The colours of the fruit in this image are visually distinct yet they have
significant variations in intensity due to illumination effects. In Fig. 9.2(b)
we show an example of intensity-based region growing using a seed point
within the green grapes. Notice that the bright portions of the grapes are
incorrectly excluded and much of one lemon is incorrectly included. Figure
9.2(c) uses the same seed point and a colour region growing algorithm in RGB
space. Much more of the grapes are correctly selected and the lemon is no
longer part of the region. Finally, Fig. 9.2(d) shows the grape region obtained
using region growing in CIELAB colour space. The results in this case are
far superior to the preceding examples, demonstrating that seed-based region
growing can be very effective if the correct colour space and thresholds are
chosen. A detailed evaluation of segmentation algorithms in different colour
spaces should be performed for each class of images being processed (Gauch
and Hsia, 1992).

9.2.3 Recursive split-merge segmentation

Recursive split-merge segmentation is a top-down approach (Horowitz and
Pavlidis, 1976). Unlike region growing, which starts with a single pixel,
the split-merge algorithm begins by considering the whole image as a single
region. If this region is not homogeneous according to the selected metric,
the region is split into subregions. If the initial region is a rectangle with
(x,y) € [xL..xH,yL .. yu) the most common approach is to divide this region
into four rectangles with:

()1 € [xr..x,yr.-ym] ()3 € [xm..xa,yL.-yM)
(5,y)2 € [xv..xM,ym--YH] (%, ¥)a € [Xm..-XH,YM..YH]
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Fig. 9.2 (a) A simple colour image. See Plate IX for a colour version. (b) Region
generated by seed-based region growing with an intensity distance threshold = 10.
(c) Region growing in RGB space with colour distance threshold = 25. (c) Region
growing in CIELAB space with colour distance threshold = 15. The same seed point
was used for each method and thresholds were chosen interactively to obtain the
most sensible region in each colour space.



Region-based segmentation 175

where (xp,ym) = ((xr. +x1)/2, (y. + yu)/2). Each subregion is recursively
processed in an identical manner until the image has been split into S rectan-
gular regions which are homogeneous.

One side effect of this splitting process is that an image is typically over-
segmented. This is because we split each rectangle into four equally sized
subregions without checking to see if a smaller number of regions would
suffice. For example, if the initial region really consists of two homogeneous
objects (x,y)a € [xz..xw,yL..ym] and (x,y)p € [XL..XH,Ypm .. yn], then the
four regions above should be combined in the final segmented image.

Rather than trying to control the splitting process to avoid this problem, it
is easier to perform a second pass over the initially segmented image to merge
all adjacent regions which remain homogeneous when combined. In some
sense this is similar to the process used when performing region growing,
except that the building blocks in the merging process are much larger and
can be of any shape.

The most critical aspect of region merging is keeping track of which re-
gions are adjacent to each other. If unique region identifiers are assigned
to each homogeneous region during the splitting process, a list of adjacent
region pairs can be obtained with a single scan over the image. Once adja-
cent regions have been identified, the homogeneity function for each potential
merger must be computed. For example, if we have region A with mean ¢4
and variance V4 and region B with mean ¢g and variance Vg, we need to cal-
culate the combined mean ¢4p and variance V4 p and compare tr(V4yp) to
the merging threshold to see whether A U B is homogeneous and thus whether
the regions should be merged. When two regions are merged, region identi-
fiers in the region adjacency list need to be updated accordingly.

The order in which we perform region merging can have a significant
effect on the final segmentation results. As with region growing, there are
two alternatives. We could search the entire region adjacency list for the two
regions which are most homogeneous, and merge these regions first. After
each merger, the entire list is searched to find the next pair of regions to
combine. The computational expense of this approach is its most serious
drawback. A faster alternative is to perform a limited number of passes over
the adjacency list and merge any two regions which meet the merger criteria.
The disadvantage of this approach is that we are no longer guaranteed to
merge the most similar regions first. On the other hand, the quality of the M
final regions produced is sufficient for most applications.

The homogeneity measure used for region splitting does not necessarily
need to be the same as the criterion used for merging. For example, variance-
based splitting can be combined with variance based merging using a low
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threshold for splitting and a slightly higher threshold for merging. Another
alternative is to combine regions based on the distance in colour space be-
tween their mean colours &4 and ¢p. If this distance is below a specified
threshold, the regions are merged, otherwise they are not. For both region
growing and split-merge the colour space used to measure homogeneity may
play a role in the quality of the segmentation results.

The application of recursive split-merge segmentation to our red ball im-
age is shown in Fig. 9.3. The regions in Fig. 9.3(b) were calculated using an
intensity-based algorithm and a variance threshold selected interactively to
obtain the most visually sensible results. Notice that the ball is divided into
many small regions which have very square boundaries. Slight improvement
is observed in Fig. 9.3(c) where the colour segmentation algorithm described
above is applied in RGB space. The background is divided into fewer re-
gions, but the ball itself is still over-segmented. In Fig. 9.3(d) the image was
segmented in CIELAB space. Although this provides the best split-merge re-
sults, there are still significant artefacts along the boundary of the ball. To
avoid these problems, different schemes for splitting the image and merging
regions have been explored. Watershed-based segmentation is one approach
which has been successful for this purpose (Beucher, 1982; Gauch, 1997).

9.3 EDGE DETECTION AND BOUNDARY TRACKING

In many image analysis applications, boundaries of objects are of particular
interest. For example, the size or shape of the outline of an object can of-
ten be used to recognize an object or detect abnormalities. For this reason,
a large number of edge detection methods have been devised to locate the
boundaries of objects in images based on local pixel properties. The main
challenge all methods must face is how to distinguish edges from non-edges.
Discovering how edge points are connected together is an equally important
problem which is often overlooked. Although the methods described below
make use of images in RGB space, they can be applied in any colour space
with reasonable results.

9.3.1 Gradient-based edge detection

If two objects with different colours are adjacent to each other in an image,
there will be a large change in colour as we move from one object to the
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Fig. 9.3 (a) A simple colour image. See Plate VIII for a colour version. (b) Region
boundaries generated using recursive split merge segmentation in RGB space with
region variance threshold = 500. (c) Region boundaries using variance threshold
= 1000. (d) Region boundaries using variance threshold = 2000. The number of
regions decreases as the variance threshold increases. In all three cases square region
artefacts can be seen.
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next. Hence, boundary detection can be accomplished by searching for colour
discontinuities in an image.

For a one-dimensional function /(x) the derivative dI/dx measures the
rate of change in intensity. When this value is above a given thresh-
old, we can say that the function is discontinuous. Similarly, for a two-
dimensional function I(x,y) the rate of change in brightness is given by the
gradient VI(x,y) = (I/dx,01/dy) = (I,I,). When the gradient magnitude

1
|VI(x,y)| = (I +12)? is above a given threshold, the function can be con-
sidered discontinuous and the point (x,y) can be labelled as an edge point
(Roberts, 1965).

For colour images, the calculation of the gradient magnitude is somewhat
more complex since the image is vector-valued. If we consider each channel
of an RGB image separately, we can calculate VR(x,y) = (R,,Ry), VG(x,y) =
(Gx,Gy), and VB(x,y) = (By,By). The rate of colour change at (x,y) can then
be estimated by summing the magnitudes of these gradients. Hence, for a
colour image I(x,y) we can evaluate:

(R+R)T 4+ (G2+GY) 4+ (B2+B2)E > T

to determine whether (x,y) is an edge point or not.
An alternative is to calculate the distance in colour space between each
pixel (x,y) and its neighbours using the Euclidean metric. For example, the

1
colour difference between I(x,y) and I(x+ 1,y) is C, = (R2+G%+B2)?.

1
Similarly the difference in the y direction is C, = (R?+ G2+ B2)2. If we
let VI(x,y) = (Cy,C,) for a colour image, then the gradient magnitude is

|VI(x,y)| = (R2+ G?+B%+ R§ + G§ + B%) 1 . This value can be compared
to the threshold T to select edge points.

Gradient-based edge detection works well whenever object boundaries
have high contrast. On the other hand, gradual colour transitions across an
object boundary may result in poorly localized edges or no edges at all de-
pending on the value of the threshold 7. When the value of T is too high,
we may fail to detect visually important edges. If T is too low, too many
points may be identified as edges, causing edges to appear thickened. One
solution to this problem is to manually select an appropriate T for each im-
age. Another possibility is to automatically select the value of T based on the
statistical properties of the colour gradient magnitude for an image. For ex-
ample, T can be chosen so that only N% of pixels in the image are classified
1s edges.
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Fig. 9.4 (a) Gradient magnitude of fruit image (Plate IX) in CIELAB space. (b)
Gradient magnitude of ball image (Plate VIII) in RGB space. (c) Edge points whose
gradient magnitudes are in the top 20% for fruit image. (d) Edge points whose
gradient magnitudes are in the top 20% for ball image. Notice that the edges are
thick in some places and broken in others.
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Figure 9.4 illustrates gradient-based edge detection for both the ball (Plate
VIII) and fruit (Plate IX) images. Gradient magnitudes have been calculated
using the Euclidean metric and scaled so that zero is shown in black and
the maximum value appears white in Fig. 9.4(a) and (b). Edges in these
images appear slightly blurred because the partial derivatives for each colour
channel have been estimated using the Sobel operator, which corresponds to
convolution with the following 3 x 3 masks:

—1] of 1 —1]-2]-1
L=[—2] o] 2] 5= o] o] o
-1 of 1 1| 2] 1

When derivatives are estimated using simple finite differences, edges are
sharper but the effects of image noise are more visible. In Fig. 9.4(c) and
(d) we identify edge pixels by selecting gradient magnitude thresholds such
that the brightest 20% of the pixels are labelled as edges. Although the out-
lines of major objects have been found, the edges are thicker than one pixel
wide in many places and discontinuous in others. Adjusting thresholds man-
ually may reduce these artifacts, but this is a fundamental shortcoming of this
edge detection approach.

9.3.2 Laplacian zero crossings

A problem with gradient-based edge detection is that not all object bound-
aries have high gradient magnitudes. For example, if an object is slightly out
of focus the colour transition between an object and the background may be
gradual. Edges in such cases can be found by locating local maxima in the
gradient magnitude function. Since the gradient is a first-order derivative, one
way to find extrema in this function is to detect the zeros in an appropriate
second-order image derivative. The Laplacian operator V2I(x,y) = L + 1,
has been used extensively for this purpose since it is relatively simple to cal-
culate and is rotationally invariant like the gradient magnitude.

If finite differences are used to approximate partial derivatives, the gra-
dient of an image I(x,y) can be computed using: I, = I(x+ 1,y) — I(x,y)
and I, = I(x,y+ 1) —I(x,y). Similarly, the Laplacian can be calculated us-
ing: Lo = I(x+1,y) —2I(x,y) +I(x—1,y) and L, = I(x,y+ 1) — 2I(x,y) +
I(x,y —1). By creating a temporary image T (x,y) = I + Iy, the locations of
extrema in the gradient magnitude can be found by scanning 7 (x,y) in the x
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and y directions for changes in sign. This approach for locating edges is very
successful, but it does have two shortcomings which need to be addressed.

First, zero crossings in a second-order derivative indicate an extremum in
the first-order derivative, but not necessarily a local maximum. Hence, many
Laplacian zero crossings are phantom edges which really correspond to local
minima in gradient magnitude. In theory, this can be resolved by examining
the sign of the third derivative, but in practice images contain too much noise
for this to be successful. Instead, it is common to use a low threshold on the
gradient magnitude to distinguish edge points from phantom edges.

Image noise presents a second problem. Differentiation amplifies noise
much like high pass filtering, so estimates of the Laplacian can be very noisy.
Hence, the Laplacian zero crossings for an image may have numerous false
edges caused by noise. One way to avoid this problem is to perform Gaus-
sian smoothing prior to calculating the Laplacian zero crossings (Marr and
Hildreth, 1980). The degree of smoothing applied can be adjusted by vary-
ing the width of the Gaussian filter. Other smoothing operators can also be
applied with equal success.

Our discussion so far has dealt with scalar images. Since colour im-
ages are vector-valued, the Laplacian is also vector-valued. For example,
the Laplacian for an image /(x,y) in RGB space would be given by

Vzl(xay) = (VzR(xay)aVZG(xay)vsz(xay))
= (R + Ry, Gux + Gy, Bix + Byy).

The magnitude of the Laplacian can then be estimated by summing the Lapla-
cians for each colour component. If a zero crossing of T'(x,y) = Re + Ryy +
Gy + Gyy + By + By, is detected and the gradient magnitude is above a mini-
mum threshold, we can say that the point (x, y) lies on an edge. This approach
produces visually sensible edges for most images.

The application of Laplacian zero crossings to our fruit image is shown
in Fig. 9.5. The Laplacian magnitude image in Fig. 9.5(b) was computed
using the formula for T (x,y) above and second derivative estimates based on
a cubic spline interpolation of points in the neighbourhood of (x,y). Hence,
the Laplacian for a single channel can be implemented via convolution with
the following 3 x 3 mask:

1]—2] 1 ] 4] 1) 1] 1] 1
Lthy =| 4[-8] 4|+|-2[-8]-2)=7| 1]-8] 1
1] —21 1 1| 2] 1 1] 1] 1
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Fig. 9.5 (a) A colour image of fruit. See Plate IX for a colour version. (b) The Lapla-
cian for this image calculated in RGB space. (c) Laplacian zero crossings showing
edges and phantom edges. (d) Removal of phantom edges by selecting zero cross-
ings whose gradient magnitudes are in the top 20% for the image. Although the final
edges are only one pixel wide, they are seldom closed.



Edge detection and boundary tracking 183

The zero crossings of this function are shown in Fig. 9.5(c). Notice that there
are numerous zero crossings which do not correspond to strong edges. In
fact, many of these points are phantom edges. Fig. 9.5(d) shows Laplacian
zero crossing pixels whose corresponding gradient magnitudes are in the top
20% for this image. This removes phantom edges but this process may also
break the boundaries of objects if the threshold is not chosen carefully.

9.3.3 Directional derivative extrema

When we take a cross-section of the gradient magnitude image in the gra-
dient direction, we obtain an edge strength profile which is perpendicular to
the object boundary. The local maximum of this function can be found by
locating the zeros of the derivative of this edge strength profile. Hence, edges
in an image can be found by detecting the zero crossings of the directional
derivative of the gradient magnitude in the gradient direction. For a scalar
image I(x,y) the directional derivative described above is given by (Haralick,
1984):

Dy V1| = (I, 1,) (V1],, V1, )

where
V1|, = (L +Iylyx)/\/ B+
and

\VI|, = (LLy + L1yy) / 4 /2 +1I2.

We can again use finite differences to estimate first and second order partial
derivatives and create a temporary image:

T(x,y) = (Plu+ 2Ly Ly + I2Ly) [ 12+ I2

which represents the directional derivative expanded from above. The loca-
tions of edges can be found by scanning 7' (x,y) in the x and y directions for
changes in sign. Since the denominator in this expression is always positive,
it can be ignored without affecting the results. This edge detection approach
yields results which are very similar to Laplacian zero crossings. It also suf-
fers from phantom edges and noise sensitivity, but these problems can be
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solved using the techniques similar to those introduced for Laplacian zero
crossings (Canny, 1986).

The main advantage of using directional derivatives comes when we
consider vector-valued images I(x,y). If we consider the colour difference
between adjacent pixels when calculating the gradient magnitude we haxie

1
VI(x,y) = (Cy,Cy) where C, = (R2+ G2+ B2)? and C, = (R2+ G2 +B2)*.
Substituting into the directional derivative formula we obtain:

DuilVI = (G Gy) (V11,0 1V11,)

where
|V1!x = (C;Cxx +Cyny)/, /C,% +C§
and

VI, = (CiCay +CyCyy) /1/CE+C2.

Once the values for C, and C, are calculated, we can use finite differences to
estimate second order partial derivatives and create a temporary image:

T(xy) = (CfCu—l-ZCnyny +C3ny) /4/C? +Cy2

Edge locations can be found by scanning T'(x,y) for zero crossings and cor-
recting for phantom edges. Since the values of C, and C, represent the dis-
tance in colour space between adjacent pixels, these values will change if
colour spaces other than RGB are used for edge detection. For example, if
pixels are converted to IHS or a perceptually uniform colour space such as
CIELAB, edge locations may improve visually for certain images.

In Fig. 9.6 we demonstrate directional derivative edge detection. In
Fig. 9.6(a) and Plate X the input fruit image has been convolved with a Gaus-
sian with standard deviation ¢ = 2 to remove noise and fine details in the
image. The colour directional derivative in Fig. 9.6(b) was calculated using
the formula for T (x,y) above. Partial derivatives for each colour channel have
been estimated using the Sobel operator. As a result of this blurring, the zero
crossings shown in Fig. 9.6(c) have fewer phantom edges than the Laplacian
zero crossings for the unsmoothed image in Fig. 9.5(c). Weak edges can again
be removed in Fig. 9.6(d) by selecting points whose gradient magnitudes are
in the top 20%. Notice, however, that smoothing has altered the shape of
some objects, particularly those with sharp corners. For this reason, exces-
sive Gaussian smoothing should be avoided, or smoothing algorithms which
preserve edge locations should be applied.
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Fig. 9.6 (a) A Gaussian smoothed image of fruit (¢ = 2). See Plate X for a colour
version. (b) The directional derivative of this image calculated in RGB space. (c¢)
Zero crossings showing edges and phantom edges. (d) Removal of phantom edges
by selecting zero crossings whose gradient magnitudes are in the top 20% for the
image. Smoothing reduces the number of small object boundaries detected and also
changes the shape of large object boundaries slightly.
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9.3.4 Edge tracking

Once the set of pixels which lie on the boundary of an object have been
identified using one of the edge detection methods described above, it is often
useful to link these points together to form closed object boundaries. This
can be accomplished by walking one pixel at a time clockwise (or counter
clockwise) around the perimeter of the object moving from one edge point to
the next. Although this sounds trivial, the decision of which point to move to
at each step can be quite complex.

