Fuzzy Logic and
Probability Applications
Bridging the Gap

Edited by
Timothy J. Ross
Jane M. Booker
W. Jerry Parkinson

Forewords by
Lotfi A. Zadeh
Patrick Suppes




Fuzzy Logic and
Probability Applications



ASA-SIAM Series on
Statistics and Applied Probability

The ASA-SIAM Series on Statistics and Applied Probability is published

jointly by the American Statistical Association and the Society for Industrial and
Applied Mathematics. The series consists of a broad spectrum of books on topics
in statistics and applied probability. The purpose of the series is to provide
inexpensive, quality publications of interest to the intersecting membership of the
two societies.

Editorial Board

Robert N. Rodriguez Lisa LaVange
SAS Institute Inc., Editor-in-Chief Inspire Pharmaceuticals, Inc.
Janet P. Buckingham Gary C. McDonald
Southwest Research Institute National Institute of Statistical
Sciences
Richard K. Burdick
Arizona State University Paula Roberson
University of Arkansas
James A. Calvin for Medical Sciences
Texas A&M University

Dale L. Zimmerman
Katherine Bennett Ensor University of lowa
Rice University

Douglas M. Hawkins
University of Minnesota

Ross, T. J., Booker, ). M., and Parkinson, W. ]., eds., Fuzzy Logic and
Probability Applications: Bridging the Gap

Nelson, W., Recurrent Events Data Analysis for Product Repairs, Disease Recurrence,
and Other Applications

Mason, R. L. and Young, J. C., Multivariate Statistical Process Control with
Industrial Applications

Smith, P. L., A Primer for Sampling Solids, Liquids, and Gases: Based on the Seven
Sampling Errors of Pierre Gy

Meyer, M. A. and Booker, J. M., Eliciting and Analyzing Expert Judgment:
A Practical Guide

Latouche, G. and Ramaswami, V., Introduction to Matrix Analytic Methods in
Stochastic Modeling

Peck, R., Haugh, L., and Goodman, A., Statistical Case Studies: A Collaboration
Between Academe and Industry, Student Edition

Peck, R., Haugh, L., and Goodman, A., Statistical Case Studies: A Collaboration
Between Academe and Industry

Barlow, R., Engineering Reliability

Czitrom, V. and Spagon, P. D., Statistical Case Studies for Industrial Process
Improvement



Fuzzy Logic and
Probability Applications

Bridging the Gap

Edited by

Timothy J. Ross

University of New Mexico
Albuguerque, New Mexico

Jane M. Booker

Los Alamos National Laboratory
Los Alamos, New Mexico

W. Jerry Parkinson

SiaML

Los Alamos National Laboratory
Los Alamos, New Mexico

ASA

Society for Industrial and Applied Mathematics
Phifadlelphia, Pennsylvania

American Statistical Association
Alexandria, Virginia



The correct bibliographic citation for this book is as follows: Ross, Timothy J., Jane M.
Booker, and W. Jerry Parkinson, eds., Fuzzy Logic and Probability Applications: Bridging
the Gap, ASA-SIAM Series on Statistics and Applied Probability, SIAM, Philadelphia, ASA,
Alexandria, VA, 2002.

Copyright © 2002 by the American Statistical Association and the Society for Industrial
and Applied Mathematics.

10987654321

All rights reserved. Printed in the United States of America. No part of this book may be
reproduced, stored, or transmitted in any manner without the written permission of the

publisher. For information, write to the Society for Industrial and Applied Mathematics,

3600 University City Science Center, Philadelphia, PA 19104-2688.

Library of Congress Cataloging-in-Publication Data

Fuzzy logic and probability applications : bridging the gap / edited by Timothy }. Ross,
Jane M. Booker, W. Jerry Parkinson.
p. cm. — (ASA-SIAM series on statistics and applied probability)
Includes bibliographical references and index.
ISBN 0-89871-525-3
1. Fuzzy logic. 2. Probabilities. 3. Fuzzy logic—Industrial applications. 4.
Probabilities—indusirial applications. 1. Ross, Timothy }. . Booker, Jane M. lil.
Parkinson, W. J. (William Jerry), 1939- V. Series.

QA9.64 .F894 2002

511.3—dc21
2002075756

Corel and Painter are trademarks and registered trademarks of Corel Corporation or
Corel Corporation Limited in Canada, the United States, and/or other countries.
Fuldek is a registered trademark of Bell Helicopter Textron, Inc.

IBM is a registered trademark of IBM Corporation in the United States.

PhotoShop is a registered trademark of Adobe Microsystems Incorporated in the United
States and/or other countries.

SmartPhotolab is a registered trademark of The Center for Autonomous Control
Engineering (ACE), University of New Mexico, Albuquerque, NM.

SlaJTL is a registered trademark.



To the memory of our colleague
and his inspiration for this book,
Dr. Thomas (Tom) R. Bement,

Los Alamos, New Mexico




List of Contributors

Hrishikesh Aradhye
SRI International

Thomas R. Bement (dec.)
Los Alamos National Laboratory

Jane M. Booker
Los Alamos National Laboratory

Kenneth B. Butterfield
Los Alamos National Laboratory

Aly El-Osery
New Mexico Institute of Mining and
Technology

Carlos Ferregut
University of Texas at El Paso

Mo Jamshidi
University of New Mexico

A. Sharif Heger
Los Alamos National Laboratory

Vladik Kreinovich
University of Texas at El Paso

Jonathan L. Lucero
University of New Mexico

Yohans Mendoza
Sirius Images, Inc.

Mary A. Meyer
Los Alamos National Laboratory

William S. Murray
Los Alamos National Laboratory

Roberto A. Osegueda
University of Texas at El Paso

W. Jerry Parkinson
Los Alamos National Laboratory

Timothy ). Ross
University of New Mexico

Kimberly F. Sellers
Carnegie Mellon University

Nozer D. Singpurwalla
George Washington University

Ronald E. Smith
Los Alamos National Laboratory



Contents

Foreword
Lotfi A. Zadeh
Foreword
Patrick Suppes
Preface
Acknowledgments
Part 1. Fundamentals
Jane M. Booker
L1 Chapters 1-6 . . . . . . . . ..
[.2 Suggestedreading . . . . . . ... oL
References . . . . . . . . . . . e

1 Introduction
Timothy I. Ross, Jane M. Booker, and W. Jerry Parkinson

1.1 Some history and initial thoughts . . . . .. ... .. ... ... ...
1.2 The greatdebate . . . . . . . . ... oo Lo

1.2.1 The debate literature . . . . . .. . ... ... ... ...

1.2.2 The issues and controversy . . . . . . ... ... .. ..
1.3 Fuzzy logic and probability: The bestof bothworlds . . . . . . . . ..
14 Organization of thebook . . . . . ... .. ... ... ...
References . . . . . . . . L

2 Fuzzy Set Theory, Fuzzy Logic, and Fuzzy Systems
Timothy J. Ross and W. Jerry Parkinson

2.1

22

23

Introduction . . . .. ... .o o
2.1.1 Fuzzysets . . ... .. ... ... ... ...
2.1.2 Fuzzy setoperations . . . . . ... ... ... ... ...
Fuzzyrelations . . . . . . . .. .. ...
221 Operations on fuzzy relations . . . . .. .. .. ... ..
222 Fuzzy Cartesian product and composition . . . . . . . ..
Fuzzy and classical logic . . . . . . . . ... ... 00
2.3.1 Classical logic . . . . .. ... ... ... ... ....
232 Fuzzylogic. . . . . .. .. ... .. .
233 Approximate reasoning . . . . . . . .. ... ...

vii

). 42

xix

xxi

xxiil

~ NN



viii Contents
234 Fuzzysystems . . ... ... .. ... .. ........ 43
235 An example numerical simulation . . . .. ... ... .. 46
2.3.6 Summary . . . . . ... 52
References . . . . . . . . . 53
3 Probability Theory 55
Nozer D. Singpurwalla, Jane M. Booker, and Thomas R. Bement
3.1 The calcutus of probability . . ... .. ... ... ... ....... 55
32 Popular views of probability . . . . .. ... ... ... 0L, 57
3.2.1 The interpretation of probability . . . . . . ... ... .. 57
322 The classical theory of probability . . . . . ... ... .. 57
323 The a priori theory of probability . . .. ... ... ... 58
3.2.4 The relative frequency theory . . . . .. ... ... ... 58
3.2.5 The personalistic or subjective theory . . . . . . . .. .. 60
3.2.6 Choosing an interpretation of probability . . . . . . . .. 61
327 The use of expert testimonies in personalistic/subjective
probability . . .. ... ... ... oo oL 62
33 Concepts for probability theory . . . . . .. ... ... .. .. .... 63
331 Concepts of a random variable and sample space . . . . . 63
332 Probability distribution functions . . . . ... ... ... 64
333 Conditional probability and dependence . . .. ... .. 66
334 Comparing distributions . . . . . . ... ... ...... 66
335 Representing data, information, and uncertainties as
distributions . . . . ... ... L o oL 67
34 Information, data, and knowledge . . . . . . .. ... ... .. .... 68
References . . . . . . . . . . . . e 69
4 Bayesian Methods 73
Kimberly F. Sellers and Jane M. Booker
4.1 Introduction . . . . ... ... ... .. 73
4.2 Probability theory of Bayesianmethods . . . . . . ... ... ... .. 76
4.2.1 The incorporation of actual information (expansion of H) 77
422 The likelihood principle . . . . .. ... ... .. .... 78
423 Distribution function formulation of Bayes’ theorem . . . 78
43 Issues with Bayes’ theory . . . . .. ... ... ... ... ...... 79
4.3.1 Criticisms and interpretations of Bayes’ theorem . . . . . 79
4.32 Uses and interpretations . . . . . ... ... ....... 80
44 Bayesian updating: Implementation of Bayes’ theorem in practical ap-
plications . . . . . . ... . e 81
44.1 Binomial/betaexample . . ... .. ... ... ... 81
442 Exponential/gamma example . . . . ... ... ..... 82
443 Normal/normalexample . . . . . . ... ... ...... 82
45 Bayesiannetworks . . . . ... L. Lo 83
4.6 Relationship withfuzzysets . . . . ... ... ............. 85
References . . . . .. . . . .. . . .. 85
5 Considerations for Using Fuzzy Set Theory and Probability Theory 87
Timothy J. Ross, Kimberly F. Sellers, and Jane M. Booker
5.1 Vagueness, imprecision, and chance: Fuzziness versus probability . . . 87



Contents ix

5.1.1 A historical perspective on vagueness . . . . . . . . . .. 88

51.2 Imprecision . . . .. ... .. ... 89
5.2 Chance versus vagueness . . . . . . . .. ... ... 89
53 Many-valuedlogic . . . . . .. .. ... . L o 90
54 Axiomatic structure of probability and fuzzy logics . . . . . . ... .. 91

54.1 Relationship between vagueness and membership functions 94

542 Relationship between fuzzy set theory and Bayesian analysis 95
5.5 Early works comparing fuzzy set theory and probability theory . . . . 95
5.6 Treatment of uncertainty and imprecision: Treating membership

functions as likelthoods . . . . . ... .. ... ... L. 97
5.7 Ambiguity versus chance: Possibility versus probability . . . . . . . . 08
5.8 Conclusions . . . . ... ... . .. o 102
References . . . . . . . . . .. . L. 103

6 Guidelines for Eliciting Expert Judgment as Probabilities or Fuzzy Logic 105
Mary A. Meyer, Kenneth B. Butterfield, William S. Murray, Ronald E. Smith,
and Jane M. Booker

6.1 Introduction . . . . . . ... L 105
6.2 Method . . . . . . ... 106
6.2.1 Mustration . . . . ... ... ... o 106
6.2.2 Summary table of phases andsteps . . . . ... ... .. 108
6.2.3 Phases and steps for expert elicitation . . . . . . . . . .. 108
6.3 Summary . . ... 121
References . . . . . . . . . . . 122
Part I1. Applications 125
Timothy J. Ross

IL1 Chapters 7-15 . . . . . . . . . .. 125
7 Image Enhancement: Probability Versus Fuzzy Expert Systems 127

Aly El-Osery and Mo Jamshidi
7.1 Introduction . . . . . ... 127
7.2 Background . . . .. ... ... 128
7.2.1 Digital image-processing elements . . . . . . . ... .. 128
7.2.2 Image formats . . . . . . ... ... ... ... 128
723 Spatialdomain . . . . ... ..o oL 132
7.2.4 Probability density function . . . . ... ... ... .. 132
7.3 Histogram equalization . . . . .. .. .. ... ... .. ...... 133
7.4 Expert systems and image enhancement . . . . . .. ... ...... 137
74.1 SOIdetection . ... ... ................ 138
742 Fuzzy expert system development . . . . . . . .. . ... 139
743 Example . . ... ... .. ... ... 139
75 Finalremarks . . . . .. ... ... .. . ... . 143
References . . . . . .. . . . . . . . . e 143
8 Engineering Process Control 145

W. Jerry Parkinson and Ronald E. Smith
8.1 Introduction . . . . . . . ... 145



X Contents
8.2 Background . . .. ... ... 146
8.2.1 BasicPIDcontrol . ... ... ... ........... 148
822 Basic fuzzy logiccontrol . . . . .. ... ... ... 150
823 Basic probabilisticcontrol . . . . ... ..o 152
8.3 SISOcontrol systems . . . . . .. . ... ... ... 156
8.3.1 A system model and a PID controller . . . .. ... ... 160
8.4 Multi-input-multi-output control systems . . . . . .. ... ... ... 167
8.5 The three-tank MIMO problem . . . . ... ... .. ... ...... 174
8.5.1 The fuzzy and probabilistic control systems . . . . . . . . 174
8.5.2 ThePlcontroller . . . . . ... .............. 178
8.5.3 Setpoint tracking: Comparison between the controllers . . 179

8.5.4 Disturbance rejection: The fuzzy and probabilistic
controllers . . . ... .. ... L L. 181
855 Disturbance rejection: Comparison between the controllers 186
8.6 Conclusions . . . . . .. .. ... . 188
References . . . . . . . . . 190
9 Structural Safety Analysis: A Combined Fuzzy and Probability Approach 193

Timothy J. Ross and Jonathan L. Lucero

9.1 Introduction . . .. ... .. .. .. L 193
9.2 Anexample . . . ... e 194
9.3 Typical uncertainties . . . . . . . .. . ... ... 0oL 194
94 Current treatment of uncertainties . . . . . .. . ... ... ... ... 196
94.1 Response surfacemethod . . . . . . .. ... ... ... 197
9.5 Problems with current methods . . . . . . ... .. L. L. 200
9.6 The fuzzy setalternative . . . . . . .. .. ... ... ... ... .. 201
9.7 Examples. . . . ... .. .. 203
9.7.1 Deterministic/random uncertainties . . . . . . ... ... 204
9.7.2 Modeling uncertainties . . . . . . ... ... ... .. .. 204
9.7.3 Interpretation of damage . . . . . .. ... ... ... .. 211
9.8 Summary . . . ...l e e e e e e e e 216
References . . . . . . . . . . . . . 217
10 Aircraft Integrity and Reliability 219

Carlos Ferregut, Roberto A. Osegueda, Yohans Mendoza, Vladik Kreinovich,
and Timothy J. Ross

10.1

10.2

Case study: Aircraft structural integrity: Formulation of the problem . 219

10.1.1 Aerospace testing: Why . . . . ... oo o oL, 219
10.1.2 Aerospace testing: How . . . . . ... .......... 219
10.1.3 Aerospace integrity testing is very time-consuming and
XPENSIVE . . . . . . Lo 220
Solvingtheproblem . . . . ... .. ... ... .. ... .. .. ... 220
10.2.1 Qurmainidea . . .. ... ... ... .......... 220
10.2.2 Steps necessary for implementing the mainidea . . . . . 220
10.2.3 We do not have sufficient statistical data, so we must use
expertestimates . . . . . .. ... .. ... ... ... 221
10.2.4 Softcomputing . . . . ... ... ... .. ........ 221
10.2.5 The choices of transformation and combination functions

are Very important . . . . ... ... ... 0. 221



Contents xi
10.2.6 How can we solve the corresponding optimization
problem? . . . . ... . 222
10.3  How to determine probabilities from observed values of excess energy:
Optimal way (use of simulated annealing) . . ... ... ... .... 222
10.3.1 An expression for probabilities . . . ... ... 222
10.3.2 Bestinwhatsense? . .. ... ... ... .. ... ... 223
10.3.3 An optimality criterion can be nonnumeric . . . . . . . . 223
10.3.4 The optimality criterion must be final . . . . . .. .. .. 224
10.3.5 The criterion must not change if we change the measuring
unit forenergy . . . . .. ... oL 224
10.3.6 Definitions and the mainresult . . . . .. .. ... ... 225
10.4  How to determine the probability of detection: Optimal way (use of
neural networks) . . . .. L L. 226
10.4.1 The POD function must be smooth and monotonic . . . . 226
10.4.2 We must choose a family of functions, not a
singlefunction . . . . . .. ... ... . L. 227
10.4.3 Definition and the mainresult . . . . ... ... ... .. 227
10.5 How to combine probabilities (use of fuzzy techniques) . . . . . . . . 228
10.5.1 Traditional probabilistic approach: Maximum entropy . . 228
10.5.2 Traditional approach is not always sufficient . . . . . .. 228
10.5.3 Main idea: Describe general combination operations . . . 229
105.4 The notions of f-norms and t-conorms . . . . . ... .. 230
10.6  Preliminaryresults . . . . . . ... .. ... 231
10.7  Alternative approach to fusing probabilities: Fuzzyrules. . . . . . . . 231
10.7.1 Main problems with the above approach . . . . . .. .. 231
10.7.2 Theuseof fuzzyrules . . . . .. ... .. ... .. ... 23]
10.7.3 Expert rules for fault detection . . . . . .. .. ... .. 232
10.7.4 The problem with this rule base and how we solve it . . . 233
10.7.5 Experimentalresults . . . . . .. ... ... ... 234
10.8  Applications to aircraft reliability . . . . . . .. ... .. ... .... 235
10.8.1 Reliability: General problem . . . .. .. ... ... .. 235
10.8.2 Traditional approach to reliability . . . . . . .. ... .. 235
10.8.3 Traditional approach is not always sufficient: A problem . 235
10.8.4 Proposed approach to fusing probabilities: Main idea . . 236
10.8.5 Resulting solution . . . . . ... ... . ...... .. 237
10.9  Closingthoughts . . . . . .. . .. . ... .. .. . ... .. ... 237
Appendix: Proofs . . . . . .. oL o 237
Proof of Theorem 10.1 . . . . . . . . . ... .. .. ... ... ..., 237
Proof of Theorem 10.2 . . . . . . . ... ... ... . ... ...... 238
References . . . . . . . . . 240
11 Auto Reliability Project 243
Jane M. Booker and Thomas R. Bement
11.1  Description of the reliability problem . . . . . . . ... ... ... .. 243
11.2  Implementing the probability approach . . . . .. .. ... ... ... 246
11.2.1 Logic and reliability models . . . . . ... ... ... .. 246
11.2.2 Expertelicitation . . . . . ... ... ... ... ... 247
11.2.3 Updating methods . . . . . ... .. ... ... ..., 249

11.2.4 Calculating reliabilities . . . . .. .. ... ... .. .. 250



xii Contents
11.2.5 Results . . ... ... .. ... ... .. ... . ... 252
11.2.6 Documentation . . . . . ... .. .. ... ... ... 253
11.3  Auto performance using fuzzy approach . . . ... ... .... ... 253
11.3.1 Aspects of the fuzzy and probability approaches . . . . . 253
11.3.2 A fuzzy/probability hybrid approach . . . .. ... ... 254
11.3.3 A fuzzy automotiveexample . . . . . .. ... L. L. 256
11.4  Comments on approaches for system performance/reliability . . . . . 259
References . . . . . . . . . . . .. 260
12 Control Charts for Statistical Process Control 263
W. Jerry Parkinson and Timothy J. Ross
12.1 Imtroduction . . . .. ... . . . ... 263
122 Background . . ... ... .. ... 264
12.2.1 Example 1: Measured variable control chart . . . . . .. 265
12.2.2 Example 2: Special-causeevents . . . ... ....... 269
12.2.3 Example 3: Traditional SPC . . . . . .. ... ... ... 272
12.3  Fuzzy techniques for measurement data: Acasestudy . . . . ... .. 275
12.3.1 Background . ... ... ... ... .. L. 275
12.32 The fuzzysystem . ... ................. 276
12.33 Plantsimulation . . ... ... .. ..., .. .. ..., 278
12.34 Example 4: Establishing fuzzy membership values . . . . 281
12.3.5 Example 5: Fuzzycontrol . . . . .. ... ... ..... 284
12.3.6 Example 6: Acampaign . . . ... ... ... ...... 286
124  SPC techniques for measurement data requiring correlation and using
TEGIESSION . . . . o i it it e e e e e e e e e e e e 288
12.4.1 Example 7: Regression on Example 4 . . . . .. .. ... 290
124.2 Example 8: Regressionon Example 5. . . . . ... ... 291
1243 Example 9: Regression on Example 6. . . . . .. . ... 293
1244 Commentsonregression . . . . . . . ... .. ...... 294
12.5  SPC techniques for attributedata . . . . .. .. ... ......... 294
12.5.1 Example 10: Log cabinrevisited . . . .. ... ... .. 294
1252 Example 11: The log cabin with a special-cause problem 296
12.6  Fuzzy techniques for attribute data . . . . . . ... ... ... .... 296
12.6.1 Example 12: Fuzzy attribute data . . . . ... ... ... 299
12.6.2 The fuzzy system used to downgrade parts . . . . . . .. 300
12.7  Statistical techniques for multinomial attribute data . . . . . . . . .. 312
12.8  Discussionand conclusions . . . . . .. .. ... ... 322
References . . . . ... .. .. . .. .. 323
13  Fault Tree Logic Models 325
Jonathan L. Lucero and Timothy J. Ross
13.1 Introduction . .. .. ... ... ... ... ... 325
132 Objective. . . . . . . . o e 325
13.3  Chapteroverview . . . . . . . . .. . ..ot 327
134  Part A: General methodology . . . . . ... ... ... .. ... ... 327
13.4.1 Faolttrees . . ... ... ... ... ... ... .. .. 327
1342 General logic methodology . . . . ... ... ...... 328
1343 Mathematical operators . . . . . .. .. ... ... ... 331

13.4.4 Examples. . . . . ... .. ... . ... . ... .. 335



Contents Xii

1345 Summary . . . .. L 338
13.5  Part B: General methodology extended with fuzzy logic . . . . . . . . 341
13.5.1 Membership functions . . . . .. ... L 341
13.5.2 Dependence . . . . ... ... . .. ... ... ... 341
13.5.3 Summary . . . .. ... L 344
136 Conclusions . . . . . .. . .. .. e e 345
References . . . . . . . . e 345
14  Uncertainty Distributions Using Fuzzy Logic 347
Ronald E. Smith, W. Jerry Parkinson, and Thomas R. Bement
14.1 Introduction . . .. . ... .. ... ... 347
14.2  Example 1: The use of fuzzy expertise to develop uncertainty
distributions for cutting tool wear . . . . . . . ... .. ... .. ... 349
14.2.1 Demonstration of the technique . . . . . ... .. .. .. 350
14.3  Example 2: Development of uncertainty distributions using fuzzy and
probabilistic techniques . . . . . . . . ... ... L 352
14.3.1 Description and illustration of the fuzzy setup of
themethod . . . . .. ... ... ... ... ... 353
14.3.2 Fuzzy development of uncertainty distributions . . . . . . 356
14.3.3 Probabilistic characterization of the development of
uncertainty distributions . . . .. ... ... L. L. 359
14.3.4 Extendedexample . . . . . ... ... ... ... ... 361
14.3.5 Concluding remarks . . . . . ... .. ... ... .... 362
144  Summary. . . . . . . . . e 363
References . . . . . . . . . . . .. .. 364
15 Signal Validation Using Bayesian Belief Networks and Fuzzy Logic 365
Hrishikesh Aradhye and A. Sharif Heger
15.1  Imtroduction . . ... . ... ... ... ... .. 365
152  Bayesian beliefnetworks . . . . ... ... .. ..o 367
15.2.1 BBNsforSFDIA . . . . . ... . ... ... ....... 373
15.2.2 Construction of nodes, links, and associated functions . . 373
15.2.3 A single-variable, single-sensor system . . . . . . .. .. 374
15.2.4 Incorporation of redundancies in the network structure . . 375
153 Fuzzylogic. . . . . . . . . e 381
15.3.1 Using fuzzy logic for fault detection . . . . ... .. .. 382
154 Summary . . . . . . ... 389
References . . . . . . .. . . . ... 390

Index 393



This page intentionally left blank



Foreword

Probability theory and fuzzy logic are the principal components of an array of method-
ologies for dealing with problems in which uncertainty and imprecision play important roles.
In relation to probability theory, fuzzy logic is a new kid on the block. As such, it has been
and continues to be, though to a lesser degree, an object of controversy. The leitmotif of
Fuzzy Logic and Probability Applications. Bridging the Gap is that fuzzy logic and proba-
bility theory are complementary rather than competitive. This is a thesis that I agree with
completely. However, in one respect my perspective is more radical. Briefly stated, I believe
that it is a fundamental error to base probability theory on bivalent logic. Moreover, it is my
conviction that eventually this view will gain wide acceptance. This will happen because
with the passage of time it will become increasingly obvious that there is a fundamental
conflict between bivalence and reality.

To write a foreword to a book that is aimed at bridging the gap between fuzzy logic
and probability theory is a challenge that is hard to meet. But a far greater challenge is to
produce a work that illuminates some of the most basic concepts in human cognition—the
concepts of randomness, probability, uncertainty, vagueness, possibility, imprecision, and
truth. The editors, authors, and publisher of Fuzzy Logic and Probability Applications have,
in my view, met this challenge.

In Fuzzy Logic and Probability Applications, in consonance with this book’s central
theme, controversial issues relating to fuzzy logic and probability theory are treated with
objectivity, authority, and insight. Of particular interest and value is the incisive analysis
of the evolution of probability theory and fuzzy logic presented in Chapter 1. One of the
basic concepts discussed in this chapter is that of vagueness. In the authors’ interpretation,
vagueness and fuzziness are almost synonymous. In my view, this is not the case. Basi-
cally, vagueness relates to insufficient specificity, as in “I will be back sometime,” whereas
fuzziness relates to unsharpness of boundaries, as in “I will be back in a few minutes.”” Thus
fuzziness is a property of both predicates and propositions, whereas vagueness is a property
of propositions but not of predicates. For example, “tall” is a fuzzy predicate, but “Robert
is tall” is fuzzy but not vague.

Complementarity of fuzzy logic and probability theory is rooted in the fact that prob-
ability theory is concerned with partial certainty, whereas fuzzy logic is mainly concerned
with partial possibility and partial truth. A simple example is that if Robert is half-German,
then the proposition “Robert is German™ may be viewed as half-true but not uncertain. On
the other hand, if it is possible that Robert is German, then the probability that he is German
may be 0.5.

Standard probability theory—call it PT—is designed to deal with partial certainty but
not with partial possibility or partial truth. This is a serious deficiency of PT since much of
human knowledge consists of propositions that in one way or another are partially certain
and/or partially possible and/or partially true. For example, in the proposition “Usually,

XV



Xvi Foreword

Robert returns from work at about 6 PM,” “usually” is a fuzzy probability and “about 6 PM”
is afuzzy value of time. Propositions of this form may be viewed as descriptors of perceptions.
Perceptions are intrinsically imprecise, reflecting the bounded ability of sensory organs and,
ultimately, the brain, to resolve detail and store information. More concretely, perceptions
are f-granular in the sense that (a) the boundaries of perceived classes are unsharp, and (b) the
values of perceived attributes are granulated, with a granule being a clump of values drawn
together by indistinguishability, similarity, proximity, or functionality.

f-granularity of perceptions puts them well beyond the reach of conventional meaning-
representation methods based on bivalent logic. As a consequence, PT by itself lacks the
capability to operate on perception-based information: As an illustration, PT cannot provide
an answer to the following query: What is the probability that Robert is home at about t PM,
given the perception-based information that (a) usually Robert leaves his office at about
5:30 PM and (b) usually it takes about 30 minutes to reach home?

To add to PT the capability to operate on perception-based information, it is necessary to
bridge the gap between fuzzy logic and probability theory. This is the thrust of Chapters 5—
8 in Fuzzy Logic and Probability Applications. The content of these chapters is a highly
important contribution of Fuzzy Logic and Probability Applications 10 the development of
a better understanding of how to employ combinations of methods drawn from fuzzy logic
and probability theory.

In a related but somewhat different spirit, I have outlined in a recent paper (“Toward a
perception-based theory of probabilistic reasoning with imprecise probabilities,” J. Statist.
Plann. Inference, 105 (2002), pp. 233-264) an approach to generalization of PT that adds to
PT the capability to deal with perception-based information.

The approach in question involves three stages of generalization: (1) f-generalization,
(2) fg-generalization, and (3) nl-generalization. Briefly, these stages are as follows:

(1) f-generalization involves a progression from crisp sets to fuzzy sets in PT, leading to
a generalization of PT, which is denoted as PT+. In PT+, probabilities, functions,
relations, measures, and everything else are allowed to have fuzzy denotations, that
is, be a matter of degree. In particular, probabilities described as low, high, not very
high, etc., are interpreted as labels of fuzzy subsets of the unit interval or, equivalently,
as possibility distributions of their numerical values.

(2) fg-generalization involves fuzzy granulation of variables, functions, relations, etc.,
leading to a generalization of PT, which is denoted as PT++. By fuzzy granulation
of a variable X we mean a partition of the range of v into fuzzy granules with a
granule being a clump of values of X, which are drawn together by indistinguishability,
similarity, proximity, or functionality. Membership functions of such granules usually
are assumed to be triangular or trapezoidal. Basically, granularity reflects the bounded
ability of the human mind to resolve detail and store information.

(3) nl-generalization involves an addition to PT++- of the capability to operate on propo-
sitions expressed in a natural language, with the understanding that such propositions
serve as descriptors of perceptions. nl-generalization of PT leads to perception-based
probability theory, denoted as PTp. By construction, PTp is needed to answer the
following query in the Robert example: What is the probability that Robert is home
at about t PM?

A serious problem with PT, but not PT+, is the brittleness of crisp definitions. For
example, by definition, events A and B are independent iff P(A, B) = P(A)P(B). How-
ever, suppose that the equality in question is satisfied to within epsilon in magnitude. In this



Lotfi A. Zadeh xvii

event, if epsilon is positive, then no matter how small it is, A and B are not independent.
What we see is that in PT independence is defined as a crisp concept, but in reality it is a
fuzzy concept, implying that independence is a matter of degree. The same applies to the
concepts of randomness, stationarity, normality, and almost all other concepts in PT.

The problem in question is closely related to the ancient Greek sorites paradox. More
precisely, let C be a crisply defined concept that partitions the space U of objects, {u} to
which C is applicable into two sets: AT, the set of objects that satisfy C, and A, the set
of objects that do not satisfy C. Assume that u has « as a parameter and that u € A" iff
«a € A, where A is a subset of the parameter space, and v € A~ if ¢ is not in A. Since
the boundary between At and A~ is crisply defined, there is a discontinuity such that if
a € A, then o + oA may be in A’, where Aa is an arbitrarily small increment in o and A’
is the complement of A. The brittleness of crisply defined concepts is a consequence of this
discontinuity.

An even more serious problem is the dilemma of “it is possible but not probable.”
A simple version of this dilemma is the following. Assume that A is a proper subset of
B and that the Lebesgue measure of A is arbitrarily close to the Lebesgue measure of B.
Now, what can be said about the probability measure P(A) given the probability measure
P(B)? The only assertion that can be made is that P(A) lies between 0 and P(B). The
uninformativeness of this assertion leads to counterintuitive conclusions. For example,
suppose that with probability 0.99 Robert returns from work within one minute of 6 PM.
What is the probability that he is home at 6 PM? Using PT, with no additional information or
the use of the maximum entropy principle, the answer is “between 0 and 0.99.” This simple
example is an instance of a basic problem of what to do when we know what is possible but
cannot assess the associated probabilities or probability distributions.

These and many other serious problems with PT point to the necessity of generaliz-
ing PT by bridging the gap between fuzzy logic and probability theory. Fuzzy Logic and
Probability Applications: Bridging the Gap is an important move in this direction. The ed-
itors, authors, and publisher have produced a book that is a “must-read” for anyone who is
interested in solving problems in which uncertainty, imprecision, and partiality of truth play
important roles.

Lotfi A. Zadeh
Berkeley, California
April, 2002
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Foreword

Writing this foreword after reading Lotfi Zadeh’s foreword takes me back more than
two decades. When Lotfi was first developing fuzzy logic, we talked about it quite a lot.
My most vivid memories of those conversations are about the times when Lotfi presented
his ideas at Stanford to my seminar on the foundations of probability. We had some great
arguments, with lots of initial misunderstandings, especially on my part. I belonged, in those
days, to the school of thought that held that anything scientifically serious could be said
within classical logic and probability theory. There were, of course, disagreements about
the nature of probability, but not really about the formal properties of probability. The main
exception to this last claim was the controversy as to whether a probability measure should
be only finitely additive or also countably additive. De Finetti was the leading advocate of
the finitely additive viewpoint.

But new ideas and generalizations of probability theory had already been brewing on
several fronts. In the early pages of the present book the authors mention the Dempster—
Shafer theory of evidence, which essentially requires a generalization to upper and lower
probability measures. Moreover, already in the early 1960s, Jack Good, along with de Finetti,
a prominent Bayesian, had proposed the use of upper and lower probabilities from a different
perspective. In fact, by the late 1970s, just as fuzzy logic was blossoming, many varieties
of upper and lower probabilities were being cultivated. Often the ideas could be organized
around the concept of a Choquet capacity. For example, Mario Zanotti and I showed that
when a pair of upper and lower probability measures is a capacity of infinite order, there
exists a probability space and a random relation on this space that generates the pair. On the
other hand, in a theory of approximate measurement | introduced at about the same time, the
standard pair of upper and lower probability measures is not even a capacity of order two.
This is just a sample of the possibilities. But the developing interest in such generalizations
of standard probability theory helped create a receptive atmosphere for fuzzy logic.

To continue on this last point, I also want to emphasize that 1 am impressed by the
much greater variety of real applications of fuzzy logic that have been developed than is
the case for upper and lower probabilities. [ was not surprised by the substantial chapters
on aircraft and auto reliability in the present volume, for about six years ago in Germany 1
attended a conference on uncertainty organized by some smart and sophisticated engineers.
They filled my ears with their complaints about the inadequacy of probability theory to
provide appropriate methods to analyze an endless array of structural problems generated
by reliability and control problems in all parts of engineering. I am not suggesting [ fully
understand what the final outcome of this direction of work will be, but I am confident that
the vigor of the debate, and even more the depth of the new applications of fuzzy logic,

XiX
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constitute a genuinely new turn in the long history of concepts and theories for dealing with
uncertainty.

Patrick Suppes
Stanford, California
September, 2002



Preface

This book is designed as a practical guide for scientists and engineers to help them solve
problems involving uncertainty and/or probability. Consequently, the book has a practical
bent and contains lots of examples. Yet there is enough theory and references to fundamental
work to provide firm ground for scientists and engineers.

The point of view of the authors is that probabilists and fuzzy enthusiasts have argued
for too long about which philosophy is best. The truth is that both tools have their place
in the world of problem solving. In many cases, fuzzy logic is used to solve problems that
could be solved with probability because the probability literature is too theoretical and looks
impractical to the practitioner. In other cases, fuzzy logic is, indeed, the proper technique
to use. Alternatively, some problems are solved using probability because fuzzy techniques
appear to be too empirical. Probability is often the correct tool to use. Sometimes both tools
can be used together synergistically. This book is intended to help the user choose the best
tool for the job.

The distinctive feature of this book is that investigators from these two different fields
have combined their talents to provide a text that is useful to multiple communities. This
book makes an honest effort to show both the shortcomings and benefits of each technique.
It provides examples and insight into the best tool to use for a particular job.

Both fuzzy logic and probability are discussed in other texts. Fuzzy logic texts usually
mention probability but are primarily about fuzzy logic. Probability texts seldom even
acknowledge fuzzy logic. Because probabilists and fuzzy enthusiasts seldom cooperatively
work together, textbooks usually give one method of solving problems or the other, but not
both. This book is an exception. The authors do work together to mutually benefit both
disciplines. In addition, they present examples showing useful combinations of the two
techniques.

A familiarity with mathematics through calculus is assumed for this book. The book
is intended for the practicing engineer or scientist at the Bachelor of Science level or above.
While it is not designed for a specific course, because probability and fuzzy logic are not
usually taught together, this book could be used for a course on either subject or for a course on
general problem solving. It also has applications to control theory and artificial intelligence,
knowledge acquisition/management, and risk/reliability analysis.

Timothy J. Ross
Jane M. Booker
W. Jerry Parkinson

XXi
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Part |

Fundamentals

Jane M. Booker

I.1 Chapters 1-6

To bridge the gap between probability and fuzzy theories, the first step is to examine and
understand the two sides of the gap. The first part of this book consists of six chapters that
lay the foundations of both theories and provide the fundamental principles for constructing
the bridge.

We (the editors) begin (in Chapter 1) with an introduction to the history of both theories
and the stories describing the formulation of the gap between them. Itis our intent to represent
both “sides,”” but with the tone of reconciliation. There are cases where applications support
one theory more than the other, and these are brought forth in the application chapters in
Part II. There are also cases where either probability or fuzzy theory is useful or a hybrid
approach combining the two is best, particularly when characterizing different kinds of
uncertainties in a complex problem.

Following the philosophical discussion in Chapter 1, Chapters 2 and 3 provide the
foundations of fuzzy theory and probability theory, respectively.

Chapter 4 is devoted to Bayesian probability theory. Bayes’ theorem provides a pow-
erful structure for bridging the gap between fuzzy and probability theory and lays some of
the groundwork for the bridging mechanism. Chapter 5 then completes the building of the
bridge in a mathematical and philosophical sense.

Because data and information in today’s world often reside within the experience and
knowledge of the human mind, Chapter 6 examines the formal use of eliciting and analyzing
expert judgment. That topic comprises an entire book in its own right (Meyer and Booker,
2001). The contents of this chapter not only covers both theories but provides applications,
making it the perfect transition chapter to the applications chapters in Part II.

1
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.2 Suggested reading

The reader who has little familiarity with either fuzzy or probability theory should review
Chapters 2 and 3, respectively. We highly recommend Chapter 4 for an introductory un-
derstanding of how to bridge the gap between the two theories and recommend Chapter 5
to complete this understanding. Because many uncertainties in complex problem solving
and mass communication are imbedded in the cognitive processes of the human mind, we
suggest a review of the formal methods for handling expert knowledge.

References

M. A. Meyer and J. M. Booker (2001), Eliciting and Analyzing Expert Judgment: A Prac-
tical Guide, ASA-SIAM Series on Statistics and Applied Probability, SIAM, Philadel-
phia, ASA, Alexandria, VA.



Chapter 1

Introduction

Timothy J. Ross, Jane M. Booker, and W. Jerry Parkinson

1.1 Some history and initial thoughts

The history of humankind and its relationship to technology is well documented. One such
technology—information technology—has been impacting human thought over at least the
last 400 years.

For example, the 17th century was described by its technology historians as the Age
of Experience, in which many developments from direct observation were realized in fun-
damental astronomy, physics, chemistry, and mathematics despite remaining mysteries in
other fundamental concepts (e.g., sphericity of the planet). The 18th century was perceived
as the Age of Reason—the Renaissance following the Dark Ages in Europe at the end of
the 17th century. From the beginning of the 19th century until about 1950, we had what we
could call the Age of Mathematics—here the arithmetical formalisms of the previous century
were advanced into more formal calculus-based theories. From 1950 to 1980, we had the
Age of Computing—a time where many computational models of physical processes were
developed. This period paralleled the developments in digital computing from the ILLIAC
through the IBM® 360 to the IBM PC. From 1980 to 1995, we had the Age of Knowledge—a
time when, as evidenced in its literature, a great deal of effort was focused on the acquisition
and appropriate use of knowledge. Again, we see a parallel development, this time in hard-
ware, between the areas of symbolic computing (ISP machines, Mathematica) and parallel
computing (CRAY, Connection-Machine, IBM SP). Finally, 1995 to the present is the Age
of Cyberspace—an age of ubiquitous networks and multiple, rapid forms of communication.

Humans cannot be expected to reasonably adjust to today’s rapid technological ad-
vancements. Today humans are in information overload. The engine behind this can be
traced to the individual forces of computer hardware and software; the nascent field of net-
work computing; integration of various engineering fields; new technologies such as GIS
(geographic information systems) and GPS (global positioning systems) producing gigabytes
of information each hour; intelligent databases; complex simulation models; collaborative
engineering; inventive engineering; and new methods to present, distill, and deliver techno-
logical education to distant areas—so-called distance education (Arciszewski, 1999).
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Superposed with this development in information technology we had a parallel devel-
opment in the theoretical frameworks for assessing uncertainty in the information. Probabil-
ity concepts date back to the 1500s, the time of Cardano when gamblers recognized the rules
of probability in games of chance and, more important, that avoiding these rules resulted in
a sure loss (i.e., the classic coin toss example of “heads you lose, tails I win,” referred to as
the “Dutch book™). The concepts were still very much in the limelight in 1685, when the
Bishop of Wells wrote a paper that discussed a problem in determining the truth of statements
made by two witnesses who were both known to be unreliable to the extent that they only tell
the truth with probabilities p; and p,, respectively. The Bishop’s answer to this was based
on his assumption that the two witnesses were independent sources of information (Lindley
(1987b)).

Probability theory was initially developed in the 18th century in such landmark treatises
as Jacob Bernoulli’s Ars Conjectandi (1713) and Abraham DeMoiver’s Doctrine of Chances
(1718; 2nd ed., 1738). Later in that century a small number of articles appeared in the
periodical literature that would have a profound effect on the field. Most notable of these
were Thomas Bayes’ An Essay Towards Solving a Problem in the Doctrine of Chances (1763)
and Pierre Simon Laplace’s formulation of the axioms relating to games of chance, Mémoire
sur la probabilité des causes par les evenemens (1774). Laplace, only 25 years old at the
time he began his work in 1772, wrote the first substantial article in mathematical statistics
prior to the 19th century. Despite the fact that Laplace, at the same time, was heavily engaged
in mathematical astronomy, his memoir was an explosion of ideas that provided the roots
for modern decision theory, Bayesian inference with nuisance parameters (historians claim
that Laplace did not know of Bayes’ earlier work), and the asymptotic approximations of
posterior distributions (Stigler (1986)).

By the time of Newton, physicists and mathematicians were formulating different
theories of probability (see Chapter 3). The most popular ones remaining today are the
relative frequency theory and the subjectivist, or personalistic, theory. The latter theory
was initiated by Thomas Bayes (1763), who articulated his very powerful theorem for the
assessment of subjective probabilities. The theorem specified that a human’s degree of belief
could be subjected to an objective, coherent, and measurable mathematical framework within
the subjective probability theory. In the early days of the 20th century, Rescher developed
a formal framework for a conditional probability theory, and Jan Lukasiewicz developed a
multivalued, discrete logic (circa 1930). In the 1960s, Arthur Dempster developed a theory
of evidence which, for the first time, included an assessment of ignorance, or the absence
of information. In 1965, Zadeh introduced his seminal idea in a continuous-valued logic
called fuzzy set theory. In the 1970s, Glenn Shafer extended Dempster’s work! to produce a
complete theory of evidence dealing with information from more than one source, and Lotfi
Zadeh illustrated a possibility theory resulting from special cases of fuzzy sets. Later, in the
1980s other investigators showed a strong relationship between evidence theory, probability
theory, and possibility theory with the use of what have been called fuzzy measures (Klir
and Folger (1988)).

In the over three decades since its inception by Zadeh, fuzzy set theory (and its logical
counterpart, fuzzy logic) has undergone tremendous growth. Over ten thousand papers,
hundreds of books, almost a dozen journals, and several national and international societies
bear witness to this growth. Table 1.1 shows a count of papers containing the word “fuzzy”
in the title, as cited by INSPEC and MathSciNet databases. (Data for 2001 are not complete.)
To this day, perhaps because the theory is chronologically one of the newest, fuzzy sets and

'We refer to this extension in the text as the Dempster—Shafer theory.
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Table 1.1. Number of papers with the word “fuzzy” in the title.”

Period INSPEC | MathSciNet
1970-1979 570 441
1980-1989 2,383 2,463
1990-1999 23,121 5,459
2000-2001 5,940 1,670

Totals 32,014 10,033

*Compiled by Camille Wanat, Head, Engineering Library, University of California at Berkeley, June 21, 2002.

fuzzy logic remain steeped in controversy and debate for a variety of reasons. Although
the philosophical and mathematical foundations of fuzzy sets are intuitive, they run counter
to the thousands of years of dependence on binary set theory on which our entire Western
cultural logic resides (first espoused by Aristotle in ancient Greece). In addition, some have
seen fuzzy sets as a competitor to probability theory (the new-kid-on-the-block syndrome)
in a variety of settings, such as in competition for precious page space in journals, for
classes on campuses, for students in graduate classes, and even for consulting opportunities
in industry, to name a few. The statistical societies have even sponsored debates in their
own journals (e.g., Statist. Sci., 1 (1986), pp. 335-358) and conferences on topics ranging
from the mathematical (e.g., the axioms of subjective probability) to the linguistic (e.g.,
communicating better with engineers and scientists (Hoadley and Kettering (1990)) in an
effort to win back “market share,” i.e., to get science and engineering students to take classes
in statistics and probability instead of evidence theory, fuzzy logic, soft computing, and other
new uncertainty technologies.

However, the debate extends far beyond “market share” competitiveness. The core
issues involve the philosophical and theoretical differences between these theories and how
these theories are useful for application in today’s complex, information-based society. Later
in this chapter, there is a lengthy discussion on the running debate between advocates of the
two theories concerning the merits of each theory in terms of modeling uncertainty and
variability.?

It is the premise of this book that this perceived tension between probability theory and
fuzzy set theory is precisely the mechanism necessary for scientific advancement. Within
this tension are the searches, trials and errors, and shortcomings that all play a part in the
evolution of any theory and its applications. In this debate between advocates of these two
theories are the iterations necessary to reach a common ground that will one day seem so
intuitive and plausible that it will be difficult to reflect or to remember that there ever was
a debate at all! Our goal in writing this book is to illustrate how naturally compatible and
complementary the two theories are and to help the reader see the power in combining the
two theories to address the various forms of uncertainty that plague most complex problems.
Some of this compatibility can be reached by examining how probability is interpreted. As
will be demonstrated in this book, it is much easier to bridge the gap when a subjective or
personalistic (e.g., Bayesian-based) interpretation of probability is used (see Chapter 3 for a
discussion).

The contributors to this book were chosen for their experience and expertise in both
theories but also for their efforts in and understanding of the compatibility of both fuzzy and
probability theories. Even though some chapters are more fuzzy oriented and some are more

2t should be noted that within the probability community there is an equally intense debate over the interpretation
of probability (i.e., frequentist versus subjective). To our knowledge, the only attempt ever made in resolving that
debate is addressed in Chapter 3.
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probability oriented,® the goal for each chapter is to provide some insight into establishing
the common ground, i.c., bridging the gap.

In addition to the motivations for this book as explained above, there is ample evidence
in the literature about the need for more information sharing among groups using various
theories to assess and quantify uncertainty. For example, Laviolette et al. (1995) claim
that “so few statisticians and probabilists have considered the efficacy of fuzzy methods™!
Another observation (Bement (1996)) is that “the reason engineers (e.g., Zadeh) had to devise
their own theory for handling different kinds of uncertainty was because statisticians failed
to respond to the engineering needs.” Thus far, most of the debate about FST (fuzzy set
theory) and probability has appeared in “fuzzy” journals that “are not frequently read by
statisticians.” This statement rings true in many other works in the literature.

1.2 The great debate
1.2.1 The debate literature

There have been several organized debates at fuzzy conferences, including a recent one at
the annual Joint Statistical Meeting (Anaheim, CA, August 1997); an oral faceoff between
two individuals (G. Klir and P. Cheeseman) at the 8th Maximum Entropy Workshop (August
1-5, 1988, St. John’s College, Cambridge, U.K.; see Klir (1989)); and there exist several
archival collections of written debates. For example, the following citations give an idea
of the activity produced in very well written arguments espousing the virtues of various
uncertainty methods, although most of the debate centers on Bayesian probability or fuzzy
logic:

Statist. Sci., 2 (1987), pp. 3-44;

e Comput. Intell., 4 (1988), pp. 57-142;

IEEE Trans. Fuzzy Systems, 2 (1994), pp. 1-45;
¢ Technometrics, 37 (1995), pp. 249-292.

In addition, numerous articles have been written outside of organized debates that have
been critical of one or the other theory by protagonists of each. These articles include the
following:

» Lindley, Internat. Statist. Rev., 50 (1982), pp. 1-26 (with seven commentaries);

¢ Cheeseman, in the edited volume Uncertainty in Artificial Intelligence, North-Holland,
Amsterdam, 1986, pp. 85-102;

» Cheeseman, Comput. Intell., 4 (1988), pp. 58-66 (with 22 commentaries);
» Hisdal, Fuzzy Sets Systems, 25 (1988), pp. 325-356;
* Kosko, Internat. J. Gen. Systems, 17 (1990), pp. 211-240;

*» Laviolette and Seaman, Math. Sci., 17 (1992), pp. 26-41;

31t is not inconceivable that some problems are more fuzzy oriented and some are more probability oriented
than others.
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¢ Elkan, in Proceedings of the American Association for Artificial Intelligence, MIT
Press, Menlo Park, CA, 1993, pp. 698-703 (with numerous commentaries in the
subsequent AAAI magazine);

e Zadeh, IEEE Trans. Circuits Systems, 45 (1999), pp. 105-119.

The next section takes many of the points made in the various historical debates and
organizes them into a few classic paradigms that seem to be at the heart of the philosophical
differences between the two theories. While this is merely an attempt to summarize the
debates for the purpose of spawning some thinking about the subsequent chapters of this
book, it can in no way represent a complete montage of all the fine points made by so many
competent scientists. Such a work would be another manuscript in itself.

1.2.2 The issues and controversy

Any attempt to summarize the nearly four decades of debate between the probability and
fuzzy communities is a daunting task, and one that is in danger of further criticism for at least
two reasons: First, we could not possibly include everyone’s arguments (see the brief review
of the many organized debates in the previous section); second, we could be precariously
close to misrepresenting the opinions of those arguments that we do include here if we have
inadvertently taken some arguments out of their originally intended contexts. Therefore, we
apologize in advance for any omissions or possible misrepresentations included herein. It is
important to mention that many of the opinions and arguments presented in this brief review of
the “great debate’” should be taken in their historical perspectives. Some of the individuals
whose quotes are provided here—quotes perhaps made very early in the evolution of the
process—imnay have changed their minds or changed their perspectives on some of the issues
raised over the past 35 years. In addition, in changing views or perspectives, some of these
individuals, and more not mentioned here, unwittingly have advanced the knowledge in both
fields—fuzzy and probability theories—because it is the debate process, by its very nature,
that has forced a positive evolution in bridging the gap between these two very powerful and
very useful models of uncertainty and variability.

In what follows, we have organized our review of the great debate into some rather
useful, although perhaps arbitrary, epistemological paradigms. We begin with a review
of some of the polemical statements that fueled the fires of many of the original debates.
Although strident in their character, in retrospect these polemics were well timed in terms
of forcing people to look more closely at the side of the debate they were defending. The
polemics tended to be one-sided, opposing fuzzy set theory, this being the new sibling in
the family and requesting equal consideration as a viable theory for assessing uncertainty
alongside its more mature and metaphorically larger brother, probability theory. Very few of
the polemics were aimed in the other direction—probably more as a defensive reaction—and
we will mention some of these.

Next, we organize the debate into some paradigms that seemed to characterize much
of the disagreement. These are

+ philosophical issues of chance, ambiguity, crispness, and vagueness;
» membership functions versus probability density functions;
¢ Bayes’ rule;

+ the so-called conjunction fallacy;
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+ the so-called disjunction contradiction;
» the excluded-middle laws;
* the infusion of fuzziness into probability theory.

We conclude our summary of the great debate with some rather pithy but positive
statements.

The early polemics

We give first billing to the father of fuzzy logic, Professor Lotfi Zadeh, whose seminal paper
in 1965 obviously started the debate. In a recent paper (Zadeh (1999)), where he discusses
the need for developing methods to compute with words, he recounts a few remarks made
in the early 1970s by two of his colleagues. These remarks revealed, in a very terse and
crude way, a deep-seated proclivity of hard scientists to seriously consider only those things
that are numerical in nature. To preface these remarks, Professor Zadeh cited a statement
attributed to Lord Kelvin in 1883 about the prevailing 19th century respect for numbers and
the utter disrespect for words:

“T often say that when you can measure what you are speaking about and express
it in numbers, you know something about it; but when you cannot measure it,
when you cannot express it in numbers, your knowledge is of a meager and
unsatisfactory kind: it may be the beginning of knowledge but you have scarcely,
in your thoughts, advanced to the state of science, whatever the matter may be.”

Zadeh goes on to recall that, in 1972, Rudolph Kalman, remarking on Zadeh’s first exposition
on a linguistic variable, had this to say:

“Is Professor Zadeh presenting important ideas or is he indulging in wishful
thinking? No doubt Professor Zadeh’s enthusiasm for fuzziness has been rein-
forced by the prevailing climate in the U.S.—one of unprecedented permissive-
ness. ‘Fuzzification’ is a kind of scientific permissiveness; it tends to result in
socially appealing slogans unaccompanied by the discipline of hard scientific
work and patient observation.”

In a similar vein, in 1975 Zadeh’s colleague at Berkeley, Professor William Kahan, offered
his assessment:

“Fuzzy theory is wrong, wrong, and pernicious. 1 cannot think of any problem
that could not be solved better by ordinary logic. What we need is more logical
thinking, not less. The danger of fuzzy theory is that it will encourage the sort
of imprecise thinking that brought us so much trouble.”

These statements, and others similar to them, set the stage for the great debate that,
although continuing today, has calmed in its rhetoric in recent years.

In 1988, Peter Cheeseman excited numerous investigators in the fields of fuzzy set
theory, logic, Dempster—Shafer evidence theory, and other theories with his work “An Inquiry
into Computer Understanding.” In this paper, he made the claim that both fuzzy set theory
and Dempster—Shafer evidence theory violated context dependency, a required property of
any method-assessing beliefs. This statement, and many others included in the paper, such
as his misstatements about possibility distributions (Ruspini (1988)), incited such a debate
that 22 commentaries followed and were published.
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In a series of papers dealing with the expression of uncertainty within artificial intel-
ligence, Dennis Lindley (1982, 1987a, b) perhaps expressed the most vociferous challenge
to fuzzy set theory—or any other non-Bayesian theory—with his comments about the in-
evitability of probability:

“The only satisfactory description of uncertainty is probability. By this is meant
that every uncertainty statement must be in the form of a probability; that several
uncertainties must be combined using the rules of probability, and that the cal-
culus of probabilities is adequate to handle all situations involving uncertainty.
In particular, alternative descriptions of uncertainty are unnecessary. These in-
clude the procedures of classical statistics; rules of combination. . . possibility
statements in fuzzy logic. .. use of upper and lower probabilities. . . and belief
functions.”

In a single paragraph, Lindley’s proclamations were sufficient to not only extend indefinitely
the debate between fuzzy and probability, but also to prolong numerous other debates, such
as those continuing for the past 100 years between frequentists and Bayesians.

Other statements were made that, although inflammatory, appeared to have less sub-
stance. Hisdal (1988a) stated “the fuzzy set group is. .. in the position of having a solution
for which it has not yet found a problem’ and “a theory whose formulas must be replaced
by other ad hoc ones whenever it does not agree with experiment is not a finished theory.” A
rather unexplained quote from her, “Fuzziness # randomness. . . this is a very strong, and. . .
also a very surprising assertion,” was followed by an even more enigmatic statement: “Fuzzy
set theory has mostly assumed that some mystic agent is at work, making its fuzzy decisions
according to some undefined procedure.” Moreover, in (Hisdal (1988b)), she states of fuzzy
set theory that “This seems to imply the belief, that human thinking is based on inexact,
fuzzily-defined concepts. As I have heard a colleague express it, the theory of fuzzy sets is
no theory at all, it is more like a collection of cooking recipes.”

Laviolette and Seaman (1992) remarked that “fuzzy set theory represents a higher
level of abstraction relative to probability theory” and questioned whether laws exist to
govern the combination of membership values. In a rather curious metaphor explaining the
relationship of the axiomatic differences in the two theories, specifically the fuzzy property
of supersubsethood as articulated by Bart Kosko in 1990, they begin with “The foundation
of probability is both operationally and axiomatically sound. Supersethood alone need not
make one theory more broadly applicable than another in any practical sense. If we wish to
design and construct a building, we need only Newtonian mechanics and its consequences.
The fact that quantum mechanics includes Newtonian mechanics as a subset theory is of no
practical consequence.” Then, in speaking about the operational effectiveness of the two
theories, they further suggest “We have proposed that fuzzy methods be judged by their
sensitivity to changes in an associated probabilistic model. We take for granted that fuzzy
methods are sub-optimal with respect to probabilistic methods. It is important that a method
for judging the efficacy of fuzzy methods be developed and employed, given the widespread
interest in FST.” Finally, they state “. .. in our opinion, this operational deficiency remains
the chief disadvantage of fuzzy representations of uncertainty.”

From the other side of the argument, Kosko (1994) states that “probability is a very
special case of fuzziness.”” In referring to the excluded-middie laws, he states that it “forces
us to draw hard lines between things and non-things. We cannot do that in the real world.
Zoom in close enough and that breaks down.” (See section 2.1.2 in Chapter 2 on excluded-
middle laws for an expansion of these ideas.) Kosko further states that “Our math and world
view might be different today if modern math had taken root in the A-AND-not-A views
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of Eastern culture instead of the A-OR-not-A view of ancient Greece.” To dismiss this as
unfortunate deconstructionism is just to name call and to ignore historical fact. For a long
time the probability view had a monopoly on uncertainty, but now “fuzzy theory challenges
the probability monopoly. .. the probability monopoly is over.”

In his 1990 paper “Fuzziness vs. Probability,” Kosko addresses everything from ran-
domness, to conditional probability, to Bayesian subjective probability. He very eloquently
shows that his subsethood theorem is derived from first principles and, in commenting on
the lack of a derivable expression for conditional probability, remarks that this is the “dif-
ference between showing and telling.” He remarked that his “subsethood theorem suggests
that randomness is a working fiction akin to the luminiferous ether of nineteenth-century
physics—the phiogiston of thought.” Noting that his derivation of the subsethood theo-
rem had nothing to do with randomness, he states “The identification of relative frequency
with probability is cultural, not logical. That may take some getting used to after hundreds
of years of casting gambling intuitions as matters of probability and a century of building
probability into the description of the universe. It is ironic that to date every assumption
of probability—at least in the relative frequency sense of science, engineering, gambling,
and daily life—has actually been an invocation of fuzziness.”” Giving equal attention to the
subjective probability groups, he claims that “Bayesianism is a polemical doctrine.” To jus-
tify this, he shows that Bayes’ rule also stems from the subsethood theorem.* Additionally,
in commenting on Lindley’s argument (Lindley (1987a)) that only probability theory is a
coherent theory and all other characterizations of uncertainty are incoherent, Kosko states
“this polemic evaporates in the face of” the subsethood theorem and “ironically, rather than
establish the primacy of axiomatic probability, Lindley seems to argue that it is fuzziness in
disguise.” Kosko finishes his own series of polemics by euphemistically pointing out that
perhaps 100 years from now, “no one. .. will believe that there was a time when a concept
as simple, as intuitive, as expressive as a fuzzy set met with such impassioned denial.”

Kosko’s prediction reflects the nature of change in human cognition and perhaps even
philosophy. Whether that process can be best described as fuzzy or probabilistic in nature
we leave as a mental exercise.

Philosophical issues: Chance, ambiguity, and crispness versus vagueness

It is sometimes useful to first sit back and ask some fundamental questions about what it is we
are trying to do when we attempt to first characterize various forms of uncertainty, and then
to posit mathematical forms for quantifying them. Philosophers excel at these questions.
The history of humankind’s pondering of this matter is rich, and won’t be replicated here,
but the ideas of a few individuals who have thought about such notions as chance, ambiguity,
crispness, and vagueness are cited here. While we could look at a time in Western culture as
far back as that of Socrates, Descartes, or Aristotle, or revisit the writings of Zen Buddhism,
we shall skip all that and move directly to the 20th century, where a few individuals spoke
profoundly on these matters of uncertainty.

Max Black, in writing his 1937 essay “Vagueness: An exercise in logical analysis,”
first cites remarks made by the ancient philosopher Plato about uncertainty in geometry, then
embellishes on the writings of Bertrand Russell (1923) who emphasized that “all traditional
logic habitually assumes that precise symbols are being employed.” With these great thoughts
prefacing his own arguments, he proceeded to his own, now famous quote:

4While subsethood by itself may not guarantee performance enhancement in practical applications, enhance-
ments to existing solutions from the use of fuzzy systems is illustrated in the applications chapters of Part II of this
book.
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“Tt is a paradox, whose importance familiarity fails to diminish, that the most
highly developed and useful scientific theories are ostensibly expressed in terms
of objects never encountered in experience. The line traced by a draftsman, no
matter how accurate, is seen beneath the microscope as a kind of corrugated
trench, far removed from the ideal line of pure geometry. And the ‘point-planet’
of astronomy, the ‘perfect gas’ of thermodynamics, or the ‘pure-species’ of ge-
netics are equally remote from exact realization. Indeed the unintelligibility at
the atomic or subatomic level of the notion of a rigidly demarcated boundary
shows that such objects not merely are not but could not be encountered. While
the mathematician constructs a theory in terms of ‘perfect’ objects, the exper-
imental scientist observes objects of which the properties demanded by theory
are and can, in the very nature of measurement, be only approximately true.”

More recently, in support of Black’s work, Quine (1981) states

“Diminish a table, conceptually, molecule by molecule: when is a table not
a table? No stipulations will avail us here, however arbitrary. ... If the term
‘table’ is to be reconciled with bivalence, we must posit an exact demarcation,
exact to the last molecule, even though we cannot specify it. We must hold that
there are physical objects, coincident except for one molecule, such that one is
a table and the other is not.””

Bruno de Finetti, in his landmark 1974 book Theory of Probability, quickly gets his
readers attention by proclaiming “Probability does not exist; it is a subjective description
of a person’s uncertainty. We should be normative about uncertainty and not descriptive.”
He further emphasizes that the frequentist view of probability (objectivist view) “requires
individual trials to be equally probable and stochastically independent.” In discussing the
difference between possibility and probability he states “The logic of certainty furnishes us
with the range of possibility (and the possible has no gradations); probability is an additional
notion that one applies within the range of possibility, thus giving rise to gradations (‘more
or less’ probable) that are meaningless in the logic of uncertainty.” In his book, de Finetti
warns us that: “The calculus of probability can say absolutely nothing about reality’”; and
in referring to the dangers implicit in attempts to confuse certainty with high probability,
he states, “We have to stress this point because these attempts assume many forms and are
always dangerous. In one sentence: to make a mistake of this kind leaves one inevitably
faced with all sorts of fallacious arguments and contradictions whenever an attempt is made
to state, on the basis of probabilistic considerations, that something must occur, or that its
occurrence confirms or disproves some probabilistic assumptions.”

In a discussion about the use of such vague terms as “very probable,” “practically
certain,” or “almost impossible,” de Finetti states

“The field of probability and statistics is then transformed into a Tower of Ba-
bel, in which only the most naive amateur claims to understand what he says
and hears, and this because, in a language devoid of convention, the funda-
mental distinctions between what is certain and what is not, and between what
is impossible and what is not, are abolished. Certainty and impossibility then
become confused with high or low degrees of a subjective probability, which
is itself denied precisely by this falsification of the language. On the contrary,

SHistorically. a sandpile paradox analogous to Quine’s table was discussed much earlier, perhaps in ancient
Greek culture.
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the preservation of a clear, terse distinction between certainty and uncertainty,
impossibility and possibility, is the unique and essential precondition for mak-
ing meaningful statements (which could be either right or wrong), whereas the
alternative transforms every sentence into a nonsense.”

Probability density functions versus membership functions

The early debate in the literature surrounding the meaning of probability and fuzzy logic
also dealt with the functions in each theory; i.e., probability density functions (PDFs) and
membership functions (MFs). The early claim by probabilists was that membership functions
were simply probability density functions couched in a different context, especially in the
modeling of subjective probability. The confusion perhaps stemmed from both the similarity
between the functions and the similarity between their applications—to address questions
about uncertainty. However, this confusion still prevails to a limited extent even today.
For example, in the paper (Laviolette et al. {1995)), the authors provide a quote from the
literature that intimated that membership functions are “probabilities in disguise.” When
one looks at the ontological basis for both these functions, it is seen that the only common
feature of an MF and a PDF is that both are nonnegative functions. Moreover, PDFs do not
represent probabilities and, while the maximum membership value allowed by convention
is unity, there is no maximum value for a PDF. On the other hand, a cumulative probability
distribution function (CDF), the integral of the PDF, is a nonnegative functions defined on
the unit interval [0, 1] just as an MF. A CDF is a monotonically increasing function, and an
MF is not. The integral of a PDF (the derivative of the CDF) must equal unity, and the area
under an MF need not equal unity.6 Based on these fundamental differences, it is not so
obvious how either function could be a disguise for the other, as claimed by some. However,
we recognize that the attempts to overcome, ignore, or mask the differences may be the result
of wishful thinking, either from wanting to show that one theory is superfluous because its
features can be captured by the other, or wanting to bridge the gap between the two.

One area in which PDFs and MFs have been equated is that of Bayesian probability
analysis (Laviolette (1995), Cheeseman (1988)). In this case, the likelihood function in
Bayes’ rule, the function containing new information and used to update the prior probabil-
ities, need not be a PDF. In Bayes’ rule, there is a normalization taking place that ensures
the posterior distribution (updated prior) will be a PDF, even if the likelihood function is not
a PDF. In many applications of Bayes’ rule, this likelihood function measures a degree of
belief and, by convention, attains a value of unity. Geometrically, the likelihood function
can be used in the same context as an MFE. In fact, Laviolette uses this similarity to point
out that fuzzy control can be approached in the same way as probabilistic control (see Chap-
ter 8 for a more definitive discussion of this claim), and Cheeseman uses this similarity to
mistakenly imply that membership functions are simply likelihood functions. But the bot-
tom line is that subjective probabilities—those arising from beliefs rather than from relative
frequencies—still must adhere to the properties mentioned above for PDFs and CDFs. They
cannot be equated with MFs without making extreme assumptions to account for the differ-
ences. Another fundamental difference is that MFs measure degrees of belongingness. They
do not measure likelihood (except in a similarity sense, i.e., likeliness) or degrees of belief
or frequencies, or perceptions of chance, and the area under their curve is not constrained to
a value of unity. They measure something less measurable-—set membership in ambiguous

SWhile the area under an MF is not a constraint on these functions, it is a useful metric in some applications
involving defuzzification methods (see Chapter 2).
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or vague sets. Although both membership values and probabilities map to the unit interval
[0, 1], they are axiomatically different (see the discussion in Chapter 5).

James Bezdek gives some excellent examples of the differences between membership
values and probabilities (Bezdek (1993, 1994a, 1994b)). He summarizes much of the de-
bate by pointing out that the probability-only advocates base their arguments on one of two
philosophical themes: (i) nonstatistical uncertainty does not exist, or (ii} maybe nonrandom
uncertainty does exist, but a probability model still is the best choice for modeling all uncer-
tainties. Theme (i) engenders a debate even within the statistical community because there
is a nice variety of choices on which to base a probabilistic approach: relative frequency,
subjectivity, or the axiomatic approach (von Mises (1957)). In theme (ii), it has been argued
by many (e.g., Klir (1989, 1994)) that nonstatistical forms of uncertainty do exist and that
numerous theories address them in very useful ways.

Bezdek (1993) gives the following example that, in turn, has spawned numerous other
examples. Suppose you are very thirsty and have the chance to drink the liquid from one
of two different bottles, A and B. You must decide from which bottle to drink using the
following information: bottle A has 0.91 membership in the set of potable liquids, whereas
bottle B has a probability of 0.91 of being potable. For the sake of illustration, we will define
this probability as a frequentist interpretation. Most people would choose bottle A since
its contents are at least “reasonably similar” to a potable liquid and because bottle B has a
9% chance of being unsavory, or even deadly. Moreover, if both bottles could be tested for
potability, the membership value for bottle A would remain unchanged, while the probability
for bottle B being potable would become either O or 1—it is either potable or not potable
after a test.” These two different kinds of information inherently possess philosophically
different notions: fuzzy memberships represent similarities of objects to imprecisely defined
properties, and probabilities convey assessments of relative frequencies.

Some probabilists have claimed that natural language is precise, indeed, and that there
is no need to use a method like fuzzy logic to model linguistic imprecision. An example
dealing with imprecision in natural language is also given by Bezdek (1993). Suppose that
as you approach a red light, you must advise a driving student when to apply the brakes.
Would you say “begin braking 74 feet from the crosswalk,” or would your advice be for the
student to “apply the brakes pretty soon” 7 As an exercise, think of how you would address
this uncertainty with probability theory.® In this case, precision in the instruction is of little
value. The latter instruction would be used by humans since the first command is too precise
to be implemented in real time. Sometimes, striving for precision can be expensive, or adds
little or no useful information, or both. Many times, such uncertainty cannot be presumed
to be, or adequately assessed as, an element of chance.

Bayes’ rule

Cheeseman (1988) gives an eloquent discussion of the utility of Bayesian probability in
reasoning with subjective knowledge. He and Laviolette (1985) suggest that there is no need
to use fuzzy set theory to model subjective knowledge since Bayesian methods are more
than adequate for this. However, even the subjective interpretation of probability still has
the restrictions of that theory. For example, there is no apparent difference in the way one
would model ignorance that arises from lack of knowledge or ignorance that arises from

TWe could argue that the subjective probability would also remain unchanged; however, this is more of a
frequentist interpretation.

BUsing probabilities, we could estimate the required distance and then instruct the student to brake where he/she
maximized his/her probability assessment of stopping in time.
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only knowing something about a random process (McDermott (1988)). Moreover, others
still question the utility of Bayesian models in epistemology (Dempster (1988), Dubois and
Prade (1988)).

Shafer (1987) makes the following points about Bayes’ formula P(A|Up) =
P(Uo|A)P(A)/P(Uy):

“[It] can serve as the symbolic expression of a rule. This rule, the Bayesian
rule of conditioning, says that when new knowledge or evidence tells us that the
correct answer to the question considered by U is in the subset Uy, we should
change our probability for another subset A from P(A) to the new probability
given by this quotient, above. Strictly speaking, this rule is valid only when the
receipt of the information, Uy, is itself a part of our probability model-—i.e., it
was foreseen by the protocol. In practice, however, the rule is used more broadly
than this in subjective probability judgment. This broader use is reasonable, but
itmust be emphasized that the calculation is only an argument—an argument that
is imperfect because it involves a comparison of the actual evidential situation
with a situation where Uy was specified by a protocol, as one of the possibilities
for the set of still possible outcomes at some point in the game of chance. The
protocol is the specification, at each step, of what may happen next, i.e., the
rules of the game of chance.”

Alleged conjunction fallacy

Conjunction in fuzzy logic is modeled with the minimum operator as the smaller of the
membership values between two sets. Woodall (1997) and Osherson and Smith (1981) cite
the conjunction fallacy as one of the frailties of fuzzy logic. Others, such as McNeil and
Freiberger (1993), have called this an intriguing cognitive puzzle that is not a frailty of fuzzy
logic but rather a strength, as it exposes with human reasoning the reality of conjunctive
processes. Basically, the cognitive puzzle can be illustrated with the following example:
The intersection between the set “pet” and the set “fish” produces a membership value of the
conjunction “pet fish” that is the smaller of the membership values for “pet’ and for “fish™ for
a particular species of fish in the universe of vertebrates. Osherson and Smith considered that
guppy, as a specific species, should have a higher value in the conjunctive set “pet fish” than
it does in either “pet” or “fish’’; it is not a common pet, nor a common fish, they argued, but it
is certainly a strong prototype of the concept “pet fish.” In explaining the minimum operator
as a preferred operator for the conjunction of fuzzy sets, Zadeh (and others, e.g., Oden (1984)
and Rosch (1973)) pointed out that humans normalize in their thinking of concepts, whereas
strict logical operations don’t involve such normalization. Being in the intersection of set
“pet” and set “fish,” i.e., in the set “pets and fish,” is different from being in the set “pet
fish.”” A linguistic modification (pet modifies fish) does not equate to a logical conjunction
of concepts (sets). Other, more easily understood examples are “red hair” or “ice cube,”
where the terms “red” and “cube” are altered significantly from their usual meaning. In
thinking about per—fish people normalize; they compare a guppy to other pets and other fish
and the guppy has a low membership, but when they compare it only to other per—fish, it
grades higher. Such cognitive puzzles, which lead to faulty human reasoning, have long
been discussed in the literature (Tversky and Kahneman (1983)).

Normalization is typical in many uncertainty operations. A conditional probability
is a normalization and, as we have seen in the previous section, Bayes’ rule also involves
normalization. For example, the probability of getting a 3 on one toss of a die is é, but the
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probability changes to % if the result is conditioned (i.e., normalized) on the outcome being
an odd number (i.e., 1, 3, or 5). In their arguments about “pet fish,” Osherson and Smith
implicitly normalized for their example of guppies.

Alleged disjunction contradiction

Another allegation about fuzzy logic suggested by some probabilists in the literature (His-
dal (1988b), Laviolette et al. (1985), Lindley (1987a)) has been termed the “disjunctive
contradiction.” In describing a fuzzy set modeling the heights of people, Hisdal (1988b)
complains that the logical union between the fuzzy sets medium height and tall height should
not be less than unity between the prototypical values of medium and tall. She calls this the
“sharp depression” in the grade of membership curve for two adjacent linguistic labels (see
Figure 1.1).

A medium

tall

Figure 1.1.

In other words, Hisdal’s question is, how could any person’s membership in the set
“medium OR tall” (which, for fuzzy operations, involves the maximum operator) be less
than the largest membership of either if that person’s height was between the prototype
heights representing medium height and tall? The answer is quite simple. As the figure
shows, a “tall” person can have a low membership in the set “medium.” The set “tall” is
not a subset of the set “medium,” but there is an overlap—there exists a common ground
in which members of both sets coexist with lower membership. Hisdal confused “medium
or tall” with the set “at least medium.” Hence there is no inconsistency in the use of the
maximum operator here for disjunction, as stated by Hisdal, but rather a misinterpretation of
the meaning of disjunction—or logical union. Finally, the argument of Osherson and Smith
(1981) on this issue confuses the operations of “sum” and “max” in their arguments on the
union operator; the former is an operator on functions and the latter is an operator on sets.

Those controversial excluded-middle laws

For crisp sets, Lindley (1971) showed that the excluded-middle laws result from the three
basic laws of probability theory (convexity, addition, and multiplication) when he surmised
that an event, E, and its negation, not- £, are mutually exclusive and their union exhaustive.
He implicitly assumes that event occurrence is binary—it does or does not occur. Gaines
(1978) showed that a probability theory results only after the law of the exciuded-middle
is added as an axiom to a general uncertainty logic. However, in either case, the critical
assumption is that there is no provision for the common ground; as termed by Osherson and
Smith, “there can be no apple that is not an apple.” Lindley is convinced—he claims that
“uncertainties are constrained by the laws of probability” and thereby ignores vagueness,
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fuzziness, ambiguity, and linguistic imprecision. The laws of probability theory work won-
derfully with sets whose boundaries are clear and unambiguous, but a theory is also needed
for sets with fuzzy boundaries.

On this same matter, Osherson and Smith (1981), and certainly many others at that
time, argued that the “apple that is not an apple” concept is logically empty. Hisdal (1988b)
erroneously termed this the complementation paradox. In fuzzy set theory, locutions of the
type “tomatoes are both fruit and not fruit” can be supported, but in classical Aristotelian
logic they cannot. Basically, how can the complement of a fuzzy set, where the set itself
does not enjoy full membership over its support, be null throughout that support? The only
way to accept the excluded-middle is to accept only “all or nothing” memberships. For
example, if the concept “tall” is vague, then so is the concept “not tall.” In this case, why
would the conjunction “tall and not tall”” still not be ambiguous to some degree (i.e., not null
everywhere)? Alternatively, why wouldn’t the disjunction “tall or not tall” have less than
full membership everywhere?

Classical sets deal with sets whose boundaries are crisp, but very few concepts yield
crisp boundaries—in reality, they don’t exist (see Black (1937)). As espoused by Howard
Gardner (1985), the greatest proponents of crispness—Socrates, Locke, Wittgenstein—all
had labored under the deepest illusion!

There are at least two reasons why the law of the excluded-middle might be inappro-
priate for some problems. First, people may have a high degree of belief about a number of
possibilities in a problem. A proposition should not be “crowded out” just because it has a
large number of competing possibilities. The difficulties people have in expressing beliefs
consistent with the axioms of probability logic are sometimes manifested in the rigidity of
the law of the excluded-middle (Wallsten and Budescu (1983)). Second, the law of the
excluded-middle results in an inverse relationship between the informational content of a
proposition and it probability. For example, in a universe of n singletons, as more and more
evidence becomes available on each of the singletons, the relative amount of evidence on
any one diminishes (Blockley (1983)). This makes the excluded-middle laws inappropriate
as a measure of modeling uncertainty in many situations.

Since the law of the excluded-middle (and its dual, the law of contradiction) is respon-
sible for spawning a theory of probability from a general uncertainty theory (see Chapter 5), it
is interesting to consider examples where it proves cumbersome and counterintuitive. David
Blockley, in civil engineering, and Wallsen and Budescu, both in business and management,
all argued in 1983 the points made in the previous paragraph.

Consider a hypothetical example involving several alternatives. A patient goes to two
doctors to get opinions on persistent head pain. Both doctors consider four possible causes:
stress headache (H), concussion (Co), meningitis (M), or a tumor (7). Prior to asking
the patient to undergo more extensive and expensive tests, both doctors conduct a routine
office examination, at different times and locations, and come 1o the same conclusions: they
give little weight to meningitis but considerable weight to the other three possible causes.
When pressed to give numerical values for their assessments (their degrees of belief) they
give the following numbers: w(T) = 0.8, w(H) = 0.8, w(Co) = 0.8, w(M) = 0.1. Of
course, a probabilist would normalize these to obtain probabilities and to get their sum to
equal unity; i.e., p(T) = 0.32, p(H) = 0.32, p(Co) = 0.32, p(M) = 0.04. The problem
arises when the probabilist informs the doctor that the probability that the patient’s pain is
due to something “other than a tumor” is 0.68 = 1 — p(T), which is a number higher than
the normalized value for any of the other three possible causes! This runs counter to the
beliefs of the doctors, who feel that a concussion and a headache are also strong possibilities
based on their “limited” diagnosis. Such is the requirement imposed by the excluded-middle
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laws. Based on this information, should the patient spend more money on tests? 1f the
doctors’ original weights were assigned as possibilities, these weights would not need any
normalization.

On the other hand, Bayesianists would claim that the original weights were simple like-
lihood values obtained by diagnosis to be used to modify prior probabilities of the historical
evidence of the four possible causes of the patient’s head pain. For example, suppose that
the prior probabilities ¢; are ¢(H) = 0.8, ¢(T) = 0.03, ¢(M) = 0.01, and ¢ (Co) = 0.30;
then from Bayes’ formula, we can predict for each potential cause of the patient’s head pain
(HP),C;,

w(HP|C)P(C)

p(Ci|HP) = ,
YL w(HPICHG(C)

where w(H P|C;) is the likeliood value for the ith possible cause of the head pain, as given
in the previous paragraph. The resulting posterior probabilities (updated priors) would be
calculated as

w(C||HP) = w(H|HP) = 0.695,
w(Cy|H P) = w(T|HP) = 0.043,
w(Cs|HP) = w(C[HP) = 0.261,
w(Cs|HP) = w(M|HP) = 0.001.

Now the probability that the head pain is due to a tumor is 0.043, slightly higher than
the historical evidence due to the doctors’ rather high weight assigned after a rudimentary
diagnostic exam. However, it remains that the probability (now updated) that it is a cause
other than a tumor is 0.957, a number much higher than the rest of the potential causes.
Therefore, whether one takes the philosophy of a Bayesianist or a frequentist, the excluded-
middle law can be counterintuitive to people’s initial judgments; in this case, the doctors’
original assessments that three of the four possible causes all have a high likelihood hold.
Since the evidence (or degrees of belief, or likelihood values, etc.) comes from humans, it
is not a justification for using probability theory, as is often claimed by Lindley and others,
to suggest that humans must be forced to think in “coherent” terms (the term “coherent”
borrowed by probabilists to describe the additivity axiom of probability theory). Meyer and
Booker (2001) in their formal elicitation methods advocate just the opposite approach. The
highest quality of expert information comes from allowing the experts to express their beliefs
free of such probabilistic constraints. Of course, we expect (or perhaps hope) that humans
exhibit coherence as a linguistic feature of reasoning. However, studies (Meyer and Booker
(2001)) have too often shown this is not the case, and we should not force them to obey the
coherence property of probability theory. More to the point, we also should not force them
to obey a set of axiomatic structures that run counter to their thinking or problem solving
because such restrictions induce cognitive and motivational biases that both degrades the
quality and changes the nature and content of the information given.

Probability theory needs an infusion of fuzzy logic

In a 1998 email communication to colleagues at the University of California at Berkeley,
Lotfi Zadeh stated “probability theory needs an infusion of fuzzy logic to enhance its ability
to deal with real-world problems.” Earlier, in their 1988 series of commentaries on Peter
Cheeseman’s essay on his controversial computer understanding, Enrique Ruspini, Ron
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Yager, and Lotfi Zadeh all made suggestions (Comput. Intell., 4 (1988), pp. 57-142) about
how powerful probability theory would be if it were able to consider notions of overlapping
sets—however, then it wouldn’t be the probability theory that we all know (or think we know)
today. In a 1996 paper, Zadeh alludes to the fact that the historically main contribution—but
not the only one—of fuzzy logic will be its ability to help us develop a new field, computing
with words (CW). Here he states that a frequently asked question is, “What can be done with
fuzzy logic that cannot be done equally well with other methodologies, e.g., predicate logic,
probability theory, neural network theory, Bayesian network, and classical control?” One
such answer involves the nascent field of CW.

In 1999, Zadeh stated that information granulation is associated with an increasing
order of precision: from interval to fuzzy to evidence to random, the granulation goes from
coarse to fine. He cites the successes of precision on monumental scientific tasks involving
the atomic bomb, moon landings, supercomputers, telescopes, and carbon dating of rock.
He also cites failures on more simple tasks: we cannot build robots that can move with the
agility of animals; we cannot automate driving tasks in heavy traffic; we cannot automate
language translation; we cannot summarize nontrivial stories automatically; we cannot model
the behavior of economic systems; and we cannot construct machines that can compete with
children in the performance of simple physical and cognitive tasks. Hoadley and Kettering
(1990) point out that follow-up studies to the Space Shuttle Challenger disaster revealed
that “relevant statistical data had been looked at incorrectly. . . probabilistic-risk assessment
methods were needed to support NASA, and... its staff lacked specialists and engineers
trained in the statistical sciences.” They admit, however, that statistical science does not
seem to deal well with the probabilistic risk assessments of complex engineered systems,
because “there are too little data in the traditional sense.”

The subject of specifically how fuzzy set theory can actually enhance the effectiveness
of probability theory when dealing with some problems has been articulated recently by
Zadeh (1995, 1996). In these works, Zadeh points out that probability theory is very useful
in dealing with the uncertainty inherent in measurements or objects that can be measured;
however, it is not very useful in dealing with the uncertainty imbedded in perceptions by
humans. The former involves crisp sets, while the latter involves fuzzy sets. Examples of
the latter are the following:

1. What is the probability that your tax return will be audited?
2. What is the probability that tomorrow will be a warm day?

3. Team A and Team B played each other 10 times. Team A won the first seven times,
and Team B won the last three times. What is the probability that Team A will win the
next game between the two teams?

