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First Foreword 

The modern origin of fuzzy sets, fuzzy algebra, fuzzy decision making, and 
“computing with words” is conventionally traced to Lotfi Zadeh’s publication in 
1965 of his path-breaking refutation of binary set theory. In a sixteen-page article, 
modestly titled “Fuzzy Sets” and published in the journal Information and Control, 
Zadeh launched a multi-disciplinary revolution. The start was relatively slow, but 
momentum gathered quickly. From 1970 to 1979 there were about 500 journal 
publications with the word fuzzy in the title; from 2000 to 2009 there were more 
than 35,000. At present, citations to Zadeh’s publications are running at a rate of 
about 1,500-2,000 per year, and this rate continues to rise. 

Almost all applications of Zadeh’s ideas have been in highly technical scientific 
fields, not in the social sciences. Zadeh was surprised by this development. In a 
personal note he states: “When I wrote my l965 paper, I expected that fuzzy set 
theory would be applied primarily in the realm of human sciences. Contrary to my 
expectation, fuzzy set theory and fuzzy logic are applied in the main in physical 
and engineering sciences.” In fact, the first comprehensive examination of fuzzy 
sets by a social scientist did not appear until 1987, a full twenty-two years after the 
publication of Zadeh’s seminal article, when Michael Smithson, an Australian 
psychologist, published Fuzzy Set Analysis for Behavioral and Social Sciences.
Smithson explored many different aspects of fuzzy set theory, with a special focus 
on points of convergence between fuzzy set theory and conventional quantitative 
analysis. However, this work did not attract the following it deserved, and few 
scholars took up his call to explore the possibilities offered by this new approach. 

The 1987 also saw the publication of my book The Comparative Method: 
Moving Beyond Qualitative and Quantitative Strategies. In this work I focused on 
conventional Boolean sets and explored the use of set-theoretic methods for 
studying cases as configurations of aspects and for comparing cases as 
configurations. In contrast to Smithson’s book, my work emphasized the 
distinctiveness of set-theoretic methods and the gap between these methods and 
conventional quantitative methods. However, the techniques I developed were 
limited to conventional Boolean sets, and many social scientists were dismayed at 
the thought of using dichotomies, especially given their deep commitments to 
interval-scale measures and multivariate techniques such as multiple regression. 

For these and other reasons, I took up Smithson’s call to explore fuzzy sets, 
which culminated in 2000 with the publication of my book Fuzzy-Set Social 
Science. I extended and elaborated these ideas in 2008 with the publication of 
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Redesigning Social Inquiry: Fuzzy Sets and Beyond. These two books join the 
configurational methods I present in my 1987 book with the fuzzy set principles 
developed by Zadeh and his many followers. The tools I present provide methods 
for comparing cases as configurations, and they allow for the possibility that cases 
may have only partial memberships in the sets that comprise a given 
configuration. In effect, a configuration may be seen as an ideal type, as Weber 
would describe it, with cases varying in the degree to which they conform to that 
ideal type. By looking at cases as configurations, it is possible to explore causal 
heterogeneity and causal complexity in ways that are beyond the grasp of 
conventional quantitative methods. 

In both the 2000 and 2008 books, I use fuzzy sets that are numerically based. 
That is, each case is assigned a numerical value between zero (0) and one (1.0) to 
signal its degree of membership in each relevant set. The conceptualization and 
labeling of each set used in an investigation has a determining impact on the 
assignment of numerical values. For example, a survey respondent might receive a 
score of 1.0 for his or her membership in the set of “at least moderate” income 
individuals, but a score of only 0.60 in the set of “high” income individuals. The 
key idea is that different conceptualizations of the target set call for different 
“calibrations” of set membership, even when using the same source variable (e.g., 
income, as conventionally measured). In this way, researchers can establish a 
close correspondence between the concepts they use in their verbal arguments and 
their practical analytic procedures. This close coupling of concepts and 
calibrations contrasts sharply with conventional approaches in quantitative work, 
where there is heavy reliance on “indicators” that simply “correlate” with 
underlying concepts. 

Most applications of fuzzy sets in the social sciences today use numerical 
values to represent degree of membership in sets. While convenient, this practice 
does not exhaust the many possibilities offered by fuzzy set theory. An alternate 
approach, which Badredine Arfi uses to great advantage in the present work, 
utilizes the actual verbal labels that apply to the evidence, instead of numerical 
values, when representing degree of membership in sets. This “linguistic” 
approach to fuzzy sets is the foundation for “computing with words” instead of 
numbers and also a major focus of what is known today as “soft computing.” As 
Arfi shows, it is possible to establish a very tight connection between verbal 
theory and argumentation, on the one hand, and empirical analysis, on the other, 
using linguistic fuzzy logic methods. Arfi’s approach, in effect, offers the 
possibility of a one-to-one correspondence between verbal argumentation and 
empirical analysis. His approach also eliminates the intermediate task of assigning 
numerical values to verbal labels. 

Arfi’s linguistic approach is not the only distinguishing feature of this 
innovative work. Most applications of fuzzy set methods, especially in the social 
sciences and elsewhere, use what are known as “type-1” fuzzy sets. That is, 
specific linguistic labels or numerical values are assigned to cases, indicating the 
degree of membership of each case in each set. Arfi, by contrast, utilizes “type-2” 
fuzzy sets, enriching fuzzy set analysis with an additional dimension. A type-2 
fuzzy set includes not only some indication of degree of membership (i.e., the 
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type-1 designation), but also an evaluation (which is linguistic in Arfi’s work) of 
the degree of confidence (or truthfulness) that exists in the assigned membership. 
For example, a researcher might report that a case has “very high” membership in 
a given set, but also indicate that there is only a moderate degree of confidence in 
that assignment. Using type-2 fuzzy sets, it is possible, in effect, to skew the 
analysis so that it favors the evidence in which there is more confidence, and in 
Arfi’s work this can be  accomplished using non-numerical (i.e., linguistic) 
assessments of both set membership and degree of confidence in the assignment of 
membership. 

Arfi demonstrates the analytic power of this combination of linguistic fuzzy 
logic methods and type-2 fuzzy sets in this pioneering book. After laying the 
analytic foundations early on, he applies his approach to a range of problems 
familiar to social scientists, from fuzzy decision making, fuzzy game theory and 
strategic interaction to fuzzy propositional logic (applied to causality) and fuzzy 
data analysis. Social scientists who wish to extend their thinking about the 
possibilities offered by fuzzy sets will find a wealth of new material in this work. 

 Charles C. Ragin 
Department of Sociology 

University of Arizona 
Tucson, Arizona 85721 

USA 



Second Foreword  

It is hard to add substantively to the foreword of Professor Ragin and the preface 
of Professor Arfi. Both are informative, authoritative and erudite. In the following, 
I will confine myself to a few observations. 

Allow me to start with a truism. Science deals not with reality but with models 
of reality. In large measure, scientific progress is driven by a quest for better mod-
els of reality. 

Science has always been and continues to be based on bivalent logic—a logic in 
which no shades of truth are allowed. Correspondingly, in fuzzy logic classes are 
assumed to have sharply defined boundaries. The brilliant successes of bivalent-
logic-based science are visible to all. However, the brilliant successes are far more 
visible in the world of physical sciences than in the world of human sciences—
sciences such as sociology, psychology, political science, linguistics and philosophy. 
There is a reason. The world of physical sciences is the world of measurements, 
while the world of human sciences is the world of perceptions. Perceptions are intrin-
sically imprecise, reflecting the bounded ability of human sensory organs and ulti-
mately the brain, to resolve detail and store information. As a consequence, in the 
world of human sciences classes have unsharp boundaries. Bivalent logic is intolerant 
of imprecision and partiality of truth. For this reason, bivalent logic is not the right 
logic for serving as a foundation for human sciences. What is needed for this purpose 
is fuzzy logic. Essentially, fuzzy logic is the logic of classes with unsharp boundaries. 
Equivalently, fuzzy logic may be viewed as a precise logic of imprecision. At this 
juncture, the view that fuzzy logic has much to offer to human sciences has not 
gained wide acceptance. Eventually, it will, thanks to the pioneering contributions of 
Smithson, Ragin, Arfi, Mordeson and his collaborators, and others. 

In sum, fuzzy logic is needed for dealing with imprecision—especially with un-
sharpness of class boundaries. But somewhat paradoxically, most applications of 
fuzzy logic are in the domain of engineering systems—systems in which models 
are measurement-based and precise. Fuzzy logic is employed extensively in digital 
cameras, washing machines, air-conditioning systems, automobile transmissions, 
industrial control and many other application areas. There is an interesting expla-
nation. Precision carries a cost. In most applications there is some tolerance for 
imprecision. This tolerance is exploited through deliberate imprecisiation of a 
precisely-defined system. Then the machinery of fuzzy logic is employed to deal 
with the imprecision of the resulting system. Typically, the resulting system is a 
linguistic summary of the original system.  
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Generally, imprecisiation involves the use of linguistic variables and fuzzy if-
then rules. These concepts were introduced in my 1973 paper “Outline of a  
New Approach to the Analysis of Complex Systems and Decision Processes.” The 
concepts of linguistic variable and fuzzy if-then rules served as a basis for the 
development of linguistic approaches to systems analysis. A case in point is the 
Linguistic Fuzzy Logic of Professor Arfi. In Professor Arfi's logic, grades of 
membership and truth values are allowed to be linguistic variables. Professor 
Arfi’s approach opens the door to construction of better models of reality in the 
realm of human sciences. His work is an important contribution. 

In conclusion, Professor Arfi's book, “Linguistic Fuzzy Logic Methods in So-
cial Science,” contains much that is new and original. His work paves the way for 
important applications of fuzzy logic in the realm of human sciences. Professor 
Arfi and the publisher, Springer, deserve our thanks and congratulations. 

Lotfi A. Zadeh 
    Director, Berkeley Initiative in Soft Computing 

Department of Electrical Engineering and Computer Sciences 
University of California, Berkeley, CA 94720-1776, USA 

May 27, 2010 



Preface

Many years ago Charles S. Pierce stated that “vagueness is no more to be done 
away with in the world of logic than friction in mechanics.” Likewise, Bertrand 
Russell retorted, “everything is vague to a degree you do not realize till you have 
tried to make it precise.” Not surprisingly, vagueness and equivocation are 
constitutive features of human systems of communication. Human beings cannot 
live and communicate without using natural languages, yet the latter are inherently 
vague and equivocal. Addressing the problem of linguistic vagueness is no easy 
task because most social sciences variables are often difficult to precisely 
operationalize, a problem that confronts equally those inclined to use either 
qualitative or quantitative methods of analysis. Constantly seeking more 
conceptual and operational precision and crispness is hence commonly believed to 
be a golden rule to the production of high quality research work in social sciences. 

Contra this conventional wisdom, this book raises the question: What if instead 
of seeking to get rid of language-caused vagueness we make its preservation an 
essential requirement for analyzing social science phenomena, both theoretically 
and empirically? This book develops a novel approach, termed as linguistic fuzzy-
logic methodology, which in essence addresses the problem of language-related 
vagueness in analyzing social sciences phenomena. Exploring the relatively new 
field of fuzzy-logic as applied to social and political phenomena takes us into a yet 
to be explored rich territory of research questions, theoretical arguments, and 
policy insights. Every theory and every empirical analysis of social phenomena is 
underpinned in a given logic of reasoning for judging coherence, consistency and 
the possibility of falsification. Much of what counts as social science today is 
based on a Boolean logic with two truth values, 0 and 1. The task set out for this 
book is to go beyond this assumption by showing that linguistic fuzzy logic can be 
very useful in analyzing empirical data, studying causation, and strategic 
reasoning in social science theories. 

The book, titled “Linguistic Fuzzy-Logic Methods in Social Sciences,” is a first 
in its kind. Linguistic fuzzy logic theory deals with sets or categories whose 
boundaries are blurry or, in other words, “fuzzy,” and which are expressed in a 
formalism that uses “words” to compute, not numbers, termed in engineering as 
“soft computing.” This book presents an accessible introduction to this linguistic 
fuzzy logic methodology, focusing on its applicability to social sciences. 
Specifically, this is the first book to propose an approach based on linguistic 
fuzzy-logic and the method of computing with words to the analysis of decision 
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making processes, strategic interactions, causality, and data analysis in social 
sciences. The project consists of systematic, theoretical and practical discussions 
and developments of these new methods as well as their applications to various 
substantive issues of interest to international relations scholars, political scientists, 
and social scientists in general.  

The book, first, addresses the basic concepts of the methodology. Linguistic 
fuzzy logic methodology is an analytic framework for handling concepts that are 
categorical and coded in words, not in numbers. The book begins with a rationale 
for linguistic fuzzy logic and then introduces readers with a vey elementary 
requirement of statistics and formal modeling to the necessary concepts and 
techniques of linguistic fuzzy logic methodology. Second, the book presents novel 
ways of analyses in social sciences. Readers are shown new methods for testing 
theories that are expressed in linguistic terms. Issues of operationalizing and 
testing models expressed in linguistic fuzzy-logic framework are a few of the 
topics addressed. Third, the book presents various illustrations of the techniques 
and applications of the new methodology. Concrete examples and data-sets from 
various branches of the social sciences are used to compare and contrast the 
linguistic fuzzy logic framework with other analytic techniques. Empirical 
applications of the technique as well as critiques of fuzzy set theory are presented. 

The book has several chapters, successively dealing the process of fuzzy 
decision making, fuzzy strategic interaction and fuzzy game theory, fuzzy 
causality and fuzzy propositional logic, and fuzzy data analysis. This manuscript 
thus presents novel ideas as no other book in social sciences or elsewhere has ever 
done before. It makes a strong case through its scope and rigor for adopting 
linguistic fuzzy logic, thereby introducing the subject-area of “computing with 
words” into social sciences methods. The book specifically plows new grounds by 
presenting a new kind of game theory and a new type of data analysis 
methodology.   

Given its scope and breadth in covering decision making theory, strategic 
interaction models, data analysis method, and the formal study of causality, while 
requiring minimal mathematical, statistical, or computer skills, the book should 
appeal to a diverse audience: students at the advanced college and university level, 
graduate students and scholars who are interested in new methods of empirical 
analysis and theory falsification across all social science disciplines. The major 
instructor problem in teaching the content of this book will be more at the 
conceptual level because this methodology goes against the widely held 
misperception that we need “numbers” and related logic to achieve more rigor and 
accuracy in studying social and political phenomena in a scientific way. Yet this is 
not too difficult a challenge since linguistic fuzzy logic methodology is a more or 
less reflection of our “natural” way of thinking and communicating via natural 
human language.  
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Chapter 1 
Linguistic Fuzzy-Logic and Computing with 
Words 

1   Setting the Ground 

Data collecting, mining, and analysis are crucial aspects of research in social 
sciences. To this end a multitude of methods has been developed in various 
branches of social sciences. Yet the problem of vagueness of data expressed in 
natural languages is a persistent challenge that does not seem to be lending itself 
to a final resolution. Many years ago Charles S. Pierce stated that “vagueness is no 
more to be done away with in the world of logic than friction in mechanics.” 
Likewise, Bertrand Russell retorted, “everything is vague to a degree you do not 
realize till you have tried to make it precise.” Not surprisingly, vagueness and 
equivocation are constitutive features of any human system of communication. 
Human beings cannot live and communicate without using natural languages, yet 
the latter are inherently vague. Addressing the problem of linguistic vagueness is 
no easy task for social sciences. Indeed, most social sciences variables are often 
difficult to precisely operationalize, a problem that confronts equally those 
inclined to use either qualitative or quantitative methods of analysis. Constantly 
seeking more conceptual and operational rigor, precision and crispness is hence 
commonly believed to be a golden rule to the production of high quality research 
work in social sciences. Yet, the meanings of words are inherently, as literary 
critics and others are quick to emphasize, imprecise, vague, and fuzzy. Relying on 
rigorous quantitative methods does not solve this problem. Analysts might often 
fall into the problem of overdoing it, that is, by seeking too much precision and 
crispness in their methods they would end up sacrificing replicable connections 
with the phenomenon they are trying to explain. Moreover, the variables and 
approaches of these quantitative methods cannot ultimately escape a process of 
interpretation, which in the end more or less recreates the very condition of 
imprecision and fuzziness that conventional quantitative methods usually seek to 
avoid. It has thus become conventional wisdom in social sciences to seek better 
tools in addressing the problem of language-related vagueness in data analysis.   

Contra conventional wisdom, this book raises the question: What if instead of 
seeking to get rid of language-caused vagueness we make it into an essential 
requirement for analyzing social science phenomena, both theoretically and 
empirically? This book thus develops an approach – termed as linguistic fuzzy-
logic approach or LFLA – that addresses the problem of language-related 
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vagueness in analyzing social sciences phenomena. Exploring the relatively new 
field of fuzzy-logic as applied to social and political phenomena takes us into a yet 
to be explored rich territory of research questions, theoretical arguments, and 
policy insights. If the engineering world has been fundamentally reshaped after 
Lotfi Zadeh (1999) launched his pioneering research program on fuzzy-sets theory 
in the mid-1960s, vigorously applying similar methods in social and political 
research undoubtedly promises to have a far reaching impact on our understanding 
and explanation of many social and political phenomena. The approach is fuzzy 
because it is built on fuzzy logic, instead of Aristotelian or Boolean logic. It is 
linguistic because it uses words as computational variables, not numbers.   

The book hence proposes a new approach based on linguistic-fuzzy logic and 
the notion of computing with words to the analysis of decision making processes, 
strategic interaction, the study of causality, and data analysis. The book consists of 
theoretical discussions and developments of these new methods as well as their 
applications to various substantive issues of interest to international relations 
scholars, political scientists, and social scientists in general.   

2   Fuzzy-Sets Theoretic Approach in Social Sciences 

The notion of a fuzzy set, first introduced by Zadeh in 1965, is based on the idea 
that an object more or less corresponds to a category.1 The concept of fuzzy set 
focuses on the vagueness that is intrinsic to natural language (e.g., in description 
such as “very smart” person, “widely used” terms) and that sets are fuzzy. For 
example, the sets of developing countries is fuzzy in the sense that it is both 
theoretically and empirically impossible to unambiguously and sharply define 
what a developing country is and where the boundary between the sets of 
developing and developed countries lies. This in fact is true for all states attributes 
such as democratic, democratizing, failing, consolidating, etc. If one were to use 
conventional ways to describe the set of democratic states, one would say that 
state A is either democratic or not – it is either a member or not a member of the 
set of democracies. As most students of democratization will testify though, this is 
a very un-empirical statement. In reality, states are always more or less 
democratizing. We would hence more accurately say that state A is more or less in 
the set of democratic states. The membership value is not necessarily 1 (i.e., “in”) 
or 0 (i.e., “out’), as conventional wisdom based on crisp sets would have it. 
Rather, the membership value is somewhere between 0 and 1, with 0 
corresponding to completely non-democratic and 1 corresponding to fully 
democratic. Dealing with this notion of gradual membership in a fuzzy set has 
resulted in a rich industry of concepts, theorems, algebras and the like. 

Attaching a degree of membership to the elements in the fuzzy set means that 
the extent to which an element belongs to the fuzzy set is a number of the 
continuous interval [0,1], rather than on of the Boolean pair {0 (out) , 1 (in)}. A 
classical (crisp) set A is defined as a collection of elements x ∈ A, the 

                                                           
1 For and introductory text on Fuzzy Sets Theory and Applications see, for example: 

Smithson (1987); Klir and Yuan (1995); Smithson and Verkuilen (2006).    
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characteristic function c(x) of which can have one of two values, 0 or 1. A value of 
1 means that element x is in the set A whereas a value of 0 means that it is not. 
The characteristic function of a fuzzy set allows various degrees of membership 
for the elements of a given set – the elements are included in the set to a certain 
extent or degree with some elements “more” included and others “less” included. 
Formally, a fuzzy set A (drawn from a larger set of elements, X) is characterized 
by a membership function μ(.) given by μ: X → [0,1], and 0 ≤ μ(x) ≤ 1. μ (x)  
represents the degree to which x belongs to A. Compared with a crisp subset of X, 
the range of the membership function of a fuzzy set is a continuous mapping over 
the interval [0,1], rather than the two-element set {0,1}.   

For example, in a fuzzy Prisoner’s Dilemma game, the strategy of cooperation 
can be divided into a number of fuzzy sets (subcategories) described as full 
cooperation, strong cooperation, moderate cooperation, weak cooperation, and 
no-cooperation, with the corresponding membership functions given  respectively 

by C
Fμ , C

Sμ , C
Mμ , C

Wμ , and C
Nμ . These are continuous functions on the interval 

[0,1], which means the players are more or less fully cooperating, more or less 
moderately cooperating, etc. Probability and statistics are insufficient to represent 
this sort of linguistically represented vagueness.2 Fuzzy set theory is a tool that 
allows us to mathematically incorporate such an inherent vagueness in theories 
and methodologies of social sciences. More generally, as put by Ragin (2000:331), 
“paradoxically, fuzzy sets highlight the imprecision of social scientific concepts 
and demand that they be sharpened and clarified. The greater the correspondence 
between the scores indexing membership in a fuzzy set, on the one hand, and the 
meaning of the concept that parallels the set, on the other, the more useful the 
fuzzy set … to construct a fuzzy set and assign fuzzy membership scores, 
researchers must say what their concepts mean, and they must be explicit about 
membership criteria.” 

In a ground breaking piece, Cioffi-Revilla sought to systematically introduce 
the ideas and concepts of fuzzy sets theory to the IR discipline in 1981. His goal 
was to show how “the ambiguity and uncertainty which are inherent in many 
historical alliances, decisions, and perceptions of international relations” are not 
the result of “random factors, unreliable quantitative data, and inaccurate 
measurement,” (Cioffi-Revilla, 1981:129). He sought thus to highlight the 
potential for fuzzy sets theory to calculate and analyze fuzzy phenomena in IR for 
purposes of modeling and theory building. Although this piece did not per se go 
far in actually formulating fuzzy-sets theories of IR, it should be credited for 
alerting the IR readership to the potential power of fuzzy sets in addressing the 
inherent fuzziness of many IR phenomena and concepts. Not only did Cioffi-
Revilla clearly present many of the ideas and tools of fuzzy sets as a succinct 
introduction for the uninitiated reader, he also showed through a variety of IR 
examples the usefulness, strength and potential of the approach. As he put it 
(1981:157-58), “the fuzzy approach can provide the framework within which to 

                                                           
2 There are many new and very fruitful cross-marriages such as fuzzy probabilities, 

statistical methods for determining the membership functions of fuzzy sets, possibility 
theories, and so on. 
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develop truly general (although fuzzy) theories, from which current theories can 
be derived as special cases concerning well-defined classes in the universe of IR.” 
This optimistic prognosis has not become a reality, unfortunately. Yet, a number 
of works have appeared since then which do indeed, if only partially so, confirm 
Cioffi-Revilla’s expectations.  

Most interestingly, G. S. Sanjian published a series of articles (1988; 1991; 
1992) in which he formulates fuzzy-sets models of decision making in IR. His first 
piece (1988) presented a model of decision-making process of US arms trade 
using fuzzy set theory. The article (1988:1018) developed “a fuzzy set model of 
the process through which an arms exporting country selects a transfer for a 
prospective importer.” It then presented “a method for deriving the exporter’s 
optimal strategy in any arms trade setting.” Finally, the piece provided an 
empirical test of the model “by comparing its ability to predict the policy choices 
of the United States for Third World importers with the predictive capabilities of 
two expected-utility models.” The fuzzy sets model was able to predict 
successfully 91 percent of the cases tested. In addition, the model shows that “the 
politically advantageous strategy is always a function of (1) the relative 
importance of the countries in the import region of the exporter; and (2) the 
implication of the exporters’ strategic options for its relations with those 
countries,” (1988: 1043). Sanjian concluded that the fuzzy-set model is a good 
representation of the export patterns of a hegemon. In this respect, the fuzzy-set 
model performed as well as an expected utility model.         

Sanjian elaborated this approach in 1991 to examine the process of arms 
transfers by the Great Powers. More specifically, he used fuzzy-sets theory to 
model the decision-making processes of hegemonic, industrial, and restrictive 
exporters of arms. Sanjian’s fuzzy-set model outperformed rival autoregressive, 
minimum information, and expected-utility models with an overall success rate of 
87 percent in predicting the exporting strategies of the United States, France, and 
West Germany to the Third World in the period 1959-1976. Sanjian (1991:192) 
concluded that “much of the hegemonic, industrial, and restrictive decision 
making can be explained with a relatively parsimonious nontraditional formal 
model.” He further developed his fuzzy sets approach to examine the collective 
decision making processes within NATO, specifically considering the 1989 
debates on whether to modernize the alliance’s short-range nuclear missiles or 
negotiate an agreement for force reduction with the Warsaw Treaty Organization. 
After summarizing the fuzzy-sets approach to collective decisions under multiple 
criteria, Sanjian applied it to the case in point, concluding that the model 
successfully predicted NATO’s adoption of Germany’s position on the issue.        

The idea of using fuzzy sets in social sciences was given an important boost 
when Charles Ragin published his 2000 book on “Fuzzy-Set Social Science.” 
Much like Cioffi-Revilla and Sanjian, Ragin sought to explore the utility of fuzzy-
sets theory as a way to bridge the divide between qualitative and quantitative 
methods, arguing in this regard that fuzzy sets allows a far richer exchange 
between ideas and evidence in social research than what the existing methods 
offer. Ragin uses fuzzy-sets theory to refute conventional “homogenizing 
assumptions” of variable-oriented approaches to empirical cases and causality and 
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instead advances an agenda based on diversity-oriented research strategies. Most 
importantly, Ragin concisely shows how fuzzy-sets theory allows a natural fit 
between evolving theoretical concepts and in-depth knowledge gained through 
case studying. Ragin’s book is very rich in insights and discussions about a variety 
of issues that pertain to the discovery process through which fuzzy-set social 
science evolves. Moreover, he devotes a large portion of the book to exploring the 
issues of necessary, sufficient, and complex causality from a fuzzy-set 
perspective. Not only does he show how to “fuzzify” our conventional treatments 
of causality. He also uses real examples from international political economy 
(such as protests against IMF policies) to illustrate how a fuzzy-sets approach to 
causality would perform in empirical testing.      

Although the various disciplines of social sciences have yet to fully recognize 
the potential of fuzzy-sets methods to theory formulation and testing, these works 
clearly make a good case that fuzzy sets methods are at least as good as many 
other methods, if not better as this author believes. Not surprisingly, there are 
problems with the above works as they apply fuzzy-sets theory to social sciences. 
One key shortcoming is the arbitrariness that the notion of membership function 
suffers from, especially when applied to empirical cases. Although this is not 
specific to social sciences and phenomena, it becomes the more important because 
all the above cited works prescribe a core role to membership functions.  

Membership functions are generally speaking at the core of many fuzzy-sets 
theories. This prompted many skeptics about the import of fuzzy sets for social 
sciences to argue that determining the membership function is more or less both 
theoretically and empirically arbitrary due to two major problems which emerge 
when using fuzzy sets to theorize about concepts by relying on the notion of 
membership functions. First, there is no generally agreed upon method to derive or 
calculate membership functions, either from first principles or empirical data. 
Second, uncertainty and vagueness can also occur in the membership functions 
themselves. The degrees of membership to a category can also become fuzzy sets 
themselves, leading to the concept of type-2 fuzzy numbers whose membership 
functions are fuzzy sets. The transition from ordinary crisp sets to type-1 fuzzy 
sets is done when we cannot determine the membership of an element in a set as 
either 0 or 1, that is, when the membership becomes any number between 0 and 1. 
Similarly, when the circumstances are so imprecise and fuzzy that we have trouble 
determining the membership degree as a crisp number in the interval [0,1], we can 
move to type-2 fuzzy sets, that is, we turn the membership functions into fuzzy 
sets themselves. The problem is that this process is in fact ad infinitum, resulting 
potentially in type-n (and, in principle, type-∞) fuzzy sets. This makes the 
manipulation of fuzzy sets and numbers opaque and reduces the tractability of 
these tools in dealing with empirical problems.  

These problems notwithstanding, much improvement has occurred in the field 
of fuzzy-set theory to make the approach much more attractive in social sciences. 
In this book, I present one approach wherein the membership function does not 
play an important role, both theoretically and in empirical data analysis. This 
approach based on linguistic fuzzy logic draws on the idea that it is possible to 
avoid dealing with the problems due to the arbitrariness of membership functions 
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by not using them in the first place. This is done by going back to the very first 
notion of fuzzy sets theory which is to preserve the “fuzziness” of natural 
language using variables the values of which are “words.”         

3   Why Fuzzy Logic? 

Every theory and every empirical analysis of social phenomena is underpinned in 
a given logic of reasoning for judging coherence, consistency and the possibility 
of falsification. Much of what counts as social science today is based on a Boolean 
logic with two truth values, 0 and 1. The task set out for this book is how to go 
beyond this assumption by showing that linguistic fuzzy logic can be very useful 
in analyzing empirical data, studying causation, and strategic interaction in social 
science theories. Doing so would enable us to express and analyze the role of 
language-related irreducible uncertainties and vagueness assuming various 
manifestations in validating our theories about the human world. As a result we 
would thereby be able to capture more accurately and faithfully the intricacies of 
human reasoning, cognition, and communication as they inhere in human 
language.  

The assumption of a Boolean logical framework runs counter to many of our 
observations and conceptualizations about social/political phenomena. For 
example, we know that it is both theoretically and empirically impossible to 
unequivocally and precisely define what a developing state is and where the 
boundary between the sets of developing and developed states lies. However, we 
often ignore this problem simply by assuming Boolean logic as the underlying 
logic of our conceptual apparatus and analysis – that is, by saying that a state is 
either developed or not developed. One can argue that we may instead 
characterize the state as developing with a higher or lesser level of development. 
However, this does not alleviate all forms of equivocation since to carry out the 
empirical analysis, we definitely need to classify the set of so-characterized 
developing states into categories that do not admit overlapping cases; that is, 
boundaries between categories would need to be sharply delineated. The process 
of classifying involves verifying that the cases can be unambiguously assigned to 
the appropriate categories. Thus, should we be unable to categorize a case, we 
would not include it in the analysis. Put differently, a case can belong or not 
belong to any single category – in-between positions described as belonging more 
or less to two or more different categories are not allowed to exist in Boolean 
logic thinking. One way to address this problem of overlapping categories and 
fuzzy boundaries is to reconsider the assumption of Boolean logic underlying 
much of what counts today as social sciences. Doing so has a number of benefits.  

First, a non-Boolean approach would radically redefine our conception of what 
is a consistent and coherent theory. There is widespread belief that we can 
ascertain the consistency of our analyses and formal theories only through an 
exploration of their underlying logic. This belief is rooted in one unspoken 
assumption – that is, to take the principle of Boolean contradiction as a 
fundamental pillar in defining logical consistency. The interesting exchange 
between Stephen Walt and his critics on the criteria with which we should judge 
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formal theories in international security studies is illustrative (Brown et al. 2000). 
All participants agree that a good theory should be logically consistent. Formal 
and mathematical modeling is praised by its advocates precisely because it is 
believed to help guard against inconsistencies due to logical failure of the theory 
or resulting from ambiguities inherent in natural language. As put by Zagare, 
“There can be no compromise here. Without a logically consistent theoretical 
structure to explain them, empirical observations are impossible to evaluate; 
without a logically consistent theoretical structure to constrain them, original and 
creative theories are of limited utility; and without a logically consistent argument 
to support them, even entirely laudable conclusions . . . lose much of their 
intellectual force” (Brown et al., 2000:103).  

A resolution of logical inconsistencies through the exploration of the logic of a 
theory is thus a central part of the scientific endeavor. These notions of logical 
coherence and consistency are assumed to be Boolean (true/ false) in nature. This 
is well reflected in the rhetoric of “paradox.” To highlight the value added of their 
work, many political/social scientists phrase their research questions as a paradox. 
However, what goes unnoticed in this deployment of rhetorical power is that this 
paradox is only a paradox given the posited underlying logic. For a different 
logic—and there are so many other logics besides Boolean on-off logic—this 
paradox might not be a paradox at all but rather a consequence of the axioms of 
the logic. For example, paraconsistent logic is built around precisely negating this 
principle (Heyting 1971; Priest, Routley, and Norman 1989).3 A theory built on 
the premise of a paraconsistent logic, which inherently takes contradiction as an 
axiom, will undoubtedly have no room for such an argumentation procedure! 
Likewise, starting from so-called intuitionistic logic, which is a classical logic 
without the Aristotelian law of excluded middle: (A ∨¬ A), would logically 
validate Boolean logic–type inconsistencies in a theory. This hence raises a 
serious question on the conventional wisdom behind the requirement of logical 
consistency—it becomes contextualized (i.e., dependent on the underlying logic). 

Conventional wisdom has it that “an inconsistent theory creates a false picture 
of the world. Inconsistent theories are also more difficult to test because it is 
harder to know if the available evidence supports the theory” (Brown et al., 2000: 
8). I suggest that, instead of taking it for granted that “logical inconsistencies” are 
the first culprits to be eliminated from a theory as a way of improving its empirical 
validation, we need first to realize that this “logical inconsistency” is contextual 
(i.e., there is an inconsistency only within the purview of the Boolean logic that is 
being assumed). To avoid any misunderstanding here, let me be clear that I am not 
calling for sloppiness and anything-goes attitude. To the contrary, I am suggesting 
that we need to put our research endeavor on firmer logical grounds by being 
precisely clear on the logic that underpins our theorizing and empirical testing 
works. Being clear at the forefront about the limitations of one’s theory and 

                                                           
3 The liar paradox “This sentence is not true” is illustrative. We have two options – either 

the sentence is true or it is not. (1) If we suppose it to be true, then what it says (i.e., this 
sentence is not true) is the case. Therefore, the sentence is not true. (2) If we suppose that 
it is not true, which is what it says, then the sentence is true. In either case (1) or (2), it is 
both true and not true. 
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method is highly praised in social science. However, we often stop short of 
fulfilling this commitment to the full extent, right down to the logic underlying our 
theories and methods. This is problematic because understanding the inner 
working of the underlying logic and how it is axiomatically constructed opens up 
the possibility for considering other types of underlying logics of relationships 
among variables – and there is no shortage of other logics (e.g., fuzzy logic, modal 
logic, intuitionistic logic, paraconsistent logic, quantum logic, etc.). Boolean logic 
still largely underpins the overwhelming majority of works in social sciences for 
the most part due to genealogical reasons and resistance due to path dependency. 
Yet, there are no ontologically, epistemologically, theoretically, empirically, or 
methodologically insurmountable impediments or raison d’être why we cannot 
explore the impact of the vast realm of other logics on the theorization, design, 
and execution of social science inquiry. As the burgeoning literature on the fuzzy-
set theoretic approach to social, economic, and political inquiry testifies, we have 
much to gain from doing so.4 This book seeks to contribute to this burgeoning 
literature.  

Second, espousing fuzzy logic instead of Boolean logic has a far-reaching 
impact on how we think of and analyze causality in social sciences. Generally 
speaking, we depend upon causation all the time to explain what happens to us. 
We use causality statements to draw realistic predictions about what might happen 
as well as to direct what might happen in the future. In short, we are in constant 
searches for causal explanation and behavior. A widespread motto is, to put it 
formally, “X caused Y” or “Y occurred because of X.” Not surprisingly then, 
studying and explaining as well as modeling causality is at the core of much of 
what counts as social sciences today. Although other types of analysis (such as 
constitutive) are important aspects of our inquiry about the social and political 
world, causal analysis absorbs much of our collective effort. Yet, the tools that 
have been designed for this purpose remain rather limited in social sciences.  

For the most part scholars use statistical means to analyze data and explore 
causality. However, as succinctly put by Braumoeller (2003:209), “theories that 
posit complex causation, or multiple causal paths, pervade the study of politics but 
have yet to find accurate statistical expression … To date, however, no one has 
made a concerted effort to describe how the empirical implications of theoretical 
models that posit causal complexity could be captured by statistical methods.” 
Belittling neither the achievements nor the gap in statistical methodology that 
Braumoeller highlights, there is a need for other types of tools – non-statistical 
approaches – that could be used to address issues that statistical analyses cannot 
reach such as conceptual vagueness. As argued by Charles Ragin in making his 
case for using fuzzy set theory in social science analysis (2000:5), this would help 
us relinquish many of the homogenizing assumptions that underpin much of 
quantitative analysis such as viewing populations, cases, and causality. This would 
hence undoubtedly strengthen the link between empirical data and theory. 

Probabilistic analysis of causality has the source of much insight. The approach 
draws on the theory of probability, hence defining causality in terms of 
probabilistic relationships. In fact, probability theory is the most used 
                                                           
4 See the website http://www.compasss.org for some current literature in this respect. 
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mathematical language in dealing with causality in most of what counts as social 
sciences today. This is not surprising since uncertainty is ubiquitous in social 
settings and probability theory allows us one powerful way with which to express 
this uncertainty, such as in terms of likelihood estimates for connections between 
antecedents and consequents of causal relationships. Moreover, probability theory 
allows us to deal with situations where there are exceptions to the rules of 
deterministic logic. The basic idea of this type of causality is that a cause should 
increase the probability of its effect. This can be formally put as: A is a cause of B 
if and only if B is more likely in the presence of A than in the absence of A, 
ceteris paribus, that is, in terms of the conditional probability: 

( ) ( )~P B A P B A> . Scholars also use formal and mathematical modeling to 

explore causality. Although not without its own problems (such as stylization-
induced issues) formal modeling is particularly suited for the study of the logic of 
causality since it is rigorously designed and its conclusions are clearly and 
unambiguously drawn from well stated assumptions and limitations.  

Whether it is statistical/probabilistic or formal/mathematical modeling in nature 
the analysis of causality assumes a given logic and an underlying algebraic 
structure of this logic. In most studies of causality in social sciences this logic is 
taken to be the Boolean logic with its associated two-valued (false, true) algebraic 
structure. The focus on the underlying logic is important because only through an 
exploration of the underlying logic can we ascertain the consistency and 
completeness of our analysis of causality, whether we are dealing with necessary 
and sufficient conditions or with multiple/complex causality. Understanding the 
inner working of the underlying logic and how it is axiomatically constructed 
opens up the possibility for considering other types of underlying logics of causal 
relationships.  

As an illustration of the great potential of considering different underlying 
logics in studying causal arguments, let us briefly see how fuzzy logic might 
reshape the seemingly never-ending debates in the literature on democratic peace. 
In a very innovative work, Zinnes (2004) uses propositional calculus (based on 
Boolean logic) to explore the logic underpinning the various arguments of the 
democratic peace. As she puts it, “Just as we moved from initial democratic-peace 
statistical results to explanations for them and then to critiques of those 
explanations, we now need to take the next step and expand and revise the logics 
to better incorporate such observations as the war initiation behavior and war 
victory rate by democracies” (p. 453). Yet, the “logics” that Zinnes is referring to 
are all underpinned by Boolean logic. The fact that Zinnes was able to logically 
validate the normative and institutional arguments of the democratic peace using 
Boolean propositional calculus raises the following question: What if we were to 
use a different foundational logic, such as fuzzy logic? Would this help us make 
more sense of the democratic arguments and the diverse and often mutually 
contradicting, or at least, ambiguous, results of its empirical studies? A fuzzy-
logic approach to the problem would, for instance, rephrase the basic propositions 
that Zinnes starts from very differently with a strong potential of not only 
reconfirming Zinnes’s conclusions but also going beyond them, thereby raising 
new questions that are outside the purview of the Boolean world. Analyzing the 
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democratic peace through a fuzzy-logic approach will definitely lead to a different 
propositional setup and broader conclusions.  

Mentioning a few examples suffices to make the point (LFL counterparts are in 
italics). When Zinnes (2004) writes, “If state is a democracy, then all decisions 
involve the participation of the population and its representative institutions,” or 
“If state is a non-democracy, then all decisions are made by a small group of elite 
leaders,” the fuzzy-logic counterpart will be “If state is a more or less democracy, 
then all decisions more or less involve the participation of the population and its 
representative institutions.” Likewise, when Zinnes writes, “If a state uses 
bargaining to settle internal societal conflicts and its security is not threatened, 
then it will use bargaining to settle internation conflicts,” we would have “If a 
state more or less uses bargaining to settle internal societal conflicts and its 
security is more or less threatened, then it will more or less use bargaining to 
settle internation conflicts.” Similarly, “If states X and Y are in conflict and 
bargaining is used to settle internation conflicts, then states X and Y do not use 
force to settle internation conflicts” would turn into “If states X and Y are more or 
less in conflict and bargaining is more or less used to settle internation conflicts, 
then states X and Y more or less use force to settle internation conflicts.” We can 
see that this produces much vagueness in the various propositions. Thus, in fuzzy 
logic, we can conclude that two states can go to war or not go to war—just like in 
Boolean logic. We also can conclude that two states can more or less go to war—
that is, the two states are in a no-peace situation but not in a fully-fledged state of 
war. Although it is premature to advance any concrete conclusions about a fuzzy-
logic approach to the democratic peace, it nonetheless opens up a new way to 
addressing the still-unresolved issue (see Chapter VI for further considerations on 
the democratic peace argument). In sum, explicating the logic underpinning the 
analysis opens up the horizon for new questions, new methods of thinking about 
and investigating social and political phenomena, and new results. This would 
help us relinquish many of the homogenizing assumptions that underpin much of 
quantitative analysis such as populations, cases, and causality (as pointed out by 
Ragin 2000: 5).  

Third, ironically, what makes Boolean logic a simple, rigorous basis of analysis 
is also its weakest point – dichotomization of the truth values of the antecedent 
and consequent variables. Boolean logic forces us to think only in terms of true 
and false statements. Yet, as the wealth of statistical and qualitative studies show, 
vagueness is inescapable in all our theoretical and empirical analyses of social and 
political phenomena. Statements that such and such variable causes more or less 
such and such outcome are pervasive in all social sciences. What is important to 
note here is that this vagueness is not just a type of epistemic uncertainty that 
might be resolved with better tools of analysis. Rather, linguistic vagueness goes 
deep down into the logic underpinning our analyses. This vagueness eludes 
Boolean dichotomization and hence drops out in the stylization process of formal 
theories. A key idea in fuzzy logics is to inscribe this vagueness in the logic of our 
theories, positing that the truth value of a proposition can assume other values than 
just “true” or “false.” Thus, it is incorrect to think that to know the world, it is 
sufficient to know the “truths”; we also need to know the “falsities,” as well as the 
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degrees of both. This is very different from Boolean logic, which upholds that: If a 
proposition p is not true, then p is false. Should we thus know that p is not true, 
there is no need to inquire whether p is false? it is taken for granted to be false. 
There are many situations in daily life when this logic is simply not applicable. A 
simple example from ordinary language usage is when one answers by stating, 
more or less yes and more or less no. This is beyond Boolean logic!  

Fourth, in Boolean logic, it does not matter much whether one uses either  
{0, 1} or {True, False} to express the truth values of the logical propositions. In 
fuzzy logic, the choice matters. Indeed, we can have a multivalued fuzzy logic, the 
truth values of which are expressed using numerical values belonging to the set  
[0, 1]. However, this version of fuzzy logic still relies on the concept of 
membership function (i.e., the degree of belonging to a set) and runs into many 
problems, especially in using membership functions as a tool to analyze the 
sociopolitical world (Ragin 2000). Linguistic fuzzy logic is one way to go beyond 
the problems and difficult-to-resolve issues that are generated by these numerical 
membership functions.  

4   Why Linguistic Fuzzy Logic?  

A key insight behind a linguistic fuzzy logic approach is that we can we use 
natural language to express a logic in which the truth values of propositions are 
expressed in natural language terms such as true, very true, less true, less false, 
very false, and false, etc., instead of a numerical scale. The Linguistic fuzzy logic 
approach that I propose in this book is based on a basic set populated with 
symbols (more precisely, words and qualitative modifiers or hedges). Linguistic 
fuzzy logic allows us to study graduality in social phenomena using natural 
language. 

This book is in some sense a continuation of, and provides an improvement to, 
the method of published works on fuzzy logic methods in social sciences. 
However, these works almost exclusively use a numerical format for fuzzy sets 
theory, as illustrated by Charles Ragin’s 2000 book on “Fuzzy-Set Social 
Science.” This book goes beyond Ragin’s work and similar others to introduce 
new linguistic fuzzy logic methods. Although this work is still anchored in fuzzy-
sets theory there are two main features that make it stand well apart from similar 
works published in social sciences. First, all published works are interested in 
using numerical fuzzy-sets theoretic tools as the basis for new methodologies for 
empirical analysis. My approach seeks to analyze social science phenomena using 
tools developed based on linguistic fuzzy logic. Second, all published works are 
based on the use of what is known as membership function or degree of 
belongingness to sets, a number between zero and one. My approach computes 
with words all the way down and does not use membership functions (Zadeh, 
1999). I instead consider the degrees of belongingness to a category as a linguistic 
variable termed as a nuance value. I also introduce a second type of fuzziness at a 
deeper level than what extant works consider. The membership degrees are also 
fuzzy sets, or more exactly, fuzzy linguistic values, termed as truth values of the 
nuance values. We would say, for example, that country A is democratic with a 
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very high nuance; that is, it is very highly democratic. We also say that nuanced 
democracy is, for example, true to a low degree. This degree of truth would then 
measure our confidence level in the nuance level of democracy.   

The approach contributes to shed light on lingering disputes on tradeoffs 
between rigor in reasoning, precision in conceptualization, correspondence with 
empirical reality, and logical consistency. As all social scientists very well know 
there is a constant vagueness that shapes all theories and analyses of social 
sciences. Most of what counts as mainstream social science today assumes that 
this vagueness is an epistemic problem that can be reduced using increasingly 
more sophisticated statistical and otherwise tools in formulating our theories and 
analyzing empirical data. The linguistic fuzzy logic approach posits that 
vagueness is essentially not epistemic. Vagueness is inherent to the constitutive 
and causal logic underlying the phenomena themselves. From this perspective, 
using Boolean two-valued logic as a means of systematically studying the 
consistency and coherence of theories might very well distort the very logic of the 
phenomenon under study. Our minds are language-shaped and as such the logic of 
the workings of our minds should be language shaped. We do not live in a binary 
world of 0s and 1s. We live in a world the logic of which is best understood using 
linguistic expressions, not numbers.  

Assuming that the logic underlying social sciences is of a linguistic fuzzy type 
has important implications for research in social sciences. First, much ink and talk 
have been spent on the qualitative-quantitative divide in social sciences, thereby 
contributing to enrich our approaches and knowledge about the world. However, 
much of this debate does not go far enough from the perspective of this book. 
Although logic informs all reasoning, whether the latter is based on quantitative 
inquiry or qualitative work, many researchers are not fully aware of the 
implications and limitations of the logic underlying their inquiry and how this 
logic informs the epistemology which supports their empirical work. Linguistic 
fuzzy logic approach is one important step toward bridging the gap, or at least 
offering a new perspective, on the ontological side of the debate which has for the 
most part been dominated by methodological issues.  

That this is the case has much to do with the fact that social science theory is a 
discourse and just like any other discourse it is engulfed in larger theoretical and 
social discourses. As stated by Layder (1985:255), “knowledge of this world is 
impossible without the use of conceptual instruments, which, more often than not, 
derive from, or are connected with, wider theoretical parameters or discourses.” 
This should hence warn us against “making closed or dogmatic claims about the 
irreducible ontological features which societies possess and hence the terms in 
which such features can be known,” (Layder, 1985:255). In other words, 
theoretical discourses play a role in determining social ontologies. Moreover, 
“epistemological and ontological levels [of theories] are tightly bound together 
through the mediating lens of the linguistic/conceptual structure of the discourse” 
(1985:261). Social scientists cannot fail to recognize “the constructional role of 
discursive elements in relation to ontology, (and thus the discursive relativity of 
social ontologies and ontological features)” and should give up “insisting on the  
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search for ontological features independent of discursive knowledge” (Layder, 
1985:273). No discourse – including discourse about ontology, epistemology or 
methodology – is outside the more or less strong influence, if not complete 
determination, of preexisting linguistic and conceptual as well as other discursive 
contexts. This insight forces us to rethink the delineation of the discourse and 
categorization of ontology from epistemology (and methodology, etc…). The very 
categories of social science jargon such as ontology, epistemology, methodology, 
etc…, are always deployed within discourses that seek to be consistent and 
logical. More often than not we seek to sharply define our concepts and categories 
as much as we can. We also seek as much as possible to avoid contradictions, 
especially, self-contradictions. Yet we know that natural language is inescapably 
vague and imprecise, despite incessantly brave efforts by people to sharpen the 
semantics. Thus, we like to think that categories such as ontology and 
epistemology can be defined in such a way that the two do not overlap. One of the 
key features of linguistic fuzzy logic is the logical possibility for non-binary truth 
values. That is: linguistic fuzzy logic allows us to assert that a statement about 
theory (or anything else) is more or less truly ontological, more or less truly 
epistemological, more or less truly methodological, etc…. In linguistic fuzzy-logic 
terms the categories of ontology, epistemology, and methodology are always more 
or less overlapping! Therefore, if instead of implicitly relying on a binary Boolean 
logic in thinking about ontology, epistemology, and methodology, we were to use 
linguistic fuzzy-logic as a conceptual framework, the conventional position about 
delineating ontology from epistemology and methodology would fall asunder, or 
at least be fundamentally revised.  

Second, both qualitative and quantitative research engage in data reduction, 
with the former doing the reduction by using words, categories, and themes and 
the latter doing the reduction by using numerical and often statistical tools. The 
analysis of data (after reduction) is done in qualitative research through 
categorizing and comparing and in quantitative methods through statistical 
inference and estimation of likelihood and the like. Of course, these differences 
are matters of degree. However, generally speaking, quantitative research is 
believed by its practitioners to generate reliable population based and 
generalizable data and is hence well suited for studying cause-and-effect 
relationships. The fact that qualitative data typically involves words and 
quantitative data involves numbers prompts many researchers to believe that the 
latter is better and more scientific than the former. The linguistic fuzzy logic 
approach proposed in this book is one way to create a bridge between the 
qualitative and quantitative sides of this debate. The approach integrates some of 
the best features of both sides. The linguistic fuzzy-logic approach is both rigorous 
and incorporates vagueness at its very heart. It proposes mathematically rigorous 
algorithms to reduce and analyze data which is expressed in a natural language, 
hence preserving the vague meanings of linguistically defined variables.   

Third, a key contribution of linguistic fuzzy logic approach to the study of 
causation and other processes in social sciences is to emphasize the need not only 
of measuring the linguistic values of both independent and dependent variables, a 
call that regular fuzzy-set theoretic approach already makes. The approach of the 
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book also shows the crucial role of a dimension of both independent and 
dependent variables which by and large has been completely ignored in measuring 
and analyzing empirical data, namely, the truth value of the linguistic values of the 
variables. Hence, linguistic fuzzy-logic analysis is more demanding in terms of 
empirical data than Ragin’s fuzzy-sets theoretic approach because it requires not 
only a fuzzification of the values of categorical variables but also an estimation of 
our confidence in the evaluation of these fuzzified values. As shown in the various 
illustrations considered in this book, different values of the truth levels do shape 
the final conclusions of the analysis. A comprehensive and systematic analysis of 
data and causation and other processes cannot ignore this crucial aspect of the 
analysis. Overall, this linguistic recasting of fuzzy logic approach has a number of 
far-reaching consequences for social science analysis. First, linguistic fuzzy-logic 
approach reaffirms the importance of fuzzy-set theoretic analysis as developed by 
Ragin and others. However, going much beyond these works, the approach of this 
book shows how to avoid resorting to mixing fuzzy-set theory and statistical 
analysis in order to achieve a comprehensive analysis of causality (as Ragin, for 
example, does in his book). The concept of linguistic truth level, which naturally 
emerges in linguistic fuzzy logic, makes the book’s approach self-contained. In a 
nutshell: Extant fuzzy-set approaches deal only with the nuance dimension of 
fuzzy logic, whereas linguistic fuzzy-logic approach deals with the nuance as well 
as the truth levels of these nuance levels, on an equal footing.  

Fourth, linguistic fuzzy-logic approach enriches our very notion of causation 
itself. Conventional practice and conceptualization discuss causation in terms of 
necessity, sufficiency, and combinations thereof. Boolean approach leads to the 
common view that necessary and sufficient conditions are dichotomous in nature. 
Something is either necessary or it is not, something is either sufficient or it is not 
(Goertz and Starr, 2003:3). According to this view, our commonsensical 
statements that this or that condition is “virtually necessary or sufficient” or 
“almost always necessary or sufficient” do not make much sense in social science 
analysis based on Boolean logic. This book shows that such notions are too 
restrictive given the richness of natural language which is constitutive of social 
reality as we construct it, experience it, and analyze it. Instead of talking about 
necessity and sufficiency, as most of what counts as social science practice does, 
linguistic fuzzy-logic approach offers to us notions of fuzzy causation. Hence, for 
example, instead of talking about crisp necessity we should speak of fuzzy 
necessity, which is a concatenation of necessity and contingency, a notion quite 
different from probabilistic necessity which is essentially still based on crisp 
notion of necessity. In linguistic fuzzy-logic approach, crisp necessity and crisp 
contingency become limiting cases of fuzzy necessity. 

5   Organization and Plan of the Book 

The book has several chapters, successively dealing with the process of fuzzy 
decision making, fuzzy strategic interaction and fuzzy game theory, fuzzy 
causality and fuzzy propositional logic, and fuzzy data analysis. Overall, this 
manuscript develops a new way of thinking about fuzzy-logic methodology in the 
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study of social and political phenomena. Not only does it go beyond already 
published works based on fuzzy-sets theoretic methods, but it also presents new 
ideas as no other book in social sciences or elsewhere has ever done before. The 
book also makes a strong case through its scope and rigor for adopting linguistic 
fuzzy logic, thereby introducing the subject-area of “computing with words” into 
social sciences methods. The book specifically plows new grounds by presenting 
new kinds of game theory, and data analysis methodology. The book hence takes 
social science methodology well into yet to be charted territories of research and 
analysis.  

Chapter 2 presents a number of elements of linguistic fuzzy logic needed in the 
subsequent chapters such as the notion of fuzzy sets, algebra of linguistic fuzzy 
variables and the methods of aggregating linguistic fuzzy information. Chapter 3 
develops a linguistic fuzzy-set theoretic approach to study decision making. This 
chapter models how actors who are faced with situations fraught with vagueness 
make their decisions. The work considers situations where the actors engage in a 
process of evaluating the merits of different choice alternatives under multiple 
criteria – a process of Multiple Criteria Decision Making. A key element of the 
method is that it avoids an unnatural numericalization of knowledge that is 
expressed linguistically. How do decision makers aggregate the linguistic 
information that they have on vague criteria to reach a final decision? A 
conventional way to study the process of decision making under multiple criteria 
is by comparing the costs and benefits of the possible choices that decision makers 
face and then conclude that they would opt for the optimal choice. To this effect, 
practitioners and analysts do their best in achieving a very high degree of 
precision in estimating the various variables and criteria that are postulated to 
determine the final choice. This is no easy task because both independent and 
dependent variables are not easy to operationalize. The meanings of words are 
inherently imprecise, vague, and “fuzzy;” a problem that relying on numerical 
methods does not solve. Linguistic fuzzy-set theory allows us to address these 
issues. The linguistic fuzzy-set approach also contributes to a linguistic-fuzzy 
form of social choice theory. It allows the possibility of paying more attention to 
imprecise preference relations and presents aggregation tools that can help explore 
the possibility of social choices. In short, the linguistic fuzzy-set method can be 
applied to individual decision making as well as collective choice situations. The 
approach is illustrated through a running (hypothetical) example of a situation in 
which state leaders need to decide how to combine trust and power to make a 
choice on security alignment.  

Chapters 4 and 5 develop a new game-theoretic approach based not on 
conventional Boolean two-valued logic but instead on linguistic fuzzy logic. The 
latter is characterized by two key features. First, the truth values of logical 
propositions span a set of linguistic terms such as true, very true, almost false, 
very false, and false. Second, the logic allows logical categories to overlap in 
contrast to Boolean logic, where the two possible logical categories, “true” and 
“false,” are sharply distinct. Linguistic fuzzy logic allows us to study graduality in 
strategic interaction using natural language. A conventional game can become a 
linguistic fuzzy game by turning strategies into linguistic fuzzy strategies, payoffs 
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into linguistic fuzzy payoffs, and the rules of reasoning and inferences into 
linguistic fuzzy reasoning, which operate according to linguistic fuzzy logic, not 
Boolean logic. This leads to the introduction of a new notion of fuzzy domination 
and Nash equilibrium which are based not on the usual greater than relation 
ordering but rather on a more general form of relation termed linguistic fuzzy 
relation. The linguistic vagueness that inherently exists in real strategic situations 
is not considered an epistemic issue but rather an ontological one and is 
incorporated in the very logic underpinning the reasoning process. One immediate 
result is that a linguistic fuzzy strategy can perform much better than a crisp 
strategy in dealing with multiple Nash equilibria. Linguistic fuzzy games can also 
be extended into N-person linguistic fuzzy games. In a linguistic fuzzy N-person 
game, each agent models others as linguistic fuzzy rational agents and tries to find 
a linguistic fuzzy Nash equilibrium that will achieve the highest linguistic fuzzy 
payoff. If the linguistic fuzzy relation is simplified into a crisp two-valued logic, 
the linguistic fuzzy game reduces to the conventional games. As such, 
conventional game theory can be viewed as a special case of the linguistic fuzzy 
game. I apply the new formalism to situations of PD game, Chicken game, Battle 
of the Sexes game, a trust game, and social game of cooperation.  