For example, assume that we are currently at position (x,y) and the two
neighbouring points (x+ 1,y) and (x — 1,y+ 1) are also edge points. Where
should we move to? The answer depends on the coordinates of the previous
point we visited. If we just moved from (x+ 1,y) to (x,y), then clearly we
should go to (x — 1,y + 1) next. If an object is particularly narrow at one
point, there may be three or more edge points adjacent to the point (x,y).
This makes it difficult to base an edge tracking algorithm on an enumeration
of all possible edge configurations.

A solution to this problem is to select location L,y given previous loca-
tions L, and L, on the edge using a clockwise (or counter clockwise) search
of the 3 x 3 neighbourhood of L,, starting at location L,..; and stopping when
the first edge point is encountered. For example, in the case where L,_; is
directly to the left of L,, the seven remaining neighbours are searched in the
following order:

1 2 3
L, L, 4
7 6 5

Similar searches are used for different L, — 1 positions. This edge tracking
procedure terminates when the entire boundary has been traversed and L, 1
has returned to the starting point Ly. Edge tracking using this approach will
always succeed if the edge points on the object boundary are fully connected.
If there are gaps in the edge, the tracking algorithm must be modified to ‘jump
over’ the gaps or terminate with a partial object boundary.

9.4 SEGMENTATION AND EDGE DETECTION QUALITY METRICS

The quality of an image segmentation or edge detection algorithm depends on
a wide range of factors including the type of images being processed and the



Segmentation and edge detection quality metrics 187

needs of the application using the resulting regions or edges. Speed may also
be an important consideration for real-time applications. For this reason, it is
important to evaluate the quality of several approaches to find the ‘optimal’
method for a given application.

Visual inspection is often the simplest approach to measure quality. For
example, if you wish to compare M segmentation algorithms using N typical
images, you can compute the NM output images and display segmentation
results for each input image separately. To obtain a numerical rating of each
segmentation algorithm, you can have users rank the segmentation outputs
on a scale from 1 to 10 and calculate the average quality ranking for each
segmentation method. To reduce experimental bias, data should be collected
from several individuals, making this approach very labour intensive.

It is possible to automate the algorithm assessment process if the ‘true’
object regions and/or object boundaries are known. One way to obtain this
information is to generate synthetic images where the positions of typical
objects in the image are known a priori. Another approach is to have an
expert specify the true regions or boundaries by hand for a collection of typ-
ical images. The quality of segmentation or edge detection algorithms can
then be evaluated by counting the number of correctly classified pixels C
and the number of incorrectly classified pixels E and calculating the ratio
(C—E)/(C+E) for each of the N test images and each of the M algorithms.
The method with the highest average ratio can be declared ‘optimal’ for this
image analysis application.
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Vector filtering

Konstantinos N. Plataniotis and
Anastasios N. Venetsanopoulos

Processing of colour image data has received increased attention lately due to
the introduction of the various vector processing filters. These ranked-order
type filters utilize the direction or the magnitude of the colour vectors (that
is, pixel values within colour space) to enhance, restore and segment colour
images. The objective of this chapter is to present and analyze the different
vector processing filters. In addition to ranked-order filters, fuzzy, as well as
nearest-neighbour vector filters are discussed in detail. Comparative studies
involving colour images are used to assess the performance of the different
vector processing filters. Results indicate that the adaptive vector process-
ing designs reported here are computationally attractive and have excellent
performance.

It is widely accepted that colour conveys information about the objects in
a scene and this information can be used to further refine the performance of
an imaging system. However, colour image processing has not had the same
growth and development as other areas of digital signal processing. The mul-
tichannel nature of the colour image can be considered as the main reason
for this slow development. The basis of the trichromatic theory of colour vi-
sion discussed in section 2.3 is that it is possible to match an arbitrary colour
by superimposing appropriate amounts of three primary colours. Thus, in
the various different colour spaces discussed in Chapter 4, each pixel of an
image is represented by three values which can be considered as a vector.
Thus the colour image can be thought of as a vector field in which the di-
rection and length of each vector in colour space is related to the chromatic
properties of the pixel (Trahanias, Pitas and Venetsanopoulos, 1994). Being
a two-dimensional, three-channel signal, a colour image requires increased
computation and storage during processing, as compared to a grey-scale im-
age.

S.J. Sangwine et al. (eds.), The Colour Image Processing Handbook
© Chapman & Hall 1998
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One of the most common image processing tasks is image filtering, that
is the process of noise reduction in an image. Filtering is an important part
of any image processing system whether the final image is utilized for vi-
sual interpretation or for automatic analysis (Venetsanopoulos and Platani-
otis, 1995). Numerous filtering techniques have been proposed to date for
colour image processing. Nonlinear filters applied to colour images are re-
quired to preserve edges and details, and remove impulsive and Gaussian
noise. Edge information is very important for human perception. Therefore,
its preservation and possibly its enhancement are very important subjective
features of the performance of nonlinear image filters.

The early approaches to colour image processing usually comprise exten-
sions of the scalar filters to colour images. In these approaches each channel
of a colour image was considered to be a monochrome image itself. Thus,
techniques developed for monochrome images were applied on each channel
separately. Scalar order statistics techniques have played an important role
in the design of robust filters for grey-scale (monochrome) image processing.
This is due to the fact that, after ordering, any noise-corrupted input pixels
(outliers) will be located in the extreme ranks of the sorted data array. Con-
sequently, these abnormal values can be isolated and filtered out before the
input signal is further processed. Ordering of scalar data, such as grey-scale
images is well defined and has been extensively studied. Assuming that n
random variables x1,xz,...,x, are available they can be arranged in ascend-
ing order of magnitude as x(1),X(2), - - ,X(n). Element x(;) is defined as the ith
order statistic. The minimum x;), the maximum x,) and the median x,,/, (n
being assumed odd) are among the most important order statistics, resulting
in the min, max and median filters respectively (Pitas and Venetsanopoulos,
1992).

However, the concept of input ordering cannot be easily extended to mul-
tichannel (multivariate) data such as colour image pixels, since there is no
universal way to define ordering in vector spaces. A number of different ways
to order multivariate data has been proposed. These techniques are generally
classified into marginal ordering (M-ordering), where the multivariate sam-
ples are ordered along each one of their dimensions independently, reduced
or aggregate ordering (R-ordering), where each multivariate observation is
reduced to a scalar value according to a distance metric, partial ordering
(P-ordering), where the input data are partitioned into smaller groups which
are then ordered, and conditional ordering (C-ordering), where multivariate
samples are ordered conditional on one of the marginal sets of observations
(Barnett, 1976). In spite of this, most of the filters utilized today for colour
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image processing are based on the concept of multivariate ordering (vector
order statistics) since it has been recognized by many researchers that vector
processing is an effective way to filter out noise and to enhance colour images
(Venetsanopoulos and Plataniotis, 1995).

10.1 THE VECTOR MEDIAN FILTER

The best known vector order statistics filter is the so called Vector Median
Filter (VMF) (Astola, Haavisto and Neuvo, 1990). The VMF is a vector pro-
cessing operator, which has been introduced as an extension of the scalar Me-
dian Filter (Pitas and Venetsanopoulos, 1992). The VMF can be derived ei-
ther as a maximum likelihood estimate when the underlying probability den-
sities are double-exponential or by using vector order statistics techniques.

In the former case, consider an m-dimensional distribution (DeGroot,
1989):

f(x) = yexp(—ofx —B|) (10.1)

where Y and o are scaling factors, and B is the location parameter of the dis-

tribution. The maximum likelihood estimate ﬁ based on the random samples
X1,X2,...,X, from equation (10.1) can be obtained by maximizing the likeli-
hood function:

L(B) = ﬂvexp<—a|xi ) (10.2)

There is no closed form solution to equation (10.2). A suboptimal estimate
can be found only under the assumption that 3 is one of the x; if the additional

requirement that [3 be one of the sample vectors is included. This leads to the
definition of the vector median as:

xvamr € (X i =1,2,...,n) (10.3)

with

n

n
S Ixvmr—xi| <Y |x;—xi
i=1

i=1

The vector median of a population can also be defined as the minimal vec-
tor according to the aggregate, reduced ordering technique (R-ordering) of
Barnett (1976), which leads again to equation (10.3). Let us assume that a
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window W of finite size » is available. The noisy image vectors inside the
window W are denoted as x;, j = 1,2,...,n. If D(x;,X;) is a measure of
dissimilarity (distance) between vectors x; and x; the scalar quantity:

d,' = iD(X,‘,Xj) (104)
Jj=1

is the distance associated with the noisy vector x; inside the processing win-
dow of length n.
Assuming that an ordering of the d;’s

d(l) < d(z) <...<Z d(,l) (10.5)
implies the same ordering to the corresponding x;’s:
X(1) SX(2) S - S X

then the VMF defines the vector x(yy as the filter output. This selection is due
to the fact that vectors which diverge greatly from the data population usually
appear in higher indexed locations in the ordered sequence (Astola, Haavisto
and Neuvo, 1990).

The VMF orders the colour input vectors according to their relative mag-
nitude differences. The L; norm defined as:

dp(iaj) =k§1 l)d(_)dﬂ

where m is the dimension of the vector x; and xf‘ is the kth element of x;, is
utilized in most cases. However, according to the original definition proposed
in Astola, Haavisto and Neuvo (1990) the L, norm (or Euclidean distance)
defined as:

m

da(i, ) = 4| D, (xk —xk)2

k=1

can also be used to order the input vectors inside the processing window.
Vector median filters can utilize either odd or even window lengths. However,
in most cases we want to associate the output value with the centre value of
the filter window, therefore the window size n is usually chosen to be an odd
number of pixels, for example 3 x 3 or 5 x 5.

The vector ordering scheme employed by the VMF has a number of ad-
vantages. First, by utilizing a distance metric (e.g. the L; norm in this case)



192 Vector filtering

we can get an accurate and natural description of outliers (extreme values)
by simply observing the values of the aggregate distance in equation (10.5).
Colour vectors appearing in low ranks in the ordered sequence are vectors
centrally located in the population, whereas colour vectors appearing in the
higher ranks (outliers) diverge most from the data population. The ordering
scheme can be used to determine the positions of the different input vectors
without any a priori information regarding the signal or noise distributions.
The ordering is entirely based on the data and is independent of an origin
or fixed point in space. From a robust estimation point of view, this fact is
very important, since for non-stationary signals, such as images, it is rarely
possible to determine an appropriate fixed point.

It has been observed through experimentation that the VMF discards im-
pulses and preserves edges and details in the image (Astola, Haavisto and
Neuvo, 1990). However, its performance in the suppression of additive white
Gaussian noise, which is frequently encountered in image processing, is infe-
rior to that of the Arithmetic (linear) Mean Filter (AMF). If a colour image is
corrupted by both additive Gaussian noise and impulsive noise, an effective
filtering scheme should make an appropriate compromise between the AMF
and the VMF. The so called o-trimmed VMF exemplifies this tradeoff. In this
filter the n(1 — 2a) samples closest to the vector median value are selected as
inputs to an averaging-type filter. The output of the a-trimmed VMF can be
defined as follows:

n{1-2a) 1

XovMm = ,=zl (1 - 20) X(i)

with X(1) < x(2) < ... < X(,). The trimming operation guarantees good per-
formance in the presence of long-tailed or impulsive noise and helps in the
preservation of sharp edges. On the other hand, the averaging operation
causes the filter to perform well in the presence of short-tailed noise. Read-
ers requiring a text on noise should see Pitas and Venetsanopoulos (1990).
Interested readers might also read the paper by Viero, Vistamo and Neuvo
(1994).

The class of filters based on order statistics is very rich. In addition to the
two filters discussed above, it includes other filters such as the max/min vector
filters or the L-Vector estimators. The L-Vector filter family is an important
generalization of the VMF (Nikolaidis and Pitas, 1995) and is closely related
to a large class of robust scalar estimators called the L-estimators. These
robust filters have coefficients which can be chosen optimally according to
the input noise probability function (Pitas, 1995).
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The main reason behind the popularity and widespread use of vector order
statistics based filters, such as the VMF is their simplicity. The computations
involved however in the evaluation of the aggregated distances during order-
ing are extensive. Given a n x n processing window, (n?(n? — 1)) distances
must be computed at each window location. It is evident that the run time
of the VMF heavily depends on the distance metric adopted to compute dis-
tances among the colour samples. The evaluation of the Euclidean distance
requires the use of floating point operations with considerable computational
overhead. On the other hand distance based on the first norm L; can be com-
puted using integer arithetic with considerable computational savings (Paeth,
1995). Recently, fast approximations of the Euclidean distance have been
proposed to speed up the calculations. According to Barni, Cappellini and
Mecocci (1994) a linear approximation of the Euclidean norm can be used in
equation (10.4) to calculate distances among the colour vectors. The new L,
norm approximates the Euclidean norm by means of a linear combination of
components. For vectors with positive components, as in the case of colour
images, the new distance measure can be defined as follows:

3
dp(i,j) = Zak |)glc“)g;|
k=1

where oy, = 1/ 2(=1) "and xf‘ is the kth element of x;. From its definition, it is
evident that the proposed approximated distance measure is more computa-
tionally effective than the classical Euclidean distance, and can considerably
reduce the run time of the VMF. Vector median filter implementations based
on the L) norm are considerably faster, although their run time is still too
high for many practical applications. To speed up the filtering procedures,
appropriate fast algorithms, such as running median algorithms can also be
used (Pitas, 1993). In such an approach, distances which have already been
calculated are not recomputed at each step. Thus, the number of distances to
be evaluated can be reduced to n(n* —n) +0.5n(n — 1), resulting in a compu-
tational complexity of O(n®) which is significantly lower than the O(n*) of
the original VMF implementation.

10.2 VECTOR DIRECTIONAL FILTERS

The vector median filter is not the only filter based on order statistics which
can be used for processing of vector signals. A new type of vector pro-
cessing filter was proposed recently (Trahanias, Pitas and Venetsanopoulos,
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1994; Trahanias and Venetsanopoulos, 1993; Trahanias, Karakos and Venet-
sanopoulos, 1996). The so-called Vector Directional Filter (vDF) family op-
erates on the direction of the image vectors, aiming at eliminating vectors
with atypical directions in the colour space. To achieve its objective the VDF
utilizes the angle between the colour vectors (angular distance) to order the
input vectors inside a processing window. As a result of this process a set
of input vectors with approximately the same direction in the vector space is
produced as the output set. Since the vectors in this set are approximately
co-linear, a magnitude processing operation can be applied in a second step
to produce the required filtered output.

10.2.1 The Basic Vector Directional Filter (BVDF)

The BVDF is a ranked-order, nonlinear filter which parallelizes the VMF op-
eration. However, it employs a distance criterion, different from the L; norm
used in the VMF. The distance criterion used is the angle between the two
vectors (angular distance). This so called vector angle criterion defines the
scalar measure:

n

a; =Y A(x;,x)) (10.6)
j=1
with
A(x;,X;) ‘1< X ) (10.7)
X;,X;) = cos , .
v x|

as the distance associated with the noisy vector x; inside the processing win-
dow of n pixels.

The output of the BVDF is that vector from the input set which mini-
mizes the sum of the angles with the other vectors. In other words, the BVDF
chooses the vector most centrally located without considering the magnitudes
of the input vectors. The BVDF may perform well when the vector magnitudes
are of no importance and the direction of the vectors is the dominant factor.
However, this is usually not the case. In most colour image processing appli-
cations, the magnitudes of the vectors should also be considered. To improve
the performance of the BVDF a generalized filter structure was proposed (Tra-
hanias and Venetsanopoulos, 1993; Trahanias, Karakos and Venetsanopoulos,
1996). The new filter, called, appropriately, the Generalized Vector Direc-
tional Filter (GVDF) generalizes the BVDF in the sense that its output is a



Vector Directional Filters 195

superset of the single BVDF output. Instead of a single output, the GVDF out-
puts the set of vectors whose angle from all other vectors is small as opposed
to the BVDF which outputs the vector whose angle from all the other vectors
is minimum. Thus, the output of the GVDF initially derives from a set of & in-
put vectors with approximately the same direction in the colour space. Then,
in the magnitude processing module, a final single output vector is produced
by considering only the magnitude information. If prior information about
the noise corruption is available, the designer may select the most appropri-
ate magnitude processing method to maximize the performance of the filter.
However, if information on the actual noise corruption is not available the
applicability of the GVDF is questionable.