4. Most young women are healthy. Mary is young. What is the probability that Mary is
healthy?

In question 1, the difficulty arises from the basic property of conditional probability—
namely, given p(x), all that can be said is that the value of p(x|y) is between 0 and 1. Thus
if we know that 1% of all tax returns are audited, this tells us little about the probability that
your tax return will be audited, except in a bounding sense that your return is one of the many
from which the audit sample is taken. You may have an estimate of how often you have been
audited, which could be used in a Bayesian probability model, and you can always provide
your subjective belief as a probability for an estimate. If we have more detailed information
about you, e.g., income, age, residence, occupation, etc., a better estimate might be possible
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from IRS data based upon the fraction of returns that are audited in a certain category, but
this detail will never reach the level of a single individual. Probability theory alone cannot
directly handle this question at the appropriate level.

In question 2, the difficulty is that the warmth is a matter of degree. The event “a warm
day” cannot be defined precisely; it is a fuzzy event based on personal preference.

In question 3, the difficulty is that we are dealing with a time series drawn from a
nonstationary process. In such cases, probabilities do not exist. In fact, that statement is the
familiar quote attributed to de Finetti (1974) in his discussion about the origins of subjective
probabilities, as enunciated earlier in this debate summary.

In question 4, we have a point of common sense reasoning, and probability theory is
inadequate to handle the uncertainty in concepts such as “most young women’” or “healthy.”

To one degree or another, all four questions involve the same theme: the answers to
these questions are not numbers; they are linguistic descriptions of fuzzy perceptions of
probabilities. As pointed out by Zadeh (1999), these kinds of questions can be addressed
by an enhanced version of probability theory—a theory enhanced by a generalization that
accounts for both fuzzification and granulation. Here fuzzy granulation reflects the finite
cognitive ability of humans to resolve detail and store information. Classical probability
theory is much less effective in those fields in which dependencies between variables are
not well defined; the knowledge of probabilities is imprecise and/or incomplete; the systems
are not mechanistic; and human reasoning, perception, and emotion play an important role.
This is the case in many fields ranging from economics to weather forecasting.

Our summary of the debate

In 1997, in discussing the choices available to analysts who are modeling uncertainty in their
systems, Nguyen had this to say:

“Of course, we are free to model mathematically the way we wish, but unless
the modeling is useful for applications, the modeling problem may be simply
a mathematical game. In the axiomatic theory of probability we do not allow
all possible subsets of a sample space to be qualified as events. Instead we
take a sigma-field of subsets of the sample space to be the collection of events
of interest. It is not possible to extend the sigma-additive set-function to the
whole power set of the reals. Acknowledging that randomness and fuzziness
are different types of uncertainties, there is no compelling reason to believe that
their associated calculi are the same.”

The arguments of Lindley (1982) have been countered on mathematical grounds by Good-
man, Nguyen, and Rogers (1991). “Saying that fuzzy sets theory is complementary rather
than competitive does not presume deficiencies in probability.”

Finally, rather than debate what is the correct set of axioms to use {(i.e., which logic
structure) for a given problem involving uncertainty, one should look closely at the prob-
lem, determine which propositions are vague or imprecise and which ones are statistically
independent or mutually exclusive, determine which ones are consistent with human cog-
nition, and use these considerations to apply a proper uncertainty logic, with or without
the law of the excluded-middle. By examining a problem so closely as to determine these
relationships, one finds out more about the structure of the problem in the first place. For
example the assumption of a strong truth-functionality (for tuzzy logic) could be viewed
as a computational device that simplifies calculations, and the resulting solutions would be
presented as ranges of values that most certainly bound the true answer if the assumption
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is not reasonable. A choice of whether fuzzy logic is appropriate is, after all, a question of
balancing the model with the nature of the uncertainty contained within it. Problems without
an underlying physical model, problems involving a complicated weave of technical, social,
political, and economic factors, and problems with incomplete, ill-defined, and inconsistent
information where conditional probabilities cannot be supplied or rationally formulated per-
haps are candidates for fuzzy set applications. It has become apparent that the engineering
profession is overwhelmed by these sorts of problems.

The argument, then, appears to be focused on the question, “Which theory is more
practical in assessing the various forms of uncertainty that accompany any problem?”” The
major intent of this book, therefore, is to shed light on this question by comparing just two
of the theories, fuzzy sets and probability, for various applications in different fields. While
we know that this book will not end the philosophical debate (which could be waged for
many more decades), will not convert either the protagonists or antagonists of a particular
theory, and will not lessen the importance or usefulness of any of the theories, it is our hope
that its contents will serve to educate the various audiences about the possibility that the
complementary use of these two theories in addressing uncertainties in many different kinds
of problems can be very powerful indeed. Hence we hope that this book will help “bridge
the gap” between probability theory and other nonprobabilistic alternatives in general, and
fuzzy set theory in particular.

1.3 Fuzzy logic and probability: The best of both worlds

In contrast to the literature cited in section 1.2, there is a growing list of recent papers
illustrating the power of combining the theories. What follows are very brief, very incomplete
descriptions of a few of the works readily available to the editors of this book:

* Cooper and Ross (1998) on subjective knowledge in system safety. The authors de-
scribe a series of mathematical developments combining probability operations and
fuzzy operations in the area of system reliability. They provide sort of a shopping cart
of potential ideas in combining the two methods to assess both modeling and paramet-
ric uncertainty within the context of assessing the safety and reliability of manmade
systems.

* Ross et al. (1999) on system reliability. In this work, the authors discuss a way to
fuse probabilities, using fuzzy norms, to address the fact that real systems contain
components whose interactions are between the extremes of completely independent
and completely dependent. The fuzzy norms are based on Frank’s f-norms, which
can be shown to contain, as a family of norms, the probabilistic and fuzzy norms.
The paper further shows that memberships and probability density functions can be
combined using the same norms, thus paving the way for an algebraic approach to
fuse both (random and fuzzy) kinds of information.

* Smith et al. (1997, 1998) on uncertainty estimation. In a series of two papers, Smith
et al. used the graphical methods typical in fuzzy control applications to develop
probabilistic density functions of the uncertainties inherent in the working parts of a
system to estimate the systems reliability. In this case, the output MFs in the inference
of a fuzzy control method were used to develop the density functions.

* Zadeh (1999) on computing with words. In this paper, Zadeh shows that a question
of the type “What is the probability of drawing a small ball from an urn of balls
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of various sizes?” can be addressed with a combination of probability and fuzzy set
theory. In this work there is a distinction drawn between being able to measure
and manipulate numbers (as done with probabilities) and being able to measure and
manipulate perceptions (linguistic data).

Nikolaidis (1997-1999) on designing under uncertainty. In a sequence of papers
(Nikolaidis et al. (1999) and Maglaras et al. (1997)), a contrast is established between
probability theory and possibility theory in the area of structural design. In this case,
structural failure and survival (safety) usually are taken to be complementary states,
even though the transition between the two is gradual for most systems. In designs
under uncertainty, it is important to understand how each of the two methods max-
imizes the expression of safety. In terms of design optimization against failure, the
probabilistic optimization tries to reduce the probabilities of failure of the modes that
are easiest to control in order to minimize the system failure probability, whereas fuzzy
set optimization simply tries to equalize the possibilities of failure of all failure modes
in minimizing the system failure possibility. They show that fuzzy set methods are
not necessarily more conservative than probabilistic methods when assessing system
failure. They also show that fuzzy set methods yield safer designs than probabilistic
designs when there is limited data.

Rousseeuw (1995) on fuzzy and probabilistic clustering. This work is important be-
cause it shows an application in classification where a fuzzy clustering method is
actually a collaboration of two approaches: fuzzy theory and statistics. The useful-
ness of fuzzy clustering is apparent in that it helps the classification process avoid
convergence only to local minima. In a completely fuzzy approach, each cluster cen-
ter is influenced also by the many objects that essentially belong to other clusters.
This bias may keep the fuzzy method from finding the true clusters. This problem is
overcome by the use of objective functions, which are hybrids of purely fuzzy and
purely probabilistic formalisms and which produce a high contrast clustering method
capable of finding the true clusters in data.

Singpurwalla et al. (2000) on membership and likelihood functions. In this published
laboratory report, Singpurwalla et al. explore how probability theory and fuzzy MFs
can be made to work in concert so that uncertainty of both outcomes and imprecision
can be treated in a unified and coherent manner. In this work, the authors show that the
MF can be interpreted as a likelihood if the fuzzy set takes the role of an observation
and the elements of the fuzzy set take the role of the hypothesis. They show further
that the early work of Zadeh (1968) in defining the probability of a fuzzy event as being
equal to the expected value of the event’s membership function is proportional to the
measure they develop, which is a function of a prior probability of the classification
of the event.

As indicated earlier, technology is moving so fast, in fact, that the systems on which

we rely for our support and our discourse are becoming more, not less, complex. Decision-
making has become so much guesswork under time constraints that analysts rarely have time
to develop well-conceived models of today’s systems. Complexity in the real world gener-
ally arises from uncertainty in various forms. Complexity and uncertainty are features of
problems that have been addressed since humans began thinking abstractly; they are ubiqui-
tous features that imbue most social, technical, and economic problems faced by the human
race. Why is it then that computers, which have been designed by humans, after all, are not
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capable of addressing complex issues, that is, issues characterized by vagueness, ambiguity,
imprecision, and other forms of uncertainty? How can humans reason about real systems
when the complete description of a real system often requires more detailed data than a
human could ever hope to recognize simultaneously and assimilate with understanding? It
is because humans have the capacity to reason approximately, a capability that computers
currently do not have. In reasoning about such systems, humans simply approximate behav-
ior, thereby maintaining only a generic understanding about the problem. Fortunately, for
humans’ ability to understand complex systems, this generality and ambiguity is sufficient.

When we learn more and more about a system, its complexity decreases and our
understanding increases. As complexity decreases, the precision afforded by computational
methods become more useful in modeling the system. For systems with little complexity, and
hence little uncertainty, closed-form mathematical expressions provide precise descriptions
of the systems. For systems that are alittle more complex, but for which significant data exists,
model-free methods, such as artificial neural networks, provide a powerful and robust means
to reduce some uncertainty through learning based on patterns in the available data. Finally,
for the most complex systems, where little numerical data exists and where only ambiguous
or imprecise information may be available, probabilistic or fuzzy reasoning can provide
a way to understand system behavior by allowing us to interpolate approximately between
observed input and output situations and thereby measuring, in some way, the uncertainty and
variability. The imprecision in fuzzy models and the variability in probabilistic predictions
generally can be quite high. The point, however, is to match the model type with the character
of the uncertainty exhibited in the problem. In situations where precision is apparent, for
example, fuzzy systems are not as efficient as more precise algorithms in providing us
with the best understanding of the problem. On the other hand, fuzzy systems can focus on
modeling problems with imprecise or ambiguous information. In systems where the model is
understood but where variability in parameters of the model can be quite high, a probabilistic
model can enrich understanding. Knowledge in using the tools illustrated in the subsequent
chapters of this book will allow readers to address the vast majority of problems that are
characterized either by their complexity or by their lack of a requirement for precision.

Our philosophy in preparing this book for a world of complex problems is to set a tone
of conciliation between fuzzy theory and probability. We admit that there are differences
between them. We do not propose that one is better than the other. We agree that one is
more mature than the other. We admit that some applications are better served by one or the
other. However, we contend that some applications can benefit from a hybrid approach of
the two. Our intent is to help probabilists understand fuzzy set theory and fuzzy logic and to
help fuzzy advocates see that probability theory, in conjunction with fuzzy logic, can be very
powerful for some types of problems. Another objective of this book is to help the user select
the best tool for the problem at hand. Our intended andience is statisticians, probabilists,
and engineers.

1.4 Organization of the book

The book is organized into two major divisions. The chapters in Part I cover fundamental
topics of probability, fuzzy set theory, uncertainty, and expert judgment elicitation. In Part I,
we move from specific explanations of probability theory to more general descriptions of
various forms of uncertainty, culminating in the elicitation of human evaluations and assess-
ments of these uncertainties. Part II includes applications and case studies that illustrate the
uses of fuzzy theory and probability and hybrid approaches.
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Chapter 2 covers fuzzy set theory, fuzzy logic, and fuzzy systems. The origins of
membership sets and functions are included, along with a discussion on the law of the
excluded-middle. Fuzzy relationships and operations are illustrated with examples. Fuzzy
logic and classical logic are compared.

Chapter 3 covers the foundations of probability theory and includes a discussion on the
different interpretations of probability. Topics relating to probability distribution functions
are presented as they relate to uncertainty and to hybrid fuzzy/probability approaches. The
last section of this chapter provides a transition from probability to fuzzy theory by discussing
the concepts of data, knowledge, and information.

One of the probability theories from Chapter 3 has Bayes’ theorem at its core. Details
regarding methods based on this approach to probability are presented in Chapter 4. Interpre-
tations, applications, and issues associated with the Bayesian-based methods are presented.
One reason for the special emphasis on these methods is the link it provides to fuzzy MFs,
as described in the last section of the chapter.

Chapter 5 considers the uses of fuzzy set theory and probability theory. As such, it
covers and compares the topics of vagueness, imprecision, chance, uncertainty, and ambi-
guity as they relate to both theories. Historical development of these topics is discussed,
leading up to recent research work in possibility theory.

The process of defining and understanding the various kinds of uncertainty crosses into
another subjective arena: the elicitation of expert knowledge. Chapter 6 provides guidelines
for eliciting expert judgment in both realms of probability and fuzzy logic. While this chapter
provides many of the elicitation fundamentals, it does so using two different applications for
illustration.

Part I of the book, on applications and case studies, begins with Chapter 7 on image
enhancement processing. This chapter compares image enhancement via the modification of
the PDF of the gray levels with the new techniques that involve the use of knowledge-based
(fuzzy expert) systems capable of mimicking the behavior of a human expert. This chapter
includes some color images.

Chapter 8 provides a brief, basic introduction to engineering process control. It begins
with classical fuzzy process control and introduces the relatively new idea of probabilistic
process control. Two different scenarios of a problem are examined using classical process
control, proportional-integral-derivative (PID) control, and probabilistic control techniques.

Chapter 9 presents a structural safety analysis study for multistory framed structures
using a combined fuzzy and probability approach. The current probabilistic approach in
treating system and human uncertainties and its inadequacy is discussed. The alternative
approach of using fuzzy sets to model and analyze these uncertainties is proposed and illus-
trated with examples. Fuzzy set models for the treatment of some uncertainties in reliability
assessment complement probabilistic models and are readily incorporated into the current
analysis procedure for the safety assessment of structures.

Reliability is usually considered a probabilistic concept. Chapter 10 presents a case
study of the reliability of aircraft structural integrity. The usefulness of fuzzy methods is
demonstrated when insufficient test data are available and when reliance is necessary on the
use of expert judgment.

Chapter 11 presents another case study in reliability. It begins with a complex relia-
bility problem in the automotive industry, carries it through using Bayesian methods, and
finally covers how certain aspects of the problem would benefit from the use of MFs. As in
Chapter 10, here the use of expert judgment is prevalent when it is not feasible or practical
to obtain sufficient test data for traditional reliability calculations.

Statistical process control (SPC) is a long-standing set of probability-based techniques
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for monitoring the behavior of a manufacturing process. Chapter 12 describes an application
of fuzzy set theory for exposure control in beryllium part manufacturing by adapting and
comparing fuzzy methods to the classical SPC. This very lengthy chapter considers the topic
of fuzzy SPC as sufficiently important and novel (as introduced in the third author’s Ph.D.
dissertation); the chapter is essentially a tutorial on standard SPC extended to incorporate
fuzzy information and fuzzy metrics.

Combining, propagating, and accounting for uncertainties is considered for fault tree
logic models in Chapter 13. This scheme is based on classical (Boolean) logic. Now this
method is expanded to include other logics. Three of the many proposed logics in the
literature considered here are Lukasiewicz, Boolean, and fuzzy. This is a step towards
answering the questions “Which is the most appropriate logic for the given situation?”” and
“How can uncertainty and imprecision be addressed?”

Chapter 14 investigates the problem of using fuzzy techniques to quantify information
from experts when test data or a model of the system is unavailable. MFs are useful when
the uncertainty associated with this expertise is expressed as rules. Two examples illustrate
how a fuzzy-probability hybrid technique can be used to develop uncertainty distributions.
One example is for cutting tool wear and the other is for reliability of a simple series system.

Chapter 15 introduces the use of Bayesian belief networks as an effective tool to show
flow of information and to represent and propagate uncertainty based on a mathematically
sound platform. Several illustrations are presented in detecting, isolating, and accommodat-
ing sensor faults. A probabilistic representation of sensor errors and faults is used for the
construction of the Bayesian network. Fuzzy logic forms the basis for a second approach to
sensor networks.

These chapters represent the collective experience of the authors’ and editors’ efforts
and research to bridge the gap between the theories of fuzzy logic and probability. As stated
above, our goal is to continue to develop, support, and promote these techniques for solving
the complex problems of modern information technology.
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Fuzzy Set Theory, Fuzzy
Logic, and Fuzzy Systems

Timothy J. Ross and W. Jerry Parkinson

2.1 Introduction

Making decisions about processes that contain nonrandom uncertainty, such as the uncer-
tainty in natural language, with the use of classical theories has been shown to be less than
perfect. Lotfi Zadeh suggested that set membership is the key to decision-making when faced
with linguistic and nonrandom uncertainty. In fact, Dr. Zadeh stated in his seminal paper
of 1965:

“The notion of a fuzzy set provides a convenient point of departure for the
construction of a conceptual framework which parallels in many respects the
framework used in the case of ordinary sets, but is more general than the lat-
ter and, potentially, may prove to have a much wider scope of applicability,
particularly in the fields of pattern classification and information processing.
Essentially, such a framework provides a natural way of dealing with problems
in which the source of imprecision is the absence of sharply defined criteria of
class membership rather than the presence of random variables.”

Suppose we are interested in the height of people. We can easily assess whether
someone is over 6 feet tall. In a binary sense, this person either is or is not, based on the
accuracy, or imprecision, of our measuring device. For example, if “tall” is a set defined
as heights equal to or greater than 6 feet, a computer would not recognize an individual of
height 5'11.999” as being a member of the set “tall.” But how do we assess the uncertainty
in the following question: Is the person nearly 6 feet tall? The uncertainty in this case is due
to the vagueness, or ambiguity, of the adjective nearly. A 5'11” person clearly could be a
member of the set “nearly 6 feet tall” people. In the first situation, the uncertainty of whether
a person’s height, which is unknown, is 6 feet or not is binary; it either is or is not, and we can
produce a probability assessment of that prospect based on height data from many people.
But the uncertainty of whether a person is nearly 6 feet tall is nonrandom. The degree to
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which the person approaches a height of 6 feet is fuzzy. In reality, “tallness” is a matter of
degree and is relative. Among peoples of some tribes in Africa, a height of 6 feet for a male
is considered short. Therefore, 6 feet can be tall in one context and short in another. In the
real (fuzzy) world, the set of tall people can overlap with the set of not-tall people; such an
overlap is null in the world of binary logic.

This notion of set membership, then, is central to the representation of objects within a
universe and to sets defined in the universe. Classical sets contain objects that satisfy precise
properties of membership; fuzzy sets contain objects that satisfy imprecise properties of
membership, i.e., membership of an object in a fuzzy set can be approximate. For example,
the set of heights from 5 to 7 feet is crisp; the set of heights in the region around 6 feet is fuzzy.
To elaborate, suppose we have an exhaustive collection of individual elements (singletons)
x that make up a universe of information (discourse) X. Further, varions combinations of
these individual elements make up sets, say, A, in the universe. For crisp sets an element
x in the universe X either is a member of some crisp set A or is not. This binary issue of
membership can be represented mathematically with the indicator function

1, xeA
=1 ’ 2.1
Xa(x) 0. x¢A (2.1

where xa(A) indicates an unambiguous membership of element x in set A, and € and ¢
denote contained-in and not contained-in, respectively. For our example of the universe of
heights of people, suppose set A is the crisp set of all people with 5.0 < x < 7.0 feet, shown
in Figure 2.1(a). A particular individual, x;, has a height of 6.0 feet. The membership of this
individual in crisp set A is equal to 1, or full membership, given symbolically as x4 (x;) = 1.
Another individual, say, x;, has a height of 4.99 feet. The membership of this individual in
set A is equal to 0, or no membership, and hence x4(x;) = 0, also seen in Figure 2.1(a).
In these cases, the membership in a set is binary: an element either is a member of a set or
1S not.

(@ ®)

Figure 2.1. Height membership functions for (a) a crisp set (A) and (b) a fuzzy set (H).

Zadeh extended the notion of binary membership to accommodate various “degrees of
membership” on the real continuous interval [0, 1], where the endpoints of 0 and 1 conform
to no membership and full membership, respectively, just as the indicator function does for
crisp sets, but where the infinite number of values in between the endpoints can represent
various degrees of membership for an element x in some set in the universe. The sets in
the universe X that can accommodate “degrees of membership” were termed by Zadeh as
“fuzzy sets.”

Continuing further with the example on heights, consider a set H consisting of heights
near 6 feet. Since the property near 6 feet is fuzzy, there is not a unique membership
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function for H. Rather, the analyst must decide what the membership function, denoted 1 4,
should look like. Plausible properties of this function might be (i) normality (14(6) = 1),
(11) monotonicity (the closer x is to 6, the closer py is to 1), and (iii) symmetry (numbers
equidistant from 6 should have the same value of 11y) (Bezdek (1993)). Such a membership
function is illustrated in Figure 2.1(b). A key difference between crisp and fuzzy sets is their
membership function; a crisp set has a unique membership function, whereas a fuzzy set
can have an infinite number of membership functions to represent it. For fuzzy sets, the
uniqueness is sacrificed, but flexibility is gained because the membership function can be
adjusted to maximize the utility for a particular application.

James Bezdek provided one of the most lucid comparisons between crisp and fuzzy
sets that warrants repeating here (Bezdek (1993)). Crisp sets of real objects are equivalent to,
and isomorphically described by, a unique membership function, such as x 4 in Figure 2.1(a).
However, there is no set-theoretic equivalent of “real objects’ corresponding to x4. Fuzzy
sets are always functions, which map a universe of objects, say, X, onto the unit interval
[0, 11; that is, the fuzzy set H is the function py that carries X into [0, 1]. Hence every
function that maps X onto [0, 1] is a fuzzy set. While this is true in a formal mathematical
sense, many functions that qualify on the basis of this definition cannot be suitable fuzzy
sets. However, they become fuzzy sets when—and only when—they match some intuitively
plausible semantic description of imprecise properties of the objects in X.

The membership function embodies the mathematical representation of membership
in a set, and the notation used throughout this text for a fuzzy set is a set symbol with a
“tilde” underscore, say, A, where the functional mapping is given by

nalx) €10,1], (2.2)

where u 4 (x) gives the degree of membership of element x in fuzzy set A. Therefore, 11 4(x)
is a value on the unit interval which measures the degree to which element x belongs to fuzzy
set A; equivalently, 4 (x) = Degree(x € 4).

To summarize, there is a clear distinction between fuzziness and randomness of an
event. Fuzziness describes the ambiguity of an event, whereas randomness describes the
likelihood of occurrence of the event. The event will occur or will not occur; but is the
description of the event unambiguous enough to quantify its occurrence or nonoccurrence?

2.1.1 Fuzzy sets

In classical sets, the transition for an element in the universe between membership and
nonmembership in a given set is abrupt and well defined (hence termed “crisp”). For an
element in a universe that contains fuzzy sets, this transition can be gradual and, among
various degrees of membership, can be thought of as conforming to the fact that the boundaries
of the fuzzy sets are vague and ambiguous. Hence membership in this set of an element from
the universe is measured by a function which attempts to describe vagueness and ambiguity.

A fuzzy set, then, is a set containing elements which have varying degrees of mem-
bership in the set. This idea is contrasted with classical, or crisp, sets because members of a
crisp set would not be members unless their membership was full or complete in that set (i.e.,
their membership is assigned a value of 1). Elements in a fuzzy set also can be members of
other fuzzy sets on the same universe because their membership can be a value other than
unity.

Elements of a fuzzy set are mapped to a universe of “membership values™ using a
function-theoretic form. As shown in (2.2), fuzzy sets are denoted in this text by a set
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A A

1 ~

0 >
Figure 2.2. Membership function for fuzzy set A.

symbol with a tilde understrike; so, for example, A would be the “fuzzy set” A. This
function maps elements of a fuzzy set A to a real numbered value on the interval O to 1. If
an element in the universe, say, x, is a member of fuzzy set A, then this mapping is given by
(2.2), or ;4 (x) € [0, 1]. This mapping is shown in Figure 2.2 for a fuzzy set.

A notation convention for fuzzy sets when the universe of discourse, X, is discrete and

finite, is given below for a fuzzy set A:

4= palxi) + ta(x2) Fotr=Y Ma(xi) 2.3)
X1 X2 - Xi

13

In the notation the horizontal bar is not a quotient, but rather a delimiter. In addition, the
numerator in each individual expression is the membership value in set A associated with
the element of the universe indicated in the denominator of each expression. The summation
symbol is not for algebraic summation, but rather denotes the collection or aggregation of
each element; hence the “4” signs are not the algebraic “add” but rather are a function-
theoretic union.

2.1.2 Fuzzy set operations

universe, the following function-theoretic operations for the set-theoretic operations of union,
intersection, and complement are defined for A, B, and C on X:

Define three fuzzy sets A, B, and C in the universe X. For a given element x of the

union: Haup(x) = pa(x) Vv pup(x), 2.4)
intersection:  pang(x) = pga(x) A pp(x), 2.5
complement: puix) =1—pgplx), (2.6)

where the symbols U, N, Vv, A, and — denote the operations of union, intersection, max,
min, and complementation, respectively. Venn diagrams for these operations, extended to
consider fuzzy sets, are shown in Figures 2.3-2.5.

Any fuzzy set A defined on a universe X is a subset of that universe. Also, by definition
and just as with classical sets, the membership value of any element x in the null set @ is 0
and the membership value of any element x in the whole set X is 1. Note that the null set
and the whole set are not fuzzy sets in this context (no tilde underscore). The appropriate
notation for these ideas is as follows:

ASX > pa() < ) (2.72)
forallx € X, pug(x) =0 (2.7b)
forall x € X, u,(x)=1. 2.7¢)
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Iz

0 B,

Figure 2.3. Union of fuzzy sets A and B.

1S
i~

0 =,

Figure 2.4. Intersection of fuzzy sets A and B.

0 x

Figure 2.5. Complement of fuzzy set A.

The collection of all fuzzy sets and fuzzy subsets on X is denoted as the fuzzy power
set Power(X). Because all fuzzy sets can overlap, the cardinality of the fuzzy power set is
infinite.

DeMorgan’s laws for classical sets also hold for fuzzy sets, as denoted by

(

ea>
zc:

(2.82)
(2.8b)

)
)

13>
ZUJ
ID>1 I:w
Ib:gl (U3|

As indicated in Ross (1995), all other operations on classical sets also hold for fuzzy
sets, except for the excluded-middle laws. These two laws do not hold for fuzzy sets because
of the fact that, since fuzzy sets can overlap, a set and its complement can also overlap. The
excluded-middle laws, extended for fuzzy sets, are expressed by

AUA # X, (2.9a)
NAEY (2.9b)
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[
1 A 2 1 1
X X X
0 — X 0 X 0 X
(a) Crisp set A and its com- (b) Crisp A U A = X (law (c)Crisp AN A =@ (law of
plement. of excluded-middle). contradiction).

Figure 2.6. Excluded-middle laws for crisp sets.

- L
-y - B
\ 1 1
H u H
0 >, 0 5 0 > 5
(a) Fuzzy set A andits com- (b) Fuzzy AN A # X (law (c)Fuzzy A N Zj # B (law
plement. of excluded-middle). of contradiction).

Figure 2.7. Excluded-middle laws for fuzzy sets.

Extended Venn diagrams comparing the excluded-middle laws for classical (crisp) sets
and fuzzy sets are shown in Figures 2.6 and 2.7, respectively.

2.2 Fuzzy relations

Fuzzy relations are developed by allowing the relationship between elements of two or
more sets to take on an infinite number of degrees of relationship between the extremes of
“completely related” and “not related,” which are the only degrees of relationship possible
in crisp relations. In this sense, fuzzy relations are to crisp relations as fuzzy sets are to crisp
sets; crisp sets and relations are more constrained realizations of fuzzy sets and relations.

Fuzzy relations map elements of one universe, say, X, to those of another universe,
say, Y, through the Cartesian product of the two universes. However, the “strength” of
the relation between ordered pairs of the two universes is not measured with the indicator
function (as in the case of crisp relations), but rather with a membership function expressing
various “degrees” of strength of the relation on the unit interval [0, 1]. Hence, a fuzzy
relation R is a mapping from the Cartesian space X x Y to the interval [0, 1], where the
strength of the mapping is expressed by the membership function of the relation for ordered
pairs from the two untverses, or ug(x, y).

2.2.1 Operations on fuzzy relations

Let R and S be fuzzy relations on the Cartesian space X x Y. Then the following operations
apply for the membership values for various set operations:
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union: trus(x, y) = max(ug(x, y), us(x, y)), (2.10)
intersection:  pgns(x, ¥) = min(ug(x, y), ps(x, y)), (2.11)
complement: mp(x,y) =1—pgplx.y), (2.12)
containment: RCS§S= uglx,y) <usx,y). (2.13)

2.2.2 Fuzzy Cartesian product and composition

Because fuzzy relations, in general, are fuzzy sets, we can define the Cartesian product to
be a relation between two or more fuzzy sets. Let A be a fuzzy set in universe X and B a
fuzzy set in universe Y'; then the Cartesian product between fuzzy sets A and 8 will result
in a fuzzy relation R, which is contained within the full Cartesian product space, or

AxB=RCXxY, (2.14)
where the fuzzy relation R has membership function

wr(x, y) = paxp(x, y) = min(ua(x), ng(y)). (2.15)

The Cartesian product defined by A x B = R in (2.14) is implemented in the same
way as the cross-product of two vectors. The Cartesian product is not the same operation
as the arithmetic product; in the case of two-dimensional relations, the former employs the
pairing of elements among sets, whereas the latter uses actual arithmetic products between
elements of sets. More can be found on fuzzy arithmetic in Ross (1995). Each of the fuzzy
sets could be thought of as a vector of membership values; each value is associated with a
particular element in each set. For example, for a fuzzy set (vector) A that has four elements
and hence a column vector of size 4 x |, and for a fuzzy set (vector) B that has five elements
and hence a row vector size of | x 5, the resulting fuzzy relation R will be represented by a
matrix of size 4 x 5;i.e., R will have four rows and five columns.

A composition is an operator on relations much like an integral is an operator on
functions. For example, in probability theory, if we have a joint probability density function
(PDF) defined on x and y, we can find the marginal PDF on x by integrating the joint PDF
over all y. With this analogy in mind, suppose we have a crisp relation R defined on universes
x and v and we want to find a crisp set that is defined only on x. To do this, we can perform a
composition on the crisp relation R with another crisp set or relation, say, A, that is defined
only on the universe Y.

Fuzzy composition can be defined just as it is for crisp (binary) relations (Ross (1995)).
Suppose R is a fuzzy relation on the Cartesian space X x Y, Sis a fuzzy relationon Y x Z, and
T is a fuzzy relation on X x Z; then fuzzy max—min composition (there are also other forms
of the composition; see Ross (1995)) is defined in terms of the membership function-theoretic
notation

pr(n2) = \/ (e, ) A (v, 2), (2.162)

yeY

and the fuzzy max-product composition is defined, in terms of the membership function-
theoretic notation, as

ur(x,2) = \/ (ug(x, y) o sy, 2). (2.16b)

yey
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It should be pointed out that neither crisp nor fuzzy compositions have inverses in
general; that is,

Ro§ # §oR. (2.17)

Result (2.17) is general for any matrix operation, fuzzy or otherwise, which must satisfy
consistency between the cardinal counts of elements in respective universes. Even for the
case of square matrices, the composition inverse represented by (2.17) is not guaranteed.

2.3 Fuzzy and classical logic

2.3.1 Classical logic

In classical predicate logic, a simple proposition P is a linguistic, or declarative, statement
contained within a universe of elements, say, X, which can be identified as a collection of
elements in X which are strictly true or strictly false. Hence a proposition P is a collection
of elements, that is, a set, where the truth values for all elements in the set are either all true
or all false. The veracity (truth) of an element in the proposition, P, can be assigned a binary
truth value, called T'(P), just as an element in a universe is assigned a binary quantity to
measure its membership in a particular set. For binary (Boolean) predicate logic, T (P) is
assigned a value of 1 (truth) or O (false). If U is the universe of all propositions, then T is a
mapping of the elements u in these propositions (sets) to the binary quantities (0, 1), or

T:uelU— {0,1). (2.18)

All elements u in the universe U that are true for proposition P are called the truth
set of P. Those elements u in the universe U that are false for proposition P are called the
falsity set of P.

In logic we need to postulate the boundary conditions of truth values just as we do
for sets; that is, in function-theoretic terms we need to define the truth value of a universe
of discourse. For a universe Y and the null set @, we define the truth values 7(Y) = 1 and
T =0.

Now let P and Q be two simple propositions on the same universe of discourse that
can be combined using the five logical connectives

* disjunction (Vv),

»

conjunction (A),

* negation (—),

* implication (—),

* equivalence («> or <)

to form logical expressions involving the two simple propositions. These connectives can
be used to form new propositions from simple propositions.

The disjunction connective, the logical “or,” is the term used to represent what is
commonly referred to as the “inclusive or.” The natural language term “or’” and the logical
“or” are different. The natural language “or” differs from the logical “or” in that the former
implies exclusion (denoted in the literature as the exclusive or; see Ross (1995) for more
details). For example, “soup or salad” on a restaurant menu implies choosing one or the
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other option, but not both. The “inclusive or’” is the one most often employed in logic; the
inclusive or (“logical or” as used here) implies that a compound proposition is true if either
of the simple propositions is true or if both are true.

The equivalence connective arises from dual implication; that is, for some propositions
Pand Q,if P - Qand Q — P,then P & (.

Now define sets A and B from universe X, where these sets might represent linguistic
ideas or thoughts. A propositional calculus (sometimes called the algebra of propositions)
will exist for the case where proposition P measures the truth of the statement that an element,
x, from the universe X is contained in set A, and where the proposition Q measures the truth
of the statement that this element, x, is contained in set B, or more conventionally,

P :truththatx € A,
Q : truth that x € B,

where truth is measured in terms of the truth value; i.e.,
ifxeA, T(P)=1, otherwise, T(P) =0,
ifxeB, T(Q)=1I, otherwise, T(Q) = 0,

or, using the indicator function to represent truth (1) and false (0), the following notation
results:
1, xeA,
xalx) = ‘0, fdA. (2.19)

A notion of mutual exclusivity arises in crisp logic; that is, there is no provision for a
proposition to be partly true and partly false; it has to be one or the other. For the situation
involving two propositions P and Q, where T(P) N T(Q) = ¥, we have that the truth of
P always implies the falsity of Q and vice versa; hence P and Q are mutually exclusive
propositions.

The five logical connectives defined previously can be used to create compound propo-
sitions, where a compound proposition is defined as a logical proposition formed by logically
connecting two or more simple propositions. Just as we are interested in the truth of a simple
proposition, predicate logic also involves the assessment of the truth of compound propo-
sitions. For the case of two simple propositions, the resulting compound propositions are
defined below in terms of their binary truth values.

Given a proposition P : x € A, P : x ¢ A, we have for the logical connectives

P AorB;
disjunction: vO@=xecAorb: (2.20a)
hence T(P v Q) = max(T(P), T(Q)),

conjunction: Pro= x.e A and B, (2.20b)
hence T(P A Q) = min(T (P), T(Q)),
ifT(Py=1, thenT(P)=0;
if T(P)=0, then7(P)=1,
P—-0=x¢€A, B;
hence T(P — Q) =T(P U Q),

negation: (2.20c)

implication: (2.20d)
P (O0=xecA, B;
ival : { = 2.20
equivalence: TP o Q)= 1 forT(P)=T(Q). (2.20e)
0 for T(P) # T(Q).
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Figure 2.8. Graphical analogue of the classical implication operation.

The logical connective “implication,” i.e., P — Q (P implies Q), presented here also
is known as the classical implication to distinguish it from several other forms (see Ross
(1995)). In this implication, the proposition P also is referred to as the hypothesis or the
antecedent, and the proposition Q also is referred to as the conclusion or the consequent.
The compound proposition P — @ is true in all cases except where a true antecedent P
appears with a false consequent.

Hence the classical form of the implication is true for all propositions of P and Q
except for those propositions which are in both the truth set of P and the false set of Q; i.e.,

T(P — Q) = (T(P)NT(Q)). (2.21a)

This classical form of the implication operation requires some explanation. For a proposition
P defined on set A and a proposition Q defined on set B, the implication “P implies Q" is
equivalent to taking the union of elements in the complement of set A with the elements in
set B. (This result also can be derived by using DeMorgan’s laws shown in (2.8).) That is,
the logical implication is analogous to the set-theoretic form

P — Q = AU B is true = either “not in A”” or “in B”

sothat T(P — Q) = T(P v Q) = max(T(P), T(Q)). (2.21b)

This is linguistically equivalent to the statement, “P — Q is true” when either “not A™ or
“B” is true (logical or). Graphically, this implication and the analogous set operation are
represented by the Venn diagram in Figure 2.8. The shaded region in Figure 2.8 represents
the collection of elements in the universe where the implication is true.

Now with two propositions (P and (), each being able to take on one of two truth
values (true or false, 1 or 0), there will be a total of 22 = 4 propositional situations. These
situations are illustrated, along with the appropriate truth values for the propositions P and
Q and the various logical connectives between them, in Table 2.1. The values in the last
five columns of the table are calculated using the expressions in (2.20). In Table 2.1, T or 1
denotes true and F or O denotes false.

Suppose the implication operation involves two different universes of discourse; P is
a proposition described by set A, which is defined on universe X, and Q is a proposition
described by set B, which is defined on universe Y. Then the implication P — Q can be
represented in set-theoretic terms by the relation R, where R is defined by

R=(Ax B)U(AxY)=IF A, THEN B;
ifxeA, wherexe Xand A C X, (2.22)
theny € B, whereye Band BC Y.
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Table 2.1. Truth table for various compound propositions.

P 0 P | PvQ | PrAQ | P=>Q | PeQ
TH [T [ FO | Ty | T(O) () T(D)
T [ FO [ FO [ T4 | FO F(0) F(0)
FO [ T(H) [T | T [ FO) T(D F(0)
FO [ FO [ T(H | FO | FO) i) (D)

X/
A
B Y

Figure 2.9. The Cartesian space showing the implication IF A, THEN B.

Implication (2.22) also is equivalent to the linguistic rule form IF A, THEN B. The
graphic shown in Figure 2.9 represents the space of the Cartesian product X x Y, showing
typical sets A and B, and superposed on this space is the set-theoretic equivalent of the
implication. That is,

P—>Q:ifxeA, thenyeB or P—- Q=AUB.

The shaded regions of the compound Venn diagram in Figure 2.9 represent the truth
domain of the implication IF A, THEN B (P — Q). Another compound proposition in
linguistic rule form is the expression

IFA, THEN B, ELSEC.
Linguistically, this compound proposition could be expressed as
IFA, THENB and IFA, THENC.
In predicate logic, this rule has the form
(P— Q)A(P —5),
where P : x € A, A C X,

Q:yeB, BCY,
S:yeC, CcCY.

(2.23)

The set-theoretic equivalent of this compound proposition is given by
IF A, THEN B,ELSE C = (A x B)U (A x C) = R = relationon X x Y. (2.24)

The shaded region in Figure 2.10 illustrates the truth domain for this compound proposition
for the particular case where BN C = #.
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x

B 8}

Figure 2.10. Truth domain for IF A, THEN B, ELSE C.

Logical inferences

A typical IF-THEN rule is used to determine whether an antecedent (cause or action) infers
a consequent (effect or reaction). Suppose we have a rule of the form IF A, THEN B, where
A is a set defined on universe X and B is a set defined on universe Y. As discussed before,
this rule can be translated into a relation between sets A and B; that is, recalling (2.22),
R =(A x B)U(A x Y). Now suppose a new antecedent, say, A’, is known. Can we use
a logical inference to find a new consequent, say, B’, resulting from the new antecedent,
that is, in rule form IF A’, THEN B’? The answer is, of course, yes, through the use of the
composition operation. Since “A implies B” is defined on the Cartesian space X x Y, B’
can be found through the set-theoretic formulation (again from (2.22))

B=A06R=A0(AxB)UAxY)), (2.25)

where the symbol o denotes the composition operation. A logical inference also can be used
for the compound rule IF A, THEN B, ELSE C, where this compound rule is equivalent to
the relation defined by

R=(Ax B)U(AXxC). (2.26)

For this compound rule, if we define another antecedent A’ (i.e., another input, different
from A), the following possibilities exist, depending on (i) whether A’ is fully contained
in the original antecedent A, (ii) whether A’ is contained only in the complement of A, or
(iii) whether A’ and A overlap to some extent as described below:
IfA C A, then y = B;
if A C A, then y = C;
ifA'NA#G, ANA#Q, theny=BUC.
The rule IF A, THEN B (proposition P is defined on set A in universe X, and propo-

sition Q is defined on set B in universe ¥),i.e., P — Q0 = R = (A x B)U(A x Y), is
then defined in function-theoretic terms as

xr(x, y) = max[(xa(x) A xz(y)), (1 — xa(x)) A D], 2.27)

where x () is the indicator function as defined before,
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The compound rule IF 1_4 THEN B, ELSE C alsq can be defined in terms of a matrix
relationas R = (A x B)U(A x C) = (P — Q) A (P — §), given by (2.23) and (2.24),
where the membership function is determined as

xr(x, ¥) = max[(x4(x) A xp(y)), (1 — xax) A xc(YD]. (2.28)

2.3.2 Fuzzy logic

The restriction of classical logic to two-valued logic has created many interesting paradoxes
over the ages. For example, does the “liar from Crete” lie when he claims, “All Cretans are
liars” 7 If he is telling the truth, then his statement is false, but if his statement is false, he is
not telling the truth. The statement can’t be both true and false. The only way for the “liar
from Crete” paradox to be solved is if the statement is both true and false simultaneously.

This paradox can be illustrated mathematically using set notation (Kosko (1992)). Let
S be the proposition that a Cretan lies and S (not S) that he does not. Then since § — S(S
implies not §) and § — §, the two propositions are logically equivalent: § <> S. Equivalent
propositions have the same truth value; hence

TS)=T(S)=1-T(S),
which yields

1
T(S) = 3

As can be seen, paradoxes reduce to half-truths mathematically (or haif-falsities). In classical
binary (bivalued) logic, however, such conditions are not allowed; i.e., only

TS)=1or0

is valid.

There is a more subtle form of paradox that also can be addressed by a multivalued
logic. Consider the classical sorites (a heap of syllogisms) paradoxes, for example, the case
of a liter-full glass of water. Often this example is called the optimist’s conclusion: Is the
glass half-full or half-empty when the volume is at 500 milliliters? Is the liter-full glass still
full if we remove one milliliter of water? Is the glass still full if we remove two, three, four, or
100 milliliters of water? If we continue to answer yes, then eventually we will have removed
all the water, and an empty glass will still be characterized as full! At what point did the
liter-full glass of water become empty? Perhaps when 500 milliliters full? Unfortunately,
no single milliliter of liquid provides for a transition between full and empty. This transition
is gradual so that as each milliliter of water is removed, the truth value of the glass being
full gradually diminishes from a value of 1 at 1000 milliliters to 0 at O milliliters. Hence for
many problems, we need a multivalued logic other than the classic binary logic that is so
prevalent today.

A fuzzy logic proposition P is a statement involving some concept without clearly
defined boundaries. Linguistic statements that tend to express subjective ideas, and that can
be interpreted slightly differently by various individuals, typically involve fuzzy propositions.
Most natural language is fuzzy in that it involves vague and imprecise terms. Statements
describing a person’s height or weight, or assessments of people’s preferences about colors
or foods, can be used as examples of fuzzy propositions. The truth value assigned to £ can
be any value on the interval [0, I]. The assignment of the truth value to a proposition is
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actually a mapping from the interval [0, 1] to the universe U of truth values 7, as indicated
in the equation

T=uelU— (0,1} (2.29)

As in classical binary logic, we assign a logical proposition to a set on the universe
of discourse. Fuzzy propositions are assigned to fuzzy sets. Suppose that proposition P is
assigned to fuzzy set A; then the truth value of a proposition, denoted T (P), is given by

T(Py=1a(x), where0<puy <1. (2.30)

Equation (2.30) indicates that the degree of truth for the proposition P : x € A is equal to
the membership grade of x in the fuzzy set A.

The logical connectives of negation, disjunction, conjunction, and implication also are
defined for a fuzzy logic. These connectives are given in (2.31a)-(2.31d) for two simple
propositions, proposition P defined on fuzzy set 4 and proposition @ defined on fuzzy set B:

negation: T(P)=1-T(P), (2.31a)
P is A or B,
disjunction: LV @=xisdorB (2.31b)
T(P v Q) =max(T(P), T(Q)),
P i A d ]
conjunction: Eng= x‘ls Aand B (2.31¢)
T(P A Q)=min(T(P), T(Q)),
P is A, then x is B,
implication: P= Q= xis4 thenxis B (2.31d)

T(P > Q)=T(PV Q) =max(T(P), T(Q)).

As stated before in (2.22), in binary logic the implication connective can be modeled in
rule-based form,

P— Q:1Fxis A, THEN y is B,

and it is equivalent to the following fuzzy relation R just as it is in classical logic: R =
(A x BYU (A x Y) (recall (2.22)), whose membership function is expressed by the formula

pr(x, y) = max[(pg(x) A ug(y)), (1 — pa(x))]. (2.32)
When the logical conditional implication is of the compound form

IFxisA, THENyis B

=

ELSEyis C,
then the equivalent fuzzy relation R is expressed as

R=(AxBU(

ja ]

x )

in a form just as in (2.22), whose membership function is expressed by the formula

pgr(x, y) = max{(pa(x) A up()), (1 — g () A pe(YHI (2.33)
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2.3.3 Approximate reasoning

The ultimate goal of fuzzy logic is to form the theoretical foundation for reasoning about
imprecise propositions; such reasoning is referred to as approximate reasoning (Zadeh (1976,
1979)). Approximate reasoning is analogous to predicate logic for reasoning with precise
propositions, and hence is an extension of classical propositional calculus that deals with
partial truths.

Suppose we have a rule-based format to represent fuzzy information. These rules are
expressed in the following conventional antecedent-consequent forms:

* Rule 1: IFxis A,THEN y is B,

where 4 and B represent fuzzy propositions (sets). Now suppose we introduce a new
antecedent, say, A', and consider the following rule:

« Rule 2: IF x is A’, THEN vy is B'.

From information derived from Rule 1, is it possible to derive the consequent in Rule 2, B,
resulting from a new input, A’? The answer is yes, and the procedure is fuzzy composition.
The consequent B’ can be found from the composition operation B' = A’ o R’, which is
analogous to (2.25) for crisp sets.

2.3.4 Fuzzy systems

In the field of artificial intelligence (machine intelligence) there are various ways to represent
knowledge of complex, or fuzzy, systems. Perhaps the most common way to represent human
knowledge in these systems is to cast the knowledge into natural language expressions of
the type

IF premise (antecedent), THEN conclusion (consequent).

This expression is commonly referred to as the IF-THEN “rule-based” form. It typically
expresses an inference such that if a fact (premise, hypothesis, antecedent) is known, then we
can infer, or derive, another fact called a conclusion (consequent). This form of knowledge
representation, characterized as “‘shallow knowledge,” is quite appropriate in the context
of linguistics because it expresses human empirical and heuristic knowledge in our own
language of communication. It does not, however, capture the “deeper” forms of knowledge
usually associated with intuition, structure, function, and behavior of the objects around us
simply because these latter forms of knowledge are not readily reduced to linguistic phrases
or representations. The rule-based system is distinguished from classical expert systems
in the sense that the rules comprising a rule-based system might derive from sources other
than human experts and, in this context, are distinguished from expert systems. This chapter
confines itself to the broader category of fuzzy rule-based systems (of which expert systems
could be seen as a subset) because of their prevalence and popularity in the literature, because
of their preponderant use in engineering practice, and because the rule-based form makes
use of linguistic variables as its antecedents and consequents. As illustrated earlier in this
chapter, these linguistic variables can be naturally represented by fuzzy sets and logical
connectives of these sets.

2.3.4.1 Aggregation of fuzzy rules

Most rule-based systems involve more than one rule. The process of obtaining the overall
consequent (conclusion) from the individual consequents contributed by each rule in the
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rule-base is known as aggregation of rules. In determining an aggregation strategy, the
following two simple extreme cases exist (Vadiee (1993)):

(i) Conjunctive system of rules: In the case of a system of rules that have to be jointly
satisfied, the rules are connected by “and” connectives. In this case the aggregated output
(consequent) y is found by the fuzzy intersection of all individual rule consequents y’, where
i = 1,2,...,7‘,38

y=y'andy?and ... and y" (2.34)
or
y=y'ny'n...ny, (2.35)
which is defined by the membership function

Uy (y) = min(uy (y), 1£,2(¥), ..., ny (y)) forye?. (2.36)

(ii) Disjunctive system of rules: For the case of a disjunctive system of rules where
the satisfaction of at least one rule is required, the rules are connected by the “or” connec-
tives. In this case, the aggregated output is found by the fuzzy union of all individual rule
contributions as

y=ylory?or...ory
or
=y'uyu-- Uy, (2.37)
which is defined by the membership function

1y () = max(py (3), (2 (), ..., 1ty (3)) forye¥. (2.38)

2.3.4.2 Graphical techniques of inference

Fuzzy relations use mathematical procedures to conduct inferencing of IF-THEN rules (see
(2.32) and (2.33)). These procedures can be implemented on a computer for processing
speed. Sometimes, however, it is useful to be able to conduct the inference computation
manually with a few rules to check computer programs or to verify the inference operations.
Conducting the matrix operations illustrated in (2.32) and (2.33) for a few rule sets can quickly
become quite onerous. Graphical methods have been proposed that emulate the inference
process and that make manual computations involving a few simple rules straightforward
(Ross (1995)). To illustrate this graphical method, we consider a simple two-rule system
where each rule is comprised of two antecedents and one consequent. This is analogous to
a two-input and single-output fuzzy system. The graphical procedures illustrated here can
be easily extended and will hold for fuzzy rule-bases (or fuzzy systems) with any number
of antecedents (inputs) and consequents (outputs). A fuzzy system with two noninteractive
inputs x| and x; (antecedents) and a single output y (consequent) is described by a collection
of “r” linguistic IF-THEN propositions

IFx; is AY and xpis A5, THEN y*is B* fork=1,2,...,r, (2.39)

where A% and A% are the fuzzy sets representing the kth antecedent pairs, and B* are the
fuzzy sets representing the kth consequent.
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In the following material, we consider a two-input, one-output system. The inputs to
the system are represented by fuzzy sets, and we will illustrate a max—min inference method.

The inputs input(i) and input(j) are fuzzy variables described by fuzzy membership
functions. The rule-based system is described by (2.39), so for a set of disjunctive rules,
where k = 1,2, ..., r, the aggregated output using a Mamdani implication (Mamdani and
Gaines (1981)) will be given by

ppe (y) = max[min{max[p g () A ()], max[pe g (0) A u(x2) ], (2.40)

where w(x|) and p{x;) are the membership functions for inputs i (x;) and j (x), respectively.
Equation (2.40) has a very simple graphical interpretation which is illustrated in Figure 2.11.
In this figure the fuzzy inputs are represented by triangular membership functions (input (i)
and input(j) in the figure). The intersection of these inputs and the stored membership
functions for the antecedents (A, A, for the first rule and A,;, Ay, for the second rule)
results in triangles. The maximum value of each of these intersection triangles results in
a membership value, the minimum of which is propagated for each rule (because of the
“and” connective between the antecedents of each rule; see (2.39)). Figure 2.11 shows the
aggregated consequent resulting from a disjunctive set of rules (the outer envelope of the
individual truncated-consequents) and a defuzzified value, ¥*, resulting from a centroidal
defuzzification method (Ross (1993)). Defuzzification is the mathematical process whereby
a fuzzy membership function is reduced to a single scalar quantity that best summarizes the

Rule 1

H
npuizt) input( j) A2l

min

X

Rule 2
o \ o

inputii) Al input( f)

_Y

Figure 2.11. Graphical Mamdani (max—min) implication method with fuzzy inputs.
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function, if a single scalar value is needed. Of the various methods of defuzzification, the
centroidal method is intuitive since it represents the center of gravity of the area defined by
the membership function.

2.3.5 An example numerical simulation

Most physical processes in the real world are nonlinear. It is our abstraction of the real
world that leads us to the use of linear systems in modeling these processes. These linear
systems are simple, understandable, and, in many situations, provide acceptable simulations
of the actual processes. Unfortunately, only the simplest of linear processes and only a
very small fraction of the nonlinear having verifiable solutions can be modeled with linear
systems theory. The bulk of the physical processes that we must address are, unfortunately,
too complex to reduce to algorithmic form—Ilinear or nonlinear. Most observable processes
have only a small amount of information available with which to develop an algorithmic
understanding. The vast majority of information that we have on most processes tends to be
nonnumeric and nonalgorithmic. Most of the information is fuzzy and linguistic in form.

If a process can be described algorithmically, we are able to describe the solution set for
a given input set. If the process is not reducible to algorithmic form, perhaps the input—output
features of the system are at least observable or measurable. This section deals with systems
that cannot be simulated with conventional crisp or algorithmic approaches but that can be
simulated using fuzzy nonlinear simulation methods because of the presence of linguistic
information.

We wish to use fuzzy rule-based systems as suitable representations of simple and
complex physical systems. For this purpose, a fuzzy rule-based system consists of a set of
rules representing a practitioner’s understanding of the system’s behavior, a set of input data
observed going into the system, and a set of output data coming out of the system. The input
and output data can be numeric or nonnumeric observations. Figure 2.12 shows a general
static physical system that could be a simple mapping from the input space to the output
space or could be an industrial control system, a system identification problem, a pattern
recognition process, or a decision-making process.

input ) output
P nonlinear P
system
X Y Y

Figure 2.12. A general static physical system with observed inputs and outputs.

We illustrated that a fuzzy relation also can represent a logical inference. The fuzzy
implication IF A, THEN B is a general form of inference. There are numerous techniques for
obtaining a fuzzy relation R that will represent this inference in the form of a fuzzy relational
equation.

Suppose our knowledge concerning a certain nonlinear process is not algorithmic
but rather is in some other more complex form. This more complex form could be data
observations of measured inputs and measured outputs. Relations can be developed from
this data, which are analogous to a look-up table. Alternatively, the complex form of the
knowledge of a nonlinear process also could be described with some linguistic rules of the
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formIF A, THEN B. For example, suppose that we are monitoring a thermodynamic process
involving an input heat of a certain temperature and an output variable, such as pressure.
We observe that when we input heat of a “low” temperature, we see “low’ pressure in the
system; when we input heat of a “moderate” temperature, we see “high” pressure in the
system; when we place “high’”” temperature heat into the thermodynamics of the system, the
output pressure reaches an “extremely high” value; and so on. This process is shown in
Figure 2.13, where the inputs are now not points in the input universe (heat) and the output
universe (pressure) but patches of the variables in each universe. These patches represent
the fuzziness in describing the variables linguistically. Obviously, the mapping (or relation)
describing this relationship between heat and pressure is fuzzy. That is, patches from the
input space map, or relate, to patches in the output space, and the relations R;, R;, and R3 in
Figure 2.13 represent the fuzziness in this mapping. In general, all of the patches, including
those representing the relations, overlap because of the ambiguity in their definitions.

A

pressure \ extremely high

(psi)

high \J/

low

— >

low moderate high heat (temp)

Figure 2.13. A fuzzy nonlinear relation matching patches in the input space to
patches in the output space.

Each of the patches in the input space shown in Figure 2.13 could represent a fuzzy
set, say, A, defined on the input variable, say, x; each of the patches in the output space could
be represented by a fuzzy set, say, B, defined on the output variable, say, y; and each of the
patches lying on the general nonlinear function path could by represented by a fuzzy relation,
say, R¥, where k = 1,2, ..., r represents r possible linguistic relationships between input
and output. Suppose we have a situation where a fuzzy input, say, x, results in a series
of fuzzy outputs, say, y*, depending on which fuzzy relation R* is used to determine the
mapping. Each of these relationships, as listed in Table 2.2, could be described by what is
called a fuzzy relational equation (or a fuzzy IF-THEN rule), where y* is the output of the
system contributed by the kth rule, and whose membership function is given by . (y).

2.3.5.1 Fuzzy associative memories (FAMs)

Consider a fuzzy system with n inputs and a single output. Also assume that each input
universe of discourse, 1.e., X, X5, ..., X,, is partitioned into k fuzzy partitions. Based on
the canonical fuzzy model given in Table 2.2 for a nonlinear system, the total number of
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Table 2.2, System of fuzzy relational equations (IF-THEN rules).

Bl :yl____,xogl
BZ :y2:x°82

R Y =x0 R

possible rules governing this system is given by

L=k, (2.41a)
L=+, (2.41b)

where L is the maximum possible number of canonical rules. Equation (2.41b) is to be
used if the partition “anything” is to be used; otherwise, (2.41a) determines the number of
possible rules. The actual number of rules r necessary to describe a fuzzy system is much
less than L, i.e., r « L. This is due to the interpolative reasoning capability of the fuzzy
model and the fact that the fuzzy membership functions for each partition overlap. If each
of the » noninteractive inputs are partitioned into a different number of fuzzy partitions, say,
X is partitioned into k; partitions and X is partitioned into k, partitions, and so forth, then
the maximum number of rules is given by

L =kikoks - - -k,. (2.42)

For a small number of inputs, e.g.,n = 1,n = 2, orn = 3, there exists a compact form
of representing a fuzzy rule-based system. This form is illustrated for n = 2 in Figure 2.14,
where there are seven partitions for input A (A1 to A7), five partitions for input B (B1 to
BS), and four partitions for the output variable, C (C1 to C4). This compact graphical form
is called a fuzzy associative memory (FAM) table (Kosko (1992)). As can be seen from the
FAM table, the rule-based system actually represents a general nonlinear mapping from the
input space of the fuzzy system to the output space of the fuzzy system. In this mapping,
the patches of the input space are related to the patches in the output space. Each rule or,
equivalently, each fuzzy relation from input to output, actually represents a fuzzy point of
data that characterizes the nonlinear mapping from input to output.

input A
input B Al A2 A3 | A4 | 4s A6 A7
Bl | ¢ c4 c4 a3 a3
B2 c1
By | c4 Cl 2 2
B4 | 3 C3 Cl Cl 2
B | 3 c4 c4 c1 3

Figure 2.14. FAM table for a two-input, single-output fuzzy rule-based system.
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In the FAM table shown in Figure 2.14, we see that the maximum number of rules for
this situation using (2.42) is L = kjk; = 7(5) = 35; but as seen in the figure, the actual
number of rules is only r = 21 (i.e., the blank spaces in the figure do not contain rules).

2.3.5.2 Example simulation using fuzzy rule-based systems

For the nonlinear function y = 10sin x,, we will develop a fuzzy rule-based system using
four simple fuzzy rules to approximate the output y. In general, we would not know the
form of the nonlinearity, but to illustrate a typical simulation we use a known function. The
universe of discourse for the input variable x; will be the interval [—180°, 180°] in degrees,
and the universe of discourse for the output variable y is the interval [—10, 10].

First, we will partition the input space x, into five simple partitions on the interval
[—180°, 180°], and we will partition the output space y on the interval [—10, 10] into three
membership functions, as shown in Figures 2.15(a) and 2.15(b), respectively.

]
NB NS IAZ PS PB

2180 290 0 90 180 i

(a) Five partitions for the input variable x;.

H

NB 112 PB

-10 0 10

(b) Three partitions for the output variable y.

Figure 2.15. Fuzzy membership functions for the (a) input and (b) output spaces.

In Figures 2.15(a) and 2.15(b), the acronyms NB, NS, Z, PS, and PB refer to the linguis-
tic variables negative big, negative small, zero, positive small, and positive big, respectively.

Second, we develop four simple rules, listed in Table 2.3, that we think emulate the
system dynamics (in this case the system is the nonlinear equation y = 10sinx;, and we
are observing the harmonics of this system) and that use the linguistic variables shown in
Figuare 2.15. The FAM table for these rules is given in Table 2.4.

The FAM table of Table 2.4 is one-dimensional because there is only one input vari-
able, x|. As seen in Table 2.4, all rules listed in Table 2.3 are accommodated. The four rules
expressed above are not all expressed in canonical form (some have disjunctive antecedents),
but if they were transformed into canonical form, they would represent the five rules provided
in the FAM table in Table 2.4.
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Table 2.3. Four simple rules for y = 10sin x,.

IF x; isZ or PB, THEN y is Z.
IF x; is PS, THEN y is PB.
IF x; is Z or NB, THEN y is Z.
IF x1 is NS, THEN y is NB.

PN RSN o

Table 2.4. FAM for the four simple rules.

X1 | NB | NS | Z | PS | PB
y | Z |[NB|Z]|PB| Z

In developing an approximate solution for the output y, we select a few input points
and conduct a graphical inference method similar to that illustrated earlier. We will use the
centroid method for defuzzification. Let us choose four crisp singletons as the input:

x1 = {—135°, —45°,45°, 135°}.

For input x; = —135°, rules (3) and (4) are fired, as shown in Figures 2.16(c) and 2.16(d).
For input x; = —45°, rules (1), (3), and (4) are fired. Figures 2.16(a) and 2.16(b) show the

graphical inference for input x| = —45°, which fires rule (1), and for x; = 45°, which fires
rule (2), respectively.
For input x; = —45°, rules (3) and (4) also are fired, and we get results similar to those

shown in Figures 2.16(c) and 2.16(d) after defuzzification:

rule (3) : y =0,
rule (4) 1 y = 7.

For x; = 45°, rules (1), (2), and (3) are fired (sec Figure 2.16(b) for rule (2)), and we get the
following results for rules (1) and (3) after defuzzification:

rule (1) : y =0,
rule 3) : y =0.

For x; = 135°, rules (1) and (2) are fired and, after defuzzification, we get results that are
similar to those shown in Figures 2.16(a) and 2.16(b):

rule (1) : y =0,
rule ) :y=7.

When we combine the results, we get an aggregated result, summarized in Table 2.5
and shown graphically in Figure 2.17. The y values in each column of Table 2.5 are the
defuzzified results from various rules firing for each of the inputs x;. When we aggregate the
rules using the union operator (disjunctive rules), this has the effect of taking the maximum
value for y in each of the columns in Table 2.5. The plot in Figure 2.17 represents the
maximum y for each of the x;, and it represents a fairly accurate portrayal of the true
solution. More rules would result in a closer fit to the true sine curve, but in this case we
know the nonlinearity.
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X

(a) Input x; = —45%fires rule (1).

plxy)
|
| %
45 -10 10
centroid at approximately y =7
(b) Input x; = 45° fires rule (2).
NB
|
+ |
~180 -10
(¢) Input x; = —135° fires rule (3).
NS 1+ NB 1
|
| >
-180 Y -10 + -5 0 ,

centroid at approximately v = -7
(d) Input x; = —135° fires rule (4).

Figure 2.16. Graphical inference method showing membership propagation and
defuzzification.
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Table 2.5. Defuzzified results for simulation of y = 10sin x;.

X1 | —135° | —45° | 45° | 135°
Y 0 ) 0
=7 0] 0 7
-7 |7
4
y
T-10
TS5

] ] 1 [ 1 l

1 I T h 'T
-180\ -135 -90 -45 0 45 90 135 180

+-10

Figure 2.17. Simulation of nonlinear system y = 10 sin x; using four-rule fuzzy rule-base.

2.3.6 Summary

This chapter has presented the basics of fuzzy sets, membership, fuzzy relations, fuzzy
logic, fuzzy rule-based systems, and fuzzy simulation. The important area of fuzzy control is
introduced in Chapter 8 in the applications section. The utility of fuzzy logic transcends all
engineering disciplines and all scientific fields as well. Perhaps the greatest current interest
in fuzzy logic in the commercial marketplace is the use of fuzzy logic in the development
of new “smart” consumer products. Some of these products employ the elements of fuzzy
control in their designs.

Beyond the material provided in this chapter lies a new era in fuzzy logic, where this
new technology will be combined with the latest digital forms for manifesting automated
decision-making. For example, new generations of fuzzy logic controllers are based on the
integration of conventional digital and fuzzy controllers (Sugeno (1985)). Digital fuzzy clus-
tering techniques can be used to extract the linguistic IF-THEN rules from numerical data.
In general, the trend is toward the compilation and fusion of different forms of knowledge
representation for the best possible identification and control of ill-defined complex systems.
The two paradigms of artificial neural networks (ANN) and fuzzy logic (FL) try to under-
stand a real world system by starting from the very fundamental sources of knowledge, i.e.,
patient and careful observations, digital measurements, experience, and intuitive reasoning
and judgments rather than starting from a preconceived theory or mathematical model. Ad-
vanced cognitive systems characterized by learning (using ANN) and by reasoning (using
FL) will use adaptation capabilities to learn, then tune, the membership functions’ vertices
or supports, or to add or delete rules to optimize the performance and compensate for the
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effects of any internal or external perturbations to the systems. Finally, principles of genetic
algorithms (GA) will be used to find the best string representing an optimal class of digital
input or output membership functions in digital form. All these new paradigms (ANN, FL,
and GA) fall under the rubric now known as soft computing.
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Chapter 3°

Probability Theory

Nozer D. Singpurwalla, Jane M. Booker, and
Thomas R. Bement

3.1 The calculus of probability

It is convenient to use the following example to describe what is meant by the rules for
governing probability. The example of determining the reliability of a system is reasonable
because reliability is the probability that the system will perform as required, and because
this example also appears in Chapter 11. Probability theory has its basis in (crisp) set theory,
but it can be defined in terms of rules or axioms called the calculus of probability (Bement
et al. (1999)).

The probability of an event, say, X, is a number denoted by P(X), and it is required
to satisfy certain rules or axioms. The probability of that same event in light of historical
information / at a time t is a number denoted by P*(X; H).

The event X can pertain to the performance of a certain function surviving to a specified
mission time' or producing a specified level of output. Then P™(X; H) is known as the
reliability of the item or unit that is required to function or to survive. Thus reliability is,
de facto, the probability of a certain type of an event. (When the item in question is a human
subject, the term survival analysis, rather than reliability, is commonly used.)

The calculus of probability consists of the following three rules of convexity, addition,
and multiplication:

(1) 0 < PY(X; H) < 1 for any event X;
(i1) P*(X,or X»; H) = P*(X; H) + P*(X,; H) for any two events X| and X, that are
mutually exclusive—that is, they cannot simultaneously occur; and

(iii) P*(X, and X,: H) = P*(X)|X2; H) - PT(Xy; H), where P*(X,|X»; H) is a quan-
tification via probability of the uncertainty about the occurrence of event X |, assuming
that event X, has occurred.

'The concept of mission time need not be measured in units of time; it could be measured in other metrics such
as miles traveled, rounds fired, or cycles completed.

55
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The quantity P*(X|X»; H) is known as the conditional probability of X, given X». Itis
important to note that conditional probabilities are subjunctive. This is the disposition of X,
at time 7, for were it to be known, it would become a part of the history H at time 7. The
vertical line between X | and X, represents a supposition or assumption about the occurrence
of X,. Finally, P*(X, and X,; H) also can be written as P*(X,|X;; H)- P*(X;; H) because
at time 7, both X and X, are uncertain events. One can contemplate the uncertainty of X,
assuming that X, is true or, vice versa, contemplating X, by assuming that X, is true.

These basic rules, along with conditional probability, are rearranged and presented as
the 16 axioms of probability in Chapter 5.

The calculus of probability does not interpret probability; that is, it does not tell us what
probability means. It is not concerned with issues such as the nature of uncertainty, whose
uncertainty, whose history, how large H should be, and, most important, how to determine
P*(X; H) and how to make this number operational. The calculus simply provides a set of
rules by which the uncertainties about two (or more) events combine or cohere. Any set of
rules for combining uncertainties that are in violation of the rules given above are said to be
incoherent with respect to the calculus of probability.

Most researchers agree that the calculus of probability starts with its axtoms and do not
dwell on the matter of how to assign initial probabilities. Then the matter becomes how to
deduce probabilities of events that are compositions of the basic events whose initial proba-
bilities are assumed known. However, there do exist systems for combining and specifying
various types of uncertainties that are different from probability. Examples of these are Jef-
frey’s rule of combination (Jeffrey (1983)), possibility theory and fuzzy logic (Zadeh (1979)),
upper and lower probabilities (Smith (1961)), and belief functions (Dempster (1968)).

Questions arise as to why one must subscribe to the calculus of probability, and what
is the justification for this calculus. The answers encompass a vast amount of literature, with
contributions from gamblers, philosophers, mathematicians, decision theorists, behavioral
scientists, and experts in artificial intelligence and knowledge acquisition. The book by
Howson and Urbach (1989) provides an overview of some of these. Some brief arguments
to justify the probability calculus include the following:

Gambling: Since the time of Cardano in the 1500s, it has been known that, in games
of cards, coins, and dice, an avoidance of the rules of probability results in a “sure-loss,”
also known as a Dutch book. That is, heads you lose, tails I win.

Scoring rules: De Finetti (cf. Lindley (1982)) used a scoring rule argument to justify
the calculus of probability. With this argument, an individual assessing an uncertainty is asked
to declare a number that best describes that uncertainty. When the uncertainty reveals itself
or is resolved, the individual is rewarded or penalized (i.e., scored) according to how close
the declared number was to actuality. De Finetti’s argument is that under some very general
conditions, an individual faced with a collection of uncertainties must use the calculus of
probability to maximize an overall score. The above claim is true for a large class of scoring
schemes.

Horse racing: Also known as “horse lotteries,” horse racing uses certain numbers
called betting coefficients. The betting coefficients are the odds for or against a particular
horse or horses in a race. It can be shown that to maximize one’s winnings the betting
coefficients must obey the calculus of probability (Howson and Urbach (1989)).

Behavioristic axioms: The three arguments above involve the issues of gambling or
scoring, both of which could be morally or ethically objectionable to some individuals. As
an alternative, Ramsey (1934) and Savage (1972) have proposed a system of behavioristic
axioms to justify the calculus of probability in terms of principles relating to coherence and
consistency. The Ramsey—Savage argument is mathematical; an excellent exposition of it
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is given by De Groot (1970). Both Ramsey and Savage expand the use and definition of
probability into the behaviorist realm, which represents reality better than games of chance
and scoring rules. However, there are two disadvantages to this argument. The first is that
the intuitive and natural elements of gambling and scoring are lost, and axiomatic arguments
tend to be abstract and therefore less appealing. The second (and perhaps more serious)
disadvantage is that the behavioristic axioms of Ramsey and Savage are in reality violated
by (most) individuals (cf. Kahneman, Slovic, and Tversky (1986)). A counterpoint to the
above disadvantages is that the behavioristic axioms prescribe normative behavior, which
tells us how we should act, not how we do act.

3.2 Popular views of probability
3.2.1 The interpretation of probability

The interpretation, or the meaning, of probability and approaches for assigning initial prob-
abilities has been the subject of much discussion and debate. According to Good (1965),
there are approximately 11 ways of interpreting probability, with the following four being
most prominent:

* the classical theory,
* the a priori or logical theory,
« the relative frequency theory,

« the personalistic or subjective theory.

Each of these theories subscribes to a particular interpretation of probability, but the calculus
in section 3.1 is common to all four. It is important to note that, for all intents and purposes,
the calculus of probability is devoid of interpretation, so the meaning of probability is not
relevant to the calculus. However, the assignment of initial probabilities (needed to make
the calculus operational) depends on one’s interpretation of probability. Thus to a user of
probability, such as a physicist, an engineer, or a statistician, the interpretation of probability
does greatly matter. In what follows, we shall give an overview of the key features of the
four theories mentioned above, focusing more on the latter two. For more details consult
Fine (1973), Good (1965), Maistrov (1974), Hacking (1974), or Gigerenzer et al. (1989).

3.2.2 The classical theory of probability

The founders of this theory, Cardano, Pascal, Fermat, Huygens, Bernoulli, DeMoiure, Bayes,
Laplace, and Poisson, were “determinists” influenced by Newton. They believed there was
no such thing as chance. Nature, what Laplace called a “genie,” knows it all. Probability
was simply a measure of an individual’s partial knowledge.

A formal definition of the classical theory of probability is due to Laplace. Loosely
speaking, it is the ratio of favorable cases to the number of equipossible or equally likely
cases. The cases are equipossible if we have no reason to expect the occurrence of one over
the other. An equipossible case is also known as
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* the principle of indifference,
* the principle of insufficient reason,
» the Bayes postulate.

The classical theory of probability has some merit in games of chance such as coin
tossing, dice throwing, or card shuffling. However, there has been some criticism of the
theory. First, the principle of indifference seems to be circular, i.e., equipossible implies
equiprobable, and vice versa. Second, there is a difficulty regarding the dividing up of
alternatives. For example, what is the probability of throwing a 5 on the toss of a die?
The answer is %, if the alternatives considered are 1,2, ..., 6, but it is % if the alternatives
considered are a S or not a 5. Third, this theory has limited applications. For example, what
must we do if the die is loaded? More important, under this theory, how must we interpret a
number such as 1078 for the failure rate of a system? Must we think in terms of 10° equally
likely cases? Clearly, this interpretation of probability poses conceptual difficulties in the
context of rare and unobservable events.

Finally, it is important to note that the classical theory of probability involves a personal
judgment about the equally likely nature of events. In reality, coins and dice are not perfect
and hence not equally likely. Nonetheless, the theory continues to be used, particularly for
the teaching of probability.

3.2.3 The a priori theory of probability

The original insights about the a priori theory of probability are due to Keynes, the famous
economist. However, there is a version of this theory due to Carnap, who was trained as a
physicist but who also worked in logic, syntax, semantics, and formal languages. Others who
have been attracted to this theory are Jeffreys (1961), Koopman, Kemney, Good, and Ramsey.

It is difficult to summarize in words the essence of this theory because it involves the
notions of logic and syntax. The basic tenet of this theory, however, boils down to the theory
that probability is a logically derived entity. When one does not agree with its conclusion,
one is wrong because of a violation of the logic. This theory, though much discussed, is not
in use because it is difficult to make it operational. Thus we shall not dwell on it further.

3.2.4 The relative frequency theory

The origins of the relative frequency theory of probability can be traced back to Aristotle,
although Venn officially announced the idea in 1866. The mathematical development of this
theory has been attributed to Von Mises (1957), and its philosophical discourse is due to
Reichenbach (1949).

The key ideas of this theory are the following:

* Probability is a measure of an empirical, objective, and physical fact of the external
world, independent of human attitudes, opinions, models, and simulations. To von
Mises, it was a part of a descriptive physical science; to Reichenbach it was a part of
the theoretical structure of physics.

* Probability is never relative to evidence or opinion. Like mass or volume, it is deter-
mined by observations on the nature of the real world.

* All probabilities can only be known a posteriori, i.e., only known through observation.
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3.2.4.1 The definition of probability: Relative frequency theory

In the relative frequency theory, probability is a property of a collective, i.e., scenarios
involving events that repeat again and again. Thus it excludes from consideration one-of-a-
kind and individual events because such events do not possess a repetitive feature. Games of
chance, like coin tossing, and social mass phenomena (like actuarial and insurance problems)
are considered collectives.

A collective is a long sequence of observations for which there is sufficient reason
to believe that the relative frequency of an observed attribute will tend to a limit if the
observations are indefinitely continued. This limit is called the probability of the artribute
within the collective.

The essential requirement in the relative frequency theory is the existence of a collec-
tive. In addition, one must establish the existence of limits. Finally, one can determine the
probability of encountering a certain attribute in the collective.

3.2.4.2 Source of initial probabilities: Relative frequency theory

To von Mises, the role of probability theory is to derive probabilities from the old (initial
probabilities?) using the calculus of probability. Both von Mises and Reichenbach agreed
that initial probabilities are to be obtained as relative frequencies.

To von Mises, the equally likely values in dice games were a consequence of historical
observations based on the word-of-mouth experience of generations. In actuarial applica-
tions, where a sizeable amount of data exist, von Mises requires that a collective be identified,
that a stable value of a relative frequency be identified over groups and over time, and that
the stable value be used as the initial probability. Thus to summarize, the heart of the relative
frequency theory of probability lies in the notion of repetitive events (actual or conceived),
and this is where both the good and bad features of this theory can be fully appreciated.

3.2.4.3 Virtues and criticisms of the relative frequency theory

The most practical virtue of the relative frequency theory of probability is that it applies in
cases where the indifference principle fails to hold (as in the situation where the coins and dice
are loaded). Its psychological virtue is that it claims to be objective and therefore scientific.
Physical scientists are therefore attracted to it because probability is considered to be located
in the objects themselves, as a property such as mass or volume, and not in our attitudes.
Also, like mass and volume, probability can be discovered using the key tools of science,
namely, experimentation, observation, and confirmation by experimental replication.
Criticisms of the theory stem from the fact that, to invoke it, the following need to occur:

¢ introduction of a random collective;
* definition of a probability that is a random collective;

* specification of a probability that is a property of the collective without being a member
of the collective.

Collectives are difficult to construct in real life. For example, tossing a coin an infinite
number of times raises the question of how similar the tosses should be. If they are identical,
the same outcome must always be observed. If they are dissimilar, how much dissimilarity

The specification of initial probabilities is the job of a statistician.
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is allowed (if this can be assessed at all) before the tosses can no longer be viewed as
a collective? Finally, relative frequency probability is never known, can never be known
(limits of sequences is an abstract mathematical notion), and its value can never be confirmed
or disputed.

To appreciate implementation of the relative frequency definition of probability, take
the example of how to interpret a number such as 1076 (for the failure rate). We must (i) first
conceptualize a collective (such as an infinite number of almost identical lunar probes),
(ii) focus on an attribute of this collective (say, loss of navigation control), and (iit) be
prepared to accept the notion that probability is a property of this collective with respect
to the attribute and not to any particular member (a probe) of this collective. The number
107° reflects the feature of any individual encountering this attribute in the collective. Thus
1079 is really a measure of encounter. This number can be neither verified nor proved nor
disproved. It exists only as a mathematical limit.

Whereas collectives can be conceptualized with mass social phenomena (like actuarial
tables, IQs of individuals, etc.) and in physics (such as in the movement of gas particles),
this conceptualization is often difficult in many other scenarios, such as rare or one-of-a-
kind events. Indeed, it was a sociologist, Quetelet, who introduced the idea of a collective.
This notion was first embraced by physicists (who may have influenced von Mises) but was
then rejected by individuals like Bohr and Schrodinger in light of Heisenberg’s “principle of
uncertainty,” which defined uncertainty and probability without the collective concept and
in a way closer to the subjectivist view described next.

Clearly, under the relative frequency view of probability, T and H play no role so that
P(X; H) = P(X). Similarly, expert testimonies, corporate memory, mathematical models,
and scientific information do not matter; only hard data on actual events go into assessing
the initial probabilities.

3.2.5 The personalistic or subjective theory

The personalistic or subjective theory was first proposed by Ramsey (1934), though Borel
may have alluded to it in 1924. The theory was more fully developed by De Finetti (1937,
1974) and by Savage (1972). The key idea of this theory is that there is no such a thing as
an objective probability. Probability is a degree of belief of a given person at a given time.
The degree of belief must be measured in some sense, and a person’s degree of belief must
conform to others in a certain way. The person in question is an idealized one, namely, one
who behaves normatively.

The intensity of belief is difficult to quantify; thus we must look at some property
related to it. Ramsey and De Finetti both favored the behavioristic approach, where the
degree of belief is expressed via a willingness to bet. Thus the probability of an event is the
amount, say, p, that you are willing to bet on a two-sided bet in exchange for $1 should the
event occur. By a two-sided bet, we mean staking (1 — p) in exchange for $1 should the
event not occur.

The feature of coherence that is a part of this theory is the normative feature. It ensures
that the degrees of belief do not conflict and the Dutch book is avoided. This is achieved by
adhering to the calculus of probability.

Because probability in the personalistic theory is one person’s opinion, there is no
such thing as an unknown probability, or a correct probability, or an objective probability.
A person’s probabilities may be elicited by invoking the principle of indifference, or by a
system of carefully conducted comparative wagers, or simply by asking. In this theory, any
factor that an individual chooses to consider is relevant, and any coherent value is as good
as another.



Nozer D. Singpurwalla, Jane M. Booker, and Thomas R. Bement 61

3.2.5.1 Key features of the subjective theory

The subjective theory of probability permits the probability of a simple unique event or the
probability of repetitive events. Because there is no notion of an absolute probability, the
theory gives no guidance on how to obtain initial probabilities. Personal probabilists claim
that objectivity in statistics is a fallacy, because model choice, the judgment of indifference
(i.e., the notion of equipossibility), the choice of p-values, significance levels, Type land Type
II errors, etc. are all subjective. The phrase “we know nothing before observing” motivates
the relative frequency theory of probability and is viewed by personalistic probabilists as
impossible to define.

Finally, under the personalistic theory the number 107 for the failure rate has an
unambiguous interpretation. This means that, to the individual declaring such a number, and
based on all of H (to include expert testimony, corporate memory, mathematical modeling,
simulation, and hard data, if available) at time t, the person is indifferent to the following
two bets:

+ Stake 107% in exchange for $1 if the event occurs.

« Stake (1 — 107%) in exchange for $1 if the event does not occur.

3.2.5.2 Arguments against the subjective theory

According to some researchers, the hallmark of science is consistency, and scientific inference
is based on hard (test or observational) data. Personalistic probabilities are not consistent
with this view. Furthermore, declared probabilities may not reflect true belief. Also, it is
literally impossible to ensure coherence in real situations that tend to be complex, unlike
games of chance. Another argument against this theory stems from the theory that some
individuals do not like to bet, especially when considering how the bet is selected, and
thus may be reluctant to declare their probabilities in such terms. Also, the theory has no
provision for ensuring that individuals with identical background information will declare
identical probabilities and that, given an individual’s action, it is difficult to separate the
individual’s probabilities from his/her utilities.

Perhaps the most important argument against the theory of personalistic or subjec-
tive probability is that experiments by psychologists have shown that individually declared
probabilities are not coherent; i.e., they do not act according to the dictates of the calculus
of probability. A counterargument to the above criticism is that the theory of personalistic
probability is normative; it prescribes how we should act, not how we do act.

3.2.6 Choosing an interpretation of probability

Claims of “objectivity” seem to be the persuading argument in choosing the relative fre-
quency interpretation of probability. This position also has been reinforced by the peer
review processes of many applied scientific journals. Traditional reliability has been used,
for example, in testing the reliability of medical implant devices, aging facilities (power
plants), software, the Space Shuttle, the Hubble space telescope, overcrowded transporta-
tion systems, and waste transport systems. However, use of the alternatives is motivated by
the need to minimize the amount and the time of testing, to make decisions in advance of
testing (especially in the automobile industry), to make performance assessments for one-of-
a-kind units (such as in aerospace applications), and to incorporate engineering and scientific
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knowledge into decisions (via simulation and science-based models). To meet such needs,
there has been a gradual shift towards the personalistic view (cf. Martz and Waller (1982)).

The impetus for this shift began slowly with the nuclear reactor industry (see, for
example, United States Nuclear Regulatory Commission (1975)) and continues with eco-
nomics, where pressure is being put on defense and environmental protection spending by the
U.S. government. It continues because issues surrounding decision making are surfacing in
complex and dynamic environments, where obtaining hard data is expensive or prohibitive.

From a philosophical standpoint, the personalistic interpretation of probability does
not lead to the logical inconsistencies and difficulties of communication often mentioned by
its critics. Furthermore, the personalistic view

 permits statements of uncertainty about one-of-a-kind items and unobservable events;
* allows incorporation of information from all sources deemed appropriate;
* does not demand the availability of a large amount of hard data;

» permits the incorporation of all knowledge available at any given time with the ability
to update probabilities (and hence reliabilities) as new knowledge becomes available.

A prime example in which the formal use of all knowledge might have presented a different
decision is the Challenger Space Shuttle tragedy. Instead of relying completely on the solid
rocket boosters’ hard data (and a relative frequency view), using a personalistic approach
may have revealed the potential problems that led to the disaster.

From a pragmatic point of view, the expansion of our computational capabilities over
the last few years has made knowledge and information available in a variety of forms, both
qualitative and quantitative. Large-scale simulations of complex, physical systems (such
as transportation simulation (Beckman (1997))) are now available, providing gigabytes of
information which must be analyzed and condensed for decision making. Taking advantage
of all available information, including hard data, is what further motivates our point of view
in favor of subjective probability.