Chapter 6 explores new ways to study complex causality in social sciences 
using a linguistic fuzzy-logic approach. This method allows us to formally and 
with mathematical rigor address a core problem – vagueness and lack of precision 
– in research design and theory testing in social sciences. Without belittling the 
tremendous amount of efforts that has gone into sharpening our theoretical 
concepts, operationalization, and empirical testing for both simple and complex 
causality for centuries, this chapter builds on Charles Ragin’s ideas on fuzzy sets 
and offers a linguistic fuzzy logic framework where complex causality as well as 
ontologically constitutive relations can be “naturally” studied using words that are 
essentially vague, much like the phenomena that we seek to explain and 
understand. This is done by taking into account the possibilities that certain causal 
variables might be more or less of a sufficient type while others might be more or 
less of a necessary type, and while still others might be of both types to a lesser or 
greater degree of truth. The method is illustrated by examining the propositional-
logical validity of the causal arguments made on the theory on the democratic 
peace. In brief, while the linguistic fuzzy analysis does not prove the democratic 
peace argument to be wrong, it adds much nuance to it. We do not have only 
options of War and Non-War. We also have many more possibilities of more or 
less war and no-war depending on whether the states are more or less democratic. 
This linguistic fuzzy logic conclusion provides, if partially, a logical explanation 
to the still ongoing debate on the empirical validity of the democratic peace 
argument. One can arguably say that: the problem seems neither to be one of 
empirical validation, nor one of theoretical explanation (although these are still 
somewhat debatable). Instead, from the perspective of this work, the problem 
seems to have much to do with the taken-for-granted Boolean logic approach 
which underpins the existing literature on the democratic peace. The approach of 
the chapter is also applied to a theoretical falsification of Skocpol’s theory of 
revolution.  
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Chapter 7 presents a new approach to data analysis and the study of multi-path, 
multilevel causality in social sciences using linguistic fuzzy logic as a framework. 
The approach presented in this chapter differs from conventional data analysis and 
the study of causality on two fronts. First, all variables have two degrees of 
freedom (or levels of variation): a linguistic nuance value, which corresponds to 
what we conventionally refer to as interval or categorical value, and a linguistic 
truth value, which measures our confidence level in this nuance value. Second, 
combining this double fuzzification of variables with linguistic fuzzy logic the 
book proposes new tools of fuzzy data analysis and the study of fuzzy causality. 
More specifically, this new methodology is compared and contrasted with Ragin’s 
(2000) fuzzy-set theoretic approach to data analysis and the study of causality and 
Braumoeller’s (2003) Boolean approach to multi-path causation. These 
comparisons are illustrated through a re-examination of Ragin’s study of IMF 
protest and Huth’s (1996) theory of war initiation. The new method enriches our 
understanding and modeling of the very notion of causation itself.  

The final chapter of the book concludes by highlighting the value-added of a 
linguistic fuzzy-logic social science. Because the book suggests new ways of 
thinking about and analyzing decision making, game theory and strategic 
interaction, data analysis, and theory falsification, both at the theoretical and 
empirical levels, it should appeal to a diverse pool of established scholars as well 
as to graduate students seeking to learn new methods of analysis. The approach of 
the book also helps improve the connection between the scholarly and policy 
worlds. Although there are many reasons why such a linkage does not always 
evolve in mutually beneficial and constructive ways, one impediment that seems 
to reinforce the lack of effective communication is that the media used by scholars 
in their research are often times very opaque to the practitioners. Conversely, 
scholars must often play the role of translators between the policy world and their 
theories about social and political reality. This process is, as we all know, fraught 
with many slippery turns. The linguistic formal method proposed in this book 
lends itself quite naturally to provide an effective means of communication 
between scholars and practitioners since the approach greatly facilitates the 
exchange and analysis of “raw” linguistically expressed information. Scholars and 
their theories and hypotheses can directly “speak” to the policy world and 
incorporate “raw elements” of the policy world in their theories and hypotheses. 
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Chapter 2 
Elements of Linguistic Fuzzy-Logic and 
Framework 

This chapter sets the ground for all subsequent ones by introducing key elements 
upon which the linguistic fuzzy-logic approach is built. Due to the novelty of 
linguistic fuzzy-logic in social sciences and the need for rigor in presenting the 
material, the chapter is somewhat demanding in its formal aspects. Yet the 
mathematical manipulations themselves do not involve any advanced knowledge 
of mathematics as such. Most importantly, the formal aspects are imperative for an 
understanding of key elements in subsequent chapters. For example, some readers 
might wonder why I include a discussion of formal logic. This will become clear 
since, as explained for example in chapters 4 and 5, I go back to the formal logic 
level of conventional game theory and then use that as a springboard for 
introducing the linguistic fuzzy-logic version of game theory. I also do likewise 
for introducing linguistic causal and data analysis and linguistic network analysis. 
In short, although this chapter might at a first look seem to be mathematically 
demanding, technically speaking it is not, except at the level of formal rigor. The 
chapter begins with a discussion of how one goes from Boolean logic to fuzzy 
logic analysis. It then presents a discussion of the essential notion of linguistic 
variable and related issues. The chapter ends with a discussion of how to 
aggregate linguistic information expressed using linguistic variables. I include 
illustrative examples throughout the chapter to make the material less dry as much 
as possible, without however losing the imperative of formal rigor.       

1   From Boolean- to Fuzzy-Logic Based Analysis 

Boolean logic is the logical framework of most of what counts as social sciences 
today. Boolean logic is an example of a system of formal logic. Generally 
speaking, a system of (formal) logic consists of a language equipped with a 
deductive system and/or a model-theoretic semantics.1 The deductive system is 
meant to codify which inferences are correct for the given language, and the 
semantics is to capture the meanings termed as possible truth conditions for at 
least part of the language. As an illustrative example which explicates its reliance 
on Boolean logic consider Zinnes’ (2004) work using propositional calculus to 
explore the logic underpinning the democratic peace. Zinnes seeks to ascertain 
                                                           
1 Much of the mathematics on logic (theorems, definitions, and the like) that I use in this 

article is drawn from the following two books: Novak, Perfilieva, and Mockor (1999) and 
Hajek (1998).  
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which arguments are sufficient to predict peace between democracies and war 
otherwise. This requires “identifying the key ideas in each argument, the atomic 
propositions, and the construction of the central premises of each theory by 
linking atomic propositions using the operations of not, and, or, and implies” 
(Zinnes, 2004:431).   

Propositional Logic is the most rudimentary form of formal logic. At the most 
basic level, all knowledge is made up of propositions. In Boolean propositional 
logic propositions are either true or false. There are thus two truth values, “true or 
T” and “false or F.” Propositional logic is based on Boolean algebra based on the 
lattice L={0,1} or, equivalently {T,F}. One very general way of introducing 
Boolean logic is by looking at its underlying algebra as special kind of lattice. A 
lattice is an ordered set of elements containing with each pair of elements their 
least upper bound called supremum and the greatest lower bound called infimum. 
Two binary operations are defined on this lattice, these are: the join (⁄) and meet 
(Ÿ) operations. A Boolean algebra (Boolean lattice) denoted by ·L,⁄,Ÿ,ÿ,0 ,1Ò is 
a lattice L which is ordered and distributive and has a complement operation. The 

Boolean algebra for this so-called classical logic is then: LB = ·{0,1} , ⁄ , Ÿ , ÿÒ. 
This Boolean algebra of classical logic is isomorphic to a Boolean algebra of crisp 
sets. Boolean logic and its underlying two-valued algebra play a predominant role 
in the social science analyses, if not always openly recognized as such. For 
example, the neatness of the dichotomy of truth values is inscribed at the heart of 
Boolean analysis of causality, thereby equipping the study of causality with a 
number of powerful features (Braumoeller, 2003). First, it clearly explicates the 
logic of combining different independent variables. Second, it makes dealing with 
complex causality a straightforward matter. One can clearly delineate how 
independent variables jointly or independently determine the outcomes. One can 
also use Boolean analysis to explicate the possibility of substitutability among 
causal variables. Third, Boolean analysis clearly and consistently explicates 
necessary and sufficient conditions as well as various combinations thereof. 
Fourth, the process of Boolean minimization helps to systematically isolate 
relevant from irrelevant independent variables (Ragin, 1987:85-163). Fifth, it also 
includes counterfactual analysis through the negation operator which strengthens 
the validity of the causal analysis.  

In formal logic, atomic or elementary propositional variables are combined into 
formula using the logical connectives: Implication →, conjunction Ÿ, disjunction 
⁄, negation ÿ, and equivalence ↔.  Using two propositional variables or formula 
P and Q we can obtain new formula such as P → Q, P Ÿ Q, P ⁄ Q, ÿP, P↔Q. 
The truth values of the compound formula are obtained from a combination of the 
truth values of its elements using the following basic Truth Table:  

  negation Implication Equivalence Conjunction Disjunction 
P Q Ÿ P P → Q P ↔ Q P ⁄ Q P ¤ Q 
T T F T T T T 
T F F F F F T 
F T T T F F T 
F F T T T F F 
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Boolean logic forces us to think only in terms of true and false statements. 
Vagueness, which is an inherent feature of human linguistic concepts, is simply 
thrown away. However, as the wealth of statistical and qualitative studies show, 
vagueness is inescapable in all our theoretical and empirical analyses of social and 
political phenomena. Statements that such and such variable causes more or less 
such and such outcome are pervasive in all social sciences. What is important here 
is that this vagueness is not only a type of epistemic uncertainty that might be 
resolved with better tools of analysis. Rather, vagueness of this type goes deep 
down into the logic underpinning our analyses. This led Lotfi Zadeh to propose in 
the 1960s fuzzy logic as a solution to this inescapable problem of vagueness. 
Zadeh was preceded for many years by other scholars who suggested multi-valued 
(MV) logic as a generalization to two-valued Boolean logic. What we really need 
in social sciences is to explore the implications of these MV and fuzzy logics for 
the logical bases of our social science inquiries.    

The key idea in many-valued logic is that the truth value of a proposition can 
assume other values than just “True” or “False.” When this truth value is 
numerically represented it is usually assumed that it belongs to the interval of real 
numbers [0,1], where 0 corresponds to completely false and 1 to completely true. 
This has many implications some of which nullify a number of laws drawn from 
Boolean logic such as the law of the excluded middle. In Boolean logic a 
statement can either be true or false, hence a proposition like the law of excluded 
middle (P⁄ÿP), i.e., for every proposition P, either P or not-P holds, is consistent 
and exists. An equivalent law of Boolean logic is reductio ad absurdum or proof 
by contradiction: For every proposition P, if not-P does not hold, then P holds. 
Contra Boolean logic, fuzzy logic and MV logics in general do allow for many 
values between true and false. A basic premise of MV logics is that it is incorrect 
to think that to know the world it is sufficient to know the “truths,” we also need 
to know the “falsities,” as well as the degrees of both. There are many situations in 
our daily lives where the Boolean logic is simply not practically relevant. 
Consider a simple example from ordinary language usage when one answers a 
yes-or-no question by simply stating: Yes and No. Mutually inconsistent scientific 
theories are another illustration of this phenomenon. In sum, relaxing the principle 
of bivalence of truth and falsity and allowing for the possibility of one or more 
truth values between true and false leads to many possible logics with many new 
truth values.2  

2   Linguistic Fuzzy Variables 

Analysis based on linguistic fuzzy logic is mathematically rigorous and coherent, 
built on a coherent mathematical framework of definitions, theorems, lemmas and 
the like.3 In this chapter I present a brief introduction of the linguistic fuzzy logic 
framework. In this pursuit, the first step is to choose the basic ingredients that are 

                                                           
2 So-called four-value Belnap’s logic is one such example with the semantics underlying 

the logic is based on the set of truths: {T, F, Both, None}. 
3 Herrera and Herrera-Viedman (2000). 
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used in the symbolic manipulation. This means that we need to choose a context-
dependent linguistic terms-set to describe vague or imprecise information. For 
example, a linguistic terms set for the linguistic variable Feasible can be defined 
as: F(Feasible)={fully feasible, very feasible, approximately feasible, possibly 
feasible, approximately feasible or possibly feasible, approximately feasible and 
possibly feasible, not feasible}.  

Normally, in any one situation, one is faced with a number of linguistic 
variables, not just one. It is easier to opt for the same linguistic terms set to 
describe variation of the various linguistic concepts in a given problem, although 
this is not a requirement. The elements in the set will determine the level of 
distinction among different parts of the available information, called the 
granularity of vagueness. Each value of the linguistic variables is characterized by 
a syntactic label and a semantic value or meaning. The label is a word or a 
sentence belonging to the chosen linguistic terms set. The meaning of the label is a 
fuzzy subset in a universe of discourse (a finite set of words and/or phrases). The 
choice of the linguistic terms set with its semantic is thus the first step of any 
linguistic approach to solving a problem. A linguistic variable is mathematically 
defined as follows: 

Linguistic Variable:  

A linguistic variable is a quintuplet (L, S(L), U, G, M). L is the name of 
the linguistic variable. S(L) denotes the term set of L, i.e., the set of 
names that provide the linguistic values of L, with each value being a 
fuzzy variable denoted generally by X and ranging across a universe of 
discourse U. G is a syntactic rule (which usually takes the form of a 
grammar) for generating the names of the values of L. M is a semantic 
rule for associating meanings M(L) to L, with M(L) being a subset of U.   

This definition of a linguistic variable can practically be implemented by means of 
an ordered structure of linguistic terms. The semantic of these linguistic terms is 
hence derived from their own ordered structure. The cardinality of the terms set 
must be small enough so as not to impose useless precision on the users. Yet, it 
ought to be rich enough to allow enough discrimination of the information being 
analyzed. Typical values of cardinality used in the literature on linguistic models 
are odd ones, usually varying from 7 to 13. The mid linguistic term usually 
represents an assessment of a statement such as “approximately 0.5,” with the rest 
of the terms being placed symmetrically around it (Figure 1).  

 
{NNN=Null, VLL=Very_Low, LLL=Low, MMM=Medium, HHH=High, VHH= 
Very_High, FFF=Full} 
 

NNN VLL LLL MMM HHH VHH FFF 
       

 

Fig. 1 A symmetrically distributed ordered set of seven linguistic terms  

0 1.0 0.5 
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Using the example shown in Figure 1 a set of seven terms S used to describe 
various levels of cooperation could be given as:  

S-cooperation = {s0 = Null, s1 =Very Low, s2 = Low, s3 = Moderate, s4 = High, 
s5 = Very High, s6 = Full}-cooperation 

This set is ordered in the sense that a bs s≺ if, and only if, a < b.  

As an illustration let us consider one of the example that Charles Ragin (2000) 
examines in his book – IMF protest. The study seeks to understand the causes of 
IMF protest in various countries, with some having more protests than others. 
Ragin categorizes countries on how severe an IMF protest they are confronted 
with. This dependent variable is explained using a model with several independent 
variables, namely, IMF pressure, Urbanization, Economic hardship, Dependence 
on investment, Political liberalization, and Government activism. Not all countries 
face IMF protest and those that do face it at different levels. Hence, argues Ragin, 
IMF protest is a rather fuzzy category or set, with some countries more included in 
it than others. Using linguistic terms, we can say that some countries are fully in 
the category of countries facing IMF protest, others are mostly but no fully in the 
category, others are mostly but not fully out the category, and others are fully out 
of the category of countries confronted with IMF protest. Ragin considers seven 
levels of membership into the category of “IMF protest”: fully in, mostly but not 
fully in, more or less in, neither in nor out, more or less out, mostly but not fully 
out, and fully out. I denote these respectively as: FLIN, MNFI, MLIN, NINO, 
MLOU, MNFO, FLOU. Using these linguistically expressed partial memberships, 
called linguistic values, Ragin’s data for the dependent variable IMF protest 
(IMFP) reads as shown in Table 1. For reason of notational consistency with the 
remaining part of the paper I have converted Ragin’s scheme of linguistic values 
of the dependent variable into a new one – called in this paper nuance value – as 
shown in the fourth and fifth columns of Table 1. For example, Argentina has a 
Full membership (PRT = PPP) in the category of IMF protest while Costa Rica 
has a Low membership (PRT = LLL) in the category of IMF protest. 

Ragin also considers the independent variables – IMF pressure (IMP), 
Urbanization (URB), Economic hardship (ECH), Dependence on investment 
(DEI), Political liberalization (POL), and Government activism (GVA) – as fuzzy 
categories to which the different countries belong to a certain level using the same 
partial membership levels or level of belongingness. 

From Ragin’s Table 10.1 we read, for example, that Argentina is fully included 
in the set of IMF protest (PRT = FLIN = PPP), mostly but not fully included in the 
set of countries facing IMF pressure (IMP = MNFI = VHH), fully included in the 
set of countries that are urbanized (URB = FLIN = PPP), fully included in the 
countries that face economic hardship (ECH = FLIN = PPP), more or less out of 
the set of the countries that depend on investment (DEI = MLOU = LLL), fully in 
the set of countries that politically liberalized (POL = FLIN = PPP), and fully in 
the set of countries with government activism (GVA = FLIN = PPP). (Note that  
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Table 1 Linguistic Values of the Dependent Variable PRT (= IMF Protest) for various 
countries. 

Dependent Variable: IMF Protest: PRT 
Ragin’s Value Nuance Value  

Numerical 
Value 

Symbol Meaning Symbol Meaning Country 

1.00 FLIN Fully In PPP Full Argentina, Peru 

0.83 MNFI Mostly but Not Fully In VHH Very-High Brazil 
0.67 MLIN More or Less In HHH High Bolivia, Chile 

0.50 NINO Neither In Nor Out MMM Moderate Dominican Republic, Ecuador, Haiti, 
Jamaica, Morocco, Poland, Sudan, 
Yugoslavia, Zaire 

0.33 MLOU More or Less Out LLL Low Costa Rica, Egypt, India, Nigeria, 
Philippines, Romania, Sierra Leone, 
Tunisia, Turkey, Venezuela, Zambia 

0.17 MNFO Mostly but Not Fully 
Out

VLL Very-Low El Salvador, Ghana, Guatemala, 
Hungary, Ivory Coast, Jordan, 
Liberia, Mexico, Niger, Panama 

0.00 FLOU Fully Out NNN Null   

the first linguistic value is that of Ragin’s original notation and the second one  
is mine).4 

In Boolean logic, stating that a variable acquires a certain linguistic value 
implies that the truth value of this assignment is “True.” An assignment of truth 
value is always one of two choices – True or False. The situation is radically 
different in linguistic fuzzy logic. In addition to possessing a linguistic value (such 
as big, small, extremely low, or approximately high), each value assignment to a 
linguistic variable has a degree of truth. For example, a country A with a low 
membership value to the category of countries facing IMF protest, i.e., PRT = 
LLL, could have a very-high, moderate, low, or very low degree of truth. In other 
words, our attribution of a low membership for country A to category PRT is true 
to a very-high, moderate, low, or very low degree. The notion of truth degree thus 
plays the role of a linguistic level of confidence in the estimated nuances.  

Manipulating linguistic variables using linguistic fuzzy logic thus introduces 
two “degrees of freedom,” one dealing with the linguistic value of the variable 
termed in this book as nuance value (or level) and one dealing with the truth value 
of this assigned nuance value termed as truth (or confidence) degree (or value). 
Instead of just speaking of a certain level of membership in a category, we speak 
of a level of nuance, that is, the variable is more or less nuanced. We say, for 
example, a country is a very-high authoritarian. We then pose the question: How 
true is each of (or, equivalently, how much confidence do we have in) these value 
assignments of nuance? Is lower nuance truer than higher nuance? In other words, 
each of these degrees of nuance is more or less true. This is a sort of a 
fuzzification of the membership functions of fuzzy-set theory. The membership 
degrees (into different fuzzy categories) are also fuzzy sets. The linguistic fuzzy  
 

                                                           
4 I do this to remain consistent in using the same system of notation throughout the whole 

book.  
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Table 2 Example of LFLA version of PRT (= IMF Protest) for various countries. 

Dependent Variable: IMF Protest: PRT 
Nuance Value Truth Value  

Symbol Meaning Symbol Meaning Country 
PPP Full PPP Full Argentina, Peru 

VHH Very-High LLL Low Brazil 

HHH High VLL Very-Low Bolivia, Chile 

MMM Moderate VHH Very-High Dominican Republic, Ecuador, Haiti, Jamaica, Morocco, 
Poland, Sudan, Yugoslavia, Zaire 

LLL Low LLL Low Costa Rica, Egypt, India, Nigeria, Philippines, Romania, 
Sierra Leone, Tunisia, Turkey, Venezuela, Zambia 

VLL Very-Low VHH Very-High El Salvador, Ghana, Guatemala, Hungary, Ivory Coast, 
Jordan, Liberia, Mexico, Niger, Panama 

NNN Null NNN Null   

logic approach presented in this book thus involves a type-2 fuzzification of the 
variables.5  

At this point of the discussion, it is already clear that the LFLA proposed in this 
book differs from Ragin’s fuzzy-sets approach in two respects. First, I do not use 
numerical values of membership functions. I instead consider the degrees of 
belongingness to a category as a linguistic variable expressed as nuance value. 
Second, I introduce a second type of fuzziness at a deeper level than what Ragin 
considers – the membership degrees are also fuzzy sets, or more exactly, fuzzy 
linguistic terms. Using LFLA, Ragin’s data on the category of IMF protest (PRT) 
would for example take the form shown in Table 2. I am thus assuming various 
truth values for the different linguistic nuance values of Variable PRT. For 
example, Argentina and Peru have a full degree of membership in the category of 
IMF protest (PRT = PPP) which is known with a full degree of truth (PPP), 
whereas Brazil has very high degree of membership (PRT = VHH) which is 
known with a low degree of truth (LLL). The point is that this second level 
introduces another type of fuzziness (vagueness) in the data that Ragin does not 
consider.  

In order to rigorously account for the notions of nuance and truth values and 
various systematic manipulations thereof we need a systematic procedure – an 
algebraic structure – capable of allowing that, as explained next. 

3   Algebra of Linguistic Nuance and Truth Values 

The algebraic structure of a system of logic is a formal framework for carrying out 
a rigorous analysis using linguistic fuzzy logic. To see this point more clearly let 
us consider the following set of possible linguistic values: T={true, false, very 
true, very false, approximately true, possibly true, approximately true or possibly 

                                                           
5 This approach corresponds to type-2 fuzzy-sets theory  as known in artificial intelligence 

literature where the membership functions are also numerical fuzzy sets, whereas Ragin’s 
approach uses what is known as type-1 fuzzy-sets theory (see: Mendel, 2001).    
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true, approximately true and possibly true}. Suppose that we have two linguistic 
variables A and B with the value of A being approximately true and that of B 
being possibly true. What would be the linguistic value of A AND B? What would 
be the value of A OR B? Would these respectively be approximately true and 
possibly true, approximately true or possibly true? The axiomatic system of an 
algebraic structure would allow us to make such evaluations.   

The axiomatic system of linguistic values is based on the idea of using hedges 
(or modifiers) to change the meaning and values of basic elements such as: True 
and False. For example, using the hedge very we would obtain two new truth 
values, very true and very false. The obtained algebra is called hedge algebra, that 
is, it is an algebraic structure that defines and determines how the hedges are 
combined with the two basic truth values to form a complete system of evaluation. 
This algebra is based on natural semantic properties of linguistic hedges, the set of 
which is equipped with an ordering relation. To make the system of nuance and 
truth values a practical and consistent way of evaluating the linguistic values of 
causal inferences we need to equip the set of linguistic values with a joint 
operation, a meet operation, a negation operation, and an implication operation 
(Ho and Khang, 1999; Ho and Nam, 2002).  

Linguistic hedges are very useful because they possess a number of semantic 
properties which make their algebraic manipulation intuitively meaningful. First, 
each linguistic primary term such as true and false possesses a semantic tendency 
which can intuitively be expressed as a semantically ordering relation. In addition, 
one primary term would possess a meaning which is stronger (higher) than another 

one. Thus, we can say that true ; false. Moreover, these terms have a tendency to 

be semantically positive or negative. “True” is positive in the sense that    very 

true ; true and “false” is negative in the sense that very false≺ false.  However, it 

is also possible to have a reversal of the meaning of the primary term in the sense 

that we would for example have approximately true ≺ true. One point to note here 

is that these orderings are intuitively sound in natural language. Second, hedges 
are semantic modifiers with different degrees of modification. This makes it 
possible to compare the effects of two hedges on the same primary term. Hence, 

we would have little ≺ approximately since little true ≺ approximately true. 

Third, hedges change the meaning of the primary term, but nevertheless do 
preserve an original essential meaning of the primary term – this is called 

semantic heredity. For example, from little true ≺ approximately true we have 

possibly little true ≺ possibly approximately true. Let us now move on to the 

formulation of an abstract hedge-algebra. 

Let us denote the set of truth-hedges by { }, [1, ]MT Mατ α= ∈  where 

true−ατ is a symbolic truth value (with a similar formalism for linguistic 

nuance degrees). We would for example have the following set of hedges for truth 
values: T9={not at all, little, enough, fairly, moderately, quite, almost, nearly, 
completely}. The truth values will be: {not at all true, little true, enough true , 
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fairly true, moderately true, quite true, almost true, nearly true, completely true}. 
In order to be able to manipulate symbolically (not numerically) these truth values 
we need to provide the set of truth-hedges with an algebraic structure. We call this 

an hedge algebra and denote it by HA={ MT , ∨, ∧, ≺ , →, ÿ}  where ⁄ and Ÿ are 

respectively the disjunction and conjunction, → is the implication, ÿ is the 

negation, and ≺ is an ordering of the truth-hedges (nuance-hedges). We take HA 

to be a De Morgan lattice, satisfying the following definition.  

Definition: de Morgan Lattice: 

Let L = {M, ⁄, Ÿ, < , ÿ} be a lattice. L is called a De Morgan lattice if: 
1. {M, ⁄, Ÿ, <} is a distributive lattice 
2. The operation ÿ: M → M is such that: 

a. For all u Œ M we have:  ÿ ÿ u=u 
b. For all u, v Œ M we have: ÿ(uŸv) = ÿu⁄ÿv and ÿ(u⁄v) = ÿuŸÿv.  

De Morgan lattices are distributive lattices with a complement operation which 
satisfies the law of double complement, the De Morgan rules, and the law of 
contraposition for partial ordering <. If a De Morgan lattice is bounded with a 
smallest element 0 and a largest element 1 in the partial ordering then it is called a 
De Morgan algebra, with the property that  ÿ0=1 and ÿ1=0. For example, if the 
lowest element of HA is “null” the corresponding highest element would then be 
“full.” 

In numerical many-valued logic, one conventional way to define the 
conjunction (AND) and disjunction (OR) operations Ÿ and ⁄  is by aŸb=min(a,b) 
and a⁄b=max(a,b). The disjunction and conjunction operations ⁄ and Ÿ in 
linguistic many-valued logic can be defined using two equivalent operators, 
namely, LWD (linguistic weighted disjunction) and LWC (linguistic weighted 
conjunction).  

Linguistic Conjunction: AND: aŸb = LWC (a,b) 
                         Linguistic Disjunction: OR:   a⁄b = LWD (a,b) 

These two operators are special cases of a more general form called LWA 
(linguistic weighted averaging operator) discussed below. The three operators 
LWD, LWC, and LWA as well as the linguistic implication LI are defined in 
terms of a more basic operator LOWA (linguistic ordered weighted average) as 
well as linguistic versions of MAX and MIN operators.  I next introduce LWD, 
LWC, LWA, and LI operators (Herrera and Herrera-Viedman, 1997).   

4   Linguistic Aggregation Operators 

A key point in formalizing the symbolic manipulation of linguistic variables is that 
using these variables calls for two sorts of aggregating operations of antecedents 
which we need to consider in carrying out LFLA analysis through disjunction, 
conjunction, implication, negation, and various combinations thereof. First, 
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aggregation of truth values – each variable has its own linguistic truth value. 
Hence, we need to aggregate these linguistic truth values to obtain the collective 
truth value for the aggregate. This is done using the LOWA aggregation (as 
explained shortly). Second, aggregation of weighted degrees of nuance – we need 
to combine the nuance degrees of the variables with different weights according to 
the type of logical combination being considered (disjunction, conjunction, etc…). 
This can be done using the operators LWC (linguistic weighted conjunction), 
LWD (linguistic weighted disjunction), LWA (linguistic weighted average), and 
LI (linguistic implication). As an illustration, let us consider for example the 
following hypothesis about war termination (Chan, 2003).  

H1: Wars with a ‘small and slow’ start tend to last longer than wars with a 
‘big and fast’ start.  

Let us recast H1 using the conceptual tools being developed in this section in the 
following way:  

1. For a given dyad of states –α , we know that {War starts with a level of 
fighting LOF (e.g., more or less small) and a rate of fighting ROF (e.g., 

more or less slow)} and we know this to a degree of truth ατ (e.g., 

moderately true).  
2. We know the duration of this war DOW (e.g., moderately big start) and the 

degree of truth of this knowledge is DOW−ατ (e.g., almost true).   

3. What is the degree of truth βτ  of the statement that {If Wars start with a 

small level of fighting [LOF=small] at a slow rate of fighting [ROF=slow] 
then they would tend to have a longer war duration [DOW=longer] than 
Wars that start with [LOF=big] and [ROF=fast]}?  

Put differently: we have in statement 3 a logical implication: A Æ B? That is: We 
know the weighted nuance degrees of both A and B and we know the truth values 
of both A and B, can we infer the nuance and truth values of the implication A Æ 
B? Phrased in this way we are testing for fuzzy causal necessity. The nuance value 
characterizes how fuzzy this causal implication is and the truth value tells us how 
confident we should be in this estimate. In order to test for causal sufficiency we 
need to consider the statement: ÿA Æ ÿB? In solving this problem we need two 
procedures: a first one on how to aggregate the linguistic information on the 
nuance levels of DOW for both A and B and a second one on how to aggregate the 
linguistic information on the truth values of the DOW variables for both A and B. 
Aggregating the linguistic information on A and B consists as discussed earlier of 
two steps – (1) aggregation of individual truth values and (2) aggregation of 
weighted linguistic degrees of nuance of A and B. In comparison, Chan’s analysis 
based on Boolean logic is as follows: First, DOW is either small or big, and hence 
either relevant or not relevant – the degree of nuance of this variable is either 1 or 
0. Second, the truth value of DOW is “true.” In Boolean logic, knowledge about 
the degree of nuance corresponds to a truth value of “true.” No knowledge 
corresponds to a truth value of “false.” In the approach suggested in this book, 
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DOW can have different degrees of nuance and each of these degrees of nuance 
has a linguistic truth value. That is, if we know that for example DOW is low-to-
moderate nuance in the analysis we still need to inquire about the truth values of 
this knowledge about the nuance of DOW.  

For the sake of defining the four operations – LWC, LWD, LWA, LI – let us 

denote by mν the nuance degree of a linguistic variable mL  and mτ its truth value 

– ( ),m m mL ν τ= . It is clear that we need to posit that the set of linguistic truth 

values and the set of nuance degrees of the variables have the same cardinality – 
each linguistic variable has one degree of nuance and one truth value. Moreover, 
without any loss of generality we assume that both v and t are linguistically 

expressed using the same set { }TsssS ,,, 10 "=  of linguistic, ordered labels, 

with cardinality T+1.  We have the following definitions (Herrera and Herrera-
Viedman, 1997).  

Linguistic Neg, MAX, and MIN 

Negation Operator: ( )i T iNeg s s −=                                    (1) 

Maximization Operator: ( ) { },  if ;   otherwisei j i jMAX s s s i j s= ≥    (2) 

Minimization Operator: ( ) { },  if ;   otherwisei j i jMIN s s s i j s= ≤       (3) 

As an illustration consider the set: O7={Null, Very Low, Low, Moderate, High, 
Very High, Full}. This set is ordered since we can intuitively see that Null § Very 
Low § Low § Moderate § High  § Very High § Full. The negation operator 
gives: Neg(Null) = Full and Neg(Low) = High, etc. The maximization operator 
gives: MAX(Null, Moderate) = Moderate and MAX(Very High, Moderate)=Very 
High, etc. The minimization operator gives: MIN(Low, High) = Low and 
MIN(Full, High) = High, etc.  

LWC Aggregation 

The LWCw aggregation of m linguistic variables ( ) ( ){ }1 1, , , ,m mν τ ν τ"  is 

defined by: 

( )( ) ( ) ( ){ }1 1, , ,..., ,LWC LWC m mLWCων τ ω ν τ ν τ=                     (4) 

The aggregated nuance value is  

( )( ){ }1,..., ,LWC i m i iMIN MAX Negν ν τ==
                

       (5) 

The aggregated truth degree is  

( ) ( )1,...,LWC mLOWAωτ ω τ τ=
                          

       (6) 
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The LOWAw aggregation – linguistic ordered weighted aggregation – depends on 
the orness parameter w and is defined (and illustrated through an example) down 
below. As an example of using LWC let us consider:  

( ) ( ) ( ), , , ,LWC LWC LWC LLL VHH HHH LLLν τ ⎡ ⎤= ⎣ ⎦                 (7) 

We want to aggregate two linguistic variables A=(LLL,VHH) and B=(HHH,LLL) 
with, respectively, a degree of nuance LLL for A and HHH for B, a degree of truth 
VHH for A and LLL for B. The degree of nuance of the aggregate is obtained as:  

( )( ) ( )( ){ }, ; ,LWC MIN MAX Neg LLL VHH MAX Neg HHH LLLν =
  

(8) 

Using the hedge algebra {NNN, VLL, LLL, MMM, HHH, VHH, PPP}, we have: 
( )Neg LLL HHH=  and ( )Neg HHH LLL= . Thus: 

( ) ( ){ } { }, ; , ;LWC MIN MAX HHH VHH MAX LLL LLL MIN VHH LLL LLLν = = =

(9) 

The degree of truth is obtained as an aggregation of the respective degrees of 

feasibility for A and B; that is: ( ),LWC LOWA VHH LLLτ = .Using LOWA as 

given down below we obtain: 

( ),LWC LOWA VHH LLL MMMτ = = .                         (10) 

Hence:  

( ), ( , )LWC LWC LLL MMMν τ =                                (11) 

The aggregated variable has a Low degree of nuance with a Moderate degree of 
truth.  

LWD Aggregation 

The LWDw aggregation of m linguistic variables ( ) ( ){ }1 1, , , ,m mν τ ν τ"  is 

defined by: 

 ( )( ) ( ) ( )1 1, , , , ,LWD LWD m mLWDων τ ω ν τ ν τ⎡ ⎤= ⎣ ⎦"               (12) 

The aggregated nuance value is  

( ){ }1,..., ,LWD i m i iMAX MINν ν τ==                               (13) 

The degree of truth of the aggregated variable is  

( ) ( )1,...,LWD mLOWAωτ ω τ τ=                                  (14) 
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LWA Aggregation 

The aggregation of the set of m weighted individual 

variables ( ) ( ){ }1 1, , , ,m mν τ ν τ"  according to the LWAw  operator is defined by 

( ) ( )( ) ( ) ( )1 1, , , , ,LWA LWA m mLWAων ω τ ω ν τ ν τ⎡ ⎤= ⎣ ⎦"                (15) 

The collective nuance degree of the aggregated variable is  

( ) ( )1, ,LWA mLOWAων ω ν ν= "                                    (16) 

The collective truth value is  

( ) ( ) ( )1 1, , , ,LWA m mLOWA MIN MINωτ ω ν τ ν τ= ⎡ ⎤⎣ ⎦"             (17) 

LI Operation6 

The linguistic fuzzy logic implication LIw is defined through the LWDw  
operator by:  

( )( ) ( ) ( ) ( ){ } ( ), , , , , ; ,LI LI i i j j i i j jLI LWD Negω ων τ ω ν τ ν τ ν τ ν τ⎡ ⎤⎡ ⎤= =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
     (18) 

Where:  

( ) ( ){ }, ; ,LI i i j jMAX MIN Neg MINν ν τ ν τ⎡ ⎤⎡ ⎤= ⎢ ⎥⎣ ⎦ ⎣ ⎦                 
     (19) 

( ) ( )( ),LI i jLOWA Negωτ ω τ τ=
                      

             (20) 

5   Aggregation of Linguistic Information 

Several kinds of aggregation operators of linguistic information have been 
suggested in the literature.7 They can be grouped in four broad categories: (1) 
aggregation operators of linguistic non-weighted information, (2) aggregation 
operators of linguistic weighted information, (3) aggregation operators of multi-
granularity linguistic information, and (4) aggregation operators of numeric and 
linguistic information. These operators differ according to the kind of information 
that is to be aggregated. Type (1) is used when the different pieces of linguistic 
information to be aggregated are all equally weighted in the process of decision 
analysis. Type (2) is most useful when some pieces of linguistic information are 
                                                           
6 This is a generalization of the usual definition of S-implication as: a → b ª ÿa⁄b.  
7 Delgado et al., 1998; Herrera, Herrera-Viedma, and Verdegay, 1996; Herrera, Herrera-

Viedma, and Martinez, 2000; Herrera and Herrera-Viedman, 2000.  
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more important than others. Both types (1) and (2) are situations where the 
granularity – semantic differentiation – of the various pieces of information is the 
same. Type (3) applies to situations where different pieces of linguistic 
information have different semantics such as, for example, one having 7 terms in 
the linguistic terms set whereas the other having 13 terms. Although this is not a 
fundamental difficulty, it does make the manipulation of linguistic labels 
somewhat more demanding. Finally, type (4) is important in situations when 
linguistic and quantitative pieces of information are combined together in the 
decision making process. Again this does not pose a fundamental obstacle but 
does increase the number of steps that one has to make in analyzing the decision 
process. For reasons explicated down below I adopt the second method for 
aggregating linguistic information.  

This type of aggregation of linguistic information is done by using a LOWA   
or Linguistic Ordered Weighted Averaging operator. Two essential steps in this 
aggregation are: first, an ordering to the linguistic labels and, second, weighted 
convex combination of the labels two by two until we aggregate all labels 
together. As an illustration of this procedure, suppose that we would like  
to aggregate the following four labels, {L, ML, H, VH}. This is a subset of a  
larger set  

{ } { }VHHMHFFMHFFMLMLLVLssS ,,,,,,,,, 80 == "  

We have:  

VL=Very_Low,  

L=Low,  

ML=Medium_Low,  

FFML=From_Fair_to_More_or_less_Low,  

F=Fair,  

FFMH= From_Fair_to_More_or_less_High,  

MH=More_or_less-High,  

H=High, VH=Very_High.  

First, we need to decide on the weights that we attach to each label in the 
combination. That is, we need to have four weights, i.e., a weighing vector 
W=[.,.,.,.]. Below I explicate the procedure through which we can obtain these 
weights depending on the characteristics of the problem at hand. Let’s assume for 
the sake of this illustration the following weighting vector W=[0.3,0.2,0.4,0.1]. 
Because these are the weights for an ordered set, the first weight corresponds to 
the “highest” label in the linguistic set {L,ML,H,VH}, in this case VH, and so on.  
The convex combination (after ordering the set of labels) is thus symbolically 
written as: 
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( ) [ ]( ) ( ) ( ) ( ) ( ){ }LMLHVHCVHHMLLVHHMLL ,1.0;,4.0;,2.0;,3.0,,,1.0,4.0,2.0,3.0,,, 4==Φ
  (21) 

At this stage, we have yet to start the process of aggregation. The aggregation is 
done in two phases:  

1. We symbolically decompose ( )VHHMLL ,,,Φ  into a convex 

combination of simpler aggregations of labels (that is, with a smaller 
number of labels to aggregate) until we reach the smallest convex 
combination, that is, a combination of two labels.8  

2. We go backward and re-compose until we reach a final unique label. This is 
done as follows.  

We begin by decomposing 4C as a convex combination of the highest label (in 
this case VH) which has a weight of 0.3 and the aggregation of the remaining 
labels with the remaining weight 0.7, that is,9  

( ) ( ) ( ) ( ){ }
( ) ( ) ( ){ }

4

3

0.3, ; 0.2, ; 0.4, ; 0.1,

0.3 (1 0.3) 0.29, ; 0.57, ; 0.14,

C VH H ML L

VH C H ML L

=

⊗ ⊕ − ⊗
      (22) 

The new weights 0.29, 0.57, and 0.14 for the labels H, ML, and L inside 
3C (combination of three labels) are obtained by dividing the corresponding 

original weights in 4C (combination of four labels) by the sum of the three 
original weights of H, ML, and L, that is, 

0.29=0.2/(0.2+0.4+0.1) as the new weight for H;  
0.57=0.4/(0.2+0.4+0.1) as the new weight for ML;  
0.14=0.1/(0.2+0.4+0.1) as the new weight for L. 

The sum for the new weights is 0.29+0.57+0.14=1, as it should be for a convex 

combination.  We next apply the same procedure to 3C , thus getting 

( ) ( ) ( ){ } ( ) ( ){ }LMLCHLMLHC ,2.0;,8.0)29.01(29.0,14.0;,57.0;,29.0 23 ⊗−⊕⊗=      

(23) 
The new weights 

0.80=0.57/(0.57+0.14) as the new weight for ML;  
0.20=0.14/(.57+0.14) as the new weight for L.  

And we repeat the operation with 2C which leads to: 

( ) ( ){ } ( ) LMLLMLC ⊗−⊕⊗= 8.018.0,2.0;,8.02                (24) 

                                                           
8 A fundamental aspect of this operator is the re-ordering step, in particular an aggregate A 

is not associated with a particular weight W but rather a weight is associated with a 
particular ordered position of the aggregate. 

9 ⊗ and ⊕ are used to signify different symbolic operations.  



34 5   Aggregation of Linguistic Informations
 

In sum, we have the following:10  

( ) ( ) ( ) ( ){ }
[ ]{ }LMLHVH

LMLHVHC

⊗−⊕⊗⊗−⊕⊗⊗−⊕⊗
=

)8.01(8.0)29.01(29.0)3.01(3.0

,1.0;,4.0;,2.0;,3.04

 
     (25) 

At this stage we use the following rule for combining two labels:  

( )

( )( ){ }
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(26) 

[x] is the integer part of x. Note that in the case of m=2 we have jsb =1  and 

isb =2 . If 1=jw  and 0=iw  with iji ∀≠ , , then the convex combination is 

defined as jii bibwC == }2,1,,{2 .  

We thus obtain for the above example 
2}2,9min{))}12(8.0(1,8min{ ==−⋅+= roundk  since ML= s2 and L= s1,  

that is,11  

( ) ( ){ } ( ) MLLMLLMLC =⊗−⊕⊗= 8.018.0,2.0;,8.02

          (27) 

In order to arrive at the final result we need to go backward by successively 
retracing the previous steps, that is, by recombining the labels. Hence, for m=3      

                                                           
10 This procedure is possible because the LOWA operator can be shown to satisfy the three 

properties of “increasing monotonicity,” “associativity,” and “commutativity.” This 
implies that we can carry out the decomposition in a variety of different ways which 
would all lead to the unique final result.  

11 Symbolic methods might suffer a “loss” of information caused by the use of the round 
operator, which comes from the need to express the results in the initial expression 
domain which is discrete and finite. This problem of loss of information can be corrected 
by using the so-called 2-tuple symbols (a, S) where S is a label such as H, VH , etc., and 
a ∈[-0.5,0.5[. This procedure becomes important when [x]≠x (i.e., x is not an integer 
number). In this case a=x-[x] helps us decide which nearest label to choose. I do not use 
these finessing techniques in this paper to avoid an additional burden on the reader. See 
Herrera and Martinez (2000) for details.  
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( ) ( ) ( ){ } ( ) ( )3
3 29.0129.0,14.0;,57.0;,29.0 sFFMLMLHLMLHC ==⊗−⊕⊗=

 (28) 

Because H=s7 and ML= s2, we thus find min{9,2+round(0.29(7-2))}=min{9,3}=3.  
For m=4 

( ) ( ) ( ) ( ){ } ( ) ( )3
4 3.013.0,1.0;,4.0;,2.0;,3.0 sFFMLVHLMLHVHC =⊗−⊕⊗=      

(29) 

since VH= s8 and FFML=s3 and thus min{9,3+round(0.3(8-3))}=min{9,5}=5. The 
final result is: 

( ) MHVHHMLL =Φ ,,, .                                          (30) 

In words: Combining the labels Low, Medium_Low, High, and Very_High with 
weights (0.3,0.2,0.4,0.1) produces a label with value More_or_Less_High. More 
generally, we have the following definition of a Linguistic Ordered Weighted 
Operator – LOWA.12 

Definition of LOWA Operator: 

Let S = {s1,…, sm} be a set of m labels to be aggregated. The LOWA operator, Φ, 
is defined as:  

},...,2;,{)1(},...,1;,{),...,( 11
1111 mhbCwbwmkbwCBWss h

m
h

m
kk

mT
m =⊗−⊕⊗===⊗=Φ −− β   

where ∑=− m

kh
m
h ww

2

1 /β  with h=2,…,m.   

},...,{ 1 mwwW =  is a weighing vector satisfying: (i) ]1,0[∈iw  and (ii) 

1=∑m

i mw .  

},...,{ 1 mbbB = is a vector associated to S such that 
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ij ≤ ,  with σ being a permutation over the set of labels S.  
mC  is called the convex combination operator of m labels. In the case of m=2 

it is defined by: kijii sswswibwC =⊗−⊕⊗== )1(}2,1,,{ 11
2  with 

Sss ij ∈,  such that ij ≥ .  

k is obtained as ))}((,min{ 1 ijwroundiTk −⋅+= .  

 

                                                           
12 The LOWA operator possesses a number of properties which makes the process of 

aggregation of linguistic information a rational one. These properties are: unrestricted 
domain, unanimity or idempotence, positive association of social and individual values, 
independence of irrelevant alternatives, citizen sovereignty, and neutrality (Herrera et al., 
1996).  
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Note that if 1=jw and 0=kw  for all k≠j, then jkk
m bmkbwC == },...,1;,{ . 

The weights },...,{ 1 mwwW =  make LOWA an “orand” operator located 

somewhere between the “AND” and “OR” logical operations. In other words, 
LOWA has simultaneously a finite degree of “orness” and a finite degree of 
“andness,” defined by: 
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∑
=

−
−

=
n

j
jwjn

n
Worness

1

)(
1

1
)(

                       

     (32) 

If, for example, W=[0.4,0.3,0.2,0.1]T then orness(W)=(1/3)(3(0.4)+2(0.3)+ 
1(0.2)) =0.666. The meanings of orness and andness operators are clearly seen in 
the following cases: 
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      (33) 

Expressed in terms of fuzzy sets the maximum operator (producing the highest 
linguistic label in the ordered set) corresponds to an intersection of the fuzzy sets 
of all linguistic labels, and hence picks up the smallest common set, which in this 
case will be the highest label. This produces a degree of orness of 1 and a degree 
of andness of 0. Conversely, expressed in terms of fuzzy sets the minimum 
operator (producing the lowest linguistic label in the ordered set) corresponds to a 
union of the fuzzy sets of all linguistic labels, and hence picks up the largest 
common set, which in this case will be the lowest label – the lowest label is 
necessarily implied in all subsequent labels.13 This produces a degree of orness of 
0 and a degree of andness of 1. The average operator does not differentiate 
between all labels and hence produces equal degrees of orness and andness, i.e., 
0.5. Hence, LOWA operator with many of the weights near the top will be an 
orlike operator with orness(W)≥ 0.5, while those operators with most of the 
weights at the bottom will be andlike operators with orness(W)≤ 0.5.  

To offer a more intuitive understanding of the LOWA operator and the role of 
the weighting factors let me draw a parallel with the body of literature on decision 
theory using the poliheuristic method as developed by Alex Mintz and others 
(Mintz, 1993; 1995; Mintz and DeRouen, 1994; Mintz and Geva 1997).14 Briefly, 
the poliheuristic approach posits five main characteristics of decision making. (1) 
                                                           
13 This is possible because the labels are a complete ordered set. 
14 See the special issue of The Journal of Conflict Resolution (2004) 48 (1).   
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Non-holistic search: The process of decision making derives not from “evaluation 
and comparison of all alternatives across different dimensions” but rather from the 
use of “heuristic decision rules that do not require detailed and complicated 
comparisons of relevant alternatives, and adopts or rejects undesirable alternatives 
on the basis of one or a few criteria” (Mintz and Geva, 1997: 85). (2) Dimension 
or criterion-based processing: In situations where decision-makers are faced with 
cognitive and/or environmental constraints, they tend to use a dimension or 
criterion-based process instead of an alternative-based approach for processing 
information (Redd, 2004:339). (3) Non-compensatory decision rules: When 
decision makers are faced with multiple goals under constraints they resort to a 
non-compensatory strategy which “avoids alternatives that have radically different 
values in key goals because, to compensate for a low value, one needs a high one 
on other dimensions” (Goertz, 2004: 16). Hence, the approach emphasizes “how 
leaders evaluate different alternatives in light of their multiple and often 
conflicting aims. This emphasis poses a sharp contrast with standard expected 
utility models that most often make assumptions about the form of the one-
dimensional utility function” (Goertz, 2004:15). (4) Satisficing behavior: 
Ambiguity, uncertainty, and cognitive and other constraints end the decision 
making process not through maximization of options but rather when an 
acceptable alternative is found to satisfy a number of key criteria (Mintz and 
Geva, 1997: 86-87). (5) Order-sensitive search:  Most theories of decision making 
(based on some variants of expected utility theory) posit the invariance 
assumption, that is, regardless of how a decision task is framed with respect to the 
ordering and sequencing of dimensions and alternatives, the outcome should 
remain the same. The poliheuristic approach argues that the invariance assumption 
is violated for, as put by Mintz and Geva (1997: 87), “the poliheuristic 
decisionmaking model implies that the choice of a particular alternative may 
depend on the order in which particular dimensions (diplomatic, economic, 
military, political) are invoked.” In a nutshell, the LOWA method exactly does 
what the poliheuristic approach suggests, that is, LOWA offers one way to 
formally model the poliheuristic theory approach. 

From a poliheuristic theory perspective the LFLA is non-holistic, aggregates 
information based on a limited set of criteria, allows a non-compensatory 
aggregation of the information on the various alternatives, is based on a satisficing 
strategy, and is order sensitive. Aspects (1) and (2) of the poliheuristic theory 
method are built in the LOWA operator as defined up above, whereas aspects (3), 
(4), and (5) are taken care of through the aggregation weights W. Different 
choices of W would allow different degrees of non-compensatory, satisficing and 
sensitivity to ordering in the decision making process. Hence, it can be said that 
the weights W are in some sense a modeling and measure of these three aspects of 
the poliheuristic theory method. In this respect, the degree of andness (as defined 
earlier) would provide a measure of the degree of non-compensatoriness in 
decision making (while orness would measure the degree of compensatoriness). 
Moreover, as explained in the next chapter, the LFLA also offers one way to 
model the two-stage procedure of decision-making postulated by the poliheuristic 
theory method. Yet, the LFLA is more general than the poliheuristic method for it 
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can as well formally model a decision making process based on different 
assumptions concerning the five aspects of poliheuristic theory (1–5) discussed 
earlier. Determining the weights W differently formally models different methods 
of aggregating information such as for example allowing for different degrees of 
compensatoriness.         

The LOWA aggregation of labels depends crucially on the weights vector. 
Yager (1988) introduced entropy as a measure that indicates the degree to which 
W takes into account the various individual pieces of information (expressed by 
the linguistic labels). Entropy measures the uncertainty on the occurrence of a 
distribution of weights. Probability is traditionally used to measure the uncertainty 
that we have on a single event, whereas, in comparison, entropy measures the 
uncertainty on a collection of events. A highly concentrated distribution of weight 
has smaller entropy than a less concentrated distribution; the former distribution is 
more informative and it is easier to predict its outcomes. Entropy provides a 
measure of information uncertainty in the sense that it describes the difficulty of 
predicting an outcome of a random variable.15 Entropy for a weighting vector W is 
defined as: 

∑
=

−=
n

i
ii wwWE
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ln)(  

Entropy is an interesting quantity because it satisfies the so-called Maximum 
Entropy Principle (MAXENT). The intuition behind the MAXENT is that the W 
that maximizes the entropy is a reasonable estimate of the true distribution when 
we lack any other type of information. The estimate will be altered if we receive 
new information. The result is that out of all possible estimates of the probability 
distributions that are consistent with the “data”, the MAXENT method picks the 
one which is most uninformative; that is, closest to a uniform distribution (Golan, 
Judge, and Karp; 1996; Paris and Vencovskfa, 1996). MAXENT thus stipulates 
that in the process of making inferences based on incomplete information, we 
should select the probability distribution function with maximum entropy value 
given the observed data (Jaynes, 1982). Hence, the distribution function obtained 
using MAXENT provides the most conservative estimation of the unknown 
underlying distribution function. This choice singles out the most significant and 
least biased distribution and the one which best represents the true distribution 
(Jaynes, 1957; 1989).16  

As an example imagine that you were to choose from a choice-set the elements 
of which are not necessarily fair (i.e., a non-uniform distribution of choices) 
defined by throwing two non-fair dices. There are eleven possible outcomes, each 

                                                           
15 Information theorists use entropy as a measure of the average amount of information 

required to describe the distribution of some random variable of interest (Shannon, 1948; 
1949; Cover and Thomas 1991). 

16 For illustrative works using the notion of entropy in political science see, for example, 
Theil, 1969; Gill, 1997; in economics, Ullah, 2002; in sociology, Alexander, 1996; in 
game theory, O’Connell and Stearns, 2003; Neyman, 1999. For a comparison with 
Bayesian approaches, see, for example, Shen and Perloff, 2001.  
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outcome having unknown probabilities of occurrence. Even though you do not 
know the distribution of outcomes, it is better for you to bet on the number 7 as 
opposed to 2 or 12 since there are 6 combinations that produce 7 while there is 
only 1 for the other combinations. The bet on 7 is the maximum entropy bet 
because the combination 7 produces the maximum expected value (given the lack 
of prior information about the probabilities). Thus, the probability distribution 
which maximizes the entropy is numerically identical with the frequency 
distribution which can be realized in the greatest number of ways. The MAXENT 
principle means that making parametric inferences based on incomplete 
information should be done by selecting the probability distribution function with 
the maximum entropy value given the observed data. 

MAXENT principle could also be interpreted as a criterion for selecting a 
probability model. As long as we are willing to view entropy as a suitable measure 
of uncertainty, MAXENT principle allows us to select the distribution which 
contains the largest amount of uncertainty compatible with certain constraints. 
This is somewhat similar to the maximum likelihood principle with the important 
difference that in the case of MAXENT one does not have to a priori assume an 
analytical form for the distribution. MAXENT principle is thus an important 
generalization of Laplace’s principle of insufficient reason which stipulates that 
the uniform distribution in situations where there is complete lack of knowledge 
about the events. MAXENT deals with partial information and hence stipulates 
that we should choose the probabilities that maximize the uncertainty about the 
missing information.  

In sum, using MAXENT in the aggregation process of linguistic fuzzy 
information is suitable since it falls well within the spirit of preserving as much 
vagueness and uncertainty as possible. When supplemented with the measure of 
orness we have a procedure which preserves the vagueness of the information 
used to reach a decision as well as the multi-dimensionality character of the 
decision making process. Thus, I combine the two measures – orness and entropy 
– to determine the weights at every level of orness using MAXENT by solving the 
following optimization problem: 
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where ω  is the specified desired degree of orness.   
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An analytic solution to this optimization problem can be found using the Lagrange 
multiplier method.17 Let α and β  be two Lagrange multipliers. The method of 

Lagrange multipliers consists in optimizing the following expression:  
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The partial derivatives of L are given by:  
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Simultaneously solving these three equations, we obtain: 
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h is related to the multiplier β by hn ln)1( −=β . h is the largest positive 

solution of the following equation:  
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For every degree of orness ω we obtain a value of h which gives a weights vector 

W.  For example, for n=3 and a desired degree of orness 7.0=ω , we obtain the 
following equation: 

07.02.03.0)7.00()7.05.0()7.0.1( 22 =−−=−+−+− hhhh      (38) 

The positive solution of this equation is h=1.89, leading to 

15.0;30.0;55.0 321 === www  with an optimized entropy of E(W)=0.97.  

Table 3 shows the solutions for a system with n=4 weights for various degrees of 
orness. 
 

                                                           
17 Filev and Yager, 1995; Fuller and Majlender. 2001.  
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Table 3 Weights Vector using MAXENT Principle 

orness andness h 
1w  2w  3w  4w  E(W) 

1.00 0.00  1.00 0.00 0.00 0.00 0.00 
0.96 0.04 9.29 0.892 0.096 0.010 0.001 0.38 
0.79 0.21 2.27 0.581 0.256 0.112 0.049 1.06 
0.66 0.44 1.49 0.413 0.276 0.185 0.124 1.29 
0.50 0.50 1.00 0.250 0.250 0.250 0.250 1.38 
0.34 0.66 0.67 0.124 0.185 0.276 0.413 1.29 
0.21 0.79 0.44 0.049 0.112 0.256 0.581 1.06 
0.04 0.96 0.10 0.001 0.010 0.096 0.892 0.38 
0.00 1.00 0.00 0.000 0.000 0.000 1.000 0.00 
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Chapter 3 
Linguistic Fuzzy-Logic Decision-Making 
Process 

The chapter presents a linguistic fuzzy-set approach to decision making that mod-
els how actors who are faced with situations fraught with vagueness make their 
decisions. The chapter considers situations where the actors engage in a process of 
evaluating the merits of different choice alternatives under multiple criteria – a 
process of Multiple Criteria Decision Making. A key question of this chapter is: 
how do actors aggregate the vague information that they have on these criteria to 
reach a final decision on the situation facing them? Drawing on a vast area of re-
search in engineering and other fields of knowledge such as business management 
and medical research, I propose a linguistic fuzzy-logic approach to analyze the 
process of decision making in social and politics under multiple criteria.1  

The chapter is organized into three sections. A first section introduces a hypo-
thetical example to be used as illustrative anchor for explicating the model. A  
second section explicates a linguistic fuzzy theory approach to the process of  
decision-making under conditions where the decision makers are required to si-
multaneously satisfy multiple criteria, which might be mutually reinforcing or 
conflicting. A third section compares the linguistic fuzzy set approach to social 
choice theory. This section hence helps make the case that the linguistic fuzzy set 
method can be applied to individual decision making as well as collective choice 
situations. The hypothetical situation is one where state leaders have to decide on 
the formation of a security alignment by choosing among a set of alternative  
arrangements based on a set of multiple criteria. This example is meant to be  
illustrative only and hence I do not claim any empirical “truth” to the underlying 
substantive assumptions or conclusions. 

1   International Security as Illustration 

Let us assume a hypothetical situation where state leaders are seeking to form a 
security alignment. In order to do so they need to weigh a number of alternative 
forms of security alignments taking into account a number of factors (or criteria). 
Let’s assume that in order to choose a form of security alignment state leaders 
                                                           
1 For some illustrative literature, see: Herrera and Herrera-Viedma, 2000, and references 

therein; Bordogna and Passi, 1993; Delgado et. al., 1998; Gurocak and Whittlesey, 1998; 
Herrera and Rodriguez, 2002; Herrera et. al, 2001; Herrera-Viedma, 2001. 
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have to consider simultaneously four factors: DDR, VUL, RPL, and RMT (see 
Table 1 for the meanings of these symbols).2 State leaders engage in a process of 
Multiple Criteria Decision Making (MCDM) in evaluating the merits of different 
alternatives among a set of possible security alignments.  