10.2.2 The Directional Distance Filter

To overcome the deficiencies of the GVDF a new directional filter was pro-
posed (Karakos and Trahanias, 1995). The so-called Directional-Distance
Filter (DDF) retains the structure of the BVDF, but utilizes a new distance
criterion to order the vectors inside the processing window. Based on the
observation that the BVDF and the VMF differ only in the quantity that is min-
imized, a new distance criterion was utilized by the designers of the DDF in
the hope of deriving a filter which combines the properties of both these fil-
ters. Specifically, in the case of the DDF the distance inside the processing
window W is defined as:

Bi= (iA(Xi’Xj)> (i!l?ﬁ#;’ll) (10.8)
. \j=1 =1

where A(x;,x ;) is the directional (angular) distance defined in equation (10.7)
with the second term in equation (10.8) to account for the differences in mag-
nitude in terms of the L; metric. As for any other ranked-order, multichannel,
nonlinear filter, it is assumed that an ordering of the 3; ‘distance’:

Buy<Bp) <. <Bw
implies the same ordering to the corresponding input vectors X;:
X(1) < X2) <... < X(n)

Thus, the DDF defines the minimum order vector as its output: Xppr = X(1)-
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10.2.3 Hybrid directional filters

The simultaneous minimization of the distance functions used in the designs
of the VMF and the BVDF was attempted in the design of the DDF in order to
obtain a filter that can smooth long-tailed distribution noise, such as Cauchy
or Laplacian noise and preserve at the same time the chromaticity compo-
nent of the image vectors (Pitas and Venetsanopoulos, 1990; Viero, Vistamo
and Neuvo, 1994). Although the concept is appealing, and the resulting vec-
tor processing structure is simple, fast, and without the additional module of
the GVDF there are a number of problems. Most notably, the ‘distance mea-
sure’ defined in equation (10.8) is heuristic, window-dependent, and it has
no ties to the characteristics of the individual colour vectors. Furthermore,
there is no analysis of the relative importance of the two components in the
suggested ‘distance function’. Thus, although the DDF can provide, in some
cases, better results than those obtained by the BVDF or the GVDF, it cannot
be considered as an effective, general purpose, nonlinear filter. However, its
introduction inspired a new set of heuristic vector processing filters which
tried to capitalize on the same appealing principle, namely the simultaneous
minimization of the distance functions used in the VMF and the BVDF. Such
a filter is the hybrid directional filter introduced by Gabbouj and Cheickh
(1996). This filter operates on the direction and the magnitude of the colour
vectors independently and then combines them to produce a unique final out-
put. This hybrid filter, which can be viewed as a nonlinear combination of the
VMF and BVDF filters, produces an output according to the following rule:

XVMF if Xymr =XpvpF

XHyF = { XyMF .
(]JH’W—MH!T) xpvpr otherwise

where xpypr is the output of the BVDF filter, xyr is the output of the VMF
and ||.|| denotes the magnitude of the vector.

Another more complex hybrid filter, which involves the utilization of the

AMF, has also been proposed (Gabbouj and Cheickh, 1996). The structure of
this so-called adaptive hybrid filter is as follows:

xymr if Xymr = Xpypr
n n
XaHyF = Xourl if zl ”xi — Xourl ” < 21 ”xi - xout‘2||
= =

Xou2  Otherwise
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where

Xoutl = (*————”XVMF” ) XBVDF
" ||xavDF|]

and

Xour2 = <M> XBVDF
wr =
’ ||xgvDrF|]

and x4 r denotes the output of an AMF operating inside the same processing
window. According to its designers, the magnitude of the output vector will
be that of the mean vector in smooth regions and that of the median operator
near edges.

Although these two hybrid filters attempt to parallelize the operation of
the DDF, it is obvious from the definitions that these are only heuristic ap-
proximations without any relation to the characteristics of the individual col-
our vectors. The combination of magnitude and directional information is
simplistic and has to be done at an algorithmic level resulting in an arbitrary
structure which, contrary to the DDF, cannot be classified as a ranked-order
nonlinear estimator. Apart from that, the hybrid filters (Gabbouj and Cheickh,
1996) are computationally demanding, since they require evaluation of both
the VMF and VDF outputs. Given that the most computationally intensive part
is that of vector sorting, the need to sort the input vectors twice with differ-
ent sorting criteria makes the hybrid fiiters inappropriate for realistic image
processing tasks.

10.3 ADAPTIVE VECTOR PROCESSING FILTERS
10.3.1 The framework

From the discussion above it is clear that the vector filters in use today origi-
nate from different points of view and thus their structure and properties vary
widely. The large number of filters poses difficulties for the practitioner, since
most of the filters are designed to perform well in a specific application and
their performance deteriorates rapidly under inappropriate conditions. Thus,
a nonlinear adaptive filter which performs equally well in a wide variety of
applications would be of great importance. In particular, it is desirable to ob-
tain a unifying nonlinear filter framework, which encompasses the different
classes of existing nonlinear filters as special cases. Such a framework was
introduced with the development of a new class of adaptive vector processing
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filters discussed in (Plataniotis, Androutsos and Venetsanopoulos, 1995; Pla-
taniotis, Androutsos and Venetsanopoulos, 1996; Plataniotis, Androutsos and
Venetsanopoulos, 1997; Bezdek and Pal, 1992; Dudani, 1977; Plataniotis,
Androutsos, Sri and Venetsanopoulos, 1995; Plataniotis, Sri, Androutsos and
Venetsanopoulos, 1996).

The adaptive filters proposed there utilize data-dependent coefficients to
adapt to local image characteristics. The weights of the adaptive filters are
determined using nonlinear functions of a distance criterion at each image
position. Thus, the coefficients of the filter are not considered as constants,
but are determined in an adaptive way. In this sense, the filter structure is
data-dependent.

Once again, let us assume that a window W of finite size n (filter length)
is available and that x;, i = 1,2,...,n represents the input vectors inside the
window. The general form of the adaptive filter is then given as a nonlinear
transformation of a weighted average of the input vectors inside the window
W (Plataniotis, Androutsos and Venetsanopoulos, 1995; Plataniotis, Androut-
sos and Venetsanopoulos, 1996; Plataniotis, Androutsos and Venetsanopou-
los, 1997):

n

Z WiX;

y: iwfxi — i=

i=1

—_—

(10.9)

=

wi
=

In the adaptive design, the weights provide the degree to which an input vec-
tor contributes to the output of the filter. The relationship between the pixel
under consideration (the window centre) and each pixel in the window should
be reflected in the decision for the weights of the filter. Through the normal-
ization procedure, two constraints necessary to ensure that the output is an
unbiased estimator are satisfied. Namely:

1. Each weight is a positive number, w} > 0,

n
2. The summation of all the weights is equal to unity, 2 w; = 1.
i=1

The weights of the filter are determined adaptively using transformations
of a distance criterion at each image position. These weighting coefficients
are transformations of the aggregate distance between the centre of the win-
dow (the pixel under consideration) and all other samples inside the filter
window. The transformation can be considered to be a membership function
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with respect to the specific window component. The adaptive algorithm as-
signs some membership function to a given vector inside the window and then
uses the membership values within the window to calculate the final output.

The proposed structure is an adaptive, fuzzy design. It is adaptive since
it utilizes local information to determine the filter’s weights and fuzzy since
the actual weights are calculated based on membership function strengths.
Depending on the fuzzy membership and distance used, different filters can
be devised.

In the framework described above, there is no requirement for fuzzy rules
or local statistics estimations. Features extracted from local data, here in the
form of a sum of distances, are used as inputs to the fuzzy weights. In the
proposed methodology, the distance functions are not utilized to order input
vectors. Instead, they provide selected features in a reduced space; features
used as inputs for the fuzzy membership functions.

10.3.2 Distances and fuzzy weights

The most crucial step in the design of the adaptive filter is the determination
of the membership function used for the construction of its weights. The
fuzzy transformation is not unique. It usually depends on the specific distance
measure that is applied to the input data. The different fuzzy functions must
meet some desirable characteristics but mainly are required to have a smooth
finite output range over the entire input range. Several candidate functions,
such as triangular, trapezoidal, piecewise linear and Gaussian-like shapes can
be used for this task. These functions are chosen by the designer arbitrarily,
based on experience, problem specifications and computational constraints
imposed by the design. Since the choice of the membership function form
is very much problem dependent, the only applicable a priori rule is that the
designer must confine himself to those functions which are continuous and
monotonic.

In vector processing of colour images the main design objective is to
select an appropriate fuzzy transformation, so that the pixel with the mini-
mum distance, inside the window W, will be assigned the maximum weight.
Although a number of different shapes can be used, the sigmoidal transfor-
mation, which is usually associated with inner product type of distances, is
used as the membership function when the angular distance (sum of angles)
is selected to calculate the distance among the vectors inside the processing
window.
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The fuzzy weight w; in equation (10.9) has therefore, the following form:

B
(1+exp(a;))”

where 3 and r are parameters to be determined and g; is the angular distance
defined in equation (10.6). The value of r is used to adjust the weighting
effect of the membership function, and B is a weight scale threshold. Since,
by definition, the vector angle distance criterion delivers a positive number
in the interval [0,an] (Trahanias, Karakos and Venetsanopoulos, 1996), the
output of the fuzzy transformation introduced above produces a membership
value in the interval

wp =

(10.10)

(e 2

However, even for a moderate sized window, such as a 3 x 3 or 5 x 5 window,
the lower limit of the above interval should safely be considered zero. As an
example, for a modest 3 x 3 window and with r = 1 and B = 2 the correspond-
ing interval is [1.4 x 107!2,1] and for a 5 x 5 window the interval becomes
[1.5 x 10735 1]. Therefore, we can consider the above membership function
as having values in the interval (0,1]. It can easily be seen through simple
calculations that the above transformation satisfies the design objective.

The angular distance utilized for the development of the vector directional
filters is of course only one of the possible distance measures that can be used
to measure dissimilarity between colour vectors. Another commonly used
distance measure for vector ordering is the generic L, metric (Minkowski
metric), which is defined as follows:

1

dp (i, ) (ZW‘ | ) (10.11)

where m is the dimension of the vector x; and x{‘ is the kth element of x;.
Three special cases of the L, metric are of particular interest, namely, the
city-block distance, the Euclidean distance and the chessboard distance
(defined as max((x} —x! ) (x? — x2) L (o — xk))) that correspond to p =
1,2, 00 respectively. For the wmdow centre (the vector under consideration)
the sum of the distances to all the other vectors inside the window is the
distance criterion. Let d,,(i) correspond to the vector x; defined as:

= idp(’ )

j=1
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where d,, (i, j) is as in equation (10.11) and » is the number of input vectors
inside the window. If input ordering is required, then an ordering of the
dy(i)’s as

dp(1) S dp() S -+ < dp(m)
implies the same ordering to the corresponding x;’s, namely:
X(1) SX¥@) S -or S Xin)

If a generalized norm (L, metric) is selected as the distance function,
an exponential membership function can be used for the evaluation of the
weights of the filter. The form of the fuzzy transformation can be defined as
follows:

d”(i)r] (10.12)

wi=exp -2

where r is a positive constant, and [ is a distance threshold. The parameters
r and B are design parameters. The actual values of the parameters vary with
the application. The above parameters correspond to the denominational and
exponential fuzzy generators (Bezdek and Pal, 1992) controlling the amount
of fuzziness in the fuzzy weight. It is obvious that since the distance measure
is always a positive number the output of this fuzzy membership function
lies in the interval [0,1]. The fuzzy transformation is such that the higher
the distance value, the lower the fuzzy weight. It can easily be seen that the
membership function is 1 (maximum value) when the distance value is 0 and
0 (minimum value) when the distance value is infinite.

The fuzzy transformations of equation (10.10) and equation (10.12) are
not the only way in which the adaptive weights of equation (10.9) can be
constructed. In addition to fuzzy membership functions other design concepts
can be utilized for the task. One such design already discussed by Plataniotis,
Androutsos, Sri and Venetsanopoulos (1995) is the nearest-neighbour rule, in
which the value of the weight w; in equation (10.9) is calculated according to
the following formula:

(10.13)

where d(, is the maximum distance in the filtering window, measured using
an appropriate distance criterion, and d(y) is the minimum distance, which is
associated with the centremost vector inside the window.
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As in the case of the fuzzy membership function, the value of the weight
in equation (10.13) expresses the degree to which the vector at point i is close
to the ideal, centremost vector, and far away from the worst value, the outer
rank. Both the optimal rank position d(;) and the worst rank dy,,) are occupied
by at least one of the vectors under consideration. Plataniotis, Androutsos,
Sri and Venetsanopoulos (1995) devised an adaptive vector processing fil-
ter named Adaptive Nearest-Neighbour Filter (ANNF) utilizing the general
framework of equation (10.9). The weights in the ANNF were calculated by
using the formula of equation (10.13) with the angular distance as a measure
of dissimilarity between the colour vectors.

It is evident that the outcome of such an adaptive vector processing filter
depends on the choice of the distance criterion selected as the measure of dis-
similarity between vectors. As before, the (L;) norm or the angular distance
(sum of angles) between the colour vectors can be used to remove vector sig-
nals with atypical directions. However, both these distance metrics utilize
only part of the information carried by the image vector. As in the case of
the DDF it is anticipated that an adaptive vector processing filter based on an
ordering criterion which utilizes both vector features, namely magnitude and
direction, will provide a robust solution whenever the noise characteristics
are unknown. To this end, a new distance measure was introduced (Platan-
iotis, Sri, Androutsos and Venetsanopoulos, 1996). The proposed distance
measure for the noisy vector x; inside the processing window of length » is
defined as:

i S(xs,X;)) (10.14)

J=1

with

S(x;,X;) = ( xixjt ) <1 _ llxil“lxj” )
1y -
! |x: x| max (|x;[,[x;])

As can be seen the similarity measure of equation (10.14) takes into con-
sideration both the direction and the magnitude of the vector inputs. The first
part of the measure in equation (10.14) is equivalent to the angular distance
(vector angle criterion) of equation (10.7) and the second part is related to
the normalized difference in magnitude. Thus, if the two vectors under con-
sideration have the same length the second part of equation (10.14) equates
to unity, and only the directional information is used. On the other hand, if
the vectors under consideration have the same direction in the vector space
(co-linear vectors) the first part (the directional information) equates to unity
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and the similarity measure of equation (10.14) is based only on the magnitude
difference part.

Utilizing this similarity measure an adaptive vector processing filter based
on the general framework of equation (10.9) and the weighting formula of
equation (10.14) was devised by Plataniotis, Sri, Androutsos and Venet-
sanopoulos (1996). The so called Adaptive Nearest-Neighbour Multichannel
Filter (ANNMF) belongs to the adaptive vector processing filter family defined
through equation (10.9). However, the ANNMF combines the weighting for-
mula of equation (10.13) with the new distance measure of equation (10.14)
to evaluate its weights.

10.3.3 Comments

Although a number of different adaptive designs have been discussed above,
all of them have some common design characteristics and exhibit similar be-
haviour. We summarize a number of them in a series of comments.

e All the adaptive vector processing filters discussed above perform
smoothing of all vectors which are from the same region as the vector at
the window centre. It is reasonable to make their weights proportional
to the difference, in terms of a distance measure, between a given vec-
tor and its neighbours inside the operational window. At edges, or in
areas with high details, the filter only smooths pixels on the same side
of the edge as the centremost vector, since vectors with relatively large
distance values will be assigned smaller weights and will contribute
less to the final filter output. Thus, edge or line detection operations,
prior to filtering, can be avoided with considerable savings in terms of
computational effort. The proposed adaptive framework combines ele-
ments from almost all known classes of image filters. Namely, it com-
bines Minkowski type distances or the angular distance function used
in ranked type estimators, such as the VMF or the BVDF with averaging
outputs used in linear filtering, and with data dependent coefficients
used in adaptive designs.

e In the framework described above, there is no requirement for fuzzy
rules or local statistics estimates. Features extracted from local data,
here in the form of a sum of distances, are used as inputs to determine
the form of the weights. The vector filters discussed in this section
do not utilize the distance measures to order the colour input vectors.
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Instead, they are used to provide selected features in a reduced space:
features used as inputs for the adaptive weights.

e Unlike the BVDF an adaptive directional filter based on equation (10.9)
will not act as a pure chromaticity filter since it can use both the direc-
tional filtering information, through the angle distances, for its weights
as well as the magnitude component of each of the input (colour) vec-
tors to generate the filtered result. This is a feature that differentiates
our adaptive design from the chromaticity filters with grey-level pro-
cessing components, such as the GVDF or the ad hoc hybrid structures
of Gabbouj and Cheickh (1996). The GVDF selects a subset of the
colour vectors and then applies grey-scale techniques only to the se-
lected group of vectors. However, if important colour information was
eliminated due to errors in the chromaticity-based decision part, the
GVDF is unable to compensate using its grey-scale processing module.
That is not the case in our adaptive design. The adaptive filter intro-
duced in equation (10.9) and equation (10.10) does not discard any
magnitude information based on chromaticity analysis. All the vectors
inside the operational window contribute to the final output. Simply
stated, the filter assigns weights to the magnitude component of each
colour vector modifying in this way its contribution to the output. This
natural blending of chromaticity-based weights with magnitude-based
input contributions differentiates our design from the heuristic solu-
tions used in the DDF or the hybrid filters, making the adaptive direc-
tional filter the natural setting for real-time colour image processing.

o The adaptive designs discussed here differ in their computational com-
plexity. It should be noted at this point that the computational complex-
ity of a given filter is a realistic measure of its practicality and useful-
ness, since it determines the required computing power and the asso-
ciated processing time required for its implementation. The computa-
tional complexity analysis of the adaptive designs requires knowledge
of the function used to calculate the weights, evaluation of this func-
tion and the exact form of the ordering process (the distance measure
used). The computationally intensive part of the adaptive scheme is the
distance calculation. This part, however is common to all vector pro-
cessing designs. Thus, from a practical standpoint, the proposed adap-
tive framework yields realizations of different filters that may have re-
duced complexity. The remarkably flexible structure of equation (10.9)
allows a wide variety of combinations that can meet a number of com-
putational and hardware constraints, especially in real-time.
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10.4 APPLICATION TO COLOUR IMAGES

In this section the performance of the different vector processing filters is
evaluated in the most important area of vector processing, namely colour
image filtering. Nine different filters have been used in the studies reported
in this section.