3.2.7 The use of expert testimonies in personalistic/subjective
probability

Once we adopt a personalistic interpretation of probability, the calculus of probability fa-
cilitates a use of informed testimonies, which can be based on judgments, experience, sim-
ulations, or mathematical models. We often need to involve expert testimonies in our as-
sessments because hard data on the event of interest, such as failure, may be unavailable
or even impossible to obtain. Furthermore, it is comforting to engineers when their tech-
nical knowledge and previous experiences can be formally incorporated into the decision
process. However, this expertise must be properly elicited and analyzed (cf. Meyer and
Booker (2001)). Informed testimonies do not obviate the role of hard data when available.
Rather, the personalistic view fuses the import of informed knowledge and hard data, the
latter enhancing the former, via the calculus of probability and its extensions; see Lindley
and Singpurwalla (1986) and Singpurwalla (1988) for an illustration.

‘We have stated before that, in many important situations, the computer revolution will
provide us with an abundant amount of auxiliary information. However, because of the
economics of testing and other political considerations, few, if any, direct hard data will be
available. A paradigm for quantifying uncertainty that can function with the above constraints
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will find a natural place in the eyes of the user. The subjectivist view of probability can
provide such a paradigm for quantification of uncertainty and information/data integration
for decision making.

The personalistic or subjective probability permits the use of all forms of data, knowl-
edge, and information. Therefore, its usefulness in applications where the required relative
frequency data are absent or sparse becomes clear. This view of probability also includes
Bayes’ theorem (see Chapter 4) and of all the views of probability comes the closest to the
interpretation used in fuzzy logic. We therefore feel that this point of view is the most ap-
propriate for addressing the complex decision problems of the 21st century, and we adopt it
as our view of probability in the case studies of Part II.

3.3 Concepts for probability theory
3.3.1 Concepts of a random variable and sample space

Having chosen the calculus of probability with the subjective or personalistic view, we find
that some basic concepts are necessary for its implementation. The first of these is the
notion of stochastic behavior. An activity is said to be stochastic if all repetitions or trials
of a defined experiment, observation, or computation may not yield identical results. The
reasons for these nonidentical results are varied, including simple random chance.

If identical repetitions of an activity produce the exact same result time after time, that
activity is said to be deterministic. For example, if one inputs the same values for mass (m)
and the speed of light (¢), then the energy (E) from Einstein’s equation is always the same
value (deterministic) using the computation E = mc?. However, if one is measuring the
masses of objects, these will vary (stochastic) even if the same item is being measured under
the same conditions. The variation is due to various sources such as errors in recording,
differences in the measuring process, or simply random chance. It should be noted that the
speed of light itself is not necessarily a deterministic quantity because of variation due to
the medium in which it travels and scientific disputes over the exact value of the quantity.
Therefore, if both m and ¢ in the equation have variability due to their stochastic nature,
the resultant product E is also a stochastic quantity. We refer to this stochastic nature of
quantities through the concept of random variables. In this case, there are random variables
for the quantities m, ¢, and E.

Mathematically, a random variable is any real-valued function defined on the sample
space of an experiment or activity. A sample space is the set of points in a continuum
or a set of discrete values that characterize the possible outcomes of the experiment, trial,
computation, or activity. Random variables are denoted by capital letters, e.g., X, which
refers to the function. The specific values for the random variable are represented by lower-
case letters, e.g., x.

Random variables are defined as discrete or continuous depending on the nature of the
possible values they can take on. Random variables can be discrete if the values they can
take on are discrete values (such as the faces of a die) whose sample space is the crisp set of
discrete values {1, 2, 3, 4, 5, 6}. Acontinuous random variable would be the mass of a certain
everyday object that we encounter, such as a book. Masses of books are on a continuous
scale beginning with zero up to, potentially, infinity (or some defined limit such as the total
mass of the universe). However, we rarely encounter masses of books in everyday life as
large as kilotons. Likewise, they rarely are less than several grams. These extreme values of
books with masses on the order of kilotons or less than a few grams have very low chances of
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existing. Nonetheless, those values of X are possible but have low probabilities associated
with them. Specifying the probabilities for the various values of masses in the everyday
sample space leads to the concept of another function—the probability distribution.

3.3.2 Probability distribution functions

Another kind of function specifies the probability or chance associated with each possible
value in the sample space of a discrete random variable or with possible ranges of values in
the sample space of a continuous random variable. This function is a probability distribution
function (a PDF or CDF); “PDF” is referred to as probability density function in Chapters 1,
2,4, 7-9, and 14. What defines a PDF is the property that the total summation (for discrete
values) or integration (for continnous values) over all the probabilities in the sample space
equals 1.0. A CDF is the cumulative or integral of the PDF.

In the example of the die, the PDF would be a table or plot of the values in the sample
space (1-6) versus the probability or chance of realizing those values, denoted by p. In
this case, each probability is equally likely at é. The summation of all probabilities is equal
to 1.0:

6
Z P(X = x;) = 1.0.
i=1

The equally likely structure of the probabilities defines a discrete uniform distribution. Other
examples of discrete PDFs include the binomial distribution, the Poisson distribution, and
the hypergeometric distribution.

Continuous PDFs, f(x), map each value of X into a probability density value. The
probability is calculated by integrating f(x) over a range of values in the sample space.
There is zero probability associated with each individual value of X in the sample space.
Here the integral over the entire sample space (which may include limits of —oc and 400)
must equal 1.0:

foo fdx = 1.0.

Commonly used continuous PDFs include the normal (or Gaussian), beta, gamma, lognormal,
and exponential distributions.
The cumulative (probability) distribution function (CDF) is denoted by F(x,), where

Fx)=PX=2x)=u«

for all x in the sample space and all probabilities («¢) ranging from O to 1. F(x) is increasing
in x and has the value of 1.0 at the maximum value of x (which may be co).
For discrete random variables,

F(x)=P(X <x)=) P(X=x),

i=l

and for continuous random variables, the summation is replaced by an integral:

Flx) = / " fnds
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(Hastings and Peacock (1975)).
Distribution functions (PDFs and CDFs) can be formulated empirically from data
without belonging to a particular form, such as the Gaussian, a.k.a. the normal:

ey — )2
exp{ guz’;) }

o2

Common forms include the beta, gamma, lognormal, uniform, exponential, and Weibull
distributions. Each has a set of parameters that determine its unique shape and scaling
appearance.

Regardless of form, probability distributions have characteristics based on moments,
which can be calculated from their formulas or estimated from data. The most common
of these is the first moment, the mean, often referred to as the average. For continuous
distributions, the mean yu is

fx)=

s -0 < Xx <00,

u:fmx~f(x)dx.

0

The next most common distribution characteristic is the variance o2, which is based on the
second moment. For continuous distributions, the variance is

oQ

o’ = / (x — p)* - fx)dx.
—00

Similar forms of distributions belong to families of distribution types. For example, the

exponential, normal, and gamma distributions all belong to the very broad exponential family.

As discussed in Chapter 4, likelihoods are based on the likelihood principle (sec-

tion 4.2.2) and are not PDFs. They are mentioned here because they are distributions only

in the sense of being functions of the likelihood of every value in the sample space. It is not
required that they sum or integrate to 1.0.

3.3.2.1 Joint and marginal distributions

If X and X, are two random variables, each has its own PDF; however, together they can
form a joint PDF f (x{, x;), where the point (x1, x;) is in two-dimensional Euclidean space.
For any number n of random variables, their joint distribution is f(xy, x2, X3, . .., X,) with
the properties

flanx,x, 00, x) 20, —oo=x <00, i=12,...,n,

and
00
/ f(xl,xz,X3,...,x,,)dxldxz~~-dx,,: 1.
=00
For a given joint distribution function, the PDF for any individual variable X; can be found

by integrating the joint PDF over the other variables. This so-called marginal distribution is
found by

f(xi):/ / f S xg, xz, .o x)dxdxy - dxi_dxigy - dx,.
—ac J —nc —o¢
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3.3.2.2 Conditional distribution

A conditional PDF is defined in terms of two random variables X; and X,;, where X, is
conditioned on (or given) X;:

_ Jnb, x)
fxilx) = “hop

where f(x,) is the PDF of x; and fi5(x;, x7) is the joint PDF of both random variables.

3.3.3 Conditional probability and dependence

The equation for probability distributions in section 3.3.2.2 is derived from its probability
counterpart for two events X and X, in a sample space. The conditional probability of event
X given event X, has occurred is defined by

P(X1NXy)

P(X1X;) = P(X2)

provided that P(X;) > 0. X, is said to be independent of X, if
P(X11X2) = P(X1)
or
P(XiN X;) = P(Xy)- P(X2).

Two random variables are said to be independent if their joint PDF factors into the product
of the individual PDFs:

fxr,x2) = filx)) - falx).

A sample xi, x3, x3, ..., x, taken from the same distribution function f(x) is a random
sample if the joint PDF f(x;, x5, x3, . . ., x,,) of the observations factors as

Fxn, xa, 3,000, x0) = flx) - flx2) - fx3)--- fxn).

The corresponding random variables are said to be independent and identically distributed.

3.3.4 Comparing distributions

When characterizing uncertainties using PDFs, the assessor may need to compare different
distributions. Distribution characteristics, such as parameters or moments, are customarily
tested one at a time using traditional statistical inference tests. While these are useful, they
do not address the problem of how to compare entire distributions rather than comparing only
their characteristic properties (e.g., their means). Specifically, what is needed are metrics
that compare the information contained in the two or more uncertainty distributions. This
measure or metric should also be on an invariant scale that enables one to say, for example,
that with this metric a score of 0.01 implies that the distributions contain similar information,
while a score of 2.0 implies that the distributions contain very different information. The
metric should have properties that make it useful independent of the underlying distribution
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to whatever extent possible, invariant to singular transformations, symmetric in operation,
and independent of the number of equally spaced partitions of the generated distributions.

Jeffreys’s invariant J (Jeffreys (1946, 1998)) is such a metric meeting these require-
ments for the very broad family of distribution functions called the exponential family (of
which the normal distribution is a member). While the metric J still is under development
for use in other distribution families and for empirical distributions, we demonstrate its po-
tential use as a metric for comparing distributions generated by different fuzzy combination
methods.

For two distributions fj (x) and f>(x), J is defined as

J = f{fl (x) — f(x)]1n [23;] dx.

The popular Kullback—Leibler (1951} KL information measure is the first term of the inte-

gral above:
. Ji(x)
KL = / i) In [fz(X)] dx.

Because of the lack of symmetry in KL, the use of J is recommended for comparison of two
functions fi(x) and f>(x).

Both KL and J are measures of information content of PDFs—a concept that stems
from the entropy of the distribution:

- / Jx)In[f(x))dx.

Other methods for comparing PDFs include relative distributions (Handcock and Morris
(1999)) and using quantiles (Mason, Gunst, and Hess (1989)).

3.3.5 Representing data, information, and uncertainties as
distributions

Distribution functions are used to represent data, information, and uncertainties. As noted
above, these do not have to follow a particular distribution form (e.g., normal) or family.

Distributions can be empirical (or data-based) as a histogram from a set of test or ob-
servational data. These distributions represent the nonrepeatability in the data set. Sources
include random variation, measurement or observational imprecision, and any number of
known or unknown effects (e.g., treatments, conditions, or manufacturing differences).
Data from outputs of computer codes or models are subject to uncertainties in those mod-
els/calculations. Changes in inputs can propagate through the code/model and affect the
output. All of these sources of uncertainty can be represented by PDFs. Often overlooked,
but most important in this list, is uncertainty from lack of knowledge. While often diffi-
cult to quantify, this uncertainty also can be represented by probability distributions (see
Chapters 12 and 17 of Meyer and Booker (2001)).

Distributions can be drawn by an expert according to any form, depending on that
expert’s knowledge of how the probability or its density is distributed. This is the same sort
of exercise used in asking experts to provide (i.e., draw) membership functions (as seen in
Chapter 2).

Eliciting uncertainties fromexperts in the form of distribution functions requires that
the experts be comfortable with subjectivist or personalistic probability and understand PDFs
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and CDFs. This is not always the case. Therefore, it is the jobof the assessor to transform the
experts’ information into distributions and then meticulously explain to the experts what that
transformation means so as to not misrepresent the original information. If expert knowledge
is in the form of IF-THEN rules (as described in Chapter 2), then that uncertainty may be
best captured using membership functions. As noted in Chapter 4 and described in Chapter 6,
membership functions can serve as likelihoods to be translated into probability distributions
through the use of Bayes’ theorem.

3.4 Information, data, and knowledge

Information has a particular definition in probability theory originating from physics (Jaynes
(1957)). For our purposes, information has a more popular meaning: it is any fact, obser-
vation, or opinion that provides value to the existing collective of what is understood about
a system, phenomenon, or decision problem. Knowledge (what is known), judgment (how
knowledge is interpreted by experts), and data (numerical and qualitative measurements or
observations) are all sources of information.

Data is defined in the popular science/technology sense as follows:

* hard data—from experiments, measurements, or observations;

¢ soft data—expert judgment (defined in section 6.1 of Chapter 6), estimates of quanti-
ties, assumptions, boundary conditions, utilities, heuristics, and rules.

Data, knowledge, and information can exist in the following forms:
* quantitative—such as numbers, ranks, ratings, or any form of numerical value;
* gualitative—descriptions, categories, or any form of words.

Categorical data/information can be qualitative or quantitative. For example, qualitative
categories can imply a quantitative-like ordering and yet have qualitative words such as low,
medium, and high.

All information (data plus knowledge) have uncertainties attached to them. Some of
these uncertainties may be estimable from known sources, while others are not so easily
characterized. Often it is the job of the assessor, in concert with experts, to estimate these
uncertainties given the current state of knowledge (which in some cases may be very poor).

Information should be gathered in such a way as to preserve its original content and en-
sure the best quality possible. For data, this requires statistically sound sampling methods—
selecting units out of the population (the entire sample space) in such as way as to ensure
all attributes of the population are represented. To provide such representative selection,
some aspect of random selection is involved. Attributes of the population that contribute to
uncertainties should either be controlled (sampling done in such a way as to fix or control
these uncertainties) or measured for estimation (if control is not possible, then recording
certain values of attributes provides a means of estimating their uncertainty). For example,
in a typical sample survey such attributes as age, income, family size, and gender may affect
the respondents’ answers. The survey is then either designed to ask about these attributes
or implemented to control them (such as polling certain individuals with specified ages,
genders, etc.).

In expert elicitation, many attributes can affect the information being gathered and are
potential sources of uncertainty. Examples include
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* how experts solve problems;

* the assumptions, cues, and heuristics experts use;
* how the questions are asked;

* experts’ personal agendas and motivations.

Techniques for minimizing the biases that can result from these and other examples can be
found in Meyer and Booker (2001).

Expert judgment is not sampling in the traditional statistical sense. While uncertainties
exist in the information elicited, these do not arise from drawing samples of expert judgment
from the population of experts. These uncertainties are inherent in the information itself.
Nonetheless, the assessor can characterize uncertainties by utilizing the probability-based
methods from this chapter and/or the fuzzy-based methods from Chapter 2. As will be seen
in some of the application chapters in Part II of this book, often a combination of probability-
and fuzzy-based methods is required to adequately represent all uncertainties for a given state
of knowledge.
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Chapter 4

Bayesian Methods

Kimberly F. Sellers and Jane M. Booker

The use of Bayesian methods as both an information combination scheme and an
updating tool has become widespread, combining or updating prior information with existing
information about events. Bayesian methods stem from the application of Bayes’ theorem
in probability. As will be noted in this chapter, not only do these methods provide ways of
handling various kinds of uncertainties, but they also can serve as a link between subjective-
based probability theory and fuzzy logic.

In the Bayesian paradigm, uncertainty is quantified in terms of a personal or subjective
probability following the axioms of probability theory (see Chapter 3, section 3.2.5). The
probability of an event X is denoted P(X; H), where H represents the assessor’s informa-
tion, often called the prior information. Prior refers to the knowledge that exists prior to
the acquisition of information about event X. Uncertainties combine via rules of probabil-
ity that stem from the axiomatic behavioristic interpretation of probability (see Chapter 3,
section 3.1). The fundamental Bayesian philosophy is that prior information, H, is valuable
and can be mathematically combined with information about X and, with such combination,
uncertainties can be reduced.

Understanding the uses of Bayesian methods begins with the historical development
of the theory.

4.1 Introduction

In 1763, the Reverend Thomas Bayes of England made a significant contribution to the field
of probability when he published a paper describing a relationship among probabilities of
events (X and Y) in terms of conditional probability. This relationship,

P(XandY; H)=P(X; H)- P(Y|X; H),

stems from a basic probability law about the probability of two events occurring {Iversen
(1984)). The interpretation of this relationship is as follows: In light of information H, the
probability of events X and Y occurring is equal to the probability of event X occurring

73
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multiplied by the probability of event ¥ occurring if event X has occurred. For a simple
example, suppose that a fair six-faced die is rolled. Let X = {an even number is rolled} and
Y = {the roll produces a 6}. Then P(X; H) = % and P(Y|X; H) = % Therefore,

P(X andY) = P(X)- P(Y]X) = (%) (%) = (é)

Another expression for P(X and Y; H) from probability laws is
P(XandY; H)= P(Y; H)- P(X|Y; H).

That is, the probability that both events X and Y occur equals the probability that Y occurs
multiplied by the probability of X given Y occurring.

By equating the two expressions for P(X and Y; H) and rearranging the associated
terms, we get a form of Bayes’ theorem that states

P(Y|X; H)- P(X; H)
P(Y; H)

P(X|Y; H) =

Bayes’ theorem expresses the probability that event X occurs if we have observed Y in terms
of the probability of Y if given that X occurred.

History indicates that Laplace may have independently established another form of
Bayes’ theorem by considering k events, X, X», ..., X;. Thenthe probabilityof Y, P(Y; H)
can be rewritten as

PY|X; H) - P(X;; HY+ P(Y|Xy, H) - P(Xo; Hy+ - -+ P(Y|X,; H) - P(X; H).

This is the law of total probability (i.e., law of the extension of conversation): For two events
Xand?,

P(Y =y; H)=)_ P(Y =y|X =x;; H)P(X = x;; H),
all x;

which is abbreviated as

P(Y;H)= Y P(Y|X; H)P(X; H).

all x

Proof of the law of total probability for two events, x and y. By the definition of conditional
probability,

Y P =ylX =x;; H)P(X =x;; H)

all x;
P(Y=y;and X =x;; H
=Z{( PyXai ~ij )]P(szj;H)
all x; ( =X )
=Y P(Y =y and X =x;; H)
all x;

=P||Jr=yand X =x;)

all x;
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since the events (X = x;) are mutually exclusive. Finally,

Pl =yandX=x)|=PY=y:H);

all x;

thus the equation is satisfied. a

The law of total probability allows the assessor to consider the probability of an event
Y, P(Y; H) by summing over all possible conditional probabilities P(Y|X:; H).
Thus for one event X;, Bayes’ theorem becomes

P(X;|Y; H)

_ P(Y|Xi; H) e P(X;; H)
~ P(Y|X;; Hye P(X;; H)+ P(Y|X2; H) @ P(Xy; H) + -+ P(Y|Xy; H) @ P(Xy; H)

or, equivalently,

P(Y|X, H)P(X; H)
Y. P(Y|X; HYP(X; H)'

P(X|Y; H) =
This is the discrete form of Bayes’ theorem (which is also referred to as the law of
inverse probability): For two events X and Y,

P(Y =y;I1X =x;; H)P(X = x;; H)
Yty PO =X =xi; HYP(X = x;; H)’

P(X =x|Y =y;; H) =

which is abbreviated as

XY Hy = L POXHPOCH)
T Y PUYIX; HYP(X; H) ’ » £1).

Proof of the discrete form of Bayes’ theorem. By the multiplication rule,

PY=y|lX=xpg M)PX=xiH) _  P(X=xandY =y; H)
Tare PO =yjIX = xit HPX = xis H) Yoy POX = and Y = ;5 H)
_P(X=x;andY =y;; H)

P(Y = y;; H)

by the additivity rule because (X = x; and Y = y;) are mutually exclusive for all i. Finally,

P(X=x;andY =y;; H)
P(Y =y H)

= P(X = x,|Y = y;: H)
by the definition of conditional probability. 0

The implications of Bayes’ theorem are significant in that it does the following:

+ It shows the proportional relationship between the conditional probability P(X|Y; H)
and the product of probabilities P(X; H) and P(Y|X; H).

* It tells the assessor how to relate the two uncertainties about X: one prior to knowing
Y, the other posterior to knowing Y.
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* It tells the assessor how to change the opinion about X were Y to be known; this is
also called “the mathematics of changing your mind.”

* It gives the assessor a vehicle for incorporating additional information, i.e., expand-
ing it.

» It prescribes a procedure for the assessor, i.e., how to bet on X should ¥ be observed
or known. That is, it prescribes the assessor’s behavior before actually observing Y.

4.2 Probability theory of Bayesian methods

In order to understand the foundation of Bayesian analysis, the interpretations of probability
and conditional probability must first be discussed using the context of events X and Y and
prior information H:

* How do we interpret P(X; H)?
* How do we interpret P(X|Y; H)?
* What is the probability of an event that is known to have occurred?

Consider the event X with P(X; H) = p as the assessor’s subjective probability as defined
in Chapter 3, section 3.2.5. By definition, p implies that the assessor is prepared to bet an
amount p in exchange for 1 if a challenger accepts the bet and the outcome is in favor of
the assessor. With this in mind, suppose that the assessor is very sure (but not certain) about
the outcome of X. Then p should be small (i.e., p = &, where & > 0 is a small number)
because this bet will allow the assessor to make the largest profit. However, with & small,
the assessor is very likely to lose (1 — ¢). To avoid this type of inequity, the challenger will
require that the assessor accept a two-sided bet, where the sides are specified:

(a) Stake ¢ in exchange for 1 if the outcome is in favor of the assessor.
(b) Stake (1 — &) in exchange for 1 if the outcome is in favor of the challenger.

Under (a), the assessor is most likely to gain (1 — &), but under (b), the assessor is most likely
to lose (1 — &). This is because the challenger gets to specify (a) or (b). Therefore, to avoid
the possibility of a loss, the assessor’s probability should be (1 — &) so that the two-sided bet
is as follows:

(a') Stake (1 — ¢) in exchange for 1 if the outcome is in favor of the assessor.
(b") Stake ¢ in exchange for 1 if the outcome is in favor of the challenger.

Under this scheme, the assessor is likely to gain ¢ if (a’) is chosen and likely to lose ¢ if (b')
is chosen.

From the basic interpretation of probabilities as abet, P(X|Y; H) says that the gamble
involving X is contingent on Y occurring. In other words, the interpretation of P(X|Y; H)
is identical to that for P(X; H) but under the requirement that ¥ occurs. Therefore, if ¥
does not occur, then the bet is off.

Finally, if the assessor is absolutely sure (i.e., certain) of the outcome, then by adhering
to the methodology discussed to establish P(X; H), ¢ = 0. However, this now implies that
(b’) vanishes. No challenger would be willing to accept such a bet that they would surely
lose, so the idea of such a probability cannot be discussed; i.e., there is no such entity as the
probability of a sure event.
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of Section 5.1, where three types of second order approximations were
given for the linear initial value problem (5.1.9). Briefly stated, the three
approaches are: (1) to continue as in Section 5.2 with the two time scales
t and 7, computing higher order terms in the series (5.2.2); (2) to use two
time scales, but replace ¢ by a “strained” time scale similar to that used in
the Lindstedt method; and (3) to add more time scales besides ¢ and 7.

The purpose of the first strategy is to improve the accuracy of the first
approximation, without attempting to increase the length of time O(1/¢)
for which the approximation is valid. For problems of the form (5.1.1) it
can be shown that the two-time-scale expansion using ¢ and 7 which was
begun in the last section can be carried out to any order, and that the
solution (5.2.2) taken through the term y,_; has error @(¢¥) on expanding
intervals of length O(1/¢). Thus, at least in theory, the first strategy is
always successful at achieving its goal. However, to carry out the solution in
practice requires solving certain differential equations in order to eliminate
secular terms; these differential equations are in general nonlinear, and
therefore may not have “closed form” solutions (that is, explicit solutions
in terms of elementary functions). So the fact that the solutions are possible
“in theory” does not always guarantee that the calculations are possible in
practice, although in many cases they are.

The second and third strategies are more ambitious. Their aim is not
only to improve the asymptotic order of the error estimate, but also to
extend the validity of the approximations to “longer” intervals of time,
that is, expanding intervals of length O(1/&?) or longer. In other words,
these methods are an attempt to recapture some of the “trade-off” property
enjoyed by Lindstedt expansions in the periodic case. These methods were
originally developed by heuristic reasoning only, and there does not yet
exist a fully adequate rigorous theory explaining their range of validity.
There are a number of specific problems of the form (5.1.1) for which
these methods work, or seem to work. There are others for which they
definitely do not work. Because the situation is not yet fully understood,
we will not attempt to state any general results for these strategies, but will
illustrate the third strategy briefly and comment on the difficulties.

It should be mentioned that there is another approach to finding higher or-
der approximations for these problems, namely the method of “higher order
averaging” which will be developed in the next chapter. This method does
not require specifying a set of time scales in advance. Instead, the necessary
time scales appear automatically in the course of solving the problem. The
approximations constructed by averaging are always valid at least on expand-
ing intervals of order 1/e, and sometimes on longer intervals. It would appear
that this method is the most powerful.

To explain the higher order two-time-scale method using ¢ and 7, we
will continue the solution of the linear example (5.2.15) from where it was
left off in Section 5.2. At that time we had found yy, either in the form
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4.2.2 The likelihood principle

Implicit in the use of Bayes’ theorem is the likelihood principle, whose development stems
from R. A. Fisher:

“The likelihood principle: All the information about X obtainable from an ex-
periment is contained in the likelihood function for X given y. Two likelihood
functions for y (from the same or different experiments) contain the same in-
formation about y if they are proportional to one another.”

This principle states that all evidence obtained from an experiment or observation about some
unknown quantity X is contained in the likelihood function of X for the given data y (Berger
and Wolpert (1988)). Because Bayesian inference is based on the posterior distribution, the
likelihood principle (and hence the likelihood) becomes extremely important, almost to the
exclusion of the assessor’s choice of prior distribution. “Consequently the whole of the infor-
mation contained in the observation that is relevant to the posterior probabilities of different
hypotheses is summed up in the values that they give to the likelthood” (Jeffreys (1961)).
The likelihood contains all of the sample information even when the prior is unknown. It
plays an important role in the distribution function formulation of Bayes’ theorem, where
the test or observational data (continuous or discrete) forms the likelihood.

4.2.3 Distribution function formulation of Bayes’ theorem

Bayes’ theorem has been provided for the discrete form for two random variables X and
Y. For continuous X and Y, the probability statements are replaced by probability density
functions (PDFs), and the likelihood is replaced by a likelihood function. If Y is a continuous
random variable whose PDF depends on the variable X, then the conditional PDF of Y given
X is f(y|x). If the prior PDF of X is g(x), then for every y such that f(y) > 0 exists, the
posterior PDF of X givenY = y is

flylx; H) - g(x; H)
SO ) g H)'
where the denominator integral is a normalizing factor so that g(x|y; H), the posterior

distribution, integrates to 1 (as a proper PDF).
Alternatively, utilizing the likelihood notation, we get

gxly: H) =

g(xly, H) o« L(x]y; H)g(x; H)

so that the posterior is proportional to the likelthood function multiplied by the prior distri-
bution.

Bayes’ theorem can be interpreted as a weighting mechanism. The theorem mathemat-
ically weights the likelihood and prior distributions, combining them to form the posterior.
If these two distributions overlap to a large extent, this mathematical combination produces
a desirable result: the variance of the posterior distribution is smaller than that produced by
a simple weighted combination, w{ - furor + W2 * fiikelihood, for example. The reduction in
the variance results from the added information of combining two distributions that contain
similar information (overlap).

If the prior and likelihood distributions are widely separated, then the posterior will
fall into the gap between the two functions. This is an undesirable outcome because the
resulting combination falls in a region unsupported by either the prior or the likelihood. The
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analyst may want to reconsider using Bayesian combination in this case and seek to resolve
the differences between the prior and likelihood, or may want to use some other combination
method, such as a simple weighting scheme; for example, consider w - forior + w2 - fiikelihood-

4.3 Issues with Bayes’ theory

Recent use of Bayes’ theorem has exploded, as evidenced by citations in the literature
(Malakoff (1999)). However, with increasing use comes increasing misuse.

4.3.1 Criticisms and interpretations of Bayes’ theorem

The difficulty in using Bayes’ theorem is the determination of what information should be
labeled as prior and what should be labeled within the likelihood function. Because the
likelihood does not need to satisfy the axioms of probability, it is often misunderstood or
misspecified. According to the theory, the likelihood should be the data or information
collected from an experiment, or observation, or new information gained since collection of
the old (prior) information.

The most prominent argument brought against Bayesian-based methods by those with
the more frequentist view is for the use of the subjectivist or degree of belief probability
theory required to interpret the meaning of the prior and posterior probabilities. These issues
were mentioned in Chapter 3, section 3.2.5 and are the subject of much debate in the statistical
community.

Another related argument against Bayesian methods revolves around the role and deter-
mination of the prior distribution. According to the theorem and its formulations in section 4.2
above, the prior represents the uncertainty (as a probability distribution) in the parameter(s)
of the likelihood function. How the assessor adequately represents what is known prior to
collecting data so that it is consistent with this definition is often difficuit to determine. Prior
information usually is in the form of historical information and/or expert judgment and may
not be readily translatable into a probability distribution function for the parameter(s) found
in the likelihood. Such a representation calls for a parametric interpretation of the prior
and likelihood. This interpretation actually violates the basic ground rules of subjectivist
probability. To overcome this violation, the assessor should really be using a parameter-free
approach to Bayes’ theory. However, this approach is only theoretical and implementing it
in practice is not feasible until more research is done (Singpurwalla (1999)).

On the other hand, the frequentist interpretation of probability violates some basic
principles of that theory. Frequentists cannot accommodate any existing historical informa-
tion, and they rely solely on experimental or observational data that may be too sparse for
formulating conclusions. For example, frequentists commonly use the method of maximum
likelihood; however, from a philosophical standpoint, this has no merit.

Consider the likelihood function L(X = x;y, H), where y and H are fixed and
known. The maximum likelihood estimator of X, x* is the value of x where L(X = x; y, H)
attains a maximum value. Statistically speaking, it is the value of x that is most supported
by the data y. Frequentists consider the method of maximum likelthood for a variety of
reasons. In general, the maximum likelihood estimator has good large sample properties
such as consistency. Also, it generally has strong sampling properties, i.e., unbiasedness
and minimum variance. However, to prove these properties violates the likelihood principle
because the data have already been observed, and thus other possible values for y cannot be
considered.
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Empirical Bayesian methods offer a partial solution to approaching the theoretical
implementation of parameter-free Bayes, and it offers a solution to the difficulties of forming
a prior. Here prior distributions are empirically {or information-) based distributions. For
overviews on this topic, see Martz (2000) and Martz, Parker, and Rasmuson (1999).

Critics of prior determination methods have good cause for judgment when avid
Bayesians insist on the use of noninformative priors. Here the prior distributions are con-
structed when there is no prior information available and solely for the sake of using Bayes’
theorem. Noninformative priors often are called vague, flat, or diffuse priors. The result
is that the likelihood dominates the posterior. However, the use of such priors violates the
philosophical foundations of Bayesian analysis, which is to take advantage and utilize all
available information. If no information is available for constructing a prior, then Bayes’
theorem is not recommended.

A counterexample would be the use of the uniform prior. Here, perhaps the only prior
information known is that the parameter lies within some specified range (the range chosen
for the uniform distribution), and the assessor is willing to specify that the parameter can
lie with equal probability within that range. Here the assessor has prior information: equal
probability and a chosen range captured through the choice of the uniform prior. This is not
an example of specifying a noninformative prior.

4.3.2 Uses and interpretations

There are many uses for and interpretations of Bayes’ theorem extolling its virtues. A few
are summarized below (Martz (1998)):

» Bayes’ theorem indicates how point estimates (and their associated uncertainties) are
updated (combined) in light of additional pertinent information or data (such as relevant
information from computer models).

¢ Bayes’ theorem is a statistical method for combining different kinds of data and/or
information about some quantity of interest (such as reliability of a system).

* Bayes’ theorem describes how uncertainties in data regarding a quantity of interest
(such as a performance measure of a system) are modified in light of other available
information about the quantity of interest.

* Bayes’ theorem operationally describes how to combine statistical data with other
sources of pertinent information, such as computer models and/or expert opinion,
regarding a quantity of interest.

* Bayes’ theorem provides a mechanism for inverting conditional probability distribu-
tions of data in light of additional prior information and/or data.

* Bayes’ theorem provides a theoretically based mechanism for transforming fuzzy
membership functions (which serve as the likelihood) into probability space (as a
posterior, using an appropriate prior probability distribution). Section 4.6 below dis-
cusses this particular use of Bayes’ theorem in relation to the topics of this book.
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4.4 Bayesian updating: Implementation of Bayes’ theorem
in practical applications

One of the most practical uses of Bayes’ theorem {(mentioned in the first bullet above) is
updating. In many dynamic applications (e.g., an aging system, the design phases of a de-
velopment system), new data or information becomes available for a variety of reasons (new
tests, new design features, etc.), and it is desirable to update an existing probability distribu-
tion in light of this new data/information. In such cases, the existing distribution becomes the
prior and the new information becomes the likelihood, with the resulting posterior providing
the updated version.

Before the days of modern computers, calculating Bayes’ theorem was computationally
cumbersome. For those times, it was fortunate that certain choices of PDFs for the prior
and likelihood produced easily obtained posterior distributions. For example, a beta prior
with a binomial likelihood produces a beta posterior whose parameters are simple functions
of the prior beta and binomial parameters. Examples of these so-called conjugate priors
follow. With modern computational methods, these analytical shortcuts are not as necessary
as they were in the past; however, the interesting application-oriented interpretations of the
parameters for some of these conjugate priors retain their usefulness today.

4.4.1 Binomial/beta example

Suppose that we prototype a system, building 20 units, and subject these to a stress test. All
20 units pass the test. The estimate of success/failure rates from test data alone are

ny = 20 tests  with x; = 20 successes.

Using just this information, the success rate is % = 1, and the failure rate is % = 0. This
simple estimate, based on only 20 units, does not reflect the uncertainty in the reliability
for the system and does not account for any previously existing information about the units
before the test.

Using a Bayesian approach, the probability of a success is denoted as p. There exists
some prior knowledge, relevant data, specifications, etc. that can be used to formulate another
distribution for p—the prior distribution, g(p). In this example, that prior is a beta(xg, 7¢)
distribution

' (no)

— xp—1 _ y\0—xo—1
g(p)—r(x())r(no_x())x (1—-2x) .

The beta distribution is often chosen as a prior for a probability because it ranges from O to
1 and can take on many shapes (uniform, J shape, U shape, and Gaussian-like) by adjusting
its two parameters #¢ and xg.

The assessor knows something about this system before the test. Prior information is

in the form of an estimate of the failure rate from the test data done on a similar system that
is considered relevant for this new system:

ny = 48 tests on a similar system,

xg = 47 successes.

The new test data form the likelihood L (p; x) and represent the number of successes x;
in n; trials conforming to the binomial distribution with parameter p. The beta distribution
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g(p) is a conjugate prior when combined with the binomial likelihood L (p; x) using Bayes’
theorem. As noted above, conjugate prior distribution is a distribution such that the prior
and posterior come from the same family of distributions. Thus the resulting or posterior
distribution g (p|x) is also a beta distribution. For this example, the beta posterior distribution
has parameters (xg + x;, ng + n) as follows:

I'(no +n1)

— (xo+x;)—1 1= (no+n—xg—x;)~1
8P = R T et m —xo— ) (-7
or
F(68) 66 0 66
=———"_p%1 - p)? =67p%,
g(plx) r(67)r(1)p (1-p) P
xo+x; 67
= — =& (.985,
no+ny 68

or in terms of a failure rate, the beta posterior has a mean failure rate of approximately
1 — 0.985 = 0.015. The variance of the beta posterior distribution is

(xo + xD[(no + n1) — (x0 + x1)]

~ (.00021.
(no+n)*ng+n+1)

The engineering reliability community gravitates toward the binomial/beta conjugate
prior because many of the faitures are binomial in nature and the parameters of the prior and
posterior can have a reliability-based interpretation. As noted above, ng = number of tests
and xy = number of successes for the prior parameter interpretation. Similarly, ny + ny =
number of pseudotests and xg +x; = number of pseudosuccesses for the posterior parameter
interpretation, provided these values are greater than 1.

4.4.2 Exponential/gamma example

Another popular conjugate prior example in reliability is the gammma distribution

% 1,01
Aa,0) = ——A% 7,
g( ) =T @
Itis the conjugate prior distribution for A (which can represent a failure rate) in the exponential
distribution

ft; ) =xe™, t1>0,

(Martz and Waller (1982)).

The parameter ¢« can be interpreted as the pseudonumber of failures corresponding to
prior information, and parameter 6 interpreted as the pseudototal time on test. If test data are
obtained for time ¢ on a test, resulting in s failures, the prior distribution can be updated and
the posterior distribution for A is a gamma distribution, g(A; ¢ + 5,0 + t), where t = Zi t
and ¢; is the time on test for the ith test unit.

4.4.3 Normal/normal example

Because some physical or random phenomena are Gaussian (or normally)distributed, con-
sider data from a random sample of size n with a normal (i, o2) distribution, where the
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mean g has a prior distribution that is also normally distributed with mean t and variance
2
v-. Then

-2
FEls 07 = ——exp | -
(%)

2 ("72) =

n

is the PDF for the data mean x, and

2
glult; vh) = L exp [—(L—T)—]
V2 202

is the prior distribution for . Thus the posterior distribution is

g(ulc; o2, vh) = N(T, V3,

2 2z . . 2.2
It s the posterior mean and V2 = -2V

where 7' = e ST IS the posterior variance.

For example, suppose that the failure times of 22 bushings of a power generator can be
described by an N (u, o> = 9) distribution. Furthermore, suppose that an N(t = 15, v* =
4) prior distribution is assigned to p. Then the posterior distribution with x = 14.01 years

is normal with mean

_ (D(15) + (22)(4)(14.01)

T = 14.10 years
94+ (22)(4)
and variance
94
V2= _O® 0.371.
9+ 22(4)

It should be noted that these formulas arise from assuming a squared-error loss function
(Martz and Waller (1982)). The Bayes point estimate of u is then 14.10 years.

4.5 Bayesian networks

Analyses of today’s complex systems must accommodate more than two variables X and Y.
Directed graphs or causal diagrams indicating the relationships between the various com-
ponents (called Bayesian networks) could represent such complex systems. These systems
could contain different levels, which can, in turn, influence or affect other Jevels. The basic
levels, or parents levels, provide the conditions that influence the parts of the system at the
children levels. As such, these parents levels form the priors to be used in Bayes’ theorem.

Bayes’ network also is used when new evidence (data or information from knowledge)
enters into the system at any level, affecting any part of the system (e.g., a component or
node). Incorporating that new evidence as a likelihood can be done using Bayes’ theorem,
where the existing state of knowledge serves as the prior distribution.

A Bayesian network can be thought of as a graphical model (see Figure 4.1) that
encodes the joint probability distribution for a large set of interrelated variables (Heckerman,
(1996)). The network structure contains a set of conditional independence relations about
these variables and a set of probabilities associated with each variable. The network consists
of the following features (Jensen (1996)):
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Figure 4.1. Example of a Bayesian network.

* aset of variables U = {Xy,..., X, };

* a set of directed edges (relationships) between the variables;

* each variable has a finite set of mutually exclusive states;

* the variables with the directed edges form a directed acyclic (no feedback loops) graph;

e each child variable has parent(s) with conditional probabilities of the form
P(child|parents).

The joint probability distribution P (/) is the product of all the conditional probabilities,

PU) =[] PXilpa(X:)),

where pa(X;) is the parent set of X;.

Networks are useful for demonstrating concepts such as conditional independence, as
illustrated in Figure 4.2. Here the relationships between the random variables are denoted
by X, and X3, where X is independent of X3 given (conditional upon) X, if P(X|X;) =
P(X1|X32, X3). In other words, if X3 is known, then no knowledge of X5 will affect the
probability of X.

Figure 4.2. Two examples of conditional independence of X, and X;.
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Because of the conditional Bayesian reasoning and the updating capability for new
evidence entering into the network, these networks are useful in constructing expert systems
(Cowell et al. (1999)).

4.6 Relationship with fuzzy sets

Bayes’ theorem and the associated Bayesian methods can be used as a link between prob-
ability theory and fuzzy set theory. Specifically, probability measures relate to fuzzy sets
through the use of membership functions. The associated membership function of a fuzzy
set can be interpreted as a likelihood function of X for a fixed set S. This relationship is
true because the process of defining a membership function is subjective in nature, reflecting
the assessor’s opinion regarding the level of membership in the set S. Furthermore, because
membership functions are merely nonnegative, they can serve as likelihoods. Then for a
given probability-based prior distribution, the membership functions, as likelihoods, can be
combined with that prior through Bayes’ theorem and produce a probability-based posterior.

This methodology can be applied in a number of areas, including reliability theory and
biostatistics. In reliability theory, we can gain more information regarding system reliability
as opposed to learning whether or not the system simply works or fails; we can measure its
degradation level within certain categories of membership. Chapter 11 provides a case study
in reliability (which is a probability-based concept) demonstrating the use of membership
functions to characterize uncertainty and how these are mapped into probability space for
use in calculating reliability. In biostatistics, we can use probability measures of fuzzy sets
to gain more information on test results that are deemed inconclusive.

In both these applications, the knowledge that exists in experts’ experience may be bet-
ter captured using the rule-based structure of membership functions. However, other data or
information on the system may be more easily represented using PDFs. This bridge between
fuzzy logic and probability is necessary to combine all the data/information (probability-
based or membership function—based) to perform a complete analysis of the system.
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Chapter5

Considerations for Using
Fuzzy Set Theory and
Probability Theory

Timothy J. Ross, Kimberly F. Sellers, and Jane M. Booker

Most of the applications chapters in this book deal with the quantification of various forms
of uncertainty, both numeric and nonnumeric. Uncertainty in numerical quantities can be
random in nature, where probability theory is very useful, or it can be the result of bias or an
unknown error, in which case fuzzy set theory, evidence theory, or possibility theory might
prove useful. Probability theory also has been used almost exclusively to deal with the form
of uncertainty due to chance (randomness), sometimes called variability, and with uncer-
tainties arising from eliciting and analyzing expert information. Three other prevalent forms
of uncertainty are those arising from ambiguity, vagueness, and imprecision. While vague-
ness and ambiguity can arise from linguistic uncertainty, they also can be associated with
some numerical quantities, such as “approximately 5.” Imprecision is generally associated
with numerical quantities, although applications may exist where this type of uncertainty is
nonnumeric (i.e., qualitative), for example, “the missile was close to the target.” How do
variability, ambiguity, vagueness, and imprecision differ as forms of uncertainty?

In the sections that follow, we detail the most popular methods used to address these
various forms of uncertainty whether they are quantitative or qualitative. While fuzzy set
theory and probability theory have been used for all these forms of uncertainty, this chapter
will extend this scope somewhat by commenting on the use of possibility theory in the
characterization of ambiguity.

5.1 Vagueness, imprecision, and chance: Fuzziness versus
probability

Often vagueness and imprecision are used synonymously, but they can also differ in the

following sense. Vagueness can be used to describe certain kinds of uncertainty associated

with linguistic information or intuitive information. Examples of vague information are that
the data quality is “good” or that the transparency of an optical element is “acceptable.”

87
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Moreover, in terms of semantics, even the terms vague and fuzzy cannot be generally con-
sidered synonyms, as explained by Zadeh (1995). For example, “I shall return sometime”
is vague and “I shall return in a few minutes” is fuzzy. The former is not known to be
associated with any unit of time (seconds, hours, days), whereas the latter is associated with
an uncertainty that is at least known to be on the order of minutes. However, notwithstand-
ing this distinction, the terms vague and fuzzy used herein will represent the same kind of
uncertainty; i.e., they will be used interchangeably in our discussions of this general form of
uncertainty. As explained by Zadeh (1995), “Usually a vague proposition is fuzzy, but the
converse is not generally true.”

5.1.1 A historical perspective on vagueness

Black (1939) defines a vague proposition as a proposition where the possible states (of the
proposition) are not clearly defined with regard to inclusion. For example, consider the
proposition that a person is young. Since the term “young” has different interpretations to
different individuals, we cannot decisively determine the age(s) at which an individual is
young versus the age(s) at which an individual is not considered to be young. Thus the propo-
sition is vaguely defined. Classical (binary) logic does not hold under these circumstances;
therefore, we must establish a different method of interpretation.

Black introduced a consistency profile as a graphical representation of the membership
of a proposition in a set of states where 1 denotes absolute membership and 0 denotes absolute
complementary membership. These profiles are established to represent a precise (crisp) or
vague proposition: a precisely defined proposition has a consistency profile that is a step
function (Figure 5.1), while a vague proposition has a consistency profile that gradually
ranges between the two extremes (Figure 5.2).

0

Figure 5.1. Precise consistency profile.

0

Figure 5.2. Vague consistency profile.
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5.1.2 [Imprecision

Imprecision can be associated with quantitative, or countable, data as well as noncountable
data. An example of the latter might be, “the length of a flaw in an integrated circuit is
long.” An example of countable imprecision would be to report the length of such a flaw
as 30 microns. If we use a microscope and measure the length of the flaw 100 times we
will likely come up with 100 different values; the differences in the numbers will no doubt
be on the order of the precision of the resolution limitations of the microscope and other
measurement factors. Measurements using a light microscope (which has accuracy on the
order of microns) will be less precise than those developed from an electron microscope
(which has resolution on the order of nanometers). If we plot the flaw lengths on some
sort of probit paper and develop a Gaussian distribution to describe the length of this flaw,
we could state the imprecision in probabilistic terms. In this case, the length of the flaw
is uncertain to some degree of precision that is quantified in the language of probability.
Since we are not able to make this measurement an infinite number of times, there is also
uncertainty in the statistics describing the flaw length. Hence, imprecision can be used to
quantify random variability in the quantitative uncertainty, and it also can be used to describe
a lack of knowledge for descriptive entities (e.g., acceptable transparency, good data quality).
Vagueness is usually related to nonmeasurable issues.

Many practitioners suggest that the uncertainty arising from vagueness makes use
of fuzzy set theory, since this theory was developed to handle the vagueness inherent in
natural language. Klir and Folger (1988) have shown that the relationships among fuzzy
set theory, probability theory, evidence theory, and possibility theory stem from a common
framework of fuzzy measures in that they all have been used to characterize and model
various forms of uncertainty. That they all are related mathematically (as fuzzy measures) is
an especially crucial advantage in their use in quantifying the uncertainty spectrum. As more
information about a problem becomes available, the mathematical description of uncertainty
easily can transform from one theory to the next in the characterization of the uncertainty
as the uncertainty diminishes or, alternatively, as the information granularity increases and
becomes specific. There are various forms of fuzzy measures such as belief, plausibility,
possibility, and probability. Yager (1993) has discussed the relationship between a possibility
distribution and a fuzzy set. Ongoing research continues to provide theoretically based
methods for translating uncertainties established in one of these measures into uncertainties
in another without violating the fundamental axioms of either.

5.2 Chance versus vagueness

Suppose that you are a basketball recruiter and are looking for a “very tall” player for the
center position on a men’s team. One of your information sources tells you that a hot prospect
in Oregon has a 95% chance' of being over 7 feet tall. Another source tells you that a good
player in Louisiana has a high membership in the set “very tall” people. The problem with
the information from the first source is that it is a quantity constrained by the law of the
excluded-middle. There is a 5% chance that the Oregon player is not over 7 feet tall; this
person could conceivably be of extremely short stature. The second source of information
would, in this case, contain less uncertainty for the recruiter because if the player turned
out to be less than 7 feet tall, then there is a high likelihood that this player would still be
quite tall.

"Here the use of the term chance refers to the relative frequency interpretation of probability (Chapter 3,

section 3.4). For example, there will be 40% rotten apples in the refrigerator. If it were known how many total
apples there are and the term “rotten” were defined, then rottenness would be measured unambiguously.
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As discussed in Chapter 1 for a similar example comparing two glasses of liquids,
what philosophical distinction can be made regarding this form of information? Suppose
that we are allowed to measure the basketball players’ heights. The prior probability of
0.95 becomes a posterior probability of 1.0 or 0.0; i.c., the player either is or is not over
7 feet tall. However, the membership value of 0.95 that measures the extent to which the
player’s height is over 7 feet remains 0.95 after measuring. This example and the one from
Chapter 1 illustrate very clearly the difference in the information content between chance
and vague events.

This brings us to the clearest distinction between fuzziness and randomness: Fuzzi-
ness describes the vagueness of an event, whereas chance describes the uncertainty in the
occurrence of the event. The event will or will not occur; but is the description of the event
clear and specific enough to measure its occurrence or nonoccurrence?

5.3 Many-valued logic

Binary logic pertains to propositions that are either true or false. However, Lukasiewicz
(1930) recognized the existence of propositions that are simultaneously true and false at
various levels. For example, a degraded yet functioning system cannot be classified as being
in state 1 (perfect functioning), nor can it be classified as being in state 0 (total failure). For
such propositions, their membership is neither 1 nor 0. Therefore, Lukasiewicz assigned
a third number, % as its associated truth value (i.e., membership value) to account for
any deviation from states 0 or 1. For example, a degraded component (system) would be
considered in state % This concept defines a three-valued logic.

Lukasiewicz (1930) defined the truth table corresponding to the implication X — Y
for two propositions X and Y (“if X, then Y”’) and negation X’ (propositions complementary
to X); see Tables 5.1 and 5.2.

Table 5.1. Three-valued truth table for X — Y.

Values of proposition Y
1

X->Y

Values of
proposition X

= = | = |ro—

1
1
1

— o
O [N = ©

Table 5.2. Three-valued truth table for X'.

Values of proposition X | Values of proposition X’
0 1
1 1
2 2
1 0

From the logical equivalencies for conjunction (“AND,” denoted A) and disjunction
(“OR,” denoted V), we have

XAY=(X—>Y)—>Y and XVY=(XAYY.

Truth tables can be found in Malinowski (1993); also see Tables 5.3 and 5.4. As a result,
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Table 5.3. Three-valued truth table for X A'Y.

Values of proposition ¥
XAY T
0| 5 1
0
Values of ? 0 ? ;
proposition X 3 (013 7
104 I

Table 5.4. Three-valued truth table for X V' Y.

Values of proposition ¥
Xvy i
05 1
oot 1
Values of : : f
proposition X 71717 !
I I 1 I

XAY =min(X,Y)
and
XvVvY =max(X,Y).

These ideas can be generalized to define an n-valued logic in that propositions are true and
false simultaneously but with varying degrees of truth (or falsity). Furthermore, extensions
of the n-valued logic to the continuum lead to the notions of vagueness and fuzzy logic.

5.4 Axiomatic structure of probability and fuzzy logics

To attempt to bring some relevance to the historical confusion between the logics associated
with probability theory and fuzzy set theory, a paper by Gaines (1978) does an eloquent
job of addressing this issue. Historically, probability and fuzzy sets have been presented as
distinct theoretical foundations for reasoning and decision-making in situations involving
uncertainty. Yet when one examines the underlying axioms of both probability and fuzzy
set theories, the two theories differ only by one axiom in a total of 16 axioms needed for a
complete foundation! The material that follows is a brief summary of Gaines’ paper which
established a common basis for both forms of logic of uncertainty in which a basic uncertainty
logic is defined in terms of truth valuation on a lattice of propositions. Addition of the axiom
of the excluded-middle to the basic logic defines standard probability logic. Alternatively,
addition of a requirement for strong truth functionality yields a fuzzy logic.

In this discussion, fuzzy logic is taken to be a many-valued extension of Boolean
logic based on fuzzy set theory in which truth values are a continuous function between
the endpoints of the interval [0, 1]. This is seen to be an extension of the idea proposed
by Lukasiewicz (1930) discussed in the previous section. The normal logical operations
of both probability theory and fuzzy logic are defined in terms of arithmetic operations on
values x € [0, 1]; the values are regarded as degrees of membership to truth. The logic
operations and associated arithmetic operations are those of conjunction, disjunction, and
negation. Gaines (1978) points out that the use of the max and min operators in fuzzy logic
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is not sufficient to distinguish it from probability theory—both operators arise naturally in
the calculation of the conjunction and disjunction of probabilistic events. Our association of
addition and multiplication as natural operations upon probabilities comes from our frequent
interest in statistically independent events, not from the logic of probability itself.

In developing a basic uncertainty logic (one that embraces both a fuzzy set theory and
a probability theory), we begin first by defining a lattice consisting of a universe of discourse
X, a maximal element 7', a minimal element F', a conjunction A, and a disjunction V. This
lattice will be denoted L(X, 7', F, A, V). For the axioms (or postulates) to follow, the lower-
case letters x, y, and z denote specific elements of the universe X within the lattice. The
following 15 axioms completely specify a basic uncertainty logic. The basic uncertainty
logic begins with the lattice L satisfying the following axioms:

—

. idempotency: forallx e L,x Vx =x AXx = x;
2, commutativity: forallx,y e L,x Vy =y VX;x Ay =y Ax;
3. associativity: forallx,y,ze L,xvV(yvZ)=x Vy)Vz
4. absorption: forallx,y e L,xV(x Ay)=xandx A (x V y) =x;
5. definition of maximal and minimal elements: forallx e L,xvT =T, x AT = x.
The usuval order relation may also be defined as follows:
6. x,ye L, x <yifthereexistsaz € L suchthaty =x v z.

Now suppose that every element of the lattice L is assigned a truth value (for various
applications this truth value would be called a probability, degree of belief, etc.) in the
interval [0, 1] by a continuous order-preserving function p : L — [0, 1] with constraints

7. p(F) =0, p(T) =1,
8. forallx,y € L, x < y;then p(x) < p(y),
and an additivity axiom
9. forallx,ye L, plx Ay)+ p(x vy) = p(x)+ p(y).

We note that for p to exist, we must have the postulate

p(x Ay) < min[p(x), p(y)] < max[p(x), p(y)] < p(x V y).
Now a logical equivalence (or congruence) is defined by
10. forallx,ye L,x & yif p(x Ay) = plx V y).

The general structure so far provided by the first 10 axioms is common to virtually
all forms of logic. To finalize Gaines’ basic uncertainty logic, we now need to define im-
plication and negation, for it is largely the definition of these latter two operations that
distinguish various multivalued logics (Gaines (1978)). We also note that postulate 9 still
holds when the outer inequalities become equalities—a further illustration that the additiv-
ity of probability-like valuations is completely compatible with and closely related to the
minimum and maximum operations of fuzzy logic.

To define implication and negation, we make use of a metric on the lattice L that
measures distance between the truth values of two different propositions. This is based on
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the notion that logically equivalent propositions should have a zero distance between them.
Thus we define a distance measure d(x, y) satisfying

d(x,x) =0,
0=<dx,y) =<1,
and
dx, y)+d(y,2) =d(x,z2)
such that

11. forallx,y € L,d(x, v) = p(x Vy) — p(x A Y).

Therefore, a measure of equivalence between two elements can be ! minus the distance
between them:

12. forallx,ye L,px o y)=1-dx,y) =1 —-plhvy)+ pkxry).

Hence if d = 0, the two elements x and y are equivalent.

To measure the strength of an implication, we measure a distance between x and x A y:

13. forallx,y € L,p(x = y) = p(x © xAy) = 1l=d(x, xAy) = 1 =px)}+plxry) =
L+p(y) —pxvy)=1-d(y,xVvy).

Negation (the complement of x is denoted x') now can be defined in terms of equivalence
and implication:

14, forallx e L, p(x) = px & F)=1— p(x) =1 —d{x, F).
We note that, by combining axioms 9 and 14, if element y is replaced by element x’, we get
px v x)+px Ax) = plo)+ p(x') = 1.
Finally, we add a postulate of distributivity:
15. forallx,v,ze L,xA(y V) = (x AY) V(X A2),

which will prove useful for the two specializations of this basic uncertainty logic described
in the following axioms.

Axioms 1-15 provide for a basic distributive uncertainty logic. The addition of the fol-
lowing special 16th axiom (denoted 16.1), known in the literature as the law of the excluded-
middle (see Chapter 3),

16.1. forallx € L, p(x vx') =1,

leads to Rescher’s standard probability logic (Rescher (1969)). Alternatively, if we add
another special 16th axiom (denoted 16.2) to the basic axioms 1-15, we get a special form
of fuzzy logic,

16.2. forallx,ye L, {px = y) =1V p(y > x) =1},
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known in the literature as the Lukasiewicz infinite-valued logic (Rescher (1969)).
Axiom 16.2 is called the strong truth functionality (strict implication) in the literature.
1t should be pointed out that a weaker form of axiom 16.2,

forallx,ye L, p((x—>y)Vv(y—1x))=1,

is embraced by both probability and fuzzy logic (Gaines (1978)).

In summary, the preceding material has established a formal relationship between
probability and fuzzy logic and has illuminated axiomatically that their common features are
more substantial than their differences. It should be noted that while axiom 9 is common to
both probability and fuzzy logic, it is rejected in the Dempster—Shafer theory of evidence
(Gaines (1978)), and it often presents difficulties in human reasoning. For probability logic,
the law of the excluded-middle (or its dual, the law of contradiction, i.e., p(x A x’) = 0)
must apply; for fuzzy logic, it may or may not apply.

5.4.1 Relationship between vagueness and membership functions

As stated in Chapter 2, Zadeh (1965) introduced membership functions as a means to represent
an assessor’s belief of containment in a fuzzy set. This ideology stems from ideas such as
those addressed in the historical paper of Black (1939). A consistency profile can be viewed
as a graphical parallel to Zadeh’s membership function associated with fuzzy sets. For
this section, we assume ji4(x) to be a normalized membership function; i.e., for all x,
0 < pa(x) < 1. By definition, a membership function describes a belief of containment in
a fixed set A, where 1 represents absolute membership in the set and O represents absolute
complementary membership. If p4(x) = O or 1 for all x, then A is a precise (crisp) set.
Otherwise, A is a fuzzy set.

Example |

Let Ay = {x € (1,2,...,10)|x < 4}. Given the definition x < 4, it is clear that for any
value of x, we can establish absolute membership or no membership in the set A. Therefore,
A\ is a precise set because (4, (x) can take only values 0 or 1. The membership function is
represented in Table 5.5.

Table 5.5. Membership table for precise set A;.

x | 1]213]4[5]6]7]8]9]10
pa ) | 1|11 [1(0]0(0]0]0] 0

Example 1l

In contrast to Example I, consider A; = {x € (1,2,..., 10)|x is small}. Given the term
“small,” we cannot easily determine the level of containment in the set A;. Then a possible
membership function f4,(x) is represented in Table 5.6. A; is a fuzzy set because the
membership function allows for a range of values between 0 and 1 to describe the level
of membership.

Zadeh (1968) defines operations of membership functions for two fuzzy sets A and B
and for all x as follows:
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Table 5.6. Membership table for precise set A;.

X {273 4 5 6 7181910
Ba(x) [ 1] 1108105 103][]01[0]01]0 0

1. paus(x) = max(pa(x), np(x)),

tang(x) = min(u(x), pp(x)),

W

paclx) =1 —palx),

AC B & palx) = uplx),

AR

A= B & puylx) = pplx).

5.4.2 Relationship between fuzzy set theory and Bayesian analysis

For membership functions corresponding to precise sets, we can construct probability mea-
sures without any loss of coherence because the precise sets guarantee that all subsets of
the o -algebra will be clearly defined. However, this is not the case for fuzzy sets. Due to
the loss in precision of fuzzy sets, we must reexamine membership functions in an effort to
relate fuzzy set theory to Bayesian analysis (see Chapter 4).

In many respects, probability functions and membership functions follow the same
axioms, in particular, p(x), La(x) > 0. However, while ) p(x) = I for probability dis-
tributions, Z'\, 1 (x) may not necessarily equal 1. Thus p4(x) cannot be interpreted as a
probability because it does not satisfy this important property. However, we can interpret
1 a(x) as a likelihood of x for a fixed set A. Defining a membership function is philosoph-
ically consistent with the process of defining a likelihood function in that it is a subjective
exercise reflecting the assessor’s opinion regarding the level of membership in the set A.
Furthermore, A represents an observation while the possible values of x represent the hy-
potheses. This interpretation of the membership function as a likelihood function may seem
unconventional. However, this proposed interpretation is consistent with the foundational
notion of a likelihood function as viewed from a more philosophical point of view and, as
noted in Chapter 4, permits combinations of uncertainties from probability and membership
functions.

5.5 Early works comparing fuzzy set theory and
probability theory

Loginov (1966) made the earliest attempt to relate fuzzy set theory and probability theory
by interpreting the membership function as a conditional probability. Let A be a fuzzy set
with membership function (4 (x). Suppose that an experiment X is to be performed and that
Q represents the set of all possible outcomes of X. Let x € Q be one such outcome of X.
According to Loginov (1966),

malx) = P(x € Aloutcome of X is x);

i.e., na(x) is the conditional probability that x is classified in A (should x be the out-
come of X).
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Loginov, being a member of the Russian school of probability, views probability in
the frequentist sense. Thus in order to proceed with this interpretation, he conceptualizes an
ensemble of membership function specifiers, each of whom has to voteon x € Aorx € AC.
Zadeh (1995) dismisses Loginov’s interpretation on the following grounds:

1. Requiring each voter to classify any observed x € A orx € A®, where A is a fuzzy set,
is unnatural. Recall that fuzzy sets were introduced to reject the law of the excluded-
middle.

2. Membership functions are often specified by one individual based on subjective con-
siderations. The consensus model (i.e., a majority vote) is unrealistic.

The second attempt at making fuzzy set and probability theories work in concert was due to
Zadeh (1968). His construction proceeds as follows:

* Let (2, F, P) be a probability space with x € Q.
* Let C € F be acrisp set. Then it is true that if I-(x) is the indicator function of set
C, then
P(C) = / Ic(x)dP.
Q

Motivated by the above, Zadeh defines (or declares) that the P-measure of a fuzzy subset
A € 2 (called a fuzzy event) with membership function 4 (x) is

P(A) =/ pna(x)dP = E[pa(x)],
Q
the expectation taken with respect to the initial probability measure P. Having defined P(A)
as above, he shows that the following rules of probability hold for two fuzzy sets A and B:
1. AC B= P(A) < P(B),
2. P(AUB)= P(A)+ P(B)— P(AN B),

3. P(A+ B) = P(A) + P(B) — P(AB); note that AB is the product and not the
intersection of A and B.

Extensions of the above to the cases of finite and countable additivity follow by induction.
Finally, A and B are declared independent if P(AB) = P(A)- P(B); again, AB refers
to the product as opposed to the intersection of the sets A and B. Furthermore,
P(AB)
P(B)

P(A|B) = if P(B) >0

is the conditional probability of A were B to occur. This contrasts the definition of a condi-
tional probability as provided in Chapter 4 in that A B replaces A N B. Thus if A and B are
independent (denoted A 1 B) in the sense mentioned before, then P(A|B) = P(A). The
motivation for introducing the notions of sums and products of fuzzy sets is now clear. How-
ever, the interpretation of these two operations remains unclear. As a result, the following
concerns arise:

1. In P(AU B) = P(A) + P(B) — P(A N B), the assessment of P(A N B) is never
established. Instead, P(A+B) = P(A)+ P(B)— P{AB)isaddressed with P(AB) =
P(A)- P(B)if ALB orwith P(AB) = P(A|B) - P(B).
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2. How can P(A) or, for that matter, P(A}|B), be made operational?

3. Given that we are assessing probabilities of fuzzy events, there is no law of probability
that leads to P(A). Since p4(x) is not a probability, the law of total probability does
not apply when declaring P(A) = fﬂ YLa(x)dP.

5.6 Treatment of uncertainty and imprecision: Treating
membership functions as likelihoods

We address this matter by conceptualizing a scenario involving a purely subjective proba-
bilist, say, D, who is interested in assessing the probability of a fuzzy set A. That is, D
needs to pin down Pp(A) = Pp(x € A), where x is the unknown outcome of an experiment
X. The subscript D denotes that the probability is subjective with respect to the assessor
D. Now D is confronted with two uncertainties: uncertainty about the outcome X = x
and uncertainty about classifying the membership of any x in A. As a subjectivist, D views
imprecision as simply another uncertainty and, to D, all uncertainties can only be quantified
by probability. Thus in keeping with this dictum, D specifies two probabilities:

+ [’s prior probability that an x will be the outcome of X (denoted Pp(x));
* D’s prior probability that an outcome x belongs to A (denoted Pp(x € A)).

Although the assignment Pp(x) is standard and noncontroversial, the assessment of Pp(x €
A) may raise an issue pertaining to the classification of x. Specifically, whereas Pp(x € A)
is D’s probability that x is classified in A, the question now arises of who is doing the
classification and on what basis the classification is being done.

The point of view we adopt is analogous to the “genie,” introduced by Laplace. The
genie knows it all and rarely tells it all. In our case, nature can classify any x in any set A
or A€ with precision so that, to nature, all sets are crisp, and so that fuzzy sets are only a
consequence of our uncertainty about the boundaries of sharp sets. Thus Pp(x € A) reflects
D’s uncertainty (or partial knowledge) of the boundaries of a crisp set. Nature will never
reveal these boundaries, so D’s uncertainty of classification is impossible to ever resolve;
i.e., the genie is able to classify any x with precision, but D is unsure of this classification.
However, D has partial knowledge of the genie’s actions, and this is encapsulated in D’s
probability, Pp(x € A). We note that although D’s uncertainty about how nature classifies x
will never be resolved, this does not make a subjective specification of Pp(x € A) vacuous.
Obtaining probability measures of fuzzy sets is a relevant exercise because probability may be
required for decision making under uncertainty. Therefore, as long as probability measures of
fuzzy sets are harnessed within a broader framework of decision-making, they are necessary
and useful. This viewpoint is also supported in practice in that the biggest impact of fuzzy
set theory has been in control theory.

After specifying Pp(x) and Pp(x € A) for all x € @, D can use the law of total
probability to obtain

Pp(A)=Pp(X € A)= Pp(X € AIX =x)Pp(x) = Y _ Pp(x € A)Pp(x),

which is the expected value of D’s classification probability with respectto D’s prior probabil-
ity of X. Note that the probability measure for fuzzy set A does not consider the membership
function. The given Pp(A) has been based on D’s inputs alone. To incorporate the role of the
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membership function in the assessment of a probability measure of A, we elicit information
from our expert Z, whose expertise lies in specifying membership functions 1 4(x) for all
x € £ and any set A.

Now suppose that after assessing a Pp(A), D consults Z and obtains the function
1a(x) for all x € €. D must now update Pp(A) in light of Z’s expert testimony. Thus
D now needs to assess Pp(A; pa(x)). In order to appropriately represent the expansion of
knowledge, D will first consider this probability as if u 4 (x) were unknown, therefore inter-
preting Pp(A; 14 (x)) and appealing to the calculus of probability (see Chapter 3, section 3.1)
to obtain

Pp(X € Alua(x)) = ZPD(X € AlX =x, ua(x)) - Pp(X = x|pa(x)).

In writing out the above, D treats w4(x) as a random quantity. The supposition here is
that when D is contemplating probabilities, Z’s response is unknown. If D assumes that
the process by which X is generated is independent of the manner by which Z specifies
a(x), then

Pp(X € Alua(0) = ) Po(X € AIX = x, ua(x)) - Pp(x)

= Z Pp(x € AIMA(X)) - Pp(x),

where, according to Bayes’ theorem (see Chapter 4, section 4.2.1),
Pp(x € Alpa(x)) & Pp(ua(x)lx € A) - Pp(x € A).

In actuality, D knows p4(x) to be Z’s expert testimony; therefore, using the likelihood,
Pp(x € A pua(x)) o Lp(x € A5 ua(x)) - Pp(x € A),

where Lp(x € A; pa(x)) is D’s likelihood that Z specifies p4(x) when nature classifies
x € A. Thespecificationof Lp(x € A; w4(x))is subjective with respect to the assessor D. If
D wishes to adopt Z’s judgments without any tampering, then Lp(x € A; pa(x)) = pa(x)
for all x € Q2. Otherwise, if D feels that Z has certain biases, then D will suitably modify
24 (x) to p% (x) (where * denotes D’s modification). Assuming, however, that D chooses
not to tamper with 14 (x), then

Pp(X € A; na(x)) oc ) pa(x) Ppix € A)Pp(x)

is D’s unnormalized probability measure of the fuzzy set A, a measure that encapsulates
an (untampered) membership function p4(x). As the above two relationships suggest, the
membership function can serve as the likelihood in Bayes’ theorem, providing a translation
mechanism from fuzzy logic to probability.

5.7 Ambiguity versus chance: Possibility versus probability

A fuzzy measure describes the ambiguity in the assignment of an element “x’* from a universe
of discourse X to one or more crisp subsets on the power set of the universe. For example, if
X = {a, b, ¢}, then the power set is the collection of all possible subsets in X and is given by
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PowerSet(X) = {#,a,b,c, (aUb), (aUc), (bUc), (aUbU )} Figure 5.3 illustrates this
idea. In the figure, the universe of discourse is comprised of a collection of sets and subsets,
or the power set. In a fuzzy measure, what we are trying to describe is the ambiguity in
assigning this point x to any of the crisp sets on the power set. This is not a random notion;
it is a case of ambiguity. The crisp subsets that make up the power set have no uncertainty
about their boundaries as fuzzy sets do. The uncertainty in the case of a fuzzy measure
lies in the ambiguity in making the assignment. This uncertainty is usually associated with
evidence to establish an assignment. The evidence can be completely lacking—the case
of total ignorance—or can be complete and specific—the case of a probability assignment.
Hence the difference between a fuzzy measure and a fuzzy set on a universe of elements is
that in the former the ambiguity is in the assignment of an element to one or more crisp sets,
and in the latter the vagueness is in the prescription of the boundaries of a set. We see a
distinct difference between the two kinds of uncertainty, ambiguity and vagueness. Hence
what follows is a mathematical description of a theory very useful in addressing ambiguity—
possibility theory. This section is given for completeness in describing mathematical models
useful 1n addressing various forms of uncertainty and not as a matter of extending the scope
of this book beyond a comparison of the utilities of fuzzy set theory and probability theory.

A] U A2
A, A, A, Ay
A A; A,

Figure 5.3. The power set of a universe X.

To continue, a set function v(A) € [0, 1] for A C X is a fuzzy measure if A € B —
v(A) < v(B). A triangular norm is a conjunctive operator »n : [0, 12 — [0, 1], which is
associative, commutative, and monotonic, with identity 1. Typical examples are the multipli-
cation (x * y) and minimum (min(x, y)) operators. Their dual conorms are disjunctive, have
identity 0, and include bounded sum min(x + y, 1) and maximum max(x, y). Norms and
conorms are used to operate on fuzzy measures in various ways. They also represent the dif-
ferent degrees of dependence or independence among events in a probability space and thus
all possible relations among marginal and joint probability distributions (Schweizer (1991)).

A probability measure P is a fuzzy measure, where P(A U B) = P(A) + P(B) —
P(A N B). The other major class of fuzzy measures consists of possibility measures [],
where [[(A U B) = max([[(A), [{(B)). Where a probability measure is characterized
by its probability distribution p(x) = P({x}) for x € X such that P(A) = )_,_, p(x).
a possibility measure is characterized by its possibility distribution 7(x) = []({x}) such
that [J(A) = max,ca w(x). Also, while both probability and possibility measures are
generally normal, with P(X) = [](X) = 1, for a probability measure, this entails additivity
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1 / '

0.5

X

Figure 5.4. llustration of possibility function and PDF plotted on same space.

Y rex P(x) = 1, while for possibility measures this is max,ex 7(x) = 1. Finally, both p
and 7 can be fuzzy sets.

Possibility theory, with its maximal normalization which is weaker than probability,
is sometimes portrayed as equivalent to fuzzy set theory, and thus possibility measures
are presumed to be determined by the same methods of expert elicitation. However, our
interpretation and that of others (Joslyn (1995)) is that possibility measures and fuzzy sets
are representations with distinct formal and semantic domains (which would be reflected in
the elicitation process). However, the combination of possibility measures, as measures on
sets, and nonadditive fuzzy sets, as functions on points, can have significant advantages over
the strict use of probability measures in studies such as system reliability (Ross (2000)).

Joslyn (1994a, 1994b) developed the semantic and methodological bases for possibility
theory on the basis of random sets and intervals and applied it to qualitative modeling.
This approach is motivated by two important concepts of Gaines and Kohout (1976), who
distinguish between events A that are “traditionally possible” in that P(A) = ¢ > 0for some
small ¢ and thus must occur in the limit of infinite time, and those that are not impossible but
still need not ever occur. This latter case can be identified as “properly possible.”

Building from this, we can draw on Zadeh’s (1978) measure of compatibility between
a probability and possibility distribution as

glp,m) =) p)m(x).

xeX

Joslyn identified the condition of strong compatibility when g(p, 7) = 1, which, when
combined with the respective normalization requirements, requires that possibility is unity
wherever probability is positive, and vice versa.

Thus by this view, traditionally possible events, including all events that are actually
observed, require total mathematical possibility [{(4) = 1 and positive probability P(A) >
0. However, properly possible events are those such that [J(A) € (0, 1) yet such that
P(A) = 0. These are precisely the rare events that are so important, for example, in
reliability studies of high-consequence systems (Cooper and Ross (1997)). Figure 5.4 shows
an example in which the cutoff tails of a Gaussian distribution represent the rare and thus
properly possible events.

In a hybrid approach as we are describing, where a subjective model using a possibility
distribution will be married to a probabilistic model derived from frequency data, g(p, 7)
can provide a measure of the fit between the two models. In particular, g(p, 7) = Oindicates
a complete inconsistency between the subjective and objective (probabilistic) models.

Now, consider a random set defined as a probability distribution m on the sets A C
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P(X) (the power set of X) so that > acpxym(A) = 1. Given m, define the plausibility

Pi(A) = Z m(B)

BNAAY

and the belief

Bel(A) = Z m(B).

BCA

Pl and Bel are fuzzy measures. If m is specific so that m(A) > 0 — [A| = 1, then Bel = Pl
is recovered as a probability measure. If, on the other hand, m is consonant so that for all A
and B such that m(A), m(B) > Oeither A C B or B C A, then Pl is a possibility measure.
Strict consonance can be relaxed somewhat to consistency so that {1 am(ay-0 A # 0 and
possibility measures are recovered.

Thus probability and possibility measures are distinct special cases of fuzzy mea-
sures in random sets (Joslyn (1996)). In general, nonspecific (cardinality-greater-than-1)
evidence yields general plausibilities and beliefs—and possibilities in the case of consonant
evidence—but as the evidence becomes more specific, a strictly probabilistic representation
is recovered. More generally, Goodman, Mahler, and Nguyen (1997) demonstrated that ran-
dom sets provide a natural framework in which to combine these fuzzy measures with fuzzy
sets by considering the fuzzy sets as “one-point traces” of random sets. This model thereby
naturally yields fuzzy measures of the type more appropriate for nonspecific data, but it does
so in the context of an overall probability model on a higher-order space. This allows both
the construction of possibility measures from empirical sources and their combination with
fuzzy sets.

In particular, when X is on the real line, a random interval A results. Figure 5.5 shows
a consistent random interval as an ensemble of imprecise interval observations resulting in
a possibilistic histogram (Joslyn (1997)).

By

By

B, (x)

B, :

A

A, 0.5

A

0 [ 1 2 3 4«

Figure 5.5. Left top: A collection of four interval observations. Left bottom: Their
random interval representation. Center: The raw possibilistic histogram. Right: A trape-
zoidal approximation.

Note how this representation uses Zadeh’s principle: the source intervals are nonspe-
cific, indicating the occurrence of an event anywhere within them. Where they all agree is on
the interval [1.5, 2], which is where = = | and thus where we would concentrate the mass
of any probability distributions to be used. Nevertheless, the possibilistic histogram also
captures the variance information in the tails (Joslyn (1994b)). As a final note, it is important
to point out that if the information content in the uncertainty being addressed is consonant.
then the possibility distribution has the same properties as a fuzzy membership function. If
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this is the case, then the possibility distribution can take the place of a fuzzy membership
function that might be used in the analysis of some problem.

5.8 Conclusions

This chapter has provided a description of the differences between a probability theory
and a fuzzy set theory. The basic difference between the two ideas is subtle: Probability
theory is based on inherently binary notions of membership and the strict separation and
allocation of information to a set and its complement, while fuzzy set theory provides for
a gradual transition for processing the information from one set to its complement. Where
probability theory has unique membership functions and adheres to a property of coherence,
fuzzy set theory has an infinite number of choices for membership functions and is not
based axiomatically on coherence. Basically, probability theory adheres to the axiom of the
excluded-middle, and fuzzy set theory is not constrained by such an axiom.

Chapter 1 discusses some reasons why adherence to the excluded-middle axiom might
be inappropriate in a model. Moreover, for emphasis, we repeat a few sentences here:
“A question of whether a fuzzy logic is appropriate is, after all, a question of balancing
the model with the nature of the uncertainty contained within it. Problems without an
underlying physical model; problems involving a complicated weave of technical, social,
political, and economic factors and decisions; and problems with incomplete, ill-defined, and
inconsistent information, where conditional probabilities cannot be supplied or rationally
formulated, perhaps are candidates for fuzzy logic applications. It has become apparent
that the engineering profession is averwhelmed by these sorts of problems.” Many of these
involve the formal elicitation and use of expert judgment. As noted in Chapter 6, the reasons
and steps listed here equally apply to determining whether to address probability or fuzzy
set theory.

This chapter concludes with an interesting discussion of ambiguity versus chance,
where a possibility theory is introduced. While possibility theory and fuzzy set theory have
some common axiomatic similarities, they differ in one important idea: the former measures
the ambiguity in assignments to predefined crisp sets, while the latter measures vaguoeness
in the definition of a set itself. While the appropriateness and utility of possibility theory are
not central themes in this book, this brief discussion does serve to highlight the fact that there
are other theories available to treat various forms of uncertainty of the nonrandom kind—
possibility theory being one of those. Possibility can be thought of as being complementary
to the degree of surprise that a person experiences IF an event occurs, as opposed to whether
it occurs as a matter of chance. An essential difference between possibility and probability
is that the possibility of the union of mutually exclusive events is equal to the maximum of
the possibilities of the individual event, whereas for a probability this union is the sum of the
mutually exclusive individual probabilities (additivity). Hence the possibility of an event
and its complement add to a number greater or equal to unity, whereas the probabilities of an
event and its cornplement must add to 1 (law of excluded-middle). This chapter has shown,
however, that possibilities become probabilities as the information granularity becomes more
specific, and this is a very nice feature in modeling various forms of uncertainty in the same
problem.

To address the question of which theory should be used on what problem, we need to
look at the information content of the problem. Is the information countable, measurable,
and plentiful, or is the information sparse, vague, ambiguous, or nonnumeric? Once these
questions are answered the choice of an approach—or the use of a hybrid approach-—might
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readily become apparent.
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Chapter 6

Guidelines for Eliciting
Expert Judgment as
Probabilities or Fuzzy Logic

Mary A. Meyer, Kenneth B. Butterfield, William S. Murray,
Ronald E. Smith, and Jane M. Booker

6.1 Introduction

We recommend formal elicitation of expert judgment as a method for obtaining probabilities
or fuzzy rules from individuals. Formal elicitation of expert judgment draws from the fields
of cognitive psychology, decision analysis, statistics, sociology, cultural anthropology, and
knowledge acquisition. It entails the use of specific procedures to identify the experts,
define the technical problems, and elicit and document experts’ judgment.! Expert judgment
may be expressed as probabilities (either point estimates, such as 90%, or as probability
distribution functions) or fuzzy terms (for example, low, medium, high). The experts’ sources
of information, considerations, and assumptions are documented as part of their judgment.
Formal elicitation can counter common biases arising from human cognition and behavior.
The benefits of formal elicitation are added rigor, defensibility of the judgments, and increased
ability to update the judgments as new information becomes available. We provide the reader
with guidelines and examples of formal elicitation in the following areas:

* determining whether expert judgment can be feasibly elicited;

+ determining whether expert judgment can be better elicited in a probabilistic or fuzzy
framework;

VBxpert judgment also can be elicited informally, even tacitly. The experts are asked for their best guess, which
is then applied to the analysis with no other questions asked. Hence this informal approach has been called “ask
and use” (French, McKay, and Meyer (1999)). However, the trend seems to be toward formalizing expert judgment
procedures in a number of areas, such as expert testimony in the legal system, medicine, environmental analysis,
and nuclear safety analysis (Stanbro and Budlong-Sylvestor (2000)). Ellen Hisdal articulated some of these ideas
in the context of Jogical statements being represented as fuzzy sets; see Hisdal (1988a, 1988b) in Chapter 1.
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* formulating technical questions;

* structuring interview situations for one expert, multiple experts, or teams of experts;
* eliciting and documenting the expert judgment;

* representing expert judgment for the experts’ review and refinement;

» facilitating the comparison of multiple experts’ judgments.

Expert judgment is an expert’s informed opinion, based on knowledge and experience,
given in response to a technical problem (Ortiz et al. (1991)). Expert judgment can be viewed
as a representation—a snapshot of the expert’s state of knowledge at the time of his or her
response to the technical problem (Keeney and von Winderfeldt (1989)). Expert judgment
is used to

* predict future events;

*» provide estimates on new, rare, complex, or poorly understood phenomena;

* integrate or interpret existing information;

* learn an expert’s problem-solving process or a group’s decision-making processes;

* determine what is currently known, how well it is known, or what is worth learning in
a field (Meyer and Booker (2001)).

Expert judgment may be expressed in quantitative or qualitative form for fuzzy and
probabilistic applications. Examples of judgments given in quantitative form include prob-
abilities, uncertainty estimates, and membership functions, and are often given in reference
to other quantities of interest, such as performance, cost, and time. Examples of qualitative
form include

* the experts’ natural language statements of physical phenomena of interest (for exam-
ple, “the system performs well under these conditions”);

 “if—then” rules (for example, “if the temperature is high, then the system performs
poorly™);

* textual descriptions of experts’ assumptions in reaching an answer;
« reasons for selecting or eliminating certain data or information from consideration.

Whatever its form, expert judgment should include a description of the experts’ thinking—
their reasoning, algorithms, and assumptions-—and the information they considered in ar-
riving at a response. Ideally, expert judgment provides a complete record allowing decision
makers, other experts, or even novices to track the experts’ problem-solving processes.

6.2 Method
6.2.1 Hlustration

We illustrate the phases and steps of expert elicitation with four probability and fuzzy exam-
ples. Backgrounds on these four examples are given below.
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6.2.1.1  Probability example: Predicting automotive reliability

This example of probabilistic elicitation is an automotive application whose goal is to char-
acterize the reliability of new products during their developmental programs (Kerscher
et al. (2000}). Characterizing the reliability in the early developmental phases poses prob-
lems because traditional reliability methods require test data to characterize the reliability.
Test data typically are not available while the product is in the prototype stage nor later
in the development stage. During these early stages, however, another source of reliability
information is available—the knowledge of the product experts. We used the award-winning
process PREDICT (Meyer, Booker, Bement, and Kerscher (1999)) to elicit initial reliability
judgments from the product experts. As the product is developed, information from other
sources, such as test data, the supplier, and customer, is folded into the reliability character-
ization using a Bayesian updating approach.

This automotive application has involved lengthy and formal elicitations of teams of
experts from the automotive industry’s national and international sites over several years for
several different systems. It also has involved working closely with automotive personnel
to develop a core group of people with expertise in the elicitation process.

6.2.1.2 Probability example: Comparing expert and trainee performance predictions

The focus of this example of probabilistic elicitation is the performance of an aging defense
technology. The goal of this study was to elicit both expert and trainee predictions on how
the technology would perform given its potential condition. Its performance was defined
metrically, based on its condition and its closeness to the original design specifications (i.e.,
whether it met the design specs or was potentially divergent from them). In this study, the
experts themselves were interested in whether their predictions would differ from those of
the trainees and if so, how, particularly because at some point the trainees would become the
reigning experts. While the experts had mentored the trainees, the trainees lacked the field
training of the experts and the experts expected this to lead to ditferences in their predictions.

Performance data was sparse or nonexistent, especially for potential conditions outside
the original design specifications. Thus the participants’ estimates ranged from being based
on limited test data, calculations, and simulations for conditions approximating the design
specs, to being based entirely on their subjective judgment for conditions greatly diverg-
ing from the specs. During short interviews of about an hour, the participants gave their
judgments as subjective probability estimates with uncertainty ranges. The participants also
described their sources of information, their assumptions leading to their estimates, their
years of experience, and the names of their mentors. The number of participants was small,
about seven, because this was the number of knowledgeable persons.

