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PREFACE 

This volume provides an up-to-date picture of the current status of 
theoretical and empirical developments in the application of fuzzy sets in 
psychology; and will be of interest both to the advanced student in the field as 
well as to anyone possessing a basic scientific background. 

There is little doubt that psychology requires formal, even mathematical 
frameworks for handling graded categories with blurried boundaries. It is 
believed that not only are the phenomena of human thought and behavior 
inherently fuzzy, but researchers in this field must also use concepts and 
theoretical schemata which themselves are fuzzy. Most verbally expressed 
hypotheses in psychology contain fuzzy nouns, predicates, modifiers and 
comparatives. The problem of fuzziness in general is of afundamental nature, 
and suggests that we should treat human(istic) systems in terms of fuzzy logic 
based linguistics calculus rather than using discrete numerical language. 

Lofti A. Zadeh (1965) was the first to formalize the idea by defining 
characteristic functions for sets which map onto the closed interval zero and 
one, rather than onto the conventional set of values zero and one. Since then, 
there have been many contributions to fuzzy set theories of various kinds, and 
some of them enjoy wide application in engineering and applied science. 
Zadeh attempted to develop a linguistic calculus "fuzzy calculus" that should 
be applicable to variuos sorts of systems. This present volume is concerned 
with manyfacetsof fuzzysets in psychological systems in this genuine sense. 

Fuzzy set theory could benefit researchers in at least two ways: first, as a 
metaphorormodelforordinarythought, and secondlyasan aid todataanalysis 
and theory construction. One can find examples for both kinds in the volume. 

The dialogue between fuzzy set theory and psychology has just begun to 
addressthese possibilities, but the area has developed so rapidlyduring recent 
years that I felt there was a need to put together a volume which covered the 
newest contemporary issues. This work will serve as a resource for scholars 
who have been interested infuzzylogic and to providethem with an up-to-date 
survey of contemporary work in the field. 
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Fuzzy Sets in Psychology 
T. ZItbnyi (Editor) 
0 Elsevier Science Publishers B.V. (North-Holland), 1988 1 

POSSIBILITY THEORY, FUZZY LOGIC, AND PSYCHOLOGICAL 
EXPLANATION 

Michael SMI THSO N 

Behavioural Sciences Department 
James Cook University, 

Queensland 48 1 1 Australia 

Psychologisthave reiled almost exclusively on statistical models and methods 
for the quantitative analysis of human behavior. Because they invoke 
stochastic determinism, such models are incapable of incorporating human 
intentionality, purposive choice, or agency along with constraints and 
influences on behavior. However, manypsychologicalaccounts and theories 
mix voluntarism with constraint, and those theories are not adequately 
translated by conventional statistical models. Fuzzy logic and possibility 
theoiy offer an alternative framework which is compatibel with psychological 
explanations that permit choice under partial and uncertain constraints. 

This paper outlines that framework and demonstrates its application to 
research and theory construction in psychology. The main components .of 
the framework are "weak"prediction and entailment models provided by fuzzy 
logic, and the modeling of domains of choice via possibility theory. 
Accordingly, the conceptual foundations of fuzzy logic and possibility theory 
are outlined from the standpoint of psychological theoiy and explanation. 
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Applications include models ofpreference ana freedom of choice, a calculus 
of freedom, fuzzy predictive models, and possibilistic theories of human 
behavior. 

Has Psychology Inherited the Wrong Mathematics? 

This paper proposes possibility theory as a basis for an alternative to the 
conventional statistical paradigm employed by researchers in psychology. 
Before a case may be made for possibility theory, we must have a motivating 
argument for alternatives in the first place. Accordingly, this section presents 
several criticisms of the statistical tradition in psychology which are more 
radicalthanthe usual correctionsof technical misuseand abuse. The principal 
claim here is that both psychological theory and data analysis have been 
needlessly constrained and distorted by the widely held assumption that a 
peculiar dialect of mat hematics (the Neyman-Pearson-Fisher statistical 
framework, hereafter denoted by NPF) is the only one suited to quantitative 
data analysis in the human sciences. 

Themathematical legacy bequeathed to psychology isdominated bythe NPF, 
which in turn bears recognizable traces of its origins in military strategic and 
decision analysis, industrial quality control, and agricultural experimentation. 
The NPF was designed to solve the problems posed in those fields, not the 
humansciences, and yet it has been adopted almost without modification by 
psychologists. So widespread is its influence that often debates over 
quantitative versus qualitative research styles, critiques of positivism, and the 
development of innovative approaches to psychological research have rested 
on the assumption that mathematical or quantitative analysis is synonymous 
with the NPF. Furthermore, the NPF has pervaded the very design of 
psychological studiesas well as theoryconstruction itself. After all, the nature 
of researchability is linked to the descriptive, expressive, and analytical 
capabilities of the mathematical language within which "data analysis" is 
couched. On a more mundane level, it is highly likely that many fledgling 
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researchers have madetheirchoicesforand againstwholeschools of research 
methods partly on the basis of this assumption. 

That assumption is mistaken in principle, of course, since mathematics 
encompasses far more than the NPF and even probability theory boasts 
several schools of thought and practice. But does it matter? If exclusive 
reliance on the NPF prohibits mathematization or systematic investigation of 
key theoretical concepts in psychology, then the answertothis question must 
be yes. To assess whether this is the case, we must analyze how the NPF 
translates psychological theories into statistical models and tests. Without 
much loss of generality I shall take the general linear model (GLM) as the 
primaryobject of discussion. Not only doesthe GLM includethe most prized 
data analytic techniques in psychology (the varieties of ANOVA, linearizable 
regression models, tog-linear analysis, discriminant analysis, factor analysis, 
and their progeny), but it also embodies the properties most sought-after in 
most nonparametric techniques. 

The GLM cleaves variation in human behavior into two components: That 
predicted by the instrumental variable(s), and the unpredicted component 
which is treated as arising from either unobserved influences or random 
processes. The predictions allowed in the GLM are necessarily one-to-one by 
virtue of their restriction to a linearizable model. This constraint entails 
translating any psychological prediction into a one-to-one relation between 
states or values on the independent variables and those on the outcome 
variable. Human agents, therefore, are not permitted a range of alternative 
outcomes in these models. The sole source of unpredict ability allowed these 
actors by the GLM lies in the random processes responsible for that part of 
the unpredicted component of variation not eventually explicated in terms of 
additional predictors. A literal reading of the GLM yields a stochastically 
deterministicview of human behavior. Insofar as people are not behaving in 
accordance with a one-to-one prediction, they are behaving randomly. 

Modern currents in many fields of psychological research, however, are not 
confluent with the GLM translation of theories into its stochastically 
deterministic terms. Indeed, several prominent schools of thought have 
explicitly rejected that viewpoint while nevertheless continuing to usethe GLM 
and NPF in research. Cognitively oriented psychologists long ago rejected 
simple S-R accounts, for instance, in favor of a view in which behavior is 
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understood in relation to the actor's mental images of the world and his or her 
plans, intentions, or strategies (cf. Miller, Galanter, & Pribram, 1960). 
Cognitivism virtually requires concepts like intentionality, purposiveness, 
choiceordecision, and agency, which haveno place in aone-to-one predictive 
model with randomicity as the sole source of uncertainty. 

Perhaps the most obvious examples of theories embodying this view come 
fromsocial psychology. Classic examples include cognitive dissonance theory 
and attribution theory, both of whose original formulations portrayed people as 
mindful actors whose choices are only partly constrained by situational or 
structural influences and not even strictly determined by motivations. The 
subsequent development of those theoretical frameworks became 
increasingly tainted by the GLM requirement (often confused with an 
imperative of the experimental method itself) that an identical response be 
predicted for all subjects under the same experimental conditions, despite the 
fact that this was never necessitated by the theories themselves. 

This trend has been echoed in several psychological research areas, and it 
directly opposes the paradigmatic shift in social psychology during the last 25 
yearswhich, asGinsburg (1979, p. 2) pointsout, istowardstheviewthat people 
areactiveagents, "capableof making plansand pursuingobjectives, of acting 
as well as reacting, of doing things for reasons as well as having been forced 
to do them by causes". Rule-following or rule-using behavior, for instance, 
necessitates a model that allowsfor multiple possible responses to a situation. 
Likewise, a skills-oriented or competence and performance model of behavior 
findsexplanations in'lenabling conditions" ratherthan causes in the old sense. 
The focus on enabling or empowering has characterized a number of modern 
therapeutic schools in clinical psychology as well. Unfortunately, the GLM 
cannot tell the clinician whether the treatment was sufficient but not 
necessary, necessary but not sufficient, or weakly contributing to 
improvement in the clients. A "statistically significant' difference between the 
meansoftreatmentand control groupscould arisefrom any of thoseoutcomes. 

These shortcomings are not in any way tied to the experimental method itself. 
Survey researchers are no better off. Coleman's recent critique of survey 
methods pinpoints a key missing ingredient in statistical survey research as 
"an explicit purposive or intentional orientation" and remarks that "...the 
statistical association basis for inference in survey analysis seemed to have little 
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natural aff inityforthe intentionsor purposesof individuals" (1 986, p. 131 4). But 
Coleman strays wide of the mark when he recommends replacing statistical 
association with "meaningful connections" between variables. The difficulty 
lies not in the use of associations per se, but in the GLM assumption that it 
must be one-to-one. Weaker models of association might be morecompatible 
with concepts like purpose, intention, or choice because they could permit a 
range of possible outcomes for actors under identical conditions. 

Adefenderofthe NPForGLM might objectthat these problemscan be handled 
by using confidence intervalsto express the range of likely responses, and that 
the bounds of those intervals could be the subject of theoretical predictions. 
After all, what the GLM really amounts to is a "moving average" model that 
predicts the central tendency of actors' responses conditional on the values 
of various instrumental variables. A "dual" GLM approach that explicitly 
accounts for conditional central tendency and dispersion should capably 
represent the variability in actors' responses. I raise this argument in 
anticipation, since it comprises the heart of Cheeseman's (1985) defense of 
probabilityagainst nonprobabilistic alternatives for representing uncertainty in 
the artificial intelligence literature. It also highlights the most fundamental 
limitationof the NPF, and that is theassumptionthat probability is capable of 
representing any form of uncertainty in human thought or behavior. 

The NPF (and, for that matter, any other statistical paradigm such as the 
Bayesian approach) utilizes probability to handle two kinds of uncertainty. 
One is directlyattached to the model of behavior and constitutes uncertainty 
about what the actor(s) will do. The second kind concerns the state of our own 
orothers' knowledge about what the actor(s) may do. Probability is incapable 
of entirely capturing the first kind of uncertainty because it deals only in 
likelihood or relative frequencyof occurrence rather than in concepts such as 
potentiality, possibility, or necessity. That I can ride my bicycle to work (but 
may or may not) is not representable in probabilistic terms. Nor is the datum 
that43%oftheemployed adults in mysuburbcould ridetheir bicyclestowork. 
Nonprobabilistic kinds of uncertainty have a central role in many psychological 
theories, especiallywhere counterfactualsform part of the basis for explaining 
behavior. In a skills model of behavior, for instance, Clarke (1 983, p. 202-203) 
points out that what an actor does is limited mainly by what she or he can do 
or knows how to do. A similar argument could be advanced for a host of 
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perspectives in psychologythat are guided by concepts such as competence, 
resources, potential, decision making, strategic behavior, and reflexivity. 

Incomplete knowledge is not satisfactorily captured by probability either. Both 
normativeand psychological arguments supportthis claim. Given the simplest 
case of a binary outcome setup (A and B, say), probability fails to distinguish 
uncertainty about whether A will occur from ignorance about whether A will 
occur. The proposition that P(A) = 1/2 could mean that we know A and B 
areequallylikely, or it could meanthatweare utterly ignorant ofthelikelihood 
of A or 8. This argument has recurred in several contexts -see Shafer (1976) 
for a philosophical account, and Cohen (1977) for a discussion of legal 
uncertainty. Likewise, probability is incapable of capturing any ambiguity, 
vagueness,orfuzziness inthe natureof Aand B -asZadeh (1980) hasforcefully 
argued. 

Given the limitations of the NPF and its faulty translation of essential elements 
in modern psychological theories, it is no accident that many of the more 
sophisticated and innovative paradigms in recent psychology are 
fundamentally innumerate. Nor is it alwaysthe prospect of quantification itself 
that puts their adherents off statistical methods (cf. Collins, 1984). Clearly we 
requireaformal frameworkthat is capableof handling quantitative data without 
excluding agency and choice on the one hand, but which incorporates 
constraint, entailment, and prediction, on the other. This framework can be 
nothing otherthanformal or mathematical atleast in part, sincewearedealing 
with quantification. Before moving on to outline a candidate for such a 
framework, I should like to argue that it is possible to construct one without 
violating any known rules of evidence for imputing voluntarism, determinism, 
or randomicity. These arguments are well-known, but they bear repeating in 
this context. 

First, itshould beobviousthat there is no incompatibility between predictability 
and voluntarism or agency. People may choose to behave predictably. 
Conversely, unpredictability is no evidence for indeterminacy. The algorithms 
for generating so-called nonrepeating decimals are deterministic, but their 
output not only is unpredictable to a remote observer but passes tests for 
randomicity as well. Likewise, there is no litmus test for randomicity. The 
empirical demonstration that events fit a particular distribution is not suff icient 
to imply an underlying random process. What is plausible for dice (since they 
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have no preferences) is not so for people (who do have preferences and may 
exercise them). 

The conclusion following from these arguments is that the decision to use 
statistical models for analyzing quantitative data rests on interpretive and 
theoretical, rather than logical or empirical, grounds. Figure 1 displays two 
scatterplots whose patterns are nearly identical. In both plots mere inspection 
revealsthat high Xis sufficient but not necessary to produce high Y .  Arethese 
causal relationships, or do they reflect choice under partial restriction? Is the 
variation inthe uppertriangle of each plot generated randomly, or does it reflect 
individual choices made underweakconstraints? The uppermost plot is taken 
from a study of attitudes towards the use of violence for political ends (Muller, 
1972). X refers to intention to engage in violence for political ends (IPV) and 
Y toapproval of the use of violence for such ends (APV). The cases in this plot 
are individual responses. The second plot is adapted from a study of national 
breast cancer death-rates as a function of per-capita consumption of animal 
fat (Carroll, 1974). The cases in this plot are nations. 

Most medical modelswould hold that the relationship between animal fat intake 
and risk of cancer is causal, while some social scientists might hesitate on 
whether approval of violence is causally related to intention to engage in it. 
Likewise, while it might make sense to most social scientists to conclude from 
Figure 1 that people who approve of violence may choose to engage in it or 
not, most medical researchers would not wish to claim that countries in which 
people do not eat much animal fat may choose whether to have high 
death-ratesfrom breast cancer. The data in these plots say the same things 
logically and empirically. The only reasons for assigning causality or 
intentionality to one or the other stem from one's interpretive or theoretical 
perspective. Therefore, the framework proposed in this paper should not be 
construed as a replacement for statistical models in all circumstances, but 
instead as permitting the articulation and investigation of interpretations that 
cannot be handled by the statistical perspective. 
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Our framework involves the analysis of domains of possibility for action 
under constraints induced by "weak" models of entailement or prediction. 
One-to-many and other weak entailement models combine possibilistic and 
statistical concepts and, unlike their one-to-one counterparts, permit a range 
of optionsfor human choice or intention. Why possibility? First, choices may 
bemadeonlywhen possibilitiesexist. Secondly, structural or other constraints 
may be thought of as restrictions on the domain of conceivable possibilities. 
Third, within a range of possible actions, behavioral variation need not be 
dismissed as erroneous or random. Instead, it may be intepreted by 
motivational or othertheories of choice: "An action is the outcome of a choice 
within constraints" (Elster, 1983 p. vii). 

The Nature of Possibility 

Although the concept of possibility often is implicitly referred to in theories of 
action, possibility itself is rarely explicated. Until recently there was no 
analytic framework for possibility on a parwith the well-developed calculus of 
probability. I will introduce a framework based on developments by Zadeh 
(1978) and his colleagues which enables sensible definitions of graded 
possibility, as well as joint, conditional, and marginal possibility. First, 
however, we require some clarification of the concept of possibility. 

Broadly speaking, an event is possible if it could happen. It need not have 
happened yet, nor need its occurrence be probable or inevitable. On the other 
hand, if an event is impossible then it would seem to have a probability of 0 as 
well. Beyond these general remarks, at least three questions need to be 
addressed : 

(1) Are there distinct kinds of possibility? 

(2) How is possibility related to probability or necessity? 

(3) How may possibility bequantified and measured? 
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Several modern writers have decided that there are different kinds of 
possibility, and have made two kindsof distinction: semantic and ontological. 
Elster (1 978) and Lukes (1978) both emphasize the difference between "real" 
and "abstract" possibility in social theory. The former refers to real situations, 
whilethe latter is essentially a logical device. Wilkinson (1981), influenced by 
the possibilistic psychology of G.Kelly (1955, 1969) as well as modal logic, 
proposes a three-level hierarchy which includes the linguistic theoretic sense 
of possibility as opposition, the more commonsensical notion of possibility as 
a range of alternatives, and the general concept from modal logic of "possible 
worlds". 

Hacking (1975) and Zadeh (1978) have pointed out that there are at least two 
semantically distinct usages of the term in ordinary language. In Zadeh's terms, 
possibility may bethought of aseither compatibility orfeasibility. The statement 
"John istall"may beviewed asa restrictionon John's possible height, whereby 
in a Western context 6'2" is more compatible (possible) with the statement 
than 5'2". Feasibility orease of accomplishment does not apply to intransitive 
concepts such as tallness , but it does to events or actions (e.g., "it is almost 
impossible to find a needle in a haystack')). A related sense is possibility as 
availabilityoraccessibility (e.g., "it is possiblefor Lisato havecake"). Hacking's 
major distinction is between " possible for" and "possible that". The former 
refers to feasibility or availability, while the latter denotes a state of knowledge 
(e.g., "it is possible that George may have changed his mind"). Hacking calls 
the first kind of possibility "de re" and the second "de dicto". 

Theselatter distinctions havea history that can be traced directly to the origins 
of probability. As Hacking persuasively argues (1 975, ch. 14), the definition of 
probability itself was initially couched in terms of "equipossibility" and "grades 
of possibility". Not only did 17th and 18th century mathematicians such as 
Leibniz, Jacques Bernoulli, and Laplace hold by this conception, but so did 
modern classicists such as Bore1 and von Mises. Events were recognized as 
being possible in degree, and von Mises makes the case in 1928for grades of 
possibilityusing exactlythesame intellectual weaponsasZadehdoes 50 years 
later. Furthermore, several of the early probabilists distinguished between de 
re and de dicto possibility as a basis for a similar distinction between physical 
and epistemic probability. Of course, identifying probability with possibility is 
a conceptual error, and as mathematicians and philosophers found better 
foundationsfor probabilitytheory possibility was abandoned and ignored. 



Possibility Theory, Fuzzy Logic, and Psychological Explanation 11 

The distinction between de re and de dicto possibility points to two arguments 
for possibility as a graded concept. Zadeh's (1978) proposal focuses on the 
de dicto when he argues on intuitive grounds that some actions may be more 
difficult, hence less possible, than others. A "frequentist" case may be made 
for degrees of de re possibility as well. If, say, 90% of the people in suburb A 
own cars but only 45% of the people in suburb B do, then private automotive 
transport is twice as possible for the suburbanites in A as for those in 6. Both 
thesubjectivist and frequentist casessupport Zadeh's proposal that possibility 
be measured on a scale from 0 to 1 in a manner similar to probability, with 0 
indicating entire impossibility and 1 entire possibility. 

Clearly possibility is not a kind of probability, nor can probability represent 
possibilistic uncertainty. A phenomenological case for this rests on the 
observation that some kinds of uncertainty are nonprobabilistic; they do not 
involve references to likelihood or chance. That an option is possible says 
nothing about the likelihood that it will be chosen. A frequentist argument is 
that a grade of possibility puts an upper limit on probability. If 45% of a given 
population own cars, then at most 45% could possibly use them for 
transportation. The actual percentage of people using private automotive 
transport might well be less than 45% but it cannot be any greater. Likewise, 
the necessity of a given option places a lower bound on probability. If, say, 
15% of the population have no other option than driving their own cars, then 
at least 15% must necessarily use private automotive transport. Formally, if 
we denote the possibility of the ith option by poi, its probability by pri, and its 
necessity by nei, then 

The simple relationship in (1) immediately suggests two useful tools in a 
possibilistic calculus: the measurement of freedom of action, and the 
measurement of relative preference. Insofar as an action is possible but not 
necessary, then people are free to perform it or not. A natural definition of 
freedom of action for the ith option, then, is 
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"Preference" in many surveys is measured simply by the percentage of people 
who select a given option. But this practice assumes that all options have a 
possibility of 1 and a necessity of 0. True preference is indicated bythe extent 
towhich peopleselect an option whenthey arefreetodo so, and avalid relative 
preference measure may be defined by 

Si = (pri - nei) / (poi - nei). (3) 

Thisdefinition hintsthattheorists maywell find it profitableto considertwo sets 
of influences on human behavior: Those influencing the poi and those 
influencing the nei. 

By way of illustration, consider a survey (Smithson, 1983) of elderly citizens' 
preference patternsfortransportation in a northern Australian community. For 
those elderly who could not drive a car, there were four conceivable 
transportation options: (1) being driven by afriend or relative, (2) taking a taxi, 
(3) taking a bus, and (4) self-locomotion (bicycling, walking, etc.). The elderly 
were asked questions that determined whether each of these options was 
possible, necessary, and which actually were used. Table 1 displays the 
portions of the sample for whom these options were possible, necessary, or 
used on various occasions. While 32% of the elderly used buses and 32% 
were driven by someone for shopping, we cannot conclude that these two op 
tions were equally preferred because they were not equally possible. From (3) 
we have S1 = (0.32-0.02) / (0.42-0.02) = 0.75, while S3 = (0.32-0.12) / 
(0.72-0.12) = 0.43. Theelderlypreferbeingdriven byafriendor relativealmost 
twice as much as they do taking the bus, when it is possible. 
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TABLE 1 

Transport Optionsfor Elderly 

Transport Chosen for 

Shopping Possible Necessary 
~. 

Mode 

Being driven 32% 42% 2% 

Taxi 21 % 70% 0% 
Buses 32% 72% 12% 

Other 20% 93% 8% 

An intuitively plausible candidate for negation in possibility theory would be 
1-poi, but beforewelcomingthisasourdefinition we must distinguish between 
the"impossibi1ity"ofthe ith option and the'lpossibility of not-i". Conventionally 
the possibility of not4 is called "internal" negation, while the term for the 
impossibility of i is "external" negation. Elster (1 983) provides an example of 
this distinction from Zinoviev's account of the Soviet government's tendency 
to replace internal with external negation. Thus, while for a time it became 
possiblenottoquoteStalin the government responded by making it impossible 
to quote him. Here 1 -pa referstothe impossibilityof the ith option, while poi', 
the possibilityof not-i, is measured bythedegree to which the ith option is not 
necessary: 
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For instance, the portion of elderly who could take the bus is poi = 72 SO 1 -poi 
= 0.28. On the other hand, since the portion who must take the bus is nei = 

0.12, poi* = 0.88. 

Given measuresfor possibility, necessity, negation, and freedom, acalculusof 
possibility may be constructed along the lines of the standard theory of 
probability. I will do so here using a frequentist approach, delaying the 
discussion of a basis for subjective or epistemic possibility until the next 
section. This perspective differs somewhat from Zadeh (1978), whose 
framework does not often distinguish physical from epistemic possibility. The 
resulting definitionsof joint and conditional possibility not onlydifferfrom their 
probabilistic counterparts, but they also have a rather different epistemological 
status. 

Supposethatthe portions of people in a given population forwhorn the ith and 
jthoptionsarepossibleare poi and POj respectively. What isthe joint possibility 
po(iand j) of having boththe ithand jthoptionsavailable? Infrequentist terms, 
for what portion of people could options i and j both be possible? The smallest 
value po(i and j) could take is 0 if poi, + poi s 1, but if this sum exceeds 1 then 
po(i and j) must be at least poi + poi-1. The largest value for po(i and j) occurs 
when the portions poi and POj entirely overlap one another (i.e., when one 
includes the other). Hence, the range of values for joint possibility is 

max(0, poi + poj-1) I po(i and j) I min (poi, Poi). (6) 

In the absence of empirical information about po(i and j), there are two 
definitions one could adopt. One is a "pointwise" definition that stipulates a 
single valuefor po(i andj). Giventhat ourdefinitionof possibilityconnotesthe 
most that could happen, our pointwise candidate would be po(i and j) = 

min(poi, poi), which is Zadeh's definition. The second definition is "intervalic", 
and requires ustoview po(i and j) as a"fuzzy number" by virtueof thefact that 
in the absence of further info rmation no single value in the interval specified 
by (6) isany more plausiblethan any othervalue. Hence the definition of po(i 
and j) is expressed by (6) itself. For the time being, suffice it to say that there 
are occasionsfavoring each approach, and under some conditions the choice 
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between them boils down to what the researcher means specifically by 
possibility. In the frequentist paradigm there is no intervalic definition for joint 
necessity, since the ith and jth options are assumed exclusive. Given that nei 
+ nej 5 1, ne(i and j) = 0. There are, however, some subjectivist arguments 
for nonzerovalues of ne(i and j). 

In thefrequentist paradigm, the value of po(i and j) reflects the extent to which 
the availability of the ith and jth options are related to one another. If the 
possibility of i excludes the possibility of j, then po(i and j )  = max(0, poi + 
POj-1). If everyone who has access to option i also has access to j (or vice 
versa), then po(i and j) = min(poi, poi). Statistical independence between the 
availabilityof options i and j implies that po(i and j) = POipOj. 

By a similar argument to the one just given, we may establish that the relevant 
interval for po(i or j) is 

max(poi, poi) 5 po(i or j) 5 min(poi + poi, 1). (7) 

lfthe pointwisedefinition of po(i and j) = min(poi, poi) isadopted, then we are 
forced to conclude po(i or j) = mW(poi, poi). Otherwise the intervalic 
expression in (7) becomes the definition. In the event that we know thevalue 
of po(i and j), we have 

po(i or j) = poi + POj - po(i and j ) .  (8) 

From the data in Table 1, for instance, we may conclude that the portion of 
elderly for whom both taking a taxi and being driven by someone are possible 
options is not greater than min(0.42, 0.70) = 0.42 and not less than max(0, 
0.42 + 0.70- 1) = 0.12. lnthis particular survey, crosstabulation revealed that 
the joint possibility is po(1 and 2) = 0.34. Nearly all the elderly who can be 
driven byafriend or relative could alsotakeataxi. Likewise, from (8) we know 
that po(1 or 2) = 0.42 + 0.70 - 0.34 = 0.78. 
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Turning now to the concept of conditional possibility, there are at least two 
senses in which we may speakof possibility being"conditioned". One isa very 
general notion of influence, whereby a grade of possibility may change with 
some event or circumstance. Thus, the possibility that Dr. Gorgonzola may 
obtain a position at a university in Carbuncle is 0 if no university exists there 
in the first place, but rises conditional on a university being built there, a 
suitable position becoming available, Gorgonzola applyingfor it, being offered 
the job, and so forth. Examples abound in everyday life of individuals and 
institutions altering possibility distributions, and in some ways the concept is 
at the center of many psychological theoretical concerns. 

The second sense of a conditional possibility, however, is formally defined 
in terms of joint and simple possibilities: 

po(j/i) = po(i and j)/poL, 19) 

where pooh) denotes the possibility of j given i. In frequentist terms, po(j/i) is 
the portion of the people for whom option i is possible who also have access 
to option j. In set theoretic terms, it measures the degree to which option i is 
included by option j. Returning to the example above, given that 0.42 of the 
elderly can be driven by someone and that the portion who have that option 
and thetaxi available is 0.34, the possibility of taking a taxi conditional on having 
afriend or relative to drive is p0(2/1) = 0.34 / 0.42 = 0.81. 

Definitions of joint and conditional possibility enablethe multivariate analysis 
of possibility data. In conjunction with the definition of relative freedom of 
actiongiven in (2), this basiccalculusopensthewayfora multivariate calculus 
of freedom and constraint which will be outlined in a section to come. First, 
however, I will discuss some critical issues in the measurement of epistemic 
and physical possibilitythat do not fall within the frequentist paradigm. 

The distinction between objective and subjective possibility implies that at 
least two kinds of measurement foundations are required, somewhat 
analogous to thosefound in probability and statistics. Epistemic possibilities 
pose someof thesame questions haunting subjective probability: What rating 
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tasks are valid for human judges, how reliable are the judges, and what 
heuristics do (or should) people adopt in making possibility judgments? 
Research programs along the lines of Wallsten, Zwick, Budescu, and their 
colleagues (e.g., Wallsten et. al., 1986; Zwick & Wallsten, 1987) show 
considerable promise in providing useful answersfor psychologists who wish 
to scale subjective judgments of possibilistic uncertainty. 

To what extent can existing "possibilistic" instruments be analyzed in a 
readymade fashion using possibilistic techniques? Some practical 
suggestions are available in Smithson (1987). To begin with, negation, joint, 
and even Conditional possibility may be defined on any bounded scale in an 
interval, say, [a,b]. The impossibility of the ith option becomes a + b - poi, 
which amounts to "reverse coding" the scale. If the subjective scale has a 
O-point corresponding to absolute impossibility and the scale points are 
numerical, then converting that interval to [O,l] istrivial. Likewise, the min-max 
pairofoperatorsforjoint possibilitiespo(iand j )  and po(iorj) useonly ordinal 
information, and so may be applied to even ordinal judgment scales. 

Less intuitively, we may incorporate certain kinds of unbounded subjective 
scales intothe possibilitycalculus described thusfar. Under some conditions, 
possibility rating scales may not have apparent upper or lower bounds. Some 
concepts of "ease", "difficulty", "ability", and "power" are possibilistic but do not 
seemto haveabsoluteanchoring pointsat eitherend of thescale. If, however, 
they have a single midpoint as an anchor, then they pose no difficulty for our 
calculus. An example is a judgment or rating that refers to a norm (e.g., 
"abnormally difficult", "unusual ability", or z-scores). Let q be the midpoint. 
Then the impossibility of the ith point or option is 2q-p0i, and the min-max 
operatorsfor joint possibility are again entirely appropriate. 

Turning now to physical possibility, the same remarks that have been made 
regarding subjective rating scales apply to scales measuring difficulty, ease, 
costliness, ability, or availability from which possibility scales are derived by 
definitionalarguments. Furthermore, the direct estimation of possibilitiesfrom 
either proportions of people for whom options are possible or various rating 
scales designed to measure possibility directly may be handled by standard 
measurement theory. A distinction must be made, however, between 
possibilities arising from restrictions at the individual level and those derived 
from group-level constraints. That is, poi = 0.73 could arise because each of 
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27% of a group does not have the ith option available, or it could reflect a 
constraint that specifies only up to 73% of the group may exercise that option. 
Examples of the latter kind of possibility include the utilization of any limited 
resource, asingrazingcattleona commons, withdrawing moneyfroma bank, 
or distributing 73 cookies among 100 children. This distinction has 
consequences for the measurement of relative freedom or constraint. 

The greatest difficulties for inferring degrees of possibility arise, however, 
whenthere is no basisfordoing sootherthan sample observations of behavior 
or other events. Such observations yield point-estimates of probability, which 
in turn place s a lower bound on possibility. Usually, there is no way of 
obtaining a pointwise estimate of possibility under these conditions. Some 
investigators have gone as far as to propose explicit greatest lower bound 
(glb) estimates for poi as a function of sample estimates of pri (cf. Civanlar & 
Trussell, 1985). These glb candidates have the form 

where Si is the sample standard deviation of pri and c is the confidence level 
desired. 

These glb proposals lead, however, to some intepretive problems. First, we 
must ask exactlywhat is implied about possibility by a probability of any kind. 
The strict answer is only that the true possibility must equal or exceed that 
probability. Hence, glb’s of the form shown in (10) assert, paradoxically, that 
the higherthe confidence interval the higherthe imputed value for glb(pOi). The 
truestateof affairs, unfortunately, isthat while we might be 95% confident that 
pri lies between two bounds, we cannot be 95% confident that poi lies outside 
those bounds. There is a loose sense in which one may claim that such data 
provides information about whether people are behaving “as if’ certain options 
were possible, but the researcher is merely using a probability distribution to 
model possibility. 
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Measuring Freedom and Constraint 

The characterization of uncertainty in possibilistic terms motivates a 
measure of how relatively free the actors in a system are to make choices, 
given the constraints of that system. Our initial definition in (2) serves as a 
starting point for a more general measure, capable of assessing the collective 
freedom of individuals on the basis of their relative access to the set of 
conceivable choices. 

It is beyond the scope of a single article to fully elaborate a calculus of 
freedom and constraint. I shall outline the beginnings of one such calculus 
from a frequentist standpoint. Let N individuals each have possibility values 
pOij and necessity values neij (for the ith individual on the jth option) for each 
of r conceivable options. Let the values of POij and neij be either 0 or 1. 
Obviously, neik = 1 only if POij = 0 for all but the kth option. Then the relative 
amount of freedom enjoyed by the ith individual is r 

r 

j = 1  

Fi = I: (POij - neij)/r. 

We may recover the marginal possibility and necessity distributions over the r 
options by N 

N 

i = l  
POj = C pOij/N, and 

N 
nej = C neij/N. 

i = l  
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The relativefreedom for (portionof peoplefreetochoose) thejthoption isthen 
measured by 

which isa recoveryof the definition given by (2). Likewise, relative preference 
forthe jth option, Sj, may be defined as in (3). 

Now, if we move to the group level and wish to measure the freedom available 
to the entire collection of N individuals, there are three definitions that could 
be adopted. One is simply to measure the average Fi or Fj, which clearly may 
bedonewhether possibilities have been defined at the individual or only at the 
group level. But this definition ignores both partitions and permutations. The 
method of permutations leads us to define system freedom F* by 

F* = HrFi/rN, 
i 

= 0 only if all Fi = 0, f 74) 

whereonly nonzero Fi are multiplied together. The Nth root of F* is of course 
the geometric mean of the nonzero Fi. As in probability, the permutations 
approach to measuring freedom involves dividing the freedom accorded all 
permissible permutations by the freedom accorded all conceivable 
permutations. 

The third definition ignores permutations and considers only partitions. 
There are several situations where this might be desirable. One is where the 
system or group distinguishes only among different partitions rather than 
among permutations (akin to the Bose-Einstein statistics for photons), so that 
each permutation isconsidered equipossible. Another such condition is when 
only marginal possibilities are known, as with the imposition of constraints at 
the group level. Group constraints are constraints on the margins (partitions) 
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only, and do not yield deterministic estimates of simple individual possibility. I 
shall briefly outline the calculus of relative freedom using the method of 
partitions. 

Given r alternatives with equipossible partitions, there are two kinds of 
constraint that must be taken into account when calculating relative group 
freedom. One is the constraints on possibility and necessity for each of the 
alternatives. The second constraint is that the partitions themselves must 
always add to 1, even though the POj and nej need not. This latter restriction 
impliesthat roptions may be represented in r-1 dimensions (or, in conventional 
statistical terms, "degrees of freedom"). Figure 2 shows the geometry of 
freedom domains for r = 2 and 3. In the case where r = 2 the domain is a 
segment on the line defined by p i  + p2 = 1 whose endpoints are determined 
by pol, p02, nel, and nez. This line has length v-2. For r = 3, the domain 
is an area inside the equilateral triangle defined by p l  + p2 + p3 = 1, whose 
edges have length F 2 .  For r = 4 the domain is a volume inside a regular 
tetrahedron, and so on. 

Conceptually, the computation of the relative group freedom is simple. One 
computes the portion of length, area, volume, etc. that is left over once 
possibility and necessity constraints have been taken into account. The 
precise nature of these computations will be elaborated shortly. For now, 
suffice it to say that freedom is decremented in terms of (l-pOj)r-i and nejrbl. 
Thus, in the first example provided in Figure 2, if pot = 0.75, p02 = 0.80, net 
= 0. 10, and ne2 = 0.1 5 ,  then the relative group freedom (FG) is 

FG = [ I  - (I-POI) - ( I - P o ~ ) ]  <2/ <2 

= 1 - (1-pol) - (1-pO2) = 0.55 (75) 

In the second example, if poi = 0.75, p02 = 0.80, po3 = 0.56, nei = 0, ne2 
= 0, and ne3 = 0.15, then 
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FG = (1-11e3)~- (1-p03)~ - (1-po2-nes) 2 = 0.52 

Of course, these examples have been made straightforward. 

1 p1 ne =0.10 PO =0.75 1 1 

FIGURE 2 

Relative Freedom for 2 and 3 Dimensions 
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Even simple examples, however, may be intuitively interesting. Consider a 
teacher who gives students some choice on how they weight three pieces of 
assessment. Which is the more flexible: (1) A rule that specifies no piece of 
assessment gets less than a 20% weight, or (2) a rule that no piece of 
assessment gets morethan60%? Under rule ( l ) ,  FG = (1 - 3(0.20))2 = 0.16, 
while under rule (2) FG = 1 - 3(1-0.60)2 = 0.52. Rule (2) therefore gives 3.25 
times the relative freedom of rule (1) . How low would the maximum weight 
restriction in rule (2) have to be before its FG equals that of rule ( l )?  The 
required equation is 0.16 = 1 - 3(l-poi)’, and the solution is poi = 0.47, or a 
47% upperweight limit. 

Let us move toward the general (r-option) case. Given equipossible 
partitions, and the constraint that the partitions must sum to 1, the space for r 
alternatives may always be represented as an r-1 dimensional 
hypertetrahedron. The relative freedom of a collectivity that has possibilistic 
constraints imposed on the availability of the r options is simply a 
hypersubvolume inside that space, and therefore FG may be defined as the 
ratio of that subvolume to the volume of the hypertetrahedron. The 
computation of FG consists entirely of subtracting terms in poi and nei and 
adding back those portionsthat have been subtracted twice. These terms are 
always taken to the r-1 power. The result is a sum of groups of terms that 
alternate in their signs. 

For the 2-option case, 

FG = (l-nel-ne2) - max(0,l-pol-nen) - max(0.l-pon-net). (7 7) 

The %option model yields 

FG = (l-ner-ne2-nes) 2 - max(O.l-p01-m?2-ne3) 2 

- max(0,i -po2-nej-nes) 2 - max(0,1 -poa-nel -w) 2 

+ max(0,l -por-p02-ne3)~ + max(0,l -pol-p03-ne2)~ 

+ max(O,i-pon-pos-ne~) 2 , f 78) 
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and the 4-option model gives 

FG = (1 - nel-ne2-ne3-ne4) 3 - max(0,l - pol-ne2.ne3-ne4) 3 

3 3 - max(0,l - po2-nel-nes-ne4) - max(0,l - p03-nel-nen-ne4) 

- max(0,l - po4-ner-ne2-ne3) 3 + max(0,l - pol-po2-ne3-ne4) 3 

+ rnax(0,l - ~or-po3-ne2-ne4)~ + max(0,l - p01-po4-ne2-ne3)~ 

+ max(0,l - p02-po3-nel-ne4)~ + max(0,l - po2-po4-nei-nes) 3 

+ max(0,l - po3-po4-nel-ne2) 3 - max(0,l - pol-po2-po3-ne4) 3 

- max(0,l - pol-po2-po4-ne3) 3 - max(0,l - por-po3-po4-ne2) 3 

- max(0,l - p02-po3-po4-nel)~. (79) 

The general equation for the r-option model may be expressed by 
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Thus, returning once again to the survey on transportation for the elderly, 
we may compute the relative freedom of our sample from the data supplied in 
Table 1. There are 4 options, so from (19) we have 

FG = (1 -.02-.12-.08)3- (1 -.42-.12-.08) 3 

- (1-.70-.02-.1 2-.08)3- (1-.7-2-.02-.08) 3 = 0.41. 

These, however, are the most straightforward constraint models for 
categorical data. Cross-classified systems are considerably more 
complicated, and mixed systems with constraints on sums across several 
categories more so again. Nevertheless, they are not incomputable and both 
classical and Monte Carlo algorithms have been proposed for evaluating the 
vdumesoftherequired polytopes(e.g., Cohen& Hickey, 1979). Within reason, 
it is feasible to compute FG for cross-classified systems of options under a 
variety of assumption about (non)independence. 

We are now ready to move to the case where N individuals are assigned 
possibilities over a range of values on a continuous variable rather than over 
discrete options. For the most part, this is a simple generalization of the 
schemediscussed above. LetX bea continuousvariablewith range [d,u], and 
let X the ith individual be assigned a possibility pOi(X) = 1 for all x in some 
subrange [ai,bi] and 0 for all y outside this subrange. Then Fi is defined as 

Fi = (bi - ai)/(u-d) (22) 

The average Fi and F* are defined as above, with u-d replacing r in (14). 
More generally, let poi&) and nei(x) take values from the [0,1] interval. Then 
(22) is generalized to 

U 

Fi = J (pOi(X) - nei(x))dx/(u-d) 
d 

(23) 



26 M. Smithson 

A somewhat different but widely useful case is where each state x of X is 
assigned a possibility and/or necesssity value: po(x) and ne(x). Most likely 
thesepossibilitieswould beepistemic, but the important issue here isthat po(x) 
and ne(x) do not referto individuals. They may refer, for instance, tothe ease 
with which x is attainable. If the researcher wishes to compute the relative 
freedom for each individual, then in this instance Fi is identical for all i, and it 
isdefined by (23) without the use of subscripts in the right-hand terms. 

The reader may have noticed that I have been silent on the issue of 
evaluating FG in systems characterized by constraints on probability density 
functions over interval-level (continuous) variables. The reason for this is that 
there is, to my knowledge, no satisfactory framework available for defining FG 
in such systems. For practical purposes in some instances, we may 
approximate the continuous case via the standard ploy of dividing the 
appropriate range of the variable into r equal intervals and t reating it as an 
r-option system. However, the limiting behavior of (20) is unknown at present, 
and of course in the vast majority of practical problems (20) cannot be applied 
and we have no explicit expression for the general case. We are left with 
computational approaches along the lines suggested by Cohen and Hickey 
(1979). 

Finally, there is a class of situations in which the density functions 
constrained by possibility and necessity need not accumulate to 1. Instead, 
1 becomes merely a limit on their accumulation value. Consider a 
Commons-type setup in which M shareholders may use a resource up to a 
limit, L. Each shareholder’s usage of the resource also is limited by his or her 
share oftheholdings, hi. LetHdenotethesumofthe holdings hi,witheamount 
actually used bythe ith shareholder, bi = w/H, and B the sum of the bi. Then 
P(b i )  = min(hi/H,UH) and po(6) = min(VH,l). Clearly if HL then the 
shareholdersfacea Commonsdilemma, sincethey areless than perfectlyfree 
to use as much of their holdings as it is possible for them to do. There are 
meny Commons situations in the real world, but perhaps the one familiar to 
most people is a bank. If too many people withdraw their savings from a bank 
in a too short time, the bank fails. Furthermore, the relative freedom for any 
individual to withdraw money hinges on how much others have withdrawn 
recently. 
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In these problems, FG may be calculated as a subvolume of an 
M-dimensional rectrangular solid. The case for M =2 is shown in Figure 3 
below. Were L 2 H then shareholders would be free to maximize their bi. 
Hence, FG is the proportion of the area po(bi)po(bn) that is bounded by the 
linebl + b = UH: 

For these general case, we have M "shareholders" each with a share hi, 
which in turn sum to H, the total holdings. Each user may make a withdrawal 
Wi subject to the collective limitation that the sum, W, of the Wi may not exceed 
L. This scheme may be translated into possibilisitic terms by setting bi = wi/H 
and B equal to the sum of the bi. Then as before, pO(bi) = hi/H, and po(B) = 

min(UH,l). FG is thenevaluated asthe portion of the hyper-rectangular solid 
defined by the pO(bi) bounded by the constraint po(B) = UH. For M =2, FG 
is defined as in (24). For M = 3, 

FG = [1/(6po(br)po(b2)Po(b3))] 

[(UH)3- rnax(O,UH-po(b~))~- max(O,UH-p0(b2))~ - 

max(O,UH-p0(b3))~- rnax(O,UH-p0(bl)-po(b2))~ - 

rnax(O,UH-p0(bl)-po(b3))~ + max(O,UH-~o(b2)-po(b~))~l (25) 

and for the general case M = r, 
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r r 
FG = [ l / ( r !  n po(bi))][(VH)'- Z max(0,UH-po(bi))' 

i = l  i = l  

r 
... + (-I)'-' 2: max)O,UH - 2: ~ ~ ( b j ) ) ' ]  

i = l  j #  i 

PO 

FIGURE 3 
Two-dimensional Commons Setup 
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Before moving on toconsequences of our definitions, several issues remain 
to be discussed. One of them is the relationship between the "freedom" 
measures proposed hereand traditional notionssuch as'ldegreesof freedom". 
In both the strongly and weakly constrained r-option systems, the statistical 
concept of degrees of freedom corresponds with the dimensionality of the 
space in which the FG are computed. In this formalism, then, freedom has 
two components: dimensionality and magnitude. One consequence is that 
direct comparisons offreedom across systems having different dimensionality 
is not straightforward. Can FG = 0.4 be directly compared with FG = 0.3, if 
the former system has 3 options and the latter has 1 O? 

This last consideration raises the possibility of norming FG with respect to 
itsexponent. Consider astrictlysum-constrained M-option system, and let us 
add K more options onto it. If we assume that the sum of the poi for i = 1, .. . M 
exceeds 1 and that the addition of these options does not alter the poi or nei, 
then for all j > M we have the following limits: 

M 
poj <I - 2 nei,and 

i = l  

nej > 0. 

These new options could be said to add no more freedom to the system 
since they do not alter the limits on the old. If nej and POj are minimal and 
maximal respectively in terms of the limits imposed by (27), then it would be 
reasonable to conclude that the freedom available in the new system should 
equal that available in the old. 

But from (20) we know this is not the case. Letting N = M + K, it is clear 
that FGN < FGM, entirely because of the higher exponent in FGN. A partial 
correctionforthismaybeachieved by usingtheM-lthand N-lth rootsof FGM 
and FGN respectively. Equality isattained bythis measureonlywhen all terms 
in (20) that include any poi equal 0, so that the first term is all that is left. 
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There is a rough analogy between this norming procedure and the 
computation of the geometric mean, since for systems with no constraints on 
the pi the resulting measure is almost identical to the geometric mean. This 
measure may be intuitively thought of as a "mean" or "normed" measure of 
relativefreedom. Forconvenience, let usdenotethe M-lth (or Mth, inthe case 
of FGM as defined by (26) or the unconstrained case) root of FGM by S(FGM) 
andcall itthe'lstandardizedfreed om" measure. Its main applications probably 
will arise in problems where researchers wish to directly compare freedom 
measures between systems of unequal dimensionality. 

A somewhat related issue concerns the meaningfulness of computing 
freedom coefficientsfor systems that have an indefinite (unknown) number of 
options. The case of interest is when some finite subset of those options is 
knownand the poi and nei boundsontheir respective pi havebeen established. 
Call this a "finite subset' (FS) case. For all FS of dimension M-1 , a freedom 
coefficient may be defined by treating the FS as a subsystem and creating 
dummy POM and neM for the remaining unknown options, but with neM and 
POM set according to the limits prescribed in (27). 

This procedure amounts to assuming that these unknown options are not 
any more restricted than their complementary (known) counterparts. 
However, it does permit knowledge engineers and expert systems builders, for 
instance, to relax the assumption of "logical omniscience'' (cf. Horvitz et. al., 
1986) which requires that all conceivable options be known before evaluating 
belief, likelihood, or uncertainty of a proposition. The relaxation of that 
assumption not only accords with many real-world situations, but also with the 
spirit of Shackle's (1 969) rationale for surprise measures and Zadeh's 
argumentsfor possibility theory. 

Beforeleavingthesetopics, let us consider an example. In a pilot empirical 
study of possibility (Smithson, 1987, p. 18-22), I had subjects rate the 
possibility that "several" and "few" could refer to various integers. Table 2 

displays some hypothetical possibility ratings for the integers. Is the 
distributionfor "severall" or "several2" looser (freer) than that for "a few"? On 
what basis could we compare them: should we use FGM or S(FGM)? 
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TABLE 2 
Possibility Distributionsfor "Several" and "A Few" 

Integer 

0 
1 

2 
3 
4 

5 

6 
7 
8 
9 
10 
11 
-. 

A Few 

0.00 
0.00 
0.50 
1 .oo 
1 .oo 
0.40 
0.00 
0.00 

0.00 
0.00 
0.00 
0.00 

____ 

Several1 

0.00 
0.00 
0.00 
0.10 
0.40 
0.80 
1 .oo 
1 .oo 
1 .oo 
0.80 
0.20 
0.00 

Several2 

0.00 
0.00 
0.00 
0.31 
0.31 
0.50 
1 .oo 
1 .oo 
0.40 
0.31 

0.31 
0.00 

Aconventional approach to comparing these possibility distributions would 
be to assess their "heights", perhaps by taking the arithmetic mean. In our 
calculus, the geometric mean would be appropriate as long as the pi for these 
distributions did not have any further constraints placed on them. The 
geometric mean for the possibility distribution of "a few" is 0.669, while for 
"severalr" it is 0.517 and for "severaln" it is 0.455. The possibility distribution of 
"afew" isfreerthan that for "severalr", which in turn is slightlyless constrained 
than "several$. 

However, if we view the possibility distributions as upper bounds on 
subjective probabilities that must sum to 1 and hence impose the strict 
summation constraint on the pi, a rather different picture emerges. Clearly 
we may use (20) to compute freedom coefficients for these distributions, and 
forthedistribution in"afew" FG4 = 0.660, whilefor"several1" FGs = 0.376and 
for"several2" FGs = 0.666. According to the measure defined in (20), "a few" 
and "severaln" have nearly the same amount of relative freedom, while 
"severalr" issubstantially moreconstrained. lfwewishto use the standardized 
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freedom measure, then S(FG4) = 0.871, for "severalr" S(FG8) = 0.870, and 
S(FG8) = 0.944for"severaln". The standardized measure indicatesthat, when 
the number of integers isadjusted for, "afew"and"several1"are nearly identical 
in their amounts of freedom. The obvious lesson here is that the rank order of 
freedom in sys tems may be altered depending on the measure adopted, and 
so the choice of a measure of relative freedom is not trivial in its impact. 

A number of formal consequences flow from these definitions of relative 
freedom. I shall mention only one of them, namely the issue of whether 
necessity constrains more than impossibility. This issue has already been 
raised in an earlier example. In unconstrained systems where FG is defined 
simply by an appropriate version of (1 4), necessity decrements FG as much 
asan equivalent amount of impossibility. For sum-constrained systems where 
FG is defined by (20) or (26), however, this is not the case. Details and proofs 
of the theoremsdescribed below may be found in Smithson (1988). 

Theorem 1 

Let FG bedefined as in (26) but with an appropriate extension to incorporate 
nei constraints. For any set B contained in i:i = 1,2, ..., r let poi and nei be 
assigned in any mannerthat befits their definitions. Now, let poj be chosen for 
all j in B' and nej = 0, and denote the freedom of this system by FGp. Likewise, 
let nej = l-poj, thendefineall poi = 1 ,anddenotethefreedomofthisalternative 
system by FGn. Then FGp > FGn. 

This theorem stipulates that necessity constrains freedom more than an 
equivalent amount of impossibility, in systems modeled by (26). For systems 
modeled by (20) the picture is not quite so simple. Necessity constrains more 
than impossibility except under the conditions specified in the following 
theorem: 

Theorem 2 

Let FG be defined as in (20), and consider FGp and FGn as defined in 
Theorem 1 .  Then FGp < FGn if and only if: 
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(1) B' consists of only one j; and 

(2) Z nei 1- X poi. 
.iE B i EB 

This case-by-case discussion is intended to give the reader a feeling for the 
overall approach to a calculus of relative freedom rather than a rigorous 
introduction. A full elaboration of freedom measures must await another 
occasion. More important isan introduction toweak prediction and entailment 
models, which is the final primary component of our alternative framework for 

quantitative analysis. 

Weak Entailment and Prediction 

Conventional statistical models are designed to make pointwise predictions 
or to test for one-to-one associations. The exceptions to this tendency are 
scattered throughout the literature and rarely articulated for what they are. 
Although the conceptual and mathematical machinery of statistics is 
sophisticated and powerful, it is inappropriate for modeling systems in which 
people have a range of alternatives or choices. This section presents several 
models of entailment, prediction, and association based on (fuzzy) set 
inclusion, overlap, and logic which are compatiblewith theconcept of partially 
restricted choice. 

Starting with the 2x2 setup, as various authors have pointed out (e.g., 
Hildebrand, Laing, & Rosenthal, 1977; in an oddly unfashionable and 
neglected book), there are two fundamentally different kinds of "pure" 
relationship between two binaryvariable's. One is the "perfect" association in 
which all the observationsfall in the diagonal cells, as shown in the first part of 
Figure 4. This is the 2x2 analog to complete correlation, and in an entailment 
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or prediction schemeconstitutes perfect prediction. Theother is the so-called 
"weakperfect"association shown inthesecondtwo partsof Figure4, in which 
observations may fall in three of the four cells. This is, of course, not a 
one-to-oneassociation and does not yield perfect predictability. Actors in this 
scheme are restricted but still have options. 

X 
1' 1 

Y 

X 
1' 1 

Y 

FIGURE4 
Weak and Perfect Association 
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The traditional armory of measures of association and prediction for 2x2 
tables isoriented primarily toward the'lperfect association" model. Chi-square 
based measures (e.g., phi) and proportional reduction of error (PRE) measures 
such as Goodman and Kruskal's lambda achieve their maximum values only 
under perfect assocation. The odds ratio is sensitive to imperfect association 
but itdoesnot providean interpretive frameworkthat iscongruent withtheories 
of action under partial constraint. There are alternatives, some of which lead 
to useful characterizations of weak prediction and entailment in contingency 
tables. 

There are two direct, simple interpretations for weak perfect associations 
betweentwovariables. Thefirst one is based on set inclusion. Let the options 
on X i  be indexed by 1 and l ' ,  and the options on X2 by 2 and 2'. If pri and pri' 
= 1 -prr are the marginal portions for XI and pr2 and pr2' = 1 -pr2 are the 
marginalsforX2, then the middle part of Figure 4 corresponds to the inclusion 
of option 1 by option 2, while the third part shows the inclusion of option 2 by 
option 1. From the definition of joint possibility we know that poi2 = 

min(prr,pr2), and a measure of set inclusion is 

1112 = pridpri, and 

The greatest possible association that can occur between two binary 
variables is a strict inclusion relationship between them. The only 
circumstance underwhich "perfect" association (in set theoretic terms, setwise 
equivalence) can possiblyoccur iswhenthe marginalsof thetwovariables are 
identical. Therefore, the corresponding measure of association that we require 
is the extent to which one variable includes or is included by the other, which 
shall be called set overlap: 

OL12 = max( la~, l~n) = pridpoi2. 
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Applications of these inclusion and overlap measures have been detailed 
insmithson (1987). 

A PRE measure may be developed using I2/iII112, or OL12 to compare the 
observed degree of inclusion or overlap with that expected when X i  and X2are 
statistically independent: 

Boolean logic also may be used to characterize weak perfect associations 
between two binaryvariables. The middle part of Figure 4 corresponds to the 
proposition that option 1 implies option 2, while the third part represents the 
proposition that option 2 impliesoption 1. Unlike set inclusion, standard logic 
counts "nonblack noncrows" as evidence for the claim "all crows are black". 
Hence only one cell contains counterindicative observations for a simple 
"if-then"hypothesis, as Hildebrand et. al., (1977) explain. Theydevelopa PRE 
measure, del, of the extent to which the number of expected counterindicative 
observations under statistical independence between X and Y is reduced by 
the actual data. In the scheme shown in Figure 4, 

This measure also may be described in terms of a priori conditional 
possibilities. If the proposition that 1 implies 2 is true, then the conditional 
possibilities of the four cells are p0(2/1) = 1, p0(2/1') = 1 ,  po(2'Il') = 1 ,  and 
po(2'/1)=0. Thus, del1/2 compares the observed with the expected 
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conditional impossibilities, which are 0 for all but 1 -p0(2'/1) = 1 .  An identical 
argument connects delul with appropriate conditional possibility. 

A less intuitively accessible but important framework comes from 
information theory via "proportional reduction of uncertainty" (PRU) 
coefficients ofassociation proposed byKullback(t959), Theil(l972), and Kim 
(1984). Instead of either a set theoretic or logical interpretation, the PRU 
framework focuses on the amount of "surprisevalue" that data have, given an 
hypothesized relationship between thevariables. I will not present it here, but 
the interested reader may find a development of this approach for numerical 
and fuzzy variables in Gaines and Shaw (1986) and an extension and 
comparison between the PRU and PRE frameworks in Smithson (1 987, ch.7). 

The important pointtothese measures of association and prediction is that 

they operationalize one-to-many predictions or entailments, which are 
compatible with a possibilistic approach to data analysis. The simple "if-then'' 
proposition, in a sense, constrains people in one column of the 2x2 table but 
permits them choice in the other. The generalization of either PRE or del to 
larger bivariate or multivariatetables is not difficult, and will not be elaborated 
here. Instead, I shall briefly discuss its generalization to numerical variables. 

Thescatterplots in Figure 1 are both examples of simple "if-then" entailments 
involving numerical variables, in the sense that they conform to the statement 
"if X is high then Y is high." The sets"high X '  and "high Y '  are fuzzy sets because 
"high" is a graded concept, and the key to developing a PRE type measure of 
association to test weak predictions such as these is inducing either a fuzzy 
set membership scale or possibility scale (in the sense of "possible that this 
value of the scale could be referred to by the term 'high'") from the raw scales 
for X and Y. This may be done absolutely or by using z-scores. Having done 
this, then l1/2, delrln, and the rest may bedefined using definitionsforfuzzyset 
inclusion and fuzzy logical implication (for details on these see Smithson & 
Knibb, 1986; and Smithson, 1987, ch.1,3, and 7). The same mathematical 
tools may be used to operationalize other kinds of weak entailment models 
(WEMs) whose predictive regionsarealso regions of conditional possibilityfor 
free choice. 

Let a bivariate WEM be represented by a simple region in XxY, with X 
entailing Y. Many such regions may be described by lower and upper bound 
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functions L(X) I Y and Y 5 U(X), respectively, as shown in Figure 5. Then 
the characterization of the conditional possibility distribution po(Y/X) is 
deducible from the fuzzy logical operationalization of the statement "L(X) 5 Y 
and Y I (XI': 

pO(vi/Xi) = min[po(Yi/L(Xi) IY),pO(Yi/YI (Xi))]. (32) 

Given a form and parameters for the functions U and L, numerical methods 
maybeemployedtospecifythem by optimizing on del and precision measures 
as defined in Smithson (1987). It is not difficult to generalize this scheme to 
multiple region WEMs or models involving multiple constraining variables 
which in turn also constrain one another. 

Thefuzzyset theoretic, fuzzy logical, and information t heoretic frameworks 
are not the only formal models that could be used to characterize 
one-to-many entailments suchas those in Figure 1. It is quite possible to use 
rather conventional statistical tools to do the same job, namely the "dual 
equation" approach referred to at the beginning of this paper. The main 
advantage of the dual-equation approach over the fuzzy set, logical, or 
information theoretic approaches is its use of conventional and rather 
generalized concepts, albeit in a slightly deviant guise. The dual-equation 
models can easily capture a wide variety of relationships, while the other 
approaches require more computing time in orderto perform the same feats. 
Its primarydisadvantage, however, is that it does not connect particularly well 
withthe possibilistic framework, whereas fuzzy set and possibility theory are 
intimately related. Fuzzyset theory has been used to provide a mathematical 
measure theoretic basis for possibil ity theory, and they share a "natural" link. 
As yet, there is noarticulated linkage between possibilitytheoryand constraints 
onvariance. 
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Y 

X 

FIGURE 5 
Regional Prediction of Y 

Weak, one-to-many, or regional prediction models are not new. They are 
at least embedded in formalisms such as mathematical decision theory with 
itscharacterization of "admissible solutions", (non)linear programming, and in 
social and economic perspectives such as Simon's "satisficing" economic 
individual. However, the material introduced here refers to the first serious 
attempts to ground them in a statistical association framework that also can 
incorporate the concepts of possibility and choice. 
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The combination of possibilistic and weak predictive models opens a 
potentially valuable toolbox for data analysis in an agentive mode. The 
possibilistic calculus enables us to compute the relative loss of freedom 
imposed bya particularstructural, predictive, or entailing restriction on action. 
The fuzzy logic and inclusion basis for weak prediction permits the 
operationalization of a wide variety of structural, psychological, or material 
constraints in possibilistic terms. The two immediately suggest ways of 
modeling possibilistic and weakly constrained dynamic systems whose states 
depend onchoicesordecisions madeatvarious points intirne. It is not difficult 
to imaginepseudo-Markovian models using "transition possibilities" or models 
in which possibilities and/or constraints are choice-dependent. 

Possibilism in Psychological Theory and Research 

In several areas of psychology, the elaboration of possibility compels a 
rereading and, to some extent, a reconstruction of theory. All that can be 
provided here, however, is an illustrated outline of that reconstruction. I shall 
focus mainly on social psychological examples. A considerable proportion of 
psychologists utilize possibility in an implicit, perhaps even unconscious 
manner, although it is seldom carried into the level of research. One of the 
first tasks in putting possibility to work is to uncover its role@) in theoretical 
perspectives and disentangle it from related concepts. 

Many researchers, for instance, confuse possibility with conceivability, 
whichleadstotheobjection that"anyconceivab1e outcome is possible", or"the 
possibilities are endless". However, that often is not the case in either the de 
reor dedictosensesof possibility. Manyconceivablethingsare not physically 
or socially possible. Furthermore, peopleare literallyforced by the limitations 
oftheir minds and thefinitistic natureofthesocial stock of knowledge to make 
decisions or choices from a finite field of subjective possibilities. In practical 
social action, the field of possibilities usually is a finite, small subset of the field 
of conceivable alternatives. 
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Possibility plays perhaps its most important role in hidden counterfactuals 
that form the backdropto psychological accounts and theories. Virtually any 
account of strategic, purposive, or intentional action requires an account of 
possibilities. Game and decision theory are the most obvious examples in 
which such accounts are explicit, but even these prescriptive frameworks 
have failed to take into account that relative freedom itself could be a 
quasi-(dis)utility. This seemsthegistof Schwartz'(1986, p. 155-159) criticisms 
of the classic economic assumptions about preferences. He points out that 
economists (among others) have utterly neglected the manner in which choice 
is influenced by how people perceive, categorize, and act on possibilities. The 
measures of freedom defined in this paper could be employed in the 
development of a decision theory that includes relative freedom as not only a 
descriptor but as a criterion measure for preferences. There is considerable 
prima facie evidence that ordinary decision makers often take perceived 
freedom (or roomto move) intoaccount when making choices. Indeed, it could 
be justly claimed that the choices of greatest import to decision makers are 
those that involve creating or closing off possibilities. 

The evidence for these claims arises in both normative and explanatory 
research on decision making. Collingridge (1980, 1982) deviates from the 
mainstreamdecision theoretic literature in his criteriafor good decisions under 
"ignorance" (rather than uncertainty). He recommends that decisions in the 
absence of complete and certain information should be revocable, corrigible, 
and should keep as many options for alternative courses of action open as 
possible. March and Olsen's (1979, p. 72-73) account of organizational 
decision making indicatesthat decision making often is as much a process of 
creatingor maintaining possiblegoalsand outcomesas pursuing or acting on 
them. They claim that members of organizations attempt to maximize 
possibilities (in terms of their available choices) when uncertainty is high. 
Tverskyand Kahneman (1981), on the other hand, find that people may try to 

reduce uncertainty by selecting an option that narrows the range of future 
possible outcomes, even at the cost of foregoing their most preferred 
outcome. 

These are not necessarily contradictory findings. A simple but plausible 
hypothesis is that while people generally abhor "freedom" in terms of an 
uncertain or incomplete state of knowledge, they positively regard "freedom" 
of action. De re possibility is preferred, and de dicto is avoided, because both 
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actionsenhancethesenseof controllability. There are considerable prospects 
for a research program investigating this hypothesis in conjunction with a 
comparison of people's perceptions of freedom and "objective" measures of 
freedom. At least one current project on decision making concerns 
techniquesfor increasing the number of alternative possibilities perceived by 
decision makers prior to the actual decision process (Guerin, personal 
communication 1987). 

The widely used concept of "rule" in social psychology also requires 
possibility as a component. Constitutive aspects of rules delineate the realms 
of possible meanings or interpretations for social conduct, while regulatory 
aspects describe realms of possible behaviors. These realms usually are not 
totally constraining; nor do rules normally have one uncontested 
interpretation. Social rules are only weakly constraining and permit (or even 
invite) strategic manipulation and reinterpretation, as is evident in everyday 
concepts like the "letter" and "spirit' of a law or "bending" rules. A great deal of 
strategic social interaction is made possible by the nature of social rules. 

By distinguishing possibility from probability, necessity, and 
conceivability, some major psychological concepts may be enhanced. 
Power, for example, has long proved difficult to define and use in social 
psychological theories, despite a considerable literature on the psychology of 
control. Should power be defined as a potential or an actuality? Does it have 
three aspects (Lukes, 1977) ortwo (Layder, 1985)? Our concepts may clarify 
at least some of the problematic aspects of power by focusing at tention on 
whethera given typeof power influencesthe distribution of possible, probable, 
or necessary actions. Power that decreases or increases a possibility 
distribution is akin to a potential, since it does not determine what people will 
do but instead what peoplecan do. Powerthat altersa necessity distribution, 
ontheother hand, influenceswhat people mustdoand iscloserto an actuality. 
Power that influences what people prefer or are likely to do is akin to 
persuasion, since it does not involve altering actual constraints on action. 

In most real-world situations, the exercise of power will not correspond 
precisely to these "pure" types but will involve mixtures of them. But the 
analytical advantage of these three distinctions is that unlike most other 
typologies of power, they enable us to differentiate among several common 
strategies used by wielders of power. Consider, for instance, the plight of an 
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academicwithdwindling enrolments in herthird yearsubject. She may attempt 
toincreasethelikelihood, pri, that studentswill select hers out of the range of 
elective subjects, or even try to decrease their preference for other subjects, 
thereby lowering pri'(persuasion). On theother hand, shemay optforaltering 
the freedom allowed for third year students. One strategy is to try to make her 
class required for third year psychology students (increasing Mi, which 
increases coercion). A second alternative would be to decrease nei, (thereby 
increasing poi), which amounts to making some other currently required third 
year subjects nonrequired. Third, she might try to reduce the range of third 
year options offered in psychology without eliminating her subject, thereby 
decreasing poi' and hence increasing nei indirectly. Academics anywhere will 
recognize all of these power strategies, and also know the distinctive 
advantages, costs, and political roles involved in each of them. 

Possibility enters into accounts and theories as an ingredient of meaning. 
Many psychologists have recognized this at least imp1 icitly. Social 
comparison and judgment, the perception of relative deprivation, reference 
group processes, reactance, self-enhancement (including several varieties of 
therapy), and skills acquisition are examples of processes that include a 
possibilistic component. Taylor's (1 983) account of how cancer patients cope 
by using downward comparison (i.e., "things could be worse - on is worse 
off than I am") is one of the most explicit demonstrations that possibility plays 
a crucial role in the construction of meanings and the assertion of control. 

Finally, possibility may constitute an explanatory component in a theory. 
Some allusions to this have already been made in the remarks concerning 
decision processes earlier in this section. Clearly either de dicto or de re 
possibility could be used in an explanatory capacity. Examples of de re 
possibilistic explanations are plentiful in everyday life: the wealthy and poor 
approach the same problems of living in dramatically different ways because 
they also differ widely on what is possible and necessary; transportation 
strategies adopted by youth alter suddenly because they become legally old 
enough to get driver's licenses; and so on. Likewise, actions whose 
explanations depend on an appeal to what could happen, what could be done 
instead, what someone else might do, or what consequences might follow, 
often invoke a de dicto possibilistic account. The Prisoner's Dilemma and the 
arms race share this property, among others. 
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A good example of the systematic (albeit qualitative) use of de re 
possibilistic concepts in a middle-range theory of strategic behavior is Mars’ 
account of workplace crime (1982, ch.1). He begins with Douglas’ (1 978) grid 
and group constructs as a way of classifying occupations, but his purpose is 
to explain the rise of characteristic patterns of workplace extralegal activities. 
Accordingly, he points out that weak grid workplaces exert weak constraints, 
permit greaterfreedoms, and thereby allow more scopefor extralegal activities 
onthe part ofthe individual worker. Weak group occupations also involve fewer 
constraints on the individual from his or her work-group, but strong 
work-groups also have the potential for exercising teamwork in the service of 
group-level pilferage. Mars’ explanatory typology involves possibility 
dimensions at both the individual and group levels. 

The explanatory linkages among possibility, choice, and constraint may 
best be appreciated by examining those aspects of the human condition that 
are making the transition from a deterministic/probabilistic process to a 
psychological and social process involving possibility and choice. Consider, 
for instance, the determination of a baby’s gender. Until recently the 
underlying process was best modeled as a simple binomial distribution with 
a probability of nearly 1 /2 for a girl or boy. Sociobiologists have been fond of 
adding deterministic refinements to this probabilistic model, whereby more 
boys are produced when food is scarce and more girls when food is plentiful. 
This process does not involve possibility or choice, but social constraint also 
is absent. If we adopt the sociobiological model, the possibility, probability, 
and necessity of having a girl (or boy) are identical; and the constraints are 
biological. 

Enter choice of gendertechnology, in which claims are made that parents 
may reliably choose whether or not to have a boy or girl. The question of 
whether such technology is available now is the center of some controversy, 
andtheactual reliabilityforcurrent practices is unknown. But suppose a widely 
available technique were to be created that had a reliability of 0.9. In other 
words, theexpected po(boy) = po(gir1) = 0.9, while the expected ne(boy) = 

ne(gir1) = 0.1. Clearlythe process for determining the gender of the newborn 
would then shift from a probabilistic biological to a possibilistic social process, 
with preference patterns initially influencing the female/male ratio of the 
newborn. 
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These preference patternswould suddenlyassumethestatusof influencing 
factors. Some studies indicate that not only does a majority of parents prefer 
boy babies togirl babies (this tendency is stronger among men than women), 
but an overwhelming percentage (91% of the men and 84% of the women, in 
a study referred to by Fraser, 1986) prefer the firstborn to be a boy. How far 
awayfrom the nearlyeven boy-girl split might such preferences take us? Let 
us conservatively assume that 16% of the women would try for firstborn girls. 
Taking these preferences on face value, the expected ratio of firstborn boys 
togirlswould be at minimum [(.84)(.9) + (.16)(.1)] / [(.16)(.9) + (.84)(.1)] = 

3.386. If the 16% who do not insist that a boy be the firstborn include some 
uncommitted women, then the ratio would be higher. The 84% preference 
figure also is a least upper bound; to the extent that couples' decisions on the 
firstborn's gender were made jointly or dominated by men, the ratio could be 
higher. 

What social responses might weexpect tothis (even prospectively)? Some 
people might see this as a classic Commons dilemma, in which individual 
preferences exercised collectively endanger the collectivity as a whole. 
Spokespeople from several interest groups already have commented 
unfavorablyonthe prospect of a widespread pattern of "big brotherism" by birth 
order (cf. Fraser, 1986). The Luddite option (banning thetechnology) seems 
unlikely. More Iikelyarevariousattempts to socially"regu1at e" gender choice, 

or to narrow the range between possibility and necessity. Here, then, is a 
concrete realization of the oft-repeated refrain in sociological theory that 
freedom and constraint go hand-in-glove, but with the roles of possibility, 
choice, and constraint made more explicit and analyzable. Rather than 
Zinoviev's vision of a replacement of "possible not to" by "not possible to", we 
should expect that a sudden increase in "possible not to" would be 
counteracted with a corresponding increase in'lnecessary to"via social or even 
legal regulations. Exit a strictly probabilistic biological explanation. Enter 
moralchoice, theimpositionof social constraints, and a possibilistictheoretical 
and quantitative framework. As Hacking (1981, p. 26) so aptly puts it, "The 
less determinism, the more the possibilities for constraint." 