Table 10.1 summarizes the filters used. Two RGB colour images have
been selected for our tests. The colour images ‘Lena’ and ‘Peppers’ ! have
been contaminated using various noise source models in order to assess the
performance of the filters under different noise distributions as listed in Table
10.2.

The normalized mean square error (NMSE) has been used as a quantita-
tive measure for evaluation purposes. It is computed as:

N M
IR HES ()]s

i=0 j=0

N M
> Yy DI

i=0 j=0

NMSE =

where N and M are the image dimensions, and y(i, j) and §(i, j) denote the
original image vector and the estimation at pixel (i, j) respectively. Table
10.3 summarizes the results obtained for the test image ‘Lena’ for a 3 x 3
filter window. The results obtained using a 5 x 5 filter window are given in
Table 10.4. The results for the colour image ‘Peppers’ are summarized in
Table 10.5 and Table 10.6 respectively.

In addition to the quantitative evaluation presented above, a qualitative
evaluation is necessary since the visual assessment of the processed images
is, ultimately, the best subjective measure of the efficiency of any method.
Therefore, we present sample processing results in Plate XI.

From the results listed in the tables, it can easily be seen that adaptive
designs provide consistently good results in all types of noise, outperforming
the other vector processing filters under consideration. The adaptive designs
discussed here attenuate both impulsive and Gaussian noise with or without
outliers present in the test image. The versatile design of equation (10.9)
allows for a number of different adaptive/fuzzy filters, which can provide
solutions to many types of different filtering problems. Simple adaptive de-
signs, such as the ANNF can preserve edges and smooth noise under differ-

IThe “Peppers’ image is part of the USC-SIPI Image Data Base and is reproduced with
permission.
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ent conditions, outperforming other widely used vector processing filters. If
knowledge of the noise characteristics is available, the designer can tune the
parameters of the adaptive filter to obtain better results. Finally, considering
the number of computations, the computationally intensive part of the adap-
tive algorithm is the distance calculation. However, this step is common in all
vector processing filters considered here. In summary, our design is simple,
does not increase the numerical complexity of the multichannel algorithm
and delivers excellent results for complicated multichannel signals, such as
real colour images.

CONCLUSION

Vector processing filters have been the subject of this chapter. A number
of different designs, adaptive and non-adaptive, have been discussed in de-
tail. Adaptive vector filters which combine in a novel way data-dependent
weights, average filters, and distance measures were introduced and analyzed.
Experimental analysis with colour images has demonstrated the efficiency of
the adaptive designs in smoothing out noise. The adaptive vector processing
filters discussed here outperform other nonlinear filters, such as the Vector
Median Filter (VMF), the Directional-Distance filter (DDF) and the heuristic
directional filters of Gabbouj and Cheickh (1996). Moreover, the adaptive
vector processing filters preserve the chromaticity component, which is very
important in the visual perception of colour images. Future work in this area
should address the development of double-window vector processing filters
where an outlier rejection scheme will be utilized prior to the adaptive filter.
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Table 10.1 Vector filters compared.

Name Description and Reference(s)

VMF Vector median filter
(Astola, Haavisto and Neuvo, 1990)

BVDF Basic vector directional filter
(Trahanias, Pitas and Venetsanopoulos, 1994) and (Trahanias and
Venetsanopoulos, 1993)

GVDF Generalized vector directional filter
(Trahanias and Venetsanopoulos, 1993) and (Trahanias, Karakos and
Venetsanopoulos, 1996)

DDF Directional-distance filter
(Karakos and Trahanias, 1995)

HF Hybrid directional filter
(Gabbouj and Cheickh, 1996)

AHF Adaptive hybrid directional filter -

(Gabbouj and Cheickh, 1996)

FVDF Fuzzy vector directional filter, equation (10.10), =2, r=1
(Plataniotis, Androutsos and Venetsanopoulos, 1996)

ANNF Adaptive nearest-neighbour filter, equation (10.13)
(Plataniotis, Androutsos, Sri and Venetsanopoulos, 1995)

ANNMF Adaptive nearest-neighbour multichannel filter, equation (10.13),
equation (10.14)
(Plataniotis, Sri, Androutsos and Venetsanopoulos, 1996)

Table 10.2 Noise distributions.

Number Noise model

1 Gaussian (0 = 30)

2 impulsive (4%)

3 Gaussian (0 = 15) impulsive (2%)
4 Gaussian (o = 30) impulsive (4%)
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Table 10.3 NMSE (x1072) for the ‘Lena’ image, 3 x 3 window.

Filter Noise
1 2 3 4

None 42083 5.1694 3.6600 9.0724
BVDF 2.8962 0.3848 0.4630 1.1354
GVDF 1.4600 0.3000 0.6334 1.9820
DDF 1.5240 0.3255 0.6483 1.6791
VMF 1.6000 0.1900 0.5404 1.6791
FVDF 0.7335 0.2481 0.4010 1.0390
ANNF 0.8510 0.2610 0.3837 1.0860
ANNMF 0.6591 0.1930 0.3264 0.7988
HF 1.3192 0.2182 0.5158 1.6912
AHF 1.0585 0.2017 0.4636 1.4355

Table 10.4 NMSE (x10~2) for the ‘Lena’ image, 5 X 5 window.

Filter Noise
1 2 3 4

None 42083 5.1694 3.6600 9.0724
BVDF 2.8819 0.7318 0.6850 1.3557
GVDF 1.0800 0.5400 0.4590 1.1044
DDF 1.0242 0.5126 0.6913 1.3048
VMF 1.1700 0.5800 0.5172 1.0377
FVDF 0.7549 0.3087 0.4076 0.9550
ANNF 0.6260 0.4210 0.4360 0.7528
ANNMF 0.5445 0.2505 0.3426 0.6211
HF 0.7700 0.3841 0.4890 1.1417
AHF 0.6762 03772 04367 0.7528
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Plate I: A colour image corrupted with different levels of Gaussian noise (a), (c), and (e) and
impulse noise (b), (d), and (). Images (a) and (b) have variance 100, (c) and (d) have variance
1000, and (e) and (f) have variance 10 000. (Page 151)



(b)

(d)

Plate II: Noisy images after binomial smoothing. Images (a) and (¢) have Gaussian noise with
variance 1000, (b) and (d) have impulse noise with variance 1000. One iteration of smoothing
has been applied to images (a) and (b), three to (c) and (d). (Page 152)



(b)

(d)

Plate III: Noisy images after Gaussian smoothing. Images (a) and (c) have Gaussian noise with
variance 1000, (b) and (d) have impulse noise with variance 1000. The standard deviation of the
Gaussian convolution mask for images (a) and (b) is one, for (c) and (d) it is three. (Page 154)



(a)

(d)

Plate IV: Noisy images after median smoothing. Images (a) and (c) have Gaussian noise with
variance 1000, (b) and (d) have impulse noise with variance 1000. A 3 x 3 sorting neighbourhood
was used for (a) and (b), while a 6 x 6 neighbourhood was used for (c) and (d). (Page 155)
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Plate V: Image enhancement using (a) histogram equalization, (b) adaptive histogram equaliza-
tion (AHE) after dividing the image into 3 x 3 regions, (c) AHE after dividing the image into 5 x 5
regions, and (d) AHE after dividing the image into 7 x 7 regions. (Page 159)
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Plate VI: Image enhancement using unsharp masking with: (a) 3, (b) 6, (c) 12, and (d) 24
blurring iterations. In each case 80% of the blurred image is subtracted from the original. (Page
160)



(b)

Plate VII: Image enhancement using constant variance enhancement using a: (a) 3 x 3, (b) 6 x 6,
() 12 x 12, and (d) 24 x 24 statistics neighbourhood. (Page 161)



Plate IX: Fruit. (Page 173) Plate X: A Gaussian smoothed image of Plate
IX (o = 2). (Page 184)



(d) L

Plate XI: (a) ‘Peppers’ image corrupted with 4% impulses, (b) VMF filtered version of (a), (c) HF
filtered version of (a), (d) ANNMF filtered version of (a); all using a 3 x 3 window. (The original
image is part of the usc-sIipI Image Data Base and is reproduced with permission.) (Page 205)
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Plate XII: Vector multiscale opening with d(f(x,y)) =fx(x,y): (a) original image. Results of vector
opening with (b) n =3, (¢c) n =4, (d) n = 6. (Page 221)
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Plate XIII: Vector multiscale opening with d(f(x,y)) =fz(x.y). (a) original image. Results of
vector opening with (b) n =3, (¢) n =4, (d) n = 6. (Page 224)




(b)

Plate XIV: Original image used for noise
suppression experiments. (Page 226)

(a)

Plate XV: (a) Noisy version of original image
in Plate XIV, high spectral correlation; (b)
result of component-wise filter applied in RGB
space; (c) result of vector morphological
filter. (Page 226)




(a) (b)

Plate XVI: (a) Noisy version of original image
in Plate XIV, low spectral correlation; (b)
result of component-wise filter applied in RGB
space; (c) result of vector filter. (Page 226)




Plate XVII: Original image ‘Boats’. (Reproduced from the Usc-sipi Image Data Base with
permission from the USC Signal and Image Processing Institute.) (Page 260)



Plate XVIII: Reconstructed ‘Boats’ image of
Plate XVII after JPEG compression to 0.6 bpp.
(Page 260)

Plate XIX: Reconstructed ‘Boats’ image of
Plate XVII after JPEG compression to 0.26 bpp.
(Page 260)

Plate XX: Reconstructed ‘Boats’ image of
Plate X VII after sub-band/wavelet compres-
sion to 0.6 bpp. (Page 263)

Plate XXI: Reconstructed ‘Boats’ image of
Plate XVII after sub-band/wavelet compres-
sion to 0.18 bpp. (Page 263)



Plate XXII: Original image ‘Lena’. (Reproduced from the usc-sipi Image Data
Base with permission from the USC Signal and Image Processing Institute.)
(Page 270)

Plate XXIII: The image of Plate XXII
quantized to 16 colours using the median-
cut algorithm. (Page 284)




Plate XXIV: The image of Plate XXII
quantized to 16 colours using the variance
minimization quantization algorithm.
(Page 284)

Plate XXV: The image of Plate XXII
quantized to 16 colours using the octree
algorithm. (Page 286)

Plate XXVI: Plate XXII dithered using
Floyd-Steinberg dithering and a 16-colour
palette desined using the octree algorithm.
(Page 289)







Plate XXVII: (a) Frame from original colour video sequence ‘Salesman’; (b) frame from the
same sequence coded in intraframe mode of a standard H.263 coder at a target bitrate of 64 kbps;

(c) a ‘P’ frame (coded in interframe, or predictive mode) showing distortions after rapid motion.
(Page 298)



Plate XXVIII: The CIELAB colour picker. (Page 321)
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Plate XXIX: The Munsell colour picker. (Page 323)



Plate XXX: The Natural Colour System picker. (Page 325)
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Plate XXXII: Locating a shade
from an arbitrary colour
specifier. (Page 325)

Plate XXXIII: Examining colour
difference. (Page 326)



Plate XXXIV: Specifying colour tolerance. (Page 326)

Plate XXXV: Visualizing metamerism. (Page 327)
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Plate XXXVII: Colour adjustment. (Page 329)
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Table 10.5 NMSE (x1072) for the ‘Peppers’ image, 3 x 3 window.

Filter Noise
1 2 3 4

None 5.0264 6.5257 3.2890 6.5076
BVDF 39267 1.5070 0.8600 1.4911
GVDF 1.8640 0.4550 0.3613 0.4562
DDF 3.5090 0.5886 0.5336 0.5893
VMF 1.8440 0.3763 0.3260 0.3786
FVDF 1.4550 0.4246 0.3412 0.4046
ANNF 1.1230 0.5110 0.3150 0.5180
ANNMF 0.9080 0.3550 0.3005 0.3347
HF 1.5892 0.4690 0.3592 04781
AHF 1.4278 0.4246 0.3566 0.4692

Table 10.6 NMSE (x 1072) for the ‘Peppers’ image, 5 x 5 window.

Filter Noise
1 2 3 4

None 5.0264 6.5257 3.2890 6.5076
BVDF 42698 2.7920 1.6499 4.1350
GVDF 1.2534 0.6977 0.6600 0.7030
DDF 2.1440 0.7636 0.7397 0.7612
VMF 1.3390 0.6740 0.6563 0.6812
FVDF 2.1120 0.7310 0.6971 0.7178
ANNF 1.0027 0.5230 0.5200 0.6210
ANNMF 0.8050 0.4471 0.4047 0.4458
HF 1.0040 09970 0.7684 0.9970
AHF 1.1167 0.9841 0.7632 0.9841
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Morphological operations

Mary L. Comer and Edward J. Delp

Mathematical morphology has been shown to be useful for the processing
and analysis of binary and greyscale images (Serra, 1982; Haralick, Stern-
berg and Zhuang, 1987). Morphology has been used to perform noise sup-
pression, texture analysis, shape analysis, edge detection, skeletonization,
and multiscale filtering for applications such as medical imaging, geological
image processing, automated industrial inspection, image compression, and
ECG signal analysis (Serra, 1982; Maragos, 1990; Schonfeld and Goutsias,
1991; Overturf, Comer and Delp, 1995; Chu and Delp, 1989). This chapter
describes the extension of mathematical morphology to colour images.

Many techniques developed for use with monochrome images can be
extended to colour images by applying the algorithm to each of the colour
component images separately. An important question arises: is component-
wise spatial filtering sufficient? Algorithms that exploit spectral correlations
could provide better performance and be more computationally efficient. It
is widely accepted that for nonlinear filtering techniques, such as mathemat-
ical morphology and median filtering, an alternative to the component-wise
approach is needed. For this reason, a number of nonlinear filtering algo-
rithms developed specifically for multivariate image processing have been
proposed (Astola, Haavisto and Neuvo, 1990; Hardie and Arce, 1991; Comer
and Delp, 1992; Goutsias, 1992; Trahanias and Venetsanopoulos, 1993). In
Astola, Haavisto and Neuvo (1990) the vector median filter was developed
as an extension of the median filter for scalar-valued signals. The vector me-
dian of a collection of vectors is the vector from the collection which has
the minimum aggregate distance from all other vectors in the collection (As-
tola, Haavisto and Neuvo, 1990; Barnett, 1976). The output of the vector
median filter at a given pixel of a colour image is the vector median of the
colour vectors inside the filter window. Vector filtering is discussed in detail

S.J. Sangwine et al. (eds.), The Colour Image Processing Handbook
© Chapman & Hall 1998
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in Chapter 10. In Hardie and Arce (1991) a class of ranked-order based filters
for multichannel images was presented. At each pixel, a region of confidence
is determined based on the order statistics of the vectors at neighbouring pix-
els. If the vector at the given pixel does not lie inside this region of confi-
dence, then it is assumed to be an outlier, and it is replaced by the vector in
the region of confidence which is at a minimum distance. Vector directional
filters for multichannel image processing were introduced by Trahanias and
Venetsanopoulos (1993). These filters process vector-valued signals in two
steps. First, vectors are processed based on direction, or angle, resulting in
the removal of vectors with atypical directions. Then, magnitude processing
is performed using any classical greyscale image processing filter.

As with these other nonlinear filters, the techniques which have been pro-
posed for the extension of mathematical morphology to colour images have
been based on the concept of ranking multivariate data (Comer and Delp,
1992; Goutsias, 1992). The following sections describe morphological filters
which use the vector ranking concepts discussed in Barnett (1976). After a
brief review of binary and greyscale mathematical morphology, the vector
morphological filtering operations are defined, a set-theoretic analysis rela-
tive to these vector operations is presented, and the use of vector morphology
for the applications of multiscale image analysis and noise suppression is il-
lustrated.

11.1 MATHEMATICAL MORPHOLOGY

Mathematical morphology is based on set theory. A morphological opera-
tion defined on a binary image is referred to as binary morphology. - This
involves representing the image as a set X C R? or Z? (depending on whether
the image is defined on a discrete or continuous lattice — an image defined
on a discrete lattice will be referred to as a discrete-space image and an im-
age defined on a continuous lattice will be referred to as a continuous-space
image), where R is the set of real numbers and Z is the set of integers. Points
in the image foreground are members of X and points in the background are
members of the complement of X, designated X¢. The image is transformed
by another set, known as the structuring element. The shape and size of
the structuring element determine the resultant image (Serra, 1982; Haral-
ick, Sternberg and Zhuang, 1987; Maragos and Schafer, 1987; Stevenson and
Arce, 1987; Song and Delp, 1990; Song and Delp, 1991).



212 Morphological operations

11.1.1 Binary morphology

There are four basic binary morphological operations: dilation, erosion,
opening, and closing, represented by the symbols @, ©, o, and e, respec-
tively. Binary dilation and erosion are defined as follows:

XOH = {(x,y) :H(x,y)nX #0}
XoH = {(xay):H(x,y)gX}

where X is the original image, H C R? or Z2 is the structuring element, and
H(,,) is the translate of the set H by the vector (x,y) € R* or Z?. Opening
is defined as erosion followed by dilation, and closing is defined as dilation
followed by erosion.