6.2.1.3 Fuzzy example: ldentifying radioisotopes

This fuzzy elicitation example involves creating an instrument to correctly identify radioiso-
topes from their gamma-ray spectrum. Gamma-ray spectra are detected indirectly by the
ionization they produce in materials. Measurements of the ionization are recorded as a
pulse-height distribution. Because gamma-ray spectra can be measured only indirectly, ex-
perts must try to identify imprecise features of the pulse-height distribution and match these
to precise features of radioisotope spectra. (Please note that we will be using spectra and
pulse-height distribution interchangeably throughout this chapter.)

Identifying radioisotopes is useful to customs agents or law enforcement officers who
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must deal with suspicious packages. For example, customs agents must verify that packages
contain the radioisotopes they are purported to contain and not some other radioisotope that
is being shipped illegally. Radioisotopes such as Technetium 99 and Iodine 131 are routinely
shipped legally to medical institutions.

In contrast to the automotive application, the gamma-ray application involves only
informal elicitations of a few experts. These experts are largely eliciting their own fuzzy
rules, using texts on fuzzy logic to understand how rules should be formulated, and texts on
spectroscopy, as well as their own experience, to create the content of the rules. They select
the best rules by testing them against a large database of radioisotope spectra.

6.2.1.4 Fuzzy example: Comparing experts on performance predictions

The focus of this fuzzy example is similar to the expert-trainee study described above, that
is, the reliability of an aging defense technology. However, in this example, two experts
were asked to supply their fuzzy rules for predicting how hypothesized conditions of the
technology could affect its performance. The goal of this pilot project was to quantify
performance, largely based on expert judgment, in the absence of test and other data. In
addition, this project addressed the following question posed by project sponsors: How
should they interpret and handle cases where the only information available was subjective
expert judgment and in which the experts differed?

The fuzzy elicitations, in contrast to those of the expert—trainee study, were intensive,
taking about 20 hours per expert over the course of two years. The two experts were in-
terviewed separately and then were brought together in a structured interview situation to
review their sources of information, fuzzy rules, assumptions, and uncertainty ranges. They
were allowed to amend their judgments—their fuzzy rules, assumptions, and uncertainty
ranges—as they so wished. Their judgments were summarized and displayed side by side
to facilitate comparison.

6.2.2 Summary table of phases and steps

A summary of the elicitation phases and steps is given in Table 6.1. Some phases and steps
are performed differently for fuzzy and probabilistic elicitations; these are prefaced with an
asterisk. For example, item 4, “Eliciting and documenting the expert judgment,” involves
eliciting the fuzzy rules in the former and obtaining probability responses in the latter. Other
phases or steps vary according to the situation, such as how the experts are selected. Note
that the same fuzzy examples are not used throughout the table.

6.2.3 Phases and steps for expert elicitation

Phase 1: Determining whether expert judgment can be feasibly
elicited

To answer the question of whether expert judgment can be feasibly elicited, consider the
following:

* The domain. Recommendation: Most domains of science and engineering are amenable
to eliciting expert judgment. If, in addition, there are articles on expert judgment, or
detailed instructions passed on by word of mouth, it bodes well for eliciting judgment.
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Table 6.1. Elicitation phases, steps, and examples.

Phases, steps

Probability example:
Auto reliability

Fuzzy example:
Radioisotopes

1. Determining whether expert
judgment can be feasibly elic-
ited.

Feasibility indicated by prior (in-
formal) use of experts’ judgment.

Feasibility indicated by prior use
of expert judgment.

2. Determining whether expert
judgment can be better elicited
in a probabilistic or fuzzy
framework.

Experts thought in terms of
numeric likelihoods; the math-
ematical foundations of subjec-
tivist probabilities were a plus.

Incoming information was impre-
cise; one advisor expert preferred
fuzzy for the quick creation of a
robust expert system.

3. Designing the elicitation.
1. Identify the advisor expert(s).

2. Construct representations of
the way that the experts mea-
sure or forecast the phenomena of
interest.

*3. Draft the questions. For fuzzy.
this involves identifying the vari-
ables: identifying the inputs and
outputs to the system; and disag-
gregating the inputs and outputs
into distinct linguistic variables.

#4, Plan the interview situation.

5. Select the experts.

6. Motivate participation by the

experts.

7. Pilot test the questions and
interview situation.

One self-identified advisor expert
identified additional advisors at
the national and international
levels.

Representations included relia-
bility block diagrams, reliability
success trees, and failure modes.

What is your expected, number
of incidents per thousand vehi-
cles to fail to meet specifications?

Best-case number?  Worst-case
number?
Team interviews because the

experts worked in teams.

The advisor selected the auto
products for reliability charac-
terization, which determined
the selection of teams, already
composed of experts.

The advisor carefully drafted the
formal request for participation by
cover memo and followed up with
telephone calls.

Extensive pilot tests of the sets
of questions and the cover let-
ter (for motivating participation)
were performed via teleconfer-
ence calls.

One advisor expert volunteered
himself and identified another
advisor.

Representations focused on fea-
wres evident in plots of gamma-
ray spectrum and of the second
derivative of the spectra.

What are your fuzzy rules con-
cerning a peak and these linguistic
variables: low, medium, and high
energy and very very good, very
good, good. somewhat good, or
somewhat somewhat good?

Separate interviews followed by
structured joint interviews.

The advisor identified the two lo-
cally available and recognized ex-
perts.

The motivation of participation by
the advisor was very informal be-
cause this was an in-house effort
and there were only two experts.
Pilot tests of the questions were
conducted on the advisor expert
and led to refinements in how the
fuzzy rules were elicited.

*4, Eliciting and documenting
the expert judgment.

Advisor and those he designated
lead the team interviews, elicited
and recorded the subjective proba-
bility estimates, assumptions, and
failure modes.

The researchers elicited and doc-
umented the experts’ fuzzy rules,
membership functions, the in-
formation, and assumptions the
experts considered.

*5, Representing the expert
judgment for the experts’review
and refinement.

Teams® performance estimates
were represented as probability
distributions.  Teams reviewed
the probability distributions and
updated their estimates as new
information became available.

The researchers and experts
refined the fuzzy rules and mem-
bership functions. The experts
refined their fuzzy rules, in
structured joint interviews. The
experts’ reviews led to labels
and caveats being placed on their
expert judgment.

6. Facilitating the comparison
of multiple experts’ judgments.

Comparisons were done between
proposed designs and options
for testing, instead of between
experts’ judgments.

We compared experts’ fuzzy rules,
assumptions, qualifications, and
the difference to the bottom line in
using one expett’s judgment over
another.

109
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Recommendation: Domains that may not be amenable to the elicitation techniques de-
scribed in this chapter are those in which the experts must quickly respond to control a
physical process and are unable to explain their responses, even in retrospect. Jet pilots
performing flight simulations would be an example (Shiraz and Sammut (1998)).

* The capabilities of the individual experts. Some individuals are less able than others
to articulate their thinking. Generally, individuals can describe their thinking if de-
scriptions are elicited while the problem is at the forefront of their thinking rather than
inretrospect. Recommendation: In our experience, about 5% of the experts have great
difficulty in “thinking aloud,” regardless of the elicitation (Meyer and Booker (2001)).

Probability example. In the automotive application, it was determined that expert judg-
ment could be elicited. Not only was there recognition of “engineering experience’” —
another term for expert judgment—as a valuable resource but also it was tacitly used in team
discussions of the reliability of new automotive products.

Fuzzy example. In the radioisotope example, gamma-ray spectroscopists had historicaily
given their judgments. For example, an expert might say “that looks like a Bismuth spectrum
because there are three well-shaped peaks with about the correct energies.”

Phase 2: Determining whether the experts’ judgments can be better
elicited in a probabilistic or a fuzzy framework

Consider (1) whether the expert is accustomed to and able to think in terms of probabilities,
and (2) to what degree the knowledge being elicited is imprecise:

* Ask the experts how they represent the technical problem and look at the solutions or
results of their work. Recommendation: If quantitative representations are absent and
the experts describe results in qualitative linguistic terms, the experts may prefer the
fuzzy approach. If the results are represented as probabilities, percentiles, confidence
intervals, or points on a plot, the experts may be accustomed to thinking in probabilities.
While many scientists, engineers, and mathematicians are accustomed to formulating
their thinking in quantitative terms, and even probabilities, they still are prone to
the usual biases, such as inconsistency, broadly defined here to mean that their point
estimates of mutually exclusive events do not sum to 1.0.

* Also consider the preference of the experts in determining whether to elicit in a fuzzy or
probabilistic form. If the experts have a strong preference for either one, it is generally
best to use their preference. Ask them their reasons for the preference. If their reasons
are based on misconceptions about fuzzy sets or probabilities (for example, contradict
some of the recommendations in this section), resolve the misconceptions and ask the
experts to reconsider their preference.

Additional considerations are the following:

* Requirement for an expert system: If the application requires a system to run without
input from users or experts (for example, a control system such as that described in
Parkinson et al. (1998)), the fuzzy approach may be preferable.
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* Changeability of the representation: If the way that the experts identify, measure, or
forecast the phenomena of interest is likely to change greatly through time, a fuzzy
tramework may be more flexible.

» Requirement for probability distributions: Techniques are available for deriving
probability distributions from judgments elicited in fuzzy form (Booker et al. (2000),
Parkinson et al. (1999), Smith et al. (1997, 1998)), so this requirement does not by
itself necessitate a probability elicitation.

To check your selection of probability or fuzzy elicitation, ask the experts if they would be
able to respond in the form you have selected.

Probability example. In the automotive application, the auto engineers thought in terms
of numeric likelihoods (probabilities) of systems succeeding or failing. Also, the researchers
had used a subjectivist probability method on a similar reliability application and were asked
by the automotive sponsor to tailor it to this application. Additionally, the statistical rigor
and defensibility of the subjectivist approach appealed to the sponsor.

Fuzzy example. In the application whose goal was to create an instrument to identify
radioisotopes from their gamma-ray pulse-height distributions, the experts had already con-
sidered both probability and fuzzy techniques. They had selected fuzzy and had begun to
self-elicit their rules in this framework before our first meeting. Their reasons for preferring
fuzzy were valid: they were creating an expert system for pattern recognition, and the inputs
to the expert system were likely to be imprecise.

Phase 3: Designing the elicitation

Involve the experts in the steps described below to ensure that the steps reflect the experts’
way of thinking about the technical problems.

Step 1: Identify the advisor experts (also known as “champions”)

Look for one or two individuals who are knowledgeable about their domain and their culture,
who can provide “entree’ into their culture, explain its workings, provide guidance on the
below-mentioned aspects of the elicitation, motivate wider participation by the experts,
and who are willing to act as advisor experts. Often the advisor experts will be the same
individuals who initially contacted you.

We identified the advisor experts, almost after the fact, when they began to push the
elicitation forward in their work groups or companies. Once the advisors are identified, it is
helpful to ask them privately what they personally would like to gain from participating in
this elicitation and how they will judge its success or failure.

Probability example. In the automotive application, the individual who was to become
the advisor expert volunteered himself when we described the role of the advisor; he worked
along with us (over the telephone) to conduct the steps below and to involve additional
advisors from the company’s national and international sites. This advisor defined success
in terms of his company adopting the process of characterizing reliability as its new way
of doing business and applying it to new products. This advisor defined success in terms
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of (1) developing the approach to the point where the reality of higher reliability products
could be demonstrated in the field and (2) of his company’s applying the approach to all of
his company’s new product development programs.

Fuzzy example. Intheidentifying radioisotopes application, the first expert who contacted
us volunteered to act as an advisor expert. He then involved the principal investigator of
this project as another advisor expert. These advisor experts wished our elicitation to lead to
some additional rules that would help them distinguish valid peak shapes within a particularly
confusing energy region.

Step 2: Construct representations of the way that experts measure or forecast the
phenomena of interest

The experts’ organization already may have an officially accepted representation of the
phenomena of interest, or the experts may have a tacit understanding of what the phenomena
are. Ifthe representations do notalready exist, they can be created through interaction with the
experts. (Note that this step may be done in parallel with step 3.) While these representations
are not absolutely necessary for conducting elicitations, they are highly desirable if the goal
of the work is to form a common basis of understanding or effect a change in the way of
doing business {for example, making decisions). Additionally, the representations provide a
mechanism for incorporating all available information and a framework for displaying the
results of the expert judgment.

Explain the need for the representation to the advisor, define it, and ask the advisor if
such a thing exists. If the advisor is unsure about what you are requesting, or whether such
a representation exists, ask (1) for examples of the information that the experts have on the
problem,; (2) what information they receive, in what form, and from whom; and (3) what they
show as evidence of their expertise. Recommendation: In our experience, discussions about
representing the phenomena of interest have led to detailed explanations of the problem by
the advisor, often taking days. We recommend allowing time for these explanations because
they will lead to better representations of the phenomena.

Probability example. In an automotive application, the representations reflected the goal
of the project—characterizing the reliability of new automotive products during their de-
velopmental programs (Kerscher et al. (2000)). The representations already existed in part
and were further elaborated on. The representations had a particularly important role in
this application: they provided the common language—the “roadmap” for doing business—
between the auto employees and us and the mechanism for incorporating new information
as it became available.

The representation focused on the automotive products whose reliability was being
modeled. Because the reliability of a product depends on the reliability of its parts—
component, subsystem, and system——this step involved representing these parts and their
logical relationships in models. These models took the form of reliability logic flow dia-
grams, typically, reliability block diagrams or reliability success trees. For example, Fig-
ure 6.1 (Kerscher et al. (2000)) shows a simple generic subsystem D composed of components
A, B, and C. If components A, B, and C are all in series, the reliability of subsystem D will
be the product of the reliabilities of the components.

Fuzzy example. In the application for identifying radioisotopes, the key representations
were plots of features of gamma-ray spectra.
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A B C

Figure 6.1. Reliability success tree diagram.

To learn about the representations in this application, we asked an advisor expert to
describe the information the experts have available and how they give their expert judgment.
The information available to the experts, the gamma spectroscopists, consisted of pulse-
height distributions of the observed gamma rays, the detector response functions, and libraries
of photo peak energies associated with specific radioisotopes. The pulse-height distribution
is used to identify the observed gamma-ray peaks. The observed peaks are compared to
the detector response function to determine if the observed peak is either consistent with
the detector response or due to statistics or noise. The experts identify all the features in
a pulse-height distribution; that is, features other than peaks are present, such as Compton
edges, which are due to the detector response. These additional features are identified as “not
a peak” and are eliminated as peaks using fuzzy membership. The library is the knowledge
base upon which a particular pulse-height distribution is categorized. For example, an expert
might say “that 1ooks like a Bismuth pulse-height distribution because of the observed peaks,
and the extra features look like the Compton edges associated with the observed peaks.”

In addition, an advisor expert was asked to roughly list the steps that he anticipated
the expert system would perform. Theses steps (1) identify “peak shape” from that which is
“not a peak”; (2) compare peak energy to library energy using fuzzy membership; (3) tally
the peak matches for all isotopes in the library; and (4) determine the best match to identify
the isotope.

Step 3: Draft the questions

As a starting point for drafting the questions, ask the advisor “What are the phenomena
{variables) of interest; how do you assess these; what metrics or natural language terms do
youuse?” The endpoint of this step differs for fuzzy and probability elicitations, as illustrated
inTable 6.1: for a probability elicitation, it leads to the creation of technical questions that the
experts will later answer; for a fuzzy elicitation, it provides the linguistic variables that the
experts will use as building blocks in constructing their fuzzy rules. (For details on linguistic
variables and fuzzy rules, see Ross (1995)). Recommendation: For a fuzzy elicitation, it
helps to ask the advisor expert to identify the variables of interest, identify the inputs and
outputs to the system, and disaggregate these inputs and outputs into linguistic variables.
Note that variables that are to be handled as fuzzy or crisp may emerge at this point. For
instance, if the linguistic variables do not have a fuzzy continuum of values but one set value,
these may be treated as crisp. For example, one of the early determinations made by the
fuzzy expert system for identifying radioisotopes involves a crisp value. The expert system
essentially asks “Are there enough counts in a specific energy region to say whether thereis a
feature, such as peak shape?”” The crisp value is defined to be three standard deviations of net
counts above the background as determined by adjacent energy regions. Recommendation:
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In drafting the questions for probability elicitation, include consistency checks (for example,
check that the mutually exclusive events sum to 1.0).

Probability example. In the automotive application, the advisor described how the design
and process (manufacturing) engineers thought about product reliability or performance.
The design engineers thought in the metric of incidents per thousand vehicles failing to meet
specifications. The process engineers thought in the metric of parts per million. The advisor
further described how the experts thought in terms of what caused the product to fail, or its
“failure modes.”

We drafted separate questions for the design and process engineers. For example, the
design engineers were asked to estimate the number of incidents per thousand vehicles in
which the specifications would not be met. The design engineers also were asked to provide a
subjective range on this estimate. We elicited the range by asking them for reasonable worst-
case and best-case numbers of incidents. We also asked the engineers to provide textual
descriptions of the potential failure modes for the product and to estimate their likelihood
(Kerscher et al. (1998, 1999, 2000), Meyer, Booker, Bement, and Kerscher (1999)).

Once we developed the basic questions for those working in design engineering, we
modified the questions for those working in process engineering. Later, we further modified
the questions for those working in software engineering, that is, on automotive parts run by
software.

Fuzzy example. To draft the questions to elicit the fuzzy rules for this radioisotope appli-
cation, we asked the advisor expert to do the following:

= Identify the variables of interest: The advisor named peak energy, peak width, peak
shape, and peak area as the variables of interest and added that the detector response
function had several variables—energy calibration, efficiency, and resolution—that
could affect these variables.

* Identify the inputs and outputs to the system: The advisor considered the information
coming into the detector and its output (the detector response function) and provided
the following list of inputs to the expert system (see Table 6.2).

Table 6.2. Inputs to the expert system.

Library data | Detector response | Observation
photon energy calibration peak energy
resolution peak width
Compton scattering | peak shape
intensity efficiency peak area

The advisor listed the following (Tables 6.3 and 6.4) as outputs that he would like the
expert system to provide for expert and novice users, respectively. For expert users, the last
row lists the possible isotopes—Barium 133, Xenon 133, and lodine 131-—as determined
by a fuzzy step, followed by a curve-fitting step. The fuzzy step, labeled “Fuzzy Energy
Attribute ~Match” involves matching the shape and energy between the observed gamma-
ray spectra and the library of the photon peak energies. In this case, Barium 133 is the most
likely radioisotope because it has the best (highest) match with Barium’s peak energy.
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Table 6.3. Sample outputs for expert users.

Barium 133 Xenon 133 lodine 131
Peak Peak Fuzzy Energy Fuzzy Energy Fuzzy Energy
Energy ~Shape Attribute ~Match Attribute ~Match Attribute ~Match

82.8 1.00 53.2 UNLIKELY 0.00 81.0 MUST_HAVE 1.00 80.2 MIGHT_HAVE 1.00
157.7 0.56 81.0 WILL_HAVE 1.00 284.3 MUST_HAVE 0.87
279.0 1.00 160.6 UNLIKELY 0.56 364.5 MUST_HAVE 0.97
306.9 0.96 223.2 UNLIKELY 0.00 637.0 MIGHT_HAVE 0.00
359.3 1.00 | 276.4 MIGHT_HAVE 1.00 722.9 MIGHT_HAVE 0.00

389.3 1.00 302.0 MUST_HAVE 0.96
689.7 0.26 356.0 MUST_HAVE 1.00
383.9 MIGHT _HAVE 0.93
PEAK =5.78 | ISOTOPE NUMBER = 5.44 | ISOTOPE NUMBER = 1.00 | ISOTOPE NUMBER =284
Bal33 RESIDUAL =0.34 | Xel33 RESIDUAL =478 1131 RESIDUAL =2.94
Bal33 MATCH = 0.94 Xel33 MATCH =0.17 1131 MATCH =0.49

Table 6.4. Sample output for novice users.

Best match
Barium 133

For novice users, the expert system will only display the best match between the
observed gamma-ray spectra and the library of photon peak energies, in this case Barium 133.

Disaggregate these inputs and outputs into distinct linguistic variables. The linguistic
variables for the inputs of the observed peak energy could be low, medium, and high, and the
output linguistic variables for the fuzzy peak shape membership could be very very good,
very good, good, somewhat good, and somewhat somewhat good.

Step 4: Plan the interview situation

Consult the advisors on the interview situation that will fit their culture, their way of thinking,
and their business practices. Advisors will probably suggest whatever situation has worked
well in the past. While it may seem obvious to tailor the interview to the experts’ culture,
we have observed many researchers who attempt the reverse. They try to fit the experts to a
particular kind of interview that they, the researchers, prefer. This approach often results in
the experts’ not participating or the credibility of the project being undermined.

Describe the main ways in which experts can be interviewed, and ask the advisor
whether or not

+ the experts are to arrive at consensus, such as in a team meeting (for example, such as
when their judgments are later to be combined by statistical means);

* a problem is likely to arise with experts unconsciously or unwillingly adjusting their
own judgments to match others’ judgments (Meyer and Booker (2001)); while this
bias usually is not a problem in our applications, it can occur, usually in interview
situations in which the participants are not of equal status (for example, managers
and their employees, military officers and their staff, mentors and those they have
mentored);



116 Chapter 6. Guidelines for Fliciting Expert judgment

* the experts’ names are to be associated with individual judgments or whether individual
judgments are to be anonymous;

* the expert judgment is to be provided on paper (for example, in response to written
sets of questions), during face-to-face meetings, or by electronic means; or

* the researchers or the experts themselves are to document the expert judgment.

By this step, often you will still have questions about which interview situation is best. We
recommend that you

* ask the advisors which interview situation they recommend;

* consider using a combination of interview situations (for example, initially interview
the experts separately, then bring them and the records of their elicitation together and
allow them to amend their judgments); or

* pilot-test the interview situation and let the results answer any remaining questions.

Recommendation: It is easier to conduct detailed and lengthy interviews with one expert at a
time. For this reason, experts are typically interviewed separately, at least initially, for fuzzy
elicitations. Also, often there is only one expert locally available, anyway. Recommendation:
It’s generally best to interview the experts in the same situation in which they work (for
example, if the experts usually work individually, interview them separately; if they work as
teams to arrive at judgments, interview them as teams). Recommendation: If it is likely that
the experts will unconsciously or unwittingly adjust their judgments to those of other experts,
it is best to elicit their judgments separately (Meyer and Booker (2001)). Recommendation:
The experts should document their own judgments if they will be updating their judgments
through time (for example, as in the automotive application). Otherwise, the researchers
should do it because they tend to be more thorough and because it relieves the experts of the
burden.

Probabilistic example. On the automotive application, the advisor explained that the
experts worked in teams to design and manufacture products, that team members typically
met face-to-face, and that the experts reached some consensus in their product planning. The
advisor was not unduly concerned about the possibility of group think (where team members
unconsciously acquiesce to a dominant member’s decision). However, to minimize the
chances of this bias occurring and to maximize the diversity of the judgments, we decided to
have the team members individually self-elicit their own judgments. The plan was to have
team members individually complete worksheets asking for their expected, worst-case and
best-case estimates of incidents per thousand vehicles. Also on the worksheets, the team
members were asked to list the failure modes and their associated likelihood of occurrence.
They were to bring these worksheets to the face-to-face meetings of their team. Each team
was to be led by the advisor, or the advisor’s designee, who would record the team’s judgments
on flip charts for the team’s review.

Fuzzy example. In the expert comparison application, we knew that the two experts had
been consulted formally and informally about what a particular real or potential “condition
might do to the technology’s performance.” We planned to interview the experts separately
because they were often consulted individually. Also, there were two indicators that our
interviews of the two experts should, at least initially, be separate: first, fuzzy rules would
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be elicited, which meant the interviews would be intensive; second, one of the experts had
earlier mentored the other, which could have meant that the newer expert was prone to group
think bias.

We planned to interview both experts separately for their fuzzy rules and membership
functions and also to record their assumptions and sources of information. We would then
bring the experts and their judgments together in structured interviews where the experts
could view each other’s responses and amend their own as they wished. We also planned to
monitor the structured joint sessions for signs of the bias, such as the newer expert deferring
to the more experiences expert. (For further information on this bias, see Meyer and Booker
(2001, pp. 134-135)).

Step 5: Select the experts

The advisor selects the experts to be elicited or advises on the selection strategy (for example,
whether other experts are to be selected on the basis of publications, experience, the organi-
zation or work group to which they belong, and/or their availability). This step varies more
according to the circumstances of the elicitation, rather than to whether the elicitation is fuzzy
or probabilistic. When few experts are available or the application is in-house, the process
of selecting the experts can be informal. For example, in the study comparing experts and
trainees in their performance predictions, the advisor expert recommended selecting individ-
uals with a range of years of experience and who had mentors. The advisor then provided
their names, information on their years of experience, and who had mentored them.

Probabilistic example. The advisor selected the auto products for reliability characteri-
zation, which in turn determined the teams that would be interviewed. There were teams for
each component in a subsystem or system. The teams typically were composed of four to
eight experts who saw their part of the auto product from its concept through its develop-
ment cycle.

Fuzzy example. In the expert comparison application, the advisor identified the locally
available and recognized experts. There were only two experts, one of whom was the advisor.

Step 6: Motivate participation by the experts

Ask the advisor whether problems will arise in getting the experts to participate, and if so, how
best to motivate participation. For example, in the expert-trainee comparison, the advisor
thought experts would be more likely to participate if they knew elicitations would take only
an hour. The advisor talked to the individuals he had mentally selected and encouraged them
to participate. Given that these individuals were incredibly busy, we probably could not
have obtained participation by other more formal means. In essence, the advisor, through
his standing in this culture, motivated the participation of about seven individuals.

If problems are anticipated, or if the experts have to be motivated formally (as is often
the case if they are employed in industry), ask the advisor

* how the request should be delivered: verbally (in person or via telephone), by hard
copy memo or electronic communication, or by some combination of these;

* from whom the communication should come and which letterhead should be used;
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¢ the order in which the communication will be routed to possible participants;

* the timing of the communication (for example, before or after a meeting describing
this endeavor).

Show the advisor the checklist of things (Meyer and Booker (2001, pp. 90-93)) that indi-
viduals typically want to know in deciding whether they will participate: how they were
selected, who is sponsoring the effort, how long it will take, what tasks they will perform,
and the anticipated product of the effort and their access to it. This information is usually
provided to the experts in a cover letter or e-mail requesting their participation.

Probability example. In the automotive application, we were outsiders, unfamiliar with
the culture, and thus relied on what the advisor thought would motivate participation. The
advisor carefully drafted the request for participation using the checklist mentioned above.
The request for participation was a cover memo followed by a series of telephone calls. The
advisor also apprised the participants of the progress of the project, in particular, how well
their initial reliability judgments predicted the later test data. Receiving this information
helped motivate a large number of experts to participate over several years.

Fuzzy example. In the expert comparison situation, this step was informal because the
work was being done in-house and only two experts were involved, one of whom was the
advisor expert. The advisor expert was responsible for motivating his and the other expert’s
involvement in this effort.

Step 7: Pilot-test the questions and the interview situation

The pilot test provides the last check on the elicitation design before it is conducted. Aspects
of the elicitation that need pilot testing are the experts’ understanding of the technical question,
the response mode—fuzzy or probabilities—and any directions, such as how to complete the
set of questions. If the expert judgment serves as input to another process, such as decision-
making, the decision makers should be included in the pilot tests to ensure that the judgments
are on the desired phenomena, at the right level, and in the needed form.

Pilot tests are conducted on the advisor expert and on any other experts or users that
the advisor recommends. Pilot tests involve having the selected individuals answer the draft
questions, with one major addition. The pilot testers are to “think aloud” as they go through
the elicitation to allow the researchers to pinpoint problems in the elicitation, such as where
the metrics caused confusion (Meyer and Booker (2001, pp. 155-156)). Recommendation:
Pilot testing is generally a good idea if you will be interviewing more than a few experts or
intensively interviewing more than one expert through time.

Probability example. On the automotive application, pilot tests were necessary because
about forty design engineers would be interviewed, followed by process and software engi-
neers. We conducted, during conference calls, extensive pilot tests of the sets of questions
(worksheets) and the cover letter for the design engineers. The advisor called other advisor
experts, introduced us and the idea of pilot testing to them, and listened in on the pilots, as
a means of learning how to conduct these. Later, the advisor conducted the pilot tests of
worksheets himself when these needed to be tailored to the process and software engineers.
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Fuzzy example. On the expert comparison application, pilot tests were performed because
the fuzzy elicitations were expected to be intensive. (The elicitations later averaged 20
hours per expert.) Pilot tests of the questions were conducted on the advisor expert and led
to refinements in how the fuzzy rules were elicited (for example, the linguistic variables
describing conditions and performance).

Phase 4: Eliciting and documenting the expert judgment

This stage basically involves administering and documenting the questions as designed and
pilot-tested in the earlier stages. Note that this phase differs for the fuzzy and probabilistic
elicitations. For fuzzy elicitations, this phase involves eliciting the fuzzy rules, while for
probabilistic elicitations, it involves obtaining probability responses to the technical ques-
tions. Recommendation: Try to keep interviews to about an hour in length so as not to tire
the experts. If it appears that that the interview will run over the allotted time, ask the experts
if they wish to continue or to schedule another interview.

Probabilistic example. In the antomotive application, the advisor and those he desig-
nated lead the team interviews and elicit and record the subjective probability estimates.
assumptions, and failure modes.

Fuzzy example. In the expert comparison application, the researchers elicited and docu-
mented the experts’ fuzzy rules, membership functions, information sources, and assump-
tions.

Phase 5: Representing the expert judgment for the experts’ review
and refinement

The representations mentioned in Step 2 (Phase 3) can form a framework for documenting the
expert judgment. Review the experts’ judgments with the experts and refine these judgments.
In probabilistic applications, the refinements are likely to be made to the probability responses
and to caveats concerning their use. In fuzzy applications, the refinements tend to focus on
the fuzzy rules, membership functions, and caveats. Recommendation: If a membership
function is very narrow, this may be the time to redefine it as crisp. Recommendation: 1f it
is not possible to do the reviews in person, send the transcriptions of the experts’ judgments
to each expert for review. We recommend setting a date by which they are to respond,
explaining that you will assume they accept the judgment as is unless you hear otherwise.

Probabilistic example. To probabilistically represent the expert judgment in the automo-
tive application, we transformed the teams’ initial performance estimates into probability
distributions using Monte Carlo computer simulations. The teams’ estimates referred to
their part of the automotive product, such as a component. The probability distributions for
each part of the automotive product were combined according to how the parts fit together, as
represented in Step 2 (for example, see Figure 6.1). This combining of distributions provided
an overall reliability characterization for the auto product at a particular point in time and
a means for determining if the target reliability was reached. These reliability characteri-
zations were given to the advisor, who passed them to the participating experts, for review.
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The advisor kept the experts apprised of how well their initial reliability judgments predicted
the later test data on the product.

The teams refined their judgments through time as test data became available. Equa-
tions such as Bayes’ theorem were used to mathematically update the teams’ performance
estimates (Meyer, Booker, Bement, and Kerscher (1999)).

Fuzzy example. In the expert comparison application, representation and refinement in-
cluded working with the experts separately to refine their fuzzy rules and membership func-
tions. As part of the review and refinement, we plotted the results of applying the fuzzy rules,
showing what the predicted performance would be for a given condition or combination of
conditions. We reviewed these plots with the experts separately to check that their rules
delivered results consistent with their expectations. For instance, one membership function
was found to be broad and the experts wanted it to have a crisp edge with no overlap, so it
was redone accordingly.

Then we brought the two experts together in a structured interview situation to share
their sources of information and judgments. In some cases, the newer expert had not seen
some of the simulations of the other expert and modified his fuzzy rules in light of these. We
recorded these changes and then, in a last joint meeting, had the experts review the written
records again. Then later, as articles were written about this project (Meyer, Booker, Bement,
and Kerscher (1999)), the experts again reviewed documentation.

As a result of these reviews, we refined our presentation of the results. The experts
had expressed concern that the plotted results, particularly for the more extreme hypothetical
conditions, might be misinterpreted as coming from frequentist statistics; that is, from statis-
tically sampled experimental data, which as mentioned earlier did not exist. To address this
concern, the labels of subjective or expert judgment were applied to all results and a caveat
was added cautioning individuals on the origin and recommended use of this information.

Phase 6: Facilitating the comparison of multiple experts’ judgments

If there are judgments from multiple experts, decision makers or application sponsors may
want to evaluate for themselves whether the experts provided significantly different judg-
ments, and if so, the basis for these differences.

We recommend side-by-side comparisons, in which the user can compare different ex-
perts’ judgments (fuzzy rules, membership functions, probabilities, subjectively estimated
uncertainties, assumptions, and sources of information) and if appropriate, the expert’s qual-
ifications (years of experience and why they were selected for participation). If possible,
provide information on whether the use of one expert’s judgment over another makes a dif-
ference to the bottom line. In addition, it is often helpful to have statements in the experts’
own words as to whether they thought the judgments differed and if so, why.

Probabilistic example. 1In the automotive application, judgments were not compared be-
cause teams were the unit of elicitation, and there were not duplicate teams whose judgments
could be compared. Instead, comparisons were done between proposed designs, such as if
a component were made of aluminum as opposed to plastic, to see what the resulting relia-
bilitics would be. These comparisons were called what ifs and were also done to anticipate
which components should be prototyped and tested.

Fuzzy example. In the expert comparison application, we presented a side-by-side display
of the experts’ judgments because the comparison of expert judgments had been of particular
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interest to our sponsors. The experts’ rules were shown side-by-side in simple tables to
allow viewers to visually compare them. In addition, a summary table was given of the
experts’ descriptions in their own words of whether they were basically in agreement; the
assumptions they made; their qualifications; and the main areas of disagreement in the fuzzy
rules. Note that the experts’ assumptions were given because these have been found to
drive the experts’ answers (Ascher (1978), Booker and Meyer (1988)) and because decision
makers may choose one expert’s judgment over another, depending on whose assumptions
they most agree with. The experts’ qualifications, in this case, years and type of experience,
were presented because this information is of interest to decision makers, particularly when
the experts give differing judgments.

Finally, a table (Table 6.5) was presented that showed whether the use of one expert’s
judgment over another’s would make a difference to the bottom-line answer for a particular
condition. (Note that the performance scale for Table 6.5 is from 0.0 to 1.00, with 1.00
meaning “meets performance specifications.”) Our reason for showing that there was, in
this case, no difference to the bottom line is that it simplifies matters. For instance, it
allows the decision makers to forgo the difficult task of selecting one expert’s judgment or
of mathematicaily combining the judgments.

Table 6.5. Subjective performance ranges based on each expert’s fuzzy rules and
a hypothetical condition.

Median Range
Expert 1 1.00 (0.92, 1.00)
Expert 2 1.00 (0.96, 1.00)

6.3 Summary

The driving consideration in eliciting expert judgments in fuzzy or probabilistic forms is the
experts’ preferences. Key points in performing the elicitation are as follows:

* Using the advisor, the expert “insider” who can advise on how to conduct the elicitation
50 as to fit the experts’ way of thinking and doing business. Using the advisor expert
embodies the principle of “asking how to ask’ from cultural anthropology—the idea
that the researcher may be an outsider to a culture, unaware of the special dialect and
customs, and therefore may need to ask an insider how to ask the questions (Meyer
and Paton (2001)).

« Pilot testing, if the judgments of more than a few experts will be elicited.

» Documenting as much as possible the experts’ thinking and sources of information, as
well as the results.

+ Involving the experts in the review, analysis, interpretation, and presentation of the
expert judgment. The experts’ involvement in, or even ownership of, the process is
crucial, particularly if the expert judgment must be elicited periodically to reflect the
latest knowledge. If expert judgment will be repeatedly elicited, the researcher should
aim to have the elicitations led by (1) the advisor, (2) a core group of trained experts,
or (3) the experts themselves, through self-elicitation of their own judgments.
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Part Il

Applications

Timothy J. Ross

1.1 Chapters 7-15

In bridging the gap between probability and fuzzy theories for the quantification of uncer-
tainty, the second part of the book illustrates this “bridging” with case studies in mine different
fields, ranging from photography to signal validation:

 Chapter 7: Image Enhancement: Probability Versus Fuzzy Expert Systems:

» Chapter 8: Engineering Process Control;

» Chapter 9: Structural Safety Analysis: A Combined Fuzzy and Probability Approach;
¢ Chapter 10: Aircraft Integrity and Reliability;

¢ Chapter 11: Auto Reliability Project;

* Chapter 12: Control Charts for Statistical Process Control;

¢ Chapter 13: Fault Tree Logic Models;

e Chapter 14: Uncertainty Distributions Using Fuzzy Logic;

* Chapter 15: Signal Validation Using Bayesian Belief Networks and Fuzzy Logic.

In some of these chapters, a case study is described in which separate probability and fuzzy ap-
proaches are taken and the differing results—advantages and disadvantages—are compared
and discussed. This approach is taken in Chapters 7, 8, 12, 13, and 15. In Chapters 9, 11,
and 14, we combine probability and fuzzy models into a single, integrated approach. Finally,
in Chapter 10, we show how an application using probability theory can be enhanced with
fuzzy logic.
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Chapter 7

Image Enhancement:
Probability Versus Fuzzy
Expert Systems

Aly El-Osery and Mo Jamshidi

Abstract. The field of image enhancement is being used in various areas and disciplines.
Advances in computers, microcontrollers, and digital signal processing (DSP) boards have
opened new horizons to digital image processing and many avenues to the design and im-
plementation of new innovative technigques. This chapter compares image enhancement, via
modification of the probability density function of gray levels, with new techniques that in-
volve the use of knowledge-based (fuzzy expert) systems capable of mimicking the behavior
of a human expert.

7.1 Introduction

The field of image processing dates back to the 1920s, but limitations due to the speed
of processing units and the size of available storage space have handicapped its progress.
Nowadays, the ever-growing advances in computer technologies have reduced these limita-
tions to a negligible level. Hence, the interest and the need for digital image processing have
increased sharply. Today, image processing is being applied in many fields and disciplines.

Improving pictorial information for human interpretation and processing image infor-
mation for autonomous machine perception were two main reasons behind the need for image
processing (Gonzalez and Woods (1992)). There are various techniques and tools for dealing
with these two categories. Traditionally, all image-processing techniques were based purely
on mathematical approaches without any incorporation of human experience and knowledge
that might have developed after years of field work. Currently, new techniques are being
developed to mimic human reasoning and to encode it into computer programs that, in some
cases, have proven superior results over conventional techniques.

Image-processing techniques may be classified into a number of categories, among
them image digitization, image enhancement, image restoration, image encoding, and image
segmentation and representation. In this chapter, we address only one of these categories,
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namely, image enhancement. The goal of image enhancement is to process a given image,
resulting in a more useful image for a specific application. It is important to emphasize
the words “specific application” because the choice of the processing technique is very
application specific. The results obtained from one technique may be superior for one
application but unacceptable for another.

Processing images for human perception is a very complicated task. The determination
of what is a “good’” image is a subjective matter and differs from one viewer to another based
on taste and experience. On the other hand, image processing for autonomous machine
perception is somewhat easier because machines do not behave subjectively. The sole goal
of image processing is to provide the information needed for the machine to perform a specific
task. In either case, the determination of the right technique needs experimentation.

In the first part of this chapter, we will concentrate on providing a brief understanding
of a few of the key elements and methodologies of image processing. The second part will
be dedicated to examining one of the conventional techniques used in image enhancement
for human interpretation, known as histogram equalization, as well as the new intelligent
techniques that are based on expert systems.

7.2 Background

This section describes a few of the image-processing elements necessary to understand
some of the concepts introduced in this chapter. This section is not intended to provide a
complete background in image-processing techniques; the sole purpose of this section is to
provide a quick overview of some of the key elements used in image enhancement. Digital
image-processing elements, different image formats (RGB, CMY, Y1Q, HSI), spatial domain
methods, and a probability density function method will be introduced.

7.2.1 Digital image-processing elements
There are four general and necessary elements of digital image processing:
* image acquisition;
* processing unit;
* displaying unit;
¢ storage.

Image acquisition is the means of digitizing the image and making the data available for
processing. Images could be obtained using scanners, digital cameras, the Internet, etc.
Next, the image information is processed to obtain the desired results. A displaying unit is
necessary to view and judge the results of the applied algorithms. Finally, the results are
stored on hard disks, CDs, magnetic tapes, etc.

7.2.2 Image formats

Manipulation of digital images requires a basic understanding of existing color models.
Color models are used to provide a common standard in the specification of color. One of
the most frequently used models is RGB (red, green, and blue) (Ballard and Brown (1982)).
This model is widely used for color monitors and a broad class of color video cameras. There
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also exist other models, such as CMY (cyan, magenta, and yellow) for color printers and
Y1Q, the standard for color TV broadcast (the ¥ component corresponds to luminance, and /
and Q are two chromatic components). HSI (hue, saturation, and intensity) is another useful
color model for two main reasons: the first is that HSI is closely related to the way humans
perceive color, and the second is that in the HSI model the intensity is decoupled from the
color information.

7.2.2.1 RGB and CMY

In the RGB mode}, each color is presented in its primary spectral components of red, green,
and blue. The color subspace of the RGB model is based on the Cartesian coordinate system.
Figure 7.1 shows the color cube of the RGB model in which the red, green, and bjue colors
are at three corners, and the cyan, magenta, and yellow are at the opposite three corners. In
the color cube, black is at the origin and white is at the corner farthest from it. Images in
the RGB model consist of three independent image planes, one for each primary color. The
presence of all colors produces white and the absence of all colors produces black.
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Cyan, magenta, and yellow are the secondary colors of light and the primary colors of
pigments. The CMY model is used in color printers. The conversion from RGB to CMY is
done using the following simple operation:

C 1 R
M|=]1]—-1G]. (7.1)
4 ] B

7.2.2.2 YIQ

In the YIQ model, the Y component corresponds to luminance, and 7 and Q are two chromatic
components called inphase and quadrature. The advantage in the YIQ model is that the
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luminance (Y) is decoupled from the color information (/ and (). The transformation from
the RGB model to YIQ is presented below in (7.2) (Gonzalez and Woods (1992)). Due to
the fact that (7.2) is a linear transformation, the computation time to obtain the YIQ values
from the RGB or visa versa is inexpensive.

Y 0.299 0.587 0.114 R
'l =105% -0275 -0321{(|G|. (7.2)
Q 0.212 —-0.523 031 B

Using the YIQ model, color, tint, and brightness are defined as follows:

Color. Color is defined as the average color intensity of the image under investigation.
The color intensity is given by

color = / Q% + 12, (7.3)

Tint. In (7.4) below, tint is defined to be the phase of a pixel in the subject of interest (SOI)
in the Q-1 plane:

1
tint =tan”™' { — ). 7.4
n an (Q) 14

Brightness. Brightness is defined as the average value of Y.

7.22.3 HSI

HSI (hue, saturation, and intensity) is a color model closely related to the way humans
perceive color. In this color model, hue represents a pure color, and saturation describes the
amount by which the color is diluted with white light. Similar to the YIQ format, the intensity
of the color is separated from the color information. Keep in mind that the luminance ¥
in the YIQ model is not directly related to the intensity / in the HSI model, and that the
I in the YIQ has a different meaning than the [ in the HSI model. Figure 7.2 illustrates
graphically the relationship between HSI and RGB. The hue of point P is the angle of that
point measured from the red axis. The saturation of point £, which is the measure of how
much the color is diluted with white light, is the distance from the center of the triangle.
The intensity of the color varies from white down to black by moving along the line that
is perpendicular to the center triangle. Equations (7.5)~(7.7) provide the conversions from
RGB to HSI:

H(R—G)+ (R - B)]

H = cos™! -t 7.5
(R~ G)Y + (R~ B)G - B))
3 .
S=1- m[mm(& G, B)], (76)
I=%(R+G+B), 7.7

where R, G, and B are normalized between zero and one. If B > G, then H = 2»n — H.
Also if S is zero, then H is undefined, and if I is zero, then S is undefined.
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white

intensity

green

Figure 7.2. HSI color model.

The conversion form HSI to RGB requires the red, green, and blue to be normalized
in the following fashion (Gonzalez and Woods (1992)):

R
Fe=—, (7.8)
R+G+ B
G
g = 7.9
ST R+c+8B 79
B
b= ——— (7.10)
R+G+ B
Using the above definitions and (7.7), the following relations can be derived:
R = 31r, (7.1
G =31g, (7.12)
B =3Ib. (7.13)

Equations (7.14)~(7.24) below represent the extent of the computations required to transform
HSI to RGB.
For0° < H < 120°,

l Scos H
S FIFIN ki 7.14
! 3[ +cos(60°—H)] 19
|
b=10-5) (7.15)

g=1—r—>~. (7.16)
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For 120° < H < 240°,

H = H — 120°, 7.17)
]
r=31-9, (1.18)
‘1 1+ Scos H (7.19)
£=3 cos60° — H) |’ '
b=1—-r—g. (7.20)

Finally, for the interval 240° < H < 360°,

H = H —240°, (7.21)
1
g= 3(1 -5, (7.22)
b_l 4 Scos H (7.23)
T3 cos(60° — H) |’ '
r=1—g—b. (7.24)

YIQ and HSI are two different models, and the use of either one is dependent on
the application. YIQ has the advantage of being computationally less expensive to obtain
than HSI. Essentially, YIQ is obtained by a linear transformation of the RGB, while HSI
is obtained via a nonlinear transformation. The advantage of HSI is that it is a very close
representation of the way humans perceive color, and the intensity is decoupled from the hue
and saturation.

7.2.3 Spatial domain

Spatial domain methods are procedures that directly manipulate the pixel information. A
digital image consists of a collection of pixels in the Cartesian coordinates. Thus a digi-
tal image consists of discrete elements and could be expressed as u(x, y), where x and y
are positive integers. The process of modifying an image in the spatial domain could be
expressed as

hix,y) =Tlulx, y)], (7.25)

where T' is a processing operator and n(x, y) is the final processed image. Figure 7.3 is a
demonstration of a digital image and its constitution of discrete elements.

7.2.4 Probability density function

The probability density function (PDF) is a key element in several image-processing tech-

niques, among them histogram equalization, that will be covered in the following section. A

PDF is defined as

dFx(x)
dx '

where x is a continuous random variable and Fy (x) is the cumulative distribution function

(CDF) and is defined as

Jx(x) =

(7.26)

Fx(x) = probability that X <x = P(X < x). (7.27)



Aly EI-Osery and Mo Jamshidi 133

one pixel
Figure 7.3. Digital image.
The PDF has the following properties:
fx(x) =0, (7.28)
fx(xydx =1, (7.29)
P(x = a) = Fx(a) =/ Sx(x)dx, (7.30)
~l)

Pla<x <bhb)= Fx(x)dx. (7.31)

i

The properties given in (7.28) and (7.29) show that the probability of an event occurring has
to be bounded below by 0 and bounded above by 1. The properties given in (7.30) and (7.31)
give some insight into how to evaluate probabilities using PDFs.

7.3 Histogram equalization

Histogram equalization is a technique of image enhancement that modifies the PDF of gray
levels, and its objective is to modify the PDF of gray levels to a unitform PDF. Figure 7.4
shows the histogram of a variety of images with different brightness and contrast problems.
The histogram plotted is the frequency of occurrence of a certain gray level. Brightness of
the image could be determined by observing the shape of the histogram; i.e., Figure 7.4(a) is a
bright image, and therefore the gray levels are concentrated in the higher end of the scale. On
the other hand, Figure 7.4(b) is a dark image and therefore the gray levels are concentrated
in the lower end of the scale. Figure 7.4(c) is a representation of a low-contrast image,
while Figure 7.4(d) is an example of a high-contrast image. As shown by the histogram, a
low-contrast image has gray levels concentrated in a small region of the scale, while a high-
contrast image has a more uniform distribution. Consequently, to obtain a high-contrast
image from a low-contrast one, a transformation has to be done to spread the distribution of
the gray levels. This technique is histogram equalization.
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Figure 74. (a)-(d) are images with different brightness and contrast problems,
and (e)—(h) are the equivalent histogram representations.
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If we represent the normalized gray levels with the variable x which is in the interval
{0, 1], where O represents black and 1 represents white, then our goal will be to find the new
set of gray levels, to be represented by the variable y, that has a uniform distribution. The
general form of such a transformation is

y=T(x). (7.32)

Certain conditions need to be embossed on the transformation 7 to preserve the order from
black to white in the gray scale and to ensure that the new gray levels will be in the allowed
range. These conditions are listed below:

1. T(x) is single-valued and monctonically increasing.
2. T(x) is in the range |0, 1].

Since the techniques that we will develop have to be general, we have to accommodate
a variety of images, and hence the gray levels of these images could be assumed to be random
variables. Consequently, we need to deal with the PDFs of these variables. Let fx(x) and
Sy (v) be the PDFs for the original image and the transformed image, respectively. At this
point, we assume the PDFs are continuous. After we are done with the derivation of the
transformation function, we will obtain the same result for the discrete case.

The goal is to find the transformation 7" that will transform fx(x) into fy(y), where
friy) = 1torQ < y < 1. As afirst step to achieving this goal, we need to introduce the
following property (Gonzalez and Woods (1992)):

If fx(x) and T(x) are known and the 7' is single-valued and monotonically
increasing in the range 0 < y < I,

then

d
fr(v) = [fm)d—’f} . (7.33)

VYlde=r-11y)

Using the above property, the transformation 7 (x) is found to be

y=T(x)= /0  frlE)de. (7.34)

A complete discussion of (7.34) is given in Gonzales and Woods (1992).

In digital image processing the image data are discrete; consequently, for the above
equations to be useful they have to be modified for the discrete case. In the discrete case,
we have

P(xk):%, 0<x, <1, and k=0.1,....L—1, (7.35)

where L is the number of gray levels, P(x;) is the probability of the kth level, n; is the
number of occurrences of that level in the image, and n is the total number of pixels in the
image. Hence in the discrete case, (7.34) translates into

k
=T =) . (7.36)

i==0
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The same concepts mentioned above also are applied for color images. For color images,
the HSI format is used to decouple the hue and saturation from intensity. Then histogram
equalization is applied on the intensity.

Figure 7.5 illustrates the process of enhancing color images via histogram equalization.
Assuming that the original image is in RGB format, we transform the data to HSL, then apply
histogram equalization to the intensity component. The final step is to convert the HSI back
to RGB. The same example will be used in the next section to provide a comparison basis
between this probabilistic method and the fuzzy system-based approach.

Figure 7.6 is an example of a dark image, as also indicated by the histogram shown
in Figure 7.7. Therefore, in order to enhance this image using histogram equalization, we
apply the procedure demonstrated in Figure 7.5. The result of the histogram equalization is
shown in Figure 7.8. The brightness of the image has been improved but the integrity of the
color has been lost. Figure 7.9 shows the histogram of the enhanced image of Figare 7.8.

—> hue

digital image RGB to HSI . HSI to RGB enhanced
— . » saturat " .

(RGB format) conversion saturation conversion image

> intensity

v
histogram
equalization

Figure 7.5. Block diagram of the enhancement process using histogram equalization.

Figure 7.6, An example of a dark image.
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Figure 7.7. Histogram of the photo shown in Figure 7.6,

Figure 7.8. Figure 7.6 after histogram equalization.

7.4 Expert systems and image enhancement

This section presents a systematic approach to enhancing the quality of images obtained from
many different sources, e.g., video, television, scanner, Internet, etc., using expert systems
based on fuzzy logic. Nowadays, digital image-processing techniques are used in combi-
nation with fuzzy-based expert systems in many different applications (Jamshidi, Vadiee,
and Ross (1993)). There have been numerous studies of the use of fuzzy expert systems in
auto-focusing (Shingu and Nishimori (1989)), auto-exposure, auto-zooming, filtering, and
edge detection (Tyan and Wang (1993), Bezdek (1981), Lim and Sang (1990), Pal (1991)).
Asgharzadeh and Gaewsky (1994) outline the use of fuzzy rule-based systems in controlling
video recorders. Asgharzadeh and Jamshidi (1996) received a U.S. patent on the enhance-
ment process, which was further discussed by Asgharzadeh and Zyabakhah-Fry (1996).
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Figure 7.9. Histogram of Figure 7.8.

Fuzzy logic is a formalization of the human capacity for approximate reasoning (Ross
(1995)). Unlike the restriction of classical propositional calculus to a two-valued logic, fuzzy
logic involves concepts without clearly defined boundaries. In fuzzy logic, linguistic terms
could be used to describe subjective ideas. In other words, fuzzy logic is a representation of
our natural language.

For the case of enhancing images for human perception, the use of a fuzzy expert
system clearly is a natural choice (Asgharzadeh, El-Osery, and Pages (1998)). Images are
enhanced and subjected to human visual judgment; consequently, enhancements done with
the aid of fuzzy expert systems that mimic the judgment of a human expert are expected to
produce satisfactory results.

Figure 7.10 provides an overview of the necessary steps needed for enhancing an image
using a fuzzy expert system (El-Osery (1998)). A digitization process is used in case the
image is not digital. After obtaining the digital image, a subject of interest (SOI) has to be
determined. This SOI will be used to determine the quality of the image and will be input into
the expert system. The SOI then will be used to determine the attributes of the image. The
attributes of the image are passed to the expert system to determine the changes necessary
to obtain an optimal image. The changes are applied and are observed on a displaying unit.

7.4.1 SOl detection

SOI detection, or feature extraction, is a very crucial process in image enhancement. If the
knowledge-based system is going to be developed to mimic the behavior of a human expert,
then there has to be a routine that detects the same features that the human expert uses to
examine the quality of that image. Several algorithms have been developed to recognize an
image using edge detection, clustering (Ruspini (1969)), and pattern classification, etc. These
algorithms enable the computer to understand visual information it finds in the environment.
Similarly, in the process of enhancing an image for human interpretation, it is important to
determine an SOI that will be used as a reference. Based on the SOI, attributes of the image
are calculated. These attributes are the values that will be used by the fuzzy expert system
to enhance the image.
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Figure 7.10. Block diagram of the enhancement process.

7.4.2 Fuzzy expert system development

After the SOl is detected, the next step is to use this information to develop the fuzzy expert
system. There are different techniques for generating this system. By observing trends in
the data, rules could be generated by intuition. Using programs like FuLDeK® (a fuzzy
logic development kit) and MATLAB is another possibility. These programs give users the
freedom to choose the type of rules generated and use mathematical techniques to generate
the rules that will minimize the error between the desired and estimated outputs.

7.4.3 Example

In this section, the above-mentioned concepts will be demonstrated. Color images are used.
and the SOl is chosen to be the human skin tone. The procedure for enhancing the image using
a fuzzy expert system is illustrated in Figure 7.10. The foilowing section will demonstrate
the process of extracting the SOI (skin tone) and will provide the methods used to generate
the expert system and, finally, to apply the corrections to obtain the enhanced image.

7.4.3.1 Feature extraction

When enhancing an image it is important to determine an SOI that will be used as a reference.
Because human skin tone is one of the most interesting SOls for detection, and also because
images of humans are the most widely available types of images, human skin tone was chosen
as the SOI for this example. The detection of the SOI occurs on the pixel level and has to
include the whole spectrum of skin colors. By mapping all different combinations of red,
green. and blue in the range of 0-255 to the Q-1 plane, the following definition for human
skin tone was obtained.
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Definition Any pixel in the Q-7 plane that falls within £30 degrees of the 7-axis and has
a normalized magnitude between 10% and 55% is considered a skin pixel. Figure 7.11 is a
graphical representation of this definition (EI-Osery (1998)).

A/
30° 30°

skin tone

10%
Q

Figure 7.11. Definition of skin tone.

7.4.3.2 High- and low-resolution masks

In detecting the SOl in the image, two different resolution masks are used, the high-resolution
mask and the low-resolution mask. The high-resolution mask uses the skin tone definition
mentioned previously to detect the SOI (Asgharzadeh, El-Osery, and Pages (1998)). This
mask tests every pixel. If a pixel is a skin tone, a value of 1 is stored, or O is stored otherwise.
Figure 7.6 is used as the image under investigation. By applying the high-resolution mask,
Figure 7.12 is obtained. As seen in Figure 7.12, there is some noise that needs to be eliminated.
To eliminate such noise, another mask is used.

Figure 7.12. High-resolution mask of Figure 7.6.

Using the high-resolution mask, we evaluate the low-resolution mask. The low-
resolution mask reduces noise. This process is similar to running the high-resolution mask
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through a low-pass filter. The low-resolution mask is evaluated by taking squares ot 16 x 16
pixels from the high-resolution mask. If the average value inside the square is greater than
a certain threshold value, then the 16 x 16 block is considered to have pixels with skin tone
characteristics; otherwise, the entire square is not considered to have any skin tone charac-
teristics. The default value of the threshold is 50%. Applying the low-resolution mask to
Figure 7.6 with threshold 50% produces Figure 7.13, in which all the skin tone is extracted
and the noise is reduced.

Figure 7.13. Low-resolurion mask of Figure 7.6.

7.4.3.3 Expert system
The fuzzy expert system rules obtained from a human expert are similar to the following:
If brightness is Dark, then increase brightness to Medium Bright level.

In this rule, Dark and Medium Bright are fuzzy variables (linguistic labels). This natural
language was translated to computer language using statements such as

If Xis A; and Y 1s B;, then Z is C;.

The fuzzy rule-based system is used to mimic a human expert that is capable of enhancing
the image. To generate and tune the expert knowledge, a library of 300 images was used.
SmartPhotoLab® was used to determine the image attributes that will be used for gener-
ating the rule-based system. With the help of a human expert, the images were enhanced
manually using professional image-processing software, such as Corel® Photo-Painter™
and PhotoShop®. A database of the image attributes before and after enhancement was
obtained. Using these data, fuzzy rules were generated with the help of FuL.DeK.

Three ditferent fuzzy rule-based systems—one for each image attribute (color, tint, and
brightness)—were designed for enhancing the image. The shape of the membership functions
of the inputs (see Figure 7.14) and outputs are triangular and singletons, respectively. Minand
max operations were used for evaluating and and or of the antecedents. For rule inferencing,
correlation product encoding (CPE) was employed. The centroid method was used for
defuzzifications.
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Figure 7.14. Structure of the triangular membership function used for the inputs.

The input of each rule-based system is normalized before fuzzification. The program
then aggregates the fuzzy rules and finally defuzzifies the output. The outputs of the fuzzy
system are the corrected attributes of the color, tint, and brightness. These values are averages
based on the masks of the SOI The next section will explain the process of modifying
each pixel.

7.4.3.4 Image correction

The expert system generated the corrected attributes of the color, tint, and brightness using
the three fuzzy rule-based systems. These values are averages based on the masks of the
SOI, but to obtain the final image we need to modify each pixel. This section describes the
equations used to modify each pixel.

The new color, tint, and brightness of each pixel are defined as (E1-Osery (1998))

New_Color_Pixel = Old_Color_Pixel + Aaverage_colors (7.37)
New_Tint_Pixel = Old_Tint_Pixel + Aaverage_Tint» (7.38)
New_Brightness_Pixel = Old_Brightness_Pixel + Aayerage Brightness: (7.39)

where
A pyerage_color = New_Color (output) — Old_Color(input), (7.40)
Apverage_Tit = New_Tint(output) — Old_Tint(input), (741
A Average_Brightness = New_Brightness(output) — Old_Brightness(input). (7.42)

Using (7.3) and (7.4), we obtain the relations

I = color - sin(tint), (7.43)
Q = color - cos(tint). (7.44)

Taylor’s series expansion was used for linearization:

0 0
f(x,y) = fxo, yo) + % |y + (6 = x0) + % o) + (V= o) (7.45)

+ higher-order terms (HOT),
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where HOT = 0.
Using (7.43)—(7.45) to evaluate the new values of J and Q per pixel, we obtain

Qnew = Qold + COS(tintom) . AAverugegColor - CC'lorold : Sin(tintold) ) AA\"cragc‘Tinb (74‘6)
hew = Igig + sin(tintyyg) - AAverzlgc‘_C()lor + Color,g - cos(tintyy) - AA\/eragekTinh (7.47)
Yiew = Youa + AA\'cmge‘Brighmcss- (7.48)

The result of applying the fuzzy system is shown in Figure 7.15. Now this result could
be used to compare the fuzzy system and the histogram equalization approaches.

Figure 7.15. Figure 7.6 enhanced via fuzzy expert system.

7.5 Final remarks

Based on the results shown in the previous sections, it is clear that fuzzy logic is an additional
and complementary solution to histogram equalization for improving the quality of digital
images. This process will improve the quality of images without extensive image-processing
calculations and will therefore reduce processing time. In addition, the automation will
allow users to process a batch of images in a few seconds. The use of a fuzzy system
for image enhancement is a natural choice since it is closely related to human subjective
decision-making. Unlike the traditional method of histogram equalization. the fuzzy system
incorporates human experience while modifying the image, and hence the results are more
satisfactory.

We are not claiming that a fuzzy system should replace any of the conventional tech-
niques. Rather, this chapter was intended to illustrate another tool that could be used with
the appropriate application. As we mentioned earlier, it is important to experiment with dif-
terent techniques to determine what is most efficient and suitable for the specific application
at hand. In some cases. a combination of techniques should be used to get the best results.
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Chapter 8

Engineering Process

Control
W. Jerry Parkinson and Ronald E. Smith

Abstract. Engineering process control is a reasonably mature discipline. Many books and
papers have been published on the subject, and it is an integral part of many engineering
curricula. Control systems are used in aircraft, chemical plants, and even robot manipulation.
Although there are many other types of control, in this chapter we will discuss only feedback
control, and that discussion will be quite limited. The purpose of the chapter is to provide a
brief, basic introduction to classical process control. We will then introduce fuzzy process
control and, finally, introduce the relatively new idea of probabilistic process control.

8.1 Introduction

In this chapter, we will present a basic introduction to engineering process control. We will
look briefly at three controller types:

« the classical proportional-integral-derivative (PID) controller,
* the fuzzy logic controller, and

* the probabilistic controller discussed in detail by Laviolette et al. (1995) and Barrett
and Woodall (1997).

We will look at two types of control problems:
« the setpoint tracking problem, and
* the disturbance rejection problem.

We will not discuss control system stability, which is extremely important for some types of
control problems, but not an important concern for the problems discussed in this chapter.
For more information on this subject, the reader is referred to Phillips and Harbor (1996),
Szidarovszky and Bahill (1992), Shinskey (1988), and Ogunnaike and Ray (1994). We will
discuss only feedback control systems here. Feed-forward control systems are notas common
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as feedback systems. A discussion of feed-forward systems can be found in Shinskey (1988),
Ogunnaike and Ray (1994), and Murrill (1991, 1988). It would take an entire book or set
of books to describe classical engineering process control in detail, and there are many
good ones available. See, for example, Phillips and Harbor (1996), Szidarovszky and Bahill
(1992), Shinskey (1988), Ogunnaike and Ray (1994), and Murrill (1991, 1988).

8.2 Background

The classical feedback control system can be described using a block flow diagram like the
one shown in Figure 8.1.

output
signal
w + e u v
z controller > plant >
setpoint
V,
feedback variable
converter <
feedback loop

Figure 8.1. Standard block flow diagram for a control system.

In Figure 8.1, the first rectangular block represents our controller. The second rectan-
gular block represents the system to be controlled, often called the plant. The block in the
feedback loop is a converter. The converter converts the feedback signal to a signal useable
by the summer. The summer is the circle at the far left-hand side of the diagram. The letter
w represents the setpoint value or the desired control point. This is the desired value of the
variable that we are controlling. The letter v represents the output signal or the current value
of the variable that we are controlling. The symbol v’ represents the feedback variable, es-
sentially the same signal as the output signal but converted to a form that is compatible with
the setpoint value. The letter e represents the error, or the difference between the setpoint
value and the feedback variable value. The letter u represents the control action supplied by
the controller to the plant. A short example will clarify this explanation.

Example 1. Suppose that we wish to control the temperature in a cold one-room house
with a variable load electric heater. The situation is pictured in Figure 8.2.

Equation (8.1) is the differential equation that describes the time (inside) temperature
relation of the one-room house:

dT;

med—t = Qi — Q@ — Qu. (8.1)
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Figure 8.2. One-room house being heated.

Equation (8.1) is the plant equation. This describes the response of the plant in the time
domain. In (8.1), the letter m represents the mass of the air in the room. The symbol C,
represents the constant pressure heat capacity of the air in the room. The symbol 7; is the
inside, or room, temperature. This is the output signal, or the controlled variable. It is
equivalent to the letter v shown in Figure 8.1. The letter ¢ represents time, and the symbol
Q; represents the heat or energy produced by the heater. The symbol Q represents the
normal energy loss through the walls of the house defined by

Q,=UA(T; = 1)). (8.2)

The letter U is the overall heat transfer coefficient, described in heat transfer textbooks. For
example, see Kreith (1958). This heat transfer coefficient takes into account the insulation
in the walls, the heat transfer to the walls from the inside of the room, and the heat transfer
from the walls on the outside of the house. The symbol A, represents the heat transfer
area of the house, essentially the surface area of all the walls and the roof. The symbol 7,
represents the temperature of the outside air, or the ambient temperature. The symbol Q
in (8.1) represents the disturbance energy loss. This is a heat loss that is incurred when a
door or window is opened. It is defined by

Q(/ = hAdw(Ti - Ta) (83)

The letter / represents a simple convective heat transfer coefficient. It is less complex than
the compound heat transfer coefficient U; hence the use of a different letter. The symbol
Ay is the area of the door or window that is opened to create the disturbance energy loss.
In most cases we will want to maintain a constant room temperature, or a setpoint
temperature, T,. If we are energy conscious, this temperature might be about 68°F. We
would like T; to be equal to 7T, at all times. Thus we set our room thermostat to 7, or 68°F.
In this case, T is equivalent to w in Figure 8.1. Our controller in this example manipulates
the heater output by varying the resistance in the heater coil. Technically, the feedback signal
to the controller will be electronic, but for our purposes, we can consider both the output
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signal and the feedback signal to be T;, the inside room temperature. Now the conversion
block in the feedback loop (in Figure 8.1) is equal to 1 and v’ is equal to v. The error, e, is
the difference between the setpoint value 7 (68°F) and the actual room temperature 7;. The
control action u is the amount of resistance that the controller applies to the heating coil in
the heater in order to generate the required amount of heat ;. For our purposes, we can
assume that Q; is equal to u, the signal that goes to the plant from the controller. The block
flow diagram that accompanies this problem is shown in Figure 8.3.

w =T,(68°F)

controller

Q;=f(e) k\' mCy—' = 0= 0p— Oy

-
-

<\
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©

Figure 8.3. Block flow diagram for Example 1.

Figure 8.3 is a time domain—block flow diagram for a single-input-single-output (SISO)
control system. The standard classical PID controller can be used to control this system.

8.2.1 Basic PID control
The PID control algorithm is described by

.
u:er+K1/ edt+KDd—e. 8.4
0 dr
In (8.4), the symbols Kp, K;, and K represent the proportional, integral, and derivative
control constants, respectively. These constants are specific to the system in question. They
usually are chosen to optimize the controller performance and to ensure that the system
remains stable for all possible control actions.

If we use a PID controller, or any other linear controller, for the system depicted in
Figure 8.3, then the system is called a linear system. Linear systems have nice properties.
The control engineer can use Laplace transforms to convert the linear equations in the blocks
in Figure 8.3 to the Laplace domain. The blocks can then be combined to form a single
transfer function for the entire system. The transformed version of Figures 8.1 and 8.3 is
shown in Figure 8.4.

In Figure 8.4, G(s) is the transfer function for the entire block flow diagram includ-
ing the feedback loop. The variables w(s) and v(s) are the setpoint and output variables,
respectively, converted to the Laplace, s, domain. The control engineer can work with the
system transfer function and determine the range in which the control constants Kp, K7,
and Kp must fall in order to keep the system stable. Electrical engineers design controllers
for a wide variety of systems. Many of these systems can become unstable as a result of
a sudden change in the control action. An example might be an airplane control system.
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w(s) v(s)
—_—) G(s) —P

Figure 8.4. Overall system block flow diagram or transfer function for the Laplace
domain.

Chemical engineers, on the other hand, usually design control systems only for chemical
processes. These systems are not as likely to become unstable from a sudden change in
the control action. An example is a liquid-level controller that controls the level in a tank
full of chemicals. A sudden change in the control action, say a response to a leak in the
tank, is not likely to make the system become unstable, no matter how abrupt the change.
Laplace transforms and the s domain are a very important part of classical control theory,
but are not necessary for the discussion in this chapter. The interested reader is referred to
any fundamental text on process control. See, for example, Phillips and Harbor (1996).

The PID controller accounts for the error, the integral of the error, and the derivative
of the error, in order to provide an adequate response to the error. Figure 8.5 shows a
typical time-domain response curve for a PID controller, for a problem like the room-heating
problem of Example 1.

I

S
=
= de
| T a
|
Ty L2 .
0 1 = time (seconds)

Figure 8.5. Time temperature response for the room heating problem in Example 1.

Figure 8.5 represents a typical response curve for a setpoint tracking problem. We will
continue with Example 1 and assume that the thermostat setting has been changed from, say,
65°F(Ty) to 68°F(T,). The control system will try to adjust as quickly as possible to the
new setpoint. At time ¥, the room temperature 7; is at the point on the response curve to
which the two broken arrows are pointing. The error, e, is the distance between the setpoint
temperature line, 7, and the current room temperature 7;. Since in this case

de d(T,—-T) dT,
dt — di T odre

the derivative term in the PID control equation is shown as the negative derivative of the
response curve at time ¢*. The crosshatched area from the 7; line to the 7; curve between
time # and t* shows the integral term. One criterion for an optimal controller is to find
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control constants than minimize the error integral. That is, find Kp, K;, and Kp such that
fol‘” edt is minimized. The term #., is the time at which the controlled variable (temperature
in this case) actually reaches and stays at the setpoint. The proportional term in (8.4) drives
the control action faster when there is a large error and slower when the error is small.
The derivative term helps to home in the controller variable to the setpoint. It also reduces
overshoot because of its response to the change in the sign and to the rate of change of the
error. Without the integral term, however, the controlled variable would never hold at the
setpoint, because at the setpoint both ¢ and ‘fi—f are equal to 0. A pure proportional-derivative
(PD) controller would become an on—off controller when operating about the setpoint.

8.2.2 Basic fuzzy logic control

In the simplest form, a fuzzy control system connects input membership functions, that
is, functions representing the input to the controller, e, to output membership functions
representing the control action, u.

A good example of a fuzzy control system is a controller that controls the room tem-
perature in the one-room house shown in Figure 8.2. This time we will look at a disturbance
rejection problem. Assume that the room is at the setpoint temperature of 68°F. This tem-
perature is maintained because the controller is working, forcing the heater to supply enough
heat to the room to maintain the setpoint temperature. If someone were to open the door to
the cold outdoors, the room temperature would drop. When the door is closed again, the
temperature will start to rise and head back to the setpoint, but at a pretty slow rate unless the
controller and the heater are capable of dealing with this situation. A simple fuzzy control
system designed for our room-heating problem consists of three rules:

1. If the temperature error is positive, then the change in control action is positive.
2. 1f the temperature error is zero, then the change in control action is zero.

3. If the temperature error is negative, then the change in control action is negative.

The input membership functions are shown in Figure 8.6. The reader should notice
that the input membership functions as shown in Figure 8.6 are limited to a temperature
error between £20°F. It is easy, and probably useful, to extend the limits to 200 by using
statements in the controller code such as

if temperature error > (say) 5°F,
then the membership in positive is 1.0;
else if temperature error < (say) —5°F,
then the membership in negative is 1.0.

The reader should also notice the “dead band” or “dead zone” in the membership function
zero between £ 1°F. This is optional and is a feature commonly used with on—off controllers.
It is easy to implement with a fuzzy controller and is useful if the control engineer wishes
to resrtict control response to small transient temperature changes. This step can save wear
and tear on equipment.

The output membership functions for this controller are shown in Figure 8.7. In this
figure the defuzzified output value from the controller is a fractional value representing the
required heater output for the desired temperature change. It is defined by

Qi - Qsp

change in controller action = Ay = ——. 8.5)
range
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Figure 8.6. Input membership functions for the fuzzy room temperature controller.

In (8.5), the term Q, represents the heater output required to maintain the setpoint tempera-
ture. The term Q; is the new heater load requested by the heater. If Au > 0, then the range is
defined as Q max — Qsp, Where Qnay is the maximum heater output. If Au > 0, then the range
is defined as Qy,. The term O, must be calculated using a steady-state energy balance for
the room or it must be estimated in some other fashion. The steady-state calculation requires
only algebra. Differential equations are not needed. This is an engineering calculation quite
different than calculations needed to compute K p, K, and K p for the PID controller.

The fuzzy output sets positive and negative to +2.0to 0.0 and —2.0to 0.0, respectively.
Since the change in controller action is a fraction between either 0.0 and 1.0 or 0.0 and — 1.0,
it is clear that we will never obtain a control action outside of the range —1.0 to 1.0. Our
defuzzification technique will require that we include as positive those numbers up to 2.0 in
the fuzzy set or membership function and negative those numbers down to —2.0 in the fuzzy
set. Even though numbers of this magnitude can never be generated by our fuzzy system,

negative — —zero -~ ~ - - positive

membership
o
w
L
~
-

/ ’ \

/ \
0 / :
-2 -1 0 ] 2
change in controller action

Figure 8.7. Output membership functions for the fuzzy room temperature controller.
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we can still include them in our fuzzy sets. Users can define their fuzzy sets however they
wish. The fuzzy mathematics described in earlier chapters is capable of handling objects of
this type. The user has to define the fuzzy sets so that they make sense for the particular
problem. In our case, we are going to use the centroid technique for defuzzification. We
therefore need to extend our membership functions so that it is possible to obtain centroids of
either +£1.0. We need this capability in order for the control system to either turn the heater
on “full blast” or turn it completely off.

We can describe our simple fuzzy controller as an approximation to an I or integral
controller. Our rules are of the form Au = f(e), where Au is the control action change
for the sample time interval Az, We can make the approximation that £ ~ % = K, e and
fdu = K,fedt and ¥ = K; fot* edt.

‘We can build a fuzzy PID controller if in addition we include in our rules and mem-
bership functions the change in error with respect to time, %, and the second derivative of
the error with respect to time, d (‘;—f). The fuzzy PID controller will be more flexible than the
classical PID controller because the control constants Kp, K;, and K are defined by the
membership functions and can vary with the problem conditions.

Example 2. Suppose that someone does open the door to the one-room house described
in Example 1 and that the room temperature drops from the setpoint value of 68°F to 65°F.
The error is defined as the setpoint reading, 68°F, minus the new reading, 65°F, or +3°F.
Our three rules are fired, producing the following resuits:

1. The positive error is 0.5.
2. The zero error is 0.5.
3. The negative error is 0.0.

The results are shown graphically in Figure 8.8.

In this example, an error of 4-3°F intersects the membership function zero at 0.5 and
the membership function positive at 0.5. We say that rules 1 and 2 were each fired with a
strength of 0.5. The output membership functions corresponding to rules 1 and 2 are each
“clipped” at 0.5. See Figure 8.9.

The centroid of the “clipped” membership functions, the shaded area in Figure 8.9, is
+40.5. This centroid becomes the term Au in (8.5). Since Au is greater than 0.0, (8.5) can
be rewritten as

Qi = (Qmax — Op)Au+ Qg or Qi =0.5(Qmax + Q) since Au=0.5. (8.6

This says that the new heater output, Q;, should be adjusted to be halfway between the
current, or setpoint, output and the maximum heater output. After an appropriate time
interval, corresponding to a predetermined sample rate, the same procedure will be repeated
until the setpoint temperature, 68°F, is again achieved. The disturbance rejection response
curve corresponding to this example will look something like the one shown in Figure 8.10.

8.2.3 Basic probabilistic control

The probabilistic controller (Laviolette et al. (1995); Barrett and Woodall (1997)) is very
similar to the fuzzy controller. The probabilistic controller can use the same rules as the fuzzy
controller, but the rules tie together input conditional probabilities and output probability
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Figure 8.8. Resolution of input for Example 2.
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Figure 8.10. Typical disturbance rejection response curve.
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density functions (PDFs) instead of membership functions. If we use the same three rules
that we used for the fuzzy controller in section 8.2.2, then we can use input conditional
probabilities that look similar to the fuzzy input membership functions shown in Figure 8.6.
The input conditional probabilities are shown in Figure 8.11 and described by the following
equations:

P[“negative”’|x] = 1, x <=5
x+1
= — N —-5< < —1,
4 =*=
=0 otherwise, (8.7a)
5
P[“zero”|x] = %—, —5<x<-1,
=1, —-1l<x<l,
5—x
= , 1<x<5
4 =*=
=0 otherwise, (8.7b)
.. x—1
P[*“positive”|x] = T, 1 <x <5,
= 1, X Z 5,
=0 otherwise. 8.7¢)
negative — —zero — - - - positive]
1 / 7
!
0.8 1 i
o / \,
= 0.6- !
: !
% 0.4 - p
/ 0\
0.2 1 !
R
0 T I T L 1
=20 -10 0 10 20

x = temperature error (F)

Figure 8.11. Probabilities for temperature error classes.

Figures 8.6 and 8.11 look very much alike, but they represent different concepts.
Even though probability functions and membership functions are different concepts, they
are treated in a similar fashion when solving control problems. A major difference in the way
that these functions are used is that probabilities must add to 1. All memberships computed
based on Figure 8.6 will also add to 1, but this is not a requirement for membership functions.
The user or control system developer is free to choose any fuzzy set that might fit the particular
problem. The sum of the set memberships is not restricted to equal 1. In the case of the fuzzy
controller, the control system designer defines the membership functions, as in Figure 8.6,
and knows exactly where the set boundaries are. In Example 2 (Figure 8.7), our error is +3°F.
From Figure 8.7, we can determine that the membership in the fuzzy set zero is 0.5 and the



W. Jerry Parkinson and Ronald E. Smith 155

membership in the fuzzy set positive is also 0.5. In the case of the probabilistic controller, the
error is the same, +3°F. The difference is that the probabilist uses Figure 8.11 and/or (8.7b)
and (8.7¢) to determine the probabilities of the error being in either the crisp set zero or the
crisp set positive. The probabilist assumes that the sets negative, zero, and positive are crisp
sets with definite boundaries, but that these boundaries are unknown. The measured error
belongs to only one of these sets and belongs with a full membership of one. Figure 8.11
and (8.7a)—(8.7c) were constructed to help the user estimate the probability of whether the
error belongs to a given set. If we rework Example 2 for a probabilistic controller, with
an error of +3°F, we would say that there is a probability of 0.5 that the error belongs to
the set zero and a probability of 0.5 that the error belongs to the set positive. As with the
fuzzy example, rules | and 2 are each fired with a probability (strength) of 0.5. The output,
however, is computed differently than in the fuzzy example. In the probabilistic case, the
output is described by PDFs, rather than output membership functions. For the probabilistic
continuation of Example 2, the output PDFs are shown in Figure 8.12 and described by the
following equations:

“negative” : fi(z) = =2z, —1<z<0,
=0 otherwise, (8.8a)
“zero”: () =142z, —1=<z=<0,
=1-z, 0<z<l,
=0 otherwise, (8.8b)
“positive” : f3(z) = 2z, 0<z<l,
=0, otherwise. (8.8¢)
negative — —zero — — - - positive
2
7
/
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z = change in controller action representation

Figure 8.12. Change in controller action PDFs.

In the probabilistic case, the change in controller action, Au, is a function of a rep-
resentative value of the PDFs that are used to define the rule outputs. The representative
value of the PDF can be one of several properties of that PDF. The mean, the mode, and the
median are examples of the PDF representative values. For notational purposes we will use
the letters RV to denote the general representative value.
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The area under the PDF curve must equal 1, and the bounds must include only numbers
that belong to the distribution. In our example, the lower bound of the PDF that represents
the set negative can be no lower than —1.0, and the upper bound for the PDF that represents
the set positive can be no larger than +1.0. The rules governing the construction of the
output PDFs are more restrictive than those governing the construction of the fuzzy output
membership functions. However, the resolution of the probabilistic rules is normally easier
than the resolution of the fuzzy rules. The resolution formula that will determine the change
in controller action for our probabilistic SISO control problem is given by

3
Au = z P:(PDF-RV);. (8.9)

i=1

In (8.9), P; is the input probability for rule i, and (PDF-RV); is the representative value for
the output PDF for rule i. Table 8.1 gives the RVs of the mean and the mode for Figure 8.12.

Table 8.1. RVs of the mean and the mode for Figure 8.12.

RV/PDF | Negative | Zero | Positive

2 2
mean -5 0 +5

mode —i 0 +1

If the mean is the RV, then in our example, with a probability of 0.5 that the error is
equal to zero and a probability of 0.5 that the error is equal to positive, from (8.9) Au is

Au = (0 2 0.5 0 0.5 2 —-1
u—()*(—§)+(.)*()+(.)(§>—§.

If the mode is the RV, (8.9) produces % for the value of Au:

Au = )+ (=1 4+ 0.5) % (0) + (0.5 = (1) = %

This is the same value that was produced by the fuzzy controller. The actual controller output
is still produced by using equation (8.5).

8.3 SISO control systems

The probabilistic control problem described by Laviolette et al. (1995) and Barrett and
Woodall (1997) is an interesting one. It is somewhat like the room-heating problem of
Examples | and 2. It is different enough, however, to demonstrate some important ideas.
This probabilistic controller was constructed by Barrett and Woodall (1997) based on a fuzzy
control problem described by Kosko (1983). Unfortunately, there is no model or real system
on which to test either this fuzzy control problem or this probabilistic control system. All one
can tell is that both control systems will provide similar control actions for the same input
(Barrett and Woodall (1997), Laviolette et al. (1995)). It is quite instructive to provide a
model of the system for the controllers and compare the system response to these controllers
and also to a PID controller. A model was constructed and we attempted to fit this model to
the existing controller. It is important to note that this procedure usually is done the other
way around. A control system usually is designed to conform to some model of the real
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Table 8.2. Fuzzy and probabilistic rules for the room comfort problem.

Rule number | Room Temperature | Fan Motor Speed
1 Cold Stop
2 Cool Slow
3 Just Right Medium
4 Warm Fast
5 Hot Blast

world. Consequently, the model used for this example is only a first approximation of the
real world, but it is good enough to demonstrate several important points.

The membership functions used by Barrett and Woodall (1997) and Laviolette et al.
(1995) are slightly different than those used by Kosko (1983). We will use the membership
functions of Barrett and Woodall (1997) and Laviolette et al. (1995) since they developed
the probabilistic controller. On the surface, the problem appears to be similar to temperature
control of aroom as in Examples 1 and 2. It is actually comfort control of the room. The sole
control of the comfort is the motor speed of the fan. The five rules for both the fuzzy and the
probabilistic controllers are given in Table 8.2. The rules for this problem are of the form

if the “room temperature’ is. . ., then set the “fan motor speed” to. . ..

For the fuzzy controller, the membership functions for the input variable “room tem-
perature” are shown in Figure 8.13. The membership functions for the output variable “fan
motor speed” are shown in Figure 8.14. Note that we have extended the output membership
functions from —30RPM to 130RPM so that we can use centroid defuzzification and still
stop the fan completely and also get speeds of 100RPM.

e c01d cool — - justright - - —warm hot
| 7 e —
non/
=" ! /
% \ ! ! 1
5 ' /
£0.5 I 4 v/
s \
/ /
[\
0 A WY AV B A
30 40 50 60 70 80 90 100

room temperature (F)
Figure 8.13. Input membership functions for the room comfort problem.
For the probabilistic controller, the input conditional probabilities for temperature

classes are shown in Figure 8.15. The rule outputs for the probabilistic controller are motor
speed PDFs. They are shown in Figure 8.16.
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Figure 8.14. Output membership functions for the room comfort problem.

s c01d cool — -justright - - - warm hot |

] ]
N

= 1
= ]
0.5 \
£ !
A\
1

0 r ' .’ : \.