In summary, possibility plays a part in several crucial aspects of 
psychological theories: (1) As a backgrounding for counterfactuals in 
hypotheses, prescriptions, and measurement; (2) As an ingredient in 
meanings; and (3) As an explanatory or analytic variable. A well-formed 
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conceptual and mathematical basis for possibility should enable theorists and 
researchers alike to amplify each of these capacities. Likewise, the advent of 
a mathematical framework for possibility improves our ability to address 
central questions concerning person-situation research, the nature of freedom 
and control, the operation of power and domination, and how people make 
decisions or exercise preferences. It does not, of course, solve fundamental 
philosophical problems associated with the free will versus determinism 
debate. No simple appeals to language can do that, although at least 
distinctions such as subjective and objective possibility enable theorists to 
avoid the pitfalls pointed out by writers like Skinner (e.g., 1978, p. 31) in 
confusing the feeling of freedom with "real" fredom. 

While it isfartoo early to assess the payoffsfrom a theory of possibility and 
weak entailment framework at the theoretical and conceptual level, some 
immediate claims can be made for benefits at the level of research design and 
data analysis. Nolonger need quantitative researchers resort to deterministic 
statistical mathematics by default, and modern theorists need not inevitably 
turn knowledgeable, intentional actors into judgmental dopes whenever they 
quantitatively operationalize any component of their theories. Furthermore, 
weak entailment models offer a badly needed alternative to "causal analyses" 
in which a dozen or so ill-defined variables are inappropriately laundered 
throughtheGLM to"explain" minute portionsof variance in outcomevariables. 
It places the burden of proof, for once, on the determinists. 

Although the framework presented here is incomplete and tentative, it 

clarifies one of the most difficult problems in the human sciences: the 
conceptual rift between modern psychological theory and quantitative 
methods. It also offers some foundational concepts and methods which may 
point awayout of thisdifficulty, by applying fuzzylogic and possibility theory 
to models of prediction that allow choice under partial restriction. Finally, 
those foundations suggest a method for measuring the relative freedom of 
choice accorded either inviduals or groups which in turn may prove valuable 
in both normative and explanatory paradigms of decision making and choice 
behavior . 



Possibility Theory, Fuzzy Logic, and Psychological Explanation 47 

References 

Carroll, K. K. Experimental evidence of dietaryfactors and hormone dependent 
cancers. CancerResearch, 1974,35, 33-77. 

Cheeseman, P. In defense of probability. Procedings of the 9th International 
Joint Conference on Artificial Intelligence, Los Angeles, CA., 1985. 

Civanlar, M. R.  & Trussell, H. J. Constructing membership functions using 
statistical data. FuzzySets and Systems, 1986, 78, 1-13. 

Clarke, D. D. Language and Action. Oxford: Pergamon, 1983. 

Cohen, L. J. The Probable and the Provable. Oxford: Clarendon, 1977 

Cohen, J. & Hickey, T. Two algorithms for determining volumes of convex 
polyhedra. Journal of the Association for Computing Machinery, 1979, 26, 
401-414. 

Coleman, J. S. Social theory, social research, and atheoryof action. American 
Journal of Sociology, 1986,9 7, 1 309-1 335. 

Collingridge, D. The Social Control of Technology. London: Frances Pinter, 
1980. 

Collingridge, D. Critical Decision Making. London: Frances Pinter, 1982. 

Collins, R. Statistics versus Words. In R.  Collins (Ed.), Sociological Theory. 

San Francisco, Jossey-Bass, 1984. 

Douglas, M. CulturalBias. London: Royal Anthropological Institute, 1978 

Elster, J. LogicandSociety: Contradictions and Possible Worlds. Chichester: 
Wiley, 1978. 

Elster, J. Sour Grapes: Studies in the Subversion of Rationality. Cambridge: 
Cambridge University Press, 1983. 



48 M. Smithson 

Fraser, L. Oh boy, let’s have a baby! MotherJones, 1986, 7 1,16-17 

Gaines, B. R. & Shaw, M. L. G. Induction of inference rules for expert systems. 
Fuuy Sets and Systems, 1986,18,315-328. 

Ginsburg, G. P. Introduction and overview. In P. Ginsburg (Ed.), Emerging 
Strategies in Social Psychological Research. New York: Wiley, 1979. 

Hacking, I. The Emergence of Probability. Cambridge: Cambridge University 
Press, 1975. 

Hildebrand, D. K., Laing, J. D., & Rosenthal, H. Prediction Analysis of Cross 
Classifications. New York: Wiley, 1977. 

Horvitz, E. J., Heckerman, D. E., & Langlotz, C. P. Aframework for comparing 
alternative formalisms for plausible reasoning. Memo KSL-86-25, Stanford, 
Ca.: Stanford University School of Medicine, 1986. 

Kelly, G. A. The Psychology of Personal Constructs. New York: Norton, 1955. 

Kelly, G. A. Clinical Psychology and Personality: The Selected Papers of 
GeorgeKelly. (Ed. P. Maher) New York: Wiley, 1969. 

Kim, J. PRU measures of association for contingency table analysis. 
Sociological Methods and Research, 1985, 1 13, 3-44. 

Kullback, S.  Information Theowand Statistics. New York: Wiley, 1959. 

Layder, D. Power, structure, and agency. Journal for the Theory of Social 
Behaviour, 1985, 75, 131-149. 

Lukes, S. Essays in Social Theory. London: MacMillan, 1977. 

Lukes, S. Unpublished paper delivered at the British Sociological Association 
Conference. Guilford: University of Surrey, 18-19 September 1978. 

March, J. G. & Olsen, J. P. Ambiguity and Choice in Organizations. Oslo: 
Universitetsforlaget, 1979. 

Mars, G. Cheats at Work. London: Allen and Unwin, 1982. 



Possibility Theory, Fuzzy Logic, and Psychological Explanation 49 

Miller, G. A,, Galanter, E., & Pribram, K.L. Plansand thestructure of Behavior. 
New York: Holt, Rinehart, and Winston, 1960. 

Muller, E. N.Atest ofapartialtheoryof potential for politicalviolence. American 
Polifical Science Review, 1972,66, 928-959. 

Schwartz, 8. The Battle for Human Nature. New York: Norton, 1986. 

Shackle, G. L. S. Decision, Order, and Time in Human Affairs. New York: 
Cambridge University Press, 1969. 

Shafer, G. A Mathematical TheoryofEvidence. Princeton: Princeton University 
Press, 1976. 

Skinner, 8. F. Reflectionson BehaviorismandSociefy. Englewood Cliffs, N.J.: 
Prentice-Hall, 1978. 

S m it hson , M . Accommodation and Transporfa tion for fh e Elderly in To wnsville . 
Queensland: JamesCook University, 1983. 

Smithson, M. Fuzzy Set Analysis for Behavioral and Social Sciences. New 
York: SpringerVerlag, 1987. 

Smithson, M. A calculus offreedom. 1988. (under review) 

Smithson, M. & Knibb, K. New measuresof association for numerical variables. 
Journal of Mathematical Social Sciences, 1986, 1 1, 1 61 -1 82. 

Taylor, S. E. Adjustment to threatening events: A theory of cognitive adaptation. 
American Psychologisf, 1983, 38, 11 61 -1 173. 

Theil, H. Sfatisticaldecompositionanalysis. Amsterdam: North-Holland, 1972. 

Tversky, A. & Kahneman, D. The framing of decision and rationality of choice. 
Science, 1981 , 2 1 1, 453-458. 

Wallsten,T. S., Budescu, D. V., Rapoport, A., Zwick, R., & Forsyth, 6. Measuring 
thevague meaning of probability terms. Journal of experimental Psychology: 

General, 1986, 115, 348-365. 



50 M. Smithson 

Wilkinson, S.  J. Constructs, counterfactuals and fictions: Elaborating the 
conceptof"possibi1ity" in science. In H. Bonarius, R. Holland, & S.Rosenberg 
(Eds.), Personal Construct Psychology: Recent Advances in Theory 
Practice. Sutton: MacMillan,l981. 

Zadeh, L. A. Fuzzy sets as a basis for a theory of possibility. fuzzy Sets and 
Systems, 1978, 1,  3-28. 

Zadeh, L. A. Fuzzy sets and probability. Proceedings of the I.E.E.E., 1980, 68, 

421. 

Zwick, R., & Wallsten, T. S. Combining stochastic uncertainty and linguistic 
Paper presented at inexactness: Theory and experimental evaluation. 

NAFlPSworkshop, Purdue University, May, 1987. 



Fuzzy Sets in Psychology 
T. ZBtBnyi (Editor) 
0 Elrevier Science Publishers B.V. (North-Holland), 1988 51 

QUANTIFIERS AS FUZZY CONCEPTS 

Stephen E. NEWSTEAD 

Department of Psychology, Plymouth Polytechnic 
Drake Circus, Plymouth PL4 8AA, England 

As their name suggests, quantifiers are used to indicate quantities along 
certain dimensions, whether of amount (e.g., all, some) or frequency (e.g., 
never, often). Such terms are among the most commonly used in English 
and other languages. Thorndike and Lorge (1944) in their list of the 500 most 
common words in English include more than a dozen such terms, including 
the four examples given in the previous sentence. 
Some writers have assumed that the quantities expressed can be precisely 
determined. For example, according to logic all means every single member 
of a set, and some means at least one and possibly all members of a set. 
Similarly the query languages developed by computer programmers give 
prectse definitions to the quantifiers used in searching through a database. 
It will be argued in this chapter, however, that outside such artificial 
languages quantifiers are inherently fuzzy concepts. Furthermore it will also 
be argued that their meaning is variable depending on the situation in which 
the words are used. 
Previous research on quantifiers has takenplace within a variety of different 
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frameworks. Logicians and reasoning researchers have investigated the 
interpretation of quantifiers as a possible explanation for errors in 
syllogistic reasoning; applied psychologists have studied the scale values 
of quantifiers used in rating scales; and psycholinguists have investigated 
the representations of quantifiers in both comprehension and memory. 
Each of these areas of research has its own focus of interest and its 
own methods of investigation. In this chapter an attempt will be made to 
review this work and to synthesise the findings from the disparate areas. 

QUANTIFIERSANDSYLLOGISTIC REASONING 

According to the Greek philosopher Aristotle, syllogisms are the 
essence of human rational thought. Syllogisms consist of two premises and 
a conclusion, each of which contains one of the quantifiersall, no, some, and 
some ... not. An example would be: 

All men are mortal 
No men are women 
Therefore some women are mortal 

All syllogisms are like this in that they contain a conclusion consisting 
of two terms (women, mortal) which are linked in the premises by a common 
middle term (men). Since any one of the quantifiers can be used in each 
premise and the conclusion, and since the end and middle terms can be 
ordered in different ways, there are a large number of possible syllogisms. 
Only a small number of conclusions are valid (the one given above is not) 
and people are known to make a large number of errors when they attempt 
to solve syllogisms (see Evans, 1982, for a review). 

Theerrorsthat people make in syllogistic reasoning could occur at anyone 
of a number of different stages. They could occur at the encoding stage; 
they could occur when the information from the two premises is combined; 
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ortheycould ariseatthedecision stage. Researchtodate hasfailed to provide 
any conclusive evidence as to which of these stages is the source of errors, 
and indeed it is possiblethat all might contribute (Fisher, 1981). However,for 
the present purposes we shall concentrate on interpretational explanations, 
i.e. those alleging that the premises are misinterpreted. 

Two main errors have been indicated in the literature, conversion errors 
and incomplete representations. Conversion errors involve interpreting 
the quantifiers all and some ... not as if they implied their converses, for 
example, believing that All As are Bs implies All 6 s  are As. That this is not 
the case can be easily seen by using the real-life example All dogs are 
animals. Conversion errors could explain a number (though not all) of the 
errors that are typically made (Dickstein, 1981). Incomplete representations 
arise when premises are represented in such a way that some logical 

possibilities are excluded. For example, Some As are Bs does not logically 
preclude all As being Bs, but subjects might represent this premise in such 
a way that this possibility is precluded. 

Thefact that these misinterpretations can explain many of the errors made 
does not, of course, mean that this explanation is correct, since other 
explanations might fare equally well. Independent evidence that such 
interpretational errors occur is needed. Such evidence as exists comes from 
two main experimental methods, Euler diagrams and immediate inferences, 
and the findings from these two tasks will be considered in turn. 

Euler diagrams (frequently confused with Venn diagrams) depict the 
possible relationships betweenthe twosets mentioned in the proposition. The 
five possibilitiesare presented in Figure 1, ranging from identity (diagram 1) 

to exclusion (diagram 5). In t he bottom part of Figure 1 is an indication of which 
quantified statements are true of which Euler diagrams. In a typical 
experimental task, subjectswould beasked to indicate which statements can 
be paired with which diagrams, and their performancecompared to the 
logically correct answers given in this figure. 
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2 3 

4 5 

Diagram number 

1 2 3 4 5  
All As are Bs v v x x x  
No As are Bs x x x x v  
Some As are Bs v v v v x  
SomeAsarenotBs x x v v v 

Note: A "v" idicates that a diagram is true with respect to the quantified 
statement on the left, an "x" that it is false. 

FIGURE 1 

Euler diagrams 
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If subjects are making conversion errors with the quantifier all, then they 
should presumably select only diagram 1 (the identity relationship, forwhich 
conversion is valid) and not diagram 2 (in which As are a subset of B and 
conversion is invalid). Unfortunatelyfor conversion theorists, such errors are 
rare. Griggs and Warner (1982) found only one response out of 32 which 
came into this category, and unpublished research by the present author 
confirms the rarity of this choice. If subjects are convertingsome ... notthen 
they should choosediagrams4and 5, forwhich bothSomeAsarenotBs and 
Some 8 s  are notAs are true, but not diagram 3 which is true for Some As are 
not Bs but not its converse. Once again, however, choice of just these two 
diagrams is rare (<5% in the unpublished study by the present author). 
Subjects commonly select just diagram 4, but omit both diagrams 3 and 5. 
It must be concluded from research on Euler diagrams that conversion is not 
common. 

The evidence for incomplete representations is much stronger, since 
subjects frequently indicate fewer diagrams than they should. More 
importantly, there is a pattern to these omissions. Errors with some 
frequently involve omitting diagrams 1 and 2 and errors with some ... not 
frequently involve omitting diagram 5 (Neimark & Ghapman, 1975). These are 
preciselythosediagramswhicharetrueonly becausesomedoes not preclude 
all, and some ... not does not preclude no; in other words these diagrams are 
true for the universal relationships (all and no). Hence this finding would 
suggest that subjects interpret some as meaning some bur nor all. 

According to conversational implicatures (Grice, 1975), this is precisely 
what one would expect, since it would be misleading to use the term some if 
one believed all to be the case. The evidence strongly suggests, then, that 
subjects underinterpretsome and some ... not in predictable ways (see Begg 
& Harris, 1982). Such a finding is a little surprising since subjects are usually 
specifically instructed to give the quantifiers their logical interpretations. 

The second major way of looking at the interpretation of syllogistic 
quantifiers is the immediate inference task, in which subjects are asked to 
indicate which statements are logically implied by a given quantified 
statement. For example, subjects might be given the statement All As are Bs 
and asked if a statement such as Some As are Bs logically follows from this 
(Begg & Harris, 1982; Newstead & Griggs, 1983). Conversion errors would 
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be demonstrated if subjects believed that all and some ... norstatements 
implied the truth of their converses. There is evidence that a significant 
minoriyof subjects (30-40%) believethatall is convertible, and an even greater 
number believesome ... not to be so (Newstead & Griggs, 1983). 

There is also significant evidence immediate inference task for 
incomplete representations. As in the Euler diagram task, many subjects 
believe that particular statements (i.e., those using some and some ... nor) are 
not consistent with their universal counterparts. One example will serve to 
illustratethis point; ofthesubjectsgiven thestatementAll As are Bs, onlyabout 
70% believed thatsome As are Bs was definitelytrue, despitethefactthat the 
truth of this statement is implied by logic. Further, a significant number of 
subjects (more than 20% in each of threeseparatestudies) believed that the 
some statement was definitely false (Newstead & Griggs, 1983). 

Within the context of syllogistic reasoning, it is also relevant to mention 
extended syllogisms or set inclusions. These are chained premises of the kind 
All As are Bs, All Bs are Cs, Al l  Cs are Ds. Subjects find such relationships 
extraordinarily difficult. possibly because they make conversion errors and 
fail to realise the transivity of the relationship (Griggs, 1976). Newstead and 
Griggs (1984) have suggested that errors might be caused by subjects 
interpreting allfuzzily, in order words treating it as if it meant almost all. They 
attemptedtodemonstratesuchfuzzyinterpretations by asking subjectsto rate 
the appropriateness of all when there were just a few exceptions to a general 
rule. An example would be if subjects were asked to rate the appropriateness 
of the quantified sentenceAll the people are aged under 700 when in fact there 
was one person (out of several thousand) aged over 100. The authors obtained 
moderately high appropriateness rating for such items. 

In itself this evidence is far from conclusive. There are obvious demand 
characteristics in a task such as that used so that subjects might feel obliged 
to give non-minimal appropriateness ratings when there are just a few 
exceptions. Fortunatelyforthe authors, there was one aspect of their results 
which serendipitously supported their hypothesis. In addition to asking 
subjectsto rateall they alsoasked them to rate otherquantifiers, including no. 
Presumably the same demand characteristics apply to ratings of all and no, 
and yet all was rated significantly more appropriate than no when there were 
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just one or two exceptions to a general rule. Hence at the very least we can 
conclude that all is interpreted morefuzzilythan no. 

The research on syllogistic reasoning has produced conflicting results, but 
some general conclusions can still be drawn. 

(a) Conversion errors probably do occur, despite the fact that they do not 
show up in Euler diagram tasks. However, they are manifested only by a 
minority of subjects. 

(b) Incomplete representations occur frequently. An especially 
prevalent error is that of adopting the everyday interpretation of particular 
quantifiers ratherthan that dictated by logic. 

(c) There issome preliminaryevidence that all may be interpreted fuzzily. 

(d) There are large individual differences in the interpretation of 
quantifiers. 

QUANTIFIERSAND RATING SCALES 

If syllogistic reasoning is historically the most important context in which 
quantifiers have been studied, the most important in terms of weight of recent 
research is the use of quantifiers in rating scales. In rating scales, people are 
askedtoassess somebodyor something along a labelled dimension. In many 
cases this dimension involves frequency or amount and the labels used are 
quantifiers. As an example, people might beasked in a questionnaire whether 
they enjoy parties always, often, occasionally, seldom or never. 

It is normal practice to convert responses on such scales into numbers, for 
instance assigning 5 to a response of always, 4 to often, and so on. In this 
way the results from different questions can be pooled and compared. 
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However, this conversion assumes that the responses are intervally scaled, 
such that the distance between any two adjacent responses is the same; 
thus in the above example the distance between always and often should be 
the same as that between seldom and newer. Unless these responses 
achieve interval scaling it is inadmissible to convert them into numbers (which 
are, of course, intervally scaled). Hence one of the principal aims of 
research in thisarea has beento find quantifierswhich possess interval scaling 
properties. One of the best known studies here is that of Bass, Cascio and 
O’Connor (1974). They used the scaling method of magnitude estimation 
(Stevens, 1971) to assess the scalevalues of 44 quantifiers of amount and 
39 of frequency. On the basis of their findings they were able to list optimum 
setsofquantifiers, depending uponthe number requiredfor a particular scale. 
They claimed that these scale values were relatively robust since they were 
unaffected by the importance of the topic described (the War in Vietnam vs 
rainfall in Nepal). Some researchers have suggested minor alterations tothe 
proposed optimum lists (e.g., Schriesheim & Schriesheim, 1978; Pohl, 1981) 
but in general they have stood the test of time. 

Despite the relative stability of these scale values, there is a growing 
body of evidence that they can be substantially affected by a number of 
factors. Perhaps the best documented of these is the expecredfrequency of 
the event described. Pepper and Prytulak (1974) found that quantifiers were 
interpreted as indicating higher frequencies in contexts which were 
themselves of high expected frequency. To illustrate,frequenr/ywas taken 
to mean approximately 70% of the time when used to describe the frequency 
with which Miss Sweden was found attractive (high expected frequency) but 
only about 20% of the time when describing the frequency of air crashes (low 
expected frequency). These results have been replicated on a number of 
occasions (eg. Newstead & Collis, 1987; Wallsten, Fillenbaum & Cox, 1986). 
Each of these studies also found that the effects of expected frequency were 
much more marked with high than with low frequency quantifiers. Indeed 
quantifiers denoting less than half seemed unaffected by base rate. 

There is also some evidence that attitudes and experience can influence 
interpretation of quantifiers. Goocher (1965) asked subjects to assign 
quantifierstovarious activities (such as going dancing) which occurred with 
specified frequencies. Their experience and liking of such activities was also 
assessed. Subjectswhodisliked or had little experienceof an activitytended 
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to assign higher frequency quantifiers than subjects with greater liking or 
experience. Thus a subject who disliked dancing might think going dancing 
three times a month to be "often" whereas a keen dancer might call this 
"seldom". It is possible that this finding is a special case of the expected 
frequencyeffect, sincethosewholikeanactivity or indulge in it regularly might 
have a higher expected frequencyfor such an event. 

There is also evidence that type of activity or object being descrined can 
influence the interpretation of quantifiers. As has already been mentioned, 
Basset al., found no differences in scalevalues dependent on the importance 
of the activity described. Similarly, Newstead and Collis (1987) found that 
scalevalues showed littlevariation over avariety of different activities, ranging 
from emotional feelings to overseas visits. However subjects seemed less 
inclined to use the extreme ends of the scales when emotions were being 
described; for examplealways feeling happy is interpreted as implying being 
happy little more than 90% of the time. But perhaps the most impressive 
evidence comes from an interesting series of experiments reported by 
Hormann (1 983). He found that each of the following factors could influence 
the amount indicated by a quantifier: 

(a) Object described: a few crumbs means more than 8, whereas a few 
shirts means approximately 4. 

(b) Size of object: a few large cars suggests a smaller number than a few 
cars. 

(c) Spatial location: a few people standing in front of a hut is not as many 
as a few people standing in front of a building. 

(d) Size of field of vision: a few people seen through a peephole indicates 
a smaller number than a few people seen through a window. 

It is possible once again that these findings are related to expected 
frequency since one might expect to see fewer large objects than small 
ones, or to see more objects through a window than a peephole. 

Another factor which has been claimed by some to affect interpretation is 
the set size that is being described. The first study to investigate this was 
carried out by Borges and Sawyers (1974), who asked subjects to choose 



60 S. E. Newstead 

the appropriate number of marbles suggested by a quantifier. They varied 
the size of the set of marbles and were thus able to compare for example the 
proportions indicated by some with set sizes of 12 and 108. They reported 
no effects of set size, though this may be because they used an insensitive 
statistical technique. In two replications of their study, Newstead, Pollard and 
Riezebos (1987) were able to demonstrate significant effects, such that low 
magnitude quantifiers (e.g., few) indicated largerproportions with small set 
sizes than they did with large set sizes. However Newstead and Collis (1 987) 
found much smaller (and nonsignificant) effects when quantifiers of 
frequency rather than amount were used. It would appear that set size is 
an important but somewhat unpredictable determinant of interpretation. 

The final factor which seems to affect scale values is the range of other 
qualifiers available. Chase (1 969) found that ocassionallywas assumed to 
indicate a higher frequency when presented in the context of low frequency 
quantifiers (seldom, rarely) than when embedded in high frequency quantifiers 
(usually, often). Similarly Newstead and Griggs (1984) found thatsome was 
rated as more appropriate with proportions between 50%-100% when it was 
the onlyquantifier available than when the quantifiermost was also available. 
However there is evidencethat the number of other quantifiers has littleeffect 
providing that the quantifiers there are give a reasonable spread across the 
dimension (Newstead & Collis, 1987). 

It should be clear from the work on rating scales that the interpretation 
of quantifiers is very much affected by contexr; the expected frequency of 
the event, the type of activity, the set size described and the range of 
alternative quantifiers available can all affect scale values. What this implies, 
of course, is that we must not look for the meaning of a quantifier; rather we 
must acknowledge that there is a range of meanings and the problem thus 
becomesoneof characterizing thisvariable meaning. Some possible ways of 
doing this are indicated in the final section. 

A further point to note is the considerable variability in the interpretation 
of quantifiers. This can be readily detected in those experiments in which 
subjects have been asked to indicate ranges for quantifiers (e.g., Wallsten, 
Fillenbaum &Cox, 19 86; Newstead & Collis, 1987). Interestingly, Wallsten et 
al., found that quantifiers in the middle of the range were most variable, 
followed by high frequency quantifiers and then low frequency terms. 
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Another aspect of variability can be seen in the large individual differences 
that emerge in many of these studies. That these are not simplyattributable 
to experimental error has been shown by Budescu and Wallsten (1 985) 
who found that individual subjects were consistent over time but significantly 
different to other subjects. 

Ps yc holinguistic studies of quantifiers 

The comprehension and representation of quantifiers have challenged 
psychologists for many years, but despite extensive research and theorizing 
there is still little consensus in the area. A number of different approaches 
have figured in the literature, and this chapter will briefly summarise four of 
the more influential ofthese: thefeatural theoryof Just (1974): the analogue 
theory of Holyoak and Glass (1978): the propositional theory of Anderson 
(1981); andfuzzyset theory. 

Featural theories are based on the assumption that words can be 
analysed into unique combinations of features. A commonly-cited textbook 
example is the word bachelor, which can be defined in terms of possessing 
the feature "male" on the malelfemale dimension and the feature 
"unmarried" on the marriedlunmarried dimension. With respect to 
quantifiers, dimensions such as universaVparticular, largelsmall and 
negative/positive can be used to categorise quantifiers. In a series of 
experiments involving sentence-picture verification, Just (1 974) was able to 
provide evidence in favour of such a featural analysis. It is worth noting, 
however, that these results were obtained with highly-practised subjects who 
showed a consistency and accuracy that would probably not be found with 
naive subjects. In addition it is now generally accepted that feature theories 
are oversimplistic; while certain core aspects of meaning can be represented 
in this way for some words, some of the subtleties and variations of meaning 
cannot becaptured. 
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Accordingtotheorists such as Holyoak and Glass (1978), quantifierscan 
be characterised as points along an analogue scale. This can bevisualised 
as a line with all at one end and no at the other, with each quantifier 
occupying a location between these two extremes. The experiment 
carried out by Holyoak and Glass (1 978) indicated that quantifiers located 
close together on this scale were more likely to be confused with each other 
in memory than were more distant terms. This is strong evidence to support 
the analogue theory but, as the authors themselves point out, would also 
be predicted by certain featural theories and, indeed, other theoretical 
apporaches. 

The propositional theory of Anderson (1981) claims that quantifiers are 
given abstract representations in the form of propositions. In the particular 
version of the theory espoused by Anderson, quantifiers have an effect on 
whole sentences, altering the type and number of propositions into which 
they can be analysed. Quantifiers which produce similar propositional 
analyses (e.g. all and some) should be prone to confusions in memory, and 
this is precisely the result obtained by Anderson. However, it must be noted 
once again that such a result could also be predicted by feature theories (all 
and some are both positive) and by certain versions of the analogue theory. 

Fuzzy set theory has been investigated only recently in psycholinguistic 
research on quantifiers. According to this theory, quantified terms can be 
represented as membership functions over the range from 0 to 1. For any 
quantifier there will be some values that are definitely outside the 
membership function (to which a value of 0 is assigned), others that are 
definitely within it (which receive a value of l), and others which have 
intermediate values. Consider for example the quantifier some; the value of 
0% would certainly be outside the membership function for this term; 30% 

would definitely be in it; but values such as 90% might be regarded as having 
intermediate values, not being definitely within or definitely outside the 
meaning. Some preliminary work has suggested that this approach may 
be fruitful (e.g., Wallsten, Budescu, Rapaport, Zwick & Forsyth, 1986; Farkas 
& Englander, 1987; Ekberg & Lopes, 1980), but as yet little work has been done 
to test the predictions of this theory against those of other approaches. 

Perhaps the only certain conclusion that can be drawn from this 
psycholinguistic research is that no certain conclusion can be drawn. The 
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empirical evidencethat has been accumulated can be adduced to support any 
ofthetheories but to disprove none of them. The predictions of several of the 
theories are a little obscure and it is difficult to be optimistic of an early 
resolution of the conflicting views. 

Overview and Synthesis 

To a certain extent, the division of research on quantifiers into three areas 
- syllogistic reasoning, rating scales and psycholinguistics - is arbitrary. To 
give just one example, Hormann’s (1983) study was included in the section 
on rating scales because it related so closely to work on the effects of context 
on interpretation; in reality, the research was motivated more by 
psycholinguistic considerations. Despite such cross-references, in general 
researchers in each area have pursued their enquiries independentlyof each 
other. Nevertheless there are important and illuminating links that can be 
made, and in this section an attempt will be made to draw some general 
conclusions about the interpretation of quantifiers. 

(1) Quantifiersare Fuzzy 

The conclusion that quantifiers are best regarded as fuzzy concepts 
seems inescapable. Attempts to determine rbe meaning of a quantifier have 
been noticeably unsuccessful in all areas of research. Clearly quantifiers have 
a range of meanings and the re are no clear-cut boundaries between one term 
and another; it is difficult to see how this could be captured other than by 
notions such as those derived from fuzzy set theory. One aim of future 
research should clearly be to determine membership functions for each 
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quantifier. Some studies of rating scales have provided useful information 
here since subjects have been asked to give maximum and minimum values 
for quantifiers. However much the most sophisticated work in this area so 
far has been carried out by Wallsten et al., (1986) who have empirically 
obtained membership functions for frequency and probability terms. The 
experimental test they used involved choosing which of two terms best 
described the proportions indicated on a pie-chart. It would be interesting to 
know if similar results can be obtained using different methods; although 
they were used in rather different paradigms, the techniques of allocating 
100 points between different quantifiers (Begg & Harris, 1982), or giving 
appropriateness ratings to quantifiers (Newstead & Griggs, 1984) might both 
be adaptable to investigating this question. 

It is perhaps not too surprising that quantifiers such as some have 
meanings covering a fairly wide range. However it has also been claimed 
that universal quantifiers might be fuzzy in nature. Clearly the range of end 
terms such as all and always is much more restricted thanfor intermediate 
terms; Budescu and Wallsten (1 985) found interquartile ranges close to zero 
for end terms but in excess of 20% for other terms. However, Newstead and 
Griggs (1 984) provided evidence that a// issometimes seen as appropriate even 
when there are one or two exceptions. Furthermore, an incidental finding 
of Newstead and Colis (1 987) was thatalways, when applied to statements 
concerning emotional states, may mean little more than 90% of the time. 
Hence there is evidencethat all and always can be interpreted fuzzily, though 
interestingly there is little evidence for fuzziness in the interpretation of noand 
never. 

(2) Meaning is context dependent 

Once again, the conclusion that the meaning of quantifiers varies 
depending upon the context In which they occur is totally inescapable. It 
emerges most clearly in work on rating scales but is evident also in other 
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research areas. The most widely researched type of context is base rate or 
expected frequency. Pepper and Prytulak (1 974) have shown quite clearly 
that terms such as often suggest a higher frequency when applied to 
expected or common events rather than unexpected ones. What is more, a 
number of other context effects can be explained using this concept. 
Effects of liking and familiarity (Goocher, 1965) can be explained in terms of 
familiar or enjoyable events having a higher expected frequency. Similarly, 
effects of size of object or size of field of vision (Hormann, 1983) may be due 
to an expectancy of seeing fewer large objects or fewer objects in a restricted 
field of vision. 

Another aspect of context that can influence interpretation is the size of the 
set described. Although the effect is somewhat variable, it does apear that 
at the very least the proportion signified by low frequency quantifiers of 
amount decreases as set size is increased. 

One finding to emerge in both studies of expected frequency and of set 
size is that low frequency quantifiers are more fixed and less variable in their 
meaning than high frequencyquantifiers. The effects of expected frequency 
have repeatedly been found to be more marked with high frequency terms, 
and it is actually disputable whether any effect exists with low frequency 
terms (Wallsten, Fillenbaum &Cox, 1986). At first sight the effects of set size 
contradict this, since it is the proportion signified by low frequency terms 
that varies with set size. However, this contradiction is more apparent 
than real. Low frequency terms signify a greater proportion with small set 
sizes than with large set sizes, and hence the actual amount suggested by 
thequantifiervariesless than with high magnitudequantifiers. Thusfew might 
suggest 4 out of 10 and 10 out of 100, a relatively small difference, while many 
might signify 7 out of 10 and 70 out of 100, a proportionally greater difference. 
It is interesting to recall that terms at the bottom extreme of the scale (no, 
never) also seem to be less variable (fuzzy) than their counterparts at the top 
end of the scale (all, always). 

Another aspect of context which seems to affect interpretation is the 
number of other quantifiers available. Chase (1969) has shown that 
occassionally means rather more when embedded in low magnitude 
quantifiers than when embedded in high magnitude ones. Similarly, in an 
experiment partly reported by Newstead and Griggs (1 984), it was found that 
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some was regarded as highly appropriate for any proportion between 10% and 
90% when the only other quantifiers available were all and none; but when 
most was added to the list, the appropriateness of some between 50% - 100% 

declined markedly. It would appearthat quantifiers can expand or contract to 
fill the available semantic space; they will be interpreted narrowly if many 
other quantifiers are available, but much more broadly if there are few other 
quantifiers. 

It was concluded in the previous section that quantifiers are best 
characteristed as fuzzy concepts. In view of the marked effects of context, 
this conclusion needs to be reviewed. Since the scale value of quantifiers 
can be influenced by context, t hen presumably each quantifier can be 
characterised by a whole range of fuzzy sets, the appropriate one being 
determined by context. However, this is a rather unsatisfactory state of 
affairssince it impliesan essentially infinite number of fuzzy sets a ssociated 
with each quantifier. The issue is complicated even further by the finding 
that meaning depends on the other quantifiers available. Not only does the 
scale value around which the set is centred vary, but also the size of the set 
itself; the spread will be large when only a few other quantifiers are available, 
but smaller when there are more available. 

Clearly a straightfotward fuzzy set approach is too simplistic. The 
complexity of quantifierscan perhaps be captured by assuming that they can 
be represented as fuzzy sets which can vary along an analogue scale. To 
illustrate this, in the absence of context, offen might have a membership 
function corresponding to a normal curve with a mean of 65% and a standard 
deviation of c 10%. The effect of context would be to alter the mean value, 
but the membership function itself might be relatively unchanged . 

This is an improvement, but there are still problems. As quantifiers get 
pushed towards the extremes of the scale, the set must be compressed to 

prevent it going beyond the end-points. In addition, some quantifiers (the low 
magnitude ones) are more fixed than others, and hence their corresponding 
sets cannot be moved up and down the scale in the same way. And finally, 
as we have seen, the range of quantifiers is determined by what other 
quantifiers are available; hence the sets indicated by quantifiers must be able 
toexpand and contract according tothe context in which they occur. Hence 
the analogue scale must make provision for some quantifiers being more 
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fixed than others in their position on the scale, and for the sets themselves 
being variable in rangedependingon their position inthescaleand onwhich 
other quantifiers are represented on the scale. 

Thusfarthe picturethat has been painted might appearto beoneof almost 
unlimited variability. Fortunately, there are a number of aspects of meaning 
that do not change; in particulartherank order of quantifiers seems to remain 
virtually constant (Pepper, 1981). There are sometermsthat are synonymous 
(e.g. seldom and rarely), and the rank order of these can vary from study to 
study; but if these special cases are ignored, rank order correlations approach 
unity. Thus the meaning of a quantifier such as few can vary so that it means 
as much as 50%; but there seems to be no way in which it can mean more 
than some does in the same context, even though the meaning of this latter, 
out of context, is only about 30%. 

I Hence there is here an important regularity that can be built in to a model 
of quantifiers. We are left with a complex but coherent conceptualisation: 
quantifiers can be characterised as fuzzy sets located in fixed order along an 
analoguescale. Thesizeofthesets is variable, and somequantifiers are more 
mobile than others in their position along this scale. 

It would be pretentious to elevate these ideas into a "theory"of quantifiers; 
rather they provide a framework for summarising existing research findings. 
Nevertheless the conclusions, drawn from existing data, are all open to 
empirical disproof. More importantly, the ideas might indicate where future 
researchers should look for lawful relationships. It islikelythat the meaning of 
quantifiers varies regularly with expected frequency and set size; and the 
range of quantifiers probablyvaries in a predictable way with the number 
of other quantifiers available and proximity to the end-points of the scale. 
There are hints of such relationships in the literature, but only a richer pool 
of experimental data could confirm or disprove their existence. 
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(3) There are large individual differences in interpretation 

Research on syllogistic reasoning and rating scales has revealed marked 
individual differences in interpretation. Some subjects (approximately 40%) 
regard a// as convertible, the remainder do not; some subjects adopt the 
interpretation dictated by logic, others are swayed by conversational 
implicatures; and therearesubstantial individual differences inthe scalevalues 
given to frequency terms. These individual differences are not due simply to 
experimental errors since both Newstead and Griggs (1984) and Budescu 
and Wallsten (1 985) have, in very different paradigms, shown consistency 
in subjects' interpretations. 

There are presumably a number of different sources for individual 
differences, and some possibilities are raised bythe literature reviewed in this 
chapter. It has been shown that quantifiers can expand or contract to fill the 
available semantic space. It follows from this that someone with a large 
vocabulary of quantifiers will assign rather more specific meanings to these 
terms than someone with a less richvocabulary. In addition, there are almost 
certainly differences in subjects' willingness to adopt fuzzy interpretations of 
universal quantifiers, and it has been found that fuzzy interpreters are more 
likely to make conversion errors (Newstead & Griggs, 1984). Perhaps some 
subjects are simply less precise in their use of terms, and allow for a certain 
amount of flexibility in meaning. It would be interesting to know if these 
subjects are the same ones as those who respond in experiments as 
predicted by conversational implicatures, refusing to be tied down to the 
highlyspecific meanings prescribed by logic. 

SUMMARY AND CONCLUSIONS 

This chapter has reviewed research on quantifiers from three quite 
distinct areas: syllogistic reasoning, rating scales and psycholinguistics. It is 
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quite clear that such terms are imprecise and ill-defined, and mean rather 
different things to different people. It is also true that their meaning varies 
markedly from one context to another, depending on such factors as 
expected frequency, size of set described and range of other quantifiers 
available. However, the order of quantifiers seems to be fixed. These 
properties are captured if quantifiers are visualised as fuzzy sets of variable 
size which are in fixed order relative to each other but which can be moved up 
and down a continuous scale. 
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A COMMON FRAMEWORK FOR COLLOQUIAL 
QUANTIFIERS AND PROBABILITY TERMS 

A. C. ZlMMER 

University of Regensburg,FRG 

The importance of modal qualifiers for argumentative reasoning is 
investigated and it is shown that colloquial quantifiers and uncertainty 
expressions can be interpreted as fuzzy numbers in the interval [O,l] .  

Empirical procedures are suggested for the determination of these fuzzy 
numbers. 

The empirical results reveal that for propositions on a defined level of 
abstraction colloquial quantifiers and probability terms can not only be 
expressed as fuzzy numbers but furthermore can be used in according to the 
rules for fuzzy combination numbers. 

For specific areas of content well defined scope functions can be 
empirically determined. These influence the meaning of colloquial 
quantifiers systematically, that is, they catch the contex-tual meaning. A 
somewhat related effect is observed in probability terms for conditional 
propositions. 
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1. INTRODUCTION: Schemesfor Reasoning and Argumentation 

In the history of Western thought, starting with Aristotles Organon, 
mechanical proceduresfor reasoning have been devised serving as normative 
theoriesfor human reasoning and at the same time as tools for the processing 
of evidence. The rise of psychological investigations of thought processes 
has debunked the notion of logic as an - albeit normative - theory of human 
reasoning. Thequestion, however, if and howformal approaches of reasoning 
and human reasoning can be brought together, remains open. The approach 
proposed here is intended to close the gap somewhat by proposing what 
could be termedanapproachtoaformal theoryof informal reasoning (Zimmer 
1984a). 

In order to make more specific what such an approach is intended to 
achieve, it seemsappropriatetocompare classical formal approaches, that is, 
predicate calculusand probabilitytheory, withwhat is known about everyday 
reasoning. In Table 1 the positions of predicate calculus, probabilitytheory, 
and everyday reasoning regarding central problems of reasoning are 
compared. 

The inspection of Table 1 highlights the fact that, in general, predicate 
calculus and probability theory take very similar approaches towards 
problems and modes of reasoning despite their d iff erent structure. Exceptions, 
however, are the evaluation of partial or circumstantial evidence and in the 
weighing of evidence by probabilities or by divers colloquial qualifiers; here 
probability theory and everyday reasoning take similar positions. What 
distinguishesthese pointsfrom the rest of Table l ?  They apply to situations 
where only approximate solutions are possible, where the reasoning is 
invalid or does not lead either to the alternative "true/false", but where only 
degrees of plausibility or veridicality can be reached. 

As Toulmin (1964) observes, standard logic has been developed with an 
eye on mathematicswhere such ambiguous situations are to be avoided at 
nearly any cost (but see, for instance, Kline, 1980). In order to liberate logic 
from this Procrustean bed, Toulmin suggests the reconstruction of logic 
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TABLE 1 

Modes of reasoning 
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I calculus 
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lquantifier (all, lfor weighing by lwithout 

/some, not all, (probability Irestrictions 
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according to the model of legal argumentation. He suggests a scheme of 
syllogistic reasoning with the following components: 

(i) claims propositions that are supposed to be true or to be at least 
plausible to a certain degree 

(ii) groundsor reasonsfor believing the claims to bevalid (the usual form 
is that of explicitly or implicitlyquantified statements) 

(iii) warrants, statements about the relations between grounds and 
claims (e.g. causality, necessity, sufficiency, contingency) 

(iv) backingcommonlyshared knowledge (Smith, 1982) which provides 
the rules for a combination of grounds and warrants in order to 
justify the claims (e.g., rules of syllogistic reasoning or statistical 
inference) 

(v) modal qualificarions general quantifiers and uncertainty 
expressions, such as possibly, usually, necessarily. They applytoto 
the propositions and to the inferential process. 

(vi) rebuttals alternative claims which can also be inferred from the 
grounds, warrants, and the backing because of the modal 
quantification of propositions and inferential rules. Rebuttals can 
be overcome by either showing that they imply a smaller set of 
consistent propositions than the claim or by comparing the overall 
modal qualification of the rebuttals with the evaluation of the claims. 

These components are combined as shown in Figure 1 (Taulmin, 1964, p. 
104; the figure has been slightly changed in order to avoid inconsistencies). 

DATA -(CLAIM1 QUALIFIER1 

Since I 
((WARRANT) qualifier) 

I 
L - - - - - - - - - - - - - - -  t I 

i I  
evaluation I 

on account of/ REBUTTAL 
because 

because 

IBACKING 
FIGURE 1 

A modified version of Toulmin’s (1 964) model for syllogisms in 
argumentation. Toulmin’s original model is indicated by upper-case letters 

and bold lines. 
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used 

& 

damaged 

An example for this kind of syllogistic reasoning using an analysis of the 
chains of arguments in the determination of the probable price of a used 
book (see Figure 2). 

ri 

r rl L 
I unless 

x i s  

x 1s 

x i s  

since 
I 

since 

_ _ - _ _ _ _ _ -  @ - - - - I  

"used books=] "damaged books I 
are jaluaysl- - 1 
inexpensive" not the case 

A 

are inexpensive" 

A 

because on account on account 

of of x> a textbook 

4 
textbooks ar 

[not rare 9 
t 4 

& a book 11 

FIGURE2 

The application of the modified Toulmin model 
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Figure 2 especially reveals the importance of implicit (...) or explicit 
(usually, always etc.) quantifiers, for the evaluation (qualification) of the 
claim. In order to develop a formalized version of Toulmins approach to 
plausible reasoning, it is necessary to develop a common framework for the 
interpretation of explicit and implicit quantifiers and furthermore an 
algorithm for their concatenation. Zadeh (1 983) has suggested the 
interpretation of quantifiers asfuzzy numbers in the [0,1] interval and the use 
of the operations of fuzzy numbers (Dubois & Prade, 1980) as the algorithm 
fortheir concatenation. 

2. FUZZY NUMBERSAND QUALIFIERS 

The meaning of quantities like "about 50 %" or "slightly below 0.3" 
(Smithson, 1987) and adding "about 50 %" and "a bit more than 10 %" with 
the result "probably somewhat more than 60 %" seem to make sense 
immediately. However, it is not clear how this intuitive meaning is reflected 
in the formal definitions of fuzzy numbers and their rules of concatenation 
(Dubois & Prade, 1980). The formal definitions allow for the proving of 
abstract theorems in fuzzy numbertheoryandfor checksof consistency but 
these formal definitions do not provide any guidelines for the mapping of 
impreciseobservablequantities intothedifferenttypes of fuzzy numbers 01 , 
s, z, s/z, or z\s numbers) and for the setting of parameters. On the other 
hand, Smithsons (1 987) and others purelyempirical approach characterizing 
a fuzzy number by a listing of relative frequencies is not sufficient either, 
because he does not proposeempiricallytestable rulesforthe concatenation 
of these numbers. Such rules however can be derived from results on 
approximate calculation in the areas of foreign exchange (Zimmer, 1984b) 
and of the stock market (Zimmer, in preparation). For merely illustrative 
purposes, let us start with fuzzy numbers of the form "standard number + 
qualification" (e. g . "approxi matel y 0.7'). 
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Figure 3(a and b) represents this fuzzy number where the core (0.7), and 
the fuzzy upper and lower boundaries, (the fuzziness duetothe qualification) 
can be discriminated. The fuzzy number can now be represented by the 
following triple: lower boundary relative to the core, core, upper boundary 
relative tothe core (0.1/0.7,0.7, 0.15/0.7). 

fuzziness A 

IR 

FIGURE 3 

Fuzzy numbers consisting of a core (or prototypical) meaning of 0.7 and 
fuzzy upper and lower boundaries.(a) is a fuzzy number with core interval, 

(b) is a fuzzy number with a point-wise core. 

Any two fuzzy numbers can be concatenated following these steps: (i) 
calculating the resulting core by means of standard arithmetics, by (ii) 
averaging the respective upper and lower boundaries, and by (iii) 
determining the resulting boundaries from the a veraged boundaries in 
relation to the resulting core. The operations with fuzzy numbers 
corresponding to the standard operations in arithmetics are illustrated in 
Figure 4(a-d). 
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14 C 
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' I  
I b 

IR 
b )  

1 

d l  
FIGURE4 

Operations with fuzzy numbers 
a/fuzzy addition @ 

b/fuzzy multiplication @ 
c/fuzzy substraction 8 

d/fuzzy division 0 



A Framework for Colloquial Quantifiers and Probabilistic Terms 81 

Thedescribed approach of handlingthecoreand thefuzziness seperately 
has beenestablished empirically. Specifically, thethink-aloud protocols ofthe 
subjects reflectthis procedure. Forfuzzy numberslikeseveral , most or likely 
the same procedure can be applied provided the core has been determined 
empirically. 

3. FUZZY ARITHMETIC AS A MODEL FOR REASONING 

Starting with the experimental studies by Zimmer (1982, 1984a, 1984b) 
empirical evidence has been amassed for Yagers (1 980) and Zadehs' 
(1983ab,(l984) claimthatfuzzy numberscan be usedforthe representation of 
generalized quantifiers (Barwise & Cooper, 1981 ; Peterson, 1979) and 
furthermore that human reasoning with these quantifiers can be modelled 
according to the operations with fuzzy numbers. As noted above, further 
experimental studies have led to modifications in the definition of fuzzy num 
bersaswell as of operations with them. These modifications, however, are not 
crucial for the general claim. 

From aformal point ofview, quantifiersexpressed as fuzzy numbers in the 
interval [0,1] and uncertainty expressions represented as fuzzy probabilities 
are comperable. Furthermore, in chains of argumentation (see Figure 2) both 
kinds of qualification can be found and should therefore be represented in a 
common framework for the use in intelligent or expert systems (Zadeh, 
1983~) .  Empirical analyses of uncertaintyexpressions (Zimmer, 1983,1986a; 
Wallsten, Budescu, Rapoport, Zwick, & Forsyth 1986; Zwick & Wallsten, 
1987) have consistentlyshown that verbal expressions like "probable", "likely", 
or "toss-up" can be expressed as fuzzy numbers. Different experimental 
techniques (e.g. pair comparison vs. staircase estimation), different forms 
of display s (e.g. circle segments vs. random dots), and different samples of 
uncertainty expressions (all expressions of a language community vs. only 
those expressions that a subject has in hidher personal active vocabulary) 
have led to seemingly conflicting results about the consistency of estimates 
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and therefore the applicability of verbal uncertainty expressions in decision 
support or expert systems. There are two solutions for this problem: One 
consists in the Wallsten et al., (1986) approach of determining the fuzzy 
numbers for a complete lexicon of uncertainty expressions. This leads to 
averaged meanings that can be assumed to be valid for an entire language 
community. By means of iterative methods (Zimmer, 1986b), ambiguous 
meanings (fuzzy numbers with more than one peak) can be resolved. The 
problem with this approach is that the individuals lexicon of uncertainty 
expressions might differfromthat ofthelanguagecommunity. The important 
advantage of this approach, however, is its generality. The other solution for 
the problemconsists in concentrating on theindividual’slexicon of uncertainty 
express ions. 

Calibrating individual vocabularies of uncertaintyexpressions by means of 
staircase methods with random-dot displays Zimmer and Korndle (1 987) has 
resulted in fuzzy numbers that can be represented by (i) single-peaked 
membership functions, (ii) of compar able shape and (iii) with the tendency 
towards a proportional relation between the value of the core and the 
fuzziness. To be more precise: in contrast to fuzzy numbers without 
interval bounds, the fuzziness in the closed interval [0,1] is relative to the 
smallerdistance of each core from the upper or lower limit. These qualitative 
aspects of the fuzzy numbers are consistent with the model described in 
Part 2 above. It should be kept in mind that (iii) contradicts one of the 
theoretical assumptions of Zimmer (1982, 1983), namely the assumption of 
equal informativeness on the entire scale of judgment, and therefore equal 
fuzziness for all uncertainty expressions in an individual active vocabulary. 
However, the consequence of the unequal informativeness (low in the central 
part and high in the extremes) is in accordance to the results reported by 
Wallsten and his group (Wallsten et al., 1986). 

The major disadvantageofthis individualistic approach, specifically its lack 
of generalizability, can be overcome by the procedure described in Zimmer 
(1 986b). Starting with the individuals expressions but then mapping them 
intothegeneral lexicon. If a mapping does not result in asingle-peaked fuzzy 
number or if the fuzziness is excessive, it is iteratively searched for the 
non-degenerate expression which captures best the initially intended 
meaning. 
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FIGURE5 
Interactive detemnination of unambiguous uncertainty expressions 

(Zimmer 1986b). 

During and by the interaction with this computer-controlled procedure, 
subjects learn to use only those expressions which have a meaning meaning 
in accordance with that of the language community. However, this method 
restricts the expressive power of the indivial lexicon. 

The common framework for quantifiers and uncertainty expressions as 
established by the assignation of fuzzy numbers in [0,1] has to be 
complemented by a comparison of the algorithms of inference. The standard 
algorithms, that is, syllogistic resolution and Bayesian weighing of evidence 
are seemingly incomparable. However, since Zadeh (1 983a) has shown that 
any form of syllogistic resolution can be modelled by fuzzy quantifiers and 
fuzzyoperators (addition, multiplication, and conjunction), it is possibleto use 
the same operators for Bayesian inference. There is only one additional 
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operator necessary, division, needed forworking with conditional probabilities. 
Onthe first glancethisoperator does not fit into the reasoning with quantifiers. 
However,asHormann(1983)and Zimmer (1986a) haveshown, inthecolloquial 
usage of quantifiers these are quite often conditioned on the background 
knowledge about the situation. For instance, the utterance "many of the 
convertibles" can only be properly modelled if the general meaning of many is 
taken into account as well as the fact that convertibles form a very small 
subset of all cars. The implicit reasoning runs asfollows: if the cars in question 
are convertibles, then even a small proportion of all cars fulfills the condition 
of applying "many". This construction of a conditional quantifier is 
completely compatible with the notion of conditional probabilities. Using this 
result, it is now possible not only to assign fuzzy numbers to the qualifiers in 
Toulmin's model (Figure 1 and 2) but also to interp and their combination 
as fuzzy evaluations of operators (e.g. €3 means fuzzy multiplication). 
Furthermore, the relations between the backing and the warrants becomes 
straightforward fuzzy arithmetic. 

4. CONTEXT SPECIFICITY OF QUALIFIERS 

Yagers (1980) as well as Zadehs (1983a) models for the interpretation of 
quantifiers in natural language as fuzzy numbers assume implicitly that there 
is a one-to-one relation between quantifiers and fuzzy numbers (for redundant 
sets of quantifiers the relation might be many to one). One major 
experimental result of Zimmer (1982, 1984b) was that for sufficiently rich 
contexts (natural sciences vs. social sciences and everyday events) this 
simplifyingassumption does not hold. Inthesecontextsthe standard meaning 
of quantifiers (see Figure 6) is modified by the subjects knowledge about the 
normal scope of discourse in these contexts, specifically, how often events 
are mentioned with an occurrence rate of x %. It has been shown that the 
scope functions for contexts can be determined independently from the 
quantifiers (Figure 7a) and that the context-denedant quantifiers (Figure 7b) 
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result from the fuzzy conjunction of the standard quantifiers and of the 
respective scope functions (the MIN-operator). 

100% 

FIGURE6 
Standard meaning of colloquial quantifiers (Zimmer, 1984b). 

Slightly different is the situation for conditional quantifiers (see above) 
where the background knowledge is taken care of by dividing the fuzzy 
number for the standard meaning of the quantifier question by the fuzzy 
munber for occurence rate for the eve nt in question. As mentioned above, 
the notion of conditional quantifiers bridges the gap between the apparently 
disjoint types of modal qualifiers, namely, quantifiers and uncertainty 
expressions or qualitative fuzzy probabilities. The context dependability of 
explicit or implicit conditioning. The procedures of Wallsten et al., (1986) as 
well as of Zimmer (1983) and Zimmer and Korndle (1987) assume implicitly 
that uncertainty and frequency expressions can be estimated independently 
from contextual inf luences. This is apparently true for impoed contexts like 
circlesegmentsand randomdots but remains - at least - questionable for more 
realistic situations. 
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FIGURE 7 
Context dependability of quantifiers: (a) scope functions for contexts /from 

above: everyday events, natural sciences, social sciences/ (b) resulting 
context-dependent quantifiers /contexts as above/ 
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From Hormann s (1983) results one might conjecture that in situations 
where the individuals have background knowledge, the meaning of their 
observable lexicon is the result of conditioning the observable frequency on 
the possiblefrequency. Despite thefact that the operators are different (fuzzy 
conjunction vs. fuzzy division) the result for quantifiers and uncertainty 
expressions is comparable: The observable usage of modal qualifiers can be 
deducedfroma fuzzyoperationon thestandard meaning and the occurrance 
rate of the background knowledge. In Figure 1 this context dependability is 
indicated by the arrow from DATA to BACKING which results in 
data-dependent constraints on the background knowledge (e.g. the rules for 
commodities). 

5. CONCLUSIONS 

The common framework for the two major kinds of modal qualification 
allowsfor a modelling of intricate nets of arguments (see Figure 2) by means 
of fuzzy arithmetics. Furthermore, the variability of meaning caused by 
individual differences and different context can be taken care of by the 
generalization of this framework. This consists in a decomposition of the 
observable meaning into the standard meaning and into the contextual or 
individual constraints. 
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In many situations we use the probabilistic judgmenrs and forecasrs of 
external agents in forming our own opinions or reaching decisions. For 
example, we depend on forecasts of financial experts regarding interest rates 
and market fluctuations when selecting among investments and on 
physicians' forecasts of prognosis when choosing rreatments for a given 
disease. Thus our own decisions and choices are affected by the ability of 
others to properly express and communicate rheir beliefs, and of ourselves 
to understand and use them. A well-known phenomenon in the forecasting 
lirerature (e.g. Beyth-Marom, 1982) is that many experts, like laypeople, 
prefer ro communicare their opinions by means of verbal probabilistic 
phrases rather rhan numbers. Typically, this preference for words over 
numbers is linked to the vagueness these srudies are that mosr probabilistic 
phrases cover large ranges of probabilities and overlap ro a considerable 
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degree, and that there exist consistent individual differences in the us Beytb 
Marom, 1982; Nakao & Axelrod, 1983). Recently, Wallsten, Budescu, 
Rapoport, Zwick and Forsyth (1986) and Rapoport, Wallsten and Cox (1987) 
have shown that the vague meanings of probabilityphrases can be captured 
anddescribedreliablybymeans ofmembership functions overthe 0,l interval. 
In the present investigation we propose to employ the methodology used by 
Rapoport, etal. (1987) and the theoretical framework of fuzzy set theory with 
regard rothe variousaggregation connectives (e. g., Duboisand Prade, 1985) 
to understand how people combine and aggregate a number of vague 
probability judgments. For example, what does the patient think when one 
physician says that it is "likely" that the pain will disappear, and another 
considers this eventuality "highly probable"? More specifically, we are 
interested in how subjects combine the opinions of two observers with regard 
to the possibility of an event. These opinions are expressed linguistically and 
are independent (in the sense that there is no communication between the 
observers prior to their expressing their opinions). Further, there is no reason 
for the receiver to believe that one observer is more reliable than another. 
This situation was study extensively from a prescriptive point of view (e.g. 
Winkler & Makridakis, 1983; Cholewa, 1985) but little is known about the 
descriptive power of the aggregation models and even less about the case 
when the opinions themselves are expressed in an inexact linguistic manner. 
In the next section we describe the various theoretical models which have 
been proposed in the fuzzy set literature for the aggregation operations, and 
review the empirical work in this area. Finally, we describe an experiment in 
which subjects were required to consider simultaneously two vague 
probabilistic judgments and we compare their responses with predictions 
generated by fuzzy set theory. 

Fuzzy Set Aggregation Connectives 

Given a generalized concept of membership, operations on sets are no 
longer restricted to the boolean binary algebra, with the result that a much 
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largerand richerclassof operationscan bedefined. This richness hascaused 
someconfusion about whicharethe"correct"operatorsforfuzzy sets. A large 
variety of definitions have been suggested in the literature (see Czogala & 
Zimmermann, 1984; Smithson, 1984,1987; and Dubois and Prade, 1985) on 
the basis of various normative, empirical, or purely mathematical 
considerations for the logical operators "and" and "or". A large number of 
functions can be considered proper, in that they all yield the correct results 
for classical crisp sets as a special case. However, it is logically and 
mathematically impossible to determine the appropriate "general" rule on the 
basisof aspecial case, centralas it may be. Indeed, sincefuzzysettheorywas 
offered as a more flexible model that is better suited for "humanistic systems" 
(e.g. Zadeh, 1974), which are affected by human judgment, perception and 
emotion, it is a mistake to search for a single best set of definitions of the 
"and" and "or*' operations. In fact, Zadeh's (e.g., 1976) position has always 
beenthatthechoice ofthesedefinitionsshould belefttotheuserssothat they 
best reflect the unique characteristics of the particular situation on hand. 
However, this position should not be interpreted as a call to cease research on 
the different operators. It is important for future applications, and theoretical 
developments to identify individual and situational factors that are associated 
with the choice of a given class of operators. Obviously, experimental 
psychologistsand psychometricianscan, and should, play a major role in this 
research by developing measurement methods and appropriate experimental 
procedures. 

As mentioned by Dubois and Prade (1 985), a consensus has formed in the 
literature that the concept of triangular norms and conorrns proposed by 
Menger (1 942) is appropriate for rep resenting the logical operators "and" and 
"or" (respectively) applied to fuzzy sets (Weber, 1983). 

Definition 1. A t-norm is a binary operator 

T:[0,1] x [0,1] - [0,11 
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such that 

R. Zwick et al. 

(1) T(0,O) = 0 and T(a,l) = a (boundary conditions): 
(2) T(a,b) I T(c,d) if a I c and b I d (monotonicity), 
(3)T(a,b) = T(b,a) (symmetry), 
(4) T (a ,T (b, c) ) = T(T(a, b) , c) (associativity ) . 

Astrict t-norm isacontinuous t-norm which is increasing in both arguments. 

Definition 2. A co-t-norm S is a binary operator 

S:[O,l] x [0,1] - [0,1] 

such that 

(1) S(1,l) = 1 and S(a,O) = a (boundarycondition), 
(2) S(a,b) 5 S(c,d) if a 5 c and b I d (monotonicity), 
(3) S(a,b) = S(b,a) (symmetry) 
(4) S(a,S(b,c)) = S(S(a,b),c) (associativity). 

A strict co-t-norm is a continuous co-t-norm which is increasing in both 
arguments. Associated with every t-normT there exists a co-t-norm S, called 
its dual, suchthatS(a,b) = 1-T(1-a, 1-b). Examplesoft-norms andtheirduals 
that have been proposed in the literature to represent the pointwise fuzzy 
set-theoretic intersection or union are: 
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T(’) = min (a,b) S ( ’ )  = max (a, b) (Zadeh, 1965) (7) 

T(2) = ab S(2) = a + b-ab (Bellman and Zadeh, 1970) (2) 

T(3) = max(0,a + b- l ) ,  S(3) = min(1 ,a + b) (BellmanandZadeh,1977) (3) 

Smithson (1984,1985) pointed out that these three classes can be thought 
of representingvarious degrees of extremity since for all (a,b) E [O,l]x[O,I] 

It was therefore suggested that all three classes can be incorporated into 
one general family of connectives with one or more free parameters. For an 
excellent review of the class of fuzzy set aggregation connectives based on 
triangular normssee Duboisand Prade (1982,1985) and forspecificexamples 
of general rules see Czogala and Zimmerman (1 984), Smithson (1 984, 1985), 
andYager (1980). 

From a psychological perspective, little, if any understanding of the 
parameters can be claimed. It is not clear whether they depend on individual 
and/orsituationalfactors, how stable and reliable they are, orwhat otherfactors 
may affect them. In short, it is not clear what usage could be made once the 
parameters are estimated. In fact, estimation procedures for most of the 
parameters have not been developed. Smithson (1 984, 1985) presented a 
least-squares approach to estimate a linear transform of the free parameter 
that can sometimes yield values outside the admissible range (i.e., smaller 
than 0 or larger than 1). For example, when this technique was applied to 
our data 20% of the estimates were inadmissible. However the experimental 
Significance of this approach is that one can test simultaneously the 
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appropriateness of a large class of possible dual connective operators by 
testing the requirements that must hold if the dual rules are the t-norm and the 
corresponding co-t-norm (seedefinitions 1 and 2). 

Another class of connectiveness is based on the notion that in everyday 
life people rarely use"and" and "or" in their respective strict noncompensatory 
and fully compensatory senses. Rather, people's judgments are based on a 
partially compensatory interpretation, represented by a free parameter, q, 
which can be called "grade of compensation." The first to introduce this idea 
were Zimmerman and Zysno (1980) who suggested a weighted geometric 
mean: 

Here (A&B) denotes the generalized compensating connective, which 
varies between the regular "or" when y = 1 and the regular "and" when y =O. 
Note,that this approach does not eliminate the need to decide on a definition 
ofthestrict"or" and "and", forwhich any of the operations described earlier can 
be used. In a similar fashion Luchandjula (1982), and Smithson (1984) 
proposeddifferentformsof generalized connectives that include the pure union 
and intersection formulas as special cases. Finally, in a recent development 
Dyckhoff and Pedrycz (1 984) suggest use of generalized means to model the 
compensatory connective: 

where WI and ware weightswhich add to 1 ,  and r can be any real non-zero 
number. Avariety of special cases can beconsidered. Taking yields r- -c 03 

the minimum and maximum, respectively, r = 1 gives a weighted mean of the 
membershipfunctions, r+ 0 produces their weighted geometric mean, and r 
= - 1 their harmonic mean. 
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The interesting novelty of this approach is that it offers a definition of a 
compensatory connective without explicitly adopting a set of definitions for 
the strict "and" and "or." Rather the (A&B) operator is defined as a direct 
function of the individual memberships ~ A ( x )  and pB(x). Although this 
approach simplifies the situation conceptually and facilitates calculations and 
estimation, it is questionable whether the Dyckhoff and Pedrycz model is 
comparabletotheothers. It is possibleto apply monotonic transformationsto 
the exponent, r, to obtain a bounded compensation parameter (e.g. y = 

[l + I r l / ( l  +)]/2) but this obviously does not represent a compensation 
between "and" and "or." It appears that this model should be considered a 
general model of combination and aggregation of levels of membership. 

It is also possible to consider other forms of averaging of thetwo individual 
membership functions as models of aggregation. In particular, we would like 
to emphasize one possibility that turns out to be consistent with some of our 
data - the mean of two fuzzy numbers - "the fuzzy mean." Dubois and Prade 
(1980) define a real fuzzy number as a fuzzy subset with a continuous 
membershipfunction satisfying some mild regularity conditions. The mean of 
two fuzzy numbers (A and 8) is defined as: 

Previous Empirical Results 

In reviewing this literature, it is important to focus on two issues: 
measurement of the membership functions, and experimental designs used 
to test the various models for operators on fuzzy sets. In the past, two 
methods have been used to quantify degrees of membership. Hersh and 
Caramazza (1976) and Hersh, Caramazza and Brownell (1979) used what 
Hillsdal (1985) labelled the "yes-no" paradigm, in which x, an element of E, is 
presented to the subject and he/she has to decide whether the element is a 
member of A, the supposedlyfuzzy subset. Thefraction of positive responses 
across replications (within or across subjects) is considered a measure of 
pA(x). Rubin (1 979) has pointed out the main problems of this method, that it 
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confoundsfuzzinesswith responsevariabilityand that it can be interpreted as 
indicative that words have various, but nevertheless precise, meanings to 
different people and/or at different times. The other standard paradigm has 
been direct estimation. Oden (1977a) used direct scaling along a scale with 
verbally anchored end points and Thohle, Zimmerman and Zysno (1 979) and 
Zimmerman and Zysno (1980) employed a similar procedure, but with 
numerically anchored ends. However, these procedures lack sol id 
foundations, and their results are diff icult to interpret unless they are embedded 
within a firm theoretical structure. 

Such a framework was outlined by Norwich and Turksen (1 982,1984), by 
Wallsten,etal. (1986)and byZwick(1987),and bywallsten, etal. (1986), who 
pointed out the relationships between the axiomatic formulation of the 
algebraic difference (ratio) structure (e.9. Krantz, Luce, Suppes, & Tversky, 
1971) and the measurement of memberships functions. This approach was 
recently refined and successfully tested by Wallsten, et al. (1986) who 
developed a graded pair-comparisons procedure (similar to the one used by 
Oden 1977b), which allows simultaneous testing of the necessary axioms, 
scaling of the responses in order to obtain memberships, and tests of 
goodness of fit of the scalevalues. In a subsequent study Rapoport, Wallsten 
and Cox (1987) demonstrated a high level of similarity between membership 
values determined through graded pair comparison and direct magnitude 
estimation. Thus, a sound theoretical justification was established for the 
quantification of the vague meanings of inexact linguistic terms by means of 
direct scaling . 

We turn now to tests of the combination rules. Hersch and Caramazza 
(1976) tested the max rule (Equation 1) for the union operator. Subjects had 
to judge whether squares of various sizes qualified as "either small or large." 
Both group and individual analyses indicated that the shape of the "or" 
membership function resembled the max prediction, but was consistently 
lower. Oden (1977a, 1979) contrasted the min-max and sum-product 
operators for the two connective. His subjects were presented with pairs of 
statements such as "A chair is a furniture" and "A robin is a bird" and asked to 
performseveraljudgments. Forthe conjunctiontasktheywereasked to judge 
the "degree to which both statements were true" and for the disjunction task 
they judged "the degree to which one statement or the other was true." Note 
that these instructions could be easily interpreted as referring to an "exclusive 
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or," i.e. one of the statements is true, but not both. It is also interesting to note 
that half of the comparisons involved pairs of statements pertaining to two sets 
(e.g. birds and furniture), so the unionhntersection instructions called for 
judgment of joint/disjoint membership inthefuzzy set of "true" statements, and 
not in the fuzzy sets of "birds" or "furnitures." Group and individual analyses 
based on mean deviations from the predicted rules, and a functional 
measurement analysis (Anderson, 1981, 1982) indicated that both classes of 
operatorsfit the data quite well, but that the sum-product connectives clearly 
outperformed the min-max rules. 

Tholeetal. (1979) studiedthe intersection operators. Sixty subjects judged 
the degree to which various objects were "containers", "metallic objects", and 
"metallic containers." The assumption was that this latter judgment would 
necessarily reflect an intersection of the two others, i.e. the degree to which 
an object is a metallic container is solely a function of the degree to which it is 
metallicandthedegreetowhich it isa container. Theanalyses were performed 
at the group level and slightlyfavored the min rule over the product operator. 
It is important to note that the subjects did not actually see the objects, but 
were presented with cards containing their names. It is possible that such a 
procedure induces an additional source of (unintended) fuzziness, i.e. the 
vaguenessassociatedwiththedefinitionofsuchclassesofobjectsas bag, car, 
fridge, etc. 

ZimmermannandZysno'sstudy (1 980) hasthedistinction of being the most 
realistic. Sixty subjects were presented with 24 exemplars of fire resistant tiles 
andwereinstructed thattheirquality is judged according totwocriteria; solidity 
(reflected in their grayness) and dovetailing (reflected in the correspondence 
between their shape and a standard shape). Using direct scaling methods 
group membershipfunctionswere obtained for "solidity", "dovetailing" and also 
for "ideal tile." The authors showed that in such a situation the subjects' 
judgments of "ideal" are best represented as a combination of the two 
membership functions that does not fit any of the rules proposed for 
conjunctions and disjunction. They ended up advocating the generalized 
y- operator described earlier (Equation 4).  

To summarize, the evidence regarding the and/or operations is 
inconclusive. Oden (1 977a, 1979) advocates the sum-product rule, Thole et 
al. (1979) favor the min rulefor"and", and Hersh and Caramazza report 
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(at leastweak) support forthe max ru1efor"or". Furthermore, given the various 
methods used to quantify the degrees of membership and the variety of 
experimental procedures used to elicit the two types of judgments, it is 
impossibleto determine whetherthe different results are really contradictory, 
or just reflect the use of different methodologies and different situations. 
Finally, Zimmermann and Zysno's (1 980) workclearly illustratesthat in real life 
situations information is sometimes combined according to an averaging rule 
that allows for compensation between the extreme alternatives. This result is 
consistent with a large class of empirical studies conducted by Anderson and 
his associates (e.9. 1981, 1982) which singles out the averaging combination 
rule asthe preferred mode of information integration. 

Zimmermann and Zysno's results are important since they illustrate that 
although the duality between the union and intersection operations, and the 
corresponding "or" and "and," may reflect a nice mathematical normative 
structure (imposed by DeMorgan's theorem), they do not necessarily reflect 
a psychological reality. It is one major purpose of this work to further 
investigate this possibility. This was achieved by considering a series of 
testable requirements which must hold if the dual rules for intersection and 
union are based on t-norm and the corresponding co-t-norm respectively. 
Under any of the dual rules 

(i)T(a,b) I min (a,b) 5 max(a,b) I S(a,b), 

(ii) The boundary conditions for both T and S must hold (see definitions 1 

and 2). 

(iii) The monotonicity conditions of both T and S must hold. Under any 
strict dual rules. 

(iv) T and S are strictly increasing in both arguments. 



The Integration of Linguistic Probabilities 101 

And finally if T belongs to the Frank family' (Frank, 1979) and S is its dual 
then: 

(v) T(a, b) + S(a,b) = a + b. 

The last condition is interesting since many of the "classical" definitions of 
intersection such asthe min the product and the bounded sum are included in 
thisfamily. 

The second stage in our analysis, as in most previous studies, was an 
attempttoidentifythe bestfitting model forthedata, restricting ourselves, quite 
arbitrarily, to tests of simple models which do not require estimation of free 
parameters. This was done in order to avoid problems related to parameter 
estimation and interpretation, and comparison of goodness-of-fit of models 
involving different numbers of parameters estimated by various methods. 
Thus, only the three basic dual models (min-max, sum-product and bounded 
sums) and simple parameter-free compensatory rules (pointwise mean, 
pointwise geometric mean, and fuzzy mean) were examined. 

The methodology used is derived from our previous work on probability 
phrases and fuzzy sets (Wallsten et al., 1986; Rapoport et at., 1987). First, 
individualized membership functions for the various phrases were obtained 
by a direct magnitude procedure. The novelty of the present design is the 
simultaneous presentation of two phrases (supposedly generated by two 
sources) and a given probabilistic display, so that the subject could judge the 
degreetowhichboth phrases, oratleast one phrasedescribethe probabilistic 

display. 