I call these variables criteria following Zadeh (1970: B 148) who demonstrated 
that in a fuzzy set approach “concepts of goal and constraint … are defined as 
fuzzy sets in the space of alternatives and thus … can be treated identically in the 
formulation of a decision.” The crisp separation between goals and constraints 
disappears, and the fuzzy goals and constraints are aggregated to a single function 
that is maximized.3 This insight has been much elaborated on in the 30 years fol-
lowing this and is now widely accepted in the milieu of fuzzy set theorists.4 Along 
these lines, criteria and conditions are treated in the same way in my chapter. To 
make the story short, whether we can call these criteria, conditions, or simply fac-
tors – what is important, and this is a value-added of the fuzzy-sets approach, is 
how they are aggregated to produce a result. The reason for this is that vagueness 
can never be eliminated from these and most human concepts and this is precisely 
what the fuzzy set approach is about; that is, how to model this vagueness and not 
force an artificial crispness on natural language. A fuzzy logic approach – instead 
of Boolean logic approach – does not require, in fact discourages, seeking a sharp 
delineation between criteria and conditions. For example, the argument is that 
when a practitioner is seeking to reach a decision on whether to conclude an alli-
ance pact he/she does not make a list of criteria and a second list of conditions and 
then treats them differently in his/her mind. Rather, the practitioner tries his/her 
best to account for he/she thinks are the most important factors influencing the 
issue at hand.        

I thus posit that the state leaders need to choose among a set of four alternative 
options of security alignment {WBB,SBB,MUU,SCC} (see Table 1 for explanation 
of these symbols). They do this by combining the available linguistic information 
on the four factors {DDR,VUL,RPL,RMT}. A state leader who is interested in 
forming a security alignment with other states comparatively evaluates the four 
options by taking into account all four factors.  

The variables {DDR,VUL,RPL,RMT} are considered as linguistic variables. We 
hence need a semantic set for expressing their variations. I choose the following 
set of terms {NNN,LLL,LMM,MMM,MHH,HHH,VHH} where NNN = None, 
LLL= Low, LMM= Low_ to_Medium, MMM= Medium, MHH= Me-
dium_to_High, HHH= High, and VHH= Very_High. Thus, in an arrangement of  
 

                                                           
2 This hypothetical example has strong affinity with David Lake’s (1999) theory on entan-

gling relations. One key difference though is that Lake does not include mutual trust as an 
additional independent variable that determines the type of security alliance formed.  

3 It is worthwhile recalling here Herbert Simon’s (1996) statement, “In the decision-
making situations of real life, a course of action, to be acceptable, must satisfy a whole 
set of requirements, or constraints. Sometimes one of these requirements, or constraints, 
is singled out and referred to as the goal of the action. But the choice of one constraint 
from many is to a large extent arbitrary. For many purposes it is more meaningful to refer 
to the whole set of requirements as the (complex) goal of the action. This conclusion ap-
plies both to individual and organizational decision-making.” 

4 See, for example, Herrera and Herrera-Viedma, 1998.  
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Table 1 Symbols used in the security alignment example 
 

Security Alignment Factors (or Criteria) 
Symbol Meaning Symbol Meaning 
WBB Weak Bilateralism DDR Degree of Diffuse Reciprocity among allied states 
SBB Strong Bilateralism VUL VULnerability among allied states to 

abandonment, entrapment, and/or exploitation 
MUU Multilateralism RPL Reliance of Power Leverage among allied states 
SCC Security Community RMT Reliance of Mutual Trust among allied states 

Weak Bilateralism (WBB), I posit that the two states expect that the shared degree 
of diffuse reciprocity is low (DDR=LLL). A low DDR creates a fear of high mu-
tual vulnerability (VUL=HHH). If there is a situation of power asymmetry the 
strongest would then seek to use its power leverage to tilt the mutual security rela-
tion in its favor. That is, the powerful would readily rely very much on its power 
leverage (RPL) in defining and maintaining the arrangement. But then this would 
mean that the two states would not rely much on mutual trust (RMT) in defining 
and maintaining the bilateral arrangement. In this situation we thus have 
RPL=VHH and RMT=LLL. Following the same type of reasoning, I posit Table 2 
which summarizes the linguistic values of the four factors {DDR,VUL,RPL,RMT} 
for each of the four possible choices of security arrangement.5 Let me emphasize 
that a key aspect of Table 2 is not the absolute fuzzy values of the individual vari-
ables {DDR, VUL,RPL,RMT} for each of the security options 
{WBB,SBB,MUU,SCC}. Rather, what is hypothesized and yet to be demonstrated 
is that the aggregation of the values of these individual variables does indeed pro-
duce the posited security option. Hence, one “hidden” weakness of this analysis is 
that Table 2 is stated in comparative static terms. Yet, the choice of security 
alignment is the result of the combined effects of all four variables, 
{DDR,VUL,RPL,RMT}. 

A key question thus is: how to aggregate the effects of the individual variables 
to check the validity of the results of comparative static analysis? One conven-
tional way to do it is by estimating the value of each variable, let’s say for weak 
bilateralism, and then estimate the overall costs and benefits that a state might 
incur were it to opt for such a security arrangement. The deciding state would also 
have to carry out the same cost/benefit analysis for other forms of security align-
ment. The final choice on the form of security arrangement would then be the one 
that minimizes the overall costs and maximizes the overall benefits. The final 
choice for any state would be obtained by optimizing the estimate of the aggre-
gated values of all four variables. Yet, this approach is still underdetermining for it 
does not explicitly address the above “hidden” weakness; it does not demonstrate 
explicitly the postulated simultaneous multiple causality.  

I propose to use a linguistic fuzzy-logic framework to model how state leaders 
make the choices that they do. In doing this I am positing that the decision makers 
do not seek first to estimate the absolute costs and benefits of the independent 

                                                           
5 This table is simply posited for the sake of illustration – I am not suggesting that there is a 

substantive theory underpinning these assignments.  
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variables and then only at the end compare the relative merits of the aggregated 
costs and aggregated benefits of all security arrangements. Rather, state leaders 
consider the relative merits of the security arrangement right from the beginning. 
For example, a state leader would examine how WBB fares on the dimension of 
strategic vulnerability when compared with multilateralism, and so on and so forth 
for all four variables {DDR,VUL,RPL,RMT}. Only at the end do state leaders con-
sider the aggregated relative merits of different security arrangements. I believe 
that this is very realistic for it does not require the analyst (or the policy maker) to 
estimate the absolute values of the independent variables. This is a crucial point 
for the task of estimating the absolute values of variables is always fraught with 
methodological pitfalls and empirical hurdles that all students of IR and practitio-
ners alike are well aware of. Not only the full range of alternative security ar-
rangements must be specified and evaluated according to their relative merits. I 
also think it appropriate and realistic that we should deal with the independent 
variables in the same way. A LFLA framework allows us to do this using fuzzy 
comparison. In other words, I take it that the results displayed in Table 2 are not 
yet fully demonstrated – they have yet to simultaneously take into account the 
multiple criteria. This step is more often assumed implicitly by most scholars who 
engage in this kind of analysis. Demonstrating multiple causality is often not done, 
or in most cases rather vaguely asserted. The approach does indeed provide one 
way to establish multiple causality (or lack thereof) in a formal and rigorous 
mathematical way using linguistic fuzzy analysis.  

Table 2 Security Arrangements  

 DDR VUL RPL RMT 
WBB? LLL HHH VHH LLL 
SBB? LMM VHH HHH LMM 
MUU? HHH VHH LLL HHH 
SCC? VHH VHH NNN VHH 

More formally, the analysis consists of asking a number of IF-Then fuzzy ques-
tions to reach a conclusion about the combination of the different dimensions of 
causality. In the case of the running example we would have for WBB the follow-
ing fuzzy rule: 

IF {“DDR≈LLL” © “VUL≈HHH” © “RPL≈VHH” © “RMT≈LLL”} THEN WBB 

I use the © symbol instead of AND or OR because in the LFLA multiple cau-
sality is neither strictly necessary (which is usually represented with a logical 
AND and symbolically by a product of the independent variables) nor strictly suf-
ficient (which is usually represented with a logical OR and symbolically by an 
addition of the independent variables).6 LFLA allows a formalization of fuzzy 
multiple causality as “more or less necessary like” and “more or less sufficient 
                                                           
6 See for example: Goertz (2003a; 2003b:68-70) and Chapters 6 and 7 of this book.  
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like.” The outcome WBB is causally produced through the fuzzy rule IF-THEN to 
a certain extent, which is expressed by a linguistic variable. In conventional deci-
sion making causality is usually treated using Boolean two-valued logic phrased 
formally as WBB=DDR*VUL*RPL*RMT if, for example, all independent vari-
ables are considered to be necessary conditions. Alternatively, we could have 
WBB=DDR*VUL* RPL+DDR*VUL*RMT if, for example, DDR and VUL and 
RPL are jointly necessary conditions and DDR and VUL and RMT are jointly 
necessary conditions (and a number of other possible combinations). If all four 
variables are sufficient conditions we can write in Boolean logic of causality IF 
DDR, VUL, RPL, RMT then WBB. For probabilistic causality this would take 
the form IF DDR, VUL, RPL, RMT then probably WBB. It is important to note 
that with fuzzy IF-THEN rules we are dealing with vague causality not with prob-
abilistic causality, that is, fuzzy causality means that WBB IS produced to a par-
tial degree7 whereas probabilistic causality would mean that WBB IS produced 
OR NOT produced with a given likelihood. Hence, a key difference between 
LFLA decision making and conventional decision making (such as used in ex-
pected utility) is that they are built on different notions of causality rooted in dif-
ferent logics.8  

The first task now is to establish how each of the four options 
{WBB,SBB,MUU,SCC} compares to one another according to each of the four  
 

Table 3 Semantic Set for Preference Relations    

k Label Linguistic Meaning 
12 DPP xi is preferred to xj in Definite degree  
11 VHP xi is preferred to xj in Very High degree  
10 HPP xi is preferred to xj in  High degree  
9 MPP xi is preferred to xj in Moderate degree  
8 LPP xi is preferred to xj in Low degree  
7 VLP xi is preferred to xj in Very Low degree  
6 AAS xi is about the same AS xj 
5 VLD xj is preferred to xi in Very Low degree  
4 LDD xj is preferred to xi in Low degree  
3 MDD xj is preferred to xi in Moderate degree  
2 HDD xj is preferred to xi in High degree  
1 VHD xj is preferred to xi in Very High degree  
0 DDD xj is preferred to xi in Definite degree  

                                                           
7 To put it in an awkward way: WBB IS “a bit caused” AND “a bit not caused;” that is, 

causality is partial.  
8 At a fundamental or logic level the difference is that LFLA deals with partial degrees of 

truth whereas probabilistic causality still adheres to a Boolean notion of truth with a di-
chotomous choice between TRUE and FALSE (at least for most works published in so-
cial sciences).  
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variables {DDR,VUL,RPL,RMT}. These estimates are expressed linguistically 
and are relative, not absolute. To move further, we need to introduce a second 
semantic set that can be used to express how these security options perform com-
pared to one another when taking into account the various criteria. I opt for the 
following set which is big enough to allow a rich comparison of the four security 
options.9  

Each label corresponds to an index k which is used for purposes of structurally 
ordering the labels in the set. The whole set corresponds to { }12,...,0| =kpk  
with each element of the set representing a preference relation. Table 3 is set up to 
provide dyadic comparisons of security options xi and xj. Using these semantics 
we obtain 14 different 4x4 matrices of performance relations, with each matrix 
corresponding to a linguistic value of one of the four criteria 
{DDR,VUL,RPL,RMT}. For example, for VUL=VHH, I obtain the following  
matrix 

VUL=VHH,   

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−

=

AASAASLDD

AASAASLDD

AASAASLDD

LPPLPPLPP

P1  

Elements 1,2,3,4 of a row correspond to the order in the set 
{WBB,SBB,MUU,SCC} (and the same for column elements). This means that on 
the dimension of strategic vulnerability, we have the following preference rela-
tions between the four forms of security arrangement (ceteris paribus):  

When mutual vulnerability (VUL) is very high (VHH): 

LPPP =1
12  ⇔WBB is preferred to SBB in 

Low degree 

LPPP =1
13  ⇔ WBB is preferred to MUU in 

Low degree 

LPPP =1
14  ⇔ WBB is preferred to SCC in 

Low degree 

LDDP =1
21  ⇔ WBB is preferred to SBB in 

Low degree 

AASP =1
23  ⇔ SBB is about the same as 

MUU 

AASP =1
24  ⇔ SBB is about the same as 

SCC 

LDDP =1
31  ⇔ WBB is preferred to MUU in 

Low degree 

AASP =1
32  ⇔ MUU is about the same as 

SBB 

AASP =1
34  ⇔ MUU is about the same as 

SCC 

LDDP =1
41  ⇔ WBB is preferred to SCC in 

Low degree 

AASP =1
42  ⇔ SCC is about the same as 

SBB 

AASP =1
43  ⇔ SCC is about the same as 

MUU 

                                                           
9 Note that the preference relations for k=0,…,5 are the mirror images of those for 

k=7,…,12. 
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The remaining 13 matrices are listed in Appendix A. These matrices are derived 
from the assumptions made in Table 2. I first take as starting points the linguistic 
values ascribed to the four variables {DDR,VUL,RPL,RMT} and, second, derive 
the comparison relations of the four options {WBB,SBB,MUU,SCC} for each of 
these linguistic values. For example, in the case of the matrix for VUL=VHH dis-
played earlier, the WBB option is the more likely one to be chosen, that is, weak 
bilateralism is the most preferred security option, ceteris paribus. Yet, state lead-
ers know that vulnerability is only one of four criteria to be satisfied and therefore 
they must take into account the other criteria as well. Under such a constraint, 
state leaders would, for example, compare WBB with SCC and decide that under a 
condition of VUL=VHH they would rank WBB as  LPPP =1

14  compared to SCC 
(that is WBB is preferred to SCC to a Low degree), ceteris paribus. Along the 
same lines, state leaders would however rank SBB as about the same 
( AASP =1

24 ) as SCC, the reason being that under a condition of VUL=VHH, 
SBB is closer to SCC than WBB on the dimension of VUL (as shown in Table 3), 
ceteris paribus. Again, these evaluations are expected to be rough estimates only. 
This is the essence of using a Linguistic fuzzy approach to the problem of decision 
making – preserving a lack of precision is important. The remaining preference 
relations are obtained through a similar process of reasoning.    

As a second illustration of this procedure let us consider the case of SNF (short 
range nuclear forces) decision that occurred within NATO in 1989 which Sanjian 
(1992) examined using a fuzzy-set approach. NATO faced four different options: 
X1 – modernize SNF, X2 – negotiate missile reduction with the Warsaw Treaty 
Organization, X3 – modernize SNF and negotiate with WTO, X4 – neither mod-
ernize nor negotiate by postponing the decision on SNF. The preferences ranking 
for the members of NATO (as deduced by Sanjian) are listed in Table 4. 

Table 4 Preference orderings on the SNF issue (Table I  from Sanjian (1992:279)). 

State Ordering State Ordering 
Belgium X2 > X4 > X3 > X1 Luxembourg X2 > X4 > X3 > X1 
Canada X1 > X3 > X4 > X2 Netherlands X3 > X1 > X4 > X2 
Denmark X2 > X4 > X3 > X1 Norway X2 > X4 > X3 > X1 
France X3 > X4 > X1 > X2 Portugal X3 > X1 > X4 > X2 
Germany X2 > X4 > X3 > X1 Spain X2 > X4 > X3 > X1 
Greece X2 > X4 > X3 > X1 Turkey X3 > X1 > X4 > X2 
Iceland X2 > X4 > X3 > X1 United Kingdom X1 > X4 > X3 > X2 
Italy X2 > X4 > X3 > X1 United States X1 > X3 > X4 > X2 

Using a method based on membership functions, Sanjian predicts that Ger-
many’s preference ordering is what NATO will most likely adopt, which indeed 
was the case as the empirical evidence shows.  
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The NATO collective choice can alternatively be analyzed using the linguistic 
fuzzy approach. To this end, we need to recast the information in Table 4 in terms 
of a linguistic terms-set and produce matrices of preference relations that compare 
for each state the various options as dyads. Although I could use the linguistic  
set introduced earlier, there is no need for such a high level of granularity  
and I instead opt to use the following reduced set of linguistic terms 
{HPP,MPP,LPP,AAS,LDD,MDD,HDD} (as defined in Table 5). This gives a total 
of 16 preference matrices. 

Table 5 Semantic Set for Preference Relations for expressing NATO members’ preferences   

k Label Linguistic Meaning 
6 HPP xi is preferred to xj in  High degree  
5 MPP xi is preferred to xj in Moderate degree  
4 LPP xi is preferred to xj in Low degree  
3 AAS xi is about the same AS xj 
2 LDD xj is preferred to xi in Low degree  
1 MDD xj is preferred to xi in Moderate degree  
0 HDD xj is preferred to xi in High degree  

Let us consider, for example, the German case for which Sanjian (1992) derives 
the following ordering of alternative options from best to worst option: X2 > X4 > 
X3 > X1. This is translated using linguistic preference relations as X2 is preferred 
to X1 in high degree (HPP); X2 is preferred to X3 in moderate degree (MPP); X2 
is preferred to X4 in low degree (LPP). Likewise, X4 is preferred to X1 in moder-
ate degree (MPP); X4 is preferred to X3 in low degree (LPP). And X3 is preferred 
to X1 in low degree (LPP). This leads to the following matrix of comparative 
preferences for Germany: 

{ }
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−

=⇒

LPPLDDMPP

LDDMDDLDD

LPPMPPHPP

MDDLDDHDD

XXXXPXXXX Germany }4,3,2,1{1,3,4,2  

The row elements of this matrix corresponds to the vector {X1,X2,X3,X4}, 
whereas the column elements correspond to the transposed vector  
{X1,X2,X3,X4}transpose. The matrix preferences for the other 15 states are obtained 
in a similar fashion.  



3   Linguistic Fuzzy-Logic Decision-Making Process 51
 

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−

=

LDDLPPMDD

LPPMPPLDD

LDDMDDHDD

MPPLPPHPP

PCanada
 ; 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−

=

LDDMPPLPP

LPPHPPMPP

MDDHDDLDD

LDDMDDLPP

P France
 

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−

=

MDDLPPLDD

MPPHPPLPP

LDDHDDMDD

LPPLDDMPP

P sNetherland
 ; 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−

=
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The remaining matrices are given by: 

SpainNorwayLuxembourgItalyIcelandGermanyGreeceDebnmarkiumBe PPPPPPPPP ========lg  

PortugalsNetherlandTurkey PPP ==  

CanadaUS PP =  

In order to reach a decision on what type of security arrangement is best for a state 
or to reach a collective decision in the NATO example, the information on dyadic 
preference relations has to be aggregated to be useful. The procedure for doing so 
is addressed next.  

2   Choosing the Best Alternative 

The task is to choose the best alternative among a set of n linguistic options 

{ }nxxX ,...,1=  according to m linguistic criteria { }mccC ,...,1= . The starting 

point is to evaluate the various options in X in comparative terms, that is, how an 
alternative performs in satisfying each of the multiple criteria compared to the 
other options. This process produces a set of performance relations matrices, Pi, 
made up of performance relations, with a matrix per each criterion i. For m criteria 

we would have m (n x n) matrices{ }mPP ,...,1  of performance relations. The goal 

then consists in finding the best performance relations matrix. The latter is found 
by aggregating the linguistic information stored in the individual performance 
relation matrices through the LOWA operator introduced in Chapter 2 according 
to the following two steps (Herrera, Herrera-Viedma, and Verdegay, 1996):  

1. The different linguistic degrees of preference relations are evaluated for 
each alternative xi according to the set of m criteria considered individually. 

This produces the individual degrees of preference, k
iID , for each alterna-

tive xi according to each criterion k.  
2. The different linguistic degrees are evaluated for each alternative according 

to the set of criteria as a whole by aggregating the individual degrees of 

preference, k
iID . This produces the social degrees of preference, iSD  for 

each alternative xi . 
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The actual process of choosing the best alternative is done through a process 
called of linguistic dominance among a set of decision options in three steps (see 
Figure 1). 

1. For each matrix Pk  of linguistic preference relations according to criterion 
k, we use the LOWA operator with a specified weights vector W1 (deter-
mined by using MAXENT principle for a degree of orness ω1), denoted as 

1WΦ , to obtain the individual linguistic dominance degree of each alterna-

tive xi, 
k
iID , as ( )ijnjpID k

ijW
k
i ≠=Φ= ;,...,1,

1
 with k=1,…,m; and 

i=1,…,n.   
2. For each alternative xi , we then evaluate the social linguistic dominance 

degree, iSD , using a second LOWA operator with a specified weights vec-

tor W2  (determined by using MAXENT principle for a degree of orness 

ω2), denoted as 
2WΦ , as ( )mkIDSD k

iWi ,...,1,
2

=Φ=   with i=1,…,n.                          

3. We obtain the set of alternatives that have maximum linguistic dominance 

degrees dX max as ( ){ }jjii
d SDSDXxX maxmax =∈= . 

N Alternatives IDJI =Linguistic Dominance Degree for Alternative J for Criterion I
M Criterion: C1 …  CM SDI =Linguistic Social Dominance Degree for Alternative I
Each Criterion I  w ith Preference Matrix PI

Linguist ic LOWA
Preference Aggregation
Relations Weight W1

C1 P1

Max imum Degree

C2 P2

SDMAX

CM PM

Best A lternative

(ID11,ID21,ID31, … ,IDN1)

(ID12,ID22,ID32, … ,IDN2)

(ID1M,ID2M,ID3M, … ,IDNM)

(SD1,SD2,… ,SDN)

Linguist ic Socia l
Dominance Degrees

Individual
Linguist ic

Dominance
Degrees LOWA

Aggregation
Weight W2Criteria

 
Fig. 1 Two-Level LOWA Aggregation Process 

This method of choosing the best alternative is now illustrated in the running 
example on security alignment. I assume a degree of orness of 0.3 at the first step 
of aggregation (that is, individual linguistic dominance degree of each alternative) 
and a degree of orness of 0.5 at the second step of aggregation (that is, social  
linguistic dominance degree of each alternative).10 A degree of orness of 0.3 can 
be said to correspond to a fuzzy degree of andness characterized as “as many as 

                                                           
10 I have written a MatLab code that can be used to compute the individual and social de-

grees of dominance for any values of the two degrees of orness.  
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possible.” This means that the decision makers will only be satisfied if “as many 
as possible” of the four criteria are satisfied. This leads to a weights vector:  

55.0;30.0;15.0 131211 === www  with a maximum entropy of E(W1)=0.97. 

As to the stage of social dominance process, I assume that the decision makers are 
basically interested in the average aggregate at this stage, that is, with a degree of 
orness = 0.5 and a degree of andness = 0.5, which would correspond to a weight-

ing vector 25.024232221 ==== wwww  and a maximum entropy of 

E(W2)=1.38. All contributions are hence equally weighed in the social dominance 
process. Going to Table 3, we obtain the following tables.11 

Table 6 Weak Bilateralism 

AGGREGATION of {DDR=LLL, VUL=HHH, RPL=VHH, RMT=LLL} 
 

  DDR=LLL VUL=HHH RPL=VHH RMT=LLL  
  1

iID  2
iID  3

iID  4
iID   

WBB 
1=iSD  MPP VLP MPP MPP LPP 

SBB 
2=iSD AAS LDD AAS AAS VLD 

MUU 
3=iSD  MDD LDD MDD MDD MDD 

SCC 
4=iSD VHD LDD VHD VHD VHD 

 
maxS  WBB: Weak Bilateralism 

Table 7 Strong Bilateralism 

AGGREGATION of {DDR=LMM, VUL=VHH, RPL=HHH, RMT=LMM} 
 

  DDR=LMM VUL=VHH RPL=HHH RMT=LMM  
  1

iID  2
iID  3

iID  4
iID   

WBB 
1=iSD  VLP MDD VLP VLP VLD 

SBB 
2=iSD LPP AAS LPP LPP VLP 

MUU 
3=iSD MDD AAS MDD MDD MDD 

SCC 
4=iSD VHD AAS VHD VHD VHD 

 
maxS  SBB: Strong Bilateralism 

                                                           
11 These tables are drawn from a larger table that includes all results for all possible combi-

nations of the independent variables for all possible outcomes. The Table (3 pages) is 
available from the author upon request.  
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Table 8 Multilateralism 

AGGREGATION of {DDR=HHH, VUL=VHH, RPL=LLL, RMT=HHH} 
 

  DDR=HHH VUL=VHH RPL=LMM RMT=HHH  
  1

iID  2
iID  3

iID  4
iID   

WBB 
1=iSD  HDD MDD VHD VHD DDD 

SBB 
2=iSD HDD AAS MDD MDD DDD 

MUU 
3=iSD  LPP AAS LPP LPP HDD 

SCC 
4=iSD VLP AAS VLP VLP HDD 

 
maxS  MUU: Multilateralism 

Table 9 Pluralistic Security Community 

AGGREGATION of {DDR=VHH, VUL=VHH, RPL=NNN, RMT=VHH} 
 

  DDR=VHH VUL=VHH RPL=NNN RMT=VHH  
  1

iID  2
iID  3

iID  4
iID   

WBB 
1=iSD  VHD LDD VHD VHD VHD 

SBB 
2=iSD  HDD AAS HDD HDD MDD 

MUU 
3=iSD  AAS AAS AAS AAS AAS  

SCC 
4=iSD  MPP AAS MPP MPP VLP 

 
maxS  SCC: Pluralistic Security Community 

For the sake of illustration, let’s consider Table 9.  The 3rd,…, 6th columns cor-
respond respectively to the four criteria {DDR, VUL,RPL,RMT} . The 3rd,…, 6th 
rows correspond respectively to the four security options {WBB,SBB,MUU,SCC}. 
Hence, on the first criterion, DDR=VHH (very high degree of diffuse reciprocity) 
the option MUU  is most preferred for the social degree of preference equal to 
MPP which according to Table 3 ranks better than VHD, HDD, or AAS. Whereas 
on the criterion of very high vulnerability (VUL=VHH), options SBB, MUU, and 
SCC are equally preferred to the WBB option. As can be seen from the table, SCC 
fares better (that is, MPP) than all three other options on the remaining criteria of 
no reliance on power leverage (RPL=NNN) and very high reliance on mutual trust 
(RMT=VHH).  Aggregating these individual pieces of linguistic information on 

preference relations among the four security options (that is, aggregating 1
iID , 

2
iID , 3

iID , and 4
iID ) clearly shows that SCC is the best security alignment, as 

shown in the last column of Table 11. That is, VLP is higher than AAS, MDD, or 
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VHD, according to Table 3. In sum, a security community obtains when the de-
gree of diffuse reciprocity is very high, the level of vulnerability is very high, the 
level of reliance on power leverage is null, and the level of reliance on mutual 
trust is very high.    

A similar analysis when applied to the case of collective decision in NATO 
leads to Tables B.1 and B.2 in Appendix B. The best alternative is determined as a 
function of the two degrees of orness ω1 and ω2 which are varied between 0 and 1. 
Sanjian’s (1992) fuzzy approach predicts that Germany’s choice is the best alter-
native (which his reading of the historical event confirms). A Linguistic fuzzy 
approach also predicts that the German choice is the best collective alternative for 
NATO, that is, the option “NEGO.” However, as Table B.1 in Appendix B shows 
there is more to it than just this. Indeed, by taking into account the degrees orness 
at the individual and social levels all options – POST, NEGO, MONE, and MODE 
(that is, postpone decision, negotiate with WPA, modernize and negotiate with 
WPA, and modernize) are possible depending on different degrees of orness ω1  
and ω2. Moreover, these options are preferred to different levels. For example, as 
shown in Table B.2 in Appendix B, the option MONE is preferred to a HDD de-
gree for ω2 =0.05 and 0.05 ≤ ω1 ≤0.35 and to MDD degree for ω2 =0.95 and 0.05 ≤ 
ω1 ≤0.35.  

3   Linguistic Fuzzy-Logic and Social Choice Theory 

The LFLA can also contribute to set the ground for a linguistic fuzzy-logic form 
of social choice theory. Substituting groups for criteria in the formulation of the 
previous decision problem one can transform practically all decision making 
problems under multiple criteria into social choice problems, and vice versa. The 
similarity between aggregation procedures in social choice theory and decision 
making under multiple criteria is well-known (Nurmi and Meskanen, 2000). For 
example, the alternatives play the role of the candidates, the criteria play the role 
of the voters and the decision-maker plays the role of the society.12 A core prob-
lem in this literature pertains to aggregating opinions of individuals to form a 
collective opinion.  
                                                           
12 Since Arrow proved his impossibility theorem about half a century ago, many research-

ers have attempted to avoid his negative result by relaxing some of his original assump-
tions. In Arrow’s framework, a society of k individuals seeks to decide among a set X of 
discrete alternatives with no additional mathematical structure. Each individual actor has 
a preference over X which consists of a complete, reflexive, and transitive binary relation 
over X. A social choice function gives a rule for aggregating any particular profile of in-
dividual preferences into a group preference. Allowing preferences of individuals and 
society or just those of society alone to be fuzzy shows that Arrow’s result can, under 
certain conditions, be avoided using fuzzy preferences and employing a particularly 
weak version of transitivity among the many plausible definitions of transitivity that are 
available for fuzzy preferences (e.g., Dutta, 1987), or reaffirmed if strong connectedness 
is assumed for a variety of weak preference factorizations, even if the transitivity condi-
tion is weakened to its absolute minimum (e.g., Richardson, 1998), or with conditionally 
mixed results (Geslin et al., 2003).  
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The LFLA opens up the possibility of paying more attention to imprecise pref-
erence relations and presents aggregation tools (based on LOWA and MAXENT) 
that can help explore various possibilities of social choice. Voting is a typical ex-
ample of collective decision making and hence a natural context for discussing 
social choice methods. The comparative study of voting procedures has produced 
a long list of properties or performance criteria that allow for systematic assess-
ments of various voting procedures. These procedures are usually set to satisfy 
some criteria. The comparison of various procedures of aggregating the votes are 
evaluated by considering the choices allowed or prohibited by various criteria. The 
literature on voting is full of various paradoxes that emerge due to various incom-
patibilities of intuitively plausible requirements regarding social choices. As an 
illustration consider the situation of four voters VONE, VTWO, VTHREE, and 
VFOUR who are about to cast their votes on four candidates CAND1, CAND2, 
CAND3, and CAND4. In conventional social choice theory, we can for example 
assume that the voters’ preference rankings of the candidates from best to worst 
are as follows (Table 10): 

Table 10 Preference rankings from best to worst by voters on the four candidates 

Voter Preference Ranking of Candidates 
 

VONE CAND1 > CAND2 > CAND3 > CAND4 
VTWO CAND2 > CAND3 > CAND4 > CAND1 
VTHREE CAND3 > CAND1 > CAND4 > CAND2 
VFOUR CAND4 > CAND1 > CAND2 > CAND3 

For the sake of comparing with the LFLA let us first solve this voting problem 
using the Borda count procedure. Borda’s rule asks voters to rank all the options 
which are then weighted before aggregation. The higher an individual ranks a par-
ticular option, the more points that option will receive. An option is awarded one 
point for each competitor ranked below it in the voter’s ranking. The option with 
the most total points is declared the winner. Hence, we obtain the following Borda 
counts: 

{ }0,1,2,3=VONEB ; { }1,2,3,0=VTWOB ; { }1,3,0,2=VTHREEB ; { }3,0,1,2=VFOURB  

These counts can alternatively be written in a matrix form in the following way 
(these are the “crisp” analogous of the linguistic ones given below): 

000

100

110

111

VONEMB

001

101

111

000

VTWOMB

010

111

000

101

VTHREEMB

111

000

010

011

FOURMB

 



3   Linguistic Fuzzy-Logic Decision-Making Process 57
 

 

The Borda count for an option is obtained by adding the elements of a raw for 
each voter. The total number of points assigned to any option is obtained by sum-
ming up the individual ones, which leads to 

71 =CANDQ ; 62 =CANDQ ; 63 =CANDQ ; 54 =CANDQ  

The deterministic Borda count procedure can be turned into a probabilistic Borda 
count by assigning to every option a probability defined as the Borda score rela-
tive to all other options using the average rule: 

∑
=

j

j

i
i

Q

Qπ  

We thus obtain:  

%2.2924
71 ==CANDπ ; %254

12 ==CANDπ ; %254
13 ==CANDπ ; %8.2024

54 ==CANDπ  

The actual winner is chosen using a random process based on these weighted 
probabilities.  

Let us now solve the same voting problem using the LFLA approach. To this 
end, assume that the preference rankings are fuzzy and expressed linguistically. In 
addition to giving a preference raking of the four candidates for each of the four 
voters, LFLA allows us to express the preference relations of each voter as a ma-
trix of preference relations expressed symbolically. In order to do this we need to 
adopt a linguistic terms set for describing the voters’ preferences on the candi-
dates. Let’s use the semantic set shown in Table 11.  

Table 11 Semantic Set for Preference Relations for expressing voters’ preferences   

k Label Linguistic Meaning 
12 DPP Candidate i  is preferred to Candidate j in Definite degree  
11 VHP Candidate i  is preferred to Candidate j in  Very High degree  
10 HPP Candidate i  is preferred to Candidate j in  High degree  
9 MPP Candidate i  is preferred to Candidate j in Moderate degree  
8 LPP Candidate i  is preferred to Candidate j in  Low degree  
7 VLP Candidate i  is preferred to Candidate j in Very Low degree  
6 AAS Candidate i  is about the same AS Candidate j 
5 VLD Candidate j  is preferred to Candidate i in Very Low degree  
4 LDD Candidate j  is preferred to Candidate i in Low degree  
3 MDD Candidate j  is preferred to Candidate i in Moderate degree  
2 HDD Candidate j  is preferred to Candidate i in High degree  
1 VHD Candidate j  is preferred to Candidate i in Very High degree  
0 DDD Candidate j  is preferred to Candidate i in Definite degree  
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Using this set we can rewrite the preference relations (binary comparisons of the 
candidates) as:  
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Carrying out the same analysis as in the case of NATO choice leads to Table 12 of 

results depending on the degrees 1ω and 2ω of orness respectively at the indi-

vidual and social levels.  

Table 12 Social Ranking of the Four Candidates 

1ω  2ω  CAND1 CAND2 CAND3 CAND4 
0.1 0.1 MDD HDD HDD VHD 
0.2 0.1 MDD HDD HDD VHD 
0.3 0.3 VLD LDD LDD HDD 
0.3 0.6 AAS VLD VLD MDD 
0.4 0.1 LDD MDD MDD HDD 
0.5 0.1 LDD MDD MDD HDD 
0.6 0.1 LDD MDD MDD HDD 
0.7 0.1 LDD MDD MDD HDD 
0.8 0.1 LDD MDD MDD HDD 
0.9 0.1 LDD MDD MDD HDD 

Table 12 is taken from a larger table which lists all possibilities for the degrees 
of orness at the individual and social levels extending from 0.1 to 0.9.13 In all 
other cases not shown in the Table 12 there is no clear winner with CAND1, 
CAND2, and CAND3 ranked at the same level of preference in all cases. We 
however see from Table 12 that CAND1 is always a winner, CAND4 is always a 
looser, while CAND2 and CAND3 are always at the second level. Note that the 

                                                           
13 The larger table is available from the author upon request. 
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level of support for the winner (CAND1) generally increases with the degree of 

orness 1ω  from MDD to LDD. There are two exceptions, though, where for 

3.01 =ω and 6.02 =ω  CAND1 is preferred to a degree AS which is greater 

than both MDD and LDD. Note that CAND1 is a winner for only 1.02 =ω ex-

cept for the two values 3.02 =ω and 6.02 =ω . In other words, there is a 

clear winner for various degrees of orness at the social level, except again for the 

two values of 3.02 =ω and 6.02 =ω . Whether this is idiosyncratic or a 

manifestation of a more general result is not clear to me at the moment, but is a 
question worthy of further exploration. In short, one can arguably state that the 
LFLA method can reproduce the results obtained through the literature on prob-
abilistic voting in social choice theory (at least in the example considered in  
this chapter). I can thus venture to argue that the LFLA provides at least  
another method to study of voting and social choice in addition to the existing rich 
literature. However, in order to establish the full extent of this claim an axiomatic 
approach needs to be pursued based on fuzzy (multi-valued) logic and not on clas-
sical Boolean (two-valued) logic. In this respect, it is worthwhile emphasizing that 
LFLA is more than just providing a new way of aggregating linguistic preferences 
for it is based on a non-Boolean logic the consequences of which are yet to be 
thoroughly explored for the resolution of lingering dilemmas and paradoxes of 
social choice theory. 
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DDR=LLL,

LDDHDDDDD
LPPMDDHDD
HPPMPPLDD
DPPHPPLPP

P11 ;   DDR=LMM,

LDDHDDDDD
LPPMDDHDD
HPPMPPLPP
DPPHPPLDD

P12 ;

DDR=HHH,

LDDHPPDPP
LPPMPPHPP
HDDMDDLDD
DDDHDDLPP

P13 ;   DDR=VHH , 

LPPHPPDPP
LDDMPPHPP
HDDMDDLPP
DDDHDDLDD

P14 ;

VUL=HHH,

AASAASLDD
AASAASLDD
AASAASLDD
LPPLPPLPP

P21 ;   VUL=VHH,

AASAASLPP
AASAASLPP
AASAASLPP
LDDLDDLDD

P22 ;

RPL=NNN,

LPPHPPDPP
LDDMPPHPP
HDDMDDLPP
DDDHDDLDD

P31 ;   RPL=LLL,

LDDHPPDPP
LPPMPPHPP
HDDMDDLPP
DDDHDDLDD

P32
;

RPL=HHH,
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;

 
 
 
 
 
 
 
 
 
 
 
 
 
 



3   Linguistic Fuzzy-Logic Decision-Making Process 61
 

 

Appendix B 

 

T
ab

le
 B

.1
 A

 F
uz

zy
 S

et
 M

od
el

 o
f 

N
A

T
O

 D
ec

is
io

n-
M

ak
in

g:
 T

he
 C

as
e 

of
 S

ho
rt

-R
an

ge
 N

uc
le

ar
 F

or
ce

s 
in

 E
ur

op
e.

 B
es

t 
C

ol
le

ct
iv

e 
A

lt
er

na
tiv

e.
 

 

 
 
 
 

1
  

0.0
5 

0.1
0 

0.1
5 

0.
20

 
0.2

5 
0.3

0 
0.3

5 
0.4

0 
0.4

5 
0.

50
 

0.
55

 
0.6

0 
0.6

5 
0.7

0 
0.7

5 
0.

80
 

0.8
5 

0.9
0 

0.
95

 

0.
05

 
M

ON
E 

M
ON

E 
M

ON
E 

M
ON

E 
M

ON
E 

M
ON

E 
M

ON
E 

NE
GO

 
NE

GO
 

NE
GO

 
NE

GO
 

NE
GO

 
NE

GO
 

NE
GO

 
NE

GO
 

NE
GO

 
NE

GO
 

NE
GO

 
NE

GO
 

0.1
0 

PO
ST

 
PO

ST
 

PO
ST

 
PO

ST
 

PO
ST

 
PO

ST
 

PO
ST

 
PO

ST
 

PO
ST

 
NE

GO
 

NE
GO

 
NE

GO
 

M
OD

E 
NE

GO
 

M
OD

E 
NE

GO
 

M
OD

E 
M

OD
E 

M
OD

E 

0.1
5 

PO
ST

 
PO

ST
 

PO
ST

 
PO

ST
 

PO
ST

 
PO

ST
 

PO
ST

 
PO

ST
 

PO
ST

 
NE

GO
 

NE
GO

 
NE

GO
 

M
OD

E 
NE

GO
 

M
OD

E 
NE

GO
 

M
OD

E 
M

OD
E 

M
OD

E 

0.2
0 

PO
ST

 
PO

ST
 

PO
ST

 
PO

ST
 

PO
ST

 
PO

ST
 

PO
ST

 
PO

ST
 

PO
ST

 
NE

GO
 

NE
GO

 
NE

GO
 

M
OD

E 
NE

GO
 

M
OD

E 
NE

GO
 

M
OD

E 
M

OD
E 

M
OD

E 

0.2
5 

PO
ST

 
PO

ST
 

PO
ST

 
PO

ST
 

PO
ST

 
PO

ST
 

PO
ST

 
NE

GO
 

NE
GO

 
NE

GO
 

NE
GO

 
NE

GO
 

NE
GO

 
NE

GO
 

NE
GO

 
NE

GO
 

NE
GO

 
M

OD
E 

M
OD

E 

0.3
0 

PO
ST

 
PO

ST
 

PO
ST

 
PO

ST
 

PO
ST

 
PO

ST
 

PO
ST

 
NE

GO
 

NE
GO

 
NE

GO
 

NE
GO

 
NE

GO
 

NE
GO

 
NE

GO
 

NE
GO

 
NE

GO
 

NE
GO

 
M

OD
E 

M
OD

E 

0.3
5 

PO
ST

 
PO

ST
 

PO
ST

 
PO

ST
 

PO
ST

 
PO

ST
 

PO
ST

 
PO

ST
 

PO
ST

 
NE

GO
 

NE
GO

 
NE

GO
 

M
OD

E 
NE

GO
 

M
OD

E 
NE

GO
 

M
OD

E 
M

OD
E 

M
OD

E 

0.4
0 

PO
ST

 
PO

ST
 

PO
ST

 
PO

ST
 

PO
ST

 
PO

ST
 

PO
ST

 
PO

ST
 

PO
ST

 
NE

GO
 

NE
GO

 
NE

GO
 

M
OD

E 
NE

GO
 

M
OD

E 
NE

GO
 

M
OD

E 
M

OD
E 

M
OD

E 

0.4
5 

PO
ST

 
PO

ST
 

PO
ST

 
PO

ST
 

PO
ST

 
PO

ST
 

PO
ST

 
PO

ST
 

PO
ST

 
NE

GO
 

NE
GO

 
NE

GO
 

M
OD

E 
NE

GO
 

M
OD

E 
NE

GO
 

M
OD

E 
M

OD
E 

M
OD

E 

2
0.5

0 
PO

ST
 

PO
ST

 
PO

ST
 

PO
ST

 
PO

ST
 

PO
ST

 
PO

ST
 

PO
ST

 
PO

ST
 

NE
GO

 
NE

GO
 

NE
GO

 
M

OD
E 

NE
GO

 
M

OD
E 

NE
GO

 
M

OD
E 

M
OD

E 
M

OD
E 

0.5
5 

PO
ST

 
PO

ST
 

PO
ST

 
PO

ST
 

PO
ST

 
PO

ST
 

PO
ST

 
PO

ST
 

PO
ST

 
NE

GO
 

NE
GO

 
NE

GO
 

M
OD

E 
NE

GO
 

M
OD

E 
NE

GO
 

M
OD

E 
M

OD
E 

M
OD

E 

0.6
0 

PO
ST

 
PO

ST
 

PO
ST

 
PO

ST
 

PO
ST

 
PO

ST
 

PO
ST

 
PO

ST
 

PO
ST

 
NE

GO
 

NE
GO

 
NE

GO
 

M
OD

E 
NE

GO
 

M
OD

E 
NE

GO
 

M
OD

E 
M

OD
E 

M
OD

E 

0.6
5 

PO
ST

 
PO

ST
 

PO
ST

 
PO

ST
 

PO
ST

 
PO

ST
 

PO
ST

 
PO

ST
 

PO
ST

 
NE

GO
 

NE
GO

 
NE

GO
 

M
OD

E 
NE

GO
 

M
OD

E 
NE

GO
 

M
OD

E 
M

OD
E 

M
OD

E 

0.7
0 

PO
ST

 
PO

ST
 

PO
ST

 
PO

ST
 

PO
ST

 
PO

ST
 

PO
ST

 
PO

ST
 

PO
ST

 
NE

GO
 

PO
ST

 
NE

GO
 

M
OD

E 
NE

GO
 

M
OD

E 
NE

GO
 

M
OD

E 
M

OD
E 

M
OD

E 

0.7
5 

PO
ST

 
PO

ST
 

PO
ST

 
PO

ST
 

PO
ST

 
PO

ST
 

PO
ST

 
PO

ST
 

PO
ST

 
NE

GO
 

PO
ST

 
NE

GO
 

M
OD

E 
NE

GO
 

M
OD

E 
NE

GO
 

M
OD

E 
M

OD
E 

M
OD

E 

0.8
0 

PO
ST

 
PO

ST
 

PO
ST

 
PO

ST
 

PO
ST

 
PO

ST
 

PO
ST

 
PO

ST
 

PO
ST

 
NE

GO
 

NE
GO

 
NE

GO
 

M
OD

E 
NE

GO
 

M
OD

E 
NE

GO
 

M
OD

E 
M

OD
E 

M
OD

E 

0.8
5 

PO
ST

 
PO

ST
 

PO
ST

 
PO

ST
 

PO
ST

 
PO

ST
 

PO
ST

 
PO

ST
 

PO
ST

 
NE

GO
 

NE
GO

 
NE

GO
 

M
OD

E 
NE

GO
 

M
OD

E 
NE

GO
 

M
OD

E 
M

OD
E 

M
OD

E 

0.9
0 

PO
ST

 
PO

ST
 

PO
ST

 
PO

ST
 

PO
ST

 
PO

ST
 

PO
ST

 
PO

ST
 

PO
ST

 
NE

GO
 

NE
GO

 
NE

GO
 

M
OD

E 
NE

GO
 

M
OD

E 
NE

GO
 

M
OD

E 
M

OD
E 

M
OD

E 

0.
95

 
M

ON
E 

M
ON

E 
M

ON
E 

M
ON

E 
M

ON
E 

M
ON

E 
M

ON
E 

PO
ST

 
PO

ST
 

NE
GO

 
NE

GO
 

NE
GO

 
M

OD
E 

NE
GO

 
M

OD
E 

NE
GO

 
M

OD
E 

M
OD

E 
M

OD
E 



62 Appendix B
 

 

 
 

T
ab

le
 B

.2
 L

ev
el

s 
of

 P
re

fe
re

nc
es

 f
or

 B
es

t A
lt

er
na

tiv
e 

C
ho

ic
e.

 L
ev

el
 o

f 
P

re
fe

re
nc

e 
of

 B
es

t C
ol

le
ct

iv
e 

A
lt

er
na

ti
ve

. 

 

 

1
  

0.
05

 
0.

10
 

0.
15

 
0.

20
 

0.
25

 
0.

30
 

0.
35

 
0.

40
 

0.
45

 
0.

50
 

0.
55

 
0.

60
 

0.
65

 
0.

70
 

0.
75

 
0.

80
 

0.
85

 
0.

90
 

0.
95

 

0.
05

 
H

D
D

 
H

D
D

 
H

D
D

 
H

D
D

 
H

D
D

 
H

D
D

 
H

D
D

 
H

D
D

 
H

D
D

 
M

D
D

 
M

D
D

 
LD

D
 

LD
D

 
V

LD
 

V
LD

 
A

A
S 

A
A

S 
A

A
S 

V
LP

 

0.
10

 
M

D
D

 
M

D
D

 
M

D
D

 
M

D
D

 
M

D
D

 
M

D
D

 
M

D
D

 
M

D
D

 
M

D
D

 
M

D
D

 
M

D
D

 
LD

D
 

LD
D

 
V

LD
 

V
LD

 
A

A
S 

A
A

S 
A

A
S 

V
LP

 

0.
15

 
M

D
D

 
M

D
D

 
M

D
D

 
M

D
D

 
M

D
D

 
M

D
D

 
M

D
D

 
M

D
D

 
M

D
D

 
M

D
D

 
M

D
D

 
LD

D
 

LD
D

 
V

LD
 

V
LD

 
A

A
S 

A
A

S 
A

A
S 

V
LP

 

0.
20

 
M

D
D

 
M

D
D

 
M

D
D

 
M

D
D

 
M

D
D

 
M

D
D

 
M

D
D

 
M

D
D

 
M

D
D

 
M

D
D

 
M

D
D

 
LD

D
 

LD
D

 
V

LD
 

V
LD

 
A

A
S 

A
A

S 
A

A
S 

V
LP

 

0.
25

 
M

D
D

 
M

D
D

 
M

D
D

 
M

D
D

 
M

D
D

 
M

D
D

 
M

D
D

 
M

D
D

 
M

D
D

 
LD

D
 

LD
D

 
V

LD
 

V
LD

 
A

A
S 

A
A

S 
V

LP
 

V
LP

 
V

LP
 

LP
P 

0.
30

 
M

D
D

 
M

D
D

 
M

D
D

 
M

D
D

 
M

D
D

 
M

D
D

 
M

D
D

 
M

D
D

 
M

D
D

 
LD

D
 

LD
D

 
V

LD
 

V
LD

 
A

A
S 

A
A

S 
V

LP
 

V
LP

 
V

LP
 

LP
P 

0.
35

 
LD

D
 

LD
D

 
LD

D
 

LD
D

 
LD

D
 

LD
D

 
LD

D
 

LD
D

 
LD

D
 

LD
D

 
LD

D
 

V
LD

 
V

LD
 

A
A

S 
A

A
S 

V
LP

 
V

LP
 

V
LP

 
LP

P 

0.
40

 
LD

D
 

LD
D

 
LD

D
 

LD
D

 
LD

D
 

LD
D

 
LD

D
 

LD
D

 
LD

D
 

LD
D

 
LD

D
 

V
LD

 
V

LD
 

A
A

S 
A

A
S 

V
LP

 
V

LP
 

V
LP

 
LP

P 

0.
45

 
LD

D
 

LD
D

 
LD

D
 

LD
D

 
LD

D
 

LD
D

 
LD

D
 

LD
D

 
LD

D
 

LD
D

 
LD

D
 

V
LD

 
V

LD
 

A
A

S 
A

A
S 

V
LP

 
V

LP
 

V
LP

 
LP

P 

2
0.

50
 

LD
D

 
LD

D
 

LD
D

 
LD

D
 

LD
D

 
LD

D
 

LD
D

 
LD

D
 

LD
D

 
LD

D
 

LD
D

 
V

LD
 

V
LD

 
A

A
S 

A
A

S 
V

LP
 

V
LP

 
V

LP
 

LP
P 

0.
55

 
LD

D
 

LD
D

 
LD

D
 

LD
D

 
LD

D
 

LD
D

 
LD

D
 

LD
D

 
LD

D
 

LD
D

 
LD

D
 

V
LD

 
V

LD
 

A
A

S 
A

A
S 

V
LP

 
V

LP
 

V
LP

 
LP

P 

0.
60

 
LD

D
 

LD
D

 
LD

D
 

LD
D

 
LD

D
 

LD
D

 
LD

D
 

LD
D

 
LD

D
 

LD
D

 
LD

D
 

V
LD

 
V

LD
 

A
A

S 
A

A
S 

V
LP

 
V

LP
 

V
LP

 
LP

P 

0.
65

 
LD

D
 

LD
D

 
LD

D
 

LD
D

 
LD

D
 

LD
D

 
LD

D
 

LD
D

 
LD

D
 

LD
D

 
LD

D
 

V
LD

 
V

LD
 

A
A

S 
A

A
S 

V
LP

 
V

LP
 

V
LP

 
LP

P 

0.
70

 
LD

D
 

LD
D

 
LD

D
 

LD
D

 
LD

D
 

LD
D

 
LD

D
 

LD
D

 
LD

D
 

LD
D

 
V

LD
 

V
LD

 
V

LD
 

A
A

S 
A

A
S 

V
LP

 
V

LP
 

V
LP

 
LP

P 

0.
75

 
LD

D
 

LD
D

 
LD

D
 

LD
D

 
LD

D
 

LD
D

 
LD

D
 

LD
D

 
LD

D
 

LD
D

 
V

LD
 

V
LD

 
V

LD
 

A
A

S 
A

A
S 

V
LP

 
V

LP
 

V
LP

 
LP

P 

0.
80

 
LD

D
 

LD
D

 
LD

D
 

LD
D

 
LD

D
 

LD
D

 
LD

D
 

LD
D

 
LD

D
 

LD
D

 
LD

D
 

V
LD

 
V

LD
 

A
A

S 
A

A
S 

V
LP

 
V

LP
 

V
LP

 
LP

P 

0.
85

 
LD

D
 

LD
D

 
LD

D
 

LD
D

 
LD

D
 

LD
D

 
LD

D
 

LD
D

 
LD

D
 

LD
D

 
LD

D
 

V
LD

 
V

LD
 

A
A

S 
A

A
S 

V
LP

 
V

LP
 

V
LP

 
LP

P 

0.
90

 
LD

D
 

LD
D

 
LD

D
 

LD
D

 
LD

D
 

LD
D

 
LD

D
 

LD
D

 
LD

D
 

LD
D

 
LD

D
 

V
LD

 
V

LD
 

A
A

S 
A

A
S 

V
LP

 
V

LP
 

V
LP

 
LP

P 

0.
95

 
M

D
D

 
M

D
D

 
M

D
D

 
M

D
D

 
M

D
D

 
M

D
D

 
M

D
D

 
LD

D
 

LD
D

 
LD

D
 

LD
D

 
V

LD
 

V
LD

 
A

A
S 

A
A

S 
V

LP
 

V
LP

 
V

LP
 

LP
P 



B. Arfi: Linguistic Fuzzy Logic Methods in Social Sciences, STUDFUZZ 253, pp. 63–103. 
springerlink.com                                                  © Springer-Verlag Berlin Heidelberg 2010 

Chapter 4 
Linguistic Fuzzy-Logic 2x2 Games 

Conventional game theory faces a dilemma rooted in an incompatibility between 
the Boolean-logical foundation of the logic of the game and the linguistic nature 
of strategic communication – linguistic fuzzy logic which “computes with words” 
all the way down offers a way out of this dilemma. On the one hand, game-
theoretic methodologies are inescapably based on a posited underlying logic. The 
latter is what guides us in judging whether a game-theoretic methodology (and 
theory) possesses logical coherence and consistency. Boolean two-valued logic 
underpins conventional game theory. All game-theoretic arguments and the very 
notion of consistency and inconsistency are based on a sharp Boolean-logic 
true/false dichotomy. On the other hand, vagueness and equivocation are constitu-
tive features of human communication. Human beings cannot live and communi-
cate without a “language,” with the latter being inherently vague. Game theory is 
essentially the study of strategic communication of information through language 
in a rigorous and stylized way. However, stylization and rigor cannot totally eradi-
cate vagueness – there is always a remainder of linguistic vagueness at the very 
heart of the conceptual tools – communicative devices – used in game theory. This 
creates a foundational dilemma for conventional game theory. Is it possible to 
resolve this incompatibility between, on the one hand, taking the dichotomous 
Boolean two-valued logic as the logical foundation of game theory and, on the 
other hand, the vagueness that inheres in strategic communication due to the very 
nature of language? This difficulty is often glossed over or not even sensed at all 
in conventional game-theoretic works. I propose a remedy to this dilemma by an-
choring game theory in linguistic fuzzy logic.    

I lay the grounds for and formulate a game-theoretic approach founded not on a 
Boolean logic, but rather on linguistic fuzzy logic. I thence inscribe vagueness into 
the logical foundations of game theory. This is a fundamental departure from con-
ventional game theory on two fronts at least. First, positing a fuzzy logic at the 
foundations of strategic communication and action means that truth values are not 
only TRUE and FALSE (as in Boolean logic), but can also assume in-between 
values, such as very true, less true, extremely false, approximately false. A number 
of works have recently been published mostly in the economics literature present-
ing a fuzzy version of game theory by adopting a fuzzy-set framework, which is 
conventionally developed using the notion of gradual membership to sets.1 This 
work differs from these various efforts on an important aspect, which is the second 
                                                           
1 Butnariu, 1978; Borges, 1997; Billot, 1992; Maeda, 2000; 2003; Kim and Lee, 2001; Li, 

2001; De Wilde, 2004.  
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fundamental departure from conventional game theoretic. I use a linguistic formal-
ism which is anchored in linguistic fuzzy-logic, not fuzzy-set theory. Hence, I do 
not use the notion of a gradual membership to express the fuzziness of concepts 
and objects of study. I “compute with words” all the way down into the inner 
logic of game theory.  

In order to do this I go back to the logical foundations of game theory and 
work my way up to strategic interaction. This paves the way for introducing new 
notions of fuzzy strategy, fuzzy dominant strategy, and fuzzy Nash equilibrium, 
which are in some sense (i.e., fuzzy-logic sense) extensions of those used in con-
ventional game theory with ordinal preferences. A key concept of this reconcep-
tualization is the notion of truth value of a choice termed in this chapter as the 
feasibility value. Everything becomes fuzzy, everything becomes more or less 
this or that – everything acquires a linguistic value which is essentially more or 
less nuanced and more or less feasible! We can, for example, talk of nuanced 
cooperation such as high cooperation with a very high feasibility, or nuanced 
cooperation such as very high cooperation with a very low feasibility, not just of 
cooperation or no cooperation. If the linguistic fuzzy relations and all other com-
ponents of the game structure are de-fuzzified by anchoring them in a crisp two-
valued logic, the linguistic fuzzy game simply reduces to the conventional game. 
I apply the new approach to 2x2 Prisoner’s Dilemma (PD) game. I find that there 
is always a strong Nash equilibrium which is Pareto optimal, thereby lifting the 
dilemma that emerges in the crisp PD game.  I begin by analyzing a conventional 
2x2 PD game, highlighting the elements of Boolean logic that anchor the logical 
structure of the game. I then develop the different elements of a linguistic fuzzy-
logic game theory – termed as LFL-Game theory. I also formulate a game-
theoretic approach to study trust games anchored in linguistic fuzzy logic. I find 
that there is always an optimum strong Nash equilibrium which is Pareto optimal, 
thereby lifting many of the dilemmas that emerge in crisp game theory in 2-
player trust game. The next chapter extends the ideas of this chapter to the study 
of social games of cooperation.  

1   Boolean Logic and Game Theory  

Before introducing key notions of LFL game theory, let us first reformulate a con-
ventional PD game, explicitly using Boolean logic formalism. In the crisp 2x2 PD 
game the payoffs are defined as: (C,C)=(α, α), (C,D)= (δ, γ), (D,C)= (γ, δ), (D,D)= 

(β, β), with the condition γ > a > b > δ. Let As  and Bs  be the crisp choices of A 

and B, respectively.  