30 40 50 60 70 100

temperature (F)

Figure 8.15. Inpur conditional probabilities for the room comfort problem.
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Figure 8.16. Output probability density functions for the room comfort problem.
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The conditional probabilities shown in Figure 8.15 are described in the following
equations:

P[“cold”|x] =1, x <45,
50 —
- Sx,45§x§5Q
=0 otherwise, (8.10a)
— 45
Pl“cool™|x] = ~ . 452250,
= 1, 50 <=x =< 60,
65 —
= Y 60<x <65,
=0 otherwise, (8.10b)
e x —60
P[“just right”|x] = —5 60 < x <65,
70 — x
=5 65 < x <170,
=0 otherwise, (8.10¢)
x — 65
P[“warm”|x] = 5 65 < x <70,
= 1, 70 S x < 80
85 —
=21 80 <x <8s,
5
=0 otherwise, (8.10d)
, x —80
P[“hot”|x] = s 80 < x < &5,
=1, x = 85,
=0 otherwise. (8.10e)

The PDFs shown in Figure 8.16 are described by the following equations:

30—z
“stop”: fi1(2) = ———, <z <30,
stop” : f1(2) 450 <z<
=0 otherwise, (8.11a)
z—10
“slow™ : fr(z) = , 10 <z <30,
slow™ @ f2(2) 700 <z=
50 -z
= . 30 =<z =50,
400
=0 otherwise, (8.11b)
7 —40
“medium” : f3(z) = . 40 <z <50,
medium’ : f3(z) 100 <=
60—z
=———, 50<:z<60,
100
=0 otherwise, 8.11¢)
. . z—50
“fast” : fy(z) = 50 <z <70,

400 °
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= —9{%, 70 < z < 90,
=0 otherwise, (8.11d)
“blast” : f5(z) = ﬂ, 70 < z < 100,
450 -
=0 otherwise. (8.11e)

We notice that the probabilities shown in Figure 8.15 and described by (8.10a)—(8.10e)
always add to 1. The PDFs shown in Figure 8.16 and described by (8.11a)-(8.11e) are
created so that the area under each PDF is equal to 1 and the base of each PDF is the range of
fan motor speed (z) that can be described by the PDF labels “stop,” “slow,” etc. The input
values (room temperatures) are used with the probabilities just like they are used with fuzzy
logic input membership functions. The same five rules are used and the appropriate rules are
fired. The output from the method is a PDF, and the crisp value required for the fan speed is
computed by (8.9).

Example 3a: Probabilistic controller. Suppose that we have a room temperature of
100°F. One rule is fired, rule number 5: “If the room is hot, then blast.” In this case, the
output value requested by the controller is the mean value for the PDF that represents “blast.”
This value is 90RPM. Although the fan is capable of 100RPM, the highest value that the
probabilistic control system can request is 9ORPM. If the mode were used instead of the
mean to represent the PDF, the controller would work better (at least in this case).

Example 3b: Fuzzy controller. The room still is at 100°F and rule number 5 is fired.
With the fuzzy control system, one technique used with this type of problem is to extend
the fuzzy set “blast” to 130RPM. Even though the fan cannot reach these speeds, there is
nothing to preclude these numbers from being in that fuzzy set. If “blast’”” is now a triangle
that extends from 70RPM to 130RPM, the centroid of that triangle is 100RPM. This is the
fan maximum speed and the desired output value for the control system.

8.3.1 A system model and a PID controller

If we write a computer model for the room and the fan, we can track the response of the
model to the control actions over a period of time. The model that we chose is somewhat
crude but is a reasonably good “first” approximation of the system. We assumed that the
model was a small one-room house with poor insulation. We assumed an overall R-value of
approximately 10. The heat sources are heat coming through the walls and the ceiling from
the outside world, a possible heat leak from an open window or door, and heat transferred
from one human body, at a temperature of 98.6°F, to the room. The differential equation
describing the room temperature as a function of time is given by

CVdTi
PErY

= (hoAo + Up Ap)(Ty — T) + hp Ap(98.6 — T)). (8.12)

In (8.12), the terms are as follows:
p is the density of the air in the room.

C, is the heat capacity of the air in the room.
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V is the volume of air in the room.
T; is the room temperature.
¢t is time.

h, is the heat transfer coefficient for the opening (window or door).
A, is the area of the opening, normal to the direction of heat transfer.
U, is the average overall heat transfer coefficient of the house.
Ay, is the heat transfer area for the house.

T, is the outside, ambient temperature,

hy 1s the heat transfer coefficient for the human body.
A, s the surface area of the human body.

Equation (8.12) is obviously a simplified model because the mass of the house, among other
things, is ignored. Values and models for the heat transfer coefficients in (8.12) can be
obtained from any engineering heat transfer text. For example, see Kreith (1958).

Example 4a: Probabilistic controller. In this problem, we imposed an ambient tempera-
ture profile on the house that went from 45°F to nearly 103°F then dropped to nearly 90°F in
a period of four hours. At 90 minutes into the run, we imposed a disturbance on the system,
by opening the door for 30 minutes. The ambient temperature profile and the computed room
temperature response (8.12) are shown in Figure 8.17.

room temperature (F)
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Figure 8.17. Room and ambient temperature profiles for Example 4.

The fan speed response from the probabilistic controller, with the room temperature,
is plotted in Figure 8.18. These plots demonstrate that the probabilistic controller causes
the fan speed to track the temperature reasonably well. The controller also adjusts the fan
speed quite well to compensate for the disturbance caused by leaving the door open. We can
say that this probabilistic controller can be used for both setpoint tracking and disturbance
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rejection. This controller probably is adequate for keeping a human reasonably comfortable
in a hot room. It probably mimics the human manual controller quite well. We should
notice, however, the flat regions and abrupt changes in the response curve (fan speed). The
flat regions are caused by conditional probabilities that are equal to 1 for a wide range.
In this case, it is the probabilities of cool and warm shown in Figure 8.15. For example,
between the temperatures of 50°F and 60°F, the probability that the temperature is cool is 1.
Rule 2, Table 8.2, is the only rule that is fired as long as the temperature is in this range. The
output of that rule is a fan speed of slow, which corresponds to 30RPM, the mode (and the
mean value) of the PDF that represents a fan speed of slow in Figure 8.16. Flat spots and
abrupt changes can easily be avoided with fuzzy and probabilistic control systems. Smooth
control transitions usually are one of the benefits of these control systems. This is not meant
as a criticism of the control system. The original problem (Kosko (1983)) was set up to
demonstrate how to build control systems using fuzzy logic. It was not meant to show how
to build the best control systems. The systems shortcomings carried over to the probabilistic
treatment.
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Figure 8.18. Room temperature and fan speed profiles for Example 4a.

Example 4b: Fuzzy controller. For the fuzzy problem, we imposed the same ambient
temperature profile and same disturbance on the house. The ambient temperature profile
and the computed room temperature response were the same as those for the probabilistic
problem shown in Figure 8.17. The fan speed response for the fuzzy controlier was similar
also. It is shown in Figure 8.19.

The flat regions and abrupt changes in the response curve shown in Figure 8.19 are
due to the portions of the input membership functions shown in Figure 8.13, where only one
membership function is used and only one rule is fired. It is similar to the problem with the
probabilistic controller. It is evident from Figures 8.18 and 8.19 that, at least for this problem,
probabilistic controllers can be written to behave almost exactly like fuzzy controllers, or
visa versa.

Example 4¢: PID controller. To construct a PID controller as described by (8.4), we need
to find an error term, e. If we look at Figures 8.18 and 8.19, we see that these response curves
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Figure 8.19. Room temperature and fan speed profiles for Example 4b.

do not really show an error. This is because we are not really controlling the temperature
with the fan. We are controlling human comfort. We cannot choose a desired temperature
as a setpoint and control that temperature with the fan. Since the controller, and therefore
the fan, does not determine the difference between some setpoint and the “controlled” room
temperature (the error), an error term, for this situation, supplied to a PID controller is
meaningless. To use a PID controller, we have to reformulate the problem.

If we assume that the room comfort is totally defined by the heat transfer rate from
a single human body, we can build a “soft-sensor” for the control system using the second
portion of the right-hand side of (8.12):

Qp = hyAp(98.6 — T)). (8.13)

In (8.13), Q) is the heat transfer rate from a single human body in the room, in BTU/minute.
Equation (8.13) is called a soft-sensor because we cannot use an actual hardware sensor to
determine the heat transfer rate. We need to measure the room temperature and compute the
heat transfer rate using software. To determine a setpoint for our PID control system, we
need to estimate a value for a comfortable heat transfer rate. For this example, we assumed
that the human body produces 2000Kcal per day of heat at a temperature of 98.6°F. We
further assumed that this energy should be dissipated at an even rate of 5.51BTU/min for the
entire 24-hour period. For this example, our setpoint is going to be 5.51BTU/min, although
a skilled biologist might come up with a better answer.

In (8.13), the convective heat transfer coefficient, 4, depends on both free convection
and forced convection. When the fan is not turning, the heat is transferred from the body by
natural or free convection. In this mode air, and consequently heat, movement is caused by
the difference in the air density at the body surface and in the room. This density difference
is in turn caused by the differences in temperature at these points. Consequently, most free
convection heat transfer coefficient correlations are of the following form:

hy(free) = £((98.6 — T))"). (8.14)

When the fan is turning, the convective heat transfer coefficient is a function of the velocity of
the air leaving the fan blade. Several models are available for this situation (Kreith (1958)).
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One model could be that this also is a free convection heat transfer mode, with gravity force
air movement replaced with the fan centrifugal force movement. This is much like the way
a centrifuge replaces gravitation force with centrifugal force. No matter the exact model, the
heat transfer coefficient correlation is of the following form:

hy(forced) = f((fan_speed)®?). (8.15)

Obviously, increasing the fan speed is going to increase the heat transfer rate. The human
body heat transfer coefficient, A,, is going to be based on both free convection and forced
convection depending upon the fan speed and the observer’s position in the room. As a
first approximation, for this example we assumed that A, is a linear combination of forced
convection and free convection. (Note that this method of compacting hj, was also used with
the fuzzy and probabilistic controller examples.)

Now we can reformulate Example 4¢ so that we can control the system using a PID
controller. The block flow diagram is shown in Figure 8.20. The heat loss response curve
for the example is shown in Figure 8.21. The room temperature and the fan speed profiles
are shown in Figure 8.22.
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Figure 8.20. Block flow diagram for a PID controller(Example 4c).

Observing Figure 8.21, we can see that the PID controller does not turn the fan on
until the body heat loss is less than or equal to the setpoint. This makes sense, because
if the temperature is too low, turning the fan on will increase the heat loss from the body,
making the person in the room less comfortable. Further, the controller is able to hold the
comfort level at the setpoint until the door is opened. Observing Figure 8.22, we can see that
the PID controller tries very hard to reject this disturbance by turning on the fan full blast.
Unfortunately, the fan is not capable of increasing the heat transfer rate enough to control
the extra heat load. The PID controller does a reasonably good job of tracking the “comfort”
setpoint until the room temperature becomes too close to the body temperature of 98.6°F and
the fan can no longer remove heat fast enough to keep the human body comfortable. The PID
controller makes a strong attempt at disturbance rejection, but the fan is not adequate for the
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Figure 8.21. Response curve for the PID controller ( Example 4c¢).
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Figure 8.22. Room temperature and fan speed profiles for Example 4c.

task. The PID controller constants were assigned based on past experience. No attempt was
made to optimize the controller. Optimization was not important in this problem because
the fan was not adequate for the task.

Figures 8.23 and 8.24 are the comfort response curves for the same problem using
the probabilistic controller and the fuzzy controller, respectively. Since these controllers
were not programmed to track the comfort setpoint, they did not do a very good job of
that. Similarly, the PID controller did not track the room temperature very well because it
was not programmed to do so. In Examples 4a and 4b, the probabilistic controller and the
fuzzy controller produced response curves that were nearly identical. The PID controller
is different. It required a model (the soft-sensor), a calculated error, and a setpoint. On
the surface, it appears that the PID controller might be superior to both the probabilistic
controller and the fuzzy controller. It did, after all, track and temporarily maintain the real
variable—comfort—better than either of the other two controllers.
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Figure 8.23. Comfort response curve for the probabilistic controller (Example 4a).
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Figure 8.24. Comfort response curve for the fuzzy controller (Example 4b).

Several observations need to be made about Example 4c:
¢ We are controlling a model, not a real-world situation.

¢ The model for the soft-sensor for the PID controller is identical to the human heat loss
equation in the model. This will never be the case in a real-world problem.

* To compute an error term for the PID controller, an estimate needed to be made for
the setpoint and a model had to be constructed for the soft-sensor.

» The accuracy of the setpoint estimation and the quality of the model will determine
the quality of the PID controller.

All three techniques are available to be used. Each technique has weak and strong points.
The controller choice will probably depend upon the problem. For this problem, the control
engineer might ask the following questions:
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Can [ design a better control system by doing more research and possibly some
experimentation in order to build an accurate soft-sensor model and determine
an accurate setpoint? Or is it better to sit in a room with a thermometer and
a tachometer for the fan in order to determine the best rules and membership
functions (or conditional probabilities and PDFs) for the fuzzy or probabilistic
controllers?

The goal, after all, is to build the best control system possible.

8.4 Multi-input-multi-output control systems

The multi-input-multi-output (MIMO) control system is a little bit more complicated. The
problem is best described by the following examples.

Example 5a: Probabilistic controller. In this example, we extend the work of Barrett and
Woodall (1997). In their example, they add humidity measurements to the controller. The
controller becomes a multi-input (binary)-single-output (MISO) controller. If we assume
five input classes for humidity, then we need 25 rules for a complete control set. The number
of rules equals the product of the number of membership functions for each input variable.
The rules are of the form

if the “room temperature” is. .. and if the “room humidity” is. ... then set the
“fan motor speed” to. ...

The input conditional probabilities for humidity classes could be represented as those shown
in Figure 8.25. The other inputs, temperature classes, are still the same (Figure 8.15). The rule
outputs for the probabilistic controller are the same motor speed PDFs shown in Figure 8.16.
For this example and the next one (the fuzzy controller), we will use Figure 8.25 for the
conditional probabilities of both the probabilistic controllerinput and membership functions
input for the fuzzy controller.
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Figure 8.25. Input conditional probabilities and membership functions for humidity
for Examples 5a and 5b.
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Table 8.3. Fuzzy and probabilistic rules for the two-input room comfort problem
(abbreviated).

Rule number | Room temperature | Room humidity | Fan motor speed
1 cold low stop
13 Jjust right just right medium
14 just right medium-high medium
18 warm just right medium
19 warm medium-high fast

Table 8.3 is an abbreviated set of the 25 rules required for this controller.

If the room temperature is 68°F and the room humidity is 55%, then from Figure 8.15
the probability that the temperature is warm is 0.6 and the probability that the temperature
is just right is 0.4. From Figure 8.25, the probability that the humidity is just right is 0.75
and the probability that the humidity is medium-high is 0.25. Since the 25 rules used by the
controller represent each possible combination of humidity and temperature, only the rules
13, 14, 18, and 19 will be fired. The formula for computing the fan motor speed is given
by (8.16), a slightly modified version of (8.9):

25
u=)_ P;Py (PDF-RV),. (8.16)

i=1
In (8.16), P;; is the input probability for rule i and input j (temperature), Py is the input
probability for rule i and input k (humidity), and (PDF-RV); is the representative value for
the output PDF for rule i. Equation (8.16) can easily be generalized to the case of more
than two inputs and more than 25 rules. Again, in a problem like this, where we need to
actually stop the fan or bring it to a full 100RPM, we like to use the mode for the RV value.
From Figure 8.16, the mode for the medium PDF is SORPM and the mode for the fast PDF

is 70RPM. For this example, from (8.16), the controller output « is

u = ((0.4) x (0.75) 4 (0.4) % (0.25) + (0.6) = (0.75)) * 50 + (0.6) % (0.25) * 70
= 53RPM.

Example 5b: Fuzzy controller. The same problem using a fuzzy logic controller is solved
a little bit differently. The input membership functions for temperature and humidity are
shown in Figures 8.13 and 8.25, respectively. For a temperature of 68°F, the membership
(from Figure 8.13) in just right is 0.4 and the membership in warm is 0.3. For a humidity of
55%, from Figure 8.25 the membership in just right is 0.75 and the membership in medium-
high is 0.25. The same four rules as in Example Sa—rules 13, 14, 18, and 19—are fired.
With the fuzzy controller, we must determine the strength with which each rule is fired. There
are several techniques available for resolving this problem. We like the min—max rule. The
rules and their values shown in Table 8.4 will help to demonstrate this technique.

From Table 8.4, we can see that each rule is fired with a strength equal to its minimum
antecedent value. For this example, the consequent of three of the rules is the membership
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Table 8.4. Demonstration of the min—max using fuzzy rules.

Rule number RO((;:‘Q::;; g :;?:;re Humidity (membership) | Fan motor speed (strength)
13 just right (0.4) just right (0.75) medium (0.4)
14 just right (0.4) medium-high (0.25) medium (0.25)
18 warm (0.3) just right (0.75) medium (0.3)
19 warm (0.3) medium-high (0.25) fast (0.25)
w— SLOP slow — -medium - - —fast blast

membership
N
1

0 1 . \
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motor speed (RPM)
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Figure 8.26. Resolution of output for Example 5b.

function medium. Medium has three consequent values 0.4, 0.25, and 0.3. We choose the
maximum value of 0.4 and truncate the medium membership function at that strength. The
maximum portion of the min—max rule does not have to be invoked for rule 19 since it is
the only rule that refers to the output membership function fast. In this example, fast is
truncated at 0.25. The output membership function corresponding to this example is shown
in Figure 8.26.

The centroid of the output membership function shown in Figure 8.26 is 62.25RPM.
This is significantly different than 53RPM computed by the probabilistic controller in Ex-
ample 5a. There are two reasons for this:

* The input memberships for temperature sum to less than | for this problem.

* The centroid defuzzification technique is quite different than the technique used to
resolve the probabilistic controller output. The difference is most apparent when more
than one of the fired rules point to the same membership function. Tables 8.3 and 8.4
suggest that the fan motor speed should be medium. We do not run into this problem
very often in SISO problems. The centroid technique counts the maximum value of
medium, but counts it only once.

In this case, the fact that the input memberships for temperature sum to less than 1
makes little difference. If the temperature membership in warm were 0.6 instead of 0.3, then
rule 18 would provide a maximum value for fan motor speed = medium of 0.6. The centroid
defuzzification technique would provide a new fan speed of 60.7RPM instead of 62.25RPM.
Another defuzzification technique that provides solutions closer to those produced by the
probabilistic controller is the correlation minimum encoding technique. This technique
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uses the min portion of the min—max rule to determine the rule strength and truncates the
output membership functions at that value. The controller output is then determined by the
following:

area * centroid
u = *Z——Zaréa_. (8.17)

For this example, the controlier output from (8.17) would be

(43754514 6.4) x50+ 8.75% 70
- 4.375+5.1 + 6.4+ 8.75)

If the membership for temperature in warm were 0.6 instead of 0.3, (8.17) would yield a
value of 56.25RPM, much closer to the value produced by the probabilistic controller.

The choice of the defuzzification technique is up to the control engineer. The member-
ship functions and the rules will be adjusted to fit the problem. This involves understanding
the problem and not just blindly using mathematical formulas to solve the problem.

For both the fuzzy and the probabilistic controllers, the MISO problem described above
can be easily extended to a MIMO problem. If we had one other output from the controller,
say a room humidifier with several different settings, the rules would be of the form

= 57.1RPM.

if the “room temperature” is. .. and if the “room humidity” is. .., then set the
“fan motor speed” to. .. and set the “humidifier” to. . ..

One more column would have to be added to Table 8.3 for humidifier setting, but no more
rules would normally need to be added. Another set of PDFs and/or membership functions
would be added for the humidifier settings. The resolution of this output would be the same
as for the fan motor speed. The probability multipliers or rule strengths would be the same
for each rule. The final control value for the humidifier setting would depend upon the shape
of the output PDFs or membership functions.

Example 5c: PID controller. For the PID approach, we will shift to a different, more
manageable problem. The example used in this problem will be control of the liquid levels
in two connected tanks. Two pumps that supply liquid to each tank will maintain the liquid
level. Figure 8.27 is a schematic diagram of this plant.

In this problem, the object is to maintain the liquid level in tank 1, A4, at a setpoint
level that we call w,. We want to simultaneously control the liquid level in tank 2, A;, at
a setpoint level we will call wy. Liquid flows from tank 1 to tank 2 by means of a small
pipe connection between the bottoms of the two tanks. This pipe has a valve in it to restrict
the flow, g2, between the two tanks. Similarly, liquid flows from tank 2 into a sump whose
level is below the level of tank 2. This flow is labeled g;9. To maintain the levels in the
tanks the controller must continually supply the proper power to pumps 1 and 2 so that they
can maintain the correct flow to the individual tanks. Equations (8.18) and (8.19) are the
differential equations that describe this system, or plant:

adm %) (8.18)
dr 1 — 412, -
dh

A—d?z = 02+ q12 — g0 (8.19)

The symbol A represents the cross-sectional area of the two tanks. In this problem A is the
same for both tanks. The flows g2 and g, are further defined by the following equations:

q12 = ®1A, Sign(hy — h3)y/2g|hy — hy, (8.20)
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goo = ©2A,/2gh,. 8.21)

The @; symbols in the above equations represent friction coefficients for the flow in the pipes,
with the restrictions, between tanks | and 2 and leaving tank 2. The symbol A, represents
the cross-sectional area of these pipes. In this problem, the cross-sectional area is the same
for both pipes. The symbol g is the acceleration of gravity. If we substitute (8.20) and (8.21)
into (8.18) and (8.19), the differential equations become nonlinear and more difficult to deal
with. For this example, let us make the following assumptions:

*» The cross-sectional area, A, is lm?.
* hy will always be greater than h,.
¢ The setpoint for tank |, w), is 2m, and | will always remain very close to that setpoint.
= The setpoint for tank 2, w-, is Im, and /2, will always be very close to that setpoint.
* The portion of (8.20) represented by @A, +/2g is approximately equal (o 1.
* The portion of (8.21) represented by ®»A,,/2g is approximately equal to 2.

With these assumptions, (8.19) and (8.20) become the following:

dh
AR Yy (8.22)

dt
dh-

Il’_ = QZ +\/h1 —hy — 2 hs. (8.23)
[£

Since h; will always be close to 2 and A, will always be close to 1, /i) —hy =~ | = hy —h>
and h» = | & h,. Therefore, we can write (8.22) and (8.23) as follows:

dl

L0 =k + o (8.24)
dt

dh

2= Qa3 (8.25)

These equations are relatively easy to deal with. We should mention at this point that there
are more elegant ways of linearizing differential equations. These techniques usually involve

A: tank cross-sectional area

pump 2 flow, Q5

h tank 1 _—
| i .‘l.n’z
—'—CD:&C E
q12—» bl i

Figure 8.27. Schematic diagram for two-tank problem of Example 5c.
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expanding the nonlinear function in a Taylor series about the setpoint and truncating the series
after the first derivative term. What we have done here is rather crude, but the idea is the same.
We assume that the small operating region near the setpoint, where we plan on operating,
is linear. Many controllers are designed this way; for a more thorough discussion on the
subject see Phillips and Harbor (1996), Ogunnaike and Ray (1994), and Luyben (1989).

To be in tune with the control literature we refer to 2y and k5 as x; and x;, respectively.
The “x’s” are called state variables and represent the state of the plant or system. We will
refer to Q) and Q5 as uy(f) and u,(t), the controller output. Equations (8.24) and (8.25)
become

d5
X — A% + Ba(r). (8.26)
dt
In (8.26), % is the vector
dx1
dt
dxz ’
dt

A is the matrix [1_1_;], B is the matrix [é ?], and u(zr) is the vector [‘;;] or [g;]. Often, the
state variable x is not the control variable or sensed variable. In this case, the controlled
variable y will be associated with the state variable by the matrix C. In the literature, the
following equation will often be seen associated with (8.26):

y = CX. (8.27)

In this example, the state variable is the controlled variable, and there is no need for (8.27).
A block flow diagram for the plant and controller is shown in Figure 8.28.

W e u(r)
@ BK plant

—I

Figure 8.28. Block flow diagram for two-tank problem of Example Sc.

It is common practice to use heavy arrowed lines in MIMO block flow diagrams to
show the flow of vector variables as opposed to single arrowed lines that denote the flow of
scalar variables.

In Figure 8.28, the setpoint vector w is [5;] or, in our case, [f]. The error vector e is

[5;:2 ]. The BK matrix is the product of the B matrix and the controller matrix K, [i;‘] ';; 1.

In our definition of this system, B is the identity matrix { equal to [(1) (1)]. Thus the BK is
equal to K. The controller matrix represents a proportional-only controller. This controller
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represents only the P portion of the PID control algorithm. The control constants &2 and &y,
are employed to modity or decouple the control actions for pumps 1 and 2. If ky» = ky; =0,
the control actions become those of two SISO proportional controllers. For simplicity’s sake,
we will continue the example using the assumption that two SISO controllers are adequate
to control this system. Our closed-loop system can now be described by the following:

dx,

R R | A [ A
IR k|

is known as the closed-loop A matrix or Ajeeq j00p- 10 have a control system that provides
stable closed-loop control, we must use control constants that will provide our closed-loop
system with eigenvalues that are negative if they are real or on the left-hand side of the
complex plain if they are complex. The eigenvalues A; and X, of the closed-loop system are
determined by

The term

Ay and Ay = Det[AL — A, jed_joop |- (8.29)

The determinant Det in (8.29) expands into the quadratic equation for a two-by-two system.
The eigenvalues A and A, can be forced into the left-hand region of the complex plane by
choosing the proper values of k|| and k5. This will often be a trial-and-error procedure. Once
useable values of the control constants are found, only stability of the system is guaranteed,;
nothing can be said for performance.

Stability is important for many control problems. Most control texts spend a great
deal of time discussing stability. The problem here is that we have made a great many
assumptions in order to simplify our model. All that we can really guarantee with our chosen
control constants is that the model will be stable under closed-loop control. We cannot say
for sure whether the real system, which we have only approximated, will be stable under
closed-loop control. If this were control of an airplane, the control engineer might do well to
find a better model. The two-tank system described here, however, is inherently quite stable.
Compared to an airplane, it is highly damped and sluggish. Finding control constants that
keep the system stable should be no problem. Finding high-performance control constants is
another question. This procedure will probably involve some trial and error, and the control
engineer will probably want to add at least an integral term to the controllers, making them
PI controllers.

Example 5c should help make clear that as control systems become more complex,
standard control system design and analyses can become much more complex. The mathe-
matical models for these large systems can become very difficult to use without simplifying
assumptions that may actually invalidate them. This is not to say that we should not use these
tools; they can be very powerful. The idea is to use the right tool for the right job. Fuzzy and
probabilistic controllers also can become quite complex. As the number of system variables
increases, the number of rules that are needed will increase rapidly. Large rule systems are
hard to manage and verify. When experts are used to determine the rules, the number of
rules that an expert will actually know is limited.

These examples are meant to show some of the differences and similarities between
standard control techniques, fuzzy techniques, and probabilistic techniques. They are not
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meant to show that one technique is better than another. At this point, we have covered all the
basic material that we are going to in this chapter. The next section provides the description
of the development of three control systems for a real experimental problem. It is intended to
give a little more insight into some of the “real-world’” problems that might be encountered
in control system design. The experiment was based upon a three-tank problem similar to
the two-tank problem described in Example 5c. The three control systems tested were a PI
controller, a fuzzy controller, and a probabilistic controller.

8.5 The three-tank MIMO problem

The three-tank system used in this experiment is similar to the two-tank system discussed in
Example Sc. The tanks are smaller, however. The experimental apparatus consists of three
Lucite tanks, in series, each holding slightly less than 0.01m? of liquid.

The system is shown in Figure 8.29. The tanks are numbered from left to right as tank
1, tank 3, and tank 2. All three tanks are connected, with the third tank in the series, tank 2,
draining into the system exit. Liquid is pumped into the first and the third tanks to maintain
their levels. The levels in the first and third tanks control the level in the middle tank. The
level in the middle tank affects the levels in the two end tanks. This problem, three tanks in
series, where the middle tank interacts with the two tanks at either end of the system, is an
analogue of many other chemical process industry control problems. Several chemical plant
systems can be represented in this manner. For example, many distillation column systems
consist of a total condenser with liquid-level control, a reboiler with liquid-level control, and
an interactive column in between. In short, the solution to the three-tank system provides
insight into many of the nonlinear control problems found in chemical process industries.

The differential equations (8.30)—(8.32) describe this experimental system. The tank
flows are described by (8.33)—(8.35). The symbols used in these equations have the same
meaning as those used in Example Sc, (8.18)—(8.21). The subscripts, however, pertain to
Figure 8.29.

dh,

A— = — s 8.30
R 01— a3 (8.30)
dh

A2 = 02+ 43 — . 8.31)
dh;

A 832
’r 413 — gn (8.32)

qi3 = ©1 A, Sign(hy — h3)y/2g|hy — hal, (8.33)
g3 = P34, Sign(hz — h3)/2glhs — hal, (8.34)
g0 = P24,/ 2gh;. (8.35)

8.5.1 The fuzzy and probabilistic control systems

The designs of the fuzzy and probabilistic controllers are similar so they can be described
in parallel. Both of these controllers were designed with two modules. One module is for
setpoint tracking and the other for disturbance rejection. The setpoint tracking portion is the
workhorse for both systems. The disturbance rejection module merely makes corrections
and then returns control to the setpoint tracking module. Figure 8.30 shows the structure of
both controllers.
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Figure 8.29. The experimental three-tank system.
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Figure 8.30. Schematic for the fuzzy and probabilistic controllers for the three-tank
system.

We will first describe the setpoint tracking portion of each controller and the resuits
for the setpoint tracking experiments. We then describe the disturbance rejection portion of
the controllers and the results of the disturbance rejection experiments.

The fuzzy and probabilistic rules for this setpoint tracking module are given in Table
8.5. The rules are of the form

if Error(¢) is. .., then Flow_Change(i) is. . ..

The term Error(i) is defined as follows for both tanks 1 and 2:

)i —

u i .
— fori=1lor2. 8.36
Range h(i) ort o ( )

Error(i) =

Ifw; > h;,thenRange /(i) equals w;. Otherwise, Range /(i) equals h; nax —w; fori = lor2.
The variable h; is the current level for tank i and w; is the setpoint for tank i. The
term h; gy 18 the maximum level for tank i, or the level at which the tank is full. The
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Table 8.5. Fuzzy and probabilistic rules for setpoint tracking.

Rule number Error(i) Flow_Change(i)
1 Error(1) = negative | Flow_Change(l) = negative
2 Error(1) = zero Flow_Change(1) = zero
3 Error(1) = positive Flow_Change(1) = positive
4 Error(2) = negative | Flow_Change(2) = negative
5 Error(2) = zero Flow_Change(2) = zero
6 Error(2) = positive Flow_Change(2) = positive

Flow_Change(i) variable is defined by

qi — qiss

Fl Ch ) = —————.
ow_Change(7) Range (i)

(8.37)
If Flow_Change(i) > 0, then Range ¢ (i) equals g;ss. Otherwise, Range ¢ (i) equals g; max —
giss fori = 1or2.

The term ¢; max is the maximum possible flow from pump i, which is 6.0 liters/min for
each pump. The variable g; is the current pump flow from pump i, and ¢;s5 is the steady-state,
or setpoint, flow for pump i, computed from a mass balance calculation. The mass balance
calculation is a simple algebraic calculation. It is based on (8.30)—(8.35) with derivatives set
to zero and tank levels set at the setpoints. The calculation simplifies to three equations with
three unknowns. The three unknowns obtained from the solution are the two steady-state
pump flows and one independent steady-state tank level. One difficulty is determining the
flow coefficients ®;. These coefficients can be easily measured or calculated using textbook
values. Measurement of these values is best. If the coefficients are calculated and the
calculation is not correct, the disturbance rejection mode will be invoked automatically and
the values will be determined by the control system.

The membership function universes and conditional probabilities for Error(i), and
membership function universes and PDFs for Flow_Change(i), have been normalized from
—1 to 1. This was done in order to construct generalized functions. In this type of control
problem, we want one set of rules to apply to all tank level setpoints. Generalizing these
functions makes it possible to use only six rules to handle all tank levels and all tank level
changes.

Figure 8.31 shows the input membership functions and conditional probabilities for
both the fuzzy and probabilistic controllers used to solve this three-tank problem. Figure 8.32
shows the output membership functions for the fuzzy control system. These membership
functions have been expanded to limits —2 and 2 so that the pumps can be turned on full
blast if needed. Figure 8.33 shows the output PDFs for the probabilistic controller. These
inputs and outputs are connected by the rules shown in Table 8.5.

Example 6. For this example, we chose the setpoints w; and w; for tanks 1 and 2 to be 0.40
and 0.20m, respectively. These are the same setpoints that were used in the actual experiment.
We start with three empty tanks. The steady-state flows required to maintain these levels
are computed from the mass balance calculation to be g;55 = 1.99346 liters/min and g;s5 =
2.17567 liters/min. The maximum pump flows are ¢y max = @2max = 6.0 liters/min. For the
example, we assume that the tank levels have nearly reached their setpoint values. The level
in tank 1, Ay, is 0.38m and the level in tank 2, %5, is 0.19m. The maximum tank levels are
hlmax = homax = 0.62.
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Figure 8.31. Membership functions and conditional probabilities for input Error (i )
fori =both 1 and 2 (pumps 1 and 2).
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Figure 8.32. Membership functions for Flow_Change(i) for i = both 1 and 2
(pumps 1 and 2).

Both Error(1) and Error(2) are calculated to be —0.05 from (8.36). In both cases,
the memberships and probabilities from Figure 8.31 are computed to be negative = 0.775
and zero = 0.225. These values cause rules 1 and 4 to be fired with a strength of 0.775,
and rules 2 and 5 to be fired with a strength of 0.225. The output membership functions
shown in Figure 8.32 are truncated at these values. The defuzzification method used with
the setpoint tracking control module is the correlation minimum encoding (CME) technique.
This method computes the areas and centroids of the entire truncated triangles. That is,
the negative and positive Flow_Change membership functions are extended to —2 and +2,
respectively, in order to compute the centroids and the areas. This is one of many techniques
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Figure 8.33. Output PDFs for the three-tank problem, pumps 1 and 2 (i = 1 and 2).

used with fuzzy output membership functions when it is important to use the centroid of
the membership function to designate complete “shut off” or “go full blast.” The crisp,
or defuzzified, value used in the control equations, and obtained from firing these rules, is
defined by (8.17).

Both Flow_Change(1) and Flow_Change(2) are computed to be —0.704. For both
pumps, Flow_Change(7) is less than 0, so Range g (/) is equal to ¢; max — giss. Rangeq(1)
is then 4.00654 and Range ¢(2) is equal to 3.82433. By manipulating (8.37), we obtain

gi = qiss — Flow_Change(i) * Range g (i). (8.38)
From (8.38), the value of ¢; is computed as
¢ = 1.99346 + (0.704)(4.00654) = 4.8141,
and g, is
g2 = 2.17567 + (0.704)(3.82433) = 4.8680.

For the probabilistic controller, using (8.9) and the mode for PDF-RV, we obtain a value
of —0.775 for both Flow_Change(1) and Flow_Change(2). From (8.38), we obtain the
following for the new pump flows:

g1 = 1.99346 + (0.775)(4.00654) = 5.0985,
¢ = 2.17567 + (0.775)(3.82433) = 5.1395.

8.5.2 The PI controller

For the three-tank problem, we used two separate PI controllers and used only the first
two terms of (8.4) for the control algorithm. This is common practice for situations where
the D portion or derivative of the error can do more harm than good. In the case of tank
flow problems like this one, the liquid level in the tanks will oscillate, or make waves,
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as the liquid from the pumps hits the surface. The derivative portion of a PID controller
will respond unnecessarily to this oscillation. The PI controller is quite simple. It does
not need separate loops for setpoint tracking and disturbance rejection. The difficulty in
using this controller is coming up with optimal control constants Kp and K;. There are
several empirical techniques that can be used to estimate the value of good or optimal control
constants for P1 and PID controllers. These techniques usually involve perturbing the system
and observing responses. We used the Ziegler—Nichols approach, described by Ogunnaike
and Ray (1994), for determining a first estimate for the control constants for our PI controllers.
We then used a computer model! of the three-tank system and a great deal of trial and error
to determine the optimal control constants. The optimal constants were those that produced
the smallest error integral for the controller response for the setpoint tracking test described
in the next section. The error integral is the area between the setpoint line and the controller
response for a given test. The crosshatched area in Figure 8.5 shows the integral error. For
our optimization tests, the area was measured both above and below the setpoint line and was
measured to the end of the test time. The PI constants determined by the trial-and-error test
were Kp = 0.1365 and K; = 0.000455 seconds~'. The value for K » was approximately
the same as the one determined by the Ziegler—Nichols calculation, but the value used for
K; was significantly smaller than that determined by Ziegler—Nichols. This produced a
rather highly damped controller, but it reduced the amount of overshoot significantly. It is
important to reduce overshoot in tank-filling problems in order to eliminate the possibility of
spilling liquid. The same control constants were used for each controller, pump 1 and pump
2. These control constants worked quite well for the setpoint tracking test described in the
next section.

8.5.3 Setpoint tracking: Comparison between the controllers

This setpoint tracking test case was a tank-filling problem. The setpoint level was changed
from 0, an empty condition, to 0.4m for tank | and 0.2m for tank 2. The level for tank 3
cannot be set independently. For this test, tank 3 found its own level at about 0.3m. The
run time was set to 7.5 minutes, or 450 seconds. Figure 8.34 shows the tank response to
the probabilistic controller for the experiment described above. The results for the fuzzy
controller are shown in Figure 8.35.

If Figures 8.34 and 8.35 are superimposed upon one another, the controller response
curves cannot be differentiated. The integral error test for each set of curves produces a value
that is the same for each controller and that is within the error tolerances of the numerical
algorithm used for the integration. This result shows that for this problem, even though the
controller algorithms can produce slightly different values for individual points, as shown in
Example 6, the response curve for the entire problem is essentially the same.

The response curve for the PI controller looks very much like the curves in Figures 8.34
and 8.35. The integral error test, however, produces slightly ditferent results for the PI
controller. Table 8.6 shows integral error and rise time for the Pl controller relative to the
fuzzy and probabilistic controllers. The definition of rise time 7, used here is the time
required for the system response, to a step input, to move from 10% of the final setpoint to
90% of that setpoint. In this case, the tank 1 step input is the change in the setpoint from 0
to 0.4 (m). The rise time is the amount of time it takes for the level in tank | to go from 0.04
to 0.36 (m).

In addition to the differences shown in Table 8.6, the PI controller produced a very small
amount of overshoot. Neither the fuzzy controlier nor the probabilistic controller produced
any overshoot. In spite of the differences shown in Table 8.6, the PI controller did a pretty
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Figure 8.35. Tank levels versus time for the fuzzy controller.

Table 8.6. Test results for the PI controller relative to the fuzzy and probabilistic

controllers.
Tank | Integral error | Rise time 7,
1 + < 1% +1 seconds
2 +41.1% +7 seconds
3 +7.8% | +11 seconds

good job on this control problem. Even the additional 41% error, exhibited in the response
to the change in the tank 2 setpoint, is difficult to see in examples like Figures 8.34 and 8.35.
It seems obvious that if the control constants for the pump 2 controller were different than
those for the pump 1 controller, then the PI controller would have produced an even better
response. One problem with the PI controller is the amount of time devoted to finding
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Table 8.7. Rules for disturbance rejection for both tanks 1 and 2.

Rule number | If Error(i)is... ... and Slope(i) is ... ... then Help_Factor(i) is ...

1 negative negative small negative
2 negative Zero small negative
3 negative positive large negative
4 zero negative zero

5 zero Z€e10 zero

6 Zero positive 7ero

7 positive negative large positive
8 positive zero small positive
9 positive positive small positive

optimal control constants. In recent years, automated techniques have been developed that
significantly reduce the amount of time to find control constants (Smith (1994)).

8.5.4 Disturbance rejection: The fuzzy and probabilistic controllers

Although there are other methods for designing the fuzzy and probabilistic controllers for
this problem, we chose the technique described below. We chose this technique because an
engineering understanding of the problem made this approach easy and efficient. Another
approach would be to use more rules to cover all situations.

The fuzzy logic and probabilistic controllers are actually hierarchical controllers, as
shown in Figure 8.30, with two sets of rules. One set of rules covers setpoint tracking,
as already discussed. The other set covers disturbance rejection. Disturbance rejection is
broken into two parts, decision-making and disturbance rejection corrections. The same
rules are used for both parts. The input membership functions/conditional probabilities are
slightly different when the system is trying to decide if it should be in disturbance rejection
mode than when it is actually in that mode. The rules determine if the controller should be
in disturbance rejection mode and also determine the size of what we will call a help factor.

In disturbance rejection mode, the original material balance is no longer valid since
the disturbance will be either a tank leak or a plug in between the tanks. These conditions
were not in the original material balance equations used to compute the steady-state pump
flows ¢;5s used in (8.37) and (8.38). If we knew the friction coefficient ¢; for the plug or
the leak, a rapid material balance calculation would give us the new ¢;s5 and we would need
only the setpoint tracking portion of the fuzzy algorithm. Unfortunately, in practice we very
seldom know this friction coefficient so we must find our new steady-state pump flows, g;ss.
by using a root-finding technique.

There are 18 rules: nine for tank 1 and pump 1 and nine for tank 2 and pump 2. The
rules are exactly the same for each tank so only nine rules are listed in Table 8.7. The rules
are of the form

if Error(i) is. .. and if Slope(i) is. .., then Help_Factor(i) is. . .,

where Error(i) is defined by (8.36), Slope(i) is defined by (8.39) below, and Help_Factor(i)
is a fuzzy or probabilistically determined factor used to speed the convergence of the root-
finding algorithm

it _h.f

Slope(i) = ’A—t’ (8.39)
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Figure 8.37. Membership functions/conditional probabilities for Slope(i) for i =

both 1 and 2 (disturbance rejection—decision and correction).

where At is the sample interval equal to time #(j + 1) minus time ¢ (j) and hij 1 and h{ are
the level measurements of tank i at times ¢(j + 1) and (), respectively.

The membership functions/conditional probabilities for the rule input Error (i) for the

decision-making portion of the disturbance rejection method are given in Figure 8.36. The
membership functions/conditional probabilities for rule input Slope(i) for both the decision
making and the actual correction to the root finder are given in Figure 8.37. The rule input
Error (i) membership functions/conditional probabilities for the correction mode are given in
Figure 8.38. The rule output Help_Factor(/) membership functions for the fuzzy correction
are given in Figure 8.39. The rule output Help_Factor (i) PDFs for the probabilistic correction
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Figure 8.39. Membership functions for Help_Factor(i) for i = both 1 and 2 in
liters/min (disturbance rejection—fuzzy correction).

are given in Figure 8.40.

In Figures 8.36 and 8.38 for 0.05 < Error(i) the membership of Error(i) in Positive
is 1.0 (or the probability that Error(i) is Positive is 1.0), and for Error(i) < —0.05 the
membership of Error(i) in Negative is 1.0 (or the probability that Error(i) is Negative is
1.0). In Figure 8.37, for 0.003 < Slope(i) the membership of Slope(i) in Positive is 1.0 (or
the probability that Slope(i) is Positive is 1.0}, and for Slope(i) < —0.003 the membership
of Slope(i) in Negative is 1.0 (or the probability that Slope(i) is Negative is 1.0).

The major difference between Figures 8.36 and 8.38 is the true zero range, that is, the
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(disturbance rejection—probabilistic correction).

flat portion of the membership function/probability function zero for the variable Error (i) in
these figures. If we use Figure 8.36, the variable Error (i) has a membership value 1.0 in zero
or a probability of 1.0 that it is zero if —0.0025 < Error(i) < 0.0025. If we use Figure 8.38,
the variable Error(i) has a membership value 1.0 in zero or a probability of 1.0 that it is
zero if —0.001 < Error({) < 0.001. This is equivalent to putting a dead band around the
liquid levels in the tanks, where no action is taken as long as the liquid level remains within
the band. The band is two and one-half times larger when we are trying to decide if the
system needs disturbance rejection help than when the system is trying to find the values of
the steady-state pump flows g;ss. The system works as follows:

At sample time, liquid levels h; are measured and Error(i), the normalized difference

between the liquid level and the setpoint level, is computed from (8.36).
At the same sample time, the Slope(i) is computed from (8.39).

The rules shown in Table 8.7 are fired using the values for Error(i) and Slope(i) and
the membership functions or conditional probabilities shown in Figures 8.36 and 8.37.

If the value for Help_Factor (i) is zero, then the controller stays in the setpoint tracking
mode. If the value for Help_Factor(i) # zero, the controller goes into disturbance
rejection mode. This mode combines setpoint tracking and the disturbance rejection
root-finding technique to compute the value of g;ss in (8.37).

If the controller goes into disturbance rejection mode, the rules in Table 8.7 are fired
again using the values of Error(i) and Slope(i) and using the membership functions
or probabilities from Figures 8.37 and 8.38. The Help_Factor (i) is used in (8.40) to
compute a new ¢;ss:

giss(new) = g; + Help_Factor (7). (8.40)
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* The term ¢; is the current pump flow from (8.38), and at this point it usually is dif-
ferent from ¢;s5(old) because the setpoint tracking algorithm has already started the
correction process.

* The procedure is repeated until Help_Factor (i) becomes zero again (—0.001 < Error (i)
< 0.001) and stays there for five sample steps.

» The new g;gs 1s chosen as the average of the last two values of g;s5(new).
* The control system then returns to setpoint tracking mode.

This portion of the controller can work with either tank 1 or tank 2 alone or both
tanks together. It usually works well with both tanks together because a reasonable-sized
disturbance in one tank will affect both tanks. A one-step example for the fuzzy controller will
help clarify the above procedure. The procedure for the probabilistic controller is analogous.

Example 7. If we look at tank | only, the setpoint level, w, is 0.4m and the steady-state
flow rate for pump 1, g;ss, is 1.99346 liters/min. Suppose that a leak occurs in tank 1 and at
the next sample time (sample interval is two seconds) the liquid level is just below 0.399 me-
ters. The Error(1) is computed from (8.36) to be just over 0.0025. The Slope(!) is computed
from (8.39) to be &~ —0.0005 = & 399 94 The negative Slope(1) and positive Error(1) indi-
cate a leak and the Help_Factor(1) i ls computed to be slightly above zero. (This calculation
does not have to be highly accurate. We just need to show that the Help_Factor(1) # zero.)
If Error(l) is 0.0025+, from Figure §.36. the Error(1) membership is = 0.99 in zero and is
2 0.01 in positive. For Slope(l} & —0.0005, from Figure 8.37, the Slope(!) membership
is & (.} in negative and ~ 0.9 in zero. Rule 4 will be fired with the minimum value of 0.1.
Rule 5 will be fired with the minimum value of 0.9. Rule 7 will be fired with the minimum
value of 0.01, and rule 8 will be fired with a minimum value of 0.01. The output membership
functions from the maximum part of the min—-max rule will have the following values: zero
= 0.9, large positive = 0.01, and small positive = 0.01.

FromFigure 8.39, itis obvious that the centroid of clipped output membership functions
will be greater than zero. Therefore, Help_Factor(1) is > zero. This is enough to set the
disturbance rejection flag. This last step is now repeated using Figures 8.37 and 8.38 in order
to determine a useful Help_Factor(1). The membership values for Slope(l) remain the
same, but for Error(1) = 0.0025+, from Figure 8.38, the Error(1) membership is & 0.9694
in zero and is & 0.0306 in positive. Rule 4 will be fired with the minimum value of 0.1.
Rule 5 will be fired with the minimum value of 0.9. Rule 7 will be fired with the minimum
value of 0.0306, and rule 8 will be fired with a minimum value of 0.0306. The output
membership functions from the maximum part of the min—max rule will have the following
values: zero = 0.9, large positive = 0.0306, and small positive = 0.0306. The centroid from
clipped output membership functions from Figure 8.39 is about 0.35 liters/min. Therefore,
Help_Factor(1) is 0.35 liters/min for this iteration. We assume that the setpoint algorithm
is already starting to correct itself because the level has moved away from the setpoint.
For convenience, let us assume that the current value of ¢ is 2.0 liters/min. From (8.40),
the new steady-state pump flow for pump 1, gss(new), is 2.35. At the next sample time,
the level still will be below the setpoint. Thus Error(l) will be positive and. from the
setpoint tracking rules (Table 8.5), rule 3 will dominate. Flow_Change(1) will be positive.
From (8.38), the new pump 1 flow, ¢, will be = 2.35 % (Flow_Change(1)) + 2.35 instead
of = 1.99346 * (Flow_Change(1)) + 1.99346, which is the pump flow that would have been
requested without the disturbance rejection correction.
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This procedure is repeated (from the point that the disturbance rejection flag is set)
until Help_Factor(1) is zero, or —0.001 < Error(i) < 0.001, for five consecutive time
sample steps. At this point, the new g,gs is set to be the average of the final two steady-state
pump flow calculations. The disturbance rejection flag is then reset to zero and the controller
returns to the setpoint-tracking-only mode.

The root-finding technique is just the simple iterative method defined by (8.41), found
in most numerical methods texts (for example, see Henrici (1964)):

= fx)), (8.41)

where j is the iteration number and the time between iterations is the sample interval. This
technique is quite stable but also quite slow. The help factor speeds it up significantly. The
technique represents an approximation of the human approach to solving the disturbance
rejection problem.

For the disturbance rejection module, the fuzzy method uses the min~max centroid
technique for defuzzification. This is different from the CME defuzzification technique used
in the setpoint tracking module. The point is that it does not matter what defuzzification
technique is used as long as the user can make the rules map the input to the correct output.
The probabilistic controlier uses a generalized version of (8.16), with the mode for the
PDF-RV, to resolve the disturbance rejection problem.

The disturbance rejection module also can serve as a correction module for the setpoint
tracking mode when g;ss is computed incorrectly. The disturbance rejection module quickly
recognizes an incorrect steady-state flow and computes the correct value using the algorithm
described above.

The PI controller used for disturbance rejection is the same controller that was used for
the setpoint tracking problem. With the standard PI controller, one set of control constants
is used in all situations for each controller.

8.5.5 Disturbance rejection: Comparison between the controllers

For this comparison, two tests were run for each of the controllers. Both tests were run for
1000 seconds. At 200 seconds a disturbance was introduced. At 700 seconds the disturbance
was removed. The disturbance for the first test was a leak in tank 1. The leak was opened at
200 seconds and found and closed at 700 seconds. The disturbance for the second test was
a partial plug between tanks 1 and 3. The plugged condition began 200 seconds into the run
and was removed 700 seconds into the run. The initial conditions, or steady-state conditions,
for these runs were the final setpoint conditions from the setpoint tracking problem. That
is, the setpoint level was 0.4m for tank 1 and 0.2m for tank 2. Tank 3 finds its own setpoint
near 0.3m.

For these tests, a computer model of the three-tank system was used. This same model
was used to find the control constants for the P1 controller. A model was used for these tests
to ensure that the leaks and plugs were identical in each test for each controller. This identical
condition is very difficult to control with the experimental apparatus. The model in this case
is very good. The results were compared to the actual experimental results for several cases
and the agreement was excellent. In the model, we can set the friction coefficient ¢; for
the plug and the leak. In these tests, the friction coefficient for the leak was set at 0.65 and
the friction coefficient for the plug was set at 0.4. The response curves for test 1 (the leak
test) for the three controllers fuzzy, probabilistic, and PI are shown in Figures 8.41-8.43,
respectively. The response curves for test 2 (the plug test) for the same three controllers are
shown in Figures 8.44-8.46, respectively.
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Figure 8.41. Fuzzy disturbance rejection for a leak in tank 1 with a friction coeffi-
cient of 0.65 (test 1).
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Figure 8.42. Probabilistic disturbance rejection for a leak in tank 1 with a friction
coefficient of 0.65 (test 1).

The integral error was computed in each test for each tank for each controller. These
values are listed in Table 8.8.

Figures 8.41-8.46 and Table 8.8 demonstrate that the fuzzy and probabilistic controllers
are very much alike in their responses. The fuzzy controller does a little bit better on test |
and the probabilistic controller does a little bit better on test 2. Both controilers beat the Pl
controller quite handily. On reason is because the PI controller was “tuned’ for the setpoint
tracking problem and is highly damped to reduce overshoot. This made it less responsive to
the disturbance rejection problem. However, with the standard PI controller, we have only
one set of control constants for all situations. Control constants that improve the disturbance
rejection response will hurt the setpoint tracking response. Note that none of the controllers
can do much with the level in tank 3 when there is a plug between tanks 1 and 3 since there
is no pump to supply input to tank 3.
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Figure 8.43. P! controller, disturbance rejection for a leak in tank 1 with a friction
coefficient of 0.65 (test 1).
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Figure 8.44. Fuzzy disturbance rejection for a plug between tanks 1 and 3 with a
friction coefficient of 0.40 (test 2).

8.6 Conclusions

This chapter was intended to demonstrate the differences between fuzzy and probabilistic
controllers. Inaddition, we attempted comparisons between these controllers and the industry
standard, the PID controller. The fuzzy and probabilistic controllers appear to be very good.
They provide very similar responses, at least for the problems studied here. The major
differences seem to be in the philosophies behind the two controllers. Since most control
engineers are paid for results and not philosophy, it is suggested that the developer use the
control paradigm with which he/she is most comfortable. The control systems developed
from these two paradigms can range from quite simple to quite complex. The developer has
the ability to easily customize these controllers so that they provide an excellently controlled
response for the system under control.
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Figure 8.45. Probubilistic disturbance rejection for a plug between tanks | and 3

with a friction coefficient of 0.40 (test 2).
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Figure 8.46. PI controller, disturbance rejection for a plug between tanks | and 3

with a friction coefficient of 0.40 (test 2).

Table 8.8. Integral errors for each controller for disturbance rejection tests.

Test and tank Fuzzy error | Probabilistic error | PI error
Test 1 (leak in tank 1)
tank 1 0.3933 0.4622 12.1279
tank 2 0.0035 0.0051 0.3293
tank 3 0.1455 0.1492 | 0.56128
Test 2 (plug between tanks 1 and 3)
tank | 0.3975 0.3057 3.3104
tank 2 0.4057 0.0565 2.5549
tank 3 35.4034 35.2975 37.0451
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The PID controller is a simple and very robust controller. One can often apply this type
of controller with much less knowledge of the “plant™ and still get pretty good results. This
does not mean zero knowledge, however, because control constants must be set for stable
control. Without an automated tuning routine (Smith (1994)), tuning these controllers for
optimal control can be very time consuming. The PID controller is a fine controller. It is and
probably will remain the workhorse of industry. There are many options that can be used
with PID controllers to make them perform better. One can use programmed control where
a set of rules is used to adjust the control constants for different conditions. These rules are
often fuzzy but could also be probabilistic. In the case of the two- and three-tank problems
in this chapter where two controllers are used, the controllers can be decoupled as suggested
in Example Sc. A good discussion on decoupling controllers can be found in Ogunnaike and
Ray (1994).

Nonlinear controllers based upon a modification of the linear algebra used in Exam-
ple 5c are another type of controller that shows a great deal of promise for problems like the
three-tank problem. For further study of the three-tank problem using a nonlinear controller
and two decoupled PI controllers in addition to the three controllers discussed here, see
Parkinson (2001a, b).
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Chapter 9

Structural Safety Analysis:
A Combined Fuzzy and
Probability Approach

Timothy J. Ross and Jonathan L. Lucero

Abstract. This chapter describes a safety analysis using a combined fuzzy and proba-
bility approach for multistory frame structures. The subjective information and uncertain
data which must be adequately incorporated into the analysis are described. The current
probabilistic approach in treating system and human uncertainties and their inadequacies
is discussed. The alternative approach of using fuzzy sets to model and analyze these un-
certainties is proposed and illustrated by examples. Fuzzy set models in the treatment of
some uncertainties in safety assessment complement probabilistic models and can be readily
Incorporated into the current analysis procedure. This chapter shows that fuzzy set models
can be used to treat various kinds of uncertainties and to complement probabilistic models
in the safety assessment of structures.

9.1 Introduction

Professor Zadeh stated that our degree of confidence in understanding a system diminishes
as the system description becomes more complex (Zadeh (1973)). This statement is cer-
tainly the case for multistory frame structures subjected to earthquake effects. The safety
assessment of multistory frame structures is a complex civil engineering problem which can
be approached only by assessing a number of components of the problem. Many of these
components involve uncertainties. Classical statistics theories have been used to treat some
of these uncertainties. Other uncertainties, especially those involving descriptive and lin-
guistic variables, as well as those based on very scarce information, have usually not been
incorporated satisfactorily into the analysis. In this chapter, some of the difficulties in using
probabilistic models in the safety analysis of multistory frame structures will be described.
The use of fuzzy set theory to handle these difficulties also is described.

The typical procedure used in the safety assessment is described in the following
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sections. Emphasis is placed on the uncertain information and data that must be correctly
incorporated into the analysis. The current approach to handling system and human uncer-
tainties and their inadequacies is discussed. The alternative approach of using fuzzy sets to
model and analyze these uncertainties is suggested and illustrated by examples. It is shown
that the use of fuzzy set models to treat various uncertainties is natural because they are
consistent with the degree of information available. When the information becomes more
refined, it is shown that the fuzzy description progresses logically into the probability descrip-
tion. Fuzzy set models complement probabilistic models and can be readily incorporated
into the current analysis procedure. This chapter is an upgraded and revised version of an
earlier work on which the senior author collaborated (Wong et al. (1987)).

9.2 An example

Consider the following problem. The safety of a multistory frame structure to the influence of
an assumed extreme environment, specified in terms of the mechanical effects of earthquake
shock, is to be assessed. We presume that safety and failure are complementary states of a
structure (i.e., py = 1 — p,). The analysis is approached by formulating the problem into
the following components:

1. Identify the important modes of failure.

2. Identify the ground acceleration effects and loading mechanisms responsible for these
failure modes and the uncertainty in the description of the environment.

3. Determine the response function (i.e., the relationship between the loading and re-
sponse parameters) and its associated uncertainties.

4. Compute the system failure probability.

These steps are represented schematically in Figure 9.1 for a multistory frame structure.

9.3 Typical uncertainties

For our multistory frame structure, a partial list of information and data required in each
step of the analysis is shown in Figure 9.2. The information is further divided into three
categories, deterministic, probabilistic, and fuzzy, corresponding to decreasing precision
in the information. Most current methods acknowledge only the first two categories, i.e.,
deterministic and probabilistic.

Very imprecise information, subjective judgment, and linguistic data are treated as
deterministic or probabilistic, or are ignored altogether. For example, torsion and its as-
sociated effects (due to the choice of the foundation—structure interaction model) and the
damage evaluation criterion are treated deterministically or treated vaguely as a source of
probabilistic uncertainty called systematic uncertainty.

Figure 9.2 describes a fairly complex process where imprecision exists even in the
identification and classification of the sources of uncertainties in the frame structure analysis.
Furthermore, tabulation of uncertainties such as those shown in the figure is very subjective.
People of similar backgrounds and experiences could arrive at differing conclusions.
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Figure 9.2. Partial list of uncertainties.

9.4 Current treatment of uncertainties

In an analytic treatment, it is assumed that the total uncertainty, €2, consists of the uncertainty
due to inherent randomness, &, and the uncertainty associated with the error in the prediction,
A, such that (see Ang and Tang (1975, 1984))

Q% =2 4 A2 9.1)

Hence for a response—~input relationship such as
R=g(X1, Xs,..., Xu), (9.2)
where R is the dependent variable and X;, i = 1,2, ..., n, are the independent variables,

the uncertainty in R can be evaluated through first-order analysis. The mean value of R is

Fzg(i]s22’~--7in) (93)

and the variance of R is

(9.4)

2 _
Op = PijCiC;0Xi0X;,

where p;; is the correlation coefficient between X; and X j, ¢; = {f—; evaluatedatx;, andoy; =
Qy;x;. Alternatively, the random and systematic uncertainties are propagated separately to
give the random and systematic uncertainty in the dependent variable R as described in a
safety assessment procedure due to Rowan (1976).

Monte Carlo schemes also have been devised to treat more complex safety problems
based on the same principle. Collins (1976), for example, used the two-tiered sampling
approach illustrated in Figure 9.3 to distinguish between random and systematic uncertainties.
A limited number of inner loop samples are taken to estimate the average safety probability
due to random variations. Each outer loop sample results in an estimate of the median value
of the average safety probability. The outer loop estimates can then be used to assess the
range of variation of the median probability and to establish the confidence levels.
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Figure 9.3. Two-tiered Monte Carlo sampling procedure.

Saito, Abe, and Shibata (1997) suggest an alternative approach to seismic damage
detection comparable to the Monte Carlo simulation, where a reduction in calculations of
nonlinear analyses of response characteristics is achieved. The “response surface method”
is used to reduce the number of nonlinear analyses for risk evaluation of buildings. Lateral
resistance is assumed to be expressed by the “ultimate base shear coefficient” C,. Thisis a
calculation based on the total areas of columns and walls in one direction of the first story.
The acceleration response spectrum S, is based on an attenuation formula. S, depends
on factors taken from a variety of natural periods T and ground conditions. Basic data of
earthquakes with magnitude M are used to calculate a probability density function (PDF) for
the acceleration response spectrum, S4 which is evaluated as a log-normal distribution. This
study uses the three parameters S4(7'), 7, and C, as random variables to evaluate seismic
reliability of building groups.

9.4.1

Sa(T), Cy,and T are transformed into 14 random variables in Gaussian space and are used
as sample points. The response surface is then calculated by the least squares method after

Response surface method
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calculating the structural response at these points.
The unconditional failure probability is then calculated as

pr(y) = /Pf(yIX)fx(X), 9.5)

where ps(yix) = (1 — fyjx(y[x)) is the conditional failure probability of the maximum
displacement y given the value x, and f,(x) is the joint probability function.

The conclusions drawn from this study, which used statistics of building codes before
and after structural code revisions in the city of Sendai, Japan, suggest results similar to the
Monte Carlo simulation.

Whether the analytic or Monte Carlo method is used, the end result of such an analysis
appears as in Figure 9.4. The median probability of failure curve (1— p;) gives the probability
of failure of the system for a particular loading and is often referred to as the fragility curve.
The curve is a result of the incorporation of random uncertainties only. The variability
of this curve when systematic uncertainties are taken into consideration is also illustrated
in the figure. The left- and right-hand bounds normally correspond to the 10% and 90%
confidence levels of the probability that the failure will be between these bounds in spite of
imprecise data, uncertainties in the analysis model, and so forth. In some works, such as
those by Wong and Richardson (1983) and Rowan (1976), modeling errors are treated as
a source of systematic uncertainties. Another method by Sohn and Law (1997) identifies
multiple damage locations using estimated modal parameters that account for uncertainty
in measurements and modeling. This method uses a “branch-and-bound” search scheme to
avoid large computational costs with a simplified approach for modeling multistory frame
structures.

median

}
o ™%
™

probability of failure

WO‘X« confidence

0 >

ground displacement
Figure 9.4. Typical fragility curves from a survivability analysis.

This method is model-based using modal vibration test data in its assessment of the
structure. Model-based methods use analytical results compared against test data of a dam-
aged structure and can provide quantitative results while locating damage. There are usually
four steps in model-based approaches:

1. Model construction: Construct an analytical model.

2. Modal testing: Estimate modal parameters.
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3. Damage localization: Locate the most likely damage regions using estimated modal
parameters.

4. Damage assessment and system updating: Assess the severity of damage and update
the system parameters.

For damage detection, a refinement of the analytical model is made using the estimated pa-
rameters. This is then used as the initial model for the undamaged structure. Still, differences
in responses between this refined theoretical model and the actual model are unavoidable.
These differences are due to two types of uncertainty in the method. The first uncertainty is
from measurement errors or noise. The second is from a modeling error due to assumptions
made while abstracting from a complex system.

A Bayesian probabilistic approach is applied as a heuristic means for combining prior
experimental data with new test data. In order to avoid the potential high computational
cost, this method uses a branch-and-bound scheme with a simplified approach to modeling
multistory frames.

Comparisons of relative probabilities for damage events rather than the difficult residual
force vectors (or damage vectors) are used in Sohn and Law (1997) to locate the most
probable damage locations. This relative probability is a function of the posterior probability
of damage based on the estimated modal data sets of the structure. This relative posterior
probability is computed from the modal output, which is the difference between the estimated
parameters and the theoretical parameters of the analytical model.

Theoretical formulation. The method consists of three parts: (i) Formulate the relative
posterior probability for an assumed damage event, taking into account modeling errors
and noise (measurement errors); (ii) apply a branch-and-bound search scheme to locate
the most likely damage event without searching all possible damage events; (iii) simplify
three-dimensional multistory frame analyses.

For Ny, substructures, obtain the stiffness matrix as

Nsuh

K(©) = 6K, 9.6)

i=l

(K, is the stiffness matrix of the substructure; 6;, 0 < 6, < 1, is a nondimensional parameter
representing the contribution of the /th substructure stiffness to the system stiffness matrix; 6;
models damage in the ith substructure), where damage (substructure) = 6 < threshold value.
Damage locations and amount are determined according to the 6 values; therefore, the
stiffness matrix is expressed as a function of 6 = {6;; 1 = 1, Ny}
The model data is collected and estimated from vibration tests for N, vibration tests.
The total collection of Ny modal data is represented as

Iy, (Fm:in=1....N}\
Lff(n) consists of both the frequencies and modal vectors estimated from the nth vibration

test: i.e.,

A ~ 5l ~n AR ~ A P(\AI]N\lH)
Y(n) = [a)|, el Wy UlT, ...,UVI'\I’T’]T I= RN'P(HJ'\\I—’N\) _ —7‘—’

n P(Hj)v
P(\y)

where @ is the ith estimated frequency vector in the nth data set and 07 is the ith estimated
modal vector in the nth data set.
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Bayes’ theorem is next used to calculate posterior probability P (H; |¥y, ) after observ-
ing a set of estimated modal parameters Wy,

. Py |H;
PCH; ) =PI D oy, ©.7)

N,C

where H; is the hypothesis for a damage event (containing any number of substructures as
damaged) and P (H;) is the prior probability, the initial degree of belief about the hypothesis
H;. The state of the structure is defined as a binary variable: damaged or undamaged. This
enables the construction of a tree to represent all possible damage cases.

The tree begins with a null hypothesis Hy that represents no damage present. From
this root, a first level of branches is constructed by adding one branch for each damage case.
For a system with Ny, substructures, the number of first-level branches is y ¢, Cy, wWhere
this notation is defined as yCg = the number of combinations of K items out of
a population N.

The next level is again extended by adding another substructure as damaged. The
number of second level branches is y g, C»-

Therefore, for a system with Ny, substructures, the damage tree has a total of

N!
K\(N-K)V?

* Ny levels of branches;
¢ 2V pranches = v Co + ¥ subCi +  + ¥ subCnv sub-

To reduce this complexity, a branch-and-bound search scheme is used.

Branch-and-bound. A branch-and-bound scheme is used to expedite the search for the
most likely damage case without searching all possible combinations. The main idea is to
rule out further extension of a hypothesis by using the following two main conditions:

1. Let H; U D; denote an extension of hypothesis H; by adding the ith substructure as
damaged. If a posterior probability of H; U D; is less than that of H;, then further
extension of H; U D; is ruled out; i.e.,

if P(H; U D;|Wy;), then stop extending H; U D;.

2. If a posterior probability of H; is less than Ppay, which is the largest posterior proba-
bility among all the hypotheses examined so far, then further extension of 11; is ruled
out; i.e.,

if (P(Hj|Wys) < Prax, then stop extending ;.

9.5 Problems with current methods

The analysis procedures described above are very appealing since they produce precise
summaries of the different effects of uncertainties on the system response, e.g., in the form of
Figure 9.4. Such information can be fed into the hierarchy of decision making in maintenance
and replacement plans for the repair of damage to structures, for example. In actuality the
separation of random and systematic uncertainties is not a simple task and simply represents
yet another judgment of the engineer or analyst. The unilateral treatment of all uncertainties
by probabilities implies many assumptions. For example, it assumes that the database exists,



Timothy J. Ross and Jonathan L. Lucero 201

that random and systematic uncertainties are independent, and that all types of systematic
uncertainties such as biases, judgments, and modeling errors are similar and can be treated
in the same fashion. These assumptions are seldom justified due to very limited data, lack of
knowledge, and incomplete understanding of the complex physical phenomena and structural
behavior (Ross (1988), Cooper and Ross (1997)).

For example, consider one particular step in the analysis procedure shown in Fig-
ure 9.5, which depicts the choice of a model for the dynamic response of the frame structure
due to ground acceleration loading. Many models can be considered, including a single-
degree-of-freedom model commonly used in slab analysis, a multiple-spring—mass model,
or a finite element model of the complete beam—column interaction configuration. Subjec-
tive judgment enters into such a choice, and the uncertainty associated with the choice (i.e.,
the computational error to be expected) is assessed from experience with past similar com-
putations and comparative analyses. Furthermore, the evaluation of modeling uncertainties
relies heavily on comparing model predictions with results from controlled tests which are
seldom feasible. Ignoring these concerns for the time being (they are addressed in Wong and
Richardson (1983)), suppose that the finite element modeling approach is selected. One 1s
then faced with more modeling decisions, e.g., the choice of foundation, a concrete model,
how reinforcing steel can be incorporated, the size of the finite element mesh, and so on.
Another layer of judgment and decision is encountered. To proceed, let us limit the discus-
sion to the modeling of the column of the structure. One can consider using a composite
reinforced-concrete model where the reinforcement is smeared over the volume of the finite
element, an explicit reinforcing steel model, or is comprised of two or three elements across
the thickness of the column, and so on. Details of modeling notwithstanding, the fact is
that many subjective judgments and recollections of past experience are used in the analysis.
More important, these “data” cannot be summarized readily by a PDF.

Figure 9.6 illustrates the impacts on the response of the multistory frame due to the
modeling options mentioned previously. The figure shows the variation in the lateral force
and lateral displacement exerted by the earthquake on the frame system as a result of these
modeling assumptions. This variation will be referred to for the time being as the modeling
or systematic uncertainty associated with the structure model. It is apparent that such uncer-
tainty is not amenable to a probabilistic description. Furthermore, experience shows that the
explicit rebar model gives fairly good results in the slightly plastic range, that the same model
is inadequate in the membrane tension mode, and that shear failure modes are completely
absent from such a model. These are important “data’ that should be incorporated into a
realistic analysis. Such inputs are ignored in the current probabilistic formulation since they
cannot be readily assimilated in the probabilistic description of uncertainties.

9.6 The fuzzy set alternative

In view of the complexities outlined previously, satisfactory treatment of uncertainties en-
countered in the safety assessment of multistory frame structures is still a tenuous prospect.
However, the continued use of the current all-probabilistic approach also is inadequate for
the reasons mentioned. It is therefore necessary to seek other descriptions for some of the
uncertainties encountered in the damage detection of multistory frame structure analysis and
which are not readily adapted to probabilistic models. One such alternative is a fuzzy set
description which has been used in civil engineering applications, e.g., see Brown (1980),
Brown and Yao (1983), Blockley (1979), Boissonnade (1984), and Ross (1988). The fuzzy
set approach is attractive in multistory frame structure studies for the same reason that the
probabilistic approach has been found lacking. Subjective information, engineering opinion,
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Figure 9.5. Possible structural dynamic models for safety analysis: (a) single
degree-of-freedom model; (b) multiple degree-of-freedom model; (c) two-dimensional finite
element model.
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Figure 9.6. Sensitivity of building deflection to seismic load and response to un-
certainties in structural modeling (Seible and Kingsley (1991)).

and disjoint data can be quantified and manipulated using fuzzy sets and fuzzy algebra in
a manner which reflects the degree of imprecision in the original information and data. A
fuzzy set approach is illustrated in the following examples; similar sets of examples were
provided earlier in Wong, Ross, and Boissonnade (1987).

9.7 Examples

These examples focus on the definition of damage and the relationship between structural
response and damage for the beams and columns of the reinforced-concrete multistory frame.
To narrow the scope of the discussion, suppose the variable governing the failure (or safety)
of the frame structure is x = % where 6 is the column rotation of the frame at the top
of the first floor and d is the base displacement of the structure. This is a simplification
of the problem and is used for illustration only. (The frame structure is capable of several
failure modes, and each mode may be governed by more than one response parameter.) A
relationship between the variable x and the damage of the structure is required to continue
the analysis. Alternately, a definition of damage or failure is required in order to assess the
safety of the multistory frame structure (Figure 9.1). It is helpful to consider this example
in an order of progress going from all deterministic data/models to imprecise data/models.
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9.7.1 Deterministic/random uncertainties

Suppose the environment (loading) and dynamic response models are deterministic. The
response x also will be deterministic. Denote this response by xg,. If one imposes a
failure criterion which also is deterministic, say, xg,, then the failure of the structure in the
environment of interest is a binary proposition: the structure “does not fail” when xg, < x5,
and it “does fails” when xp, > xg,. This assessment process is illustrated in Figure 9.7
showing the “does not fail” case. The abscissa is x; the response x g and the failure criterion
xr are represented by lines in the lower and upper half-planes, respectively, even though
they are point quantities in the deterministic formulation. In particular, the lower ordinate
is the PDF of the response xg. A deterministic response x g, therefore will appear as a Dirac
delta function located at xg,. Similarly, the upper ordinate is labeled “failure criterion,” and
the delta function at x g, corresponds to the deterministic criterion used. The reason for this
portrayal of the problem will become apparent presently.

Now suppose some random uncertainties are introduced into the analytic process. They
can be uncertainties in the loading environment, in material properties, or elsewhere in the
analysis chain. The response xz from such an analysis will be random and is illustrated by
the PDF in Figure 9.8, with mean value xz,. If the failure criterion remains deterministic,
the probability of failure of the structure is represented by the area of the probability density
of the response, fg, above xg,, and the probability of survival is given by the area below
Xr,. This also is indicated in Figure 9.8.

Such a formulation can be readily extended to the case where random uncertainties
exist in the definition of the failure criterion, i.e., xr also is random. The failure probability
is given by the well-known convolution integral

Py = f f Fr( = v) fav)dudv, ©8)
0 0

where fr(e) is the probability density function of x . This case is illustrated in Figure 9.9. In
this figure, the function Fr(r) is the cumulative distribution function for the failure criterion,
and this form of the integral is similar to (9.8). Note that (9.8) reduces to the special case
of a deterministic failure criterion x5, when fr(x) = 8(x — xg,), a Dirac delta function.
This approach is well known and exemplifies the predominant practice in structure analysis.
The computation of the probability of failure for a particular component and failure mode
is repeated for other levels of loading, and the results are summarized neatly in the form
of a fragility curve, i.e., the curve relating the probability of failure and the loading level,
which was discussed in previous sections (also Figures 9.7(c), 9.8(c), and 9.9(c)). It is now
appropriate to show how fuzzy sets can be used to incorporate nonrandom uncertainties into
this analysis framework.

9.7.2 Modeling uncertainties

It is desirable to estimate the influence of modeling uncertainties on the estimate of the
deflection ratio x obtained from the analysis, which may be deterministic or random as
indicated previously. Major features of the model, such as those illustrated in Figures 9.5
and 9.6, are assessed linguistically in terms of gravity characters (Gg) and consequences
(Eg), following Brown (1979). Suppose engineering analyst opinions on these modeling
features are solicited, resuiting in values as shown in Table 9.1, in both tabular and figure
form. The linguistic labels large, medium, and small are defined here, for example, as
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Figure 9.8. Safety assessment with random uncertainties: (a) block diagram;
(b) probabilistic description; (¢) fragility.

where “+”” and “—"" denote the set operations of union and association, respectively. Follow-
ing Zadeh, the membership function of the fuzzy set “not very small,” unvs(x), is obtained
from the membership function of the fuzzy set “small,” p;(x), as unys(x) = 1 — (ug ).
The effect of the kth modeling feature, denoted by Px, is computed as

Py= Gy x Ex = Gy N Es = /f 16, (@) A s, @)(3, ©).

9.9)

The total effect of all the features in modeling is then P = ), Px = |J, G x E;. The
individual effects P, and the total effect P are summarized in Figures 9.10 and 9.11.
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Next, a fuzzy conditional relationship R is defined to link the consequences of the
features to the estimation of x. This can be done through a correction factor called C, and
the relation R can be expressed linguistically as R: if the consequences are large, then C is
large; or else if the consequences are medium, then C is medium; or else if the consequences
are small, then C is small, with C defined as (using Zadeh’s notation for discrete fuzzy sets)

0.1 033 055 0.78 1.0

Cc = .
Qarge) = e Y1 i T T
C (medium) 0.1 +0.]6+ 1.0 +0.16+ 0.1
1 =
medium 1.0x  1.Ix  12x  13x l4x’
o ) 1.0 N 0.78 + 0.55 " 0.33 n 0.1
small) = .
1.0x 1.1x 1.2x 1.3x 1.4x
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Table 9.1. Character and consequence of modeling features, example 1.

" Feature | G (gravity) | E (consequence)
[ 1 large | medium

2 | medium not very small
3 medium ~ medium

“linguistic modeling features™

0.6 \/ small / \ /

W N

WS, 7 A
P

o

not very small
() L) T T
0 0.2 0.4 0.6 0.8

deflection ratio x

7

Note the supports of C are equal to or greater than 1.0x. This choice of supports implies
that modeling uncertainties have deleterious effects on the assessed evaluation of structural
integrity. The modifier C (large) expresses the fact that there is a strong bias towards values
higher than x can take. The relation R may be expressed as R = | J, Eix x Cy and is shown
in Figures 9.12 and 9.13.

The fuzzy set P represents the total effect of all the features. The fuzzy conditional
relationship R links the consequences of these features to the impact on the estimation of
x. Itis now possible to obtain a quantitative measure of how much x will be affected. For
this purpose, the fuzzy set ¥, defined by the composition relation ¥ = P o R, is used to
estimate the correction factor K (x) on the deflection ratio x for a given character of the
model uncertainty. We recalled that F is defined as

F=PoR= // Velp(g,e) A ugre, 0)]l(g, c), 9.10)
PxR

where Vv and A represent the maximum and minimum operations, respectively. Carrying out
the algebra, the fuzzy matrix F is obtained and is shown in Figure 9.14.

The fuzzy matrix F represents a relationship between the global character of the fea-
tures and the impact on the estimation of x. In this example, the gravity character of the
features can be taken as G’ = medium. Then its impact on the estimation of x is obtained
through the max—min composition rule K(x) = G' o F.

It can be seen in Figure 9.14 that a strong emphasis is placed on the value 1.2x, which
means that the response is approximately 20% higher than that obtained from an analysis
that does not account for modeling uncertainties.

It is easy to extend the above procedure to the case when x is a random variable with
PDF fr(x). K(x) is expressed in a continuous manner and the updated distribution on x
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Figure 9.10. Fuzzy relational matrices: (a) Py; (b) Ps.

P=GyxE; P=UF,

0.3 0.7 E &; 0.3 0.6 o

fuzzy matrix Py = Gy x Es fuzzy matrix P = LEJP"
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Figure 9.11. Fuzzy relational matrices: (a) Py (b) P.

can be expressed as, for example,

[, frx = v)pg (v)dv
-/.‘\' «/v fR(X - U)H«K (U)dvdx '

where v € [0., 0.4], and u g denotes the membership function associated with K (x).
There are other ways in which fuzzy information on features of the model can be
merged with statistical information. For example, the membership function
0.2 0.5 1.0 0.33 0.2

K(m,) = — 9.12
(ms) my + 1.1m, + 1.2m, + 1.3m, + 1.4m, ( )

flx)= 9.11)
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R=E, xC, R=ExC,

0.6 1.4x 0.6 1.4x =
fuzzy relation Ry = E, x C, fuzzy relation Ry = £, % C;
(a) (b)

Figure 9.12. Fuzzy relational matrices: (a) Ry (b) R,.

Ry=Eyx Cy

fuzzy matrix R = URA
k

fuzzy relation Ry = E; x Cy
(a) (b)

Figure 9.13. Fuzzy relational matrices: (a) Rs: (b) R.

can represent the possible values of m,, the mean value of x. To incorporate this information
into the probabilistic analysis, the membership functions are normalized such that K (m,)
becomes a distribution for m,. Furthermore, let X be the true deflection ratio to distinguish it
from x, the deflection ratio obtained from the statistical model. The parameter K can then be
considered a correction factor that accounts for imperfect information in the model. Hence

x =Kx. (9.13)

From (9.12), K has a mean value mg = 1.19 and cov wg = 0.085. The method of Ang and
Tang (1975, 1984) can then be used to find the mean and cov of x using (9.13).
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fuzzy matnx F=F >R

Figure 9.14. Fuzzy relational matrix F.

9.7.3 Interpretation of damage

In many fields of structural engineering, damage and its interpretation are not unambiguous.
This is especially true for multistory frame structures because under the influence of a severe
earthquake they are subjected to extensive plastic deformation. Furthermore, the relation
between the deflection ratio x and the degree of damage of the structural component can be
assessed only from limited tests on damaged structures. These tests are usually performed
on small-scale structures using simulated earthquake loadings. Some representative results
of such tests on multistory reinforced-concrete frame structures are shown schematically in
Figure 9.15. It is seen that damage encompasses a wide spectrum of deflection states. Based
on such limited data, one may interpret the damage in Figure 9.15(a) as medium, that in
Figure 9.15(b) as severe, and that in Figure 9.15(c) as collapse. However, the ranges in the
response parameter (column deflection in this example) corresponding to light, medium, and
severe damage and collapse are not as easy to define. Furthermore, these ranges of response
are expected to overlap: i.e., damage does not change abruptly from light to medium and
from medium to severe upon reaching a crisp threshold. Other factors of complication are the
scarcity of data and the need to extrapolate the data to realistic loading, full-size prototypes,
and impertect foundation—structure configuration.

Returning to the example illustrated in Figures 9.7-9.9, it is plausible to try the follow-
ing in an attempt to accommodate some of the inexact information on damage. Since damage
(deformation) states are ill-defined, a given value of the variable x that governs one mode of
failure of the structure may be assigned to several damage states. In the context of fuzzy set
theory, each damage state is a fuzzy set and its elements are the values of the variable x to
which are assoclated a membership value, u ps(x), which represents the degree of belief that
variable x belongs to a given damage state j. These memberships are generally assigned
through engineering judgment. A hypothetical representation of these memberships is given
in the upper part of Figure 9.16. In the figure, DS| may correspond to light damage, DS, to
medium damage, and so on. The ranges of x corresponding to the different damage states
may overlap, as modeled by overlapping membership functions.
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Figure 9.15. Different levels of damage from scaled tests: (a) medium damage,
(b) severe damage, (c) collapse (Davidovici (1993)).

If the probability density function on the response xg is known, as shown in the lower
part of Figure 9.16, the probabilistic information on various damage states for a given critical
variable such as x can then be obtained, after the appropriate normalization, as in Boisson-
nade (1984):

P(DSi):/HDSi(U)fR(U)dU7

9.14)
>_pDS) =1
i

It should be noted that if a crisp definition of the different damage states is possible
and if there are sufficient data to substantiate the variability in xr, corresponding to a given
damage state, then an all-probabilistic approach similar to that used for the failure criterion in
Figure 9.9 would be possible. For example, a damage criterion can be defined for each of the
three damage levels identified, i.e., light, medium, and severe. This approach is illustrated in
Figure 9.17 and would result in the three fragility curves shown in Figure 9.17(c). Again, in
Figure 9.17 the quantities F;, F,,, and F; are cumulative distribution functions. Figure 9.17
can be compared with Figure 9.16 to illustrate the similarities and differences between the

all-probabilistic and probabilistic-fuzzy approaches, respectively.
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Figure 9.16. Nonuniform and overlapping supports for three fuzzy damage states
and a probabilistic response.

To illustrate how the weighting membership function(s) in Figure 9.16 may be derived,
one may proceed from available damage data that are mainly restricted to small-scale labo-
ratory structures. Our hypothesis is to achieve a quantifiable relationship between damage
to full-scale frame structures and the column deflection ratio x. This relationship does not
exist a priori, however, so it must be assembled from objective elements of information that
are available and from information expressed through subjective assessments. The known
information on damage in this case is the relationship between damage on small-scale lab-
oratory structures and the parameter x. The subjective information is on the relationship
between small-scale damage and full-scale damage and on the linguistic interpretation of
damage states.

To proceed with the hypothetical example, a fuzzy conditional relation R that expresses
known defiection ratio information (denoted X) on small-scale structures to damage (say,
Dy) is established (by a poll of experts; e.g., see Boissonnade (1984)) as follows: R: if X
1s light, then Dy is very small; or else if X is moderate, then Dy is medium; or else if X is
severe, then Dy is large, where Dy stands for damage to small-scale structures and X is the
deflection ratio. The fuzzy sets for X are based on engineering knowledge of the small-scale
database, and the values x = 0.05, 0.1, 0.15, and 0.2 are chosen for clarity in illustration.
One assignment of the membership functions to X (light), X (moderate), and X (severe) is
for brevity: the linguistic terms for Dy, namely, very small (D)}, medium (D;»), and large
(Dy3), are taken from Brown (1980) and are not repeated here. The fuzzy relation R can now
be formed as R = [ J; (X; x Dy;),i = 1.2, 3, and is shown in Figure 9.18.