11.1.2 Greyscale morphology

Greyscale morphological operations are an extension of binary morphologi-
cal operations to greyscale images. For greyscale operations, the image will
be represented by the function f(x,y), where (x,y) € R? or Z?, or simply
f, and the structuring element will be the function A(x,y), or h. Greyscale
dilation and erosion are defined as follows:

(F@m) = sup {flx=ry=s) +hlrs)
(Fom@®y) = inf (flr+ny+s)=h(r)

where sup{} and inf{} denote the supremum and infimum operators, respec-
tively, and H C R? or Z? is the support of A(x,y) (the region over which the
structuring element is defined). A special class of greyscale morphological
filters, referred to as function-and-set-processing (FSP) filters (Maragos and
Schafer, 1987), results when A(x,y) = 0 for every (x,y) € H. The resulting
operations of dilation, erosion, opening, and closing are then written as f ®H,
fOH, foH, and f e H. Detailed descriptions of the operations defined in
this section can be found in (Serra, 1982; Haralick, Sternberg and Zhuang,
1987).
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11.2 COLOUR MORPHOLOGY

The extension of mathematical morphology to colour images is not straight-
forward. Serra (1988) discusses the generalization of morphology to its most
basic elements, and concludes that the axioms can be reduced to three key
ideas: an order relationship (for example, set inclusion for binary morphol-
0gy), a supremum oOr an infimum pertaining to that order, and the possibility
of admitting an infinity of operands. The first two of these, the order relation-
ship and the supremum (or infimum), are missing in colour images, because
there is no unambiguous way to order two or more colours. The fact that these
fundamental concepts of morphology do not apply to colour images makes it
difficult to define ‘colour morphology’. However, it is possible that some of
the techniques can be extended to colour images.

The problem of ordering multivariate data is not unique to mathematical
morphology. Although there is no natural means for total ordering of mul-
tivariate samples, much work has been done to define concepts such as me-
dian, range, and extremes in multivariate analysis. Barnett (1976) proposed
the classification of these sub-ordering principles into four groups: marginal
ordering, reduced ordering, partial ordering, and conditional ordering.

11.2.1 Component-wise morphology

In marginal ordering ranking takes place within one or more of the marginal
sets of samples (Barnett, 1976), i.e. scalar ranking is performed within each
channel. Thus, to order a collection of colour vectors using marginal ordering
the components in each spectral band are ordered independently of the com-
ponents in other spectral bands. Morphological operations which are defined
using marginal ordering are referred to as component-wise operations. Be-
cause the component images are filtered separately with the component-wise
filter, there is a possibility of altering the spectral composition of the image,
e.g. the colour balance and object boundaries. For example, there is a possi-
bility with this approach that an object could be removed or enhanced in one
or two of the R, G, and B components, but not in all of them. This effect near
spatial edges in an image is referred to as ‘edge jitter’ (Astola, Haavisto and
Neuvo, 1990). This effect would be unacceptable for many applications. For
example, in object recognition, colour and shape both play important roles.
If the component-wise filter is applied to a colour image as a step in object
recognition, then a change in the spectral composition of image objects may
produce errors in further processing of the colour image obtained from the
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filter.

11.2.2 Vector morphology

A different way to examine the problem of colour morphology is to treat the
colour at each pixel as a vector. To motivate this approach, consider a colour
image with only two colours, representing an object and a background region.
Let f be a colour image which consists of the two colours f; = [Ry, Gl,Bl]T
and f, = [Ry,G,,B>]T. One way to analyze geometrical features of this im-
age, which is perhaps more natural than the component-wise approach, is to
view the pixels which represent the object as a set, and the pixels which rep-
resent the background as the complement of this set, as is done with a binary
image. The justification for this approach is that both binary images and two-
colour colour images represent scenes with two regions, and the geometrical
information in both cases is determined by which pixels belong to the object
and which belong to the background. Thus, we define the sets X and X€ as

X = {(xay) :f(xvy) :fl}

X = {(xy) :flxy) =f}

In this case colour dilation, erosion, opening, and closing would be defined
the same way as binary dilation, erosion, opening, and closing, with X as
the image foreground and X¢ as the background. In this vector approach
the data at each pixel in the filtered image represent either an object pixel
or a background pixel, rather than, for example, the red component from
the object and the blue and green components from the background, as is
possible with the component-wise approach. To extend the vector approach
to colour images with more than two colours, it is necessary to define an
order relation which orders the colours as vectors, rather than ordering the
individual components.

This will be done using reduced ordering. In reduced ordering each mul-
tivariate observation is reduced to a single value, which is a function of the
component values for that observation, with the multivariate samples ranked
according to this single value (Barnett, 1976). To illustrate this type of order-
ing, let x;,X,,...,X, be a collection of multivariate samples, where each x;
is a vector in R”. The n samples are to be ordered using a reduced ordering
scheme. The first step is to map each x; to a scalar value d; = d(x;) where
d: RP — R After d; has been obtained for each i, the vectors X1,X5,...,X,
are ordered based on dy,d,,...,d, as follows:

X(1) SX2) < S X(p)
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where x(,) is the vector with corresponding scalar value d(,), and d;) is the
rth smallest element of the set {d},da,...,d,}.

We now use reduced ordering as described above to define vector mor-
phological filtering operations for colour images. The structuring element for
the vector morphological operations defined here is the set H, and the scalar-
valued function used for the reduced ordering is d : R®> — R. The operation
of vector dilation is represented by the symbol @,. The value of the vector
dilation of f by H at the point (x,y) is defined as:

(fo,H)(x,y)=a (11.1)
where |

ac {f(rs):(rs) € H{;,y)} (11.2)
and

d(a) > d(f(r,s)) V (r,5) € Hx,) (11.3)

Similarly, vector erosion is represented by the symbol ©,, and the value of
the vector erosion of f by H at the point (x,y) is defined as

(fo,H)(x,y)=b (11.4)
where

b€ {f(r,s5) : (r,5) € Hxy)} (11.5)
and

d(b) < d(£(r,s)) Y (1,5) € Hiyy) (11.6)

Vector opening is defined as the cascade of vector erosion and vector dilation,
and vector closing is defined as the cascade of vector dilation and vector
erosion. With the above definitions for vector morphological operations we
must impose the restriction that the set H be a finite set, because if H is not
finite then it is possible that no value of a satisfies equations (11.2) and (11.3)
or no value of b satisfies equations (11.5) and (11.6).

With these definitions the output vector at each point in the image is, by
definition, one of the vectors in the original image, so there is no possibility of
introducing new colour vectors into the image. It is possible that two different
colour values of a could satisfy equations (11.2) and (11.3) or two different
colour values of b could satisfy equations (11.5) and (11.6). In this case the
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output of the vector filter can be chosen based on positions in the structuring
element window.

Often the metric used to perform reduced ordering is some type of dis-
tance metric (Barnett, 1976). The output of the vector filter will depend not
only on the input image and the structuring element, but also on the scalar-
valued function used to perform the reduced ordering. For many image pro-
cessing applications it might make sense to use a characteristic of the human
visual system, such as luminance, as a metric for reduced ordering.

11.2.3 Analysis of vector morphology

Since mathematical morphology is based on set theory, it is important to in-
vestigate the vector morphological operators defined above in terms of set op-
erations. Serra (1982) discusses the need to analyze greyscale morphological
operations not only in terms of transformations of greyscale functions, but
also in terms of set transformations on the cross sections of those greyscale
functions. In fact, greyscale morphology was originally developed by repre-
senting functions as sets, using either cross-sections or the umbra represen-
tation of a function, and applying binary morphological operations to those
sets (Serra, 1982). Similarly, if we define the concept of cross-sections of a
colour image, then vector morphological operations can be analyzed in terms
of set transformations on these cross-sections.

We first review the set-theoretic analysis of FSP morphological operations
for greyscale images. For a greyscale image f (discrete-space or continuous-
space) the set

X(f) ={(xy) €D: f(xy) >1t}, teV

where V C R or Z is the range of the function f; is known as the cross-section
of f at level ¢ (Serra, 1982). If the function f is upper semi-continuous then
the image can be reconstructed from its cross-sections by

f(x,)’) = Sllp{t ev: (x,y) € Xt(f)}

The following equations show the relationship between greyscale dilation
and erosion of the image f by the set H and binary dilation and erosion of the
cross sections of f by H:

X(feH)=X/(f)oH <+ (fGBH)(x,y)=( )sug {f(rs)}
ns)EH )

X(fOH)=X(/)OH <= (FoH)wy)= il {f(s)}
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Thus, the cross section at level ¢ of f @ H is equal to the binary dilation of
the cross section at level ¢ of f by the set H and the cross section at level ¢ of
f© H is equal to the binary erosion of the cross section at level ¢ of f by the
set H.

To derive analogous equations relating vector morphological operations
to binary morphological operations, we propose the following definition for
cross sections of a colour image: The set

X(f) = {(x,y) : d(f(x,y)) > 1}

is the cross-section of the colour image f at level ¢ with respect to the function
d : R?> - R. Reconstruction of a colour image f from its cross-sections is
possible only if each value of d has a unique colour vector associated with it.
In this case, reconstruction of f is given by

d(f(x,y)) =sup{r €V : (x,y) € X;(f)}

Then, f(x,y) is the colour vector corresponding to d(f(x,y)).
The following proposition relates the vector operations of equations
(11.1) to (11.6) to the operations of binary morphology.

Proposition 1 Subject to the constraints

(f@vH)(x,y) € {f(r,s) : (r,5) € Hy )} (11.7)
and
(fovH)(x,y) € {f(r,s) : (r,5) € Hy )} (11.8)

the following equations provide necessary and sufficient conditions for the
vector dilation and erosion of f to be equivalent to binary dilations and ero-
sions of the cross-sections of f:

X,(t®, H) = X,(f) ©H © d((£®, H)(x,y)) > d(£(r,5)) V(r,5) € Hzy) (11.9)
and
X,(f0, H) = X,(f) 0 H & d((f0, H) (x,y)) < d(£(r,5)) V(r,5) € Hix,)(11.10)

Proof. First, we assume that X,(f®, H) = X;(f) ® H and prove the right-hand
side of equation (11.9). Using this assumption, we have
{(x,y):d((fo,H)(x,y)) 21} = {(%¥): Hpy) NX:(E) # 0}

= {(x,y) : -:-]( 5 ) eI'I(x,y) 9d( (r’s)) Zt}
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Hence,

d((f@,H)(x,y)) >t < 3(r,5) € Hyy) D d(f(r,5)) >t

Let

tuax = max {d
Jmax {d(R(rs)}

Then

d((fEBvH)(x,y)) 2 tmax 2 d(f(ras)) V(r,s) € H(x,y)
Thus,
d((f®vH)(x7y)) 2> d(f(r,s)) V(ras) € H(x,y)

Now we assume that d((f®, H)(x,y)) > d(f(r,s)) V(r,s) € H(x,) and prove
the left-hand side of equation (11.9). Let (x,y) € X;(f) ® H. Then

Hiyy) N X, (£) = Hixyy N{(r,5) : d(£(r,5)) > 1} #0
which means that 3(r,s) € H(, , such that d(f(r,s)) > t, and hence,
d((fo,H)(x,y)) >t

by the assumption that the right-hand side of equation (11.9) holds. Thus,
(x,y) € X;(f®,H), and

X(f)®oH C X, (f, H)

Now, let (x,y) € X;(f®, H). Then

d((fe, H)(x,y)) > t

which means that

3(r,s) € Hxyy 2 d(f(r,s)) >t

because of the constraint of equation (11.7). Hence,
H, ;) N X (f) #0

which implies that

(x,y) € {(r,s) : Hy N X (£) # 0}
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Thus (x,y) € X;(f) ® H, and
X.(fo.H) CX,(f) o H
Next, we assume that X,(f©, H) = X,(f) © H and prove the right-hand side
of equation (11.10). We have
{(x,y) :d((fovH)(x,y)) 2t} = {(xy):Hy) SX(6)}
{(x,7) : d((1,5)) > 19(r5) € Hiyy)}

Hence,
d((feyH)(x,y)) >t < d(f(r,5)) > tVY(r,s) € Hxy)
Then, for any ¢, € R,
d((fe,H)(x,y)) = to = d(£(r,5)) > 10V(r,5) € Hiyy)
and, thus,
d((£6, H)(x,)) < d(£(r,5)) V(5) € ey

Now we assume that d((f©, H)(x,y)) < d(f(r,s)) Y(r,s) € H,) and
prove the left-hand side of equation (11.10). Let (x,y) € X;(f) © H. Then
H(y,) € X,(f), which implies that for every (r,s) € H(y,), d(f(r,s)) > ¢, and
hence, using the constraint of equation (11.8),
d((feyH)(x,y)) >t
Thus (x,y) € X;(f©, H). Now, let (x,y) € X,(f©, H). Then
d((feyH)(x,y)) >t
and hence,
V(r,5) € Hyy)d(f(r,s5)) > t
which means that
H xy) & X (f)
and thus, (x,y) € X,(f)© H. O

Proposition 1 is important because it provides the following interpretation
of the vector morphological operations defined in equations (11.1) to (11.6):
vector dilation of f by H is equivalent to thresholding f at each level r € R
to obtain a set containing all pixels representing objects with d value greater
than or equal to ¢ and performing a binary dilation by H on this set, and then
recombining the dilated sets to form the output colour image.

In the following sections we describe the use of colour morphology for
multiscale image analysis and noise suppression.
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11.3 MULTISCALE IMAGE ANALYSIS

The representation of image objects at multiple scales is important in many
computer vision and image processing applications. A multiscale representa-
tion of an image consists of a set of images which are derived by filtering the
original image with a family of filters of varying scale, or spatial extent. Mul-
tiscale image analysis using morphological filtering has been suggested for
applications such as shape-size distributions, image compression, and edge
enhancement (Maragos, 1990; Maragos, 1989; Overturf, Comer and Delp,
1995).

The type of filtering used to obtain a multiscale representation of an im-
age determines the properties of the resultant multiscale representation (and
thus the multiresolution representation, also). Linear filters, such as wavelet
filters, quadrature mirror filters, and Gaussian filters, are often used. Mul-
tiscale image analysis using morphological filtering has been suggested for
applications such as shape-size distributions, image compression, and edge
enhancement (Maragos, 1990; Maragos, 1989; Chen and Yan, 1989; Over-
turf, Comer and Delp, 1995; Sun and Maragos, 1989; Toet, 1989). Although
the linear filtering approach has the advantage that a multiscale representation
obtained using linear filtering can be viewed as a space-frequency represen-
tation and its frequency content can be studied using Fourier analysis, the
morphological filtering approach is more appropriate for quantifying shape
information at different scales (Maragos, 1989; Chen and Yan, 1989).

In this section we investigate the use of the vector and component-wise
approaches for obtaining multiscale morphological representations of colour
images. We concentrate in particular on multiscale FSP operations on dis-
crete-space images. The multiscale FSP opening and closing of a discrete-
space greyscale image f by the finite, connected set H C Z? at scale n are
defined as (Maragos, 1989):

fonH = (fonH)®nH (11.11)
and
fenH = (f®nH)onH (11.12)

forn=0,1,2,..., where
nH=H®H® ---®H (n—1 dilations)

We can perform a multiscale opening or closing on a colour image by re-
placing the greyscale erosions and dilations of equations (11.11) and (11.12)
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by either component-wise colour dilations and erosions or vector dilations
and erosions. It is clear that the component-wise filter can have some unex-
pected effects in terms of spectral filtering. This raises the question of how to
include spectral information in a multiscale colour image representation. The
vector filter has an advantage over the component-wise filter in addressing
this issue because it will not alter the colour composition of image objects.
To illustrate the importance of this advantage for multiscale image analy-
sis, Fig. 11.1 shows the component-wise multiscale opening in RGB space
of a colour image, and Fig. 11.2 shows the vector multiscale opening of the
same image, using luminance as the scalar-valued function for the reduced
ordering. The structuring element H used to create these multiscale represen-
tations is shown in Fig. 11.3. The vector filter provides a more appropriate
multiscale representation of the image than the component-wise filter. The
component-wise multiscale representation would be particularly unsatisfac-
tory if the image was to be represented by its multiscale edges (Mallat and
Zhong, 1992). In this case a colour edge detector applied at each scale would
not produce an accurate representation of the image structure. Although the
component-wise filter could be applied in a colour space other than RGB, the
undesirable effect illustrated in Fig. 11.1 could still occur, since the individual
component images would still be filtered independently.

Since the output of the vector filter depends on the scalar-valued function
used for reduced ordering, the selection of this function provides flexibility
in incorporating spectral information into the multiscale image representa-
tion. For example, certain linear combinations of the tristimulus values can
be used. This would be written as

d(f(x,y)) = ar fr(x,y) +ac fe(x,y) + apfa(x,y) (11.13)

if the image is filtered in the RGB colour space. For the case ag = 0.299,
ac = 0.587, and ag = 0.114, d(f(x,y)) becomes the luminance image. Mul-
tiscale opening in this case would suppress bright objects at each scale. A
multiscale representation obtained using the luminance image as the scalar-
valued function and the structuring element shown in Fig. 11.3 is shown in
Plate XII.

The values of ag, ag, and ap can also be selected to enhance or suppress
specific colours. For example, if ag = 1, ag = 0, and ag = 0, then the effect
of a multiscale opening would be to suppress objects with high red content.
Similarly, if agr = 0, ag = 1, and ag = 0 then green objects would be sup-
pressed by a multiscale opening and if ag = 0, ag = 0, and ag = 1 then blue
objects would be suppressed. This would lead to a family of images parame-
terized by shape, size, and ‘colour’, which could be useful for an application
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Fig. 11.1 Component-wise multiscale opening: (a) original image; (b) result of
component-wise opening, n = 3; (c) result of component-wise opening, n = 4; (d)
result of component-wise opening, n = 5.
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Fig. 11.2 Vector multiscale opening with d(f(x,y)) = fy(x,y) (luminance image):
(a) original image; (b) result of vector opening, n = 3; (c) result of vector opening,
n = 4; (d) result of vector opening, n = 5.
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Fig. 11.3 Structuring element used for multiscale smoothing experiments.

such as object recognition. Plate XIII shows a multiscale representation (us-
ing the same original image and structuring element as those used for Plate
XII) obtained using the red image as the scalar-valued function. It can be
seen that the difference in the values of ag, ag, and ap used for the two mul-
tiscale representations shown in Plate XII and Plate XIII strongly influences
the resultant representation.