Let Au  ( Bu ) be the crisp payoff of A (B). To clearly define the notion of strat-

egy in linguistic fuzzy logic, from now on I differentiate between initial choices 
and strategies or strategic arrangements. A set of initial choices is the set of indi-
vidual moves that an actor might potentially turn into strategies of the game since 
strategies are strictly defined in games. This differentiation, which is usually  
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Fig. 1 Prisoner’s Dilemma Game  

redundant in game-theoretic literature, is important because it facilitates the for-
mulation of logical formulas for strategic interaction. Using the concept of infer-
ence rules highlights the importance of making such a differentiation, as explained 

in the following. The rules of inference ijℜ  in the game for A (and similar ex-

pression for B) in the crisp PD game are: 

11 If { As C  and Bs C  } then { Au  } (( As C )  ( Bs C ))  ( Au )

21 If { As D  and Bs C  } then { Au  } (( As D )  ( Bs C ))  ( Au )

12 If { As C  and Bs D  } then { Au  } (( As C )  ( Bs D ))  ( Au )

22 If { As D  and Bs D  } then { Au  } (( As D )  ( Bs D ))  ( Au )  

These rules of inference are based on two-valued Boolean logic. For example, 

Rule 1 for A translates in English as: IF we know that As C=  is feasible AND 

we know that Bs C=  is feasible, THEN this implies that Au α=  is feasible. A 

strategy for a player is then a disjunction of two rules. For example, strategy C for 

A means that A uses either 11ℜ or 12ℜ . We thus have for the strategic game as 

perceived by A (and similar expressions for B): 

C: 11 12 {(( As C )  ( Bs C )) ( Au )}  {(( As C )  ( Bs D )) ( Au )}

D: 21 22 {(( As D )  ( Bs C )) ( Au )}  {(( As D )  ( Bs D )) ( Au )} 

We can say that A (B) has four initial choices which correspond to the four entries 
of the normal form of the PD game. These four choices correspond to four infer-
ence rules. Therefore, in this notation, a strategy is effectively a disjunction of a 
number of inference rules. We see, for example, that A (B) has a strictly dominant 

strategy: D expressed as{ }21 22 ( )A B
ℜ ∨ ℜ and a strictly dominated strategy: C 

expressed as{ }11 12 ( )A B
ℜ ∨ ℜ . The solution of the game, which in this case is 

DD, is the conjunction of the two dominant strategies of the two players:   

{ } { }21 22 21 22A B
DD ⇔ ℜ ∨ ℜ ∧ ℜ ∨ ℜ  
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This method of explicating the underlying Boolean logic of the crisp game paves 
the way for developing a linguistic fuzzy logic approach to game theory.  

2   Linguistic Fuzzy-Logic Game 

To obtain a linguistic fuzzy game from a crisp game we hence need to change: 

1. The initial set of crisp choices of each player into linguistic fuzzy choices: the 
choices become linguistic variables assuming linguistic values – termed as nu-
anced choices, each having a feasibility degree. 

2. The crisp orderings of the alternative strategies into linguistic orderings: the 
ranking preferences become linguistic variables assuming linguistic values – 
termed as nuanced preferences, each with a feasibility degree. 

3. The two-valued Boolean logic conjunction AND into linguistic fuzzy logic 
conjunction, LWC.  

4. The two-valued Boolean logic disjunction OR into linguistic fuzzy logic con-
junction, LWD.  

5. The two-valued Boolean logic implication → into linguistic fuzzy logic impli-
cation, LI. 

6. The rules of the game ijℜ : changing them from inference based on two-valued 

logic to inference based on linguistic fuzzy logic. 

Note that to each choice we hence associate a primary term, a linguistic degree of 
nuance expressed using a linguistic hedge ν applied to the primary term of the  
variable, and a feasibility value expressed using a linguistic hedge j applied to the 
primary term of a designated feasibility value such as feasible. For example, for a 
feasible nuanced choice of cooperation we would have the term set of hedged ν-
cooperation. We could, for example, have low-cooperation, moderate-cooperation, 
high-cooperation, etc. The hedges (or nuancers) in this case are ν œ {low, moder-
ate, high}. Each of these linguistic values of nuanced cooperation would have a 
linguistic degree of feasibility such as, for example, low-to-moderate feasibility, 
high-feasibility, and moderate-to-high feasibility, respectively; hence we have the 
set of feasibility hedges j œ {low-to-moderate, high, moderate-to-high}. The 
player’s choice set would be represented as s = {(ν-cooperation, j-feasible), etc.}. 

Formally, we would write: ( )...][...][ , ===
ii ssis ϕν . The degree of feasibility can 

be interpreted in a PD game as a player’s predisposition toward being more nice-
spirited or more mean-spirited (as illustrated down below in a full solution of PD 
game). The LFL approach hence allows us to explore the impact of players’ predis-
positions as part of the game structure – players’ predispositions are endogenous in 
the LFL-game, rather than being assumed as types given by nature, as is usually 
done in conventional game theory. This opens up the possibility for richer notions 
of strategic dominance and Nash equilibrium, as discussed shortly. Similarly, we 
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represent the preference rankings as ( )[ ...] [ ...],
i ii R RR ν ϕ= ==  and the inference 

rules as ( )[ ...] [ ...];
ij ijij ν ϕℜ = ℜ =ℜ = .  

The next step is to express the rules of the game in a linguistic fuzzy logic 
form. This would enable us to define the notions of a linguistic fuzzy-logic domi-
nant strategy and linguistic fuzzy-logic Nash equilibrium. In doing so we must 
keep in mind that all variables are linguistically expressed and symbolically ma-
nipulated, as well as all convex combinations thereof formed by using the four 
connectives (⁄ = AND, ¤ = OR, → = Implication,Ÿ = Negation). To this end, I 
use the algebra introduced earlier in the book.  

To fuzzify a PD game, we start with the ordinal preferences of an ordinal PD 
game. Each player has a matrix of preference relations for a particular strategy. In 
the case of the crisp 2x2 PD game A’s preference relation would hence be 

( );AR C C for both A and B cooperating and ( )DCRA ; for A cooperating while 

B defecting. A’s and B’s respective matrices of preference relations are given as: 

A: 
( ) ( )
( ) ( )

; ;

; ;

A A

A

A A

R C C R C D
R

R D C R D D

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

 ; B: 
( ) ( )
( ) ( )

; ;

; ;

B B

B

B B

R C C R C D
R

R D C R D D

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

 

In the case of the PD game we have: ( ) ( ) ( ) ( ); ; ; ;A A A AR D C R C C R D D R C D> > >  

and ( ) ( ) ( ) ( ); ; ; ;B B B BR D C R C C R D D R C D> > > . The various choices are ranked 

from best to worst as 1,2,3,4. The dilemma in the PD game is that both A and B 
end up rationally getting the outcome (3,3) by seeking to obtain either (1,4) for A 
or (4,1) for B – the outcome (3,3) corresponding to mutual defection is worse than 
that corresponding to mutual cooperation (2,2). We can express the crisp game 
using the rules of inference of the underlying Boolean logic for player A as: 

11 If{ As C and Bs C }then{ ; 2AR C C } (( As C ) ( Bs C )) ( ; 2AR C C )

21 If{ As D and Bs C }then{ ; 1AR D C } (( As D ) ( Bs C )) ( ; 1AR D C )

12 If{ As C and Bs D }then{ ; 4AR C D } (( As C ) ( Bs D )) ( ; 4AR C D )

22 If{ As D and Bs D }then{ ; 3AR D D } (( As D ) ( Bs D )) ( ; 3AR D D ) 

(and similar expressions for B). We can rewrite these by using the notion of strat-
egy as defined earlier in terms of inference rules. 

C: 11 12 {(( As C ) ( Bs C )) ( ; 2AR C C )} {(( As C ) ( Bs D )) ( ; 4AR C D )}

D: 21 22 {(( As D ) ( Bs C )) ( ; 1AR D C )} {(( As D ) ( Bs D )) ( ; 3AR D D )} 

It is clear that in both cases D is a strictly dominant strategy for both players. The 

Nash equilibrium is thus { } { }21 22 21 22A B
DD ⇔ ℜ ∨ ℜ ∧ ℜ ∨ ℜ . 
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To move from a crisp game to a linguistic fuzzy-logic (LFL)-game we trans-
form the above crisp relations into linguistic fuzzy preference relations. Before 
doing so, let us consider as an example the linguistic fuzzy-logic equivalent of 

Rule 11 for A: ( )1 1 1 1
11 ;A B A A Bs s R s sℜ = ∧ → , that is:   

To what degrees of nuance 
11

Aνℜ and feasibility 
11

Aϕℜ  can we infer that: 

IF [{strategy 1
As has nuance degree 1[ ]As

ν } with a feasibility degree 1[ ]As
ϕ ]  

AND [{strategy 1
Bs has nuance degree 1[ ]Bs

ν } with a feasibility degree 1[ ]Bs
ϕ ]   

THEN [{preference relation ( )1 1;A A BR s s has nuance degree ( )1 1;A A BR s s
ν } with a 

feasibility degree ( )1 1;A A BR s s
ϕ ]? 

Using the LWC and LI operations we write the feasibility and nuance degrees of 
Rule 11 for A:  

( ) ( ) ( ) ( ) ( )( )
11 11

[ ] [ ] [ ] [ ] ; ;
; , , , , ,

A A B B A A B A A B

A A
s s s s R s s R s s

LI LWCν ϕ ν ϕ ν ϕ ν ϕ
ℜ ℜ

⎧ ⎫⎡ ⎤= ⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭  
               (39) 

The linguistic fuzzy logic equivalents of the remaining rules (12; 21; 22) are  

written in similar fashions.  A strategic choice 1
As for player A then consists of 

choosing a linguistic fuzzy-logic strategy as a disjunction of linguistic fuzzy-logic 
inference rules (formally, just like in a crisp game): 

{ } ( ){ } ( ){ }1 1 1 1 1 2 1 2
11 12 ; ;A B A A B A B A A BA

s s R s s s s R s sℜ ∨ ℜ = ∧ → ∨ ∧ →  (40) 

The degrees of nuance and feasibility for this strategy are given by: 

( ) ( ) ( ){ } { }
11 11 12 12

11,12 11,12 11 12, , ; ; ;A A A A A A

A
Disjunction LWDν ϕ ν ϕ ν ϕ

ℜ ℜ ℜ ℜ
= = ℜ ℜ

       (41) 
Rationally choosing a strategy then would consist in optimizing the degrees of 
nuance and feasibility – that is, choosing a strategy with the highest degree of nu-

ance and/or the highest degree of feasibility of the disjunction of rules ( 11ℜ or 

12ℜ ). An outcome (profile) of the game would then be a linguistic conjunction of 

two strategies of the two players, e.g., { } { }11 12 11 12A B
ℜ ∨ ℜ ∧ ℜ ∨ ℜ . The de-

grees of nuance and feasibility of this outcome will be obtained as: 
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( ) { } { }{ }11 12 11 12, ; ; ;GAME GAME A B
LWC LWD LWDν ϕ = ℜ ℜ ℜ ℜ     (42) 

At this juncture, let us introduce some notations that would pave the way for a 
generalized definition of a dominant linguistic fuzzy-logic strategy and an LFL-
Game profile. Let P be the set of q players. Let h be the total number of hedges 
(forming a set H) available to the players. If, for example, in the crisp ordinal 
game each player possesses one initial crisp choice, the player can apply a maxi-
mum of h hedges to this initial choice and hence would end up having to choose 
among h different linguistic fuzzy-logic choices, each having a linguistic degree of 
nuance and a linguistic degree of feasibility. Hence, for a player i we have a set of 
possible linguistic fuzzy-logic choices defined as:  

( ){ }, 1,..., ; ;i

i i i i

l
i i l l i i l lS s l q H Hν ϕ ν ϕ= = ∈ ∈          (43) 

That is: each player i has iq LFL-choices and each of these choices has its own 

feasibility value ϕ and nuance value ν. For example, in the case of the crisp PD 
game, A has two crisp choices, C and D. From these two crisp choices we would 
have two sets of LFL-choices obtained by applying the elements of the hedge al-
gebra set H to these crisp choices. Suppose, for example, that the hedge set is 
given by:  

H= {NNN, VLL, LLL, MMM, HHH, VHH, FFF} 

where:  

NNN=Null, VLL=Very Low, LLL=Low, MMM=Moderate, HHH=High, 
VHH=Very High, FFF=Full  

A would have the following two sets of LFL-choices:  

{ν-C| ν œ H}={ NNN, VLL, LLL, MMM, HHH, VHH, FFF}-cooperation 
{ν-D| ν œ H }={ NNN, VLL, LLL, MMM, HHH, VHH, FFF}-defection 

Each of these LFL-choices would have a feasibility degree:   

ϕ œ{ NNN, VLL, LLL, MMM, HHH, VHH, FFF}-feasibility 

A could, for example, choose MMM-C (Moderate-cooperation) with VHH-(Very 
High degree of) feasibility. The sets {ν-C| ν œ H} and {ν-D| ν œ H} are semanti-
cally speaking the mirror images of one another; that is, for example, null-
cooperation is the same as full-defection. It is therefore enough to consider the set 
of LFL-choices defined as {ν-C| ν œ H}. This is not always the case, especially 
starting with crisp games where the choice set is not two-dimensional or, more 
generally, when the crisp choices are not necessarily symmetrically related to one 
another in terms of their semantics.  

If we write the linguistic feasibility values ϕ and the linguistic nuance degrees ν 
for the iq choices for player i as:   
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( ){ }1,...,k
i i is k qϕ = ; ( ){ }1,...,k

i i is k qν =                   (44) 

The linguistic feasibility and nuance values for an inference rule klℜ for player i 

would be given by: 

( ) ( ) ( )( ) ( ) ( )( ){ } ( ) ( ); , ; , ; , , ,
kl kl

i i k k l l k l k l
i i i i i i i i i i i i i i i iLI LWC s s s s R s s R s sν ϕ ν ϕ ν ϕ ν ϕℜ ℜ − − − −

⎧ ⎫⎛ ⎞⎡ ⎤ ⎡ ⎤= ⎨ ⎬⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠⎩ ⎭
(45) 

where, following a standard practice, I denote by ia−  the n-1 tuple that results 

from removing the i-th element from the n-tuple ( )1, , na a a= " . The set of 

LFL-choices that player i’s opponents may play is then denoted by: 

1 1 1i i i qS S S S S− − += × × × ×" "        (46) 

The linguistic fuzzy-logic choices of all other players j ≠ i are  

( ){ }, 1,2,..., 1, 1,..., ; 1,..., ; ;j

j j j j

l
i j l l j j l lS s j i i q l q H Hν ϕ ν ϕ− = = − + = ∈ ∈

        (47) 

The feasibility and nuance values for a player’s choice are functions of three prior 
feasibility values and three prior degrees of nuance as the following example from 
the PD game shows:  

( ) ( ) ( ) ( ) ( )( ){ }11 11 [ ] [ ] [ ] [ ] ; ;
; , , , , ,

A A

A A
MMM MMM HHH HHH R MMM HHH R MMM HHH

LI LWCν ϕ ν ϕ ν ϕ ν ϕℜ ℜ
⎡ ⎤= ⎢ ⎥⎣ ⎦

    (48) 

For example, for player A the feasibility value 
A

11ℜϕ for playing 11ℜ is a  

function of:  

• The degrees of nuance and corresponding feasibility values 

( )[ ] [ ],
A As MMM s MMMν ϕ= =  for A playing MMM-C (moderate-cooperation) with 

a degree of feasibility [ ]As MMMϕ = and ( )[ ] [ ],
B Bs HHH s HHHν ϕ= =  for B playing 

HHH-C (high-cooperation) with a degree of feasibility [ ]Bs HHHϕ =   

• The degree of nuance and corresponding feasibility value of preference rela-
tion of player A should this rule to be chosen, 

( ) ( )( ); ;
,

A AR MMM HHH R MMM HHH
ν ϕ .  
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The set of inference rules available to i playing against j are thus generally  
written as: 

( ) { } { }{ }; 1,..., ; 1,...,j ji i

i j

l ll l
l l i j i i j i i j js s R s s l q l qℜ = ∧ → ∈ ∈         (49) 

The strategy of player i consists of a disjunction of all j’s choices, which in effect 

is nothing but player i’s strategy when player i’s initial choice is il
is . Hence, we 

can write the strategy ( )ζ . for player i against player j as: 

( ) ( ) { }1 2 1 2
ζ ... ; ;...;i

i i i q i i i qj ji j

l
i l k l k l k l k l k l kl l

s LWD= ℜ = ℜ ∨ ℜ ∨ ∨ ℜ = ℜ ℜ ℜ

        (50) 

The linguistic nuance and feasibility values of i’s strategy for when player i’s 

choice is il
is are: 

( ) ( ) ( )
1 1 1 2 1

ζ ; ; ; ; ;...; ;i i

l k l k l k l k l k l ki i i i i i q j

l l
i i LWDν ϕ ν ϕ ν ϕ ν ϕℜ ℜ ℜ ℜ ℜ ℜ

⎧ ⎫⎛ ⎞= ⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭

    (51) 

We now are in a position to define three types of strictly dominant strategies.  

Strictly F- Dominant Strategy 

A strictly F-dominant linguistic fuzzy-logic strategy ( )ζ k
is with a feasibility 

value k
iϕ for player i is such that [ ]k k

i iϕ ϕ −; where [–k] stands for all linguis-

tic fuzzy-logic strategies for player i other than strategy k. The relation of domi-
nation is partial if the strict relation  is replaced by the weaker relation, “. 

Strictly N- Dominant Strategy 

A strictly N-dominant linguistic fuzzy-logic strategy ( )ζ k
is  with a nuance value 

k
iν for player i is such that  [ ]k k

i iν ν −; where [–k] stands for all linguistic 

fuzzy-logic strategies for player i other than strategy k. The relation of domina-
tion is partial if the strict relation  is replaced by the weaker relation, “. 

Strictly F-N- Dominant Strategy 

A strictly F-N-dominant linguistic fuzzy-logic strategy ( )ζ k
is  with a nuance 

value k
iν and a feasibility value k

iϕ for player i is such that [ ]k k
i iν ν −; and 
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[ ]k k
i iϕ ϕ −;  where [–k] stands for all linguistic fuzzy-logic strategies for 

player i other than strategy k. The relation of domination is partial if the strict 
relation  is replaced by the weaker relation, “. 

Since the hedges are always (at least partially) ordered, the degrees of nuance (and 
the degrees of feasibility) for any two strategies of a player stand (at least par-
tially) ordered toward one another. This implies that a player has always at least 
one partially, if not strictly, dominant strategy in one of the three meanings de-
fined above. We now can provide the following complete definition. 

Definition: 2-Player Linguistic Fuzzy-Logic (LFL) Game:  

A 2X2 LFL-Game G is a couple ( ),P H , where P is a finite set  of 2 players and 

H a finite set of h linguistic hedges, with the following elements: 

1. For each player i P∈  there is a finite set of iq  initial LFL-choices  

( ){ }, 1,..., ; ;i

i i i i

l
i i l l i i l lS s l q H Hν ϕ ν ϕ= = ∈ ∈   (52) 

 :
il iS Hϕ → is called the feasibility value of the LFL-choice 

( ),i

i i

l
i l ls ν ϕ  

 :
il iS Hν → is called the nuance degree of the LFL-choice 

( ),i

i i

l
i l ls ν ϕ  

2. For each player i P∈  there is a ( );il
i i iR s s−  matrix of preference relations 

with 1 2q q× elements showing i’s subjective ranking of simultaneous choices 

for both players in the game. Each matrix element has a nuance degree  
spanning a spectrum from fully preferred (i.e., best) to not preferred (i.e., 
worst) and a feasibility degree spanning a spectrum from fully feasible to not 
feasible.  

3. The LFL-Game G has 1 2q q× rules: Rule klℜ for i P∈ playing 
k
is against j P∈ playing l

js is:  

( ) ( ) { } { }1 2; 1,..., ; 1,..., ; {1,2} {1, 2}k l k l
kl i j i i js s R s s k q l q i j⎧ ⎫⎡ ⎤ℜ = ∧ → ∈ ∈ ∈ ≠ ∈⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭

            

(53) 

The degrees of nuance ν and feasibility ϕ of klℜ are given by: 
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( ) ( ) ( )( ) ( ) ( )( ){ } ( ) ( ); , ; , ; , , ,
kl kl

i i k k l l k l k l
i i i i i j i j i i i j i i i jLI LWC s s s s R s s R s sν ϕ ν ϕ ν ϕ ν ϕℜ ℜ

⎧ ⎫⎛ ⎞⎡ ⎤ ⎡ ⎤= ⎨ ⎬⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠⎩ ⎭
(54) 

4. The LFL-strategic arrangement for player i against player j when player i’s 

initial choice is il
is is:  

( ) ( ) { }1 2 1 2
ζ ... ; ;...;i

i i i q i i i qj ji j

l
i l k l k l k l k l k l kl k

s LWD= ℜ = ℜ ∨ ℜ ∨ ∨ ℜ = ℜ ℜ ℜ

       (55) 

The nuance and feasibility values for this strategic arrangement are: 

( ) ( ) ( )
1 1 1 2 1

; ; ; ; ;...; ;i i

l k l k l k l k l k l ki i i i i i q j

l l
i i LWDν ϕ ν ϕ ν ϕ ν ϕℜ ℜ ℜ ℜ ℜ ℜ

⎧ ⎫⎛ ⎞= ⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭  

  (56) 

5. The Cartesian product 1 2S S S= ×  is called the LFL-strategy profile for the 

LFL-Game G.  
A profile GP for players i and j in the LFL-Game is given by: 

( ) ( ) ( ) ( ) ( ), ; , ;
i j i ji j i j

i j m n m nl k l k
GP i l j n LWC ⎧ ⎫= ℜ ∧ ℜ = ℜ ℜ⎨ ⎬

⎩ ⎭
     (57) 

The nuance and feasibility degrees of this profile are obtained as: 

( ) ( ) ( ){ }; ζ ; ; ζ ;j ji i

i j i j

l ll lpr pr
l l l l i i j jLWCν ϕ ν ϕ ν ϕ=

             
     (58) 

We can recover the case of a crisp 2x2 Boolean-logic PD game by setting:  

P={A,B}  

H={NNN, FFF} or equivalently H={false, true}  

{ } { }; ;S C D C D= ×   

( ) ( ) ( ) ( ); ; ; ;A A A AR D C R C C R D D R C D; ; ;   

( ) ( ) ( ) ( ); ; ; ;B B B BR D C R C C R D D R C D; ; ;    

To define a notion of Nash equilibrium let us recall that the notion of Nash equi-
librium for crisp ordinal game is usually introduced through an ordering operation 
that ranks the preference relations of the players. In the LFL approach the notion 
of dominant strategy is defined by using the degrees of nuance and feasibility, 
which are by construction always ordered. Because an LFL-strategy has both  
a degree of nuance and a degree of feasibility we can have three sorts of Nash 
equilibria.  
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Definition: Nash Equilibrium:  

Each player { }1,2i ∈ has a finite set of linguistic feasibility values l
iϕ and a finite 

set of linguistic nuance values l
iν  defining its LFL-strategies:  

( ) ( ) { } { }{ }ζ ζ ; 1,2 ; 1,...,i i il l l
i i i i is i l qν ϕ= ∈ ∈                          (59) 

The game profile is given by:  

( ) ( ) ( ){ }1 1 2 2

1 2 1 2 1 1 2 2; ζ ; ;ζ ;l l l lpr pr
l l l l LWCν ϕ ν ϕ ν ϕ=

                  
     (60) 

NNE: N-Nash equilibrium 

( )1 2 1 2
* ;pr pr

l l l lν ϕ  is called an N-Nash equilibrium (NNE) if: 

( )* *
1 2 1 2

*pr pr
l l l l

ν ν≺ , { } { }* * * *
1 1 1 1 2 2 2 21,...,1 ,1 ,..., ; 1,...,1 ,1 ,...,l l l q l l l q∀ ∈ − + ∀ ∈ − +      (61) 

FNE: F-Nash Equilibrium:  

( )1 2 1 2
; *pr pr

l l l lν ϕ  is called an F-Nash equilibrium (FNE) if: 

( )* *
1 2 1 2

*pr pr
l l l l

ϕ ϕ≺ , { } { }* * * *
1 1 1 1 2 2 2 21,...,1 ,1 ,..., ; 1,...,1 ,1 ,...,l l l q l l l q∀ ∈ − + ∀ ∈ − +      (62) 

FNNE: F-N-Nash Equilibrium:  

( )1 2 1 2
* ; *pr pr

l l l lν ϕ  is called an F-N-Nash equilibrium (FNNE) if: 

( )* *
1 2 1 2

*pr pr
l l l l

ν ν≺  and ( )* *
1 2 1 2

*pr pr
l l l l

ϕ ϕ≺ , 

{ } { }* * * *
1 1 1 1 2 2 2 21,...,1 ,1 ,..., ; 1,...,1 ,1 ,...,l l l q l l l q∀ ∈ − + ∀ ∈ − +

   
    (63) 

Because the set of hedges is an ordered algebra and the operations of LOWA, 
LWC, LWD, and LI are convex operations, we can see that the processes of lin-
guistic aggregation produce linguistic terms which are elements of the same set of 
partially ordered hedges. This implies that there will always be a partial ordering 
of the profiles of a game. That is, the degrees of nuance and feasibility of the vari-
ous profiles are always partially ordered as elements of the hedge algebra. This in 
turn implies that that there will at least be an N or an F Nash equilibrium as  
defined up above. The simultaneous occurrence of F and N types of equilibrium 
produces an F-N Nash equilibrium.  We thus can state the following theorem of 
existence. 
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Theorem: Existence of Nash Equilibrium 

There always exists at least one Nash equilibrium in an LFL game.  The Nash 
equilibrium can be of F type, N type, or both simultaneously, that is, F-N type.  

To illustrate these notions of LFL-Nash equilibrium let us consider the follow-
ing game structure:  
The basic crisp strategy is cooperation.  

 The hedge algebra with seven degrees of nuance and feasibility is:  
{NNN, VLL, LLL, MMM, HHH, VHH, FFF}2  

 Assume that each player has seven LFL-choices 

{ }1, 2; 1, 2,3,4,5,6,7j
is i j= =  with the following nuance degrees: 

{NNN, VLL, LLL, MMM, HHH, VHH, FFF}. This means that the choices 
are: no-cooperation, very-low-cooperation, low-cooperation, moderate-
cooperation, high-cooperation, very-high-cooperation, and full-cooperation. 

 Assume that player 1 has the following feasibility degrees for its LFL-
choices: {LLL, HHH, VHH, VLL, FFF, NNN, LLL}. This means player 1 
perceives its choice as being no-cooperation with a low degree of feasibility, 
very-low-cooperation with a high degree of feasibility, low-cooperation with 
a very high degree of feasibility, moderate-cooperation with a very low de-
gree of feasibility, high-cooperation with a full degree of feasibility, very-
high-cooperation with null degree of feasibility, and full-cooperation with low 
degree of feasibility   

 Assume that player 2 has the following feasibility degrees for its LFL-
choices: {HHH, MMM, VHH, FFF, LLL, NNN, VLL}. This means player 2 
perceives its choices as being no-cooperation with a high degree of feasibility, 
very-low-cooperation with a moderate degree of feasibility, low-cooperation 
with a very high degree of feasibility, moderate-cooperation with a full degree 
of feasibility, high-cooperation with a low degree of feasibility, very-high-
cooperation with null degree of feasibility, and full-cooperation with very low 
degree of feasibility.    

The elements of the matrix of strategic preference relations for player 1 (and simi-
lar expression for player 2) are ( ){ }1 1 2; 1, 2,3, 4,5,6,7; 1,2,3, 4,5,6,7i jR s s i j= = . 
Each of these elements has a nuance degree spanning a spectrum from fully pre-
ferred (i.e., best) to not preferred (i.e., worst) and a feasibility degree spanning a 
spectrum from fully feasible to not feasible. We thus have as input for each player 
two 7x7 matrices, one for the degrees of nuance and one for the degrees of feasi-
bility. These elements are defining features of the LFL-Game much like the utility 
entries define crisp cardinal and ordinal games. The corresponding matrix for a 
crisp PD game would read using the following ordinal utilities (with best = 1, …, 
worst = 4):  

                                                           
2 NNN=null, VLL=very low, LLL=low, MMM=moderate, HHH=high, VHH=very high, 

and FFF=full. 
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1

2 4

1 3
ordinal

C D
C

R
D

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
 ; 2

2 1

4 3
ordinal

C D
C

R
D

⎡ ⎤
= ⎢ ⎥

⎣ ⎦                      
    (64) 

For an LFL-Game we have the matrix of preference relations for player 1: 

( ){ }1 1 1 2; 1,...,7; 1,...,7i jR R s s i j= = =
                      

     (65) 

Each element of this matrix has a nuance degree and a feasibility degree. What 
matters for the assessment of a rule and the possibility of having Nash equilibrium 
are these degrees of nuance and feasibility. To proceed further in the illustration of 
an LFL-Game we hence need to postulate these values as a further specification of 
the structure of the LFL-Game. To keep a transparent  connection with the Boo-
lean-logic ordinal PD game we need to remember that for the latter we have all 
degrees of feasibility equal to TRUE (or, in LFL denotation, FFF). As to the de-
grees of nuance we have for player 1 the following rankings: 1 for strategy DC, 2 
for strategy CC, 3 for strategy DD, and 4 for strategy CD. These rankings translate 
into the following degrees of nuance in LFL terminology: FFF for DC, HHH for 
CC, LLL for DD, and NNN for CD. We thus have the following two matrices for 
both players: 

Matrix of Preference Nuances in crisp ordinal PD game  

Player 1: 
1
ordinal HHH NNN

R
FFF LLL

ν
⎡ ⎤⎡ ⎤ = ⎢ ⎥⎣ ⎦ ⎣ ⎦

;   Player 2: 
2
ordinal HHH FFF

R
NNN LLL

ν
⎡ ⎤⎡ ⎤ = ⎢ ⎥⎣ ⎦ ⎣ ⎦

    

(66) 

Matrix of Preference Feasibilities in crisp ordinal PD game  

Player 1: 
1
ordinal FFF FFF

R
FFF FFF

ϕ
⎡ ⎤⎡ ⎤ = ⎢ ⎥⎣ ⎦ ⎣ ⎦

;   Player 2: 
2
ordinal FFF FFF

R
FFF FFF

ϕ
⎡ ⎤⎡ ⎤ = ⎢ ⎥⎣ ⎦ ⎣ ⎦  

     (67) 

In the LFL-PD game we would, for example, write the matrix of nuanced prefer-
ences as: 

Matrix of nuanced preferences: 

1

HHH MMM LLL VLL NNN NNN NNN

HHH MMM LLL VLL NNN NNN NNN

VHH HHH MMM LLL VLL NNN NNN

R VHH HHH MMM LLL VLL VLL VLL

VHH HHH MMM LLL VLL VLL VLL

FFF VHH HHH MMM LLL VLL VLL

FFF VHH HHH MMM LLL VLL VLL

ν

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

⎡ ⎤ = ⎢ ⎥⎣ ⎦
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

      

(68) 
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 Matrix of degrees of feasibility:

1

FFF VHH HHH MMM HHH VHH FFF

VHH HHH MMM LLL MMM HHH VHH

HHH MMM LLL VLL LLL MMM HHH

R MMM LLL VLL NNN VLL LLL MMM

HHH MMM LLL VLL LLL MMM HHH

VHH HHH MMM LLL MMM HHH VHH

FFF VHH HHH MMM HHH VHH FFF

ϕ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

⎡ ⎤ = ⎢ ⎥⎣ ⎦
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

    

(69) 

This means, for example, that for player 1 ( )3 5
1 1 2;R s s VLLν ⎡ ⎤ =⎢ ⎥⎣ ⎦

, that is, player 

1 ranks a strategy with (very-high-cooperation, no-cooperation) (3rd row, 5th col-
umn) as having a very low degree of nuance of preference ranking. We also need a 
matrix of feasibility degrees corresponding to the matrix of nuanced preferences 
(shown up above). This means, for example, that for player 1 

( )3 5
1 1 2;R s s LLLϕ ⎡ ⎤ =⎢ ⎥⎣ ⎦

, that is, player 1 sees the strategy (moderate-

cooperation, no-cooperation) as having a low degree of feasibility. From these we 

can evaluate the degree of feasibility of say rule 35ℜ for player 1. Let us go on to 

solving the complete LFL-PD game. 

3   Linguistic Fuzzy-Logic 2X2 PD Game 

Let us consider three different situations depending on the type of player, that is, 
whether the player is mean-spirited or nice-spirited. Each of these two types is in 
fact a set of linguistic subtypes assuming a linguistic value – there is graduality in 
meanness and niceness of the actors. I present the solutions to the game in terms 

of six sets of couplets. 1
kν and 1

kϕ stand for the nuance and feasibility degrees of 

an initial choice k for player 1. 2
lν and 2

lϕ stand for the nuance and feasibility de-

grees of an initial choice l for player 2. ( )1ζ kν and ( )1ζ kϕ stand for the nuance 

and feasibility degrees of a strategic arrangement k for player 1. ( )2ζ kν and 

( )2ζ kϕ stand for the nuance and feasibility degrees of a strategic arrangement l for 

player 2. The nuance and feasibility degrees of Nash solutions are denoted by 

* *
1 2

*pr

k l
ν and * *

1 2
*pr

k l
ϕ . I present the different solutions obtained for various values of 

orness ω for each actor.  
The various values for ω (orness) stand for different ways of combining the 

feasibility degrees of the possible rules to form a strategic arrangement. ω is a 
measure of how disjunctively-like (OR-like) or conjunctively-like (AND-like)  
the various feasibility degrees are combined. As explained in Chapter 2, LOWA is 
an “orand” operator located somewhere between the “AND” and “OR” logical 
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operations – LOWA has simultaneously a finite degree of “orness” and a finite 
degree of “andness.” Moreover, an or-like LOWA operator with ω > 0.5 describes 
the case of a player who prefers nuances (i.e., levels) of cooperation with high 
levels of feasibility. This means that this player will be more trusting and less cau-
tious when deciding on the strategic arrangement. Conversely, an and-like LOWA 
operator with ω > 0.5 describes the case of a player who prefers nuances of coop-
eration with low levels of feasibility. This means that this player will be less trust-
ing and more cautious when deciding on the strategic arrangement. 

Although this looks similar to the notion of mixed strategies of conventional 
game theory, it is fundamentally different from it. In a mixed strategy a player 
would have a probability for using any one of the possible rules, with the under-
standing that the player might only use ONE such rule at any point in time. In the 
LFL approach the player will combine more or less the feasibility degrees of all 
rules to design a strategy. The “more or less” phrase is not to be understood prob-
abilistically, but rather constitutively; that is: as a combination of “bits” from all 
strategies, a sort of concatenation. The LOWA operator allows us to incorporate 
vagueness (or fuzzy overlap) in the degree of feasibility of the strategic arrange-
ment. Moreover, the type of Nash equilibrium and its degrees of nuance and feasi-
bility depend on the value of orness. To facilitate a comparison with the crisp PD 
game, I make the C strategy correspond to a nuance value ν= FFF (and feasibility 
degree j= FFF) and D correspond to a nuance value ν= NNN (and feasibility de-
gree j= FFF). The Nash solution of the crisp PD game is thus DD with a nuance 
value ν=NNN and a feasibility value j=FFF. A fully mean-spirited (nice-spirited) 
player is one who has an FFF (FFF) degree of feasibility for NNN- (FFF-) coop-
eration and an NNN (NNN) degree of feasibility for FFF- (NNN-) cooperation. 
That is: a mean-spirited (nice-spirited) player is more prone to see null (full) co-
operation as fully (fully) feasible and by the same token is more prone to see full 
(null) cooperation with a null (null) degree of feasibility. Thus, we have the nu-
ance degrees for a mean-spirited player as ν-cooperation = {FFF, VHH, HHH, 
MMM, LLL, VLL, NNN} with the corresponding feasibility degrees j-feasibility 
= {NNN, VLL, LLL, MMM, HHH, VHH, FFF}. For a nice-spirited player we 
have:  ν-cooperation = {FFF, VHH, HHH, MMM, LLL, VLL, NNN} and the cor-
responding feasibility degrees j-feasibility = {FFF, VHH, HHH, MMM, LLL, 
VLL, NNN}.3 

We are now in a position to consider in full the 2x2 LFL-PD game. I consider 
three different situations depending on the type of player, that is, whether the 
player is mean-spirited or nice-spirited. Each of these two types is a set of linguis-
tic types assuming a linguistic value. In other words, there is graduality in mean-
ness and niceness of the actors.  I present the solutions to the game in terms of six 

sets of couplets. 1
kν and 1

kϕ stand for the nuance and feasibility degrees of an ini-

tial choice k for player 1, 2
lν and 2

lϕ stand for the nuance and feasibility degrees of 

                                                           
3 Note that we can have other types of players defined with other possible combinations of 

nuances and feasibilities, which would not fit in the categories of actors that I use as illus-
trative examples. 
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an initial choice l for player 2, ( )1ζ kν and ( )1ζ kϕ stand for the nuance and feasi-

bility degrees of a strategic arrangement k for player 1, ( )2ζ lν and ( )2ζ lϕ stand 

for the nuance and feasibility degrees of a strategic arrangement l for player 2. The 

nuance and feasibility degrees of Nash solutions are denoted by * *
1 2

*pr

k l
ν and 

* *
1 2

*pr

k l
ϕ . I present the different solutions obtained for various values of orness ω 

for each actor. It is clear that the type of Nash equilibrium and its degrees of nu-
ance and feasibility depend on the value of orness.4 For the sake of comparing 
with the crisp PD game, the C strategy corresponds to a nuance value ν= FFF (and 
feasibility degree j= FFF) and D corresponds to a nuance value ν= NNN (and 
feasibility degree j= FFF). The Nash solution of the crisp PD game is thus DD 
with a nuance value ν=NNN (i.e., null cooperation)  and a feasibility value j=FFF 
(i.e., fully feasible). 

Two mean-spirited players: 

I define a mean-spirited player as one who has an FFF degree of feasibility for 
NNN-cooperation and an NNN degree of feasibility for FFF-cooperation. That is: 
a mean-spirited player is more prone to see null cooperation (defection) as fully 
feasible and by the same token is more prone to see full cooperation with a null 
degree of feasibility, i.e., unfeasible. We thus have the following correspondence 
in a game with two mean-spirited players (Table 1): 

Table 1 Values of nuance and feasibility for PD game with two mean spirited players 

ν-cooperation FFF VHH HHH MMM LLL VLL NNN 1: Mean 
j-feasibility NNN VLL LLL MMM HHH VHH FFF 
ν-cooperation FFF VHH HHH MMM LLL VLL NNN 2: Mean 
j-feasibility NNN VLL LLL MMM HHH VHH FFF 

In this game with ω=0.1 we have two more or less mean-spirited players, with 
varying degrees of meanness (Table 2). The level of meanness is defined in terms 
of how the players perceive cooperation and its feasibility. We can see from Table 
2 that there is a large number (14) of F-N Nash equilibria for a small value of or-
ness. These are situations where the players when evaluating the feasibility of  
 
                                                           
4 Note that a medium value of ~ 0.5ω means that the linguistic values being combined 

are all equally important, whereas for 0.5ω >  ( 0.5ω < ) the term with the highest 
(lowest) linguistic value in the set of terms to be combined strongly dominates the com-
bination. LOWA operator with many of the weights near the top will be an orlike opera-

tor with 0.5ω > , while those operators with most of the weights at the bottom will be 

andlike operators with 0.5ω < . 
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Table 2 Highest Nash equilibria for ω=0.1 for PD game with two mean spirited players. 

=0.1

Row 1
k

1
k

2
l

2
l

1
k

1
k

2
l

2
l

* *
1 2

*pr
k l * *

1 2
*pr
k l Nash

1 FFF NNN FFF NNN FFF MMM FFF MMM MMM MMM F-N 
2 FFF NNN VHH VLL FFF MMM VHH MMM MMM MMM F-N 
3 FFF NNN NNN FFF FFF MMM FFF MMM MMM MMM F-N 
4 VHH VLL FFF NNN VHH MMM FFF MMM MMM MMM F-N 
5 VHH VLL VHH VLL VHH MMM VHH MMM MMM MMM F-N 
6 VHH VLL MMM MMM VHH MMM MMM LLL MMM MMM F-N 
7 VHH VLL NNN FFF VHH MMM FFF MMM MMM MMM F-N 
8 MMM MMM FFF NNN MMM LLL FFF MMM MMM MMM F-N 
9 MMM MMM VHH VLL MMM LLL VHH MMM MMM MMM F-N 

10 MMM MMM NNN FFF MMM LLL FFF MMM MMM MMM F-N 
11 NNN FFF FFF NNN FFF MMM FFF MMM MMM MMM F-N 
12 NNN FFF VHH VLL FFF MMM VHH MMM MMM MMM F-N 
13 NNN FFF MMM MMM FFF MMM MMM LLL MMM MMM F-N 
14 NNN FFF NNN FFF FFF MMM FFF MMM MMM MMM F-N  

strategic arrangements of the game favor strongly those with low degrees of feasi-
bility (MMM=moderate or LLL=low as shown in the table). This is displayed in 
columns 7 and 9 which show the degrees of feasibility of the two players for stra-
tegic arrangements that result from initial choices of the players shown in columns 
2 and 3 for player 1 and 4 and 5 for player 2. All equilibria have the same degree 
of nuance and feasibility, i.e., MMM. In other words, the F-N Nash equilibrium is 
characterized by moderate-cooperation and is perceived to be moderately feasible. 
This equilibrium can be reached from a variety of combinations of initial choices 
of the two players. A remarkable result is shown in the last row of the table where 
F-N Nash equilibrium is obtained from an initial situation where both players  
perceive non-cooperation (NNN) as fully feasible (FFF). The converse of this 
situation is shown in row 1 where the two players perceive full-cooperation as not 
feasible. The situation is repeated in rows 3 and 11. In sum, even when both  
players initially prefer full defection, playing the LFL game leads to a Nash equi-
librium of the strongest type for moderate cooperation! The dilemma of the crisp 
Boolean logic PD game is lifted in the sense that moderate cooperation is ration-
ally preferred to full defection.    

For ω=0.4, we obtain an F-N Nash equilibrium for high cooperation with a 
high degree of feasibility (Table 3). This equilibrium emerges from an initial 
choice situation where both players perceive full cooperation as not feasible. 
However, at the level of strategic arrangements involving both players, we find  
 

Table 3 Highest Nash equilibria for ω=0.4 for PD game with two mean spirited players. 

ω=0.4 

 
Row 

1
kν  1

kϕ 2
lν  2

lϕ  ( )1ζ kν ( )1ζ kϕ ( )2ζ lν ( )2ζ lϕ * *
1 2

*pr

k l
ν * *

1 2
*pr

k l
ϕ  

 
Nash 

1 FFF NNN FFF NNN FFF HHH FFF HHH HHH HHH F-N 
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Table 4 Highest Nash equilibria for ω=0.8 for PD game with two mean spirited players. 

ω=0.8 

 
Row 

1
kν  1

kϕ 2
lν  2

lϕ  ( )1ζ kν ( )1ζ kϕ ( )2ζ lν ( )2ζ lϕ * *
1 2

*pr

k l
ν * *

1 2
*pr

k l
ϕ  

 
Nash 

1 FFF NNN FFF NNN FFF HHH FFF HHH HHH HHH F-N 

2 FFF NNN VHH VLL FFF HHH VHH HHH HHH HHH F-N 

3 FFF NNN NNN FFF FFF HHH VHH HHH HHH HHH F-N 

4 VHH VLL FFF NNN VHH HHH FFF HHH HHH HHH F-N 

5 VHH VLL VHH VLL VHH HHH VHH HHH HHH HHH F-N 

6 VHH VLL NNN FFF VHH HHH VHH HHH HHH HHH F-N 

7 NNN FFF FFF NNN VHH HHH FFF HHH HHH HHH F-N 

8 NNN FFF VHH VLL VHH HHH VHH HHH HHH HHH F-N 

9 NNN FFF NNN FFF VHH HHH VHH HHH HHH HHH F-N 

both strategic arrangements have full cooperation with a high degree of feasibility. 
The PD dilemma of the crisp Boolean logic game has been lifted. A value of 0.4 
for orness means that the players put almost equal emphasis on the feasibility of 
the possible choices when aggregating the information to evaluate the feasibility 
of the various strategic arrangements. For orness=0.5 the different choices would 
be equally weighted in the aggregation process.   

Increasing still the degree of orness to 0.8 (Table 4), that is, the players put 
much more emphasis on the strategic arrangements with high degrees of feasibil-
ity as shown in columns 7 and 9, we obtain 9 Nash equilibria, all of them of the F-
N Nash equilibrium type. From Table 4 we can see that high cooperation with a 
high degree of feasibility can be arrived at starting from different initial choices of 
the individual players, that is, before strategic interaction is taken into account. 
Rows 1, 3, 7, and 9 show that although both players might perceive full coopera-
tion as not feasible (or equivalently, no cooperation as fully feasible), strategic 
interaction under linguistic fuzzy logic leads to high cooperation with a high de-
gree of feasibility. There is no dilemma in the game anymore.  In sum, in situation 
where we have two more or less mean-spirited players, cooperation is feasible, at 
a high level with a high degree of feasibility.  

One nice-spirited player against a mean-spirited player 

Table 5 Values of nuance and feasibility for PD game with one mean- and one nice-spirited 
players.  

ν-cooperation FFF VHH HHH MMM LLL VLL NNN 1: Nice 
j-feasibility FFF VHH HHH MMM LLL VLL NNN 
ν-cooperation FFF VHH HHH MMM LLL VLL NNN 2: Mean 
j-feasibility NNN VLL LLL MMM HHH VHH FFF 
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Table 6 Highest Nash equilibria for ω=0.1 for PD game with one mean- and one nice-
spirited players. 

ω=0.1 

 
Row 

1
kν  1

kϕ 2
lν  2

lϕ  ( )1ζ kν ( )1ζ kϕ ( )2ζ lν ( )2ζ lϕ * *
1 2

*pr

k l
ν * *

1 2
*pr

k l
ϕ  

 
Nash 

1 FFF FFF FFF NNN HHH MMM FFF MMM MMM MMM F-N 

2 FFF FFF VHH VLL HHH MMM VHH MMM MMM MMM F-N 

3 FFF FFF MMM MMM HHH MMM MMM LLL MMM MMM F-N 

4 FFF FFF NNN FFF HHH MMM VHH MMM MMM MMM F-N 

5 MMM MMM FFF NNN MMM LLL FFF MMM MMM MMM F-N 

6 MMM MMM VHH VLL MMM LLL VHH MMM MMM MMM F-N 

7 MMM MMM NNN FFF MMM LLL VHH MMM MMM MMM F-N 

8 VLL VLL FFF NNN VHH MMM FFF MMM MMM MMM F-N 

9 VLL VLL VHH VLL VHH MMM VHH MMM MMM MMM F-N 

10 VLL VLL MMM MMM VHH MMM MMM LLL MMM MMM F-N 

11 VLL VLL NNN FFF VHH MMM VHH MMM MMM MMM F-N 

12 NNN NNN FFF NNN FFF MMM FFF MMM MMM MMM F-N 

13 NNN NNN VHH VLL FFF MMM VHH MMM MMM MMM F-N 

14 NNN NNN MMM MMM FFF MMM MMM LLL MMM MMM F-N 

15 NNN NNN NNN FFF FFF MMM VHH MMM MMM MMM F-N 

In this game we have a more or less nice-spirited player against a more or less 
mean-spirited player (Table 5). These players are the mirror images of one an-
other. The level of niceness and meanness are defined in terms of how these play-
ers perceive cooperation and its feasibility as shown in Table 5. We can see from 
Table 6 that there is a large number (15) of F-N Nash equilibria for a small value 
of orness ω=0.1, that is, in situations where the players when evaluating the feasi-
bility of strategic arrangements of the game favor strongly those with low degrees 
of feasibility (MMM=moderate or LLL=low as shown Table 6). This is displayed 
in columns 7 and 9 which show the degrees of feasibility of the two players for 
strategic arrangements that result from initial choices of the players shown in col-
umns 2 and 3 for player 1 and 4 and 5 for player 2. All equilibria have the same 
degree of nuance and feasibility, i.e., MMM. In other words, the F-N Nash equi-
librium is characterized by moderate-cooperation and is perceived to be moder-
ately feasible. This equilibrium can be reached from a variety of combinations of 
initial choices of the two players. A remarkable result is shown in the last row of 
the table where F-N Nash equilibrium is obtained from an initial situation where 
player 2 perceives non-cooperation (NNN) as fully feasible (FFF) whereas player 
1 perceives non-cooperation as not feasible. The converse of this situation is 
shown in the first row where player 1 perceives full-cooperation as fully feasible 
whereas player 2 perceives full cooperation as not feasible. This situation is re-
peated in row 4 where player 1 perceives non-cooperation as fully feasible, and in  
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Table 7 Highest Nash equilibria for ω=0.4 for PD game with one mean- and one nice-
spirited players.  

ω=0.4 

 
Row 

1
kν  1

kϕ 2
lν  2

lϕ  ( )1ζ kν ( )1ζ kϕ ( )2ζ lν ( )2ζ lϕ * *
1 2

*pr

k l
ν * *

1 2
*pr

k l
ϕ  

 
Nash 

1 VLL VLL FFF NNN VHH MMM FFF HHH MMM HHH F 

2 NNN NNN FFF NNN FFF HHH FFF HHH HHH HHH F-N 

3 NNN NNN VHH VLL FFF HHH VHH MMM MMM HHH F 

row 12 where player 1 perceives non-cooperation as not feasible whereas player 2 
perceives full-cooperation as not feasible. In sum, even when one of the players 
fully defects we still get a Nash equilibrium of the strongest type for moderate 
cooperation! The dilemma of the crisp Boolean logic PD game is lifted in the 
sense that moderate cooperation is rationally preferred to full defection.    

When the degree of orness is increased from 0.1 to 0.4 we still have moderate 
cooperation with a high degree of feasibility (Table 7). An F-N Nash equilibrium 
emerges with a high degree of feasibility. We thus have two F-type Nash equilib-
rium with moderate cooperation and an F-N Nash equilibrium all with a high de-
gree of feasibility.   

Increasing still further the degree of orness to 0.9 (Table 8), that is, the players 
put much more emphasis on the strategic arrangements with high degrees of feasi-
bility as shown in columns 7 and 9, we obtain 13 Nash equilibria, but only one of  
 

Table 8 Highest Nash equilibria for ω=0.9 for PD game with one mean- and one nice-
spirited players. 

ω=0.9 

 
Row 

1
kν  1

kϕ 2
lν  2

lϕ  ( )1ζ kν ( )1ζ kϕ ( )2ζ lν ( )2ζ lϕ * *
1 2

*pr

k l
ν * *

1 2
*pr

k l
ϕ  

 
Nash 

1 NNN NNN FFF NNN FFF FFF FFF FFF FFF FFF F-N 

2 FFF FFF FFF NNN HHH VHH FFF FFF VHH FFF F 

3 VHH VHH FFF NNN HHH VHH FFF FFF VHH FFF F 

4 HHH HHH FFF NNN HHH HHH FFF FFF HHH FFF F 

5 MMM MMM FFF NNN MMM MMM FFF FFF MMM FFF F 

6 LLL LLL FFF NNN HHH HHH FFF FFF HHH FFF F 

7 VLL VLL FFF NNN VHH VHH FFF FFF VHH FFF F 

8 NNN NNN VHH VLL FFF FFF VHH VHH VHH FFF F 

9 NNN NNN HHH LLL FFF FFF HHH HHH HHH FFF F 

10 NNN NNN MMM MMM FFF FFF MMM MMM MMM FFF F 

11 NNN NNN LLL HHH FFF FFF HHH HHH HHH FFF F 

12 NNN NNN VLL VHH FFF FFF VHH VHH VHH FFF F 

13 NNN NNN NNN FFF FFF FFF VHH VHH VHH FFF F 
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them is a F-N Nash equilibrium. The latter is the result of a scenario where player 
1 perceives non-cooperation as not feasible and player 2 perceives full cooperation 
as not feasible. This however does not ineluctably lead to full defection as the 
crisp Boolean logic PD game would predict. From the table we can see that mod-
erate, high, very high and full cooperation are all fully feasible. Thus the players 
can in the worst case scenario have moderate cooperation fully feasible. There is 
no dilemma in the game anymore.  In sum, in situation where we have one nice-
spirited player against a mean-spirited one, cooperation is feasible, at least at a 
moderate level with a moderate degree of feasibility.  

Two nice-spirited players 

Table 9 Values of nuance and feasibility for PD game with two nice-spirited players.  

ν-cooperation FFF VHH HHH MMM LLL VLL NNN 1: Nice 
j-feasibility FFF VHH HHH MMM LLL VLL NNN 
ν-cooperation FFF VHH HHH MMM LLL VLL NNN 2: Nice 
j-feasibility FFF VHH HHH MMM LLL VLL NNN 

Much of what was said in the two previous cases remains valid for the case 
where two more or less nice-spirited players in the game (Table 9). 

Table 10 Highest Nash equilibria for ω=0.1 for PD game with two nice-spirited players. 

ω=0.1 

 
Row 

1
kν  1

kϕ 2
lν  2

lϕ  ( )1ζ kν ( )1ζ kϕ ( )2ζ lν ( )2ζ lϕ * *
1 2

*pr

k l
ν * *

1 2
*pr

k l
ϕ  

 
Nash 

1 FFF FFF FFF FFF HHH MMM HHH MMM MMM MMM F-N 

2 FFF FFF MMM MMM HHH MMM MMM LLL MMM MMM F-N 

3 FFF FFF VLL VLL HHH MMM VHH MMM MMM MMM F-N 

4 FFF FFF NNN NNN HHH MMM FFF MMM MMM MMM F-N 

5 MMM MMM FFF FFF MMM LLL HHH MMM MMM MMM F-N 

6 MMM MMM VLL VLL MMM LLL VHH MMM MMM MMM F-N 

7 MMM MMM NNN NNN MMM LLL FFF MMM MMM MMM F-N 

8 VLL VLL FFF FFF VHH MMM HHH MMM MMM MMM F-N 

9 VLL VLL MMM MMM VHH MMM MMM LLL MMM MMM F-N 

10 VLL VLL VLL VLL VHH MMM VHH MMM MMM MMM F-N 

11 VLL VLL NNN NNN VHH MMM FFF MMM MMM MMM F-N 

12 NNN NNN FFF FFF FFF MMM HHH MMM MMM MMM F-N 

13 NNN NNN MMM MMM FFF MMM MMM LLL MMM MMM F-N 

14 NNN NNN VLL VLL FFF MMM VHH MMM MMM MMM F-N 

15 NNN NNN NNN NNN FFF MMM FFF MMM MMM MMM F-N 
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When the level of orness = 0.1 (Table 10), we have 15 F-N Nash equilibria, 
which are arrived at in different ways, that is, starting with various individual 
choices before the onset of strategic interaction. Just as in the two previous situa-
tions, we have an F-N Nash equilibrium with a moderate degree of cooperation 
and a moderate level of feasibility.   

Table 11 Highest Nash equilibria for ω=0.4 for PD game with two nice-spirited players. 

ω=0.4 

 
Row 

1
kν  1

kϕ 2
lν  2

lϕ  ( )1ζ kν ( )1ζ kϕ ( )2ζ lν ( )2ζ lϕ * *
1 2

*pr

k l
ν * *

1 2
*pr

k l
ϕ  

 
Nash 

1 VLL VLL NNN NNN HHH MMM HHH HHH MMM HHH F 

2 NNN NNN VLL VLL HHH HHH HHH MMM MMM HHH F 

3 NNN NNN NNN NNN HHH HHH HHH HHH HHH HHH F-N 

For intermediate degrees of orness (Table 11), we also obtain three Nash equi-
libria, two of F type and one of F-N type. While all three equilibria have a high 
degree of feasibility, the F-N one stands for high cooperation whereas the two 
others stand for moderate cooperation. There is no dilemma in the game.  

For orness=0.9 (Table 12), we obtain 13 Nash equilibria, all fully feasible, but 
only the F-N one stands for full cooperation, whereas we find 6 equilibria with a 
very high level of cooperation, 4 equilibria with a high level of cooperation, and 2 
 

Table 12 Highest Nash equilibria for ω=0.9 for PD game with two nice-spirited players. 

ω=0.9 

 
Row 

1
kν  1

kϕ 2
lν  2

lϕ  ( )1ζ kν ( )1ζ kϕ ( )2ζ lν ( )2ζ lϕ * *
1 2

*pr

k l
ν * *

1 2
*pr

k l
ϕ  

 
Nash 

1 FFF FFF NNN NNN HHH VHH FFF FFF VHH FFF F 

2 VHH VHH NNN NNN HHH VHH FFF FFF VHH FFF F 

3 HHH HHH NNN NNN HHH HHH FFF FFF HHH FFF F 

4 MMM MMM NNN NNN MMM MMM FFF FFF MMM FFF F 

5 LLL LLL NNN NNN HHH HHH FFF FFF HHH FFF F 

6 VLL VLL NNN NNN VHH VHH FFF FFF VHH FFF F 

7 NNN NNN FFF FFF FFF FFF HHH VHH VHH FFF F 

8 NNN NNN VHH VHH FFF FFF HHH VHH VHH FFF F 

9 NNN NNN HHH HHH FFF FFF HHH HHH HHH FFF F 

10 NNN NNN MMM MMM FFF FFF MMM MMM MMM FFF F 

11 NNN NNN LLL LLL FFF FFF HHH HHH HHH FFF F 

12 NNN NNN VLL VLL FFF FFF VHH VHH VHH FFF F 

13 NNN NNN NNN NNN FFF FFF FFF FFF FFF FFF F-N 
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equilibria with a moderate level of cooperation. Hence, the lowest level of coop-
eration which is fully feasible is moderate. There is no dilemma in the game.  

To sum up: in all three situations – two mean-spirited players, two nice-spirited 
players, one mean-spirited player against one nice-spirited player – there is no 
dilemma in the LFL-PD game. In addition, there at least is one strong F-N Nash 
equilibrium, and the lowest level of cooperation is moderate with a moderate level 
of feasibility. In some cases, we have full cooperation with a full degree of feasi-
bility. In the next section, I illustrate the power of using a LFL-game in shedding 
light on the role of reassurance in international relations.  