The next step is to seek support for membership of specific deflection ratios x for
full-scale structures. A possible subjective relationship between small-scale and full-scale
damage for specific damage levels is shown in Table 9.2, where D/ stands for damage to
full-scale structures. Note that for each damage level in Table 9.2 the linguistic terms for D
are larger than the associated terms for D,. This reflects the subjectivity that deformations
at larger scales are larger because of reduced quality control, weaknesses in construction
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Figure 9.17. Survivability assessment including levels of damage for the proba-
bilistic approach: (a) block diagram; (b) probabilistic description; (c) fragility curves.
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Figure 9.18. Fuzzy relational matrix R, example 2.

Table 9.2. Subjective information on scaling, example 2.

Damage level

Smail-scale (D)

Fuil-scale (D7)

1 very small small
2 medium large
3 large very large

materials based on material sizing and detailing, differences in the fabrication environment
{e.g., field versus laboratory), and scale-dependent phenomena such as concrete microcrack-
ing per unit volume. The complete statement of subjective information on scaling is given
by P =, (P, = (Dy; x Dy)), i = 1,2, 3 (Figure 9.19(a)). The influence of X on D can
now be determined by the fuzzy composition

N=RoP= / Vp lir(x.do) A pp(ds, dp)ll(x, dy). (9.15)
XXD,

The tuzzy set N contains the membership support for the deflection ratios (x = 0, 0.1,
0.15, and 0.2) in view of the subjective information in P. The selection of a subset of N
(sometimes referred to as a fuzzified kernel) for membership values of a specific full-scale
damage level also is a subjective process. In other words, the relationship between X and D,
can be obtained by altering the X versus D, relationship with the D, versus D, subjective
information on scaling. The result is shown in Figure 9.19(b).

From Table 9.2, the membership values associated with the x values for a given damage
state of the full-scale structure, D, can be estimated. For example, for “small” damage
with support values in the range [0, 0.2], the membership values associated with x might be
determined from the maximum membership within this range as

1.0 025 025 0.2
0.05 010 015 02
Similarly, for “large’ damage with support values in the range [0, 0.2], one may obtain
0.25 1.0 1.0 1.0
005010 " 0.15 02

small =

large =
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Figure 9.19. Fuzzy relational matrices: (a) P; (b) N.

Fuzzy algebra also can be used to obtain the membership values of x corresponding to “very
large’” damage; i.e.,

1.0 0 10

.06 1.
large = —— —
verylaree =505 Y o.10 T oos oz
where t4(x) = (up(x))? with A corresponding to “very large” and B corresponding to
“large.” Damage states for full-scale structures are more diffused than small-scale structures
due to the additional uncertainty in scaling.

9.8 Summary

The determination of the safety (or failure) of a multistory frame structure is a complex
process. This complexity arises from not knowing completely the physical process that is
taking place, the uncertainty in modeling some components of the problem, and the fact that
other components of the problem, such as damage characterization, are prescribed linguis-
tically. In particular, the current practice of treating systematic uncertainties or biases in
engineering models or in damage interpretation as all-probabilistic processes was shown in
earlier work to be ineffective (Ross (1988), Cooper and Ross (1997)). Current practitioners
continue to struggle to recognize the different kinds of uncertainties present and which must
be accommodated, e.g., time, loading, and quality control, as well as those arising from
random processes.

The analytic treatment outlined in (9.1)-(9.4) tends to exemplify the simplicity cur-
rently attached to the treatment of systematic uncertainties (denoted in the equations as A).
Random and systematic uncertainties are combined as identical entities and treated in the
same analytic fashion. This is equivalent to the presumption that objective and subjective
elements of a problem have similar properties. In the Monte Carlo numerical approach
in the development of fragility (probability of failure) curves, the inherent assumption on
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systematic uncertainties is that they can be sampled from an assumed distribution. The com-
mon presumption is that these uncertainties (and especially a large number of them) can be
modeled as Gaussian variables following the central limit theorem. Hence, it is possible to
shortcut the “outer loop” in the Monte Carlo analysis (Figure 9.3) and specify the solution of
the convolution integral shown in (9.8) using an analytical expression for the first two mo-
ments of the systematic uncertainty distribution. These assumptions are unnecessary when
nonprobabilistic descriptions such as fuzzy sets are allowed.

The use of fuzzy set theory in the assessment of the probability of failure of a struc-
ture complements the current approach. The probabilistic methods deal with objective
information and the fuzzy set methods deal with subjective information. In the example
problems, itis shown that noncrisp and judgmental data such as those existing in the descrip-
tion of damage to a structure and the effects of modeling can be represented more realistically
using the fuzzy set approach. Furthermore, it is shown that fuzzy descriptions can be readily
incorporated into the current probabilistic analysis framework.

For the example problems, the division of subjective information into gravity and
consequence elements has additional merits not present in an all-probabilistic approach in
safety assessments. For example, there may be a high possibility of a multistory frame
structure sustaining large, irrecoverable deformations in a base column, but the consequence
to internal occupants may not be high if the structure is designed with sufficient spiral
reinforcing to prevent total collapse and loss of axial capacity. Hence, in designing a structure
to survive an earthquake and when subjective considerations indicate a high possibility of
failure. reducing either the damage level (gravity) or the consequence on the building’s
function will constitute remedial action. Such an assessment can be best performed using
fuzzy algebra.

To pursue the use of fuzzy set theory, more research is needed in constructing member-
ship functions for various degrees of damage, types of damage, and different tailure modes.
This requires a much more intense effort in data analysis and reduction than is illustrated
herein. In a wider scope, more research is needed in the area of defining systematic uncer-
tainties in safety assessment and how they should be modeled in the analysis. For simplicity,
the discussion in this paper was limited to one component and one damage mode.
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Chapter 10

Aircraft Integrity and
Reliability

Carlos Ferregut, Roberto A. Osegueda, Yohans Mendoza,
Vladik Kreinovich, and Timothy J. Ross

Abstract. In his unpublished recent paper “Probability theory needs an infusion of fuzzy
logic to enhance its ability to deal with real-world problems” (see also Zadeh (2002)),
L. A. Zadeh explains that probability theory needs an infusion of fuzzy logic to enhance its
ability to deal with real-world problems. In this chapter, we give an example of a real-world
problem for which such an infusion is indeed successful: the problems of aircraft integrity
and reliability.

10.1 Case study: Aircraft structural integrity: Formulation
of the problem

10.1.1 Aerospace testing: Why

One of the most important characteristics of the aircraft is its weight: every pound shaved off
means a pound added to its carrying ability. As a result, planes are made as light as possible,
with their “skin’ as thin as possible. However, the thinner its layers, the more vulnerable
is the resulting structure to stresses and faults, and consequently a flight is a very stressful
experience. Therefore, even minor faults in the aircraft’s structure, if undetected, can lead
to disaster. To avoid possible catastrophic consequences, we must thoroughly check the
structural integrity of the aircraft before the flight.

10.1.2 Aerospace testing: How

Some faults, like cracks, holes, etc., are external and can therefore be detected during the
visual inspection. However, to detect internal cracks, holes, and other internal faults, we
must somehow scan the inside of the thin plate that forms the skin of the plane. This skin is

219
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not transparent when exposed to light or to other electromagnetic radiation; very energetic
radiation, e.g., X-rays or gamma rays, can go through the metal but is difficult to use on such
a huge object as a modern aircraft.

The one thing that easily penetrates the skin is vibration. Therefore, we can use sound,
ultrasound, etc. to detect the faults. Usvally, a wave easily glosses over an obstacle whose
size is smaller than its wavelength. Therefore, since we want to detect the smallest possible
faults, we must choose sound waves with the smallest possible wavelength, i.e., the largest
possible frequency. This frequency usually is higher than the frequencies that humans can
hear, so it corresponds to ultrasound.

Ultrasonic scans are indeed one of the main nondestructive evaluation (NDE) tools;
see, e.g, (Chimenti (1997), Clough and Penzien (1986), Grabec and Sachse (1997), Mal and
Singh (1991), and Viktorov (1967)).

10.1.3 Aerospace integrity testing is very time-consuming and
expensive

One possibility is to conduct a point-by-point ultrasound testing, the so-called S-scan. This
testing detects the exact locations and shapes of all the faults. Its main drawback, however,
is that since we need to cover every point, the testing process is very time-consuming (and
therefore very expensive).

A faster test sends waves through the material so that, with each measurement, we
will be able to test not just a single point but the entire line between the transmitter and
the receiver. To make this procedure work, we need signals at special frequencies called
Lamb waves. There are other testing techniques, all which aim to determine whether there
are faults and, if so, what are the location and size of each fault. All these methods require
significant computation time. How can we speed up the corresponding data processing?

10.2 Solving the problem
10.2.1  Our main idea

The amount of data coming from the ultrasonic test is huge, and processing this data takes
a lot of time. It is therefore desirable to uncover some structure in the data and to use this
structure to speed up the processing of this data.

The first natural idea is to divide the tested structure into pieces and consider these
pieces as different clusters. However, physically the tested piece is a solid body, so the
observed vibrations of different points are highly correlated and cannot be easily divided
into clusters.

Instead of making a division in the original space, we propose to make a division,
crudely speaking, in the frequency domain, i.e., a division into separate vibration modes.

For each vibration mode, we can estimate the energy density at each point; if this
measured energy density is higher than in the original (undisturbed) state, this is a good
indication that a fault may be located at this point. The larger the increase in energy density,
the larger the probability of a fault. After we relate the probabilities to different modes, we
must combine them into an overall probability of having a fault at this particular point.

10.2.2 Steps necessary for implementing the main idea

Our idea leads to the following steps:
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+ First, we must be able to transform the information about the excess energy of each
mode at different points into the probability of having a fault at the corresponding point.

* Second, for each point, we must combine the probabilities coming from different
modes into a single probability of a fault.

To make the first step more accurate, we should take into consideration not only the value of
the excess energy but also the value of the original mode-related energy. For example, if the
original energy at some point is 0, then this means that the vibrations corresponding to this
mode have zero amplitude at this point; in other words, this mode does not affect our point
at all and therefore cannot give us any information about the faults at this point. Similarly,
points with small mode energy can give little information about the presence of the fault.
Therefore, when computing the probability of a fault at different points based on different
modes, we must take into consideration not only the excess energy but also the original mode
energy at this point.
To apply our idea, we must know

+ the function that transforms the value of the excess energy (and of the original mode
energy) into the probability of a fault and

* the combination function which transforms probabilities coming from different modes
into a single probability.

10.2.3 We do not have sufficient statistical data, so we must use
expert estimates

Ideally, we should get all these probability functions from the experiments; however, in
real life, we do not have enough statistics to get reliable estimates for probabilities; we
have to complement the statistics with expert estimates. In other words, we must use in-
telligent methods for nondestructive testing as described, e.g., in Ferregut, Osegueda, and
Nunez (1997).

10.2.4 Soft computing

One of the most natural formalisms for describing expert estimates is fuzzy theory, which
together with neural networks, genetic algorithms, simulated annealing, etc. form a combined
intelligent methodology called soft computing. Therefore, in this chapter we will be using
methods of soft computing (including fuzzy set theory).

10.2.5 The choices of transformation and combination functions are
very important

The quality of fault detection essentially depends on the choice of these methods:

 For some choices of a transformation function and a combination method, we get a
very good fault detection.

« For others, however, the quality of detection is much worse.

It is therefore desirable to find the optimal transformation and combination functions.
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10.2.6 How can we solve the corresponding optimization problem?
Solving this optimization problem is very difficult for two reasons:

* First, due to the presence of expert uncertainty, it is difficult to formulate this problem
as a precise mathematical optimization problem.

* Second, even when we succeed in formalizing this problem, it is usually a complicated
nonlinear optimization problem which is extremely difficult to solve using traditional
optimization techniques.

In our previous work (see, e.g., Nguyen and Kreinovich (1997)), we developed a general
methodology for finding the optimal uncertainty representation. In this chapter, we show
how this general methodology can be used to find the optimal uncertainty representations
for this particular problem—namely, the following:

» The problem of assigning probability to excess energy is solved similarly to the problem
of finding the best simulated annealing technique.

+ The problem of finding the best approximation to the probability of detection (POD)
curve (describing the dependence of probability of detection on the mode energy;
see Barbier and Blondet (1993), Gros (1997), Hovey and Berens (1988)) is solved
similarly to the problem of finding the best activation function in neural networks.

« A solution to the probability combination problem; it turns out that under certain
reasonable conditions, probability combination methods can be described by so-called
Frank’s t-norms; this problem is solved using fuzzy techniques.

Some of our previous results have been published in conference proceedings (see Koshel-
eva, Longpre, and Osegueda (1999); Krishna, Kreinovich, and Osegueda (1999); Osegueda
et al. (1999a); Ross et al. (1999); Yam, Osegueda, and Kreinovich (1999)).

10.3 How to determine probabilities from observed values
of excess energy: Optimal way (use of simulated
annealing)

10.3.1 An expression for probabilities

For every point x, we estimate the value of the excess energy J(x) at this point. We want to
transform these values into the probabilities p(x) of different points containing the fault.

The larger the value of J (x), the more probable it is that the point x contains a fault, i.e.,
the larger the value p(x). Therefore, a natural first guess would be to take p(x) = f(J(x))
for some increasing function f(z).

However, this simple first guess does not work: In many applications, there is usually
only one fault. As a result, the total probability > p(x) that a fault is located somewhere
should be equal to 1. If we simply take p(x) = f(J(x)), then this condition is not satisfied.
In order to satisfy this condition, we must normalize the values f(J(x)); i.e., consider the
probabilities

J
oy = IO

== 10.1
> 70D (10-h
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Which function f(z) should we choose? This question is very important, because numerical
experiments show that different choices lead to drastically different efficiency of the resuiting
method; so to increase detection rate, we would like to choose the best possible function f (z).

10.3.2 Best in what sense?

What do we mean by “the best”? It is not so difficult to come up with different criteria for
choosing a function f(z):

* We may want to choose the function f(z) for which the resulting fault location error
is, on average, the smallest possible P(f) — min (i.e., for which the quality of the
answer is, on average, the best).

* We may also want to choose the function f (z) for which the average computation time
C( f) is the smallest (average in the sense of some reasonable probability distribution
on the set of all problems).

At first glance, the situation seems hopeless: we cannot estimate these numerical criteria
even for a single function f(z), so it may look as though we cannot undertake the even more
ambitious task of finding the optimal function f(z). The situation is not as hopeless as it may
seem because there is a symmetry-based formalism (actively used in the foundations of fuzzy,
neural, and genetic computations; see, e.g., Nguyen and Kreinovich (1997)) that also will
enable us to find the optimal function f(z) for our situation. (Our application will be mathe-
matically similar to the optimal choice of a nonlinear scaling function in genetic algorithms;
see Kreinovich, Quintana, and Fuentes (1993) and Nguyen and Kreinovich (1997).)

Before we make a formal definition, let us make two comments.

The first comment is that our goal is to find probabilities. Probabilities are always
nonnegative numbers, so the function f(z) must also take only nonnegative values.

The second comment is that all we want from the function f(z) are the probabilities.
These probabilities are computed according to formula (10.1). From expression (10.1), one
easily can see that if we multiply all the values of this function f(z) by an arbitrary constant
C.i.e..if we consider a new function _f(z) = C - f(z), then this new function will lead (after
the normalization involved in (10.1)) to exactly the same values of the probabilities. Thus
whether we choose f(z) or f(z) = C - f(z) does not matter. Therefore, what we are really
choosing is not a single function f(z) but a family of functions {C - f(z)} (characterized by
a parameter C > ().

In the following text, we will denote families of functions by capital letters such as F,
F'. G ete.

10.3.3 An optimality criterion can be nonnumeric

Traditionally. optimality criteria are numerical; i.e., to every family F we assign some value
J(F) expressing its quality and we choose a family for which this value is minimal (i.e.,
when J(F) < J(G) for every other alternative ). However, it is not necessary to restrict
ourselves to such numerical criteria only.

Forexample, if we have several different families F that have the same average location
error P(F). we can choose from them the one that has the minimal computational time C (F).
In this case, the actual criterion that we use to compare two families is not numeric, but more
complicated: A tamily F| is better than the family F5 if and only if either P(F\) < P(F>)
or PUFY = PiFRYyand COF)Y < COF5).
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The only thing that a criterion must do is allow us, for every pair of families (F, F>),
to make one of the following conclusions:

* The first family is better with respect to this criterion; we will denote it by F| > F, or
F 2 < F 1.

¢ The second family is better (F, > F;) with respect to the given criterion.

* The two families have the same quality with respect to this criterion; we will denote
itby F, ~ F».

* This criterion does not allow us to compare the two families.

Of course, it is necessary to demand that these choices be consistent. For example, if F] > F;
and F, > F3,then Fy > Fj.

10.3.4 The optimality criterion must be final

A natural demand is that this criterion must choose a unique optimal family (i.e., a family that
is better, with respect to this criterion, than any other family). The reason for this demand is
very simple.

If a criterion does not choose any family at all, then it is of no use.

If several different families are the best according to this criterion, then we still have
the problem of choosing the best among them. Therefore, we need some additional criterion
for that choice, as in the above example: If several families Fi, F5, ... turn out to have the
same average location error (P(F)) = P(F;) = ---), then we can choose among them a
family with minimal computation time (C (F;) — min).

So what we actually do in this case is abandon that criterion for which there were
several “best” families and we consider a new “composite” criterion instead: Fj is better
than F, according to this new criterion if either F; was better according to the old criterion,
orif both F| and F;, had the same quality according to the old criterion and Fj is better than
F5 according to the additional criterion.

In other words, if a criterion does not allow us to choose a unique best family, it means
that this criterion is not final; we will have to modify it until we come to a final criterion that
will have that property.

10.3.5 The criterion must not change if we change the measuring
unit for energy

The exact mathematical form of a function f(z) depends on the exact choice of units for
measuring the excess energy z = J(x). If we replace this unit by a new unit that is A times
larger, then the same physical value that was previously described by a numerical value J (x)
will now be described in the new unit by a new numerical value J(x) = L(;—}

How will the expression for f(z) change if we use the new unit? In terms of J(x), we
have J (x) = A-J (x). Thusif we change the measuring unit for energy, the same probabilities
p(x) ~ f(J(x)) that were originally represented by a function f(z) will be described in the
new unit as p(x) ~ f (A - J(x)), i.e., as p(x) ~ f(J(x)), where f(z) = f(A-2).

There is no reason why one choice of unit should be preferable to the other. Therefore,
it is reasonable to assume that the relative quality of different families should not change if
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we simp}y change the unit; i.e., if a family F is petter than a family G, then the transformed
family F also should be better than the family G.
We are now ready to present the formal definitions.

10.3.6 Definitions and the main result

Definition 10.1. Let f(z) be a differentiable strictly increasing function from real numbers
to nonnegative real numbers. By a family that corresponds to this function f(z), we mean
a family of all functions of the type f(z) = C- f(z), where C > Ois an arbitrary positive
real number. (Two families are considered equal if they coincide, i.e., consist of the same
functions.)

In the following text, we will denote the set of all possibie families by ®.

Definition 10.2. By an optimality criterion, we mean a consistent pair (<, ~) of relations
on the set ® of all alternatives that satisfies the following conditions forevery F, G, H € &:

. tF <Gand G < H,then F < H.
2. F~F.

3.IF ~G,then G ~ F.

4 IfF~Gand G ~ H then F ~ H.
S WF<Gand G ~ H,then F < H.
6. f F~GandG < H,then F < H.

7. F <G,thenG £ Fand F # G.

Comment. The intended meaning of these relations is as follows:
* [ < (G means that, with respect to a given criterion, G is better than F.
* F ~ ( means that, with respect to a given criterion, £ and G are of the same quality.

Under this interpretation, conditions 1-7 have simple intuitive meaning; e.g., | means that
if G is better than £ and H is better than G, then #{ is better than F.

Definition 10.3.

* We say that an alternative F' is optimal (or best) with respect to a criterion (<, ~) if
for every other alternative G either F > G or F ~ G.

* We say that a criterion is final if there exists an optimal alternative, and this optimal
alternative is unique.

Definition 10.4. Let & > 0 be a positive real number.

* By a A-rescaling of a function f(x), we mean a function f(x) = f(h-x)
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* By a A-rescaling R; (F) of a family of functions F, we mean the family consisting of
A-rescaling of all functions from F.

Definition 10.5. We say that an optimality criterion on & is unit-invariant if for every two
families F and G, and for every number A > 0, the following two conditions are true:

1. If F is better than G in the sense of this criterion (i.e., F = G), then R, (F) » R, (G).

2. If Fisequivalent to G in the sense of this criterion (i.e., F' ~ G), then R, (F) ~ R, (G).

Theorem 10.1. If a family F is optimal in the sense of some optimality criterion that is final
and unit-invariant, then every function f(z) from this family F has the form C - 7* for some
real numbers C and o.

Comment. Experiments show that for nondestructive testing, the best choice is o & 1.

10.4 How to determine the probability of detection:
Optimal way (use of neural networks)

In the previous section, we assumed that the probability of having a fault at a certain point
x depends only on the value of the excess energy J(x) at this point x. This assumption,
however, is not always true. For example, if at some point x the energy E (x) of the original
(no-fauit) vibration mode is equal to 0, then this means that this point does not participate in
this vibration mode at all; therefore, from observing this vibration mode, we cannot deduce
whether or not there is a fault at this point. Similarly, if the strain energy F(x) is small, this
means that this point x is barely moving and hardly participating in the vibration. Therefore,
this vibration mode is barely affected by the presence or absence of the fault at this point.

With this in mind, we can say that the probability p(x) described in the previous
section is not the “absolute” probability of a fault at a point x based on this mode but rather a
conditional probability that there is fault P (fault|C)—under the condition C that the analysis
of this mode can detect a fault at a point x. The actual probability P (fault) of detecting a
fault from the measurements related to this mode can be therefore computed as a product
P(fault) = P(fault]C) - P(C).

We already know how to compute P (fault|C). Therefore, to compute the desired
probability P (fault), we must find the probability P(C) that the analysis of this mode can
detect a fault at a given point x. We have already mentioned that this detection probability
depends on the energy E(x) of the original vibration mode at the point x: P(fault) =
p(E(x)): if E = 0, then p(E) = 0; if E is small, then p(E) is small; if E is large enough,
then p(E) is close to 1. Let us describe this POD dependence p(E).

Our application will be mathematically similar to the optimal choice of an activation
function in neural networks (Nguyen and Kreinovich (1997)).

10.4.1 The POD function must be smooth and monotonic

If we change the energy E slightly, the probability p(E) of detecting the fauit should not
change drastically. Thus we expect the dependency p(E) to be smooth (differentiable).

For a POD function, the probability of detection should be equal to O when the point
is not affected by the vibration (£ = 0) and should be equal to 1 when the point is highly
affected (£ — oo). The larger the energy F, the more probable it is that we will be able to
find the fault; thus the dependence p(E) should be monotonic.
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10.4.2 We must choose a family of functions, not a single function

For practical applications, we need the function p(E) to determine the probability that if a
point with an energy F is presented to a certain NDE technique, then the corresponding fault
will be detected. In order to determine this function empirically, we must have statistics
of samples for which the fault was discovered; from these statistics, we can determine the
desired probability.

This probability, however, depends on how we select the samples presented to the
NDE techniques. For example, most structures are inspected visually before using a more
complicated NDE technology. Some aerospace structures are easier to inspect visually, so
we can detect more faults visually, and only harder-to-detect faults are presented to the NDE
technique; as a result of this preselection, for such structures the success probability p(E)
is lower than in other cases. Other structures are more difficult to inspect visually; for these
structures, all the faults (including easy-to-detect ones) are presented to the NDE techniques,
and the success probabilities p(E) will be higher.

In view of this preselection, for one and the same NDE technique, we may have
different POD functions depending on which structures we apply it to. Therefore, instead
of looking for a single function p(E), we should look for a family of POD functions which
correspond to different preselections.

How are different functions from this family related to each other? Preselection means,
in effect, that we are moving from the original unconditional detection probability to the con-
ditional probability, under the condition that this particular sample has been preselected. In
statistics, the transformation from an unconditional probability Py(H;) of a certain hypoth-
esis H; to its conditional probability P(H;|S) (under the condition § that a sample was
preselected) is described by the Bayes formula

P(S|H;) - Py(H))

P(H;|S) = .
H1S) = S pisim) - Aoty

In mathematical terms, the transformation from p(E) = Py(H;) to p(E) = P(H;|S) is
Sfractionally linear, i.e., has the form p(E) — p(E) = @(p(E)), where

k-y+1

)=
¢(y) ey

for some real numbers &, [, m, and n. Therefore, instead of looking for a single function
p(E), we should look for a family of functions {¢(p(E))}, where p(E) is a fixed function
and ¢(y) are different fractionally linear transformations. In the following text, when we
say “a family of functions,” we will mean a family of this very type.

Similarly to the previous section, we are looking for a family which is optimal with
respect to some final optimality criterion, and it is reasonable to require that this criterion
should not change if we change the measuring unit for energy. Thus we arrive at the following
definitions.

10.4.3 Definition and the main result

Definition 10.6.

* By a probability function, we mean a smooth monotonic function p(E) defined for all
E > 0 for which p(0) =0and p(E) - las £ — oc.
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* By a family of functions, we mean the set of functions is obtained from a probability
function p(FE) by applying fractionally linear transformations.

Theorem 10.2. If a family F is optimal in the sense of some optimality criterion that is final
and unit-invariant, then every function p from the family F is equal to

(10.2)

for some A and B > 0.

10.5 How to combine probabilities (use of fuzzy
techniques)

Based on the formulas given in the previous two sections, we can determine, for each point
x and for each mode i, the probability p;(x) that, based on this mode, there is a fault at
this point x. Since there are several modes, we must therefore combine, for each point x,
these probabilities p; (x) into a single probability p(x) that there is a fault in the structure
at this point. In this section, we show how different techniques can help us to find the best
combination.

10.5.1 Traditional probabilistic approach: Maximum entropy

For each point x, after we obtain the probabilities p;(x) (1 < i < n) that this point has a
fault in it, we must combine these n probabilities into a single probability p(x) that there is
a fault. A fault exists if it is detected by one of the modes, i.e., if it is detected by the first
mode, or detected by the second mode, etc. In other words, if p;(x) is a probability of the
event D?ef “a fault at point x is detected by ith mode,” then p(x) is the probability of the
disjunction Dy Vv --- Vv D,,.

In general, if we know only the probabilities of events D;, then it is not possible to
uniquely determine the probability of the disjunction; to select a unique probability, we
use a maximum entropy approach. The idea of this approach is as follows: to find the
probabilities of all possible logical combinations of the events D;, it is sufficient to determine
the probabilities of all 2" events W of the type Df’ & - & Di, where g; € {—, +}, D;r
means D;, and D means its negation —D;. Therefore, we must determine the probabilities
p(W) sothat )~ p(W) = 1, and for every i, the sum of p(W) for all events for which D; is
true is equal to p; (x). There are many distributions of this type; we select the one for which
the entropy — Y p(W) - log(p(W)) takes the largest possible value.

For this distribution, the desired probability of the disjunction is equal to p(x) =
1~TI, (1 = pi(x)) (see, e.g., Kreinovich, Nguyen, and Walker (1996)).

10.5.2 Traditional approach is not always sufficient

From the statistical viewpoint, the maximum entropy (MaxEnt) formula corresponds to
the case in which all modes are statistically independent. In reality, the detection errors
in different modes can occur from the same cause, and therefore these are not necessarily
independent.

If we knew the correlation between these errors, then we could use traditional statistical
methods to combine the probabilities p;(x). In reality, however, we typically do not have
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sufficient information about the correlation between the components. Therefore, we need to
find a new method of fusing probabilities p| (x), ..., p,{(x) corresponding to different modes.

10.5.3 Main idea: Describe general combination operations

We must choose a method for combining probabilities. In mathematical terms, we must
describe, for every n, a function that takes n numbers py...., p, € [0.1] as inputs and
returns the “fused” (combined) probability f,(pi, ..., pn).

This description is further complicated by the fact that the division into modes is rather
subjective; e.g., for three close modes, we can

» either divide the vibration into these three modes 1, 2, and 3;

* or divide the vibration into two: mode 3 and a “macromode” {1, 2} combining modes
| and 2;

¢ ordivide it into 1 and {2, 3}.
Depending on the division, we get different expressions for the resulting probability:
* If we divide the vibration into three modes, the resulting probability is p = f3(py, p2, p3)-

» If we divide the vibration into two macromodes {1, 2} and 3, then for the first macro-
mode, we get pi> = fa(pr, p2), and thus p = fa(pia, p3) = fo(falpr, p2). p3).

* Similarly, if we divide the vibration into two macromodes | and {2, 3}, then for
the second macromode, we get pszx = fa(pa, p3), and thus p = fo(p, pn) =
Lpr. f2(pa. pa)).

The resulting probability should not depend on the (subjective) subdivision into modes. As

a result, we should get f3(p1, p2, p3) = ol fa(p1, p2), p3) = fa(pr. fr(p2, p3)). In other
words, we can make two conclusions:

* First, the combination function for arbitrary n > 2 can be expressed in terms of a
combination function correspondington = 2 as f,(p), ..., pn) = f(pr. fr(pa.....

,fl(])n—l, [)11) T ))

« Second, the function f, which describes the combination of two probabilities should
be associative (i.e., [>(a, f2(b, )y = fa( fala, b), ¢) foralla, b, ¢ € [0, 1]).

Associativity is a reasonably strong property, but associativity alone is not sufficient to
determine the operation f>(a, b) because there are many different associative combination
operations. We hope there is another property that we can use. To describe this property, let
us recall that for fault detection, the function f>(py, p2) has the following meaning:

* p; isthe probability P(D,) of the event D, defined as “the first mode detected a fault™;

e py is the probability P(D;) of the event D, defined as “the second mode detected a
fault”; and

* f2(py, p2) is the probability P{D, v D,) that one of the two modes detected a fault.
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Thus far, our main goal was to detect a fault; this problem is difficult because faults
are small and therefore show up only on one of the modes. Different faults present different
dangers to the aerospace structure: a small fault can be potentially dangerous, but if the faults
are small enough, they may not require grounding the aircraft. On the other hand, large faults
are definitely dangerous. Therefore, in addition to detecting all the faults, we would like to
know which of them are large (if any). A large fault is probably causing strong changes in
all vibration modes. Thus we can expect a large fault if we have detected a fault in all the
modes. In other words, in this problem, we are interested in the value P(D; & D5). From
the probability theory, we know that P(D| & D,) = P(D)) + P(D;) — P(D1 Vv Dy), i.e.,
P(D; & D;) = p1 + p2 — fo(p1 V p2). We can describe this expression as P(Dy v D;) =
g2(p1, p2), where g2{a, b) =a+ b — fr(a, b).

Similar to the case of the “or” combination of different components, we can describe
the probability P (D) & D, & Ds3) (that all three modes detect a fault) in two different ways:

* either as P((D1 & D) & D3) = g2(g2(p1, p2), p3),

e oras P(D; & (D, & D3)) = g2(g20(p1, p2), p3)-

The expression for P(D & D; & D3) should not depend on how we compute it, and therefore
we should have g,(g2(p1, p2), p3) = g2(p1, g2(p2, p3)). In other words, not only should
the function f»>(a, b) be associative, but also the function g2(a, b) = a+b— f>(a, b) should
be associative.

10.5.4 The notions of £-norms and ¢-conorms

In the above text, we described everything in terms of combining probabilities. However,
from the mathematical viewpoint, the resulting requirements were exactly the requirements
traditionally used for combining membership values in the fuzzy approach (see, e.g., Klir
and Yuan (1995) and Nguyen and Walker (1999)):

* The function f2(p,, p») that describes the degree of truth of the statement P(D; v D,),
provided that we know the degrees of truth for statement D, and Dy, is a t-conorm.

 The function g;(p1, p2) that describes the degree of truth of the statement P (D, & D»),
provided that we know the degrees of truth for statement D; and Dy, is a f-norm.

Main result: Frank’s t-norms

Functions f(a, b) for which both the function itself and the expression g(a,b) = a + b —
f(a, b) are associative have been classified (Frank (1979)). These functions (called Frank’s
t-conorms) are described by a formula

(Sl—a _ 1) . (S]—b _ 1)]

frla,b) =1 —log, [1 +
s—1

and the corresponding f-norms are

s—1

a_1y.(s? —
g2(a, b) = log, [1+(S ) (s 1)]

for some constant s. As a particular case of this general formula, we get the expression
1-(1=a)-(1—=>5)(fors — ).

Thus to combine the probabilities p;(x) originating from different modes, we should
use Frank’s 7-conorms.
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Comment. Fuzzy techniques have been successfully used, in particular, in nondestruc-
tive testing (for a recent survey, see, e.g., Ferregut, Osegueda, and Nunez (1997)) and in
damage assessment in general (see, e.g., Terano, Asai, and Sugeno (1987) and Ulieru and
Isermann (1993)).

The fact that, for probabilistic data, we get similar formulas makes us hope that this
algebraic approach will be able to combine probabilistic and fuzzy data.

10.6 Preliminary results

As a case study, we applied the new method to the problem of the nondestructive evaluation
of the structural integrity of the U.S. Space Shuttle’s vertical stabilizer. To prove the applica-
bility of our method, we applied these techniques to the measurement results for components
with known fault locations.

The value s was determined experimentally so as to achieve the best performance; it
turns out that the best value is s &~ 1 (corresponding to the independent modes). For this value
s, our method detected all the faults in ~ 70% of the cases, a much larger proportion than
with any previously known techniques (for details, see Andre (1999), Osegueda et al. (1999),
Pereyra et al. (1999), and Stubbs, Broom, and Osegueda (1998)).

For other values of s, we got an even better detection, but at the expense of false alarms.
We are currently trying different data fusion techniques (as described, e.g., in Gros (1997))
to further improve the method’s performance.

10.7 Alternative approach to fusing probabilities:
Fuzzy rules

10.7.1 Main problems with the above approach

There are two main problems with the above approach:

* First, because we used several different (and reasonably complicated) formalisms, the
resulting computational models are rather time-consuming and are not very intuitive.

 Second, although we got better fault detection than was gotten by all previously known
methods, there is still some room for improvement.

10.7.2 The use of fuzzy rules

The main problem we face is that of complexity of the computational models we use. Com-
plex models are justified in such areas as fundamental physics, where simpler first approxi-
mation models are not adequate. However, in our case, the computational models are chosen
not because simpler models have been tried, but because these complex models were the
only ones which fit our data and which were consistent with the expert knowledge.

The very fact that a large part of our knowledge comes from expert estimates, which
have a high level of uncertainty, makes us believe that within this uncertainty we can find
simpler computational models which will work equally well. How can we find such models?

A similar situation, when unnecessarily complex models were produced by existing
techniques, was what motivated fuzzy logic. Namely, L. Zadeh proposed using new sim-
plified models based on the direct formalization of expert knowledge instead of traditional
analytical models.
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In view of the success of fuzzy techniques, it is reasonable to use a similar approach
in fault detection as well. Let us first describe the corresponding rules.

10.7.3 Expert rules for fault detection

As a result of the measurements, for each location we get five different values of the excess
energy Ei, ..., Es which correspond to five different modes. An expert can look at these
values and tell whether we have a definite fault here, or a fault with a certain degree of
certainty, or definitely no fault at all.

Before we formulate the expert rules, we should note that for each node, the absolute
values of excess energy are not that useful because, e.g., a slight increase or decrease in the
original activation can increase or decrease all the values of the excess energy, while the fault
locations remain the same. Therefore, it is more reasonable to look at the relative values of
the excess energy. Namely, for each mode i, we compute the mean square average o; of all
the values and then divide all values of the excess energy by this mean square value to get
the corresponding relative value of the excess energy x; = %

In accordance with standard fuzzy logic methodology, we would like to describe some
of these values as “small positive” (SP), some as “large positive” (LP), etc. To formalize
these notions, we must describe the corresponding membership functions pgp(x) and gy p(x).

Some intuition about the values x; comes from the simplified situation in which the
values of excess energy J; are random, following a normal distribution with  average. In this
simplified situation, the mean square value o; is (practically) equal to the standard deviation
of this distribution. For normal distributions, deviations which exceed 20; are rare and are
therefore usually considered to be definitely large; on the other hand, deviations smaller than
the average o, are, naturally, definitely small. Deviations J; > 20; correspond to the values
X = ;—: > 2, and deviations J; < o; correspond to x; = § < 1. Therefore, we can conclude
that values x; > 2 are definitely large and positive values x; < 1 are definitely small.

Thus for the fuzzy notion “small,” we know that

+ values from 0 to 1 are definitely small; i.e., usp(x;) = 1 for these values;
« values 2 and larger are definitely not small; i.e., ugp(x;) = O for these values.

These formulas determine the value of the membership function for all positive values of x;,
except for the values from 1 to 2. In accordance with standard fuzzy techniques, we use the
simplest (linear) interpolation to define psp(x;) for values from this interval; i.e., we take
pLsp(xi) =2- X; for X; € [1, 2]

Similarly, we define the membership function for “large” as follows: wp(x;) = 0 for
x; €10, 1]; urp(x;) = x; — 1 for x; € {1, 2]; and pyp(x;) = 1 for x; > 2.

Similarly, we describe the membership functions corresponding to “small negative”
(SN) and “large negative” (LN): in precise terms, for x; < 0 we set ugn(x;) = psp(]x;|) and
puin(x) = prp(lx; ).

This takes care of fuzzy terms used in the condition of expert rules. To present our
conclusion, we determine that experts use five different levels of certainty from level 1 to
level 5 (absolute certainty). We can identify these levels with numbers from 0.2 to 1.

Now we are ready to describe the rules:

1. Ifthe “total” excess energy x; + - - - + x5 attains its largest possible value, or is close to
the largest possible value (by < 0.06), then we definitely have a fault at this location
(this conclusion corresponds to level 5).
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2. If all five modes show increase, then we have a level 4 certainty that there is a fault at
this location.

3. If four modes show increase, and one mode shows small or large decrease, then
level 4 holds.

4. If three modes show increase and two show small decrease, then level 4 holds.

5. If three modes show increase, and we have either one small and one large decrease or
two large decreases, then level 3 holds.

6. If two modes show large increase and three modes show small decrease, then level 3
holds.

7. If two modes show large increase, one or two modes show large decrease, and the rest
show decrease, then level 2 holds.

8. If one mode shows large increase, one mode shows small increase, and three modes
show small decrease, then level 2 holds.

9. In all other cases, level 1 holds.

10.7.4 The problem with this rule base and how we solve it

The techniques of fuzzy modeling and fuzzy control enable us to translate rule bases (like
the one above) into an algorithm which transforms the inputs x, ..., x, into a (defuzzified)
value of the output y. In principle, we can apply these techniques to our rule base, but the
problem is that we will need too many rules. Indeed, standard rules are based on conditions
such as “if x; is Ay, ... and x,, is A,, then y is B.”” In our case, we have five input variables,
each of which can take four different fuzzy values (LN, SN, SP, and LP). Therefore, to
describe all possible combinations of inputs, we must use 4° = 1024 rules. This is feasible
but definitely not the simplification we seek.

To decrease the number of the resulting rules, we can use the fact that all the rules do
not distinguish between different modes. Therefore, if we permute the values x; (e.g., swap
the values x| and x;), the expert’s conclusion will not change. Hence instead of considering
all possible combinations of x;, we can first apply some permutation to decrease the number
of possible combinations. One such permutation is sorting the values of x,, i.e., reordering
these values in decreasing order. Let us show that if we apply the rules to the reordered
values, then we can indeed drastically decrease the number of resulting fuzzy rules.

Let yy = v» > .-+ > ys denote the values xj, ..., x5 reordered in decreasing order.
Let us show how, e.g., rules 2, 3. and 4 from the above rule base can be reformulated in terms
of these new values y;:

Rule 2. To say that all five values x; are positive is the same as saying that the smallest
of these values is positive, so the condition of rule 2 can be reformulated as ys > 0.

Rule 3. When four modes are positive and the fifth is negative, it means that y; > 0
and ys < 0.

Notice that since rules 2 and 3 have the same conclusion, they can be combined into a
single rule with a new (even simpler) condition y; > 0. (Indeed, we have either ys > 0 or
ys < 0;1f v, > 0 and vs > 0, then the conclusion is true because of rule 2; if v4 > 0 and
vs < 0, then the conclusion is true because of rule 3.)

Rule 4. Similarly, this condition can be reformulated as y3 > 0, v is SN, and ys is SN.

As a result, we get the following new (simplified) rule base:
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1. If the “total” excess energy y; + - - - + ys attains its largest possible value, or is close
to the largest possible value (by < 0.06), then level 5 holds.

. If y4 > 0, then level 4 holds.
. If y3 > 0, vy, is SN, and ys is SN, then level 4 holds.

. If y, is LP, y3 < 0, and ys is SN, then level 3 holds.

2
3
4. If y; > 0, y4 < 0, and ys5 is LN, then level 3 holds.
5
6. If y,is LP, y3 < 0, and ys is LN, then level 2 holds.
7

. If y; is LP, y5 is SP, y3 < 0, y4 is SN, and ys is LN, then level 2 holds.
8. In all other cases, level 1 holds.

To transform these fuzzy rules into a precise algorithm, we must select a fuzzy “and” oper-
ation (z-norm) and a fuzzy “or” operation (¢-conorm), e.g., min(a, b) and max(a, b), and a
defuzzification; in this paper, we use centroid defuzzification (see Chapter 2).

For each rule (except the last one), we can compute the degree of satisfaction for each
of the conditions. The rule is applicable if its first condition holds ard the second condition
holds, etc. Therefore, to find the degree with which the rule is applicable, we apply the
chosen “and” operation to the degrees with which different conditions of this rule hold.

For each level > 1, we have two rules leading to this level. The corresponding degree
of certainty is achieved if either the first or the second of these rules is applicable. Therefore,
to find a degree to which this level is justified, we must apply the chosen “or”” operation to
the degrees to which these two rules are applicable.

As aresult, we get the degrees d (/) with which we can justify levels / = 2 + 5. Since
the last rule (about level 1) says that this rule is applicable when no other rule applies, we can
compute d(1) as 1 —d(2) — - - - — d(5). Now, centroid defuzzification leads to the resulting
certainty 1 -d(1) +2-d(2) + ---+ 5 - d(5). This is the value that the system outputs as the
degree of certainty (on a 1 to 5 scale) that there is a fault at a given location.

10.7.5 Experimental results

We have applied the resulting fuzzy model to simple beams with known fault locations. The
results are as follows:

When there is only one fault, this fault can be determined as the location where the de-
gree of certainty attains its largest value, 5. This criterion leads to a perfect fault localization,
with no false positives and no false negatives.

When there are several faults, all the faults correspond to locations with degree 4 or
larger. This criterion is not perfect; it avoids the most dangerous errors of false negatives
(i.e., all the faults are detected), but it is false positive; i.e., sometimes faults are wrongly
indicated in the areas where there are none.

To improve the fuzzy algorithm, we take into consideration that the vibration cor-
responding to each mode has points in which the amplitude of this vibration is 0. The
corresponding locations are not affected by this mode, and therefore the corresponding ex-
cess energy values cannot tell anything about the presence or absence of a fault. Therefore,
it makes sense to consider only those values x; for which the corresponding mode energy is
at least, say, 10% of its maximum. If we thus restrict the values x;, then the number of faise
positives decreases.
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Similar results follow for two-dimensional cases.

We tried different s-norms and 7-conorms. Thus far, we have not found a statistically
significant difference between the results obtained by using different -norms and f-conorms;
therefore, we recommend using the simplest possible operations min(a, ») and max(a, b).

10.8 Applications to aircraft reliability

Asimilar approach works not only for fault detection but also for another important problem,
reliability.

10.8.1 Reliability: General problem

A typical system (e.g., an airplane) consists of several heterogeneous components. For a
system to function normally, it is important that all these components function well.

For example, for an airplane to function normally, it is important that its structural
integrity is intact, that its engines are running normally, that its communication system is
functioning, and that the controlling software is performing well.

The reliability of each component is normally analyzed by different engineering dis-
ciplines that use slightly different techniques. As a result of this analysis, we get the proba-
bilities f; of each component’s failure (or, equivalently, the probability p; = | — f; that the
ith component functions correctly). To estimate the reliability of the entire system, we must
combine the probabilities of each component functioning correctly into a single probability
p that the whole system functions correctly.

10.8.2 Traditional approach to reliability

The simplest case typically covered by statistical textbooks is when all n components are
independent. In this case, for reliability, the probability p of the system’s correct functioning
is equal to the product of the correctness probabilities (the » components):

P=pi- P

Another case with a known solution is when all failures are caused by one and the same
cause (the case of full correlation). In this case, the failure probability is determined by its
weakest link, so f = max(f,..... foyand p =min(p, ..., p,).

10.8.3 Traditional approach is not always sufficient: A probiem

Most real-world situations lie in between these two extremes described above (see, e.g.,
Petroski (1994) and Ross (1998)), i.e.,

» components are not completely independent (e.g., a structural fault also can damage
sensors, and thus computational ability suffers), or

» components are not fully correlated.

Typically, however, we do not have sufficient information about the correlation between the
components.
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10.8.4 Proposed approach to fusing probabilities: Main idea

We must choose a method for combining probabilities. In mathematical terms, we must
describe, for every n, a function that takes » numbers py,..., p, € [0, 1] as inputs and
returns the “fused” (combined) probability f,(pi, ..., p.).

Similar to modes of vibration of an aircraft, the division into components is rather
subjective; e.g., for three components, we can

* either divide the system into these three subsystems 1, 2, and 3,
* or divide the system into two “macrocomponents” {1, 2} and 3,
* or divide it into 1 and {2, 3}.
Depending on the division, we get different expressions for the resulting probability:

* If we divide the system into three components, the resulting probability is p =
f3(p1s p2, p3).

» If we divide the system into two macrocomponents {1, 2} and 3, then for the first
macrocomponent we get pi2 = f2(p1, p2), and thus for a system as a whole, p =

f(p12, p3) = L2(f2(p1, p2), p3).

* Similarly, if we divide the system into two macrocomponents 1 and {2, 3}, then for the
second macrocomponent we get py3 = f2(p2, p3), and thus for a system as a whole,

p = f2(p1. pn) = f2(p1, f2(p2, p3).

The resulting probability should not depend on the (subjective) subdivision into components.

As a result, we should get f3(pi1, p2, p3) = f2(f2(p1. p2), p3) = fa(p1, fa(p2, p3)). In
other words, we can make two conclusions:

* First, the combination function for arbitrary n > 2 can be expressed in terms of a
combination function corresponding ton = 2,as f,(p1, ..., pn) = f(pi, (P2, ...,

F2(Pr1, Pa) -+ )

* Second, the function f; that describes the combination of two probabilities should be
associative (i.e., f>(a, fr(b,c)) = fr(fa(a, b),c) forall a, b, c € [0, 1]).

For reliability, the function g2(p1, p2) has the following meanings:

* p; is the probability P(Cy) of the event C; defined as “the first component is func-
tioning correctly”;

* ps is the probability P(C») of the event C, defined as “the second component is
functioning correctly”; and

* f2(p1, p2) is the probability P(C, & C,) that both components are functioning cor-
rectly.

In some reliability problems, several components serve as backups for one another; in such
situations, the system as a whole functions correctly if at least one of the components functions
correctly. In other words, in such problems, we are interested in the value P(C; Vv C3). From
probability theory, we know that P(Cy v C3) = P(Cy) + P(C) — P(C, & C3); le.,
P(Cy v () = p1+ p2 — f(p1, p2). We can describe this expression as P(Cy v C;) =
£:(p1, p2), where gz(a, b) = a + b — fi(a, b).
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Similar to the case of the “and”” combination of different components, we can describe
the probability P(C; v C; v C3) (that at least one of three components functions correctly)
in two different ways:

* either as P((C) v C2) v C3) = g2(g2(p1, p2), P3)s
e oras P(Cy v (Cr v Cy)) = ga(ga(pi, p2), p3)-

The expression for P(Cy Vv Cy v C3) should not depend on how we compute it, and therefore
we should have ga(g2(pi, p2). p3) = g2(p1. g2(p2, p3)). In other words, not only the
function f>(a, b) but also the function g2(a, b) = a + b — f>(a. b) should be associative.

10.8.5 Resulting solution

We already know that functions f>(«a. b) for which both the function itself and the expression
a+ b — f(a, b) are associative have been classified and are known as Frank’s f-norms:

a __ A ~[7 _
fala. by = log, [1 + (s 1) - (s 1)}

s —1

for some constant s. As a particular case of this general formula, we get the above two
expressions a - b (for s — 1) and min(a, b) (for s — 0).

10.9 Closing thoughts

We have presented a technique to extend standard reliability theory to accommodate nonnu-
meric forms of information, such as expert judgment. Such an extension would be useful
in other fields as well. For example, the main problem of mammography is to detect small
faults (small clots, cracks, etc.) in the mammary gland, which may indicate a tumor. This
problem is very similar to the problem of aerospace testing: in both cases, we must detect
possible faults.

Appendix: Proofs
Proof of Theorem 10.1

This proof is based on the following lemma.

Lemma 10.1. If an optimality criterion is final and unit-invariant, then the optimal family
Fopi IS also unit-invariant, i.e., R, (F,,) = F,p for every number A.

Proof. Since the optimality criterion is final, there exists a unique family oy, that is optimal
with respect to this criterion; i.e., for every other F', either Fop > £ or Fip ~ F.

To prove that Fyp = R; (Fopr), we will first show that the rescaled family R; (Fiyp) is
also optimal, i.e., that for every family F, either Ry (Fop) > F or Ry (Fop) ~ F.

If we prove this optimality, then the desired equality will follow from the fact that our
optimality criterion is final, and thus there is only one optimal family (and since the families
Fope and R; (Fop) are both optimal, they must be the same family).
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Let us show that R, (Fop) is indeed optimal. How can we, e.g., prove that R; (Fop) >
F? Since the optimality criterion is unit-invariant, the desired relation is equivalent to
Fopt > Ry-1(F). Similarly, the relation R, (Fop) ~ I¥ is equivalent to Fop ~ Ry-1 (F).

These two equivalences allow us to complete the proof of the lemma. Indeed, since
Fop 18 optimal, we have one of two possibilities: either Fop > Ry -1 (F) or Fope ~ Ry-1(F).
In the first case, we have Ry (Fop) > F; in the second, we have Ry (Fop) ~ F.

Thus whatever family F we take, we always have either Ry (Fop) > F or Ry (Fop)
~ F. Hence R;(Fyy) is indeed optimal, and thence R, (Fon) = Fop. The lemma is
proved. 0

Let us now prove the theorem. Since the criterion is final, there exists an optimal
family Fopy = {C - f(z)}. Due to the lemma, the optimal family is unit-invariant.

From unit-invariance, it follows that for every X there exists a real number A(%) for
which f(X -2) = A(}) - f(z). Since the function f(z) is differentiable, we can conclude
that the ratio A(\) = ﬂ?—zi—) is differentiable as well. Thus we can differentiate both sides of
the above equation with respect to A, and substitute A = 1. As a result, we get the following

differential equation for the unknown function f(z):

A _

dz o-f

Z

where by @ we denoted the value of the derivative % taken at L = 1. Moving terms dz and
7z to the right-hand side and all the term containing f to the left-hand side, we conclude that

df dz

—_— = —.

f z
Integrating both sides of this equation, we conclude that In(f) = o - In(z) + C for some
constant C and therefore that f(z) = const - z%. The theorem is proved. a

Proof of Theorem 10.2

Since the optimality criterion is final, there exists an optimal family F.p. Similarly to the
proof of Theorem 10.1, we prove that this optimal family is unit-invariant; i.e., Ry (Fop) =
Fop for all real numbers A > 0.

Therefore, if a function p(E) belongs to the optimal family Fyy, then for every A > 0,
the rescaled function p(X - £) of multiplying E to this function f belongs to Fyy; ie., due
to the definition of a family, there exist values k(1), etc. for which

k(L) - p(E) + (A
Sy = KOYpE) 10

= . (10.3)
m(h) - p(E) +n(2)

The solution to this functional equation is, in essence, described in Aczel (1966). For
completeness, let us describe the proof in detail.

ForA =1, wehavek = n = 1land ! = m = 0, so since p is smooth (hence
continuous), for A & 1, we have n(A) # 0; hence we can divide both the numerator and the
denominator of (10.3) by n(}) and thus get a similar formula with n(1) = 1. If we multiply
both sides of the resulting equation by the denominator, we get the following formula:

m(A) - p(E) - p(h - E) + p(E) = k(}) - p(E) +1(2).
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If we fix A and take three different values of E, we get three linear equations for determining
three unknowns k(A), [(X), and m(A), from which we can determine these unknowns using
Cramer’s rule. Cramer’s rule expresses every unknown as a fraction of two determinants,
and these determinants polynomially depend on the coefficients. The coefficients either do
not depend on 4 at all (like p(E)) or depend smoothly (p(i - £) smoothly depends on A
because p(E) is a smooth function). Therefore, these polynomials also are smooth functions
of A, as are their ratios k(A), [(A), and m(L).

Now that we know that all the functions in (10.3) are differentiable, we can differentiate
both sides with respect to A and set L = 1. As a result, we get the following differential
equation:

EZ—I; =Co+C - p+Crp’
for some constants C;. To solve this equation, we can separate the variables, i.e., move all
the terms related to E to one side and all the terms related to p to the other side, and get the
differential equation

dp _dE
Co+Ci-p+Cr-p?  E

(10.4)

Let us first show that C; # 0. Indeed, if C; = 0and Cy = 0, then CI—’“ = In(E) +const,
which contradicts our assumption that p(0) = 0. If C; = 0 and C; # 0, then we get
Cl" -In{Cy - p+ Cy) = In(E) + const; hence C, - p+ Cy = A - EY, which forae < 0
contradicts the assumption that p(0) = 0 and for & > 0 contradicts the assumption that
p(E) = 1 as E — oo. Thus the case ¢ = 0 is impossible, and C; # 0. For C» # 0, in
general, the left-hand side of (10.4) can be represented as a linear combination of elementary
fractions (p + z;) ' and (p + z»)~' (where z; are—possibly complex—roots of a quadratic
polynomial C| + Cy - p + Cy - p°):

1 I 1
=C - - .
Co+Ci-p+Cy-p? <p+2| P+Z2)

(The case of a double root can be handled in a similar manner.) Thus integrating (10.4), we
conclude that

+z
c¢ln (/7 l) = In(E) + const
p+2

and

P+ 2
P+

=pP.Ef

for some A and 8. Therefore, the expression A - E# can be obtained from p(E) by afractional
linear transformation; hence by applying the inverse transformation (and it is known that the

inverse to a fractionally linear transformation is also fractionally linear), we conclude that
A-EP+B

NE) = —

MEY =D

for some numbers A, B, C, and D. One can easily check that we get a monotonic everywhere-
defined function p(E) only for real values A-D and 8.
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If B < 0, then we can multiply both numerator and denominator by £=# and get a
similar expression with 8 > 0. Thus without losing generality, we can assume that 8 > 0.
Now, the condition p(0) = 0 leads to % and hence to B = 0. The condition also leads to
A=C,ie,to

Since p(E) is not identically equal to 1, we have D # 0. Therefore, we'can divide both the
numerator and the denominator by D and get the desired expression (10.2). The theorem is
proved. [0
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Chapter 11

Auto Reliability Project

Jane M. Booker and Thomas R. Bement

Abstract. Reliability is defined as the probability that an item (system, subsystem, or
component) performs according to specifications. When test data are sparse (such as with
a new concept design), expert judgment can be used to estimate reliability. Using expert
judgment information in conjunction with data and historical information brings into focus
ways of handling various kinds of uncertainties. In this chapter, we examine the use of
a traditional probabilistic approach, and also the use of fuzzy membership functions for
reliability estimation under uncertainty.

11.1 Description of the reliability problem

Over the years, many advancing techniques have surfaced for estimating the reliability' or
performance of a system. These techniques rely on extensive test data from prototypes or
produced systems. In the traditional military context, a product would be developed, or a
similar product that already existed would be modified, and then the product would be tested.
The typical long-term test was designed to statistically demonstrate a reliability requirement
at a specified confidence.

However, many practical considerations have arisen such as whether the testing in-
volves additional time, cost, and resources. There also is the possibility that the end of
development will overlap with the start of production. Problems with the system encoun-
tered from testing on a tight production schedule can cause a delay in production and/or result
in insufficient time to fix problems—the latter being how faulty products get into customers’
hands, resulting in recalls and lack of customer confidence.

There is a definite need to understand the reliability of a new product during its devel-
opment program, even during its initial concept phase. Such a need can be met by estimating
reliability through combining all available information at any lifetime phase. Information
sources can include the traditional test data but also may include what is known about similar

[ Reliability is defined as the probability that the item (system, subsystem, or component) performs according
to specifications. Performance is 1 more general term than reliability that could be measured in quantities such as
miles/gallon or failures per unit time.
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systems, what can be learned from simulations or computer models of physical phenomenon,
and what can be elicited from the experts, whose knowledge and expertise are a valuable
resource. Combining all this information produces an estimate for the performance or reli-
ability of a system. This estimate can be revised and updated as new information becomes
available, providing tracking of the system throughout its lifetime. These ideas form a
methodology called PREDICT? (Meyer et al. (1999)) and are the basis of the examples and
discussion here.

The reliability of the system or product includes the product design and the manufac-
turing process. The reliability at any given point in time or at any given step in the overall
development and lifetime of the product is hereby referred to as reliability characteriza-
tion. Reliability characterization refers to both the functional calculation of the reliability
(point estimate value) and the uncertainty (usually represented by a distribution function)
that accompanies that reliability value.

Reliability characterizations are calculated from formulas or models for each compo-
nent, process, failure mode, etc. and then propagated through the many parts and processes
which comprise the system. The way the characterizations are combined or propagated
through the system depends on how the individual parts and processes are interrelated in
the system. To specify these relationships, it is helpful to depict the system with a logical
structure, such as a reliability block diagram. Figure 11.1 is a block diagram for a simple
series of 10 higher-level parts called subsystems—each subsystem is composed of a number
of underlying components or processes and corresponding failure modes for each. Diagrams
such as these are specified for all levels of the system, and reliabilities can be calculated for
individual items (boxes) or the different levels (component, assembly, subsystem, and sys-
tem). Nuclear reactor systems can have thousands of basic components, resulting in dozens
of levels. Automotive systems typically contain 50-80 components, each having 1-9 failure
modes/mechanisms, and 10-12 processes.

1ail electronics electronics
O—» Pump | Pump 2 ’—) |—p
P P assembly hardware software
. new new manufac-
new .
elef:tron.lcs |t subsystem - |t subsystem turing
calibration 1 sensor 2 process

Figure 11.1. Reliability block diagram for subsystem level.

A mathematical equation based on Boolean algebra for combining the 10 subsystems
in Figure 11.1 is the product of the individual subsystem reliabilities. Because reliability
characterization involves uncertainties attached to reliability estimates, the reliability char-
acterization for each subsystem in the figure is a distribution function (such as a probability
distribution function (PDF)). These distributions are then multiplied together using Monte
Carlo simulation to form the total system reliability. In turn, each subsystem depicted is a
product of all the lower level items beneath it, assuming these also are connected in series.’

During the various time steps of the product’s development and lifetime, new infor-
mation (from design or manufacturing changes, vendor corrective actions, prototype tests,

ZPREDICT stands for performance and reliability evaluation with diverse information combination and tracking.
3Boolean expressions for items in parallel (redundant items) or dependent items are more complex (Henley and
Kumomoto (1981)).
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production and usage) becomes available. The reliability, R;, is calculated at each time step,
i, along with a new uncertainty distribution, f(R;), and monitored according to Figure 11.2
relative to the reliability requirement or target. For example, a target might be that the system
must have 98% or greater reliability. In the automotive industry, such a requirement may
be dictated by emissions requirements set by government standards, or it may be based on
customer need in a competitive environment. Certain requirements may change throughout
the system’s lifetime. For example, a requirement for a product to enter the production
phase may be stricter than one for entering the prototyping stage. Therefore, monitoring
reliability characterization is a decision tool for deciding which new designs are viable for
future production and use.
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Figure 11.2. Reliability growth plot.

Calculating the value of R; and f(R;) (the uncertainty distribution for R;) requires
combining information from various sources, e.g., test data, product data, engineering judg-
ment, specifications/requirements, data from similar components, and data at different levels
(component, system, etc.). Reevaluating R; and f(R;) in light of new information requires
methods for incorporating new information with existing information, e.g., adding new test
data or accommodating design changes. Weighting schemes, rules, expert judgment, and
Bayes’ theorem are all useful for this purpose.

With each evaluation of R; and f(R;), gaps in the current state of knowledge become
apparent, providing the basis for a strategy for deciding where to devote future testing
and analysis resources. If a gap from poor information results in a large uncertainty in
one important area (e.g., unknown performance of a component), then time and/or effort
should be devoted to understanding why and where additional information can be useful
in improving the reliability and/or reducing the uncertainty. Understanding the effects of
changes in the design, uncertainties. and test results can be gained from recalculating the
reliability characterization without actually making such changes. These so-called “what
if”” cases provide decision makers with a mechanism for experimenting with anticipated or
proposed changes or tests. For example, decision makers may ask “What happens to R; and
S (R;)if component A is replaced by component B orif 10 successful new tests are performed
on subsystem C?” “What if we changed vendors/supplies of component A?” “What if we
replaced a plastic component with metal?” Test planning and resource allocation can then
be done with greater chances of success.
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11.2 Implementing the probability approach
11.2.1 Logic and reliability models

As noted in section 11.1, the first step in a reliability or performance analysis includes
defining what is meant by performance or reliability for a system and establishing a structure
which specifies how all the parts of the system interrelate. With a probability approach, that
definition includes the construction of a probability model for estimating the reliability or
performance. This, in turn, requires the formation of a logic model, which specifies how
all the pieces of the system interrelate. If all the components, subsystems, etc. are in series
(meaning that all subsystems must function for the entire system to function), then the model
of such a system is simply the product of the reliabilities of the parts/processes. Reliability
for the system at time i is

k
R;(system) = R;(x;) for j =1,k parts/processes P. (11.1)
Y J

j=1

The next step involves specifying the way reliability is calculated. In many manufac-
turing applications, this involves the concept of the hazard function which defines portions
of the product’s lifetime such as infant mortality, useful life, and wearout (Kerscher (1989)).
“Infant mortality” is mainly due to the latent defects generated during the manufacturing
process. The “useful life” portion is primarily due to latent design defects that manifest
themselves over the life of the product. *“Wearout™ of parts is due to failure modes associ-
ated with operating the product beyond its useful life. Figure 11.3 illustrates these life phases
in the so-called bathtub curve. Here the hazard function is plotted as a function of time. Good
engineering practice has long held that wearout failure modes should be identified during the
development process and that those failure modes that cannot be removed from the design
should at least be designed to occur beyond the useful life of the product. Wearout failure
modes are assumed to occur beyond useful life and therefore are not considered.

/

Figure 11.3. Hazard function versus time indicating the infant mortality phase
(rapidly decreasing), useful life (flat), and wearout (gradually increasing).

The reliability model must be physically appropriate and mathematically correct for
the system. Of equal importance, the model and its usage must be culturally acceptable to
the organization using it. Neither of these requirements is a small challenge. With regard to
the first requirement, the two-parameter Weibull probability density function may be used
to model the infant mortality and uvseful lifetime (Kerscher (1989)). With regard to the
second requirement, this model of the reliability perspective is well suited to the implicit
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understanding of the design and manufacturing community, given their awareness of the
“bathtub” curve, and therefore may be culturally acceptable.
The two-parameter Weibull expression for reliability as a function of time, ¢, is

R(t) = exp(—(A1)?). (11.2)

The next challenge is to specify what the two parameters are for 8 (the slope) and A (the
failure rate) for each component/process. Because 8 influences how the failure rate changes
with time (degrades for 8 < 0, stays constant for 8 = 0, and improves for 8 > (), potential
estimates for 8 can be found from the previous performance of similar products, expert
judgment, or some combination of information relating to this phenomenon. The initial
estimate of the failure rate of the distribution may be made from whatever information is
available relative to previous designs.

Typically, at the outset of a new product development program actual test data are
very limited due to the absence of hardware. Considerable information about the potential
reliability is available, however, in the form of expert judgment possessed by members of
the product development teams. For instance, these experts may be accustomed to thinking
about the reliability of the product at a particular time of the product’s life, such as 12 months.
Eliciting these judgments, the subpopulation due to latent design defects may be modeled,
and the two parameters of the Weibull model may be estimated.

A similar approach may be taken with respect to the latent defects generated by the
manufacturing process. Again, a two-parameter Weibull distribution may be used as a
model. The physical situation here, however, can be different enough to argue in favor
of an alternative approach to estimating the parameters. When mistakes are made in the
manufacturing process, they certainly can occur in matters of degree (e.g., varying solder
bath temperature). More typically, however, mistakes tend to be very significant, such
as putting parts together upside down or leaving parts out of an assembly. These latent
manufacturing defects tend to manifest themselves relatively quickly, if not immediately. It
may therefore be suggested that because the bulk of these defects will emerge in a definable
time period, an estimate could be made of the fraction of the defects that would manifest
themselves almost immediately, or at the beginning of the product’s useful life. Specifically,
if the fraction of defects could be estimated, as well as the endpoint at which the whole
subpopulation would manifest itself, in addition to the fraction of the subpopulation that
would manifest itself almost immediately, then sufficient information would exist to estimate
the two parameters directly. Simply put, this would reduce the determination of the two
Weibull parameters to understanding the reliability at two different points in time, specifically
at or near time 0 and at the time at which all the elements failed. This approach to estimating
the reliability performance of manutactured products fits well within the culture of automotive
manufacturing facilities because of the nature of their business and manufacturing operations.

Having identified how the parameters can be specified, individual Weibull distributions
can be identified for the latent design and manufacturing defects. They are then combined
to produce the distribution representative of the whole component or subsystem and then
ultimately combined to form the distribution representative of the entire system. Estimates
of reliability are then calculated at key points in time for predicting long-term performance
such as for warranty periods and government-mandated requirements.

11.2.2 Expert elicitation

To obtain an initial overall reliability estimate, Ry, of the entire system in the absence
of test data, estimates of component and subsystem reliabilities (with uncertainties) are
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elicited from teams of subject matter experts. The experts are selected by their managers and
peers as being knowledgeable of specific subsystems, processes, or components. Separate
elicitations can be conducted for teams working on product design and those working on the
manufacturing process.

It is recommended that the entire elicitation procedure be documented in a script,
which is made available to the experts. This can be conveniently done as an official memo
describing the goals of the elicitation, specifying the purpose of the product development
effort, providing motivation for experts to participate, estimating the time and effort required
for the experts, and supplying contact personnel information.

It may also be possible to design elicitation worksheets—documents containing in-
structions for the questionnaire use, descriptions of the parts/processes, and questions about
the parts/processes performance in terms of the specified performance measures. To account
for uncertainties, elicited estimates should always be accompanied by uncertainty ranges of
values. These could be in the form of asking for three cases: the most likely, the best, and
the worst. Assumptions, conditions, and requirements related to performance should also be
asked of the experts to obtain proper estimates and uncertainties and to provide documen-
tation for updating and tracking. Separate worksheets should be constructed for different
definitions of reliability/performance. For example, if performance is defined in terms of
failure rates for the product design, but in terms of successes per total units for processes,
then slightly different questions may be necessary, resulting in different worksheet versions.

The worksheets (so-called interview instruments) must be pilot tested on an individual
expert before the expert teams meet. Proper wording of the elicitation questions is crucial to
avoid confusion and misinterpretation by the teams of experts later on.

It may be necessary to schedule more than one meeting for each team of experts. For
example, the first meeting may be an introduction to the elicitation process. The roles of the
facilitator, team leaders, and experts are defined in the script developed earlier. Experts can
be handed the worksheets and other supporting material for background. Team leaders can
review the logic model diagram of the system structure with the experts for any adjustments
at this time. A second meeting would be the actual elicitation for the initial reliability
prediction. The leader of each team then completes the questions on the worksheet, indicating
the consensus of the team. Any final adjustments to the logic model should be made at this
meeting.

As part of the elicitation, and indicated on the worksheet, experts are asked to specify
all known or potential failure mechanisms, or failure modes, for each component or sub-
system. Failure modes are failures in the components themselves, such as a valve wearing
out, mistakes made during the manufacture of components, or assembly of multiple compo-
nents into a subsystem. For updating and documenting purposes, the percent or proportion
contribution of each failure mode also should be specified by the experts.

For processes, it may be necessary to specify the percent or proportion of items that
slip through the quality control procedures (called spills). Other estimated quantities are
elicited that are necessary for characterizing spills (e.g., frequency and duration of the spills).
Also, the experts are asked how these spills relate to the specified failure modes. As noted
earlier, this information can be used to estimate the appropriate parameters of the Weibull
distributions.

The experts do not have to be asked to estimate reliabilities, per se, but should provide
their estimates about component, subsystem, and system performance in terms familiar to
them. (This approach and its benefits are described in further detail in Meyer and Booker
(2001).) For example, the experts in the design process might think in terms of incidence
per thousand vehicles (IPTV), while those in the manufacturing process might use parts
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per million (PPM). As part of their estimates, the experts are asked to give a very brief
explanation of their reasoning. In addition, the experts provide ranges on their estimates,
which were used to represent the uncertainty and to ultimately formulate f(Ry).

The results from the elicitations are presented to all the participating experts for their
review and reconciliation across the entire system. The results include reliabilities with
uncertainties for components, subsystems, and the system at various times (e.g., 12 months,
36 months, 100,000 miles). The design and process information from the elicitations is
combined for the calculation of Ry. From the resulting uncertainty distribution, f(Ry),
measures can be extracted that are meaningful to the experts, such as the median reliability
of the system at 12 with a 90% lower uncertainty limit.

Subsequent information, including new test data, is reflected in subsequent values of R;
and f(R;) as described next. In this way reliability may be monitored over time (reliability
growth) and plans formulated accordingly.

11.2.3 Updating methods

As discussed previously, the system under study needs to be defined and characterized with
a logic model, such as a reliability block diagram that, in turn, determines how reliabilities
are calculated at various levels. New information becomes available at various stages in the
system lifetime. This information could be in the form of design changes, supplier changes,
process changes, prototype test data, production data, engineering judgment, etc.

Pooling information/data from different sources or of different types (e.g., tests, pro-
cess capability studies, engineering judgment) is usually done with methods that combine the
uncertainty distribution functions associated with the various information sources. Bayes’
theorem offers one mechanism for such a combination. As seen in Chapter 4, Bayesian
pooling combines information with the following structure: The existing information (data)
forms the likelihood distribution. Parameter(s) of the likelihood distribution is (are) not con-
sidered a fixed quantity (quantities) but instead, has (have) probability distribution(s), which
form(s) the prior. The prior is combined with the likelihood using Bayes” theorem to form
the posterior distribution. Bayesian combination is often referred to as an updating process,
where new information is combined with existing information. As noted in Chapter 4, if the
prior and likelihood distributions overlap (i.e., reinforce each other), then Bayesian combi-
nation will produce a posterior whose variance is narrower than if the two were combined via
other methods, such as a linear combination. This is an advantage of using Bayes’ theorem.

Simulation methods often are used to combine or propagate uncertainties (represented
as distribution functions) through the logic model and the corresponding reliability model.
Unless conjugate priors (see Chapter 4) are used, simulation is needed to calculate the poste-
rior in the Bayesian combination or any other weighting scheme. Monte Carlo simulation is
used to propagate reliability characterizations through the various levels of the diagram, with
the accuracy being dependent on the number of simulations (e.g., 10,000) used to sample
from the distributions.

It is not necessary to develop prior information for subsystems above the most basic
level, which usually is the component level. Priors for higher levels are formed by com-
bining the reliability characterizations from the lower levels. However, if there is prior
information on these higher levels (e.g., subsystems), the reliability characterization from
that information can be combined with the distribution formed from lower levels using meth-
ods in Martz and Almond (1997), Martz and Waller (1990), and Martz, Waller, and Fickas
(1988). More important, test data and other new information can be added to the existing
reliability characterization at any level and/or block (e.g., system. subsystem. or component).
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This data/information may be applicable to the entire block or to only a single failure mode
within the block. When new data or information becomes available at a higher level (e.g.,
subsystem) for a reliability characterization at step i, it is necessary to back propagate the
effects of this new information to the lower levels (e.g., component). The reason for this
is because at some future step, i + j, updating may be required at the lower level and the
effect propagated up the diagram. The statistical issues involved with this back propagation
are difficult (Martz and Almond (1997)). A process for back propagating the effects of new
information/data from higher levels to lower levels is presented in Martz, Waller, and Fickas
(1988) for series systems and in Martz and Waller (1990) for series/parallel systems.

In general, the initial reliability characterization Ry is developed from expert judgment
and is referred to as the native prior distribution for the system. Data/information may be
developed regarding each element (e.g., system, subsystem, component), and this would be
used to form likelihood distributions for Bayesian updating. All of the distribution infor-
mation in the items at the various levels must be combined through the logic flow diagram
to produce a final estimate of the reliability and its uncertainty at the top, or system, level.
Three different combination methods are used:

1. For each prior distribution that needs combining with a data-based or likelihood dis-
tribution, Bayes’ theorem is used and a posterior distribution results.

2. Posterior distributions within a given level are combined according to the logic model
to form the induced prior distribution of the next higher level.

3. Induced prior and native prior distributions at the higher levels are combined within the
same item using a method in Martz, Waller, and Fickas (1988) to form the combined
prior (for that item), which is then merged with the data (for that item) via method 1.
This approach is continued up through the diagram until a posterior distribution is
developed at the system level.

As more data become available and incorporated into the reliability characterization
through the Bayesian updating process, this data will tend to dominate the effects of the
initial estimates developed through expert judgment. In other words, R; formulated from
many test results will look less and less like Ry from expert estimates.

After the experts review the results of each R;, they determine the ensuing courses of
action for system development. These included decisions about which parts or processes to
change, what tests to plan, what prototypes to build, what vendors to use, etc. Before any
(expensive) actions are taken (e.g., building prototypes), “what if” cases are calculated to
predict the effects on estimated reliability of such proposed changes or tests. The experts
can run several “what if”’ cases, guiding their decisions on design changes, prototypes, and
planning for tests. These cases can involve changes in the logic model, changes in expert
estimates, effects of proposed test data results, or changes in the terms of the reliability
equations. Further breakdown of components into the failure modes affecting them may be
required to properly map design changes and proposed test data into the logic model.

11.2.4 Calculating reliabilities

While the methodology does not require f (R;) to conform to any particular distributional
form or family, a useful approximation that sometimes may be helpful for planning purposes
can be organized around the beta and binomial distributions:

C'(a +b)

beta(a, b) = mx(“‘”(l — x)¥ b, (11.3)
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!
. (1= py. (11.4)

binomial(n, p) = —————p*
x!(n — p)!

As illustrated in Chapter 4, the beta distribution is the conjugate prior distribution
for the binomial parameter p (Martz and Waller (1990)) and can in some cases be used to
approximate the empirical distribution (resulting from the simulation) of the R;. The beta
is often well suited for representing possible values for p because it ranges between 0 and
1, and it is an extremely flexible distribution with many possible shapes (e.g., symmetric,
asymmetric, unimodal, uniform, U-shaped, or J-shaped). Its usefulness derives from the fact
that the two parameters a and b of the beta are sometimes referred to as the pseudosuccesses
and pseudofailures. This calls to mind the image of a pseudotest, where a + b equals the
number of pseudotests.

A useful planning application involves situations where new test data is—or will be—
of the form of x number of successes out of n number of trials. Such data is binomially
distributed. In a Bayesian reliability problem, if a beta distribution with parameters a and
b is considered to be the prior distribution for Ry, then the posterior distribution for R| also
will be a beta, with parameters ¢ + x and b + n — x. Thus using the beta formulation may
be useful in characterizing the possible value of additional tests. Because both the posterior
distribution and the prior distribution are of the beta family, this process could be iterated
indefinitely.

For example, the beta distribution shown in Figure 11.4 was fit to a component relia-
bility distribution, Ry, derived solely from the estimates of the subject matter experts. In this
case, a beta approximation yielded a = 81.9 pseudosuccesses and b = 1.01 pseudofailures.
New information, in the form of a test of 40 of these components resulting in zero failures,
was introduced and a new component reliability distribution for R; was determined. An
approximate beta fit to this new distribution is shown in Figure 11.5. The beta parameters of
this new distribution are ¢ = 121.9 and b = 1.01. A good fit to the resulting distribution is

Figure 11.4. Beta distribution, a = 81.9, b = 1.01.

Figure 11.5. Beta distribution, a = 121.9, b = 1.01.
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therefore made by simply adding the n and x test results of the binomial data distribution to
the a and b parameters of the beta prior distribution.

It should be noted that often a beta distribution cannot do an acceptable job of approx-
imating a distribution of R; and remain consistent with the intentions of the experts who
provided the input. This is especially true when experts state a very high level of reliability
with a small but significant chance that the reliability may be quite low. For example, suppose
that the most likely reliability is estimated to be 0.997, the best reliability probability does not
exceed 0.9995 but, because of some uncertainty (e.g., an untested scenario), there is a small
chance that it could be as low as 0.70. Also, it often becomes more difficult and inaccurate
to attempt to fit the beta to distributions formed from composite information at higher levels
of the model or after several updates have introduced significant unrelated data. When the
beta does not provide an acceptable approximation, one must rely on using parameters such
as the mean and percentiles to characterize the reliability uncertainty distribution.

These examples illustrate cases where new test information or data are introduced to
update a reliability, R, to the form R;;;. The continuous monitoring of Ry and f(R;) is
possible as new information or changes become available. Notall changes may be beneficial,
as reliability can decrease andfor the uncertainty can increase at any given change step
i. However, by judiciously planning new tests or changes for the purposes of reducing
uncertainty and/or improving reliability, the overall trend will indicate such desired results.

Figure 11.2 is the resulting reliability growth plot of the pilot program being discussed.
Note that the median reliability and 95% and 5% probability limits of reliability are plotted
against product stage/development time. The individual data points correspond to the initial
reliability characterization Ry and the events associated with the updates R;. This plot
captures the results of the design teams’ efforts to improve reliability, but the power of the
approach is the roadmap developed which will lead to higher reliability and the ability to
characterize all the efforts made to get there.

11.2.5 Results

The reliability equations permitted calculations of reliability for the overall system (and
its parts—components, subsystems, and processes) at specified times of interest during the
product’s lifetime. Figure 11.2 shows this for the system during all lifetime stages. In
addition, for the automotive industry certain times were important such as the end of the
warranty period and government-mandated emission requirements at 100,000 miles. We
calculate the system, subsystem, component, and process reliabilities at these important
times, creating multiple figures such as those in Figure 11.2. Recall that the reliability
predictions for these times are calculated using the reliability model. Examples of growth
figures include

* the system reliability at 12 months (as in Figure 11.2),
* the system reliability at 36 months,

« the system reliability at 100,000 miles,

reliabilities for each subsystem at 12 months,

reliabilities for each subsystem at 100,000 miles,

reliabilities for each individual process at 12 months,
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« reliabilities for each individual process at 100,000 miles.

Reliability tracking and monitoring graphs of a system’s various levels and times are used by
the experts for test planning and resource allocation throughout the lifetime of the system.

11.2.6 Documentation

At the end of a system’s lifetime, all roadmap graphs, the logic and probability models,
the expert judgment used, and the analyses done (e.g., “what if”” cases) provide a well-
documented record—a knowledge base—of the lifetime development and performance of
the system. This documentation can be used by others (especially new employees) in the
future, provides a learning tool, and contributes to corporate memory.

Software packages exist for knowledge management, but it is also relatively easy
to customize a graphical user interface with languages such as Java and HTML (Meyer
et al. (1999)).

11.3 Auto performance using fuzzy approach

11.3.1 Aspects of the fuzzy and probability approaches

The basic description of the reliability problem in section 11.2.1 remains unchanged by the
choice of methods used to estimate the performance. By this we mean that performance can
be defined in a probability space (e.g., reliability) or in a fuzzy logic space. Either way, the
initial steps of defining performance and defining the structure of the system, such as with
a reliability block diagram, remain the same as in sections 11.2.1 and 11.2.2. Many of the
other methods for combining diverse sources of information and updating also can operate
in either space.

The choice between fuzzy and probability should be made based on how the experts in
the application think about performance—whether in terms of probability theory or fuzzy set
theory. The use of proper elicitation methods is imperative in either case (Meyer and Booker
(2001)). It also is possible to move from one space to another, creating a fuzzy/probability
hybrid approach. Conditions for this hybrid approach include

* if the choice between probability and fuzzy is not obvious, because definitions of
performance and/or uncertainties can be defined in either space; or

« if some definitions are better suited to one space while other definitions are suited to
the other space.

For example, suppose the experts are accustomed to a probabilistic definition of reliability
but have a fuzzy interpretation of the uncertainties associated with the conditions affecting
the performance of the system. Or suppose an expert can easily specify probabilities for
the system in its nominal environment, where knowledge is extensive, but can only spec-
ify qualitative statements and rules when the system is in an unusual environment, where
knowledge is lacking. Such cases require mapping the results of a fuzzy analysis (mapping
condition into performance) into a probability result for the reliability, as seen below.

In traditional probabilistic risk assessments (PRAs), experts often require training in
probability theory before their estimates and uncertainties can be elicited (United States
Nuclear Regulatory Commission (1989)). Fuzzy logic methods, using an approach similar
to that applied in the use of fuzzy control systems, have the advantage of permitting experts to



254 Chapter 11. Auto Reliability Project

assess in natural language terms (e.g., “high,” “good,” etc.) parameters affecting performance
of components/systems. Recognizing that there is a cost associated with obtaining and using
more precise information, fuzzy methods allow the experts to use the level of precision with
which they understand the underlying process.

11.3.2 A fuzzy/probability hybrid approach

Fuzzy control system techniques are used to develop models of systems, often including
their expert operators, for enhanced control of processes and systems. These techniques
can be especially useful in applications involving highly nonlinear systems. The control
system maps observed “plant” output parameter values into required control actions, or
plant inputs. In a fuzzy control system, these observed plant outputs are transformed into
degrees of membership in fuzzy plant-output sets. “If then” rules transform these degrees
of membership into fuzzy control-action (or plant-input} sets. The precise control action is
determined via defuzzification such as selecting the centroid of the fuzzy control-action set
(Jamshidi, Vadiee, and Ross (1993)). The replacement of the fuzzy control system approach
with a probabilistic controller approach is described in Laviolette et al. (1995).

This same process can be applied to the development of uncertainty distributions
in applications such as probabilistic risk assessment, probabilistic safety assessment, and
reliability analysis. In a safety application, for instance, the plant-output parameters used by
the control system may become component condition and accident-scenario parameters, and
the control action may become the predicted component response to the accident conditions.
Our particular interest is in cases where the relationship between the condition of the system
and its performance is not well understood, especially for some sets of possible operating
conditions, and where developing a better understanding is very difficult and/or expensive.
For example, suppose a system was developed and tested for a specific range of operating
parameters, and we now desire to characterize its reliability in untested or minimally tested
parameter ranges. In applications, the manner in which uncertainty distributions are obtained
ranges from being largely data driven to being highly subjective, depending upon where test
results are available (Smith et al. (1997)).

The following generic example is based on the wear example given in Chapter 14.
In the automotive example in Figure 11.2, expert judgment information forms a significant
(if not the sole) source of data for reliability analysis. Consider an oversimplified version
of that system with one component, which can influence performance of the system. The
component is subject to wear, potentially degrading performance. In fuzzy control system
terms, the component condition is analogous to plant output, and performance of the system
is analogous to plant input. For a given wear level, performance degradation will be variable,
and the range of possible performance levels is analogous to the control-action set.

Membership functions (for either condition or performance) are useful for describing
unusual or nonnominal conditions or performance behaviors. For example, on rare occa-
sions extreme values of temperature can result in large degradations of performance. In
traditional PRAs, it is common to have analogous statements such as “on rare occasions,
this failure mode occurs and the performance is severely affected.” Specifying the mem-
bership functions quantifies statements such as this along with the uncertainties associated
with them. Membership functions also are effective for quantifying the wearout failures
occurring beyond the useful life of the product. In the probability model in section 11.2.1,
these failures were not considered because they were assumed to be beyond the useful life
of the product—an assumption that may be unreasonable.

Figure 11.6 shows membership functions for three hypothetical component-condition
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Figure 11.6. Component-condition and performance-level sets for three member-
ship functions.

membership

sets and three performance-level sets. The notation N (mean, standard deviation) is used for
the performance-level functions that are normal distributions without the scale factor so that
they range from O to 1 in the traditional membership function scaling. Three “if then” rules
define the condition/performance relationship:

« If condition is A, then performance is A.
+ If condition is B, then performance is B.
* It condition is C, then performance is C.