'The Frank family (Frank, 1979) 

a b  
Ts(a.b) = Logs [I + (S -1)(S -1) ] 

s -  1 s > o  

TS is a strict t-norm for m s 20. To = min; T i  = product, and F a  + = bounded -sum. 
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Subjecfs: Sixteen graduate students in social sciences and business were 
recruited by placing notices advertising the experiment in the departmental 
mailboxes. They received $20 for participation in all three sessions of the 
experiment . 

General Procedure: All subjects participated in one practice session and 
two actual data collection sessions, and performed four judgmental tasks: 
direct estimation of members hip functions of individual pro ba bit ity phrases, 
judgment of pairs of phrases connected by "and," judgment of intersection of 
pairsof phrases connected by "or,"and judgment of similarity of phrases. The 
experiment was controlled by an IBM/PC computer. 

Membershipfsfimafion: The instructionsfor this task read in part: 

Youareto imaginethat youareto predict whetheraspinner you cannot 
see will land on white on the next random spin. A friend of yours can 
see the spinner, although not too well, because it is rotating at a 
moderate rate. Your friend will use a non-numerical probability phrase 
to give you his or her best opinion about the chances of the spinner 
landing on white. This gives you some basis for judging the probability 
of that event. 
Thus a phrase (from your friend), a spinner, and a response line will 
come on the screen for a single trial. You are to indicate how close the 
displayed probability of landing on white is to the judgment you would 
form upon hearing the particular phrase. If the displayed probability is 
not at all close to your judgment, move the arrow all the way to the left. 
If it is a close as possible to your judgment, move the arrow all the way 
to the left. If it is a close as possible to your judgment, move the arrow 
all the way to the right. If the displayed probability matches your 
judgment to some degree, then place the arrow accordingly. 

Thetop panelof Figure1 presentsoneofthedisplays used inthistask. This 
exampleshowsaspinnerwith Pr(white) = 0.1 5, presented in conjunction with 
theword doubtful and is used toquantifydoubtfuI(O.15). Subjects responded 
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by moving the arrow by means of a joystick. The precision of the response 
was determined by the resolution of the monitor, and allowed for almost 200 

locations anchored by two verbal labels: "absolutely" and "not at all". 

FIGURE 1 

Three experimental tasks 

Direct estimation task 
Doubtul 

Not at 
all close 

Absolutely 
close 

"AND" task 
Doubtful and Likely 

, 
Not at Absolutely 

all close close 

"OR" task 
Doubtful or Likely 

Not at Absolutely 
all close close 
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'And"Judgment:The instructionsfor this task read in part: 

"Two friends have viewed the rotating spinner. They have not spoken 
to each other, so neither knows what the other thinks, but each uses a 
non-numerical phrase to tell you his or her opinion about the chances 
of the spinner landing on white. They may use the same or different 
phrases. Now, we are interested in the judgment you form about the 
probability of the spinner landing on white on the basis of the reports 
you receivefrombothof yourfriends. Thus, two phrases (one from each 
friend),aspinner, and aresponselinewill comeonthescreenforasingle 
trial. On the basis of the two phrases, you can form some judgment 
aboutthe probability of landing on white forthe spinner your friends saw. 
The question is, how close does the displayed probability of landing on 
white come to the judgment you form based on the two phrases? As 
before, move the arrow on the line all the way to the left for probabilities 
that are not at all close to your judgment, and all the way to the right for 
probabilities that are as close as possible to your judgment. If the 
displayed probability matches your judgment to some degree, then 
place the arrow accordingly." 

An example is presented in the middle panel of Figure 1 with the words 
doubiful and likelyconnected by "and". 

"0r"Judgmenr: The display and instructions for this task were identical to 

the ones for the intersection task, except for the key sentence describing the 
judgment required. In this case it read: "Now we are interested in your 
judgment of how well atleast one of the two people described the probability 
of the spinner landing on white." The bottom panel of Figure 1 presents an 
example of this display. 

"Similarity"Judgment: These data were analyzed and reported elsewhere 
(Zwick, Carlstein & Budescu, 1987) and will not be described here. 

S?imu/i:Sbcprobabilityphrasesand 11 probabilitieswere used inthisstudy. 
All combinations are presented in Table 1. Half the phrases represented 
probabilities generally judged to be Higher than 0.5 (H), and the remaining 
described probabilities usually judged to be Lower than 0.5 (L). The 
probabilities were equally spaced across the 0.02 - 0.98 range. All (1 1 x 6 = ) 
66 combinations were judged in the estimation task. However, only 5 
probabilities (seeTable 1) were used in the other tasks. They were presented 
with each of the (6x6 =)  36 pairs of words for a total of 180 judgments in each 
of the two tasks. 
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TABLE 1 

Expressions and Probability Values Used in the Design 

Probability of the Spinner 

Phrase 

Doubtful 
L Slight Chance 

Improbable 

Likely 

H Goodchance 
Fairly Certain 

.02 .12 .21 3 1  .40 5 0  .60 .69 .79 .88 .98 

Note: "-" Combination used only in the estimation task. 
"x" Combination used in all three tasks. 

Procedure: The practice session consisted of a full set of 66 estimation 
judgments followed by short versions of the union and intersection tasks. 
Each of the 36 pairs of words was presented only once, in conjunction with 
a display randomly selected from the relevant 5 probabilities. Each of the two 
data collection sessions consisted of a full set of 66 estimation judgments 
followed byafull se of 180 union or intersection judgments. Half the subjects 
judged unions on the first data session and intersections on the second 
session. Theother half performedthejudgments in reversed order. The order 
of stimuli presentationwithineachtask and session was randomlydetermined 
by the computer program. Also, in all union/intersection judgments the 
lefthight location of the two target words was randomly counterbalanced for 
each subject. All subjects completed the three sessions and were paid at the 
conclusions of thelast one. Because of a computer malfunction all 180 union 
judgmentsof onesubject, and 30 intersectionjudgmentsof adifferent subject 
were lost. 
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Results 

Direc?fsrima?ion:This task was replicated by each subject in each of the 
data collection sessions. Prior to finding the membership functions the two 
sets of responses were correlated to yield measures of reliability. The results 
are displayed in the first column of Table 2 and reflect a high level of stability 
-- 13 of the 16 subjects have reliabilities above .85. No consistent differences 
between the reliabilities of the responses to the six words were found. 

TABLE 2 

Reliabilities of Judgments in the ThreeTasks 

Subject Estimation 

1. 

2 

3 
4 

5 
6 
7 

8 
9 
10 

11 
12 

13 

14 
15 

16 

98 1 

.925 

.934 

,894 

.960 

.903 
,936 
.972 

,979 
,783 

.930 
,912 

908 

,837 
,801 

,880 

.914 

,884 
,847 

.918 

.960 

.863 

.931 

.973 
---- 

,942 

,956 

.923 
,952 

,608 
31  4 

.878 

Mean ,928 

Task 
Union Intersection 

.937 

,606 
,787 

.802 

.902 

,730 
.791 

.%5 

.981 

,851 

.894 
,683 
.971 

581 
519 

,800 

,903 ,857 

Note: "---" Subject did not perform this task 
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The actual membership functions were obtained by rescaling to the 0-1 

range the average response across the two sessions. Values of 0 and 1 

represent cases in which the arrow was moved to the extremes of the 
response line o n  bofh sessions. Most subjects display reasonable 
membership functionsthat within a subject are similar for all three H words and 
for all three L words. The most dominant feature is the distinction between the 

membership values of the H and L words which display generally increasing 
and decreasing patterns, respectively. This result is best illustrated in Table 3 

which showsvery high correlations between the membership values of the 3 

H words and the 3 L words, and high negative correlations in the LH pairs for 
all subjects. (These correlations were computed pointwise along the 11 

common spinner probabilities in the estimation task.) 

TABLE 3 
Mean Correlations Between Membership Functions in Pairs of Words 

Subject 

1 
2 

3 
4 

5 

6 
7 

8 

9 

10 
11 

12 
13 
14 

15 

16 

Mean 

Pair 
HH LL 

,929 ,967 
,976 .967 

,884 .939 

,923 .956 
,740 ,934 
,562 ,953 

.924 ,979 
,990 ,972 

,981 .989 

,899 ,880 

,905 ,929 

,793 ,930 
,959 ,873 
,735 ,881 

,922 ,860 
.444 .801 

,905 .942 

HL 

-.954 

-.965 

-.932 

-.857 
-.828 
-.793 

-.929 

-.920 

-.932 
-.523 

-.915 

-.865 
-.833 
-.680 

-.904 
-547 

-.874 
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Union and intersection Judgments: Since the order of presentation of the 
two words was reversed in the two replications, the mean difference in the 
replicated responses for each subject across all pairs of words and 
probabilitieswascomputed and tested againsttheassumption thatthe means 
do not equal zero. No significant violations of the prediction were recorded, 
i.e. the judgments appear to be reliable and unaffected by the order of 
presentation of the stimuli. 

The last two columns of Table 2 present the correlations between the 
replicated judgments of these tasks. Note, that unlike the results for the 
direct estimation task, these values are based on within-session replications. 
In general these reliabilities are satisfactory, and are higher for the union 
judgments (only 3 of the 15 subjects have higher reliabilities for the 
intersection judgments). A closer examination of the reliabilities indicates that 
in practically all cases judgments involving two H or two L words were less 
reliable than those involving one H and one L word. (Only one subject had a 
reliability under 0.8 for the union task and only four subjects had reliabilities 
lower than this value for the intersection judgments when all H-L judgments 
were excluded from the calculations.) 

Tests oftheDuality Predictions: We turn now to tests of the five conditions 
foranydual union/intersection rule based on the t-norm and the corresponding 
t-co-norm respectively. The first condition requires that the two individual 
membership functions be at least as large as their intersection, but not larger 
than their union. Table 4 presents mean differences between the relevant 
membership functions for each subject across all pairs of words and 
probabilities. A negative entry in the table identifies a violation of the 
prediction, andthenumberin parentheses indicatesthe proportion ofviolations 
(of a total of 105 judgments) for each subject. In order to  control the 
hypothesis error rate at OL = 0.05, the results of the individual t-tests were 
declared significant at a* = 0.05/15 = 0.003. The results are clear and 
consistent --all subjects judge the intersection to be larger than the smaller of 
the two memberships functions (see the first column in Table 4). All subjects 
judge unions to be at least as large as the intersection (column three), and, 
withtwoexceptions, the union does not appearto be significantlydifferentfrom 
the larger of thetwo membership functions (column two). 
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TABLE 4 
Mean Differences Between Membership Functions (and Proportion of 

Violation of Expected Order) 

1 

2 

3 
4 

5 
6 
7 

8 

9 

10 
1 1  

12 

13 
14 

15 

16 

-.201' (.78) 

-.077' (.71) 
-.184'(.71) 

-.099' (.66) 

-.148'(.67) 
-.208' (.75) 
-.163'(.70) 

-.15OX (.74) 
-.143'(.60) 

-.135'(.84) 

-.loo' (.68) 
-.263' (.84) 
-.101'(.66) 

-.137'(.84) 
-.181' (.79) 

-.147'(.85) 

-.037'(.54) 

-.012 (.56) 
,012 (.44) 

,007 (.60) 

-.018 (.60) 
-.018 (.57) 
-.055'( .58) 
-.005 (.44) 

_ _ _ _ _  (---) 

-.013 (.55) 
-.007 (.57) 

-.027 (.46) 

-.003 (.50) 

-.023 (.55) 
-.017 (.58) 

.026 (.42) 

,091 (.37) 
,149' (.30) 

,121' (.30) 
,229' (.31) 

,144' (.29) 

,031 (.43) 

,080 (.45) 
,154' (.30) 

, l  1 5 (.36) 

,167' (.22) 

,014 (.43) 

,153' (.30) 

.061 (.43) 

,037 (.49) 

___- (---) 

,121' (.39) 

Mean -.152~ (.73) -.013 (.53) ,110 (.36) 

Not: "-" Subject did not perform union task 
"x" Significant at a = 0.05/15 ' 0.003 (two tailed tests) 

Thesamedatacan be used toevaluatethefifth condition, namely that the 
sum of the union and intersection judgments equal the sum of the individual 
membership values. The mean difference for each subject can be obtained 
by subtracting the first column in Table 4 from the second one. Tests of these 
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differencesshowthatforall subjectsthesumoftheconjunctionand disjunction 
judgments is significantly larger (p < 0.001) than the sum of the individual 
memberships. This result is due largely to the high responses for the 
intersect ions. 

Next we tested the monotonicity requirement of the union/intersection 
membership functionsineach of the individual functions by examining whether 
the union/intersection memberships are monotonical non-decreasing 
functions of the six individual membership functions for each of the five fixed 
probabilities. InTable 5the percentageofviolations ofweakorder is presented 
for each subject and task. For each task, an average of 27% of the cases 
violatethe requirement. However, this number is misleading since it is based 
on the extremely stringent requirement that the order of judgments in the "or" 
and "and" tasks duplicate exactly the order of the individual term judgment, 
with precision implied from a response scale of almost 200 values. A weaker, 
and more reasonable test of the requirement is obtained by relaxing the 
definition of a violation. Thus, any pair of judgments was considered to be in 
the required order when the violations of the order were smaller than a 
predetermined "unit of measurement error." This unit was calculated for each 
subject by calculating the mean absolute deviation between the two 
replicationsof each ofthethreetasks. Acrosssubjects, this unit of error varies 
between 0.062 (subject 9) to 0.209 (Subject 15) with a mean of 0.1 08. When 
violations of order are recalculated, under this "approximate" definition of 
equality, their overalllevel dropsto6%for the"or"and 1 l%forthe "and"tasks. 
Thus, the requirement is satisfied at an acceptable level, particularly for the 
"0r"judgments. It isalso interesting to notethat when judgmentsareaveraged 
across subjects a consistent pattern emerges. The highest levels of violations 
are recorded around probabilitiesof 0.5, the degree of violation decreasesfor 
more extreme probabilities, and the degree of violation is consistently higher 
for "and" than for"or' judgments. 
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TABLE 5 