11.4 IMAGE ENHANCEMENT

In this section we investigate the use of colour morphology for noise sup-
pression. To simulate noisy colour images with spectrally correlated noise,
the classical process used to whiten correlated random variables is reversed
(Fukunaga, 1990). At each pixel, a vector Z, of three uncorrelated, unit-
variance, random samples is generated. These samples are then mapped,
through a linear transformation, to a vector N with three samples with co-
variance matrix:

2

Or PRGORCG PRBORCB
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where 6%, 6%, and 6% are the variances of the red, green, and blue noise
components, respectively, and pgg, Prg, and pgp are the spectral correlation
coefficients for the red and green, red and blue, and green and blue noise
components, respectively.

To simulate the noise spatially, an e-mixture of Gaussian noise is added
to the R, G, and B components of a colour image (Chu and Delp, 1989). The
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Fig. 11.4 Block diagram of 2DCO filter for greyscale images.

probability density function of this noise is given by:

fum) = e(zn.)3/21|21|1 7 €XP (*%nTZi—]n)
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where N = [Nq,N,,N3]T is the random noise vector, and £ and X, are covari-
ance matrices corresponding to impulsive and non-impulsive noise, respec-
tively. Thus, with probability €, a noise vector with covariance matrix X, is
added at a given pixel. The variances 0,231 , 0‘%;1 ,and 0'125,1 for this noise are large.
This allows spatially impulsive noise to be simulated. With probability 1 — &,
a noise vector with covariance matrix X, is added. The variances 0%2,02@,
and 612;2 for this noise are small. This allows for simulation of non-impulsive
noise.

11.4.1 Experimental results for noise suppression

This section presents results of experiments involving noise suppression in
colour images. The greyscale morphological filter used for all of these ex-
periments was the 2DCO filter introduced by Stevenson and Arce (1987) and
extended by Song and Delp (1991). A block diagram of this filter is shown in
Fig. 11.4. It consists of a cascade of two stages each of which consists of mul-
tiple morphological operators of one type (opening or closing). In each stage
multiple operators are applied to the input image using different structuring
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elements. The output of each stage is selected according to the morphological
operator used: maximum for the output of the opening stage, minimum for
the output of the closing stage. If the first stage consists of closing operators
and the second stage consists of opening operators, then for a greyscale input
image f and a set of structuring elments {1, hy,...,h,}, the output y of the
first stage is given by:

y=min{feh;,fehy,...,feh,} (11.14)
The output z of the second stage is given by
z=max{yoh;,yohy,...,yohy,} (11.15)

The purpose of each stage is to preserve the geometrical features in the image
that match any one of the given structuring elements. For the experiments pre-
sented in this section, four structuring elements consisting of lines of length
3 with different directions were used (Stevenson and Arce, 1987).

The 2DCO component-wise filter consists of applying the greyscale
2DCO filter to each of the three component images independently, whereas
the 2DCO vector filter is defined by replacing the greyscale morphological
operations of equations (11.14) and (11.15) by vector operations.

Noise was added to a colour image in RGB space for two different val-
ues of spectral correlation between component images. Plate XIV shows the
original image used for the noise suppression experiments. The noisy image
shown in Plate XV(a) has parameters € = 0.05; og, = 6, = 05, = 100, for
the impulsive noise and og, = 65, = 65, = 10 for the non-impulsive noise;
and prg = pre = pce = 0.95 for both impulsive and non-impulsive noise.
The noise between component planes in this image is highly correlated.

The result of a component-wise 2DCO filter applied in RGB space is
shown in Plate XV(b).! Also shown, in Plate XV(c), is the result from the
application of the vector 2DCO filter. The Euclidean norm:

d(f(,3)) = /(o) + (folx3)? + (fa(x,7))?

was used as the metric for reduced ordering. This filtering method has results
similar to the component-wise filtering in RGB space.

The second noisy image used in the experiments is shown in Plate XVI(a).
In this image, the values of € and the variances are the same as those used for

IWe are not aware of any generally accepted metric for measuring distortion in noisy
colour images. Therefore, evaluation of our results is subjective. The actual images shown in
this chapter are available at: http://www.ece.purdue.edu/~ ace
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Plate XV. However, this image has prg = pre = pgs = 0.45 for both types
of noise. Thus, the spectral correlation of the noise is lower.

The result of component-wise filtering in RGB space is shown in Plate
XVI(b). It can be seen that this filter has the same level of performance for
this image as it did for the image of Plate XV. Also shown, in Plate XVI(c)
is the result of the application of the vector morphological filter to the image
with lower noise spectral correlation. This method does not perform as well
as the component-wise RGB filter for noise with lower spectral correlation.
With spectrally uncorrelated noise the vector approach will not perform as
well as the component-wise approach due to the restriction that the output of
the vector filter must be one of the input vectors inside the filter window.
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Frequency domain methods

Stephen J. Sangwine and Amy L. Thornton

Image processing, in common with other branches of signal processing, has a
well-developed literature covering image manipulation in the frequency do-
main. An image is a two-dimensional array of pixels and is referred to as
being in the spatial domain. (In signal processing, the corresponding do-
main is usually the time domain, the signals, such as audio, being functions
of time.) It is possible, however, to transform an image into the spatial fre-
quency domain using, for example, a Fourier transform, and manipulate the
frequency domain representation of the image. In the spatial domain, the
image is represented as the variation of luminance and/or chrominance with
position in the pixel array (corresponding to the imaging plane in the camera
or other acquisition device), whereas in the frequency domain, the image is
represented by its spatial frequency components, each having a magnitude
and phase. This representation has it roots in the mathematical technique of
Fourier Series analysis, whereby a periodic function or signal may be de-
composed into a series of sinusoidal components, or alternatively, viewed as
a superposition or summation of the sinusoidal components. The frequency
domain representation of the image is usually referred to as its ‘spectrum’.

It is conventional in image processing to talk of the ‘frequency domain’,
omitting the adjective ‘spatial’, it being understood that when we talk of fre-
quencies, we mean spatial frequencies expressed in cycles per unit length,
and not frequencies in cycles per second (Hz); the unit length being either the
width or height of the image, or the width or height of a pixel (thus we can
talk of picture cycles or cycles per pixel). We adopt this convention in the
rest of this chapter.

Frequency domain methods include many types of image manipulation
and we now discuss some of them briefly. Many of these are discussed in
books on image processing, for example by Castleman (1996) and Sonka,

S.J. Sangwine et al. (eds.), The Colour Image Processing Handbook
© Chapman & Hall 1998
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Hlavac and Boyle (1993) as applied to greyscale images and the separate
colour components of colour images.

Classic linear filtering, which can be implemented by convolution (dis-
cussed on page 152) in the spatial domain, can also be implemented in the
frequency domain by computing the Fourier transforms of the image and
the convolution mask, and multiplying together the image and mask spec-
tra pixel-by-pixel. The resulting spectrum is the spectrum of the filtered im-
age, which is obtained using an inverse Fourier transform. The process of
transformation to the frequency domain takes time, of course, but for large
convolution masks, this time and the time taken to compute the pixel-by-
pixel products is less than that taken to perform the convolution. However,
frequency domain methods are more important where more than one image
is involved. For example, in object recognition it may be possible to have
a reference image of a known object which will be seen in another image
or images at some unknown position, scale, and possibly rotation. Because
the object appears in both images, its frequency content is also in both im-
ages, although not directly comparable, and it is possible to find the object by
correlating the sets of frequency domain information. This sort of technique
can find objects without iteration; producing the coordinates and rotation and
scaling parameters in a single-pass process.

There are other transforms which could be applied, and Castleman (1996)
describes many of them. However, they will not be discussed here, because
the problem in applying any of these transforms to colour images is essen-
tially the same as the problem in applying the Fourier transform: colour im-
age pixels are triples of colour or colour and luminance components, and the
conventional Fourier transform handles real or complex data, that is, at most,
pairs of pixel components. Often, those who use Fourier transforms in signal
and image processing think of the input from the time or spatial domains as
being real-valued (for example, sampled voltages or greyscale pixel values)
because there is no meaning to an imaginary voltage. It is important to re-
alize, however, that the Fourier transform is defined for complex input data:
indeed many digital implementations of the transform operate on complex
input data, the imaginary part of which is set to zero.

In the rest of this chapter, therefore, recent work on colour pixel represen-
tations for complex Fourier transforms and on 4-tuple (or quaternion) Fourier
transforms will be presented, and the future of this field discussed.
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12.1 REVIEW OF THE 2D DISCRETE FOURIER TRANSFORM

The two-dimensional discrete Fourier transform and its inverse are given by:

M—1N-1

Fu,) =S Y, S f(m,n)exp[—j2n(te + )] (12.1)
m=0 n=0 M N
M—-1IN-1

flmn) =S ugb g() F(u,v) exp[j2n(% + %)] | (12.2)

where S = 1/v/MN is a scaling factor (for a square image, of course N =
M). Some formulations of the transform have different scaling factors for the
forward and inverse transforms: the advantage of using the same factor for
each is that the same computer code can compute both forward and inverse
transforms, only the sign of the complex exponentials needing to be changed.

In equations (12.1) and (12.2), f(m,n) represents the spatial domain im-
age, and F(u,v) represents its Fourier transform or spectrum. If f(m,n) is a
greyscale image it will have a real (i.e. not complex) value at each coordinate
(m,n). The values in the spectrum F(u,v) however, are complex. If f(m,n)
is real, certain symmetry conditions apply to F(u,v) which are discussed by
Castleman (1996).

Direct evaluation of the discrete Fourier transform is possible only for
small images because the double summation makes the transform complex-
ity of O(N*M?): every point in the output array is calculated by summing all
points in the input array, each multiplied by a complex exponential. Fortu-
nately, there are much faster algorithms for computing the DFT, discovered
in the 1960s and known as Fast Fourier Transform algorithms or FFTs. The
details are outside the scope of this chapter and can be found in Castleman
(1996) or Blahut (1985) or Brigham (1988).

It is obvious that colour images can be transformed by computing sepa-
rate Fourier transforms for each colour component (for example, R, G and B)
and this is what many commercial image manipulation packages do: the user
must first separate the colour image into three component images which can
be treated as greyscale images. Linear filtering operations on these compo-
nent images applied in the frequency domain will work, and the component
images can then be reassembled to make a colour image. However, this ap-
proach has significant limitations which motivated the work described in this
chapter. Primarily, component-wise transformation does not allow the image
spectrum to be handled holistically: you get three separate spectra. If you
want to compute correlations of images in, for example, object recognition,



Complex chromaticity 231

where the same object may appear in two images, but not with the same (pre-
cise) colouration, you need a single spectrum for each image, not three sep-
arate spectra. A change in colouration between one image and another may
be caused by illumination of a different colour temperature, as would happen
in outdoor image capture under varying conditions of daylight (noon versus
dusk, for example) or artificial light. What is needed is some way to handle
colour image pixels as vectors. Similar issues arise in other developing areas
of colour image processing discussed in this book, for example, in non-linear
filtering discussed in Chapter 9 and Chapter 10 and in morphological filtering
discussed in Chapter 11.

12.2 COMPLEX CHROMATICITY

Thornton and Sangwine (1995) partially achieved a single spectrum for a
colour image by working with the chromaticity information alone, discard-
ing the luminance. In Chapter 4 various different colour spaces are discussed,
and in some of these spaces, one of the coordinate axes corresponds to lu-
minance alone, the other two axes representing the colour, or chromaticity
information. Examples of colour spaces where this applies are HSI, CIELAB,
and YUV. Thornton and Sangwine used a coordinate scheme based on ge-
ometrical projection from RGB space onto a complex plane denoted by Z.
The origin of this plane coincides with the point (0,0,0) in RGB space, and
the plane is perpendicular to the greyline in RGB space which extends from
(0,0,0) to (255,255,255) (assuming an 8-bit discrete RGB space). Fig. 12.1
shows the relationship of the Z plane to the projections of the R, G and B coor-
dinate axes of RGB space: R’ is the projection of the R axis of RGB space onto
the plane, and similarly for the other axes. The equation to convert from RGB
coordinates to Z coordinates is as follows, and is derived by straightforward
geometry:

Z =cos6 lr(g—%—b) +j£g—b

2 2
cos 0 is a scale factor which represents the cosine of the angle between the
RGB axes and the Z plane. It may be omitted. Intensity is defined as I =
(r+g+b)/3 as in a typical formulation of HSI space (section 4.6 on page
4.6). To convert from I and Z back to RGB the following equations are used,
derived by inversion of the equations just given.

r = I+-§-‘K(Z)
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Fig. 12.1 The IZ plane [after Thornton and Sangwine (1995)]
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where R(Z) and 3(Z) are the real and imaginary parts of Z respectively.
These equations may produce values outside the valid range of RGB coordi-
nates, and a clipping algorithm may be needed to adjust such values.

12.2.1 Phase correlation

Using the above representation (Thornton and Sangwine, 1996; Thornton
and Sangwine, 1997) it has been shown possible to apply phase correla-
tion (Kuglin and Hines, 1975) to chromaticity images (that is colour images
with no luminance or intensity component), otherwise known as isoluminant
images (McCabe, Caelli, West and Reeves, 1997). Phase correlation operates
as follows. A reference image (g;) contains a view of an object to be located
in a second image g>. The reference image could show a single object, or
multiple objects, best seen against a plain background. The second image
could contain other objects as well as background clutter. Phase correlation
produces a spatial domain image P, whose magnitude (P being complex),
will contain a peak corresponding to the translation of the object between the
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two images:
g1 { GG }
1G1G3|

where Gy is the Fourier transform of g;, that is G = F(g1); F denotes a
Fourier transform; and F~! denotes an inverse Fourier transform, and * de-
notes a complex conjugate. Note that G| and G, are multiplied point-by-
point, not by using matrix multiplication, and the G means that each pixel in
G, is replaced by its complex conjugate. Phase correlation can be explained
in relatively non-mathematical terms as follows. The Fourier transform of
each image contains information about the frequency content of the image,
including the frequency content due to the object of interest. The position of
the object in the image affects only the phase of the frequency points, that
is the arguments of the complex numbers in the spectrum. Any given fre-
quency always appears at the same position in the spectrum. In other words,
the Fourier transform is translation invariant. When the two spectra are mul-
tiplied, point-by-point, the difference in phase of each frequency value is

computed: this is easily understood by considering the complex values in
exponential form:

Ayexp(j01)Azexp(j62) = A1A2exp(j(81 +62))

Now, because the complex conjugate of G, was used in equation (12.3), all
its phase values were negated, and therefore they are subtracted from those
of G;. The denominator of equation (12.3) divides by the magnitudes of the
frequency values, thus removing all but the phase differences. The result
is known as the normalized cross-power spectrum . Finally, the inverse
Fourier transform produces a surface in the spatial domain which is largely
flat because the uncorrelated phases due to the background do not add coher-
ently. The correlated differences due to the object of interest, however, add to
produce a peak, which can be found by classical signal processing methods,
including thresholding if the peak is of sufficient amplitude.

In Thornton and Sangwine (1996) the complex values in g; and g, repre-
sent the chromaticity of pixels in the two images. In particular, the argument
of each pixel represents hue, and the modulus represents, essentially, satu-
ration; concepts which are explained in section 4.6. The phase correlation
surface therefore (which is complex) should have zero phase at the peak if
the object seen in the two images had the same hue, otherwise the phase at
the peak reveals the difference in hue between the two images. Figure 12.2
shows an example phase correlation surface computed from two colour im-
ages. The difference between the two images is the position and colour of

P=

(12.3)
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Fig. 12.2 Monochrome versions of two colour images and the phase correlation
surface computed from the original colour images.
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the car. In one image the car is red, in the other yellow. The principal peak
in the phase correlation surface reveals the displacement of the car between
the two images, and its phase reveals the difference in hue. A clearer result
is obtained by using an image of the reference object against a plain back-
ground. When a reference image with a multi-coloured background is used
there is more noise in the phase correlation surface, and the hue value of the
peak may be obscured.

12.2.2 The spatial chromatic Fourier transform

McCabe, Caelli, West and Reeves (1997) have also employed a complex
Fourier transform to handle chromatic pixel information. They employed
a form of YUV space, similar to that described in section 4.3 and in section
5.3.2. Ignoring Y, they then employed a complex Fourier transform with the
real and imaginary parts of the complex pixels corresponding to red-green
and blue-yellow axes respectively.

The significance of this work lies in the interpretation of the spectral do-
main information: they show how points in the frequency domain represent
sinusoidally varying chromatic information in the spatial domain, the spa-
tial frequency and orientation of the sinusoid being determined by position
in the spectral domain (as with Fourier transforms of greyscale images); and
the chromatic sequence of the sinusoid by the values of the complex spectral
points, which determine a path through colourspace. This is a very signifi-
cant insight which deserves to be extended to the work described in the next
section.

This interpretation of the chromatic properties of the spectral domain data
has lead McCabe, Caelli, West and Reeves (1997) to a possible approach to
chromatically sensitive linear filters for the first time. Undoubtedly there
will be applications for such filters in time, but there is still a great deal of
fundamental research needed to understand how they may be designed, and
what their detailed properties are.