For the component condition, x = 4.0, x has membership of 0.6 in A and 0.4 in
B. Using the rules, the defined component-condition membership values are mapped to
performance-level weights. Performance-level set A, N(800, 25), characterizes the range
of performance values with a weight of 0.6. The membership function for performance-
level set B, N (650, 75), characterizes the range of performance values with a weight of
0.4. In fuzzy control system methods, the membership functions for performance-level sets
A, N(800.25), and B, N(650, 75) are combined based on the weights 0.6 and 0.4. This
combined membership function can be bimodal and can be used to form the basis of an
uncertainty distribution for characterizing performance for a given condition level.

1t should be noted that this method of combining membership functions is not the only
available method. In this particular example with scaled normal performance membership
functions, an alternative method would be to take a linear combination of the two normals.
For unscaled normal distributions, the linear combination is another normal, specifically

0.6 % N(800, 25) + 0.4 = N(650,75) = N(740, 33.5), (11.5)
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which is a unimodal symmetric distribution, unlike the bimodal resulting from the com-
bination above. Engineers may be more comfortable with the unimodal shape rather than
with explaining the “valley” or minimal likelihood density that appears in the center of the
bimodal distribution—the region of most common interest.

While the component-condition membership functions shown are equally spaced, ex-
perts can specify the number and density of these functions according to their knowledge
and experience. For example, for certain values of x (say, 0-7) or y (say, 900-700), experts
may place several membership functions because much is known about the conditions and
performance in these regions. However, the functions could become quite sparse and less
dense for those values of x and y where uncertainty is great.

Departing from standard fuzzy control systems methods, we now normalize the com-
bined performance membership function so that it integrates to 1.0. This transformation
converts the fuzzy-based combined membership function into a more convenient distribu-
tion function. The resulting function, f(y|x), is the performance uncertainty distribution
corresponding to the situation where component condition is equal to x, such as x = 4. Fig-
ure 11.7 is the cumulative function form of the uncertainty distribution, F' (y|x). If there is a
performance requirement such that the performance must exceed some threshold, T, in order
for the system to operate successfully, then the reliability of the system for the situation where
component condition is equal to x can be expressed as R(x) = | — F(T|x). As illustrated
in Figure 11.7, a threshold of T = 550 corresponds to a reliability of R(4.0) = 0.925.
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Figure 11.7. Performance uncertainty cumulative function.

Clearly, uncertainty or variability in the level of wear for the component induces
uncertainty in R(x). Suppose that the uncertainty in the wearout, at given values of x, is
characterized by some distribution representing this uncertainty. The distribution of F (T |x)
and hence of R(x) can then be obtained. The results of repeatedly sampling values from that
distribution and calculating /' would produce an “envelope” of cumulative functions. The
approximate distribution of R can be obtained from such anumerical simulation process along
with its characteristics such as a median, fifth, and 95th percentile values, as in Figure 11.8.

11.3.3 A fuzzy automotive example

For a more direct example of an automotive application (Kerscher et al. (2002)), suppose
that the focus is on a single component imbedded in the auto system in Figure 11.1. New
information becomes available from the engineering judgment of the supplier who provides
this component. The supplier’s continued development of the component brings to light
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Figure 11.8. Median, fifth, and 95th percentiles of CDF envelope generated by
sampling from the component wearout distribution.

some issues not considered in the team’s judgments used to formulate the prior, yet the
prior information is still relevant for inclusion in the analysis. The new information also
represents the supplier’s different way of modeling the component’s reliability and involves
uncertainties that are less quantitative in nature. The supplier does not wish to think in terms
of the Weibull model in (11.1) but instead formulates “if then” rules that directly map his
feeling of the design into reliability. For example, “if” anticipated problems are very small,
“then” reliability is very good. Table 11.1 illustrates such a rule base. The uncertainties
associated with using verbal descriptions can be quantified using methods from fuzzy logic
based on fuzzy set theory (Zadeh (1965)). Membership functions in Figures 11.9 and 11.10
provide the quantification mechanism for both linguistic terms and reliability descriptors at
36 months.

Table 11.1. “If then” rules for mapping knowledge to reliability.

Membership function | If anticipated problems are. .. | Then reliability is. . . | Membership function
a very small excellent A
b okay nominal B
c moderate poor C
d large unacceptable D
e extremely large ridiculous E

= - a
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Figure 11.9. Anticipated problems membership functions.

Specifically, the triangular membership functions in Figure 11.9 are for five levels (a—e)
of verbal descriptions corresponding to the linguistic terms shown in Table 11.1 (very small,



258 Chapter 11. Auto Reliability Project

\ / \\

08+ /

\ [ N
£o6+ \ / \ —-B
é ‘\ // \ —C
20T Ny --D

02+ \X/ ——E
0 . B S
0 0.2 0.4 0.6 1

reliability at 36 months

Figure 11.10. Reliability membership functions.

okay, moderate, large, and extremely large). Similarly, the normal-looking membership
functions in Figure 11.10 indicate the five levels (A-E) for reliability corresponding to the
additional linguistic terms in Table 11.1 (excellent, nominal, poor, unacceptable, ridiculous).
The reliability membership functions are normal distributions without a scale factor such
that they range from O to 1 for membership values. Five rules (Table 11.1) define mapping
of the supplier’s feeling of the design into reliability: if anticipated problems are very small
(a), then reliability is excellent (A), and so on. It should be noted that the “if then’ rules
and membership functions may apply to many different components or be specific to one
component/process.

The supplier tells us that the range of anticipated problems with this component at
36 months varies from almost none to very small, such that in the worst case they have
membership of 0.67 in a and 0.33 in b. Using the rules, the defined anticipated problems
membership values are mapped into reliability level A with a weight of 0.67 and reliability
level B with a weight of 0.33. In fuzzy control system methods, the membership functions for
reliability levels A and B are combined based on the weights 0.67 and 0.33. This combined
membership function is reduced to a single value (in this case the median) in a process called
“defuzzification.” The resulting reliability in this case is 0.98. Reliabilities for the lower
limit and most likely values of anticipated problems were similarly calculated to form the
basis of an uncertainty distribution for characterizing reliability for this component.

To update this component in light of the new information from the supplier, the question
becomes how to combine the supplier’s fuzzy generated reliability uncertainty distribution
with the PDF formulated from the team’s prior information. It can be shown that Bayes’ the-
orem is useful in a theoretical sense for solving this problem because membership functions
can be treated as likelihoods (see Chapter 5, section 5.6). Therefore, the new information
from the supplier’s rules and fuzzy membership functions can be used to form a likelihood
distribution function for reliability that may be combined with the reliability distribution
function provided by the team’s prior information.

The supplier’s fuzzy generated reliability uncertainty distribution was used as the
likelihood for the Bayesian updating of the prior. The improvement in reliability of the
component after this update is shown by the darker line in Figure 11.11. The gray line is the
reliability uncertainty before the fuzzy information is added. It is interesting to note that this
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fuzzy-based updating is similar to that of a probability-based Bayesian update for a proposal
of “what if”” we ran 40 successful tests. In either updating case, the uncertainty after the
update is reduced, while the medians remain essentially unchanged. The similarity between
the results of the “what if” update and the fuzzy update is noteworthy because it illustrates
the fact that information of any type (test, judgment, computer simulation) can be valuable
in achieving the goals of reducing uncertainty and improving reliability.

1
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Figure 11.11. Reliability membership functions.

Although the use of fuzzy logic may be quite helpful in applications where only quali-
tative information is available, direct updates using quantitative data are always possible, as
described in Kerscher et al. (2001). In addition, useful approximations exist that are help-
ful for planning purposes involving potential component tests and manufacturing process
capability studies. These also are described in detail in Kerscher et al. (2001).

Characterizing with large uncertainty the initial reliability of a new product under
development, and then working to reduce that uncertainty, has been found to be a cultur-
ally acceptable way to address the reliability issue. The PREDICT methodology (Meyer
et al. (1999)) is useful in facilitating this approach. The methodology is flexible enough
to integrate information at various stages of product development, including the asking of
“what if”” questions. Also, as has been shown, updating information that is fuzzy in nature is
also possible. If application of this methodology further assists a project team in successtully
including the reliability issue earlier in its day-to-day activities involving performance, cost,
and timeliness. it will prove to be a powerful additional tool in the development of a high
reliability product.

11.4 Comments on approaches for system
performance/reliability

The most important issue in deciding on a probabilistic, fuzzy-based, or hybrid approach is
how the experts define reliability or performance. That must be expressed in terms that are
familiar to and comfortable for that manufacturing culture. If experts think in terms of the
bathtub Weibull reliability model (probability-based), then they are better able to estimate the
parameters necessary tor that model using a probability approach. If they think in terms of
mapping condition of the parts and processes in terms of performance with the use of heuristic
rules, then the fuzzy approach is easier for the experts to use. If unusual environments push
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the knowledge of the experts to their limits, if they have difficulty in quantifying uncertainties,
or if the relationship between condition and performance is complex, unknown, nonlinear,
etc., then the fuzzy or fuzzy/probability hybrid approach can provide ways of quantifying
uncertainties and handling these complexities. If several of the above issues occur together,
then a hybrid approach is useful.

We have had success in implementing the hybrid approach in an application where
experts faced such mixed issues. Details of that example cannot be presented for proprietary
reasons, but the methodology described in section 11.3.2 was implemented.

Regardless of the space (probability or fuzzy) or transformations from one space to
another (hybrid) used by the experts in their thinking, estimating and specifying the uncer-
tainties, performance, conditions, and the system structure must be properly implemented
through formal elicitation techniques, as in Meyer and Booker (2001). That is the only way
to minimize cognitive, motivational, and elicitation biases to ensure the highest possible
quality of information elicited. Formally elicited expert judgment can be used for analysis
and combined with other sources of information, such as test data.
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Chapter12

Control Charts for
Statistical Process Control

W. Jerry Parkinson and Timothy J. Ross

Abstract.  Statistical process control is similar to engineering process control, described
in Chapter 8, in that both types of control force the process to produce a good product.
One difference between them, however, lies in the amount of effort used to determine it
the process is under control before making a change or searching for a cause of lack of
control. Control charts are the tools that are used to determine whether or not a process is
in control. This chapter summarizes some of the rudimentary principles and ideas behind
the development and use of control charts. We then present fuzzy control charts and give
examples of their use.

12.1 Introduction

In this chapter, we present a brief introduction to control charts used in statistical process
control (SPC) and its analogue, “fuzzy” SPC. A complete discussion of SPC requires an
entire textbook, and there are many good textbooks on this subject. See, for example,
Mamzic (1995), Wheeler and Chambers (1992), and Box and Luceno (1997). The entire
breadth of this interesting field is beyond the scope of this chapter. The goals of this chapter,
therefore, are to introduce some of the fundamental techniques used in SPC to readers not
previously introduced to the subject, and also to demonstrate useful applications of fuzzy
logic to SPC.

One question that we need to answer is, “How is SPC different from process control
discussed in Chapter 8?77 In Chapter 8, we looked briefly at classical process control,
fuzzy process control, and probabilistic control. All three techniques were concerned with
processes that can be controlled online. They relied on a feedback measurement used in an
algorithm or a recipe that supplied an immediate correction to be applied to the plant under
control. These methods are often called regulatory control or engineering process control
(EPC) techniques. The SPC techniques, or control charts, discussed here, are not control
techniques in the same sense: they are tools used to determine if a change or correction
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should be applied to a process or plant. The information supplied by the control chart may
be helpful in determining not only what corrections have to be made but also their magnitude.
On the other hand, this information might not help at all with the correction part of the control
problem.

SPC can be used for continuous processes like quality control in chemical plants or
petroleum refineries. Continuous processes are those in which the EPC techniques described
in Chapter 8 are most often used. SPC is currently most often used with discrete processes,
such as in manufacturing or machine shop operations, or with batch processes in batch
chemical reactors or batch distillation. SPC analysis relies heavily on a tool called a control
chart, discussed in the next two sections. Control charts were invented by Shewart (1980,
1986) in the United States in the late 1930s. They were used extensively by Deming (as
described by Mamzic (1995) and Wheeler and Chambers (1992)) in his SPC work during
the 1960s in Japan. Deming’s SPC work helped to bring significant improvements to the
Japanese manufacturing industry. Once these improvements were noted, SPC and control
charts gained new popularity in the United States.

The basic idea behind the control chart is that there are two causes of variability
(or errors from an EPC point of view). The first one is called a common-cause event.
All processes have this. It is a random variability in the process and/or in the sensing or
measurement of the variable of interest. It is something that is always present that cannot
really be removed or controlled. The other cause of variability is often called a special-
cause event. This is a disturbance that can be understood physically and corrected. The
control chart is a tool that is used to determine the difference between these two causes and
to thereby determine if and when corrective action should be taken. Control charts do not
actually determine what corrective action should be taken, but often they can be used as a
tool to help determine if and when corrective action should be taken.

12.2 Background

Improving productivity and quality of products is a major objective of statistical process
control (SPC). The term “statistical” is used in the name because the procedure involves
the use of numerical data and probability theory in an attempt to derive useful information
about the process under observation. Although manufacturing constitutes the most popular
“process” requiring the help of SPC, it can be used to improve a wide variety of processes.
Your own office or business can probably benefit from the use of SPC techniques. They can
be used whenever a process produces a product in which some attribute of that product is
plagued with undesired variations.

‘We assume that the process is at steady state or not undergoing any systematic change.
There are, however, variations that are beyond our control. We do not necessarily like them,
but we have to live with them. This is the common-cause event mentioned above. This
variability may be due to a wide variety of factors that are beyond our control, such as the
weather. This would include changes in temperature and/or barometric pressure. A common
cause for these variations in the chemical industry is variation in the quality of the feedstock.
This problem could be caused by poor quality control on the part of the supplier or because
the feedstock is a natural material such as crude oil or coal. The list of possibilities for
common-cause events is almost endless. The trick is to use SPC and a control chart to
determine if the variability observed over a period of time is indeed a common-cause or
special-cause event. If the variability is common-cause, then continue the process as before.
If it is determined that the variability is a special-cause event, exercise the control portion
of the SPC and stop the process and determine the cause, if possible, and then remedy the
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situation before continuing the process.
There are two basic types of control charts:

» those dealing with measured variables like temperature, pressure, part diameter, etc.;
+ those dealing with attributes, such as “go or no-go,” flaws, etc.

Our first example will deal with the measured variable type control chart.

12.2.1 Example 1: Measured variable control chart

Suppose that you and a friend are building a big log cabin. You have never done this before,
but you are pretty smart and you know that you can do it. You buy a big axe (you want this
to be a challenge), and you head for the forest. You look at your plans and see that there
are a great number of logs that must be cut to a length of exactly 20 feet or 240 inches. The
logs are pretty thick, so you figure that you can have a tolerance of about +2.5 inches and
still use the logs. Your friend measures and marks the trees and logs and you cut them. At
regular intervals you select sets or subgroups of five logs from those that you are cutting.
You measure these cut logs and take the average length and range (maximum length minus
the minimum length) of each set. Over a period of time, you repeat this procedure 20
times. Since this is a very big cabin, you still have a lot of logs to cut. Therefore, you want
to determine if any systematic errors or a special-cause event has crept into your process.
Table 12.1 shows the results of these calculations, the average lengths (X) and ranges (R)
to the nearest tenth inch, for each of the 20 five-log sets. Figure 12.1 is the Shewhart X
bar chart for this 20-set run and Figure 12.2 is the R chart. The combination is commonly
known as the X bar-R control chart. In many of the figures that follow, the upper and lower
control limits are depicted by the same line style. There should be no confusion since the
upper limit will always be above the average line and the lower limit will always be below it.

Table 12.1. Values of the sample means (X bar) and ranges (R) of sets of five logs
(first try).

Set number | X bar, set average (inches) | R, set range (inches)
1 2339 30.9
2 2429 17.5
3 241.3 226
4 238.6 372
5 238.3 26.7
6 238.1 16.3
7 234.9 21.6
8 236.3 22.8
9 238.4 13.6

10 2379 15.5
11 238.3 28.4
12 233.7 329
13 240.4 359
14 234.1 28.7
15 234.2 14.9
16 236.1 12.4
17 249.6 29.5
18 2413 14.3
19 235.2 17.2
20 236.4 14.9
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Figure 12.1. Shewhart X bar chart for the log cabin problem (first try).
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Figure 12.2. The R chart for the log cabin problem (first try).

There are several things that need to be explained about these charts. First, in Fig-
ure 12.1, the set averages, the grand average (the average of the set averages), and the upper
and lower control limits (UCL, andLCL, respectively) are plotted for each set for a given
run length. In this case the run length is 20 sets. Second, in Figure 12.2, the set ranges,
the range average, and the upper range control limit, UCL,, are plotted for each set for the
run. (When the set size is 6 or smaller, no lower range control limit can be computed.) A
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discussion of how to compute the control limits and what they really stand for will follow
shortly. For now, we see that both the set averages and the set ranges fall within the control
limits and there are no unusual patterns in either plot. This means that the sample averages
are consistent and the data scatter or dispersion from set to set is consistent, which in turn
means that the variability in the process is probably from a common-cause event rather than a
special-cause event. Probably the most significant thing that we notice from observing these
charts is that the grand average is about 238 inches, barely within our tolerance limits. The
average range is about 22.7 inches, far beyond our tolerance range of 5 inches (£2.5 inches)
that will work for our cabin. It looks like we are going to have to revamp our entire process
because we have to reduce our common-cause variation. We have to get the common-cause
variation within our tolerance limits. Wheeler and Chambers (1992) describe a method for
computing what they call natural process limits that can be used to see if our tolerance limits
are reasonable. We will discuss this computation shortly, but first let us look at Figure 12.3.

—e+—sample value average emmmmee{JNPL , LNPL, —e—LTL —e—UTL

280
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200 T T T L] T T T T T
0 10 20 30 40 50 60 70 &8 90 100
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Figure 12.3. Raw data for the cabin problem, 100 logs (first try).

Figure 12.3 is a plot of the sample measurement, the average of the 100 (20 sets of
5 logs) samples (same as the grand average), the upper and lower tolerance limits (UTL
and LTL, respectively), and the upper and lower natural process limits (UNPL, and LNPL,
respectively) versus the sample number. Table 12.2 lists some of the important parameters
from the data plotted in Figure 12.3 as well as the three-sigma limits about the mean value.
The mean, or grand average, is almost equal to the lower tolerance limit, so it is difficult to
see on this plot. It is worth noting that the natural process limits are very similar to the three-
sigma limits (% three standard deviations on either side of the mean). It is very important
to notice that the tolerance limits are significantly inside the natural limits. This is a strong
indication that not many of the products, in this case cut logs, will meet the specifications
dictated by the tolerance limits. It is a signal that one should probably change the tolerance
limits or change the process. In our case, we are going to change the process to reduce the
common-cause variation. We are going to buy a high performance circular saw that will cut
logs. However, before we continue, we will discuss the computation of the control limits
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Table 12.2. Important parameters for data in Figure 12.3.

Parameter Value (inches)
mean (grand average) 238.0
upper tolerance limit (UTL) 2425
lower tolerance limit (LTL) 237.5
upper natural process limit (UNPL,) 267.3
lower natural process limit (LNPL,) 208.7
upper three-sigma limit 265.8
lower three-sigma limit 210.2

and the natural process limits.
The upper and lower control limits are computed using the following formulas and the
factors in Table 12.3:

UCLg = X + AsR, (12.1)
LCL; = X — ARy, (12.2)
UCLg = D4R, (12.3)
LCLg = D3R, (12.4)

where X is the grand average and R is the range average.

Table 12.3. Factors for determining the control limits for X bar-R charts.

n A D3 Dy

2 1.880 — 3.268
3 1.023 — 2.574
4 0.729 — 2.282
5 0.577 — 2.114
6 0.483 — 2.004
7 0.419 | 0.076 1.924
8 0.373 | 0.136 1.864

9 | 0337 | 0.184 | 1.816
10 { 0308 | 0223 | 1.777
11 | 0.285 | 0.256 | 1.744
12 | 0.266 | 0.283 | 1.717
13 | 0.249 | 0.307 | 1.693
14 | 0.235 | 0.328 | 1.672
15 1 0223 | 0.347 | 1.653

The “n” value shown in both Tables 12.3 and 12.4 is the number of measurements in
the set or subgroup. In our example, » is equal to 5. The upper and lower natural process
limits are computed by using formulas (12.5) and (12.6) and the factors in Table 12.4:

= 3R

UNPLy = X + —, (12.5)
d>
= 3R

LNPLy =X — —. (12.6)
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Table 12.4. Factors for determining natural process limits.

n ds

2 1.128
3 1.693
4 2.059
5 2.326
6 2.534
7 2.704
8 2.847
9 2.970
10 | 3.078
11 3.173
12 | 3.258
13 ] 3.336
14 | 3.407
15 | 3.472

One item worth mentioning is that all the control limits are closely related to the mean
430 or three standard deviations from the mean. Shewhart developed the X bar—R technique
as an easy approximation of the three-sigma limits. Keep in mind that there is nothing “holy™
about the three-sigma limits. They are just a convenient limit that a truly random process
will only very seldom go beyond. The idea behind the control chart is to determine if there is
a pattern in the data that is nonrandom or noncommon-cause. Both of these limits provide a
good bound that will only very seldom give “false alarms™ or signal an out-of-control alarm
that is only a random error. Some workers prefer to use X bar—s charts that actually use
standard deviations instead of set ranges. Another technique that is appropriate to use with
measurement data is the moving range chart. This is a good technique to use when only
limited data are available. One would use individual measurements instead of averages,
and the moving range would become the differences between the individual values. For

more information on these techniques, see Mamzic (1995), Western Electric Company, Inc.
(1958), and Committee E-11 (1995).

12.2.2 Example 2: Special-cause events

Now let us redo our cabin with our new saw. We are going to introduce a special-cause error
this time. We will make the mistake of cutting a log and then using that log as a template for
cutting the next log. We will then use the newly cut log as a template for the next log and so
on. Table 12.5 shows the data from our first 20-set run with our new process. Figures 12.4
and 12.5 are the X bar and R charts, respectively, for this run. Figure 12.6 is the individual
or raw data plot.

The things that should be noticed from this run are the following:

* In Figure 12.4, the X bar chart, near the end of the run the sample averages are
starting to move above the upper control limit, signaling a special-cause event. This
is because the length of the logs is starting to grow because we are using a different
template every time. This time the control chart signaled that we were out of control
before we exceeded our tolerance limits. (The tolerance limits are the endpoints on
the Y-axis in Figure 12.4.)
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Table 12.5. Values of the sample means (X bar) and ranges (R) of sets of five logs
(second try).
Set number | X bar, set average (inches) | R, set range (inches)
1 239.7 1.1
2 240.1 1.6
3 240.1 34
4 239.5 1.5
5 239.6 2.5
6 240.4 1.0
7 239.9 1.5
3 2398 1.6
9 240.1 2.1
10 239.6 1.4
11 239.7 1.2
12 240.3 1.1
13 239.8 0.7
14 240.2 1.4
15 240.2 1.1
16 239.9 0.7
17 239.8 2.4
18 240.4 1.0
19 241.2 1.9
20 241.2 1.9
’ —e—set averages grand average UCL, LCL,
242.5
2420
241.5 1
4
241.0 4 fam
]
en 240.5
% 240 O+ N /\ A
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Figure 12.4. X bar chart for the log cabin problem (second try).

* InFigure 12.5, the R chart, the range goes above the upper control limit for set number
3. If we look at Figure 12.6, the individual data points, we can see that one of the
longest logs and one of the shortest logs are in the same set. This can probably be
classified as a false alarm because it only happens once. However, one should be aware
of large differences within a set; it can signify problems, possibly a sampling error.
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Figure 12.5. The R chart for the log cabin problem (second try).
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Figure 12.6. Raw (individual) data for the cabin problem, 100 logs (second try).

* Finally, Figure 12.6 shows us that our tolerance limits are outside of our natural process
limits. This means that it is possible to meet our goals with a minimum amount of
discarded logs.
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Figure 12.7. X bar chart for the log cabin problem (third try).
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Figure 12.8. The R chart for the log cabin problem (third try).

12.2.3 Example 3: Traditional SPC

We are going to try one more time to build this cabin. This time we will use the same log
for a template every time we make a cut. Table 12.6 shows the data from our first 20-set run
with the final process. Figures 12.7 and 12.8 are the X bar and R charts, respectively, for
this run. Figure 12.9 is the individual or raw data plot.
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Table 12.6. Values of the sample means (X bar) and ranges (R) of sets of five logs

(third try).

Set number | X bar, set average (inches) | R, set range (inches)
1 239.8 25
2 240.0 0.5
3 240.1 1.2
4 240.5 1.6
5 240.1 1.0
6 239.7 1.9
7 239.4 1.9
8 239.7 2.3
9 239.9 1.9

10 240.2 1.6
I 239.9 3.1
12 238.9 1.6
13 240.3 0.9
14 240.2 1.0
15 240.7 1.7
16 240.0 1.4
17 239.9 1.7
18 239.8 33
19 2399 1.7
20 240.2 1.4
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Figure 12.9. Raw (individual) data for the cabin problem, 100 logs (third try).

The things that should be noticed from this run are the following:

* In Figure 12.7, the X bar chart, the X bar for set number 12 is below the lower control
limit, signaling a special-cause event. This is another false alarm. This run was made
using a pseudorandom number generator that produces random numbers with normal
statistics (Williams (1991))—this time with no interference from the authors. If this
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were a real process, the operators would have to look hard at this point to see what
happened here. If we look at Figure 12.8, the R chart, we can see that the dispersion
or range is very close to the average value—no cause for alarm there. Figure 12.9,
the individuals chart (samples 56—-60), shows that this may be the only set in the run
where all the samples were below the average line. This may be a cause for concern if
it were to happen on a regular basis. Again, the control chart provided a signal before
we exceeded our tolerance limits. (The tolerance limits are the endpoints on the Y -axis
in Figure 12.7.)

* Figure 12.8, the R chart, shows that all the ranges are below the upper control limit,
even for set number 12. This information can be helpful when we are trying to find a
cause for a system going out of control or in determining if the point really provided
a false alarm.

 Again, Figure 12.9 shows us that our tolerance limits are outside our natural process
limits. It will be possible to meet our goals with a minimum amount of discarded logs.

We will touch on three more points before we go onto the fuzzy work:

1. If we build our control charts and we find points out of control, should we throw them
out and recompute our averages and control limits? Authors disagree on this (Mamzic
(1995), Wheeler and Chambers (1992)). We did not throw away out-of-control data
and recompute for any of the work shown in this chapter, and it did not make a
difference in our overall outcomes. There are times when it will make a difference.
Our suggestion is to keep it in mind and recompute your limits if you feel that it will
truly help you solve the problem at hand. It may just depend upon whether you are
building roads or watches.

2. Properly choosing a set or subgroup size can influence the usefulness of your control
chart. This subject is beyond the scope of this chapter, but a good discussion can be
found in Wheeler and Chambers (1992). The proper set size, or even time intervals,
between sets probably can be determined by trying hard to understand the problems
that might be the special-cause events and by trial-and-error. Sometimes, as in the
case studies that we present next, one simply does not have a choice.

3. Other run data patterns, in addition to points beyond the upper and lower control limits,
can signal process problems. Here is a list of such patterns from Mamzic (1995):
* six successive points in one direction;
* nine successive points on one side of the mean;
* arecurring recycling pattern;
¢ 14 successive alternating points;

« two out of three successive points beyond £20; one can use the upper or lower
control limit as an estimate of 30;

+ four out of five adjacent points between 1o and 30;
* eight successive points outside 1o on both sides of the center;

* 15 successive points crowding the mean inside lo.
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Use these rules at your discretion. Obviously, they might be able to tell the user something
about the process operation, but overuse could lead to too many false alarms.

This section should give the uninitiated a good first glance at SPC and how to deal
with measurement data. The next section is intended to do the same with fuzzy logic and
measurement data.

12.3 Fuzzy techniques for measurement data: A case
study

In this section, fuzzy set theory has been applied to an exposure control problem encountered
in the machine manufacture of beryllium parts. This is a real problem facing the operation
of a new beryllium manufacturing facility recently completed for the Department of Energy
(DOE) at the Los Alamos National Laboratory. The major driving force for using fuzzy
techniques rather than classical SPC in this case is that beryllium exposure is very task
dependent and the manufacturing plant studied is quite atypical. Although there are purely
statistical techniques available for solving this type of problem, they are more complicated
than those shown in section 12.2 and are not as intuitive. If the SPC techniques described in
section 12.2 are used without accounting for the task dependencies, too many false alarms
will be produced. The beryllium plant produces parts on a daily basis, but every day is
different. Some days many parts are produced and some days only a few. Sometimes the
parts are large and sometimes the parts are small. Some machine cuts are rough and some
are fine. These factors and others make it hard to define a typical day. The problem of
concern in this study is worker exposure to beryllium. Even though the plant is new and
very modern and the exposure levels are expected to be well below acceptable levels, the
DOE has demanded that the levels for this plant be well below acceptable levels. The control
charts used to monitor this process are expected to answer two questions:

1. Is the process out of control? Does management need to instigate special controls such
as requiring workers to use respirators?

2. Are new, previously untested, controls making a difference?

The standard control charts, based on consistent plant operating conditions, do not adequately
answer these questions. A statistical technique based on correlation and regression does work,
butis not very intuitive. This approach will be briefly discussed in section 12.4. The approach
described in this section is based on a fuzzy modification to the Shewhart X bar—R chart.
This approach yields excellent results and is easily understood by plant operators. The work
presented here is an extension of earlier work developed by Parkinson et al. (2000).

12.3.1 Background

The new facility at Los Alamos is intended to supply beryllium parts to the DOE complex
and in addition act as a research facility to study better and safer techniques for producing
beryllium parts. Exposure to beryllium particulate matter, especially very small particles,
has long been a concern to the beryllium industry. The industrial exposure limit is set at
2/1g/m3 per worker per eight-hour shift. The DOE has set limits of O.2,ug/m3 or 10 times
lower than the industrial standard for this facility. In addition, they have requested continual
quality improvement. In other words, in a short period of time, they intend to set even lower
limits. Several controls have been implemented to ensure that the current low level can be
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met. However, there is a real management concern that the process remain under control and
that any further process improvements are truly that—improvements. Since the facility is a
research lab with manufacturing capabilities, the workload and type of work done each day
can vary dramatically. This causes the average beryllium exposure to vary widely from day
to day. This in turn makes it very difficult to determine the degree of control or the degree of
improvement with the standard statistical control chart of the type discussed in section 12.2,
For this reason, we have implemented a fuzzy control chart to improve our perception of the
process.

The plant has four workers and seven machines. Each worker wears a device that
measures the amount of beryllium inhaled during his or her shift. The devices are analyzed
in the laboratory and the results are reported the next day after the exposure has occurred.
An X bar-R chart, similar to those shown in section 12.2, can be constructed with these data
and can presumably address the concerns of control and quality improvement. Although
such a chart can be useful, because of the widely fluctuating daily circumstances these tests
for controllability are not very meaningful.

There are four variables that have a large influence on the daily beryllium exposure.
They are the number of parts machined, the size of the part, the number of machine setups
performed, and the type of machine cut (rough, medium, or fine). In the fuzzy model, a
semantic description of these four variables and the beryllium exposure are combined to
produce a semantic description of the type of day that each worker has had. The day type
is then averaged and a distribution is found. These values are then used to produce fuzzy
Shewhart-type X bar and R charts. These charts take into account the daily variability. They
provide more realistic control limits than the charts described in section 12.2 and make it
easy to correctly determine whether or not a process change or correction has made a realistic
improvement to the overall process.

12.3.2 The fuzzy system

The fuzzy system consists of five input variables or universes of discourse and one output
variable. Each input universe has two membership functions and the output universe has
five membership functions. The input and the output are connected by 32 rules. The five
input variables are as follows:

1. Number of parts: with a range of 0 to 10 and membership functions

(a) few,

(b) many.
2. Size of parts: with a range of 0 to 135 and membership functions

(a) small,
(b) large.

3. Number of setups: with a range of 0 to 130 and membership functions

(a) few,

(b) many.
4. Type of cut: with arange of 1 to 5 and membership functions

(a) fine,
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(b) rough.
5. Beryllium exposure: with a range of 0 to 0.4 and membership functions

(a) low,

(b) high.
The output variable is as follows:
1. The type of day: with range from 0 to | and membership functions

{a) good,
(b) fair,
(c) OK,
(d) bad,

(e) terrible.

Figure 12.10 represents the input membership functions used for this problem. Figure 12.11
represents the output membership functions.

The rules are based on some simple ideas. For example, if all four mitigating input
variables indicate that the beryllium exposure should be low, and it is low, then the “type of
day” is OK. Likewise, if all four indicate that the exposure should be high, and it is high,
then the type of day is also OK. If all four indicate that the exposure should be low, and it
is high, then the type of day is terrible. If all four indicate that the exposure should be high,
and it is low, then the type of day is good. Fair and bad days fall in between the OK days
and the good and terrible extremes. The 32 rules are given in Table 12.7.

The form of the rules is as follows:

If (number of parts) is... and if (size of parts) is. .. and if (number of setups)
is... and if (type of cut) is. .. and if (beryllium exposure) is. . ., then (the type
of day)is. ...

The size of parts is determined as the number of parts multiplied by the average diameter of
each part, measured in centimeters. The type of cut is determined by

A SOp; 1.0
roughness = Z Z RE, |71} (12.7)
i -
1000
type of cut = In |:—~—} . (12.8)
roughness

where N is the number of parts for the given day for the given worker, M is the number of
setups for a given day for a given worker, sop; is the size of part i, and RF; ; is the roughness
factor for part i at setup j.

A fine cut has a roughness factor (RF) of 1, a medium cut has an RF equal to 3,
and a rough cut has an RF equal to 5. The calculation for type of cut is a bit complicated
but it provides a daily number between 1 and 5 (fine to rough) for each worker, which is
meaningful. An example of the use of the fuzzy technique will follow a discussion of the
plant simulation.
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12.3.3 Plant simulation

The Los Alamos beryllium facility has been completed but has not yet been put into produc-
tion. For this reason a computer program was written in order to provide a simulation of
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Table 12.7. Rules for beryilium exposure: “type of day.”
Rule Number Size of Number Beryllium
number of parts parts of setups Type of cut exp)(,)sure Type of day
1 few small few fine low fair
2 few small few fine high terrible
3 few small few rough low ok
4 few small tew rough high terrible
5 few small many fine low fair
6 few small many fine high bad
7 few small many rough low fair
8 few small many rough high terrible
9 few large few fine low fair
10 few large few fine high bad
11 few large few rough low fair
12 few large few rough high terrible
13 few large many fine low good
14 few large many fine high bad
15 few large many rough low fair
16 few large many rough high bad
17 many small few fine low fair
18 many small few fine high bad
19 many small few rough low fair
20 many small few rough high terrible
21 many small many fine low good
22 many small many fine high bad
23 many small many rough low fair
24 many small many rough high bad
25 many large few fine low good
26 many large few fine high bad
27 many large few rough low fair
28 many large few rough high bad
29 many large many fine low good
30 many large many fine high ok
31 many large many rough low good
32 many large many rough high bad

the facility operation and provide a demonstration of the fuzzy control chart technique. The
results of this study are being supplied to plant workers in order for them to provide input to
further improve the technique.

Some actual beryllium exposure data were available for this study. These made it
possible for us to develop some reasonably realistic simulations for each of the intermediate
process steps for manufacturing the beryllium parts. The combination of plant data and
simulation data were used in this study. The simulation-operator interaction process is
iterative and is designed to enhance the beryllium exposure control techniques. A Shewhart-
type control chart is used to measure the central tendency and the variability of the data. A
process flow diagram of the plant simulation is shown in Figure 12.12.

The model has the following limitations or boundary conditions:

. There are four machinists.

2. There are seven machines.

3. Machines | and 2 do rough cuts only.
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Figure 12.12. The process flow diagram of the beryllium plant simulation.

Machines 3 and 4 do both rough cuts and medium cuts.

Machines 5, 6, and 7 do only fine cuts.

Machine 7 accepts only work from machines 3 and 4.

Machines 5 and 6 accept only work from machines 1 and 2.

Each machinist does all of the work on one order.

All machinists have an equally likely chance of being chosen to do an order.

There are 10 possible paths through the plant. (At this point, all are equally likely.)

The simulation follows the algorithm below:

1.

7.

Arandom number generator determines how many orders will be processed on a given
day (1 to 40).

Another random number generator chooses a machinist.

. A third random number generator choose a part size.

A fourth random number generator chooses a path through the plant. For example,
machine 1 to machine 3 to machine 7. (See Figure 12.12.)

. The machine and path decide the type of cut (rough, medium, or fine). Machines 1

and 2 are for rough cuts only; machines 5, 6, and 7 are for fine cuts only; and machines
3 and 4 do rough cuts if they are the first machines in the path and medium cuts if they
are the second machines in the path.

. A random number generator chooses the number of setups for each machine on the

path.

Another random generator chooses the beryllium exposure for the operator at each step.

The above procedure is carried out for each part, each day. The entire procedure is repeated
the following day, until the required number of days has passed. For this study, the procedure
was run for 30 days to generate some sample control charts. A description of the fuzzy control
chart construction follows.
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12.3.4 Example 4: Establishing fuzzy membership values

This example will follow each step of the process for a specific machinist for a given day.
The description will then be extended to the work for the entire day for all machinists. From
the simulation, on day 1, 13 part orders were placed. Machinist 2 processed four of these
orders, machinist | processed three orders, machinist 3 processed four orders, and machinist 4
processed two orders. Machinist 2 will be used to demonstrate the fuzzy system.

The cumulative size of the four parts that machinist 2 processed on day 1 was calculated
to be 64.59. The number of setups that he/she performed was 45. The numeric value for
the type of cuts he/she performed on that day was 1.63. Finally, the machinist’s beryllium
exposure was 0.181.g/m* for that eight-hour period.

First, we note that since all input variables are binary, in almost every case, we will
fire all 32 rules. Upon inserting the input values into the membership functions shown in
Figure 12.10, the following values are obtained: For number of parts = 4, from Figure 12.10,
the membership in many is 0.4 and the membership in few is 0.6. For size of parts = 64.59,
from Figure 12.10, the membership in small is 0.52 and the membership in large is 0.48.
For number of setups = 45, from Figure 12.10, the membership in many is 0.35 and the
membership in few is 0.65. For type of cuts = 1.63, from Figure 12.10, the membership in
rough is 0.16 and the membership in fine is 0.84. The beryllium exposure is 0.181. From
Figure 12.10, the membership in high is 0.45 and the membership in low is 0.55. The variable
values for set of inputs from Figure 12.10 for all rules are listed in Table 12.8, along with the
variable values for the rule outputs.

In this study, the min-max technique was used to resolve the “and-or” nature of the
rules and the centroid method was used for defuzzification. For example, rule | (Table 12.8)
is fired with the following weights:

* number of parts: few = 0.6;

* size of parts: small = 0.52;

» number of setups: few = 0.65;

* type of cut: fine = 0.84;

* beryllium exposure: low = 0.55.

The rule consequent “fair” takes the minimum value 0.52. Observation of the last column in
Table 12.8 reveals that the consequent fair appears 10 times with values ranging from 0.16 to
0.52. The min—max rule assigns the maximum value of 0.52 to the consequent fair. Similarly,
the consequent “terrible’ appears five times with a maximum value of 0.45. “OK” appears
twice with a maximum value of 0.35. “Bad” appears 10 times with a maximum value of 0.45,
and “good’ appears five times with a maximum value of 0.4. The centroid defuzzification
method when combined with the min—max rule “clips” the output membership functions at
their maximum value. In this example, the membership functions are clipped as follows:
good = 0.4, fair = 0.52, OK = 0.35, bad = 0.45, terrible = 0.45. The shaded area in
Figure 12.13 shows the results of the clipping operation in this example. The defuzzified
value is the centroid of the shaded area in Figure 12.13. In this case, the centroid is equal to
0.5036. Thus on day 1, machinist 2 had an OK “type of day” (0.5036 = 0.5).

The next step is to provide an average and a distribution for the entire day based on
the results from each machinist. The procedure outlined above can be followed for each
machinist for day 1. The results, with the average and the range for the day, are given in
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Table 12.8. Rules with membership values for machinist 2, day 1 from the sim-
ulation study. The rule input values are as follows: Number of parts = 4.0, size of parts
= 64.59, number of setups = 45, type of cut = 1.63, and beryllium exposure = 0.181.
Legend: F = few, M = many, S = small, L. = large, Fi = fine, R = rough, Lo = low, H =

high, Fa = fair, OK = okay, T = terrible, B = bad, G = good.

Rule Number Size of Number Beryllium
number of parts parts of setups Type of cut exp}(’)sure Type of day
1 F = 0.60 S$=0.52 F=0.65 Fi =0.84 Lo=0.55 Fa = 0.52
2 F = 0.60 S=0.52 F=0.65 Fi =0.84 H =045 T =045
3 F=0.60 S=0.52 F=0.65 R=0.16 Lo=0.55 OK =0.16
4 F = 0.60 $=0.52 F=0.65 R=0.16 H=0.45 T=0.16
S F=0.60 §$=0.52 M =035 Fi=0.84 Lo=0.55 Fa = 0.35
6 F = 0.60 S$=0.52 M=0.35 Fi = 0.84 H=0.45 B =10.35
7 F = 0.60 §$=052 M =035 R=0.16 Lo =0.55 Fa=0.16
8 F=0.60 §$=0.52 M =0.35 R=0.16 H=045 T=0.16
9 F = 0.60 L=048 F =0.65 Fi =0.84 Lo =0.55 Fa = 048
10 F = 0.60 L=0.43 F = 0.65 Fi=0.84 H=045 B =045
1 F=0.60 L=048 F = 0.65 R=0.16 Lo=0.55 Fa=0.16
12 F = 0.60 L=0.48 F =0.65 R=0.16 H=0.45 T=0.16
13 F=0.60 L=0.48 M=10.35 Fi=0.84 Lo=0.55 G =035
14 F=0.60 L=0.48 M=035 Fi=0.84 H=045 B=0.35
15 F=10.60 L=048 M =0.35 R=0.16 Lo=0.55 Fa=0.16
16 F=0.60 L=048 M =0.35 R=0.16 H=045 B=0.16 |
17 M =040 S$=0.52 F=0.65 Fi=0.84 Lo=0.55 Fa = 0.40
18 M =0.40 $=0.52 F =0.65 Fi =0.84 Hi =045 B = 0.40
19 M =040 S=0.52 F =0.65 R=0.16 Lo=0.55 Fa=0.16
20 M =040 $=0.52 F=0.65 R=0.16 H=10.45 T=0.16
21 M =040 $=052 M=035 Fi=0.84 Lo =0.55 G=0.35
22 M =0.40 $=0.52 M=035 F=0.84 H=045 B =0.35
23 M =040 §$=052 M=0.35 R =0.16 Lo =0.55 Fa=0.16
24 M =0.40 §$=0.52 M =40.35 R =0.16 H=0.45 B =0.16
25 M = 0.40 L=0.48 F =0.65 Fi=0.84 Lo = 0.55 G =0.40
26 M =040 L=048 F =0.65 Fi=0.84 Hi= 045 B =040
27 M = 0.40 L=0.48 F =0.65 R=0.16 L=0.55 Fa=0.16
28 M =040 L=048 F=0.65 R=0.16 H=045 B=0.16
29 M =0.40 L=048 M =035 Fi=0.84 Lo=0.55 G=10.35
30 M =0.40 L=048 M =0.35 Fi =0.84 H=0.45 OK = 0.35
31 M = 0.40 L=10.48 M=0.735 R=0.16 Lo = 0.55 G=0.16
32 M =040 L=0.48 M=1035 R=0.16 H=1045 B=0.16

Table 12.9. Figures 12.14 and 12.15 are the fuzzy X bar and R charts, respectively, for the
30-day run in this example. For the same 30-day run, the daily average beryllium exposure
and beryllium exposure ranges were plotted in the form of X bar-R charts. These plots are
presented in Figures 12.16 and 12.17, respectively.

The motivation for this study was that beryllium exposure is highly task dependent. In
the new Los Alamos beryllium facility, daily tasks will be highly variable. This means that
a standard single-variable Shewhart X bar—R chart based only on daily beryllium exposure
probably will not provide the control information required. In fact, previous beryllium
exposure data show that these control charts do not supply the needed information. The
30-day simulator run that produced the data for Figures 12.14 and 12.15 was run in a totally
random mode. This means that, as far as the simulator reproducing the real plant, this 30-day
run was normal and should be entirely in control. The fuzzy X bar-R charts, Figures 12.14
and 12.15, based on the “type of day” (the type of day based on the daily circumstances)
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Figure 12.13. “Clipped’ output membership functions for Example 4.

Table 12.9. Computed value for day 1 from Example 4.

Description Value
machinist 1 (type of day) | 0.4041
machinist 2 (type of day) | 0.5036
machinist 3 (type of day) | 0.4264
machinist 4 (type of day) | 0.4088

average (X bar) 0.4357
range (R) 0.0995

show that the plant is entirely in control. Conversely, the X bar chart for beryllium exposure
only (Figure 12.16) shows the plant as being out of control on days 5 and 24. The R
chart (Figure 12.17), however, does not show control problems within the data sets. This
is what one would expect because the perturbations come on a daily basis. Thus in this
case the fuzzy control charts performed better than the purely statistical charts based only on
beryllium exposure data. This is because the fuzzy charts have the ability to easily take into
account varying circumstances, like heavy workdays and large parts, etc. All four charts,
and the remaining charts in this section and section 12.4. use control limits based on (12.1)-
(12.4). In this case, the sample size, n, was equal to 4, and the parameters A» and Ds were
0.729 and 2.282, respectively.

There are statistical techniques that can take the daily plant variation into account.
They will be discussed in section 12.4. Three other observations need to be made here:

* The beryllium exposure shown in Figure 12.16 is often above the 0.2pg/m* limit. This
reflects the fact that most of the data that was used to construct the simulator came
from work performed before the new limits were put into effect.

* Other information such as the number of setups and size of parts might seem incon-
sistent with information that a machinist might be familiar with. Unfortunately, even
though nothing mentioned here is secret information, a great deal of the information at
Los Alamos is only available on a need-to-know basis. Consequently, in many publi-
cations we are unable to use “real numbers.” The model used here is totally consistent
and *“‘not quite real numbers’’ will not affect the results.
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Figure 12.14. Fuzzy X bar chart for a “normal” 30-day beryllium plant run.
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Figure 12.15. Fuzzy range (R) chart for a “normal” 30-day beryllium plant run.

* Because of the lack of available information, we are not addressing certain questions,
such as “Are the tolerance limits inside or outside the natural process limits?” until
we are able to work with actual plant data.

The following is a discussion of how well the fuzzy X bar—R charts detect out-of-control
situations.

12.3.5 Example 5: Fuzzy control

For this case, it is assumed that the plant is running for three days (5, 6, and 7) with the
ventilating system working at a diminished capacity without the operators’ knowledge. Days
5, 6, and 7 are reasonably normal days otherwise, with the workload ranging from 29 parts
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Figure 12.16. Beryllium exposure X bar chart for a “normal” 30-day beryllium
plant run.
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Figure 12.17. Beryllium exposure range (R) chart fora “normal” 30-day beryllium
plant run.

on day 5 to 19 parts on day 7. The simulator is programmed to produce reasonably high
beryllium readings on these days. The fuzzy X bar and R charts for a 30-day run covering
these three days are shown in Figures 12.18 and 12.19, respectively.

The fuzzy X bar chart shown in Figure 12.18 signals that days 5, 6, and 7 are out of
control. In an actual operating situation, Figure 12.18 probably would be just an extension
of a “running”” chart like Figure 12.14 with the control limits already in place, so the out-
of-control situation would be caught immediately. The fuzzy R chart shown in Figure 12.19
shows that the set of ranges for the three days in question are about normal. This is what
would be expected if all readings were high for every machinist on a given day. Figures 12.20
and [2.21 show only the beryllium exposure X bar and R charts for the same 30-day run.
The standard single-variable X bar chart shown in Figure 12.20 shows, equally as well as
the fuzzy X bar chart, that days 5, 6, and 7 are out of control. In this case. the recomputed
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Figure 12.18. Fuzzy X bar chart showing results for a ventilating system that
worked poorly for three days during a 30-day beryllium plant run.
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Figure 12.19. Fuzzy range (R) chart showing results for a ventilating system that
worked poorly for three days during a 30-day beryllium plant run.

control limits are raised slightly because of the higher beryllium exposure readings. Day 24,
which was out of control before, is now barely in control.

Day 16 is now below the lower control limit because of the movement in the control
limits, but this is acceptable since low beryllium readings are good. The standard R chart
(Figure 12.21) shows nothing unusual as far as dispersion within the sets is concerned. This
is what is expected for the “bad ventilation system” problem. Next, the issue of how well
the fuzzy X bar-R charts handle high beryllium exposure conditions that are justified will
be discussed.

12.3.6 Example 6: A campaign

In this case, it is assumed that the plant, for three days (13, 14, and 15), is running a
campaign, trying to process a large number of similar parts for a special project. In this
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Figure 12.20. Standard X bar chart (beryllium exposure only) showing results for
a ventilating system that worked poorly for three days during a 30-day beryllium plant run.
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Figure 12.21. Standard range ( R) chart (beryllium exposure only) showing results
foraventilating system that worked poorly for three days during a 30-day bervllium plant run.

case, the parts are large, require a precision finish with lots of fine cuts, and require more
than a normal number of setups. All machinists receive relatively large beryllium exposure
(an average of about 0.3g/m®). In this case, the high beryllium exposures are expected
and considered normal. The simulator is programmed to produce the above conditions for
the designated three days. The fuzzy X bar and R charts for a 30-day run covering these
three days are shown in Figures 12.22 and 12.23, respectively. Figures 12.24 and 12.25
show only the beryllium exposure X bar and R charts for the same 30-day run. The fuzzy X
bar chart, Figure 12.22, handles the high beryllium exposure that is due to a high workload
or high capacity days, as intended. The plant is not out of control because it is operating
as expected for a high workload. The standard single-variable X bar chart (Figure 12.24),
based on beryllium exposure only, signals that the plant is out of control for the days that



288 Chapter 12. Control Charts for Statistical Process Control

[——averages grand average UCL, LCL,|
0.55
0.5
3]
] A
g 0.45 1 /\_/\—««\ A V/’\ _/\M
VAAVAR S
0.4 1
0.35 T T T T —
0 5 10 15 20 25 30

set number

Figure 12.22. Fuzzy X bar chart showing results for a high-capacity day with high
beryllium exposure readings for three days during a 30-day beryllium plant run.
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Figure 12.23. Fuzzy range (R) chart showing results for a high-capacity day with
high beryllium exposure readings for three days during a 30-day beryllium plant run.

high beryllium readings are obtained. This is not the desired result. Both range charts,
Figures 12.23 and 12.25, show no unusual dispersion in the in-set data, as expected.

The next section discusses an SPC technique, using regression that can be applied to
this type of problem.

12.4 SPC techniques for measurement data requiring
correlation and using regression

The beryllium exposure control problem can be solved without fuzzy logic. One can regress
all the data from a 30-day run and find a relationship between the expected beryllium exposure
(y.) and the variables, number of parts (x|), size of parts (x;), number of setups (x3), and
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Figure 12.24. Standard X bar chart (beryllium exposure only) showing results for
a high-capacity day with high beryllium exposure readings for three days during a 30-day
beryllium plant run.
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Figure 12.25. Standard range (R) chart (beryilium exposure only) showing results
for a high-capacity day with high bervilium exposure readings for three days during a 30-day
bervilium plant run.

the type of cut (xy). The regression equation form that was used for this study is given as
Ve = do + dy kX[ +d2 % X2+ d3 % X3+ dg * Xy. (12.9)

Obviously, more sophisticated forms can be used, but the user is cautioned not to over-fit the
data because it would be easy to turn out-of-control points into expected points. Although
our search was not exhaustive, in all the reference material listed at the end of the chapter,
this technique is only briefly mentioned in Western Electric Company, Inc. (1995). It is
not surprising, therefore, that the beryllium plant operators were not using this technique.
Statisticians tend to automatically migrate toward an approach like this, however. The
procedure for this technique is as follows:
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* Choose a form for the regression equation, e.g., (12.9).

Gather all the individual data for the entire run (in this case, 30 days). These data
include the measured beryllium exposures (y,,) and the variables x; through x4.

* Regress the data and find the values of g through ay.

* Use the regression equation (12.9) to find the expected beryllium exposures and com-
pare them to the measured exposures. Compute the deviation (D). (In this case,
D=y, — yn.)

* Compute the average deviation and the deviation range for each data set or each day.

* Compute the grand average deviation and the average deviation range.

Plot this information on standard X bar—R charts using the same equations and tables
as before to compute the control limits.

Examples 4-6 will be reworked as Examples 7-9 using the regression technique in
order to compare the results with the fuzzy technique. Example 7 is the normal run, Example 8
is the bad ventilating system run, and Example 9 is the high capacity days run. Table 12.10
gives the regression coefficients obtained for Examples 7-9.

Table 12.10. Regression coefficients for Examples 7-9.

Example number ay @ ay as as
7 —0.00723695 | 0.0175316 | 0.0304519 | —0.01306050 | 0.0379174
8 —0.00852286 | 0.0317977 | 0.0340590 | —0.02612060 | 0.0482558
9 —0.0144913 0.0135056 | 0.0233584 | —0.00861036 | 0.0771309

12.4.1 Example 7: Regression on Example 4

This is the normal 30-day run; nothing should be out of control. These are the same operating
conditions as in Example 4. Figures 12.26 and 12.27 are the X bar and R charts for this
example using regression.

The X bar chart for this example, Figure 12.26, shows no out-of-control sets, as
expected. Day 24 does show a dip toward the control limit line. If we observe Figure 12.16,
the X bar chart for beryllium exposure only, for a normal run, we see that day 24 was an
“out-of-control” day. Figure 12.26 dips in the opposite direction from Figures 12.4-12.18
because of the way deviation was defined (D = y, — y,,). Figure 12.14, the fuzzy X bar
chart for the same run, shows a fairly normal point for day 24, indicating that the fuzzy rules
explained the higher beryllium exposure reading adequately. The R chart for this example
shows too much dispersion within the set on day 11. This is a range out-of-control condition.
The fuzzy range chart for this run, Figure 12.15, shows a day with a normal range. The
beryllinm exposure only range chart for this run, Figure 12.17, shows a normal range as well
for day 11. The deviations from the regression surface for day 11 show one point nearly on
the surface, one point about an average range value from the surface, and two points about
two average range values from the surface. This provides an extremely large deviation range
for that day. However, it apparently has little or no physical meaning and can be listed as a
false alarm.
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Figure 12.26. Regression X bar chart showing results for a normal 30-day beryl-
lium plant run.
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Figure 12.27. Regression range (R) chart showing results for a normal 30-day
beryllium plant run.

12.4.2 Example 8: Regression on Example 5

In this 30-day run, days 5, 6, and 7 are days where the ventilating system is not working
well. These three days should be out of control. These are the same operating conditions as
in Example 5. Figures 12.28 and 12.29 are the X bar and R charts for this example using
regression.

The X bar chart for this example does indeed show the plant to be out of control on
days 5, 6, and 7, as is the case. Again the deviation moves in a negative direction because of
the way it is defined. It is interesting to note how the regression pushed all the “in-control”
points either onto the zero deviation line or onto the positive side of it. This is a negative
point about the regression technique. If there is a strong out-of-control condition when the
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Figure 12.28. Regression X bar chart showing results for a ventilating system that
worked poorly for three days during a 30-day beryllium plant run.
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Figure 12.29. Regression range (R) chart showing results for a ventilating system
that worked poorly for three days during a 30-day beryllium plant run.

regression line and the control limits are being established, the out-of-control points will
have a strong influence on the limits. This would not happen if the regression equation was
established during in-control conditions and the out-of-control deviation points were just
computed from that regression surface. The range chart, Figure 12.29, shows that days 5
and 7 have too much dispersion in the data sets. Neither the fuzzy range chart for this run,
Figure 12.19, nor the standard R chart (beryllium exposure only) shows unusual deviations.
The range of deviations shown in Figure 12.29 represents excursions from the regression
surface and has no physical significance. These are false alarms.
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Figure 12.30. Regression X bar chart showing results for a high-capacity day with
high bervllium exposure readings for three days during a 30-day beryllium plant run.
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Figure 12.31. Regression range (R) chart showing results for a high-capacity day
with high beryllium exposure readings for three days during a 30-day beryllium plant run.

12.4.3 Example 9: Regression on Example 6

In this 30-day run, days 13, 14, and 15 are high-capacity days. These three days should not
be out of control. These are the same operating conditions as in Example 6. Figures 12.30
and 12.31 are the X bar and R charts for this example, using regression.

The X bar chart for this example shows the plant to be in control on days 13, 14, and
15, as is the case. The range chart, Figure 12.31, shows day 24 to have too much dispersion
in the data set. The fuzzy range chart for this run, Figure 12.23, and the standard R chart
(beryllium exposure only), Figure 12.25, both show reasonably high deviations for day 24,
but not out-of-control conditions. The range of deviations shown in Figure 12.31 does have
some physical significance, but the chart is still giving a false alarm.
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12.4.4 Comments on regression

Although this example is not exceptionally good for the regression method, it does work very
well if there is a large amount of data and if the original analysis is based on “in-control”
conditions. The fact that the regression is based on the sum of the squared errors causes larger
than desired distortion in the control chart if it is constructed with data that has out-of-control
points in it. Admittedly, (12.9) is a very simple regression equation. A more sophisticated
equation using a squared term or cross-products of x; % x; probably would do a better job,
but only if the regression is based on in-control data, such as in Example 7. By the same
token, the fuzzy membership functions and rules used in this example also can be more
sophisticated. The binary membership functions in Figure 12.10 and the simple basis for the
rules in Table 12.7 can and probably will be enhanced in the future. Given the simple basis,
the fuzzy system works very well. A final comment on regression versus fuzzy is that the
“type of day” concept used by the fuzzy system is a little more meaningful to plant workers
than the concept of deviation from the expected value used in the regression technique.

12.5 SPC techniques for attribute data

Most attribute data have only two values, for example, meets specifications or does not meet
specifications, is useful or should be discarded, etc. The four most common types of control
charts used for attribute data are the following:

1. The p-chart is used to record the proportion of discards, rejects, or “does not meets”
per sample set. For the p-chart, the sample size can vary.

2. The np-chart is similar to the p-chart, except that the sample size must be constant
and the number of rejects, etc. are recorded as opposed to the proportion.

3. The c-chart is used to record the flaws or less-than-perfect conditions for a sample of
constant size. This type of chart is usually used to measure things like the number of
devices on a circuit board that do not meet specifications or the number valves on a
valve tray that do not open properly. The circuit boards and the valve trays must be
the same size.

4. The u-chart is similar to the c-chart except that the sample size can vary. In this case
the valve trays or circuit boards can be different sizes.

All of these charts are similar, but for the sake of brevity only the p-chart will be discussed
here. For a good and quick discussion of all these techniques, see Mamzic (1995). Example 1
will be recast in order to demonstrate the use of the p-chart. The data will be changed to the
number of rejects per sample instead of the actual average measurement of the variable (the
length of the log). Since the sample size (n = 3) is constant, this example could be done as
an np-chart, but the p-chart approach fits nicely into the fuzzy examples in the next section.

12.5.1 Example 10: Log cabin revisited

In this example, the log cabin building problem is revisited.” The goal still is to produce
20-foot or 240-inch logs, £2.5 inches. Logs with lengths greater than 242.5 inches and less
than 237.5 inches will be rejected. The random data from Example 1, shown in Table 12.1,
are altered to reflect the fraction of rejects for each set of sample size 5. These data are shown
in Table 12.11.
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Table 12.11. Proportions of rejections per sample of sets of five logs (first try).

Set number | Proportion of set rejected (p)
1 0.6
2 0.8
3 0.4
4 0.6
5 0.6
6 1.0
7 0.8
8 0.8
9 0.6

10 10
11 1.0
12 1.0
13 0.6
14 0.8
15 0.8
16 0.8
17 1.0
18 0.6
19 0.8
20 0.8
i 4 average m——JCL, w——].CL,,

1.6
14
12

s, » mvm /\
AV
0.2

O T T T T T Al T L] L}
0 2 4 6 8 10 12 14 16 18 20
set number

proportion of sample rejected (p)

Figure 12.32. The p-chart for the log cabin problem (first try).

Figure 12.32 is the p-chart for this run. This chart shows the individual p-values
(the fraction of rejections per set), the average p-value for the entire run (p), and the upper
and lower control limits, UCL, and LCL,. This chart also provides information regarding
patterns in the central tendency of the data. The upper and lower control limits are defined by

——
UCL,,=,3+3,/~—p( 2 (12.10)
n
- —
LCL,)=13—3,/u, (12.11)
n
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where p is the average p-value for the run described above and # is the average sample set
size. In this case, n = n = 5. Often these formulas will replace n with n;, where n; is the
individual set size and each individual p-value will have individual control limits based on
the individual set size. The reader may recognize the radical term in (12.10) and (12.11) as
one standard deviation (1o for a binomial distribution. Therefore, for the p-chart the upper
and lower control limits are the &3¢ limits for a binomial distribution. Some authors (Box
and Luceno (1997)) use the +20 limits as warning markers in addition to the control limits.

The p-chart in Figure 12.32 tells essentially the same story as the X bar and R charts in
Figures 12.1 and 12.2. The process is not out of control. The problem is common-cause, not
special-cause. In order to meet specifications, the process—not the operation techniques—
must be changed. Example 11 is the p-chart version of Example 2. The process has been
changed to eliminate the common-cause problems, but a special-cause problem still exists.

12.5.2 Example 11: The log cabin with a special-cause problem

Example 10 is repeated, this time using a saw instead of an axe to eliminate the common-
cause problem. In Example 2, the saw fixed the problem so well that no rejections occurred
even though there was an out-of-control situation. A p-chart with no rejections says nothing
about the problem, so the problem will be slightly modified. Suppose that we feel we need
to cut the tolerance to +1 inch. The new logs must have a length between 239 and 241
inches. Logs outside these limits, but within the old limits, are considered seconds and can
be used to construct the garage. Logs outside the old limits are culls or must be used for
firewood. Since the saw was introduced, no logs fall outside of the old limits so no culis
are produced. For all practical purposes, this still is a binomial problem, with the seconds
considered rejects. Note that Figure 12.6 shows that the new tolerance limits fall inside
the natural process limits. The special-cause problem still exists because we are using each
newly cut log as a template for each proceeding cut. With the exception of the new saw, the
process is run as before, taking a sample of five logs at regular intervals. After 20 intervals,
anew p-chart is constructed. Data for this run are presented in Table 12.12. Figure 12.33 is
the p-chart for this run. This chart shows, as in Figure 12.4, that near the end of the run the
number of rejections starts to move above the upper control limit, signaling a special-cause
event. This is because the length of the logs is starting to grow because a different template
is being used every time. The p-chart provided an out-of-control signal. (Note that no lower
control limit is shown since it would be less than 0.)

The idea of good logs, seconds, and culls presented in Example 11 brings up an
interesting problem. How do we develop a p-chart for a multinomial problem since we cannot
rely on a binomial distribution to define the control limits? This provides an opportunity
to use fuzzy logic to solve the problem. The SPC community favors a generalized p-chart
based on the chi-square statistic for the multinomial processes (Duncan (1950)). The next
section is devoted to fuzzy techniques for solving multinomial problems. The generalized
p-chart will be discussed in section 12.7.

12.6 Fuzzy techniques for attribute data

Raz and Wang (1990) and Wang and Raz (1990) presented the fuzzy solution to multinomial
attribute problems. Laviolette and Seaman (1992, 1994) and Laviolette et al. (1995) added
more detail to the work of Wang and Raz and then criticized it. One problem with the work
presented by Laviolette and Seaman (1992, 1994) and Laviolette et al. (1995) is that the
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Table 12.12. Proportions of rejections per sample of sets of five logs, with modified
tolerances (second try).

Set number | Proportion of set rejected (p)
1 0.0
2 0.0
3 0.4
4 0.2
5 0.2
6 0.0
7 0.2
8 0.2
9 0.2
10 0.2
11 0.2
12 0.0
13 0.0
14 0.2
15 0.0
16 0.0
17 0.2
18 0.0
19 0.6
20 0.8
[——> average ==memUCL,
;g_ 0.9
8 0.8 4
i 0.7 4
= 0.6
L
[ 4
g 035
3 04
Y=
S 0.3
=
2 0.2 g—t—t—— 2 2
g 0.1
o ERVARRWAWA
g 01+— . T » ¥
0 5 10 15 20

set number

Figure 12.33. The p-chart for the modified pellet problem (second try).

membership functions used in their examples are not well defined. For example, the log
cabin problem described in Example 11 has three membership functions, premium logs,
seconds, and culls. In this problem, the membership functions are “crisp.” One could say
that all good logs are in the set containing lengths between 239 and 241 or in the set with an
absolute error bound of 1. So the set of good logs is in the range that goes from O to 1. Ina
similar fashion the seconds are in the range that goes from 1 to 2.5. If it is assumed that logs
are never farther than 5 inches from the specified value, then the culls are in the range that
goes from 2.5 to 5. In the real world the bounds cannot always be that clearly defined. In
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order to make the number come out even, assume that the measuring device (tape measure)
is accurate only to £0.25 inches. Now good logs can be found in the range from O to 1.25.
Seconds can be found in the range from 0.75 to 2.75, and culls in the range from 2.25 to 5.0.
Finally, in this type of problem, the universe of discourse usually goes from O to 1. A score
of 0 means perfect, or exactly 240 inches, and a score of 1 is terrible, or an error of 5 inches.
If the ranges are normalized, then good logs range from O to 0.25, seconds from 0.15 to 0.55,
and culls from 0.45 to 1.0. A triangular description of the type of logs produced is shown in
Figure 12.34.

| e premium seconds ——culls|
1
R
=
5
205
Q
g
O T T L] T T T L T L)
0 01 02 03 04 05 06 07 08 09 1
score

Figure 12.34. Fuzzy membership functions for log types.

Laviolette and Seaman (1992, 1994) and Laviolette et al. (1995) base most of their
arguments on a brick problem described by Marcucci (1985). This problem involves the
manufacture of bricks. Bricks from this process come in three forms: standard, chipped-
face, and culls. The standard brick is classified as suitable for all purposes, the chipped-face
brick is structurally sound but not suitable for every purpose, and the culls are unacceptable.
Obviously, the membership functions for this situation cannot be as clearly defined as those
for the log cabin problem, but there has to be some physical justification for assigning
the membership functions. Although the connection is mentioned, it is not clear how the
membership functions are connected to the physical world. The results can be no better than
the model.

The fuzzy approach to developing a multinomial p-chart is as follows:

» Choose a set size and take a sample.
¢ Count the number in each category (e.g., premium, second, cull) in the sample set.

* Use the fraction in each category to define a fuzzy sample set in terms of the member-
ship functions that define the system (e.g., Figure 12.34).

» Defuzzify the fuzzy sample in order to get one representative value for the sample set
to use in constructing a p-chart.

This procedure is best described with an example. The example is an extension of the
beryllium plant problem described in Examples 4—6 and Figure 12.12. The plant simulation
works as before, but random number generators have been added to simulate scratches of
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various lengths and depths on the surfaces of the parts. The p-chart problem is a quality

control problem. This is a different problem than the exposure control problem that was
investigated earlier.

12.6.1 Example 12: Fuzzy attribute data

For this problem, all parts going through the beryllium plant are inspected twice. In the
first inspection, part dimensions are measured with a machine to see if they fall within the
desired tolerance times. This machine is a precision instrument, so parts are assigned to
categories in a crisp manner. There are three categories: firsts, seconds, and culls. There is a
reasonably large need for the seconds, and a tight tolerance for the firsts, so enough seconds
are generated by this procedure to satisfy demand. The firsts are assigned a score of 0.0,
the seconds a score of 0.5, and the culls a score of 1.0. A second inspection is performed
to examine the finish of the part, or the surface area. The inspector visually checks for
scratches, checks for the number of scratches, the average length of the scratches, and the
average depth of the scratches. If the deepest scratch is more than three times the average
scratch depth, then the deepest value is used rather than the average. A similar rule is used
to document scratch length. In the actual plant inspection, the inspector does most of this
visually and the recorded values are just good estimates. In the simulation, exact numbers
are used. The numbers used in this example are not the real values but are representative
values.

After the number, depth, and length of the scratches are recorded, a fuzzy rule-based
system determines how much to “downgrade™ the part from the first inspection category.
Because beryllium metal is expensive, two additional categories have been added to the
type of product that is obtained after both inspections. They are “possible rework to a first”
and “possible rework to a second.” This is because some finishes can be reworked without
changing the dimensions beyond the tolerance limits. The fuzzy membership functions that
describe the beryllium parts after the inspections are shown in Figure 12.35.

| s firsts e = rework to firsts

seconds «---- rework to seconds culls |

1

0.5

membership

N B VAR :

0 01 02 03 04 05 06 07 08 09 1

score

Figure 12.35. Fuzzy membership functions describing beryllium parts after inspections.
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12.6.2 The fuzzy system used to downgrade parts

This fuzzy system consists of three input variables and one output variable. Each input vari-
able has three membership functions and the output variable has five membership functions.
The input and the output are connected by 27 rules. The three input variables are as follows:

1. Number of scratches: with a range of 0 to 9 and membership functions

(a) small,
(b) medium,

(c) large.
2. Length of scratches: with a range of O to 2.4 centimeters and membership functions

(a) short,
(b) medium,

(c) long.
3. Depth of scratches: with a range of 0 to 10 microns and membership functions

(a) shallow,
(b) medium,

(c) deep.
The output variable is as follows:
1. Amount of downgrade: with a range of 0 to 0.4 and membership functions

(a) very small,
(b) small,

(¢) medium,
(d) large,

(e) very large.

Figure 12.36 shows the input membership functions and Figure 12.37 shows the output
membership functions. The rules are given in Table 12.13 and the form of the rules is as
follows:

If (number of scratches) is. .. and if (depth of scratches) is. . . and if (Iength of
scratches) is. . ., then the amount of downgrade is. . ..

The input variables are determined by measurements, or estimates, of the second inspector.
The appropriate rules are fired. The min—max centroid approach is used to defuzzify the
result, as in Example 4. The defuzzified value computed from this procedure is added to the
score from the first inspection, giving a final score. The final score is applied to Figure 12.35
to place the part in its final category (firsts, rework to firsts, seconds, rework to seconds,
culls). Entering the final score at the corresponding point on the abscissa of Figure 12.35 and
then choosing the category with the highest membership function accomplishes this. Before
continuing with the explanation of the procedure, it is appropriate to illustrate what has been
done up to this point with some actual numbers.
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Figure 12.36. Input membership functions for rules to downgrade beryllium parts.
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Figure 12.37. OQutput membership functions for rules to downgrade beryllium parts.

On the first day of the run, 13 parts were manufactured. The first inspector inspected
part number 7 by comparing the dimensions to the specifications and assigning an initial
score of 0.5. The second inspector checked the surface area of the part and found seven
scratches. The average scratch length was 0.56cm. The average depth was small, but one
scratch had a depth of about 7.51. Since this was greater than three times the average depth,
the maximum, 7.5/ is used instead of the average. This inspection can be done visually with
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Table 12.13. Fuzzy rules for beryllium part downgrade.

Rule Number of scratches | Length of scratches | Depth of scratches Amount of
number downgrade

1 small short shallow very small

2 small short medium small

3 small short deep large

4 small medium shallow small

5 small medium medium medium

6 small medium deep large

7 small long shallow large

8 small long medium large

9 small long deep very large
10 medium short shallow small
11 medium short medium medium
12 medium short deep large
13 medium medium shallow medium
14 medium medium medium medium
15 medium medium deep large
16 medium long shallow large
17 medium long medium large
18 medium long deep very large
19 large short shallow large
20 large short medium large
21 large short deep very large
22 large medium shallow large
23 large medium medium large
24 large medium deep very large
25 large long shallow very large
26 large long medium very large
27 large long deep very large

these numbers being only estimates. However, this material is quite expensive and with only
a few parts to inspect each day the inspector can actually be quite meticulous.

These values are applied to the input membership functions in Figure 12.36. From this
figure, for the number of scratches = 7, the membership in large is 0.56, the membership
in medium is 0.44, and the membership in small is 0.0. The memberships for the length
of scratches = (.56, from the same figure, are 0.0 for long, 0.47 for medium, and 0.53 for
short. The memberships for the depth of scratches = 7.5 are 0.5 for deep, 0.5 for medium,
and 0.0 for shallow. Unlike Example 4, these input membership functions are not binary;
therefore, in this case, only eight of the 27 rules will fire. Rules 1 through 9 will not fire
because the variable “number of scratches” has no membership in the set small. Rules 16
through 18 and rules 25 through 27 will not fire because the variable “length of scratches”
has no membership in the set long. Rules 10, 13, 19, and 22 will not fire because the variable
“depth of scratches” has no membership in the set shallow. The eight rules left to fire are
11, 12, 14, 15, 20, 21, 23, and 24.

For rule 11 from Table 12.13, the inputs

¢ number of scratches: medium = 0.44;
* length of scratches: short = 0.53;

 depth of scratches: medium = 0.5
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Table 12.14. Fuzzy rules “fired” in Example 12 to determine the beryllium part

downgrade.
Rule Number of Length of Depth of Amount of
number scratches scratches scratches downgrade
1 medium = 0.44 short = 0.53 | medium = 0.50 medium = 0.44
12 medium = 0.44 short = 0.53 deep = 0.50 large = 0.44
14 medium = 0.44 medium = 0.47 | medium = 0.50 medium = 0.44
15 medium = 0.44 | medium = 0.47 deep = 0.50 large = 0.44
20 large = 0.56 short =0.53 | medium = 0.50 large = 0.50
21 large = 0.56 short = 0.53 deep = 0.50 | very large = 0.50
23 large = 0.56 | medium = 0.47 | medium = 0.50 large = 0.47
24 large = 0.56 | medium = 0.47 deep = 0.50 | very large = 0.47

lead to the conclusion that the consequent of the rule “amount of downgrade” = medium has
a value of 0.44. This is a consequence of the minimum portion of the min—max rule. The

“fired” rules and their consequent values are shown in Table 12.14.

Using the maximum portion of the min—max rule and the values in the last column of
Table 12.14 to resolve the “or” nature of the output membership functions, the following

values are obtained:

« very small = 0.0;

e small = 0.0;

¢ medium = 0.44;

* large = 0.50;

* very large = 0.50.

The output membership functions shown in Figure 12.37 are “clipped” at these values, as
shown in Figure 12.38. The centroid of the shaded area in Figure 12.38 is computed and is
used as the defuzzified value for the amount of downgrade for part number 7.
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Figure 12.38. “Clipped” output membership functions for Example 12.
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The centroid of the shaded area in Figure 12.38 is & 0.304. This is the amount of
downgrade applied to part 7 by the second inspector. The downgrade is added to the initial
score, in this case 0.50, to obtain a final score of 0.804. This final score is the value on the
abscissa of Figure 12.35 that is used to categorize part number 7. A line perpendicular to the
score axis of Figure 12.35, at 0.804, is projected upward, crossing the membership functions
“cull” and “rework to seconds” at & 0.22 and 0.46, respectively. These values represent the
membership of the final score in the respective sets; the values are read from the ordinate of
the plot in Figure 12.35 at the points where the perpendicular line drawn from the score 0.804
crosses the respective membership function triangles. Since the membership in “rework to
seconds” is greater than the membership in “cull,” part number 7 is assigned the “rework to
seconds™ category. All 13 parts manufactured on day 1 are categorized in the same manner
as part 7. At the end of day 1 the following results are obtained:

* number of parts categorized as firsts = 6;

* number of parts categorized as rework to firsts = 2;

» number of parts categorized as seconds = 2;

« number of parts categorized as rework to seconds = 1;
* number of parts categorized as culls = 2.

Table 12.15 shows the categorization for all parts for a 30-day run.

In this case, there is no choice of a sample size for each set. The sample size will vary
from day to day since all parts produced daily are in the sample set. The obvious choice for
this example is the p-chart because sample sizes vary.

The next step is to provide a fuzzy representation for each day based on the categoriza-
tion of each part for that day. This is easily done using the extension principle from fuzzy
logic and the concept of a triangular fuzzy number (TFN) as described by Kaufmann and
Gupta (1985). ATFN is completely described by a triplet, T = (1, 2, 13), or, in this case, the
vector [, £z, 13]7 . The values t;, t, and #3 are the x-values of the x—y pairs representing the
corners of a triangle with the base resting on the x-axis (y = 0) and the apex resting on the
line y = 1. Sucha triangle can be described by the three points in the x—y plane (71, 0), (2, 1),
and (73, 0). For example, the triangular membership function “seconds” in Figure 12.35 can
be described as a TEN with #; = 0.25, #; = 0.5, and 3 = 0.75, or [0.25, 0.5, 0.75]7. The
other four output membership functions are described as follows:

o firsts = [0.0, 0.0, 0.25]7;

* rework to firsts = [0.15, 0.25, 0.35]7;

» rework to seconds = [0.65, 0.75, 0.85]7;
 culls = [0.75, 1.0, 1.017.

A matrix, called the A matrix, can be constructed with columns comprised of the five-output
membership function TFNs. For this example, the A matrix is

00 015 025 0.65 0.5
A=|00 025 05 075 10
025 035 075 085 1.0
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Table 12.15. The categorization for all parts for the 30-day run from Example 12.

Number Number of Number Number of Number Total
Day rework rework number
of firsts of seconds of culls
to firsts to seconds of parts
[ 6 2 2 1 2 13
2 12 2 6 0 2 22
3 9 6 3 1 0 19
4 10 2 4 I I 18
3 12 5 6 1 5 29
6 14 3 5 2 0 24
7 9 5 3 2 0 19
8 15 3 7 2 2 29
9 12 3 7 2 0 24
10 6 2 4 2 0 14
1 12 3 2 2 | 20
12 9 5 3 0 0 17
13 7 4 6 4 0 21
14 8 5 2 1 2 8
15 15 4 6 2 | 28
16 4 0 2 4 | 11
17 11 4 6 1 0 22
18 10 4 6 3 I 24
19 5 3 5 0 I 14
20 13 7 7 2 | 30
21 12 4 4 0 | 21
22 {3 3 5 1 1 23
23 6 5 2 3 1 17
24 20 4 6 I | 32
25 5 2 4 1 3 15
26 15 0 2 3 0 20
27 9 0 2 0 0 11
28 8 1 7 0 0 16
29 11 3 2 3 0 19
30 15 6 5 ] 0 27

Next, a five-element vector called B is constructed. The first element of the B vector
is the fraction of the daily readings that were firsts. The second element is the fraction of the
readings that were rework to seconds, and so on. A B vector can be constructed for every
day of the run from the values in Table 12.15. For example, for day 1, using row 1 from
Table 12.15, the following value is obtained for the B vector:

T
T
B = [13, EERER 13i| =[0.462,0.154,0.154,0.077, 0.154}" .
The product A B is a TEN that represents the fuzzy distribution for the day. For day 1 of this
30-day run, the TEN AB = [0.227,0.327, 0.504]". This is a triangular distribution that is
approximately halfway between “rework to firsts” and “seconds.” Figure 12.39 shows how
day 1 is distributed on a “score chart” like Figure 12.35. The shaded area is the TEN or fuzzy
distribution for day 1. A different distribution is obtained every day. In order to construct
a control chart, values for both a centerline and control limits must be determined. There
are several metrics that can be used to represent the central tendency of a fuzzy set (Raz
and Wang (1990), Wang and Raz (1990), Laviolette and Seaman (1992, 1994), Laviolette
et al. (1995)). Two of them will be discussed here. The first metric to be discussed is the
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Figure 12.39. The fuzzy distribution for day 1 shown on the score chart. The shaded
area is the distribution for day 1.
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Figure 12.40. Daily fuzzy distributions spread over the average p-value line.

a-level fuzzy midrange (Laviolette and Seaman (1992, 1994), Laviolette et al. (1995)). The

a-level fuzzy midrange for day 1 in the example is 0.346154. This is the midrange of the
shaded triangle in Figure 12.39. The mean or the centerline for the 30-day run has a value
of 0.275324. Figure 12.40 depicts the daily fuzzy distributions relative to the centerline
or mean.

The a-level fuzzy midrange is defined for a fuzzy set as the midpoint of the crisp
interval that divides the set into two subsets. One subset contains all the values that have
a membership greater than or equal to ¢ in the original set. The other subset contains all
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the values with memberships less than «. This interval is called the a-cut. Laviolette and
Seaman (1992) showed that a central tendency of the TFN A B described above can be well
represented by

R=ol AB, (12.12)

where R is the «-level fuzzy midrange and « is a vector defined by

| —« I -al”
2 2

where o is the scalar value chosen for the a-cut. It is common to choose « equal to 0.5
(Laviolette and Seaman (1992)), in which case the vector o becomes

a = 10.25,0.5,0.25].

Laviolette et al. (1995) point out that for sufficiently large sample size n, the vector B
constitutes an observation from a multivariate normal distribution with a rank of ¢ — 1,
where ¢ is the number of categories in the problem—in this case ¢ = 5. The scalar R is then
an observation from a univariate normal distribution with a mean u = o’ A7 and a variance
0’ =a’ AXATa, where 7 and X are the respective mean vector and covariance matrix of
the set of B vectors. The covariance matrix X is defined by
il —m)y
—_— Q=]
Y =loy] = n 12.14
il =4 o (12.14)
s i #J.
n
This is convenient because it provides upper and lower control limits, UCL,, and LCL.,,
for the fuzzy p-chart:

UCLp‘/' = U+ Z.0, (12.15)
LCL,; = pt — 2.0 (12.16)

The factor z. is a function of the confidence level for the normalized Gaussian random
variable. These factors are given in Table 12.16, taken from Williams (1991).

Table 12.16. Confidence levels as a function of the factor z,. for the normalized
Gaussian random variable.

Ze Confidence level: 100 = (1 — y)%
1.645 90.00
1.960 95.00
2.0 20) 95.45
2.326 98.00
2.576 99.00
3.030) 99.73
3.291 99.90
3.891 99.99

The symbol % represents the area under the normalized Gaussian curve in each tail
beyond the values of £z, that represents the area of the desired confidence level. In this
example, the desired confidence limit is 95%. Ninety-five percent of the area under the
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normalized Gaussian curve lies between £z, = 1.96 (nearly 20). The control limits for
each sample will be a function of n, the sample size. In the next section, we will address how
large n must be to have confidence that the sample vector B came from a multivariate normal
distribution. The example is continued using this «-level fuzzy midrange with o = 0.5 to
construct the fuzzy p-chart.

The p-chart generated from the 30-day simulation run for Example 12 is shown in
Figure 12.41. The data from this run are presented in Table 12.17. Figure 12.41 and Ta-
ble 12.17 show the fuzzy p-values for each set number. These values are computed as in the
preceding example. Also shown is the set mean, similar to the grand average used with X
bar—R charts. The chart and table also show the upper and lower control limits, UCL ¢ and
LCL,;, computed using (12.15) and (12.16). These control limits were not calculated in
the usual p-chart manner using (12.10) and (12.11) since the fuzzy p-chart is not binomial.
On this chart the control limits are approximately equal to the £20 limits (95% confidence
limits). These limits normally are called the warning limits, as discussed in Example 10. The
manufacturers, however, can use whatever control limits they wish. In this case, they are
looking for very tight control, so the 95% confidence limits were used. Figure 12.41 shows
that two points are beyond the 95% confidence limit. These are points 16 and 25. Point 27
18 inside the confidence limits. Twenty-eight of 30 points are within the control limits. This
18 93.33%, very close to 95%.

Table 12.17. Results from Example 12 using a-level fuzzy midrange with @ = 0.5.