4   Role of Reassurance in International Relations  

Andrew Kydd (2000) used game theory to develop a costly-signaling theory of 
reassurance, which focuses on the sending and interpretation of costly signals, as a 
way of resolving the problem of mistrust in IR. Signals are made costly enough to 
persuade the receiver that the sender is trustworthy (2000:326). In this pursuit, 
Kydd modified the usual trust game modeled using a PD game by dividing the 
game into two rounds, a lesser initial round, followed by a final, more important 
round. The actors can hence predicate their choices in the second round on what 
happened in the first one. Kydd introduces a parameter 0 < a < 1 as a measure of 
signal costliness. Round 1 of the game is worth  a while round 2 is worth 1-a. The 
most promising equilibrium – termed as separating – occurs over an interval of a* 
values. Kydd shows that in this parameter space cooperation would occur at much 
lower levels of trust than in a one-round trust game. “The signals must be costly, 
but not too costly. Make them too easy and they become cheap talk ... Such claims 
are unpersuasive because there is nothing to prevent untrustworthy types from 
making them. However, the signals cannot be made too costly either, or the nice 
types will be too fearful to send them … cooperation may be possible for levels of 
trust that are quite low – low enough to preclude cooperation in the simple one-
round trust game” (2000:340). As an illustration of his game-theoretic argument 
Kydd looks at the negotiations that led to the end of the Cold War, arguing that 
Gorbachev engaged the US leaders into a game of reassurance. The latter thus 
succeeded in fostering trust when the signals (i.e., unilateral concessions made by 
Gorbachev) became truly costly for the Soviet Union (2000:341).  

I address the same issue but using an approach based on LFL-game theory. Fol-
lowing Kydd’s approach, I allow the players to play two consecutive PD games, 
that is, the second game takes as initial choices of the players the outcome of the 
first game. One key difference with Kydd’s game is that I do not use signaling 
costs as a way of conveying the actors’ levels of readiness to cooperate with one 
another. I instead use the notion of feasibility in combination with the notion of 
nuanced cooperation (or defection) to describe how the actors communicate with 
one another. For example, Kydd (2000:338) argues that “The secret to making the 
separating equilibrium work is finding a signal that is adequately costly to deter 
the mean types from sending it but not so costly that the nice type is afraid to send 
it.” The LFL-approach counterpart would be: the secret to making reassurance 
work is that the actors choose strategies that have higher degrees of feasibility 
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although the corresponding degrees of nuanced cooperation might not be the 
highest one available. Conversely, the equivalent of a low cost signal will be to 
choose a strategy that has a higher level of nuanced cooperation but with a low 
level of feasibility. This differs from Kydd’s Boolean logic approach on two main 
points. First, the actors are not just looking for cooperation or defection. They are 
instead looking for more or less cooperation. They want to know: how nuanced 
will their mutual cooperation be? Is it very weak or rather strong or somewhere in 
between? Second, how feasible are such levels of cooperation? Undoubtedly, 
these degrees of feasibility are shaped by cost analysis and cost signaling. How-
ever, the notion of feasibility is not restricted to these conventional measures for it 
includes the actors’ perceptions of the past, present, and the future not only in 
terms of costs but also in terms of intangibles such as identity (and emotions). As 
explained in the previous section, in the LFL game actors have a propensity to-
ward seeking more or less feasible strategies, an aspect of the game which is mod-
eled by the level of orness ω. The actors thus inquire: At what levels of orness 
would an actor have a propensity of favoring low (high) degrees of feasibility? In 
the two-round version of the reassurance game the actors would then have two 
different levels of orness ω1 and ω2, one for each round.  

Following Kydd’s model one would assume that ω1 + ω2 =1. That is: the pro-
pensity toward choosing more or less feasible strategies in the two rounds of the 
game are mutually compensatory – a propensity to favor high levels of feasibility 
during round one would be compensated with a propensity to favor low levels of 
feasibility during round two, and vice versa. In this interpretation the degree of 
feasibility becomes the equivalent of cost in Kydd’s formulation. However, this is 
only one possible combination of the degrees of orness of the two rounds. Indeed, 
in the LFL game we have two degrees of freedom: the level or nuance of strate-
gies and the degree of feasibility of these nuanced strategies. We do not just have 
cooperation and defection which are either chosen or rejected due to their 
cost/benefit. This opens up the possibility of many more ways of combining the 
propensities (i.e., levels of orness) of the two rounds. For example, at the end of 
round one, depending on the value of orness w1, a player possesses a number of 
choices all of which are equilibria (either of N, F, or F-N types as explained in the 
previous section). These equilibria produce at least moderate (MMM) cooperation 
which is at least highly (HHH) feasible. As shown in Table 13, I find at the end of 
round 1 moderate cooperation with a high degree of feasibility for w1 ≤ 0.2, high 
cooperation with a high degree of feasibility for 0.2 ≤ w1  ≤ 0.8, and full coopera-
tion with a full degree of feasibility for 0.8 ≤ w1.  

Translated in policy terms, these results mean that negotiators do not have just 
to cooperate or defect; they can engage one another at various levels of coopera-
tion which they believe as more or less feasible! Therefore, the negotiators can 
move on to the second round of the reassurance game along many different equi-
librium paths, each characterized with a level of cooperation and a corresponding 
degree of feasibility. The degrees of nuance and feasibility for the game profile at 
the end of the second round are shown in Table 13, where w1 and w2 stand for 
orness levels for rounds one and two. One notable result is that very high 
(nGP=VHH) cooperation is fully (jGP=FFF) feasible at the end of the second round 
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at any orness level of the first round (note that we get FFF-feasible, FFF-
cooperation for w2 >0.90). In other words: Even starting with (moderately or 
highly feasible) moderate levels of cooperation at the end of round one can pro-
duce fully feasible, very high or full cooperation at the end of round two.  

In terms of practical application, this opens up the possibility for continuing the 
negotiations even when the players are not still fully committed to full coopera-
tion, or even when they do not see full cooperation as fully feasible at the end of 
the first round of negotiations. We can also interpret this in terms of path-
dependency reasoning; that is: moderately feasible, moderate cooperation at the 
end of the first round puts the players on a path-dependent equilibrium-path which 
self-feeds to preserve the momentum of cooperation going on. This can also be 
phrased in terms of “cheap talk” jargon used in conventional game theory. LFL 
game theory shows that even “cheap talks” can build enough momentum for full 
cooperation in later stages. This runs into contradiction with Kydd’s (2000: 343) 
argument that, when Gorbachev began to make some arms control advances to-
ward the US such as suggesting a moratorium on nuclear testing and one on SS20 
intermediate-range ballistic missile (IRBM) deployments, “these gestures can be 
usefully conceived of as signals that fall short of the crucial level … these signals 
were ‘cheap talk’ rather than ‘costly signals.’ These moves were ineffective in 
changing opinions in the West.” In light of LFL game theory, I disagree with 
Kydd’s assessment of this historical event and instead concur with Collins 
(1998:205, cited by Kydd) and Joshua Goldstein and John Freeman (1990:116, 
cited by Kydd) who reason that although there was no direct response from the 
US, Gorbachev’s gestures did initiate a path-dependent process in a more subtle 
way, thereby setting the stage for upcoming important gestures and explicit coop-
eration. Instead of arguing as Kydd did that “these signals failed, largely because 
they were regarded as moves that did not really hurt the Soviets; that is, they were 
signals with little or no cost,” I think that these events showed that cooperation, if 
only of a moderate level, can be more or less feasible.  

In this respect, we can see how a fuzzy logic approach leads to another impor-
tant difference with Boolean-logic game theory. For instance, Kydd’s conceptuali-
zation of the notion of threshold at which point signals become costly is a 
“yes/no” one. That is: signals remain “cheap talks” until they reach the threshold 
after which they become effectively credible. Thresholds in fuzzy logic are (of 
course!) fuzzy – they are continuous fuzzy boundaries between nuanced levels of 
signaling and cooperation instead of being step-like changes. Even in the cursory 
analysis that Kydd (understandably) offers from the rise of Gorbachev to the final 
agreements we can discern a continuous, fuzzy momentum of negotiations from 
one round to the next, with every new round producing higher levels of coopera-
tion than previous ones. This fits very well with the above briefly discussed LFL 
game of reassurance. In fact, taking both sides of the negotiations together it is 
very hard to see (except through post hoc reassessment) when was the precise 
threshold that Kydd argues had occurred. At any point in time the actors not only 
kept coming back to the table of negotiations but also kept cooperating even more. 
More importantly, they truly believed increasingly more that higher levels of co-
operation were more feasible. One can even venture to say that the Soviet “New 
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Table 13 Profile of Reassurance Game 

ROUND ONE OF THE GAME 

w1 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Degrees of Nuance: nGP 

MMM HHH HHH HHH HHH HHH HHH HHH FFF 

Degrees of Feasibility: jGP 

HHH HHH HHH HHH HHH HHH HHH HHH FFF 
 

ROUND TWO OF THE GAME 

Degrees of Nuance: nGP 

 w2 

  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

 0.1 MMM MMM MMM MMM MMM HHH HHH HHH VHH 

 0.2 MMM MMM MMM MMM MMM HHH HHH HHH VHH 

 0.3 MMM MMM HHH HHH HHH HHH HHH HHH VHH 

 0.4 MMM MMM MMM MMM MMM HHH HHH HHH VHH 

w1 0.5 MMM MMM MMM MMM MMM HHH HHH HHH VHH 

 0.6 MMM MMM MMM MMM MMM HHH HHH HHH VHH 

 0.7 MMM MMM MMM MMM MMM MMM HHH HHH VHH 

 0.8 MMM MMM MMM MMM MMM MMM HHH HHH VHH 

 0.9 MMM MMM MMM MMM MMM MMM MMM HHH VHH 
 

Degrees of Feasibility: jGP 

 w2 

  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

 0.1 MMM MMM MMM MMM MMM HHH HHH HHH FFF 

 0.2 MMM MMM MMM MMM MMM HHH HHH HHH FFF 

 0.3 HHH HHH HHH HHH HHH HHH HHH HHH FFF 

 0.4 HHH HHH HHH HHH HHH HHH HHH HHH FFF 

w1 0.5 HHH HHH HHH HHH HHH HHH HHH HHH FFF 

 0.6 MMM MMM MMM MMM MMM HHH HHH HHH FFF 

 0.7 MMM MMM MMM MMM MMM HHH HHH HHH FFF 

 0.8 MMM MMM MMM MMM MMM MMM HHH HHH FFF 

 0.9 MMM MMM MMM MMM MMM MMM HHH HHH FFF 
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Thinking” was precisely about believing and being able to convince the West to 
believe that consecutively higher levels of cooperation between the East and the 
West were possible with increasingly higher degrees of feasibility. I hence some-
what agree with Kydd’s (2000:350) rendering of the end of the Cold War when he 
says that “one can observe a series of costly signals leading to mutual trust be-
tween former adversaries. The attitudes of Western leaders, press, and publics 
toward the Soviet Union all underwent a substantial transformation.” However, his 
Boolean-logic game theoretic analysis stops short in seeing that there was a con-
tinuous progression in the degrees of feasibility of, and levels of, cooperation that 
underpinned the evolution of the New Thinking and consequent transformation of 
Western attitudes and strategies from very low levels of feasible cooperation to 
fully feasible, full cooperation. To sum up this very brief fuzzy-logic rendering of 
the end of the Cold War, Kydd’s analysis is not wrong but misses much of the 
fuzzy dynamics that underpinned the progression from (fully feasible) no-
cooperation to fully feasible, full cooperation. I understand that much more em-
pirical work is needed to really make this case than what this discussion allows 
for. Yet, I believe that LFLA has much to offer in terms of explaining the fuzzy-
logical nature of major historical events of our times. In the next section, I con-
tinue exploring the problem of trust based on a different formulation of the strate-
gic situation.  

5   Linguistic Fuzzy-Logic Game of Trust 

Most game-theoretic studies of trust use an extended form of the game. In this 
chapter I instead use the normal form of a game. In this pursuit, I combine two 
different standard games, these are: Stag Hunt and Prisoner’s Dilemma games.5 
That is, the two actors play two different games. The potentially trusting player 
SH plays the Stag Hunt game while the would-be trusted player PD plays the Pris-
oner’s Dilemma game. The SH player is faced with two choices T (trust) or NT 
(not trust) and does not have a dominant strategy. The PD player is faced with two 
choices NE (not exploit) or E (exploit). PD does have a dominant strategy, E (ex-
ploit). Thus, PD would always rationally play E rather than NE due to the gain in 
payoff when playing E. The logic of the trust game is obtained when the two 
games are joined together (Figure 2). 

Clearly, the outcome simultaneously best for both players is (α,γ), which can 
only be achieved when SH plays T (trust) and PD plays NE (not exploit). How-
ever, for PD it is rational to opt for the dominant strategy E (exploit) which would 

force SH to opt for NT (not trust). This produces the outcome ( ) ( ), ,β β α γ< .  
 

                                                           
5 In a generic symmetric Stag Hunt game, the choices are either to hunt a stag or to hunt a 

hare. It takes both players cooperating to effectively hunt a stag, while one player acting 
independently can hunt a hare. Catching a stag brings greater payoff. There are two equi-
libria in this game: both players hunt a stag and both hunt a hare. The first equilibrium 
carries the higher payoff and is said to be payoff dominant; the second equilibrium carries 
the least risk and is said to be risk dominant.     
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  PD 
  NE (not exploit) E (exploit) 
 

SH 
T (trust) ( α, γ ) 

 
( δ, α ) 

 NT (not trust) ( γ, δ ) 
 

( β, β ) 

Fig. 2 Crisp Game of Trust (α γ β δ> > > ) 

There is only one pure strategy Nash equilibrium and no Nash equilibrium 
emerges in the space of mixed strategies when α γ β δ> > > . The trust di-

lemma remains unresolved even in the set of mixed strategies. To obtain the LFL-
game of trust we generalize the ordinal game which has the following normal 
form (Figure 3). 

  PD 
  NE (not exploit) E (exploit) 
 

SH 
T (trust)  (1;2)  

 
 (4;1) 

 NT (not trust)  (2;4)  (3;3) 

Fig. 3 Ordinal Crisp Game of Trust  

In the case of the crisp game of trust, SH would have two crisp choices, T and 
NT. From these two crisp choices we would have one set of LFL-choices obtained 
by applying the elements of a hedge algebra set H to the crisp choice, T. If we 
suppose for example that the hedge set is given by: H= {NNN, VLL, LLL, MMM, 
HHH, VHH, FFF}. SH would have the following set of LFL-choices:  

{ν-T| ν œ H}={ NNN, VLL, LLL, MMM, HHH, VHH, FFF}-trust          (70) 

Each of these LFL-choices would have a feasibility degree  

ϕ œ{ NNN, VLL, LLL, MMM, HHH, VHH, FFF}-feasibility             (71) 

For the PD player, we would have the following set of LFL-choices: 

{ν-E| ν œ H}={ NNN, VLL, LLL, MMM, HHH, VHH, FFF}-exploit       (72) 

Each of these LFL-choices would have a degree of feasibility:  

ϕ œ{ NNN, VLL, LLL, MMM, HHH, VHH, FFF}-feasibility                (73) 

The preference matrix for a crisp game of trust would read using the following 
ordinal preferences (with best = 1 and worst = 4):  
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1 4

2 3
Trust
SH

NE E
T

R
NT

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
 ; 

2 1

4 3
Trust
PD

NE E
T

R
NT

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
      (74) 

That is: player SH’s preferred ranking is: (T,NE) > (NT,NE) > (NT,E) > (T,E), 
whereas player PD’s preferred ranking is: (T,E) > (T,NE) > (NT,E) > (NT,NE). 
Because only PD player has a dominant strategy (E), there is no Nash equilibrium 
in the space of crisp mixed strategies.  

To keep the connection with the Boolean-logic ordinal game of trust we need to 
remember that for the latter we have all degrees of feasibility equal to TRUE (or, 
in LFL denotation, FFF). The players’ rankings can be, for example, translated 
into the following degrees of nuances in LFL terminology:  

• Player SH: FFF for (T,NE), HHH for (NT,NE), LLL for (NT,E), and NNN for 
(T,E) 

• Player PD: FFF for (T,E), HHH for (T,NE), LLL for (NT,E), and NNN for 
(NT,NE) 

We thus have the following two matrices for both players in the crisp ordinal 
game of trust: 

Matrix of Preference Nuances   

Player SH: trust
SH

FFF FFF
R

FFF FFF
ϕ

⎡ ⎤⎡ ⎤ = ⎢ ⎥⎣ ⎦ ⎣ ⎦
; Player PD: trust

PD

FFF FFF
R

FFF FFF
ϕ

⎡ ⎤⎡ ⎤ = ⎢ ⎥⎣ ⎦ ⎣ ⎦  
   (75) 

Matrix of Preference Feasibilities   

Player SH: trust
SH

FFF NNN
R

HHH LLL
ν

⎡ ⎤
⎡ ⎤ = ⎢ ⎥⎣ ⎦

⎣ ⎦

; Player PD: trust
PD

HHH FFF
R

NNN LLL
ν

⎡ ⎤
⎡ ⎤ = ⎢ ⎥⎣ ⎦ ⎣ ⎦

   (76) 

In the LFL-PD game we would, for example, write the matrix of nuanced  
preference: 

Player SH: 

SH

FFF VHH HHH MMM LLL VLL NNN

FFF VHH HHH MMM LLL VLL NNN

VHH VHH HHH MMM LLL VLL VLL

R VHH VHH HHH MMM LLL VLL VLL

VHH HHH MMM MMM MMM LLL LLL

HHH HHH MMM MMM MMM LLL LLL

HHH HHH MMM MMM MMM LLL LLL

ν

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

⎡ ⎤ = ⎢ ⎥⎣ ⎦
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

   (77) 
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Player PD: 

PD

HHH HHH VHH VHH VHH FFF FFF

HHH HHH HHH HHH HHH VHH FFF

MMM MMM MMM MMM MMM HHH VHH

R LLL LLL LLL LLL LLL MMM HHH

VLL VLL VLL VLL VLL LLL MMM

NNN NNN VLL VLL VLL LLL LLL

NNN NNN VLL VLL VLL LLL LLL

ν

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

⎡ ⎤ = ⎢ ⎥⎣ ⎦
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦   

(78) 

We also need a matrix of feasibility degrees corresponding to the matrix of nu-
anced preferences. We could, for example, have: 

Players SH & PD: 

SH PD

FFF VHH HHH MMM HHH VHH FFF

VHH HHH MMM LLL MMM HHH VHH

HHH MMM LLL VLL LLL MMM HHH

R R MMM LLL VLL NNN VLL LLL MMM

HHH MMM LLL VLL LLL MMM HHH

VHH HHH MMM LLL MMM HHH VHH

FFF VHH HHH MMM HHH VHH FFF

ϕ ϕ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

⎡ ⎤ ⎡ ⎤= = ⎢ ⎥⎣ ⎦ ⎣ ⎦
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

     

(79) 
Let us now consider situations where the degrees of feasibility of the player’s  
initial choices are allowed to vary gradually from null to full (NNN to FFF). We 
consider four different situations: SH naïve-spirited and PD nice-spirited, SH  
cautious-spirited and PD nice-spirited, SH naïve-spirited and PD mean-spirited, 
and SH cautious-spirited and PD mean-spirited. For each game we consider vari-
ous degrees of orness. In all cases we obtain at least one F-N Nash equilibrium. 
This means that there is always at least one very stable solution to the LFL-game 
of trust.     

SH cautious-spirited and PD nice-spirited: 

Table 14 Values of nuance and feasibility for trust game with SH cautious-spirited and PD 
nice-spirited players 

ν-trust FFF VHH HHH MMM LLL VLL NNN SH: Cautious
j-feasibility NNN VLL LLL MMM HHH VHH FFF 
ν-exploit FFF VHH HHH MMM LLL VLL NNN PD: Nice 
j-feasibility NNN VLL LLL MMM HHH VHH FFF 

In this situation, SH player is taken to be cautious-spirited, that is, SH is willing 
to consider full trust as not feasible, while at the same keeping the option open to 
lower levels of trust with lower degrees of feasibility. SH nonetheless perceives 
full trust as not feasible. Player PD is taken to be nice-spirited, that is, PD  
perceives full exploitation as not feasible, while PD perceives lower levels of ex-
ploitation feasible with higher degrees of feasibility. PD can get to an extent as to 
perceiving no exploitation as fully feasible. Table 14 displays the possible levels  
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Table 15 Highest Nash equilibria for ω=0.1 for trust game with SH cautious-spirited and 
PD nice-spirited players. 

ω=0.1 

 
Row 

1
kν  1

kϕ 2
lν  2

lϕ  ( )1ζ kν ( )1ζ kϕ ( )2ζ lν ( )2ζ lϕ * *
1 2

*pr

k l
ν * *

1 2
*pr

k l
ϕ  

Nash 

1 FFF NNN FFF NNN FFF MMM FFF MMM MMM MMM F-N 

2 FFF NNN VHH VLL FFF MMM VHH MMM MMM MMM F-N 

3 FFF NNN MMM MMM FFF MMM MMM LLL MMM MMM F-N 

4 FFF NNN LLL HHH FFF MMM MMM LLL MMM MMM F-N 

5 FFF NNN VLL VHH FFF MMM LLL LLL MMM MMM F-N 

6 FFF NNN NNN FFF FFF MMM LLL MMM MMM MMM F-N 

7 VHH VLL FFF NNN VHH MMM FFF MMM MMM MMM F-N 

8 VHH VLL VHH VLL VHH MMM VHH MMM MMM MMM F-N 

9 VHH VLL MMM MMM VHH MMM MMM LLL MMM MMM F-N 

10 VHH VLL LLL HHH VHH MMM MMM LLL MMM MMM F-N 

11 VHH VLL VLL VHH VHH MMM LLL LLL MMM MMM F-N 

12 VHH VLL NNN FFF VHH MMM LLL MMM MMM MMM F-N 

13 MMM MMM FFF NNN MMM LLL FFF MMM MMM MMM F-N 

14 MMM MMM VHH VLL MMM LLL VHH MMM MMM MMM F-N 

15 MMM MMM NNN FFF MMM LLL LLL MMM MMM MMM F-N 

16 NNN FFF FFF NNN HHH MMM FFF MMM MMM MMM F-N 

17 NNN FFF VHH VLL HHH MMM VHH MMM MMM MMM F-N 

18 NNN FFF MMM MMM HHH MMM MMM LLL MMM MMM F-N 

19 NNN FFF LLL HHH HHH MMM MMM LLL MMM MMM F-N 

20 NNN FFF VLL VHH HHH MMM LLL LLL MMM MMM F-N 

21 NNN FFF NNN FFF HHH MMM LLL MMM MMM MMM F-N 

(nuances) of trust for player SH with corresponding degrees of feasibility and  
the possible levels of exploitation for player PD with corresponding degrees of 
feasibility.      

For very low degrees of orness ω=0.1, I obtain 21 F-N Nash equilibria, all with 
a moderate level of trust and moderately feasible (Table 15). What is remarkable 
is that when SH initially perceives full trust as not feasible (such as in rows 1 – 6) 
we obtain a F-N solution with any of the possible initial choices for player PD. In 
other words, that player PD is nice-spirited facilitates the emergence of trust and 
that the logic of the game is LFL makes a certain level of trust possible. The same 
is true in situations where player SH initially perceives no trust as fully feasible 
(rows 16 – 21), very high trust with a very low degree of feasibility (rows 7 – 12), 
or moderate trust as moderately feasible (rows 13 – 15).     

For intermediate values of orness ω=0.6, we obtain 2 F-N Nash equilibria and 
five F Nash equilibria (Table 16). All equilibria have a high degree of feasibility.  
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Table 16 Highest Nash equilibria for ω=0.6 for trust game with SH cautious-spirited and 
PD nice-spirited players. 

ω=0.6 

 
Row 

1
kν  1

kϕ 2
lν  2

lϕ  ( )1ζ kν ( )1ζ kϕ ( )2ζ lν ( )2ζ lϕ * *
1 2

*pr

k l
ν * *

1 2
*pr

k l
ϕ  

Nash 

1 FFF NNN FFF NNN FFF HHH FFF HHH HHH HHH F-N 

2 FFF NNN NNN FFF FFF HHH LLL MMM HHH HHH F-N 

3 FFF NNN VHH VLL FFF HHH VHH MMM MMM HHH F 

4 FFF NNN HHH LLL FFF HHH VHH MMM MMM HHH F 

5 VHH VLL FFF NNN VHH MMM FFF HHH MMM HHH F 

6 HHH LLL FFF NNN VHH MMM FFF HHH MMM HHH F 

7 NNN FFF FFF NNN HHH MMM FFF HHH MMM HHH F 

Table 17 Highest Nash equilibria for ω=0.9 for trust game with SH cautious-spirited and 
PD nice-spirited players. 

ω=0.9 

 
Row 

1
kν  1

kϕ 2
lν  2

lϕ  ( )1ζ kν ( )1ζ kϕ ( )2ζ lν ( )2ζ lϕ * *
1 2

*pr

k l
ν * *

1 2
*pr

k l
ϕ  

Nash 

1 FFF NNN FFF NNN FFF FFF FFF FFF FFF FFF F-N 

2 FFF NNN VHH VLL FFF FFF VHH VHH VHH FFF F 

3 FFF NNN HHH LLL FFF FFF HHH HHH HHH FFF F 

4 FFF NNN MMM MMM FFF FFF MMM MMM MMM FFF F 

5 FFF NNN LLL HHH FFF FFF MMM HHH HHH FFF F 

6 FFF NNN VLL VHH FFF FFF LLL VHH VHH FFF F 

7 FFF NNN NNN FFF FFF FFF LLL VHH VHH FFF F 

8 VHH VLL FFF NNN VHH VHH FFF FFF VHH FFF F 

9 HHH LLL FFF NNN HHH HHH FFF FFF HHH FFF F 

10 MMM MMM FFF NNN MMM MMM FFF FFF MMM FFF F 

11 LLL HHH FFF NNN HHH HHH FFF FFF HHH FFF F 

12 VLL VHH FFF NNN HHH VHH FFF FFF VHH FFF F 

13 NNN FFF FFF NNN HHH VHH FFF FFF VHH FFF F 

The F-N ones stand for high level of trust, whereas the F ones stand for moderate 
level of trust.   

In situations with high values of orness ω=0.9, we obtain 13 Nash equilibria, 
one of which is of F-N type while the remaining ones are of F type (Table 17). All 
equilibria are fully feasible. The F-N Nash equilibrium stands for full trust. The F 
ones are distributed as: 6 with very high degree of trust, 3 with high degree of 
trust, and two with moderate degree of trust. What is remarkable is that in the F-N 
case, player SH initially perceives full trust as not feasible. However, playing the 
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game according to LFL rules and assuming that the PD player initially perceives 
full exploitation as not feasible leads to full trust which is fully feasible. 

SH cautious-spirited and PD mean-spirited: 

In this situation, SH is cautious-spirited and PD is mean spirited. That is, SH  
initially perceives full trust as not feasible and no trust as fully feasible, and PD 
initially perceives full exploitation as fully feasible and no exploitation as not fea-
sible. Both actors can initially perceive other levels of trust (player SH) and ex-
ploitation (player PD) with corresponding values of feasibility as shown in the 
following table. As in previous cases, there is always at least one F-N Nash equi-
librium for all degrees of orness, but the higher the degree of orness the smaller 
the number of F-N Nash equilibria.  

Table 18 Values of nuance and feasibility for trust game with SH cautious-spirited and PD 
mean-spirited players 

ν-trust FFF VHH HHH MMM LLL VLL NNN SH: Cautious 
j-feasibility NNN VLL LLL MMM HHH VHH FFF 
ν-exploit FFF VHH HHH MMM LLL VLL NNN PD: Mean 
j-feasibility FFF VHH HHH MMM LLL VLL NNN 

Table 19 Highest Nash equilibria for ω=0.1 for trust game with SH cautious-spirited and 
PD mean-spirited players. 

ω=0.1 

 
Row 

1
kν  1

kϕ 2
lν  2

lϕ  ( )1ζ kν ( )1ζ kϕ ( )2ζ lν ( )2ζ lϕ * *
1 2

*pr

k l
ν * *

1 2
*pr

k l
ϕ  

Nash 

1 FFF NNN FFF FFF FFF MMM VHH MMM MMM MMM F-N 

2 FFF NNN MMM MMM FFF MMM MMM LLL MMM MMM F-N 

3 FFF NNN VLL VLL FFF MMM VHH MMM MMM MMM F-N 

4 FFF NNN NNN NNN FFF MMM FFF MMM MMM MMM F-N 

5 VHH VLL FFF FFF VHH MMM VHH MMM MMM MMM F-N 

6 VHH VLL MMM MMM VHH MMM MMM LLL MMM MMM F-N 

7 VHH VLL VLL VLL VHH MMM VHH MMM MMM MMM F-N 

8 VHH VLL NNN NNN VHH MMM FFF MMM MMM MMM F-N 

9 MMM MMM FFF FFF MMM LLL VHH MMM MMM MMM F-N 

10 MMM MMM VLL VLL MMM LLL VHH MMM MMM MMM F-N 

11 MMM MMM NNN NNN MMM LLL FFF MMM MMM MMM F-N 

12 NNN FFF FFF FFF HHH MMM VHH MMM MMM MMM F-N 

13 NNN FFF MMM MMM HHH MMM MMM LLL MMM MMM F-N 

14 NNN FFF VLL VLL HHH MMM VHH MMM MMM MMM F-N 

15 NNN FFF NNN NNN HHH MMM FFF MMM MMM MMM F-N 
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Table 20 Highest Nash equilibria for ω=0.6 for trust game with SH cautious-spirited and 
PD mean-spirited players. 

ω=0.6 

 
Row 

1
kν  1

kϕ 2
lν  2

lϕ  ( )1ζ kν ( )1ζ kϕ ( )2ζ lν ( )2ζ lϕ * *
1 2

*pr

k l
ν * *

1 2
*pr

k l
ϕ  

Nash 

1 FFF NNN FFF FFF FFF HHH HHH MMM MMM HHH F 

2 FFF NNN LLL LLL FFF HHH VHH MMM MMM HHH F 

3 FFF NNN VLL VLL FFF HHH VHH MMM MMM HHH F 

4 FFF NNN NNN NNN FFF HHH FFF HHH HHH HHH F-N 

5 VHH VLL NNN NNN VHH MMM FFF HHH MMM HHH F 

6 HHH LLL NNN NNN HHH MMM FFF HHH MMM HHH F 

7 NNN FFF NNN NNN HHH MMM FFF HHH MMM HHH F 

Table 21 Highest Nash equilibria for ω=0.9 for trust game with SH cautious-spirited and 
PD mean-spirited players. 

ω=0.9 

 
Row 

1
kν  1

kϕ 2
lν  2

lϕ  ( )1ζ kν ( )1ζ kϕ ( )2ζ lν ( )2ζ lϕ * *
1 2

*pr

k l
ν * *

1 2
*pr

k l
ϕ  

Nash 

1 FFF NNN FFF FFF FFF FFF VHH VHH VHH FFF F 

2 FFF NNN VHH VHH FFF FFF VHH VHH VHH FFF F 

3 FFF NNN HHH HHH FFF FFF HHH HHH HHH FFF F 

4 FFF NNN MMM MMM FFF FFF MMM MMM MMM FFF F 

5 FFF NNN LLL LLL FFF FFF HHH HHH HHH FFF F 

6 FFF NNN VLL VLL FFF FFF VHH VHH VHH FFF F 

7 FFF NNN NNN NNN FFF FFF FFF FFF FFF FFF F-N 

8 VHH VLL NNN NNN VHH VHH FFF FFF VHH FFF F 

9 HHH LLL NNN NNN HHH HHH FFF FFF HHH FFF F 

10 MMM MMM NNN NNN MMM MMM FFF FFF MMM FFF F 

11 LLL HHH NNN NNN HHH HHH FFF FFF HHH FFF F 

12 VLL VHH NNN NNN HHH VHH FFF FFF VHH FFF F 

13 NNN FFF NNN NNN HHH VHH FFF FFF VHH FFF F 

For very low levels of orness ω=0.1, I find 15 F-N Nash equilibria, all at a 
moderate level of trust and all moderately feasible (Table 19). Among the 15 dif-
ferent pathways of reaching this type of equilibrium rows 1, 12, and 15 are espe-
cially interesting. In row 1 SH initially perceives full trust as not feasible and PD 
initially perceives full exploitation as fully feasible. In row 12 SH initially per-
ceives no trust as fully feasible and PD initially perceives full exploitation as fully 
feasible. In row 15 SH initially perceives no trust as fully feasible and PD initially 
perceives no exploitation as not feasible. Yet, in all three cases playing the game 
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with LFL produces a stable equilibrium even if it is only with a moderate trust 
which is moderately feasible. 

For intermediate levels of orness ω=0.6, I find 7 Nash equilibria, one of which 
is of F-N type while all others are of F type (table 20). The F-N one emerges under 
conditions where SH initially perceives full trust as not feasible and PD initially 
perceives full exploitation as fully feasible. The outcome under LFL is F-N Nash 
equilibrium with high trust which is highly feasible. The F equilibria are also 
highly feasible but have a moderate level of trust.   

For very high levels of orness ω=0.9, I find 13 Nash equilibria, one of which is 
F-N and the others are F type (Table 21). All equilibria have a high degree of fea-
sibility. The F-N equilibrium has a full level of trust. The others are distributed in 
terms of the level of trust as follows: 6 with very high level of trust, 4 with high 
level of trust, and 2 with moderate level of trust.  

SH naive-spirited and PD mean-spirited: 

In this situation, we have a naïve-spirited SH player against a mean-spirited PD 
player. That is: player SH initially perceives full trust as fully feasible and no trust 
as not feasible. Player PD initially perceives full exploitation as fully feasible and 
no exploitation as not feasible. However, for any degree of orness, SH and PD are 
able to find a stable solution with at least a moderate level of trust and which is 
moderately feasible.    

Table 22 Values of nuance and feasibility for trust game with SH naive-spirited and PD 
mean-spirited players 

ν-trust FFF VHH HHH MMM LLL VLL NNN SH: Naive 
j-feasibility FFF VHH HHH MMM LLL VLL NNN 
ν-exploit FFF VHH HHH MMM LLL VLL NNN PD: Mean 
j-feasibility FFF VHH HHH MMM LLL VLL NNN 

For very low levels of orness ω=0.1, I find 16 F-N Nash equilibria, all of which 
at a moderate level of trust and all are moderately feasible (Table 23). Rows 1, 5, 
12, and 16 are remarkable, however. In row 1 SH initially perceives full trust as 
fully feasible but PD perceives full exploitation as fully feasible. This is the 
equivalent of the crisp game of trust. Rational actors would end up not producing 
trust when playing according to Boolean logic. However, in the present game SH 
and PD are playing according to LFL and hence are able to produce a stable Nash 
equilibrium with a moderate level of trust and a moderate level of feasibility. 
Similar remarks apply to rows 3, 12, and 16.  

For intermediate values of orness ω=0.6, I find 7 Nash equilibria, one of which 
is of F-N type and has a high level of trust (Table 24). The others are of F type and 
are at a moderate level of trust. All equilibria have a high degree of feasibility. 
The F-N Nash equilibrium emerges under a condition where SH initially perceives  
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Table 23 Highest Nash equilibria for ω=0.1 for trust game with SH naive-spirited and PD 
mean-spirited players. 

ω=0.1 

 
Row 

1
kν  1

kϕ 2
lν  2

lϕ  ( )1ζ kν ( )1ζ kϕ ( )2ζ lν ( )2ζ lϕ * *
1 2

*pr

k l
ν * *

1 2
*pr

k l
ϕ  

Nash 

1 FFF FFF FFF FFF VHH MMM FFF MMM MMM MMM F-N 

2 FFF FFF MMM MMM VHH MMM MMM LLL MMM MMM F-N 

3 FFF FFF LLL LLL VHH MMM MMM LLL MMM MMM F-N 

4 FFF FFF VLL VLL VHH MMM MMM MMM MMM MMM F-N 

5 FFF FFF NNN NNN VHH MMM MMM MMM MMM MMM F-N 

6 MMM MMM FFF FFF MMM LLL FFF MMM MMM MMM F-N 

7 MMM MMM VLL VLL MMM LLL MMM MMM MMM MMM F-N 

8 MMM MMM NNN NNN MMM LLL MMM MMM MMM MMM F-N 

9 VLL VLL FFF FFF HHH MMM FFF MMM MMM MMM F-N 

10 VLL VLL VLL VLL HHH MMM MMM MMM MMM MMM F-N 

11 VLL VLL NNN NNN HHH MMM MMM MMM MMM MMM F-N 

12 NNN NNN FFF FFF HHH MMM FFF MMM MMM MMM F-N 

13 NNN NNN MMM MMM HHH MMM MMM LLL MMM MMM F-N 

14 NNN NNN LLL LLL HHH MMM MMM LLL MMM MMM F-N 

15 NNN NNN VLL VLL HHH MMM MMM MMM MMM MMM F-N 

16 NNN NNN NNN NNN HHH MMM MMM MMM MMM MMM F-N 

Table 24 Highest Nash equilibria for ω=0.6 for trust game with SH naive-spirited and PD 
mean-spirited players. 

ω=0.6 

 
Row 

1
kν  1

kϕ 2
lν  2

lϕ  ( )1ζ kν ( )1ζ kϕ ( )2ζ lν ( )2ζ lϕ * *
1 2

*pr

k l
ν * *

1 2
*pr

k l
ϕ  

Nash 

1 FFF FFF NNN NNN HHH MMM MMM HHH MMM HHH F 

2 LLL LLL NNN NNN MMM MMM MMM HHH MMM HHH F 

3 VLL VLL NNN NNN HHH MMM MMM HHH MMM HHH F 

4 NNN NNN FFF FFF HHH HHH HHH MMM MMM HHH F 

5 NNN NNN LLL LLL HHH HHH MMM MMM MMM HHH F 

6 NNN NNN VLL VLL HHH HHH MMM MMM MMM HHH F 

7 NNN NNN NNN NNN HHH HHH MMM HHH HHH HHH F-N 

no trust as not feasible and PD perceives no exploitation as not feasible. Yet, play-
ing the game according to LFL allows the players to build a stable Nash equilib-
rium with a high level of trust which is highly feasible.   

For very high levels of orness ω=0.9, I find 13 Nash equilibria, one of which is 
of F-N type at a full level of trust (Table 25). The other 12 equilibria are of F type  
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Table 25 Highest Nash equilibria for ω=0.9 for trust game with SH naive-spirited and PD 
mean-spirited players. 

ω=0.9 

 
Row 

1
kν  1

kϕ 2
lν  2

lϕ  ( )1ζ kν ( )1ζ kϕ ( )2ζ lν ( )2ζ lϕ * *
1 2

*pr

k l
ν * *

1 2
*pr

k l
ϕ  

Nash 

1 FFF FFF NNN NNN VHH VHH MMM FFF VHH FFF F 

2 VHH VHH NNN NNN VHH VHH MMM FFF VHH FFF F 

3 HHH HHH NNN NNN HHH HHH MMM FFF HHH FFF F 

4 MMM MMM NNN NNN MMM MMM MMM FFF MMM FFF F 

5 LLL LLL NNN NNN HHH HHH MMM FFF HHH FFF F 

6 VLL VLL NNN NNN HHH VHH MMM FFF VHH FFF F 

7 NNN NNN FFF FFF HHH FFF FFF VHH VHH FFF F 

8 NNN NNN VHH VHH HHH FFF VHH VHH VHH FFF F 

9 NNN NNN HHH HHH HHH FFF HHH HHH HHH FFF F 

10 NNN NNN MMM MMM HHH FFF MMM MMM MMM FFF F 

11 NNN NNN LLL LLL HHH FFF MMM HHH HHH FFF F 

12 NNN NNN VLL VLL HHH FFF MMM VHH VHH FFF F 

13 NNN NNN NNN NNN HHH FFF MMM FFF FFF FFF F-N 

 

at a various levels of trust. All 13 equilibria are fully feasible. What is more re-
markable is that the F-N Nash equilibrium emerges in a situation where SH ini-
tially believes that no trust is not feasible and PD initially believes that no exploi-
tation is not feasible. The LFL rules of the game allow SH and PD to arrive at a 
stable Nash equilibrium at a full level of trust which is fully feasible.   

SH naive-spirited and PD nice-spirited: 

In this situation, we have a naïve-spirited SH player against a nice-spirited PD 
player. That is: player SH initially perceives full trust as fully feasible, and no trust 
as not feasible. Player PD initially perceives full exploitation as not feasible, and 
no exploitation as fully feasible. However, for any degree of orness, SH and PD 
are able to find a stable solution with at least a moderate level of trust and which is 
moderately feasible.   

Table 26 Values of nuance and feasibility for trust game with SH naive-spirited and PD 
nice-spirited players 

ν-trust FFF VHH HHH MMM LLL VLL NNN SH: Naïve 
j-feasibility FFF VHH HHH MMM LLL VLL NNN 
ν-exploit FFF VHH HHH MMM LLL VLL NNN PD: Nice 
j-feasibility NNN VLL LLL MMM HHH VHH FFF 
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Table 27 Highest Nash equilibria for ω=0.1 for trust game with SH naive-spirited and PD 
nice-spirited players. 

ω=0.1 

 
Row 

1
kν  1

kϕ 2
lν  2

lϕ  ( )1ζ kν ( )1ζ kϕ ( )2ζ lν ( )2ζ lϕ * *
1 2

*pr

k l
ν * *

1 2
*pr

k l
ϕ  

Nash 

1 FFF FFF FFF NNN FFF MMM FFF MMM MMM MMM F-N 

2 FFF FFF VHH VLL FFF MMM VHH MMM MMM MMM F-N 

3 FFF FFF MMM MMM FFF MMM MMM LLL MMM MMM F-N 

4 FFF FFF LLL HHH FFF MMM MMM LLL MMM MMM F-N 

5 FFF FFF VLL VHH FFF MMM LLL LLL MMM MMM F-N 

6 FFF FFF NNN FFF FFF MMM LLL MMM MMM MMM F-N 

7 MMM MMM FFF NNN MMM LLL FFF MMM MMM MMM F-N 

8 MMM MMM VHH VLL MMM LLL VHH MMM MMM MMM F-N 

9 MMM MMM NNN FFF MMM LLL LLL MMM MMM MMM F-N 

10 VLL VLL FFF NNN VHH MMM FFF MMM MMM MMM F-N 

11 VLL VLL VHH VLL VHH MMM VHH MMM MMM MMM F-N 

12 VLL VLL MMM MMM VHH MMM MMM LLL MMM MMM F-N 

13 VLL VLL LLL HHH VHH MMM MMM LLL MMM MMM F-N 

14 VLL VLL VLL VHH VHH MMM LLL LLL MMM MMM F-N 

15 VLL VLL NNN FFF VHH MMM LLL MMM MMM MMM F-N 

16 NNN NNN FFF NNN FFF MMM FFF MMM MMM MMM F-N 

17 NNN NNN VHH VLL FFF MMM VHH MMM MMM MMM F-N 

18 NNN NNN MMM MMM FFF MMM MMM LLL MMM MMM F-N 

19 NNN NNN LLL HHH FFF MMM MMM LLL MMM MMM F-N 

20 NNN NNN VLL VHH FFF MMM LLL LLL MMM MMM F-N 

21 NNN NNN NNN FFF FFF MMM LLL MMM MMM MMM F-N 

For very low levels of orness ω=0.1, I find 21 F-N Nash equilibria, all of which 
are at a moderate level of trust and all are moderately feasible (Table 27). Rows 1, 
6, 16, and 21 are remarkable, however. In row 1 SH initially perceives full trust as 
fully feasible and PD perceives full exploitation as not feasible. This is a departure 
from the crisp equivalent form of the trust game. Rational actors would end up not 
producing trust when playing according to Boolean logic. However, in the present 
game SH and PD are playing according to LFL and hence are able to produce a 
stable Nash equilibrium with a moderate level of trust and a moderate level of 
feasibility. Similar remarks apply to rows 6, 16, and 21.  

For intermediate values of orness ω=0.6, I find 8 Nash equilibria, two of which 
are of F-N type and have a high level of trust (Table 28). The others are of F type 
and are at a moderate level of trust. All equilibria have a high degree of feasibility. 
The F-N Nash equilibria emerge under conditions where (row 4) SH initially per-
ceives no trust as not feasible and PD perceives exploitation as not feasible and  
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Table 28 Highest Nash equilibria for ω=0.6 for trust game with SH naive-spirited and PD 
nice-spirited players. 

ω=0.6 

 
Row 

1
kν  1

kϕ 2
lν  2

lϕ  ( )1ζ kν ( )1ζ kϕ ( )2ζ lν ( )2ζ lϕ * *
1 2

*pr

k l
ν * *

1 2
*pr

k l
ϕ  

Nash 

1 FFF FFF FFF NNN HHH MMM FFF HHH MMM HHH F 

2 LLL LLL FFF NNN VHH MMM FFF HHH MMM HHH F 

3 VLL VLL FFF NNN VHH MMM FFF HHH MMM HHH F 

4 NNN NNN FFF NNN FFF HHH FFF HHH HHH HHH F-N 

5 NNN NNN VHH VLL FFF HHH VHH MMM MMM HHH F 

6 NNN NNN HHH LLL FFF HHH HHH MMM MMM HHH F 

7 NNN NNN VLL VHH FFF HHH LLL LLL HHH MMM N 

8 NNN NNN NNN FFF FFF HHH LLL MMM HHH HHH F-N 

Table 29 Highest Nash equilibria for ω=0.9 for trust game with SH naive-spirited and PD 
nice-spirited players. 

ω=0.9 

 
Row 

1
kν  1

kϕ 2
lν  2

lϕ  ( )1ζ kν ( )1ζ kϕ ( )2ζ lν ( )2ζ lϕ * *
1 2

*pr

k l
ν * *

1 2
*pr

k l
ϕ  

Nash 

1 FFF FFF FFF NNN FFF VHH FFF FFF VHH FFF F 

2 VHH VHH FFF NNN VHH VHH FFF FFF VHH FFF F 

3 HHH HHH FFF NNN HHH HHH FFF FFF HHH FFF F 

4 MMM MMM FFF NNN MMM MMM FFF FFF MMM FFF F 

5 LLL LLL FFF NNN HHH HHH FFF FFF HHH FFF F 

6 VLL VLL FFF NNN VHH VHH FFF FFF VHH FFF F 

7 NNN NNN FFF NNN FFF FFF FFF FFF FFF FFF F-N 

8 NNN NNN VHH VLL FFF FFF VHH VHH VHH FFF F 

9 NNN NNN HHH LLL FFF FFF HHH HHH HHH FFF F 

10 NNN NNN MMM MMM FFF FFF MMM MMM MMM FFF F 

11 NNN NNN LLL HHH FFF FFF MMM HHH HHH FFF F 

12 NNN NNN VLL VHH FFF FFF LLL VHH VHH FFF F 

13 NNN NNN NNN FFF FFF FFF LLL VHH VHH FFF F 

(row 8) SH initially perceives no trust as not feasible and PD perceives no exploi-
tation as fully feasible. Playing the game according to LFL allows the players to 
build a stable Nash equilibrium with a high level of trust which is highly feasible. 

For very high levels of orness ω=0.9 (Table 29), I find 13 Nash equilibria, one 
of which is of F-N type at a full level of trust (row7). The other 12 equilibria are 
of F type at a various levels of trust. All 13 equilibria are fully feasible. The F-N 
Nash equilibrium emerges in a situation where SH initially believes that no trust is 
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not feasible but PD initially believes that full exploitation is not feasible. The LFL 
rules of the game allow SH and PD to arrive at a stable Nash equilibrium at a full 
level of trust which is fully feasible. 

In sum, in the LFL game of trust, players are always able to build some (at least 
moderate) level trust with some (at least moderate) degree of feasibility. For all 
values of orness, there exists at least one Nash equilibrium of F-N type. Playing 
the trust game according to LFL rules allows the players to escape the trust di-
lemma that would normally emerge in a crisp game of trust without communica-
tion or punishment incentives/disincentives.    
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Chapter 5 
Linguistic Fuzzy-Logic Social Game 

In Chapter 4, I developed a new game-theoretic approach based, not on conven-
tional Boolean two-valued logic, but instead on linguistic fuzzy logic which ad-
mits linguistic truth values. A linguistic fuzzy game is defined with linguistic 
fuzzy strategies, linguistic fuzzy preferences, and the rules of reasoning and infer-
ences of the game operate according to linguistic fuzzy logic, not Boolean logic. 
This leads to the introduction of a new notion of fuzzy domination and Nash equi-
librium which are based not on the usual “greater than” relation ordering but 
rather on a more general form of relation termed linguistic fuzzy relation. Each 
agent models others as linguistic fuzzy rational agents and tries to find a linguistic 
fuzzy Nash equilibrium that will achieve the highest linguistic fuzzy payoff.  

In a linguistic fuzzy N-person game, each agent models others as linguistic 
fuzzy rational agents and tries to find a linguistic fuzzy Nash equilibrium that will 
achieve the highest linguistic fuzzy preference defined according to a linguistic 
fuzzy logic. Conversely, if the linguistic fuzzy relations and all other components 
of the game structure are simplified into a crisp two-valued logic, the linguistic 
fuzzy game reduces to the conventional game. As such, conventional game theory 
can be viewed as a limiting case of the linguistic fuzzy game. In this chapter I ap-
ply the new approach to a social game of cooperation with N players. I find that 
there is always an optimum strong Nash equilibrium which is Pareto optimal, 
thereby lifting many of the dilemmas that emerge in crisp game theory in social 
games.   

I generalize the formalism from a 2-player game of the previous chapter to a 
social game. I consider a social game of cooperation among N actors with a Pris-
oner’s Dilemma game as the stage game. This social game has typically been used 
to analyze the dilemmas of collective action and the problem of opportunism in 
political science and economic literature.1 The formalism of this section can be 
applied to other social games using different stage games. The model is based on a 
finite population of players, which are drawn at random within a period to play a 

                                                           
1 Conventional game-theoretic literature argues that collective cooperation emerges when 

individual participants do not discount the future too much and face some sort of punish-
ment – that is, a loss of future payoffs for non-cooperation. In social situations wherein 
the actors heavily discount future relations and do not face the specter of punishment for 
non-cooperation, it is believed that opportunism, which is ubiquitous in social relations 
and can arise at the level of both individual and inter-group interaction, would impede the 
emergence and/or consolidation of collective cooperation. See, for illustrative purposes, 
Fearon and Laitin (1996); Arfi (2000).  
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stage game and adjust their behavior over time accordingly. I consider two differ-
ent scenarios: (1) dyad-based game where the players play the game in pairs and 

(2) cluster-based game where the players play the game in clusters containing nnN  

nearest neighbors. The dyad-based game can be used, for example, to model the 
recent US approach to the International Criminal Court. The US strategy is to sign 
bilateral treaties with all adherents to International Criminal Court as a condition 
of the US adherence to the treaty, with the bilateral agreements granting immunity 
to US troops and other government officials who might potentially fall under the 
jurisdiction of the ICC treaty. The principal US objection is that the ICC provi-
sions could enable states hostile to the US to abuse the treaty mandate and turn it 
against US military personnel who are engaged in overseas missions (Bolton, 
2001). One could well imagine other world powers emulating the US and thus 
playing the same type of stage game as a condition for adhering to the treaty. The 
cluster-based game can be considered, for example, as a simplified stylization of 
the role that caucuses play in the US Congress at those times when the Congress is 
engaged in full internal negotiations. The cluster-based game can also be used to 
model the problem of governance in multiethnic polities wherein the internal dy-
namics of the various ethnic communities cannot be ignored due to dilemmas of 
collective action within the ethnic groups themselves (Arfi, 2000).     

1   Dyad-Based Social PD Game 

With N players we can have N(N-1)/2 pairs of players. We assume that every pair 
plays a LFL-PD game. The profile of the social game is a conjunction of the pro-
files of all N(N-1)/2 dyads. This assumes that the dyad-profiles are independent of 
one another. Later in the chapter we explore how this assumption can be relaxed 
into cluster-profiles with a cluster consisting of a small number of players. The 
conjunction of these cluster profiles then constitutes a profile for the social game.  
Using the same notation as in the previous chapter, a profile for a dyad (i,j) of 
players i ∫ j in the LFL-Game is given by: 

( ) ( ) ( ) ( ) ( ), ; , ;
i j i ji j i j

i j m n m nl k l k
GP i l j n LWC ⎧ ⎫= ℜ ∧ ℜ = ℜ ℜ⎨ ⎬

⎩ ⎭
         (80) 

Where: 

( ) { }1 2 1 2
; ; ;

i i i q i i i qj ji j
l k l k l k l k l k l kl k

LWDℜ = ℜ ∨ ℜ ∨ ∨ ℜ = ℜ ℜ ℜ

        (81) 

( ) { }1 2 1 2
; ; ;

j j q j j j q ji j i i
m n m n m n m n m n m nm n

LWDℜ = ℜ ∨ ℜ ∨ ∨ ℜ = ℜ ℜ ℜ

       (82) 
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The profile for player i playing the dyad-based social game, that is, the game with 

all other N-1 players {1,..., 1, 1, }j i i N∈ − + , each of whom with jq LFL-

choices, is:  

( )
1,..., 1,...,

, , ; ,
j j

i i j
j i N n q

SGP i l GP i l j n
= + =

⎧ ⎫⎪ ⎪⎡ ⎤ = ⎨ ⎬⎣ ⎦ ⎪ ⎪⎩ ⎭
∧ ∨

              

     (83) 

Note that the conjunction goes from i+1 to N only to avoid counting the same pair 
of players twice. That is: 

( ){ }
1,..., 1,...,

, , ; ,
j j

i i j
j i N n q

SGP i l GP i l j nLWC LWD
= + =

⎧ ⎫⎪ ⎪⎡ ⎤ = ⎨ ⎬⎣ ⎦
⎪ ⎪⎩ ⎭        

     (84) 

The profile for the N-player social game with dyad-based PD stage game, with 

{1,..., }ll q∈ LFL-choices, is then given by: 

{ } { }
1,..., 1

, , , 1,..., 1
i N

SGP N l SGP i l LWC SGP i l i N
= −

⎡ ⎤ ⎡ ⎤ ⎡ ⎤= = = −⎣ ⎦ ⎣ ⎦ ⎣ ⎦∧
 

(85) 

I assume that the players engaged in the stage games are all of one of two types: 
nice or mean, with their initial perceptions on cooperation as shown in Table 1. 
This produces a society of nice actors and a society of mean actors. The question 
pursued is to see whether one of these two societies is more capable of producing 
more societal cooperation, that is, at what level of cooperation and at what level of 
feasibility.   

Table 1 Values of nuance and feasibility for one nice- and mean-spirited player. 

ν-cooperation FFF VHH HHH MMM LLL VLL NNN PD: Nice 
j-feasibility FFF VHH HHH MMM LLL VLL NNN 
ν-cooperation FFF VHH HHH MMM LLL VLL NNN PD: Mean 
j-feasibility NNN VLL LLL MMM HHH VHH FFF 

I assume that the social game has 200 participants and then explore the emer-
gence of equilibrium for very low, intermediate, and very high values of orness. In 
Tables 2, 3, and 4, I compare the solutions for a society of nice players to a society 
of mean players at the same level of orness and with the same population size.    

For very low levels of orness (Table 2), the two societies fare in a similar man-
ner: they both produce an F-N Nash equilibrium with full cooperation at a moder-
ate level of feasibility. In addition, each produces two F Nash equilibria, one of 
which is at a moderate level of cooperation with a moderate level of feasibility for 
both societies. The two societies however differ on the second F equilibrium.  
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Table 2 Comparing possible Nash social equilibria for ω=0.1 for dyad-based PD social 
game in society of N nice-spirited players to a society of N mean-spirited players. 

ω=0.1; N =200 

Stage Game: PD Mean Stage Game: PD Nice 

 1
kν  1

kϕ  *SGν  *SGϕ Nash 
1
kν  1

kϕ  *SGν *SGϕ  
Nash 

FFF NNN FFF MMM F-N FFF FFF FFF MMM F-N 

VHH VLL VHH MMM F VHH VHH VHH LLL  

HHH LLL HHH LLL  HHH HHH HHH LLL  

MMM MMM MMM LLL  MMM MMM MMM LLL  

LLL HHH MMM LLL  LLL LLL MMM LLL  

VLL VHH LLL LLL  VLL VLL MMM MMM F 

NNN FFF MMM MMM F NNN NNN MMM MMM F 

Whereas in the society of nice players the second F equilibrium is at a moderate 
level of cooperation, in the society of mean players it is at a very high level of 
cooperation. In this case, the society of mean players counter-intuitively fares 
much better than a society of nice players in building cooperation! 

At intermediate values of orness (Table 3), the mean-populated society pro-
duces a F-N Nash equilibrium with full cooperation at a high level of feasibility. 
The nice-populated society is able to produce one F and one N equilibrium, but no 
F-N equilibrium. None of these two equilibria is at a level of full cooperation. The 
society of mean players fares much better than one of nice players in resolving the 
prisoner’s dilemma at a societal level when the game is played with LFL rules.   

For very high levels of orness (Table 4), there is some sort of convergence be-
tween the two societies as both produce one F-N Nash equilibrium at a full level 
of cooperation which is fully feasible. The nice-populated society has an  
 

Table 3 Comparing possible Nash social equilibria for ω=0.5 for social game in society of 
N nice-spirited players to a society of N mean-spirited players. 

ω=0.5; N =200 

Stage Game: PD Mean Stage Game: PD Nice 

 1
kν  1

kϕ  *SGν  *SGϕ Nash 
1
kν  1

kϕ  *SGν *SGϕ  
Nash 

FFF NNN FFF HHH F-N FFF FFF VHH LLL N 

VHH VLL VHH MMM  VHH VHH HHH LLL  

HHH LLL VHH LLL  HHH HHH HHH LLL  

MMM MMM HHH LLL  MMM MMM MMM LLL  

LLL HHH HHH LLL  LLL LLL MMM LLL  

VLL VHH MMM LLL  VLL VLL MMM MMM  

NNN FFF MMM LLL  NNN NNN HHH HHH F 
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Table 4 Comparing possible Nash social equilibria for ω=0.9 for social game in society of 
N nice-spirited players to a society of N mean-spirited players. 