12.3 THE QUATERNION FOURIER TRANSFORM

The work described so far in this chapter was a first step towards true Fourier
transforms of colour images, but it suffers from the limitation that only two
components of the colour space can be handled because complex numbers
have only two components. A natural question to ask is whether there are
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‘higher order’ complex numbers which could be used, and the answer is that
there are. The quaternion numbers were discovered by Hamilton (1866) in
the 1860s. They are not widely known other than by mathematicians, some
quantum physicists and a few aerospace and robotics engineers. Sangwine
(1996) showed that it is possible to define a Fourier transform using these
numbers with four components per pixel, and that it is therefore possible to
compute holistic Fourier transforms of colour images. Much remains to be
done, however, to establish the properties of the transform, and it has been
established by Thornton, for example, that the phase correlation technique
is not trivially extensible to quaternion Fourier transforms, there being four
symmetrically positioned peaks in the phase correlation surface rather than
one.

12.3.1 The quaternion numbers

A quaternion number has a real part and three imaginary parts and it can be
represented in Cartesian form as:

a+ib+ je+kd (12.4)

where a, b, ¢ and d are real numbers, and i, j and k are complex operators
(generalizations of the complex operator j — usually denoted by i outside
engineering). The properties of the three operators are as follows:

2 = 2 =K = ik = -1

12.5
ij = k jk = i ki = j (12.5)
ji = —k kj = —i ik = —j

Note that within the ring of quaternions, there are three complex sub-fields. A
quaternion-space (which is a 4-space) may be sectioned to give three complex
sub-spaces or planes.

Given a quaternion Q = a+ ib+ jc+ kd, its quaternion conjugate is Q* =
a— ib— jc— kd, and its modulus is given by:

10| = \/a2+b2+(:2+d2 (12.6)

Euler’s theorem generalises to the complex sub-fields with operators i, j
and k, thus:

+i0)

el = cosB=+isinB
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e = cosO+£jsin®
) = os@+ksin®

Multiplication of quaternions is not commutative, and there are left and right
quotients from division. This makes use of the quaternions less straightfor-
ward than use of the complex numbers and one must exercise care in alge-
bra and in computer coding to ensure that products are written and coded in
the correct order. The fundamental reason for this problem is that quater-
nion multiplication is essentially a vector cross-product whose direction (in
4-space in this case) is reversed by interchanging the operands. For a mathe-
matical, but accessible, modern account of quaternion numbers see Artmann
(1988).

12.3.2 The quaternion Fourier integral

The discrete quaternion Fourier transform (DQFT) described in this chapter
was developed from the work of Ell (1992),(1993) who studied the analysis
of two-dimensional linear systems, particularly with regard to their stability
criterion. Ell introduced the quaternion Fourier integral of a two-dimensional
function: (using two time variables):

oo oo

Hljo,kv] = / / eIV bt D) dr dn

—00 —oo

with inverse defined as:
1 rr joot . kv
h(t,r):m//e"”H[]m,kv]e *dvdw

This transform appears very similar to the two-dimensional Fourier integral
(Castleman, 1996):

oo 0o

Fuw) = [ [ sy axay

—oo —oo

Indeed, the only significant difference is the separation of the two complex
exponentials and the use of two different complex operators j and k. These
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small differences should not lead the reader into thinking that the transform
is a trivial development, however. The use of quaternions here makes a fun-
damental difference to the two-dimensional nature of the transform, which is
what Ell needed in his work.

Ell did not discuss the possibility of applying this transform to image pro-
cessing, neither did he discuss the meaning of his two-dimensions of time. He
also seems to have assumed that the time-domain function to be transformed
(h{t,7)) is real-valued, but there is no reason to limit the function to be real or
even complex-valued, and this makes possible the application of this trans-
form to handle colour images, as discussed in the next section.

12.3.3 The discrete quaternion Fourier transform

The DQFT and its inverse, deduced by Sangwine (1996), is:

—-1N-1

F(u,v)=S$ Z Z e /XU f(m,n)e N (12.7)
m=0 n=
M_IN_I H mu ny

flmn) =83y 3 2™ W F (u,v)et*™ ¥ (12.8)
u=0 v=0

where the discrete array f(m,n) is of dimension M X N, and § is as in equa-
tions (12.1) and (12.2), with which equations (12.7) and (12.8) should be
compared. The ordering of the exponential factors here is important because
of the non-commutative multiplication of quaternions. As discussed at the
end of the last section, the function to be transformed (f(m,n)) is assumed to
be quaternion-valued. The spectrum, F(u,v) is also quaternion-valued.

The two-dimensional quaternion-valued functions which are transformed
can be colour images (in RGB format, for example). These can be handled
by placing the three colour components into the three imaginary parts, leav-
ing the real part zero. (Symmetry suggests this arrangement, but there is
no mathematical reason known why some other arrangement should not be
used.) It has been shown, and reported in Sangwine (1996), that a colour
image in RGB format may be transformed into the spatial frequency domain
and then inverse transformed back into the spatial domain to recover the im-
age exactly, and that multiplication of the spectral domain image with the
two-dimensional frequency response of a simple filter produces a low-pass or
high-pass filtered image.
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12.34 Basis functions

The combination of two complex exponentials from different complex sub-
fields gives rise to basis functions which are combinations of cosines and
sines (cosinusoidal basis functions) as are found in the two-dimensional DFT.
In the DQFT however, the orthogonality of the two complex exponentials cre-
ates a separation of information in the spectral domain that does not occur
with the DFT. This may be seen as follows. Consider a quaternion-valued
pixel a+ib + jc + kd multiplied by the two complex exponentials (which
forms one contribution to a spectral domain point):

(coso— jsine)(a+ ib+ jc+ kd)(cos B — ksinB) (12.9)

where o = 2nmu/M and B = 2nnv/N. This may be seen to multiply out as
shown in equation (12.10) (taking care with ordering of any combinations of
i, j and k, and using the rules given in equation (12.5) above to simplify terms
as required).

+acosocosB — b sino sinf3 + ¢ sinacosP + d cosa sin3
+i (+a sino sinf3 + b cosacosP + ccosa sinff — d sinocos )
+j(—a sinoicosB —bcosa sinf} + ccosacosP — d sina sinf3)
+k(—acoso sinB+ b sinocosP + ¢ sina sinf + d cosct cos B )

(12.10)

For comparison, we now consider the same situation in the DFT as given in
equation (12.1): a single complex-valued pixel is multiplied by the complex
exponential and forms one contribution to a spectral domain point:

(a+ib)(cosa— isina)(cos B — isinP) (12.11)

where o and 3 are as above. This may be seen to multiply out as shown in
equation (12.12).

+acosocosP —a sinosinB + b sinocos B+ b cosa sin B

12.12
+i(—a sinoccosP — acosasinB + b cosacosB — b sincsin ) ( )

It is apparent from equations (12.10) and (12.12) that the two-dimensional
DFT and the DQFT differ fundamentally in the way that they represent the
spectral information, although the positioning of points in the spectral domain
as a function of horizontal and vertical spatial frequency is the same. The
DQFT separates the four possible combinations of horizontal and vertical co-
sine and sine components into the four components of the quaternion-valued
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spectral point, whereas the DFT merges some of these together (acos o.cos B
and asinasin  for example) into a single real or imaginary component.
Notice that, in the DQFT, as in the DFT, the combinations of any given
cosine and sine product are separated into different real or imaginary parts.
For example, the combination cos ctcos B appears in the real part of the DFT
spectrum with coefficignt g, and in the imaginary part with coefficient b; and
in the four parts of the DQFT spectrum with each of the coefficients a, b, c,
or d. Thus, any given spatial variation of a colour component from the set
{r,g,b} is separated into different real/imaginary parts of the spectral point.

12.4 DISCUSSION

Application of frequency domain methods to colour images depends crucially
on formulation of a holistic transform that can handle all three components of
a colour pixel and produce a single spectrum. This can be done in a limited
way using the complex Fourier transform, and the work of McCabe, Caelli,
West and Reeves (1997) has indicated an approach towards the interpretation
of the spectral information.

Sangwine’s (1996) work with quaternions shows a possible way forward,
but much remains to be done with interpretation of the spectral domain infor-
mation, and in establishing the detailed properties of the transform, such as
symmetry. Thornton and Sangwine’s (1996) work on phase correlation must
be extended to quaternion-valued transforms: if this cannot be done, then it
is likely that other approaches for correlating images will also not work cor-
rectly. This particular problem is a relatively simple one to understand and
offers the most likely way to a better understanding of the quaternion trans-
form.

Finally, the work of McCabe, Caelli, West and Reeves (1997) shows a
possible approach to the understanding of the spectral information in the
quaternion-valued spectrum as well as possible approaches to colour sen-
sitive filtering , in which linear filters may be definable to have both spatial
and chromatic sensitivity. This requires new developments in the theory of
2D linear systems to extend the concepts of impulse response and frequency
response to a 4-space: a spatial filter has an impulse response whose Fourier
transform is the spatial frequency response of the filter. A colour sensitive
filter would have an impulse response with different spatial frequency re-
sponses for different colours. This may be represented by cross-sections or
paths through quaternion-valued spectral space, but at the time of writing,
this is mere speculation.
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13

Compression

Marek Domariski and Maciej Bartkowiak

13.1 IMAGE AND VIDEO COMPRESSION

The digital data representing still images fills large files with size increasing
with picture resolution. Introduction of colour increases the memory require-
ments by a factor of 1.5 to 4 as compared to monochrome images. For exam-
ple, a file containing row data representing a medium resolution 640 x 480
colour picture with 8-bit representation of its RGB components exhibits a size
of 0.92 MB. Storage of such uncompressed pictures leads to unreasonable de-
mands for disk space and would cause visual databases to be inefficient. The
need for compression is even more apparent for digital video. For example, an
uncompressed digitized video signal of a television channel according to the
ITU-T Recommendation BT.601 needs 216 Mbps (ITU, 1994b). Transmis-
sion of such a large bitstream needs unacceptably large bandwidth even using
advanced efficient modulation techniques. Therefore digital image and video
compression techniques are necessary for applications in communications,
multimedia, medical systems, consumer electronics, remote surveillance etc.
Exemplary present and future areas of application include:

e videophones, videoconferencing;
e digital television, digital high-definition television (HDTV);

e interactive video services: video on demand, teleshopping, tele-
education etc.;

e visual databases;

e telemedicine;

S.J. Sangwine et al. (eds.), The Colour Image Processing Handbook
© Chapman & Hall 1998
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e interactive games;

e remote control and surveillance.

There are large prospective markets for all of the above and therefore
much money has been invested in research in these areas and a lot of research
has been done on still image and digital video data compression. Video data
compression has been shown to be one of the most challenging tasks in re-
search on information and communication technology. Many hundreds of
technical papers have been published in journals and proceedings of interna-
tional conferences, symposia and workshops. The exciting results obtained
inspired definition of entirely new applications, e.g. new multimedia services,
which again stimulated further research on compression for channels with
various bitrates.

In general, compression is possible because of the redundancy in uncom-
pressed images and video data. There are two kinds of information which can
be removed during compression:

redundant information — the information that can be obtained from other
pieces of information existing in a picture or video sequence;

irrelevant information — the information which is not relevant for the
viewer, e.g. information which is impossible or difficult for a viewer
to perceive or even information which has been classified as less im-
portant.

Removal of redundant information leads to lossless encoding where the orig-
inal image can be retrieved during the decoding (decompression) process
without any loss of information. On the other hand, classification of infor-
mation as irrelevant is somewhat subjective. This source of compression is
exploited in lossy coding in which some degradation of the image occurs: the
original image cannot be perfectly reconstructed from its compressed data.
Although the degradation may not be perceivable, it may be annoying after
several cycles of compression and decompression. Nevertheless significant
reduction in the size of an image/video file usually leads to substantial degra-
dation of the quality of decompressed pictures as shown on Plate XIX and
Plate XXT.

In order to store or transmit compressed image/video data, the original
data representing images or frames from a video sequence are fed into a de-
vice which performs compression, often called source coding in textbooks
related to image communication. Such a device is called a coder (or source
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coder). The coder produces a compressed stream of digital data which is
decompressed by a decoder after transmission or when the information is re-
trieved from storage. For bidirectional communication there must be both a
coder and a decoder installed at each end of a link. These two devices are
often implemented as one device called a codec. Codecs for still images are
mostly implemented as computer software. Video codecs may also be imple-
mented in this way, mostly for testing or low-cost applications, but practical
applications need high-speed implementations based on sets of very sophis-
ticated dedicated VLSI chips.

There are many coding techniques applicable to colour images. These
techniques can be classified into groups according to the way in which they
deal with colour.

The most common approach to colour image compression consists of sep-
arate encoding of the three image components. Lossy coding mostly operates
on the luminance-chrominance representation with subsampled chrominance.
The rationale for this is that the chrominance frequency band is narrower than
that for luminance (see also section 13.2.9). The total number of samples in
both chrominance components is often only 50% of the number of luminance
samples. Moreover the chrominance components are often more compressed
than luminance, at least in high-compression applications. Thus the amount
of chrominance data in the compressed bitstream can be 20% less than the
amount of compressed luminance data. This figure explains why most ef-
fort is focused on luminance compression. Selected issues related to separate
encoding of components from still images are reported briefly in section 13.2.

A more sophisticated approach is based on vector processing of the
three components where their mutual dependencies are exploited (see sec-
tion 13.3). A special case of this approach is related to calculation of the
palette representation of an image (which is itself a compression technique)
and possibly further compression of the data related to the palette representa-
tion.

13.1.1 Compression efficiency

The degree of data reduction achieved by a compression process or algorithm
is called compression ratio:

. . i
compression ratio = —
0
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where N, is the length of the data before compression (bits) and N, is the
length of the data after compression (bits). The data size after compression is
often expressed also as an average number of bits per pixel (mainly for still
images) or as the bitstream rate needed to transmit a video sequence, in kbps
or Mbps.

By purely lossless compression, the compression ratio obtained for a
given image or a sequence of images depends only on the technique applied.
Obtainable compression ratios using lossless and nearly lossless coding are
small and usually do not exceed 4 to 5. Such coding is needed in applications
where visual data must remain unchanged over many consecutive cycles of
compression and decompression. Medical and cartographic applications as
well as digital television sequences of contribution quality are good exam-
ples of this.

Higher compression ratios can be achieved by lossy coding in which var-
ious techniques give different degrees of compression and different quality of
the decompressed pictures. Of course, quality decreases as compression ratio
increases. Therefore measures of compression ratio versus quality measured
for various test images or sequences define the efficiency characteristics of a
lossy technique, rather than a single compression ratio as for the lossless tech-
niques. Thus the often asked popular question: “What is the highest possible
compression?” has little meaning for lossy coding. For example, digital tele-
vision video signals compressed to bitrates over 6 to 8 Mbps can be retrieved
with no perceivable degradation while low-resolution videophone pictures
compressed for transmission through very low bitrate channels (even under
30 kbps) like analogue subscriber loops can only be decompressed with much
annoying degradation. '

In order to evaluate codecs the quality of the decompressed images must
be measured. There are two basic ways of doing this:

subjective evaluation by assessment of the quality of the decompressed im-
ages or assessment of impairments between the original and decom-
pressed images made by a panel of viewers who vote on a numeric
scale;

objective evaluation by pixel-wise calculation of an error measure between
the original and the decompressed image.

Subjective evaluation consists in averaging of scores given by some num-
ber of viewers (at least 15). The result is called mean opinion score (MOS).
Assessment of television images is normalized by the International Telecom-
munication Union (ITU). The respective Recommendation BT.500 (ITU,
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1994a) defines experimental conditions like the minimum number of par-
ticipants, lighting conditions, timing etc. Moreover it defines a scale from 1
(the lowest score) to 5 (the highest score) for both quality and impairment as-
sessment. The technique recommended for evaluation of compression errors
is called the double-stimulus continuous quality-scale method (DSCQS).
The experiment participants are asked to assess the quality of two pictures
or sequences displayed consecutively for a short time of about 10-15 s each.
The observers mark their notes on a continuous scale from 1 to 5. Usu-
ally, one image or sequence is the unimpaired reference picture or sequence
while the other is that obtained after decompression. A variant of the method
mentioned above is the double stimulus impairment scale method. In this
method the observers are asked to vote on the impaired pictures, keeping in
mind the reference unimpaired pictures. Moreover, single stimulus meth-
ods are in use. In these methods a single image or sequence of images is
presented and the observers make their assessments on the presentation.

The usual method of objective evaluation is to calculate the peak signal-
to-noise ratio (PSNR) on the basis of the normalized mean square error
(NMSE) between the original (uncompressed) image and the decompressed
image:

PSNR (dB) = —10log NMSE,

where for a monochrome image or the luminance component of a colour
image NMSE is defined as:

N
e
i=1

NMSE = ————
N -255?

(13.1)

where ¢; is the error between the reconstructed and the original image calcu-
lated at the ith pixel, N is the number of pixels, and 255 is the dynamic range
assuming an 8-bit representation (the most common). The PSNR measure
defined above is a modification of the signal-to-noise ratio measure already
discussed in section 8.1. Here, PSNR is calculated relative to the dynamic
range rather than to signal variation while in section 8.1 signal-to-noise ratio
was calculated relative to the signal variance. The values of PSNR are about
6 dB above those of signal-to-noise ratio. Therefore, PSNR is not only easier
to calculate than signal-to-noise ratio but it also gives more optimistic results,
and this may account for its popularity in reporting the results of compres-
sion.
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Some authors use simple, mean square error (MSE) or its root (RMSE):

2
€;

M=

1

1l
—

MSE =

N

Note that many papers on colour image compression report results calculated
in this way for the luminance component only. Of course, a more relevant
way to calculate PSNR is to calculate e; using the colour difference formulae
(see section 3.4). Such cases may need to replace the number 255 in the de-
nominator of equation (13.1) by the dynamic range of the respective colour
difference. For example, Westerink, Biemond and Boekee (1988) found ex-
perimentally that perceptually proper division of bits between luminance and
chrominance in the compressed bitstream is obtained by application of the
Euclidean distance in the YUV space when the squared distances along the U
and Vv axes are weighted with the factor 0.3.