Percent of Weak Order Violations Under Strict and Approximate Equality 

Subject 

1 

2 

3 

4 

5 

6 
7 

8 

9 
10 

11 

12 

13 

14 

15 

16 

Mean 

Union 
Strict 

Equality 

18 

32 

27 

32 

24 

25 

26 

22 
_- 
33 

24 

22 

24 

32 

38 

24 

27 

Intersect ion 
Approximate Strict Approximate 

Equality Equality Equality 

~~~- ~~ - 

6 

5 

6 

7 

5 

6 

5 
6 

2 

5 
4 

6 

7 

11 

5 

23 

27 

28 

40 

27 

24 

23 

21 

32 

30 
22 

26 

21 

33 

27 

24 

11 

8 

13 

23 

15 

5 
10 

12 

8 

11 

13 

14 

9 

12 
6 

9 

6 27 11 

Note: "-" Subject did not perform task 

The monotonicity condition for strict t and co-t-norms requires the judged 
union and intersection memberships of a given word with itself (e.g. likely 
and/or likely) to be a strictly increasing function of its individual membership 
function. Table 6 presents the mean (across words) rank correlations 
(Kendall's Tb) between the individual membership functions and the 
appropriate union/intersection judgments. 
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TABLE 6 
Mean RankOrder Correlations Between Individual, Union and Intersection 
Membership Functionsfor a Given Word and Itself (Proportion of Violations 

of Strong Monotonicity) 

Subject Intersection Union 

1 

2 

3 
4 

5 

6 
7 

8 

9 
10 
1 1  

12 

13 

14 
15 

16 

,925 (.12) 
,858 (.lo) 
,867 (.14) 
.606 (.29) 
,891 (.12) 

.940 (.16) 
,974 (.18) 
,862 (.13) 
,600 (.24) 

,967 (.02) 
,512 ( 3 8 )  
.867(.10) 

,767 (. 1 4) 
,733 (.16) 
,833 (.14) 

.933 (. 1 2) 

,967 (.04) 

,967 (.02) 
,867 (.08) 
.779(.26) 
900 (.06) 

.967 (.02) 
,904 ( . lo)  
,991 (.02) 
-__- (---) 

,833 (.lo) 
.967 (.02) 

,850 (.12) 
,867 (.08) 

.656(.22) 
,700 (.la) 
,739 (.20) 

Mean ,821 (.16) ,872 (.lo) 

Note: "---" Subject did not perform union task 

Intersection x Union 

,958 
.891 

,933 
,708 
,858 

.goo 
,892 

,983 
---_ 
.567 
.933 
,558 

1.000 

,690 
,633 

,706 

,826 

Also presented in the same table is the proportion of cases (out of 50) in 
which the strict monotonicity assumption was violated. With a few notable 
exceptions the rank correlations are high (1 1 subjects have rank correlations 
above .8for each task), and the propottion of order violations is low. In most 
casestheviolationscan belinked eithertoties, ortoasingle unusual response. 
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Again note that the data from the union task are more consistent with the 
requirement. Finally, since the union and intersections of a term with itself are 
monotonically increasing under any strict dual rules then the union and 
intersection judgments should also be monotonically related. The third 
column of Table 6 presents the rank correlations between the judgments of 
the corresponding union and intersection (i.e., "likely and likely" with "likely or 

likely"). This requirement is strongly satisfied in all cases. 

Next we focus on the boundary conditions, i.e., cases where at least one 
of the individual membership functions is 0 or 1. This condition cannot be 
tested for all subjects since not everyone recorded such extreme responses 
forthe probabilities involved in union/intersection judgments. Table 7 presents 
the mean deviation from the expected response for each of the four relevant 
conditionsonlyforthose subjects whose individual memberships allowed test. 

TABLE 7 
Mean Deviation from Expected Judgments in Boundary Conditions 

Zero Membership Unit Membership 
Subject n Intersection Union n Intersection Union 

1 17 

4 0 

6 17 

7 6 

8 6 

11 0 

12 15 

15 0 

.060* -.047* 12. 089. 000 
_---- __--- 12 ,183 -.111 

.317* -.016 0 
,105 ,084 6 ,171 -.089 

_ _ _ _  ___--  

,117 ,006 11 ,112 ,004 
----- 6 ,023 ,025 

,216 -.123 0 

_ _ _ _ _  
-__- _ _ _ _ _  

6 ,136 ,000 _ _ _ _ _  --_-- 

Mean 61 ,180 ,039 52 ,121 -.035 

Note: *Significantly different from zero at a = 0.05/22 : 0.0025 
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These mean differences were tested for departure from 0 by means of 
t-tests, with a hypothesis error rate of o! = .05, (a* = 0.05/22 : 0.0025). In 19 

of the 22 cases the null hypothesis could not be rejected. Note that in general 
the departure from the expected results is much larger for the intersection 
judgments. 

TABLE 8 

Goodness of Fit of Best Model for the Intersection Task 

Criterion of fit 
Subject Model Root Mean 

1 

2 

3 

4 

5 
6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

Fuzzy M 
Geometric M 
Mean 
Geometric M 
Fuzzy M 
Mean 
Fuzzy M 
Fuzzy M 
Mean 
Fuzzy M 
Fuzzy M 
Fuzzy M 
Fuzzy M 
Geometric M 
Mean 
Fuzzy M 

Square 

,130 

,135 

,242 

,163 

,194 

,192 

,188 

.263 

,359 

,314 

,160 

.31 O* 
,149 

. 1 49 

,191 

,159 

Mean Absolute 
Deviation 

,103 

,117 

,183 

,131 

,144 

,167 

,154 

,191 

,331 

.239* 

,117 

.238 

,113 

,117 

.153 

,132 

Note: *Not the best fitting model by this criterion 
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Metric Comparisons of rhe Various Model: In comparing the fits of the 
various theoretical models to the data we focus on the union and intersection 
judgments involving one L and one H phrase. As shown in Table 3, 

membership functions within each class of phrases are very similar to each 
other. Therefore, the predictions of thevarious theoretical models for union or 
intersection of two H or two L phrases are highly correlated, so it would be 
impossible to reach any general conclusions about the relative merit of the 

TABLE 9 
Goodness of Fit of Best Model for the Union Task 

Criterion of fit 

Subject Model Root Mean Mean Absolute 
Square Deviation 

1 

2 

3 

4 

5 
6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

.141 

,091 

. 1 76 

.208* 

,109 

,118 

.195 

,087 
-_-- 

,159 

,059 

.193 

,098 

,158 

,216 

,122 

,083 
,072 

,118 

.141 

,080 

.097 
,144 

,061 
___- 

,109 

,074 

.140 

,065 

,122 

.178 

.090 

Note: Subject 9did not perform this task. *Not the best fitting model bythis 
criterion 
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various models on the basis of these data. Two criteria were used to 
determine the goodness-of-fit of the various models, the root mean square 
deviation (RMS), and the mean absolute deviation (MAD). Tables 8 and 9 
identify the best fitting model for any given task for each of the subjects. In 
most cases the two criteria identified the same "best" model (they correlate 
0.97) and in the three cases where slightly different results were obtained, the 
determination ofthe"best"mode1 was based on the magnitudeof the badness 
of fit of the various models according to the two criteria. 

The results are clear and consistent -- the max rule best describes the union 
judgmentsfor all subjects, but one, and some"averaging" model yields always 
the bestdescriptionoftheintersectionjudgments. Thejudgmentsofa majority 
of subjects (9 of 16) are best captured by the fuzzy mean model and the 
remaining are better described by simple pointwise arithmetic or geometric 
means models. The variety of shapes of unionlintersection memberships is 
illustrated in figures 2, 3 and 4, which present selected empirical results and 
best fitting models from 3 different subjects. 

Subject 1 (Figure 2), who has single peaked individual membership 
functions displays single peakedness for the "and" judgments and multiple 
peaks for the "or" judgments. Note the close similarity between the "or" 
judgmentsand the maximal value of either phrase, and the obvious departure 
of the'land" judgmentsfrom the two functions. Obviously, two different types 
of judgments are involved in the two tasks. Subject 2 (Figure 3) has strictly 
monotonic functionsfor both words. As a result his "or" judgments are single 
dipped, in closecorrespondencewith the max rule. His"and" judgments, best 
captured by the pointwise geometric mean, represent a clear compromise 
between the two individual functions. 

Subject 6 is slightly less predictable than 1 and 2. The judgments for the 
two pairs of words displayed in Figure 4 are of interest for two reasons. First, 
note the similarity in the shape of his union and intersection data, which, 
suggests that he was using similar decision processes in both tasks. The 
judgments for the pair "improbablelfairly certain" in both tasks are essentially 
monotonically decreasing and appear to be mainly influenced by the 
characteristics of "improbable." This subject's data could be better fitted by a 
weighted average model in which "improbable" is overweighted. 
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slight chance 4 I lik+ely I 
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FIGURE2 
Subject 1 
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Subject 2 



The Integration of Linguistic Probabilities 119 
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FIGURE 4 

Subject 6 
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In previous research (Hersh & Caramazza, 1976; Hersh et al., 1979; 
Zimmermann and Zysno, 1980; Thole et al., 1979; Oden, 1977a, b, 1979; and 
Kulka & Novak, 1984) it was found that the logical (fully noncompensatory) 
"and" operator does not describe the 1inguistic"and" as applied to two linguistic 
categories referring to different scales (e.g., a high brewing speed and low 
capacity coffeemaker). In these cases "not only are the idem potent intersection 
and union not a good model, but one may drift out of the domain of triangular 
normsandconorms, andgetoperationssuch asthe arithmetic orthegeometric 
means as proper models" (Dubois & Prade, 1985 p.97). We also found this 
phenomenon, althoughthistimethetwo linguistic categories refer to the same 
scale (i.e., probability). We have shown, by testing several requirements that 
any such dual should fulfill, that no dual t- and co-t-norm can simultaneously 
fit our data. Most of these requirements were severely violated in our data. 
Furthermore, analysis of the two tasks ("and" and "or") independently reveals 
that theviolations are due mainly to the compensatory nature of the linguistic 
"and" operator. 

Summarizing the overall results, judgment in the "or" task is well described 
bythe max rule. Judgment in the more common "and" task is best described 
by some sort of a compensatory averaging model. The fuzzy mean model is 
best for nine subjects, the arithmetic mean for four, and the geometric mean 
for three. 

The implications of the present data are very interesting. First, when 
subjects judge whether a probability value is well described by at leasr one 
expert (the "or'task), they effectively decide which person had come closest 
and then ignore the input from the other person. Although the task was 
somewhat contrived, this kind of thinking may occasionally occur when an 
individual is being especially risk adverse and wishes to focus only on the 
maximum possibility of extreme probabilities describing an event. 

The morecommonsituation occurswhen an individual integratestheverbal 
probabilistic inputs of two judges to form a single overall judgment. The 
present results suggest that this occurs according to an averaging process, 
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by which the resulting judgment may be very different from either of the two 
inputs. This result is clearly reminiscent of the many other situations in which 
an averaging rule has been demonstrated (e.g., Anderson, 1981,1982), but an 
important difference must be noted. Namely, previous investigations have 
assumed precise underlyingvalues, whereas vague judgments are at the core 
of the present research. 

The"and"responsesofa majorityofthe present subjects arewell described 
by an operation t hat takesthe mean of two fuzzy numbers. It may be that these 
subjects actually engaged in information processing analogous to this 
operation, or it may be that they engaged in rather different processing that 
nevertheless yielded similar results. These distinctions can only be explored 
after alternative models are developed, and then only if the alternative and 
the fuzzy mean models differ in some testable ways. 

We are currently running an additional experiment involving only the "and" 
task, in which a greater number of replications is being obtained in order to 
achievemorereliableestimates. We hopetoconfirm inthisstudythatthe"and" 
operation is indeed described by an averaging operation, and if so, to 
determine which operation is taking place. 

This research was supported in part by Grant BNS 8608692 from the U.S. 
National Science Foundationand in part by contract MDA903-83-K-0347from 
the US.  Army Research Institute. Theviews, opinions, andfindingscontained 
in this paper are those of the authors and should not be construed as official 
Department of the army position, policy, or decision. 
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A FUZZY PROPOSITIONAL ACCOUNT OF CONTEXTUAL 
EFFECTS ON WORD RECOGNITION 

Jay RUECKL 

Harvard University, Department of Psychology, 
Cambridge, Mass 02 138 USA 

A longstanding issue in cognitive psychology concerns the nature of 
contextual effects in word identification paradigms. While some theorists 
have seen these effects as reflecting the influence of contextual information 
on the identification process itself, other theorists have argued that word 
identification occurs independently of contextual information, and that the 
contextual effects usually observed are brought about by processes that 
occur after the word identification process has been completed. The 
conception of the word identification process offered by the fuzzy 
propositional framework suggests a new experimental paradigm for studying 
contextual effects. The results of experiments within this paradigm strongly 
suggest that contextual information does influence the word identification 
process. These results are consistent with the predictions of the fuzzy 
propositional model of word identification, which explicitly describes how 
visual and contextual information can be integrated in the process of 
identifying a word. 
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It is commonly agreed that understanding a written sentence or passage 
involves processesthat apply orthographic, syntactic, semantic and pragmatic 
knowledgetothe analysis of thevisual input. One can think of this analysis as 
occuring ina seriesof stages, witheachsuccessivestage interpreting the input 
at a "higher' level of analysis. For example, at an early stage of processing 
orthographic knowledgewould be used to identify each individual word in the 
input. The resulting word identity information would then be passed on to a 
processthat constructsas interpretation ofthe syntactic structure of the input, 
and in turn the output of the syntactic process would serve as input for a 
processconcerned with understanding the meaning of the input. 

Although there is general agreement t hat tang uage comprehension involves 
processesat a numberoflevelsofanalysis, there issharpdisagreement about 
thestructure of the processing system that supportsthis analysis. On the other 
hand, a number of theorists, including Forster (1979,1981) and others (e.g., 
Seidenberg, Tanenhaus, Leitman, & Bienkowski, 1982; Stanovich & Wets, 
1983), have argued that the language comprehension system consists of a 
hierarchyof processing stages, with information flowing only upwards through 
the system. Thus, in thisview language comprehension is seen as a series of 
discrete decisions. The decision made at a given level depends only on the 
results of processes at lower levels of the hierarchy, and cannot be influenced 
by processes that occur farther up in the system. 

On the other hand, other theorists, including Morton (1979), Rumelhart 
(1977), and Marslen-Wilson and Welsh (1978), have argued in favor of a 
different conception of the language processing system. In the interactive 
processing framework proposed by these theorists, processing is again 
assumed tooccur at a number of levelsof analysis. In contrast to the above 
autonomous framework, however, in the interactive framework it is assumed 
that there is both a bottom-up and a top-down flow of information. The 
top-down flowof information allows initial resultsat higher levels of processing 
to influence decisions made at lower levels of analysis. It is argued that a 
top-down flow of information allowsfor more informed interpretations of what 
can often be ambiguous bottom-up information (Rumelhart, 1977; McClelland 
& Rumelhart, 1981). 

Thus, the interactive and autonomous views make different predictions 
about situations in which the role of top-down information is explored. The 
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autonomousview predicts that top-down information will have little impact on 
theoutcome of language comprehension processes, whilethe interactiveview 
suggests that the outcome of these processes will be influenced by top-down 
information. 

CONTEXTUAL EFFECTS ON WORD IDENTIFICATION 

Although the interactive and autonomous models make conflicting 

predictions about top-down effects across a variety of processes, these 
predictions have been put to the test most often in experiments studying the 
word identification process. In the most common paradigm for studying 
top-down effects on word identification, subjects read a context sentence and 
then either name a target word or make a lexical decision about it. The 
influence of higher-level context on the word identification process is studied 
by manipulating the semantic relationship between the target and its context 
sentence. For example, the target word "desk' might appear in the context of 
a sentence with which it is congruent, such as "Mary's books were piled up 
on her ......", or in the context of a sentence with which it is incongruent, such 
as'last night Mary read a good ...... 'I. The results of studies employing this 
paradigm are consistent and robust. Words are identified more accurately 
(Morton, 1964; Tulving & Gold, 1963) and responses are made more quickly 
(Fischler & Bloom, 1979; Forster, 1981; Stanovich & Wets, 1981) when the 
target is congruent with the context than when it is not. 

At the first glance, this pattern of results seems to support the intercative 
view attheexpenseofthe autonomous framework. The finding that semantic 
context can influence performance on word identification tasks is precisely 
what one should expect if there is a top-down flow of information within the 
language processing system. On the other hand, if it is assumed that 
information has a purely bottom-up flow, then contextual information should 
not influence the duration or outcome of the word identification process, as 
the results cited seem to suggest. 
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However, it isoftenthecasethat theobvious interpretation is not necessarily 
the correct one. In this particular case the reported contextual effects can be 
taken to be consistent with the autonomous framework if it is assumed that the 
locusof the contextual effects is not the word identification process itself, but 
instead some other process that occurs after the word identification process 
has been completed. For example, one might suppose that the detection of 
semantic incongruitytriggers an error-checking mechanism. If this were the 
case, response times might be slower in the incongruent condition even 
though the duration of the word identification process itself was the same 
across conditions. Thus, both the interactive and autonomous frameworks 
can account for the finding that responses occur more quickly for congruent 
targets than for incongruent targets. 

In order to tease apart these competing accounts, response times for 
congruent and incongruent targets can be compared to response times for 
words that occur in neutral contexts. In this case, the alternative accounts 
make clear and contradictory predictions. In the interactive framework it is 
assumed that a top-down flow of information facilitates the word identification 
process. Thus, according to this view word identification should occur more 
quicklyforwords that appear in a congruent semantic context than for words 
that appear in a neutral context. On the other hand, according to the 
autonomous framework contextual information has no influence on the word 
identification process. Under this account, response times in the congruent 
condition should be nofasterthan responsetimes for neutral targets. The only 
contextual effect consistent with the autonomous view is a slowing down of 
responses for incongruent targets brought about by post-identification 
error-checking mechanisms. 

Unfortunately, although thelogic underlyingthis method fortesting between 
the interactive and autonomous models is straightforward, the implementation 
ofthis method has proven to be anything but straightforward. The problem is 
that theterm'lneutral contextl'can be construed in several ways. For example, 
Stanovich and West (1981,1983) used the word strings"They said it was the 
. . . . . . " and 'the the the ...... " as their neutral contexts, and found that responses 
were made more quicklyfor words that appeared in a congruent context than 
for words that appeared in these neutral contexts. However, Forster (1981, 

Experiment I ) ,  using a random word list as the neutral context, found only 
an inhibitory effect on response latencies for words appearing in incongruent 
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contexts. To resolve the conflict between the results of these studies, Forster 
(1981, Experiment 5) directlycomparedthe"1twasthe ...... "and randomword 
listcontexts. Forsterfound that thecongruent targets were named significantly 
faster than words appearing in the "It was the ...... " neutral context, but that 
when a'random word Iistwas used as neutral context, the contextual effect was 
inhibitory. 

Clearly, then, the interpretation of these depends on which neutral condition 
is accepted astruly "neutral". On the one hand, it can be argued that if neither 
condition provides information about the identity of the target, the faster one 
(the random word list) should be chosen. On the other hand, if sentence-level 
processing isboth obligatoryand resourcedemanding, then the random word 
list, not being as resource demanding as sentence contexts, would be 
artificially fast, and the "It was the ......" condition would be the more 
appropriate choice. Thus, although there is at least some reason to suppose 
that either sort of neutral context would serve as the appropriate baseline, 
neither choice is obviously a better choice than its alternative. Given this 
problem in identifying the appropriate baseline, the results of the reaction time 
studies discussed above remain ambiguous. Although these results can be 
taken assupporting the hypothesisthat contextual information facilitates word 
identification, they can also be taken as supporting the claim that the locus of 
the contextual effect is an error-checking mechanism that operates after the 
word identification process has been completed. 

AN ALTERNATIVE PARADIGM 

There are two aspects of the reaction time paradigm discussed above that 
makethe results of experiments using that paradigm difficult to interpret. The 
problem brought out in the previous section is that different baseline contexts 
allow for different conclusions to be drawn, and there are reasonable 
arguments for assuming that each of these different baselines is the 
appropriate one. A second problem is that, in the face of the lack of an 
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appropriate neutral condition, both the autonomous and interactive 
frameworks can account for the finding that responses are faster in a 
congruent context than in an incongruent context. Thus, in order to test 
between the alternative hypotheses about the role of contextual information 
inword identification, one must either resolvethe baseline issue or manipulate 
the context in such a way that the autonomous and interactive frameworks 
make different predictions. 

Gregg Oden and I (Rueckl & Oden, 1986) performed a sequence of 
experiments in which we took the latter route. The fundamental assumption 
underlying these experiments is the claim that the congruity of a word with its 
context is not an all-or-none thing, but is instead a matter of degree. For 
example, considerthe sentence frame "The ...... had a pair in his hand". This 
sentence frame can be sensibly completed by a number of words, including 
"cardp1ayer"and "arthritic". Note, however, that although either word sensibly 
completes the sentence, it seem intuitively obvious that the sentence is more 
sensible when completed by the word "cardplayer". That is, it is more likely 
that a cardplayer would have a pair in his hand than an arthritic would have a 
pair in his, even though it is perfectly possible for an arthritic to be holding a 
pair. 

By making the assumption that a word can be more or less sensible with 
a given context, it is possible to create an experimental situation in which the 
autonomous and interactive frameworks make different predictions. In 
particular, iftheword identification process is influenced bythedegreeto which 
a target word is congruent with its context, as might be expected within the 
interactive framework, then performance in an identification task should differ 
with differences in the degreeto which a target word is a sensible completion 
of its sentence context. On the other hand, if the only effect of targetlcontext 
sensibleness is to trigger an error-checking mechanism when the target word 
is incongruent with its context, as is posited by the autonom ous framework, 
then differences in target/context sensibleness should have no effect on word 
identification, provided that the target is a sensible completion of the context 
sentence. 

In the experiments Oden and I conducted, contextual information was 
manipulated by creating a set of sentence contexts that differed in the degree 
to whichthey were sensibly completed by either oftwoorthographically similar 
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target words. For example, in the sentenceframe"The ...... had a (pairlpain) 
in his hand", the blank was replaced by "cardplayer", "shoemaker", "piano 
player", and "arthritic". Note that the relative sensibleness of the alternative 
target words ("pair" and "pain") differs across these context. In the 
"cardplayer" context, "pair" is the more sensible target, while in the "arthritic" 
context, "pain" is the more sensible target. The other contexts, "shoemaker" 

and "piano player", are less strongly biased in either direction. 

In addition to the contextual manipulation, the physical characteristics of 
the target words were also manipulated. In particular, pairs of target words 
were chosen so that these words differed by a single letter feature. For 
example, thewords "pair"and"pain"differ physically solely in thelength ofthe 
line that distinguishes "r" from "n". The lenght of this line was systematically 
varied, resulting in a series of stimuli that differ systematically in the degree to 

which they resemble the alternative target words (see Figure 1). Previous 
research has found that letter and word identification is a consistent and 
systematic function of this type of manipulation (Massaro, 1979; Oden, 1979, 
1 984). 

The interactive and autonomous frameworks make clear and distinct 
predictions about the effects of these manipulations on the outcome of the 
word identification process. Both views agree that manipulating the physical 
characteristics of the stimulus will influence the outcome of this process. 
However, only the interactive view predicts that the contextual manipulation 
will also influence the outcome of the word identification process. Because 
thecontextual manipulation described above does not produceany sentences 
that would trigger a post-identification error-checking mechanism, the 
autonomous view must predict that word identification will not be influenced 
bythat contextual manipulation. 
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p a i r  
p a i r  
p a i r  
pain 
pain 

bears 
bears 
bears 
beavs 
beans 

car  
car  
ca r  
ear 
ear 

FIGURE 1 

The feature manipulations used in Experiment 1 

EXPERIMENT 1 

Two experiments were conducted, each involving the featural and 
contextual manipulationsdescribed above. Inthefirst experiment, the subject 
was presented with a series of sentences, and was asked to choose which 
of two test words was in each sentence. Each sentence was briefly presented 
onavideomonitor, andwas replaced byadisplay containing thetwo response 
alternatives. The subject was then asked to push a button corresponding to 
the test word that had appeared in the sentence. 

The sentences used in this experiment were drawn from three stimulus 
matrices that were constructed by combining five levels of a feature 
manipulation with four different sentence contexts. One matrix was the 
pair/pain matrix described above. For this matrix, the response alternatives 
offered the subject were the words "pair" and "pain". The second stimulus 
matrix was the beadbean matrix. The featural manipulation for this matrix 
involved the same r/n continuum used in the pairlpain martix. In this case, the 
rln characters were embedded in the letter string "bea-s", resulting in word 
stimuli that varied in the degree to which they resembled the words "bears" 
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and "beans". The contextual manipulation for this matrix was produced by 
replacing the blank in the sentence frame "The ....... raised (beardbeans) to 
supplement his income" with "lion tamer", "zookeper", "botanist", and "dairy 
farmer". Again, these words differ in the degree to which they support the 
alternative interpretations of the target word. The third matrix was the 
car/ear matrix. For this matrix, the featural manipulation involved changes 
in the length of the horizontal bar that distinguishes "c" from the "e". For 
the contextual manipulation, the words "rusty","dented","bleeding 'I, and 
"deformed" were embedded in the sentence frame "The detective carefully 
watched the man with the ...... (car/ear)". 

There were three blocks of trials. Within each block, all 60 test sentences 
(20 feature X context combinations from each of the three matrices) were 
presented, as were 15 filler sentences. Some of these filler sentences were 
closely related to the test sentences. In particular, the filler sentences were 
based on the sentence frames used to generate the stimulus matrices. 
However, in the filler sentences the blanks in the sentence frames were filled 
by context words other than used in the test sentences, and the target word 
was also changed. (For example, one filler senetence "The old ballplayer had 
a pain in (hidher) hand".) The purpose of these filler sentences was to 
discourage the subject from adopting a strategy of only looking at the target 
, ratherthan reading the entire sentence. 

Results of Experiment 1 

Theresultsofthe first experiment indicatedthat bothsemantic andfeatural 
information influenced the outcome of the word identification process. For 
all three matrices the probability of a given response was a systematic 
function of both the semantic featural support forthat interpretation. 

The resultsforthe pair/pain matrixare presented in Figure2. On thevertical 
axis is the proportion of trials on which the target word was identified as "pain". 
The levels of the featural manipulation run along the horizontal axis. The 
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individual curves in the figure correspond to the different semantic contexts. 
As can be seen in the figure, the feature manipulation produced a large and 
systematic effect, with the probability of the target word being identified as 
"pain" increasing as a direct function of the length of the manipulated feature, 
F (4,92) = 133.79, p < ,001. 

The effect of the contextual manipultion was relatively small, but it was also 
reliable and systematic, F (3,69) = 3.22, p < .05. At each level of the featural 
dimension, the target word was more likely to be identified as "pain" in the 
arthritic context than in the card player context, while responses in the other 
contexts, which seem intuitively to be less biased in either direction, fell in 
between. 

The --- had a ( pain/pair ) 
in h is  hand 

1 .( 

piano player & - - - - _-- 
&----A shoemaker - card player 

.o 
r r r F n 

Feature Level 

FIGURE2 

The portion of "pain" responses for the pair / pain matrix as a function of 
sentence context and featural information. 
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Thus, the resultsfromthepair/pain matrix indicate thatfeatural and semantic 
information jointly determined word identification. The influence of these 
factors was systematic, in that the probability that the target was identified as 
"pain" increased with increases in either the featural or semantic support for 
that interpretation. Finally, althoughthefeatural and contextual manipulations 
had significant effects, the interaction of these factors was not significant. 

The --- ra ised ( bears lbeans ) 
to supplement his  i ncome 

n P r r r 

Feature Level 

FIGURE 3 

The portion of "bears" responses for the bears / beans matrix as a function 
of sentence context and featural information. 
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The detective carefully watched 
the man with the --- ( car/ear ) 

+. . . . . . . + rusty 
A dented A - -_-- -- 

----a deformed - bleeding 

e e e C C 

Feature Level 

FIGURE4 
The portion of "car" responses for the car I ear matrix as a function of 

sentence context and featural information. 
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The results for the other matrices are presented in Figure 3 and 4. The 
resultsforthese matricesfollowthesame pattern aswas found forthe paidpain 
matrix. For each matrix, there was a large and systematic effect of the featural 
manipulation (F (4,92) = 210.76, 103.93, p < ,001. for the beardbeans and 
carlear matrices, respectively). In addition, for each matrix the effect of the 
contextual manipulationwas both significant (F (3,69) = 4.58,4.92, p<  .05fOr 
the beardbeans and carlear matrices, respectively) and sensible. For the 
bearslbeans matrix, responses in the lion tamer context were biased towards 
the "bears" response, responses in the dairy farmer context were biased 
towards the "beans" response, and responses in the other context fell in 
between. Forthecarlear matrix, the"rusty"and "dented"contexts were biased 
towardsthe"car" response, whi1ethe"deformed" and "bleeding" contexts were 
biased towards"ear". For neither matrix was the interaction of the effects of 
the context and feature manipulations significant. 

EXPERIMENT2 

The results of the first experiment suggest that contextual information 
influences the word identification process. The results of the second 
experiment support this conclusion. Although Experiment 2 involved the same 
semanticandfeatural manipulations used in Experiment 1 ,  both thedesign and 
the procedure of the second experiment differed somewhat from that of 
Experiment 1.  Sixteen stimulus matrices were constructed for Experiment 2, 
thusallowing usto studyfeatural and contextual effects word identification over 
a wider variety of materials. In constrast to the increase in the number of 
matrices, thenumberofcellswithineach matrixwas reduced: therewerethree 
leves of the feature manipulation and two leves of context per matrix. The 
design of Experiments 1 and 2 thus havea complementary nature. The design 
of Experiment 1 allowed for a fine-grained examination of the influence of 
contextual andfeatural information on word identification in a task involving a 
small numberof stimuli. Incontrast, theexamination ofthe roleoffeatural and 
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semantic informationwaslessfine-grained within each matrix of Experiment 2, 

but the effect of these factors was studied across a greatervariety of materials. 

The stimulus matricesforthis experiment wereconstructed sothat the three 
levels of the feature manipulation included two intact letters that differed along 
a single dimension (e.g. "r" and "n") as well as an intermediate stimulus that 
partially resembled each of the intatct letters (see Figure 5). The two context 
sentences were chosen so that each interpretation of the target word was the 
more sensible completion of one of the two contexts. For example, for the 
tan/fan matrix, the two conte sentences were "They drove to Florida to get a 
.(fan/tan)" and "On these hot days it helps to have a (tan/fan)". Although both 
"tan" and "fan" sensibly complete either sentence, "tan" is the more sensible 
completion of the former sentence, while "fan" is the more sensible completion 
of the latter. 

In addition to testing the generality of the results of Experiment 1, the 
inclusion of morestimulus matricesallowsfor a betterassessment oftheactual 
size of the context effect. In the first experiment the subjects were repeatedly 
exposed to each of the different contexts for each of the stimulus matrices. It 
is not unreasonable to suppose that the repeated occurence of each context 
in Experiment 1 may have reduced effects of diferences in the relative 
sensibleness of each interpretation of the target word in a given context by 
making each interpretation highlyfamiliar. Thus, in Experiment 2 each subject 
was presented with onlyoneofthetest sentencesfrom each ofthe 16 matrices. 
(In addition, each subject was presented with 32 unrelated filler sentences. Of 
the filler sentences, 16 were sensible, and 16 were semantically anomalous.) 

The task used in Experiment 2 was also different from that used in 
Experiment 1. Rather than performing what amounted to a forced-choice 
recognitiontask, subjects inthesecondtaskwereaskedto read each sentence 
aloud, and then decide whether or not the sentence made sense. There were 
three reasonsfor altering the task in this way. First, this task emphasizes the 
semantic properties of the sentence. If semantic context does influence word 
identification, assuggested bythe results of Experiment 1, then increasing the 
degreeto which the subject focuses on the semantic properties of the sentence 
should increase the size of the context effect. 
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Secondly, having the subject rate the sensibleness of each sentence gives 
us an independent measure of the congruity between each context and each 
interpretation of the target word. Although the pattern of results in Experiment 
1 followed our intuitions about the relative sensibleness of each target 
interpretation in a given context, having the subjects make sensibleness 
judgments about targetlcontext pairs gives us an objective measure of this 
relationship. If one interpretation of atarget really is more sensible with a given 
context, thenthat sentenceshould have been morelikelyto be judged sensible 
when the target word was given that interpretation. 

Finally, the use of this new task allows us to test an account of the results 
of Experiment 1 that isconsistent with the autonomous framework. Recall that 
autonomous models could account for contextual effects in reaction time 
studies by positing that responses to semantically incongruent target words 
areslowed byanerror-checking mechanism triggered by semantic incongruity. 
The results of Experiment 1 can not be accounted for in this way, however, 
because in that experiment both interpretations of the target word were 
congruentwitheachcontext. Thus, theerror-checking mechanism should not 
have been triggered, and contextual information should not have influenced 
the outcome of the word identification process. 

However, there is another account ofthe results of the first experiment that 
isconsistentwith the autonomousframework. It might be argued that, because 
each sentence was presented for a brief amount of time, there may have been 
a number of trials on which the subject was not able to identify the target word 
before it was removed from the screen. On these trials the subject’s response 
would be nothing more that a guess about the target word’s identity. If the 
subject had some information about the rest of the sentence, and if this 
contextual information influenced the subject’s guessing strategy on these 
trials, then it would have been possibleto find a contextual effect on the actual 
responses made, even though contextual information does not influence the 
word identification process itself. If context influences word identification in 
Experiment 2, thisaccount can also be ruled out. Bysimplyaskingthe subject 
to read asentence aloud, the possibilitythat thesubject is guessing about the 
identity of the target word has been removed. 

To summarize, in Experiment 2 subjects were presented with one sentence 
from each of 16 2x3 stimulus matrices, along with 32 filler sentences. The 
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presentation of the test sentences was counterbalanced in such a way that 
each subject saw approximately the same number of sentences from each 
combination of feature level and context level (collapsed across matrices). 
Furthermore, each sentence from each matrixwas presented an equal number 
of times across subjects. The subject's task was to read each sentence aloud 
as itwas presented, and then to push one of the two buttons, indicating whether 
or notthesentence made sense. The experimental session was tape-recorded, 
so that the subject's identifications of the target words could be determined. 

Results of Experiment 2 

In Experiment 1, the data for each matrix were analyzed separately. 
Because there was far less data per matrix in Experiment 2, the data were 
collapsed across stimulus matrices. In order to do this, the alternative 
interpretations of the target word for each matrix were arbitrarily labelled 
"Word 1" and "Word 2" responses. Each context can then be denoted with 
referencetothe responsealternativethat was most sensiblegiven that context. 
For example, in thefanhan matrix"tan" was assigned label "Word l", and "fan" 
was labelled "Word 2". "Tan" is the most sensible completion of the sentence 
"During spring break they drove to Florida to get a ....... ' I .  Thus, this context 
was labelled "Context 1". Conversely, the context supporting "fan" ("On these 
hot days it helps to have a ...... ") was labelled "Context 2". Finally, the levels 
of thefeature manipulation werealso labelled in a similar manner. The level of 
the feature manipulations corresponding to an intact "Word 2" stimulus was 
labelled I eve1 "Fl", while the feature level corresponding to an intact "Word 2" 
stimulus was labelled "F2". The intermediate level along the feature dimension 
was labelled "FA" ("A" for "ambiguous"). 

Labelling the levels of the feature and context manipulations in this way 
identifies the cells that correspond to each other across the stimulus matrices. 
Thus, the number of Word 1 responses for a given cell in a given matrix can be 
added to the number of Word 1 responses for that same cell in all the other 
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FIGURE6 
The feature manipulations used in Experiment 2. 

matrices. The result of this process is shown in Figure 6. In this figure, the 
vertical axis represents the proportion of Word 1 responses. The levels of the 
feature manipulation run along the horizontal axis, and the separate curves 
correspond to the different contexts. As can be seen in the figure, the feature 
manipulation again had a large effect on the outcome of the identification 
process. The contextual effect was quite small when the feature levels 
corresponded to intact letters (levels F1 and F2), but was quite small when the 
physical stimulus was an ambigous letter form (level FA). An analysis of 
variance found significant effects for both the feature manipulation, F (2,118) 
= 877.93. p < .001, and the contextual manipulation, F (159) = 80.22, 
p <.001. In addition, the interaction of the contextual and featural 
manipulationswasalsosignificant, F (2,118) = 42.31, p < ,001, indicatingthat 
the contextual effect was largest when the featural' information was least 
informative. 

The results of the sensibleness decision were also analyzed. According to 
the experimental logic, each interpretation of the target word was relatively 
more sensible with one of the sentence contexts. If this was the case, then 
Context 1 sentences should be more likely to be judged sensible when the 
target word was interpreted as Word 1 than when it was interpreted as Word 
2, and viceversa for Context 2 sentences. This predicted pattern of results did 
obtain. In 28 of the 32 sentence contexts, the sentence was judged as being 
sensible more often when the target was identified as the interpretation 
hypothesized to be more sensible in that context, p< ,001, by sign test. 
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Futhermore, in only one of the 32 contexts was the biased against 
interpretation not judged as sensible by any of the subjects. Thus, the 
contextual manipulation did not result in one sensible sentence and one 
anomalous sentence. Instead, the contextual manipulation resulted in two 
sensible sentences that differed in their degree of sensibleness. 

GENERAL DISCUSSION 

The results of these experiments are consistent with the interactiveview of 
the language processing system, which assumes that decisions made at a 
given level of analysis can be influenced by information derived by processes 
at a higher level of analysis. In the present case, the identification of a target 
wordwassystematically influenced bythecontext in whichthatword appeared. 
It isdifficulttosee howthiseffect could have been produced bythefactorsthat 
exert their influence after the word identification process has been completed. 
ldentificationdiffersacrosssentencecontextsthat were sensiblycompleted by 
either interpretation of the target word, thus precluding the possibility that the 
context effect was brought about by a post-identification error-checking 
mechanism. Futhermore, because the task used in Experiment 2 involved 
simply reading each sentence aloud, it is highly unlikely that the context 
effect found in that experiment could be the result of the context-sensitive 
guessing strategy. Thus, it is difficult to escape the conclusion that the locus 
of the context effect is the word identification process itself. 

Given this conclusion, we can now turn to an account of the result reported 
here. What is needed is an account of the process that takes as input visual 
and contextual information and yields asoutput a representation of the identity 
of the word being processed. In fact, a variety of accounts of this process 
have been suggested (Morton, 1979; Marslen-Wilson & Welsh, 1978; 
Rumelhart, 1977). These alternative accounts share the property rhat they 
allow contextual information to influence the processing of visual information. 
For example, in Morton’s model, contextual information lowers the threshold 
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ofworddetectorsthatarecongruentwiththat context, causing aword detector 
to reach threshold more quickly when the context supports that interpretation 
of the input that when it does not. 

However, although these models account for thegeneral finding that word 
identification is influenced by contextual information, they cannot explicitly 
account for the kind of contextual and featural manipulations used in these 
experiments. That is, these accounts lack the conceptual apparatus needed 
to understand howthefeatural and contextual supportfora given interpretation 
of a word can vary sytematically and continuously, as was the case in the 
present experiments. 

One account that does provide the needed conceptual apparatus is the 
fuzzy propositional framework (Oden, 1979,1984; Massaro, 1979; Massaro & 
Oden, 1980). This framework has been successfully applied to a variety of 
psycholinguisticdomains, including letter (Oden, 1979), word (Massaro, 1979; 
Oden, 1984), and speech sound identification (Massaro & Oden, 1980; Oden 
& Massaro, 1978), and syntactic ambiguity resolution (Oden, 1978, 1983). In 
the fuzzy propositional framework, concepts are represented by propositions 
thatcantake on continuoustruthvalues. Complex propositions areconstrued 
by conjoining simpler propositions with fuzzy connectives (e.g. AND, OR). The 
truthvalueof acomplex proposition isa systematicfunction ofthetruthvalues 
of itscomponent propositions (Oden, 1977). 

In the fuzzy propositional model of word identification, it is assumed that 
eachword is represented byafuzzy proposition composed of more elementary 
propositions. These component propositions represent the letters that make 
up the word. For example, the word "pain" would be represented by the 
proposition"p1 & a2 & i3 & n4", where"p1" stands for the proposition that the 
first letter is a "p", and "&" stands for the fuzzy logical "AND" operator. Letter 
propositions are also complex propositions composed of more elementary 
propositions. For example, the letter "p" might be represented by the 
proposition"f1 &f2 &f3 ... 'I, where each "f '  represents a specific letter feature, 
such as a line or curve segment or a relation between segments. 

It is assumed that the truth values of these feature propositions can be 
determined by Iow-level perceptual processes. That is, upon the 
representation of a visual stimulus, low-level perceptual processes determine 



Contextual Effects on Word Recognition 147 

the degree to which each feature is present in the stimulus. This featural 
information can then be used to compare the stimulus to lexical 
representations stored in long-term memory. In order to perform this 
comparison process, information about the presence of each of the 
elementary features specified in a word’s proposition is integrated according 
to the rules of fuzzy logic (Oden, 1977). The result of this comparison 
process is a fuzzy truth value corresponding to the degree to which the 
stimulus matches the lexical representation. This value will be a systematic 
functionof thedegreetowhicheach of the elementaryfeatures was present in 
the stimulus. 

According to the model, the stimulus is compared to the proposition 
representing each word in the reader’s vocabulary in parallel. The result of 
this process is a set offuzzytruth valuescorresponding tothe degree to which 
the stimulus matches each word pattern. If the stimulus is an isolated word 
(that is, if it is not encountered in the context of other words), the probability 
of identifyingthestimulusasagivenword istakento beadirectfunctionof the 
associated truth value. Thus, the stimulus is most likelyto be identified as the 
word withthe highest truthvalue, and hencethe best match with the stimulus. 

On the other hand, if the stimulus appears in a context that constraints the 
likelihood of a given word’s occurence, the model will take this source of 
information into account. Of particular relevance here as a source of 
information is the sentence context in which a word appears. Because 
different interpretations of a stimulus word will be more or less sensible given 
a particular sentence context, this context can serve as a value source of 
information inchoosingthe best interpretationof thestimulus. In orderto take 
this information account, it is assumed that in addiditon to computing the 
degree to which thestimulus matches each lexical representation, the reader 
concurrently computes the degree to which each meaning of a word makes 
sense given the context. (See Oden, 1983, for an explanation of how these 
sensibleness values are determined .) 

Thus, in identifying a word in the context of a sentence, it is assumed that 
the reader has available information about both the degree to which the 
stimulus matcheseach alternative interpretation and the degreeto which each 
interpretation makes sense given the context. The overall support for each 
interpretation is given by the fuzzy conjunction of these two values. The 
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probability of selecting a particular interpretation of the stimulus is a function 
ofthedegreeof supportfor that interpretation relativetothe degree of support 
for other interpretations. In particular, it is assumed that response selection 
follows the equation 

R1 =(Fl&Sl)/(Fl&Sl)+(F2&S2)+ ...... (Fn&Sn) 

where R1 isthe relativedegreeof support for Word 1 ,  F1 isthefeatural support 
for Word 1 ,  S1 is the sensibleness of Word 1 given the context, and so on. In 
this equation, both featural and semantic information influence the word 
identification decision. Thus, the identification process is able to take 
advantage of both sources of information, and need not be completely 
dependent on either source alone. 

An account of the experimental results. The fuzzy propositional model 
givesa clear and natural account of the experimental results reported above. 
Consider, for example, the results for the pairlpain matrix in Experiment 1 

(Figure 2) .  Note first that, disregarding the contextual manipulation, the 
proportion of "pain" responses increased steadily as the length of the feature 
distinguishing "r" and "n" in the last letter increased. According to the model, 
increasingthelength ofthisfeaturewill increasethe featural supportfor"pain" 
and decreasethe featural support for"pair". Increases in thefeatural support 
for "pain" will in turn lead to increases in the size of the numerator (relative to 
the denominator) in the equation for the relative degree of support for "pain". 
Thus, the probabilityof a "pain" response will increase as thefeatural support 
for "pain" increases. 

On the other hand, disregarding t he featural manipulation, the val ue for t he 
sensibleness of "pain" should be greater in the "arthritic" context than in the 
"card player"context, and this difference leads to a greater relative degree of 
support for "pain" in the arthritic context. This difference is again reflected in 
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the data, in that the proportion of "pain" responses is higher in the "arthritic" 
context at each level of the feature manipulation. A similar account can be 
given for the results for each of the other matrices in Experiment 1 and 2. 

In addition to giving a qualitative account of the effects of both thefeatural 
and contextual manipulations, the fuzzy propositional model can be used to 
derive a quantitative account of the joint influence of these manipulations. In 
order to provide this account, the iterative model-fitting routine BESTFIT 
(Wilkinson, 1982) was used tofitthe model tothe datafrom Experiment 1 using 
a least squares criterion of fit. Of the nine parameters of the model (five forthe 
featural dimension and four for the different contexts) eight were free to vary 
and one was set arbitrarily to establish the scale. 
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FIGURE 7 
The proportion of Word 1 responses in Experiment 2 as a.function of 

semantic context and featural information. 
(Adapted from Rueckl & Oden, 1986.) 
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The resulting parameters were then used to estimate the expected values 
for each of the 20 data points for each matrix. In general, these expected 
values were reasonably close to the actual data - the root mean squared 
derivations between the expected and observed values of the means of the 
responses were 0.01 9, 0.020, and 0.027 for the pair/pain, beardbeans, and 
car/ear matrices, respectively. Thesevalues are comparable to results obtained 
in previous work of this sort. 

Figure 7 presents the expected and observed values (curves and points, 
respectively) for each of the matrices in Experiment 1. In order to clearly 
depict the relationships between the observed and expected values for each 
context, successive curves have been displaced upwards by a fixed amount. 
(For example, in the pairlpain matrix, the values for the "shoemaker", "piano 
player", and "card player" contexts have beendisplaced upward by 0.1 $0.30 

and 0.45 units, respectively.) This figure illustrat es the goodness of the fit 
between the values produced by the model and the data actually obtained. 
The deviations are quite small, and do not follow any systematic pattern. 
Thus, the fuzzy propositional model gives a good quantitative account of the 
results reported above. 

CONCLUSION 

The results reported here demonstrate that both featural and contextual 
information influencetheword identification process. In both experiments, the 
probability that a target word was assigned a given interpretation was a 
systematic function of both the featural and semantic support for that 
interpretation. These results are consistent with the assumption that the 
language processing system is designed to operate in an environment that 
often providesthesystemwith noisyand somewhat ambiguous input. lnsuch 
an environment, a system will be best off if takes into account a variety of 
different, partially redundant sourcesof informatiorl. A corollaryof thisview is 
the principlethatthe influenceof one source of information should be greatest 
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when the information provided bythe other sources is most ambiguous. This 
principle is exemplified by the results of Experiment 2, where the effect of the 
contextual manipulation was greatest when the featural information was most 
ambigous. 

The conclusion that contextual information plays a role in the word 
identification process is consistent with the interactive processing framework, 
and in particular, with the fuzzy propositional model of word identification. This 
model assumesthat both semantic and featural information are continuous in 
nature, and that information of both sorts are integrated during the word 
identification process. It was argued abovethatthe fuzzy propositional model 
can account for the present results both qualitatively and quantitatively. 

Finally, it should be noted that the experimental paradigm used in the 

present studydiffered in several waysfrom thesort of paradigms moretypically 
used to study contextual effects on word identification. Rather than studying 
the influence of contextual information on the time needed to make a decision 
about the identityof a word, we examined the effect of context on the outcome 
of that process. Futhermore, the experimental logic depended on the 
assumption that semantic congruity is a matter of degree, and not an 
all-or-none thing. This fundamental insight of the fuzzy propositional 
approach played a key role in the development of a contextual manipulation 
capable of teasing apart the predictions of the intercative and autonomous 
frameworks. 
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Fuzzy sers are argued to be useful though nor sufficient for models of 
concepts: Continuous membership seems essenrial though fuzzy sets are 
defined on sers, i .  e., on an inherently conrradicrion-free domain (by rhe axioms 
of set rheory). Thus any account for rhe contradicrions experimentallyproved 
on conceptual categories inevitably requires a generalization of fuuy sers. 
Therefore modified fuzzy sers (m-fuzzy sets, for short) defined on classes (in 
rhe sense of set theory) are proposed. The hierarchy of elements in a category 
is modelled by a srrucrure of classes, m-fuzzy sers, sers, and finite subsets, 
such that each item represents rhe preceding one, and the lasr consists of the 
prototypes. The hierarchy of the categories is modeled by m-fuzzy grammars 
which are pure and regulated (in the sense of formal language theory). A 
relatedneuralnehvork is also explained. In rhis, the collective induced states 
of the funcrional units, called modules, represent concepts (like in Hebbs 
cell-assemblies). Borh rhe encoding and the drawing of inference are 
disrriburedandparallel. Formally, rhey consrirure residue number systems and 
a kind of syntactic pattern recongirion, respectively. 
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INTRODUCTION 

Concepts are fuzzy. As Miller and Johnson-Laird (1976, p.697) put it: 
"Concepts are invisible, impalpable, ill-defined abstractions that have a nasty 

way of being whatever a theorist needs them to be at the moment". 

In spite of this simple and well-know fact, fuzzy-set theory has not found 
much fruitful applications in modelling concepts. Although fuzzy sets were 
originallydefined by Zadeh (1 965) as a tool to formalize concepts, their possible 
useinthecognitivesciencesisstillavexingquestion (Cohen& Murphy, 1984). 
Moreover, there has been a highly influential point of view, proposed by 
Osherson and Smith (1981), claiming that fuzzy set theory is inherently 

inadequate for modelling concepts. All this, however, by no means indicates 
that fuzzy-set theory has been unsuccesful. Indeed, dozens of books and 
thousands of articles have been published in this field, in other than the full 
length journal Fuzzy Sets and Systems devoted entirely to it. In this enormous 
literature, however, a relatively small portion is directed towards the original 
aim, i.e., to formalize the cognitive sciences. Fuzzy set theory, practically as a 
whole, developed in areas that had already been formalized, i.e., in 
mathematics, system theory, computer science, etc. 

The present paper departsfrom these apparent contradictions. First some 
causes, both virtual and real, that have prevented a fruitful application of 
fuzzy-set theory in the cognitive science are briefly discussed. Then, by a 
generalizationofthe underlying domain, modified fuzzysets (m-fuzzysets, for 
short) aredefined. 

For modelling the hierarchy of elements in a conceptual category, a formal 
structure of concepts in their generality (classes, in the sense of axiomatic set 
theory), m-fuzzysets, conceptcores (sets, intheabovesense), and prototypes 
(finitesubsets) isdeveloped suchthat each item representsthe precedingone. 
In this structure the possible occurence of contradictions proved inevitable in 
the logic of concepts (e.g., the famous Russel's antinomy cited in section 1.2) 

is localized to the first two items. Not only fuzzy sets, but also prototypes, are 
defined in a modified way; as the elements maximizing the mutual 
representativeness between the element and the category. 
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For modelling the hierarchy in representativeness of the categories 
comprising a given element, m-fuzzy grammars are defined. These are pure, 
i.e., no distinction is made between nonterminal and terminal symbols, and 
regulated, i.e., different levels in the rewriting involve different collections of the 
rules. According to this formal linguistic approach, category identification 
appears as a kind of syntactic pattern recognition. 

Since the rewriting rules operate on confined information only, they can be 
implemented byunitsof local arborization, e.g., by formalized neurons. Onthis 
basisa related network of (a new type of) formalized neurons is proposed. The 
functional units are called modules referring to the experimentally found 
neuron-modules (Szentagothai, 1975, 1978; Mountcastle, 1978). Collective 
induced statesofthe (formalized) modules are assumed to represent concepts, 
like Hebb's (1 949) cell-assemblies. Since these modular states directly refer to 

the representation including the learning and recognition of concepts, the 
proposed approach sharply contrasts with Fodor's (1983) theory on the 
modularorganization in the mind/brain. 

Finally some basic properties of m-fuzzy relations, also referring to 

operations, are briefly discussed. The possible genaralizations of classical set 
theoretical and logical relations as well as some specific m-fuzzy relations are 
considered. 

1. THE CONCEPTION OF M FUZZINESS 

Fuzzy sets (Zadeh, 1965) manifest a substantial step from (classical) sets 
towards concepts by abolishing the constraints imposed by the law of the 
excluded middleoncategory membership. This has generally been recognized 
in the cognitive sciences so long as membership itself is considered only. 
Observations on more intricate phenomena, e.g. conceptual combination 
(Osherson&Smith, 1981), orextensionand intension (Cohen & Murphy, 1984), 
have resulted, however, in serious objections against the acceptance of fuzzy 
sets as a model of concepts. Although these considerations are criticized 
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below, their conclusion will be shared as the result of basically different 
observations. 

Havingexplainedthatthe inherentiogicoffuzzysetsis notthatofconcepts, 
a modified approach to "fuzziness", in the intuitive sense, is proposed for a 
mathematical model of the hierarchies of concepts. 

1 . I .  Intuitiveand mathematical sensesof"fuzziness" 

The contradiction between the inherent fuzziness of concepts and the 
tenuousutiiization offuzzy-set theory in thecognitivesciences is apparent only 
since "fuzziness" is meant in different senses in the two areas. Concepts are 
certainly fuzzy in the everyday sense of the word as a synonim of "vague", 
"ambiguous", orthe adjectives in the quotation at the beginning of the present 
paper. On the other hand, fuzziness infuzzy-set theory is a rigorously defined 
mathematical property, viz. the continuous variability of the characteristic 
function over the real interval [0,1]. Such incongruities often occur between 
theeverydayand the mathematical sensesofthesameterms, e.g. gametheory 
does not apply to (most) games, measure theory does not apply to (most) 
measures, probability theory does not apply to (most) probabilities, etc. Or in 
the other way round: most games, measures, probabilities, etc. meant in the 
everyday sense do not satisfy the respective definitions in the corresponding 
mathematical theories, i.e., they are not games, measures, probabilities, etc. 
in the sense of these theories. 

This situation is well-known in the fields where mathematical techniques 
have traditionally been used. Accordingly, in these fields fuzzy-set theory has 
been applied to a large extent (Kandel, 1986). In the cognitive sciences, 
however, wheremathematical methodsare not common, theabovetwosenses 
of "fuzziness " are not clearly distinguished. What is more, they are often 
confused not only with each other but also with further distinct ideas. 
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The most curious as well as most influential notion on fuzziness in the 
cognitivesciences isthe one proposed by Osherson and Smith (1 981). To start 
with, they identify the fuzzy characteristic function with category- 
representativeness (ortypicality) as used in prototypetheory (Mervis & Rosch, 
1981). Certainly, both fuzzy-set theory and prototype theory address the 
nonequivalent status of category members, however, their respective 
approaches are d ia met r ical I y opposite. 0 ne oft heir main differences is directly 
related to the above two senses of fuzziness: prototype theory has been 
basically informal, thuseven if it used "fuzziness", that idea could not be a priori 
identified withthe'fuzziness" in fuzzy-set theory. Furthermore, prototype theory 
does not use'fuzziness" in any sense. (Technically: Osherson and Smith (1 981 ) 
failed to refer to any item in the literature which mentions both "prototype" and 
"fuzziness".) Another inherent inconsistency of the integrated "fuzzytypicality" 
originates from the fact that the characteristic function (whether fuzzy or not) 
is essentially an element-to-category relation while representativeness is 
concieved in prototype theory as an increasing, otherwise not specified 
function of the similarity between the given element and the prototypes of the 
given category, thus it is basically reduced to an element-to-element relation. 
(Incidentally, the Osherson and Smith (1981) notions allows only for one 
prototype in each category, which directly contradicts prototype theory itself.) 
Furthermore, not only element-to-element and element-to-category relations 
are confused in the "fuzzy typicality" but also category-to-category relations, 
since Osherson and Smith (1981) probe their notion on "conceptual 
combination". Here again they mix up the mathematical and intuitive 
approaches: they confront some formal expresssions taken from Zadeh's 
(1965) paper with their own "strong intuitions". What is the most curious in all 
this notion isthatthe actual "strong intuitions" rerpesent nothing but Aristotelian 
logic (viz. the classical AND, OR, and NOT operations, and INCLUSION 
relation). Thusthecriteriaforthe adequacyof an amalgam of fuzzy-set theory 
and prototype theory is eventually the law of the excluded middle whose own 
inadequacy is the very starting point of both "constituent' theories. 

In spite of the above shortcomings, Osherson and Smith's (1981) notion 
has exerted a heavy influence on subsequent approaches to fuzziness in the 
cognitive sciences (Roth & Mervis, 1983; Armstrong, Gleitman, & Gleitman, 
1983; Johnson-Laird, 1983; Cohen&Murphy, 1984; Medin&Smith, 1984).This 
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fact justifies a detailed analysis which is attempted in Fuhrmann (forthcoming 

4. 

Cohen and Murphy (1984) seem to realize that Osherson and Smith's 
objections are due to their confusion of the intuitive and the mathematical 
approaches, however, they try to clarify the situation by getting rid of sets 
altogether whether fuzzy or not. Nevertheless, categories and thus also 
categorization can hardly be studied without considering sets since'lset' in the 
classical sense used in the cognitive sciences, including Cohen and Murhpy's 
(1984) approach, is a synonim of "category" (this will be discussed in Section 
1.2). 

Further confusion about "fuzziness" in the cognitive sciences originates 
from its comparison to probabilistic modelling. In the intuitive sense the fuzzy 
and the probabilistic approaches can be identified since both deny the law of 
theexcluded middle. 

If, however, probability is mentioned without any specification, it should 
certainlybeassumed in thesenseof probabilitytheoryand inthis mathematical 
sense, thetwo approaches are not identical at all: probabilitytheory obeys the 
strict axioms of measuretheory (Halmos, 1950) whilefuzzy-set theory has not 
been developed to an axiomatic theory (in spite of axiomatizing attempts, e.g. 
Gougen, 1974), thus it can be used without any prescribed mathematical 
constraint. The two senses are often confused by both proponents and 
opponents of fuzziness in the cognitive sciences. For example, McClosky and 
Glucksberg (1 979) propose "fuzziness" arguing that human categorization is 
probabilistic. On the other hand, for example, Johnson-Laird (1 983) opposes 
"fuzziness" in favor of a probabilistic description while, however, he rejects 
probability theory as the means of calculating joint "probabilities". These and 
some other curious notions on fuzziness are discussed in more details in 
Fuhrmann (forthcoming a). 

One of the fundamental differences between the intuitive and the 
mathematical senses of "fuzziness" lies in their respective novelty. That of the 
latter, i.e. of the generalization of set membership from dichotomous to 
continuous, is enormous. Indeed, since "set' is an essential idea in 
mathematics, the abolition of a stringent constraint (i.e. the law of the excluded 
middle) on set membership obviously provides for various generalizations in 
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practically all fields of pure and applied mathematics. (This is by no means to 
say, however, that fuzzy sets mark a new era of mathematics. "Fuzzification" 
may be quite unimportant and uninteresting in many areas, nevetheless it is 
possible, which means a lot of work whether significant or not.) On the other 
hand, "set' in the intuitive sense is only a synonym of "category" and studies 
on both the inherent logic and the practical applications of categories have 

long been revealed as having graded membership (Rescher, 1969; Simpson, 
1961, respectively). 

Accordingly, to find the appropriate approach to sets is certainly a crucial 
point in an understanding of fuzzy sets and ail the more for their possible 
utilization in modelling concepts (or categories). Cohen and Murphy (1 984) 

apparentlyrealizedthisfact, however, their proposition toomit setsaltogether, 
both classical and fuzzy, cannot be accepted: "Set" has two aspects, one of 
which is inherently related to "category" (or "concept"). Since the two aspects 
are also inherently related (to each other), an analysis of their various 
relationships appears useful. This is attempted in the next section. 

1.2 Concepts, sets, fuzzy sets 

The question whether sets can be used as a model of concepts, as raised 
bycohenand Murphy (1984), should not beseenasastarting pointtodiscuss 
the relationship between concepts (or categories) and sets. In fact, sets were 
introduced as a model of concepts by Frege's Axiom of Comprehension (or of 

Abstraction): 
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That is, given a predicate 4 (x), there is a set y to which any given entity x 
belongs (as an element) if and only if 4 (x) holds true. Evidently, this classical 
ideaof setsdiffersfromthat of categoryorconcept indenotation only. It isalso 
evidentthataxiom (1) does not specify set membership apart from its reduction 
to the truth of predicates: If the latter is dichotomous, then so is the former, if 
thelatterisgraded orcontinuous, then so istheformer. It is onlya consequence 
of the general assumption of Aristotelian logic (particularly the law of the 
excluded middle) on predicates that set membership became also generally 
assumed to be dichotomous. The introduction of the classical, bivalued 
characteristic function was based on this mechanically adopted assumption: 

1 , i f x ~ y  

0, i fx e y 
P- Y(X) = 

Making use of the original meaning of set membership, expressed by 
equation ( l ) ,  we may write: 

k v(u): u 8 v --- (0,1} (3) 

where U and V denote the set of all (real or imaginary) entities and that of 
all possible predicates inany given (practically natural though possibly artificial) 
1anguage.Thecharacteristicfunction mapstheCartesian product ofthese sets 
(i.e. the set of pairs (u,v) where u E U, v E V) into the set {O,l}: 

+v(u) = 1 ++ [ v(u) holdstrue]. 

Natural languages, however, are not free of contradictions, people often 
accept, or make, category statements in spite of being aware of counter 
examples (Hampton, 1982). Therefore classical (or "naive") set theory based 
eventuallyon natural languagescannot be contradiciton-free, either. The most 
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famouscontradiction isRussel'santinomy: let H denotetheset of all setswhich 
are not elements of themselves. (Evidently, a set may belong to itself, like the 
set of all sets defined in this paper, or may not do so, like the set of all people 
living atthis moment.) Now, let usconsider if H belongsto itself. It is immediately 
clear that it belongs to H if and only if it does not do so. To illustrate that the 
use of mathematical ideas (set, set membeship) plays no role here, let us cite 
another, calledGrelling'santinomy: Some English adjectives havethe property 
that they denote, e.g. "English', "polysyllabic", while others do not, e.g. 
"French", "monosyllabic". Calling the latters heterological, it is evident that 
"heterological" is heterological if and only if it is not heterological. 

A mathematical theory cannot lead to contradictions, therefore the 
discovery of antinomies in naive set theory resulted in the rejection of axiom 
(1). In the new version, called axiomatic set theory, axiom (1) is replaced by 
the following Theorem Schema of Separation (or of Subset): 

That is, the statement in Equation 1 does not apply to every entity, only to 
those belonging to a discretionary set z. What makes a collection of entities a 
set is uniquelyandcontradiction-freelydefined in axiomaticsettheory, seee.g., 
Fraenkel, Bar-Hillel and Levy (1973). What is important here is only that a set 
cannot belong to itself (nor to a set which belongs to a set .. .  which belongs to 
theoriginal one) any more. Thecollections which do not satisfythe new axioms 
thus are not sets in the new, more rigorous sense, and are termed proper 
classes. (The term "class" was introduced to replace "set" in the original, naive 
sense. Thus each set, in the sense of axiomatic set theory, is a class as well, 
and classes which are not sets are proper classes.) 

The above U does belong to itself. Thus, in light of axiomatic set theory, it 
cannot be used to define the characteristic function of sets like it used to in 
Equation 3. It has to be replaced by a set z: 
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Evidently, this is the point where concepts and sets became separated. After 
this point no operation or generalization possibly leading to contradiciton is 
allowed for sets. Concepts, however do lead to contradictions, thus if sets are 
to be drawn closer to concepts, it should be done before Equations 1 an 3 are 
replaced by Equations 4 and 5. 

The definition of fuzzy sets does not do so. It generalizes the values in 
Euations 4 and 5 by allowing for fractions in the truth of predicate 4 (x) and in 
the characteristic function y(x) while, however, it maintains the restricitons 
on the domain, viz. it rests on sets. This is the formal basis of the widespread 
use of fuzzy sets in mathematical fields and is of little use in the cognitive 
sciences. Equation 4 is a fundamental point in ("real", i.e. contradiction-free) 
mathematics, thusany of itsgenaralization may haveconsequences in all fields 
usingmathematics(asnoted in Section 1.1).  Equation4 isinfactthedefinition 
of subsets, this is the root of the notion that fuzzy sets are generalized subsets 
(Kaufmann, 1975). On the other hand, since Equation 4 lies within the border 
of ("real") mathematics, any generalization it allows, including "fuzzification", 
lies there too. Consequently, it can not bridge the gap between sets and 
concepts. 

The next section attempts to bridge this gap by generalzing not only the 
values, but also the domain in Equations 4 and 5. Thus, conceptually we turn 
back to Equatin 1 and formally introduce continuous variability not only in 
Equations 4 and 5 but also in Equations 1 - 3. 

1.3 M-fuzzy sets 

As we have seen, no mathematical model is possible for concepts in their 
genrality since such a mathematical model should be free of contradictions, 



rn-Fuzziness in Brain/Mind Modelling 165 

while concepts are exposed to produce contradictions. Accordingly, it is a 
reasonable aim to define a model addressing concepts in general and being 
mathematical to the greates possible extent. 

To approach this aim, let us first define a fuzzy rerpesentation R by a 
generalization of Equation 3: 

R: W --+ [0,1] 
W C U B V  

Here, as above, U and V denote the classes of all (real or imaginary) entities 
and of all possible predicates (in a given language), repectively. The elements 
of a fuzzy representation are triplets: a = (u,v, ) E R; where u E U, v E V, )I 

E (0,1], such that kdenotes the degree to which the predicate v holds true for 
the entity u. 

At the second step, let us replace the set z by the fuzzy representation R in 
Equation 4: 

V R g A V a [ a E A a E  R A 9 ( a ) ]  (7) 

That is, if a = (u,v, )I ) E R, where R denotes afuzzy representation, and + 
(a) denotes a predicate, then there is a class A such that a A iff 9 (a) holds true. 

Let A +  denote the subclass, called the core, of A consisting of its elements 
with full membership: 

A +  = {a = (u,v, k) la  E A IJ-= I }  
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The classA is called a modified fuzzy set (m-fuzzy set, for short) if and only 
if its core A+ is a set. (It is not necessary to explicitly prescribe that A +  should 
be a set, in a mathematical treatment (Fuhrmann, forthcoming c) it can be 
obtained as a theorem from a more general definition of m-fuzzy sets.) 

In this general way an m-fuzzy set connects a concept (a class) which, in 
general, does not satisfythe axioms imposed on sets, with a set (its core), which 
can be the subject of a mathematical (thus necessarily contradiciton-free) 
theory. Since the core, in a sense, represents the underlying class, such a 
theory may have inherent relations with concepts in their generality. 

The condition that A '  should be a set connects the intuitive and the 
mathematicalsensesof membership. Thefull membership intheintuitivesense 
does not necessarily require maximal membership inthe mathematical sense. 
Formally, the former means p. y(x) 1 while the latter means exact equality: 
py(x) = 1. Thus the above restriction is fairly mild in its (mathematical) sense: 
Let us suppose that an element has practically full membership while its 
inclusion in the core would ren der the core not to be a set. Then a value of 
p = 1 - E can be attributed to the degree of its membership such that E should 
be less than any prescribed positive threshold, however, greater than zero. 

It is clear that m-fuzzy sets are a generalization of (traditional) fuzzy sets. 
Let AT denote a special m-fuzzy set whose domain of entities: 

is a set, and for which the predicate W T(a) defined in Equation 7 requires only 
that its domain of predicates: 
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should contain a single element only, say v*: 
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Q T(a) = (u,v, p ) ++ v = v* ( 7  7) 

Evidently, AT is a (traditional) fuzzy set defined on the set UT bythe continuous 
valued application ( p ) of the predicted v*. 

1.4 M-fuzzy sets and concepts 

The principal target of m-fuzzines is the hierachical organization of 
concepts. Since the same phenomenon led to prototype theory (Mervis & 
Rosch, 1981), a comparison of the two approaches may be fruitful. As 
mentioned in Section 1.1., the central idea in prototype theory is not 
membership but representativeness and most criticism of thistheory rest on a 
confusion of membership and representativeness (or typicality). Thus, a 
discussion on the relation between these phenomena appears to be an 
appropriate starting point. 

Thetradition of identifying membershipwith representativeness is extremly 
heavy among the opponents of prototype theory. For example, Armstrong, 
GleitmanandGleitman(1983) insiston it inspiteoftheirownexperimentswhere 
the subjects responded quite differently when asked about membership and 
re prese mar ivenes s, respect ivel y . T his tradition has so me term i no lo g ical 
preliminaries. Prototype theory deals principally with representativeness and 
most key publications in its development (Posner & Keele, 1968; Reed, 1972; 
Rosch, 1975a,b; Rosch & Lloyd, 1978; Mervis & Rosch, 1981) use strictly this 
term. Others use the term "typicality" though in a purelytechnical way defined 
clearly in each experiment (Rosch, Simpson, & Miller, 1976). In contrast, 
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criticisms of prototype theory (Loftus, 1975; Osherson & Smith, 1981) use 
"typicality" as a central term without clarifying its meaning. 

"Representativeness" and "typicality" seem to have a difference which may 
be crucial in their relation to "membership". Within the limits of the intuitive 
approach, where both are used, "represent at iveness" implies more definitely 
an underlying existence of membership than "typicality" does. For example, a 
"typical Swede" is tall and has light hair and skin, blue eyes, an athletic build 
and Scandinavian attitudes. What makesomeonea"Swede", however, are the 
place of birth, nationality of parents, citizenship, and residence. Thus, it may 
be a true characterization for someone that "he is a typical Swede except he is 
not Swede at all". 

Accordingly, in a mathematical approach "membership", 
"representativeness", and "typical it y" can not be described with a single variable. 
The above example also suggests that typicality can be seem as membership 
though not in the original category, say "A' but in an other one, viz. "typical A". 
Thus intheapplication of m-fuzzy sets to concepts we should primarily address 
"membership" while regarding "typicality" as membership in another category 
and "representativeness" as a distinct kind of variable. 

Assuming this explanation to be valid, m-fuzzy sets appear to be in 
accordance with prototype theory in that the domain of both typicality and 
membership is an unrestricted concept (a class in th sense of set theory), and 
both attributecontinuousvalued membership to the category elements, which 
also specifies a core consisting of those elements with maximal membership. 
(Although"maximal"is meant intuitively in prototype theory and mathematically 
in m-fuzzy sets, at this point these senses are easy to connect, as noted in 
Section 1.3) 

What has not been connected from prototype theory to m-fuzzy sets are 
the prototypesthemselves. Forthis, let usconsiderthethird oftheaboveterms, 
"representativeness". The studies on representativeness that led to prototype 
theory revealed no n-equivalence not only between the elements in a given 
category, but viceversa; between the categories comprising a given element. 
Just like the maximally representative elements for a given category, called 
prototypes, there is a maximally representative category for a given element, 
called basiclevel category (Mervis & Rosch, 1981). This indicates a symmetric 
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aspect of the representativeness between elements and categories. Indeed, 
considering some prototypesthemselves, it can be immediately seen that most 
oftheirfeaturescan best becharacterized by referringtothecategory in which 
they are prototypes. For example, the shape, the color, the size, as well as the 
taste, the touch, and the smell of a prototypical apple can be simply and 
precisely characterized as "(just) apple4 ike". 

Thus, we consider both the representativeness of an element for a category 
and that of a category for an element. The former can be identified with 
membership or, at least, assumed to be proportional with it. The latter can be 
assumed in the above sense, i.e. how efficient the membership in the given 
category is in characterizing different features of the given element. In this 
setting prototypes are defined as the elements holding maximal mutual 
representativeness, i.e. maximizing both of the above variables. Since these 
are defined over two arguments each, the element p is a prototype in the 
category A if and only if two double criteria are simultaneously met: 1. p is 
maximally representative for A, i.e. (Y . there is no element more representative 
for A than p is, and p . there is no categoryfor which p is more representative 
than for A. 2. A is maximally representative for p, i.e. u . there is no category 
more representative for p than A is, and p . there is no element for which A is 
more representative than for p. 

Even without a rigorous proof, the collection of prototypes can be assumed 
to be finite for each category. R regarding the categories like "A" and "typical 
A '  as different (as explained above), we also may assume the collections of 
prototypes to be contradiciton-free, i.e. to be sets. On this basis, the finite 
subsetsof prototypesdenoted byAP isdefined withinthecoreA' ofan m-fuzzy 
set A as: 

Here a A' guarantees the maximal representativeness of p for A (in the sense 
explained above) while the predicate n (a) denotes the maximal 
representativeness of Afor p. 
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The role of AP in representating the actual m-fuzzy set and, accordingly, 
alsothe underlying concept, isfundamental. Thecore A t  cannot playthis role, 
in general, since it is not necessarily finite or even enumerable. Furthermore, 
theelementsofthecoreare not equally representative intheeveryday, i.e., the 
mutual sense (though their membership is equal and maximal, and thus, 
according to the above assumption, their representativeness is "one-sided"). 
Therefore a randomly chosen subset of the core may be irrelevant or even 
misleading in characterizing (or representing) the underlying m-fuzzy set (or 
concept). 

Based on all this, a formal scheme of recursive representation is proposed 
for modelling the internal hierarchy of concepts. The basic domain is an 
unrestricted concept which corresponds to a class in the mathematical (more 
perciselytheset theoretical) sense. An m-fuzzy settransforms it into a category 
furnished with a continuous valued membership function. The core of this 
m-fuzzy set selects those elements posessing two important properties: 
holding the maximal degree of membership, and forming a set. Finally, the 
finite subset of prototypes provides a maximally representative (in the 
appropriate, mutual sense, as explained above) and conveniently treatable 
collection within the core. In this enumeration each element is to represent the 
preceding one, and thus indirectlyall of the ones before it. 

Afundamental property of the above recursive scheme of representation is 
that it localizes the possible occurrence of contradictions. As explained in 
Section 1.2., such a possibility cannot be ruled out in the logic of concepts in 
general (Hampton, 1982). In the above scheme, however, contradictions may 
occur in thefirsttwo itemsonly (classesand m-fuzzysets) while they really are 
ruled outfrom theothertwo (setsand finitesubsets). Thus, concept coresand 
prototypes can feasibly be the subject of mathematical theories in which 
concepts in their generality can also be directly involved as represented by 
these two ideas. (The relation between prototypes and m-fuzziness is 
discussed more in details in Fuhrmann, forthcoming b.) 
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1.5 M-fuzzy grammars and the hierarchy of concepts 

As noted in the preceding section, not onlythe elements in a given category 
but also the categories comprising a given element have been found unequal. 
Like the prototypes among the former, the basic level among the latter has a 
distinguished, viz. the most representative, status (Mervis & Rosch, 1981). 

Having reviewed the m-fuzzy approach to the intra-categorial hierarchies, let 
us turn to the inter-categorial ones. Since the latter rest on the relations of a 
givenentity(ore1ement) to different categories, astudyonthis hierarchyshould 
certainly involve the act of categorization. 

"Categorization" or "category identification" as used in the cognitive 

sciences is very close in meaning to "pattern recognition" as used in Artificial 
Intelligence.Thus, methodsthat haveprovedfruitful inthelatter may be utilized 
in modelling the former. Pattern recognition has basically two apaproaches. 
Statistical pattern recognition (Chen, 1973) regardstheentities (or patterns) as 
points in a metric space of the underlying features. Here the categories are 
manifest inclusterswithinthisspace. Althoughthe implementationof statistical 
pattern recognition may require several steps (feature extraction, determination 
of the optimal metric, analysis of topological relations, learning the categories, 

etc.), theactual recognition takes place principally in a single step: a given point 
in the (original or transformed) space of features is attached to one (possibly 
to afewto none) of the clusters. The methods of statistical pattern recognition 
have also been applied to the psychic process of categorization (Reed, 1973) 
yet the other kind of methods where the act of recognition itself is, in general, 
inherently hierarchical seems more adequate in this field. 

The latter approach originatesfrom the idae of formal languages, therefore 
it is called syntetctic pattern recognition (Fu, 1982). A traditional formal 
language is based on a generative grammar G = (VN,VT,P,S), where VN and 
VT D are the alphabet of nonterminal and terminal symbols, respectively, P is 
a set of production rules, and S is a distinguished element of VN called 
"sentence" symbol. Each production rule connects two strings of symbols by 
an arrow such that each symbol belongs either to VN or VT and the arrow 
denotes that the string before it can be freely replaced by the one after it. The 
words of the underlying language are those strings consisting of terminal 
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symbolsonlyand possibly produced by successiveapplicationsofthe rules in 
P beginning with S .  When applied to pattern recognition, S corresponds to a 
category, VT consists of thefeatures, and an entity (or pattern) is regarded as 
the word (i.e string) of its features. Thus a pattern belongs to a given category 
if and only if the word representing it belongs to the corresponding language. 

This conceptual framework appears suitable for modelling concepts: an 
entity (or pattern) belongs to a category if and only if it can be "produced" by 
appropriate rulesof alogical nature operating, feasibly in parallel, on confined 
information (selection of features). 

Thereare, however, also some important differences between the two fields. 
Informalized pattern recognition, different categories (different grammars and 
languages) are considered as separate (either serial or parallel) processes. 
Futhermore the categories are usually preclusive in the practical sense, i.e. an 
entity (or pattern) belongs to one categoryonly. In the psychic case, however, 
manycategoriesareinclusive (in the intuitivesense, not confined toanyformal 
operation). Thus the entity under consideration, in general, belongs to several 
categories and the task is to identify not one (i.e. any one) nor all ones but the 
optimal one in a sense to be specified (below). 

Accordingly, all categories ("sentence" symbols) should appear as words 
in the same formal language. Such a situation can be achieved by abolishing 
the traditional distinction between nonterminal and terminal symbols. 
Grammarsandlanguageswherethisdistinction is not madeare knownas pure 
ones (Maurer, Salomaa, &Wood, 1980; Gabrielian, 1981). Here each string 
generated bythe rules belongsto the underlying languagethusthe production 
of any string from any other can be considered as principally equal. 

The appropriate pure alphabet for the proposed model is a fuzzy 
representation R.Theproduction rules may connect any pair of strings just like 
in pure grammars in general. This expresses in our case that any concept (or 
category) mayoccuras (a partof) any step inthechainof production, including 
the beginning and the concluding steps. In other words, any concept can be 
regarded in itself, or as a constituent of another concept, or as a compound of 
other concepts. Possible "sentence" symbols are all of those elements in R 
belonging to an m-fuzzy set, i.e. satisfying a predicate 9 (a) which defines an 
m-fuzzy set (according to Equation 7). Thus formally, an m-fuzzy grammar is 
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the unification of as many pure grammars as is the number of such elements 
in R.Thealphabets, aswell asthesetsof production rules inthese"constituent" 
grammars, are parts or the whole of those in the resulting m-fuzzy grammar. 
The strength, or reliability, of the recognition (or category identification) is 
shown by the third element (p) in the actual "sentence" symbol a = (u,v, F ) 
E R. 

The production rules decompose the members of the alphabet (individual 
or in strings) either logically, e.g. 

(u, woman, 11 ) - 
(u, human, CL I ) ,  (u,female, 11 21, (u, adult, F 3 ) ;  

p=min(k i ,  ~2,113) FI ,  112, w i 3  

or physically, e.g 

(u,triangle,p) 4 

(3 staight lines, pairwise intersecting,such as +) 

It isfundamental in the proposed approach that afuzzy representation, thus 
also an m-fuzzy grammar, refer to one, definite mental representation (or a 
"subjective lexicon"). For example, the production rule: 

(u,woman,l)-. (u, capableof giving birth, 1) 

may beeither included or excluded depending on personal factors. 

(75) 

Instead oftheorganizing principlelost by not distinguishing nonterminal or 
terminal symbols, another is offered by the structure of subordinate / 
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superordinate categories. According to this relation the categories within a 
given m-fuzzy grammar can be ordered into series. It may be useful in 
organizing the acts of production (or of recognition) to assume that categories 