ω=0.9; N =200 

Stage Game: PD Mean Stage Game: PD Nice 

 1
kν  1

kϕ  *SGν  *SGϕ Nash 
1
kν  1

kϕ  *SGν *SGϕ  
Nash 

FFF NNN FFF FFF F-N FFF FFF FFF VHH N 

VHH VLL VHH VHH  VHH VHH VHH VHH  

HHH LLL HHH HHH  HHH HHH HHH HHH  

MMM MMM MMM MMM  MMM MMM MMM MMM  

LLL HHH HHH HHH  LLL LLL HHH HHH  

VLL VHH VHH VHH  VLL VLL VHH VHH  

NNN FFF VHH VHH  NNN NNN FFF FFF F-N 

additional equilibrium at full cooperation with a very high level of feasibility. 
Therefore, the nice-populated society fares better than the mean-populated one for 
very high levels of orness. Niceness is thus relatively speaking punished at low 
values of orness but is positively rewarded at high values of orness.  

2   Crisp Cluster-Based Social PD Game 

We assume that each player is engaged in a PD-like game within a cluster of 

nnN nearest-neighbor players. In other words, we assume a PD stage game with 

nnN players. In order to develop the formalism for this case as transparently as 

possible let us first consider the crisp version of the game. For the sake of illustra-

tion, consider a case where 5nnN = . A starting point is to express the rules of 

inference of the PD stage game with 5 players, P1,…, P5. As in the dyadic PD 
game we still assume that each player has initially two choices, C and D.  

In the 2-player game, each player has a possibility of 2x2=4 rules of inferences. 

For P1, we have the following set of rules{ }11 12 21 22, , ,ℜ ℜ ℜ ℜ , as discussed in 

the previous chapter. For a PD game with 5 players, each player would have 25=64 
possible rules of inference. However, in the crisp PD game each player has only 

two strategic arrangements – cooperate or defect. If we denote by mn
ijℜ the rule 

combining the choices i = (C or D) and j = (C or D) of players m or n, respec-
tively, we can write the possible strategic arrangements [ ]SA ⋅  for player 1 in the 

5-player game as: 

( ) ( ) ( ) ( )12 12 13 13 14 14 15 15[1, ] CC CD CC CD CC CD CC CDSA C = ℜ ∨ ℜ ∧ ℜ ∨ ℜ ∧ ℜ ∨ ℜ ∧ ℜ ∨ ℜ
         (86) 



110 2   Crisp Cluster-Based Social PD Game
 

 

( ) ( ) ( ) ( )12 12 13 13 14 14 15 15[1, ] DC DD DC DD DC DD DC DDSA D = ℜ ∨ ℜ ∧ ℜ ∨ ℜ ∧ ℜ ∨ ℜ ∧ ℜ ∨ ℜ
         (87) 

For a cluster-based PD game we have two typical profiles for a cluster with five 
players: 

( ) ( )
1,...,5 1,...,4 1,...,5

[ , ] ij ij
CC CD

i i j i

C SA i C
= = = +

⎧ ⎫⎪ ⎪Γ = = ℜ ∨ ℜ⎨ ⎬
⎪ ⎪⎩ ⎭

∧ ∧ ∧
       

     (88) 

( ) ( )
1,...,5 1,...,4 1,...,5

[ , ] ij ij
DC DD

i i j i

D SA i D
= = = +

⎧ ⎫⎪ ⎪Γ = = ℜ ∨ ℜ⎨ ⎬
⎪ ⎪⎩ ⎭

∧ ∧ ∧
      

     (89) 

Let us generalize this to a game with more than two basic choices. We would have 

for player m mq q=  initial choices from which the players can build different 

strategic arrangements in the game:2  

1,..., 1, 1,...., 1,...,

[ , ]
nn

mn
jk

n m m N k q

SA m j
= − + =

⎧ ⎫⎪ ⎪= ℜ⎨ ⎬
⎪ ⎪⎩ ⎭

∧ ∨
            

       (90) 

Where:  

( ) ( ) { } { }; 1,..., ; 1,..., ; {1,..., } {1,..., }mn m n m n
jk j k j j k nn nns s R s s j q k q m N n N⎧ ⎫⎡ ⎤ℜ = ∧ → ∈ ∈ ∈ ≠ ∈⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭

   

(91) 

Thus, more explicitly: 

( ) ( ){ }
1,... 1, 1,..., 1,...,

, ;
nn

m n m n
j k j j k

n m m N k q

SA m j s s R s s
= − + =

⎧ ⎫⎪ ⎪⎡ ⎤ = ∧ →⎨ ⎬⎣ ⎦
⎪ ⎪⎩ ⎭

∧ ∨      (92) 

A typical game profile of a cluster with nnN  players is given by:  

{ }( )
1,...,

, 1,..., ,
nn

j nn
m N

N j q SA m j
=

⎡ ⎤Γ ∈ = ⎣ ⎦∧
                    

     (93) 

That is: 

( ) ( ){ }
1,..., 1 1,..., 1,...,

;
nn nn

m n m n
j j k j j k

m N n m N k q

s s R s s
= − = + =

⎧ ⎫⎧ ⎫⎪ ⎪ ⎪⎪Γ = ∧ →⎨ ⎨ ⎬⎬
⎪ ⎪⎩ ⎭⎪ ⎪⎩ ⎭

∧ ∧ ∨      (94) 

                                                           
2 I am assuming for the sake of simplicity that all players have the same number q of initial 

choices. 
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The first conjunction runs from m = 1 to 1nnm N= −  only and the third conjunc-

tion runs from 1n m= + to nnn N= to avoid counting twice any pair of players.  

Let us assume that the society is made up of cℵ clusters, each having the same 

number of players nnN . The clusters interact pairwise with one another through a 

2x2 PD stage game. The task is to find whether there is a social equilibrium and 
its type, when it exists, depending on the number of players in a cluster nnN and 
the number of clusters cℵ in the society. The profile for two clusters α and b inter-
acting through a PD game is:  

( ) ( ), ; , ; ;c k l k k lCPA k l Rα β α βα β ℵ = Γ ∧ Γ → Γ Γ                (95) 

The profile for cluster α playing the dyad-based PD game against 1cℵ − clusters, 

that is, the game with clusters {1,..., 1, 1,..., }cβ α α∈ − + ℵ , is:  

( ) ( ){ }
1,..., 1, 1,..., 1,...,

, ; ; ;
nn

nn c k l k k l
N l q

CP k N Rα β α β

β α α
α

= − + =

⎧ ⎫⎪ ⎪ℵ = Γ ∧ Γ → Γ Γ⎨ ⎬
⎪ ⎪⎩ ⎭

∧ ∨
     (96) 

A societal profile for a society with cℵ clusters, each made up of nnN  players, 

reads: 

( ) ( )
1,...,

; ; , ; ,
c

c nn nn cSP N k CP k N
α

α
= ℵ

ℵ = ℵ∧
                

     (97) 

That is: 

( ) ( ){ }
1,..., 1 1,..., 1,...,

; ; ;
c c

c nn k l k k l
l q

SP N k Rβ β α β

α β α= ℵ − = + ℵ =

⎧ ⎫⎧ ⎫⎪ ⎪ ⎪⎪ℵ = Γ ∧ Γ → Γ Γ⎨ ⎨ ⎬⎬
⎪ ⎪⎪ ⎪⎩ ⎭⎩ ⎭

∧ ∧ ∨
       (98) 

3   Fuzzy Cluster-Based Social PD Game 

Let us now generalize this to a LFL-Game with cℵ clusters. In the societal game 
the game profile is the result of two steps: first individual players facing one an-
other within each cluster and second aggregated strategies for clusters against one 
another. Using the terminology of nuance and feasibility as in the previous games, 
the intra-cluster process would consist, first, in evaluating the degrees of nuance 
and feasibility for each cluster and, second, in evaluating the degrees of nuance 
and feasibility for a society made up of these clusters. The players are not allowed 
to interact individually across clusters. I assume that all clusters have the same 
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number of players nnN . Within a cluster a of nnN  players a typical strategic ar-

rangement for player m with an initial choice m
js would now be:  

{ } ( ){ }{ }, , , ,

1,... 1, 1,..., 1,...,

; , ; ; ;
nn

m n m n
j k j j k

n m m N k q

SA m j LI LWC s s R s sLWC LWD α α α αα
= − + =

⎧ ⎫⎪ ⎪⎡ ⎤ = ⎨ ⎬⎣ ⎦
⎪ ⎪⎩ ⎭

      (99) 

A typical LFL-profile for a cluster is: 

{ }
1,...,

; ,
nn

j
m N

S A m jL W Cα α
=

⎡ ⎤Γ = ⎣ ⎦
                       

   (100) 

More explicitly: 

{ } ( ){ }{ }, , , ,

1,..., 1 1,..., 1,...,

; ; ;
nn nn

m n m n
j j k j j k

m N n m N k q

LI LWC s s R s sLWC LWC LWDα α α α α

= − = + =

⎧ ⎫⎧ ⎫⎪ ⎪ ⎪⎪Γ = ⎨ ⎨ ⎬⎬
⎪ ⎪⎪ ⎪⎩ ⎭⎩ ⎭

     (101) 

The profile for cluster α playing the dyad-based PD game against 1cℵ − clusters, 

that is, the game with clusters {1,..., 1, 1,..., }cβ α α∈ − + ℵ , is:  

( ) { } ( ){ }{ }
1,..., 1, 1,..., 1,...,

, ; ; ; ; ;
nn

nn c j l j j l
N l q

CP j N LI LWC RLWC LWD α β α β

β α α
α

= − + =

⎧ ⎫⎪ ⎪ℵ = Γ Γ Γ Γ⎨ ⎬
⎪ ⎪⎩ ⎭

  (102) 

A societal profile for a society with cℵ clusters, each made up of nnN  players, 

reads: 

( ) ( ) ( ){ }
1,..., 1,...,

; ; , ; , , ; ,
c c

c nn nn c nn cSP N j CP j N CP j NLWC
α α

α α
= ℵ = ℵ

ℵ = ℵ = ℵ∧
        (103) 

That is: 

( ) { } ( ){ }{ }
1,..., 1 1,..., 1,...,

; ; ; ; ;
c nn

c nn j l j j l
N l q

SP N j LI LWC RLWC LWC LWD α β α β

α β α= ℵ − = + =

⎧ ⎫⎧ ⎫⎪ ⎪ ⎪⎪ℵ = Γ Γ Γ Γ⎨ ⎨ ⎬⎬
⎪ ⎪⎪ ⎪⎩ ⎭⎩ ⎭

 

(104) 

There are various possibilities of how to use the LFL-PD stage game combined 
with the type of players, that is, various levels of nice-spiritedness and mean-
spiritedness. The latter can be considered as attributes of individuals within the 
same cluster as well as attributes of clusters themselves.  
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The degrees of nuance and feasibility are given for a strategic arrangement SA 
of a player m within clusterα by:  

( ) ( ) ( ){ } ( ){ }, , , , , , , ,
, ,

1,... 1, 1,..., 1,...,

; ; ; ; ; ;
j j

nn

m m m m n n m m
SA j SA j j j k k R R

n m m N k q

LI LWCLWC LWDα α α α α α α αν ϕ ν ϕ ν ϕ ν ϕ
= − + =

⎧ ⎫⎧ ⎫⎪ ⎪= ⎨ ⎨ ⎬⎬
⎩ ⎭⎪ ⎪⎩ ⎭

 (105) 

Where LWC and LWD have been defined in Chapter 2 in terms of the operators: 
MAX, MIN, and LOWA. This gives the following degrees of nuance and  
feasibility: 

( ) ( ) ( ){ } ( ){ }, , , , , , , ,

1,..., 1 1,..., 1,...,

; ; ; ; ; ;
j j

nn nn

j j m m n n m m
j j k k R R

m N n m N k q

LI LWCLWC LWC LWDα α α α α α α αν ϕ ν ϕ ν ϕ ν ϕΓ Γ
= − = + =

⎧ ⎫⎧ ⎫⎧ ⎫⎪ ⎪ ⎪⎪= ⎨ ⎨ ⎨ ⎬⎬⎬
⎩ ⎭⎪ ⎪⎪ ⎪⎩ ⎭⎩ ⎭

(106) 

A societal profile for a society with cℵ clusters, each made up of nnN  players, 

reads: 

( ) ( ) ( ){ } ( ){ }, , , , , ,

1,..., 1 1,..., 1,...,

; ; ; ; ; ;
j j

c c

j j j j l l j j
SP SP R R

l q

LI LWCLWC LWC LWD α α β β α α

α β α
ν ϕ ν ϕ ν ϕ ν ϕΓ Γ Γ Γ

= ℵ − = + ℵ =

⎧ ⎫⎧ ⎫⎧ ⎫⎪ ⎪ ⎪⎪= ⎨ ⎨ ⎨ ⎬⎬⎬
⎩ ⎭⎪ ⎪⎪ ⎪⎩ ⎭⎩ ⎭

 

(107) 

I explore one illustrative case where the basic stage game within a cluster is a 
PD one and the cluster-cluster stage game is also a PD game. The players within 
clusters can be one of two fuzzy types: more or less mean-spirited and more or 
less nice-spirited. The matrix of linguistic rankings is what determines the nature 
of a fuzzy game. I thus use as inputs in the internal game (that is, within clusters) 
and external game (between clusters) the matrices introduced in Chapter 4 when 
exploring the 2-player PD. The results for the game are grouped in Tables 5, 6, 
and 7. I display the results in terms of the type of players in the internal game, the 
degrees of orness in the internal and external games, and the number of players in 
the internal game and the number of clusters in the social game.  

A remarkable result is that the number of clusters does not seem to play an im-
portant role in determining the final results as long as we have more than 3 clus-
ters in the societal game. Thus, going, for example, from 10 to 100 clusters does 
not affect the final results. The game within each cluster is somewhat more sensi-
tive to the number of players in a cluster. Nonetheless, this sensitiveness fades 
away as soon as the number of players reaches 5 or 6 players in a cluster. Hence, 
going from 10 to 100 players in a cluster does not change the degrees of nuance 
and feasibility of a cluster game.  

It is useful to remember at this juncture two points. First, orness is defined for 
the degrees of feasibility only (see Chapters 2 and 4) and does not directly affect 
the aggregation process of the degrees of nuance. I use the term “directly” because 
to compute the degrees of nuance inescapably involves the degree of feasibility. 
Thus, we can say that orness affects the degree of nuance in a “second level” type  
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Table 5 Nash social equilibria for cluster-based social game with two nice-spirited players 
playing internal PD game. 

clusterω = 0.05; Societyω = 0.05; nnN  = 10; cℵ = 10 

1
PDν -coop 

1
PDϕ  

2
PDν -coop 

2
PDϕ  Clusterν Clusterϕ Societyν Societyϕ  

Nash 

FFF FFF FFF FFF FFF MMM FFF MMM N 

VHH VHH VHH VHH VHH LLL VHH HHH F 

HHH HHH HHH HHH HHH LLL HHH MMM  

MMM MMM MMM MMM MMM LLL HHH MMM  

LLL LLL LLL LLL MMM LLL HHH MMM  

VLL VLL VLL VLL MMM MMM MMM MMM  

NNN NNN NNN NNN MMM MMM MMM MMM  

clusterω = 0.95; Societyω = 0.05; nnN  = 10; cℵ = 10 

1
PDν -coop 

1
PDϕ  

2
PDν -coop 

2
PDϕ  Clusterν Clusterϕ Societyν Societyϕ  

Nash 

FFF FFF FFF FFF FFF FFF FFF MMM F-N 

VHH VHH VHH VHH VHH FFF VHH LLL  

HHH HHH HHH HHH HHH FFF HHH VLL  

MMM MMM MMM MMM MMM FFF MMM NNN  

LLL LLL LLL LLL HHH FFF MMM VLL  

VLL VLL VLL VLL VHH FFF LLL LLL  

NNN NNN NNN NNN FFF FFF MMM MMM F 

clusterω = 0.05; Societyω = 0.95; nnN  = 10; cℵ = 10 

1
PDν -coop 

1
PDϕ  

2
PDν -coop 

2
PDϕ  Clusterν Clusterϕ Societyν Societyϕ  

Nash 

FFF FFF FFF FFF FFF MMM FFF FFF F-N 

VHH VHH VHH VHH VHH LLL VHH FFF F 

HHH HHH HHH HHH HHH LLL HHH FFF F 

MMM MMM MMM MMM MMM LLL HHH FFF F 

LLL LLL LLL LLL MMM LLL HHH FFF F 

VLL VLL VLL VLL MMM MMM VHH FFF F 

NNN NNN NNN NNN MMM MMM FFF FFF F-N 

clusterω = 0.95; Societyω = 0.95; nnN  = 10; cℵ = 10 

1
PDν -coop 

1
PDϕ  

2
PDν -coop 

2
PDϕ  Clusterν Clusterϕ Societyν Societyϕ  

Nash 

FFF FFF FFF FFF FFF FFF FFF FFF F-N 

VHH VHH VHH VHH VHH FFF VHH FFF F 

HHH HHH HHH HHH HHH FFF HHH FFF F 
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Table 5 (continued) 

MMM MMM MMM MMM MMM FFF MMM FFF F 

LLL LLL LLL LLL HHH FFF HHH FFF F 

VLL VLL VLL VLL VHH FFF VHH FFF F 

NNN NNN NNN NNN FFF FFF FFF FFF F-N 

clusterω = 0.5; Societyω = 0.5; nnN  = 10; cℵ = 10 

1
PDν -coop 

1
PDϕ  

2
PDν -coop 

2
PDϕ  Clusterν Clusterϕ Societyν Societyϕ  

Nash 

FFF FFF FFF FFF VHH LLL VHH HHH F-N 

VHH VHH VHH VHH HHH LLL HHH HHH F 

HHH HHH HHH HHH HHH LLL HHH MMM  

MMM MMM MMM MMM MMM LLL HHH MMM  

LLL LLL LLL LLL MMM LLL HHH MMM  

VLL VLL VLL VLL MMM MMM MMM MMM  

NNN NNN NNN NNN HHH HHH HHH HHH F 

of influence. Second, very large values of orness correspond to situations where 
the highest linguistic terms contribute more than the others, whereas it is the re-
verse for lowest values of orness. In other words, low orness favors the lowest 
values of linguistic feasibility such as NNN and VLL, whereas high orness favors 
the highest values of linguistic feasibility such as VHH and FFF.  

In most cases considered in Tables 5, 6 and 7, there is at least one societal 
Nash-equilibrium of the F-N, F, or N type. The number of Nash-equilibrium var-
ies with the values of orness within a cluster and at the level of societal game 

among clusters. It is remarkable that for high values of Societyω  0 we always 

have seven societal Nash equilibria two of which are of F-N type and the remain-

ing are of F type. For Societyω  1 we obtain only two: one of F type and one of N 

type. Moreover, for clusterω  1 we do not get any F-N-Nash equilibrium. We do 

get one F-N however for clusterω  0. For medium values of orness Societyω ~0.5 

and clusterω ~ 0.5 we obtain two F-Nash equilibria and one F-N-Nash equilibrium.  

Internal-PD Game: Two nice-spirited players 

In this case (Table 5) I assume that the two players engaged in the PD stage game 
within the clusters are both nice-spirited; that is, they both perceive full coopera-
tion as fully feasible, very-high cooperation as very-highly feasible, …, no coop-
eration as not feasible. Yet, they do not necessarily choose the same degrees of 
nuance and feasibility. For example, one player could opt for a high cooperation 
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with a high degree of feasibility and the other player could choose a low coopera-
tion with low degree of feasibility.  

Internal-PD Game: One nice-spirited player against a mean-spirited player 

In this case (Table 6) I assume that in the PD stage game within the clusters one 
player is nice-spirited and the other is mean-spirited. That is, the nice-spirited 
player initially perceives full cooperation as fully feasible, very-high cooperation 
as very-highly feasible, …, and null cooperation as not feasible. The mean-spirited 
player is the mirror image of the nice one; it initially perceives full cooperation as 
not possible, very-high cooperation with a very low degree of feasibility, …., and 
null cooperation as highly feasible.   

Table 6 Nash social equilibria for cluster-based social game with one nice-spirited player 
against a mean-spirited player in the internal PD game. 

clusterω = 0.05; Societyω = 0.05; nnN  = 10; cℵ = 10 

1
PDν -coop 

1
PDϕ  

2
PDν -coop 

2
PDϕ  Clusterν Clusterϕ Societyν Societyϕ  

Nash 

FFF FFF FFF NNN FFF MMM FFF MMM N 

VHH VHH VHH VLL VHH LLL VHH HHH F 

HHH HHH HHH LLL HHH LLL HHH MMM  

MMM MMM MMM MMM MMM LLL HHH MMM  

LLL LLL LLL HHH HHH LLL HHH MMM  

VLL VLL VLL VHH VHH MMM MMM MMM  

NNN NNN NNN FFF FFF MMM MMM MMM  

clusterω = 0.05; Societyω = 0.95; nnN  = 10; cℵ = 10 

1
PDν -coop 

1
PDϕ  

2
PDν -coop 

2
PDϕ  Clusterν Clusterϕ Societyν Societyϕ  

Nash 

FFF FFF FFF NNN FFF MMM FFF FFF F-N 

VHH VHH VHH VLL VHH LLL VHH FFF F 

HHH HHH HHH LLL HHH LLL HHH FFF F 

MMM MMM MMM MMM MMM LLL HHH FFF F 

LLL LLL LLL HHH HHH LLL HHH FFF F 

VLL VLL VLL VHH VHH MMM VHH FFF F 

NNN NNN NNN FFF FFF MMM FFF FFF F-N 

clusterω = 0.95; Societyω = 0.05; nnN  = 10; cℵ = 10 

1
PDν -coop 

1
PDϕ  

2
PDν -coop 

2
PDϕ  Clusterν Clusterϕ Societyν Societyϕ  

Nash 

FFF FFF FFF NNN FFF FFF FFF MMM F-N 

VHH VHH VHH VLL VHH FFF VHH LLL  
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Table 6 (continued) 

HHH HHH HHH LLL HHH FFF HHH VLL  

MMM MMM MMM MMM MMM FFF MMM NNN  

LLL LLL LLL HHH HHH FFF MMM VLL  

VLL VLL VLL VHH VHH FFF LLL LLL  

NNN NNN NNN FFF FFF FFF MMM MMM F 

clusterω = 0.95; Societyω = 0.95; nnN  = 10; cℵ = 10 

1
PDν -coop 

1
PDϕ  

2
PDν -coop 

2
PDϕ  Clusterν Clusterϕ Societyν Societyϕ  

Nash 

FFF FFF FFF NNN FFF FFF FFF FFF F-N 

VHH VHH VHH VLL VHH FFF VHH FFF F 

HHH HHH HHH LLL HHH FFF HHH FFF F 

MMM MMM MMM MMM MMM FFF MMM FFF F 

LLL LLL LLL HHH HHH FFF HHH FFF F 

VLL VLL VLL VHH VHH FFF VHH FFF F 

NNN NNN NNN FFF FFF FFF FFF FFF F-N 

clusterω = 0.5; Societyω = 0.5; nnN  = 10; cℵ = 10 

1
PDν -coop 

1
PDϕ  

2
PDν -coop 

2
PDϕ  Clusterν Clusterϕ Societyν Societyϕ  

Nash 

FFF FFF FFF NNN HHH LLL VHH HHH F-N 

VHH VHH VHH VLL HHH LLL HHH HHH F 

HHH HHH HHH LLL HHH LLL HHH MMM  

MMM MMM MMM MMM HHH LLL HHH MMM  

LLL LLL LLL HHH VHH LLL HHH MMM  

VLL VLL VLL VHH VHH MMM MMM MMM  

NNN NNN NNN FFF FFF HHH HHH HHH F 

Internal-PD Game: Two mean-spirited players 

In this case (Table 7) I assume that the two players engaged in the PD stage game 
within the clusters are both mean-spirited; that is, they both initially perceive full 
cooperation as not feasible, very-high cooperation as very-low feasible, …, null 
cooperation as feasible.  

To sum up: for both dyad-based and cluster-based games we always have at 
least one F-N Nash equilibrium for intermediate and higher values of orness. Co-
operation is always achievable since we always obtain at least a N or F type Nash 
equilibrium under all situations irrespective of the values of the two types of or-
ness. In short, playing the game of social cooperation under LFL rules predicts the  
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Table 7 Nash social equilibria for cluster-based social game with two mean-spirited players 
in the internal PD game. 

clusterω = 0.05; Societyω = 0.05; nnN  = 10; cℵ = 10 

1
PDν -coop 

1
PDϕ  

2
PDν -coop 

2
PDϕ  Clusterν Clusterϕ Societyν Societyϕ  

Nash 

FFF NNN FFF NNN FFF MMM FFF MMM N 

VHH VLL VHH VLL VHH MMM VHH MMM  

HHH LLL HHH LLL HHH LLL HHH MMM  

MMM MMM MMM MMM MMM LLL HHH MMM  

LLL HHH LLL HHH MMM LLL HHH MMM  

VLL VHH VLL VHH LLL LLL HHH HHH F 

NNN FFF NNN FFF MMM MMM MMM MMM  

clusterω = 0.95; Societyω = 0.05; nnN  = 10; cℵ = 10 

1
PDν -coop 

1
PDϕ  

2
PDν -coop 

2
PDϕ  Clusterν Clusterϕ Societyν Societyϕ  

Nash 

FFF NNN FFF NNN FFF FFF FFF MMM F-N 

VHH VLL VHH VLL VHH FFF VHH LLL  

HHH LLL HHH LLL HHH FFF HHH VLL  

MMM MMM MMM MMM MMM FFF MMM NNN  

LLL HHH LLL HHH HHH FFF MMM VLL  

VLL VHH VLL VHH VHH FFF LLL LLL  

NNN FFF NNN FFF FFF FFF MMM MMM F 

clusterω = 0.05; Societyω = 0.95; nnN  = 10; cℵ = 10 

1
PDν -coop 

1
PDϕ  

2
PDν -coop 

2
PDϕ  Clusterν Clusterϕ Societyν Societyϕ  

Nash 

FFF NNN FFF NNN FFF MMM FFF FFF F-N 

VHH VLL VHH VLL VHH MMM VHH FFF F 

HHH LLL HHH LLL HHH LLL HHH FFF F 

MMM MMM MMM MMM MMM LLL HHH FFF F 

LLL HHH LLL HHH MMM LLL HHH FFF F 

VLL VHH VLL VHH LLL LLL VHH FFF F 

NNN FFF NNN FFF MMM MMM FFF FFF F-N 

clusterω = 0.95; Societyω = 0.95; nnN  = 10; cℵ = 10 

1
PDν -coop 

1
PDϕ  

2
PDν -coop 

2
PDϕ  Clusterν Clusterϕ Societyν Societyϕ  

Nash 

FFF NNN FFF NNN FFF FFF FFF FFF F-N 

VHH VLL VHH VLL VHH FFF VHH FFF F 

HHH LLL HHH LLL HHH FFF HHH FFF F 
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Table 7 (continued) 

MMM MMM MMM MMM MMM FFF MMM FFF F 

LLL HHH LLL HHH HHH FFF HHH FFF F 

VLL VHH VLL VHH VHH FFF VHH FFF F 

NNN FFF NNN FFF FFF FFF FFF FFF F-N 

clusterω = 0.5; Societyω = 0.5; nnN  = 10; cℵ = 10 

1
PDν -coop 

1
PDϕ  

2
PDν -coop 

2
PDϕ  Clusterν Clusterϕ Societyν Societyϕ  

Nash 

FFF NNN FFF NNN FFF HHH VHH HHH F-N 

VHH VLL VHH VLL VHH MMM HHH MMM  

HHH LLL HHH LLL VHH LLL HHH MMM  

MMM MMM MMM MMM HHH LLL HHH MMM  

LLL HHH LLL HHH HHH LLL HHH MMM  

VLL VHH VLL VHH MMM LLL HHH HHH F 

NNN FFF NNN FFF MMM LLL HHH HHH F 

emergence of cooperation, with the level of cooperation being moderate or higher 
and the degree of feasibility being moderate or higher. In certain situations, spe-
cifically when Societyω is large enough, full cooperation is fully feasible along 
many different pathways (as shown in the various tables).  
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Chapter 6 
Linguistic Fuzzy-Logic and Causality 

We depend upon the notion of causation all the time to explain what happens to 
us. We use causal statements to draw realistic predictions about what might hap-
pen as well as to direct what should happen in the future. In short, we are in con-
stant searches for causal explanation and behavior. A widespread motto is to put it 
formally “X caused Y” or “Y occurred because of X.” Not surprisingly then, 
studying and explaining as well as modeling causality is at the core of much of 
what counts as social sciences today. Although other types of analysis (such as 
constitutive) are important aspects of our inquiry about the social and political 
world, causal analysis absorbs much of our collective effort. Yet, the tools that 
have been designed for this purpose remain rather limited in social sciences, and 
more so in political science and international relations. For the most part scholars 
use statistical means to explore causality. While this has produced a wealth of 
knowledge and led to the design of powerful statistical tools and insights, there is 
still a need for other types of tools that would complement the achievements of 
statistical methods, as well as address issues that statistical analysis cannot reach.  

Whether it is statistical/probabilistic or formal/mathematical modeling in nature 
the analysis of causality assumes a given “logic” and an underlying algebraic 
structure of this logic. In most studies of causality in social sciences this logic is 
taken to be the Boolean logic with its associated two-valued algebraic structure. 
Understanding the inner working of the underlying logic and how it is axiomati-
cally constructed opens up the possibility for considering other types of underly-
ing logics of causal relationships – and there is no shortage of other logics (e.g., 
fuzzy logic, modal logic, intuitionistic logic, paraconsistent logic, quantum logic, 
modal logic, …). There are no inherent theoretically, empirically, or methodologi-
cally insurmountable impediments or raison d’être why we cannot explore the vast 
realms of other logics in social science inquiry about causality. In fact, as the bur-
geoning literature on fuzzy-set theoretic approach to social, economic, and politi-
cal inquiry testifies, we have much to gain from doing so. It is the goal of this 
chapter to contribute to this burgeoning literature.         

The first section of the chapter presents a Boolean logic approach to causality 
to pave the way for an LFLA to causality. I then examine causality in social sci-
ences by using propositional calculus in the framework of linguistic fuzzy logic. I 
do this taking into account the possibilities that certain causal variables might be 
more or less of a sufficient type while others might be more or less of a necessary 
type, and while still others might be of both types to a lesser or greater degree of 
truth. I illustrate the theoretical discussion by examining (following Zinnes’ 
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(2004) exploration using binary propositional calculus) the logical validity of the 
causal arguments made on the theory on the democratic peace. I also apply LFLA 
analysis to Skocpol’s (1979) theory of social revolution (following Goertz and 
Mahoney, 2005). 

1   Analyzing the Logic of Causality 

Boolean logic is the most used logic in analyses of causal necessity and suffi-
ciency in social sciences – speaking of logic of causality in social sciences is con-
ventionally tantamount to speaking of Boolean logic of causality. In these analyses 
of causality, a necessary antecedent X for a consequent Y to occur is expressed as: 
Only If X then Y, whereas a sufficient antecedent is expressed as If X then Y. 
Therefore, the meaning of “implication” as used in formal logic is one of suffi-
ciency. That is, X→Y is to be understood as: If X then Y (a presence of X al-
ways leads to an occurrence of Y). The necessity clause Only If X then Y takes 
the following formal logic expression: Y→X, i.e., any occurrence of Y means that 
X is also present. Put differently, absent X, Y would not occur, which is expressed 
formally as ÿX→ÿY.1 A clause which states that: a necessary and sufficient ante-
cedent X leads to a consequent Y is expressed as: If and only if X then Y, which 
is expressed in formal logic as: X↔Y≡(X→Y)Ÿ(ÿX→ÿY) (≡ means the same 
as). In a summary form we obtain Table 1. 

Table 1 Types of Simple Single-Level Causality 

Type of Simple Causality Conventional Semantic Boolean Logic Form Alternative Form 

Necessity Only if X then Y Y→X ÿX→ÿY 
Sufficiency If X then Y X→Y ÿY→ÿX 
Necessity and Sufficiency If and Only if X then Y (X→Y)Ÿ(Y→X) (X→Y)Ÿ(ÿX→ÿY) 

When one has multiple antecedents (i.e., complex causality) this is convention-
ally phrased for example as SW=A*B*C*D if all antecedents A, B, C, and D are 
considered to be necessary conditions. Alternatively, we could have 
SW=A*B*C+A*B*D if, for example, A, B and C are jointly necessary conditions 
and A, B, and D are jointly necessary conditions (and a number of other possible 
combinations). The conjoint necessary condition clause SW=A*B*C*D actually 
means Only If (A and B and C and D) then SW, i.e., SW→AŸBŸCŸD, or 
equivalently using the law of contraposition ÿ(AŸBŸCŸD)→ÿSW.  Likewise, 
the conjointly sufficient condition clause SW=A*B*C+A*B*D would really 
mean If ((A and B and C) or (A and B and D)) then SW, i.e., 
(AŸBŸC)⁄(AŸBŸD)→SW.  

How would causal inferences at two different levels determine inference be-
tween two levels? Simple two-level causality occurs, for example, through a 

                                                           
1 This comes from the law of contraposition of Boolean logic: (A→B) ↔ (ÿB→ÿA). 
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propagation of logical inference between two necessary inferences as in the fol-
lowing example:  

{ } { }Only If X then Y  Implies Only If Y then Z  
             

(108) 

That is, X is a necessary antecedent for Y, Y is a necessary antecedent for Z, and 
the fact that X is a necessary antecedent for Y sufficiently implies that Y is a nec-
essary for Z. Symbolically:  

( ) ( )X Y Y Z¬ → ¬ → ¬ → ¬
                                 

(109) 

This is one example of a spectrum of possibilities of two-level inferences. The 
variation occurs because we can have logical necessity or sufficiency within both 
levels of causality as well as necessity or sufficiency at the level of the inference 
itself linking the two levels. Moreover, the situation can become even more com-
plicated by assuming causal complexity (a combination of necessary and sufficient 
antecedents) at both levels. Thus, it will be simple minded to assume for example 
that the logic of two-level causality can be exhaustively studied by considering the 
following form only:   

X Y Z→ →                                                     (110) 

This is only one case out a set of 27 cases (see Table 2). More specifically, this 
latter form can be interpreted as: 

( ) ( )X Y Y Z→ → →
                                      

(111) 

That is:  

If (Only If X then Y) then (Only If Y then Z)                (112) 

This assumes that we have all logical inferences – at the first level, second level, 
and the across-level inference – of a sufficiency type. Another pitfall in the analy-
sis of the logic of causality can occur if one defines the meaning of two-level cau-
sality (X causes Y which causes Z) as the same as: 

( ) ( )X Y Y Z→ ∧ →
                                           

 (113) 

This is not wrong since in Boolean logic, which is generally taken as the underly-
ing logic in most social sciences inquiries, (X→Y)Ÿ(Y→Z) is equivalent through 
the law of syllogism to X→Z. The latter is the commonsensical meaning of cau-
sality in social sciences. It might however lead to a circumvented investigation of 
the logic of two-level causality. Indeed, defining two-level causality as 
(X→Y)Ÿ(Y→Z) does make it easy to explore the type of causality (i.e., in terms 
of necessity and sufficiency), which is an essential task in most causal analysis in 
social sciences. However, this is in no way an exhaustive study of all possibilities.  



124 1   Analyzing the Logic of Causality
 

Therefore, when logically examining simple two-level causality we must con-
sider three sorts or levels of logical inference: within the first and second levels of 
inference and the across-level inference. For example, necessary inference at the 
three inference levels reads as:  

( ){ } ( ){ } X Y  Y Z¬ ¬ → ¬ → ¬ ¬ → ¬
                       

(114) 

That is:  

Only If (Only If X then Y) then (Only If Y then Z).              (115) 

Likewise, necessity and sufficiency at all levels of inference reads as:  

( ) ( ) ( ) ( ){ }X Y X Y Y Z Y Z→ ∧ ¬ → ¬ ∧ ¬ → ∧ ¬ → ¬⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦      
(116) 

That is:  

If and Only If (If and Only If X then Y) then (If and Only If Y then Z)
(117) 

Note that Boolean logic possesses a number of laws that can be used to simplify 
these expressions of two-level causality. This is not without a cost, though. 
Whereas the final expressions might be formally simpler, the connection with em-
pirically-relevant semantic meaning in terms of necessity and sufficiency might 
not be readily extracted from the final simplified logical formula. Therefore, for 
the sake of empirically useful semantic interpretation, which is an important step 
in social science analysis, it might at times be more beneficial to work with the 
non-simplified versions of logical formulas.   

In sum, Boolean analysis of causality has a number of powerful features. First, 
it clearly explicates the logic of combining different independent variables. Sec-
ond, Boolean analysis clearly and consistently explicates necessary and sufficient 
conditions as well as various combinations thereof. Third, the process of Boolean 
minimization helps to systematically isolate relevant from irrelevant independent 
variables. Fourth, it also includes counterfactual analysis through the negation 
operator which strengthens the validity of the causal analysis.  

Linguistic fuzzy-logic analysis of causality consists of asking a number of IF-
Then fuzzy questions to reach a conclusion about the combination of the different 
dimensions of causality. For example, we would have the following fuzzy infer-
ence rule:  

IF{A B C D}THEN SW◊ ◊ ◊                                     (118) 

I use the © symbol instead of AND or OR because in linguistic fuzzy logic com-
plex causality is neither strictly about necessity (which is usually represented with 
a logical AND and symbolically by a product of the independent variables) nor 
strictly about sufficiency (which is usually represented with a logical OR and  
 



6   Linguistic Fuzzy-Logic and Causality 125
 
Table 2 Types of Simple Two-Level Causality (N=Necessary; S=Sufficient; NS=N & S) 

1st Level 
Inference 

2nd Level 
Inference 1st → 2nd Level Inference 

Logic 
Formula 

Logic Formula Logic Formula 

N Only If X then 
Y 

ÿX→ÿY 

N Only If Y then Z 
ÿY→ÿZ 

N Only If (Only If X then Y) then (Only If Y then Z) 
ÿ (ÿX→ÿY) → ÿ (ÿY→ÿZ) 

1 

N Only If X then 
Y 

ÿX→ÿY 

N Only If Y then Z 
ÿY→ÿZ 

S If (Only If X then Y) then (Only If Y then Z) 
(ÿX→ÿY) → (ÿY→ÿZ) 

2 

N Only If X then 
Y 

ÿX→ÿY 

N Only If Y then Z 
ÿY→ÿZ 

NS If and Only If (Only If X then Y) then (Only If Y 
then Z) 
{(ÿX→ÿY) → (ÿY→ÿZ)}Ÿ{ÿ(ÿX→ÿY) → ÿ 
(ÿY→ÿZ)} 

3 

N Only If X then 
Y 

ÿX→ÿY 

S If Y then Z 
Y→Z 

N Only If (Only If X then Y) then (If Y then Z) 
ÿ (ÿX→ÿY) → ÿ (Y→Z) 

4 

N Only If X then 
Y 

ÿX→ÿY 

S If Y then Z 
Y→Z 

S If (Only If X then Y) then (If Y then Z) 
(ÿX→ÿY) → (Y→Z) 

5 

N Only If X then 
Y 

ÿX→ÿY 

S If Y then Z 
Y→Z 

NS If and Only If (Only If X then Y) then (If Y then Z) 
{(ÿX→ÿY)→(Y→Z)}Ÿ{ÿ (ÿX→ÿY)→ÿ (Y→Z)} 

6 

N Only If X then 
Y 

ÿX→ÿY 

NS If and Only If Y 
then Z 
(Y→Z)Ÿ(ÿY→ÿZ) 

N Only If (Only If X then Y) then (If and Only If Y 
then Z) 
ÿ(ÿX→ÿY) →ÿ((Y→Z)Ÿ(ÿY→ÿZ)) 

7 

N Only If X then 
Y 

ÿX→ÿY 

NS If and Only If Y 
then Z 
(Y→Z)Ÿ(ÿY→ÿZ) 

S If (Only If X then Y) then (If and Only If Y then Z) 
(ÿX→ÿY) →((Y→Z)Ÿ(ÿY→ÿZ)) 

8 

N Only If X then 
Y 

ÿX→ÿY 

NS If and Only If Y 
then Z 
(Y→Z)Ÿ(ÿY→ÿZ) 

NS If and Only If (Only If X then Y) then (If and Only If 
Y then Z) 
{(ÿX→ÿY)→((Y→Z)Ÿ(ÿY→ÿZ))} Ÿ {ÿ(ÿX→ÿY)→ 
ÿ((Y→Z)Ÿ(ÿY→ÿZ))} 

9 

S If X then Y 
X→Y 

N Only If Y then Z 
ÿY→ÿZ 

N Only If (If X then Y) then (Only If Y then Z) 
ÿ (X→Y) → ÿ (ÿY→ÿZ) 

10 

S If X then Y 
X→Y 

N Only If Y then Z 
ÿY→ÿZ 

S If (If X then Y) then (Only If Y then Z) 
(X→Y) → (ÿY→ÿZ) 

11 

S If X then Y 
X→Y 

N Only If Y then Z 
ÿY→ÿZ 

NS If and Only If (If X then Y) then (Only If Y then Z) 
{(X→Y)→(ÿY→ÿZ)} Ÿ {ÿ(X→Y)→ ÿ(ÿY→ÿZ)} 

12 

S If X then Y 
X→Y 

S If Y then Z 
Y→Z 

N Only If (If X then Y) then (If Y then Z) 
ÿ (X→Y) → ÿ (Y→Z) 

13 

S If X then Y 
X→Y 

S If Y then Z 
Y→Z 

S If (If X then Y) then (If Y then Z) 
(X→Y) → (Y→Z) 

14 

S If X then Y 
X→Y 

S If Y then Z 
Y→Z 

NS If and Only If (If X then Y) then (If Y then Z) 
{(X→Y)→(Y→Z)} Ÿ {ÿ(X→Y)→ ÿ(Y→Z)} 

15 

S If X then Y 
X→Y 

NS If and Only If Y 
then Z 
(Y→Z)Ÿ(ÿY→ÿZ) 

N Only If (If X then Y) then (If and Only If Y then Z) 
ÿ(X→Y) → ÿ((Y→Z)Ÿ(ÿY→ÿZ)) 

16 

S If X then Y 
X→Y 

NS If and Only If Y 
then Z 
(Y→Z)Ÿ(ÿY→ÿZ) 

S If (If X then Y) then (If and Only If Y then Z) 
 (X→Y) → ((Y→Z)Ÿ(ÿY→ÿZ)) 

17 

S If X then Y 
X→Y 

NS If and Only If Y 
then Z 
(Y→Z)Ÿ(ÿY→ÿZ) 

NS If and Only If (If X then Y) then (If and Only If Y 
then Z) 
{(X→Y) → (Y→Z)Ÿ(ÿY→ÿZ)} Ÿ { ÿ(X→Y) → ÿ 
((Y→Z)Ÿ(ÿY→ÿZ))} 

18 
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Table 2 (continued) 

NS If and Only If X 
then Y 

(X→Y)Ÿ(ÿX→ÿY) 

N Only If Y then Z 
ÿY→ÿZ 

N Only If (If and Only If X then Y) then (Only If Y 
then Z) 
 ÿ((X→Y)Ÿ(ÿX→ÿY))→ÿ(ÿY→ÿZ) 

19 

NS If and Only If X 
then Y 

(X→Y)Ÿ(ÿX→ÿY) 

N Only If Y then Z 
ÿY→ÿZ 

S If (If and Only If X then Y) then (Only If Y then Z) 
((X→Y)Ÿ(ÿX→ÿY)) → (ÿY→ÿZ) 

20 

NS If and Only If X 
then Y 

(X→Y)Ÿ(ÿX→ÿY) 

N Only If Y then Z 
ÿY→ÿZ 

NS If and Only If (If and Only If X then Y) then (Only 
If Y then Z) 
{((X→Y)Ÿ(ÿX→ÿY)) → (ÿY→ÿZ)} Ÿ  
{ÿ((X→Y)Ÿ(ÿX→ÿY))→ÿ(ÿY→ÿZ)} 

21 

NS If and Only If X 
then Y 

(X→Y)Ÿ(ÿX→ÿY) 

S If Y then Z 
Y→Z 

N Only If (If and Only If X then Y) then (If Y then Z) 
 ÿ((X→Y)Ÿ(ÿX→ÿY))→ÿ(Y→Z) 

22 

NS If and Only If X 
then Y 

(X→Y)Ÿ(ÿX→ÿY) 

S If Y then Z 
Y→Z 

S If (If and Only If X then Y) then (If Y then Z) 
 ((X→Y)Ÿ(ÿX→ÿY))→ (Y→Z) 

23 

NS If and Only If X 
then Y 

(X→Y)Ÿ(ÿX→ÿY) 

S If Y then Z 
Y→Z 

NS If and Only If (If and Only If X then Y) then (If Y 
then Z) 
{((X→Y)Ÿ(ÿX→ÿY)) → (Y→Z)} Ÿ  
{ÿ((X→Y)Ÿ(ÿX→ÿY))→ÿ(Y→Z)} 

24 

NS If and Only If X 
then Y 

(X→Y)Ÿ(ÿX→ÿY) 

NS If and Only If Y 
then Z 
(Y→Z)Ÿ(ÿY→ÿZ)

N Only If (If and Only If X then Y) then (If and Only 
If Y then Z) 
ÿ((X→Y)Ÿ(ÿX→ÿY)) →ÿ((Y→Z)Ÿ(ÿY→ÿZ)) 

25 

NS If and Only If X 
then Y 

(X→Y)Ÿ(ÿX→ÿY) 

NS If and Only If Y 
then Z 
(Y→Z)Ÿ(ÿY→ÿZ)

S If (If and Only If X then Y) then (If and Only If Y 
then Z) 
((X→Y)Ÿ(ÿX→ÿY)) → ((Y→Z)Ÿ(ÿY→ÿZ)) 

26 

NS If and Only If X 
then Y 

(X→Y)Ÿ(ÿX→ÿY) 

NS If and Only If Y 
then Z 
(Y→Z)Ÿ(ÿY→ÿZ)

NS If and Only If (If and Only If X then Y) then (If and 
Only If Y then Z) 
{((X→Y)Ÿ(ÿX→ÿY)) → ((Y→Z)Ÿ(ÿY→ÿZ))} Ÿ 
{ÿ((X→Y)Ÿ(ÿX→ÿY))→ÿ((Y→Z)Ÿ(ÿY→ÿZ))} 

27 

 
symbolically by an addition of the independent variables).2 Linguistic fuzzy logic 
allows a formalization of fuzzy causality as “more or less necessary like” and 
“more or less sufficient like,” usually termed as approximate reasoning in fuzzy 
logic literature.  

A key question raised by linguistic fuzzy logic analysis of simple two-level 
causality is the extent to which it is empirically relevant to have a variety of Boo-
lean logic forms of two-level causality (27 cases in total, see Table 2). Many of 
these forms have to do with the fact that we assume a dichotomy between neces-
sary and sufficient antecedents. As discussed shortly, linguistic fuzzy logic analy-
sis of causality partially avoids such a dichotomy through the use of generalized 
notions of logical connectives such as linguistic disjunction and conjunction. In 
applying this to simple two-level causality we need to keep in mind that we have 
three sorts of inferences: first-level inference, second-level inference, and across-
level inference. One immediate implication of this is that not only the logical con-
nectives AND and OR are generalized in the same level but also across levels. 
This means that just as keeping a dichotomy between necessity and sufficiency 
within one level of causality is rather untenable (in fuzzy logic) it is also untenable 
in across-level causality. In other words, we cannot crisply differentiate between 
causality operating at one level and then a second one at another level – the two 

                                                           
2 See for example: Goertz (2003:68-70).  
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inextricably more or less contaminate one another. We should hence speak of 
fuzzy causality tout court – not two-level causality.     

To sum up at this point, we need to recast the formal expressions for simple 
causality (for both necessity and sufficiency) in such a way as to take into account 
three essential features of a linguistic fuzzy logic approach. First, all antecedent 
and consequent variables are linguistically expressed and symbolically manipu-
lated. Second, the truth values of these antecedent and consequent variables as 
well as all combinations thereof formed by using the four connectives (Ÿ,⁄,→,ÿ) 
are also linguistically expressed and symbolically manipulated. Third, these truth 
values are many-valued. This calls both for the firm axiomatic basis developed in 
Chapter 2 for manipulating these linguistic truth values and for a procedure for 
rigorously manipulating all symbolic variables and truth values.  

As a starting point for the analysis let’s assume that we have for example a 
double logical inference A → B → C. Let us formulate this using the language of 
linguistic fuzzy logic:  

1. We know that: {If “x is A” then “y is B”} is true to a degree βτ  

2. We know that: {If “y is B” then “z is C”} is true to a degree γτ  

3. We know that: {“x is A” is true to a degree ατ }  

4. To what degree of truth δτ  can we deduce that: 

If [{If “x is A” then “y is B”} is true to a degree βτ ]   

Then [{If “y is B” then “z is C”} is true to a degree γτ  ]? 

Put differently: We know the linguistic value of A and its truth value ατ . We 

know the truth values of both inference processes 1 and 2, respectively, 

βτ and γτ . Can we infer the truth value δτ of the implication A causes B which 

then causes C? In solving this problem we need to apply the procedure for one 
level to three levels of inference. That is: we need to do two tasks at each level of 
inference: a first one on how to aggregate the linguistic information on the rele-
vance levels of the antecedents and a second one on how to aggregate the linguis-
tic information on the truth values of the antecedents. When studying the type of 
causality (that is, whether it is of a necessary, sufficient or combined type) we 
need to keep in mind that the antecedents at the second level causality are not 
simply the consequents at the first level of causality. As discussed earlier, we can 
have 27 combinations of necessary and/or sufficiency combinations because we 
are in fact combining three sets of cardinality 3 each, that is, {N,S,NS} within first 
level, {N,S,NS} within second level, and {N,S,NS} across levels. The linguistic 
fuzzy logic problem posed just before the beginning of this paragraph is an in-
stance of [S,S,S]. An instance of [N,N,N] would assume the following form: 

1. We know that: {Only If “x is A” then “y is B”} is true to a degree βτ  

2. We know that: {Only If “y is B” then “z is C”} is true to a degree γτ  
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3. We know that: {“x is A” is true to a degree ατ }  

4. To what degree of truth δτ  can we deduce that 

Only If [{Only If “x is A” then “y is B”} is true to a degree βτ ]  

Then [{Only If “y is B” then “z is C”} is true to a degree γτ  ]? 

Likewise, for [NS,NS,NS] we get: 

1. We know that: {If and Only If “x is A” then “y is B”} is true to a  

degree βτ  

2. We know that: {If an Only If “y is B” then “z is C”} is true to a degree γτ  

3. We know that: {“x is A” is true to a degree ατ }  

4. To what degree of truth δτ  can we deduce that 

If and Only If [{If and Only If “x is A” then “y is B”} is true to a de-

gree βτ ]  

Then [{If and Only If “y is B” then “z is C”} is true to a degree γτ  ]? 

In translating these inference clauses into formal language of linguistic fuzzy logic 
we need the three connectives: (linguistic conjunction) Ÿ, (linguistic implication) 
Æ, and (linguistic negation) ÿ. As discussed earlier, we can study linguistic con-
junction and disjunction using the operators LWC, LWD, and LWA.  Linguistic 
negation is formalized by using Neg(.) as defined earlier. The linguistic implica-
tion connective is formalized by using LWI (linguistic weighted implication). The 
formalism is developed next through an illustrative example, i.e., testing the logi-
cal consistency of the so-called democratic peace argument of international rela-
tions theory.  

2   Linguistic Fuzzy-Logic Analysis of the Democratic Peace 
Argument 

In this section I consider Zinnes’ (2004) study of the logical consistency of the 
democratic peace argument. Using Boolean propositional logic, Zinnes formalizes 
the propositions of the democratic peace theory by first constructing the premises 
(propositions) for the normative argument as shown in Table 3. A democratic state 
is denoted by A1 and a non-democratic state is denoted by A2. A dyad of two de-
mocratic states is denoted by:  

A1 A2∧ ¬                                                       (119) 

A dyad with one democratic state and one non-democratic state is denoted by:  

A1 A2 or alternatively by  A1 A2 ∧ ¬ ∧ ¬                       (120) 
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Table 3 Zinnes’ Basic Propositions for Democratic Peace  

Basic Propositions for Normative Explanation Notation 
One democratic state A1 
One non-democratic state A2 
All state decisions involve the participation of the population and its 
representative institutions 

A3 

All decisions are made by a small group of elite leaders A4 
Conflict over societal policies is resolved through bargaining A5 
Conflict over societal politics is resolved using force A6 
State uses force to settle internation conflicts A7 
State uses a bargaining strategy to settle internation conflicts A8 
State’s security is threatened A9 
States are in conflict A10 
Both states use force to settle their conflict A11 
States go to war A12 

A dyad with two non-democratic states is denoted by: 

A1 A2¬ ∧                                                       (121) 

Zinnes also postulates a number of intermediary premises shown in Table 4.  

Table 4 Zinnes’ Postulated Premises for Democratic Peace 

Postulated Premises for Normative Explanation Notation 
If state X is a democracy, then all decisions involve the 
participation of the population and its representative institutions 

N1: A1 → A3 

If state Y is a democracy, then all decisions involve the 
participation of the population and its representative institutions 

N2: ÿA2 → A3 

If state Y is a non-democracy, then all decisions are made by a 
small group of elite leaders  

N3: A2 → A4 

If state X is a non-democracy, then all decisions are made by a 
small group of elite leaders  

N4: ÿA1 → A4 

If all decisions involve the participation of the population and its 
representative institutions, then conflicts over societal policies 
are resolved through bargaining 

N5: A3 → A5 

If all decisions are made by a small group of elite leaders, then 
conflicts over societal policies are resolved using force 

N6: A4 → A6 

If a state uses force to settle conflicts over societal policies, then 
it uses force to settle internation conflicts 

N7: A6 → A7 

If a state uses bargaining to settle internal societal conflicts and 
its security is not threatened, then it will use bargaining to settle 
internation conflicts 

N8: A5 Ÿ ÿA9 → A8 

If a state’s security is threatened, then it will use force to settle 
internation conflicts 

N11: A9 → A7 

If states X and Y are in conflict and one state’s security is 
threatened, then states X and Y use force to settle the conflict 

N12: A10 Ÿ A9 → A11 

If states X and Y use force to settle internation conflict, then 
states X and Y go to war  

N13: A11 → A12 
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Table 4 (continued) 

If states X and Y are in conflict and state X is a democracy and 
state Y is democracy, then force is not used to settle internation 
conflicts 

N14: A10 Ÿ A1  Ÿ ÿA2 → 
ÿA7 

If states X and Y are in conflict and a state’s security is not 
threatened, then force is not used to settle internation conflicts 

N15: A10 Ÿ ÿA9 → ÿA7 

If states X and Y are in conflict and bargaining is used to settle 
internation conflicts, then states X and Y do not use force to 
settle internation conflicts 

N16: A10 Ÿ A8 → ÿA11 

If states X and Y do not use force to settle internation conflict, 
then states X and Y do not go to war 

N17: ÿA11→ ÿA12 

Doing the Boolean propositional calculus and postulating A10 (two states in con-
flict) leads to the conclusions on the normative explanation as shown in Table 5. 

Table 5 Zinnes’ Two-Valued Logical Pathways for Democratic Peace Argument 

Two democracies 
(A1 Ÿ ÿA2) Ÿ A10 

Democracy and non-democracy: 
(A1 Ÿ A2) Ÿ A10; (ÿA1 Ÿ ÿA2) Ÿ A10

Two non-democracies: 
(ÿA1 Ÿ A2) Ÿ A10 

N1: A1 → A3  
N2: ÿA2 → A3 

N1: A1 → A3  
N3: A2 → A4 

N2: ÿA2 → A3 
N4: ÿA1 → A4 

N3: A2 → A4 
N4: ÿA1 → A4 

N5: A3 → A5 N6: A4 → A6 
N8: A5 Ÿ ÿA9 → A8 N7: A6 → A7 
N11: A9 → A7 N10: A10 Ÿ A7 → A9 
N14: A10 Ÿ A1  Ÿ ÿA2 → ÿA7 N12: A10 Ÿ A9 → A11 
N16: A10 Ÿ A8 → ÿA11 N13: A11 → A12 (War) 
N17: ÿA11→ ÿA12 (No War)  

Let us now generalize Zinnes’ analysis. First, we assume that a state is not just 
either democratic or non-democratic. Rather, we postulate that being democratic 
(or non-democratic) is a linguistic variable the value of which belongs to the set of 
linguistic labels:3 

 { }4,3,2,1,0| == isS i , with 

FFFsMHHsMMMsLMMsNNNs ===== 43210 ,,,,  

Hence, a state can have a null (NNN) degree of being democratic (completely 
non-democratic), a low to moderate degree of being democratic (LMM), a moder-
ate degree of being democratic (MMM), a moderate to high degree of being de-
mocratic (MHH), or a full degree (FFF) of being democratic (fully democratic). 
We also assume that each of these levels or degrees of being democratic has  
a truth value, which is also one of the elements of S. For example, we could  
have a state with a MMM degree of being democratic and the truth value of this 
knowledge is LMM. Likewise, we fuzzify all of the basic propositions used by 
Zinnes in her exploration of the democratic peace. By “fuzzify” I mean that every  
 

                                                           
3 I am assuming this small set for the sake of making the illustration easy to follow.  
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Table 6 Fuzzy Propositions for Democratic Peace Argument 

Basic Fuzzy Propositions Notation 
One more or less democratic state LF1 
All state decisions more or less involve the participation of the 
population and its representative institutions 

LF3 

Conflict over societal policies is more or less resolved through 
bargaining 

LF5 

State more or less uses force to settle internation conflicts LF7 
State’s security is more or less threatened LF9 
States are more or less  in conflict LF10 
Both states more or less use force to settle their conflict LF11 
States more or less go to war LF12 

Table 7 Postulated Linguistic Fuzzy Premises for Democratic Peace 

Postulated Linguistic Fuzzy Premises Denotation of Linguistic Fuzzy 
Proposition:  

X is more or less democratic and Y is more or 
less democratic and X and Y are more or less in 
conflict, with each feeling more or less 
threatened 

 
LFP1[X] Ÿ LFP1[Y] Ÿ LFP10[X,Y] Ÿ 
LFP9[Y] Ÿ LFP9[Y] 

If state is a more or less democracy, then all 
decisions more or less involve the participation 
of the population and its representative 
institutions  

 
LFP1: LF1 → LF3 

If all decisions more or less involve the 
participation of the population and its 
representative institutions, then conflicts over 
societal policies are more or less resolved 
through bargaining 

 
LFP5: LF3 → LF5 

If a state more or less uses force to settle 
conflicts over societal policies, then it more or 
less uses force to settle internation conflicts 

 
LFP7: LF5 → F7 

If a state more or less uses bargaining to settle 
internal societal conflicts and its security is more 
or less threatened, then it will more or less use 
bargaining to settle internation conflicts 

 
LFP8: LF5 Ÿ LF9 → LF7 

If a state’s security is more or less threatened, 
then it will more or less use force to settle 
internation conflicts 

 
LFP11: LF9 → LF7 

If states X and Y are more or less in conflict and 
one state’s security is more or less threatened, 
then states X and Y more or less use force to 
settle the conflict 

 
LFP12: LF10 Ÿ LF9 → LF11 

If states X and Y more or less use force to settle 
internation conflict, then states X and Y more or 
less go to war   

 
LFP13: LF11 → LF12 

If states X and Y are more or less in conflict and 
state X is a more or less democracy and state Y 
is more or less democracy, then force is more or 
less used to settle internation conflicts 

 
LFP14: LF10 Ÿ LF1[X] Ÿ LF1[Y] → LF7 

 
 



132 2   Linguistic Fuzzy-Logic Analysis of the Democratic Peace Argument
 

Table 7 (continued) 

If states X and Y are more or less in conflict and 
a state’s security is more or less not threatened, 
then force is more or less used to settle 
internation conflicts 

 
LFP15: LF10 Ÿ LF9 → LF7 

If states X and Y are more or less in conflict and 
bargaining is more or less used to settle 
internation conflicts, then states X and Y more or 
less use force to settle internation conflicts 

 
LFP16: LF10 Ÿ LF7 → LF11 

If states X and Y more or less use force to settle 
internation conflict, then states X and Y more or 
less go to war 

 
LFP17: LF11→ LF12 

proposition has a linguistic value and that each of these linguistic values has a 
linguistic truth value attached to it. We hence obtain Tables 6 and 7.  