Nevertheless, there is no commonly accepted method for calculation of
the PSNR of colour images. Moreover, the results obtained using PSNR often
do not coincide with those obtained in subjective tests. It is well known
that small errors randomly distributed over the whole image reflect badly in
objective measures, i.e. small values of PSNR, but they often correspond to
invisible degradation of image quality. On the other hand, relatively high-
valued errors concentrated in a particular part of an image can permit the
PSNR to be relatively high (i.e. good) while the subjective assessment is very
low because of an annoying corruption of a particular portion of the picture.

This observation calls into question the usefulness of this objective mea-
sure which, however, does exhibit a very important advantage — it is easy
to calculate. This fundamental advantage makes PSNR very popular. Never-
theless its disadvantages have motivated many researchers to search for bet-
ter objective quality measures. Unfortunately they have not gained much
success so far (Proceedings International Conference on Image Processing,
1996, Session 17A1: Image quality evaluation, pp.869-940). Recently, some
measures that coincide relatively well with the subjective methods have been
described. These methods try to model more general properties of the human
visual system rather than to perform the calculations at the pixel level, e.g.
(Tan, Ghanbari and Pearson, 1997).

There are several other issues related to evaluation of compression meth-
ods. Resilience to transmission errors, complexity aspects, interworking with
other systems, and scalability, are examples of the related issues discussed in
the references on image and video coding given in this chapter.



248 Compression
13.1.2 Digital representation of images for compression

Images for compression may be in various formats which are defined by:

e colour space, like RGB, YC,C,, CMY/CMYK etc. (discussed in Chapter
4 and Chapter 5);

o the number of bits per component sample;
e spatial resolution;

e temporal resolution (for video).

The RGB space is not an efficient representation for compression because
there is significant correlation between the colour components in typical RGB
images. For compression, a luminance-chrominance representation (such as
YC,C,, YUV, YIQ, CIELAB etc) is considered superior to the RGB represen-
tation because of lower inter-component correlation. RGB images acquired
from colour cameras and scanners are therefore transformed to one of the
luminance-chrominance spaces prior to compression.

Nevertheless colour space conversion introduces some errors caused by
rounding of the results of arithmetic operations. Therefore, the RGB represen-
tation may be used for strictly lossless compression with a low compression
ratio.

Because of the system complexity requirements the numbers of bits per
sample of each component should be low, but on the other hand, these num-
bers need to be high enough to avoid visible impairments. Reduction of the
number of bits per sample is equivalent to an increase in the size of the quan-
tization steps between quantization levels. When the quantization steps ex-
ceed the colour discrimination thresholds of the human visual system smooth
changes of colour become step-like. So called false contours appear in an
image with too low a number of quantization levels. This effect is very an-
noying in many natural pictures, for example, of human faces.

Since the number of levels of visual stimuli recognized by the human eye
is of the order of 100 (Wyszecki and Stiles, 1982), it is assumed that the 256
levels offered by an 8-bit representation are ‘safe enough’. Representation
of each component by 8-bit samples leads to so-called true colour 24-bit
representation of colour image samples which is the most common format
in today’s high-quality computer display and storage devices. The popular
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Table 13.1 Minimum number of quantization levels necessary to keep the quanti-
zation error unperceivable (i.e. below the discrimination threshold) for the RGB and
Munsell spaces (after Gan, Kotani and Miyahara (1994)).

Gamma-correction

Representation None (y=3)

R 714 210

G 216 912

B 712 29

H 8 times the value of C
v 28

c 26

display hardware used in cheaper computer video adapters utilizes fewer bits
by application of 6-bit video digital-to-analog converters. Even worse lim-
itations apply to the display mode called high colour, where only 15 or 16
bits for the (R, G,B) triple are assigned to a pixel. This limitation does not
seem to be annoying for everyday usage of computer displays. However,
precise analysis of quantizing errors (Ikeda, Dai and Higaki, 1992a; Ikeda,
Dai and Higaki, 1992b) leads to the conclusion that uniform quantization of
R, G and B components to 256 levels causes in the worst case visual errors
20 times greater than the same quantization performed on the components
of the CIELAB colour space. Therefore for high quality applications, like
medical, chemical or physical research, the RGB-based system is extremely
inefficient and would require more than 8 bits for an individual component
in order to keep the error below the threshold of visual perception as shown
in Table 13.1 (Gan, Kotani and Miyahara, 1994). All these results are re-
lated to serious non-uniformity of the RGB colour space, which means that
the distance between some pairs of points in the RGB space corresponds to an
unnoticeable colour difference while the same distance in another part of the
space corresponds to a quite significant difference in colour sensation (Pratt,
1991; Wyszecki and Stiles, 1982). The same colour accuracy could be ob-
tained within the Munsell colour space using only 9, 8 and 6 bits for the H, V
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Fig. 13.1 Basic chrominance sampling schemes: 4:4:4 (no chrominance subsam-
pling) and 4:2:2, 4:2:0 (with chrominance subsampling).

and C coordinates, respectively (Table 13.1). Therefore the JPEG still image
compression standard (ISO/IEC, 1994) specifies 12-bit component samples
as an option for lossy coding while it allows up to 16 bits per sample of a
component for lossless coding.

A 24-bit representation is also typical for the YC,C, representation of dig-
ital video. Nevertheless 10-bit representation of the digital television compo-
nents is used in some studio and high-fidelity applications.

Spatial resolution is usually the same for all components of the RGB
representation, while in the luminance-chrominance systems the chromi-
nance components are mostly subsampled with respect to the luminance
component. The basic video chrominance sampling schemes are shown
in Fig. 13.1. The 4:2:2 sampling scheme is used in high-fidelity applica-
tions like contribution-quality television while 4:2:0 is very common in high-
compression applications. Basic video formats are summarized in Table 13.2.
The digital television studio format defined by the ITU-R Recommendation
BT.604-1 (ITU, 1994b) is the basic digital format for 25 Hz (as used in Eu-
rope) and 30 Hz (as used in the USA and Japan). Subsampling leads to several
formats such as SIF and CIF etc. Higher spatial and temporal resolutions are
related to high-definition television (HDTV) formats (about 10° — 2 x 10° lu-
minance pixels per frame) and super high-definition formats (over 4 x 10°
luminance pixels per frame).
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Table 13.2 Basic digital video formats.

Digital SIF CIF QCIF sub-QCIF
TV DI
Chrominance 4:2:2 4:2:0 4:2:0 4:2:0 4:2:.0
subsampling
Luminance format 720x 576 352 %288 352x288 176x144 128 x96
(active pixels) 720 x 480 352 x 240 or
360 x 288
Chrominance format 360 x 576 176x 144 176 x 144 88 x 72 64 x 48
(active pixels) 360x 480 176 x 120 or
180 x 144
Bits per component 8 (10) 8 8 8 8
sample
Frame rate (Hz) 250r30 250r30  30* 30* 30*

* or a submultiple.

13.2 COMPONENT-WISE STILL IMAGE COMPRESSION
13.2.1 Entropy coding

Consider a group of lossless coding techniques related to the following idea:
assign shorter bit strings to those symbols which are more frequent in an
image while longer bit strings will be assigned to less frequent symbols. The
set of encoded symbols is a set of numbers, e.g. a set of grey levels or a set
of values of a colour image component. A variable-length bit string called a
code is assigned to each symbol. Therefore entropy coding (EC) techniques
are often called variable-length coding.

A well-known result from information theory says that the average num-
ber of bits per symbol must not be less that the value of the entropy:

K
H=-Y pilog,pi (13.2)
i=1

where p; is the probability of occurrence of the ith symbol and KX is the num-
ber of symbols. Practical methods usually result in numbers of bits per sym-
bol being very close to this minimum value defined by the entropy. The
inspection of the above formula results in a corollary that application of
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variable-length codes becomes more efficient when the symbol probability
distribution is more nonuniform.

Useful codes must be uniquely decodable in the sense that there is only
one possible input sequence that could have produced a given encoded se-
quence. A very well-known example of such codes are the Huffman codes
(Huffman, 1952). In order to produce an optimum code, the statistics of the
signal must be known. Therefore a coder using such a code reads the data
twice: once to estimate the statistics and once to encode the data.

The same code table containing all the codes needed to encode a given
set of symbols must be used by both the coder and the decoder. There are two
basic ways to ensure this:

1. The code table is transmitted together with the data, e.g. for each im-
age. Optimal codes can be used at the cost of transmission of the table
of codes. The coder calculates the optimal code table automatically for
a given set of data, e.g. for an image.

2. The coder and decoder use predefined tables which have been derived
for some assumed data statistics. Neither calculation of the optimal
code nor transmission of the code table is needed but the coding ef-
ficiency may decrease as the actual data statistics differ from the as-
sumed.

The Huffman codes and their modifications are widely used in image com-
pression. The code generation algorithm and its modifications are discussed
elsewhere e.g. (Jayant and Noll, 1984; Gersho and Gray, 1992; Held and
Marshall, 1996). For the sake of brevity, we finish our consideration of Huff-
man codes with a simple example (Table 13.3). A very useful extension
is Huffman block coding where variable-length codewords are assigned to
combinations of symbols instead of individual symbols. There are more ad-
vanced techniques of entropy coding often used in image data compression.
In arithmetic coding (Pasco, 1976; Rissanen, 1976) variable-length codes
are assigned to variable-length blocks of symbols. Because it does not re-
quire assignment of integer-length codes to fixed length blocks of symbols
(as Huffman coding does) it can approach more closely the lower bound es-
tablished by equation (13.2). Implementations of arithmetic coders are more
complicated and need to overcome the precision problem; however, they tend
to yield a higher compression ratio than Huffman coders. The algorithms for
arithmetic coding are described in many textbooks e.g. (Gersho and Gray,
1992; Held and Marshall, 1996) and will be omitted here. The Q-coder
(Mitchel and Pennebaker, 1988) is one of several variants of the arithmetic
coder.
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Table 13.3 A Huffman code table for differential coding of DC value (ISO/IEC,
1994).

Symbol Code word (binary)
00

010

011

100

101

110

1110
11110
111110
1111110
11111110
111111110

O 00 N N RN = O

—_— =
- Qo

Ziv-Lempel coding assigns fixed-length codes to variable-length blocks
of symbols. It is named after its inventors Ziv and Lempel who published the
algorithm (Ziv and Lempel, 1977; Ziv and Lempel, 1978) which was later
corrected and improved by Welch (1984). An advantage of Ziv-Lempel cod-
ing is that, in contradistinction to both previously mentioned techniques, it
does not need any knowledge of the input signal statistics. Variants of this
technique are often used for file compression in various computer environ-
ments.

Since good-contrast images exhibit flat luminance histograms, the com-
pression ratio achieved by entropy coding is usually small. All the above-
mentioned techniques of entropy coding result in low compression ratios usu-
ally not exceeding 1.5 for luminance and something more for chrominance.
Much better lossless compression results can be obtained by joint applica-
tion of entropy and predictive coding (see section 13.2.3). Actually all data
streams produced by modern coders are entropy-encoded.
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13.2.2 Run length coding

Run-length coding (RLC) is a lossless compression process that results in a
string of repeated symbols being converted into a pair (v, r), where v (value)
denotes the repeated symbol and r (run) is the number of times the symbol is
repeated. Run-length coding is used in bilevel image or facsimile compres-
sion. Its applications to colour images include mostly coding of transform
coefficients as discussed in section 13.2.4.

13.2.3 Differential pulse code modulation

Differential pulse code modulation (DPCM) predicts the component value of
the next pixel based on the values of its neighbours. The differences between
the actual value u and predicted values p of pixels forms the prediction error
or difference image d as illustrated in Fig. 13.2. In the simplest case of linear
prediction, the predicted value p is a neighbouring pixel value stored in the
predictor P. More complicated linear predictors calculate the predicted value
as a linear combination of the values of the neighbouring pixels. The decoder
must receive some initial value or values to start its predictor. The values
of consecutive pixels are calculated as sums of the predicted values p and
the differences d received from the coder. The predictor usually makes its
predictions for consecutive pixels in a row or column. The coder/decoder
pair is realizable if the predictor, except for the initial values, reads only the
pixels whose values have already been decoded. For example, if an image
is processed row-wise from left to right and from top to bottom, the value
of a consecutive pixel in the jth row and ith column can be predicted from
the pixels in the row j— 1 or from the pixels in column i — 1 as shown in
Fig. 13.3. Images can be modelled as signals with high correlation which
is exploited in DPCM. As the histogram of a difference image exhibits a

Coder Decoder

Fig. 13.2 Lossless DPCM coder and decoder.
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high peak about zero, application of entropy coding to encode the difference
image is efficient. Therefore DPCM together with entropy coding is a typical
lossless image coding technique. For the R, G, and B components of natural
scene images compression ratios of 2 to 4 are usually achievable. Note that
no quantization is used in the DPCM coder for lossless coding. Introduction
of quantization of the prediction error d results in lossy coding with higher
compression.

13.2.4 Transform coding

Transform coding is the basic tool of contemporary lossy coding techniques.
Usually, it is performed independently on the luminance and chrominance
components. Very many aspects and variants of transform coding have al-
ready been studied in a great number of papers; an interesting review of them
was given by Clarke (1985). The main idea of the method is to calculate the
(N X N)-pixel two-dimensional transform of the (N x N)-pixel blocks from
each image component. Orthogonal transforms exhibit the property of en-
ergy compaction, i.e. the higher values of the transform coefficients tend to
concentrate in one area of the block. Therefore rough quantization or even
neglect of other coefficients has a relatively low impact on the quality of the
image calculated from the quantized transform coefficients via the inverse
transform. This operation is performed in the decoder which receives the co-
efficients quantized and then encoded using run-length and entropy coding.
Profound research has been carried out on the choice of the most efficient
orthogonal transform, i.e. for a transform that can be implemented via fast
algorithms and which efficiently compacts the signal energy into as few as
possible coefficients. As a result of this research, image and video compres-
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sion standards incorporated the discrete cosine transform (DCT) performed
on (8 x 8)-pixel blocks. The block size of 8 x 8 pixels has been chosen as
a compromise between implementation complexity and achievable energy
compaction.

The coefficients F(k,l) of the discrete cosine transform are calculated
from the matrix of the pixel samples f(m,n) from a given image component:

L n(2i+ 1)k n(2j+ 1)1
F(k,l) = 4 g{)]z’f i,J) cos[ T ]cos [—T] (13.3)

where i, j = 0,1,2,...7 are integer coordinates within a pixel block, &,/ =
0,1,2,...7 are integer frequency samples, f(i, j) are the values of the image
components (mostly Y, C, or C,) for the pixel (i, j) within the block, and

C(z)={ i/\/i i;g z€ {k,1}

Direct calculation according to equation (13.3) is inefficient because it re-
quires 64 multiply-accumulate operations for each DCT coefficient, i.e. 4096
multiply-accumulate operations for each 8 x 8 block. There exist fast two-
dimensional DCT algorithms with significantly reduced complexity. For ex-
ample, the algorithm proposed by Cho and Lee (1991) needs only 96 multipli-
cations and 466 additions for an 8 x 8 block. Unfortunately the most efficient
two-dimensional algorithms are highly irregular. More regular implementa-
tions can be obtained in separable solutions, that is by successive calculation
of one-dimensional 8-point DCTs for all rows and then by column-wise trans-
formation of the result. The one-dimensional 8-point discrete cosine trans-
form:

1 ! [(21 + l)kn]
= cOS | ————
16

can be implemented using 11 to 13 multiplications and 29 additions (Lee,
1984; Arai, Agui and Nakajima, 1988). In some structures some of the mul-
tiplications perform scaling of the final output to the correct range. If the
output is to be quantized, as is usual, the scaling factors can be absorbed
into the divisions needed to quantize the outputs. Only 5 multiplications and
29 additions are actually needed before quantization in order to implement
the one-dimensional 8-point transform (Arai, Agui and Nakajima, 1988). A
deeper discussion can be found in Rao and Yip (1990). The discrete cosine
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transformation results in an 8 x 8 block of transform coefficients. The coef-
ficient F(0,0) is called the DC coefficient. In practice, it always exhibits the
highest value. The other coefficients F(k,[) are called the AC coefficients.
Their values tend to decrease as the indices k and / increase, that is, most of
the signal energy is in the lower frequency components. Therefore the higher
coefficients can be represented with a smaller number of bits. The usual way
of doing this is to quantize the transform coefficients. This quantization is an
irreversible lossy compression operation in the DCT domain. Each transform
coefficient F(k,l) is quantized in a uniform quantizer defined by its quanti-
zation step Q(k,!). The quantized value Fy(k,!) of the transform coefficient
F(k,l) is an integer:

where () denotes rounding to an integer value. This rounding may be per-
formed by different means.

A matrix Q(k,!) defined for each colour component of an image is called
a quantization table. The choice of quantization table strongly influences
the coding efficiency and is related to the problem of optimal bit allocation
which has been discussed in many papers (Clarke, 1985). A standard calcu-
lation proposed by Huang and Schultheiss (1963) based on the assumption of
Gaussian distribution of the coefficient values leads to a relation between the
numbers of bits and the coefficient variances. Among other approaches, one
that deals with quantization steps based on the visibility of 8 x 8 DCT basis
functions for luminance and chrominance has to be noted. Typical quanti-
zation tables proposed as an example in the JPEG still image compression
standard (see section 13.2.8) are shown in Fig. 13