related as subordinatelsuperordinate may occur at different sides of a 
production rule only if they are adjacent in the corresponding series. Thus the 
rewriting (i.e. the steps inthe production and recognition) becomes regulated, 
which is familiar in the theory of formal languages (Salomaa, 1973). 

It seems necessaryto propose explicitely two basic assumptions about the 
subordinatelsuperordinate relation, noted above. One isthat this relation may 
vary over different m-fuzzy grammars (reffering to different mental 
representations). The other is that even within a single m-fuzzy grammar this 
relation is intuitive (a special case of "conceptual inclusion"). Consequently, this 
relation, according to the proposed approach, cannot be confined to any of 
the accustomed formal operations, e.g. inclusion as used in Aristotelian logic 
and in set theory, or any of its specific generalization to (traditional) fuzzy-set 
theory. Thus, none of the usual operations (addition, multiplication, "min" and 
"max" rules, etc.) applies universally to  the calculation of strengths (or 
reliabilities) betweenthetwosidesofan m-fuzzy production rule (e.g. Equation 
13). 

Let us return to the question of "optimal" category, i.e., if a pattern (a sring) 

can beproducedfrom different"sentence"symbo1swithin an m-fuzzygrammar 
(it belongstodifferent categories), as isthecase ingeneral, then whichofthese 
should be distinguished as "optimal". (Obviously this "optimal" category should 
also be identified as the result of the corresponding act of recognition.) It is 
plausible to choose the category into which the given pattern "best fits". Here 
again we areconfronted bythe incongruity of intuitive and formal senses. The 
first obvious idea to formalize the "best fit" is certainly maximal membership. 
This, however, cannot be accepted since, in general, several categories can 
be found for a given pattern comprising it at the same, maximal degree of 
membership. Another choice is the "most informative" category. This can 
reasonably be identified with the choice maximizing the "mutual 
representativeness" as defined in Section 1.4. The latter includes "maximal 
membership'lthus it does not contradictthe"bestfit" choice but renders it more 
rigorous (maximal membership becomes only a necessary but not sufficient 
condition). This, more stringent condition also prevents the miscategorization 



rn-Fuzziness in Brain/Mind Modelling 175 

of elements belonging to a category "typical A' only, to the category "A' (as 
exemplified in Section 1.4. by"typica1 Swedel'and "Swede"). 

2. POSSIBLE IMPLEMENTATION IN THE BRAIN 

An essential property of syntactic pattern recognition, as mentioned in 
Section 1.5, isthat the rules of rewriting do not involve all symbols in the actual 
string. This is crucial intwo respects: One is that the rules operate on confined 
information only, thus their implementation requires relatively simple devices. 
The other is that these devices may work largely in parallel on different 
selections of symbols in the same string. 

Although various techniques have been developed to implement syntactic 
pattern recognition (Fu, 1982), these hardly utilize theabove property. This is 
not surprising since the means of implementation, the traditional computer, is 
inherently a serial device. Nevertheless, the situation is quite the opposite in 
the brain where the psychic act of category identification presumably takes 
place. 

The idea that a concept should be assumed as represented by a collective 
induced state of a group, or an assembly of neurons was proposed by Hebb 
(1 949). From another approach, Piaget (1 962) also argued that psychological 
phenomena should be explained in terms referring to neural activity while he 
also emphasized the possibly crucial role of abstract, mathematical 
consideration in such explanations. 

The above abstract (viz. m-fuzzy) approach to concepts can feasibly be 
coupled to some fundamental new results on neural functioning and brain 
organization. This is explained asfollows. 
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2.1. On the organization and communication in the brain 

Hebb (1 949) assumed his "assemblies" of neurons to be self-organized by 
synaptic communication. That is, 1 .  The assemblies have no well-defined 
boundaries, individual neurons may either join (e.g. by developing new 
synapses) ordrop (e.g. by misfunction); 2,Thesolecohesiveagent isclassical, 
i.e. digital, synaptic interaction: each cell in the assembly has postsynaptic sites 
(i.e. may receivesynaptic input) fromoneor moreothercell(s) in theassembly, 
withasufficiently lowthreshold. This also meansthat the cells havetwo possible 
statesonly: steady state (intheabsenceof incoming signals) and excited state. 
Consequently: 3. The assembly as a whole has also two possible states only. 
Since the occurrence of a concept is attributed to the excited state of a 
cell-assembly, concepts also obey, according to this approach, classical, 
bivalued logic, i.e. they either do or do not occur without any intermediate (or 
fuzzy) possibility. 

Somefundamental results of the neurosciences obtained in recent decades 
suggest a thorough revision of the above ideas. Concerning the functional 
organization of neurons, the existence of well-defined units, called 
neuron-modules, has been firmly established (Szentagot hai, 1975, 1978; 

Mountcastle, 1978) in brain sections involved in detailed information procesing 
(as opposed to general regulatory functions), i.e., where the manifestation of 
concepts seems most feasible. Accepting Hebb's (1949) idea on the direct 
relation between concepts and excited states of neural structures, which is 
certainly justified in any monistic view, it is plausible to identify his 
cell-assemblieswith the experimentally revealed neuron-modules (Fuhrmann, 
1985~). 

Concerning interneuronal communication, the situation, in a sense, is just 
the opposite. The possible variety of the functional units is severely reduced 
by replacing Hebb's (1949) loose cell-assemblies by the much more definite 
neuron-modules. In contrast, the mode of interaction between neurons has 
been revealed to be much morevariablethan assummed earlier. The simple, 
digital synaptic contact is now generally seen as only one kind of interneuronal 
communication. It has been firmly established that the synapses can be 
modulated (Karczmar, 1987), furthermore that neurons can also interact 
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without synapses (vizi, 1984). lnterneuronal connections can also be 
categorized according to the chemical nature of the involved compounds 
(Iversen, 1984). Furthermore, even "simple", classical synaptic signals may 
interact in complex, nonlinear ways (Koch, Poggio, &Torre, 1983). 

The organization of information processing in single neurons turned out to 

be as complex and sophisticated as previously thought about networks of 
neuronsonly (Lewis, 1983). Thisalso impliesthatthe neurons, and all the more 
thestructuresof neurons, e.g., the modules, havevarious induced (or excited) 
statestoo. Different kindsof induced states inthe modules (orassemblies) may 
refer to different kinds of concepts. It seems plausible that some collective 
induced states are known to the system (the actually involved modules) from 
experience, these may represent clearly recognized concepts. Other such 
states, possibly similar to several known ones may represent ambiguous (or 
vague, orfuzzy) concepts. 

Since the collective induced states develop on the basis of local 
(interneuronal) communication, various concepts appearing invarious parts of 
thesamesystem (thesame brain) may not belogically consistent. Accordingly, 
theorganization ofthe concepts represented may not be adequately described 
by any mathematical (i.e. contradicition-free) theory while the setting of 
m-fuzziness may be useful. (Incidentally, the surge of fuzzification also 
penetrated intothemathematical modelling of neural activity, viz. afuzzification 
of theclassical (McCulloch-Pitts type) formal neuron was proposed (Lee & Lee, 
1974). Inthisfield, however, the (traditional) fuzzyapproach has beenevenless 
successful than in the cognitive sciences.) 

2.2 Neuronal interactions, states, and encoding 

To develop a formal description of the collective induced states of the 
neuron-modules (the"modu1ar states") which can feasibly be assumed as the 
manifestationofconcepts, let us first considerthe neurons, the elementary units 
in the underlying system. Experimental studies on neuronal functions form a 
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rapidlygrowingfield of research. As noted inthe preceding section, the number 
of revealed typesof interneuronal communication is alsogrowing. Forthetime 
being it seems justified to divide the set types into two groups: classical and 
nonclassical, in the following way (Fuhrmann, 1982). The former is assumed 
asfast and not entirely reliable, which involves an individual threshold function 
at each cell. The latter is assumed as slower and not only reliable but also 
capable of correcting errors made by the former. This, latter one. involves a 
collective function of the cells connected by neighbouring relations. This 
function operates not only on the actual input but also on previous experience. 
In terms of information processing, the former, called u-function, is the 
encoding while the latter, called cp-function, is the evaluation of the encoded 
information also making use of memory. 

According to this double function the model-neurons in the proposed 

system have two kinds of input and output, denoted by I u ,I9 and Ou, Ocp, 
respectively. Since Iu and Oq belong to the "first' (u) kind of communication, 
they refertoclassical synapticsignals, i.e. close sequencesof uniform impulses 
("spikes"). On also belongs to this type of classical synaptic signal because it 
will serve as a constituent of I U  at the next stage in information processing. It 
is 19 only whose manifestation has not been specified uniquely. This, as 
mentioned above, is assumed as a "nonclassical" complex of modulated 
synaptic, nonsynaptic, and possibly other constituents. 

In the model, each neuron has a finite ordered set of (individual) states 
denoted by < O  >, < 1 > , ..., <m-1 > , where the value of m refers to the 
individual thermodynamic properties of the actual cell. The steady state is 
denoted by < 0 > , and thelargerthe number in the bracket,, the more distant 
the underlying state from the steady one. In formal functioning each neuron is 
in its steady state when a signal of I may arrive. Since the impulses (spikes) are 
uniform, the receptionofeachelevatesthecell'sstateonestepfartherfrom the 
steady state. Thus, having received s spikes of lu , a neuron is in its s-th state, 
i.e. in < s > providedthesc m. In general, however, the numberof spikes, say 
n, in a signal of la exceeds (m-1) for the receiving cells, i.e., the stepwise 
departure from the steady state cannot continue until all spikes have arrived. 
(This refers to the thermodynamic constraints on the possible excitation.) If a 
neuron is in its highest possible excited state, m-1 , when another spike in IU 
arrives, the cell fires a spike of Ouand thus resets its steady state < 0 > . Then 
it continues the reception of the impulses. This act of resetting, 
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< m-1 > -+ < 0 >,  may take place several times during the reception of lo. 
Accordingly,afterall nspikesof lo havearrived, thecell is in its k-thstate, < k > 
, such that k is the residue number of the division of n by m as a modulus, i.e., 

k = n - [n/m] . m f 76) 

where [ ] denotes integer part 

Although the above process ( tr-function) is accomplished by the actual 
neuron individually, thecellsare not isolated. As mentioned in Section 2.1, the 
basicfunctional unit inthe model isthe (neuron) module. Most cells ina module 
receive identical o - input (Iu).  Owing to their different values of modulus (m), 
referringto their different thermodynamic properties, the reception of the same 
number of la spikes (n) brings them into states of different serial numbers in 
their respective scales of states. These neurons, called receptor cells, send 
their 0 o  signals to each of the other neurons, called control cells, in the same 
module. In this way, after all spikes in an actual signal of la have arrived at the 
receptorcells, theactual (individual) state of each neuron inthe module reflects 
a part of the information received by the module. 

For the recpetor cells, this part of the information is simply the residue of 
the number of received spikes after division by the cell's modulus. From a 
collection of such residue numbers the original integer can be uniquely 
reconstructed provided th at it does not exceed the least common multiple of 

the moduli (Ore, 1952). Thus the system of residue numbers (as states of the 
receptorcells) reflects all the information arrived at the module in a distributed 
form whose constituents have been generated in parallel. (As mentioned 
above, thespikesare uniform, thus it isevident that onlytheir numberconveys 
information. The role of control cells lies in error correction outlined below.) 

The residue numbers can be not only generated but also processed in 
parallel so far as addition, subtraction, and multiplication are involved only: 
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These are just the operates which can most easily be implemented by 
chemical concentrations or electrical potentials, i.e., by the most common 
agents in the nervous system. 

Although this parallel, distributed mode of information storage and 
processing may be fruitful in the computer sciences, too, most studies on 
residue number systems deal with the very special case of pairwise relative 
primemodulionly (Szabo&Tanaka, 1967; Fuhrmann, 1986).This restriction is 
extremely strict not only on the choice of moduli but, consequently, also on 
possible error correction in the system. Concerning the moduli themselves, 
their presumable number in afeasible useful residue number system is only a 
coupleof hundred or afew thousand. The requirement that no pair among so 
many integersshould haveany common divisor seems impracticable even for 
artificialsystems. It isall the moresofortheformalized neuron moduleoutlined 
above since here, according to the model, the moduli reflect the individual 
thermodynamic properties of thecells which evolved largely independently of 
each other (i.e. how could and why would they avoid having any common 
divisor with any of their fellows in the module). 

Concerning error detection, identification, and correction, these faculties 
originate from redundancy which is inherent in a residue number system only 
in caseof shared divisors: lfthe moduli are pairwise relative primes, then each 
possiblecollectionof residue nurnberscorrespondstoan integer, i.e. formsan 
admitted code-word. Consequently, redundancy can be introduced only by 
attaching some extra variables to the system. Most classes of error correcting 
codes defined on residue number system. Most classes of error correcting 
codes defined on residue number systemsfollow this line (these are reviewed 
in Furhmann, 1986). If, however, the moduli share some divisors, then 
redundancy is inherent in the system, e.g. there is no integer X for which 
1 X 1 mod 6 = 2, while 1 X 1 mod 4 = 1 (the former renders X to be even while the 
latter odd). Conditionsfor error detection, identification, and correction on this 
basis have also been developed for single errors (Barsi & Maestrini, 1980) and 
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belong either to the same orto different modules. The evaluation of the actual 
states of neighbours (Iq) determines the q-output (09) of the considered cell. 
This output is a close sequence of uniform impulses (spikes) such that the 
number of spikes shows how similar the actual state-configuration is to such 
configurations known to the considered neuron from experience. 

Thesimilarity of state-configurations depends on t he difference between t he 
respective neuronal states as well as on the strength of the involved 
neighbouring relations. Formally, toeach cell there belongs an antisymmetric 
matrix S such that the absolute value of its element S ij shows the distance 
between the i-th and the j-th states (i.e. between < i > and < j > ) for the actual 
cell. Thus the cells' individual scales of states are nonlinear ( 1  Si,j + k I = I 6 i j  I 
+ I &jk 1 ,  in general, does not hold) reflecting that the impact of the same spike 
on the thermodynamic milieu even in a given cell varies with the distance from 
the equilibrium (the steady state). The number of elements in S is evidently 
m*m, where m is the modulus belonging to the actual neuron. Also to each 
cell, there belongsavectory whose element y ashowsthestrengthof coupling 
betweentheconsidered neuronand itsu-thneighbour (eachcell is itsowno-th 
neighbour). The numbers of both the states and the neighbours are assumed 
to be finite for every neuron. Accordingly, the number of state-configurations 
isalsofiniteforany given neuron, thus they can be ordered discretionarily and 
referred to by their finite serial number. In such a (fixed) series the distance 

between the p-th and q-th state-configurations is calculated as: 

wherethesummationcoversall neighbours, and fi (r (p 4)  denotes thedistance 
between thetwo states of the u -th neighbour wich belong to the p-th and the 
q-th state-configuration, respectively. 

According to the proposed model, some state-configurations are known, 
assumed to be learned, others are unknown for the given neuron (as noted in 
Section 2.1). If the actual state-configuration is known, the tp -output of the cell 
(i.e. the number of spikes in Oq) simply identifies it. If it is unknown, 09 reflects 
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how similar it is to the known ones. In this aspect the proposed model is fairly 
congruous with prototype theory: Not all cases are presented in the same way 
buttherearedistinguished ones, distinguished bytheir characteristic of being 
known, while other cases are represented by their similarity to these ones. 

Let < p I denote the p-th state-configuration if  it is unknown (to the actual 
neuron)and lq > denotetheq-thoneif it is known.Thenthesimilarity between 
< p I and I q > around the cell C is calculated as: 

where 1; (p) denotes the maximum of 5 (p,r) over all I r > 's. 

As immediately seen from Equation 19, the degree of similarity between an 
unknown and a known state-configuration is confined to the interval [0,1]. 

Making use of this propoerty an m-fuzzy set P is defined to represent the 
unknown state-configurati on < p1 in the functional sense: P has as many 
elements as the number of known state-configurations around the given cell C 
is, and its elements are triplets: (<  p 1 ,  like I r > , < p I C I r > ) .  This P belongs 
to a special type of m-fuzzy sets, in one respect similar to (traditional) fuzzy 
sets while in another respect'contrary to those: As we have seen, in the case 
of (traditional) fuzzy sets the underlying (m-fuzzy) domain of predicates 
(Equation 10) consists of a single element only. In the above special case of 
m-fuzzy sets, e.g. in P, the other domain, that of the entities (Equation 9) is 
confined to a single element (to < pI  in the above example). 

Making use of the similarity to all known state-configurations we can 
characterise how fuzzy (in the intuitive sense) a given unknown 
state-configuration < p I is. Formally, for the above type of m-fuzzy sets the 
degree of m-fuzziness is defined as: 
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Thus, the larger the number of known state-configurations to which <p i  is 
similar to about the same extent, the greater the m-fuzziness of < p 1 ,  more 
precisely of the underlying special m-fuzzy set P. (For traditional fuzzy sets 
there have beenvarious"measures"offuzziness proposed (Loo, 1977; Ebanks, 
1983). Most of these share two properties: They explicitly use some "fuzzy 
complement',andarenotmeasures inthe mathematical sense (Halmos, 1950). 
Owing to the intricate role of contradictions, a ccordingly also of "negation" or 
"complementation" in the logic of concepts (noted in Section 1.2 and also 
discussed in Section 3.1 ), no universal operation called "negation" or 
"complementation" has been proposed on  m-fuzzy sets. Formal 
characterization of m-fuzziness has been defined for the above special type 
only, and this is called a "degree" to avoid possible confusions with measure 
theory.) 

Equation 20 also offers a characterization of the underlying neural/rnental 
representation. As seen, even the known state-configurations are not free of 
m-fuzziness except that they are "orthogonal" in the sense that they are not 
similartoeachotheraccordingtothedefinition in Equation 19. Thus, the more 
"orthogonal" (i .e. the less m-fuzzy) the known state-configuration throughout 
the network, the clearerthe underlying neuralhnental representation. 

The degrees of similarity and rn-fuzziness (Equation 19 and 20) are 
fundamental in the case of state-configurations, since, as mentioned above, 
these determinate the q - output ( 0 q) of the considered neuron, i.e. the 
evalution of the encoded information at the given stage of processing. What is 
more, however, these expressions also apply to the modular states which, as 
also mentioned above, directly correspond to the concepts represented in the 
system. 

The modular states develop on the basis of the state-configurations. A 
modular state is called known if and only if each neuron in the given module is 
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in a known intramodular state-configuration. The latter involves only those 
neighbours bdonging tothe same module. An intramod ular state-conf ig u rat ion 
is called known if and only if there exists (whether actually occurs or not) a 
known state-configuration (with respect to all neighbours) that comprises it. In 
this way no direct intermodular condition applies to a modular state for being 
known, however, intermodular organization still plays a role in determining 
whether the actual intramodular state-configurations are known. This reflects 
that the modules, as well as the concepts represented by their states, are 
self-contained though interconnected units. 

The above properties suggest, and formal theorems (Fuhrmann, 1985c) 
corroborate, that the organization plays the crucial role in the model. That is, 
the relations (residue, distance, similarity, etc.) are much more important in 
determinigtheemergent (collective) phenomena than the absolute number and 
valuesofthevariables (numberof cells, states, neighbours, etc.). This property 
isalso generally assumed tocharacterize real neural and mental organization. 

2.4 The act of recognition 

According to the double function attributed to the neuron, there are two 
kinds of mod ule-to-mod uI e communication in the model : through cp -pathways 
(bundles of axons of neurons) or cp - pathways (interneuronal neighbouring 
relations). 

The modules connected by S -pathways work successively (as mentioned 
above, the network is synchronous, the neurons in a module work in parallel 
witheachotheraswellaswiththeir intermodular neighbours). Theoutput of a 
module is the sum of the 0 cp signalsfrom all of its cells, and this contributes 
to the input of one or more other module(s), i.e. to the I signals of all receptor 
cells inthelatter(s). The bundlesof axonsconveying these signals may branch 
or fuse, thus the output of a module is not necessarily identical with the input 
of one or more other modules. Accordingly, the modules receiving their input 
synchronously from one or more module(s) in one definite collection work in 
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parralel. They are, in general, connected by 9-pathways (more perciselythey 
may be connected by 9 -pathways while they cannot be connected by 9 
ones), thus they also work collectively. Such a ( cp -connected) collection of 
modules forms a higher unit called a functional layer. These units correspond 
to the levels in the underlying mental representation, thus they also constitute 
the stages in the act of recognition. 

Formally, theactualstatesof modulesin afunctional layer constitutea word 
in the underlying m-fuzzy language. Accordingly, the syntactic rules of the 
corresponding m-fuzzygrammarconnect adjacent functional layers. 

This also defines how the m-fuzzy grammars should be applied to the 
consideredtypeof recognition. Asexplained in Section 1.5, herethetask is not 
to decide whether a given word belongs to a given language as in the case of 
artificial systems but to select the language to which it "optimally" belongs. In 
the former case the recognizer (human or machine) choosesfrom the rules in 
the given grammar in trying to construct (or reconstruct) a production of the 
given word. Thus, here the rules are the subject of the basic operation 
(choosing). In contrast, in the present case the rules are intrinsically manifest 
by the function (more percisely by the 9 -function) of the elements in the 
recognizer (i.e., the neurons). Accordingly, no algorithm operating on the rules 
is necessary (Fu, 1982) but the rules themselves determine each step in the act 
of recognition. One technical operation is, of course, still necessary to apply 
to the rules: They originally describe the production of words, thus when 
applied to recognition their two sides must be interchanged. 

The underlying syntactic rules can be formulated in various ways 
corresponding to various levels of abstraction. The lowest level, within the 
frameworkofthemodel, involvesthe(individua1) statesofthe neurons. lnthese 
termsthe rulesdescribe howthe neuronal states inafunctional layerdetermine 
those in the next layer. 

Let < rijk > denote the actual state of the k-th neuron in the j-th module of 
the i-th functional layer (thus the cell is in its r-th induced state, 
r = I n I mod milk, where n is the number of spikes in its latest S -input (I S ) and 
mijk is its modulus). Then the syntactic rules take the form: 
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where wi denotes the number of modules in the i-th functional layer and zij 

denotes the number of neurons in the j-th module of the i-th functional layer. 

Equation 21 is perfect in the operational sense: Given the states of all cells 
in a functional layer (say, in the i-th one), those in the next are completely and 
uniquely determined. However, this expression operating only on neuronal 
states does not reveal much about the meaning of either the states at the two 
sides orthe connection between them. Somewhat more abstract form can be 
obtained by making use of the modular states: 

where < Mij >qij denotes the state of the j-th module in the i-th functional layer, 
i.e., it is in its q-th state. 
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Equations 21 and 22 are equivalent in the sense that either uniquely 
determines the other provided that the underlying system is given. Yet, 
Equation 22 is called more abstract because its actual determination involves 
more directly the functional organization, viz. the interneuronal neighbouring 
relations (cp -pathways), of the system. 

Not only can the functional organization be involved in the syntactic rules 
(by replacing neuronal states by modular ones) but also the experience of the 
system can be involved. In the simplest case we may note whether the actual 
modular states are known or not. Thus, the rules take the form, e.g.: 

Here, like above, < I denotes unknown states, while I > denotes known 
states. Equation23showsthe rateof known and unknownconstituents in both 
of the connected functional layers, and thus also characterizes, to an extent, 
the expressed inference. It is possible, for example, that all states at the left 
hand side are known while none are known on the other side. This reflects that 
clear-cut conceptual or physical constituents are coupled in a strange way (in 
the original input). Vice versa, all states may be unknown at the left hand side 
while none are known on the other side, reflecting that all constituents are 
somewhatvague, distorted,fuzzy, etc., but onthewholethey uniquely identify 
a (known) more comprehensive pattern (or category, or concept). 

The unknown states are represented in the system by their similarity to the 
corresponding knownones(asmentioned insection2.3). Thesesimilaritiesas 
defined by Equation 19 can be utilized to represent the unknown states in the 
syntactic rules too. Thus we obtaion expressions like: 
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where Kij denotes the number of known states of the j-th module in the i-th 
functional layer. 

Afurtherversion ofthe syntactic rulescan beobtained by notingthedegree 
of m-fuzziness, as defined by Equation 20, at each unknown (modular) state. 

Asmentionedabove, the known states correspond to well-defined concepts 
represented in the system. Thus, the known modular states in Equation 24 can 
be replaced by the corresponding predicates. Accordingly, the degree of 
similarity betweenanunknownanda knownstatecan be replaced bythesame 
degree at which the predicate corresponding to the latter applies to the actual 
situationexpressed bytheformer. By such replacement thesyntactic rules take 
the form of Equations 13, 14, of course, with the two sides interchanged. 
Evidently, these equations are very simple examples of what may occur at the 
final steps of an actual process of recognition (or identification). In general, 
many more terms (predicates or modular states) are contained in the rules. 
Also the relationship between the strengths or reliabilities ( p.'s ) to which the 
predicates at thetwo sides apply (or between the respective similarities of the 
involved modular states) are, in general, more complex. Regardless of these 
technical details, however, the functional equivalenceof rules operating on the 
residuesofthe number of spikes in interneuronal signals (like Equation 21) with 
rules operating on predicates (like Equations 13 and 14) might be interesting. 
In this waya syntactic model suited to the intrinsic structure of the system may 
alsoaccountfor semantic processesdetermined bythe actual as well as earlier 
interactions between the system and its enviroment (Fuhrmann, 1984). As 
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noted in Section 2.3, referring to atomic and cristalline structures, this is by no 
meansaimedatareductioninthephilosophical sense.The principal aimofthe 
proposed approach is only to develop a feasible model for the emergence of 
psychic acts (e.g. the inferences in Equations 13 and 14) from neural activity 
(e.g. that described by equation 21). The crucial constituents for such an 
emergence may be the individual organization of the given experience (as 
expressed by Equation 23) and the relation between the actual situation and 
thesetwo phenomena (as expressed by Equation 24). 

3. ON M-FUZZY RELATIONS 

M-fuzzy sets and grammars have been defined for modelling concepts, 
thus, at least in principle, they also have to account for the relations between 
concepts. It seems inevitable to discuss explicitly, though briefly, this issue 
here because most criticisms concerning the application of (traditional) fuzzy 
sets in the cognitive sciences (Osherson & Smith 1981 ; Roth & Mervis, 1983; 
Johnson-Laird, 1983; Smith & Osherson, 1984) stem from considerations on 
some relations and operations of concepts. (Let us recall that "relation" is a 
moregeneral ideathan"operation". For example, any binaryoperation Q on a 
domain D, Q:D @ D - D, can be substituted by a ternary relation R on D 60 
D @ D such that R(dl,d2,d3) holds if and only if Q(dl,d2) =d3, where d i  ,d2,d3 
E D. Evidently, this also applies to any n-ary operation with the corresponding 
(n + 1)-ary relation.) 

Concerning this issue, the standpoint of the proposed approach is that not 
only are concepts themselves as intricate and versatile as noted by Miller and 
Johnson-Laird (1976) cited at the beginnig of the present paper, but also the 
relations between concepts are intricate. For example, Gleitman and Gleitman 
(1970, p. 67) cite the compound concept: "volume feeding management 
success formula awardl'stand ing for: "the award given for discovering a formula 
forsucceeding at managingthefeedingof people in largevolumes" in a plaque 
in a restaurant. Evidently, such complex relations (or operations) can be 
defined (or modelled) on extremely general domains only. Furthermore, these 
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relations can also lead to contradictions (think, e.g., of contradictory 
evaluations of the same statement, situation, etc.). On this basis, m-fuzzy 
variables appearto form the narrowest domain which may be general enough 
for modelling the relations of concepts. 

This generality, however, has two aspects: While it allows for realistically 
complex relations, it abolishes the universal validity of simple and well-known 
relations. The latter aspect has been crtiticised sharply by the opponents of 
(traditional) fuzzyaproaches referred to above. Since m-fuzzinesstakes a more 
radical steptowards generality than (traditional) fuzziness, this aspect requires 
some explanation. 

3.1. Ontraditional relations 

First, let us consider "contradiction", a fundamental logical relation which 
appears in various respects in modelling concepts. As it is well-known, 
(traditional)fuzzy, aswellas m-fuzzy, approachesdenythelawof theexcluded 
middle, thus they allow for statements which are contradictory in the sense of 
Aristotelian logic. The validity of Aristotelian logic on concepts is, however, 
taken a priori for granted by many workers in the cognitive sciences, thus they 
reject'Yuzziness" byargumentslik e: "Weare reluctantto argueat length against 
the truth of explicit contradictions" - Osherson and Smith (1 982, p. 31 3), or: "a 
self-contradiction [of the form p and not p] surely merits a truth value of zero" 
(Johnson-Laird, 1983, p. 199). Nonetheless, a huge amount of psychological 
experiments that led to prototype theory (Mervis & Rosch, 1981) has proved 
that concepts do not obey the law of the excluded middle. (The same fact 
appearing in everyday experience led to (traditional) fuzzy-set theory.) 

It is evident that concepts like "an apple which is not an apple" is not 
"logicallyempty",wemaythink, e.g., ofa plasticapple (Cohen& Murphy, 1984). 

Thus, thefactthat many-valued, e.g. (traditonal) fuzzylogics allow forthisvery 
special, viz. Aristotelian type of contradiction argues obviously for and not 
againts the adequacy of these logics in modelling concepts. What is more, 
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concepts do produce contradictions in a much deeper logical sense too: As 
mentioned in Section 1.2., explicitly and unambiguously defined concepts, 
actuallywith dichotomous membership, may also lead to contradictions (e.g. 
Russell's antinomy, Grelling's antinomy). Accordingly, an adequate model for 
concepts has not only to allow but even to account for contradictions, and not 
only in the Aristotelian sense as (traditional) fuzziness does, but also in the 
latter, deeper sense as m-fuzziness does. 

The operation called "negation" or "complementation" corresponds to the 
relationcalled "contradiction". Consequently, although this operation is unique 
in the highly specific, Aristotelian logic, it can be generalized in various ways 
to traditional fuzzy logic and even more ways to m-fuzzy one. Concerning 
traditional fuzziness, seven approaches to"negation" are cited by Dubois and 
Prade (1 985). Concerning m-fuzziness, the number of possible approaches 
seems so large that it may not be reasonable to define any universal operation 
underthis name. Indeed, traditionalfuzzysetsdo not havesharp borders, thus 
they cannot be uniquely separated from their "complements". In the case of 
m-fuzzy sets, not only is the actual determination of any border problematic, 
but so isthe principal definition of a border. Accordingly, m-futzysets defined 
in forms 1ike"not A' are considered in their own rights as different from others 
inc1uding"A'. No universal relation is assumed a priori. For example, an element 
may belong not onlyto both"A"and"not A' (e.g. plastic apple) but also to both 
'Typical A' and "not A' (e.g. a typical Swede who is not Swede at all). 

The last remark above involves not only "negation" but also "inclusion": The 
category "typical A' is usually assumed to be included by the category "A". 
"Inclusion", as well as the corresponding logical relation of "implication" is also 
(like "negation") unique in Aristotelian logic, while it is feasibly generalized in 
numerouswaysto (traditional) fuzzylogic and moresogeneralized to m-fuzzy 
logic. Aristotelian assumptions about one of the possibly many traditional 
"fuzzy inclusions" also resulted in rejections of any fuzzy approaches 
(Osherson & Smith, 1981; Roth & Mervis, 1983). Here again, the key is that 
traditional fuzzy sets, just like concepts, do not have sharp borders, thus it is 
not unique whether the border of one is inside or outside of that of the other. 
As noted above, the borders of m-fuzzy sets are even less unique. Thus, so are 
their"inc1usion". 
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The relation between subordinate/superordinate categories, usually 
assumed as inclusion, is also adopted in m-fuzzy grammars for regulating 
rewriting (Section 1.5). Nevertheless, this isthecase in the intuitivesenseonly. 
In the formal sense, the rewriting including the prescribed stages in it is 
determined by the underlying neuronal connections (Section 2.4). The 
subordinate/superordinate concepts connected by the rewriting rules appear 
in this way as emerged from the formalized neuronal activity. Accordingly, no 
universal "m-fuzzy inclusion" has been defined. 

Like the above mentioned operations, set theoretical "union" and 
"intersection" as well as the corresponding logical operations of AND and OR 
are unique in an Aristotelian setting (more precisely if the law of the excluded 
middleisassumed) whilecan be generalized invarious waystotraditional fuzzy 
setting (Dubois & Prade, 1985). Here again undue assumptions of some 
propertiesof the former about one of the obviously multifarious, though equally 
justified, latters has resulted in rejections of fuzzy approaches in general 
(Osherson & Smith, 1981; Smith & Osherson, 1984) in spite of the fact that 
these classical operations have no distinguished status among the numerous 
kinds of "conceptual combination", the favorite idea of these criticisms (Lees, 
1960; Gleitman&Gleitman, 1970). Owing tothe inherent propertiesofdifferent 
(viz. Aristotelian, traditonalfuzzy, and m-fuzzy) borders, mentioned above, no 
specific operations under the names of "union" and "intersection" have been 

proposed on m-fuzzy sets. 

3.2. Onspecifically m-fuzzy relations 

Owing to the generality of the domain, the relations between m-fuzzy 
variables are much more complex than those mentioned above. The m-fuzzy 
relations have to show mathematical rigor on the sets of concept cores and on 
the finite subsets of prototypes while they also have to involve the classes of 
the corresponding concepts in an intuitively appropriate way. Accordingly, 
relativelyfew and relatively complex relations have been defined using m-fuzzy 
variables. 



rn-Fuzziness in Brain/Mind Modelling 193 

The most important m-fuzzy relations are manifest in the rewriting rules of 
m-fuzzy grammars. These rules, according to the model, describe the basic 
steps in category identification, thus feasibly in a variety of cognitive activity, 
e.g., decision making, opinion forming, aesthetic estimation, too (Fuhrmann, 
1985b): Accordingly, these syntactic rules reflecting the inherent complexity of 
cognition cannot, in general, be decomposed into simple and universal 
operations. Only onetype of partial decomposition is proposed: The rewriting 
is regulated, i.e. only specified concepts may appear on the two sides of such 
a rule (as mentioned in Section 1.5). Although this specification refers to the 
subordinate/superordinate relation of concepts, this is not a reduction of the 
rewriting rules since this relation is not (uniquely) pre-defined, particularly not 
as simple Aristotelian inclusion (as noted in the preceding section). Just the 
other way round, an analysis of the rewriting rules as well as the underlying 
neuronal structures may feasibly result in the definition of an appropriate 
m-fuzzy inclusion. A special type of m-fuzzy inclusion is formed by concepts 
like "A" and "typical A ' .  As mentioned in Section 1.4., classical inclusion does 
not apply to this type, either, nevertheless this type may be relatively easy to 
study. 

The rewriting rules of m-fuzzy grammars establish relations not only 
between the variables appearing on their two sides but also between those 
appearing at the same position in different versions of the given rule (viz. in 
formslike Equations 13, 14,21-24).Thislattertypeof relationscan bedivided 
into two groups: One group consists of relations between neuronal and 
modular states (between expression like 21 -24). These relations have been 
uniquely defined by Equations 18-20, open qusetions concern the 
neurophysiological manifestation of the different states and of the I cp signals. 
The other group consists of the relations betwen modular states and concepts 
(i.e., betweenexpressionslike23,24 on theone hand, and 13,14 ontheother). 
Theepistemological basis, i.e. whythese relationsare not reductionistic in the 
philosophical sense, was outlined in Section 2.3. A point of possible 
misunderstanding, however, must beclarified here: Theterm "module" is used 
in the proposed model as defined in the brain sciences (Szentagothai, 1975, 
1978; Mountcastle, 1978). These neuronal structures are related to psychic 
activity in the proposed model in the way introduced by Hebb (1949), viz. 
collective induced states of such neuronal structuresareassumed to represent 
concepts (Fuhrmann, 1981, 1982). In the cognitive sciences, however, 
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structures called "modules" as well as their relation to psychic functions have 
become recently well-known in a fundamentally different meaning, viz. in that 
of Fodor's (1983) theory. Fodor associates his "modules" with fixed neuronal 
architectures whose functions are fast, mandatory, and informationally 
encapsulated (among other properties). Accordingly, these modules are not 
to account for inherently psychic functions, e.g. the learning and recognition 
of concepts. Such higher functions take place, according to Fodor (1983), 
elsewhere. (The"modu1es" are called "input systems" whilet he higher functions 
are performed by"centra1 systems".) Althoughtwo similartypes of function are 
distinguished in the model explained above too, (as S -, and rp-functions), here 
both are performed by the same structures called "modules". 

Another idea (in addition to syntactic rule), which manifests some basic 
m-fuzzy relations is prototype. As explained in Section 1.4., "prototypicality" 
means, accordingtothe proposed model, not only maximal representativeness 
of the element for the category but vice versa. Thus the element-to-category 
relations appear in a new, symmetric aspect. This also involves some new 
aspects of element-to-element relations, i.e. why and how the prototypes are 
distinguished within a given category, as well as new aspects of category- 
to-category relations. The latter is involved in two respects: One is similar to 
the former, viz. why and how isthe basic level category (usually defined as the 
most representative fort he given element) distinguished. The other stems from 
theobservation insection 1.4. that mostfeaturesofa prototype inthecategory 
"A' can be best characterized as "(just) A-like". Thus, the relation between "A' 
and its constituent categories (features) appear as symmetric in some sense 
(viz. in the case of prototype they reciprocally define each other). This also 
involves some new apects of the subordinate/ superordinate relation since the 
"features" (or "constituent categories") are certainly "subordinate" in some 
meaningful sense. 
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CONCLUDING REMARKS 

Theiargest number of experiments that led, separately, to the development 
of fuzzy-set theory and prototype theory firmly established that the members 
of conceptual categories are not equal. Fuzzy-set theory deals with the 
continuous nature of membership while prototype theory with that of 
representativeness. Resulting from the confusion of the two, there has been a 
heavy trend in the cognitive sciences opposing the application of fuzzy sets to 
modelling concepts (Osherson & Smith, 1981; Roth & Mervis, 1983; 
Johnson-Laird, 1983; Cohen & Murphy, 1984; Smith & Medin, 1984; Smith & 
Osherson, 1984). Representatives of this trend argue that fuzzy - set theory 
takes too big a step from classical Aristotelian logic, and, therefore, although 
it might be useful in modelling the very act of categorization, certainly is not 
useful in representing the inherent logic of concepts. In the present paper the 
same conclusion was drawn from the diametrically opposite observation, viz. 
arguing the pointthatfuzzy-settheorytakestoolittlea step by generalizing the 
value of the characteristic function from the set {0,1} to the real interval [0,1] 
while, however, using thesamedomain (viz. sets). Based onthe contradictions 
in the inherent logicof conceptsthat refuted classical, or naiveset theory (e.g., 
Russell's antinomy, Grelling's antinomy) as well as on those pointed out by 
psychological experiments (Cohen, 1981 ; Hampton, 1982) a generalization of 
the domain was proposed from sets to classes in the sense of axiomatic set 
theory, i.e. from contradiction-free collection to possibly self-contradictory 
ones. 

The proposed, modifedfuzzysets (m-fuzzysets) were applied to model the 
internal organization of concepts. A hierarchy of concepts as classes, m-fuzy 
sets as a linkage, concept cores as sets, and prototypes as finite subsets was 
constructed such th at each item represents the preceding one and thus 
indirectly all ones before it, and that the inevitable possibility of contradictions 
is localized to the first two items. Thus a mathematical (i.e. necessarily 
contradiction-free) theory can be developed for the second pair of items also 
involving the first pair as represented by the other one. 

For modelling the (experimantally proved) inequality of categories that 
comprise a given element (Mervis & Rosch, 1981) m-fuzzy grammars were 
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proposed.Thesearepure, i.e., nodistinction is made between nonterminal and 
terminal symbols (Maurer, Salomaa, & Wood, 1981; Gabrielian, 1982), and 
regulated, i.e. different levels of the rewriting involve different collections of the 
rules (Salomaa, 1973). Pureness provides that any category may occur at any 
step in various chains of rewriting (i.e., that each concept can be considered 
in itself, or as a constituent for another concept, or as a compound of other 
concepts) .  Regulatedness provides a direct account fo r  the  
subordinatelsuperordinate relation. It was also pointed out, however, that the 
relations and operations on m-fuzzy sets and grammars are roughly as intricate 
as those on concepts (Lees, 1960; Gleitman & Gleitman, 1970). Accordingly, 
definite m-fuzzysetsand grammars referto definite mental representations (or 
"subjective lexicons"). 

This individualityatthepsychiclevel was united withthat atthe neural level: 
Psychicacts, e.g., category identification, was approached in an emergentist, 
i.e. monistic though philosophically not reductionistic way. In this approach 
concepts appeared as represented by collective induced states of specific 
neural structures called modules, like Hebb's (1949) cell assemblies. The 
organization, accordinglyalsothe name, of these structures in the model refer 
to the neuron-module found as the fun ctional unit in cerebral cortex 
architecture (Szentagothai, 1975; 1978; Mountcastle, 1978). The formalized 
modules in a distributed, parallel way. Formally, different versions of a given 
rewriting ruleofan m-fuzzygrammardescribe, accordingtothe model, agiven 
step of the information processing at different levels from neuronal to psychic 
(Equations 13-1 4,21-24). 

Since the activity of the proposed modules is directly related to the 
representation, including the learning and recognition, of concepts, they 
sharplycontrastthe modules in Fodor's (1 983) theory, which isoften regarded 
astheexclusiveconception of modular organization in the cognitive sciences. 
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THE WEIGHTED FUZZY EXPECTED VALUE AS AN 
ACTIVATION FUNCTION FOR THE PARALLEL DISTRIBUTED 

PROCESSING MODELS 

David KUNCICKY and Abraham KANDEL 

Department of Computer Science 
The Florida State University, 

Tallahassee, FL. 32306-4019, USA. 

This research presents an alternate method for viewing the firing rules of 
neural network models (more generally called parallel distributed 
processing models, or PDP’s). The inputs to the processing unit are 
considered to be elements of a fuzzy set and the firing rule is viewed as an 
attempt to find a typical value among the inputs. Two such fuzzy measures 
are analyzed - the fuzzy expected value (FEV), and the weighted fuzzy 
expected value (WFEV). Simulations using simple one and two layer 
networks are performed. The WFEV is shown to compare favorably with the 
usual weighted sum firing rule when inputs are quasi-oflhogonal and the 
WFEVsurpasses the latter when the mean orthogonality of the input patterns 
decreases. 
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1. INTRODUCTION 

The subject of neural network modeling (or using the more general 
terminology - modeling of parallel distributed processes or PDP modeling) 
comprises the study of the emergent properties of collections of neuron-like 
units. These processing units ope rate asynchronously and in parallel and 
are bound generally, but not strictly, by neurophysiological principles. 
Rumelhart and McClelland (1986) list some of the general findings of 
neuroscience that are useful to neural modelers. These findings are 
summarized in the paragraphs below. The same authors also point out that 
not enough is known to seriously restrict theories about how the physiological 
level and cognitive levels of the brain interact. It is interesting to contrast the 
brain with the computer, and from this contrast it becomes clear that the 
architectureof each isverydifferent. They areso different that it is surprising 
that we would expect a serial Von Neumann machine to exhibit human-like 
intelligence. It is just as amazing that the serial computer demonstrates the 
powerthat it does, surpassing human capabilities in speed, accuracy, and 
computation in many areas. Below, we contrast some of the basic differences 
between brains and computers. 

Neurons are slow, computers are fast. The processing unit in the brain is 
the neuron and it operates with a processing speed on the order of 
seconds. The upper limit of the neural firing rate is a result of the refractory 
period that is n ecessary for the neural membrane to recover to a resting 
potential after it has fired. The processing rate of a single processor in a fast 
computer, on the other hand, is about 1 gigaflop (1 billion floating point 
operations per second). 

Brains perform distributed computations, computers are centralized. 
Neurons compute autonomously. Although some neurotransmitters may have 
a global effect on large numbers of cells, they certainly do not act as a clock 
or synchronizing device in the short run. From studies of brain damage it 
can be concluded that no one part of the brain acts as a central processor or 
homonculus. The processing is distributed across a number of cells. Just 
howdistributedtheprocessing is has beenan issueofdebate. Even alocalized 
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computation in the brain, say involving 1 %of the neurons, would involve many 
millionsof neurons (Anderson, 1983). 

Computers, however, funnel all computation through a central processor. 
(Newer parallel architectures such as hypercubes employ distributed 
processing and are one of the devices on which to implement PDP models.) 

The brain is massively parallel, the traditional computer is a serial device. 
It is the slowness of neurons that is the main argument for massive parallel 
computation in the brain. There is no other concievable way to account for 
the complex computations that occur in a few hundred milliseconds. As 
Feldman and Ballard (1982) point out "entire behaviors are carried out in a 
few hundred time steps". Imagine trying to write a computer program that 
could recognize a face in a few hundred operations. Recent advances in 
computer computational speed have come from the introduction of parallel 
processors rather than faster processors. This is because single processors 
are constrained by a final limit of speed, the speed of light. 

The abilities of brains degrade gracefully, the abilities of computers are 
brittle in theface of damage. When faced with progressive ablation the brain 
continues to function and its functioning gradually degrades with increasing 
damage. Whenfaced withsuddenlocalized damagethe brain shows an ability 
torecoverthelostfunctionsovertime. Thousandsof brain cellsare irretrievably 
lost every day, yet the computational capabilities of the brain increase with 
time during much of our lifespan. The brain has an incredibly effective fault 
tolerance system. Computers on the other hand, may be brought down by 
the failure of a single element. 

Brains store information in the connections between processors, 
computers store data in memory cells. There is a large fan-in and fan-out of 
connections between neurons. This is on the order of lo3 up to lo5 in the 
cerebral cortex. Fun hermore, learning is presumed to take place by 
modifying the strengths of the connections. Computers store information as 
discrete bits that are saved specific addressable locations. 

A neural model (which is also called a parallel distributed processing model 
or PDP model) will adhere more or less to the general principles listed above 
without paying too much attention to physiological details. The goal is to 
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produce interesting cognitive functions such as learning, memory, and 
computation from the autonomous interaction of many simple processing 
units. 

The potential for application of PDP models lies primarily in the areas of 
cognitive psychology, neurophysiology, and computerscience. This research 
is concerned with potential computer science applications which means that 
adherence to physiological principles is less of a concern than in order 
disciplines. In computer science, any problem that has a large number of 
simultaneous, weak constraints and that requires a good but not necessarily 
optimal solution is a candidate for a PDP solution. These include problems 
in pattern recognition, scheduling algorithms, robotics, and artificial 
intelligence. Until recently, massively parallel processes could be simulted only 
on serial machines. With the increasing availability of massively parallel 
architecturessuch as connection machines, the opportunityto implement PDP 
solutionsalso increases. 

The processing unit in most PDP models performs only one operation - 
that is to assess constantly the status of its large number of inputs and make 
a decision whether to fire or not. If the unit represents a feature detector, for 
instance, thenthe booleanoutput ofthe unit signifiesthe presenceorabsence 
of that feature. If the output value is allowed to be a real value rather than a 
boolean value, then the output denotes the amount of the feature that is 
present. If the real output value is limited to the unit interval [O,l], then the 
output describes the degree of confidence t hat the feature is present (Williams, 
1986). Thedepiction of the degree of confidence as a conditional probability 
has been treated thoroughly by Peretto and Niez (1986a,b). It has been 
suggested in several places that the output of a unit might be perceived as a 
fuzzy measure of truth (Kohonen, 1984; Williams, 1986; Zadeh, 1965). In 
several papers, Leeand Lee (1 974,1975) describedfuzzy neural networksand 
applied them tothe synthesis of fuzzyfinite automata, but their networks were 
static and did not show the emergent properties described above. 

The motivation for this research is that many elements of the subject of 
cognition are vague. The microstructure of cognition is not well understood. 
It deals with subjective phenomenon such as perceptions and memories. 
The hardware of the brain is noisy and the functions driving it are imprecisely 
defined. For these reasons a fuzzy PDP model is suggested in which the 
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output of each processing unit represents a fuzzy level of confidence. The 
activated inputs to a processing unit are to be treated as elements of a fuzzy 
set. The justification for the development of a fuzzy neural model is twofold. 

One, the input set of a processing unit does not have sharply defined 
boundaries. An incoming line to a processing unit is simultaneously an input 
to many other units. This isconsistent with fuzzy pattern recognition schemes 
where a feature has a grade of membership in more than one class (Hall, 
1982). (The fuzzy level of confidence that an incoming line is in any one input 
set is called the grade of membership of that line. The grade of membership 
is considered to bea value in the unit interval [0,1]. A grade of membership 
of '1 ' denotes complete confidence that membership exists and is 
equivalent to boolean ' 1 ' .  A grade of membership of '0' implies that the 
incoming line is not a member of the input set). 

Theother reasontouseafuzzy model isthatoncea neural network islarger 
than a few tens of units, it becomes exceedingly difficult to analyze 
completely. Kandel(l986) states that 

" ... fuzzines may be a concomitant of complexity. Systems of 
high cardinality are rampant in real life and their computer 
simulations require some kind of mathematical formulation to 

deal with the imprecise descriptions." 

There are many PDP models in the literature. Kohonen (1984) gives a 
thorough description of the subject. We have chosen to apply the notion of a 
fuzzy networkto thedynamic neural network model of Hopfield (1 982). Other 
models could be used as we1 I but the Hopfield model is widely cited and will 
serve as a good starting point. 

The elements of a PDP model will be defined in the next section. We will 
describe several fuzzy measures of central tendency and substitute them for 
the activation function (firing rule), performing simulations with each (Section 
3 and 4). In Section 5 several assumptions that limit the stochastic 
interpretation of PDP's are described. Then, in Section 6, tests are performed 
to see if the fuzzy model is resistant to one of these assumptions (the 
orthogonality assumption). Finally, the conclusion and directions for further 
research are discussed in Section 7. 
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2. ACTIVATION FUNCTIONS 

Our general framework for the description of parallel distribited models 
is presented by Rumelhart and McClelland (1986). Other frameworks are 
presented by Kohonen (1984). The common characteristics of a PDP model 
are: 

-one or more sets of processing units 
- a  set of weighted connections 
-an activation function (or firing rule) 
- a  learning rule. 

A set of processing units is usually denoted by a vector, and the value of 
each element of the vector denotes the state of activation for that unit. In 
some models the vector is a set of real values, in some the vector is a set of 
values in the closed unit interval [0,1], and in others it is a set of binary values. 

The pattern of weighted connections among units is commonly a complete 
bipartite graph, and usually expressed as a matrix W where the value of a cell 
Wij represents the strength of the connection between input unit vj and out unit 
Ui. The value of a cell in the weight matrix may also have various ranges in 
different models. The most common are a set of real values in the closed 
interval [0,1], a set of real values in the range [-1 ,l], and a two point set { + ,-}. 

The activation function for a unit determines the unit's activation value 
based on the state of activation of the unit, the state of activation of its inputs, 
and the weight of each input. The activation function combines the output 
values of the incoming lines (Vj) with the strength of each connection (Wij) to 

producea net inputforthecurrent processing unit (Ui). Thisvalue is frequently 
expressed as a weighted sum of the products of each input value and its 
associated weight: 
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In a linear model the value of ui is passed on as the output. A non-linear 
function uses a threshold to produce an output in the two-point set {O,l}. 
Other variants of the activation rule reduce the real-valued output to the 
closed unit interval [0,1] or some other bounded interval. (The latter are 
sometimescalled squashingfunctions). In general, ifthe units have activation 
values from the set A, and there are n inputs to a particular unit, then the 

activation function is a function o! from An to A (Williams, 1986): 

E N =  > output value 
(Uk) 

o! :An-+A 

The learning rule is a function that determines the value of the connection 
weights and is usually based on locally available information. Most learning 
rules are some variant of the Hebbian rule for cellular learning (Hebb, 1949): 

When an axon of cell A is near enough to excite a cell B and 
repeatedly or persistently takes part in firing it, some growth 
process or metabolic change takes place in one or both cells 
such that A’s efficiency as one of the cells firing B is increased. 

Thisoftenquoted rulestatesthat ifaconnected pairof unitsare both highly 
activated then the strength of the connection between them increases. 
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FIGURE 1 

Example of one unit and its inputs. 
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The previous definitions may be understood more clearly by referring to 
Figure 1 above. 

Much of thecurrent PDP reserachfocusesonvariationsof the learning rule. 
The learning rule determines the strength of the connections between units 
and generallycharacterizesthecapabilitiesof a particular model. This paper 
focuses on a variation of the activation rule. An investigation is made into 
the implications of thisvariation on the storage characteritics of a single-layer 
nonlinear model similartothat of Hoepfield (1982). 

Fuzzy Measures as Activation Functions 

Theactivationvalueofa unit asdefined abovesignifiesthe amount of some 
preferred feature that is present. As mentioned before, the activation value 
may also beviewed asa conditional probabilityoras afuzzy measureoftruth. 
It is interesting to note that the weighted sum, which is frequently used in the 
activation function, is essentially equivalent to the mean of the non-zero 
inputs. In the same vein, fuzzy measures of central tendency may be used to 
find a typical value among the inputs to a unit. In what follows, the fuzzy 
expected value (FEV) and the weighted fuzzy expected value (WFEV) are 
explored as activation functionsfor PDP's. 

3. THE FUZZY EXPECTED VALUE AS ACTIVATION FUNCTION 

Thefuzzy expected value (FEV) is a measure of central tendencyforfuzzy 
sets. The FEV depicts a 'typical' or 'representative' value, and is meant to 

supplantthearithmetic mean and median for fuzzy sets. The following definition 
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oftheFEVisdrawnfrom Kandel(1986), and Friedman, Schneider, and Kandel 
(1 987). 

Let R be a fuzzy relation defined over the universe Y. For example, the 
relation 'much less than' may be defined by the matrix 

R 
1 

A 2 2  
3 

4 

A1 
~ 1 2 3 4  ~~~ 

0 0 0 0  
0 4 0  0 0 
0 8  0 0 0 
1 0 8  0 4  0 

in which thefuzzysetsA1 = A2 = 1 + 2 + 3 + 4. 

Let XA be the membership function of A where 

0 2 XA(Y) 2 1 ,  Y E  y 

In our example XA is defined byt he relation matrix but the relation "x is much 
less than y" may be defined in many ways. 

For example, XA could also be defined by: 

0, i f x - y  2 0  

1 + 0.6(x- y)-' i fx - y < 0. 
xA(X,y) = 
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The fuzzy measure is defined over subsets of Y. The fuzzy measure is a set 
function that is bounded, nonnegative, monotonic, and continuous. 

The fuzzy expected value of XA, over A,  is defined by 

where U T  = { y 1 X A ( ~ )  2 T }  

and T is a threshold (0 5 T 5 1) .  

Now p ( u T) = f A ( l )  is a function of T, so the FEV may be represented 
geometrically asthe intersection of the curvesT =fA(T), which will be at value 
T = H, so that the FEV{Xa} = H E [0,1]. Figure 2 depicts this procedure. 

FIGURE 2 

Agraphic representation of the FEV. 
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The FEV can also be defined for a finite set of data points, which is more 
relevant to the application at hand. Let the universe Y be given by the finite 
union 

m 

i = l  
Y =  U Yi 

so that 

and the Xi’s are ordered 

Essentially, thegradesof membershipof thedata points have been placed 

in like groups and the groups have been arranged in ascending order. 

Define ni to be the number of data points at level Xi, and N to be the total 
population. There are rn-1 distinct levels of fuzzy measure 

m 
2 ni 

j = i + l  

N 
I J - I  = , I  s i s m - 1  

The FEV is the median of the set 
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Let us illustrate the definition with an example. Table 1 below shows the X 
values of a population of 12 data points grouped into the 5 like categories X. 

TABLE 1 

Example of FEV computation. 

i xi ni 
1 0.40 1 

2 0.50 3 
3 0.55 4 

4 0.60 2 

5 1.00 2 

Using the formula above we calculate the i to be 

ki = 11/12 = 0.92 
~2 = 8/12 = 0.67 
l~-3 = 4/12 = 0.33 
p.4 = 2/12 = 0.17 

The FEV is the median of the set 

{0.17,0.33,0.40,0.50,0.60,0.67,0.92,1.00) 

which in this example is 0.55. Figure 3 graphically represents the discrete 
case of the FEV. 
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FIGURE 3 

A graphic representation of a discrete case of FEV. 

First we will describe how the FEVfits into the PDP model, and then give 
the results of a simulation. If the activated inputs to a processing unit are 
considered to be afuzzy set of weak constraints on the unit, then the FEV may 
be used to replace the weighted sum in theactivation function. In the following 
formulation the weights (Wij) aretakento symbolizethe 'gradeof membership' 
in the input set, orthe 'degreeof confidence' that the input actually represents 
a particular concept, event, or stimulfus. The FEV oftheactivated in putsthen 
representsthe 'typicalvalue' of theweak constraints impinging onthe unit. The 
output value is afunction of the activation value and a threshold. The output 
is a binary value that signifies whether the unit has autonomously decided to 

fire or not. 
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Simulation Using the FEV as an Activation Function 

A simulation of the model using the FEV as the activation function was 
performed using 10 random binary input vectors (n = 100). The inputs were 
paired with themselves in an auto-associative state array. An auto-associative 
model pairs an input pattern with itself as output. The model is useful for 
retrieving whole patternsfrom partial or distorted input. A hetero-associative 
model pairs an input pattern with a different output pattern. The Hopfield 
(1982) learning algorithm was used to assign weights to the connections 
between the inputs and outputs. The algorithm used is 

expect that all weights (Wij) were scaled to (0,1] instead of [-1 , l ]  and the 
threshold value was set to 0.5 instead of to zero. To test the graceful 
degradation of the system in the face of partial inputs, the input vectors were 
progressively distorted. The distortion was measured as distance in 
Hamming unitsfrom theoriginal stored pattern. The recalled vectors were then 
compared to the desired output vectors and recorded as percent correct. 

The average results of many firings as the inputs are gradually distorted 
is presented in Table 2. 

TABLE 2 
Average retrieval rate of mean and FEV as activation functions 

(1 00trialsfor 8ach)Hamming distance). 

HAMMING Ox 0 5 10 15 20 

Mean 
FEV 

96.5 95.0 92.6 89.7 86.0 

92.3 90.1 87.6 84.4 80.7 
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It is clear that the FEV's performance is not satisfactory. This is partly due to 
the FEV's insensitivity to the population density of the data set. Friedman 
(1 987) defines population sensitivity to be: 

LetA beafuzzysetwith populations n l  and nnandmembership 
values X i  and X2 respectively. If n i  > n2, then the typical value 
should be "much closer" to XI than to X2. 

Another reason that the FEV fails in this application is that the decision to 
fire is often made with results that are very closeto thethreshold value. From 
the graphical representation of the FEV in Figure 3 it is clear that if the 
number of Xi's is small then the FEV is not sensitive to variations close to the 
threshold. An example showing the calculation of the FEVfor one firing from 
the simulation is persented in the Appendix. 

4. THE WEIGHTED FUZZY EXPECTED VALUE AS ACTIVATION FUNCTION 

The second quantity that we will use to find a 'typical value' for the inputs 
to a processing unit is the weighted fuzzy expected value (WFEV). The 
following definition of the WEFV is from Friedman, Schneider, and Kandel 
(1 987). 

Letw(x) bea non-negative monotonically decreasing function defined over 
the interval [0,1] and T a real number greater than zero. The solution s* of 

is called the weighted fuzzy expected value of order T. The attached weight 
function w is generally defined as: 
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-Px 
w(x) = e 
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where p > 0, and the parameters T ,  p arefound sufficient for determining the 
'most typical value' of XA. In some instances the values of T and p are found 
after the data set is known. It would certainly be desirable to determine the 
values of the parameters a priori, using information known locally at the 
processing unit. 

lnthe next Sectionwe will makean a priorideterminationofthe7 parameter 
for each unit. Friedman suggests that s be solved iteratively starting with: 

s = FEV or s = mean 
p = 1, and 
T = 2. 

The iterations are continued until a result of sufficient accuracy is found. 
In our simulations the first iteration produced satisfactory accuracy. 

Simulation Using the WFEV as an Activation Function 

The simulation comparing the WFEV and mean as activation functions is a 
duplication of the simulation in Section 3 except that the WFEV is used in 
insteadoftheFEV.After manyteststhefollowing conditionsforthe WFEVwere 
found to produce the most satisfactory results: 

s = mean of activated inputs, 
p = 1, and 
T = 0.5. 

Table 3 presents the results when the inputs are randomly chosen. It can 
be seen that the retrieval rate for the WFEV compares favorably with that of 
the mean. 
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TABLE 3 
Average retrieval rate of mean and and WFEV as activation functions 

(100trialsforeach Hamming distance). 

HAMMING Dx 0 5 10 15 20 
Mean 99.6% 99.2 98.6 97.5 95.7 

WFEV 99.5% 98.8 97.9 96.0 94.0 

5.DENSITY AND ORTHOGONALITYASSUMPTION 

There are several assumptions made about the input patterns of a single 
layer or double layer PDP in the Hopfield model. One is the orthogonality 
assumption. Non-orthogonal inputs interfere with one another as they are 
stored in the state array (Stone, 1986). The resulting retrieval rate decreases 
as the input patterns become less orthogonal (see Table 4). Another 
assumption made in the Hopfield model is that the binary inputvectors have 
the same ratio of ones to zeros. This is called the density problem. Both of 
these assumptions and their interaction are discussed below. 

Density Assumption 

The input patterns must be of similar density if the threshold value is to be 
constant for all patterns. Density of a binary vector refers to the proportion of 
ones to the total number of elements. Storing patterns with half ones and half 
zeros results in an optimum threshold of zero. Other densities result in the 
optimum threshold varying from zero, and a mixture of densities results in no 
common threshold value for all patterns. The solution to this problem has 
been to create patterns with the same density.This is based on the knowledge 

that any input pattern can readily be mapped to another pattern with a given 
density (Stiles & Deng, 1987). For example, the two state arrays below are 
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storing a single pattern each. This is calculated using the Hopfield algorithm 
described earlier. State array A is storing a pattern of density 2/3. State array 
B is storing a pattern of density 1/3. 

OUTPUT 

0 1  1 

I 

N 0 - - 1  -1 0 

P 1  - 1 -  1 0 
u 1  - 1 1  1 

T 

State Array A 

0 0 1  

- 1 -1 
1 -1 

-1 -1 - 

State Array B 

By usingthefiring rule described in Section 2, the following activationvalues 
are achieved at the outputs: 

Cell 1 Cell 2 Cell 3 

State Array A -2 1 1 

State Array B -1 -1 0 

Onecanseethatathreshold of0.5would workforStateArray A, but would 
not beadequatefor StateArray B, which hasan optimal threshold of -0.5. This 
is a result of the difference in densities of the inputs. When multiple patterns of 
different densities are stored in the same state array the problem is 
exacerbated. 
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Orthogonal it y Assumption 

22 1 

The pattern stored in a state array must be adequately dissimilar or the 
recollectionsareconfused. If several patternsareverysimilar then the minima 
that represent memories become fused (Hopfield, 1982), and the inputs 
produce indistinguishable outputs. Some models require that the input 
patterns be orthogonal to effect maximum recollection. Others have the less 
restricitive reqirement that the input patterns be linearly independent. 
Orthogonality means that the input vectors of size n are perpendicular in 
n-dimensional space or, equivalently, that the dot product of all vector pairs 
is zero. Linear independence means that the k input vectors span 
k-dimensional space. This is the same as saying that none of the vectors can 
be written as a linear combination of the others. The impact of the 
orthogonality assumption has been minimized in biological models by 
assuming that preprocessing tends to randomize inputs. The preprocessed 
material then becomes relatively orthogonal (Kohonen, 1984). Multi-layer 
modelsthat employ hidden unitsovercome theassumption by redefining the 
internal representations to be orthogonal. 

TABLE 4 
Effect of orthogonality on recall. 

Mean dot Hamming distance from stored pattern 
product 0 5 10 15 20 25 

(dissimilar) 
24.9 99.8 99.7 99.2 97.9 97.0 93.4 

30.9 89.7 88.8 88.1 87.6 86.5 86.6 

38.8 87.9 87.9 87.8 88.0 87.6 87.5 
(similar) 

Some learning rules, such as the generalized delta rule, require that the 
input patterns be only linearly independent (Stone, 1986). However, single 
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layer modelsthat do not assume preprocessed input are severely restrictted 
in the choice of input patterns. To illustrate the effects of this restriction a 
simulation was performed that varied the orthogonality of the input patterns. 
The effect on the ability of the system to recall stored patterns was then 
measured. The simulation demonstrates the results (seeTable 4). 

Interaction of Density and Orthogonality 

There is an interaction between the density and the orthogonality of a set 
of input patterns. The mean density of the input patterns affects the maximum 
number of orthogonal patterns that can be stored. For example, assume a 
set of binary vectors of size n and density d. There are n possible 
orthogonal patterns of density l/n, but only 2 possible orthogonal patterns of 
density 1/2. To illustrate this, consider a binary vector of size 4. If patterns 
are limited to have a density of 1 then there is a maximum of 4 patterns where 
all pairs of patterns are orthogonal: 

Patternl - 1 0 0 0 

Pattern2 - 0 1 0 0 

Pattern3 - 0 0 1 0 

Pattern4 - 0 0 0 1 

If the patterns are limited to have a density of 2, however, then there is a 
maximum of 2 patterns where all pairs of patterns are orthogonal. There is 
more than one set of these. An example of a possible set is: 

Patternl - 1 1 0 0 

Pattern2 - 0 0 1 1 
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Effect of Orthogonality on Recollection 

The following experiment demonstrates how the stochastic model behaves 
as the input patterns become less orthogonal. The orthogonality of a set of 
patterns is measured as the mean dot product of all possible pairs of vectors. 
One can see from Table 4 that the recall accuracy decreases as the members 
of a set of input patterns become more similar. 

The search for alternations or extensions to the model that would allow a 
relaxation of the above assumption is based on the genuine robustness of the 
Hopfield model. Various modificationsof the basic Hebbianlerning rule have 
been proposed that do not eradicate the favorable properties of a distributed, 
associative system. These research efforts focus on what happens at the 
synapse. There is less research being done onvariations of the activation rule, 
even though recent studies have shown that classical conditioning may take 
place by altering the cell body threshold (Tesauro, 1986). 

Acriterionfor biological plausibility ofa neural model is thatthe information 
needed to execute a particular process is available locally at the site that the 
process takes place. For example, the information needed for learning by 
synaptic modification should be available at the synaptic junction. This may 
include historical or time dependent data. Likewife, the information needed 
to execute the neural firing should be available at the cell body at the time that 
the decision to fire is made. 

The restrictionthat information beavailablelocally is important not onlyfor 
reasons of biological plausibility. As applications are developed using PDP 
models, the intention is to implement them on machines with autonomous 
and asynchronous processors such as hypercubesor connection machines. 
Any algorithm that increases locality of information and thus decreases the 
quantity of message passing is favorable. 

The information about the orthogonality of a set of input patterns is 
available at the synaptic junction (or in the case of an auto-associative model, 
attheneuron body). Todemonstrate this, recall that the Hopfield memorization 
algorithm is stated as: 
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wherewj representsthesynaptic junctionof input cellvj and output cell Ui. The 
weight Wij is summed over the k input patterns. The condition of interest is 
when Vj = 1 and Ui = 1 ,  because this is the condition that contributes to the 
increase in the dot product of any pair of the k input patterns. 

For example, consider the vectors u and v: 

n 1 2 3 4 5 6 7 8  

U =  ( 0 1  1 0  1 0  1 0 )  

v =  ( 1 0 0  1 1  0 0  1) 

The only elements that contribute to the dot product u*v are the 5th elements 
v5 and us. The sum of v and u is: 

t =  ( 1 1  1 1  2 0 1 1 )  

It is clear that tj represents a measureof the contribution of thejthelement 
to the dot product of v and u. The jth element of the sum of the k input vectors 
is defined as j, the measureof similarityfor input unit vj. This is a local measure 
of similarity (or, non-orthogonality). 

If one allows time dependent information, then knowledge about the 
orthogonality of the input patterns is available locally for the use by the 
processing unit. This information is available for use by both the learning 
function and the activation function. It is debatable whether the computation 
of is biologically plausible or not. It is certainly realistic to assume that the 
information is locally available to a processor in a computer application. This 
is because there are other avenues of communication in the computer, for 
example, message passing, a central processor, or shared memory. The 
restriction on locality of information is not as severe as in the biological model. 



Weighted Fuzzy Expected Value 

6. COMPARISONS OF WEIGHTED MEAN AND WFEV 

225 

In the following experiment the WFEV is compared to the weighted sum as 
the mean similarity of inputs is varied. The parameter 7 is considered to be a 
function of S (the local measure of similarity): 

T = - 0.02 * ( 8  + 0.6). 

Thefiringofa particular unit isthendependent onthelocal similarityof each 
unit of the input vector. The results of the preliminary linear function are 
displayed below in Table 5.  Note that in this example the WFEV appears to be 
resistant to less orthogonal input patterns, but as a trade off it shows a less 
graceful degradation to altered inputs. 

TABLE 5 

Effects of orthogonality on recall for mean and WFEV. 
The dot product is averaged for all (45) pairs of the stored input patterns. 

Mean dot 
product 

25.2 MEAN 
WFEV 

31.6 MEAN 
WFEV 

38.7 MEAN 
WFEV 

Hamming distance from stored patterns 
0 5 10 15 20 25 

100.0 99.9 99.7 99.2 96.5 94.4 

99.5 98.9 98.0 95.9 92.1 89.1 

88.5 87.9 87.0 88.1 87.6 87.3 
98.4 97.4 96.8 92.1 89.8 83.4 

87.4 87.4 87.4 87.1 87.5 86.8 

91.5 92.1 87.4 83.2 63.2 55.4 
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When one looks closelyat the auto-associative model it appears that using 
S as a parameter gives unfair information to the processing unit. The 
processing unit is supposed to find a typical value among the large number of 
inputs. The memory is distributed across a large number of connections. 
If, for example, S j = 10 over 10 input patterns then Vj most certainly should 
fire. Likewise, if 6 j = 0 then Vj should not fire. It appears that S alone is 
driving the activation function. This is not the case however. To demonstrate 
this, a simulation of a hetero-associative model was performed. The input 
patterns were randomly paired with the output patterns so that information 
aboutthe similarity of the inputstoa particular unit could not directly influence 
the output of thet unit. The results of this simulation are presented in Table 
6. By comparing the results to those of Table 5, one can see that the fuzzy 
model is still resistant to the effect of less orthogonal inputs. The results in the 
twotablesvary becausethe input patternsarechosen randomlyand the mean 
dot products are therefore different. The general results of the hetero- 
associative simulation are comparable to those of the auto-associative 
simulation. 

TABLE 6 
Effect of orthogonality on recall for mean and WFEV, using a 

hetero-associative network. The dot product is averaged for all (45) pairs of 
the stored input patterns. 

Mean dot 
product 

24.6 MEAN 
WFEV 

29.6 MEAN 
WFEV 

36.0 MEAN 
WFEV 

Hamming distance from stored patterns 
0 5 10 15 20 25 

100.0 99.7 99.5 98.7 96.3 94.6 
99.7 99.1 98.7 97.1 93.4 91.0 

95.5 94.9 93.3 94.0 92.2 90.2 
99.4 98.4 96.2 94.8 90.9 88.5 

74.4 74.8 75.3 76.7 77.7 76.8 
96.8 96.0 93.9 91.4 88.3 82.2 
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7. CONCLUSION 

The. injection of fuzzy techniques into the area of neural network modeling 
demonstrates that the uncertainty inherent in these complex systems may 
be interpreted in a non-probabilistic manner. The fuzzy interpretation retains 
the favorable characteristics of the stochasticmodel-pattern retrieval from 
partial inputs, graceful degradation during system damage, and the use of 
autonomous, asynchronous processors that employ locally available 
information to perform computations. In addition, the fuzzy model offers a 
satisfying approachto asubject that is toocomplex, toovague, and too noisy 
to be described explicitly. Simulations show that the use of the WFEV as an 
activation function demonstrates a resistance to interference from 
non-orthogonal input patterns. The primary disadvantage of using the WFEV 
in the activation function is the complexity of its computation. Since the 
algorithm was not implemented on a parallel system, timing constraints are 
difficult to judge at this point. The other result derived from this study is to 
reinforce the view that the underlying PDP model is robust with respect to 
changes in details. 

There are many activation functions and many learning rules being 
proposed for use in PDP models. The fact that they all work to a degree 
demonstrates the robustness of the underlying model. This is a favorable 
property of many physical systems and was noted by Hopfield (1 982): 

These properties follow from the nature,of the ... processing 
algorithm, which does not appear to be strongly dependent on 
the precise details of the modeling. 

What are some of the weaknesses in the presentation of a fuzzy activation 
function? One, the choice of the population function 

7 = f ( 6 )  
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was derived experimentally. This was done by searching for linear functions 
that produced the most accurate level of output. This approach is not unusual 
in the history of neural network modeling. An algorithm that works is 
developed heuristically, and then the mathematical basis for the algorithm is 
derived. Further research should include the investigation of other population 
functions, their effect on the model, and some rationale for the use of one 
function over others. 

Another problem istheaccessibility of information inthe hetero-associative 
simulations. It isstretching the point a bit to claim that the information needed 
to compute is available locally at the output units. During learning, the input 
pattern is presented to the input units and the output pattern is presented to 
the output units. The strength of the connections between the units are 
changed according to the learning algorithm. 

It is reasonable to conjecture that input unit Vi stores some sort of 
summation of the values presented to it and thus computes fi i. But, it is 
difficult to visualize how that information is available locally for use by the 
corresponding output unit Ui. This is not a fatal error. As was mentioned in 
the introduction, the physiological constraints on PDP modeling are not very 
constrictive at this time because of the general lack of knowledge about how 
the brain actually inplements memory and learning. 

Thereare other popular models (such as back-propagation learning) that 
contain elements with no obvious physiological basis. In addition to solving 
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these problems, there are several directions for future research in the area of 
fuzzy parallel distributed processing. These are described below. 

One topic for further study is the extension of the fuzzy model to include 
the learning rule. We have used Hopfield's algorithm for fixing the weights 
as a starting point but, as we mentioned earlier, the algorithm for the 

spontaneous learning of proper weights is the most widely varied element of 
PDP models. Which of the various rules that have been suggested are 
compatible with the fuzzy model? Does fuzzy set theory have anything to 
offer in the development of new learning rules? 

Other areas of study are not limited to the fuzzy model but are topics for all 
PDP reserach. One of these is the study of multilayer networks. The cerebral 
cortex operates with approximately six layers of neurons. What implications 
does this have for PDP networks? Another interesting topic is the interface 
of PDP networks with other computational architectures. Can a PDP model 
act asafront end (orasideend) to an expert system, for example? Of course, 
as parallel machines become more available, the development of useful PDP 
applications will become more of an issue for computer scientists. There is 
potential for useful applications in many areas including robotics, pattern 
recognition, chip design, meteorological forecasting, fault tolerance, 
distributed operating systems, as well as cognitive and physiological modeling. 

APPENDIX 

The following is an exampleof thecalculation of the mean, FEV, and WFEV 
as activation functionsfor a single firing. 

Correct response is 0 (not firing) 
Local similarity ( 6  ) = 2 
Threshold(6) =0.5 
Mean: 0.45 
FEV: 0.46 
WFEV: 0.45 
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i n p X Min(p i,Xi) 

1 22 1.00 0.38 0.38 

2 1 0.56 0.42 0.42 

3 5 0.54 0.46 0.46 c= FEV 
4 12 0.44 0.50 0.44 

5 7 0.20 0.54 0.20 

6 2 0.06 0.58 0.06 

7 1 0.02 0.62 0.02 

Total: 50 

There are 50 inputs in the table, representing the active units in the input 
vector (n = 100). The mean is equivalent to the usual weighted sum of inputs 
and can be calculated from the table by summing the products of each ni and 
xi: 

Mean = X ni * Xi 
i 

The FEV is calculated by finding the maximum of the minimums of each X, 
p pair: 

FEV = max [min(xi, p i)] 
i 

The WFEV is calculated as described in the Section 4 with the parameter T 
defined as a linear function of 8, the local measure of similarity (see section 
titled "Effect of Orthogonality on Recall" in Section 5): 

r = - 0.02 * 8 + 0.6. 
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The threshold is predefined to be 0.5. In this instance, all three measures 
have compuetd the correct output response of 0 (or not firing) for this unit. 

This research has been supported in part by NSF grant IST 8405953. 
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FUZZY LOGIC WITH LINGUISTIC QUANTIFIERS: A TOOL 
FOR BETTER MODELING OF HUMAN EVIDENCE 

AGGREGATION PROCESSES? 

Janus KACPRZYK 
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ul. Newelska 6, 01-447 Warsaw, Poland 

Two fuzzy logic based calculi of linguistically quantified propositions are 
presented. Basically, they are concerned with the calculation of the trurh of 
the linguistically quantified propositions generally writren as "QY's are F" 
and "QBY's are F", where Q is a linguistic quantifier, 8 is importance, Y is 
a set of objects and F is a property. The firstproposition is exemplified by 
"most experts are convinced" and the second one by "most of the important 
experts are convinced". It is then advocated that the above calculi of 
linguistically quantified propositions can provide means for more adequate 
and consistent human evidence aggregation processes. This is based on 
a positive experience from some new multiaspect decision making 
models in which the aggregation of partial scores (related to the pa rticular 
aspects) is crucial. In particular, there are considered new multiobjective 
decision making models seeking an optimal option which best satisfies 
most (almost all, ... or another linguistic quantifier) of the important 
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objectives, multistage decision making (control) models seeking an optimal 
sequence of controls which best satisfies constraints and goals at, for 
example, most of the earlier control stages, and new group decision making 
modelsin whichnew solution concepts have been proposed based on a fuzzy 
majority given as a linguistic quantifier. 

1 .INTRODUCTION 

Decision making - which is the essence of virtually all human activities 
at all levels, those of an individual, a group and an organization - is 
particularly difficult in the present world that is complex, competitive, 
ill-structured, etc. This clearly calls for some (computer) support to help 
make (better) decisions. Recent developments in computer technology 
justify this. At present, and presumably in the foreseeable future, it seems 
that the most efficient use of decision support systems (DSSs) will be to assist 
and help humans arrive at a proper decision but by no means to replace 
humans. The system should thereforecarry outthetasksforwhich it is better 
suited, such as the processing of well defined and structured information, 
and provide the user with "good" solution guidelines leaving the user the final 
choice that involves more "delicate" aspects better hand led by the humans. 

Toeffectively and efficientlyarriveataproperandwelltimeddecisionwithin 
the framework of DSS, some synergy between the human and "machine" 
should exist. Since any change of human nature is rather difficult to obtain, 
attemptsto makethe machine more'lhuman consistent", which parallels what 
is often termed in ergonomics (human factor engineering) "to fit the task to 
the man", seem to be more promising. 

The human consistency of DSSs have two main aspects. The first, which 
might be called the input/output human consistency, is related to 
communication (interface) between the user and system and is most often 
considered. For instance, user friendly natural language based interfaces 
have been proposed. The second, which might be termed the 
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algorithmiclprocedural humanconsistency (Kacprzyk, 1986b), is related tothe 
algorithms and procedures used by the system to obtain a solution. 
Basically, its essence is to try to make mathematical models, algorithms, 
procedures, etc. somewhat parallel the way the human user perceives their 
essence, intention and purpose. The rationale isthat, from a pragmatic point 
of view, a "quality criterion" of any DSS is the implementability of its solution 
proposals. Those procedures which do not depart too much from the user's 
experience, perception, commonsense, etc., should be easier to implement. 

I n  this paper we are concerned with some aspects of that 
algorithmic/procedural human consistency of the DSSs. We adopt here the 
following perspective. A prerequisite for decision making is the 
availability of a mechanism for evaluating the particular options in question; 
we assume here for simplicity that this evaluation process yields a numerical 
value for each option. 

Due to the complexity of the present world, any realistic decision making 
problem should be considered in a multiaspect setting, i.e. accounting for 
multiple decision makers. This does complicate to a large extent the 
evaluation process of a particular option. The evaluation with respect to each 
aspect resultstherefore in a partial score, and then these partial scores are 
aggregated (pooled) to obtain the final score which is to be meant as the 
intended evaluation. 

Virtually all attempts to model this process of aggregating the partial 
scores have been conventionally modeled as some manner of (weighted) 
averaging which implicitly involves all the partial scores though with possibly 
different importances. On the other hand, experience clearly indicates that 
in many practical cases humans do not consider all the aspects, neglecting 
some of them in the aggregation process. First, if the aspects represent life 
quality indicators (objectives), then the human perception (evaluation) of life 
qualitycan besatisfactoryeven if some indicatorstakeon toolow values (say, 
below aspiration levels) but the other ones take on satisfactory values. This 
seems toclearly indicatethat some aspects are neglected in the aggregation 
process. Second, in case of a socioeconomic development planning problem, 
which is an example of multistage decision making, the human evaluation 
of a development trajectory is often satisfactory even if at some (sufficiently 
few and, say, later) stages (say, years) the development indicators take on too 
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low values. This also seems to clearly indicate that some stages are neglected 
in the aggregation process. Finally, in the case of multiperson decision 
making, an analyis of human perception of how the individual testimonies 
(e.g., utilities or preferences) are to be aggregated seems also to clearly 
indicate that the testimonies of some individuals are neglected. 