Table 7 assumes a number of input “variables”; these are: 

1. LF1[X]: degree of democracy of state X 
2. LF1[Y]: degree of democracy of state Y 
3. LF10[X,Y]: degree of conflict between states X and Y 
4. LF9[X]: degree of threat felt by state X 
5. LF9[Y]: degree of threat felt by state Y 

Checking the logic of the democratic peace argument using a linguistic fuzzy ap-
proach is based on positing linguistic values for the truth values of these variables 
as well as the truth values of the connectives used in the propositions. The ques-
tion is thus:  

• Given LFP1[X], LFP1[Y], LFP10[X,Y], LFP9[X] and LFP9[Y],  
• Given the linguistic fuzzy propositions LFP1, …, LFP17,  
• What is the truth value of the argument that “more or less democratic states 

more or less do not fight war?”  

In the end what we really are exploring is the following inference: 

(LF1[X]  LF1[Y]  LF10[X,Y]  LFP9[Y]  LFP9[Y])   LFP12[X,Y]?∧ ∧ ∧ ∧ →  
(122) 

We use the LWI and LWC operators where the linguistic weighted implication 
function LWI stands for the following linguistic fuzzy inference: 

 Given that A and B are linguistic terms 

 We know that: {“X is A” is true to a degree ατ }  

 To what degree of truth δτ  can we infer that: LWI (X,Y): 

If {“X is A” with a truth value ατ } then {“Y is B” with a truth value βτ }?    
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The linguistic weighted conjunction LWC is given by: 

 Given that A and B are linguistic terms 

 We know that: {“X is A” is true to a degree ατ }  

 We know that: {“Y is B” is true to a degree βτ } 

 What is the degree of truth δτ of LWC(X,Y): Linguistic Conjunction of X 

and Y? 

The fuzzy inference process consists of five phases (I, II, III, IV, V) as shown in 
Figure 1 and explicated in Figure 2. The procedure is to start with a set of given 
premises and then evaluate the truth value of the whole process starting from 
phase I to phase V. That is:  

 Given: {A= [ ] [ ] [ ]XLFYXLFXLF 9,,10,1 } and {B= [ ] [ ] [ ]YLFYXLFYLF 9,,10,1  } 
 What is the truth value of {(A and B) → more or less WAR}? 

A number of points are in order. First, these implications and conjunctions are 
linguistic-fuzzy in the sense that their truth values are linguistic values expressed 
using a chosen linguistic-terms set. Second, we have (as shown in Figure 1) a 
number of intervening implications and conjunctions the truth values of which are 
also linguistic terms. This means that the truth value of the whole logical argument 
is determined by the initial premises as well as by the intervening logical opera-
tions. Third, it is not meaningful to divide the possible initial sets of dyads into 
three categories as Zinnes does in her Boolean-based analysis. That is: instead of 
(Democracy, Democracy), (non-Democracy, Democracy) and (non-Democracy, 
non-Democracy) we have many more possibilities of (more or less democracy, 
more or less democracy). For example in the set:  

{ }4,3,2,1,0| == isS i                              
                (123) 

FFFsMHHsMMMsLMMsNNNs ===== 43210 ,,,,         (124) 

We would have 5x5=25 dyads, some of which are: (NNN,NNN), (LMM,MMM), 
(FFF, MHH), with NNN democracy = no democracy, LMM democracy = low to 
moderate level of democracy, MHH democracy = moderate to high level of de-
mocracy, and FFF democracy = full democracy.   

Fourth, because we are dealing with linguistic truth values, the democratic 
peace argument can be asserted to have a full degree of validity (FFF), a moderate 
to high degree of validity (MHH), a moderate degree of validity (MMM), a low to 
moderate degree of validity (LMM), or a null degree of validity (NNN). This  
degree of validity is obtained at the phase V of the process of linguistic fuzzy 
analysis (shown in Figures 1 and 2). In Table 8, I display a number of illustrations 
obtained through a MATLab computer code. The democratic peace argument ex-
pressed in a linguistic formalism states that: 
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[ ] [ ]{ }( [ ]{ })
[ ] [ ]{ }( [ ]{ })

LF1  and LF1 LF12 , TRUE

LF1  and LF1 LF12 , TRUE

INFERENCE IF X FFF Y FFF THEN X Y NNN is

INFERENCE IF X FFF Y NNN THEN X Y FFF is

= = =

= = =

         (125) 

Written in linguistic fuzzy formalism, the Boolean logic premises and conclusions 
are listed for in Table 9. 

Table 8 Linguistic Fuzzy Testing of Democratic Peace Argument (DPA)    

Linguistic Values of Various Propositional Premises 
Truth Value  

of DPA 
 

Row LF1[X] LF1[Y] LF10[X,Y] LF9[X] LF3[X] LF5[X] LF7[X] LF11[X,Y] LF12[X,Y] LWI 
1 

FFF FFF MMM LMM FFF FFF FFF LMM LMM MHH 
2 

FFF FFF MHH MMM FFF FFF FFF MMM LMM MMM 
3 

FFF FFF NNN NNN FFF FFF FFF NNN NNN FFF 
4 

FFF NNN MHH MHH FFF FFF FFF MMM MMM MMM 
5 

FFF NNN LMM MMM FFF FFF MMM LMM MMM MHH 
6 

MMM MMM MHH LMM MMM LMM LMM MHH MHH MHH 
7 

MMM MMM LMM LMM MMM MMM MMM MHH FFF FFF 
8 

LMM MHH FFF MHH MMM LMM LMM MHH LMM MHH 
9 

NNN NNN MHH MHH NNN NNN LMM MHH FFF FFF 
10 

NNN NNN NNN NNN NNN NNN MMM MHH FFF FFF 
11 

NNN NNN FFF FFF NNN NNN NNN FFF FFF FFF 

Table 9 Boolean Testing of Democratic Peace Argument (DPA)   

  
Linguistic Values of Various Propositional Premises DPA 

Row STATE [X] STATE [Y] WAR [X,Y] 
 

Truth Value 

1 FFF = DEMOCRATIC FFF = DEMOCRATIC FFF = WAR 
 

NNN = FALSE 

2 FFF = DEMOCRATIC FFF = DEMOCRATIC NNN = NO WAR 
 

FFF = TRUE 

3 FFF = DEMOCRATIC NNN = NON-DEMOCRATIC FFF = WAR 
 

FFF = TRUE 

4 FFF = DEMOCRATIC NNN = NON-DEMOCRATIC NNN = NO WAR 
 

FFF = FALSE 

5 NNN = NON-DEMOCRATIC NNN = NON-DEMOCRATIC FFF = WAR 
 

FFF = TRUE 

6 NNN = NON-DEMOCRATIC NNN = NON-DEMOCRATIC NNN = NO WAR 
 

FFF = FALSE 

We see that the linguistic fuzzy analysis reproduces the Boolean result – Row 3 
in Table 8 and Row 2 in Table 9, respectively – that two democratic states do not 
fight one another. We also see that both analyses – Row 11 in Table 8 and Row 1  
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in Table 9 – agree that two non-democratic states fight one another.4 Some clarifi-
cation is needed concerning the various columns of Table 8. Take the case of Row 
3 which agrees with its counterpart from Boolean analysis. The meanings of the 
various symbols in Row 3 are as follows:  

• LF1[X] = FFF means that state X is fully democratic  
• LF1[Y] means that state Y is fully democratic  
• LF10[X,Y] = NNN means the truth value that there is a conflict between X and 

Y is null  
• LF9[X] = NNN means the truth value that state X feels threatened is null  
• LF12[X,Y] = FFF means the truth value that there is war between X and Y is 

null, i.e., No War.  

The remaining variables, i.e., LF3[X], LF5[X], LF7[X], and LF11[X,Y] are  
intermediate inferences in the logical argument. Each is assumed to be true in the 
Boolean analysis (not shown in Table 9). In the linguistic fuzzy analysis the truth 
values of these inferences can vary. In Row 3 of Table 8 they all equal FFF, i.e., 
they are all true. Changing the truth values of these intermediate inferences while 
keeping those for the first two variables (i.e., still considering a dyad of two fully 
democratic states), changes the truth value of the democratic peace argument. In 
other words: the argument is not simply either true (or false) but becomes partially 
true, as shown in Rows 1 and 2 of Table 8. For example (Row 2), for a dyad of 
two fully democratic states who believe with a moderate-to-high degree of truth 
that there is a conflict between them, and among which X (or Y or both) believes 
with a low to moderate degree of truth that its security is threatened, the democ-
ratic peace argument is moderately true. Row 7 of Table 8 is another interesting 
one. For a dyad of moderately democratic states, the analysis predicts that War 
(LF12[X,Y]=FFF) can occur with a full degree of truth (FFF)! In sum, while the 
linguistic fuzzy analysis does not prove the democratic peace argument to be 
wrong, it adds much nuance to it. We do not have only options of War and Non-
War. We also have many more possibilities of more or less war and no-war de-
pending on whether the states are more or less democratic. This linguistic fuzzy 
logic conclusion seems to provide a logical explanation (although not from the 
conventional perspective of Boolean logic) to the still ongoing debate on the em-
pirical validity of the democratic peace argument.  

One can arguably say that: the problem seems neither to be one of empirical 
validation, nor one of theoretical explanation (although these are still somewhat 
debatable). Instead, from the perspective of this chapter, the problem seems to 
have much to do with the taken for granted Boolean logic approach which under-
pins the existing literature on the democratic peace!        

                                                           
4 Note that in the linguistic fuzzy approach all four ways of computing the implication 

function agree in each case (that is, all LWIs produce FFF in both types of dyads), except 
for LWI4 in Row 11 of Table 8. 
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3   Linguistic Fuzzy-Logic Testing of Skocpol Theory of 
Revolution  

This section uses the LFLA to check the causal consistency of typical social sci-
ence theory, namely, Skocpol’s theory of revolution. As argued by Goertz and 
Mahoney (2005), Skocpol’s (1979) theory of revolution is based on a two-level 
causal argument. In this section I apply the linguistic fuzzy-logic approach to this 
two-level analysis of causality. The starting point of the two-level analysis is that 
we have a double logical inference such as X → Y → Z. Let us phrase this using 
the language of linguistic fuzzy logic:  

1. We know that: 
The inference statement:  

S1= {If “X has a nuance value xν  to a level of truth xτ ” then “Y has a nu-

ance value yν to a level of truth yτ ”} has a level of nuanced inference 

αν and a degree of  truth ατ  

2. We know that: 
The inference statement:  

S2= {If “Y has a nuance value yν  to a level of truth yτ ” then “Z has a nu-

ance value zν to a level of truth zτ ”} has a level of nuanced inference 

βν and a degree of  truth βτ  

3. To what level of nuanced inference γν  and what degree of truth γτ  can we 

infer that: 

 If [statement S1 has a level of nuanced inference αν and a degree of 

truth ατ ] then [statement S2 has a level of nuanced inference βν and a de-

gree of truth βτ ]? 

Put differently: We know the nuance and truth values of both inference processes 

1 and 2, respectively, ( αν , ατ )and ( βν , βτ ), can we infer the nuance and truth 

values ( γν , γτ ) of the implication {X causes Y which then causes Z}?  

When studying two-level causality we need to keep in mind that we can have 
27 combinations of necessity and/or sufficiency relations because we are in fact 
combining three sets each with cardinality 3, that is, {N,S,NS} within the first 
level, {N,S,NS} within the second level, and {N,S,NS} across levels, where 
N=necessity, S=sufficiency, NS=necessity and sufficiency. The inference (using 
linguistic fuzzy logic) stated just before the beginning of this paragraph is an in-
stance of [S,S,S]. An instance of [N,N,N] would assume the following form: 
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1. We know that: 

The inference statement S1= {Only If “X has a nuance value xν  to a level of 

truth xτ ” then “Y has a nuance value yν to a level of truth yτ ”} has a level 

of nuanced inference αν and a degree of  truth ατ  

2. We know that: 

The inference statement S2= {Only If “Y has a nuance value yν  to a level of 

truth yτ ” then “Z has a nuance value zν to a level of truth zτ ”} has a level 

of nuanced inference βν and a degree of  truth βτ  

3. To what level of nuanced inference γν  and what degree of truth γτ  can we 

infer that: 

Only If [statement S1 has a level of nuanced inference αν and a degree of 

truth ατ ] then [statement S2 has a level of nuanced inference βν and a de-

gree of truth βτ ]? 

Likewise, for [NS,NS,NS] we get: 

1. We know that: 

The inference statement S1= {If and Only If “X has a nuance value xν  to a 

level of truth xτ ” then “Y has a nuance value yν to a level of truth yτ ”} has 

a level of nuanced inference αν and a degree of  truth ατ  

2. We know that: 

The inference statement S2= {If and Only If “Y has a nuance value yν  to a 

level of truth yτ ” then “Z has a nuance value zν to a level of truth zτ ”} has 

a level of nuanced inference βν and a degree of  truth βτ  

3. To what level of nuanced inference γν  and what degree of truth γτ  can we 

infer that: 

If and Only If [statement S1 has a level of nuanced inference αν and a de-

gree of truth ατ ] then [statement S2 has a level of nuanced inference βν and 

a degree of truth βτ ]? 

As discussed earlier, we study linguistic conjunction, disjunction, and implication 
using the operators: LWC, LWD, LWA, and LI.   

In the remainder of the section I apply the LFLA procedure of analyzing multi-
path causation to Skocpol’s theory of social revolution. I closely follow the causal 
paths explicated by Goertz and Mahoney (2005) and displayed in Figure 3. 
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Skocpol defines social revolutions as “rapid, basic transformations of a society’s 
state and class structures; and they are accompanied by and in part carried through 
by class-based revolts from below” (1979:4-5). Therefore, social revolutions 
(SRV) are the combination of three attributes: (1) CRV = class-based revolt from 
below; (2) TSS = rapid and basic transformation of state structures; (3) TCS = 
rapid and basic transformation of class structures. These attributes are individu-
ally necessary and jointly sufficient for social revolution to occur (Goertz and 
Mahoney, 2005). This relationship is not one of causality but rather one of ontol-
ogy. I denote this part of the argument as ONTA. 

Skocpol’s theory has two levels of causality. At the basic level (denoted from 
here and on as BCAUS), the argument consists of a conjuncture of two necessary 
causes which are jointly sufficient for social revolutions to occur. These are: PRV 
= peasant revolt and SBR = state breakdown. As put by Skocpol (1979: 154), “I 
have argued that (1) state organizations susceptible to administrative and military 
collapse when subjected to intensified pressures from more developed countries 
from abroad, and (2) agrarian sociopolitical structures that facilitated widespread 
peasant revolts against landlords were, taken together, the sufficient distinctive 
causes of social-revolutionary situations commencing in France, 1789, Russia, 
1917, and China, 1911.” Hence, as stated by Goertz and Mahoney (2005), “state 
breakdown and peasant revolt are individually necessary and jointly sufficient for 
social revolution” (emphasis added).  

At the secondary level of causality (denoted as SCAUS), Skocpol considers the 
different processes that might lead to sate breakdown and peasant revolt. At this 
stage of the argument, Skocpol is actually looking at an across-level causal rela-
tionship between the secondary-level variables and the basic-level ones effectively 
arguing that the second-level variables are individually sufficient but not neces-
sary to cause either state breakdown or peasant revolt. In explicating the first-
level causes of state breakdown, Skocpol considers three different second-level 
causes: (1) INT = international pressure, which promotes crises for the actors of 
the regime; (2) DCL = dominant-class leverage within the state, which prevents 
government leaders from implementing modernizing reforms; and (3) AGB = 
agrarian backwardness, which hinders national state responses to political crises. 
To explicate the causes of peasant revolt, Skocpol considers two secondary level 
variables: (1) PAS = peasant autonomy and solidarity, which facilitate spontane-
ous collective action by peasants; and (2) LAV = landlord vulnerability, which 
allows for class transformation in the countryside.  

Skocpol’s argument is that at the basic level, PRV and SBR are individually 
necessary and jointly sufficient to cause CSR (social revolution), GM express  
this as: 

CSR=PRV*SBR                                                  (126) 

To express this causal relationship using formal logic we need to keep in mind that 
the statement “individually necessary and jointly sufficient” is effectively a con-
junction of three statements: 
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S1: SBR is a necessary cause of CSR: CSR SBR→ or, the logical equivalent, 

SBR CSR¬ → ¬  

S2: PRV is a necessary cause of CSR: CSR PRV→  or, the logical equivalent, 

PRV CSR¬ → ¬  

S3: PRV and SBR jointly sufficiently cause CSR: ( )SBR PRV CSR∧ →  

Table 10 Skocpol’s Theory Variables 

Variable Meaning 
CSR Causal Relationship - Social Revolution 
SBR State Breakdown 
INT International Pressure 
DCL Dominant-Class Leverage 
AGB Agrarian Backwardness 
PRV Peasant Revolt 
PAS Peasant Autonomy 
LAV Landlord Vulnerability 
OSR Ontological Relationship – Social Revolution 
CRV Class Revolts 
TSS Transformation of State Structure 
TCS Transformation of Class Structure 

Therefore, the complete formal logic expression for [126] is: 

{ } { } ( ){ }1 2 3S S S CSR SBR CSR PRV PRV SBR CSR∧ ∧ = → ∧ → ∧ ∧ →
 

 (127) 
The membership function for the logical implication P Q→ is given by:  

max 1 ;P Q P Qμ μ μ→ ⎡ ⎤= −⎣ ⎦                                     (128) 

Pμ is the membership function for proposition P, and 1 Pμ− is the corresponding 

one for the negation of P, non-P. Using this we obtain the following expressions 
for the membership functions:  

[ ]max 1 ;CSR SBR CSR SBRμ μ μ→ = −                              (129) 

[ ]max 1 ;CSR PRV CSR PRVμ μ μ→ = −                             (130) 

[ ]max 1 ;SBR PRV CSR SBR PRV CSRμ μ μ∧ → ∧= −
                        

(131) 

With ( )min ;1SBR PRV SBR PRVμ μ μ∧ = +⎡ ⎤⎣ ⎦                      
    (132) 
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5 Goertz and Mahoney (2005:509).  
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The membership degree of the conjunction of the three statements –
1 2 3S S S∧ ∧ – is thus obtained as: 

( )( ) ( )( )1 2 3 1 2 3min ;1 min ;1S S S S S S CSR SBR CSR PRV SBR PRV CSRμ μ μ μ μ μ μ∧ ∧ → → ∧ →= + + = + +             

(133) 

Combining together equations[128], [129] – [133], we obtain the logically correct 
membership function for [127] – that is, at the basic level of causality BCAUS as: 

[ ] [ ]({
( )( ) ) }

min max 1 ; max 1 ;

max 1 min ;1 ; ;1

BCAUS
CSR SBR CSR PRV

SBR PRV CSR

μ μ μ μ μ

μ μ μ

= − + −

⎡ ⎤+ − +⎣ ⎦
      (134) 

Skocpol’s argument at the secondary level is that INT, AGB, and DCL are jointly 
sufficient. GM’s shorthand for this would be: 

SBR=INT+AGB+DCL                                          (135) 

In the formalism of formal logic we would have: 

( ) ( ) ( )INT SBR AGB SBR DCL SBR→ ∨ → ∨ →                 (136) 

In the language of fuzzy-set theory (that GM use) equation [136] would corre-
spond to a membership degree:  

( ) { }
[ ] [ ] [ ]{ }

max ; ;

max max 1 ; ;max 1 ; ;max 1 ;

SCAUS
INT SBR AGB SBR DCL SBR

INT SBR AGB SBR DCL SBR

SBRμ μ μ μ
μ μ μ μ μ μ

→ → →=
= − − −

            

(137) 

Likewise, PAS and LAV are jointly sufficient, thus GM’s shorthand expression 
for this is: 

PRV=PAS + LAV                                             (138) 

In formal logic we get: 

( ) ( )PAS PRV LAV PRV→ ∨ →
        

                (139) 

In the language of fuzzy-set theory (that GM use) equation [139] would corre-
spond to a membership degree:  

( ) { }
[ ] [ ]{ }

max ;

max max 1 ; ;max 1 ;

SCAUS
PAS PRV LAV PRV

PAS PRV LAV PRV

PRVμ μ μ

μ μ μ μ
→ →=

= − −
    (140) 



144 3   Linguistic Fuzzy-Logic Testing of Skocpol Theory of Revolution
 

At the ontological level GM argue that TSS, TCS, and CRV are individually nec-
essary and jointly sufficient for social revolution to occur, which in their shorthand 
notation takes the form:  

OSR=TSS*TCS*CRV                                              (141) 

Expressed in formal logic, the ontological relationship thus assumes the form: 

( ) ( ) ( )OSR TSS OSR TCS OSR CRV→ ∧ → ∧ →                  (142) 

The corresponding membership function is: 

[ ] [ ] [ ]{ }min max 1 ; max 1 ; max 1 ; ;1ONTA
OSR TSS OSR TCS OSR CRVμ μ μ μ μ μ μ= − + − + −

                     (143) 

From equations [134], [137], [140], and [143] we see that the membership func-

tions , , ,CSR SBR PRV OSRμ μ μ μ for CRS at the basic level of causality, SBR and 

PRV at the secondary level of causality, and OSR at the ontological level are in-
puts that need to be estimated from the empirical data.  

Having explicated the membership functions corresponding to the various lev-
els of analysis that GM delineate in Skocpol’s theory, it should be clear that the 
logical basis of GM’s coding and testing of Skocpol’s theory is flawed. For exam-
ple, when testing the logic of causality for CSR in terms of SBR and PRV, GM 

compute the membership function CSRμ  of the variable CSR in terms of the 

membership functions SRBμ and PRVμ of SBR and PRV as: 

CSR SBR PRV SBR PRVμ μ μ μ∧= = ⋅                                   (144) 

GM then use this as measure to test causality in Skocpol’s theory at the basic 
level. This formula is erroneously based on an incorrect logical argument of the 
causality statement. The problem is that GM take the shorthand equation 
CSR=SBR*PRV for a formal logic equation. This is not true even within the 
framework of Boolean logic as Table 11 shows. We can clearly see that the logical 
values of the two formal logic expressions  

SBR  PRV  CSR  ∧ →                                    (145) 

[ ](CSR SBR) (CSR PRV) (SBR PRV) CSR→ ∧ → ∧ ∧ →    (146) 

do not always agree with one another (see row 5 in Table 11 where the discrep-
ancy occurs).  

What gets lost in using the shorthand equation CSR=SBR*PRV is the role that 
logical implication plays in the causal relationship. The logically correct equation  
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Table 11 Boolean-Logic Truth Table for Basic Causality Level Leading to CSR (T=true, 
F=false). 

 
Row 

CSR SBR PRV CSR→ SBR CSR → PRV SBR ∧ PRV
SBR∧PRV 
→ CSR 

(CSR → SBR) 
∧(CSR → PRV)

(CSR → SBR)  
∧(CSR → PRV) ∧ 

(SBR∧PRV → CSR) 

1 
T T T T T T T T T 

2 
T T F T F F T F F 

3 
T F T F F F T F F 

4 
T F F F F F T F F 

5 
F T T T T T F T F 

6 
F T F T T F F T F 

7 
F F T T T F F T F 

8 
F F F T T F F T F 

Table 12 GM’s Fuzzy Coding of Skocpol’s Data at Secondary Level (expressed in GM’s 
numerical and LFLA formalisms) 

 INT DCL AGB PAS LAV 
France 0.50 MMM 0.75 HHH 1.00 PPP 0.75 HHH 1.00 PPP 
Russia 1917 1.00 PPP 0.25 LLL 0.50 MMM 1.00 PPP 1.00 PPP 
China 0.75 HHH 0.75 HHH 1.00 PPP 0.00 NNN 0.75 HHH 
England 0.50 MMM 1.00 PPP 0.25 LLL 0.00 NNN 0.00 NNN 
Russia 1905 0.50 MMM 0.25 LLL 0.50 MMM 1.00 PPP 1.00 PPP 
Germany 0.25 LLL 0.25 LLL 0.25 LLL 0.50 MMM 0.00 NNN 
Prussia 0.75 HHH 0.25 LLL 0.25 LLL 0.50 MMM 0.00 NNN 
Japan 0.75 HHH 0.00 NNN 0.50 MMM 0.00 NNN 0.00 NNN 

Table 13 GM’s Fuzzy Coding of Skocpol’s Theory at the Basic Causal Level CSR (ex-
pressed in GM numerical and LFLA formalisms)  

CSR    
SBR 

 
PRV Minimum Min(Sum Xi,1) 

France 1.00 PPP 1.00 PPP 1.00 PPP 1.00 PPP 
Russia 1917 1.00 PPP 1.00 PPP 1.00 PPP 1.00 PPP 
China 1.00 PPP 0.75 HHH 1.00 PPP 1.00 PPP 
England 1.00 PPP 0.00 NNN 0.00 NNN 0.42 MLL 
Russia 1905 0.50 MMM 1.00 PPP 0.00 NNN 0.33 MLL 
Germany 0.25 LLL 0.50 MMM 0.00 NNN 0.17 VLL 
Prussia 0.75 HHH 0.50 MMM 0.00 NNN 0.25 LLL 
Japan 0.75 HHH 0.00 NNN 0.00 NNN 0.42 MLL 
 
 

can be obtained by going back to the logical meaning of “logical implication: →”, 

the formal logic formula for which is:{ }P Q→ or, equivalently, { }P Q¬ ∨ , 

which reads as: P implies Q, or, equivalently, non-P (negation of P) OR Q with the 
membership function given by equation [128]. Moreover, GM’s method seeks to  
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Table 14 GM’s Fuzzy Coding of Skocpol’s Theory at the Ontological Level (expressed in 
GM numerical and LFLA formalisms)  

OSR   
CRV 

 
TSS 

 
TCS Minimum Min(Sum Xi,1) 

France 1.00 PPP 1.00 PPP 1.00 PPP 1.00 PPP 1.00 PPP 
Russia 1917 1.00 PPP 1.00 PPP 1.00 PPP 1.00 PPP 1.00 PPP 
China 1.00 PPP 1.00 PPP 1.00 PPP 1.00 PPP 1.00 PPP 
England 0.00 NNN 1.00 PPP 0.25 LLL 0.00 NNN 0.42 MLL 
Russia 1905 1.00 PPP 0.00 NNN 0.00 NNN 0.00 NNN 0.33 MLL 
Germany 0.50 MMM 0.00 NNN 0.00 NNN 0.00 NNN 0.17 VLL 
Prussia 0.00 NNN 0.25 LLL 0.50 MMM 0.00 NNN 0.25 LLL 
Japan 0.00 NNN 1.00 PPP 0.25 LLL 0.00 PPP 0.42 MLL 
 
 

evaluate the membership functions for the variables CSR, SRB, PRV, and OSR as 
a way for testing Skocpol’s theory. This is incorrect from a formal logic perspec-
tive since as shown up above the membership func-

tions , , ,CSR SBR PRV OSRμ μ μ μ  are inputs, not outputs. This is in line with 

Ragin’s original procedure as developed in his 2000 book. As will discussed in 
Chapter 7, Ragin’s method for testing causality takes as inputs the membership 
functions of all independent and dependent variables.  

In sum, to test causality we need to infer the membership functions of formal 
logic expressions that are faithful translations of Skocpol’s arguments (as excel-
lently delineated by GM in natural language) at the basic causality, secondary cau-
sality, and ontological levels. What GM need to do (following Ragin’s fuzzy-set 
theoretic approach) is to empirically estimate the values for 

, , ,CSR SBR PRV OSRμ μ μ μ and then use equations [134], [137], [140], and [143] 

to estimate the various arguments. Tables 12, 13, and 14 respectively show GM’s 
estimated input data at the secondary causality, basic causality, and ontological 
levels. Note that GM estimate the membership functions for CSR and OSR (that 
is, the outcome variables at basic causality and ontological levels) in two ways: (1) 
dichotomously in line for Skocpol’s own estimate – France, Russia 1917 and 
China had successful revolutions while the other cases did not); (2) using the fam-

ily resemblance rule formalized through the equation ( )min ;1iSum X . I also 

use both in the LFLA method to test Skocpol’s theory.  
In view of these remarks, I thus compute what a corrected GM approach would 

predict for the various processes – basic and secondary causality as well as onto-
logical relationship. These results are then compared to what LFLA predicts. The 
results of the corrected GM – denoted from here and onward as CGM – fuzzy test-
ing of Skocpol’s theory are shown in Table 15. 

One unexpected result is that I obtain exactly the same results for the four proc-
esses whether I use GM’s coding for OSR and CSR with the min or min(SumXi,1) 
rule. According to Table 15, there is a perfect (PPP) agreement between what the 
corrected GM fuzzy-testing predicts using GM’s input data and Skocpol’s argu-
ments on the outcome variables OSR, PRV, and CSR for all states. In the case of  
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Table 15 Corrected GM’s Fuzzy Testing of Skocpol’s Theory (expressed in GM numerical 
and LFLA formalisms)  

Process Ontological Secondary Causality Basic Causality 
Outcome Variable ONTA SCSBR SCPRV BCAUS 
       CGM GM: SBR*PRV 
France 1 PPP 1 PPP 1 PPP 1 PPP 1.00 PPP 
Russia 1917 1 PPP 1 PPP 1 PPP 1 PPP 1.00 PPP 
China 1 PPP 1 PPP 1 PPP 1 PPP 0.75 HHH 
England 1 PPP 1 PPP 1 PPP 1 PPP 0.00 NNN 
Russia 1905 1 PPP 0.75 HHH 1 PPP 1 PPP 0.50 MMM 
Germany 1 PPP 0.75 HHH 1 PPP 1 PPP 0.25 LLL 
Prussia 1 PPP 0.75 HHH 1 PPP 1 PPP 0.50 MMM 
Japan 1 PPP 1 PPP 1 PPP 1 PPP 0.00 NNN 

the outcome variable SBR, the corrected GM approach predicts less than a perfect 
process of secondary causality BCSBR with a level of HHH (high) causality. The 
largest disparity between the GM result and CGM approach occurs in the predic-
tion at the level of basic causality BCAUS with the outcome variable CSR (see 
Table 15). However, making such a comparison does not make much sense – it is 
like comparing oranges and potatoes. As pointed out earlier, GM err at the level of 
formal logic and hence their results are not a direct test of basic causality per se. 
What they predict is the value of the outcome variable CSR by using the formula 
CSR=SBR*PRV. The corrected GM method does not predict the values of the 
outcome variables – rather, the latter are used as input data. The CGM method will 
instead be compared to the LFLA method, to which I turn next.   

In order to use LFLA in a logically consistent way and hence avoid the error 
made by GM, we need to start from the formal logic equations [127], [136], [139], 
and [142] in combination with the connectives of linguistic fuzzy logic, LWC, 
LWD, LI and LWA. At the basic causality process BCAUS leading to CSR, equa-
tion [127] takes the form  

( ) ( ) ( ) ( ){ }, , ; , ; ,BCAUS BCAUS CSR SBR CSR SBR CSR PRV CSR PRV SBR PRV CSR SBR PRV CSRLWCν τ ν τ ν τ ν τ→ → → → ∧ → ∧ →=

(147) 
Where: 

( ) ( ) ( ){ }, , ; ,CSR SBR CSR SBR CSR CSR SBR SBRLIν τ ν τ ν τ→ → =                 (148) 

( ) ( ) ( ){ }, , ; ,CSR PRV CSR PRV CSR CSR PRV PRVLIν τ ν τ ν τ→ → =                (149) 

( ) ( ) ( ){ }
( ) ( ){ } ( ){ }

, , ; ,

, ; , ; ,

SBR PRV CSR SBR PRV CSR SBR PRV SBR PRV CSR CSR

SBR SBR PRV PRV CSR CSR

LI

LI LWC

ν τ ν τ ν τ

ν τ ν τ ν τ
∧ → ∧ → ∧ ∧=

=
                      

(150) 

At the secondary causality process SCSBR leading to SBR, equation [136] takes 
the form: 
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( ) ( ) ( ) ( ){ }, , ; , ; ,BCSBR BCSBR INT SBR INT SBR AGB SBR AGB SBR DCL SBR DCL SBRLWDν τ ν τ ν τ ν τ→ → → → → →=    

(151) 

Where, using X for INT, AGB, or DCL, we have:  

( ) ( ) ( ){ }, , ; ,X SBR X SBR X X SBR SBRLIν τ ν τ ν τ→ → =
              

 (152) 

At the secondary causality process SCPRV leading to PRV, equation [139] takes 
the form: 

( ) ( ) ( ){ }, , ; ,BCPRV BCPRV PAS PRV PAS PRV LAV PRV LAV PRVLWDν τ ν τ ν τ→ → → →=                                   

(153) 

Where, using X for PAS or LAV, we have:  

( ) ( ) ( ){ }, , ; ,X PRV X PRV X X PRV PRVLIν τ ν τ ν τ→ → =                (154) 

Finally, at the ontological level ONTA leading to the outcome variable OSR, 
equation [142] leads to: 

( ) ( ) ( ) ( ){ }, , ; , ; ,ONTA ONTA OSR TSS OSR TSS OSR TCS OSR TCS OSR CRV OSR CRVLWCν τ ν τ ν τ ν τ→ → → → → →=       

(155) 

Where, using X for TSS, TCS, or CRV, we have:  

( ) ( ) ( ){ }, , ; ,OSR X OSR X OSR OSR X XLIν τ ν τ ν τ→ → =                 (156) 

Equations [147], [150], [151], [153], and [155] can be generalized by using the 
aggregation operation LWA instead of LWC and LWD for various values of or-
ness w.6  

As explained in the previous chapters, LFLA requires inputs and produces out-

puts for nuance levels iν  and truth values iτ . We thus face the same situation as 

in the previous chapters – we have an added degree of freedom that we can use to 
directly probe the causal process. However, this calls for specific input data on 
truth values, which GM do not provide in their rendering of Skocpol’s theory and 
data. I hence first assume that the degrees of truth of all variables are maximum, 
that is, PPP. I then consider two additional cases: one with uniformly randomized 
truth values (given in Table 24) and one with MHH truth values for GM’s input 
data to highlight the role that truth values play – should play – in analyzing em-

pirical data using LFLA. As explained earlier in the book, iν for a process would 

be an estimate of fuzzy process (causality or ontological relation) whereas 

                                                           
6 See Chapter 2 for a discussion of orness.  
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iτ would be an estimate of our confidence on this estimate. The results of the 

analysis are displayed in Tables 16 – 23.  
Table 16 compares the results obtained using CGM (corrected GM analysis) 

and LFLA at the secondary causal process SCSBR leading to SBR for two differ-
ent values of orness (w~0.3, 0.8), while assuming perfect (PPP) truth degrees (or 
levels of confidence) for the input variables that GM deduce from Skocpol’s em-
pirical study of the eight states. The table presents the obtained values for the nu-
ance and truth degrees in the case of LFLA using the LWD (linguistic weighted 
disjunction) and LWA (linguistic weighted average which is a generalization of 
LWD). There is a perfect agreement between CGM and LFLA at low levels of 
orness for France, Russia in 1917, China and England. That is: there is perfect 
causality PPP at this level. These results are predicted with a perfect (PPP) level of 
confidence for a low level of orness. At high levels of orness LFLA thru LWA 
still agrees with CGM but LFLA thru LWD does not. France and China show a 
lower degree of nuanced causality (VHH) than Russia-1917 and England (which 
still have a PPP degree). For high level of orness we only have a VHH (very high) 
confidence level in the prediction. A noticeable result is that all four cases of 
LFLA predict a MMM (moderate) nuanced causality with an MMM level of con-
fidence for Russia-1905, a value which is much less than the value MMM that 
CGM predicts. Likewise, all LFLA cases agree with CGM prediction of high 
(HHH) nuanced causality with a HHH level of confidence for Prussia. In the case 
of Germany, all LFLA cases predict a low (LLL) nuanced causality whereas CGM 
predicts a high (HHH) nuanced causality. In the case of Japan, all LFLA cases 
predict a high (HHH) nuanced causality with HHH level of confidence, whereas 
CGM predicts a PPP nuanced causality. We can conclude from this analysis that 
Skocpol’s theory does a very good job in explaining the secondary causality level 
leading to SBR in the cases of France, Russia-1917, China and England. However, 
the posited secondary causality leading to SBR does not seem to fare well in the 
cases of Russia 1905, Germany, Prussia, and Japan. Yet it is important to note that 
the conclusions are not dichotomous. Even in the cases where there were no social 
revolutions, the secondary level causality is more or less operational, depending 
on specificities of the cases.    

Table 16 Comparing CGM and LFLA Analyses of Skocpol’s Theory: Secondary Causal 
Process SCSBR Leading to SBR for w~0.3, 0.8 and PPP input truth values. 

    SCSBR 
 INT DCL AGB CGM LWD: w~0.3 LWD: w~0.8 LWA: w~0.3 LWA: w~0.8 

State ν  ν  ν  ν  ν  τ  ν  τ  ν  τ  ν  τ  
France MMM HHH PPP PPP PPP PPP VHH VHH PPP PPP PPP VHH 
Russia 1917 PPP LLL MMM PPP PPP PPP PPP VHH PPP PPP PPP VHH 
China HHH HHH PPP PPP PPP PPP VHH VHH PPP PPP PPP VHH 
England MMM PPP LLL PPP PPP PPP PPP VHH PPP PPP PPP VHH 
Russia 1905 MMM LLL MMM HHH MMM MMM MMM MMM MMM MMM MMM MMM 
Germany LLL LLL LLL HHH LLL HHH LLL MHH LLL LLL LLL LLL 
Prussia HHH LLL LLL HHH HHH HHH HHH HHH HHH HHH HHH HHH 
Japan HHH NNN MMM PPP HHH HHH HHH HHH HHH HHH HHH HHH 
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Table 17 compares the results obtained using CGM (corrected GM analysis) 
and LFLA at the secondary causal process SCPRV leading to PRV for two differ-
ent values of orness (w~0.3, 0.8), while assuming perfect (PPP) truth degrees (or 
levels of confidence). One clearly noticeable feature of these results is that CGM 
predicts for all states a PPP nuanced secondary causality leading to PRV. LFLA 
for low value of orness through LWD and for both low and high values of orness 
through LWA agrees with CGM. At a low value of orness LFLA through LWD 
predicts a high (HHH) nuanced causality only. As to the levels of confidence of 
these LFLA predictions, we have a perfect (PPP) level of confidence at low level 
of orness and a high (HHH) level of confidence for high level of orness only. The 
conclusion is that at this level of secondary causality, the process depicted by 
Skocpol’s theory seems to be operational in all states at a level of at least HHH 
nuanced causality, with at least a HHH level of confidence, at both low and high 
levels of orness.       

Table 17 Comparing CGM and LFLA Analyses of Skocpol’s Theory: Secondary Causal 
Process SCPRV Leading to PRV for w~0.3, 0.8 and PPP input truth values. 

   SCPRV 
 PAS LAV CGM LWD: w~0.3 LWD: w~0.8 LWA: w~0.3 LWA: w~0.8 

State ν  ν  ν  ν  τ  ν  τ  ν  τ  ν  τ  
France HHH PPP PPP PPP PPP HHH HHH PPP PPP PPP HHH 
Russia 1917 PPP PPP PPP PPP PPP HHH HHH PPP PPP PPP HHH 
China NNN HHH PPP PPP PPP HHH HHH PPP PPP PPP HHH 
England NNN NNN PPP PPP PPP HHH HHH PPP PPP PPP HHH 
Russia 1905 PPP PPP PPP PPP PPP HHH HHH PPP PPP PPP HHH 
Germany MMM NNN PPP PPP PPP HHH HHH PPP PPP PPP HHH 
Prussia MMM NNN PPP PPP PPP HHH HHH PPP PPP PPP HHH 
Japan NNN NNN PPP PPP PPP HHH HHH PPP PPP PPP HHH 

Table 18 compares the results obtained using CGM and LFLA at the ontologi-
cal process ONTA leading to OSR for two different values of orness (w~0.3, 0.8), 
while assuming perfect (PPP) truth degrees (or levels of confidence). The CGM 
method predicts a perfect (PPP) ontological relationship between the three vari-
ables CRV, TSS and TCS and the outcome variable OSR, for all states considered 
in the study. This is in agreement with the LFLA method for low level of orness 
(w~0.3) and through the LWD operation. This case of LFLA method also predicts 
a perfect (PPPP) level of confidence or truth. However, when we move to the case 
of LFLA with the LWA aggregation operator or for high level of orness (w~ 0.8), 
we see much more variance across the eight states. One noticeable feature though 
is that France, Russia 1917 and China (i.e., the cases with a successful social revo-
lution) there is no variation at all across the table – the LFLA method predicts the 
exact same results across all three cases. The case of LFLA with LWC with w~ 
0.8 is somewhat unique for we see in here that the model predicts only a high 
(HHH) nuanced ontological relationship for France, Russia 1917, and China, 
whereas it predicts a very high (VHH) nuanced ontological relationship for  
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Table 18 Comparing CGM and LFLA Analysis of Skocpol’s Theory: Ontological Rela-
tionship ONTA Leading to OSR for w~0.3, 0.8 and PPP input truth values. 

    ONTA 
 CRV TSS TCS CGM LWC: w~0.3 LWC: w~0.8 LWA: w~0.3 LWA: w~0.8 

State ν  ν  ν  ν  ν  τ  ν  τ  ν  τ  ν  τ  
France PPP PPP PPP PPP PPP PPP HHH HHH PPP PPP PPP HHH 
Russia 1917 PPP PPP PPP PPP PPP PPP HHH HHH PPP PPP PPP HHH 
China PPP PPP PPP PPP PPP PPP HHH HHH PPP PPP PPP HHH 
England NNN PPP LLL PPP PPP PPP VHH VHH VLL VLL VLL VLL 
Russia 1905 PPP NNN NNN PPP PPP PPP VHH VHH NNN NNN NNN NNN 
Germany MMM NNN NNN PPP PPP PPP PPP PPP NNN NNN NNN NNN 
Prussia NNN LLL MMM PPP PPP PPP PPP PPP VLL VLL VLL VLL 
Japan NNN PPP LLL PPP PPP PPP VHH VHH VLL VLL VLL VLL 

England, Russia 1905, and Japan and a perfect (PPP) one for Germany and Prus-
sia. Another noticeable feature of Table 18 is that the LFLA model using LWA 
predicts a null (NNN) ontological relationship for Russia 1905 and Germany. 
However, these last results are highly dubious since the model predicts a null 
(NNN) level of confidence in these estimates. In conclusion, it is safe to argue that 
the ontological relationship depicted by Skocpol’s theory is empirical valid to a 
large extent, especially for France, Russia 1917 and China. Having said this, it is 
also important to note that one value-added of the LFLA method is that it shows 
much variance between the states wherein there was a successful social revolution 
and those where the revolutions did not succeed.  

Table 19 compares the results obtained using CGM and LFLA at the basic cau-
sality process BCAUS leading to CSR for two different values of orness (w~0.3, 
0.8), while assuming perfect (PPP) truth degrees (or levels of confidence). The 
CGM method predicts a perfect (PPP) basic causal process between the two vari-
ables SBR and PRV and the outcome variable CSR, for all states considered in the 
study. This is in agreement with the LFLA method for low level of orness (w~0.3) 
and through the LWC operation. This case of LFLA method also predicts a perfect 
(PPPP) level of confidence or truth. The three other cases of LFLA modeling 
shown in the table agree with this for France and Russia 1917 (if with a lower 
level – HHH – of nuanced causality in the case of LWC with w~0.8). The China 
case stands apart from its homologues in the basic causality process when LWA is 
used in the LFLA method – the models predict a lower level (VHH) of nuanced 
causality for China. Another noticeable result of this table is that Germany and 
Prussia are predicted to have a PPP nuanced basic causality with PPP level of con-
fidence when using LWC for w~0.8 whereas the cases of France, Russia 1917, and 
China (those with successful social revolutions) are predicted to have only HHH 
nuanced causality with a HHH level of confidence.  

What to make of all this variance in the predictions across different LFLA 
methods? First, it shows the richness of the modeling endeavor of linguistic fuzzy 
logic approach to studying multi-level causality – a richness that is quite appropri-
ate for the task at hand as the empirical cases do indeed show a lot of diversity and  
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Table 19 LFLA Analyses of Skocpol’s Theory: Basic Causal Process BCAUS Leading to 
CSR for w~0.3 thru LWDC and LWA and PPP input truth values. 

   BCAUS 
 SBR PRV CGM LWC: w~0.3 LWC: w~0.8 LWA: w~0.3 LWA: w~0.8 

State ν  ν  ν  ν  τ  ν  τ  ν  τ  ν  τ  
France PPP PPP PPP PPP PPP HHH HHH PPP PPP PPP HHH 
Russia 1917 PPP PPP PPP PPP PPP HHH HHH PPP PPP PPP HHH 
China PPP HHH PPP PPP PPP HHH HHH VHH VHH VHH HHH 
England PPP NNN PPP PPP PPP VHH VHH MLL MLL HHH MHH 
Russia 1905 MMM PPP PPP PPP PPP VHH VHH MHH MHH VHH HHH 
Germany LLL MMM PPP PPP PPP PPP PPP MLL MLL MLL MLL 
Prussia HHH MMM PPP PPP PPP PPP PPP MHH MHH MHH MHH 
Japan HHH NNN PPP PPP PPP VHH VHH LLL LLL MMM MMM 

Table 20 Effect of Input Truth Values: Results for Causality Processes for w~ 0.3. 

 PPP truth value for input variables 

 
SCSBR  

thru LWD 
SCPRV  

thru LWD 
BCAUS 

thru LWC 
SCSBR  

thru LWA 
SCPRV  

thru LWA 
BCAUS  

thru LWA 

State ν  τ  ν  τ  ν  τ  ν  τ  ν  τ  ν  τ  
France PPP PPP PPP PPP PPP PPP PPP PPP PPP PPP PPP PPP 
Russia 1917 PPP PPP PPP PPP PPP PPP PPP PPP PPP PPP PPP PPP 
China PPP PPP PPP PPP PPP PPP PPP PPP PPP PPP VHH VHH 
England PPP PPP PPP PPP PPP PPP PPP PPP PPP PPP MLL MLL 
Russia 1905 MMM MMM PPP PPP PPP PPP MMM MMM PPP PPP MHH MHH 
Germany LLL HHH PPP PPP PPP PPP LLL LLL PPP PPP MLL MLL 
Prussia HHH HHH PPP PPP PPP PPP HHH HHH PPP PPP MHH MHH 
Japan HHH HHH PPP PPP PPP PPP HHH HHH PPP PPP LLL LLL 

Table 21 Effect of Input Truth Values: Results for Causality Processes for w~ 0.3. 

MHH truth value for input variables 

 
SCSBR  

thru LWD 
SCPRV  

thru LWD 
BCAUS  

thru LWC 
SCSBR  

thru LWA 
SCPRV  

thru LWA 
BCAUS  

thru LWA 

State ν  τ  ν  τ  ν  τ  ν  τ  ν  τ  ν  τ  
France MHH PPP MHH PPP MHH MHH MHH MHH MHH MHH MHH MHH 
Russia 1917 MHH PPP MHH PPP MHH MHH MHH MHH MHH MHH MHH MHH 
China MHH PPP MHH PPP MHH MHH MHH MHH MHH MHH MHH MHH 
England MHH PPP MHH PPP MHH MHH MHH MHH MHH MHH MMM MMM 
Russia 1905 MMM MMM MHH PPP MHH MHH MMM MMM MHH MHH MMM MMM 
Germany MLL HHH MHH PPP VHH VHH MLL MLL MHH MHH MLL MLL 
Prussia MHH HHH MHH PPP HHH HHH MHH MHH MHH MHH MMM MMM 
Japan MHH HHH MHH PPP MHH MHH MHH MHH MHH MHH MMM MMM 

variance, so much so that scholars have kept arguing since Skocpol wrote her 
book on how and to what extent her empirical data falsifies her theory (as neatly 
summarized by GM). Second, the use of a parameter – the level of orness w – al-
lows us some “testing” space for fitting different models derived from using  
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Table 22 Effect of Input Truth Values: Results for Causality Processes for w~ 0.3. 

Uniformly randomized truth values for input variables 

 
SCSBR  

thru LWD 
SCPRV  

thru LWD 
BCAUS  

thru LWC 
SCSBR  

thru LWA 
SCPRV  

thru LWA 
BCAUS  

thru LWA 

State ν  τ  ν  τ  ν  τ  ν  τ  ν  τ  ν  τ  
France PPP PPP MHH PPP VHH MLL PPP PPP MLL MLL VLL VLL 
Russia 1917 MMM PPP MHH PPP MHH MLL LLL LLL MLL MLL LLL LLL 
China MHH PPP MHH PPP MHH LLL MHH MHH MLL MLL VLL VLL 
England HHH PPP MHH PPP MHH MHH HHH HHH MLL MLL MHH MHH 
Russia 1905 MMM MMM MHH PPP MHH HHH MMM MMM MLL MLL MLL MLL 
Germany HHH HHH MHH PPP VHH VHH MLL MLL MLL MLL VHH VHH 
Prussia HHH HHH MHH PPP HHH HHH MLL MLL MLL MLL MHH MHH 
Japan PPP HHH MHH PPP MHH HHH HHH HHH MLL MLL MHH MHH 

Table 23 Effect of Input Truth Values: Results for Ontological Process ONTA for w~ 0.3 

 PPP truth value  
for input variables 

MHH truth value  
for input variables 

Uniformly randomized  
truth values for input variables 

 thru LWC thru LWA thru LWC thru LWA thru LWC thru LWA 

State ν τ  ν  τ  ν  τ  ν  τ  ν  τ  ν  τ  
France PPP PPP PPP PPP MHH MHH MHH MHH MHH VLL VLL VLL 
Russia 
1917 PPP PPP PPP PPP MHH MHH MHH MHH MHH MHH MHH MHH 
China PPP PPP PPP PPP MHH MHH MHH MHH MHH MLL MLL MLL 
England PPP PPP VLL VLL MHH MHH MLL MLL MHH MHH MHH MHH 
Russia 
1905 PPP PPP NNN NNN MHH MHH MLL MLL MHH MHH MHH MHH 
Germany PPP PPP NNN NNN VHH VHH MLL MLL VHH VHH MMM MMM 
Prussia PPP PPP VLL VLL HHH HHH MLL MLL HHH HHH HHH HHH 
Japan PPP PPP VLL VLL MHH MHH MLL MLL MHH MHH MHH MHH 

Table 24 Sample of uniformly randomized truth values used for input variables   

 Random Input τ  

State INT DCL AGB PAS LAV CRV TSS TCS 
France VLL MMM MLL NNN VHH LLL NNN MHH 
Russia 1917 VHH HHH NNN NNN VHH MHH MHH HHH 
China MMM MLL HHH VHH VLL VHH MHH LLL 
England MHH LLL MLL MLL HHH HHH NNN MMM 
Russia 1905 VHH VHH MHH LLL LLL HHH MLL MLL 
Germany HHH MMM NNN VHH HHH VHH NNN NNN 
Prussia NNN HHH VLL LLL HHH VHH MHH VHH 
Japan VHH NNN MHH VHH VLL VLL VHH HHH 

LFLA. In other words, the fuzziness level of causality and ontological relations is 
not to be assumed as a pre-theoretical given. Rather, the LFLA method makes it 
an integral part of the investigation. Third, the richness of the LFLA method to 
studying causality and ontological relationships is further illustrated in Tables 20, 
21, 22, and 23, where I compare the results obtained for low levels of fuzziness  
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(or orness) at different values of the truth values of the input data. We can clearly 
see that what we assume for truth values for the input variables does indeed have 
an important impact on the levels of nuance and confidence of the various causal 
and ontological process of Skocpol’s theory. This hence reinforces the call made 
earlier in the book for developing ways to systematically estimate this crucial as-
pect – i.e., the truth value or level of confidence – of the empirical data, an aspect 
of data analysis that has yet to be considered in social sciences.7         

The linguistic fuzzy logic approach offers a much richer spectrum of possible 
aggregation operators. Most of these operations lead to conclusions that are very 
different from CGM’s analysis (and of course Boolean logic methods). As ex-
plained in Chapter 2, the notion of orness stands for the notion that when we ex-
press ourselves in natural language vagueness is inherently present. Aggregating 
linguistic information does not eliminate this inherent vagueness and thus the very 
process of aggregation itself is best constructed by making it in itself built on 
vagueness. More specifically, speaking of LWA as having a given degree of or-
ness means that the LWA is more or less like a disjunction or a conjunction – 
LWA possesses more or less or-like (or and-like) behavior.8 A key claim in this 
chapter is that logic can also be conceptualized in linguistic fuzzy terms. This 
means for example that we do not strictly speaking have necessary or sufficient 
conditions, but we rather have more or less necessary and more or less sufficient 
conditions. This can be formalized through the notion of orness that the LWA op-
eration is built on. Because we think and express our thoughts and discourses in 
natural language, vagueness is inherent in our thoughts and discourses, including 
social sciences discourses about causality. Linguistic fuzzy logic is one way to 
bring in tune the vagueness of our thought processes and discourses and social 
sciences, but in a mathematically rigorous and axiomatized way. 

                                                           
7 I am not accusing the social sciences community of not being aware of this problem, that 

is, of not knowing that empirical estimates of variables are always done to a certain level 
of confidence only. I am rather calling for a systematization of this concern and its inclu-
sion in our methods of data analysis as a separate factor, rather than as part of the “global 
error” term.  

8 I should point out (as a reminder) that the process of aggregation through LWA is not 
arbitrary as it might seem. As explained in Chapter 2, I use the MAXENT principle in 
conjunction with orness to specify the LOWA process of aggregating linguistic informa-
tion. MAXENT stipulates that in the process of making inferences based on incomplete 
information, we should select the probability distribution function with maximum entropy 
value given the observed data. The distribution function obtained using MAXENT pro-
vides the most conservative estimation of the unknown underlying distribution function. 
This choice singles out the most significant and least biased distribution and the one 
which best represents the true distribution. Using MAXENT in the aggregation process of 
linguistic fuzzy information is suitable since it falls well within the spirit of preserving as 
much vagueness and uncertainty as possible. When supplemented with the measure of 
orness we have a procedure which preserves the vagueness of the information as well as 
the multi-dimensionality character of the aggregation process. 
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Chapter 7 
Linguistic Fuzzy-Logic Data Analysis 

Data analysis is at the core of much of what counts as social sciences today. Yet, 
the tools that have been designed for these purposes remain rather limited in social 
sciences, and more so in political science and International Relations. For the most 
part scholars use statistical means to analyze data. However, as succinctly put by 
Braumoeller (2003:209), “theories that posit complex causation, or multiple causal 
paths, pervade the study of politics but have yet to find accurate statistical expres-
sion … To date, however, no one has made a concerted effort to describe how the 
empirical implications of theoretical models that posit causal complexity could be 
captured by statistical methods.” Without belittling the gap in statistical method-
ology that Braumoeller highlights, there is a need for other types of tools – non-
statistical approaches – that could be used to address issues that statistical analyses 
cannot reach such as conceptual vagueness. 

Whether it is statistical/probabilistic or formal/mathematical modeling in nature 
the analysis of data assumes a given “logic” and a correspondingly underlying 
algebraic structure of this logic. Explicating the logic underpinning data analysis 
and the underlying algebra of this logic helps clearly explicate the fundamental 
assumptions that define the analysis. Most data analyses in social sciences assume 
the Boolean logic as the underlying logic with its associated two-valued algebraic 
structure. For example, Braumoeller (2003), in his promising approach to complex 
causation, clearly positions his method as being Boolean. Yet, there are no inher-
ent theoretically, empirically, or methodologically insurmountable impediments or 
raison d’être why we cannot explore the vast realm of other logics in social sci-
ence inquiry.  

In this chapter, I specifically intend to do so – I propose a non-Boolean, non-
statistical approach to study the logic of data analysis. This of course is not a call 
against statistical methods which have taught us a great deal about causality and 
more generally relations between dependent and independent variables. I also ad-
vocate “computing with words” as another way of doing quantitative analysis by 
adopting linguistic fuzzy logic as a framework. Although conventional numerical-
ization of knowledge in social sciences has achieved much by seeking more so-
phistication and mathematical rigor, the latter can also be achieved but with words 
expressed in natural language, not numbers. That is, quantitative analysis is possi-
ble without assuming a Boolean logic and/or statistical analysis using the technol-
ogy of “computing with words.”  