The above mentioned facts have led to attempts to reformulate some 
multiaspect (multiobjective, multistage and group) decision making models 
in which, roughly speaking, that process of neglecting some objectives, 
stages and individuals be modeled in a possibly human consistent way. 
Thus, first, new multiobjective decision making models have been proposed 
(Yager, 1983b; Kacprzyk &Yager, 1984a, 1984b) in which an optimal option is 
thought which best satisfies, say, most (almost all, much more than 50%, ...) 
of the important objectives. Second, new multistage decision making 
(control) models appeared in Kacprzyk (1 983c, 1984a) and Kacprzyk and 
lwanski (1987) which seek an optimal sequence of controls best satisfying 
constraints and goals at, say, most of the earlier control stages. Third, 
new group decision making models have been proposed in Kacprzyk (1984b, 
1985b, 1985c, 1986a) where in the determination of solutions a fuzzy majority 
represented byalinguistic quantifier (e.g., most, almost all, ... ) isconsidered, 
i.e. the testimonies of, say, most individuals are accounted for. 

In the above models the number of aspects to be considered is specified 
by a fuzzy linguistic quantifier, and fuzzy logic based calculi of linguistic 
quantified propositions are employed. A positive experience with those 
models seems to suggest that fuzzy logic with linguistic quantifiers, in our 
particularcase intheformof acalculus of linguistically quantified propositions, 
can be an adequate and useful tool for modeling the human evidence 
aggregation processes. This is the main message expressed in this article. 
Evidently, this is not supported by any psychological investigations, and we 
hope that this paper could trigger some research efforts in the scientific 
communities involved in the study of human behavior and mental processes. 

Section 2 presents a brief account of two fuzzy logic based calculi of 
linguistically quantified propositions. Sections 3, 4 and 5 sketch the new 
multiobjective, multistage and group decision making models. The last 
section contains the concluding remarks and an extended list of literature. 
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Tomakethe paper readabletoalargeraudiencethe models aresometimes 
presented in a less formal manner with mathematics and technical details 
kept at minimum. The interested reader can find details in the cited sources 
as well as in the author's survey articles (Kacprzyk, 1984a, 1986d, 1987b). 
Our notation on fuzzy sets is standard. Forfuther details see e.g. Dubois and 
Prade(1980), Kacprzyk(l983b, 1986c) orzimmermann (1985). 

2. ON SOME FUZZY LOGIC BASED CALCULI OF LINGUISTICALLY 
QUANTIFIED PROPOSITIONS 

A linguistically quantified proposition is exemplified by "most experts are 
convinced" and may be generally written as 

QY's are F (7) 

where Q is a linguistic quantifier (e.g. most), Y = {y} is a set of objects 
(e.g. experts), and F is a property (e.g. convinced). 

Importance, B, may also be added to (1) yielding 

QBY's are F 

that is, say, "most of the important experst are convinced" 

Basically, the problem is to find either truth (QY's are F) in case of (l), or 
truth (QBY's are F) in case of (2), knowing truth (y is F), for each y EY. 
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It is easyto seethat the conventional logical calculi make it possible to find 
thesetruthsfor crisp (precise) quantifiers only, mainlyfor"al1" and "at least one". 
To deal with linguistic quantifiers exemplified by "most", "almost all", etc. a 
fuzzy logic based calculus can be used, and two of them will be presented 
below. 

2.1. The algebraic or consensory method 

In the classical method due to Zadeh (1983~) the (fuzzy) linguistic 
quantifier Q is assumed to be a fuzzy set in [O,l] , Q 2 [0,1]. For instance, 
Q = "most" may be given as 

CL"mOSt"(x) =1forx 20.8 
= 2x - O.Gfor< 0.3 x < 0.8 

=Oforxs 0.3 

We only consider the proportional quantifiers (e.g., most, almost all, etc.) 
as they are more important here than the absolute ones (e.9. about 5). The 
reasoning for the absolute quantifier is however analogous (see, e.g. 
Kacprzyk, 1985a). 

Property F is defined as a fuzzy set in Y, FLY. If 

Y = {y l ,  ... yp}, then it is assumed that truth(yi is F) = F(yi), i = 1, ..., p. 

Truth (QY's are F) is now calculated using the (nonfuzzy) cardinalities, the 
so-called X Counts, of the respective fuzzy sets in the following two steps 
(Zadeh, 1983c): 
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Step 1 : r = Xount(F)/ZCount(Y) = 1/p X IJ- F(Y) (4) 
i= l  

Step 2: truth(QY's are F) = JJ. Q(r) (5) 

In case of importance, B = "important" C Y, and p.B(yi)E [0,1] is a degree 
of importance of yi: from 1 for definitely important to 0 for definitely 
unimportant, through all intermediate val ues. 

We rewrite first "QBY's are F" as Q(B and F)Y's are 8" which implies the 
following counterparts of (4) and (5): 

Step 1 : r' = 2: Count(B and F)/ XCount(B) = 

Step 2 : truth(QBY's are F) = )I a(r ') (7) 

The minimumoperator " A " can be replaced by anyothersuitableoperator 
as, say, a t-norm (Kacprzyk & Yager, 1984b). 

Example 1 

Let Y = "experts" ={X,V,Z},F = "convinced" = O.l/X + 0.6N + 0.8/2, Q = 

"most" be given by (3) and 6 = "important" = 0.2/x + 0.5N + 0.6/Z. 
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Then r = 0.5 and r' = 0.8 and 
truth ("most experts are convinced") = 0.4 
truth ('most of the important experts are convinced") = 1 

The method presented may be viewed to provide a consensory like 
aggregation of evidence. SeeYager (1983b) or Kacprzyk and Yager (1984b). 

2.2. The substitution or competitive method 

The alternative method is developed by Yager (1983a, 1983b). As 
previously, Y = { y i  , . . . , yp} and F C Y. A proposition "yi is F '  is denoted by Pi, 
and truth Pi = truth(yi is F) = k ~(y i ) ,  i = 1, ..., p. 

We introduce the set V = {v} = 2tp18-.ipp}, where v is "Pkl, ... ,Pkm" 
meant as the proposition "Pkl  and ... and Pkm"; v and "Pki and ... and Pkm" 
are used here interchangeably. 

Eachv, or its corresponding"Pk1 and ... and Pkm",iS seen to be true to the 
degree 

T(v) = trUth(Pki and ... and Pkm) = truth Pkl A ... A truth Pkm = 

m 

i = l  
= A truthPk1 = p.F(Ykl) A ... A p. F(Ykrn) = 

i.e. we obtain a fuzzy set TcV.  
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Example 2 

24 1 

For the same data as in Example 1 ., let Q ="most" be given by (9). Then 

truth("most experts are convinced") = 0.6 
truth("most of the important experts are convinced") = 0.8 

Notice that the method may yield different results than the algebraic one 

The substitution method may be viewed to provide a compatitive like 
aggregation of evidence (see, e.g., Yager, 1983b or Kacprzyk & Yager, 
1984b). 

Finally, notice that Zadeh's calculus is conceptually and numerically 

simpler though some experience indicates that Yager's calculus is more 
"adequate". 

3. MULTIOBJECTIVE DECISION MAKING MODELS BASED ON FUZZY 
LOG I C W ITH LI NG U ISTIC QU ANTI FI ERS 

For our purposes multiobjective decision making under fuzziness may be 
formalized as follows (Zimmermann, 1985 or Kacprzyk, 1983b, 1986~) .  We 
have a set of possible options (alternatives, variants, decisions, ...), A 
= {a} = {al, ..., an}, and a set of objectives (criteria, constraints and/or goals, 
...)., 0 = (01, ..., Op}. These sets are assummed finite. A degree to which 
option a E A satisfies objective Oi E 0 is given by truth (Oi issatisfied (by a)) 
=k Oi(a)E [0.1] , from Oi(a) = 1 for full satisfaction, to kOi(a) = O  for full 
dissatisfaction, through all intermed iate values. 

It is commonly postulated - what has originated from the seminal (for 
virtually all fuzzyapproaches in decision making, optimization, control!) work 
of BellmanandZadeh(1970) -that option a€  A satisfy"01 and Onand ... and 
Op", i.e. all the fuzzy objectives; the degree of this satisfaction is expressed 
by the so-called fuzzy decision 
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p.D(a"all") = truth(01 and ... and Op aresatisfied (by a)) = 

= truth ("all" 0 's  are satisfied) = truth (01 is satisfied) A ... 

... A truth (Op issatisfied) =k  Ol(a) A .. .  A p Op(a) = 

P 

i = l  
= A k  Oi(a) 

and the problem is to find an optimal option a* A such that 

pD(a* I "all") = max kD(a I "all") 
a E A  (73) 

specifically, such that it best satisfies (maximizes the membership 

function of thefuzzydecision) allthe fuzzy objectives. 

Notice that k D(. I"all"), and related expressions mean only that "all" the 
elements (objectives) are accounted for; the same convention is used 
throughoutthis paper. 

As mentioned in Section 1, it is quite natural that in many practical cases 
the requirement to satisfy"al1"thefuzzy objectives may be too rigid, restrictive 
and even counter-intuitive. More adequate could be to have a mechanism to 

account for some objectives only, for instance "most", "almost all" of them. 
An idea of replacing the conventional requirement to satisfy "all" the fuzzy 
objectives by "most", "almost all", "much more than 50%", etc. (in general, a 
fuzzy linguisitc quantifier Q that is "milder" than "all") appeared in Yager 
(1983b) and wasthen advanced in Kacprzyk & Yager (1984a, 1984b). 

In this case the fuzzy decision may be written as 

po(a I Q )  = truth(Q0's are satisfied) = ( A I Q)k Oi(a) 
P 

i = l  
(74) 
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which means that in the calculation of kD(. .) only Q (e.g."most") fuzzy 
objectivesareto be taken intoaccount (but does not indicate how to do this!). 
We seek therefore an optimal option a*€ A such that 

specifically, such that it best satisfies QO's. 

We can also introduce a varying importance of the particular fuzzy 
objectives bya  fuzzyset B in the set of objectives, BC 0, such that p B(Oi)E 
[0,1] isthe importance of objective Oi: from 0 for definitely unimportant to 1 

for definitely important through all intermediatevalues. In case of importance 
our multiobjective decision making problem formulation can be written as 

P 

i = l  
kD(aQ,B) = truth(QB0's are satisfied) = ( A  (Q,B)k Oi(a) (16) 

which means that only Q of the important objectives are to be taken into 
account (butonceagain, does not say howtodothis), and weseek an optimal 
option a*€ A such that 

specifically, such that it best satisfies Q of the important objectives. 

The solution of both the above problems will be sketched using the 
algebraic and substitution methods. A full exposition of the solution would 
requiretoo manytechnical details which are beyond the scope of this paper. 
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Thus, let us introduce a fuzzy set S = "satisfied"C 0 such that kS(0i) 
E [0,1] isthedegreeto which objective Oi €0 issatisfied (by option a €A):  from 
Oforfull dissatisfaction to 1 forfull satisfaction through all intermediatevalues; 
thus kS(0i) = truth (0 is satisfied)(by a)) = kOi(a), i = l ,  ..., p; B = 

"important" GO is importance and QC [O,l]i isafuzzylinguisticquantifier. 

Then, if we use the substitution method, we obtain for the case without 
importance 

P 
FD(a Q) = truth(Q0's are satisfied) = +o(l/p 2: oi (a)) 

i = l  

and we seek an a* E A such that 

In the case with importance we obtain 

,L D(a Q, B) = trut h(Q BO's are satisfied) = 

and we seek an a* E A such that 
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(2 7) 

Ontheother hand, ifwe usethe substitution method, weobtain in the case 
without importance 

and we seek an a*€ A such that 

In the case with importance, we obtain 

p.D(a Q,B) = truth(QB0's are satisfied (by a)) = 

and we seek an a* E A  such that 

pa(a* I Q,B) = max FD(a I Q,B) 
a€  A 
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The above problems, in particular (24) and (25), are analytically difficult in 
thegeneral case. Fortunatelyenough, and this is also true forvirtually all the 
problemsthrough this paper, under some mild and realistic assumptions the 
solution becomes muchsimpler (Kacprzyk, 1985a, 1987b; Kacprzyk & Yager, 
1984a, 1984b,; Yager, 1983b). 

4. MULTISTAGE DECISION MAKING (CONTROL) MODELS BASED ON 
FUZZY LOGIC WITH LINGUISTIC QUANTIFIERS 

Forthe purposesof this paper multistagedecision making (control) under 
fuzziness means as follows: A system under control S proceeds from an initial 
state (output) xo under a control uo to a new state XI. Control UI is applied and 
state xp is obtained. Finally, under control UN-1 from state XN-1 state XN is 
attained. For each control stage (time) t = 0, 1 ,  . .  ., N-1 its partial (stage) score 
isevaluated asa costlbenefit relation (related tothecontrol applied and tothe 
state attained). The partial scores are then aggregated to obtain a total score. 
Weseekan optimalsequence of control u*o, ..., u*N-1 which gives a best 
total score. 

Formally, at each control stage (time) t, the control utE U = {ci,  ..., cm} 
is subjected to a fuzzy constraint FCt(ut), and on the state attained (at t + 1 )  
xt+leX = {SI, ..., sn} a fuzzy goal kGt+l(xt+l) is imposed. The state 
transitionsare governed by xt + 1 =f(xt,ut); xt, xt + I E X, ute U; xo is an initial 
state, N isa terminationtime (planning horizon), and t =0,1 ..., N-I. 

It iscommonly postulated (Bellman & Zadeh, 1970; Kacprzyk, 1983b) that 
at each t, utstatisfy the fuzzy constraint Ct and the fuzzy goal G"', written 
asPt+1: "C'andG'+'aresatisfied (byut andthe resulting xt+i, respectively)"; 
this satisfaction is to the degree 

truth Pt + 1 = truth(%' and Gt + ' are satisfied") = 
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= kCt(Ut) pGt+l(Xt+l) (26) 

Traditionally, a sequenceof controls uo, ..., UN-1 is required to satisfy the 
fuzzy constraints and goals at all the subsequent control stages; this 
satisfaction is to the degree expressed by the fuzzy decision 

wD(U0, ..., UN-i xo"a1l" = truth(P1 and ... and PN ("all"= 

N-1 

t=O 
= A 1"all") truth Pt+ 1 = 

(xt + 

N-1 

and the problem is to find an optimal sequence of control u*o, ..., u*N-1 such 
that 

Notice that, as in Section 3, "all" in the above only indicates that all the 
control stages are taken into account. 

For a detailed analysisof this class of problems, and its extensions - mainly 
with respect to the termination time (fixed and specified in advance, implicitly 
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given through a termination set of states, fuzzy and infinitive) and the system 
under control (deterministic, stochastic, and fuzzy) - see Kacprzyk (1 983b). 

Since the new problem formulation to be presented here concerns some 
more fundamental aspects, the material following concentrates on the basic 
case, with fixed and specified termination time and the deterministic system 
under control. 

It is easy to see that the reqirement to satisfy the fuzzy constraints and 
fuzzygoalsat all the control stages may often betoo rigid and counter-intuitive 
in practice. An approach of replacing "all" by some milder requirement 
expressed by a fuzzy linguistic quantifier Q, such as "most", appeared in 
Kacprzyk(l983c, 1984a) where uo, ..., uN-1 was required tosatisfythe fuzzy 
constraints and fuzzy goals at Q (such as, most) control stages, that is 

and we seek an u*o, ..., U*N-1 such that 

The importance of the particular control stages can also be introduced. 

The only practically relevant approach is to equate importance with 
discounting that is commonly used in multistage decision making. In such a 
case B ="earlier", that requires uo ,..., uN-i to satisfy the fuzzy constraints 
and goals at Q (say, most) of the earlier control stages, that is 
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N-1 

t = O  
~ D ( U O ,  ..., uN-1 xo,Q "earlier") = ( A  1 Q"earlier") truth Pt+ 1 = 

N-1 

t = O  
= ( A I Q"earlier")( pct(u1) A yGt + i(xt + I)) 

(37) 

and we seek an u*o, ..., u*N-1 such that 

The solution of these problems will not be discussed since this is too 
specific and technical, and not particularly illustrative. Basically, using the 
algebraic method, the solution reducesto some set of dynamic programming 
recurrence equations (cf. Kacprzyk, 1983c, 1984a) which is, at least 
conceptually , re1 at ivel y uncomplicated . 

The use of the substitution method, which seems to be much more 
promising in this case, results in problem formulations which are 
conceptually and numerically much more difficult. The solution procedures 
have been proposed by Kacprzyk (1 983a) forthe problem without importance 
(discounting) given by (29) and (30), and by Kacprzyk and lwanski (1 987) 
for the problem with importance (discounting) given by (31) and (32). 
Basically, in both the papersthe problem is solved by an implicit enumeration 
technique based on neglecting nonpromising partial solutions (sequences of 
controls from t = 0 tot = k < N-I). 
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5. GROUP DECISION MAKING MODELS WITH A FUZZY MAJORITY 
BASED ON FUZZY LOGIC WITH LINGUISTIC QUANTIFIERS 

In the context of this paper group decision making means as follows: We 
have a set of n options, S = {SI, ..., sn} , and m individuals. Each individual k, 
k = 1 ,..., m, provides his or her preferences over S. As these preferences may 
not be clear-cut, their representation by individual fuzzy preference relations 
isstronglyadvocated (Blinand Whinston, 1973; Nurmi, 1981). 

An individual fuzzy preference relation of individual k, Rk, is characterized 
by its membershipfunction 

+R k : S x S- [0,1] (33) 

If card S is small, Rk may be conveniently represented by an n x n matrix 
Rk =[rki j ] , i , j=l  ,..., n , k = l ,  ..., m,whoseelementsO< rkij I l a re  meantasthe 
higher [rk ij] the higherthe preference of individual k Of Si over 9: from 0 for a 
definite preference of Sj over Si, to 1 for a definite preference of Si over Sj, 
through all intermediate values, with 0.5 for indifference. 

Now, given the idividual preference relations of the particular individuals, 
RI, ... Rm, weseekanoption (oraset of options) which is"best"acceptab1e by 
the group of individuals as a whole. 

Basically, in our context the two lines of reasoning may be followed: 

{ R I ,  ..., Rm} - solution 

and 

{RI,  ..., Rm } - R - solution 
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where R is a social fuzzy preference relation that is similarly defined as its 
individual counterpart but concerns the preference of the whole group as to 
the particular pairsofoptions(l3linand Whinston, 1973). 

Thus, in the first case we derive a solution just from the individual fuzzy 
preference relations, while in the second case we derive first a fuzzy social 
preference relation and then use it to derive a solution. 

Asolution is here not clearly understood (Nurmi, 1981) for diverse solution 
concepts. Basically, each solution contains options that are "best" 
acceptable by some majority of individuals. 

Usually, a majority (50%) is assumed to be a crisp threshold number of 
individuals. This is certainly necessary and adequate in political or election 
situations, however, in less formal settings and smaller groups an "adequate 
majority", on which decisions are to be made, is often perceived in a less 
precise manner, such as"most"or"a1most all". Evidently, these can be equated 
with fuzzy linguistic quantifiers. Such an approach has been proposed in 
Kacprzyk(1984b, 1985b, 1985d, 1986a), where somecommonly used solution 
concepts have been redefined: two of them - the core, and the consensus 
winner will be considered below. 

5.1. Fuzzy cores 

We follow the scheme (R1 ,... Rm} - solution, i.e. we determine a solution 
just on the basis of the individual preference relations. Among many 
solution concepts proposed in the literature the core is intuitively appealing 
and often used. Conventionally, the core is defined as a set of undominated 
options, those not defeated by a required majority rs m. Specifically 

C = {Si E S :  E S  such that ?ij > 0.5 for at least r individuals}. (34) 
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Nurmi (1 981 ) extends the core to the fuzzy a-core defined as 

Ca={s i  ES: 3Sj  ~Ssuchtha t  rkij> a 20.5foratleastrindividuals}.(35) 

i.e., as a set of options not sufficiently (at least to degree 1- a) defeated by 
the required majority. 

Using afuzzy majority specified by afuzzy linguistic quantifierwe deal with 
the above cores. 
First, one can use the algebraic method: 

k k h .. = 1 if r i j  > 0.5 'I 

= 0 otherwise (36) 

where, if not otherwise specified, i, j = 1, ..., n; k = 1, ..., m, throughout 
the paper. Then 

n 

n =  l , i = j  
hk,. = 1/n-1 2: hkij 'I 

is the extent to which individual k is not against options sj. 

Next 

(37) 

m 
k h j = i / m  2: hkj 

k = l  
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isto what extent all the individuals are not against Sj. And 

253 

is to what extent Q individuals are not against Sj. 

The fuzzy Q-core is now defined as a fuzzy set 

Co= V'QIS, + ... + SQ/S" (40) 

specifically, a fuzzy set of options that are not defeated by Q (for example, 
"most" individuals. Analogously we can define the fuzzy IQ-core.First, we 
denote 

k k 
h ij (u) = 1 if r i j  < U  I 0.5 

= Oothewise 

and then, in an analogous way we define the fuzzy IQ-core as a fuzzy set 
of options that are not sufficiently (at least to degree 1 - ) defeated by Q 
individuals. We can also explicitly introduce the strength of defeat and 
define the fuzzy s/Q-core. Namely, 

hki, = 2(0.5 - rkij) if rklj ~ 0 . 5  

= 0 otherwise 
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and then analogously define the fuzzy s/Q-core as a fuzzy set of options 
that are not strongly defeated by Q individuals. 

Using the substitution method, one can also start with (36), i.e. deriving 
hkij, and then deriving hkj which yields the extent to which individual k is not 
against option sj. 

Introducing the statements Pkj: "individual k is not against option sj"which 
are true to the extent truth Pkj = hkj. Constructing the set Vj = {Vj } = { p j and 
... and Pkpj } = 2{"j " " I  'jm) whose generic element vj = p j and ... and pkpj 
is is meant as "individual k l  is not against option Sj" and ... and 
"individual kp is not against option Sj". 
One can introduce the statements 

kl 

k l  

P'j: "Q individuals are not against option Sj" 

whose degree of truth is 

truth PQj = maX ( kT(Vj) A pQ(vj)) 
Vj E Vj 

Finally, the fuzzy Q-core is defined as 

CQ = truth PQl/sl + ... + truth PQn/Sn 

(43) 

(44) 

(45) 

i.e. as a fuzzy set of options that are not defeated by Q individuals. 

And analogously, if one uses (41), then the fuzzy dQ-core can be defined 
as a fuzzy set of options that are not sufficiently (at least to degree l-(Y ) 
defeated by Q individuals. 
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Moreover, if one uses (42), then the fuzzy s/Q-core can be defined as a 
fuzzy set of options that are not strongly defeated by Q individuals. 

5.2. Fuzzyconsensuswinners 

Following the scheme {RI, ..., Rm} -+ R -+ solution, where R is a social 
fuzzy preference relation, deriving a solution from the social fuzzy 
preference relation which is inturn derived on the basisofthe set of individual 
preference relations. 

Here { R I ,  ._., Rm} -+ R will not be dealt with, and the assumption will be 
made that R = [ rij ]is given by 

m 
2: a ij if i p j  k 

fij = l / m  
k = l  

where 

akij = 1 if ?ij > 0.5 

= 0 otherwise (4 7) 

For other methods of determinig R, see. e.g., Blin and Whinston (1 973) 
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Below will be discussed the R -+ solution, how to derive a solution from the 
social fuzzy preference relation. Asolutionconceptwith much intuitive appeal 
is theconsensus winner (Nurmi, 1981), that is a set of options not dominated 
by other options. 

First, employing the algebraic method: 

gij = 1  if rij > 0.5 

= O  otherwise 

then 
n 

J = 1 , ] = I  
gi = l h - 1  2; gij . . .  

and 

(49) 

and finally defining the fuzzy Q-consensus winner as 

(5 7) 
1 WQ = Z Q/Sl -k ... + Z"Q/Sn 

specifically, as a fuzzy set of options that are preferred over Q other options. 
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Analogously, 

gij(a) = 1 if rij > OL 2 0.5 

= 0 otherwise 

257 

(52) 

can be used and thus define the fuzzy /Q-consensus winner as a fuzzy set 
of options that are sufficiently (at least to degree ) preferred over Q other 
options. 

The strength of preference can also be explicitely introduced into (49) by 

gij = 2(rij -0.5) if fij > 0.5 

= O  otherwise (52) 

and thus definethefuzzy/Q-consensus winner as afuzzy set of optionsthat 
are strongly preferred over Q other options. 

Using the substitution method, beginning with (48) and then, following the 
reasoning in Subsection 5.1, obtaining: 

Pi: "option Si is preferred over option q", i * j 

truth P'i = gij 

{Pi1 , ,..,pin } - pii 
Vi = { vi } = { P/' and ... and Pip } = 2 (55) 
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p.T(Vi) = truth (Pjl and ... and p jP)  = truth PS1 A ... A truth PSP (56) 

Pio: "option Si is preferred over Q options" (57) 

0 truth Pi = max (p. T(Vi) A p. Q (M)) 
Vi E Vi 

Finally, defining the fuzzy Q-consensus winner as 

0 Q WQ = truth Pi Is1 + ... + truth Pn Isn (59) 

specifically, as a fuzzy set of options that are preferred over Q other options. 

Analogously, one can define the fuzzy (Y /Q-consensus winner as a fuzzy 
set of options that are sufficiently (at least to degree a) preferred over Q other 
options. 

One can also define the fuzzy s/Q-consensus winner as a fuzzy set of 
options that are strongly preferred over Q other options. 

For details, some properties and examples see Kacprzyk (1 984b, 1985b, 
1 985d, 1 986a). 

5.3. Remarks on degrees of consensus based on fuzzy logic with linguistic 
quantifiers 

An approach which is similar to that is Subsections 5.2 and 5.3 has been 
also used to derive a new degree of consensus (Kacprzyk, 1987; 
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Kacprzyk and Fedrizzi, 1986, 1988). Basically, it expresses the degree to 
which, say, most of the important individuals agree as to their preferences 
among almost all the relevant options. Consensus need not therefore be a 
full and unanimous agreement which is conventionally assumed in spite of 
the fact that this is often unrealistic, even utopian in practice. 

6. CONCLUDING REMARKS 

The main intended message in this paper is that fuzzy logic with 
linguistic quantifiers seems to be a realistic and adequate tool for modeling 
human evidence aggregation processes. This is supported by .a positive 
experience gained from some nonconventional multiaspect decision making 
models, most of which have been written by this author, in which fuzzy logic 
withlinguisticquantifiers is used toaggregate partial scores resulting from the 
accounting of the particular aspects. 

This message seems also to be supported by a positive experience from 
the use of a nonconventional database querying system which makes it 

possible to retrieve data concerning some vague concepts (e.g., In which 
towns is there a serious envorinmental pollution?) by allowing queries of the 
type "Find all records in which most of the important attributes (pollution 
indicators) considerably exceed some levels". For details, see Kacprzyk and 
Ziolkowski (1986a, 1986b). It is hoped that the message of this paper will 
stimulate some research in psychology and related fields to investigate 
and clarify whether fuzzy logic with linguisitc quantifiers could be uselful and 
adequate for the formalization of various human evidence aggregation 
processes. 
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ORIGIN, STRUCTURE AND FUNCTION OF FUZZY BELIEFS 

Jdzef CHWEDORO WlCZ 

Institute of Mathematics 
University of Lodz, Poland 

The term "belief' has a number of meanings. For a psychologist it is 
important how the notion of belief denotes subjects' relation with the 
environment. In one of its current meanings "belief8 denotes judgement 
accepted by the subject, in another "belief' is used as the name of 
premises of action. The function of belief in human life results from these 
meanings. Beliefs are determined by the existential dimension of human 
life. Since beliefs are not isolated elements of reality they always serve some 
purpose. They have determined functions in determined situations "here 
and now" as rules and premises of actions. The paper provides an analysis 
of beliefs about facts and phenomena, with no atfention being payed to 
beliefs about values. In order to examine beliefs from the psychological point 
of view the following questions should be answered. 
1. How are beliefs formed (what is the assertion)? 
2. What is the structure of beliefs? 
3. What is the measure of dissonance of beliefs? 

In order to answer these questions and provide an operational definition 
we begin with certain cognitive paradigms. 
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A. Subjects' cognitive representation results from subjective estimates of 
the perceived world. This proposition is a generalization of the standpoint 
of many researchers who deal with multidimensional scaling (Abelson & 
Tukey, 1963; Borg 81 Lingoes, 1980, 1981; Coombs, 1964,1976; Guttman, 
1968; Lingoes, 1965, 1973; 1981 ; Lingoes& Borg, 1978,1980; Kruskal, 1964; 
Shepard, 1974). 

B. Mental phenomena are treated as information processing in human 
operational system. This direction of analysis is represented by such 
researchersasNewell&Simon (1972), Lindsay& Norman (1972), Stachowski 
(1973),Kozielecki (1977,1986), Bruner(1978)andNosal(1979), who makeuse 
of computer science, computer information processing, structural 
linguistics and artificial intelligence. 

These two approaches complement each other. Information processing 
through realization of brain programs results in changes in the states of 
subjects'spaceof knowledge, inturnsthevalues ofthese states may be input 
data to the programs. Subjects' space of knowledge consists of beliefs, 
values, hypotheses, views, etc. 

Thesubject, surrounded by theenvironment, formsa rerpesentation ofthe 
surrounding reality. Reality is the set of those states and events of the world 
wich the subject grants with existence independent of self will. This 
representation may be of a linguistic or numeric nature. Every state of the 
world can bedescribed bya number of itsfeatures, each of whic can assume 
various values on linguistic or numeric scales (Nowakowska, 1979). The set 
of possible values does not say much about the given state of the world or 
event. Pointing only to one particular feature or subset of features is what is 
generally called the semantic element of a message or the elementary 
message (Gackowski, 1979). What is a "message"? The definition of 
message would have to contain a definiton of information. Instead of giving 
a definiton of these notions, which would in turn contain unprecise notions, we 
assume that messages and information are undefinable elementary notions, 
theapplication ofwhich isclarified bythe context in which they have been used 
(Bauer & Goos, 1974). As Wiener (1971) said -" ... information is information; 
l ' s  neither matter nor energy". The same message may be interpreted 
differently and convey different information for different people. Information 
maythen be understood as a result of the interpretation of a message, i.e. a 
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certain transformation of a message into information, which symbolically can 
be written as 

(Y 

M .I 

From information which in turn comes from the environment and the 
subject’s own organism, the subject forms a certain space of knowledge. 

The considerations in this paper do not concern all the elements of a 
subject’s space of knowledge - they deal only with beliefs. Belief is the 
judgment (in the logical sense) for which the subject accepts ownership, 
because of the fulfillment of the contents of judgment in a given reality. Belief 
can be expressed through utterances and actions. 

Earlier works on beliefs concentrated on the relation between the 
subject and the subject’s judgment in the logical sense, irrespective of the 
actofthinking (Meinong, 1910;Witwicki ,1980). Laterworks began toexamine 
the relation between acceptance of judgments and readiness to act (Arrow, 
1971 ; Marciszewski, 1972; Shafer, 1976; Hempolinski, 1981 ; 
Chwedorowicz, 1984,1986; Chlewinski, 1984). 

The formation of beliefs can be explained on the grounds of social 
learning. In every situation individuals meet sequences of events in which the 
two elements: action and reinforcement, always repeat. If an action, being 
the consequence of an accepted belief, is reinforced, the reinforcement 
is transferred to the belief. As a belief is subject to reinforcement, reward 
increasesthe subject’s tendency to use the given belief in a similar situation, 
whereas punishment decreases it. The very reinforcement may be internal 
or external, or maybe the fusion of both factors. In effect, a belief may be 
verified, rejected or a new version of the same belief may be formed. 

In the same situation different people may use different beliefs as 
premises for actions. The theory of social learning explains these 
differences in beliefs in terms of the different experiences of individuals. 
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Subjects' space of knowledge contains not only certain or highly 
probable information, but also much which is not quite certain and which is 
rather subject to conjectures. 

Out of the general class of beliefs only these types, which concern people 
and situations, i.e., statesand events in the world about which only incomplete 
information is avaliable, are the subject to analysis here. 

An event is a set of such states of the world which fulfills a certain given 
condition. States of the world are subject to conjectures rather than to 
statements of certainty. The data about the world are represented in a 
subject's space of knowledge in the form of dimensions. The mechanism Of 

formation of such representations is, as it was said, described as mapping 
on to linguistic and numeric domains. 

Since ranges of categories on linguistic scales are not sharp, 
expressions formed ontheir basis are not sharpeither. The"fuzzy"approach 
assumesthat decisions about the categorization of states of the world which 
differ as to the degree of member ship (compatibility) in categories, are 
partial. Ambiguity of boundary cases results in formation of boundaries 
between categories which are not sharp. Categories as "fuzzy sets" are sets 
without sharply defined boundaries (Zadeh, 1965; Kintsch, 1974; Lehrer, 
1974). Beliefs which are logical expressions formed on the basis of fuzzy 
categories have the characteristics of fuzziness. 

Fuzzy beliefs differ from both deterministic, probabilistic and from 
instrumental beliefs, which have been described in literature. As the basis 
for the acceptance of fuzzy beliefs lies fuzzy acceptance; specifically, the 
acceptance which takes place only when the motive of assenting to the 
contents of judgment is in high compatibility with the contents of judgment 
of determined reality (Chwedorowicz, 1984, 1986). This is in contrast to the 
motive for accepting a probabilistic belief, which is the high probability of 
the judgment, and to the motive for accepting a deterministic belief, which is 
complete compatibility of the contents of judgment with determined reality. 
Frequently, however, fuzzy and probabilistic beliefs are uttered categorically. 
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The contents of fuzzy beliefs consists both of external, directly perceived 
information and of information coming from the subject's own space of 
knowledge. Both kinds of information are described linguistically. 

The present knowledge about beliefs, perception and human information 
processing allows one to propose a model describing the formation of fuzzy 
be1 ief s. 

FORMATION OF FUZZY BELIEFS 

Every stimulus S reaching the subject can be presented as a pair (M,I) 
where M denotes message and I the information which it conveys. The same 
message, via various interpretations, can give various kinds of information 
(judgments). The difference in interpretation results from the different 
experience that different people have, and takes the form of the so called 
"metabeliefs", beliefs about beliefs concerning the world, oneself, and about 
the relation between the two. Belief is, in the logical sense, a judgment 
preceded by an assertion (Marciszewski, 1972). Rightness of belief may 
be expressed by a condition weaker than assertion. The rightness of one's 
judgment may be expressed by one's expectation that a given judgment will 
be right in the respective situation. This expectation is a function of two 
variables: the subjectivevariable and the perspective variable. 

It has been noted by Gestalt psychologists that ifthe amount of perceived 
information is not sufficient to build a picture as a whole, the role of the 
subjective factor increases. 

Actions are ascribed to respetive beliefs in the process of coding. 
Reinforcement of action results in reinforcement of the respective belief. There 
is a feedback between action and belief B which conveys the 
reinforcement. 
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The mechanism of formation of fuzzy beliefs is presented in the following 
model. 

where S-stimulus, p-perception, M-message, (Y -interpretation of 
message, J-judgment, r-rating of judgment, i-inference, B-belief, c-coding 
of belief, rf-reinforcement, A-action. 

The given operations depend on metabeliefs about the world, about 
oneself and about the relations between them. 

Rating 

Given an emipirical relational system 

where P is a finite set of states of the world, and SI, SP, Sn are relations 
on P (primary, secondary, ... etc.). Also, given a theoretical system 

where p is the family of all fuzzy subsets of P representing categories on 
linguistic scales, and where Rl,R2, ... Rn arerelations on (primary, secondary, 
..., etc.). 
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If systems y and p are homomorphous then there is a mapping on P with 
values within p. 

y : P  --- + P  

whereby the name f E p is ascribed to state of the world x E P. 

In terms of the theory of measurement (Roberst & Franke, 1976) and the 
theory of fuzzy sets (Zadeh, 1965, 1971, 1975) the following theorems and 
definitions can be given to subjects’ fuzzy beliefs about states of the world 
(Chwedorowicz, 1984,1986). 

Definition 1 

Afuzzy subset of the set P is any real function mapped upon P such that its 
valuesfallwithintheinterval R<0,1>. Iff isasubsetof this kind, thenthevalue 
f(x) is called degree of compatibility between x and f. 

Definition2 

Fuzzy acceptance occurs only when the assent to a judgment is motivated by 
a high degree of compatibility between the content of the judgment and the 
reality in question. 

Definition 3 

The individual threshold of acceptance cuvaries from person to person, and 
for any person, may vary from situation to situation over the interval R <o, i  > .  
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Theorem 1 
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A necessary condition for the subject to assent to the content of a judgment 
is that the degree of compatibility between the judgment and the respective 
reality exceeds the individual threshold of acceptance. 

Compatibility between x and f is checked on afinite set of criteria I = { 1,2, 

... n }, some of which have various weights Vi, whereas ratings of beliefs on 
an i-th criterion are denoted Wi. The degree of compatibility between x and f 
(the strength of belief) is a function of two variables. 

f(x) = max(min(vi,wi)), i E I 

i 
(5) 

Theorem 2 

Two beliefs concerning the same state of the world are dissonant if the 
difference between them exceeds the individual threshold of acceptance. 

If two beliefs are dissonant, then one of them contradicts the other, which 
can be written as q(x) = f  and rpj(X) =f’. Then the difference between beliefs 
that are dissonant may be measured by Hamming’s linear distance: 

n 

i = l  
6= l /n  2; I f ( & )  - f’(xi) 1 ,  

Definition 4 

The threshold of tolerance to dissonance is the greates dissonance which 
does not motivate the person experiencing it to change beliefs. The threshold 
of tolerance to dissonance mvariesfrom person to person and for the same 
person may vary from situation to situation. 
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Theorem 3 

Fuzzy belief is in the logical sense the judgment to which the subject gives 
assent if degree of compatibility between the judgment and the respective 
reality exceeds the individual threshold of acceptance. 

The following condition must be met: 

f(x) > aand (Y > 0.5 a E < 0,l > (7) 

LANGUAGE OF FUZZY BELIEFS 

Belief may be uttered - expressed in words because of its linguistic 
representation. Aset of linguistic representationsof beliefs in natural language 
makes a language of beliefs. The language of beliefs is a subset of all the 
sentenceswhich concern human beliefs directly or indirectly. By expressing 
beliefs in linguistic categories it is possible to define operations of negation, 
union, intersection and semantic implication for beliefs. 

Atomic beliefs 

The fundamental elements of the language of beliefs are atomic beliefs. An 
expresion of the kind 
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where: j is the considered attribute, is an atomic belief if the person 
uttering the belief understands its contents in the logical sense, if the mapping 
cpj is homomorphism, and if the person uttering the belief has decided to 
assent to the content of the judgment. The degree of assent given to the 
judgment is expressed in our model by the funtion of compatibility f(x), 
while in colloquial language it is expressed by epistemic functors like "I 
belive", "I reckon", "1 am sure", etc. To put it more formally: 

Qj(X) = f iff f(x) >sand a >  0.5 

where is the individual threshold of acceptance. 

Negation of beliefs 

The functor of negation 7 p is a symbol of an operation of negation of an 
uttered judgment. If the person uttering a judgment of the kind cpi(X) = f does 
not accept it, then 

(1) he or she is convinced that the judgment is false and accepts a 
judgment contraryto it. 

7 (j(x)) = f iff f'(x) > (Y 

(2) he or she has not decided to accept the contents of a given 
judgment 
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f(x) I aandf'(x) I (Y (7 7) 

Intersections of beliefs 

If two judgments of the form cpj(X) = f  and cpi(X) = g  are linked by the 
conjunction "and", there results a compound judgment of the kind 

w(X) = f  and cpi(X) = g iff min(f(x),g(x)) > (Y (72) 

Union of beliefs 

If two judgments of the form cpj(X) = f  and cpi(X) = g  are linked by the 
conjunction "or", there results a compound judgment of the form 

cpj(X) = f  or cpi(X) =g  iff max(f(x).g(x)) > (Y 

Semantic implication 

(73) 

If ~ ( x )  = f  and q(x) = g  are patterns of judgments, then the relation of the 
semantic implication 
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f 74) 

isdefined bythe demand that max(1-f(x), g(x)) > a. 

The functor of semantic implication p + q is the pattern of real beliefs 
formed on the basis of the expression "if ... then ... 'I. Semantic implication 

p q is interpreted as follows: 

(a) Judgment p does not contradict judgment q, 

(b) Judgment q is the conclusion drawn from judgment p. Semantic 
implication p * q approximates material implication p -+ q defined by the 
demand that 7 p v q. 

SYSTEMS OF FUZZY BELIEFS 

Beliefs are never isolated in a person's space of knowledge, they rather 
combine and come together as systems. It is characteristic of those systems 
that they have mechanisms protecting the cohesion of each system. One of 
the well-known mechanisms is elimination of contradictory judgments from 
the system, based on the phenomenon of dissonace. Another, less obvious 
mechanism is that of sustaining beliefs in spite of the loss of their external 
sources as comprised by events that had been indirect rea sons for their 
formation. Yet another mechanism is the censorship of new beliefs 
introduced into the system. All the mechanisms may be described logically 
in the form of axioms of a system of beliefs. The axioms are descriptions of 
certain rules according to which the real system of beliefs works. Accordingly, 
as these rules are fulfilled, information is accepted and interiorized, or 
rejected, or may make the system change. The mechanism of eliminating 
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contradictory judgmentsfrom a system of fuzzy beliefs may be described as 
follows: 

which reads: If a person uttering a judgment assents that "j-th feature x is 
f", then he or she cannot assent the "j-th feature x is not f ' .  

Before any state of the world becomes for some reason subject to a 
particular belief, it has been subject to many earlier formed beliefs. These 
very beliefs, together with the beliefs concerning the relations between states 
of the world, are sort of censors on new beliefs and they even determine the 
shape of possible beliefs. 

In case the external source of a belief is no longer present, the very belief 
may remain unchanged, being internally generated by the system. Both the 
nature of these relations and the anticipation of possible beliefs is given in the 
following pattern called the rule of Modus Ponens: 

Neither of the above mechanisms warrants that a fuzzy belief system will 
be an approximation of reality perceived by the person uttering the beliefs. 
In extreme situations a person may generate delusive judgments that make 
up a coherent system. Therefore it is necessary to adopt an axiom stating 
that a person's conviction as to some judgment being true is not sufficient 
evidence of its truth. One may be strongly convinced of the thruth of a false 
judgment, 

(( cpi(X) =f) ,  then x E f) 
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The three above axioms constitute a belief system based on fuzzy 
acceptance (Chwedorowicz, 1986), which is parallel to other belief systems 
based on deterministic or probabilistic acceptance (Marciszewski, 1972; 
Pap, 1957;Shafer, 1976). 

The axioms given above result in a number of new rules such as the rule of 
simplification: 

If both partial and non-partial probabilistic assent is used in the 

description of one and the same reality, there may occur a conflict between 
thesetwotypes of assent. Probabilistic acceptance may, in certain cases, fall 
short of rationalityaxiom sconstructed on the basis of non-partial assent, as 
in the systems of Pap (1957) or Marciszewski (1972). The contradiction 
results from the properties of subjective probability (Ramsey, 1931). 
According to Ramsey subjective probability has the following properties: 

If we assume that Ps(p) and Ps( 1 p) exceed the individual threshold of 
acceptance k, i.e. that p and - pare both accepted at the same time, then 
the axioms of cohesion in Pap’s and Marciszewski’s system are not 
fulfilled. Probabilistic acceptance do es not fulfill the axiom of consistency 
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in assent of deterministic systems of beliefs (Pap, 1957; Marciszewski, 
1972). This can be shown on the basis of Suppes' theorem (Suppes, 1968). 

(Ps(p -, q) 2 r & (Ps(p) 2 s ) )  - Ps(q) 2 r + s-1 (2 1) 

It is possible to assent to p - q and assent to p, without assenting to the 
inferenceq. 

The conflict may be overcome by introducing the notion of fuzzy belief. It 
results from the definiton of fuzzy belief that fuzzy beliefs fulfill the axiom of 
cohesion of deterministic system of beliefs. It is ensured by the condition 

The axiom of cohesion of beliefs in Pap's deterministic system of beliefs 
takes the form 

where B(x,p) reads: "x believes that p". In terms of fuzzy beliefs the axiom 
reads as follows: 

( cpi(X) =f') - 7 (cpi(x) =f)  

Let assume that f'(x) > (Y > 0.5 
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It results from the properties of semantic implication and negation that: 

max(f(x),f’(x)) =f’(x) > (Y (26) 

This condition means that fuzzy beliefsfulfill the axiom of cohesion of the 
deterministic system of beliefs. 

It is also possible to show thatfuzzy beliefs fulfill the axiom of consistency 
in the deterministic system of beliefs (see Pap, 1957). 

In terms of fuzzy beliefs the axiom reads as follows: 

(1 ) max(1 -min(f(xl, maxU -f(x),g(x))),g(x)) 

= max(1-min(a,max(l-a,b)),b) = b > (Y 

Let assume that g(x) = a f(x) = b > (Y 

max(1-min(b,max(l-b,a)),a) = a > o! 

(2) 
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Both of these conditions mean that fuzzy beliefs fulfill the axiom of 
consistency of the deterministic system of beliefs. 

Inference 

Being elements of language, fuzzy beliefs form sentences which describe 
states of the world and relations between them. States of the world which can 
beobserved indirectly may serve as permises concerning those states which 
cannot be observed, which are subject to conjectures. 

Thinking based on premises is called inferencing. According to 
Ajdukiewicz inferencing isa kind of mental activity in which a judgment, made 
with some degree of certainty, concerning sentences called premises, results 
in a judgment, made with an always greater degree of certainty, concerning 
another sentence called conclusion (Ajdukiewicz, 1965). 

Beliefs are formed directly and indirectly. A judgment "it is raining" is 
assented to directly as compatible with reality if we are getting wet in rain or 
see drops of rain on a window pane. I assent indirectly to a judgment "My wife 
needs money for a new car" only because I have assented to judgments: "My 
wife has beenvery niceto melately", "Our neighbour's wife has a new car", "My 
wifedelights in that car","My wife reminds me about her coming birthday". The 
latter sentences - judgments are assented to indirectly on the basis of my or 
other people'svisual or audial perceptionswhich have been found compatible 
with reality. These judgments as well as unuttered judgments about relations 
between phenomena are premises, while the judgment "My wife needs money 
foranewcar'istheconclusionof presented reasoning. Now I am morestrongly 
convinced of the rightness of the judgment I haven't taken into consideration 
before. The presented reasoning was necessaryfor me to believe that my wife 
needs money. 
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Let pdenotethefamily of allfuzzysubsets (statesofthe world). A similarity 
relation h is mapped on p (Zadeh, 1971), itsvalues being 

there occurs 

h(f,f) = 1 
h(f,g) = h(g,f) 
h(f,r) = max (h(f,g), h(g,r)) 

In terms of similarity relation we may speak of a distance between beliefs 

9 

cp(x)=f and cp(x)=g 

Let us denotethat distance as d(f,g) 
d(f,g) = l-h(f,g) = h(f,g) 

Distance between beliefs has the following properties: 
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From the transitivity of the similarity relation it follows that 

Properties 1-3aresatisfied by Hamrning’slineardistance (Kaufrnann, 1973). 

n (34 
2: If(Xi) - g(Xi) I d(f,g) = l / n  

i = l  

If two beliefs are dissonant, then one of them contradicts the other, which 
can be then written 

n (33) 
8 = l / n  - X If(xi) - f’(xi) I 

i = l  

Thedistance between beliefs may bedescribed with non-fuzzy notions. For 

f,g,re P 

f = ag iff h(f,g) 2 a (34) 

which defines non-fuzzy relation f =ag, called a -similarity. The relation 
satisfies a condition weaker than transitivity. 
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Theorem 4 

I f f  = ag and g = br, then f = a.br 

Proof 

Iff=agthen d(f,g) 21-a 

similarly 

d(g,r) 5 l - b  

The thesis results from condition (3) for distance d. The theorem 
describes the phenomenon of fuzziness of similarity of beliefs in a 
sequence of similar beliefs. 

For a = ~ C Y  (-individual threshold of acceptance) relation = (Y generates 
in the set of beliefs subsets of fuzzy beliefs Ba called clusters such that for 

f,g E BCY 

there occurs 

Bol- is the set of beliefs considered by the subject as similar to degree a. 
The hierarchy of fuzzy beliefs is formed by aclusterswith olincreasingfrom 
zero to one. This concept of hierarchy of fuzzy beliefs coincides with the 
notion of CY -level sets of fuzzy sets. 
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STRUCTURE OF FUZZY BELIEFS 

285 

The structure of fuzzy beliefs may be described by the following formal 
system 

where 

P -finite set of states of the world, 
I -finite set of scales (attributes) on which the states of the world 
are rated, 
p - family of all fuzzy subsets of P, representing categories on 
linguistic scales 

p =  U pi 
i E l  

cpi -function ascribing categories to states of the world, 

The language of fuzzy beliefs based on the system of fuzzy beliefs B is the 
set of all linguistic representationswhichdirectlyor indirectlyconcern human 
beliefs. The language consists of atomic beliefs of the form (pi&) =f.  Atomic 
beliefs linked with logical functors: negation, intersection, union, and 
semantic implication etc. form expressions of the language of beliefs, the 
semanticcorrectness ofwhich is checked on the basisof axiomsofthesystem 
of fuzzy beliefs. 
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CONCLUSION 

(1) The theory and definitions presented in this paper are concepts of a 
theory which seems to explicate the formation and functioning of belief more 
efficientlythan other approaches, and which has certain advantages. 

(2) Application of the theory of fuzzy beliefs to the description of belief 
formation makes it possibletoovercomethedifficultieswhich arise if a subject 
describes the same reality with both detereministic and probabilistic 
judgments, which resut ts in a contradiction of conclusions reached according 
to the two different formalisms. 

(3) The phenomenon of contradiction within subjects’ space of knowledge 
is, on the grounds of the theory of fuzzy beliefs, explained as 
contradiction of judgments which belong to hidher space of knowledge but 
which have not become beliefs because the y have not satisfied the 
necessary condition that: the degree of compatibility of each judgment with t he 
respective reality exceeds the individual threshold of acceptance and the 
threshold of acceptance is greater than 0.5. 

f(x) > aand LY > 0.5, Q E <0,1 > 

(4) The theory of fuzzy beliefs explains relations between cluster-like 
structure and hierarchical structure of beliefs, which, for 01 =O and 
increasing order for Q E < 0,l  >,form a hierarchy of beliefs built of Q clusters. 

(5) The language of fuzzy beliefs presented in the paper allows one to 
formulate questions about the system of fuzzy beliefs, and to generate 
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indirect conclusions which can then be checked using the axioms of fuzzy 
beliefs. 

APPENDIX 

The individual threshold of acceptance avaries from person to person and 
for any person may vary from situation to situation over the interval R C O , I  >. 

The individual threshold of acceptance equals the highest valuef(x) -degree 
of compatibility -, for which the subject does not decide to accept the 
judgment. 

External values can be omitted, because for CY = 0 subjects would accept 
allthejudgmentsandfora = 1 no judgment would be accepted. In both these 
situationsthesesubject does not receiveany information aboutthe world. The 
following theorem determines the conditions of one's finding the contents 
of ajudgmentcompatible withthegiven realityand assentingtoitasto hidher 
own. 

Theorem 1 

A necessary condition for a subject to assent to the content of a 
judgment is that the degree of compatibility between the judgment and 
the respective reality exceeds the individual threshold of acceptance. 

Proof 

Let there be an empirical relational system 

y = <P,Sl,S2, ... S" > 
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where P is a finite set of states of the world and Sl,S2, ... Sn are relations 
on P (unary, binary, ..., etc.). 

There is also given a theoretical system 

where p is the family of all subsets of P some of which represent 
linguisticcategoriesand R1,R2, ..., Rn arerelationson p(unary, binary, ..., etc.). 
If there is a homomorphism between systemsu and pthen there is a mapping 
on p with values within (Roberts & Frankl, 1976). 

whereby f E p is ascribed to the state of the world x E P. 

Let g be a category to which a state of the world x really belongs "x is g", 
while the subject's belief is the judgment "x is f'. Let us denote the difference 
between the belief and the real state of the world as A . The measure of 
distance between the belief "x isf' and the real state of the world "x is g" is the 
distance between the fuzzy subsets of p . 

Afuzzy relation of similarity h is mapped on p (Zadeh, 1971). In terms of 
the similarity relation we may speak of the distance between categories f and 
g. Let us denote that distance as d(f,g). 
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This distance between two categories has the following properties: 

It can be shown that properties 1-3 are satisfied by Hamming's linear 
distance. 

Thus the distance between a belief and the reality can be written as 

n 

i = l  
A = l / n  If(Xi) - g(Xi)I 

(ii) 

where f(Xi) is the degree of compatibility between x and f rated on the i-th 
criterion, and g(Xi) is the degree of compatibility between x and d rated on 
the i-th criterion. The fact that "x is g" implies that on any n-th criterion g(Xi ) = 1 

and so equation (ii) assummes the following form: 

n 

i = l  
f(x) = 1 - A = l /n  I: f(xi) 

(iii) 

Let us denote 1 - has a , the latter being the individual threshold of 
acceptance. The rating of f(x) is based on a finite set of criteria I = { 1,2, . . ., n}. 

If the subject is to accept a judgment, then according to the definition 
of the individual threshold of acceptance, the degree of compatibility of the 
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contentsof ajudgment with a given reality should be greater than thevalue of 
an individual threshold of acceptance 

f(x) > &and o! E (0,l) (iv) 

Applying a modified procedure to rate a belief on a finite set of criteria 
I = { 1,2, ... n} we define the following function of compatibility "x is f '  

f(x) = max(min(vi,wi)) 
i 

where Wi is a fuzzy rating of a belief on the i-th criterion Vi is a fuzzy weight 
of the i-th criterion. 

All compatibility functions take values in the closed interval R(o,l). 

Assenting the contents of a judgment as one's own is not a sufficient 
condition for the judgment to become the subject's belief. One may be 
strongly convinced about the rightness of false judgments. It may happen 
that in case of a low threshold of acceptance two contradictory judgments 
are accepted. 

This is why an additional condition is needed to warrant that 
contradictory judgments are not accepted in the process of belief 
formation. 

Lemma 

The necessary conditions for a subject not to accept contradictory 
judgments isthat subject's individual threshold of acceptance is greaterthan 
or equal than 1/2. 
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Proof 

If asubject acceptstwocontradictoryjudgments"~ isf"and"x isf"'at thesame 
time, then the functions of compatibility of these judgments are greater than 
the individual's threshold of acceptance ci , f(x) > ci and f'(x) > CL. If so, then 
f'(x) = l-f(x) > C L ,  Hence ci c; 1/2. 

A subject accepts contradictory judgments if the individual's threshold of 
acceptance is less than 1/2. 

In order to satisfy the assumption of the lemma, thevalue of an individual 
threshold of acceptance should be equal to or greater than 1/2. 

Assumption 

Understanding a judgment in the logical sense means that the subject: 

(1) Givesthe judgmentthelogicalvalue "true" ifthedegreeof compatibility 
of the judgment with a respective reality is found to be greater than the 
individual's threshold of acceptance, or suspends the decision of the 
acceptance of the judgment. 

(2) Respects the rule of non-contradiction, i.e. does not accept two 
contradictory judgments at the same time. 

N0tice:Thesubjectdescribes realitywith judgmentswhich areconsidered 
true. Thus false judgments are not needed in the subject's system of 
knowledge and are eliminated. 
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Theorem 3 

J. Ch wedoro wicz 

Fuzzy belief is in the logical sense the judgment to which the subject gives 
assent if thedegreeof compatibility between the judgment and the respective 
reality exceeds the individual threshold of acceptanceol 2 1/2. 

Proof 

The thesis results directlyfrom the assumption, the lemma and theorem 1 

The formation of fuzzy beliefs is a process of successive verifications of 
compatibility between the contentsof a judgment and the respective reality. 
In case the contents of a judgement is not accepted, the subject may reject 
the judgment or modify its contensts. New versions of the same judgment 
may occur, some of which may be accepted by the subject. 
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BRAIN ACTIVITY AND FUZZY BELIEF 

G. GRECO and A. F. ROCHA 

Department of Physiology, Institute of Biology, UNICAMP 
1308 1 Campinas - Brasil 

Brain activity was recorded during subjects listening to a text, and then 
correlated with two different fuzzy measures of belief about the received 
information. One of these measures (the degree of correlation) expresses 
therelationship between each decodedpiece of information and the structure 
of the text itself, the other (the degree of confidence) evaluates the individual 
s confidence in the received information. Both measures depended on the 
activity of many areas in both cerebral hemispheres.Additionally, the analysis 
of this dependence confirmed that both measures may be accept as two 
differentpsychological constructs. 
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INTRODUCTION 

Human languages, like all social actions, must perform two essential 
functions simultaneously. They must be directed toward the problem of 
survival, and they must also be directed toward making sense of existence 
(Washabaugh, 1980). Onthe oneside, languages must addresstheeveryday 
technical problems of getting food, shelter, etc. On the other side, they must 
also contribute to interpreting and transmitting the emotional, cultural, 
intellectual etc., experiences of the human being (Olson, 1980). 

Centering on humans, wespeak of universals, contex-free communication, 
etc., whereas centering on society, we speak of actions, context dependent 
meanings, and so on (Rocha & Rocha, 1985). 

Human languages provide people with a core of common meanings 
centered on the basic schema, scripts or frames related to survival both in 
the physical word aswell aswithin society. Inthissense, the human utterances 
form a closed system of self-referred meanings. However, people modify the 
meanings of the words to speak about individualities, too. In this use, the 
human utterances become an open system of meanings referred to each 
individual context. Because of this, human languages are to be treated as 
partially closed systems, where believes are always evaluated in respect tothe 
language itself, and in respect to the context of the speaker and/or listener 
(Rocha& Rocha, 1985). 

Theauthors have been using Fuzzy Set Theoryto studythe commonalities 
of speech understanding by groups of volunteers, while recording their EEG 
activities to probe into the individual flavor of each decoding (Rocha & 
Francozo, 1980; Rocha, 1987). Also, the authors have been using Fuzzy Logic 
to investigated how people correlated each piece of verbal information to both 
the speech context and their own contexts (Rocha & Greco, 1987; Theoto, 
Santos, & Uchiyama, 1987; Rocha, Giorno, & Leao, 1987). 

People associate a personal degree of confidence with each piece of 
.information as they pick it up from the speech, but they have to wait until they 
have at least a grasp of the subject or theme (Sgall, Hajicova, & Benesova, 
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1973; Oleron, 1980) of the communication in order to assess the correlation 
between each of these pieces of information and the speech itself (Rocha & 
Greco, 1987). First of all, they must attempt to construct the scheme of the 
speech, assembling all the pieces of information into a logical network of 
meanings, guided by their confidence of the veracity of the received 
information. Oncethe initial pictureofthespeech isthusformed, one maytry 
to verify the speech consistency through the evaluation of the correlation 
between the accepted pieces of information and the theme or subject of the 
communication (Rocha, 1982; Rocha & Greco, 1987). 

Asaconsequenceofthis, thelogical networksdealing with boththedegrees 
of correlation and confidence processing during the speech decoding are 
expected to be the same. However, since correlation - unlike confidence - is 
sensitivetothe structure it helps build itsactualvalues must depend on speech 
cohesion -which is not the case for confidence (Rocha & Greco, 1987). 

Thedifference between correlation and confidence have been analysed on 
text recalling, by asking people to build the fuzzy graph of the text decoding 
(Rocha&Greco, 1987;Theoto, etal., 1987). Thisgraphdescribesthe relations 
shared by each piece of information used by the subject to conclude for the 
theme and rhyme of the heard text. The subjects were also requested to 
assign to each node of the graph either the degree of correlation shared by 
that node with the theme, or the subject’s confidence of the information 
represented by the node. 

The correlation assigned to each node of the graph - unlike confidence - 
decreased from the left to right nodes and from the root associated with the 
chosen theme/rhyme to the terminal nodes where each piece of information 
was represented - whereas confidence was not correlated with the node 
position. The linear relation between correlation and node position presented 
also a non-zero linear coefficient, what means that confidence at each node 
may depend also on the overall text (graph) cohesion. 

The logic network of the fuzzy text decoding was obtained by asking the 
volunteers to assign a logical connective (AND, OR, IF) to each node of the 
abovefuzzygraph. Confidence and correlation were then studied concerning 
these connectives. Although similar linear functions were established between 
the truth (confidence or correlation) value of the proposition and the truth of 
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each argument, correlation depended once again on the 'text cohesion, 
because the linear coefficients in this case were greater than zero, whereas 
they were statistically null in the case of confidence. Finally, the truth value of 
the proposition was equally dependent on each argument if confidence was 
taken into account, whereas the truth valuewas mainly dependent on the first 
argument if correlation was considered. 

This paper provides further evidence for the differentiation between 
confidence and correlation by analysing brain activity recorded during the 
subjects listening to text and studying the correlation between this activity 
and the assigned values of confidence and correlation. 

THE BRAIN ACTIVITY 

The EEG activity evoked by sensory stimuli is considered as a complex 
variable pattern of several distinct components. It is also believed to correlate 
with different and sequential stages of message processing. Early or 
exogenouscomponents have been assumed to reflect stimulusqualities rather 
than personal evaluation of the sensory environment; whereas late or 
endogenous components were considered to accompany task relevance 
(e.g., Donchin, Ritter, & McCallum, 1978; Josiassen, Shagass, Roemer, 
Ercegovac, & Straumai, 1982; McCallum, Curry, Pocock, & Papakostopoulos, 
1983; Ritter, Simson, Vaughan, & Friedman, 1979; Squires, Donchin, Herning, 
& McCarthy, 1977). 

Averaged P300 was initially observed to vary with the reduction of 
uncertainty about the stimulus, and later with task relevance; stimulus 
evaluation time; sequential structure; incentive value; etc. This component of 
theevent related activity (ERA) wasdemonstrated to be concerned with future 
events rather than to be stimulus bounded (e.g. Beigleter, Porjesz, Chon, & 
Aunon, 1983); Courchesne, 1978; Ford, Pfefferbaum, & Kapell, 1982; Kutas, 
McCarthy,&Donchin, 1977; McCallumetal., 1983; Ritteretal., 1979; Ruchkin, 
Munson, & Sutton, 1982; Squires et al., 1977). Negative components peaking 
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from 200 upto 400 ms (e.g., Na and N2), were observed to be affected by the 
nature of the classification task and awareness, tovary with the reaction time, 
and to be inversely dependent on the stimulus probability (e.g. Ford et al., 
1982; Josiassen et al., 1982; Ritter et al., 1979; Ritter, Simson, Vaughan, & 
Macht, 1982; Ritter, Simson, Vaughan, 1983; Squires et al., 1977). Later 
components in the range of 500 up to 1000 ms were found to correlate with 
unexpectedstimulus attributes (e.g., Kutas& Hillyard, 1980). 

Early components (peaking as soon as 15ms and appearing up to 200 ms) 
were assumed to be stimulus bounded, in the sense that they varied with the 
physical characteristicsofthestimulus. However, it is now observed that they 
arealsoassociated withthestimulus probability, time interval between stimuli, 
conceptual informationchannels (e.g., stimulation offingervs hand), target vs 
non-targetstimuli, etc. (Ford et at., 1982; Hansen and Hillyard, 1980; Josiassen 
et at., 1982; McCallum et al., 1983); thus associated to attention requirements, 
too. 

It is apparent that, when a task is relatively simple, important to look for 
stimulus propertiesthat can be identified - and irrelevant propertiesfiltered out 
-by the brain substantiallyearlierthan 100 ms. When thetask is moredifficult, 
a negative component peaking around 100 ms seems to represent the earliest 
brain sign of target identification (McCallum et al., 1983). The rapid 
differentiation of the relevant from the irrelevant is possibly more in keeping 
with the notion of directed attention, that is to say with the presence of a 
pre-existing biasor expectation toward a specified classof stimuli (e.g., Rocha, 
1985; Rocha & Rocha, 1985). 

Along this line of reasoning, it is possible to assume a sensory processing 
model involving different sequential and parallel stages, such that each stage 
passes into the subsequent ones whatever information has reached criteria 
for the encoding properties analysed at that stage (McCallum, et al., 1983; 
Ritteretal., 1982). Whichstagesandcriteriaareto beinvolvedwitha particular 
stimulus at a particular situation, may be a matter of expectation generated by 
the surrounding environment; previous individual histories; etc. (Rocha, 
1985). The greater is the expectation or the smaller is the uncertanty about 
the stimulus, the earlier may be its recognition, by adjusting information 
processing at low stages to detect distinguishing properties of the incoming 
stimulus (Rocha, 1985; Rocha & Rocha, 1985). 
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Quite similar ERA has been recorded for verbal stimuli presented either 
through auditoryorvisualchannels(e.g., Brown, Marsh, &Smith, 1973,1976, 
1979; Johnston & Chesney, 1974; Kostandov & Arzumanov, 1977; Kutas and 
Hillyard, 1980; Matsumyia, Tagliasco, Lombroso, & Goodglass, 1972; Neville, 
Kutas, & Schmidt, 1982a,b; Roth, Kopell, & Bertozzi, 1970). Components 
occuring earlier than 100 ms failed to be modified by the use of verbal vs 
non-verbal material (Matsumyia et al., 1972; Roth et al., 1970 ); instead they 
seemed to be linked to the stimulus significance; task involvement; etc. ERA 
differences reflecting discrimination between the noun vs verb meanings of 
the same word, are encoded in components as early as N150 and may extend 
up to P230, N 400, etc. (Brown et al., 1976,1979; Johnston & Chesney, 1974). 

N150 and N400 have been shown to correlate with the semantic 
processing of verbal material (Brown et al., 1976; Kutas and Hillyard, 1980; 
Neville et al., 1982a). N400 appears predominantly over left and anterior 
locations, whereas positive waves predominate over right and posterior sites 
(Brownet al., 1979; Nevilleet al., 1982a). Thiselectrophysiological asymmetry 
was further stressed by its absence in congenitally deaf adults as accurate as 
hearing subjects in visually identifying words (Neville et al., 1982b). 

Verbal N400thatseemssimilartonon-verbal N2 (seeRitteretal., 1982) may 
constitute an important step in a semantic analysis performed throughout a 
controlled process; the guidance at each processing stage provided by both 
the results attained at the previous levels (e.g., those reflected by N150) and 
previous learning. 

Verbal analysis built up on such an expectancy controlled process may 
favor good semantic perception (McCallum et al., 1983; Rocha, 1985; Rocha 
& Rocha, 1985) as soon as necessary to explain speech shadowing at very 
short latencies (Marslen-Wilson, 1978), as well as to explain the agreement 
between EEG activity despite visual or auditory presentation of verbal stimuli 
(compare, e.g., the results of Brown et al., 1979 and Neville et al., 1982). It 

must be remembered that in this late case, ERA components of important 
semantic decisions may occur before the word end and that in many other 
instances, semantic perception may occur even without full word recognition 
(e.g. Kostandov & Arzumanov, 1977). The fact that late positive components 
(latence greater than 700ms) are recorded for unexpected long words and late 
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negative shifts in the EEG activity appearfor semantically inappropriate words 
(Kutas&Hillyard, 1980) futher supportsthislineof reasoning. 

The findings of Molfese (1 978) about voice onset time (VOT) analysis point 
also to the hypothesis of a progressive oriented processing of verbal 
information, from the brainstem to cortical areas, paralleling the analysisfrom 

the phonological to the semantical levels. At the one side, Molfese (1978) 
identified three distinct factors in the EEG activity (latencies ranging from 80 

to 485 ms) related with VOT changes. Besides this, he observed an active and 
balanced involvement of both hemispheres, the right side also participating in 
the distinction between voiced and unvoiced stimuli. At the other side, it is 
possible to performe a suitable VOT analysis at subcortical (at least at the 
thalamic) level. The recorded, well timed, cellular activity were different 
between voiced and unvoiced sounds at different cells and at different stages 
of processing. Many of the cells exhibited feature distinguishing patterns, 
either responding only in case of voiced or unvoiced sound stimuli. 

It isassumed that speech perception isthe result of a progressive, oriented 
process begining with a phonological analysis taking place at the brainstem 
up to bilateral hemispheric areas. The phonological recognition prompts the 
system to both early and late semantic decisions based on predominantly left 
hemisferic activity. At low levels phonological analysis is devoted to phonetic 
pattern recognition leading to word characterization, whereas at high levels, 
it is related to the aspects of sentence intonation involved with given vs new 
information decisions (Rocha & Francozo, 1980). At the cortical level, speech 
processing progresses from words to phrases, and from phrases to text, as 
analysismovesfromcentral to parietal, and from parietal to frontal areas (Luria, 
1974). Thus verbal perception starts with phonological recognition, and 
continuously moves to semantic analysis of words, sentences and texts, 
passing at each subsequent stage whatever information has reached chosen 
criteria; the choice being a matter of strategy and expectation (Rocha, 1985; 
Rocha & Rocha,l985) guided by personal belief and the speech cohesion. 

Up to now, the electrophysiological approach to such a process reached 
just the sentence level, because it devoted its attention onlyto the EEG activity 
related specifically to the word recognition in the context of the phrase. The 
next necessary step is the study of the phrase recognition in the context of a 
text or dialogue (Rocha, 1982; Rocha, 1985), and additionally the building up 
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of the text level. The results presented in this paper are quite innovative in this 
respect. 

RECALLING THE TEXT 

Any text or dialogue has a theme or subject, and a rheme or what is said 
about thetheme (Sgall et al., 1973; Rocha, 1983; Rocha 81 Rocha, 1985). For 
instance, the theme of the previos section text could be "Brain activity during 
speech perception", and its rheme accepted as "is founded over an 
expectation guided process". However, individual expectations flavors speech 
decoding according to personal histories; conceptions; culture; etc. 
(e.g.,Oleron, 1980; Olson, 1980). Because of this, the same text or dialogue 
undergoes, in general, distinct decodings if manipulated by different people. 
For example, this same text above could be understood as "Electrocortical 
activity during speech perception" (Theme) "has definite components" 
(Rheme). The first of the above decodings above could be performed by 
people involved with expectancy studies, whereas the second one will arise 
probably from t hose researchers working with electrophysiology. 

Each reader (speaker) organizes the incoming informations according to 
his (her) expectation inordertogetthesubject (Theme) of thecommunication 
andthe message (Rheme) aboutthissubject (Sgall, etal, 1973; Oleron, 1980). 
This strategy privileges those phrases and words related with the presumed 
Theme and Rheme. If expectation is initially low, the same strategy may take 
place as the reading (or listening) and the build up of the text comprehension 
progress (Luria,1974; Washabaugh, 1980; Rocha, 1985; Rocha & Rocha, 
1 985). 

Although different people may have different understandings of the same 
speech, their decodings must speek about some commonalities, unless the 
communication is nonsense. The possible mean understandings of a given 
speech (text) by a specific population of speakers (readers) may be obtained 
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by calculating the possible mean graphs for the familly of fuzzy graphs of the 
individual speech ortext decodings. 

In the case of the present research, a text about the country’s dependence 
on foreign technologywas taperecorded, and played to subjects having their 
EEG recorded. Afterthe recording session, the volunteers recalled the text by 
writting; pointed outthe intended theme and rheme, and organized the recalled 
text intoafuzzygraph according to the relationsshare bythe recalled phrases 
in defining the chosen text theme and rheme. 

The statistical analysis of these fuzzy recalling graphs revealed 3 possible 
mean decodings in our population of volunteers (Rocha & Greco, 1987). The 
dominantdecodings (by 65Ohofthesubjects) werethosedefined bythe phrase 
1 and 2 speaking about the huge difference between the budget applied on 
scienceandthe money spent onforeigntechnology purchase, and by phrases 
5 and 6claiming that science does not receive the backing required to avoid a 
huge external dependence on technology. The third possible understanding 
was that embeded in phrases 9 and 10 saying that Brazil faces the problems 
imposed by a narrowed mind technocracy deciding on how to apply money 
on science and technology research. Phrase 7 relating the necessity to fund 
science according to the pressure put by foreign trade was never included in 
the recalled text. Phrase 4 refering to the foreing technology used by the 
Brazilian Oil Company in one of its most advertised product was recalled by 
almost 70% of the people, however it was considered louselly connect with the 
most frequent decoded themes and rhernes. 

The brain activity recorded during the text hearing was highly correlated to 
thesemeandecodings becausethephraseprobabilityinthe recalled textswas 
linearly correlated to the EEG amplitude and variation recorded at frontal, 
central and parietal sites (Rocha & Greco, 1988). 

Thevolunteers were asked to assign the degree of correlation (Group A) or 
confidence (Group B) that they judged the information at each node of the 
fuzzy recalling graph might share with the decoded themehheme or may 
receive from them. The purpose of the present paper is to investigate the 
possible correlation between the brain activity during the text decodification 
and the two fuzzy measure of uncertainty associated to the text 
comprehension. 
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METHODS 

The text published by a newspaper was recorded by a Brazilian native 
speaker. Then it was inspected todiscloseany stuttering, hesitation, etc. This 
inspection was based on both a careful listening of tape by different people, 
as well a visual analysis of the oscillogram display of the text. 

Thetextwas playedtwicewithin45 min. inasoundproof room,touniversity 
students while their EEGs were recorded. The sound was delivered by two 
loudspeakers placedtwo meters infrontofthevolunteer; volume was adjusted 
according to the subject’s preference. Ag-AgCI electrodes were placed over 
each hemispheres(atC4, P4, F4and C3, P3, F3 respectively), and were referred 
to earlobes. Cut-off frequences were .1 and 50H2, and the time constant was 
0.3s. Impedance was kept below 5Kohm measured at 400Hz. The EEG 
recordings were fed into the electroencephalograph together with a filtered 
version of sound (cut-off frequencyof lOHz), used to localize the EEG epochs 
corresponding to each phrase heard. The EEG and phrase time marks 
identifying the beginning of each phrase were stored in an Apple compatible 
computerforfurther procesing. The storage was accomplished by amplifying 
the EEG to the + 2.5mV range and sampling it at 1 OOHz and 8 bits. 

Between listening sessions, individuals recalled the text and pointed out its 
theme and rheme. Then they were asked to put the phrase they judged to 
belong toTheme(l) apart from those judged to relate with Rheme(R). In the 
sequence, they joined the phrases according with the best intended relations 
to concludeforT or R. This allowed the construction of graph of the recalled 
text (RT), describing those associations of information leading to the 
conclusion of the ideas embodied in the text understanding (Greco, Rocha, & 
Rocha, 1984; Rocha & Greco, 1987). 

The phrases of the recalled text were located at the terminal nodes of the 
graph according to the importance they were assumed to have defining T and 
R. The relations between phrases judged as responsible for the deductions of 
T or R were preserved by the relations between nodes expressed through the 
arcs. The nodes between the root and the terminals are named 2nd, 3rd, etc. 
ordernodes,and representthe partial deductionsleading toTand R. Thegraph 
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was construed by one of the authors to express the relations disclosed by the 
volunteer, and received the approval of the volunteer at each step of its 
construction. 

20 volunteers (Group A) assigned to each node the degree of correlation 
between the information representated at that node and the text T/R. The 

confidence degree associated with each node was studied using 20 other 
subjects(Group B). Afterthesecond listening session, subjectswere permitted 
to modify any of these early statements. 

Thestatistical analysisofthedata (Grecoetal., 1984; Rocha& Rocha, 1985) 
disclosed the mean text decodifications by our population, the most frequent 
themes and rhemes, as well as the most important associations between 
phrases and T/R (Rocha & Greco, 1987). 

The measure used to study the brain activity during listening the epoch of 
each phrase wasthe area underthe corresponding EEG trace. This area was 
calculated by rotating the EEG negative components around the EEG mean 
value for the entire epoch, in order to allow the areas of the negative 
components to be added to that of the positive waves. The rotation around the 
mean value eliminated the influences of any very slow wave on the calculation 
of the area. 

The area under this rotated EEG trace was calculated by summing the 
area between each two sampled points, and then divided this totally by the 
epoch duration to furnish a mean EEG area (A) for each phrase. This meas 
area A measures the mean instantaneous variation of the EEG activity during 
the entire epoch concerned with a given phrase. The variation coefficient (CV) 
was calculated as the division of the standard deviation by the above mean. 

Two coefficients, Ca and Cv, of asymmetry between the left and right 
activities were calculated as 

Ca = AUAR 

Cv = CVUCVR 
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that is, as relations between the mean areas and the coefficients of 
variations for right and left recordings. These asymmetry coefficients may 
disclose hemispheric dominances. On the one hand, a Ca greater than 1 may 
imply a better performance of the left side, and Ca smaller than 1 may signify 
a right dominance. On the other hand, Cv greater than 1 may imply an EEG 
amplitude variation at the left side greater than at the right hemiphere. Similar 
coeff icientswerecalculated between Frontal and Parietal, Frontal and Central, 
and between Central and Parietal sites, for each hemisphere. 

Any possible correlation between the above truth values (confidence and 
correlation) and the EEG activity was studied using linear regression and 
correlation analysis of the truth values and all these assimetry coefficients. 

RESULTS 

The statistical analysis of the data revealed that both the correlation (Cor) 

as well as confidence (Con) degrees assigned to the recalled phrases were 
linearly correlated with the brain activity associated with the phrase decoding 
during the first listening session, but not with the same activity registered 
during the second listening session. However, the volunters after the second 
listening task modified the initial written recall only in somevery excepcional 
instances. 

The general picture that has appeared in this kind of research (Greco & 
Rocha, 1987; Theoto et al., 1987) is that the volunteer decided during the first 
listening session, such that the second listening is used just as a confirmation 
of first expectations. Only on rare ocasions did the second listening task cause 
changes in the volunteers mind, but provoked only minor adjustments of the 
first decoding. This is true even in the case of very poor initial recalls. The 
trend isforthe volunteertocontinueto believeonthefirst understanding even 
if the text was badly understood. 
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Correlating the phrases and the text 

The degree of correlation (Cor) between the recalled phrases and the 
themelrheme decoding had its dependence on the hemispheric assimetry 
coefficients calculated for both the Area (A) and Coefficient of Variation (CV) 
obtained for the Frontal (AF, VF) , Central(AC, VC) and Parietal (AP, VP) 
records, described by the following multiple regression equations: 

Cor = 127 -.25 * AF -.87 * AC -.17 * AP -.8 * VC 
R = 93% and P = 0% 

Cor = 132 -.20 * AF -.99 * AC -0.0 * AP -3 * VC 
R =  74%and P = 11% 

Cor = -89 + .70 * AF + 1.8 * AC -.21 * AP -.9 * VC 
R = 26% and P = 84% 

(3) 

Thecorrelation coefficient change from 26% to 93% and the probabilityfor 
the null hypothesis ranged from 84% to 0% from Equations 3 to 1. Equation 
2 was obtained when the all recalled phrases were taken into account for the 
caculus. Equation 1 was obtained when phrase 4 - loosely connected to the 
decoded themeslrhemes, but highly frequent in the written recall due to a 
massiveTV advertising -was disregarded in all the recalls in which it occured. 
Finally, Equation 3 was calculated the same as Equation 2, but including also 
a null correlation degree for the never occuring phrase 7, and for all recalled 
phrases. These 3 different calculations were done to investigate the 
interdependece between text cohesion, Cor and the brain activity. The 
stepwise regression analysis confirmed the hypothosis that phrases 4 and 7 

were not correlated to the correlation degree, since their values were the only 
ones encounterd outside the confidence range. 
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It is possible to conclude from the above results that Cor increased as the 
dominanceof the left hemisphere is reduced when the mean area of the EEG 
was considered in the frontal, central and parietal areas and when the 
coefficient of variation was taken into consideration at the central sites. Also, 
this dependence did not occur i f  all recalled phrases were considered 
(Equation 3), but only if those phrases highly correlated with the decoded 
themeslrhemes were used in the caculations (Equation 1) .  The Central Area 
exercised the bigest influence on the final value of Cor (Equations 1 to 3). 

Confidence in the received information 

The same calculus above were done for the confidence degrees assigned 
to the recalled phrases by people of the Group 6: 

Con = 326 -7.4 * AF + 1.8 * AC -0.0 * AP -4.0 * VF 
R = .72 and P = 13% 

Con = 246 -6.5 * AF + 2.5 * AC -0.0 * AP -4.2 * VF 
R = .73 and P = 12% 

Con = 292 -5.9 * AF + 2.3 * AC -0.OA * P -3.7 * VF 
R = .74and P = .01% 

(4) 

(5) 

It is possibletoconcludefromthese results, that confidence in the received 
information is enhanced when the hemispheric assimetry decreased at the 
frontal areas and increased at the central sites. This dependence occured - 
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contrary to the results obtained for Cor - no matter the correlation between 
the recalled phrases and the decoded themes and rhemes (compare 
Equations 4,5, and 6). As a matter of fact, the best statistical results appeared 
if all recalled phrases were used and a null confidence was assigned to the 
newer occuring phrase 7 (Equation 6). The Frontal Area exercized the bigest 
influence on the final value of Con (Equations 4 to 6). 

The dependence of confidence on the cerebral activity was fuzzier than the 
dependence of the correlation degree with the EEG activity because the 
correlation coefficients calculated for Equations 5 to 6 were smaller than that 
obtained for Equation 1 .  

Correlation, confidence and activity in the same hemisphere 

Cor and Con were also correlated with the dominance coefficients 
calculated between Frontal and Central (AF/C, VF/C), Frontal and Parietal 
(AF/PVF/P), and Central and Parietal (AC/P, VC/P) areasat the same cerebral 
hemisphere. The most striking difference was observed when Cor and Con 
were compared; Cor depended on dominances established for areas located 
at the right cerebral hemisphere -this is in accordance with its dependence 
on a reduction of the dominance of the left over the right cerebral areas - 
whereascondepended on a reduction ofthedominanceoftheleft frontal area 
over the central left sites - this may agree with the fact that confidence 
augmented as dominance of the left hemisphere decreased over the right 
frontal areas and increased at the central sites. Besides this, the dependence 
of Con on the dominance of the left hemispheres was fuzzier than the 
dependence of Cor on the right dominance if the correlation coefficients in 
Equations 7 and 8 were compared. 
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The multiple regressions of these dependences were : 
Cor and the right hemisphere: 

Cor = 31 - 5 5  * AFIC + .36 * AF/P + .56AC/P + .lOVF/C -.39 * VFIP (7) 
R = 94% and P = 1% 

Con and the left hemisphere: 

Cor = 1586 -1 2 x AF/C + 8 x AF/P -1 0 x AC/P 
R = 55% and P = 6% 

No correlation was found between confidence and correlation degrees 
assignedtonon-terminal nodesand the EEG activityassociated tothe recalled 
phrases. 

DISCUSS I0 N 

The results described in the previous sections pointed to a linear 
dependence of both the correlation and confidence on the brain activity 
recorded during the first - but not in the second -text decodification, although 
the volunteers were instructed about assigning these fuzzy measures to the 
decoded information just after they had heard the text the first time, recalled it 
inwritting and constructed itsfuzzygraph. Besides this, people changed their 
minds after the second hearing session only on a very few and exceptional 
occasions. Because of this, it is possible to state that the fuzzy measures of 
the pertinence of the information to the language (correlation) and individual 
(confidence) truth sets are real psychological entities having defined 
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correlations with the brain activity during the processing of the information to 
which they are assigned. 

These observations constitute a very innovative electrophysiological 
demonstrationof a neural substrateof avery complex psychological construct. 
The data presented here indicate that when very abstract concepts such as 
fuzzy beliefs, are associated with the verbal processing, the well known left 
hemispheredominance (see, e.g., Brown et al., 1976,1978; Luria, 1974; Nevile 
et al., 1982b; etc.) is reduced by the increase of the participation of the right 
cerebral areas. This was the case for both correlation and confidence, 
although correlation seemed to be more dependent on the right hemisphere 
workingthan confidence. 

Another important finding was that many different areas did participate in 
the processing of the correlation degree, although central areas seemed to 
play the most important role in the assessement of this judgement (see 
Equations 1 and 7). Central areas had always enjoyed a special status in the 
language processing neural circuits since the pioneer observations made by 
Wernicke. The involvement of the brain concerning the evaluation of 
confidence was more restricted to the frontal areas (see Equations 6 and 8), 
a region well known by its participation in many different types of intellectual 
processing (Luria, 1974). 

Besides this, the correlation degree depended on the activity recorded at 
the central areas involved the verbal analysis at the word level, on the activity 
of the parietal circuits involved in the phrase analysis and on frontal areas 
aggregating phrases on the level of dialogue and/or text (Luria, 1974). Also, 
the correlation degree depended almost totally on the brain activity related to 
the phrasesthat had a highcohesionwiththedecoded themeand rheme. This 
was not the case when confidence was considered. The dependence of the 
confidencedegreetothe brain activitydid not change if different sets of phrases 
were taken into account in the calculus. 

This behavior stresses some important differences between the concepts 
involved in these two fuzzy measures. This behavior may also be considered 
as supporting the idea that text decoding may begin with people using their 
confidence in the information to guide the text deconding, and may then 
procede, oriented bythecorrelation between the received pieces of information 
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and thetext itself, as soon as its inital structure is captured. This is in line with 
the proposition that speech understanding is the result of a progressive 
oriented process, begining with a phonological analysis, taking place at the 
brainstem, toward a highly abstract semantic processing taking place in both 
cerebral hemispheres, with guidance reflecting both personal beliefs and 
speechcohesion(Luria, 1974; Ritteretal., 1982; Rocha, 1985; Rocha& Rocha, 
1985). 

Thefactthat nodependencewasestablished between brain activity related 
to the recalled phrases and the correlation and confidence degrees assigned 
to non-terminal nodes may be understood as a consequence of this goal 
oriented processing. Inthislineof reasoning, both confidenceand correlation 
forthese nodesareto becalculated asthe fuzzy logic structure of the decoding 
as it begins to be organised. If this is true, this building-up process cannot be 
timed during the acquisition of the data because of the EEG segmentation 
required by the statiscal analysis. This could be the reason for the negative 
results concerning the non-terminal nodes. 

The differences in the dependences established for confidence and 
correlation stress the idea that these two measures are two different 