By way of introduction, I first delineate and discuss the commonalities and the 
most important differences between Ragin’s (2000) approach and LFLA, thereby 
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highlighting the value-added for the latter. I next briefly summarize Charles 
Ragin’s approach to data analysis and the study of causality based on fuzzy-set 
theory. I then elaborate the discussion, therewith highlighting key overlaps and 
most important differences between Ragin’s approach and LFLA. As a further 
illustration I also apply LFLA analysis to Braumoeller’s (2003) re-examination of 
Huth’s (1996) theory of war initiation. 

I often refer to Charles Ragin’s pioneering work on using fuzzy-set theory to 
analyze causality in social sciences for two reasons. First, this helps to set the 
ground for an understanding of the importance of using linguistic fuzzy logic to 
analyze causality in social sciences. Second, it allows me to highlight key overlaps 
between Ragin’s approach and mine as well as the value-added of using linguistic 
fuzzy logic instead of just fuzzy set theory the way he does it. However, it is 
worthwhile keeping in mind that fuzzy sets are the essential elements of both ap-
proaches, the difference lying in the fact that I concentrate more on formal logic 
and that I use linguistic variables instead of membership functions – that is, nu-
merical degrees of memberships to fuzzy sets – as Ragin does.   

Two additional differences will also be discussed below. First, LFLA allows a 
fuzzification of the degrees of membership to a certain category. That is: member-
ship degrees are also considered to be fuzzy sets, not crisp numbers as assumed by 
Ragin’s approach. This is done through the concept of truth value as explicated 
down below. This allows the introduction of a fuzzy-logic equivalent of the confi-
dence level used in statistical studies. Second, LFLA allows a fuzzification of the 
dichotomous division into necessary and sufficient conditions, that is, the notion 
of simple causality is fuzzified. Fuzzy relations of necessity or sufficiency are 
expressed as having a certain degree of fuzzy nuance with a degree of truth. We 
would, for example, say that there is very high fuzzy relation of necessity with a 
low degree of truth. 

1   Linguistic Fuzzy-Logic Data Analysis of Simple Causality 

Simple causality stands for causal necessity, causal sufficiency, or a combination 
of both types of causal conditions. This is summarized in Table 1.  

Table 1 Different Types of Simple Causation 

Simple Causality Conventional Semantic Formal Logic Alternative Form 

Necessity 
 

Only if X then Y:  
X necessarily causes Y  

Y→X ÿ X → ÿ Y 

Sufficiency 
 

If X then Y: 
X sufficiently causes Y 

X→Y ÿ Y → ÿ X 

Necessity and 
Sufficiency 

If and Only if X then Y: 
X necessarily and sufficiently 
causes Y 

(X→Y)Ÿ(Y→X) (X→Y)Ÿ(ÿX→ÿY) 

Let us start with necessary causation. X necessarily causes Y means that X is an 
antecedent condition for all positive outcomes of Y. Put in terms of fuzzy set  
theory: Ragin (2000:272) phrases the question as “Do instances of the outcome 
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constitute a subset of one or more causal conditions?” Translated in terms of 
membership scores this means that “If fuzzy-membership scores in the outcome 
are uniformly less than or equal to fuzzy-membership scores in the cause (yielding 
a ‘lower triangular’ scatterplot), then the cause may be considered a necessary 
condition for the outcome” (2000:272). Ragin combines this with a probabilistic 
test of necessity with “almost necessary” (~0.80) as the benchmark and 0.01 as the 
significance level to explore necessary causation in his study of IMF protest.1 He 
finds that IMF pressure (IMP) and Urbanized (URB) pass this test of necessity.   

The starting point of the analysis of necessity in linguistic fuzzy logic approach 
is that we have a logical inference such as Y → X with X being tested as a neces-
sary condition for Y.2 Let us phrase this using the language of linguistic fuzzy 
logic:  

1. We know that: S1={y has nuance value Y with a degree of truth yτ }  

2. We know that: S2={x has nuance value X with a degree of truth xτ }  

3. To what degree of nuanced (fuzzy) necessity nν and degree of truth nτ  can 

we deduce that {If S1 then S2}? 

That is: We know the linguistic nuance value Y of y and its truth value yτ . We 

know the linguistic nuance value X of x and its truth value xτ . Can we infer from 

this the nuance value nν and truth value nτ of the fuzzy statement “X necessarily 

causes Y”? In solving this problem we need therefore to evaluate the nuance and 
truth values of the logical inference using the linguistic implication operator, LI. 
As an illustration consider the following query on whether we have IMP (IMF 
Pressure) as a necessary condition for PRO (IMF Protest): PRO  IMP? For ex-
ample, as shown in Chapter 2, in the Argentinean case we have the nuance values 

which correspond to Ragin’s degrees of membership: PROv PPP= (perfectly 

included in the category of IMF protest) and IMPv HHH= (highly included in 

the category of IMF Pressure). However, this information is not enough since in 

the LFLA we also need to know the degrees of truth PROτ  and IMPτ  of these at-

tributions of degrees of membership (which correspond to what I call nuance val-
ues). Using the linguistic implication operation we can thus write that: 

( ) ( ) ( ) ( ){ } ( ), , , , , ; ,PRO IMP PRO IMP PRO PRO IMP IMP PRO PRO IMP IMPLI LWD Negν τ ν τ ν τ ν τ ν τ→ →
⎡ ⎤⎡ ⎤= =⎣ ⎦ ⎢ ⎥⎣ ⎦

   

(157) 

This leads more explicitly to the following expressions for the degree of nuanced 

necessity PRO IMPv →  and its corresponding degree of truth PRO IMPτ → : 

                                                           
1 See Chapter 2 for a summary of relevant Ragin’s analysis of IMF protest.  
2 Note that we could equivalently use the alternative form: ÿ X → ÿ Y, that is, a non-

occurrence of X implies a non-occurrence of Y.  



158 1   Linguistic Fuzzy-Logic Data Analysis of Simple Causality
 

( ) ( ){ }, ; ,PRO IMP PRO PRO IMP IMPMAX MIN Neg MINν ν τ ν τ→
⎡ ⎤ ⎡ ⎤= ⎣ ⎦ ⎣ ⎦    (158) 

( )( ),PRO IMP PRO IMPLOWA Negτ τ τ→ =
             

               (159) 

Assuming for the sake of illustration that the degrees of truth in the case of Argen-

tina3 are: PRO VHHτ = and IMP MMMτ = . That is: the degree of membership 

of Argentina in the set of IMF Protest is known to very high degree of truth (or 
confidence) and its membership in the set of IMF Pressure is known to a moderate 
degree of truth (or confidence). We also know from Ragin’s data that 

PROv PPP= and IMPv HHH= . Plugging these nuance and truth values into the 

formula we get: 

( ) ( ){ }, ; ,PRO IMP MAX MIN Neg PPP VHH MIN HHH MMMν →
⎡ ⎤ ⎡ ⎤= ⎣ ⎦ ⎣ ⎦                

(160)   

( )( ),PRO IMP LOWA Neg VHH MMMτ → =                 (161)      

Using the definitions of Neg, MAX, MIN, and LOWA operators (see Chapter 2) 
we obtain:  

( ) ( ){ } { }, ; , ;PRO IMP MAX MIN NNN VLL MIN HHH MMM MAX NNN MMM MMMν →
⎡ ⎤ ⎡ ⎤= = =⎣ ⎦ ⎣ ⎦

   

(162) 

( )( ) ( ), ,PRO IMP LOWA Neg VHH MMM LOWA VLL MMM MMMτ → = = =    

(163) 

That is: IMF Pressure (IMP) is a moderately (MMM) necessary condition for IMF 
Protest (PRO) to a moderate (MMM) degree of truth. Note that had we assumed 

that the nuances of PRO and IMP were perfectly known with PRO PPPτ = and 

IMP PPPτ = , we would have had PRO IMP PPPτ → = , that is, we would be able 

to say with a perfect degree of truth (or level of confidence) that IMF Pressure 
(IMP) is a moderately necessary condition for IMF Protest (PRO). In Ragin’s ap-
proach, the level of confidence in the inference is addressed through the practice 
of “benchmarking” in combination with a null hypothesis testing at a preset level 
of significance; that is, combining fuzzy-set approach with a conventional statisti-
cal test of significance. The linguistic fuzzy logic approach is thus (comparatively 
speaking) self-sufficient (for the lack of a better term): the confidence in the  

                                                           
3 These are unfortunately not given in Ragin’s empirical research. 
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inference of whether we have a fuzzy necessary condition is an internal byproduct 
of the same method. Both the level of nuanced causation and the confidence level 
(truth value) of this estimate are simultaneously produced without resorting in 
addition to a statistical procedure.   

Furthermore, not only a sort of benchmarking is inherent in the method itself 
through the concept of degree of truth. The method also introduces a sort of indi-
vidual benchmarking (i.e., individual truth levels) for each of the variables (or 
categories) being considered in the analysis. In comparison, Ragin’s method uses 
one overall procedure of benchmarking with a preset level of confidence.4 Con-
sider as an example the fuzzy set (category) IMF pressure (IMP). Ragin computes 
the proportion of countries that are included in the fuzzy set using the criterion:  

( ) ( ){ }IMP i PRO iWhether C Cμ μ≥ for country Ci                    (164) 

If we denote by N the total number of countries in the study, the proportion for a 
variable (fuzzy set) X is given by: 

( ) ( ){ }
1

1
1

N

X PRO j X j
j

P C C
N

μ μ
=

⎡ ⎤= − Θ −⎣ ⎦∑
  

with ( ) 1 0

0 0

if a
a

if a

>⎧
Θ = ⎨ ≤⎩

  (165) 

Ragin finds for example that 94%IMPP =  (see his Table 10.2, p. 273).  If p de-

notes the benchmark proportion, Ragin (2000:111) then uses (for N > 30, other-
wise he would use a binomial distribution) the following z-score to evaluate the 
confidence level of the procedure (through null hypothesis testing with a preset 
significance level of a): 

( ) 1
2

(1 )

X

X

P p
Nz

p p

N

− −
=

−

                              

               (166) 

Ragin finds that two variables – IMP and URB – pass the test of necessity with a 
benchmark of p = 0.80 and a significance level of α = 0.01. What is the equivalent 
procedure in linguistic fuzzy logic? The answer lies in using the operator LWA 
(linguistic weighted average) in conjunction with the operator LI (linguistic impli-
cation), both introduced in Chapter 2.  

                                                           
4 Obviously, this strength of the LFLA method comes at a price – in addition to the nuance 

degrees (or equivalently degrees of membership) we need also to empirically estimate the 
degrees of truth of these nuances. Addressing this issue is an important aspect of empiri-
cal testing but is left for future work as far as this book is concerned. Note that this issue 
has been addressed to a certain extent in the artificial intelligence literature on type-2 
fuzzy sets, if however only for numerical membership functions, not linguistically ex-
pressed ones.  
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First, we need to recast the criterion: ( ) ( ){ }IMP i PRO iWhether C Cμ μ≥  us-

ing the LI operation since, as explained earlier, the criterion is effectively a nu-
merical translation of the formal logical implication {PRO IMP}. In Ragin’s 
approach the above criterion lends either 0 or 1/N through the for-

mula ( ) ( ){ }1 PRO j X jC C Nμ μ⎡ ⎤− Θ −⎣ ⎦ , with the sum of these elements giv-

ing the proportion for the variable X. In the LFLA method we obtain a nuance 
degree and a truth degree through the formula:  

( ) ( )( ) ( ) ( )( ) ( ) ( )( ){ }, , ; ,PRO IMP j PRO IMP j IMP j IMP j PRO j PRO jC C LI C C C Cων τ ν τ ν τ→ → =    

    (167) 

Second, the equivalent of the proportion is obtained using the aggregation opera-
tion LWA as: 

( ) ( )( ) ( ) ( )( ) ( ) ( )( ){ }1 1, , ;...; ,fnec fnec
IMP IMP PRO IMP PRO IMP PRO IMP N PRO IMP NLWA C C C Cων ω τ ω ν τ ν τ→ → → →=

  (168) 

Using the definition of LWA (see Chapter 2) we see that: 

( ) ( ) ( ){ }1 ;...;fnec
IMP PRO IMP PRO IMP NLOWA C Cων ω ν ν→ →=         (169) 

( ) ( ) ( )( ) ( ) ( )( ){ }1 1, ;...; ,fnec
IMP PRO IMP PRO IMP PRO IMP N PRO IMP NLOWA MIN C C MIN C Cωτ ω ν τ ν τ→ → → →=

   (170) 

( )fnec
IMPν ω and ( )fnec

IMPτ ω are respectively the nuance of fuzzy necessity and the 

degree of truth (or confidence) of this fuzzy necessity (with a degree of orness ω 
as explicated in Chapter 2). The concept of fuzzy necessity generalizes the notion 
of crisp necessity as usually thought of in social sciences. Fuzzy necessity with 
varying levels of nuance corresponds to more or less necessity, which can be 
roughly expressed as some necessity contaminated with some contingency. Hence, 
fuzzy necessity (or, conversely, fuzzy contingency) varies on a spectrum extend-
ing from crisp necessity to crisp contingency.  

An important question is: What is the interpretation of the degree (or level) or-
ness ω which is embedded in the evaluation of LWAω through the LOWAω opera-
tion? As explained in Chapter 2, orness ω is a measure of the extent to which the 
aggregation of linguistic information is or-like, that is, whether we are closer to an 
intersection or union of the fuzzy sets representing the different categories. An 
orness ω ~1 represents a crisp intersection of the fuzzy sets, thereby corresponding 
to the smallest common fuzzy set which is included in all fuzzy sets. An orness ω 
~ 0 represents a crisp union of the fuzzy sets, thereby corresponding to the largest 
of the fuzzy sets which contains all fuzzy sets. Hence, for very small degrees of 
orness (thus high degrees of andness) we move toward recovering crisp necessity, 
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whereas for high degrees of orness (thus small degrees of andness) we move to-
ward recovering crisp contingency.  

Ragin’s concept of benchmark p is such that XP p≥ for all cases that pass the 

threshold test (set by the benchmark), thereby corresponding to an inclusion of all 
these fuzzy categories X. Ragin relies on linguistic qualifiers of the benchmark 
such as “most often than not” (p = 0.5), “usually” (p = 0.65), “almost always” (p = 
0.80). The procedure of benchmarking is probabilistically evaluated through the 
notion of significance level. Yet it is a crisp – not fuzzy – notion as shown in 
equation [165] for the computation of proportions. In comparison, the LWAω pro-
cedure fuzzifies this benchmarking since the weights resulting from using the 
MAXENT (maximum entropy) principle are efficiently distributed in such a way 
as to best represent the existing information. For the crisp benchmarking method 
the weights are either 0 or 1/N meaning that a case is “in” with a weight 1/N or is 
“out”, thereby showing how Boolean logic still indirectly determines Ragin’s 
fuzzy-set approach to the study of causality. In the LWA approach all cases con-
tribute more or less, depending on the level of andness (or orness ω).  

To test these conclusions, I conduct a hypothetical experiment where all cases 
contribute perfectly to all fuzzy variables. In Ragin’s method this would mean that 
all proportions are exactly 1 for all independent variables. In the LFLA method it 

means that ( )
kX iC PPPν = for all variables X and all countries Ci. I also as-

sume that the truth degrees of all these attributions are perfect, ( )
kX iC PPPτ = . 

The expectation is to find perfect necessity. Doing the calculations leads to 

k

fnec
X PPPν = and

k

fnec
X PPPτ = for all variables X for a degree of andness of 

0.999 (orness ω = 0.001) – we indeed have perfect necessity with a perfect degree 
of confidence (truth), as it indeed should be.  

Applying the same method to Ragin’s actual data for the nuances of all  
variables gives different results depending, first, on the level of orness ω and, sec-
ond, on what one assumes about the confidence (truth) of Ragin’s assignment of 
these nuances to the various variables in the 35 countries that he considered. The 
expectation however is that the smaller the orness level and the higher the truth 
degrees assumed for Ragin’s raw data, the closer the results of LFLA should be to 
Ragin’s fuzzy-set theory combined with statistical method.  The results are shown 
in Table 2.  

Ragin’s conclusions about IMP and URB are confirmed, if with a number of 
important differences. First, the approach simultaneously provides the level of 
fuzzy necessity relation and the level of truth of this estimate (which can also be 
interpreted as the level of confidence). Second, the LFLA method shows a differ-
ence between the two variables IMP and URB. Whereas Ragin finds the same 
confidence for both these variables, LFLA shows using the same original Ragin’s 
data that IMP (IMF pressure) is less necessary than URB (urbanization) – IMP 
displays a very low fuzzy necessity whereas URB displays a low fuzzy necessity. 
Moreover, URB is estimated with a low degree of confidence, which is higher 
than that of IMP which is estimated as very low.   
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Table 2 LFLA approach to Ragin’s data with an orness level of ω = 0.001 assuming a per-
fect confidence (PPP) in the measured data 

 ω = 0.001 with PPP empirical confidence

ω = 0.001 with 
HHH empirical 

confidence 
ω = 0.6 with PPP 

empirical confidence 

Variable k

fnec
Xν  

k

fnec
Xτ  

k

fnec
Xν  

k

fnec
Xτ  

k

fnec
Xν  

k

fnec
Xτ  

IMP VLL VLL LLL LLL VLL VLL 
URB LLL LLL LLL LLL LLL LLL 
ECH NNN NNN LLL LLL NNN NNN 
DEI NNN NNN LLL LLL NNN NNN 
POL NNN NNN LLL LLL NNN NNN 
GOA NNN NNN LLL LLL VLL VLL 

These results will change if one assumes a lower degree of confidence in 
Ragin’s raw data. If instead of assuming a perfect confidence (PPP) I assume, say 
a high confidence (HHH) only, keeping the same level of orness (w=0.001), we 
obtain the results in Table 2. We clearly see that all variables show the same low 
nuance of fuzzy necessity at the same low level of confidence. If instead we keep 
the same level confidence in the raw data, that is, HHH, but change the orness 
level to w = 0.1, 0.3, 0.8, or 0.95 we obtain the same results (not shown in Table 
2). However, keeping a PPP level of confidence in Ragin’s raw data but increasing 
the level of orness, for example, to  w = 0.6, produces the results in Table 2, which 
shows that GOA (government activism) behaves now in the same way as IMP 
while no change occurs for the other variables.  

In sum, LFLA method does confirm Ragin’s results obtained in using a combi-
nation of fuzzy-set theory and statistical null hypothesis testing with benchmark-
ing. In addition, LFLA method qualifies Ragin’s method by also showing some 
hidden assumptions concerning the confidence level of the raw data (that is, Ragin 
implicitly assumes a perfect confidence). Moreover, the LFLA method avoids any 
resort to statistical testing as a way of validating its results. Finally, necessity in-
ferred from empirical data is shown to be a fuzzy notion with a nuance level and a 
truth degree that can vary depending on the nuance levels and truth degrees of raw 
data as well as the level of orness that one opts for. Of course, much of this dis-
cussion is equivalently applicable to the study of sufficiency as well as conjoint 
instances of necessity and sufficiency. In the following section I compare LFLA to 
Braumoeller’s (2003) Boolean logit study of complex causality as he applied it to 
reexamine Huth’s (1996) exploration of the initiation of international wars.  

2   Linguistic Fuzzy Logic Data Analysis of Multiple-Path 
Causation 

In an innovative study Braumoeller (2003:210, 216, 219) suggests a sophisticated 
statistical method – Boolean logit/probit – to test theories that posit multiple 
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paths resulting from conjectural causation and substitutability to (non)outcome. 

Conjectural causation occurs when for example two independent variables 1x and 

2x (conjecturally) cause y . Denoting the corresponding probabilities respectively 

by
1xp and

2xp , yp , the probability of the outcome, is: 

1 2y x xp p p= ×
                                                     

 (171) 

Substitutability occurs when two independent variables 1x and 2x can be substi-

tuted for one another to produce y . The probability for such an outcome is: 

( ) ( )
1 2

1 1 1y x xp p p⎡ ⎤= − − × −⎣ ⎦   
                                (172) 

The formulae of formal logic corresponding to these conditions are: 

• Conjectural causation:  

( ) ( )1 2X Y X Y→ ∧ →                                       (173) 

• Substitutability:  

( )( ) ( )( ){ }1 2X Y X Y¬ ¬ → ∧ ¬ →  or equivalently ( ) ( )1 2X Y X Y→ ∨ →                              

(174) 

Braumoeller converts these probabilities into the framework of likelihood func-
tions so as to use MLE (maximum likelihood estimation) to evaluate the statistical 
parameters of the causal model. He uses the following correspondence schema:  

• Conjectural causation: 

( ) ( ) ( )

1 2

1 1 2 2 1 1 1 2 2 2Pr 1 , , , ,

y x x

i i i i

p p p

y x x xα β α β α β α β

= ×

↓ ↓ ↓
= = Φ + × Φ +

   

(175) 

(.)Φ is a cumulative distribution function. This expression is generalized to J 

causal paths as:  

( ) ( )
1

Pr 1 , ,
J

i i j j ij
j

z x xα β α β
=

⎡ ⎤= = Φ +⎣ ⎦∏                            (176) 
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The likelihood function is: 

( ) ( ) ( )
1

1 1 1

, , 1

ii
yy

N J J

j j ij j j ij
i j j

L Y X x xα β α β α β
−

= = =

⎛ ⎞ ⎛ ⎞
⎡ ⎤ ⎡ ⎤= Φ + − Φ +⎜ ⎟ ⎜ ⎟⎣ ⎦ ⎣ ⎦

⎝ ⎠ ⎝ ⎠
∏ ∏ ∏
        (177) 

For K independent variables per causal path, the likelihood function for conjec-
tural causation (and a corresponding one for substitutability) becomes:  

( )
1

1 11 1 1

, , 1

ii
yy

N J JK K

j jk ijk j jk ijk
k ki j j

L Y X x xα β α β α β
−

= == = =

⎛ ⎞ ⎛ ⎞⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞= Φ + − Φ +⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦⎝ ⎠ ⎝ ⎠
∑ ∑∏ ∏ ∏

    (178) 

The MLE method then gives the parameters α and β. What is the corresponding 
procedure in the LFLA method? Let us first express conjectural causation and 
substitutability in the LFLA formalism.  Conjectural causation can be phrased 
using the language of linguistic fuzzy logic as:  

• We know that: X has nuance Xν  to a degree of truth Xτ  

• We know that: Y has nuance Yν  to a degree of truth Yτ  

• We know that: Z has nuance Zν  to a degree of truth Zτ  

• To what nuance of conjectural causation conjν and degree of truth conjτ  

can we deduce that:  [{X causes Z} AND {Y causes Z}]? 

Substitutability can be phrased using the language of linguistic fuzzy logic as:  

• We know that: X is Xν  to a degree of truth Xτ  

• We know that: Y is Yν  to a degree of truth Yτ  

• We know that: Z is Zν  to a degree of truth Zτ  

• To what nuance of substitutability subν and degree of truth subτ  can we 

deduce that:      [{X causes Z} OR {Y causes Z}]? 

Using the LI, and LWC, and LWD operations, we can write for the nuance and 
truth values:  

• Conjectural causation:  

( ) ( )( ) ( ) ( ){ } ( ) ( ){ }{ }, , ; , ; , ; ,conj conj X X Z Z Y Y Z ZLWC LI LIω ω ων ω τ ω ν τ ν τ ν τ ν τ=  

    (179) 
• Substitutability:   

( ) ( )( ) ( ) ( ){ } ( ) ( ){ }{ }, , ; , ; , ; ,sub sub X X Z Z Y Y Z ZLWD LI LIω ω ων ω τ ω ν τ ν τ ν τ ν τ=
                  (180)  
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In Braumoeller’s framework, the probability for an outcome O resulting from a 
combination of conjectural causation and substitutability of three variables A, B, 
and C takes the form: 

( ) ( )( )1 1 1O A B Cp p p p⎡ ⎤= × − − × −⎣ ⎦                              (181) 

This multiple-path causation can be expressed in formal logic as:  

( ) ( ) ( )A O B O C O⎡ ⎤→ ∧ → ∨ →⎣ ⎦                               (182) 

This translates in LFLA formalism to:  

( ) ( )( ) ( ) ( ) ( ){ }{ }, , ; , ; ,mpc mpc A O A O B O B O C O C OLWC LWDω ων ω τ ω ν τ ν τ ν τ→ → → → → →=
     (183) 

Where the nuance and truth levels of X Y→ are given by:  

( ) ( ) ( ){ }, , ; ,X Y X Y X X Y YLIων τ ν τ ν τ→ → =
                     

(184) 

Note that the nuance and truth levels of multiple-path causation (equation [183]) 
depend on the level of orness ω.  

As discussed earlier, LFLA enriches the discussion of causation further by 
fuzzifying the distinction between necessity and sufficiency, or, equivalently, con-
jectural causation and substitutability. Indeed, linguistic conjunction LWCω and 
disjunction LWDω are two limiting cases of the more general linguistic weighted 
averaging operation LWAω. The latter introduces another level of fuzziness that 
models fuzzy conjectural-like and fuzzy substitutability-like causation. The most 
general LFLA expression for multiple-path causality thus takes the form: 

( ) ( )( ) ( ) ( ) ( ){ }{ }, , ; , ; ,mpc mpc A O A O B O B O C O C OLWA LWAω ων ω τ ω ν τ ν τ ν τ→ → → → → →=  

      (185) 

Braumoeller uses his Boolean logit method to re-examine Huth’s (1996) study of 
the puzzle of capabilities, resolve, and conflict initiation in international politics. 
In doing so, Braumoeller groups Huth’s independent variables in three categories: 
(1) capabilities (CAP) which consists of one independent variable – balance of 
military forces (MBF); (2) systemic incentives (SIC) which consists of five inde-
pendent variables – strategic location of territory (SLT), economic value of terri-
tory (EVT), prior gain of territory (PGT), shared alliance (SAL), and previous 
settlement (PST); and (3) domestic incentives (DIC) which consists of six vari-
ables – ties to bordering minority (TBM), political unification (PUN), economic 
value of territory (EVT), prior unresolved dispute (PUD), prior loss of territory 
(PLT), and decolonization norm (DNO). To compare the results obtained  
using LFLA to Braumoeller’s method I use Huth’s (1996) original data, which I 
convert to a linguistic form. Ten of the above eleven independent variables are 
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dichotomous (coded 1 or 0) and thus are converted to either PPP or NNN. The 
variable MBF is a continuous one assuming values between 0 and 1. I convert it to 
a linguistic form using the scheme discussed in Appendix A.  

LFLA requires two sorts of input data: nuance values and truth values. Huth’s 
data provides only nuance values. As already pointed out in the comparison with 
Ragin’s study of IMF protest, Huth’s (and Braumoeller’s) approach implicitly 
assumes that all truth values are 1 (i.e., PPP). This is not surprising since in Boo-
lean logic nuance and truth values are in a one-to-one correspondence, that is, a 
measured nuance value always corresponds to a truth value of  1 (PPP in LFLA). 
To make the comparison with Huth’s and Braumoeller’s approaches meaningful I 
first assume that all truth values of the independent and dependent variables are 
PPP (1 in Boolean logic). I then relax this assumption to explore the impact of 
other values of truth on the overall conclusions of multiple-path analysis.   

Explicitly applied to reexamine Braumoeller’s approach to Huth’s data, equa-
tion [182] can be broken in the following stages with DEV denoting Huth’s de-
pendent variable: 

( ) ( ) ( )MBF DEV SIC O DIC O⎡ ⎤→ ∧ → ∨ →⎣ ⎦                    (186) 

With SIC and DIC respectively standing for: 

SIC SAL SLT PST EVT PGT≡ ∧ ∧ ∧ ∧                      (187) 

DIC PUN TMB DNO PUD EVT PLT≡ ∧ ∧ ∧ ∧ ∧                (188) 

Expressed in LFLA formalism we obtain: 

( ) ( )
, ,

, ,

; ;SIC DEV SIC DEV X X
X SAL SLT
PST EVT PGT

LWCν τ ν τ→ →
=

⎧ ⎫
⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

∏           (189) 

( ) ( )
, ,

, , ,

; ;DIC DIC X X
X PUN TBM
DNO PUD EVT PLT

LWCν τ ν τ
=

⎧ ⎫
⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

∏               (190) 

Where: 

( ) ( ) ( ){ }1 1

1 ,...

; ; ;...; ;
n n

n

X X X X X X
X X X

ν τ ν τ ν τ
=

⎧ ⎫⎪ ⎪ =⎨ ⎬
⎪ ⎪⎩ ⎭

∏              (191) 
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The nuance and truth levels for variable X for country jC are obtained as previ-

ously discussed in the section dealing with the IMF protest as (with X = SIC  
or DIC): 

( ) ( )( ) ( ) ( )( ) ( ) ( )( ){ }, , ; ,X DEV j X DEV j X j X j DEV j DEV jC C LI C C C Cν τ ν τ ν τ→ → =

    (192) 

Aggregation over all cases using LWA gives for variable X = SIC or DIC: 

( ) ( ) ( )( ) ( ) ( )( ){ }1 1, , ;...; ,X DEV X DEV X DEV X DEV X DEV N X DEV NLWA C C C Cν τ ν τ ν τ→ → → → → →=

    (193) 

N is the number of cases. The nuance and truth levels for multiple-path causation 
are given by: 

( ) ( ) ( ) ( ){ }{ }, , ; , ; ,mpc mpc MBF DEV MBF DEV DIC DEV DIC DEV SIC DEV SIC DEVLWC LWDν τ ν τ ν τ ν τ→ → → → → →=    

(194) 

We can generalize the latter equation using the notion of fuzzy causality as dis-
cussed earlier (that is, generalizing from linguistic conjunction LWD and disjunc-
tion LWC to linguistic weighted averaging by using LWA) to obtain: 

( ) ( ) ( ) ( ){ }{ }, , ; , ; ,mpc mpc MBF DEV MBF DEV DIC DEV DIC DEV SIC DEV SIC DEVLWA LWAν τ ν τ ν τ ν τ→ → → → → →=

(195) 

Before comparing LFLA and Boolean logit results for multi-path causation, I pre-
sent first the results using LFLA without multi-path causation. In other words, I 
present the results of an analysis following the procedure that I introduced when 
comparing LFLA to Ragin’s fuzzy-set based approach to causality. Recasting 
equations[167],[168], [169], and [170], we obtain for independent variable IND 
fuzzy-necessarily causing dependent variable DEV for the case Cj:  

( ) ( )( ) ( ) ( )( ) ( ) ( )( ){ }, , ; ,DEV IND j DEV IND j IND j IND j DEV j DEV jC C LI C C C Cων τ ν τ ν τ→ → =    

    (196)   

Thus for N cases: 

( ) ( )( ) ( ) ( )( ) ( ) ( )( ){ }1 1, , ;...; ,fnec fnec
IND IND DEV IND DEV IND DEV IND N DEV IND NLWA C C C Cων ω τ ω ν τ ν τ→ → → →=  

(197) 

Using the definition of LWA: 

( ) ( ) ( ){ }1 ;...;fnec
IND DEV IND DEV IND NLOWA C Cων ω ν ν→ →=             (198) 
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( ) ( ) ( )( ) ( ) ( )( ){ }1 1, ;...; ,fnec
IND DEV IND DEV IND DEV IND N DEV IND NLOWA MIN C C MIN C Cωτ ω ν τ ν τ→ → → →=

   (199) 

Braumoeller’s and Huth’s results are reproduced in Table 3 for the sake of com-
paring with those obtained using LFLA. From Table 3, we see that LFLA for (ω = 
0.7) agrees with Braumoeller’s finding that the Balance of Military Force (MBF) 
is a strongly contributing factor in contradiction with Huth’s original estimation. 
Note that the LFLA produces the same truth levels for all independent variables. 
This is to be expected as I have assumed that all input data had a PPP (perfect) 
degree of truth.  

Table 3 Comparing results obtained by Huth, Braumoeller and LFLA (using Huth data for 
nuances and assuming PPP empirical confidence level for Huth’s input variables).  

  Huth Braumoeller LFLA (ω ~ 0.7) 
Variable Symbol Coefficient p Coefficient p 

Dev Indν →  Dev Indτ →  

Strategic Location of 
Territory  

SLT 2.637 .000 3.826 .000 
NNN LLL 

Ties to Bordering Minority TBM – 0.073 .477 –0.920 .000 NNN LLL 
Political Unification PUN 1.085 .000 –0.570 .007 NNN LLL 
Economic Value of 
Territory 

EVT5 0.563 .000 0.702 .000 
NNN LLL 

 EVT6  –0.022 .909   
Balance of Military Force  MBF 0.083 .624 1.310 .007 VHH LLL 
Prior Gain of Territory PGT –0.969 .000 –1.791 .000 NNN LLL 
Shared Alliance SAL –2.342 .000 –1.173 .000 NNN LLL 
Previous Settlement PST –3.339 .000 –18.87 .915 NNN LLL 
Prior Unresolved Dispute PUD 3.761 .000 8.346 .000 NNN LLL 
Prior Loss of Territory PLT 2.231 .000 5.039 .000 NNN LLL 
Decolonization Norm DNO 0.740 .000 3.500 .000 NNN LLL 

Changing the degree of orness as shown in Table 4 does not change the conclu-
sion that only MBF is a strongly contributing factor to causation. What indeed 
does change is the degree of truth for all independent variables, reaching the high-
est value of MMM (moderate) for ω ~ 0.5, that is, in the situation where we have 
an average – a midpoint – between full falsity and full truth with no means of opt-
ing either way. This position is a maximum since the truth level of all causal rela-
tions between each of the independent variables and the dependent variable dimin-
ish on either side of ω = 0.5, reaching a minimum at ω ~ 0.1 and ω ~ 0.9 of VLL 
(very low).   

The results for LFLA multi-path causation (using equations[189]-[195]) are 
shown in Table 5 for various degrees of orness. In Table 5 I assume a perfect level 
of empirical confidence in Huth’s input data for all variables and vary the level of 
orness (ω ~ 0.01, 0.1, 0.3, 0.5, 0.7, 0.9, 0.99). Table 5 shows the results for  
the degrees of nuance and truth at the three levels of variable combination that  
 

                                                           
5 This is when EVT is considered as a contribution to systemic factors. 
6 This is when EVT is considered as a contribution to domestic factors. 
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Table 4 LFLA evaluation of multi-path causality for various levels of orness (ω ~ 0.1, 0.3, 
0.5, 0.7, 0.9) using Huth data for nuances and assuming perfect empirical confidence 
 

 ω ~ 0.1  ω ~ 0.3 ω ~  0.5 ω ~  0.7 ω ~  0.9 

IND ν  τ  ν  τ  ν  τ  ν  τ  ν  τ  
SAL NNN VLL NNN LLL NNN MMM NNN LLL NNN VLL 
SLT NNN VLL NNN LLL NNN MMM NNN LLL NNN VLL 
PUN NNN VLL NNN LLL NNN MMM NNN LLL NNN VLL 
TBM NNN VLL NNN LLL NNN MMM NNN LLL NNN VLL 
DNO NNN VLL NNN LLL NNN MMM NNN LLL NNN VLL 
PST NNN VLL NNN LLL NNN MMM NNN LLL NNN VLL 
PUD NNN VLL NNN LLL NNN MMM NNN LLL NNN VLL 
EVT NNN VLL NNN LLL NNN MMM NNN LLL NNN VLL 
MBF VHH VLL VHH LLL VHH MMM VHH LLL VHH VLL 
PGT NNN VLL NNN LLL NNN MMM NNN LLL NNN VLL 
PLT NNN VLL NNN LLL NNN MMM NNN LLL NNN VLL 

Table 5 LFLA evaluation of multi-path causation for various levels of orness (ω ~ 0.01, 
0.1, 0.3, 0.5, 0.7, 0.9, 0.99) using Huth’s input data for nuances and assuming perfect em-
pirical confidence levels for Huth’s input variables. 

ω ~ 
SICν  SICτ  DICν  DICτ  MBFν  MBFτ  MPCν  MPCτ  

0.01 NNN NNN NNN NNN VHH NNN VHH PPP 

0.10 NNN NNN NNN NNN VHH VLL VHH VHH 

0.30 VLL NNN VLL NNN VHH LLL VHH HHH 

0.50 MLL VLL MLL VLL VHH MMM HHH MHH 

0.70 MHH LLL MHH LLL VHH LLL MHH HHH 

0.80 VHH VLL VHH VLL VHH LLL HHH VHH 

0.90 PPP VLL PPP VLL VHH VLL HHH VHH 

0.99 PPP NNN PPP NNN VHH NNN VHH PPP 

Braumoeller considers – the systemic ( );SIC SICν τ , domestic ( );DIC DICν τ , and 

overall multi-path causation ( );MPC MPCν τ . It also displays the values obtained 

for MBF (military balance of force).  
Table 5 shows how the SIC and DIC combinations of independent variables 

contribute to multi-path causation. LFLA allows us to trace how causation pro-
gresses through the various paths. Several features are discernible from Table 5. 
First, at all levels of orness the systemic and domestic levels of causation have the 
same levels of nuance and truth. Second, the level of nuanced necessary causation 
reaches a perfect level (PPP) for both systemic and domestic combinations of in-
dependent variables for high values of orness (ω ≥0.90) and reaches a null level 
(NNN) for low (ω ≤0.10) or very high (ω ~1) values of orness. Generally,  
the level of nuanced necessary causation varies proportionally with the values  
of orness. High values of orness (as explicated in Chapter 2) correspond to an  
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intersection of the fuzzy sets of all linguistic labels, and hence such combinations 
pick up the smaller (if not smallest) common set, which in this case will be the 
highest label. Very small values of orness correspond to a union of the fuzzy sets 
of all linguistic labels, and hence such combinations picks up the largest common 
set, which in this case will be the lowest label – the lowest label is necessarily 
implied in all subsequent labels. Hence, a causal combination will be an orlike 
operation with orness > 0.5, that is, behaving much more like crisp substitutability. 
On the other hand, a causal combination will be an andlike operation with orness 
< 0.5 – that is, behaving much more like crisp conjectural causation.  

Third, the levels of truth (or confidence) also vary with the value of orness, if 
differently from the levels of nuanced causation. From Table 5, we see that the 
highest value of truth attained is LLL (low) and occurs for ω ~ 0.70 which makes 
MHH (moderately high) causation the more likely (with the more confidence) to 
occur. Because ω ~ 0.70 we can say that for both the systemic and domestic com-
binations (of independent variables) causation is behaving moderate-highly like 
substitution on these two paths. However, it is very unlikely to be either a crisp-
like substitution (confidence level = NNN for ω ~0.99) or a crisp-like conjectural 
causation (confidence level = NNN for ω ≤0.30). Fourth, multi-path causation 
occurs with a very high nuance level at very low (ω~0.01) or very high (ω~0.99) 
levels of orness – that is, full multi-path causation of either crisp-like conjectural 
type or crisp-like substitutability type is achievable and with a perfect level of 
confidence (confidence level = PPP for either ω ~ 0.01 or ω~0.99). The nuance 
level of multi-path causation decreases for ω converging toward the mid-value 0.5 
from either side. In other words, a fuzzy combination of conjectural-like and sub-
stitutability-like multi-path causation is still possible with HHH (high) to MHH 
(moderately high) degree of fuzziness with a confidence level of MHH to HHH 
for values of orness near the mid-point. It is to be noted that these results depend  
 

Table 6 LFLA evaluation of multi-path causality for orness level ω ~ 0.7 using Huth data 
for nuances and assuming uniformly random truth values for all variables 

ω ~ 0.7 with Uniformly Randomized Input Truth Values for Independent and Dependent Variables 

SICν  SICτ  DICν  DICτ  MPCν  MPCτ  

PPP PPP PPP PPP PPP PPP 

Ind. Var. Dep Indν →  Dep Indτ →  

SAL VHH PPP 
SLT VHH PPP 
PUN VHH PPP 
TBM VHH PPP 
DNO VHH PPP 
PST VHH PPP 
PUD VHH PPP 
EVT VHH PPP 
MBF VHH PPP 
PGT VHH PPP 
PLT VHH PPP 
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on the assumption that the input data was assumed to have a perfect confidence 
level (PPP). For the sake of comparison I present in Table 6 the results for ω ~ 0.7 
with (uniform) randomly distributed truth values for all input (dependent and in-
dependent) variables, but keeping the same empirical values for the nuance values 
of the variables.  

It turns out that all the nuances values of the fuzzy necessity of all independent 
variables become VHH with perfect truth values. It also leads to perfect multi-path 
causation with perfect truth values for SIC (systemic), DIC (domestic), and MPC 
(multi-path causation). In this case, we have a perfect fuzzy combination of con-
jectural-like and substitutability-like causation (since ω ~ 0.7) at a perfect level of 
confidence. This suggests that the missing data on truth values (or, equivalently, 
confidence levels) of the empirical data is an extremely important factor in the 
analysis of causality. Determining the truth values of the independent and depend-
ent variables is as important as measuring the values (nuances) of these variables. 

Appendix A: Fuzzification Scheme 

The trapezoidal membership function used to fuzzify Huth’s data is defined in 
equation [200] where the constants a, b, c, and d are listed in Table A.1. Figure 
A.1 shows the shape of the nine linguistic terms {NNN, VLL, LLL, MLL, MMM, 
MHH, HHH, VHH, PPP} in the trapezoidal representation.   

( )
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, , , ,
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b ax a b c d

b x c
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⎧ < >⎪
⎪

−⎪ ≤ ≤⎪ −= ⎨
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⎪
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−⎩

                                   (200) 

Table A.1 Scheme used to convert Huth’s (1996) numerical data to linguistic data 

a b c d Linguistic Value Meaning 
0.0000 0.0000 0. 0125 0.1125 NNN Null 
0.0125 0.1125 0.1375 0.2375 VLL Very Low 
0.1375 0.2375 0.2625 0.3625 LLL Low 
0.2625 0.3625 0.3875 0.4875 MLL Moderately Low 
0.3875 0.4875 0.5125 0.6125 MMM Moderate 
0.5125 0.6125 0.6375 0.7375 MHH Moderately High 
0.6375 0.7375 0.7625 0.8625 HHH High 
0.7625 0.8625 0.8875 0.9875 VHH Very High 
0.8875 0.9875 1.0000 1.0000 PPP Perfect 
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Not surprisingly, when applied to Huth’s original data a number of features 
clearly stand out. First, all of his variables except for MBF (military balance of 
force) assume dichotomous values (either 0 or 1) and, hence, as expected, corre-
spondingly convert either to NNN or PPP. For the variable MBF, those of its val-
ues that are either 0 or 1 are also converted into NNN and PPP, respectively. For 
all other values, in most cases I find that a specific crisp value MBF, with 0 < 
value(MBF) < 1, there are two fuzzy sets to which Huth’s crisp MBF value be-
longs, but with different membership degrees μ. 
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Fig. A.1 Trapezoidal Representation of 9 Linguistic Terms Set  

As an illustration let us consider Huth’s original crisp value MBF = 0.6399999. 
I find that this corresponds to two contiguous linguistic categories MHH and HHH 
with corresponding degrees of membership μ1=0.975 and μ2=0.025 – that is, 
0.6399999 belongs to MHH fuzzy set to a .975 degree and to HHH with a .025 
degree. I follow the criterion of choosing the category corresponding to the higher 
degree of membership as the most representative fuzzy value of the specific crisp 
value measured by Huth. This way of fuzzifying Huth’s original crisp data hence 
depends on a somewhat arbitrary choice but this is not a problem for three rea-
sons. First, I am put into the difficult task of testing an LFLA approach with a 
crisp data which was not meant to be used with fuzzy logic. As already pointed 
out in the main text, Huth’s data lacks the truth values (confidence levels) of the 
measured data, thereby making its use in testing LFLA quite limited. The pro-
posed scheme for fuzzifying Huth’s data partially resolves this difficulty. Second, 
this fuzzification scheme is really meant as an illustration on how one might go by 
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using the same crisp data to compare LFLA to methods that are designed to work 
with crisp data in the first place. I am sure that the reverse story will face the crisp 
methodologist with the same dilemma – that is, imagine that someone using a 
crisp method decides to test it using fuzzy data. This person would be obliged to 
de-fuzzify the fuzzy data to use it in his/her methodology, thereby being forced to 
make an arbitrary choice during the de-fuzzication procedure.7 There are many 
ways to carry out such a task (artificial intelligence literature is extremely rich on 
this respect). Third, in LFLA membership functions do not intervene at all in 
LFLA – hence, the arbitrariness ensuing from their determination and manipula-
tion is altogether absent. Having said this, the scheme that I use, despite all the 
problems, allows me systematically to do the fuzzification of an originally crisp 
data.  Table A.2 displays a sample (only a sample since Huth’s data has 8328 
points for each variable) of the original and converted data.  

Table A.2 Fuzzification of a Sample of Huth’s Data 

DEV SAL SLT PUN TBM DNO PST PUD EVT MBF PGT PLT 

1 PPP 1 PPP 1PPP 1 PPP 0 NNN 0 NNN 0NNN 1PPP 1PPP
0.6299999

95 MHH 0
NN
N 1 PPP 

1 PPP 1 PPP 1PPP 1 PPP 0 NNN 0 NNN 0NNN 1PPP 1PPP
0.6999999

88 HHH 0
NN
N 1 PPP 

1 PPP 1 PPP 1PPP 1 PPP 0 NNN 0 NNN 0NNN 1PPP 1PPP
0.6399999

86 MHH 0
NN
N 1 PPP 

1 PPP 1 PPP 1PPP 1 PPP 0 NNN 0 NNN 0NNN 1PPP 1PPP
0.5500000

12 MMM 0
NN
N 1 PPP 

1 PPP 1 PPP 1PPP 1 PPP 0 NNN 0 NNN 0NNN 1PPP 1PPP
0.6999999

88 HHH 0
NN
N 1 PPP 

1 PPP 1 PPP 1PPP 1 PPP 0 NNN 0 NNN 0NNN 1PPP 1PPP
0.6200000

05 MHH 0
NN
N 1 PPP 

1 PPP 1 PPP 1PPP 1 PPP 0 NNN 0 NNN 0NNN 1PPP 1PPP
0.5799999

83 MHH 0
NN
N 1 PPP 

1 PPP 1 PPP 1PPP 1 PPP 0 NNN 0 NNN 0NNN 1PPP 1PPP
0.6499999

76 MHH 0
NN
N 1 PPP 

1 PPP 1 PPP 1PPP 1 PPP 0 NNN 0 NNN 0NNN 1PPP 1PPP
0.6200000

05 MHH 0
NN
N 1 PPP 

1 PPP 1 PPP 1PPP 1 PPP 0 NNN 0 NNN 0NNN 1PPP 1PPP
0.6600000

26 MHH 0
NN
N 1 PPP 

 

                                                           
7 I would dare to say that most of us do this anyway when using numbers to measure “real-

life” data but do no account for it – hence, one of the main reasons for advocating meth-
ods based on linguistic fuzzy logic. 
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Chapter 8 
Conclusion 

This book proposes a linguistic fuzzy-logic approach – LFLA – to analyze the 
process of fuzzy decision making, fuzzy strategic interaction and fuzzy game the-
ory, causality using fuzzy propositional logic, and fuzzy data analysis. Much 
scholarship has been produced on these issues area of decision making in political 
science and social sciences in general. Much has been achieved in this regard. 
This book contributes to this body of literature with a new way of looking at these 
problems.  

Much of what counts as social science today is based on a Boolean logic with 
two truth values, 0 and 1. While this assumption – because it is really an assump-
tion, if in most situations not even acknowledged as such – has proved to be very 
useful in the production of systematic knowledge, it is neither theoretically nor 
empirically the only possible logic. The study of logic is a vast discipline of 
knowledge in itself and the diversity of possible logics that scholars study is very 
rich. However, except for a very limited number of studies, by and large social 
science practitioners take it for granted that Boolean logic is THE logic that 
should underlie social science inquiry. The task set out for this book was how to 
go beyond this assumption by showing that linguistic fuzzy logic can be very use-
ful in analyzing empirical data and studying causation in social science theories. 
Linguistic fuzzy logic has a greater expressive power which allows us to effec-
tively deal with meanings of words and phrases expressed in natural language. 
This thus enables us to express and analyze the role of irreducible uncertainties 
and vagueness assuming various manifestations in validating our theories about 
the human world, thereby allowing us to capture more accurately human reason-
ing, cognition, and communication.  

A key contribution of linguistic fuzzy logic approach to the study of causation 
and other processes in social sciences is to emphasize the need not only of measur-
ing the linguistic values of both independent and dependent variables (termed in 
this book as nuances), a call that regular fuzzy-set theoretic approach already 
make. LFLA also shows the crucial role of a dimension of both independent and 
dependent variables which by and large has been completely ignored in measuring 
and analyzing the empirical data – the truth value of the nuance values (with the 
latter commonly termed simply as ‘the values”) of the variables and combinations 
thereof. Hence, LFLA analysis is more demanding in terms of empirical data – it 
requires not only a fuzzification of the values of categorical variables but also  
an estimation of our confidence in the evaluation of these fuzzified values (termed 
equivalently truth or confidence levels). As shown in the various illustrations  
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considered in this book, different values of the truth levels shape the final conclu-
sions of the analysis in important ways. A comprehensive and systematic analysis 
of data and causation (and other processes) cannot ignore this crucial aspect of the 
analysis.        

This book is, to the best of my knowledge, a first in its kind in suggesting a lin-
guistic fuzzy-logic methodology in social sciences. There are no other books 
which might be considered as direct competitors. There are however two books 
(published by social scientists) of a similar nature with which this book can be 
more or less compared. This book is a natural continuation of the “logic” and in-
tent of these two books in the sense that it takes off where they stop in introducing 
fuzzy logic methods to social sciences. The “edge” of this book is that it advocates 
fuzziness to the “full extent,” by “computing with words,” not numbers.   

The first book is by Charles Ragin, Fuzzy-Set Social Science (University of 
Chicago Press, 2000). This book was one of the best attempts to introduce fuzzy-
set methods to social sciences in way that addresses two related problems in then 
existing methodologies: first, the divide between quantitative and qualitative 
methods and, second, the problem of the “homogenizing assumptions” about cases 
and causes. Ragin’s innovative contribution consists in extending diversity-
oriented research strategies which provide a powerful connection between theory 
and data analysis. This book does however suffer from two main weaknesses due 
to its reliance on “numbers.” First is the problem of evaluating the membership 
functions of elements of the fuzzy sets. There are no first-principled ways to do 
that and hence this brings in an ineradicable element of arbitrariness that cannot be 
systematically accounted for or measured. Second is the reliance on statistical 
methods such as probability benchmarking to complement the fuzzy-sets method, 
thereby making the approach still reliant on conventional statistical analyses 
which are developed for crisp-sets logic, not fuzzy-sets logic.    

The second book is by Michael J. Smithson and Jay Verkuilen, Fuzzy Set The-
ory: Applications in the Social Sciences (Sage, 2006). First, this book provides an 
accessible introduction to fuzzy set theory which specifically targets its applicabil-
ity to the social sciences. There are many introductory books on fuzzy-set theory 
on the market. Yet all of them have been written for engineering audiences, 
thereby lacking the illustrations which are necessary for the non-initiated social 
scientists to grasp these methods. Second, this book improves Ragin’s book ap-
proach to data analysis by presenting a systematic and practical guide for social 
scientists to combine fuzzy set theory with standard statistical techniques and 
model-testing. Although this book is a good and systematic improvement on 
Ragin’s book, it is still plagued with the same problems related with the numerical 
nature of the membership functions, even if it is much more explicit about these 
issues.    

Three fundamental features make the present book unique compared to these 
two books and similar works published in social sciences methodology. First, all 
published works are interested in using numerical fuzzy-sets theoretic tools as the 
basis for new methodologies for empirical analysis. My approach seeks to analyze 
social science phenomena using tools developed based on linguistic fuzzy logic. 
Second, all published works are based on the use of what is known as membership 
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function or degree of belongingness to sets, a number between zero and one. My 
approach computes with words all the way down and does not use membership 
functions. I instead consider the degrees of belongingness to a category as a lin-
guistic variable termed as a nuance value. I also introduce a second type of fuzzi-
ness at a deeper level than what extant works consider. The membership degrees 
are also fuzzy sets, or more accurately, linguistically expressed truth values of the 
nuance values. 

Third, the book contributes to shed light on lingering disputes on tradeoffs be-
tween rigor in reasoning, precision in conceptualization, correspondence with em-
pirical reality, and logical consistency. Most of what counts as mainstream social 
science today assumes that vagueness is an epistemic problem that can be reduced 
using increasingly more sophisticated statistical, formal and other tools in analyz-
ing the empirical world. The linguistic fuzzy logic approach is built on the premise 
that vagueness is essentially not epistemic. Vagueness is inherent to the constitu-
tive and causal logic underlying the phenomena themselves. From this perspec-
tive, using Boolean two-valued logic as a means of, for example, systematically 
studying the consistency and coherence of theories might very well distort the 
very logic of the phenomenon under study. Our minds are language-shaped and as 
such the logic of the workings of our minds is/should be language shaped. We do 
not live in a binary world of 0s and 1s. We live in a world the logic of which is 
best understood using vague linguistic expressions, not crisp numbers. Our tools 
of analysis should hence reflect this aspect of the human condition. And this is 
what the book seeks to do.  

Fourth, this book develops a new kind of game theory – termed as LFL game 
theory – which departs from conventional (crisp) game theory by being based on 
linguistic fuzzy logic rather than Boolean two-valued logic. Going from a Boolean 
logic to LFL lifts the PD dilemma and allows the emergence of a strong Nash 
equilibrium. Moreover, there always exists at least one Pareto-optimum Nash 
equilibrium. A second major departure of this work is the use of “words to com-
pute” the solutions of the game. The vagueness that inherently exists in real strate-
gic situations is preserved in LFL games. It is not considered an epistemic issue 
but rather as an ontological issue and is hence incorporated in the very logic un-
derpinning the reasoning process. A third departure has to do with the extent of 
stylization in analyzing real situations. Although one cannot avoid a certain level 
of stylization in formalizing strategic interactions between actors, the level of 
stylization in LFL games is much less than in conventional game theory. This 
makes LFL game theory much more straightforwardly relevant to analyzing real-
world situations of strategic interaction. 

Assuming that the logic underlying social sciences is of a linguistic fuzzy type 
has important implications for research in social sciences. First, much ink and talk 
have been spent on the qualitative-quantitative divide in social sciences, thereby 
contributing to enrich our approaches and knowledge about the world. However, 
much of this debate does not go far enough from the perspective of this book. Al-
though logic informs all reasoning, whether it is based on quantitative inquiry or 
qualitative work, many researchers are not fully aware of the implications and 
limitations of the logic underlying their inquiry and how this logic informs the 



178 8   Conclusion
 

epistemology which supports their empirical work. Linguistic fuzzy logic ap-
proach is one important step toward bridging the gap.  

Second, both qualitative and quantitative research engage in data reduction, 
with the former doing the reduction through using words, categories, and themes 
and the latter doing the reduction through numerical and often statistical tools. The 
analysis of data (after reduction) is done in qualitative research through categoriz-
ing and comparing and in quantitative methods through statistical inference and 
estimation of likelihood and the like. Of course, these differences are matters of 
degree. However, generally speaking, quantitative research is believed by its prac-
titioners to generate reliable population-based and generalizable data and is hence 
well suited for studying cause-and-effect relationships. The fact that qualitative 
data typically involves words and quantitative data involves numbers prompts 
many researchers to believe that the latter is better and more scientific than the 
former. The linguistic fuzzy logic approach proposed in this book is one way to 
create a bridge between the qualitative and quantitative sides of this debate. The 
methodology of this book is both rigorous and incorporates vagueness at its very 
heart. It proposes mathematically rigorous algorithms to reduce and analyze data 
which is expressed in a natural language, hence preserving the vague meanings of 
linguistically defined information.   

Third, a key contribution of linguistic fuzzy logic approach to the study of cau-
sation and other processes in social sciences is to emphasize the need not only of 
measuring the linguistic values of both independent and dependent variables, a 
call that numerical fuzzy-set theoretic approach already makes (e.g., Ragin’s 
book). The approach of the book also shows the crucial role of a dimension of 
both independent and dependent variables, which by and large has been com-
pletely ignored in measuring and analyzing the empirical data, namely, the truth 
value of the linguistic values of the variables. Hence, linguistic fuzzy-logic analy-
sis is more demanding in terms of empirical data because it requires not only a 
fuzzification of the values of categorical variables but also an estimation of our 
confidence in the evaluation of these fuzzified values. As shown in the various 
illustrations considered in this book, different values of the truth or confidence 
levels do shape the final conclusions of the analysis. A comprehensive and sys-
tematic analysis of data and causation and other processes cannot ignore this cru-
cial aspect of the analysis. The concept of linguistic truth level, which naturally 
emerges in linguistic fuzzy logic, makes this methodology more or less self-
contained.  

Fourth, linguistic fuzzy-logic methodology enriches our very notion of causa-
tion itself. Conventional practice and conceptualization discuss causation in terms 
of necessity, sufficiency, and combinations thereof. This book shows that such 
notions are too restrictive given the richness of natural language which is constitu-
tive of social reality as we construct it, experience it, and analyze it. Instead of 
talking about necessity and sufficiency, as most of what counts as social science 
practice does, linguistic fuzzy-logic methodology offers to us novel notions of 
fuzzy causation. Hence, for example, instead of speaking of crisp necessity we 
should speak of fuzzy necessity, which is a concatenation of necessity and contin-
gency, a notion quite different from probabilistic necessity which is essentially 



8   Conclusion 179
 

still based on crisp notion of necessity. In linguistic fuzzy-logic, crisp necessity 
and crisp contingency become limiting cases of fuzzy necessity. 

Fifth, the approach of the book helps improve the connection between the 
scholarly and policy worlds. Although there are many reasons why such a linkage 
does not always evolve in mutually beneficial ways, one impediment that seems to 
reinforce the lack of effective communication is that the media used by scholars in 
their research are often times very opaque to the uninitiated practitioners. Con-
versely, scholars must often play the role of translators between the policy world 
and their theories about social and political reality. The methodology proposed in 
this book lends itself quite naturally to provide an effective means of communica-
tion between scholars and practitioners since the approach greatly facilitates the 
exchange and analysis of “raw” linguistically expressed information. Scholars and 
their theories and hypotheses can directly “speak” to the policy world and incorpo-
rate “raw elements” of the policy world in their theories and hypotheses. 
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