psychological entitiesas indicated by other researches on language decoding 
in our group (Greco & Rocha, 1987; Rocha et al., 1984; Theoto et al., 1987). 
The degree of correlation - but not confidence - depended on the structure of 
the text decoding, its value increasing from the terminal nodes related to the 
recalled phrases toward the root associated with the decoded theme and 
rheme. Also, the correlations decreased from the left toward the right nodes 
(Rocha&Greco, 1987). Inaddition, thecorrelation degree- but not confidence 
-depended on a non-zero linear coefficient when its value for the proposition 
was calculated from thevalues assigned to each argument (Greco et al., 1984; 
Rocha & Greco, 1987). 

The conclusion that two fuzzy measures used on fuzzy logic have a real 
pschological and physiological existence, has very important consequences 
for the Fuzzy Set Theory by strengthening the proposition of Zadeh (1964) 
that fuzzy measures are the theoretical constructs closest to the real way 
humans reasons. Also the fact that confidence and correlation are two 
different measures of the uncertainty associated to the processing of any 
information by humans, have practical consequences for the development of 
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any system trying to simulate the human reasoning as is the case with expert 
systems. 

Curently ‘Expert Systems’ use in general just one measure of uncertainty 
(see e.g., Shortlife, 1976, Barr & Feigenbaum, 1982; Rocha et al., 1987) to 
access the plausibility of the diagnosis, and the measure used by most of 
them is similar to the correlation degree - correlation between the signal, 
symptom, etc. and the diagnosis - investigated here. The personal belief in 
the actual presence of the data is always disregarded in these systems, 
although this is one of the most important judgements perfomed by the expert 
when solving any case. 

Both fuzzy measures (correlation and confidence) must be taken into 
account in any calculus of aggregation to be used on decision making 
systems. We may accept the proposition of Yager (1987) about the use of 
Ordered Weighted Averaging Aggregation Operators in Multi-criteria Decision 
Making as an important step in this direction. The main idea here, is that 
averaging one of these measures - say confidence - during the agregation 
process (e.g., Rocha&Greco, 1987) may beguided bythe strength of the other 
measure - e.g. correlation. 
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In a mental workload experiment, subjective measurements for linguistic 
variables such as slight, moderate, and difficult, are recorded to investigate 
the predictability of the degree of difficulty associared with a task that 
contained the skill-based, the rule-based, and the knowledge-based 
components ofan operator’s behaviour. From the perspective of measurement 
theory, it was found that the measurement data have the essential properties 
of weak stochastic transitivity and weak stochastic monotonicity. From the 
perspective of Rasmussen’s taxonomy of human behavior, it was found that 
the skil l- based behavior would dominate while the rule and the 
knowledge-based behaviours would moderately influence the degree of the 
difficulty associated with a task. 
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1NTRODUCTlON 

Measurement of membership values was a controversial topic during the 
first decade or so of fuzzy set theories. Even as late as 1978, some researchers 
dared to state that" ... There is no way of determining values of membership 
functions, either rationally or empirically . .. (Watanabe, 1978)". At present, 
among most fuzzy set researchers it is an accepted fact that membership 
functionscan bedetermined empiricallyand rationally (lurksen, 1986; Zysno, 
1987; etc.). Based on these previous experimental works, we have launched 
the measurement experiments to be discussed in this paper for the 
investigation of the degree of difficulty that would be subjectively associated 
with a task that has three behavioural components. 

Mental workload 

Mental workload appears to be an elusive concept. However, whenever we 
wishtoassessthedegreetowhicha person isaffected inexecutinga particular 
task, we need to determine a measure of the amount of physical effort being 
exerted as well as the amount of mental effort required by an operator for a 
task. In current literature one finds that many different measures have been 
proposed and investigated in terms of physiological, secondary task, and 
subjective measures (Weirwille, 1979; Ogden, Levine, & Eisner, 1979; Moray, 
1982; Gopher & Browne, 1984). In our approach, we attempt to establish the 
descriptive and predictive power of linguistic (fuzzy) variables for a given task 
in mental workload experiments. 

First, ourearlier experiments in the measurement of workload (Moray, King, 
Waterton, & Turksen, 1987: Moray, Eisen, Money, & Turksen, 1987) clearly 
indicated that linguistic variables such as "slight", "moderate", and "difficult" 
used in describing components of a mental workload associated with a task 
can be measured with an individual's membership rating. 

Secondly, in his taxonomy of behaviour, Rasmussen (1983) defined three 
generic classes of behaviour such as skill-based, rule-based, and 
knowledge-based. It was suggested that skill-based behaviour would not 
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impose any mental workload since the responses to a task were internalized 
tothe pointwhere nothoughtwould be involved inexecuting a particularaction. 
Real world examples of this occur in driving a car; e.g., one does not 
consciously think about maintaining a given level of speed. 

For rule-based behaviour, it was suggested that an operator would be 
required to consult a collection of internalized "IF . . .  THEN ...I' statements in 
order to react to situations for which the operator had not developed any 
automatic response patterns ; e.g., "IFfuel low THEN go to gas station". 

For knowledge-based behaviour, it was suggested that an operator would 
undertake a response to a task situation to which he had not been exposed. 
This would involvean extrapolation of previously encountered situations to this 
new scenario. 

With such background knowledge about (i) the measurement of 
membershipfunctions, and (ii) Rasmussen's generic classification, we started 
our investigation of skill-based, rule-based and knowledge-based behaviour 
componenst of a NASA Hovercraft Simulator (Thornton, 1984). In simulation 
experiments run with this simulator, it is required that an operator guide the 
hovercraft along a track defined by its width and turbulence. The width 
parameter adjusts the track width from one and half to eight hovercraft width. 
The turbulence parameter causes random disturbances in the movement of 
the hovercraft. In addition, the track is generated from a series of sine waves. 
Thereare nine checkpoints in the course, in which rules may be executed. The 
rules consist of incrernenting the fuel level, oil level, and adjusting the oil 
pressure, as well as a combinations of these three. These rules may only be 
excuted at a checkpoint (Thornton, 1984). The rules are executed by a series 
of key presses. The hovercraft is controlled by an operator via a joystick. The 
furtheran operator pushesthe joystick forward, thefasterthe hovercraft travels 
"up" the track. Side to side motion of the hovercraft is also controlled via a 
joystick. Each time the hovercraft touches the edge of the track, an audible 
click is heard and a "wall hit" is registered. 

Forty-eight subjects were used in the experiment, none of whom had any 
previous exposure to the NASA Hovercraft Simulator before the initial training 
period. Subjects had an appropriate amount of training for the experimentally 
required combination of skill-rule-knowlegde based behaviour components. 
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STRUCTURE OF TH E EXPER I M ENT 

We will now briefly describe the skill-based, the rule-based and the 
knowledge-based components of the tracking task. 

(i) The skill-based behaviour is a continuous tracking task and requires 
an operator to guide the hovercraft between two lines. Operators 
are asked to do this with the minimum number of "wall hits" in the 
fastest possible time. The skill-based behaviour is composed of 
those actions performed by an operator which "evolve ... without 
conscious attention or control" (Rasmussen, 1983). Three levels of 
turbulence and three levels of track narrowness were considered in 
skill-based behaviour. 

(ii)The rule-based behaviourconsists basically of three rules: (1) control 
of the fuel level; (2) maintenance of the oil level; and (3) adjustment 
of the oil pressure. The first two rules are four-step rules while the 
last is a five-step rule. The rules are further sub-divided by the 
experimenter, not the subject, into three classes as "slight", 
"moderate", and "difficult" tasks. The slight, moderate, and difficult 
tasks consist of one, two, and three rules being imposed on the 
subjectduringthecourse of asimulation run. Intotal, therefore, there 
are seven possible rules, i.e., controls: (1) fuel level control, (2) oil 
level control, (3) oil pressure control, (4) fuel and oil level controls, 
(5) fuel level and oil pressure controls, (6) oil level and pressure 
controls,(7) fuel and oil level, and oil pressure controls. 

After an initial set of subjects experimented with the simulator, it became 
apparent that rule 1 (fuel level control) would be sufficiently representative of 
an easy rule that required a "slight" effort and rule 7 as a representative of a 
moderate rule, and no rule would represent a difficult task when a rule-based 
task was combined with a trivially easy skill-based task. 

(iii) The knowledge-based runs involve the inclusion of an "abnormality" 
intheexperimental run. The presenceof an abnormality is indicated 
tothesubject byaflashing baratthe bottom right cornerofthescreen 
during the run. Five knowledge-based runs are included in the 
measurement of a subject's mental workload. The first type of 
abnormalityisdefined bythelackofa malfunction inthesystem. The 
second and third types of malfunctions occur at times 80,200, 320, 
and 430 from the beginning of a run. The second type is a sudden 
drop of oil level to 2; the third type is a sudden drop of fuel level to 
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100; the fourth type is a drop of oil pressure to 0.6 at time 80, a false 
warning triggered at time 200, and the fuel level drop to 100 at time 
320, and finally, another false warning at time 430. For the fifth type 
of malfunction, the fuel valve and the oil valve are left open near the 
beginning of a run without the subject's knowing about it. The oil 
level suddenly drops to 20 at time 15 0; the fuel level suddenly 
changes to 350 at time 21 0; and finally, the oil pressure drops to 0.6 
at time 330. 

Two points should be noted here: (1) with the exception of the false 
warnings, the abnormalities have to be carefully monitored by a subject in 
order for a task to be completed successfully; (2) in all cases, the only 
indication to a subject that some thing is indeed not normal is the presence of 

the flashing bar. It is up to the subject to determine the nature of the 
abnormality. It should be recalled that subjects learned to check and control 
the oil and fuel levels during the rule-based tasks. 

TABLE 1 

Knowledge-based Runs: Membership Estimates 

Levels of Slight Moderate Difficult 
Knowledge 

Mean SD NM Mean SD NM Mean SD NM 

1 0.80 0.09 1.00 0.36 0.20 0.00 0.20 0.15 0.00 

2 0.43 0.30 0.00 0.53 0.18 0.43 0.44 0.22 0.86 

3 0.43 0.23 0.00 0.76 0.10 1.00 0.48 0.09 1.00 

4 0.53 0.27 0.27 0.44 0.10 0.20 0.40 0.26 0.71 

5 0.49 0.21 0.16 0.65 0.09 0.73 0.41 0.25 0.75 

Explanation: Means are average over six subjects 
SD - Standard Deviation, 
NM - Normalized Mean 
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Experimental design 

No repetitions are possible for the knowledge-based task. The order of 

experimental runs is based on three Youden Squares. It consists of (i) 9 

conditions by 18 subjects for the skill-knowledge matrix; (ii) 6 conditions by 
12 subjectsfor the rule-knowledge matrix; (iii) 18 conditions by 12 subjectsfor 
the skill-rule-knowledge matrix; (iv) 5 conditions by 6 subjects for the basic 
knowledge-based matrix. The results of the subjective measurement data for 
these experimental runs are shown in Table 1 ,2,3, and 4. 

TABLE 2 
Skill-Knowledge Runs: Membership Estimates 

Levels of Slight Moderate Difficult 
S-K 

Mean SD NM Mean SD NM Mean SD NM 

SK1 
SK2 
S K3 
SK4 
SK5 
SK6 
SK7 

SK8 
SK9 

0.85 0.08 1.00 0.26 
0.37 0.27 0.41 0.53 
0.31 0.27 0.34 0.56 
0.42 0.29 0.48 0.53 
0.23 0.24 0.24 0.55 
0.13 0.08 0.12 0.28 

0.08 0.09 0.06 0.28 

0.03 0.03 0.00 0.27 
0.03 0.04 0.00 0.11 

0.18 0.33 0.06 
0.19 0.93 0.43 
0.17 1.00 0.43 
0.16 0.93 0.39 
0.26 0.98 0.49 
0.14 0.38 0.50 

0.14 0.38 0.87 

0.17 0.36 0.90 
0.08 0.00 0.95 

0.07 
0.27 

0.29 
0.28 
0.30 
0.31 
0.1 1 

0.08 
0.05 

0.00 
0.42 
0.42 

0.37 
0.48 
0.49 

0.91 

0.94 
1 .oo 

Explanation: Means are average over 18 subjects 
SD - Standard Deviation, NM - Normalized Mean, 

SK1 - Skilll with KNOWl, SK2 - Skilll with KNOW3, SK3-Skill1 with KNOWS, 
SK4 - Skill4 with KNOWl, SK5 - Skill4 with KNOW3, SK6-Skill4 with KNOW5, 
SK7 - Skill5 with KNOWl, SK8 - Skill5 with KNOW3, SK9- Skill5 with KNOW5 
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SCALE PROPERTIES OF DATA 

327 

The scale properties of the measurement data need to be analyzed from 
the perspectiveof measurement theory beforeany other analysisof data could 

begin. 

Every fundamental analysis of measurement theory includes definitions of 
"weak order" and "algebraic-difference structure" and theorems of "ordinal" 
and"interval"scales. Theseessentialsare briefly reviewed here in the language 

of Krantz, Luce, Suppes, and Tversky (1971). 

TABLE 3 

Rule-Knowledge Runs: Membership Estimates 

Levels of Slight Moderate Difficult 

R-K 
Mean SD NM Mean SD NM Mean SD NM 

RK1 0.73 0.31 1.00 0.41 0.21 0.38 0.09 0.04 0.00 
RK2 0.63 0.39 0.80 0.34 0.31 0.00 0.30 0.37 0.41 

RK3 0.26 0.28 0.06 0.38 0.14 0.21 0.60 0.34 1.00 

RK4 0.28 0.23 0.10 0.53 0.25 1.00 0.35 0.28 0.51 

RK5 0.38 0.35 0.30 0.44 0.18 0.53 0.34 0.32 0.49 

RK6 0.23 0.22 0.00 0.53 0.22 1.00 0.54 0.29 0.88 

Explanation: Means are average over 12 subjects 
SD - Standard Deviation, 
RK1 - Rulel with KNOWl, 
RK3- Rulel with KNOW5, 
RK5 - Rule123 with KNOW3, 

NM - Normalized Mean, 
RK2 - Rulel with KNOW3, 
RK4-Rulel23with KNOWl, 
RK6- Rulel 23 with KNOWS, 
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TABLE 4 
Skill-Rule-Knowledge Runs: Membership Estimates 

Levels of Slight Moderate Difficult 

S-R-K 
Mean SD NM Mean SD NM Mean SD NM 

SRK1 0.30 0.10 0.40 0.60 0.00 0.70 0.20 0.10 0.03 

SRK2 0.50 0.20 0.71 0.53 0.03 0.60 0.23 0.08 0.29 
SRK3 0.23 0.08 0.29 0.45 0.05 0.48 0.33 0.18 0.20 
SRK4 0.68 0.08 1.00 0.40 0.00 0.40 0.23 0.08 0.07 
SRK5 0.35 0.05 0.48 0.80 0.05 1.00 0.28 0.03 0.07 
SRK6 0.55 0.30 0.79 0.50 0.05 0.55 0.33 0.18 0.20 
SRK7 0.25 0.10 0.32 0.68 0.18 0.32 0.45 0.00 0.36 

SRK8 0.38 0.38 0.52 0.38 0.23 0.37 0.40 0.30 0.29 

SRK9 0.13 0.08 0.13 0.35 0.25 0.33 0.58 0.03 0.58 
SRK10 0.13 0.13 0.13 0.55 0.25 0.63 0.50 0.30 0.43 

SRKll 0.30 0.10 0.39 0.53 0.08 0.60 0.55 0.25 0.49 
SRK12 0.25 0.05 0.32 0.55 0.05 0.63 0.18 0.08 0.00 

SRK13 0.25 0.15 0.21 0.40 0.20 0.40 0.68 0.23 0.67 
SRK14 0.08 0.03 0.05 0.18 0.13 0.07 0.75 0.15 0.76 
SRK15 0.05 0.00 0.00 0.13 0.03 0.00 0.75 0.05 0.76 

SRK16 0.15 0.05 0.16 0.48 0.18 0.52 0.83 0.03 0.87 
SRK17 0.05 0.00 0.00 0.20 0.05 0.10 0.93 0.03 1.00 
SRK18 0.08 0.08 0.05 0.23 0.23 0.15 0.85 0.15 0.89 

Explanation: Means are average over 12 subjects 
SD-Standard Deviation NM-Normalized Mean 
SRK1-Skill1 ,RULE1 ,KNOW1 SRK2-Skill1 ,RULE1 ,KNOWS, 
SRK3-Skill1 ,RULE1 ,KNOW5 SRK4-Skill1 ,RULE1 23,KNOWl 

SRK5-Skill1 ,RULE1 23,KNOW3 SRK6-Skill1 ,RULE1 23,KNOW5 
SR K7-S ki114, R U LE 1 23, KNO W5 SRK8-Skill4,RULEl ,KNOW3 

SRK9-Skil14,RULElI KNOW5 SRKlO-Skill4,RULEl23,KNOWl 
SRKll-Skill4,RULE123,KNOW3 SRK12-Skill4,RULE123,KNOW5 
SRK13-Skill5,RULEl ,KNOW1 SRKl4-Skill5,RULEl ,KNOW3 
SRKl5-Ski115,RULEl ,KNOW5 SRKl6-Skill5,RULE123,KNOWl 
SRKl7-Skill5,RULE123,KNOW3 SRKl8-Skill5,RULE123,KNOW5 
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Definition 1. 

Let 0 be a set and be a binary relation on 0,  i.e., is a subset of 0’ = 0 x 0 .  
The relational structure < 0 , ~  > is a weak-order iff, for all Oi,Oj, Ok, EO the 
following two axioms are satisfied: 

1 .  Weak connectedness: Either 0i 2 0 j or 0 j 2 0 i .  

2. Weaktransitivity:if 0 i Z 0j and 0 j z 0 k ,  then 8 i 2 0 k. 

It is noted that this weak-order is reflexive and asymmetric. 

Theorem 1 

Supposethat 0 isafinite non-empty set. If < 0 , 2 > isaweak-order, then 
there exists a real-valued function on 0 such that for all 0 i, Q j , E 0,0 i 2 0 

j iff @ (0 i) 2 @(@ j). Moreover,@ ’ is another real-valued function on 0 with 
the same property iff there is a strictly increasing functionf, with domain and 
range equal to Re, such that for all @i,E@,@ ’(0i) = f[@(@i)], i.e., @ is an ordinal 
scale. 

Definition 2 

Suppose that 0 is a non-empty set and 2 ’ is a quarternary relation on 0’. 

The relational structure < Q’, 2 ’ > is an algebraic-difference structure iff, 
0 i , 0 j , 0 k , 0 1 , 0 ’ i , 0 ’ j , 0 ’ k ,  and 0 ’1~0 the following five axioms are satisfied: 
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4. Solvability: If OjQi s '0IOk s 'QiQi, then there exist @'I,@\ E 0 such that 
@'I@i 2: @I& @jOI. 

5. Archimedian Condition: If 0 i , 0 2 ,  ..., 0i, ...; isastrictly bounded standard 
sequence (Oi + 10i = 0 2 0 1  for every Oi,Oi + 1 in the sequence; not 0201  = 
OlOj, and there exists 0'0" E 0 such that 0'0" 2 0i0l s 0"O' for all 0i in the 
sequence), then it is finite. 

Theorem 2 

If < O' ,  2 ' > is an algebraic difference structure, then there exists a 
real-valuedfunction4 on 0 such that, for all @i,@i,@k,@l E 0, @i@i 2 ',@iOk iff 
@(@j)-@( 01) L @(@I)-@(@k). 

Moreover, Q, is unique up to a positive linear transformation, i.e., if 4' has 
the same properties as@, then there are real constants a,  p, with a > 0, such 
that 4' = a 4  + p, i.e.,4 is an interval scale. 

A stochastic interpretation 

The relational structure < 0, s > is a weak-order and < 0' 2 ' > is an 
algebraic-difference structure if our subjects behave "rationally" and 
deterministically. We know from ourexperimentsthat human subjects behave 
rather irrationally and nondeterministically (Norwich&Turksen, 1984; Turksen, 
1986). Therefore, the "rationality" and deterministic behaviour assumptions 
must be put aside and all the axioms of measurement theory must be restated 
in stochastic or possibilistic terms. We will give here a stochastic 

interpretat ion. 
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There are hints in Krantz et al. (1971), in Coombs, Dawes, and Tversky 
(1970) and in Debrue (1958) for probabilistic treatments. However, our 
formulation is more general. This is done with the following definitions and 
conjectures (Turksen, 1983). 

Definition 1 ’ 

Let 0 be a set and L be a binary relation on 0, i.e., L is a subset of 0’. 
Therelationalstructure < 0, L >p isaweakstochasticorderifforall @i,@j,@k, 

E 0, the following two axioms are satisfied stochastically above a probability 
threshold p: 

1 .Weak Stochastic Connectedness: 

Either P(Oi L Oj) L p or P(Oj L Oi) L p where P(0i 2 Oj) isthe probability 
that 0i will be in relation L to 0i. It is defined as: 

P (0i 2 0j) = lirn(ni(0i 2 @j)/n), n -  c*, (1) 

where nl is the number of trials in which a subject states that Oi 2 Oj and n 
is the total number of trials, i.e., 

At times it is clearly not possible to obtain a large number of observations. 
In such cases one has to be satisfied with a small number of observations. 
This is part of the reasons why we might have to resort to a possibilistic as 
opposed to a probabilistic interpretation. 
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2. Weak Stochastic Transitivity: 

If P{@i P Oj} 2 p and P{@j > @k} 2 pthen P{@ 2 @k} Z p. 

Conjecture 1’ 

Supposethat Oisafinitenonemptyset. If < 0, 2 >pis aweakstochastic 
orderthenthereexistsa randomvaluedfunctionQp on 0 such that for all Oi,Oj 

2 0: P(0i z Oj} 2 p iff P {4p(Oi) 2 @p(Oj)} 2 p. Moreover, 4’p isanother 
random valued function on with the same property iff there exists a strictly 
increasing function f with domain and range equal to Re, such that for all 0 

E 0: P {WP(0) =f[@p(@)]} 2 p, i.e., 4 p  is a stochastic ordinal scale. 

Definition 2’ 

Suppose 0 is a nonempty set and 2 ’ is a quaternary relation on 0, i.e., a 
binary relation on 0’. The relational structure < a’, 2 ’  > p is a stochastic 
algebraic-difference structure iff, Oi,Qj,Ok,01,0’i,O’j,O’k,0’i (( 0 and for all 
sequences 01,02, ..., 0i ,... E 0 the following axioms are satisfied 
stochastically above a threshold probability p: 

1 .  < O’, P ‘ > is a weak stochastic order. 

2. Stochastic Sign reversal: 
If P{@j@i 2 ’  @I@k} 2 p 
then P{@k@I 2 ’ @i@j} 2 p. 

3. Weak Stochastic Monotonicity: 
If P(0jOi 2 ’ O’jQ’i} 2 p and 
P{@k@j 2 @’k@\} 2 p, then 
P {&@I 2 @’k@’i} 2 p. 

4. Stochastic Solvability: 
If P{OjOi 2 ’01Ok 2 ’  QOi} 2 pthenthereexistO’i,O”i E Osuchthat 
P{@’I@i 2 Q @ k  > @j@”l} 2 p. 

5. Stochastic Archimedian Condition: 
This means the probability that “no interval is infinitely large with 
respect to any smaller one whose jnd, ‘just noticeable difference’, is 
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not zero"isgreaterthanorequa1toa probabilitymeasure p. In other 
words the imprecise concept in going from Oi to Oj can only be 
exceeded by a finite number of successive jnd gains starting at Oi is 
larger than or equal to a probability measure p. 

Conjecture 2' 

If < O', z > isastochastic algebraicdifference structure, then thereexists 
a random valued function @p on 8 such that, for all @i,Oj,@k,@l E O,P{OjOi 

L '  @ I & }  L p iff P{@p(Oj)-@p(@i) 2 @p(@l)-@p(@k)} 2 p. Moreover, @p is 
uniqueuptoa stochastic positivelineartransformation, i.e., if @Ip hasthe same 
properties as @p, then there are real constants a ,  p, with a > 0, such that 
P{@', = a% + p) 2 p, i.e., 4p  is a stochastic interval scale. 

It is to be noted that the computations of the left hand sides of all the 
inequalities in Definitions 1 ', 2' and Conjectures 1 ', 2' are to be interpreted in 
accordance with the probability calculus and the classical rules of inference. 

Based on these definitions and conjectures, it could be further argued that 

(i) the weak stochastic transitivity, and 
(ii) the weak stochastic monotonicity 

are the essential minimal requirements for measurement data to have 
stochasticinterval scale property. Underthese rather minimal conditions, if the 
response data passes the weak stochastic transitivity test, then we can be 
confident, at level p, that the data is at least on a stochastic ordinal scale. It 

can be observed that the experimental data satisfies the weak stochastic 
transitivityattheminimal level of p 0.68 = 562/816. (SeeTable 5). As it can 
beobserved, thetest issatisfied forthe"s1ight" and "difficult" descriptors of the 
behaviour components. The "moderate" descriptor is inferred from these. 

Next, if the response data passes the weak stochastic monotonicity, then 
we can be confident, at level p, that the data is at least on a stochastic interval 
scale. It can be observed that the experimental data satisfies the weak 
stochastic monotonicity at the minimal level of p 2 0.5 (see Table 6). 
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TABLE 5 
Weak StochasticTransitivity 

Membership No. of 3-point Proportion of 
Curves Ordered Combinations Satisfying Cases 

Slight Knowledge 
Difficult Knowledge 
Slight S-K 
Difficult S-K 
Slight R-K 
Difficult R-K 
Slight S-R-K 
Difficult S-R-K 

10 

10 

83 
83 
20 
20 

81 6 
81 6 

loll0 
loll0 

81 I83 

81 I83 
17/20 
17/20 

562181 6 

59218 1 6 

TABLE 6 
Weak Stochastic Monotonicity 

Membership No.of Test points Proportion of 
Curves Satisfyingcases 

Difficult S-K 

Slight R-K 

Difficult R-K 

Slight Knowledge 5 
Difficult Knowledge 5 
Slight S-K 5 

5 
5 
5 
5 

5 

5 

5 
5 
5 
5 
5 
5 

5 

416 

316 
12/18 

9/18 
1011 8 

loll 8 
11/18 

1311 8 

711 8 
10/18 

loll 8 
911 8 
611 2 
711 2 

511 2 
711 2 
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These results, thus, suggest that we have a reasonable ground to proceed 
with other analyses of data such as curve fitting at the confidence level of 0.5 

asa minimum. 

SlGiu'iFiCANCETESTS 

Analysis of variance (ANOVA) is used to investigate the significance of the 
response data with respect to the test conditions, the subjects and the 
interactions between the two. For example, as for the knowledge-based runs, 
a one-way ANOVA was evaluated for both the subjects and the experimental 
conditionswith respect tothethe three (slight, moderate, and difficult) levesof 
knowledge-based behaviour. 

The results show that the null hypothesis that "there are no differences in 
responses due to individual subject differences" could not be rejected for the 
firsttwo levelsof knowledge-based behaviour, i.e., fortheslight and moderate 
levels. However, the results of the third level, i.e., difficult knowledge-based 
behaviour, show that different subjects perceived the difficulty of this 
knowledge-scenarioquitedifferently (p < 0.05). This result may be explained 
by the use of different strategies in the execution of the difficult knowledge- 
based task by different subjects. 

On theother hand, thereseemsto be some difference in the experimental 
conditions with respect to the moderate knowledge-based task while there 
appears to be nodifference fortheslight and difficult knowledge-based tasks. 
This means that all subjects rated the five knowledge-based trials equally in 
their assessment of slight and difficult knowledge-based tasks. 

The interaction effects between the different parameters of the 
experimental data are also investigated by the use of two-way ANOVA's. The 
resultsof the interaction between theskill and knowledge-based tasks indicate 
that the interaction is higher fort he easier levels of skill-knowledge combination 
tasks and drops as the task gets more and more difficult. 
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Whereas the interaction effects between the rule and knowledge-based 
tasks indicate that no interaction really occurs for the rule-knowledge 
combination. Finally, a three way ANOVA test amongst subjects, tasks and 
degree of membership types show that neither the subject-task nor the 
subject-diff iculty intercations are significant. 

Curve fitting 

We have investigated some simple models that are built with the inclusion 
of eithertheunion, orintersectionofthe behaviour components. These models 
take the following forms: 

(i) for skill-knowledge based combinations: 
f(s,k) =als+a2k+asU(s,k) +c  
f(s,k) = a ls  + a2k +asl(s,k) + c 

(ii) for rule-knowledge based combinations: 
f(r,k) =alr+a2k+asU(r,k) + c  
f(r,k) =alr+ak+asl(s,k) +c;and 

(iii) for skill-rule-knowledge based combinations: 
f(s,r,k) =als+anr+ak+a4U(s,r,k) +c  
f(s,r,k) =als+azr+ak+a4l(s,r,k) + c  

wheres,r,k, referto theskill, rule, and knowledge based componentsof the 
behaviour, U and I refer to union and intersection operators, respectively, and 
al, a, as, a4 and c are parameters that are to be estimated by a regression 
analysis. 

All possible regression models were studied using the conjugate pairs of 
the four well known t-norms and t-conorms, i.e., 
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(1) Max(a,b) = a V b, 
Min(a,b) = a A b; 

(2) sum(a,b) = a + b, 
Prod(a, b) = ab; 

(3) Bold union (a,b) = a V b, 
Bold intersection (a, b) = a A b; and 

(4) Drastic union = a V b if a A b = 0 
1 otherwise 

Drastic intersection = a A b if a V b = 1 
0 otherwise 

The results of the regression analysis can be summarized as follows: 

(i) For the skill-knowledge based models, all of the ANOVA results give 
F-values which indicate that the regression equations are significant 
beyond the p=0.005 level. The multiple linear correlation 
coefficients indicate remarkably good fits. The drastic intersection 
model seems slightly better than the rest of the models. 

(ii) For the rule-knowledge based models all of the ANOVA results are 
insignificant even at the p > 0.10 level. Multiple regression 
coefficients are relatively low. This can be attributed to the number 
of observations ratherthan a bad fit. Again, the drastic intersection 
operator model seem marginally better than the other models. 

(iii) For the skill-rule-knowledge models all of the ANOVA results are 
significant well over the p = 0.005 level. All the multiple regression 
coefficients are remarkably good. In this case there is no clear 
indication for an operator to be a better fit. 
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TABLE 7 

Linguistic Rules for the Prediction of the Mental Workload 

Row 
# 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 

Component of a task Mental Workload 
Skill 

S 
S 
S 
M 
M 
M 
D 
D 
D 

S 
S 
S 
S 
S 
S 
M 
M 
M 
M 
M 
M 
D 
D 
D 
D 
D 
D 

Rule 

S 
S 
S 
M 
M 
M 
S 
S 
S 
M 
M 
M 
S 
S 
S 
M 
M 
M 
S 
S 
S 
M 
M 
M 

Knowledge 

S 
M 
D 
S 
M 
D 
S 
M 
D 
S 
M 
D 
S 
M 
D 
S 
M 
D 
S 
M 
D 
S 
M 
D 
S 
M 
D 
S 
M 
D 
S 
M 
D 

Predict ion 

S 
M 
M 
M 
M 
D 
D 
D 
D 
S 
S 
D 
M 
M 
D 
S 
S 
M 
S 
M 
M 
M 
M 
D 
M 
M 
M 
D 
D 
D 
D 
D 
D 

S =Slight, M = moderate, 0 =difficult 
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LI NG Ul STlC I NTE R P R ETATl ON 

339 

Alinguistic interpretation ofthetaskcan be based upon the results obtained 
from the models and the accuracy of these models. One such interpretation 
of the relationships found in this study is given in Table 7. The entries of Table 
7 are based on the means of the raw data, combined over subjectsfor each of 
the runs. The results listed agree with our common sense predictions based 
directly on the observations of the raw data. The linguistic variables such as 
slight ( S ) ,  moderate (M), and difficult (D), describe a state of the behaviour 
components such as skill, rule, and knowledge-based depending on the levels 
of each as well as describing a state of the mental workload affecting a subject 
operating under the combined set of task conditions. (Please note the 
definitions of the terms stated at the end of Table 7.) 

Each row of Table 7 should be read as a linguistic rule that predicts the 
mental workload under a given set of task conditions. For example, rule 16, 

i.e., row 16, should read as: 

IF the predominant state of the skill-based component of a task is described 

AND the predominant state of the rule-based component of a task is described 

AND the predominant state of the knowledge-based component of a task is 

THEN the predominant state of the mental workload should be predicted as 

as SLIGHT, 

as SLIGHT, 

described as SLIGHT, 

SLIGHT. 

Forthesecond example, rule 33, i.e., the last row should be read as: 

IF the predominant state of the skill-based component of a task is described 

AND the predominant state ofthe rule-based component of a task is described 

AND the predominant state of the knowledge-based component of a task is 

THEN the predominant state of the mental workload should be predicted as 

as DI FFI C U LT, 

as MODERATE, 

described as DIFFICULT, 

DIFFICULT. 
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A similar linguistic rule interpretation should be given to all the remaining 31 
rules. 

In reading these 33 rules, one needs to interpret the linguisitc connective 
"AND" as the simultaneous occurence of the stated components of behaviour 
for a given task. A closer look at 26 of these rules (excepting 3, 1 1 ,  17, 18, 19, 

21, and 27) however, revealsthat the prediction of the mental workload can be 
obtained by taking the linguistic descriptor which has the maximal linguistic 
variable in t he weak ordering of t he liguisticvariables S ,  M, D, which are ordered 
as S < M < S.  For example, the outcome of rule 24 is: 

D (Me ntal Workload) 
= MAX {M(Skill), S(Rule), D(Knowledge)} 

Forthese 26 rules, in general, we could state that 

L(Menta1 Workload) 
= MAX {L(Skill), L(Rule), L(Knowlegde)} 

where Lstandsfor the linguisticvariable 

For the next 5 rules, i.e., rule 3, 1 1 ,  17, 19, and 27, the predicition of the 
mental workload can beobtained bytaking the linguistic descriptor which has 
the minimal linguisticvariable in the weak order S < M < D. For example, the 
prediction of the mental workload for rule 27 can be found as: 

M(Menta1 Workload) 
= MIN {L(Skill), L(Rule), L(Knowledge)} . 
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For these five rules, prediction can be found in general as: 

L(Menta1 Workload) 
= MIN {L(Skill), L(Rule), L(Know1edge)) 

Finally, rules 18 and 21 require individual expressions asfollows: For rule 18, 
we can state: 

M(Menta1 Workload) 
= NEITHER [S]  NOR [D]. 

For rule 21, we can state: 

M(Menta1 Workload) 
= MAX {M(Rule), MIN S(Skill), D(Know1edge)) . 

CONCLUSIONS 

In summary, therefore, the majority of predictions can be obtained with a 
MAXselectionoperatorand afewofthemcan beobtainedwitha MINselection 
operator while some predictors have rather particular and unique selection 
operatorsthat identify thedominant component in the prediction of the mental 

workload. 

We can also observe that in twenty of the twenty-seven combinations of 
rules that included the skill-based behaviour, i.e., rules 1, 4, 5, 7, 8, 9, 16, 17, 
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19,22,23,25,26,27,28,29,30,31,32, and 33, the linguistic descriptor of the 
skill-based behaviour also appears as the descriptor of the predicted mental 
workload. It is in this regard it can be stated that in Rasmussen’s taxonomy 
of human behaviour, the skill-based behaviour would dominate while the rule 
and knowledge-based behaviour components would moderately influence the 
degree of difficulty associated with a task. 
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A FUZZY SET MODEL OF LEARNING DISABILITY: 
IDENTIFICATION FROM CLINICAL DATA 

J. M. HORVATH 

Fort-Hayes State University, Kansas, USA 

In the field of learning disability, mathematical modeling of individual 
theoretical orientations has not been highly successful. Precise modeling of 
internal structures is difficult because clinicians are more accustomed to 
practicing their diagnostic and prescriptive skills ratherthan articulating their 
thought processes. Until accurate models of learning disability can be 
developed and debated in the literature, consensus about what constitutes the 
handicapwill be delayed. 

Another factor is that traditional mathematical techniques are usually the 
toolsofchoice in theattemptstoquantify human thought. Zadeh (1973, p. 28) 
believes this is so because: 

At present, most of the techniques employed for the analysis of 
humanistic, i.e., human centered, systems areadaptations of the 
methods that have been developed over a long period of time 
for dealing with mechanistic systems, i.e., physical systems 
governed i n  the main b y , t h e  laws of mechanics, 



346 J.M. Horvath 

electromagnetism, and thermodynamics. The remarkable 
successes of these methods in unraveling the secrets of nature 
and enabling us to build better and better machines have inspired 
a widely held belief thaf the same or similar techniques can be 
applied with comparable effectiveness to the analysis of 
humanistic systems. 

Pragmatism is one of the reasons that scientists, mathematicians, and 
philosophers historically tried to  explain human thought through the 
mathematics of astronomy and physics. There are also philosophical 
justifications. Rosenfield (1968, p. 205) states: 

In the transition from animal to human automatism, we have 
endeavored to show how the general mathematical mechanics 
of the early seventeenth century passed into the Cartesian 
mechanistic physiology, and how that scientific principle in turn 
penetrated the general thought of the eighteenth century until it 
culminated in LaMettrie's total elimination of all non-mechanical 
forces from his philosophic system. Psychology had become 
physiology, and such it remains in the behaviorist school of today. 

Psychology was not the only discipline affected. George (1973, p. 1) 

equates cybernetics with behaviorism, states that cybernetics regards human 
beings and animals as essentially very complicated machines and declares: 

The title of the book, The Brain as a Computer, is intended to 
convey something of the methodology involved; the idea is to 
regard the brain itself as if it were a computer type of control 
system, inthe beliefthat by sodoing weare making explicit what 
for some time has been implicit in the biological and behavioral 
sciences. 

Another philosophical justification for mechanistic mathematical systems 
has to do with the preference for objectivity over subjectivity. This preference 
is supposed to be more in keeping with the tenets of "science." Given this 
rationale, it is not hard to see that objectivity in the form of empiricism became 
paramount for any effort to be considered scholarly and thereby respected. 
Subjectivism was relegated to virtual nonexistence. Consciousness had 
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becomeanenigma. Intuition and insight could be explained away immediately 
as unscientificand not worthy of consideration, reason could be explained as 
nothing more than an "adding and subtracting of names for that which is 
sensibly experienced," sense experience could be explained as "simply a 
motion in the nerves," and the will as "simply the last phase, before overt 
action, in any conflict of opposing incipient notions" (Hall, 1956). Even 
consciousness has now been explained in mechanistic fashion. Asmonov 
(1 967) describes consciousness as attention generated by an amplified 
stimulus in the form of electrical activity moving from one model to another in 
the cortex. The "mind" construct of Descartes has been increasingly 
superceded by the "body" entity. Thus, technical activity seemed to be come 
an end in itself. Mumford (1970, p. 95) describes the climate by stating: 

From Descartes' time on until the present century, to all but the 
most penetrating minds in science, a "mechanistic" explanation 
of organic behavior was accepted as a sufficient one. And as 
machines became more lifelike, Western man taught himself to 
become in his daily behavior more machine-like. This shift was 
recorded inthechanging meaning oftheword"automaton"which 
was used in English as early as 161 1. At first this term was 
employed to describe autonomous beings with the power to 
move alone; but it soon came to mean just the opposite: a 
contrivance that had exchanged autonomy for the powers of 
motion "under conditions fixed for it, not by it" (New Oxford 
Dictionary). 

Anextlogicalstepistoequatequantificationwith analysis. Bergman (1957, 
p. 67) states: 

In itself quantification isof course no more a magic key or cure-all 
than is axiomatization. If the material available warrants it, then 
its advantages are indeed incomparable. To bring out clearly 
why this is so is the task of the philosophical analyst. But how 
much of it the material warrants is a question not of principle but 
of strategy, on which the philosophical analyst of science cannot 
advise its practitioners. The matter is one of tact and judgment, 
the sort of thing one must have at his fingertips. Another cause 
of all the stridency in favor of quantification lies, I think, in the 
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social climate, of late the behavior sciences have become the 
basis, or the alleged basis, of professions whose numerous 
members are rapidly acquiring managerial power and who, for 
better or for worse, aspire to even more. Such aspiring groups 
are in need of prestige symbols. The white coat of the medical 
man is one; the mathematical formula is another. 

DIFFICULTY WITH TRADITIONAL MATHEMATICS 

lfthe human brain mirrored mechanistic mathematics, articulation of human 
thought would already have been accomplished. Systems which can predict 
the motions of bodies, deal in nanoseconds, and analyze probabilities with an 
accuracy and precision which once was considered to be just short of 
miraculous should be expected to be sophisticated enough to deal with the 
human brain. So far, mechanistic mathematical systems have proven 
unsuitable to the task. Zadeh (1 973, p. 28) explains it in the following way: 

The conventional quantitative techniques of system analysis are 
intrinsically unsuited for dealing with humanistic systems or, for 
that matter, any system whose complexity is comparable to that 
of humanistic systems. The basis for this contention rests on 
what may be called the principle of incompatibility. Stated 
informally, the essence of this principle is that as the complexity 
of a system increases, our ability to make precise and yet 
significant statements about its behavior diminishes until a 
threshold is reached beyond which precision and significance (or 
relevance) become almost mutually exclusive characteristics. It 
is in this sense that precise quantitative analysis of the behavior 
of humanistic systems are not likely to have much relevance to 
the real world societal, political, economic, and other types of 
problemswhichinvolve humanseitheras individualsor in groups. 
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Zadeh (1 975) later included human thought in his definition of humanistic 
systems. 

Precision is sacrificed for relevance in humanistic systems because the 
complexity of the real world forces humans to think not in numbers or sets, 
but by manipulating classesof objects in which thetransitionfrom membership 
to nonmembership may be gradual ratherthan abrupt. Degree of membership 
in the category learning disabled is one example. Instead of manipulating 
numeric variables by precisely defined, sequential mathematical operations, 
humans can manipulate both numeric and linguistic variables in parallel to 

reducecomplex phenomena systematically to approximate characterizations. 
Thissummarizing ability allows humansto wal k, understand distorted speech, 
read, drive a car, play chess, decipher sloppy handwriting, search for lost 
objects, exclude irrelevant information in making decisions, and give 
weightingstodata in using it in meaningful ways. So instead of taking a mass 
of preselected data, sequentially comparing each bit of datum against all the 
others to make yeslno decisions, and drawing precise, but possibly 
insignificant answers as mechanistic systems such as computers do, the 
human system selects the information it will use, reduces it to a trickle, 
summarizes it, and manipulates it todraw relevant, but not necessarily precise 
conclusions. 

Computer scientists and systems engineers have long recognized that 
people can understand and operate uponvague, natural language concepts. 
Computers, however, are extremely rigid and precise information-processing 
systems. This inherent rigidity severely limits a computer’s ability to abstract 
and gene rat ize fundamental conceptual functions when traditional 
mathematical systems are used. 

Real world considerations also force a reexamination of the objectivity 
which isthesinequa nonof manysciences. While theimportanceof objectivity 
cannot be denied, subjectivity is inherent in human thinking. It is what makes 
us humanand should bevalued. Huchings(l964, p. 160) criticizesthosewho 
woulddesiretoeliminatesubjectivity infavor ofobjectivity in thefollowing way: 

FrancisBacon (1561-1626), Lord Chancellorof England, wasone 
of the most influential writers of his day. He stressed the need 
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for facts, which he thought could be collected, then passed 
through a sort of automatic logical mill to give the results. This is 
anover-simplificationof scientific inquirysince it takes noaccount 
of what is, after all, the most important and most difficult part of 
scientific investigation-use of judgment. How does the scientist 
choose hisfacts inthe first place? Bacon's method simplycannot 
be applied in practice since facts are infinite in number. Some 
guidance can be obtained by those who follow in the footsteps 
of others in observing the success or failure of previous acts of 
choosing but, in the last resort, the man of science must use his 
own judgment. 

Kaiser (1974, p. 3) puts it succinctly when he says: "The 'objectivity' of 
science has led investigators away from a valuable source of knowledge and 
has imposed the single dimension of objective data on man's epistemological 
investigations." 

Insum, traditional mathematical techniqueswere not developed to capture 
the vagueness or fuzziness involved in human thought. Human thought is 
characterized by both preciselydefined logic and variableswhich mayor may 
not be precisely defined. These variables may take a numeric or linguistic 
form, depending on the complexity and the importance of the task involved. 

THE SEARCH FOR MODELS 

Two requirementsfor articulating human thought about learning disability 
became apparent. The first is that the model had to have the capability of 
capturing human thought. The second is that the model had to facilitate 
articulation through an iterative process. Articulation is a process in which a 
person "talks through" an orientation. Besides fuzzy set theory, Bayesian 
revision of subjective probabilities and interpretive structural modeling were 
considered. 
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Bayesian Methodology 

Kaiser (1974, p. 4) describes the method asfollows: 

Bayesian methodology provides a means of mathematically 
incorporating the hunches of specialists into the probability of 
a given event. The statistics parallel closely the procedures man 
uses intuitively in dealing with his milieu. Rather than saying one 
hypothesis is false and another is not false, Bayesian statistics 
ask what are the probabilities of the alternate hypothesis. In 
addition to the determination of the probabilities of the alternate 
hypothesis, Bayesian statistical procedures incorporatethe prior 
information which is available to the specialist because of his 
professional experience. 

Novick (1975, p. 377-378) believes that the Bayesian methodology is 
superior to traditional statistical methods because two major problems are 
solved. He states: 

The major problem with both Neyman-Pearson and Fisherian 
classical statistics is that neither system makes it possible to 
construct direct probability statements about the parameter of 
interest. Using classical statistics, we can talk about the 
probabilityof a random interval coveringthe mean, but wecannot 
talk about the probability of the mean being within a specified 
interval. This seems very peculiar indeed. We are not to be 
permitted to make statements about these things that are the 
subject of our investigation. This is an unsatisfactory state of 

affairs. What we want is a system that permits us to say: "The 
probability that the unknown proportion is greater than @I and 
less than @2 is 1 -d." But to make probability statements about @, 

we must have a probability distribution for @. In Bayesian 
statistics such a distribution is possible and meaningful and 
indeed is the central objective of a statistical investigation. 

Asecond problem with classical procedures is that they provide 
no mechanism for incorporating into the statistical processing 
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prior information we may have about the parameter. Basicallywe 
must ask whether it is reasonable to evaluate evidence from an 
experiment while ignoring other available information extraneous 
tothe particular experiment. Upon reflection, thisdoes not seem 
unreasonable. 

It is the second problem which is of concern in this consideration of human 
thought or opinion. The Bayesian method may be thought of as a rule for 
modifying or revising opinion expressed as probabilities in light of new 
evidence. The process begins by having an expert witness estimate what he 
considers to be the probabilities of a given set of events. These are known as 
prior probabilities, i.e., the stateof knowledge priortoobservationsof a specific 
event or condition. The next step is to make an experimental observation and 
to estimate its conditional probabilities. These conditional probabilities are 
thencombinedwiththe prior probabilitiesto yield a posterior probability, which 
may be thought of as a revised estimate after the observations have been 
made. In light of new evidence, the posterior probability becomes the prior 
probability and the process is repeated if the observations are independent. 
This process may be repeated as long as new information is available. 

An example may be illustrative. Assume that one wants to know the 
probabilitythat the condition of learning disability (LD) exists in a given child. 
An expert believes that the prevalence of LD is five percent (5%). This five 
percent is a prior probability. In his experience with the school-aged 
population, theexpert findsthatfifty percent (50%) ofthoselabeled LD and ten 
percent (10) of those labeled nonlearning disabled (NLD) exhibit a 
characteristic called "A," These are the experimental observations or 
conditional probabilities. What if the child under observation exhibits"A?" Is 
that child LD? The Bayesian technique can give a probability estimate with 
simple calculations. The formula is as follows: 
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Where 
P(LDA) is the posterior probability, i.e., the probability that the child is LD 

P(LD) is the prior probability, Le., the prevalence of LD in the school-aged 

P(NLD) isanotherpriorprobability, i.e.,theprevalenceof NLD intheschool 

P(ALD) is the conditional probability, i.e., the probability that "A" will be 

P(ANLD) is another conditional probability, i.e., the probability that "A" will 

when he exhibits"A' 

population 

population 

exhibited if a child is, in fact, LD 

be exhibited, given the fact that the child is NLD 

Now it can be stated that if a child exhibits"A," the probability that the child 
is LD is .21 and the probabilitythat the child is NLD is 1 .OO minus .21 (1 .OO - .21 
= ,791. 

Theexpert next observesthatforty percent (40%) ofthoselabeled LD exhibit 
characteristic'Wandten percent (10%) ofthoselabeled NLDexhibitthissame 
characteristic. The previous posterior probability (assuming that "A '  and "B" 
are independent) obtained from the equation (.21) now becomes the prior 
probability and the data is applied to the formula: 

P(LDIA&B) =(.4) (.21)/ {( .4)  (.21) + ( . I )  (.79)) 

It can now be stated that if a child exhibits both "A" and "8," the probability 
thatthechild isLDis.52and theprobabilitythatthechild isNLDisl.OO minus 
.52 (1 .OO - .52 = .48). 

This process could go on indefinitely. As many characteristics as a 
theoritician desired could be considered if the characteristics were 
independent of each other. There is even some evidence (Lichtenstein, 1972) 
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to show that the Bayesian methodology is robust enough to withstand 
nonindependence. 

It is reasonable to assume that the Bayesian method would be even more 
useful if measures of the characteristics could be incorporated. Fortunately, 
Bayesian methodologycan be used with continuous (e.g., test score) data as 
wellasdiscretedata. Intheexamplecited above, the method assumesdiscrete 
data and makes no provision for degree of severity of each Characteristic. If 
each characteristic is continuous ratherthan discrete, consider Figure 1 .  

Characteristics"C'and"D" in Figure 1 have been measured by separate test 
instruments. Each abscissa represents the scores on a measure of one 
characteristic and each ordinate representsthe frequencies of scores. On the 
first graph in Figure 1, the distributions of scores for the hypothetical 
characteristic "C" are plotted for both the LD and NLD sample. The shaded 
area represents the area of overlap or commonality. The second graph is a 
similar plot for the hypothetical characteristic "D." The question concerns a 
child whose score places him in the shaded area. Is that child LD or NLD? 

If characteristics which an expert believes to be indicative of LD were 
measuredandtheir distributionsfor LD and NLDchildren wereobtained, then 
for each score of each characteristic, a likelihood ratio (LR) could be 
established. This would bethe ordinate oft he score distribution for LD children 
divided bytheordinateofthedistribution for NLD at the abscissa value forthe 
score in question. Figure 2 presents a graphic representation of the likelihood 
ratio. 

At the score of fifty (50) for characteristic"D," the likelihood ratio would be 
calculated as follows: 

LR =RT/ST 

Foranyscore, alikelihood ratiogreaterthan 1 .OO indicatesthat LD children 
have that score more often than NLD children. If the likelihood ratio is less 
than 1 .OO, NLDchildren havethat score moreoftenthan LDchildren. Toobtain 
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f 

Scores 
Characteristic “C” 

f 

scores 
Charactolistic “D” 

FIGURE 1 

Representative plots of continuous data for LD and LD on two different 
measures 
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Scores 
Characteristic "D" 

FIGURE 2 

Graphic representation of likelihood ratio. 

a probability estimate for LD, the Bayesian technique dictates that one or 
more scores be obtained for a child in question, the likelihood ratio for each 
score be calculated, and these likelihood ratios be subjected to the following 
formula: 

P(LD IC,D,E,F) = L R ~  n LR I ( L R ~  n LR) + 1 

Where P(LDJC,D,E,F) is the probability of LD given the characteristics 

C,D,E,F, 

LRo is the prior odds ratio (in this example 5% of the school-aged 
population is presumed to be LD and 95% is NLD, hence LRo = 
.05/.95) 

IILR the product ofthe likelihood ratios--thelikelihood ratio forthe set 
offourdata(C,D,E,F) observed (if theobservationsarestatistically 
independent) 
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Then, if LRc = .07, LRD = 1.5, LRE = 10.2, and LRF = 4.5, thecalculation 
of the probability of LD for the child is as follows: 

P(LD I C,D,E,F) = (.05/.95)(.07)(1.5)(10.2)(4.5)/ 

/(.05/.95)(.07)(1.5)(10.2)(4.5) + 1 = 

= 2.54/3.54 = 0.72 

It can be said that a child who earned the scores depicted above on 
instrumentsdesigned to measure hypothetical characteristics "C," "D," "E," and 
"F' had a probability of .72 of being LD. 

The above discussion illustrates the concept of applying Bayes' rule to a 
group of test scores. But before that can be done, certain mathematical 
requirements must be satisfied. Thedistributions must bestandardized sothat 
comparisons are compatible. One approach is to model the test score 
distributions bythe beta distribution. The steps are as follows: 

1. Rescale the scores into the range 0--1 

2. Use those transformed scores toobtain the beta distributions, each 
of which is assumed to have a beta density of: 

2 -~ 2 where n = (1 -X)/sx {x (1 -3 -sx } 
m = xn/(l - x )  
and p (m,n) is the beta function 

3. Calculate the likelihood ratios 



358 J.M. Horvath 

4. Apply the formula to obtain a probability 

P(LD I C) = LRo n LR / (LRo n LR) + 1 

When this standardization has been completed, one need only look in a 
table to find the likelihood ratio for a score and then apply it in the formula 
shown in step four above. 

Whilethe Bayesiantechnique is useful for identificationof learning disabled 
children, a median estimate does not elicit the intuitive insights, wisdom, and 
knowledge of each clinician. The method is not designed for articulation of 
mental processes. Another problem with applying Bayesian methodology or 
traditional mathematical methodstothe identification of children with learning 
disability isthat each child is presumed to be learning disabled or nonlearning 
disabled. The Bayesiantheorem yieldsa probabilityestimate. What if learning 
disabilitywere thought of as an entity in which the change from membership 
to nonmembership was gradual rather than abrupt? In that case, any 
characteristics and severity of those characteristics would interact to 

determine the degree of handicap of each child. For purposes of illustration, 
consider a continuum in which there are degrees of severity of neurological 
dysfunction (LD is thought to be included in this group). One end of the 
continuumcould belabeled "classic cases"and theother end could be labeled 
"perfectly neurologically functional". Each child would then be placed at some 
point on this continuum. Of course this example is only illustrative and 
simplistic becauseother handicapping conditions are not taken into account. 
A continuum model may be more indicative of the understanding of learning 
disabilitysince cliniciansappearto prefer different cut-off point would bethose 
called learning disabled; on the other side of the cut-off point would be those 
who would be called normal, or something else. Because clinicians have 
specified prevalence figures for learning disability from one percent to over 
thirty percent (Lerner, 1985), credence is lent to the notion that learning 
disabillyresultsfrom an interaction between the number of characteristics and 
the degree of severity of those characteristics. If learning disability is thought 
of as a range of degrees of dysfunction, then probabilities become less useful 
than a deception of a point on the continuum where an individual falls. 
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FIGURE 3 

Block diagram of interpretive structural modeling process, adopted from 
Warfield (1 974) 
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Interpretive Structural Modeling 

Another promising approachtothequestion of interaction between number 
of characteristics and degree of severity is interpretive structural modeling. 
Farris and Sage (1975, p. 153) describe the technique asfollows: 

Interpretive structural modeling is a tool which permits 
identification of structure within a system. The system may be 
technical, social, medical, or any system which contains 
identifiable elements which are related to one another in some 
fashion. The system may be large or small in terms of elements; 
and it is in the larger, complex systems which benefit the most 
from interpretive structural modeling. 

Thecharacteristic which these complex systems have in common 
isthat each hasa structureassociated with it. That structure may 
beobvious as in the managerial organization of a corporation, or 
it may be much less obvious as in the value structure of the 
decision maker. In the physical sciences, structure is most often 
articulated in the form of mathematical equations. In the 

behavioraland social sciences, structure is usually not articulated 
in such a clear fashion. Whether articulated or not, the structure 
of a system must be dealt with by individuals and groups. The 
interpretive structural modeling process transforms unclear, 
poorly articulated mental models of systems into visible well - 

defined models. 

Because the human brain is severely limited in dealing with complexity 
(problems involvinga significant number of elements and relationsamong the 
elements), mental models of phenomena tend to be muddy and piecemeal 
(Waller, 1975). In interpretive structural modeling, the term "mental model" 
means the mental picture that a person holds regarding the relationships 
among the elements of a system. Examples of interpretive structural models 
(Warfield, 1974) are: block diagrams, flow charts, and the or ganization of 
books such as Organizations (March and Simon, 1958). Because interactive 
computer programs have been developed, it is possible to structure complex 
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relationships so that mental models can be transformed into clear, precisely 
defined, well-organized documentation. 

The process is represented graphically in Figure 3. In this method, a 
complete knowledge of content is not necessary. If a specialist knows the 
relationships among the elements, structuring may take place. 

Waller (1975) applied this process to the analysis of the learning disabled 
child. The first step was to replace a mental model with a matrix model. A 
specialist describes or is given the elements (content) of a system. The 
specialist in the Waller study was a learning disability teacher. She was given 
as a system the thirteen categories (elements) of the Kirk and Kirk (1971) 

psycholinguistic diagnostic paradigm. The thirteen categories were: (1) 

auditory reception, (2) visual reception, (3) auditory association, (4) visual 
association, (5) verbal expression, (6) manual expression, (7) grammatic 
closure, (8) auditory closure, (9) sound blending, (10) visual closure, (1 1 )  

auditory sequential memory, (1 2) visual sequential memory, and (13) visual- 
motor coordination. 

The number assigned to each was used in the construction of a binary 
matrix. This wasdone by asking theteacherto consider a particular child and 
answer a series of questions until the relationships concerning the 
psycholinguistic process of that child were completely specified. Examples 
of questions were the following: Is the child weaker in auditory reception (1) 

than visual reception (2)?; Is the child weaker in auditory reception (1) than 
auditory association (3)?; Is the child weaker in auditory reception (1) than 
visual association (4)? 

Questions such as these were asked until the matrix was completed. An 
affirmative answer on the part of the teacher was coded as 1 and a negative 
answerwascoded as0 (hencetheterm binary matrix). The matrix for one child 
is presented in Figure 4 . 

From this matrix, a digraph (directed graph) was constructed. This is 
shown in Figure 5. Since elements 1 , 2 , 4 ,  5,10, and 12 had an equal number 
of negative responses, and more negative responsesthan anyotherelernents, 
it was concluded that the teacher believed that this particular child 
demonstrated strengths to the same degree in elements 1 , 2 , 4 , 5 ,  10, and 12. 
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1 2  3 4 5 6 7 8 9 10 11 12 13 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

- - 
0 0 0 0 0 0 0 0 0  0 0 0 0 

0 0 0 0 0 0 0 0 0  0 0 0 0 

1 1 0 1 1 0 1 1 0  1 1  1 1  

0 0 0 0 0 0 0 0 0  0 0 0 0 

0 0 0 0 0 0 0 0 0  0 0 0 0 

1 1 1 1 1 0 1 0 1  1 1  1 1  

1 1 0 1 1 0 0 0 0  1 1  1 0  

1 1 0 1 1 0 1 0 0  1 1  1 1  

1 1 1 1 1 0 1 1 0  1 1  1 1  

0 0 0 0 0 0 0 0 0  0 0 0 0 

1 1 0 1 1 0 0 0 0  1 0  1 0  

0 0 0 0 0 0 0 0 0  0 0 0 0 

1 1 0 1 1 0 1 0 0  1 1  1 0  
- - 

FIGURE 4 

The matrix for one child. 

Similarly, element 11 had the next highest number of negative responses, 
element 7 was below that, and so on. The process is much more complicated 
than this when the relationships among elements are more complex (Warfield, 
1973). An example of what could happen, given complex relationships, is 
shown in Figure 6. 

The interpretive structural model is simply the substitution of written 
statements or labels for the number codes. This has been done in Figure 7 for 
the Waller (1975) study. 

This method can be used toestablish a profile of each child’sstrengths and 
weaknesses according to a particular theoretical framework. Data tempered 
by experiential judgment may be included in the model, leaving those who use 
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FIGURE 5 
Digraph of LD child. 

the method to formulate a m r e  precise personal mental model, i.e., 
establisha moredefiniteand completeset of relationshipsamongtheelements. 

FIGURE6 

Example of a complex Digraph. 
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Auditory 

Reception n Visual Reception 

Visual Verbal VlSUAl ViKUAl 

Association Expression closure Sequential 

Hemory 

G r m a t i c  cloaure 

Audltory;ssocintiOn I 

FIGURE 7 
An interpretive structural model from the Waller (1 975) study. 

Interpretive structural modeling seems to have value as a way to structure 
relationships among theoretical elements for purposes of making general 
diagnoses. In the Waller (1975) study, however, a glance at the test results 
alone might have precluded the use of the interpretive structural modeling 
technique. It is a time consuming technique which is not designed for gaining 
an understanding of the meaning of the content of a theory. In complex 
systems, computer assistance is necessary. The method would be more 
useful if diagnosis could be done directly instead of using the categories of a 
diagnostic instrument. The diagnosis by interpretive structural modeling may 
be less useful, however, than that bythe instrument itself because the digraph 
can not specify the quantitative relationships of the instrument. Interpretive 
structural modeling allows one to structure complex relationships into a 
computer program, but does not aid understanding of these relationships. 
Nonclinicians without extensive theoretical background can successfully use 
this technique in dealing with individual children, but the results are not 
generalizable. 
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Fuzzy Set Theory 

Human thought processes can be captured and quantified, as stated by 
Korner (1966, p. 35): 

Classical elementary logic, i.e., the logic of unanalyzed 
propositions of quantification, rests on the requirement that all 
classes definable within it be exact, i.e., do not admit of neutral 
candidates for membership. This does not mean that inexact 
classesare, therefore, incapable of precise logical treatment. An 
impreciselogicwould beacontradiction interms. A preciselogic 
of inexact classes is not. It is obvious that once we extend 
elementary logic by allowing inexact classes, not only the 
algebra of classes, but also its theory of quantification will be 
affected. 

For we then have to allow the quantifiers to range over inexact 
extensions; and allow propositions which express that an object 
is a neutral candidate for membership in a class. 

Fuzzy set theory is a way to capture that uniquely human process. More 
complete descriptions of the model may be found in Kaufmann (1975), 
Bellmanand Giertz (1973), Zadeh (1971), and Nowakowska (1982). 

Fuzzy sets may be thought of as classes in which the boundaries are not 
sharp. An example of such a class is age. At what age is one old rather than 
young? If age is thought of as consisting of those two distinct periods in life, 
one could picture these in the classical dualistic sense as shown in Figure 8. 

The problem is that humans don't operate under such precision. Sharp 
boundaries do not exist between young and old. A person who is called old 
by someone younger than himself may not be willing to apply that label to 

himself. The transition between "young" and "old," then, can be said to be a 
fuzzy boundary and could more appropriately be pictured as gradual as in 
Figure 9, rather than abrupt as is pictured in Figure 8. 
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FIGURE 8 
Young-old dichotomy. 

Theordinate representsthedegreeof membership in aclass. The abscissa 
istheageinquestion. Apersonafage"A' would besaid to have.2 membership 
in the class "young." Linguistically, this might be described as being not very 
young and not very old. 

FIGURE 9 

Age as a fuzzy set. 

In fuzzy set theory, both numerical variables and linguistic variables are 
taken into consideration. Linguisticvariables are summarized descriptions of 
fuzzy sets. Examples arethe following terms (called hedges by Zadeh, 1975): 
sort of, a little, not very, extremely, a lot of, very very, a few, quite, and more or 
less. 
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Humans manipulate both linguistic and numerical variables in conditional 
statements and algorithms. Three examples of conditional statements are: 

If x = .2, then y = .7 
If x is small, then y is sort of large 
If x is very large, y = .4. 

When the complexity of the relationships increase, algorithms are used to 
define the functions. Zadeh (1973, p. 30) speaks of this when he says: 

Essentially, a fuzzy algorithm is an ordered sequence of 
instructions (like a computer program) in which some of the 
instructions may contain labels or fuzzy sets, e.g.: 

Reduce x slightly if y is very large 
Increase xvery slightly if y is not very large and not very small 
If x is small then stop; otherwise increase x by 2. 

Some other examples of fuzzy sets are baldness, height, size, and the 
earth's atmosphere. How many hairs does a man have to lose before he 
becomes bald? How tall is tall in a person? By adding one stone at a time, 
when does the size of a pile change from small to large? At what point is 
something out, ratherthan in, the earth's atmosphere? These questions may 
be thought of as an extremely small sample of the problems that humans 
encounter in trying to conceptualize the world. Zadeh (1965, p. 338) 
summarized thedilemma by stpting: 

Moreoftenthan not, theclassesof objectsencountered inthe real 
physical world do not have precisely defined criteria of 
membership. For example, the class of animals clearly includes 
dogs, horses, birds, etc., as its members, and clearly excludes 
such objects as rocks, fluids, plants, etc. However, such objects 
as starfish, bacteria, etc. have an ambiguous status with respect 
to the class of animals. The same kind of ambiguity arises in the 
case of a number such as 10 in relation to the "class" of all real 
numbers which are greater than 1. 
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Clearly,the "class ofall real numberswhichare muchgreaterthan 
1 , ' I  or "the class of beautiful women," or "the class of tall men," 
do not constitute classes or sets in the usual mathematical sense 
oftheseterms. Yetthefact remainsthat such imprecisely defined 
"classes" play an important role in human thinking, particularly in 
the domains of pattern recognition, communication of 
information, and abstraction. 

Inexact classes may bequantified through useoffuzzysettheory(Goguen, 
1969), ageneralizationofthetraditionaltheoryof sets (Hersh and Caramazza, 
1 976). 

LEARNING DISABILITY - A  FUZZYSET 

Learningdisabilitymay bethought ofasa phenomenonorconstructwhich 
does not have precisely defined criteria for membership. The heterogeneity 
mentioned in the literature indicates a degree of complexity which defies 
precise description. Instead of defining learning disability in opposition to 
nonlearning disability as had been done in previous research (Kass, 1977), 
the condition can be defined according to theorized boundaries, with 
membershipwithin those boundaries rangingfrom mild to severe. A portrayal 
of learning disability as a fuzzy set is given in Figure 10. 

The universe of discourse is the school-aged population, represented by 
the rectangle. The concentric rings represent the condition of learning 
disability, with the outer rings depicting the milder range and the inner rings 
depictingthemoresevere range. Fuzziness isshown bythe increasing number 
of breaks ineachcircleasone movesfromthecenter outward. The innermost 
circle may be thought of as hard-core learning disabled children or "classic" 
cases. Children with mild learning problemswould be placed in theoutermost 
circle. 
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FIGURE 10 

Fuzzyset portrayal of learning disability. 

If mental models of the construct called learning disability could be 
accurately quantified, a basis for comparison and ultimate consensus about 
what constitutes the handicap and how to identify it will exist. There would 
be three advantages: (1) learning disabled children could be accurately 
identified by persons other than clinicians, (2) resources could be allocated 
proportionately to those most in need of services, and (3) scarce resources 
would be conserved through increased efficiency. 

To illustratethe advantage of quantifying a theoretical model, a clinician was 
asked toarticulate her model. The Kass (1 977) model was quantified because 
of its value in the field of learning disability. If one model could be accurately 
depicted, the value of using fuzzy set theory to quantify human thought in this 
and other educational and psychological applications could be established. 

THE PROCESS OF QUANTIFICATION 

The process of quantification can be effectively accomplished with a 
clinicianand twomodelers. First, theclinicianverbalizes her model byl'talking 
through" which data are needed for identification, the relationships among 
these data, and the importance of each datum to the model. The modelers 



370 J.M. Horvath 

record this information and then ask the clinician to weight the importance of 
thevariousdata. Formulae are constructed according tothe specifications laid 
down bytheclinician. The data and formulaeare manipulated until the results 
agree with the clinician's verbal statements. These formulae are then placed 
in several algorithms. Data from "live children" are used. When the output from 
the formulae agree with the clinician's intuitive judgments, the value of the 
membershipfunctionforthefuzzy set "learning disabi1ity"foreach child whose 
datawereused isconfirmed. Learning disabled studentscanthen be identified 
by someone other than the clinician by entering the pertinent data into the 
formulae. Finally, a quantified model of the theory in the form of a computer 
program is constructed. The complete model is available in Horvath (1978) 
and further explanation is offered in Horvath, Kass, and Ferrell (1 980). 

Five specific procedures were followed in quantifying the theory: 

1. A verbal statement of the theory was developed. 
2. Aquantified model of theverbal statment was established. 
3. A questionnaire based on the quantified model was constructed 
4. A computer program was developed. 
5. The quantified model was tested using cases. 

Verbal Statement 

The Kass model is a multidimensional age-related model of deviance in 
learning which indicates learning disability. Kass (1977) defines learning 
disability or dyssymbolia as being: 

characterized by extreme deviance in the acquisition and use of 
symbolsin reading, writing, computing, listening, ortalking; which 
deviance is due to an interaction between significant deficits in 
develop- mental functions and environmental conditions which 
makethe individual vulnerabletothosedysfunctions. 
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Fourcriteria are necessaryforlearning disabilty: Thefirst isthat the student 
inquestionshould have normal achievement potential as indicated bya normal 
or nearly normal score on a standardized test of intelligence. 

Secondly, thestudent must demonstrate behavior characteristics indicative 
of learning disability. Five types of behaviors indicate learning disability as 
follows: (1) an attending deficit is noted in confusion about the direction of 
letters and numbers, in lack of eye-hand coordination, and in not focusing on 
the task at hand; (2) a labeling deficit is noted in not remembering symbols, 
remembering oneday and not another, exhibiting confusion in whatthings are 
called, and in seeming not to have a technique for rehearsing what is to be 
memorized; (3) an understanding deficit is noted in not separatingfigurefrom 
background, not learning more than one meaning per word, inaccurate 
guessing from context, and not following directions; (4) an integrating deficit 
is noted in inaccurate performance in skills such as spelling, writing, syntax, 
and sometimes in word-calling to such a degree that remediation requires 
getting rid of bad habits; and (5) an expressing deficit is noted in difficulty in 
expressing ideas through reading, writing, and talking, not because of a lack 
of intelligence, but because of inadequate basic skills which are ordinarily 
acquired in the first few grades. 

The third criterion for learning disability is low achievement. A student who 

demonstrates low achievement earns a score at or below the sixteenth 
percentile on at least one subtest of an achievement test which has been 
standardized on a sample of the same age or grade placement. The fourth 
criterion for learning disability is evidence of component deficits within 
age-related functions. It is hypothesized that children pass through five 
stages of development called functions. Each function is qualitatively diff erent 
from th e others. This is similar to the stage theory posited by Piaget or 
Erickson. The functions are as follows: 

7.  Sensory Orienrarion. This is the physiological or functional readiness 
stage in which the child’s senses are activated. Dysfunctions in this period 
occur through deficits in body balance, visual pursuit, and auditory 
discrimination. 
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2. Memory. Occuring from the end of Sensory Orientation through 
approximately age eight, memory involves the ability to reproduce sensory 
imageswhen these are nolonger externally present. The young child imitates 
models and later recalls those imitations. To illustrate this point, consider the 
factthatchildrencan readilylearn morethanonelanguage beforeseven years 
of age. Some of the deficits which may be noted during the development of 
the Memory Function are hyper- or hypo-excitability, difficulty with rehearsal, 
and poor short-term 

3. ReCognirion. This is the understanding of semantic meaning and 
structural meanings. Sensory impressions are colored by concepts, thus 
changingearliercognition of theworld. Childrenfrom approximately age eight 
through eleven engage in word play, reflecting more flexibility in thinking than 
during the memory function, which is highly literal in nature. Deficits include 
difficulty in haptic discrimination, visual figure ground distinctions, and in 
visualization. 

4. Synthesis. This involves the habituation or automatization of previously 
learned modes of response to the environment. Observations made by the 
individual during the previous functions become compacted into internalized 
representations. Whereas sensory discriminations were learned previously, 
sensory associations must be made in the age range of eleven to fourteen. 
Deficits may appear as impairments in temporal sense, monitoring, and 
auditory-visual-ha ptic coordination. 

5. Communication. This is the process by which meanings are received 
from others and expressed to others, either consciously or unconsciously. 
Synthesized skills of speaking, writing, gestures, and reading now take on a 
personalized style, and personal responsibility is taken forthe consequences 
of what is communicated. This is the most complex of the human functions 
and involves processing what is received through one's senses and awareness 
of what one is transmitting to others. Deficits are manifested in mathematical 
comprehension, reading comprehension, and in writing. 

Fromthis base, statementsof conditionsand logical relationswere obtained 
in a series of interviews with the clinician. Throughout the procedure, it was 
necessary for the clinician to take an active part so that her model could be 
accuratelycaptured. Sourcesof information and cut-off points were included. 
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Through discussion and revision, thesestatementswere reduced to linguistic 
variables and logical relations in the context of fuzzy set theory. These 
relationshipswere depictedthrough UseofthetermsANDand OR in theverbal 
statement. Betweentwocharacteristicsorcriteria, an AND indicated that both 
charactreristics must be present for learning disability to be indicated and an 
OR meant that only one characteristic was sufficient to indicate learning 
disability. The process was iterative, intense, and depended on interaction 
between the clinician and modelers. Modeling one's thought is a challenging 
intellectual exercise. 

An example of a portion of the process will be given to illustrate the 
demands involved. The clinician stated that one characteristic of learning 
disability in t he sensory orientation function included symptoms suggestive of 
neurological disorder. After further discussion, the specific symptoms were 
stated as: excessive crying as reported by a parent, supersensitivity to stimuli 
as reported by a physician or parent, convulsions as reported by a parent or 
physician or both, regidity of body as reported by a parent, screeching as 
reported by a parent, lethargy as reported by a parent, premature birth as 
reported bya physician, high feverfor several daysas reported by a physician, 
and reverse swallowing as reported by a physician. Any one of these 
symptoms suggestsa neurological disorder. Forthat reason, an OR was used 
between each symptom to denote a suspected neurological disorder. These 
symptoms were then grouped according to the structure of the clinician's 
theoretical orientation. 

Quantified Model 

This step involved having the clinician assign membershipvalues for each 
characteristic expressed in theverbal statement. Class membership for each 
characteristic wasassigned avalue onthe [0,1] continuum, which represents 
the degree to which a child would be said to display the characteristic. All the 
input data were either judgments or specified test data, and the output was a 
value of the membership for the fuzzy set of learning disability. For example, 
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in the sensory orientation function example previously cited, the symptom of 
convulsions reported by a parent was assigned a value of ,3, convulsions 
reported byaphysicianwas .5, convulsions reported by bothwas .6, premature 
birth was . 1 ,  and so on. 

In thosecases where age influenced the membershipvalue, a graph was 
drawn which reflected that influence. For example, delay in developmental 
milestones must be evaluated month by month. The age at which the 
milestone occured determined the membership value for learning disability. 
Othervalueswhich depended on ageorotherfunctionsalso becameapparent. 
It was found that these values could be graphed as sigmoid curves or three 
dimensional unit squarefunctions. Equations were fitted tothegraphs, which 
made it easiertodetermine the membership function when given the score or 
month or other appropriate variable. Functions other than sigmoid curves or 
unit squares could also be used to depict representations of the clinician. The 
quantified model for re-cognition appears as Table 1 (Horvath, Kass, and 
Ferrell, 1980). 

TABLE 1 

The Quantified Model.for Re-cognition 

A child in the re-cognition function would be said to have indicators of 
learning disability if he 

ALL OF A. has the trait of normal achievement potential, 
shown by the symptoms of 

1. adequate intelligence, indicated by 
a. IQ score of 80 or above 
b. IQ score of 75 to 79 

c. IQ score of 50 to 74 
d. IQ score below 50 

.8 OR 

.5 OR 

.1 OR 

.O OR 
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2. adequateverbal behavior, indicated through 

) 

a. percentile (p) on a vocabulary test 

b. percentile (p) on a verbal opposites test 

c. percentile (p) on a verbal absurdities test 

d. percentile (p) on a verbal analogies test 

1/(1 + e.2(P25) 

1/(1 + e2@-25)) 

I/(I + e.2@-25)) 

) 1/(1 + e.2(P-25) 

AND B. has behaviorcharacteristicsof LD, shown by 

1. 

2. 

3. 

4. 

5. 

6. 

7. 
8. 

difficulty paying attention, indicated 
in a clinical report 
difficulty sitting still or lack of 
perseverance, indicated in a 
teacherlexpert report 
jerky, uncoordinated motor movements, 
indicated in a report 
difficulty working indicated 
in a teacher report 
not following directions, 

indicated in a teacher report 
difficulty with friendships, 
indicated in a report 
immaturity, indicated in a report 
requiring continuing medicationlspecial 
diet, indicated by a medical report 

.6 

.4 

.3 

.4 

.6 

.4 

.3  

.7 

OR C. shows evidence of component deficits within 
age-related functions, by 

1. visualization problems, indicated in a 
a. score at or below the 16th percentile 

on the Raven's Coloured Progressive 
Matrices Test .8 

b. clinical report .8 

OR 

OR 

OR 

OR 

OR 

OR 

OR 

OR 

OR 
OR 

OR 
OR 
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c. score at or below the 16th percentile 
on the WISC-R Mazes subtest .8 OR 

a. score at or below the 16th percentile on the 
AyresTactile Discrimination Test .7 OR 

b. report .8 OR 
c. score at or below the 16th percentile 

on the Benton Finger Agnosia Test .8 OR 
3. a lack of connecting visual and auditory 

symbols, indicated in a 
a. 
b. 

c. 

2. hapticdiscrimination problems, indicated by 

report by an expert of a reading block .6 OR 
report by an expert of excessive 
reliance on phonetic spelling .4 OR 
report of excessive reliance on 
auditory memoryfor sequence of 
letter names .3 OR 

4. report of a lack of visual / auditory / 
/haptic connections .4 

AND D. has the trait of significantly low achievement, 
shown by the symptoms of 

1. difficultywith arithmetic, indicated in 
a. score at or below the 16th percentile on a 

standardized arithmetic computationtest .6 OR 
b. report of difficulty with arithmetic 

computation .5 OR 
c. score at or below the 16th percentile on 

standardized test of story problems .6 OR 
d. report of difficulty with story problems .4 OR 

a. score at or below the 16th percentile on a 
standardized reading test .5 OR 

b. report of difficulty in oral reading .5 OR 
c. score at or below the 16th percentile on a 

standardized word discrimination test .6 OR 
d. teacher report of poor word 

discrimination .3  OR 

2. difficultywith reading, indicated in 
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e. scoreat or below the 16th percentile 
on a standardized test of reading 
comprehension .3  OR 

f. teacher report of difficulty with 
word meaning .2 OR 

g. clinical report of difficulty with 
outlining skills .7 OR 

3. difficultywith penmanship, indicated in a 
a. teacher report .5 OR 

4. difficultywithspelling, indicated by 
a. score at or below the 16th percentile 

on a standardized spelling test .6 OR 
b. teacher report of difficulty in spelling .6 

with this quantified model, the membership value for re-cognition can be 
determined. Each oftheotherfunctions wasquantified in similarfashion. The 
model had to be adjusted to the clinician's theoretical viewpoint that learning 
disability could not be diagnosed before the end of the sensory orientation 
function. Another adjustment had to be made because of the fact that in the 
memoryfunction and re-cognition function, lack of data in case reports make 
it practically impossible to differentiate behavioral characteristics and 
component deficits. Because of this, OR instead of AND was placed between 
thesetwo criteria in the memory and re-cognition functions. 

The clinician stated that learning disability is a lifelong handicap and 
information from previous age-related functions must be included in the final 
membership value. It was necessary, therefore, for her to specify a system 
which mandated that if the areas of writing, reading, arithmetic, spelling, 
communication, imagery, reading block, interpersonal relations, or immaturity 
were answered in the affirmative in a later age-related function, the area or 
areas would automatically be affirmed in prior age-related functions. This 
procedure was called cross-indexing. Another specification was that prior 
information had to be included in the determination of the final overall 
membership value. This was done by having the clinician specify a weighted 
system which took the membership values of the prior age-related functions 
intoaccount. 
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Questionnaire 

A questionnaire was developed which fitted diagnostic indicators into the 
four operational criteria of achievement potential, behavioral characteristics, 
age-related deficits, and achievement. For example, in thesensory orientation 
function, convulsions, premature birth, and high fever were grouped under 
achievement potential; excessive crying, screeching, lethargy, and reverse 
swallowing were grouped under behavioral characteristics; and so on. This 
made it easier for the data collector to fill out the form. Although the 
assumption is that all four criteria must be present for an at risk condition for 
learning disability to exist, it was not necessary to place OR’S between each 
characteristic and AND’S between each set of criteria. By keeping the 
questionnaire as simple as possible, data could be collected by relatively 
unsophisticated personnel, coded, and fed into a computer program. 

Computer Program 

Acomputer programwaswritten from theverbal model, questionnaire, and 
specifications elicited from the clinician. FORTRAN was the language of 
choice, but any of several languages, including BASIC, would have sufficed. 
The program hadto beabletoaccommodate assumptionsabout missing data. 

A membershipvalueforeachage-related function isgiven bythe program. 
These values represent the degree to which a child could be classified as 
learning disabled within eachfunction. A singlevalue is then generated which 
is a summary indicator of the child’s membership in the class called learning 
disabled . 
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Testing The Model 

The clinician was asked to look at either completed questionnaires or raw 
data from a number of cases and assign a membership value for learning 
disabilitytoeach. Working independently, one of the modelers took data from 
each case and fed those into the computer program, which calculated a 
membership value for each case. A comparison of the membership value 
assigned bythe clinician and that assigned bythe computer revealed that the 
quantified model matched the thought of the clinician to a high degree, i.e., 
beyond the ,001 level of significance. The statistical technique used to test 
the match was the Pearson product-moment correlation. These analyses 
confirmed that it is possible to predict clinical classification of children who 
arelearningdisabled with acomputer program whenfuzzysettheory isapplied 
as the methodology. Many cases had missing information, yet accuracy was 
still maintained. 

CONCLUSIONS 

Fuzzy set theory is a useful tool which can be used and understood at 
several levels. Because clinicians and modelers are less likely to have great 
general mathematical expertise and be well grounded in fuzzy set theory, the 
use of elementary principles of fuzzy set theory to model theoretical 
orientations in education and psychology is recommended. Although deeper 
understanding ofthe methodology may be morelikely tolead to moreefficient 
use of the technique and more accurate models, the increase in time may not 
warrant the slight gain in accuracy. The process is iterative, active, intense, 
and time-consuming. 

It is possiblefor learning disabilityexpertstoquantifytheirtheories through 
use of fuzzy set theory. As these theories are quantified, comparison and 
further refining would occur which could lead to the development of a 
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consensusdefinition about what constitutes the handicap of learning disability. 
An identification procedure acceptable to a majority of the profession might 
follow. Given this, the potential for developing remediation programs is much 
higher. The whole approach to learning disability would become more 
efficient and economical. Fuzzy set theory is not exclusive to education and 
psychology. By demonstrating the utility of usingfuzzy set theory, it is hoped 

that researchers in the other areas will also be encouraged to employ fuzzy set 
theory in their work. 

REFERENCES 

Asmonov, N. M. Modeling of Thinking and the Mind. New York: Spartan 
Books. 1967. 

Bellman, R.  and Giertz, M. On the analytic formalism of thetheory of fuzzy sets. 
InformationSciences, 1973,5, 149-1 56. 

Bergman, G. Philosophy of Science. Madison: University of Wisconsin Press, 
1957. 

Farris, D. R. and Sage, A. P. On the issue of interpretive structural modeling to 
obtain models for worth assessment. In Baldwin, M. M. (Ed.), Portraits of 
Complexity. Monograph No. 9. Columbus: Battelle Memorial Institute, 1975. 

George, F. H. The Brain as a Computer. Oxford: Pergamon Press.1973. 

Goguen, J. A. The logic of inexact concepts. Synthese, 1969, 19, 325-373. 

Hall, E. W. Modern Science and Human Values. Princeton: Van Nostrand, 
1 956. 

Hersh, H. M. and Caramazza, A. A fuzzy set approach to modifiers and 
vagueness in natural language. Journal of Experimental Psychology: 
General, 1976, 105, 254-276. 



A Fuzzy Set Model of Learning Disability 38 1 

Horvath, M. J. Anldentification Procedurein Learning Disability Through Fuuy  
Unpublished doctoral dissertation. Set Modeling of a Verbal Theory. 

Tucson: The University of Arizona, 1978. 

Horvath, M. J., Kass, C. E., and Ferrell, W. R .  An example of the use of fuzzy 
set concepts in modeling learning disability. American Educafional 
Research Journal, 1980, 17, 309-324. 

Huchings, D. W. Science in the sixteenth and seventeenth centuries. In 
Brierley, J. (Ed.). Science in its Context. London: Heinemann, 1964. 

Kaiser, C. J. Theoretical Positions and Bayesian Estimations of Learning 
Disability Specialists. Unpublished doctoral dissertation. Tucson: The 
Universityof Arizona, 1974. 

Kass, C. E. Identification of learning disability (dyssymbolia). Journal of 
Learning Disabilities, 1977, 10, 425-432. 

Kaufmann, A. Introduction to the Theory of Fuuy Subsets, Volume 1.  New 
York: Academic Press, 1975. 

Kirk, S .  D. and Kirk, W. D. Psycholinguistic Learning Disabilities: Diagnosis 
andRemediation. Urbana, IL: University of Illinois Press, 1971. 

Korner, S.  Experienceand Theory. London: Routledge and Kegan Paul, 1966. 

Lerner, J. W. Children With Learning Disabilities (4th Ed.). Boston: Houghton 
Mimin, 1985. 

Lichtenstein, S .  Conditional non-independenceof data in a practical Bayesian 
decision task. Organizational Behavior and Human Performance, 1972, 8, 

21 -25. 

March, J. G. and Simon, H. A. Organizations. New York: Wiley, 1958. 

Mumford, L. The Myrh of the Machine: The Pentagon of Power. New York: 
Harcourt Brace Jovanovich, 1970. 



382 J.M. Horvath 

Novick, M. R. Introduction to Bayesian Inference. In Blommers, P. J. and 
Forsyth, R. A. (Eds.). Nementary Statistical Methods in Psychology and 
Education. (2nd Ed.). Boston: Houghton Mifflin, 1975. 

Nowakowska, M. (Ed.) SomeProblems in the Foundations of Fuzzy Set Theory. 
Amsterdam: North Holland, 1982. 

Rosenfield, L. C. From Beast-Machine to Man-Machine. New York: Octagon 
Books, 1968. 

Waller, R. J. Applicationsof interpretivestructural modeling in management of 
the learning disabled. In Baldwin, M. M. (Ed.). Portraits of Complexity. 
Monograph No. 9. Columbus: Battelle Memorial Institute, 1975. 

Warfield, J. N. On arranging elements of a hierarchy in graphic form. /€E€ 
Transactions on Systems, Man, and Cybernetics, 1973, SMC-3, 121 -1 40. 

Warfield, J. N. Toward interpretation of complex structural models. lEEE 
Transactions on Systems, Man, and Cybernetics, 1974, SMC-4, 405-41 7. 

Zadeh, L. A. Fuzzy sets. Information Science, 1965, 8, 338-353. 

Zadeh, L. A.Toward atheoryoffuzzysystems. In Kalman, R. E. and DeClaris, 
N. (Eds.). Aspects of Network and Systems Theory. New York: Holt, 
Rinehart,and Winston, 1971. 

Zadeh, L. A. Outline of a new approach to the analysis of complex systems and 
decision processes. lEEE Transactions on Systems, Man, and Cybernetics, 
1973, SMC-3, 28-44. 

Zadeh, L. A. The concept of a linguistic variable and its application to 
approximate reasoning--I. lnformation Sciences, 1975, 8, 199-249. 



Fuzzy Sets in Psychology 
T. Z6tinyi (Editor) 
Q Elsevier Science Publishen B.V. (North-Holland), 1988 383 

TOWARDS A FUZZY THEORY OF BEHAVIOUR MANAGEMENT 

Vladimir B. CERVIN and Joan C. CERVIN, 

Cervin Associates 80, Quebec Awe., No. 609, 
Toronto, Ontario, Canada. M6P 487 

Behaviour management {EM) is identified as a set of procedures used by 
managers, experimenters, therapists, businessmen, ere. modifying or 
maintaining behaviour under given conditions. Modification is considered to 
be achieved by learning processes in the targeted individuals generated by 
BM . BM procedures are fuzzy in the sense that the particular actions to be 
taken are specified only approximately and the results are quantified in terms 
of fuzzy numbers. The theoretical conception of BM consists of fuzzy 
algorithmicspecifications of the main procedures to be executed bybehaviour 
managers to fuzzy criteria of behaviour change. 

The main procedures of BM described in terms of fuzzy algorithms are: 1. 

Elicitation of a desired responses (generalized from classical conditioning 
procedures): Learning and maintenance of responses under given conditions 
with the help of promts, modeling, instructions, teaching aids, or aversive 
stimuli {which generate defensive responses). 2.  (a) Selection of a desired 
response {generalized from operantprocedures): Learning and maintenance 
by reinforcement of responses from among those spontaneously emitted by 
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the responding individual, or (b) elimination, by associating aversive, or 
withdrawing positive stimulation, of a spontaneously occuring undesirable 
response, usually combined with reinforcement of another, desirable 
response. 

The formalized procedures are quite general and are expected to be 
applicable, at primary and secondary levels of learning with suitable physical 
or social means, respectively. 

INTRODUCTION 

Behavioural methods are now applied in an extraordinary variety of human 
activities: animal training (Breland & Breland, 1966), business (Cervin, Bonner, 
Rae, & Kozeny, 1971), engineering psychology (Cervin, 1973; Pritchard, 
Leonard, Von Bergen, & Krik, 1976), health (Bandura, 1969; Ladoucer, 
Bouchard, & Granger, 1977; Wolpe & Lazarus, 1966), hypnotic memory 
retrieval (Cervin, 1987), instructionand education (PI=& Lacks, 1976; Skinner, 
1968; Walters&Grusec, 1977), management and personnel (Hinton & Barrow, 
1975; Luthans& Kreitner, 1975; Watson&Tharp, 1972), sextherapy (Kolodny, 
Masters & Johnson, 1979), sleep disorders, (Rathus & Nevid, 1977), social 
learning (Bandura, 1977), sports (Suinn, 1979) etc. The purpose of these 
applications is to achieve a change in human behaviour by developing new 
desirable responses in familiar situations, eliminating undesirable responses, 
or maintaining lagging behaviour. These general goals of behavioural 
intervention are better subsumed under the heading Behaviour Management 
(BM), ratherthan underthe more restrictiveterm "behaviour modification". 

BM methods includethe use not onlyof "primary" physical or physiological 
means (stimuli), but also "secondary" social, linguistic and cognitive ones. 
Behaviour (responding) comprises not only physical performance but also 
imagery and symbols (Ladoucer et at., 1977), overt (speaking) or covert 
(imagining). Forexample, symbolic planningof an action isas much behaviour 
as is its physical execution. The use of imagery supplements person- 
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environment interaction by a sort of auto-interaction (Cervin, 1987; Ladoucer 
et al., 1977; Watson & Tharp, 1972). In other words, BM is conceived in very 
general terms. This paper is an attempt to subsume the variety of BM 
procedures under one theoretical roof of fuzzy algorithms in order to increase 
the effectiveness and "portability" of BM procedures. Two large classes of BM 
methods can be distinguished. 

Elicitation 

These methods that started as classical conditioning using unconditioned 
stimuli to elicit the to-be-conditioned responses to conditioned stimuli, have 
developed byanalogyand generalization into general elicitation methods that 
subsumeavarietyoftechniques, e.g., social modeling (Bandura, 1969), verbal 
prompting, or even algorithms involving complex cognitive-behavioural 
operations (e.g., in sport), and of course, aversive techniques. Aversive 
techniques (Ladouceretal., 1977, p. 91) are used toelicit, notto punish, target 
responses that may be desirable because they compete with undesirable 
responses, e.g. drinking alcohol. The function of all these interventions is to 

elicit and establish, under specified conditions, a target response, be it at a 
physical or a symbolic level. 

Selection 

The second class of behavioural methods that started as operant 
conditioning is selection of responses for establishment or elimination, by 
means of critical stimuli, such as rewards-punishments or friendly-unfriendly 
interventions. Unlike in elicitation, these stimuli are administered afterthe target 
responsetoencourageor discourage its recurrence. The target response either 
occurs spontaneouslyor, if desirable but unavailable, is first elicited by one of 
theelicitation methods, e.g., prompting.Theresponsetoa reward isof interest 
only from a motivational point of view, it must be compatible with and 
contingent upon the target response, for example, playing well and receiving 
a prize. The response to punishment is also contingent upon the target 
response and may be incompatible with it, for example, quitting smoking and 
smoking. (However, playing well and losing does happen too; this fact is a 
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reason for establishing handicaps). The target response that is selected for 
elimination iseither not rewarded or is punished and an alternative (reciprocal) 
response is rewarded. Both classes of BM methods - elicitation and selection 
- can be used in the establishment and maintenance of responses and in 
keeping out eliminated responses. 

Motivation 

BM interventions use the momentary motivation or arousal of the narrowly 
defined as momentary readiness to respond to a particular stimulus. The 
practitioner should know how and when his client gets motivated or how to 
make him so. Arousal may be based on the physiology of the organism and 
thusoccur periodically without outside intervention: a person becomes hungry 
and responds positively to food (approach, ingestion); most people would at 
alltimes respond negativelyto a pain-producing stimulus (withdrawal, anxiety). 
Primary positive stimuli induce approach in aroused people, but eventually 
continued stimulationwill reducearousal, e.g., in sex. Primary negativestimuli 
inducearousal and defense reactions, buttheir termination reduces both. Thus 
primaryor unconditional stimulican produceor reduce arousal and should be 
handled accordingly. 

Arousal may also result in response to previously learned (secondary) 
stimulicalled incentives and disincentives, which may be reproduced, withthe 
practitioner’s help, in the environment or in the client’s imagination. Arousal 
and positive reactions can be elicited by the presentation of incentives, even 
without the physical presence of the associated primary stimuli, e.g., the 
announcement that dinner is ready. Arousal and negative responses can be 
elicited by disincentives, such as threats of pain or signals that pain may be 
caused, e.g., the sight of a needle previously associated directly or vicariously 
witha painful injection. Incentivesanddisincentivescanthus be used to induce 
arousaland positiveor negative responses, respectively. In BM, incentivesand 
discincentivesareoften easierto handlethan the primarystimulitheystandfor. 
What function an incentive or primary stimulus will perform depends on the 
circumstances. For example, the promise of money is a motivator, actual 
payment is a reward; the threat of assault is a motivator, assault is punishment; 
an invitation to dinner is a motivator, dinner itself a reward; the promise of a 
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kickback isan elicitor, the kickback itself isa reward; a bribe is a motivator and 
an elicitor. A stimulus may be used as a motivator and an elicitor depending 
on the target response desired. A target response in itself may be desirable or 
undesirable. If an undesirable response competes with an even more 
undesirable response (as in some treatments of alcoholism), it is desirable; 
deliberate relaxation is desirable and can also compete with undesirable 
responses, as in reciprocal inhibition (Thomas, 1974). These relationships are 
somewhat complicated and are not often treated in BM texts, but it is useful for 
a practitioner to have them sorted out. 

Negativestimuli, by definition, can count on the presence of an appropriate 
motivation in the subject, viz. self-preservation, dislike, etc. and therefore are 
often used and misused as punishers. Positive stimuli, on the other hand, 
require the presence of relevant motivation to be reinforcing. Their 
effectivenessJherefore has to be first ascertained or established: e.g., a client 
must be hungry or "taste-hungry" to respond to the offer of food or a delicacy, 
unemployed to respond to an offer of a job, etc. If motivation can be assumed, 
e.g., in an employee or an athlete, he will be likely to respond positively to 
modeling of skills by a supervisor or coach. It is important to recall that in 
elicitation methods both negativeand positivetechniquesare used toestablish 
the elicited target response. In selection methods, negative techniques are 
used to eliminate undesirable responses, positive techniques to reinforce 
acceptable responses. 

Momentary treatment-related motivation as discussed above is only a 
means to an end and should be distinguished from a client's long-term 
BM-goal-related motivation, on which recoverydepends. Recovery is perhaps 
not the best word, because rather than being an illness treatment, BM is 
basically a problem-solving proposition. 

BM Procedures 

A distinction should be made between learning and BM. Learning and 
memory are the results of BM (although BM of course is not the only reason 
for them to occur). Historically, BM developed not from learning or cognitive 
changes studied experimentally, but from scientific method and laboratory 
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procedures used by experimenters in bringing about behavioural and cognitive 
changes in animals and men (Ladoucer et al., 1977). This interaction was 
described asa procedure-process relation between the practitioner and client 
respectively (Cervin & Lasker, 1979). 

In the laboratory, a maximum of precision and control can be achieved in 
setting up the conditions, defining the manipulations, and measuring the 
responses of subjects. BM on the other hand, is attempting to use similar or 
analogous methods under real-lifeor clinical conditionsthat introduce a great 
dealof uncertainty and fuzziness into manipulation, instructions, and response 
measurement.The laboratoryenvironment is strictly controlled; stimuli are well 
defined (e.g., syllable-pairs, lists of single words, lightsand buttons, etc.), and 
responses are exactly counted or measured (number of words recalled on 
everytrial, number of buttons pressed, etc.), which allowsthe use of non-fuzzy 
probabilitiesasresponsemeasures. lntheclinicor in reallifethis is not possible: 
everyday conditions in homes or work places change, responses and 
motivationareonlyapproximately known and even withthe best of instructions 
and client-therapist contracts, the goals are only roughly formulated and 
manipulationsand interventions approximately executed. Moreover, variability 
and fuzziness originate not only in the clients and the environment, but also in 
thetherapists, supervisors, teachers, etc., who may givethe"same" instructions 
in different ways on different occasions. 

In orderto increase the practical effectiveness of BM interventions, reduce 
avoidableerrorsand "precisiate" uncertainty in explicit terms, it seems desirable 
to pinpoint the essential general features and rationale of BM procedures and 
specify as precisely and explicitly as possible even their fuzzy aspects. The 
treatmentof proceduresis intendedto be bothgeneral and practical. The basic 
principles of thetwo classes of BM methods have been stated before (Cervin 
& Jain, 1982). What follows are explicit descriptions of the structure of the two 

BM procedures intheform offuzzyalgorithms. They embodythe essentials of 
the main proceduresand someoftheir important subsidiaryaspects. But they 
do not describe particular BM techniques, such as systematic desensitization, 
(e.g.,Cautela & Kastenbaum, 1967, Rathus & Nevid, 1977), or general BM 
methods, diagnoses, and treatments recommended for specific problems 
(Thomas, 1974). Thesearedescribed inthe relevant literature (Bandura, 1977; 
Kdodnyetal., 1979; Plax&Lacks, 1976; Wolpe&Lang, 1964; Wolpe&Lazarus, 
1966).AJthoughgeneral, fuzzyalgorithmsof BM offer procedural precision and 
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describe intheexplicit orderof handling offuzzyvariables. Onecan be precise 
in the presence of fuzziness. 

REFERENCE CASE 

Before stating the algorithms, a reference example of BM will scribed in 
orderto distil its important features. 

A coach is trying to teach his motivated pupil how to strike a forehand in 
tennis. 

0. The coach is satisfied that the learner (a) wants to learn and (b) will 
respond to his coaching, i.e., skill modeling and reinforcements. After 
explanations about the grip on the racquet, etc., the relevant stimuli are 
given: 

1. A ball is thrown, 

2. The coach hits it himself in front of the learner, accompanying his 
movements with suitable comments about the important features of the 
flight ofthe ball, the racquet movements involved, distancefrom the ball, 
the feedback that should be experienced, etc. 

3. Then the learner tries to make the stroke himself. 

2. The demonstration usually has to be repeated several times. 

3. The trials by the learner, including his evaluation of the stimulus, i.e., the 
oncoming ball, its speed, rotation, etc., are interpolated between 
demonstrations. The learner gradually begins to hit the ball more and 
morecorrectly, and the ball lands in the right court. 

4. The coach estimates the various more or less correct aspects of the 
strokes, as trials are repeated by the learner. 

5. The coach praises acceptable strokes. 

4. Gradually the more elementary aspects of strokes are no longer 
commented upon and the definition of good strokes is tightened up. 
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5. Only the better and better strokes are verbally rewarded and visually 
confirmed. The coach is using the method of approximation. 

6. Eventually the learner develops a good forehand. Thereupon this part of 
coaching is stopped. The learner then needs only periodic checkups 
(praise-correction) to maintain a good level of play. 

Analysis: Intheaboveexample, elicitation (2) and selection (5) of responses 
are used in tandem: the occurrence of the correct stroke is not left to chance 
but is elicited by demonstration (modeling). "Correct" responses (4) are 
estimated liberally at first, then the label is progressively restricted for better 
strokes to be reinforced (5). This increases the quality of strokes. 

Elicitation and selection are the two treatments administered (2 & 5) by the 
practitioner. The practitioner observes th e learner's behaviour and classifies 
(4) it as more or less "correct' or "incorrect". This definition of "correct" (4) is 
not only fuzzy but is changing as learning progresses: correct responses are 
compared with a model on a scale and the more narrowly defined "correct" 
ones chosen for praise. The definition becomes progressively less fuzzy, until 
finally "correct' strokes are those that go "in", incorrect those that go "out"*. 

The number of correct responses (fuzzy and later non-fuzzy) is noted and 
the relative frequency of correct forehand responses over all forehands in a 
game, set, or match, is computed. This determines the level of play. 

In order to describe these manipulations in an algorithmic form, they have 
to be defined in terms of the most elementary actions of the practitioner, such 
as"observeand classify", "compare and choose", "administertreatment". These 
actions will be stated in fuzzy algorithmic form. 

*In "process control" used in industry, the good parts are considered to be those that are 
"processed"correct1yduring manufacturing: if processing is correctthen the output isgood (zero 
rejects) and isnotmonitored. Byanalogy,thosestrokesthat are hitcorrect1y"must"go in. Hence 
the importance of correct technique. 
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PRACTITIONER'S OPERATIONS 

39 1 

Elementary Operations 

The practitioner will be called upon to use the following elementary 
operations while dealing with stimuli (subject's responses, events, symbols) 
and responding to them. It should be noted that the practitioner's responses 
are stimuli to the subject and vice versa. 

Observing, looking, listening, perceiving, recognizing, naming, etc., an 
event, and responding to it, forexample, the coach, seeing a learner respond, 
might say, overtlyor covertly, "He responded", or "She swung her racquet', or 
"He didn't respond correctly". Observation implies a response from the 
observer on a nominal scale ; (0 and l ) = ,  which requires a one-one 
correspondence between the event observed and its representation, e.g., its 
name. 

Classifying, testing, estimating, recording, etc., a subject's observed 
response, e.g., as correct, incorrect, or as a good approximation to the correct 
response. A rating scale between [0 and 101 and subjective judgment are used, 
for example, 0.0, 0.1, 0.2, ... 1 .O to evaluate a subject's responses, somewhat 
similarlyto judging performance in figure skating, gymnastics, etc. 

Comparing the representations of two (or more) events, for example, the 
degree of compatibility of a subject's present responses with the ultimately- 
desired responses, orthe present level of responding and that of the modeled 
response, which may represent the goal of BM. 

Choosing, selecting from a list or from a memory store of symbolic 
representations of events, the coach's action or response to be given to the 
subject'sresponse, e.g., choosingverbal praiseas a reinforcerfora responsive 
learner, or choosing a live demonstration to satisfy a subject's ambition. In a 
sense, choice is the inverse of classification: given a class of representations, 
choose an element with the help of some random or fuzzy device, such as an 
algorithm. 
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The Problem and its Solution 

Thetreatment for solution of a behavioural problem used by a practitioner/ 
coachmainlyconsistsofthedefinitionofthesituation, evaluation ofthe present 
behaviour of the subject/learner (using observation, classification) and, (a) 
demonstrating, as a prompt to the subject, the desirable behaviour (see 
Reference Case) followed by subject's/learner's attempt to imitate or execute 
the demonstrated response - hands-on learning (this part may involve 
comparing (by the coach) the learner's response with his own); and/or (b) 
arranging to give the subject an appropriate stimulus after his response 
(involving choice), for example, given a correct response by the learner 
(stimulus to the coach), the coach saying "Correct", which is a reinforcing 
stimulus to the learner. These actions constitute ordered pairs of fuzzy events, 
that is, the pairs prompt-response or response-reinforcement. 

EXPECTED SUBJECT EVENTS 

The preceding sectionsdealtwith 6M procedures practioners may use. The 
purpose of applyingthese procedures is of course to generate certain events 
in the client. The procedures and subject events and their interrelation have 
beenstudied inthelaboratoryon animals and humans, and in"real life" practice. 
Thus subject events may be assumed to happen as expected, provided the 
procedures are caref ully applied. 

Themain resultthatweexpectfromapplying BM methodsisthegenerating 
of a learning process. By learning we mean associating responses with stimuli 
with which they previously had not been associated: hitting a tennis ball 
correctly, relaxing in the face of previously anxiety-producing stimuli, 
abstaining from eating in the presence of previously "irresistible" foods, 
following rules, responding positively to previouslyfrightening social situations, 
etc. 
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Elicitation methods do not only generate reflexes, but also any old or new 
responses that can be elicited by an unconditioned stimulus, a model, a 
prompt, or instructionsinthe presenceof ato-be-conditioned stimulusthat will 
becomea'tue", atthe behavioural (i.e., reflexand instrumental responses) and 
cognitive (e.g., learning a poem) levels. Elicitation has been applied inthis way 
as long ago as the first decades of this century (e.g., Ivanov-Smolensky in the 
USSR), and is in effect the ancestor of present cognitive methods. Restricting 
elicitation to reflexes is entirely artificial and arbitrary. 

Selection methods imply that their intended function is to "select" and 
establish responses occurring spontaneously and randomly to a stimulus so 
that thenceforth they occur regularly in the presence of that stimulus, which 
then becomes a cue producing that response with a desired frequency. 

Often the two methods are combined in tandem. It may be tedious to wait 
for a desired response to occur spontaneously, as early attempts to train 
pigeons showed. Elicitation is used to produce the desired responses initially, 
so that they can be reinforced and taught in short order. Dramatic 
demonstrationsofthesuperiority of thistechnique over "pure" operant methods 
exist in the literature and in practice. Unfortunately, many people, including 
some psychologist sand psychoanalysts, stillclingtothe ideathatthe bestway 
to teach is to wait for, and then reinforce, a response; e.g., in order to teach 
experimental techniques to a student, he should be allowed to potter about in 
the laboratory on his own without any instruction; to help a mental patient, he 
should be allowed to "find" his own solution to his problems, while the analyst 
only listens and does not suggest anything; to teach a student, he should try 
to discoverthe solutions himself and then be rewarded, however long it takes. 
BM eliminates this nonsense and tries to produce results in a much shorter 
time. 

Another important already mentioned aspect of subject events is motivation. 
Some basic arousal occurs in the subject spontaneously, e.g., hunger, sex, 
etc. One of the ubiquitous motives is the search for "personal comfort", which 
includes the basic elements of lifestyle. Other motives are more idiosyncratic, 
e.g., not everyone interested in making money will take bribes or kickbacks, 
not everyone wants to devote his life to helping others (altruism motive). But 
some motivation can be created, e.g., being wined and dined or given "gifts" 
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creates some psychological indebtedness to the giver, whic.h can later be 
drawn upon. 

There is confusion in thinking about the relation between reinforcement/ 
punishment and motivation. The two are not identical but are related by 
learning. Certainstimulus conditions, including a client’s own target- response- 
produced stimuli, through learning, become signals (cues) to him that 

reinforcement or punishment is coming. The stimuli that precede the target 
response and, ips0 facto reinforcement or punishment, are also learned as 
remote cues to reinforcers/punishers. These cues are incentives and 
disincentives respectively. As mentioned above, secondary motivation created 
in the presence of incentives and disincentives is called expectation. Thus the 
cuestoreinforcement and/or punishment, i.e., incentives, although learned as 
cues, can subsequently function as motivators in selection training. In this 
respect they are different from other learned cues, which simply produce 
responses. Reinforcerslpunishers also produce responses, viz. satisfaction or 
withdrawal, but these responses per se do not play any important role in 
selection methods. In elicitation methods, however, conditioned elicitors can 
function both as incentivesfor, and as elicitors of, target responses; e.g., a call 
for dinner may awaken appetite (motivation) and elicit a response to go and 
get it (instrumental response), for which dinner is the reinforcement. These 
relationships in a client’s behaviour may be part of his problem. 

Algorithm PROBLEM 

(1) A client comes to a coach with a request to be taught a forehand for a 

(2) The coach gathers that: the client is motivated hence will follow 

(3) The coach assesses the fuzzy grade of the quality of the client’s 

fee. 

instructions and respond to reinforcement. 

stroke-making when thrown a ball, using a subjective scale of the 
features of good strokes (see Subalgorithm TARGET RESPONSE 
Figure 3, and Figure 1). 

(4) IF assessment shows low quality of strokes (few necessary features) 
THEN the coach either 

recalls and/or 
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demonstrates 
the features of correct high quality strokes which may 
also be assessed on the above scale. 

(5) The demonstrated strokes will serveas a model and a goal for the 

(6) The recalled model of good strokes will be a basis for the 

(7) The problem is a large difference between the coach’s and the 

(8) The task for BM is to reduce this difference as much as possible using 

client. 

reinforcement strategy of the coach. 

learner’s quality of stroke-making, as quantified above. 

one or all the BM algorithms; end statement of problem. 

(9) out. 

Subalgorit hm ELI ClTATl ON 

(1) The coach demonstrates correct stroke. 

(2) The client observes the demonstration and tries to reproduce the 

(3) The coach evaluates client’s stroke-making as in Subalgorithm 

(4) WHILE d is large at first but decreasing over trials 

stroke when thrown a ball. 

TARGET RESPONSE Figures 3,4 and 5. 

DO (repeat (1)-(3) 
END 

WHEN d stops decreasing 

THEN goal achieved (6) 
(5) IFthe difference d between coach’s and client’s stroke quality 

ELSE 
IF d remains large over many trials 

THEN goal elusive (6). 

(6). Stop. 
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Subalgorithm REINFORCEMENT AND PUNISHMENT 

(1)The coach observes client hitting the ball on forehand, recognises 
correct and incorrect aspects of the strokes, 

a.) praises (reinforcement) the correct aspects of responses, and/or 

b.) points out (punishment) the wrong aspects. 

TARGET RESPONSE Figures 3,6 and 7. 

decreasing overtrials 

WHEN d stops decreasing. 

quality close to 0 

(2) The coach evaluates client’s stroke-making as in Subalgorithm 

(3) WHILE d is large at first but 

DO repeat (1)-(2) 
END 

(4) IF the differenced between coach’s and client’s stroke 

THEN goal achieved (5) 

IF d remains large over many trials 
THEN goal elusive (5). 

ELSE 

(5) stop. 

Algorithm EXTINCTION 1 

(1) The coach observes and recognizes client’s bad habits and wrong 
aspects ofhis stroke-making when hitting a ball, which interfere with 
good playing, and. 

a) points them out to the client 
b) demonstrates stroke-making in the 

absence of these habits using 
Algorithm ELICITATION. 

TARGET RESPONSE Fig. 3, and Fig. 8. 
(2) The coach evaluates client’s stroke-making as in Subalgorithm 

(3) WHILE d is decreasing over trials 
DO repeat (1)-(2) 
END 

WHEN d stops decreasing. 
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(4) IF the differenced between coach’sand client’s stroke 
quality is close to 0 

ELSE 
THEN (goal achieved) (5 )  

IF d remains large over many trials 
THEN goal elusive (5). 

(5) stop. 

Algorithm EXTINCTION 2 

(1) The coach observes and recognizes some of the client’s bad moves 
in stroke-making 

a) shows the consequences of these moves 
b) but ignores the moves themselves. 

(2) The coach evaluates client’s stroke-making as in Subalgorithm 

(3) WHILE d is decreasing overtrials 

TARGET RESPONSE Fig. 3. 

DO (repeat) (1)-(2) 
END 

WHEN d stops decreasing. 

quality is close to 0 

ELSE 

(4) IFthe difference d between coach’s and client’s stroke 

THEN (goal achieved) (5) 

IF d remains large over many trials 
THEN goal elusive ( 5 ) .  

5) stop. 
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FIGURE 1 

BM problem definition: an example 

The learner has few skills at the start, the coach many (x-axis) 

The problem is to teach the learner many or all of the coach’s skills. 

The m curve describes the expected gradual improvement of the 
beginner’s initiallylow, unsatisfactory proficiencyas new skills are 
acquired. 

The coach’s proficieny is high and satisfactory on account of many skills 
already acquired. 
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Figure 2 
Algorithm FUZZY BEHAVIOUR MANAGEMENT 
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v V 
I ........................... .......................... 
I I T R Y  A N O T H E R  E L I C I T O R ,  OR I ! O B S E R V E D  R E S P O N S E  I S  T H E  ; 
I I W A I T  FOR A N O T H E R  R E S P O N S E  I T A R G E T  R E S P O N S E  ; 

FIGURE3 
Subalgorithm TARGET RESPONSE: recognition and assessment 
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D E F I N E ,  L I S T  
I flOTIVES AND E L I C I T O R S / R E : N F O R C E H S  I 

D O E S  I T  
P R O D U C E  D E S I R E D  

RESPONSE' * 

V 

FIGURE 4 

Subalgorithm ELICITORS AND REINFORCERS 

* Note: Elicitor is to produce target response, reinforcer satisfaction. 
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FIGURES 
Subalgorit hrn ELICITATION 
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FIGURE 6 

Su balgorit hrn R El N FORCE ME NT 
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Note: Cues are to be conditioned to target response, incentives to 
reinforcement. 
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I W A I T  FOR T A R G E T  R E S P O N S E  T O  R E L E V A N T  S T I N U L I  I 
( C U E S 1  

V ___________-____________________________----- 
! G I V E N  R E L E V A N T  S T I M U L I  AND TARGET R E S P O N S E ,  : 
I A D M I N I S T E R  P U N I S H N E N T  W I T H  P R O R A H I L I T Y  c I 

I M P R O V E N E N T  
I D O W N )  I N  TARGET 

V V 

! _ _ _ _ I  N E X T  T R l A L  I 

' - - _ _ _ _ _ _ _ _ _ _ ~  

FIGURE 7 
Subalgorithm PUNISHMENT 

* Note: Cues are to be conditioned to target response, disincentives to 
punishment. 
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FIGURE 8 

Algorithm SIMPLE EXTINCTION 
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SYMBOLIC STATEMENT OF FUZZY ALGORITHMS 

FuzzyAlgorifhms (FA), which describe treatment events, use "if-then, else-" 
statements where client's performance and his goal; else-" statements where 

* the "if' part, in selection methods, depends on the observation and 
classification of the subject's response, for example, "fairly good stroke"; in 
elicitation methods the "if" part is the coach's demonstration chosen from his 
repertoire; in the algorithms the"if" part is based on the difference between the 
client's performance and his goal; 

* the "then" part depends, in selection methods, on the choice of an 
appropriate response from the coach's resources, for example, praise 
(reinforcement) of thelearner's response. Intheelicitation case, the'lthen" part 
is the observed and classified response of the learner to the (coach's) 
demonstration (the learner's response, however, underlies the "if' part of the 
selection method); in the algorithms the "then" part implies "stop" if the goal 
has been achieved; 

*the relation between"if'and"then"depends on the coach's knowledge of, 
and experience with, for example, what constitutes a "good" stroke, "good" 
demonstrations, effective methods of teaching and learning; 

* the"else" part implies, in thealgorithms, "do the next indicated step" if the 
goal has not been achieved. 

* the "while" part means "do the loop", i.e., "repeat treatment", if the goal is 
not achieved but there has been some improvement in the target response; 
"else" is not specified beyond "do the next step" in the algorithm, e.g., stop, if 
the goal is elusive. 

It should be noted that the "if-then, else" statements can be extended to 
includemorecomplexcases(Cervin & Jain, 1982), for example, in theelicitation 
procedure, the"then" part depends not only on the coach's demonstration, but 
also on the learner's motivation: "lf'the learner is motivated, "and if' he sees a 
demonstration, "then" he will execute the response in question. In selection 
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procedures, reinforcement depends on the client's response, motivation, etc. 
Other extended conditional statements can be written as required. 

FA have proven useful in summarising and ordering the instructions for 
practitioners who are trying to solve (behavioural) problems for their clients. 
FA can be defined as "an ordered set of fuzzy instructions, which, upon 
execution, yield an approximate solution to a specified problem ... The 
theoretical foundation of /fuzzy theory/ is actually quite precise and rather 
mathematical in spirit ... the source of imprecision is not the underlying theory 
but the manner in which linguistic variables and fuzzy algorithms are applied 
to the formulation and solution of real-world problems" Generalizing from the 
above discussion, verbalized algorithms and flow charts of BM, symbolic 
statements of the operations entering into these algorithms will be given 
explicitly with examples. 

Observe, classify, assess: 

A client's response occurs and the practitioner receives a stimulus sa 
produced bythe client's response AC B (A isfuzzysubset of client's Behaviour 
in a BM situation). The practitioner's observation may be a simple "client 
responded" which may be assessed as (see Notation in the Appendix) 

wherem'e M' = {O,l}asetofonlytwoelements, SCCsetofallthestimuli 
in a BM situation, and S a fuzzy subset of "correct" response stimuli. This type 
of rating is known as the rating on the nominal scale {0,1} and is little more 
than labeling. 

In a BM situation, the practitionerthen proceeds to classify and assess the 
client's responses "a" generating stimuli sae S he receives, comparing sa to x 
on the scale of ratings Sc of skill features Sc = { 1,2, ... 10 } = and obtaining 
an associated membership grade m(sa C Sa ) for subset Sa - X, the fuzzy 
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subset of correct features on the scale corresponding to A, X C Sc. This gives 
the compatibility of the fuzzy subset A of observed responses with the 
statement "client is proficient". He obtains, e.g., m(sa E Sa) = 0.2, where now 
m E M = [ O , l ] ,  is the proficiency grade associated with the number of the 
corresponding satisfactoryfeaturesonthescale. Classification is thus done by 
recognizing correct features of responses by comparison with a reference 
scale.Assessment meansdeterminingthe number of correctfeaturesof Saand 
its grade m as a satisfactory response. In response acquisition, the grade is 
initially low if only a few features of a good response are in evidence, but later 
increases as the number of correct features goes up. In response elimination 
the converse is true. Examples of empirical determination of the membership 
grade m in two fuzzy subsets are shown in Tables 1 and 2. The influence on 
the ratings of "own behaviour" of the raters is very much in evidence. 

More generally, degrees of membership in fuzzy subsets of "good" 
behaviour or compatibility of observations with the linguistic or numerical 
description of satisfactory behaviour, in psychology, have been estimated by 
three main methods: 

a) Method of comparative judgment, where the rater is given a standard, 
sayacircleofacertainsize, and then isasked toguess if each of subsequently 
singly presented circles is bigger, smaller, or the same, and how many times 
biggeror smaller. The standard may be removed during judgments. 

b) Ratings: the rater may be given a visual, auditory, or other scale with 
which to compare the stimulus received. Some scales are multi-dimensional, 
suchasthoseused ingymnastics, mental healthassessment, etc. Some scales 
are ordinal and some have been refined into interval scales. 

c) Method of absolute judgment: the rater is shown a figure or presented 
with a tone, hue, weight, a speeding object etc., without any standard, and is 
asked to call the stimuli presented as large,heavy, b-flat, loud, soft, fast, slow, 
etc. lnthiscasethejudging isalsodone by comparison, as inthe abovecases, 
but the judge supplies his own private standard or scale. 

The rating'squality, i.e., reliabilityandvalidity, dependsonthe object rated, 
the rater, and hisfamiliaritywith the object rated. A large part of psychology is 
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TABLE 1 

CompatibilityValues of Statement: 
"X sleeps too much" with actual amount slept. 

Av. Hours Slept 

Hours Slept by "X" 
by "Judge" 6 7 7.5 8 8.5 9 

6.0 .5 

7.0 .6 
7.5 .7 

8.0 .9 
8.5 1 .o 
9.0 1 .o 
10.0 1 .o 
11.0 1 .o 

.3 .3 .3 .1 .2 

.4 .4 .35 .2 .3 

.5 .45 .45 .3 .4 

.55 .5 .5 .4 .5 
.6 .6 .6 .5 .7 

.7 .8 .8 .6 .8 

.9 1.0 1.0 .9 .9 

1.0 1.0 1.0 1.0 1.0 

TABLE 2 

Com pati bil ity Val ues of Statement: 

"X drinks too much coffee" with actual amount drunk 

Av. No Cups of Coffee 
Drunk by Judge 1 2 3 5  _ _  __ -  ~- - 

No. of Cups of 
Coffee Drunk by " X '  

1 

3 

5 
7 
8 

10 

12 

15 

.1 0 .4 0 

.6 .2 .5 .4 

.8 .6 .6 .5 

.9 .6 .7 .6 

1.0 .6 .7 .6 

1.0 .8 .8 .9 

1.0 .8 1.0 1.0 

1.0 1.0 1.0 1.0 

7 11 12 _ _ ~  

.1 0 0 
.3 . 1  0 

.5 .2 .5 

.7 .4 .8 

.7 .5 1.0 

.8 .7 1.0 

.9 .9 1.0 

.9 1.0 1.0 
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devoted to the study of measurement procedures under the term Theory of 
Measurement. 

Compare: 

This operation first occurs in attempts to recognize correct or desired 
featuresofaclient’s responses. Thiscan bedone bytaking pointsfromascale, 
such as Sc = {1,2,3, ... n} = given in Figure 1, or recalling a model of the 
response, and juxtaposing the observed response features with those of the 
model, much like in comparative judgment. If the response features are more 
or less independent, comparison of the response and scale can be done in a 
one-to-one correspondence, feature by feature, and the result quantified by a 
cardinal number of the subset of desired features obtained (see Figure 1). 

However, if the response features are not independent but form an integrated 
pattern or cluster of ordered elements, e.g., holding a racquet and swinging it, 
concentrating on a mantra and relaxing, then such a pattern must be 
determinedand recognizedasaunit. Forexample, a person might be ratedfor 
education level and experience: the two rated traits of the same person form 
intersecting fuzzy subsets A1 & AP. lnfuzzy set theory this is described astaking 
the MlNimum of the two sets. 

Another comparison occurs when two (or more) people are assigned 
natural numbersfortheircomparabletraits, orskills, e.g., acoach and his pupil 
may be rated one 8 and the other 2 on the skill feature scale; the comparison 
done by subtraction gives the result as 6 additional skill features to be learned 
by the pupil, if he aspires to reach the coach’s level by learning. Assuming a 
situation similar to that described in Figure 1, the result of such learning will be 
described by the associated improvement in proficiency m42) - ms(8), i.e., 
thedifferenceinthetwofuzzysubsetsSP - Sa(forcoachand pupil respectively), 
which is (Kaufmann, 1975) 

sp - sa = sp & (-Sa) 
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For example, let the number and ratings of skills be 

Sa = O.O/l + 0.3/2 + 0.1/3 (m(x C X) >3 being all 0) 
Sp = 0.9/7 + l / 8  + 0.9/9 (m(x C X) < 7 being all 1) 

i.e., fuzzy numbers centered on 2 and 8for pupil and coach respectively, and 
other corresponding numbers in the two sets being 1 - 7, 3 - 9. Then 
subtracting the two sets (taking the minima of sets Sp and (-Sa) where (-Sa) = 

(I - sa)), we get 

Sp & (-Sa) = 0.9/7 + 0.7/8 + 0.9/9 

whichcan be interpreted astheexpected improvement in proficiencythe pupil 
will have to get if he wants to reach the fuzzy level centered on 8 skills (coach's 
level). A similar result would be obtained (Kaufmann, 1975) by getting a 
Hamming distance (forthe pupil "to go") between the two fuzzy subsets. 

Choose 

Choice is closely related to decision-making, but does not necessarily 
requireconsideration of utilityof the alternatives involved. Choice may be made 
relativetosome preset requirements, asshown by Yager (1 980), whoanalyses 
several methodsof making achoice undervarious scenarios. One in particular 
is simple and suitable for BM. 

Let three attributes (At, Ap, A3) of two people (vl. and Yp) be rated in terms 
of their compatibilitywithjob requirements: 
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AI: (0.9/Y10.5/Y2) (YI is young, Y2 not so young) 
A2: (0.2/Y10.4/\(2) (YI is not experienced, Y2 hassomeexperience) 
Ad: (O.S/Yl 0.8Pz) (YI is O.K., Y2 is well-spoken) 

Suppose you want to decide between the two subjects which is a better 
candidate for a job you have to offer. You set up a fuzzy decision function (the 
simplest one among many) as a choice of the person having the largest of the 
smallest attribute m grades: 

Drequired = (A', & Ai2 & Aig), i = 1,2 

which is read: "The candidate chosen should have all three attributes (& = 

and) as far as possible". The solution is: "My choice (Decision) will go to the 
one who has the largest of the smallest m grades on all three attributes." The 
minima are: 

D'min = (0.2/Y1 0.4/Y2) (both connected with experience, 
the other two attributes being balanced) 

Dmaximin = (0.4F2) Y2 is your choice. 

Choice is involved in BM when one tries to decide between different 
methods with restrictions imposed on each of them by the lifestyles or clinical 
settings in question. There is considerable literature on the topic of fuzzy 
decision making (Dubois & Prade, 1980; Yager, 1980; Zadeh, 1973). 
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Inference 

Mostfuzzyalgorithms above have IF-THEN or IF-THEN, ELSE statements. 
Following Zadeh (1 973) oneshould first distinguish between propositional and 
set-theoretical interpretation of fuzzy conditional statements IF ATHEN B. He 
opts for the latter, which also seems more appropriate for BM purposes. 
Second, a distinction should be made between fuzzy conditional statements 
with and without specification of the operative ELSE. If the alternative is not 
specified, it can be any fuzzy subset of the universe of discourse; then a fuzzy 
conditional statement can be defined as"afuzzyset of ordered pairs (u, v) u E 

U,VE V,withthegradeofmembershipof (u,v) inAxB,given byuA(u)&uB(v)" 
(& = A = and = minimum). 

In elicitation methods the membershipgrade of ordered pairs (ea, sa), e E 

U, s E C in the fuzzy set E x S is (see Appendix) m(ea E E) & m(sa E S). This 
may be read "IF prompt e THEN response a, which produces stimulus sA E 

S". Here the alternative ELSE is of no interest because the operation is under 
the practitioner'scontrol. If he forgot to give a prompt, perhaps he should not 
bedoing BM. 

There are, however, at least two other IF conditons which are important: a 
to-be-conditioned stimulus, sc E C, must always be present in acquisition BM 
(or conversely, the already conditioned stimulus in elimination BM); and 
motivationshould also besecured. Theconditioned stimuli are not necessarily 
fuzzy, but motivation may be, and it may also be more difficult to ascertain or 
arrange. Forexample, insexual relations a loverwould normally observe hidher 
partner's receptivity to sex, or else would arrange for getting her "in the mood" 
for sex (rapists bypass this phase). 

In the elicitation cases, the expression for compatibility grade of the 
compound R "motivation and prompt and the client's response and stimulus 
sa" would be of the form 

mR(mot.,e,a,sa) = MiN(rn(mot. E MOT.),m(ea E E), m(a E A), m(sa E S)) 
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i.e., if prompt is administered and if motivation is present and if the client 
responds, he will produce a stimulus to the practitioner. This assumes that the 
conditioned stimulus is present as usual. 

The IF-THEN, ELSE compositional rule of inference is used in several 
algorithms. Algorithm ELICITATION, Step 4, has such an inference: "If the 

behaviouraldifference betweena modeland client isnotlarge, thendo6, ELSE 
do 5". For example, we have these elements in the situation: if the difference 
setisD = {1,2, ... 9}=,thenfuzzysubset 

"Difference not large", df = 111 + 0.912 + 0.213 + 0/4 (1) 

Step "THEN 6", df = 116 + 015 (11) 

i.e., do 6, not 5. 

Difference large, df = (1 - not large) 

= 011 + 0.112 + 0.813 + 114 

Step"ELSE 5", df = 0/6 + 1/5 (IV) 

i.e., do 5 not 6. 

Theconditional ruledefinestheTHEN and the ELSE. The first applies if the 
difference is nolonger large, thesecond if it is still large. Thedefinition of "large" 
and "not large" are subjectively rated. The practitioner's rating of the size of 
differenceaslargeor not large may depend on theabilityand motivation of the 
client. If helshe shows promise, one can aim at a very small difference, if not, 
one may decide that a fairly large difference is "not large", in order to terminate 
BM. To make the adjustment without new ratings, Zadeh proposed a simple 
technique of dealing with such problems: raising the m's to a higher power. 
Thus in orderto make the"not large" into"not at all large", to a desired degree, 
one can raise a"large" differenceto, say, a second (or higher) power, making: 
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verylarge = 011 + 0.0112 + 0.6413 + 114 0 

i.e., the power narrows down the fuzziness. 

Zadeh's (1 973) conditional expression for the above inference is, 

IF A THEN B ELSE C, df. = A x B + (-A x C) 

In our Algorithm ELICITATION, Step 4, this means 

A = not large as defined above 
B = "THEN do 6' in algorithm 

-A = 1 - A  = large 
C = "ELSE do 5" " " 

Using numerical definitions we get (taking the minima first) 

Algorithmic Steps 

R' 

1 
Differences 2 

3 
A 

6 5 

1 0 
0.9 0 
0.2 0 
0 0 

IF d "not large" THEN do 6 
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R 6  

1 1  

Differences 2 
3 
4 0  
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5 

0 
0.9 0.1 

0.2 0.t 
1 

R2 

1 
2 

3 
4 

0.9 0.1 
0.2 0.8 

0 1  

6 5 

0 0 
0 0.1 
0 0.8 
0 1 

= 

Combining R1 + R2 = Rgives 

Using the definition of the difference "not large" (NL) and Zadeh's (1973, 

ELSE: if d "large", do 5 

sect. 5.16) we get for 

IF ATHEN B ELSE C for the D as above 

Maximin dNL o R = 

Minima 

d NL 

= [l 0.9 0.2 01 0 

R 

1 
1 

Maxima 

Steps 
6 5  

1 0  
0.9 0.1 
0.2 0.2 
0 0  

[ 1  0.21 
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whichmay be read: thegradeof doing step6 is 1 and, becauseoffuzziness, 
thereisapossibility0.2ofdoingstep5 inspiteof small (i.e., not large) distance 
from the goal. If the difference is large, in otherwords, the client is far from the 
goal, then a similar calculation with dL gives: 

Maximin dL o R = (0.2 1 .O] 

for steps 6 and 5 respectively, which means that that grade of membership of 
doing step 5 is 1, but again there is a possibility 0.2 of doing step 6, i.e., 
terminating BM right there. In otheralgorithms, thefinal stepsand calculations 
are the same as above. 

In Algorithm ELICITATION, step5, we havea1oop"WHILE-DO". The"ELSE" 
part in this step is not specified, i.e., in the negative case one simply should do 
the next step 6 (stop). This inference can be described by fuzzy conditional 
IF-THEN, without specified ELSE-C, which issimplythe Ax B part of the above, 
and is calculated in a similar way. 

CONCLUDING REMARKS 

In thefaceofthe diversityof applications of behavioural methods invarious 
fields by peoplewith different professional backgrounds, it is natural totry and 
spell out some psychological elements common to all the procedures used. 
This paper is an attempt to do this in a fuzzy form, while keeping avigilant eye 
on applications. 

Within the scope of this paper it was possible to analyze to a degree only 
the main features of some of the algorithms, such as determination of the 
membership functions (which is an old concept in psychology that was in 
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search of precisiation), if-then inference, loops, linguistic variables, and 
structure of the algorithms. Some of the algorithmic features remain 
unanalyzed, for example, the "decreasing" response function. Other forms of 
the if-then analysis that exist have not been tried out in our behavioural 
algorithms. These analyses will haveto await another opportunity. 

However,what isoffered inthis paper should help in clarifyingthedistinction 
betweenfuzzydataand sloppythinking. As Zadeh pointed out, the contribution 
of the fuzzy set theory is to make it possible to think precisely about vague or 
uncertainvariables. One can be clear about what can or should bedone, even 
in the absence of precise measurements and instructions. 

An instruction "do this exercise five times at 6 o'clock' is to be executed 
exactlyand does not say anything about deviations. An instruction "do it four 
to six times between 5 and 6 o'clock' allows a certain amount of leeway, but 
does not say anything about howto decide what actuallyshould be done, and 
atwhattime. Afuzzy instruction"dotheexercise preferablyfivetim es, as close 
to 6 o'clock as possible", given with compatibilityfunctions, not only specifies 
thequantities butalsothedeviationsfromthe prescription. It is neither rigid nor 
indeterminate, and not only instructs the client what to do and when, but also 
allows for weighted deviations from, and subjective interpretations of, the 
instructions. In that sense, such an instruction is both more realistic and more 
precise than the other two. 

In addition, such instructions usually contain fuzzy conditions underwhich 
they are to be executed: e.g., the fuzzy statement "if it is not too hot', with a 
compatibilityfunction, which can bevaried individually, to helpthe client decide 
when it is "too hot'. Thus we have a complete, flexible, and realistic instruction; 
unlikethe othertwotypes, of which one is unrealistic and other indeterminate: 
both generate uncertainty rather than help overcome it, and we all know what 
uncertaintymaylead tofromthepsychological point ofview. Theeffect offuzzy 
instructions is much sounder, in the sense that they take from the client the 
burden of dealing with uncertainty. From the point of view of applicability, 
instructions infuzzyform, with their approximate nature but precise and explicit 
structure, should allow a much easier "portability" from field to field. They are 
more robust, in the sense of being less vulnerabe to distortion in attempts to 
adapt them to different environments. In this sense, fuzzy behavioural 
instructions are fairly foolproof, and may allow people who have less 
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preparation for behaviour management t han professional practitioners to apply 
them to others and especially to themselves. The fuzzy form of behaviour 
management may contribute to making it a part of everyone's daily life. 

APPENDIX 

Notation. 

BM is usually applied in some given situation, such as the family, sexual 
scene, home, office, or market place. There is usually a certain aspect of the 
situation that is associated with a particular behaviourthat needs changing or 
strengthening.Thepractitioner, afterananalysisofthesituationand theclient's 
behaviour in it, triestochangethesituation physically (e.g., "takeatrip", "avoid 
John Brown"), cognitively ('imagine that you are divorced - is it the end of the 
line?"), or behaviourally (e.g., systematic desensitization of the client to the 
particularsituation, stopping smoking, etc.). Thetoolsthe practitioner usesare 
measurement scales, elicitors, reinforcers, punishers, the client's motives, and 
previous learning, i.e., existing stimulus-response associations and cognitive 
structures. The notation to be used is an attempt to approximate the structure 
and contemplated restructuring of the situation at hand, the client's behaviour 
asviewed by the practitioner. 

Thus we have: 

C = conditionsdescribingthe situation at hand (universeof discourse); 
S = fuzzy subset of stimuli relevant to the client's target behaviour 

s = generic element of the conditions (stimuli), s E C; 
Sc =subset of conditioned stimuli to client's responses (behaviour 

triggers, not explicitly used in this paper); 

s c c; 
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m = number in the membership com pati bil ity f unct ion (u in Zade h (1 973) 
characterizingc: ms:  C-  [O,l],whichattachestoeachelement 
s in C a number ms (s) = m(s E S) in the interval [0,1]; 

S = Ei mi/ si where + denotes the union, not the sum: 
B = client’s behaviour in C; 
A = fuzzy subset of responses under analysis A C 6; 
a = generic element (response) of behaviour a E 6; 
sa = stimulustothe practitioner produced by client’s response, e.g., his 

observation of client’s target response sa E S; 
ms(sa) = m (sa E S) from the practitioner’s point of view where a is the 

client’s target response to some aspect of C; 
U = practitioner’s resources for intervention; 
E = fuzzy subset of resources used in the situation E C U : 
e = generic element e E U of resouces used: reinforcers, elicitors, 

punishers, models, prompts, which depend on the client’s 
motivation for eff ectiveness, to be ascertained by trial and choice. 

Sc = scale of items used to ascertain client’s target responses in terms 
of compatibility with a model or criterion: assessment is done by 
comparative judgment, or (informally) by absolute judgment; 

X = fuzzy subset of the correct scale items x, corresponding to the 
subset Sa of observed response features, with the associated 
number m to be assigned to the client’s response: m,(X 

X C Sc scale items, x E Sc; 
Sax = corresponding subsets of client’s responses (in terms of stimuli) 

and scale items; 

a); 

& = ampersand = = and = minimum (set intersection); 
+ = V = or = maximum (set union): 

(-Y) = complement of Y ; if m(x X) = 1 - m(y Y), (-Y) = X; 
MOT = fuzzy subset of client’s motivational states in a situation, used 

mot = generic state of arousal. 
onlyfor illustration in this paper: 
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Although fuzzy set theory is becoming a well recognized field of 
mathematical enquiry it has "no well established method for assigning degrees 
of membership, either on a mathematical or empirical basis" (Smirhson, 1987, 

p. 15). Hisdal(1986a) points our that this has inhibited the development and 
application of fuzzy sets. The lack of a measurement basis for fuzzy set theory 
may account in part for its limited application in psychology. By adapting 
traditional psychological measurement to deal with fuzzy concepts, new 
possibilities are open to both fields of enquiry. The first part of rhis chapter 
outlines the needforfunymeasurementinmanyfields ofpsychology. A Fuzzy 
Graphic Rating Scale and its validation, is then described, and ways in which 
the scale can be used in various fields are outlined. 
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THE NEED FOR FUZZY MEASUREMENT IN PSYCHOLOGY 

Fuzzy logic defines concepts and techniques which provide a 
mathematical method able to deal with thought processes which are too 

imprecisetobedealt with by classical mathematical techniques (Zadeh, 1973). 
There are many areas of psychology where traditional mathematical 
approaches have forced a higher degree of precision than is perhaps 
warranted. 

Individual differences. 

A perennial issue in psychological assessment has been the extent to 
which differences in psychological test scores are a function of genuine 
individual differences rather than differences imposed (or obscured) by the 
constraints of the measurement procedures. Typically, normative 
psychological tests restrict the test-taker’s responses both in content and 
process; in content, by specifying a set of dimensions to be measured; in 
process, by limiting responses to a single choice along a given continuum . 
A variety of psychologists (e.g. Bannister 81 Fransella, 1985; Guilford, 1975; 
Tyler, 1978; Viney, 1986) have suggested that these restraints may 
deleteriously affect the assessment of human individuality. The imprecision 
of human cognition, according to Neisser (1967), results from the fact that 
althoughthecentral meaning of concepts remainscomparativelystable and is 
shared across individuals, the boundaries of these concepts are typically 
ill-defined or fuzzy. 

Polkinghorne(l984), writing for counselling psychologists, describes the 
problem for psychological measurement in the following way, 
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"When we counseling psychologists impose a matrix of 
operationally closed sets over human experience, we often 
reproducethe 'precisionfallacy'. The precision of the measuring 
instrument is more exact than the precision of the experience 
itself .'I (p. 425). 

Fuzzy set theory provides a possible solution to this methodological 
problem. It takes account of the reality of imprecision of human thought by 
allowing ranges of scores to be measured and translated into a single score. 
Although further development work is needed, it is possible that fuzzyvariables 
will beableto be used in standard statistical analyses inthetraditional manner. 
This meansthat accepted psychometric standardsofvalidityand reliabilitycan 
be used to evaluate the potential of this application. 

State-trait debate in personality theory. 

Within psychology a debate has raged for at least 50 years about whether, 
orto what extent, it is possible togeneraliseabout behaviouracross particular 
contexts (Bowers, 1973; Ekehammer, 1974; Epstein & O'Brien, 1985; 
Magnusson & Endler, 1977; Valentine, 1982). "Situationists" such as Mischel 
(1 968) have maintained that, because the correlations between self-report 
measures and behaviour in specific contexts rarely exceed a modest 0.30, 

situational rather than personal influences are paramount in accounting for 
human action. 

Epstein and O'Brien (1985) note that Mischel's (1968) book occasioned a 
'paradigm crisis' in personality theory and assessment. While the debate 
continues unabated (e.g. Staw & Ross, 1985), one factor that has not been 
mentioned is Polkinhorne's (1 984) "precisions fallacy." That is, no-one has 
considered that the apparent contextual instability of many assessed 
psychological traits in the non-cognitive domain, may be a consequence of 
imposing upon them a level of precision that they do not, in fact, have. 
Certainly worth consideration is the possibility that many of these attributes 
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may be stable across contexts but only within particular ranges of values. 
Current assessment methods would interpret such variability as either 
measurement error or situational effects. Fuzzified measurements of these 
ranges of scores may promote a methodological resolution of this 
longstanding debate, by providing a way to validly and reliably measure the 
range within which an attribute is stable attribute across different situations. 

Theories of career development and choice. 

In thefield of career development most theoretical approaches presuppose 
a match between the individual’s self-view and the perceived characteristics of 
occupations(Zytowski& Borgen, 1983; Dawis& Lofquist, 1984). Super (1963), 
forexample, presented aself-concepttheorywhich suggested that satisfaction 
and workadjustment involve being able to implement one’s self-concept in an 
occupation. Testing such a proposition requires measuring concepts of self 
and occupational stereotypes, and assessing whether satisfaction relates to 
the degree of match between the two. Most often this is achieved through 
the use of standardised tests or questionnaires which, as indicated above, 
specify both the content and the process (rating procedure) of participant 
responses. Whether the investigator’s specifications correspond closely with 
the participants’ own concepts of self remains a moot point. The repertory 
grid approach (Bannister & Fransella, 1985) does allow individuality in the 
content of measurement, but the analysis of grouped data with this technique 
isdifficult (Brook, 1986). 

Nurius (1 986) suggests that advances in cognitive psychology provide a 
basis for improved measures of the self-concept, but again it would seem that 
thesuggestionsoffered are more in termsofthecontent ratherthanthe process 
of measurement. Thegraphic rating scaleoutlined in this chapter, overcomes 
these difficulties as it includes individual flexibility in the measurement process 
itself. Such an approach will greatlyfacilitate testing vocational theories. 
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Measurement of attitudes in social psychology 

Perhaps the strongest case fort he need for fuzzy measurement arises from 
the arguments put forward by earlier social psychologists in relation to the 
measurement of attitudes. Attitudes are a central concept in social 
psychology, and, according to Sherif (1976) they are the "stuff of which the 
self-system isformed" (p. 239). 

Self-concepts referred toabove, are in fact attitudestowardsoneself. While 
the issue of self-esteem and other evaluative attitudes applied to the self have 
traditionally been studied by psychologists in the field of personality theory, 
Sherif reminds us that "the psychological principles governing the formation 
of attitudes and their incorporation in the self-system cannot be altogether 
different merely because some psychologists call themselves social 
psychologists and others call themselves personality psychologists" (p. 240). 
Hence comments made about the measurement of attitudes are fundamental 
to the assessment of individual differences and self-concepts. 

Traditional approaches to the measurement of attitudes have involved 
methods such as the semantic differential (Osgood, Suci, & Tannenbaum 
(1 957). The semantic differential approach to measurement requires an 
individual to describe a concept (e.g. men) in terms of where it falls between 
bi-polar adjective descriptions such as the one given below: 

Alsowidely used is the Likert scale which requires respondents to indicate 
the extent to which they agree or disagree with statements. For example, 
respondents may be asked to respond to a statement: "I want a job which 
allows me to work at my own pace." using the categories "Strongly Agree, 
Agree, Indifferent, Disagree, Strongly Disagree". 
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The adequacy of these and other attitude measures depend upon two 
important features: 

1) the adequacy of the belief statements or bi-polar anchors. 

2)how well responses reflect the attitudes of those being questioned. 

Inall oftheseapproaches, responsestoseveral items in a particular domain 
are summed to provide a single score for the attitude in question. However, 
individuals may obtainthesame scoreforverydifferent reasons. One individual 
may simply respond with the midpoint for all items, while another individual 
may provide a wide diversity of ratings on either side of the midpoint, but 
whichwhensummed, result in a similartotal. Individual difference information 
is often lost, in traditional attitude measurement as was highlighted by 
Thurstone (1927) and Sherif & Sherif (1970). 

As early as 1927 Thurstone, in a theoretical discussion on the meaning of 
altitudes, portrayed individual differences graphically. Figure 1 illustrates how 
he did this for attitudes in relation to pacificism and militarism. 

f d  e b  c a  

EXTREME NEUTRAL EXTREME 
PACIFICISM MILITARISM 

FIGURE 1 
Attitudevariable, militarism - pacificism 

Oneindividual (e.g. a) might hold avery militaristicattitude, other individuals 
(e.g. band c) might be slightlyless extreme. More importantly, from the point 
of view of our current interest in fuzzy ratings, Thurstone suggested that the 
range of opinions which a particular person is willing to endorse could also be 
represented graphically (say from d to e). 
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Using this graphic representation, Thurstone demonstrated that an 
individual's opinion could be characterised in terms of three different 
measures, the rangeof opinionsthe individual iswilling to endorse, their mean 
positiononthescale, and the one opinion selected which best represented an 
attitude . 

Although these insights into the complex nature of attitudes were identified 
early in the development of attitude measurement, the subsequent methods 
used failed to capture this complexity, no doubt because traditional 
mathematics was not well developed for dealing with ranges and assymetries. 

More recently Sherif and Sherif (1970) discussed the notion of latitudes of 
acceptance and rejection in attitude measurement. They define the latitude of 
acceptance as the "most acceptable position plus other positions the 
individual also finds acceptable". The latitude of rejection is defined as "the 
position most objectionable to the individual, the thing he most detests in a 
particular domain, plus other positions also objectionable" (p. 300). 

Conceptually, these ideas demand fuzzy measurement, yet no such 
developments took place. 

The fuzzy graphic rating scale described below offers a direct way of 
addressing these notions of ranges within the domain of attitude 
measurement. In particular, the widely used semantic differential (Osgood, 
Suci, & Tannenbaum, 1957; Heise, 1969; Hesketh & Roche, 1986) has been 
adapted to provideafuzzy rating scalewhich may be represented graphically. 

This rating scale allows for assymetries, and overcomes the problem, 
identified by Smithson (1987, p. 19), of researchers arbitrarily deciding on a 
most representative value in ranges of scores. This rating scale, which allows 
respondents to identify a preferred point and to extend the rating in either 
direction, does not require such assumptions on the part of the researcher. 
However, it achieves simplicity of presentation to a respondent at the price of 
an assumption abouttheshapeofthefuzzyfunction generated (see Hesketh, 
Pryor, & Hesketh, 1987 for further discussion on this point.) 
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FUZZYGRAPHIC RATING SCALE. 

The fuzzy graphic rating scale presents respondents with the option of 
indicating a preferred point (indicated bytheV pointer inthe figure below) and 
then asks them toextend the rating to the left or right if they wish (indicated by 
thelines drawntotheleftand right ofthe pointer). Althoughafuzzy rating can 
be elicited using a simple pencil and paper technique, analysis is greatly 
facilitated through obtaining the rating in a computerised form. 

A program FUZRATE, written in Turbo Pascal (Borland International Inc, 
1985) foran IBM PCorcompatible, elicits interactively afuzzygraphic rating. 
After preliminary instructions and tuition in the use of the computerised fuzzy 
graphic rating scale, the program presents on the screen a modified semantic 
differential. This is done asfollows: 

The respondent is first asked to rate the particular concept (e.g. whether 
they think the job ‘psychiatrist’ is generally considered men’s or women’s 
work) by moving the V pointer using the left and right arrow keys on the 
key-board (or a mouse if available), and to press the return key when the V 
pointer reaches the point which best represents their rating. The first phase 
may result in a rating such as is illustrated below: 

GE N ERALLY -V- GENERALLY 
CONSIDERED 1 ____________________________ I CONSIDERED 
MEN’S WORK WOMEN’S WORK 
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Next, the respondent is asked to indicate how far to the left the rating could 
possibly go by extending or removing the left extension using the left and right 
arrow keys. 

And finally, the respondent is asked how farto the right the extension could 
possibly go. 

GENERALLY ---V-------- GENERALLY 

MEN’S WORK WOMEN’S WORK 

CONSIDERED I ____________________________ I  CONSIDERED 

The V pointer can be seen to represent a rater’s perception of how others 
generallyviewa particularoccupation, such as psychiatrist. In terms of Hisdal’s 
TEE model, it can be likened to a respondent’s best estimate of the probability 
of the outcome of a poll in which others are required to sex-type the 
occupation. The fuzzy extensions on either side of the V pointer represent 
uncertainty inherent in this estimate (Hesketh, Pryor, & Hesketh, 1987). 

By making certain simplifying assumptions, not uncommon within Fuzzy 
SetTheory,thisgraphic rating can beviewed asafuzzyvariable, hence making 
possiblethe useoffuzzysettheoreticoperations. Thesimplifying assumptions 
are: 

1 )  The global set is represented along the horizontal axis. 
2) The fuzzy membership function takes its maximum value (1) at the 

3) Theextent of thefuzzysupport is represented by the horizontal lines 
point on the fuzzy support represented by the V pointer. 

to either side of the V pointer. 
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4)Thefuzzy membership function tapers uniformlyfrom itsvalue of 1 at 
theV pointertoavalueof 0 beyond thefuzzysupportortheleftand 
right extensions. 5) The uniqn of two or more fuzzy ratings will have 
a convex membership function. A uniformly tapering membership 
function may not be appropriate for some applications. Hisdal 
(1986a) suggests that suitable membership functions might have 
continuous derivatives (i.e. be smooth). 

Union of two fuzzyvariables 

An example can be used to illustrate the union between a pair of fuzzy 
variables. The combination of fuzzy variables was performed as follows: 

Evaluated recursively, thisensuresthat the resulting membership function 
is convex. In some applications a concave function may be appropriate but in 
the data reported in this chapter the convex function was more appropriate 
(Hesketh, Pryor, &Hesketh, 1987). Thewayinwhichtwoormorefuzzyratings 
can be combined via the fuzzy set theoretic Union procedure is illustrated 
graphically in Figure 2. 
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FIGURE 2 

Mernbershipfunction and their union 
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Expected Value 

In calculating an expected value the "average weighting" procedure 
introduced by Baas and Kwakernaak (1 977) was used. Justification for this 
lies in the link between fuzzy set theory and probability t heory (Hisdal, 1 986b). 
To illustratethis let us assumethat Fuzzy-Z is afuzzy rating of some attribute, 
and that uex is a "correct" measure of the same attribute elicited under exact 
conditionsof observation. Hisdal(l986b) interprets possibilities as P(Fuzzy-Z 

1 ueX), (the probability that Fuzzy-2 would be obtained when the exact 
measure is a priori known to be uex), and probabilitiesas P(uexl Fuzzy-Z) (the 
probability that  isthe the exact score given an a priori Fuzzy-Z). The position 
of the subject's response on the x-axis corresponds to the uex of the TEE 
model. As an estimate of uex is required, given Fuzzy-Z, a reasonable 
approach isto rescaleeach ordinateof the rating function (thefK(Xi) values) so 
thatalltheordinatessurnto 1 @fX = l),asrequired ofa probability distribution), 
and tocalculatetheexpected value ofthe resulting distribution. This assumes 
a uniform prior p(uex), a reasonable application of Bayes' postulate. The 
expected value was calculated as follows: 

X = C u Xi (fx(Xi) / X u fx(Xi) 

where fx(Xj) I X u fx(Xi) is the rescaled ordinate of each point Xi, and the 
outer summation of all Xi multiplied by their respective probabilities gives the 
expected value of the distribution. The procedure used to calculate the 
expected value is illustrated graphically with an example in Figure 3. 

The calculations required to form the union of fuzzy ratings, and the 
expected value are performed within the program FUZRATE which is 
described more fully in Hesketh, Pryor, Gleitzrnan, and Hesketh (1987). The 
graphic scale discussed above allows a fuzzy rating to be elicited from 
respondents who have no knowledge of the mathematics underpinning fuzzy 
variables. 
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DPECTED VALUE OF A FUZZY VARIABLC 

Take a fuzzy variable represanted by the following membershlp function: 

0.0 1 1 )  

0 
- 
3 10 

f(x) = 0.2 + 0.4 + 0.7 + 1.0 + 0.4 = 2.7 

Rescale so that z:f,(x) = 1.0 

(Divide each f(x) value by 2.7). 

112.7 = 0.37 

'.O 1 I I I i j  1 ! 0.15 , 
f()o 

0.07 

0.0 
0 t x +  10 

Expected x value = few(X) .  X 

= 0.07 x 4 + 0.15 x 5 + 0.26 X 6 + 0.36 X 7 
+ 0.15X8 

= 6.38 

FIGURE 3 
Example illustrating calculation of expected value 
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EVALUATION OFTHE FUZZY GRAPHIC RATING SCALE 

Although the fuzzy graphic rating scale can be adapted for use in many 
areas we chose to validate it in relation to Gottfredson's (1981) map of 
occupations. Wewere particularly interested in thisapplication becauseof the 
need to develop a measure of social space to test Gottfredson's (1 981 ) theory 
of careercircumscription and compromise. Gottfredson introducesfor the first 
time, a spatial account of "the person-occupation matching paradigm." The 
theory states that an individual's "social space" (the zone of acceptable 
occupational alternatives) is successively restricted in terms of sex-type, 
perceived prestige level of occupations and occupational interests. 
Compromise in career choice follows a reverse order, with interests 

compromised most easily, followed by prestige while preference for sex-type 
of occupations is most resistant to change. The concept of measuring a 
spacefitsmoreeasilywithafuzzyratingscalethan with traditional approaches 
to psychological measurement. 

Two studies have been undertaken within the context of Gottfredson's 
occupational map. As thesestudies provide reliabilityand validitydatafor the 
fuzzy rating scale, they are reviewed briefly below. 

Study One 

Thesubjectsforthe first study were 10 males and 10 females aged 18 to 
45 with an average age of 29 years. These respondents used the fuzzy 
graphic rating scale with five prestige and three sex-type anchors to rate nine 
occupations. The nine occupations, carefully chosen to represent three levels 
of prestige based on Daniel's (1983) scale and three levels of sex-type based 
onShinar's(1975) scalearegiven inTable1. Alsogiven inTable 1 isanexample 
of a sex-type and a prestige anchor used with the fuzzy graphic rating scale 
described earlier. Although no numbers appeared on the screen, for analysis 
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the responses were converted to the scale [0,99] with each arrow key press 
representing one point. Ratings can also be elicited with a mouse. The 
presentationoftheeightscaleswasrandomized aswerethe nineoccupational 
stimuli. 

TABLE 1 

Occupations and sample anchors used in Study One 

Occupation Daniel (1983) Shinar(1975) 
(Prestige) (Sex-t ype) 

Engineer 
Motor Mechanic 
Groundskeeper 
Psychiatrist 
Real Estate Agent 
Cook 
Primary Teacher 
Registered Nurse 
Receptionist 

2.6 
4.7 
5.2 
1.9 
4.3 
4.6 
3.8 
3.8 
4.6 

1.9 
1.5 
2.0 
3.7 
3.4 
4.2 
5.6 
6.6 
6.3 

Prestige ratings from 1 (high) to 7 (low). 
Sex-type ratingsfrom 1 (masculine) to 7 (feminine). 

Sample Prestige Anchor: 
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Sample Sex-type Anchor: 

[0.99] scale used for analysis only! 

Thecomputerized graphic rating procedure was explained to respondents 
using a trial occupation not included in the nine stimuli. Various possible 
manipulations were demonstrated, including ratings with no spread on either 
side, one with spread only on the one side, a rating with one end hard against 
the upper or lower end of the scale and other variations. Instructions on the 
screen also explained to respondents how to use the arrow keys for rating the 
occupations. 

RESULTS 

Forthe purposesofcomparisonwiththea priori ratingsobtained by Daniel 
(1983) for the prestige of the nine occupations and by Shinar (1975) for the 
sex-type of the occupations, it was necessary to calculate the expected value 
for individual scales and for various combination of prestige and sex-type 
scales. 

lntercorrelations between the graphic ratings of the nine occupations on 
the eight scales and the a priori Shinar and Daniel scale values for the same 
nine occupations were obtained for each of the 20 subjects. These 
correlations were then averaged across the 20 subjects. Analyses were 
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undertaken using Gauss Version 1.498 (Edlefsen & Jones, 1986). Although 
Fisher’s z-transformation is often used before averaging, Hunter, Schmidt & 
Jackson (1982, p. 42) have recently noted that the use of this procedure may 
bias the averaging of correlations, with larger r values, receiving larger z 
scores. Sincetheeffect of using Fisher’s z-transformation on the present data 
was found to be relatively small, only untransformed correlation averages 
which probably represent conservative estimates are reported. 

Validities for the five prestige scales ranged from -0.74 to -0.88, while the 
threesex-typescales hadvaliditiesof0.86, 0.91 and 0.93. Of particular interest 
were the low correlations between the prestige ratings of the nine occupations 
usingthe Fuzzy Rating scalesand Shinar’ssex-type ratings (0.02to0.25), and 
also between the sex-type ratings using the fuzzy scales and Daniel’s prestige 
ratings (0.03 to-. 1 ) .  This provides a measure of constructvalidityforthe scales. 

Combining Scales. 

The expected values, calculated after various composite combinations of 
fuzzy ratings, were correlated with the a priori scale values for the nine 
occupations obtained by Daniel and Shinar, and the correlations averaged 
across the 20 subjects. These data provided a basis for eliminating from the 
union any scale(@ which diminished the match between the composite fuzzy 
ratings and the a priori values for the occupations. Optimum criteria 
correlations werefound by combining threeof the fuzzy ratingsfor prestige (r 
= 0.90) and two of the fuzzy ratings for sex-type (r = 0.94). 

The results from the first study were encouraging, and provided adequate 
justification for extending the fuzzy graphic rating scale to obtain measures of 
preferences on dimensions of prestige and sex-type. 
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Study Two 

Studytwoaimedtoexamine boththe reliabilityandthevalidity offour ofthe 
prestige scales and two of the sex-type scales from study one, but applied to 
the rating of a preferred position on the scale. As the data were collected with 
a viewtotestingGottfredson's (1 981) theory, respondents also providedfuzzy 
ratings of their occupational interests. Participants were 15 males and 15 

females aged between 21 and 57 years, with a mean age of 34 years and 9 
months. Follow up data were not available for 2 participants. Based on the 
findingsfromStudy One, four anchors were used to measure prestige (money, 
education, status and power), and two to measure sex-type (women's and 
men's work, and jobs women and men choose). As well, six interest scales 
based on the Holland categories (Realistic, Investigative, Artistic, Social, 
Enterprising and Conventional) were used with the anchors "extremely 
unattractive"and "extremely attractive". An example of a prestige, sex-type and 
interest anchor is given in Figure 4. 

In addition to using the fuzzy rating scale with the interest, sex-type and 
prestige anchors, respondents completed a computerised paired 
comparisons expercise using the nine occupations from Study One. The 
Vocational Preference Inventory, (Holland, 1978) was also completed. 

The computerised paired comparisons exercise required respondents to 
rate their preference for the nine occupations in Table 1 presented two at a 
time. The output from this exercise ranked the occupations in order of 
preference. The most preferred occupation for each subject was then scored 
intermsof itsa priori prestigescore (Daniel, 1983) and sex-typescore (Shinar, 
1975). 

The VPI was scored to provide information on the six interest categories in 
Holland's theory (Realistic, Investigative, Artistic, Social, Enterprising and 
Conventional .) 

Subjects were interviewed twice. At the first interview they completed the 
fuzzy ratings, the paired comparisons exercise and the VPI. At the follow-up 
interviewtwoweekslater respondents again providedfuzzy ratingsof thesame 
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FUZZY GRAPHIC RATING SCALE 

HAS LOW & HAS HIGH 

MEDIUM 
STATUS 

I I I I l l  I STATUS STATUS 

GENERALLY -F-- GENERALLY 
CONSIDERED 1-1 CONSIDERED 
MEN'S WORK WOMEN'S WORK 

How attractive do you find REALISTIC type 
occupations which involve manipulating 
objects, tools, machines or animals? 

EXTREMELY I I I , , , " I  MTREMELY 
UNATTRACTIVE AlTRACTIVE 

QUESTIONS 

1) What type of occupation would you prefer? 
One which is .................................. 

2) How far would you be willing to move to 
the left? 

3) How far would you be willing to move to 
the right? 

FIGURE 4 

Example of prestige, sex-type and interest scales 
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prestige, sex-type and interest scales. After giving their ratings two forms of 
feedback were provided. First, the fuzzy rating provided on each individual 
scale was fed-back to the respondent and they were asked to describe what 
they meant by the rating they gave. Following this, the union was formed for 
the four prestige scales and the two sex-type scales, and this was reproduced 
in the form of atwo dimensional map representing Gottfredson’s social space 
concept. An example is given in Figure 4. 

The expected value was calculated for combined fuzzy prestige scales and 
sex-type scales and these were correlated with the Daniel (1983) and Shinar 
(1 975) ratingsfor prestige and sex-type of the most preferred occupation from 
the paired comparisonsexercise. Thecorrelationswere0.415for prestige and 
0.579forsex-type, both of which were significant (p < .01). 

The expected value for the Fuzzy ratings of interests were correlated with 
theVPl scorefor each of thesix Holland dimensions. The obtained correlations 
of each Holland graphic rating scale with its corresponding Vocational 
Preference Inventory scale for the sample were all significant (p <, .05). The 
correlations ranged from 0.37for Social to 0.63for Investigative. Considering 
the differences in the context presented to the participants by these two 
procedures and the differences in scoring the participants’ responses, these 
results suggest that the fuzzy graphic rating scales are quite adequate single 
item representations of the Holland vocational scales. In addition, the scales 
provide a measure of flexibility on each of the dimensions, a feature not 
available with more traditional approaches to measurement. 

The test-retest reliability data for the left extension, right extension, and 
most preferred position, and expected values derived from the fuzzy ratings 
on individual prestige, sex-type and interest scales are given in Table 2. The 
expected value reliabilities vary from 0.62 to 0.87. 

Test-retest reliabilities for various combinations of the prestige scales 
yielded the highest reliability when three of the four status anchors were 
combined (0.78). The two sex-type scales give a high test retest reliability of 
0.92. Extensive reliability and validity data from both studies are reported in 
Hesketh, Pryor, Gleitzman & Hesketh (1987). 
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TABLE 2 
Test-Retest Reliability coeff icients for single prestigesex-type and interest 

scales. 

SCALES 

Prestige: 

Pay 
Education 
Status 
Power 

Sex-t ype: 
Choose 
Work 

Interest : 
Realistic 
Investigative 
Artistic 
Social 
Enterprising 
Conventional 

Most 
Left Preferred 
Extension Point 

.74 .54 

.67 .62 
,76 .57 
.71 .59 

.41 .73 

.66 .78 

.77 .72 

.76 .61 

.73 .90 

.72 .75 

.85 .61 

.63 .66 

Right Expected 
Extension Values 

.76 .71 

.77 .74 

.68 .62 

.77 .70 

.57 .82 

.62 .85 

POTENT I AL AP P LI CAT1 0 NS 

.77 .77 

.51 .67 

.86 .87 

.70 .76 

.69 .74 

.53 .74 

The computerised fuzzy graphic rating scale proved to be an unexpected 
aid to  vocational counselling. The program FUZRATE feeds back to 
participants their fuzzy ratings on individual prestige, sex-type and interest 
scales, and then presents the results of forming the union for the prestige and 
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sex-type scales. As part of the validation process, respondents in the second 
study were asked what they meant by their fuzzy ratings. The resultant 
discussion about the factors influencing preferences allowed the exploration 
of issues in greater depth than is usually possible without such a graphic aid 
or stimulus. Pryor, Gleitzman & Hesketh (1 987) summarise several examples 
of the descriptions given by respondents of what they meant by their ratings. 

Within the vocational psychology literature there is considerable concern 
about sex-typing of preferences, and the resistance of these preferences to 

attempts to encourage both males and females to consider a wider range of 
occupations. It is important that young people are helped to become aware 
of the underlying influences on their occupational preferences. Completing a 
program such as FUZRATE in discussion with a counsellor, helps clients to 
make more concrete the influences of prestige and sex-type on preferences. 
Although research has clearly shown these to be two of the most important 
factors affecting choice (Gottfredson, 1981), they are seldom discussed 
directly in career education and guidance interventions. Through the use of 
the Fuzzy Graphic'Rating Scale in the FUZRATE program these latent 
influences can be made more manifest. 

The application of fuzzy graphic rating scales to computerized vocational 
counselling systems moregenerally needsto be explored. Watts (1 986) warns 
would-be users of computers in careers guidance of the potential abuse of this 
technology. According to Watts, computerised guidance may foster a 
"pigeon-hole" approach to clients by conveying a spurious impression of 
precision. Since the fuzzy rating procedure takes more cognizance of 
individual differences than traditional self-estimate measures and stresses 
score ranges ratherthansingle points, it may offer somesafeguard againstthis 
technological tendency. In fact, anytechniquethat allows counsellorsto more 
accurately and more wholistically understand the complexity of a person's 
attitudesdeservesto be fully investigated and evaluated. Fuzzyset theory and 
fuzzy graphic rating scales hold just such promise. 

Moreover, fuzzy measures may in the longerterm allow the assessment of 
greater human individuality since fuzzy variables applied to attitude 
measurement can be interpreted as indicating not only intensity of the attribute 
but tolerable ranges of the attribute. In traditional affective psychological 
measures tolerable range has not been measured. That such measurement 
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would represent an important breakthrough for psychometrics can be 
illustrated by reference to two major empirical problems drawn from career 
development theory. 

First, several writers (Gottfredson, 1981; Tversky, 1972; Zytowski, 1965) 
have noted the disproportionate effect in decision making of "avoiding the 
negative" in comparison with "obtaining the positive". That is, there are some 
alternatives and outcomes from decisions that people will not tolerate and 
which influence decision making before one will consider choosing among 
desirable outcomes and alternatives. Until the present time the possibility of 
accurately wasuring these tolerable boundaries and being able to use them 
for theoretical purposes has proved elusive. Similarly, Hilton's (1 962) 
cognitivedissonance model of decision making drawsthedistinction between 
"maximising" and "satisficing" as choice outcomes. The crucial difference is 
whether people choose the very best option or simply an acceptable one. 
Hilton and probably most vocational development theorists would see 
"satisficing" as the more realistic conceptualisation. The concept, however 
implies the notion of tolerable range as in the Gottfredson formulation, which 
has proved difficult to operationalise. Fuzzy set theory may provide a 
mathematical basis on which to establish the delineation of individuals' 
"satisficing" range of occupational alternatives. 

Second, a number of recent theories related to career development have 
incorporated notions of ranges of attributes, for example, Gottfredson's 
"social space" (a set of occupational alternatives rather than a single choice) 
and Dawis and Lofquist's (1984) "flexibility" in work adjustment. To date the 
measurement of these conceptualisations has remained unsatisfactory. So 
much so, that Gottfredson (1985) for example, observes that this inability to 
measures ranges isthesingle biggest drawback tothe properevaluation of her 
theory. Research is currently underway using the program FUZRATE to test 
Gottfredson's (1 981) theory of career compromise. 

It is possible that the use of fuzzy measurement, particularly in relation to 
determining areas of intolerance, may help to improve the predictive validity 
of instruments. It is common to find that the hit rate of interest inventories in 
predictingoccupational choice is usuallyquitelow, inthe regionof30%to40% 
(Holland, 1978). By examining the zones of intolerance in terms of interests 
and workadjustment (the areas of the scale outside the person'sfuzzy rating 
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of liking or preference), it may be possible to develop a new understanding of 
predictivevalidity in terms of forecasting the negative. 

Further areas where fuzzy measurement may be applicable can be found 
outside the immediate context of vocational psychology. Firstly, the 
evaluation of many psychological interventions could be made more accurate 
if the evaluation measures were fuzzified. For example, large sums of money 
have been spent in the last two decades in many different countries on 
programmes aimed at altering sex-role stereotyping in a wide range of 
contexts. Fuzzified evaluation measures may beableto provide moresensitive 
indications of the intervention impact by providing not only an absolute rating 
of attitude butalsoa rating of response range. This may be extremely important 
since a programme’s effect might not be on participants’ most preferred point 
on a sex-type continuum but rather on the tolerable range of responses. Thus 
a primaryeducation teaching programme designed to encourage girls to play 
with nontraditional objects such as trucks, may not alter the girls’ preference 
for dolls as the most desirable toy but may broaden their willingness to spend 
at least some time playing with nontraditional objects. Without a measure of 
range this important outcome could be obscured and the programme 
evaluated too u nfavou ra bl y . 

In addition fuzzy set theory and fuzzy logic through conceptualisation of 
grades of membership provides a set of mathematical relations which much 
more closely approximate recent formulations of human thought in terms of 
paradigms and deviations (Hunt, 1982; Neisser, 1967). Lohaus (1986) has 
both observed and provided evidence on the crucial effects of experimenters’ 
predecisions on the validity and ultimate interpretability of any empirical 
findings. In particular he points to the importance of establishing experimental 
procedures, including variable measures which are congruent with the nature 
of the phenomena being studied. In terms of human cognition fuzzy 
measurement may take us one step closer to fulfilling this experimental ideal. 

Thestate-trait debate in personalitytheory offers yet another application of 
the fuzzy graphic rating scale. Mood states are known to have a more stable 
trait component upon which situational variables have their effect. It might be 
possible to represent traits in terms of ranges with states being reflected in the 
most preferred position. Asimilar analysiscan beapplied tothe measurement 
of attitudes more generally. For example, Staw & Ross (1985) have 



Applications and Evaluation of a Computerized Fuzzy Graphic Rating 449 

demonstrated that job satisfaction has a stable component, related more to 
individual differences than to features of the job itself. While personality 
theorists can be accused of neglecting situational influences, the job 
satisfaction literature over the past half century has failed to acknowledge the 
obvious contribution of more stable affective orientations in individuals. The 
prospect of measuring stability through ranges with situational influences 

reflecting more specific responses offers exciting opportunities for resolving 
thedebate. Intraditional affective psychological measures, tolerable range has 
not been measured. Early social psychologists recognised the importance of 
this concept in attitude measurement, but the empirical measures capable of 
supporting the idea were not available. The Fuzzy Rating Scale offers a way 
of applying earlier ideas about attitude measurement. 

Finally, Hisdal (1986b) has highlighted the need to explore further which 
factors contributetofuzziness. For example, fuzziness may be inherent in a 
particular situation, it may arise due to perceptions of an observer, or it may 
be afunction of definition or measurement. In practice, it remains difficult to 
determine how much of the fuzziness is due to each of these sources, 
although psychometric reliability analyses may help determine some 
contributions to fuzziness. Test-retest reliabilities over a two week period, 
reported in this chapter, were in the order of .61 to .87 for individual scales 
which shows that a proportion of the fuzziness is due to lack of stability over 
such a period. Further research examining reliabilities over varying intervals 
and with variations of the scale presentation is needed to explore the different 
contributions to lack of reliability in the fuzzy graphic rating scale. Such 
analysis may help to throw light on sources of fuzziness. 

The procedure of asking respondents what they understood bytheir fuzzy 
ratings is another important way of increasing our understanding of fuzziness. 
Respondentsfound it easy to describe the components that went into making 
a fuzzy rating after having provided the rating. The graphic representation 
appearstoact as a stimulusto respondentsto recreatetheir thought processes 
while providing the rating. As such, the scale provides an opportunity for 
intensiveexplorationof meaningsoffuzziness in awider rangeof applications. 

Future research is needed to explore the best way in which to present the 
scale graphically. Thetwo studies reported briefly in this chapter did not use 
numbers under the graphic scale, but these could easily be included. Other 
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issues which have not yet been addressed relate to the dimensionality of 
anchors. For example, should "masculine" and "feminine" concepts be 
opposite ends of the same scale, or do they require two separate scales? 
Answers to this question would be of considerable theoretical interest in the 
and rog yn y I iterat u re. 

Although the idea of using extensionstoa semantic differential rating scale 
is quite simple, without computerised data collection, analysis is extremely 
tedious. The combination of computerised data collection and fuzzy set 
theory offersanopportunityfor new and creative approachesto measurement 
of individual differences. 
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tipicality 159 
tolerance 270,272 
top-down 128,129 
transitivity 56,283,321,328,332-334 
Turbo PASCAL 432 
typical 210 

271 -273 

U 
uncertainty 41 
unconscious 40 
union 96,100,105,106,108,109, 

111-1 13,116 

bold 337 

drastic 337 

V 
vague 177 
vagueness 91 
value 266 
variation coefficient 307,309 

vector 208 

Venn diagram 53 
verbal absurdities test 375 

analogies test 375 

opposites test 375 
uncertainty 82 

binary 21 6,219 

visual-motor coordination 361 

vocabulary 375 

vocational 428 

Vocational Preference Inventory 

VOT (voice onset time) 303 
(VPI) 442,444 

W 
weak association 34 

entailment (WEM) 34,37,38 

order 327,328 
prediction 33 

well-defined 176,187 
Wernicke 313 
WFEV weighted fuzzy expected 

value 203,210,217,218, 
226-228 
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WISC-R Mazes subtest 376 
word identification 130-150 
word list (random) 130,131 

Y 
Youden Square 326 

z 
2-transformation 440 

Subject Index 
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