Set number | Sample size,n | p-value | Mean, . | UCL,s LCL,s
1 13 0.346154 | 0.275324 | 0.418928 | 0.13172
2 22 0.278409 | 0.275324 | 0.385713 | 0.164935
3 19 0.226974 | 0.275324 | 0.394109 | 0.156539
4 18 0267361 | 0.275324 | 0.397364 | 0.153284
5 29 0.359914 | 0.275324 | 0371472 | 0.179177
6 24 0.234375 | 0.275324 | 0.381014 | 0.169635
7 19 0.253289 | 0.275324 | 0.394109 | 0.156539
3 29 0.295259 | 0.275324 | 0.371472 | 0.179177
9 24 0.270833 | 0.275324 | 0.381014 | 0.169635

10 14 0.312500 | 0.275324 | 0.413704 [ 0.136944
11 20 0.246875 | 0.275324 | 0.391101 | 0.159547
12 17 0.194853 | 0.275324 | 0.400902 | 0.149746
13 21 0.354167 | 0.275324 | 0.388311 | 0.162337
14 18 0.298611 | 0.275324 | 0397364 | 0.153284
15 28 0.263393 | 0.275324 | 0373174 | 0.177475
16 11 0.471591 | 0275324 | 0431438 | 0.119210
17 22 0.247159 | 0.275324 | 0.385713 | 0.164935
18 24 0.325521 | 0.275324 | 0.381014 | 0.169635
19 14 0.321429 | 0.275324 | 0413704 | 0.136944
20 30 0.283333 | 0.275324 | 0.369856 | 0.180793
21 21 0.223214 | 0275324 | 0.388311 | 0.162337
22 23 0.250000 | 0.275324 | 0.383287 | 0.167361
23 17 0.341912 | 0.275324 | 0.400902 | 0.149746
24 32 0.216797 | 0.275324 | 0.366854 | 0.183794
25 15 0.425000 | 0.275324 | 0.409012 | 0.141636
26 20 0.209375 | 0.275324 | 0.391101 | 0.159547
27 11 0.142045 | 0.275324 | 0.431438 | 0.119210
28 16 0.265625 | 0.275324 | 0.404767 | 0.145881
29 19 0.246711 | 0.275324 | 0.394109 | 0.156539
30 27 0.210648 | 0.275324 | 0.374969 | 0.175679
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Figure 12.41. Fuzzv p-chart for Example 12 using the a-level fuzzy midrange
technique with ¢ = 0.5.
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Figure 12.42. 100-day fuzzy p-chart for Example 12.

In order to conduct a second check of the control limits, a second run was made with
100 data sets, or over 100 days. These results are shown in Figure 12.42. The 100-day run
produced five points that were outside the control limits. These points are set numbers 16,
25, 39, 41, and 94. This run demonstrates that exactly 95% of the points are within the 95%
confidence limits. The data from this run were then divided into bins and the frequencies of
these bins are plotted in Figure 12.43.

The data distribution shown in Figure 12.43 resembles a Gaussian distribution with
an average, 1 = 0.267786, and standard deviation, & = 0.061848. This indicates that the
vector B is an observation from a multivariate normal distribution as assumed. Then the
scalar R. plotted in Figures 12.41-12.43, probably is an observation from a univariate normal
distribution, even with the sample sizes used in this problem.
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Figure 12.43. The bin frequency for the data from the 100-day run, Example 12.

The other metric that was used in this study to represent the central tendency of a fuzzy
set is the fuzzy average, f,yg, defined by

(12.17)

where pp(x) is the equation for the membership function or the fuzzy set. In Example 12,
using this metric, from Figure 12.39, for day 1, ur(x) is given by the following set of
equations:

ur(x) =0, x < 0.227,
wr(x) = 10x — 0.227, 0.227 < x < 0.327,
Ur(x) = —5.65x +2.85, 0.327 < x < 0.504,
ur(x) =0, x > 0.504.

The fuzzy average computed using (12.17) is 0.352564 compared to 0.346154 using (12.12),
the a-level fuzzy midrange technique. Some authors prefer using the fuzzy average rather
than the a-level fuzzy midrange technique because doing so makes it easier to visualize the
physical meaning of the fuzzy average. The major problem is that it is more difficult to
generate control limits for this technique. Wang and Raz (1990) have suggested using

UCLrw = p + k8(Tayg), (12.18)
LCLrw = 1 — k8(Tayp), (12.19)

where Ty = (11, 12, £3), the TEN for the average fuzzy triangle for the entire run. The
constant & for the desired confidence level is generated from a simulation of the process.
The function §(T,y) is defined by

3 — 1
2
A simulation can and will be done for this example, because there is a simulator avail-

able. However, this technique may not always be extremely useful since it depends on the
availability and quality of the simulator.

S(Tavg) =

(12.20)
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First, it turns out that one can use the ¢-level fuzzy midrange to develop control limits
for this case as well. If one picks a = 1, then (12.12)—(12.16), the mean . = o’ An, and
the variance 0> = «” AX AT o can be used to generate a p-chart with the p-values generated
by (12.12) being identical to those generated by (12.17) (where ¢ = [%, % %]). Example 12
is redone using this technique to generate a p-chart based on fuzzy averages. The data are
presented in Table 12.18, and the p-chart is shown in Figure 12.44. The data in Table 12.18
can be compared to those in Table 12.17. The sample set size » is the same in each case.
The p-chart using & = % is slightly different than the p-chart generated using o = % The
results are the same for both p-charts. Data sets 16 and 25 have p-values outside the control
limits. The point is that it probably does not make much difference which technique is used.

Table 12.18. Resuits from Example 12 using c-level fuzzy midrange with a = %

Set number p-value Mean, pt UCL, LCL

1 0.352564 | 0.284981 | 0.422746 | 0.147217

2 0.287879 | 0.284981 | 0.390881 | 0.179081

3 0.236842 | 0.284981 | 0.398936 | 0.171026

4 0.277778 | 0.284981 | 0.402058 | 0.157904

5 0.364943 | 0.284981 0.377219 | 0.192743

6 0.246528 | 0.284981 | 0.386373 | 0.183589

7 0.263158 | 0.284981 | 0.398936 | 0.171026

8 0.304598 | 0.284981 | 0.377219 | 0.192743

9 0.281250 | 0.284981 | 0.386373 | 0.183589
10 0.321429 | 0.284981 | 0.417734 | 0.152228
11 0.258333 | 0.284981 | 0.396050 | 0.173912
12 0.205882 | 0.284981 | 0.405453 | 0.164510
13 0361111 | 0.284981 | 0.393374 | 0.176589
14 0.305556 | 0.284981 | 0.402058 | 0.167904
15 0.273810 | 0.284981 | 0.378852 | 0.191110
16 0.477273 | 0.284981 | 0.434747 | 0.135215
17 0.257576 | 0.284981 | 0.390881 | 0.179081
18 0.333333 | 0.284981 | 0.386373 | 0.183589
19 0.327381 0.284981 0.417734 | 0.152228
20 0.291667 | 0.284981 | 0.375669 | 0.194293
21 0.234127 | 0.284981 | 0.393374 | 0.176589
22 0.260870 | 0.284981 | 0.388554 | 0.181409
23 0.348039 | 0.284981 | 0.405453 | 0.164510
24 0.229167 | 0.284981 | 0.372789 | 0.197173
25 0427778 | 0.284981 | 0.413233 | 0.156729
26 0.225000 | 0.284981 0.396050 | 0.173912
27 0.159091 | 0.284981 | 0.434747 | 0.135215
28 0.276042 | 0.28498! | 0.409160 | 0.160802
29 0.258772 | 0.284981 | 0.398936 | 0.171026
30 0.222222 | 0.284981 | 0.380574 | 0.189388

Figure 12.45 shows the results of the simulation with a run of 1000 days. The results
from this run were used to determine the value of & to be used with (12.18) and (12.19). The
value of & that corresponded with the 95% confidence level is 0.9217. The £95% confidence
levels shown in Figure 12.45 are 0.403517 and 0.176457. Figure 12.46 is a p-chart using the
same run data as Figure 12.44 but uses the 95% confidence limits of 0.403517 and 0.176457.
This gives a slightly different—and probably better—result than using the computed k value
and (12.18)—(12.20). The difference is that the overall means are slightly different for the
30-day run and the [000-day run. The results are similar to the other p-charts for this run.
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Figure 12.44. Fuzzy p-chart for Example 12 using the a-level fuzzy midrange
technique with o = %, equivalent to the fuzzy average method.

——p-value mean UCL,, =——LCL,,]
0.6
0.5
! |
2 041 ¥ NI KNS
7 o Wikt e b St L i
Sy ! ) u e | v“:"l'e' o) "_,‘-‘.‘ : l
302 I:_iL!L&tfﬂms:zl!;gh.gd:!imﬂ%;zs!!;'z}j.z!u;z' '
0.1
% 200 400 600 800 1000

set number

Figure 12.45. Fuzzy p-chart for Example 12 developed from the 1000-day simu-
lation showing the upper and lower 95% confidence levels.

Data sets 16 and 25 have p-values outside the control limits. In this case, data set 27 is below

the lower control limit.

This is obviously because the control limits generated using (12.18)—(12.20) do not
depend on the sample size n. In the final analysis, the results are quite similar no matter
which technique is used to determine the control limits.

12.7 Statistical techniques for multinomial attribute data

A common statistical solution to multinomial attribute problems that is sometimes criticized
because of the possibility of losing information (Raz and Wang (1990), Wang and Raz
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Figure 12.46. Fuzzy p-chart for Example 12 using the 95% confidence limits
developed from a simulation to determine the control limits.
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Figure 12.47. Binomial p-chart for Example 12, “firsts” versus all other categories.

(1990), Laviolette and Seaman (1992, 1994), Laviolette et al. (1995)) is to treat each category
separately and produce a binomial p-chart for each category. For Example 12, five binomial
p-charts are required. The five binomial p-charts developed from the data generated for
Example 12 are shown in Figures 12.47-12.51. The upper and lower control limits for these
charts were calculated using equations similar to (12.10) and (12.11) with the exception
that the factor multiplying the radical (the standard deviation) was 1.96 instead of 3. The
1.96 factor represents the 95% confidence limits. Figure 12.47 is a binomial p-chart for
“firsts” versus all other categories, or “firsts’” and “nonfirsts.” This figure shows that both
set numbers 26 and 27 are beyond the upper control limit for this problem. Figure 12.48
is the binomial p-chart for “rework to firsts”” versus all other categories. The lower control
limit for set number 26 is barely above 0, although it is not perceptible in Figure 12.48. This
means set number 26 is slightly below the lower control limit. Figure 12.49 is the binomial
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Figure 12.48. Binomial p-chart for Example 12, “rework to firsts” versus all other
categories.
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Figure 12.49. Binomial p-chart for Example 12, “seconds” versus all other categories.

p-chart for “seconds” versus all other categories. This chart shows set number 28 above the
upper control limit. Figure 12.50 is the binomial p-chart for “rework to seconds’ versus
all other categories. This chart shows set numbers 13 and 16 above the upper control limit.
Figure 12.51 isthe binomial p-chart for “culls” versus all other categories. This chart shows
set numbers 5 and 25 above the upper control limit. These five binomial charts certainly tell
a different story than the combined multinomial charts. They may be very useful in trying
to determine something about the individual categories, but that is not the problem under
investigation here. This may be the reason that Laviolette et al. (1995) claim that arbitrary
combinations of data result in a loss of information and chart sensitivity.

Duncan (1950) developed a multinomial method based on the chi-square () ?) statistic.
Marcucci (1985) later modified the technique somewhat and called it the generalized p-chart
technique. This technique is based on a measure of the discrepancy that exists between
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Figure 12.50. Binomial p-chart for Example 12, “rework fo seconds” versus all
other categories.
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Figure 12.51. Binomial p-chart for Example 12, “culls” versus all other categories.

observed and expected frequencies as determined by the x? statistic. The x> statistic is
given by

(0 — )’

2 ij %

s = —t 12.21
i Z €; ( )

i=1 |

where o;; is the observed frequency for category j for set number i, and ¢; is the expected
frequency for that category. The upper index k is the number of categories—in our case &
equals 5. The observed values for each category for each set number (day) for Example 12
are given in Table 12.15. The expected values are the averages (or the sum of each category
column in Table 12.15 divided by the sum of the number of samples column in Table 12.15).
That is,
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firsts: e; = 0.507293;

« rework to firsts: e; = 0.162075;

* seconds: e3 = 0.212318;

» rework to seconds: e4 = 0.074554;
* culls: es = 0.04376.

Technically, this is not quite right because the user is supposed to know, or have a way to
estimate, the expected values of the data before using (12.21). If the expected frequencies
have to be computed from the sample statistics, the degrees of freedom will be reduced
appropriately. Equation (12.21) can be used when building control charts with expected
values known ahead of time. A correction to (12.21) for the case where the expected values
are computed while building the control chart will be discussed shortly. For Example 12,
the generalized p-chart or x?-chart is shown in Figure 12.52.
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Figure 12.52. Generalized p-chart for Example 12 using the x? statistic.

The upper control limit, UCL,z, is taken directly from a x? probability table. There is
only one control limit because this is a one-tailed test. A portion of the x 2 probability table
is given in Table 12.19 taken from Williams (1991). The left-hand column of the table (df)
contains the degrees of freedom k — 1. In this example, df = 4. In order to use Table 12.19
to determine the 95% confidence level for the chi-square distribution, we want to determine
the value of the abscissa, A, such that the probability that x? is greater than A is 0.05. This
value from the table, with df = 4, is 9.488. This is the value for the upper control limit in
Figure 12.52.

Figure 12.52 shows three sets out of control, set numbers 5, 16, and 25. The fuzzy
example had determined that only sets 16 and 25 were out of control. The next step is to
look at the 100-day run for the generalized p-chart to see if that test provides additional
information. The generalized p-chart for that test is shown in Figure 12.53. The control
limit for this chart is determined as in the 30-day run. This chart shows six points out of
control and “almost’ a seventh point. The “almost™ point is set number 25, which is out in
the 30-day run but is not out in the 100-day run. This is due to the fact that the expected
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Table 12.19. Values of the abscissa A versus the probability P(x> > A) for the x°
random variable.

df | 0.100 0.050 0.025 0.010 0.005 0.001
1 | 2706 | 3.841 5.024 6.635 7.879 | 10.828
2 4.605 5.991 7.378 9.210 10.597 13.816
3 6.251 7.815 9.348 11.345 12.838 16.266
4 | 7779 | 9488 | 11.143 | 13277 | 14.860 | 18.467
5 | 9236 | 11.071 | 12.833 | 15.086 | 16.750 | 20515
I_._Zz —UCL;(2}
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Figure 12.53. Generalized p-chart for Example 12 using the chi® statistic for the
100-day run.

values are different for the 100-day run than they are for the 30-day run. A remedy for this
situation will be discussed shortly. The six to seven points out of control indicate that this
test does not quite meet the 95% confidence level as the fuzzy test did.

The data from this 100-day run were divided into bins. The frequencies of these bins
are plotted in Figure 12.54. The data distribution shown in Figure 12.54 does resemble a
chi-square distribution. The 95% confidence level for Figure 12.54 is 9.5609 versus 9.488
for the true chi-square.

Equation (12.21) should not be used unless the expected values e; are known a priori.
Marcucci (1985) presents the 72 statistic defined by (12.22) below; this statistic can be used
when the expected values are determined during some base set of observations, called set
number O, when the plant is in control:

(0ij —¢;)° )2
Z = 12.22
= H;Nyg Z X,, n X()/ ( )

where Z,.2 is the statistic for set number /. The index j represents the categories, in this case
1 to 5, where k = 5. The terms ¢;; and ¢; are the observed values for category j and set
number i and expected values for category j, respectively. The terms X;; and X, are the
number of observations for category j and set number / and category j and the base set 0,
respectively. The terms n; and i are the total number of observations tor set number i and
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Figure 12.54. The bin frequency for the data from the 100-day run, Example 12,
using the chi? statistic.

the base set number 0. It would be convenient to have the base set be the total 30-day run,
but that would not be technically correct either. Instead the 100-day run was used as set O to
determine the values of e;. The values of ¢}, the expected values, are as follows:

o firsts: e; = 0.532728;

e rework to firsts: e; = 0.147635;

¢ seconds: ¢;3 = 0.20688;

¢ rework to seconds: e; = 0.0678452;
e culls: es = 0.049116.

Figure 12.55 shows the 30-day run from Example 12, using the Z? statistic and the 100-day
run to determine the expected values.

This time the Z?2 value for set number 25 is 9.4135, less than 9.488, so this chart shows
only two points out of control. Obviously, if the user has to take a good deal of data in
order to determine the expected value, the technique usually will be of less value than other
control chart techniques. Figure 12.56 is a plot showing the same 30-day run using the Z?
statistic and the expected values computed from the run itself. This is the normal control chart
construction. Again, three points are out of control. Observation of Figures 12.52, 12.55,
and 12.56 reveals that they all are quite similar. In fact with the exception of point 5 and
sometimes 25, the generalized p-charts give results similar to the fuzzy charts shown in
Figures 12.41, 12.44, and 12.46.

The reason for the difference is that the fuzzy chart looks more at the average value,
and the chi-square technique will accentuate the dispersion due to using the sum of the square
of the difference between the observed and the expected value. In the case of set number
5, the mean is approximately 0.36, where the 30-day mean is about 0.28 (depending on the
fuzzy technique used). This is not very far out of line, but set number 5 contains five culls
in a sample size of 29. This produces an observed value of 0.1724 to be compared with an
expected value of 0.04376. When squared, this produces a large x2 or Z2 value. This can be
seen in Figure 12.51, the individual p-chart for culls. In Example 12, it is probably not good
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Figure 12.55. Generalized p-chart for Example 12, using the Z* statistic and the
100-day run to determine the expected values.
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Figure 12.56. Generalized p-chart for Example 12, using the Z* statistic and the
run itself to determine the expected values.

to have the generalized p-chart produce additional “out-of-control” values because all the
out-of-control values in this example are false alarms. It is desirable to detect out-of-control
conditions but it is also desirable to minimize the number of false alarms produced. In some
cases, however, determining the amount of dispersion in the set might be very important.
One other issue is the minimum number of sample points that should be in a set
before one can comfortably use the chi-square distribution or, for that matter, the Gaussian
distribution used with the fuzzy technique. Cochran (1954) and later Yarnold (1970) have
done a great deal of work to determine this minimum number. Cochran concluded that no
less than 20% of the expected frequencies n;¢; in (12.21) and Xt Xo) gy (12.22) should

#4100
be less than 5, and none of the expected frequencies should be Jess than 1. Yarnold’s rules
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are a little less restrictive. If k is the number of categories and r is the number of expected
frequencies less than 5, then for k > 3, the minimum expectation should be at least Sk—’
Table 12.20 is a tabulation of n,e; and 5?’ for Example 12 with the expectations computed
with the run itself. A similar tabulation using the expectations from the 100-day run from
formula (12.22) yields similar results.

Table 12.20. Value of e;n; and §k£ for Example 12 with self-generated expectations.

Set number n; ein; exn; esn; e4qn; esn; ST'
1 13 6.595 | 2.107 | 2.760 | 0.969 | 0.569 4
2 22 | 11.160 | 3.566 | 4.671 | 1.640 | 0.963 4
3 19 9.639 | 3.079 | 4034 | 1417 | 0.831 4
4 18 9.131 | 2917 | 3.822 | 1.342 | 0.788 4
5 29 | 14711 | 4.700 | 6.157 | 2.162 | 1.269 3
6 24 | 12.175 | 3.890 | 5.096 | 1.789 | 1.050 3
7 19 9.639 | 3.079 | 4.034 | 1.417 | 0.831 4
8 29 | 14711 | 4700 | 6.157 | 2.162 | 1.269 3
9 24 | 12,175 | 3.890 | 5.096 | 1.789 | 1.050 3

10 14 7.102 1 2269 | 2972 | 1.044 | 0.613 4
11 20 | 10.146 | 3.242 | 4246 | 1.491 | 0.875 4
12 17 8.624 | 2.755 | 3.609 | 1.267 | 0.744 4
13 21 | 10.653 | 3.404 | 4459 | 1.566 | 0919 4
14 18 9.131 | 2917 | 3822 | 1342 | 0.788 | 4
15 28 | 14.204 | 4.538 | 5945 | 2.088 | 1.225 3
16 11 5.580 | 1.783 | 2.335 | 0.820 | 0481 4
17 22 | 11.160 | 3.566 | 4.671 1.640 | 0.963 4
18 24 | 12,175 | 3.890 | 5.096 | 1.789 | 1.050 3
19 14 7.102 | 2269 | 2972 | 1.044 | 0.613 4
20 30 | 15.219 | 4.862 | 6.370 | 2.237 | 1313 3
21 21 10.653 | 3.404 | 4459 | 1.566 | 0919 4
22 23 1 11.668 | 3728 | 4.883 | 1.715 | 1.006 4
23 17 8.624 | 2.755 | 3.609 | 1.267 | 0.744 4
24 32 | 16233 | 5186 | 6.794 | 2.386 | 1.400 2
25 15 7.609 | 2431 | 3.185 1.118 | 0.656 4
26 20 | 10.146 | 3242 | 4246 | 1491 | 0.875 4
27 11 5.580 | 1.783 | 2.335 | 0.820 | 0481 4
28 16 8.117 | 2593 | 3.397 | 1.193 [ 0.700 4
29 19 9.639 | 3.079 | 4.034 | 1417 | 0.831 4
30 27 | 13.697 | 4376 | 5.733 | 2.012 | 1.182 3

Observation of the last column in Table 12.20 reveals that none of the sets used in this
study satisfy the minimum size to comfortably use the chi-square test. The minimum set size
should contain 46 samples. The calculation is as follows:

. ne; = (46)(0.507293) = 23.335;

ne; = (46)(0.162075) = 7.455;

ne; = (46)(0.212318) = 9.767;
* ney = (46)(0.074554) = 3.429;

nes = (46)(0.04376) = 2.013;

* r = 2, the number of expectations less than 5;
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. S,‘—' = 2, the minimum size for expectations less than 5;

* n = 46 is the lowest number to satisfy the criterion.

Furthermore, similar rules apply in order to obtain an accurate approximation to the normal
distribution used with the fuzzy technique (Laviolette and Seaman (1994), Yarnold (1970)).

Obviously, the distributions shown in Figures 12.43 and 12.54 are not perfect. Tech-
nically, one should probably not try to solve this problem, but, unfortunately, the problem
has to be solved. We cannot refuse to solve problems just because they do not provide ideal
conditions. In Example 12, it is obvious that when using the smaller number of samples
the results obtained are approximately what are expected—five false alarms out of 100 sets.
This is not to say that one should use any of these techniques carelessly. The user should
always take great care to make sure that the model, statistical or fuzzy, fits the problem as
well as possible. This was the reason for spending so much effort to develop the fuzzy sets
shown in Figure 12.35, used in Example 12.

Wheeler and Chambers (1992) make two points that are very useful to keep in mind
when working with control charts. First, they demonstrated that Shewhart’s X bar—R
techniques works well for the following distributions:

+ uniform distribution,

« right triangular distribution,

* pormal distribution,

* Burr distribution,

* chi-square distribution with two degrees of freedom,
* exponential distribution.

The technique is very robust. The techniques used here for attribute data should prove to be
robust also.

Second, they point out that there is nothing magical about the £3¢ range for upper
and lower control limits, even though the 3o range is well founded and easily interpreted.
When Shewhart was developing the control chart technique, he was looking for a range that
the measured variable would not go beyond too often, causing too many false alarms and
therefore excessive trouble shooting. The 30 range fit his goals because it will produce
only three false alarms in 1000 sets if the distribution is normal or Gaussian. In most cases,
use of some empirical rules will work as well as strict use of the sigma limits. If the data set
is homogeneous, the following three rules can be applied:

1. Roughly 60% to 75% of the data will be located within a distance of one sigma unit
on either side of the centerline or average line.

2. Approximately 90% to 98% of the data will be located within a distance of two sigma
units on either side of the centerline.

3. About 99% to 100% of the data will be located within a distance of three sigma units
on either side of the centerline.

This means that there are several methods of solving problems with control charts. The user
does not necessarily have to have a perfect distribution or set the control limits at exactly
one of the sigma limits in order to meet his/her goals. This is not to suggest that the user
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should be sloppy about setting the tolerance limits, which will determine the guality of the
products that will actually be sold. This is a different problem as explained earlier. If the
tolerance limits are set correctly, then the control limits will signal a problem before the
tolerance limits are violated. What the user wants to determine from the control chart is the
following:

“Is there a pattern or a control limit violation that shows that the process is no
longer working normally? Do I need to shut the process down (costing money)
in order to find the problem?”

or

“Does the control chart indicate that process improvements have actually changed
the process? Is there a data pattern that shows this?”

The correct choice of a control chart should not necessarily come from a contest between
techniques based on which produces the most alarms. It should be based on which technique
can answer the above questions most clearly.

12.8 Discussion and conclusions

The fuzzy “type of day” Shewhart-type X bar—R control chart has the potential to take into
account the task dependency beryllium exposure for beryllium plant operations. Based on
the studies completed up to this point, we believe these control charts will provide more
realistic information than the standard single-variable X bar—R chart using only beryllium
exposure information. Because of its ability to take into account task dependency, the “type
of day” chart can be used to determine the significance of plant improvements as well as
trigger “out-of-control”” alarms. This fuzzy technique should work well with many other
task dependent problems, as long as they are well defined semantically. The least squares
approach also will work for this type of problem but in many cases will not be as descriptive
as the fuzzy approach. The least squares approach can produce problems if the data used to
develop a control chart contains many out-of-control points. This is because the technique
squares the difference between the expected value and the measured value.

A fuzzy technique for dealing with multinomial attribute data has been presented and
shown to work well if the problem is defined well. This technique will not work that well if the
membership functions that define multinomial categories are assigned arbitrarily. Individual
p-charts that deal with multinomial attribute data tend to be confusing. The chi-square
technique for multinomial data works nearly as well as the fuzzy technique but has only one
control limit. The single control limit is not a problem in the examples presented here because
all efforts were directed toward keeping the process below the upper limit. If both upper and
lower limits are important, additional work will be required to determine the meaning given
by the chi-square chart.

Finally, the computer models of the beryllium plant operation described here were
built from a semantic description of the process as were the fuzzy rule base and membership
functions. Consequently, the correlation between the fuzzy model and the plant simulation
was quite good. Both models come from the same description. It is important when devel-
oping a fuzzy model of a process that much care is taken to listen to the experts and obtain
the best model possible. If the domain expert is knowledgeable, then the task usually is not
very difficult, but it may require several iterations to get it right. The fuzzy control chart will
only be as good as the fuzzy rules and membership functions that provide the input.
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Chapter 13

Fault Tree Logic Models

Jonathan L. Lucero and Timothy J. Ross

Abstract. Combining, propagating, and accounting for uncertainties are considered in this
new extension of reliability assessment. Fault trees have been used successfully for years
in probabilistic risk assessment. This scheme is based on classical (Boolean) logic. Now
this method is expanded to include other logics. Three of the many proposed logics in
the literature considered here are Lukasiewicz, Boolean, and fuzzy. This is a step towards
answering the questions: Which is the most appropriate logic for the given situation, and
how can uncertainty and imprecision be addressed?

13.1 Introduction

The importance of a general logic-based methodology in system failure engineering is that it
expands on classical failure analysis by allowing for the assessment of failure using various
logic approaches. Classical (Boolean), Lukasiewicz, and fuzzy logic are three of the many
theories that can be used in this general methodology to assess failure in mechanical or
passive systems.

System failure engineering is the description and analysis of events and subevents
leading to failure. This analysis is sometimes achieved by schematic models called fault
trees. Fault trees diagram interactions of components as a flowchart with logical connectives
between levels of the tree.

Our general methodology expands on fault trees by propagating probabilities and
confidence measures from “bottom™ level events to the “top” event, failure of the system
using various logics. The probabilities are propagated using “z-norm™ and “z-conorm”
operators as aggregators for the connectives. These aggregators vary among the logical
theories in the literature and are easily implemented using our general methodology. We
illustrate the application of this methodology in structural engineering with the modeling of
a simple truss system.

13.2 Objective

The primary objective of this chapter is to demonstrate the use of a general logic methodol-
ogy to accurately assess safety in structural engineering. Accurately assessing safety means
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accounting for degradation or breakdown of components leading to various types of sys-
tem failure. Degradation can occur from weathering of steel or concrete. Breakdown of
a component can be interpreted as any subservice functioning of a component, for exam-
ple, below-service-level strengths of a load-bearing member. Using three logics—classical
(Boolean), Lukasiewicz, and fuzzy—with our general methodology we attempt to show that
certain logics can better describe a system’s safety by interpretation and analysis of trends.

Fault tree analysis provides the groundwork for studying a system failure by progres-
sively deducing levels of failure through its components and subcompaonents. A truss, a wire
rope, and a bridge are examples of structural systems with failures depending on the failure
of its components. Using fuzzy logic, various degrees of failure, including the special cases
of classical binary failure, can be assessed. Failure values between the binary extremes of
failure and no failure can represent the uncertainties of the model or degradation of mem-
bers where only partial failure can be noted. “When one considers that perhaps there can
be various degrees of degradation between complete failure and no failure, and that many
systems contain both random and ambiguous kinds of description, it becomes a natural step
to consider the utility of fuzzy methodologies in describing this new paradigm” (Cooper and
Ross (1997)).

Consider a truss with redundant members. Redundant members have a load-bearing
capability that can be transferred to another member, and the system’s strength remains
unchanged. In this situation, the malfunction of a member does not render the system
inoperable; it does leave the system less redundant and less safe. For example, corrosion of
one strand of a wire rope means the rope is not as safe as a pristine rope (Nishida (1992)).
Still, this rope functions. Moreover, if one member in a complex bridge shows cracks, it
does not mean that the whole bridge will collapse. However, this too means that the system
is less safe. Any of a number of general logic constructs may be used in whole or in part to
assess system safety and failure.

One application of these logics lies in the use of triangular norms and triangular
conorms. “The triangular norm (f-norm) and the triangular conorm (¢-conorm) originated
from studies of probabilistic metric spaces in which triangular inequalities were extended
using the theory of z-norm and ¢-conorm” (Gupta and Qi (1991)). Karl Menger introduced
the notion of t-norms in 1942 (Blumenthal and Menger (1970)). The exact distance between
points x and y, d(x, y), is unknown; only the probabilities of different values of d(x, y) are
known. Trying to represent the triangular inequality (d(x, y) < d{(x, z) + d(z, y)), Menger
discovered how to relate the probability of d(x, y) to the probability of d(x, z) AND d(z, y).

Norms are used integrally in our general logic methodology as aggregators of the
probabilities of components in the fault tree. Probabilities representing the potential for
failure in the system components are aggregated to form a single value resulting in a final
probability to be propagated and used in subsequent levels of analysis. These probabilities
are aggregated according to the logical gates “AND”" and “OR.” These gates describe the
interaction of components in the fault tree leading to failure.

In all logics, ¢-norms and ¢-conorms are used to calculate the intersection and union,
respectively, of elements in the problem space. Moreover, the resulting aggregated proba-
bility values for failure are used in the calculations of the next level of components. Zadeh
t-operators have been the premier choice in fuzzy logic controllers. “However, some theo-
retical and experimental studies seem to indicate that other types of ¢-operators may work
better in some situations, especially in the context of decision-making processes” (Gupta
and Qi (1991)). In this chapter, the norms from classical logic, Lukasiewicz logic, and fuzzy
logic will be compared in a fault tree example.

Another feature of our general methodology is in the use of implication operators.
Implication operators are used in this methodology in calculating the implication of subse-
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quent events’ confidence. Confidence is used here to account for the belief of the failure
analyst in the probability values of events.

Therefore, two concepts characterize our general methodology: The first concept is
to use a variety of logics through norm operators and implication operators, and the second
concept is to extend traditional fault tree analysis with the use of confidence measures. These
two concepts are described thoroughly in sections to follow.

13.3 Chapter overview

Here we describe the two methods of analysis used in this research, fault trees and a general
logic methodology. Fault tree analysis, as a method of examining system failure, can be
applied to a variety of fields including structural engineering (Adams and Sianipar (1997)).
Structures can be represented as systems composed of load carrying members whose func-
tions are interdependent. Fault trees describe this interdependence by progressively sec-
tioning and simplifying this system’s functions. Moreover, this method has been expanded
to better quantitatively assess system failure by propagating probabilities of failure, each
of which sometimes includes imprecision. Our expanded method is termed a general logic
methodology, which can make use of fuzzy membership functions. Using these two ideas,
we make comparisons of three different logical theories and make conclusions about their
suitability.

This chapter consists of two parts, A and B. Part A (section 13.4) introduces the general
methodology with background information such as fault tree construction and mathematical
definitions. Part A approaches the probabilistic aspect of the general methodology. Part B
(section 13.5) then discusses the general logic capabilities of our proposed method. Ideas
such as aggregation of fuzzy sets and dependence relations are described to encompass the
whole potential of this general methodology.

13.4 Part A: General methodology

Fault tree analysis is a tool that uses classical (Boolean) logic to deduce system failure.
Schematic diagrams describe the system failure using events and gates. This procedure has
been expanded into a general logic methodology.

The general logic methodology complements the classical logic used in traditional fault
trees by providing a framework for the use of a variety of logics and enabling the analyzer
to consider imprecision and uncertainty. Additionally, it provides the means to account for
dependencies using rules of fuzzy logic, as will be discussed later in Part B.

13.4.1 Fault trees

“Fault tree analysis was developed by H. A. Watson of the Bell Telephone Laboratories in
1961-62 during an Air Force study contract for the Minuteman Launch Control System”
(Henley and Kumamoto (1992)). Fault trees are a graphical approach to analyze system fail-
ure using Boolean algebra. Boolean algebra is a class of rules and manipulations in classical
set theory. Using this and deductive reasoning, fault trees provide the causal relations of
component failures in a system.

13.4.1.1 Fault tree construction

Fault trees are a diagram of consequential events. Beginning at the final failure and termi-
nating at roots, fault trees are constructed by describing a variety of partitions necessary for
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failure of subsequent events. The tree starts at the top, the system failure of interest. This
failure can be a structural collapse, for example, of a truss bridge. From this failure, the
system is subdivided into simplified lower levels of failure. Using the bridge example, the
lower levels may represent foundation, floor, or girder failures. The levels are described as
either basic (failure data known or presumed) or intermediate (failure is calculated).

These levels are called “events” in the literature and are combined using logical con-
nectives describing their interaction leading to the top event’s failure. “Top” is the ultimate
event to which all other failures lead. “Intermediate” is a level where preceding actions or
events are required for failure. Similarly, “basic” is a level where no preceding actions or
events are necessary to determine failure. Graphically this model is represented with the
events and their “gates.” Gates are the logical connectives describing the necessary inter-
actions for failure in the forms of AND (intersection of events) and OR (union of events) or
other logic gates. This interaction is based on the rules of Boolean algebra (classical logic).
These rules are briefly covered in section 13.4.3.1 on set theory. As in a flow chart, the
events and gates are combined into a sequence of events. This sequence terminates at the
basic event. Figure 13.1 illustrates this process.

In this chapter, the fault tree is limited to the use of the logic gates AND and OR.
Despite this limitation, these fault trees still can portray the system failure accurately. As
an example, we show its use in structural engineering in the simple system (Figure 13.2)
following the general fault tree construction (Figure 13.1).

In Figure 13.2, a fault tree describes the failure of a simple truss. This is a five-member
statically determinate, simply supported truss. The failure of this truss represents the top
event and is dependent on the failure of its components. These components are first the
intermediate events, which are the failures of subtrusses. The two subtrusses are composed
of members A, C, and D for the first sequence of events and members B, C, and E for the
second events. Finally, the failure of each of these trusses depends on the failures of each
of its members. These members represent the basic events of this system and termination of
the tree. This example and discussion show qualitatively the use of fault trees in analyzing
system dependencies. In the next section, we show how probabilities associated with each
component are accounted for and used in determining a system failure potential through the
use of a general logic methodology.

13.4.2 General logic methodology

In the paper by Cooper and Ross (1997), fault tree analysis is expanded to form a new
paradigm for safety analysis. This paradigm, termed a general logic methodology, examines
both passive and active systems (Part B) similar to the classical fault tree method. Addition-
ally, uncertainties such as ambiguity, imprecision, and ignorance are considered. This topic
is discussed in more detail in Part B. Briefly, accounting for this uncertainty is a method
based on fuzzy sets. Fuzzy sets, which include classical binary sets, can be aggregated using
a variety of #-norms and ¢-conorms through various logics, e.g., classical, Lukasiewicz, and
fuzzy. In the lexicon of fuzzy logic, the sets are represented by membership functions. Mem-
bership values define an element’s membership in fuzzy sets. Regardless of the logic used,
norms calculate the intersection and union of the sets yielding a new value. This value is then
propagated up the fault tree in a process called “implication.” Attached to each probability
value, and similarly propagated up the fault tree, is a confidence measure.

A confidence measure is a value that represents the analyst’s belief in a selected prob-
ability for failure. This measure is propagated up the fault tree by first aggregating the
measures with norm operators. Then with the use of an implication operator the truth of the
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System failure (the top
event).

The fault tree consists of
sequences of events that
lead to the system failure.

These events are built by
AND, OR, or other logicj- - =¢
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The events above the
gates are called intermedi-
ate events whose failure[= = = = = =
can be further broken
down into basic events.

The fault tree terminates
at the basic causes, which
are called basic events

known and whose failure
is dependent on no other
component.

Figure 13.1. Schematic of fault tree construction (Henley and Kumamoto (1992)).
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causal relation is calculated. Implication operators are used in logic to assess truth values in
inferences. A truth value is the measure of an inference. In the binary case, an inference is
either true or false. In the general logic methodology, an inference can have an intermediate
value between true and false. Again, this value is the belief in the propagated probabilities.
A comparison of implication operators with norm operators for the three logics is shown in
Lucero (1999).

13.4.2.1 General logic methodology procedure

General logic methodology begins with the construction of a fault tree similar to the preceding
fault tree analysis. The difference between this general logic paradigm and the traditional
fault tree analysis lies in the representation and calculation of probabilities for failure.

For now, the probabilities are represented as scalar singletons or discrete point val-
ues throughout the tree. These probabilities are aggregated using various logics after their
interdependence has been determined.

Basic events can be either dependent on each other’s function or independent. In the
case of independent basic events, the probability of failure for each basic event is simply
aggregated into a matrix of values. However, if the basic events are dependent, then cal-
culation of this interdependence follows the traditional methods as described in Henley and
Kumamoto (1992). After the relation between basic events is determined, aggregation of the
probabilities is the next main step in the general logic methodology.

Triangular norm operators (-norm, 7-conorm) from various logics are used in this
step to aggregate the values. The resulting single value is augmented with independent
values of the next level forming a new set of probabilities. This set is then aggregated
again using the norm operators (section 13.4.3.2) forming another single value to be grouped
with probabilities of successive levels until the top is reached. This final value represents the
probability for system failure. To summarize, the calculation of the propagating probabilities
requires the determination of an initial probability set. These values are then successively
aggregated and augmented with the higher levels using triangular norm operators until the
final probability of failure for the top event is reached.

The following equation describes the operations involved between levels of the fault
tree.

Successive levels, k:

B: 2 x 1 resulting matrix of confidence measures and probability
values after norm and implication operations, where

norm

B = [ﬁ] o [,T,] o (AT (13.1)

A’ (input): 2 x n matrix of basic event’s truth and probability values (the
first row is truth values, and the second row is probability
values);

By (calculated): 2 x 1 matrix of aggregated basic event’s truth and probability
values at level (k — 1);

T (input):; input truth (confidence) value;

P (input/calculated): input probability value of level ();
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T x (calculated):  truth value (confidence) after norm operation;
Px (calculated): probability value after norm operation.

This process is repeated until the top level is reached. At this point, the value for the system
probability for failure is determined. In the general logic methodology, the probabilities and
the confidence measures (truth values) associated with each probability are propagated.

The propagation of the confidence measures up the fault tree is similar to the prop-
agation of probabilities; however, one more step is included. This extra step is evident
in (13.1). Confidence represents the degree to which the probability of the event is believed
to be valid. This set of measures is first calculated and aggregated in the same way as the
probabilities with the norms of section 13.4.3.2. As with the probability values, the input
confidences from the first-level values of the tree have been calculated using the traditional
methods found in Henley and Kumamoto (1992). The added step uses an implication oper-
ator (section 13.4.3.3). Implication is the term used in logic to describe a logical connective
between two propositions (usually input and output). Each event (basic, intermediate, and
top) is given a truth value. This value is used in the implication with the aggregated value
of the previous step. This resulting truth value is then augmented and aggregated with the
confidence of the subsequent basic event to yield a new value for the implication of the next
level. This process is repeated until the top is reached, where a final truth value or confidence
is calculated. This final value is the confidence in the probability for failure of the system.

Figure 13.3 shows the layout for the system in Cooper and Ross (1997). This is a
generic model with basic events A, B, I, T, and F that represent an accident, A; bypass (an
intentional activation rendering the system inoperable), B; and three safety subsystems, 1,
T, and F. The mutual dependence of /, T, and F is taken into account in this methodology
using a relational matrix, R (section 13.5.2). The values of probability and confidence are
then aggregated using norms and propagated as described earlier to end with final values for
probability and associated confidence.

13.4.3 Mathematical operators

Of the many implication and norm operators, three are examined, one from each class of
logic. The three norm operators are Lukasiewicz, probabilistic, and Zadeh (Ross (1995)).
This choice reflects a comparison of three logics, Lukasiewicz, classical, and fuzzy. Because
fuzzy logic is included, the notation will be based on the same notation used for fuzzy sets.
However, in this study the sets used are scalar singletons on the probability interval. Similarly,
the choice of implication operators reflects the same three logics.

13.4.3.1  Set theory

In this section, some basic concepts of Boolean algebra, or set theory, will be described.
These concepts are intersection, union, and implication.

Intersection and union describe the location of an element in a universe X in the total
space of information containing all the sets. In this research, each basic event is a set in
the universe of probability with a range of real numbers from 0 to . An “element” is
a component of failure whose location is described linguistically with “AND” and “OR”™
corresponding to intersection (f-norm) and union (f-conorm), respectively. An “element,”
also called a singleton, is also a set. For example, an intersection yields the set requiring
all basic events to be included. Similarly, a union is the set requiring only one of the basic
events to be included. Symbolically, this is represented as
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Figure 13.3. Example fuzzy methodology fault tree (Cooper and Ross (1997)).

intersection, “AND”: (BN B;) - E € X,
union, “OR”: (B, U By) — E € X, where
B;: basic event, i,
E: resulting “element” from operation;

X: universe of probabilities of failure.

The next basic concept of set theory is implication. Implication is the operation in
logic that determines the place of an element in the set corresponding to the inference of a
hypothesis (antecedent) and a conclusion (consequent). In classical logic this is measured
with binary truth values. These binary truth values are O for false and 1 for true. In other
words, implication is stated as “if P, then 0.” This can be decomposed into the union of
two sets. In the literature, this is represented as

(P — Q) = (AU B) = (either “notin A” or “in B”).
In fuzzy logic, an element’s place is not exclusively in any one set, but may reside partially

in several sets. As a result, the implication operation is extended to give partial truth values
ranging from O to 1.
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Given in terms of fuzzy sets, the basic event confidence x implies the intermediate
or top event’s confidence y from the fuzzy sets A and B, respectively. In fuzzy logic,
events’ confidences are defined on membership grades i 4 (x) and 5 (y) forevents A and B,
respectively. The resulting implication forms the membership function, g (x, v), where R
is the fuzzy relation yielding the truth value of the propagating confidence. This propagating
confidence is the measure of truth for an event’s failure (basic, intermediate, or top).

13.4.3.2 Norm operators
Triangular norm/conorm operators are used as aggregators of values corresponding to inter-
section and union. This section shows the operators that are compared along with general
t-norm and 7-conorm definitions that apply to each.
The following two definitions apply to f-norms and r-conorms, respectively, where x,

v, and z represent basic event probabilities (Gupta and Qi (1991)).
Definition 13.1. Let T : [0, 1] x [0, 1] — [0, 1]. T is a t-norm such that

1. T(0,0) = 0;

2.T(.y=1;

3. forx,y € [0, 1], T(x,y) <x:

4. forx,y,z €0, 1, |[T(x,y) =Tz, y) < |x —zf;

5. forx,y,z € |0, 1].ifx <z, then T(x,y) < T(z,y) (monotonicity);

6. forx,y,z €0, 1]. T(x, T(y.z)) = T(T(x, y). 7) (associativity);

7. forx.y e |0, 1], T(x,y)=T(y, x) (commutativity).

Definition 13.2. Let S : [0, 1] x |0, [| — [0, 1]. S is a t-conorm such that

1. S(0,0)=0:
2. 85I, =1;
3. forx,y e|0,1]. S(x,v) > x;

4. forx,y.z €10, 1], |S(x. ») = S v < |x —zl:
5. forx,y,z€[0.1], ifx <z, then S(x, ¥) < S(z, v) (monotonicity);
6. forx, v,z € [0, 1], S(x, S(v. z)) = S(S(x. y), 2) (associativity);

7. for x,

e

v e [0, 1], S(x, y) = S(v, x) (commutativity).
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Figure 13.4. Intersection (t-norm) and union (t-conorm) of fuzzy sets x and y for
(a) Lukasiewicz, (b) probabilistic, and (c) Zadeh norm operators (Gupta and Qi (1991)).

Lukasiewicz t-operators (Figure 13.4(a)), based on Lukasiewicz logic, are defined as
follows:

AND (¢-norm); T(x,y)=max0,x+y—1), (13.2)
OR (s-conorm): S(x, y) = min(l, x + y). (13.3)
Probabilistic t-operators (Figure 13.4(b)), based on classical logic, are defined as
AND (¢-norm): T (x,y) = xy, (13.4)
OR (t-conorm): S(x,y)=x+y —xy. (13.5)
Zadeh’s t-operators (Figure 13.4(c)), used in fuzzy logic, are defined as

AND (¢z-norm): T(x,y) = min(x, y), (13.6)
OR (¢t-conorm): S(x, y) = max(x, y). (13.7)

13.4.3.3 Implication operators

As previously explained, implication operators calculate the truth of an antecedent/consequent
inference. This section gives the implication operators compared in this study along with
common properties (Yager (1983)).

The following properties apply to the three implication operators.

Property 1:  The implications collapse to the two-valued operation defined as (P —
Q) = (not A or B).

Property 2:  Monotonicity of the antecedent is satisfied for classical and Mamdani’s
implication. Lukasiewicz implication for the case when y = 1 decreases
as x increases from O to 0.5, then increases as x increases from 0.5 to 1.

Property 3:  Monotonicity of the consequent is satisfied for all three implication oper-
ators.
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Property 4:  All implications are continuous.

Property 5:  All are “regular.”” “Regular” is defined as jtg(x, y) = py when x = 1.
Let x, y = antecedent, consequent (respectively).

Lukasiewicz’s implication is defined as follows:

pr(x, y) =min{l, [1 — pa(x) + pp(y)1}. (13.8)

The classical implication operation has been extended to accommodate fuzzy membership
functions:

ur(x, y) =max{min{pa(x), ug(¥), I — pa(x)}. (13.9)

Mamdani’s implication operation typically used in system control is

perix, y) = min|pa(x), ug(y)l. (13.10)

13.4.4 Examples

The examples in this section include a simple generic failure analysis and a structural system
representing a four-member, statically indeterminate truss. The generic system shows step-
by-step procedures for implementing this methodology, assuming no interdependence of
basic events. The structural system is a model taken from Lucero (1999) and is presented
to show how a model of an actual system can be assessed as a fault tree. In Lucero (1999),
other configurations and another system are analyzed and compared.

13.4.4.1 Example 1

This generic system (Figure 13.5) is composed of two intermediate events and the top event.
A total of four basic events are accounted for, three as inputs to intermediate event 1 and
one as an input to intermediate event 2. Using (13.1)—(13.10), final failure probabilities are
calculated along with their respective confidence measures for the three logics, Lukasiewicz,
classical, and fuzzy. These final values are presented as 2 x | matrices where the belief
(truth) of the probability is in the first row and the probability is in the second row.

Input to intermediate event 1:

truth 0.76 098 0.83
probability |0.55 0.72 0.94|°

Norm operation:

Lukasiewicz | probabilistic | Zadeh
truth 0.57 0.62 0.76
probability 0.21 0.37 0.55

Implication of basic events A, B, and C to intermediate event 1:
Implication operation:

Lukasiewicz | classical | Mamdani
1.0 0.62 0.63




336 Chapter 13. Fault Tree Logic Models

—— top event: [0.70]

_ intermediate event 2: [0.82]

basic events, D:

0.75
l()_93] _— intermediate event 1: [0.63]
AND —\Q
6 O O/— basic events, A, B, C:
076 098 0.83
055 072 094
Figure 13.5. Example 1: Generic fault tree.
Aggregated values:
Lukasiewicz | probabilistic | Zadeh
truth 1.0 0.62 0.63
probability 0.21 0.37 0.55
Input to intermediate event 2:
truth

basic event D =

Norm operation:

Implication of basic event D and intermediate event 1 to intermediate event 2:

probability [0.93

0.75| augmentwith | 1.0
0.21

L]

b3

0.37]°

Lukasiewicz | probabilistic | Zadeh
truth 1.0 0.91 0.75
probability 1.0 0.96 0.93

Implication operation:

Lukasiewicz

classical

Mamdani

0.82

0.82

0.75
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Aggregated values:
Lukasiewicz | probabilistic | Zadeh
truth 0.82 0.82 0.75
probability 1.0 0.96 0.93

Input to top event:
truth  [0.82f [0.82) [0.75
probability | 1.0 |7 [0.96] [0.93]"

Implication of intermediate event 2 to top event:
Implication operation:

Lukasiewicz | classical | Mamdani
0.88 0.70 0.70
Final failure of system:
Lukasiewicz:
truth 0.88
probability | 1.0
Classic:
truth 0.70
probability | 0.96
Fuzzy:
truth 0.70
probability | 0.93

13.4.4.2 Truss system

The truss is composed of one level of intermediate events and one top event. In this structure,
each component is axially loaded; the system is statically indeterminate, and supported with
pins. Each intermediate event has components of basic events. These basic events represent
members of the truss. Furthermore, the intermediate event represents the combination of
members required to fail, leading to the failure of the truss. The top event is the truss
failure composed of one level of intermediate events. As members are added to this system,
more combinations of members are required and therefore additional intermediate events are
necessary. These then combine at the top, resulting in the failure of the truss system.

The member numbers range from two to four in Lucero (1999). Here however, the
truss has four members. The behavior of the norms is detected by varying the probability
of one member, the basic event, of the intermediate events and aggregating it with various
probabilities of the other members. The variation ranges from 0 to 1.0. The focus of this
model is on capturing only the behavior of norm operators.

The truss system of Figure 13.6 is studied, where the corresponding fault trees are
configured as shown in Figure 13.7.
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l——— axial load

ANNAN AN

Figure 13.6. Four-member axially loaded truss model.

four members

OO0 OO0 OO0 OO

Figure 13.7. Fault tree of four-member axially loaded truss.

Comparison of the three logics is made by varying the probability for failure of one
member from 0 to 1.0. These values are then propagated by the procedure previously
discussed where only the probability is examined. They are propagated with three values
for the other members 0.1, 0.6, and 0.8. The final, “top”” probabilities for failure are shown
in Figure 13.8 for the three logics Lukasiewicz, classical, and fuzzy.

13.4.5 Summary

The following discussion briefly describes the behavior of the norm operators with respect
to the truss system. The results in Lucero (1999) constitute a more detailed analysis. Typical
behavior is seen from a series of graphs. In the truss, however, the ordering from highest to
lowest probabilities for failure becomes Zadeh, probabilistic, and Lukasiewicz.

In this summary, we will explain the use of the connectives in the fault tree of the
truss system, describe this type of system in structural engineering, and finally conclude
by discussing the use of the norms for structural systems. The fault trees can be described
according to the type of connective aggregating the basic events. The fault tree for the truss
connects its basic events with the “AND”’ (-norm) gate. In this tree, failure of the subsequent
event occurs if all these grouped basic events fail together. This same logic can be seen in
actual structural systems.

The structural system that follows this fundamental logic is a continuous system. A
continuous system has components serving more than one function. This function can
be resisting both axial loads and bending moments, as in the case of concrete columns
in buildings. Another example of multiple functions is redistribution of loads, as in the
case of the truss. For example, if one member fails in a redundant truss system (Fig-
ure 13.6), then the other members take the additional load lost from the failing member.
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Figure 13.8. Behavior of norms on truss system: (a) Lukasiewicz norms; (b) prob-

abilistic norms; (c) Zadeh norms.
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Figure 13.9. Structure with independent failures.

Based on the results of the research in Lucero (1999), the norms can be appropriately ap-
plied to the following types of structural systems: Zadeh to discrete systems, Lukasiewicz
to continuous systems, and probabilistic to active independent systems.

Zadeh operators show probabilities consistent with intuition such as a parallel chain
(Lucero (1999)) and can be better used for discrete structures. A parallel chain system is
only as strong as the strongest weak link. This shows dependence among the chains in
characterizing the failure of the system. For each case, this weak link was found and its
probability carried for the system. For the case of the parallel chain, Zadeh gave the lowest
values {(most conservative results).

Lukasiewicz norms can be better utilized for continuous systems such as a concrete
structure. These norms produce a lower bound to the probabilities when applied to the truss
system. The truss system can be considered similar to a continuous system from a logical
perspective in the sense that, for failure to proceed to subsequent levels, all the components
must fail. Al components failing is a characteristic of the “AND”’ (intersection) connective.
Moreover, in a continuous system, all the components must fail. However, some resistance
to failure is inherent since load-carrying mechanisms are shared. Lukasiewicz captures this
quality of lower bound for “AND” gates by giving low values of propagating probabilities
for failure.

Probabilistic aggregators of classical logic have been the means of calculating prob-
abilities in fault tree analysis but may not be the most appropriate to use. In the results
of the research in Lucero (1999), probabilistic aggregators gave values between those of
Lukasiewicz and Zadeh. The two systems, parallel chain and truss, are examples of de-
pendent systems. For example, the failure of the parallel chain is dependent on failures of
each chain. Similarly, the failure of the truss is dependent on failures of adjoining mem-
bers. Without knowing the degree of dependence of the system components, probabilistic
t-operators cannot be appropriately applied. However, one system in structural engineering,
where independence holds and probabilistic £-operators are better suited than Lukasiewicz
and Zadeh, is shown in Figure 13.9.

For the axially loaded column in Figure 13.9, the three independent failure modes
are due to static stress, static buckling, and dynamic buckling. For the failure due to static
stress, the static stress must be greater than ultimate stress. For static buckling, the axial
force must be greater than the allowable buckling load. Moreover, for dynamic buckling,
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the frequency of application of the load must be equal to the natural frequency of the system.
All three cases are independent. As a result, the probabilistic f-operators can be used without
assuming independence, since there is little interaction between these failure modes.

This study and Lucero (1999) reveal the characteristics of aggregators from the logics of
Lukasiewicz, classical, and fuzzy. The Lukasiewicz, probabilistic, and Zadeh ¢-operators can
give conservative, intermediate, or liberal probabilities depending on the situation. Whether
a conservative or liberal view is chosen for a dependent or independent system, the goal of
this research is to give an analyst more models to assess a system’s probability for failure.

13.5 Part B: General methodology extended with fuzzy
logic

Fuzzy logic allows for the modeling of uncertainty, ambiguity, or imprecision. This is
achieved through the use of membership functions. “The essence of fuzzy logic is in its
capability to model imprecision and vagueness by assigning membership functions to the
variables. Membership functions (MFs) differ from probability density functions (PDFs) in
that the PDFs describe the uncertainty in the future states of the variables while membership
functions describe the vagueness in the definition of the state itself or the imprecision in
the measurement or the representation of the variable used to characterize the future state™
(Cooper and Ross (1997)).

Part A approached the probabilistic aspect of the general methodology where the prob-
abilities are discrete (known) values.

In Part B, we show how fuzzy logic is used more specifically in this methodology.
Membership functions can expand Part A to include uncertainty in the probability values.
This concept is described in section 13.5.1. Moreover, the fuzzy logic approach allows
for a different accounting of dependence among basic events with the use of rules and
similarity relations. Section 13.5.2 covers this aspect of fuzzy logic as used here in the
general methodology.

13.5.1 Membership functions

As mentioned previously, fuzzy set theory allows for uncertainty, ambiguity, and imprecision
through the use of membership functions. The examples in Part A of this chapter cover the
idea of precise probabilities for failure using scalar singletons or discrete point values to
represent the probability values. These probabilities also can be represented with member-
ship functions accounting for uncertainty, etc. However, they also can represent the failure
description, where the imprecision is not on the future (probability) event but on the qualifi-
cation of failure, e.g., partial failure. At this point, the probabilities or failure values are fuzzy
numbers. Making the necessary calculations on these fuzzy numbers for this methodology
requires knowledge of concepts such as interval analysis and extended max and min. These
are covered thoroughly in Ross (1995).

13.5.2 Dependence

Many situations have components of failure at the basic level that are dependent on each
other’s function. Determination of their dependence has been expanded in this methodology
from the traditional schemes. This new process involves expert knowledge or statistical
data. In the case of passive systems, engineering judgment is used to form rules that govern
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the interrelation of these events. Additionally, statistical data on a component’s operation is
used to form similarity relations among basic events.

This interdependence determination is the first step in the calculation and propagation
of basic event probabilities and confidences in the general logic methodology. In Part A,
the basic events were modeled as independent with no interdependence. In this section,
basic events’ interdependence are obtained as described above. The process begins with the
calculation of a relational matrix. A relational matrix accounts for dependence among the
basic events and is used to map the input values with their dependencies. This mapping is
achieved by means of the composition operation. This operation uses a pairwise comparison
of elements. One method used for a composition operation selects the maximum value
from each set of pairwise minimum values. After the composition operation, the resulting
set of values is the probability of failure and associated confidence. These values are then
aggregated using various logics and propagated up the tree as described in Part A.

The following describes the relational matrix formed from rules or statistical data,
for a passive or active system, respectively. As previously mentioned, this represents the
dependence among basic events and is used to calculate the event dependencies used at the
first step of the tree.

Relational matrix:

m Fln
R’an - . ’
Fnl Fun
r;; is the degree of dependence of basic event i on j (i,j = 1,2,...,n). Once this

relation is determined, the input basic event probabilities and confidences are mapped to
their dependence values. This mapping takes place by means of the composition operation.
Again, pairwise comparisons are made on elements from the relational matrix with elements
from the input matrix as follows:

Input, the truth matrix, and probabilities for basic events at intermediate level 1:

[ - T
Azxn = |:P1 pn]’
T; = confidence measure, 0<T: <1,
P; = probability value, 0<P <1,
i=1,2,...,n,
i = basic event,
n = total number of basic events.
Composition operation:
/2><n = Azxn © Rysns (13.11)
where A}, = initial values for basic events, such that
Ay, = max{min(Asy;j, Rjx), ..., min(Az, Ryxn)}

fori,j=1,2,n.
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The probabilities in the 2 x n vector, A’, of (13.11) are the values to be calculated from a
variety of logics to determine the system failure probability. Rules or statistical information
are used to form a relation R, ,, that describes the dependence among basic events for a
passive or an active system. Sections 13.5.2.2 and 13.5.2.3 discuss how the matrix relation
Ry« is formed for such systems.

13.5.2.1 Example 2

This example illustrates the composition operation used to map the interdependence of basic
events. This operation uses the input 2 x n matrix of probabilities and confidences along with
the n x n relational matrix. Again, the relational matrix is the matrix that defines the basic
events’ interdependence. How this (R) matrix is developed is discussed in sections 13.5.2.2
and 13.5.2.3.

Consider Example | of section 13.4.4.1. The determination of dependence affects the
input to intermediate event 1. From Figure 13.5, we use the same input values of basic events
A, B, and C. We map these values to a new 2 x 3 input matrix using the relational matrix
R. “R” shows that basic event j relates to basic event i at a value of 1.0 when j = 1. This
is an obvious observation since an event is entirely related to itself. The rest of the matrix
values fill in a similar manner.

The resulting matrix A’ after the composition operation is the new input values of
probability and confidence to be used as input to “intermediate event 1.”

Matrix of truth and probability values for basic events 4, B, and C:

truth  [0.76 098 0.83
probability [0.55 0.72 0.94]

Relational matrix:

i
J

1.0 05 03] . .
R=:105 10 04| @i=12m
03 04 1.0

Composition operation from (13.11):

A,A[0.76 0.98 0.83] 1O 0.5 0.3 truth [0.76 0.98 0.9}

0|05 1.0 09| = . .
0.55 0.72 0.94 03 09 1.0 probability {0.55 0.9 0.94

Input to intermediate event 1:

truth  |0.76 0.98 0.9
probability [0.55 0.9 0.94|°

13.5.2.2 Rules

Passive systems. Passive systems, as defined by Cooper and Ross (1997), are systems
that “only require adherence to first principles of fundamental physical laws of nature and
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Figure 13.10. A simply supported bridge undergoing thermal expansion.

production controls that assure no compromises to these principles in the actual implemen-
tation.”” These systems require no sensory detection and no reaction. For passive systems,
we propose that the relations among the basic events can be established through the use of
linguistic rules. Most structural engineering systems are passive systems, for example, a
bridge supported with pins and rollers. The pins brace the bridge as the rollers allow for the
movements of expansion and contraction during temperature changes (Figure 13.10).

For passive systems, arule is a condition describing the behavior of components. Using
the bridge example, one rule might be “if temperature is high and pin doesn’t move then
roller moves.” Concepts like “high temperature,” “pin doesn’t move,” and “roller moves”
are represented as fuzzy sets, whose membership functions are defined on appropriate scales.
An expert with sufficient knowledge of the basic events’ failure dependencies forms a series
of these rules. Next, these rules are combined into matrices of ordered relations. These
matrices are then grouped with similar basic events and broken down using a variety of
defuzzification schemes. Defuzzification is the term used in the literature of fuzzy logic that
describes the consolidation of a fuzzy membership function into a single scalar value through
an averaging method. As a result of this operation, a matrix is formed (our R matrix) that
represents the dependence of basic events on one another for this failure component. This
matrix is then used to map these dependencies with input probabilities for failure to give
initial values for each basic event probability.

13.5.2.3 Similarity

Active systems. Active systems are described in Cooper and Ross (1997) as systems where
“the safeguards depend on things that will function.” This means that detection and reaction
are necessary. One example of this in structural engineering is vibration control (Preumont
(1997)). Either by means of cables or piezoelectric materials, sensors that detect critical
vibrations send input to controllers to react to the vibrations by contracting or expanding
members to alleviate the response (Figure 13.11). The relations among basic events in active
systems can be developed from statistical data on the interdependence of components.

The dependence of basic events in an active system usually comes from historical
statistical data. For example, with the vibration control of a bridge, one data value would be
that a motor controlling a tendon fails after 100,000 cycles of operation. A similarity relation
(again, our R matrix) is formed from this data relating dependence among the basic events
(Ross (1995)). This similarity relation is then mapped with input probabilities for failure
and confidences as in section 13.5.2 to give initial values of system failure. These values are
then propagated as in Part A.

13.5.3 Summary

Part B is a more comprehensive description of the general methodology. The general method-
ology uses concepts from fuzzy logic such as partial truths and partial failure. However, in
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Figure 13.11. Cable-stayed bridge with active tendons (Preumont (1997)).

Part A, these concepts are applied to singleton values. In other words, the truths were pre-
sumed and the failure probabilities were presumed. Moreover, the interdependence of basic
events was calculated using traditional methods of classical logic.

In Part B, these concepts were expanded to include fundamental characteristics of
fuzzy logic. Membership functions describing the system variables now have uncertainty.
Unlike Part A where input values are presumed, here the values are presumed imprecisely.
Therefore, we alluded to tools to account for these “fuzzy”” numbers.

In addition, Part B uses two more key aspects of fuzzy logic. These two aspects
are rules and similarity relations. Applied to passive and active systems, these two aspects
account for interdependence of basic events using rules or historical data, respectively. These
supplement the traditional Boolean approaches to give more capacity to an analyst’s decision
making.

13.6 Conclusions

This chapter describes in two parts how fault tree analysis has been expanded to a general
methodology. Part A describes the procedure for propagating singleton probability values
and associated confidences. Three logics—Lukasiewicz, classical, and fuzzy—are used to
demonstrate the effectiveness of this procedure. An example from structural engineering—
an axially loaded truss—is included to demonstrate trends. This also shows that some other
logics might be better suited to certain situations. This insight is due to the application of
this method and shows its utility. In Part B, a fuzzy logic extension to the general method
is described. Membership functions of fuzzy logic are described and have been proven to
be useful in accounting for uncertainty. Next, dependencies using fuzzy logic are explained.
Two types of dependencies are encountered in situations. These two types are due to passive
and active systems. A brief description of these is included. With this and the procedure of
Part A, one is able to assess system reliability in a new way.
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Chapter 14

Uncertainty Distributions
Using Fuzzy Logic

Ronald E. Smith, W. Jerry Parkinson, and Thomas R. Bement

Abstract. In this chapter, we look at the problem of developing a probability density func-
tion (PDF) with little or no numerical data and from that PDF generating a cumulative
distribution function (CDF). We use the CDF to help us find a reliability estimate, or limits,
on that estimate, for a determined value, for a given variable under study. We have used
fuzzy logic and expert judgment to produce the required PDF. The technique used here is
similar to the fuzzy control techniques described in Chapter 8. One major difference is that
instead of utilizing only a single value that would normally be produced by defuzzification
of the “truncated” output membership functions, we use all the information that we have
generated. This includes the entire truncated output membership function that represents the
variance of the knowledge generated by the fuzzy rule system. In this chapter, we also use
the probability controller technique, described in Chapter 8, to analyze the same problem.

14.1 Introduction

The work in this chapter centers on the common problem of the need to have a quantitative
value for a confidence level or the need to know the reliability of a piece of equipment.
This information usually is required to make good decisions. If a reasonable amount of
data exist, a probability density function (PDF) can be obtained. The cumulative distribution
function (CDF) can be obtained by integrating the PDF. These two tools can be used to obtain
desired answers, a confidence limit, or a reliability estimate. The problem arises when little
or no data are available, there is no mathematical model to generate information from, or a
mathematical model is inadequate.

The first solution to this problem is, if there is an expert, or even a reasonably knowl-
edgeable person, available, to ask this person to give you a PDF for the situation, even if no
data is available. The expert may or may not be able to do this. In addition, experts may
not be knowledgeable about PDFs and may be embarrassed to admit it. Meyer and Booker

347
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(2001) do not recommend asking experts for PDFs. If the expert can provide a PDF and
everyone is comfortable with this solution, then the problem is solved. The statistician or en-
gineer can then integrate the PDF, obtain a CDF, and then obtain limit estimates or reliability
information. The problem is then solved and there is no need to read further. Unfortunately,
it has been our experience that the experts, engineers or, in our case, scientists, do not feel
comfortable doing this even though they feel comfortable with the subject matter. The three
typical PDFs given by the experts are shown in Figure 14.1.

N othiﬂg

(a) (b) (©

Figure 14.1. Common PDFs given by experts: (a) nothing; (b) uniform distribution;
(c) triangular distribution.

A second solution is to use fuzzy rules and membership functions to generate what
we might call a “comfort™ function. This comfort function is generated by firing rules
for a given situation and “clipping” the output membership functions according to some
resolution law like the min—max method. This comfort function then can be normalized and
treated like a PDF in lieu of better information. A PDF generated in this fashion usually is
a better representation of what an expert really knows than a PDF produced by force. (The
authors once attended a meeting where antifuzzy folks made the following comment about
these ideas: “Don’t use fuzzy logic. Just bend the expert’s fingers back until he/she gives
you a PDE.”’) This is probably because you are obtaining information from the expert in
terms of ideas that he/she is comfortable with. From this point on, the researcher or the
person who has been charged with finding the solution to this problem can use standard
probabilistic techniques. The researcher can integrate the PDF to get a CDF and determine
confidence limits or reliability values or whatever else is desired. This is one area where fuzzy
logic and probability can work together, at least in the case of probabilistic risk assessment,
probabilistic safety assessment, and reliability analysis—or any situation where a researcher
needs to use a PDF or a CDF. A typical comfort function or PDF generated by this fuzzy
technique is presented in Figure 14.2.

The authors wish to reiterate that there is no benefit in using fuzzy PDFs and CDFs when
density functions and distribution functions can be produced from data or a mathematical

Figure 14.2. Typical comfort function or PDF generated by this fuzzy technique.
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relationship. These functions will be better. The best time to use the fuzzy technique is
when you have little numerical data and no mathematical model of the system. The fuzzy
technique is most useful when using an expert who is knowledgeable about a system and who
can build a semantic model using rules. (Although, in many problems the information that
is available is all that is necessary. A combination of expert rules and data or a good model
may give the best solution.) Fuzzy expert control systems are examples of a common and
successful use of rules to describe a system or a relationship. The major difference between
fuzzy control systems and the technique presented in this chapter is that fuzzy control systems
require only a single “defuzzified” value. The technique presented here requires the entire
fuzzy distribution. The idea is that there is more information available from the expert than
a single value, and that knowledge should not be wasted.

This chapter is prompted by work done at Los Alamos National Laboratory in the
mid 1990s. Statisticians needed PDFs and CDFs to develop relationships for the reliability
of special components, but they had very little or no data. First, they tried to get PDFs
from expert scientists, who really understood these components very well. They generally
got poor results from these experts. (See Figure 14.1(a).) The statisticians decided to
collaborate with some control engineers. Together they developed fuzzy rule-based comfort
functions or PDFs, which were easily obtained from the expert scientists. The results they
obtained were much better than before. They compared the results with what little data they
had and obtained an excellent fit. This work was confidential and the specifics could not
be published; however, a pseudoproblem was created using wear in a machine tool and the
techniques used were demonstrated in that problem (Smith et al. (1997, 1998)).

The machine tool problem was noticed and the team was assigned another similar
problem actually dealing with machine tools. This problem was not ideal, but it was actually
a simpler problem than the one solved in the confidential work. A subject matter expert was
available but there were no actual wear data. Several different fuzzy expert systems were
designed, built, and tested. The major problem was that because there was no real wear
information, it was very difficult to determine the best solution or even if the solution was
valid. Later, an attempt was made to tie wear information to tool temperature data.

This was easier to quantify, but the expert only had a vague feeling for temperatures as
compared to tool wear. He basically knew that there was a relationship between temperature
and wear, but even if he touched the tool he would not have known what temperature it
was. The expert was given the temperature ranges and asked to fit his fuzzy rule base and
membership functions to temperature instead of wear. He did so, and, surprisingly, seven of
ten data sets were fairly well represented by his system. This system can be quantified and
give a good example of how this techniques works and, since temperature data are available,
we can see what results might be expected from a method like this. Some of this work is
presented in (Parkinson et al. (1999)).

14.2 Example 1: The use of fuzzy expertise to develop
uncertainty distributions for cutting tool wear

Here we began developing an expert system with a researcher who had a good feeling for
tool wear as a function of machine speed and forces applied to the tool and the work, all of
which could be measured easily. The problem was changed in midstream when we were
able to obtain data from a dissertation that related the machine speed and forces to cutting
tool temperature. This work was being performed for an entirely different purpose. We felt
fortunate to get the temperature data since it is extremely difficult and expensive to obtain.
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Once the expert knew something about the temperature ranges in the problem, he felt that
he could apply his knowledge of speed and forces versus wear to speed and forces versus
temperature, then later relate temperature to wear. In most cases, workers are unlikely to
have access to this information. We were fortunate to be able to compare our expert-produced
CDFs to those produced by the data. In this case the expert was not an expert in temperatures,
but he was given some idea of the temperature ranges involved and the ranges of speeds and
forces. He then turned his “wear” rules into temperature estimates. The fuzzy temperature
estimates were turned into fuzzy CDFs and compared with the CDFs produced from the
actual experimental data. In this case, because we used temperatures instead of wear, the
expertise was not as good as we would preferred, but the correlation was reasonable for
seven of ten cases. Three cases were not as satisfactory, but considering that the rules and
the membership functions were quite simple, these results were quite remarkable,

14.2.1 Demonstration of the technique

With dry machining becoming a reality, it is easy to destroy a work piece with a dull cutting
tool. Current practice is to use a tool only once for finishing a piece. Suppose that it takes
one minute to finish a piece. We have a tool that we believe will be good for three minutes
of work under nominal operating conditions. We have used the tool twice (for two minutes)
and need to determine the confidence that we can use it one more time.

The input variables are speed of rotation, thrust force on the piece, and cutting force
exerted by the tool as illustrated in Figure 14.3. We developed the following set of input
membership functions shown in Figures 14.4-14.6. (These are actually the ones used for
the temperature problem but they are very similar to the ones developed for the tool wear
problem.) Figure 14.7 shows the output membership functions for percent wear deviation.

observation area

work piece feed

rotation (

{} \ F

. carbide insert
F

cutting tool

Figure 14.3. Cutting tool, work piece, and associated forces.

Table 14.1 shows the rules developed by the subject matter expert for tool wear. The
last column in this table also shows the rules for temperature prediction since the input
membership functions are the same for both cases.

These are the steps used to resolve the problem of interest:

1. Fire the rules that are involved in the problem.
2. Clip the resultant output membership function.

3. Normalize the resultant membership function. (This is the PDF.)
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Figure 14.6. Membership functions for thrust force.

4. Repeat steps 1-3 for each set of conditions for the tool.
5. Apply a mixing rule if appropriate.
6. Use convolution to combine the resultant PDFs.

7. Integrate the combined PDFs to obtain a CDF.
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In our example problem, the tool was used twice. The first set of conditions were

* velocity = 351 feet/minute,
* cutting force = 893 Newtons,
* thrust force = 497 Newtons.

Table 14.2 shows the rules that were fired and their strengths (step 1).

Rules 5, 6, 8, and 9 were fired. The min—max rule was used to resolve the conflicts. The
results of clipping the output membership functions (step 2) are shown in Figure 14.8. The
PDFs resulting from normalizing the clipped membership function are shown in Figure 14.9.
Figure 14.10 shows the resulting temperature CDF, the CDF from the experimental data, and
the CDF of a normal distribution fit to the experimental data.

14.3 Example 2: Development of uncertainty distributions
using fuzzy and probabilistic techniques

In this section, we describe a method for obtaining uncertainty distributions that was based
on fuzzy control systems methodology and a probabilistic alternative. In particular, we
considered the situation where the reliability of a specific system was based on whether
or not performance fell within specifications. This section is designed to provide more
background for the work described in section 14.2.

Our particular interest was in cases where the relationship between the condition of
the system and its performance was not well understood, especially for some sets of possible
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Table 14.1. Rules relating input membership functions velocity, cutting force, and
thrust force to both tool wear and temperature.

Rule number | Velocity | Cutting force | Thrust force Tool wear Temperature
1 low low low negative low
2 low low medium negative low
3 low low high negative low
4 low medium low negative low
5 low medium medium negative low
6 low medium high 7€er0 medium
7 low high low negative low
8 low high medium zero medium
9 low high high positive small high
10 medium low low negative low
11 medium low medium zero medium
12 medium low high 7e10 medium
13 medium medium low zero medium
14 medium medium medium zero medium
15 medium medium high positive small high
16 medium high low zero medium
17 medium high medium positive small high
18 medium high high positive large very high
19 high low low zero medium
20 high low medium zero medium
21 high low high zero medium
22 high medium low positive small high
23 high medium medium positive small high
24 high medium high positive large very high
25 high high low positive small high
26 high high medium positive large very high
27 high high high positive large very high
Table 14.2. Rules fired in Example 1.
Rule number | Velocity | Cutting force Thrust force Temperature
S low (1) medium (0.53) medium (0.79) low (0.53*
6 low (1) medium (0.53) high (0.21) | medium (0.21)
8 low (1) high (0.47) medium (0.79) medium (0.47)
9 low (1) high (0.47) high (0.21) high (0.21)"

“Indicates the rules that were actually used.

operating conditions. and where developing a better understanding was very difficult and/or
expensive. For example, a system may have been developed and tested for a specific range
of operating parameters, and it was now desired to characterize its reliability if it was used
in untested or minimally tested parameter ranges. In applications, the manner in which
uncertainty distributions were obtained ranges from being largely data driven to being highly
subjective, depending upon where test results were available.

Because the actual application that motivated this work was confidential, an artificial
problem description is used to illustrate the method.

14.3.1 Description and illustration of the fuzzy setup of the method

Consider a system with several components, each of which can influence the performance of
the system. Each component was subject to wear, potentially degrading performance. One
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Figure 14.9. PDFs for temperature and wear deviation in Example 1.

example was an automobile fuel injector consisting of many components, each of which
can influence the flow rate of the air/fuel mixture. Another was a catalytic converter which
must meet certain performance specifications and which can degrade with use. For a given
wear level, performance degradation was variable. Our objective was to characterize the



Ronald E. Smith, W. Jerry Parkinson, and Thomas R. Bement 355

—

p—
—

> 0.81
= 0.6
<

= 0.4 1
=024

400 500 600 700 800
temperature (C)
|— - -experimental — fuzzy normal]

Figure 14.10. Temperature CDFs: fuzzy, experimental, and normal (Example 1).

relationship between performance and the condition of the components.

Assume the hypothetical system consists of four components, A, B, C, and D, where
the relationship between the condition of the components and the performance of the system
is not well understood. The understanding of the relationship was better for some conditions
than for others.

The system experts classified component wear according to four levels or categories:
negligible wear, slight wear, moderate wear, and severe wear.

Components A and B experienced wear in four categories and components C and D
in three categories. The reason for the differing numbers of categories was related to the
wearout properties of the four components and the experts’ experience with wear levels for
the various components. Not all components may experience the same degrees of wear.
For example, some components tended to wear out in a continuous manner, while others
tended to fail catastrophically. In addition, it may be that even though certain wear levels
are theoretically possible, there is no experience base with such wear.

Similarly, seven levels of degradation were used to describe system performance:
nominal, very slight, slight, moderate, large, very large, and excessive. Tables 14.3-14.6
show the rules for relating condition to performance for each of the four components.

In a true fuzzy control systems application, one would completely characterize the
performance relationship for combined wear patterns in a fuzzy manner, requiring 4 x
4 x 3 x 3 = 144 rules. However, in this case, the experts chose to develop fuzzy rules

Table 14.3. Component A performance degradation rules.

Wear Performance degradation
negligible nominal

slight slight
moderate very large

severe excessive

Table 14.4. Component B performance degradation rules.

Wear Performance degradation
negligible nominal

slight slight
moderate moderate

severe large
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Table 14.5. Component C performance degradation rules.

Wear Performance degradation
negligible nominal

slight slight
moderate moderate

Table 14.6. Component D performance degradation rules.

Wear Performance degradation
negligible nominal

slight very slight
moderate moderate

relating only the condition of each individual component to system performance—under the
assumption that each of the other components was in a nondegraded condition—and then
developed analytical rules for dealing with combined degradation effects.

Figure 14.11 shows the membership functions for the condition of each component
using a percentage wear metric. Figure 14.12 shows the seven membership functions for
system performance as percent degradation from nominal for each of the four components.
Table 14.7 lists the Gaussian parameters for the system performance degradation membership
functions.

The analytical rules considered by the experts for combining the wear effects of the
four components are a weighted sum of individual degradations and a geometric sum of the
individual degradations. Section 14.3.2 describes how uncertainty distributions are obtained
from the work described in this section.

14.3.2 Fuzzy development of uncertainty distributions

The method for generating uncertainty distributions will now be illustrated by considering
only component A. Suppose component A has wear equal to w and the other three compo-
nents show no wear.

From Figure 14.11, we can determine the levels at which each of the component A rules
are “fired.” That is, for a given w, we determine the values of each of the four membership
functions. Denote these by m 41 (w), ma2(w), m43(w), and m 44 (w). Forexample, if w = 50,
then mao(w) = 0.25, ma3(w) = 0.75, and m 4 (w) = m 44(w) = 0.

Fora given value of w, by using standard fuzzy systems methodology, we can obtain the
corresponding combined membership function for performance. In this case it is a weighted
average of the two involved performance membership functions. The combined membership
function for w = 50 is shown in Figure 14.13.

Departing now from standard fuzzy systems methods, we normalize the trimmed mem-
bership function for performance so that it integrates to 1.0. The resulting function, f4(x|w),
is taken to be the performance (x) uncertainty distribution corresponding to the situation
where component A wear is equal to w and the other three components show no wear. Fig-
ure 14.14 is the CDF form of the uncertainty distribution, F4 (x|w). If performance must
exceed some threshold, 7', in order for the system to operate successfully, then the reliability
of the system for the situation where component A wear is equal to w and the other three
components show no wear can be expressed as Rq(w) = | — Fa(T|w).
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Figure 14.12. Performance degradation membership functions.

Table 14.7. Gaussian parameters for performance degradation membership functions.

Membership function | Mean | Standard deviation

nominal 0 5

very slight 5 6
slight 10 7
moderate 20 9

large 40 12

very large 50 15
excessive 90 20

1-
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Figure 14.13. Component A performance degradation membership with 50% wear.

Clearly, uncertainty or variability in the level of wear for component A induces un-
certainty in R4(w). Suppose that the uncertainty in wear, w, is characterized by some dis-
tribution. The distribution of F4(x), and hence of R,, then can be obtained. For example,
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Figure 14.15. CDFs for sampling from wear distribution for component A.

suppose the uncertainty in wear for component A is characterized by a uniform distribution
on the closed interval [40, 60]. The results of repeatedly sampling w from that distribution
and calculating F4(x|w) are shown in Figure 14.15. The uncertainty in the degradation
probability that is due to uncertainty in the level of wear is illustrated by the “envelope™ of
cumulative distribution functions that is induced by sampling values of w. The median and
the fifth and 95th percentiles of the envelope are shown in Figure 14.16. The approximate
distribution of R4 can be obtained from such a numerical simulation process.

14.3.3 Probabilistic characterization of the development of
uncertainty distributions

A probabilistic alternative to the fuzzy control methodology described above is offered by
Laviolette et al. (1995). Following their approach, we describe how the development of
uncertainty distributions described above can be approached probabilistically rather than
with fuzzy methods.

In the probabilistic case, the membership functions in Figure 14.11 are replaced with
wear classification probability functions, conditioned on the wear level, w. For example,
in Figure 14.11, the “nominal” membership functions are replaced with functions giving
the probability that the wear category is “nominal” given that the wear level is w. The
performance membership functions in Figure 14.12 were each replaced with corresponding
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Figure 14.17. Performance degradation PDFs.

PDFs that characterize the distribution of performance within each of the seven performance
categories (Figure 14.17). For example, the PDF corresponding to “slight” performance
degradation will provide the distribution of performance given slight degradation. For a
given weight, w, the combined membership function for pertormance of Figure 14.13 is
replaced with a PDF that is a weighted average (mixture) of the appropriate performance
distributions (Figure 14.18). The weights are the wear category membership probabilities
for wear equal to w.

An alternative method of obtaining the combined performance degradation is to use a
linear combination of the individual performance degradation PDFs using the wear category
membership probabilities for wear as the weights (Figure 14.19). If, as in this case, the
membership functions are Gaussian, N (i, 02), then the linear combination is also Gaussian,
N(wipy + wopz, wio? + wics).
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Figure 14.18. Component A performance degradation PDF with 50% wear using
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Figure 14.19. Component A performance degradation PDF with 50% wear using
linear combination of PDFs.

14.3.4 Extended example

Let us consider an extended example that fully illustrates each approach. Consider the case
where component A is worn 50%, component B 15%, component C 40%, component D 70%.
Using the methods described in the previous two sections, one can derive the performance
degradation PDFs for each component. Figure 14.20 shows the performance degradation
PDFs using the fuzzy methodology. Figure 14.21 shows the performance degradation PDFs
using the probabilistic methodology “mixture.” Figure 14.22 shows the performance degra-
dation PDFs using the probabilistic methodology of linear combination.

Consider one of the analytical rules given by an expert for combining the wear effects
of the four components: “The largest effect will dominate, the second largest effect will
contribute one half as much as it would independently, the third largest—one fourth-—and
the smallest—one eighth” (Smith et al. (1997)). In this case, A has the largest effect, followed
by D. B, and C. One can then combine the effects shown in Figures 14.20, 14.21, and 14.22
using Monte Carlo simulation techniques (in the probabilistic-linear combination case an
analytical solution exists). The final combined performance degradation for this example is
shown in Figure 14.23.
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Figure 14.20. Performance degradation PDFs, extended example, fuzzy methodology.
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Figure 14.21. Performance degradation PDFs, extended example, probabilistic
methodology, mixture.
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Figure 14.22. Performance degradation PDFs, extended example, probabilistic
methodology, linear combination.

14.3.5 Concluding remarks

Recall that our interest is in situations where the relationship between wear and performance
is not well understood, and where the understanding may be better for some wear ranges than
for others. In this type of application, the fuzzy system was used as an approximation to an
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Figure 14.23. Combined performance degradation CDFs.

unknown wear—performance function. In Kosko (1994) and elsewhere, the implications of
using a fuzzy systems approach to approximate continuous functions are discussed. This sort
of approximation has the advantage of being able to combine information from a variety of
sources, ranging from highly data driven to highly subjective. Such situations are common
when equipment is used outside of its original design envelope, for example.

A potential drawback for this method is that the combined performance distributions
for wear values in unexplored ranges will be multimodal, as in Figures 14.13 and 14.18.
The multimodality proceeds directly from the fuzzy characterization of the relationship and
the fact that the relationship is understood better for some ranges of wear than for others.
However, if the multimodality is seriously contrary to the judgment of experts, that fact
itself may indicate that additional information (i.e., in addition to the fuzzy system rules
and membership functions) is available and should be included in characterizing the wear—
performance relationship. The linear combination approach also may solve the multimodal
problem.

14.4 Summary

It is evident after reading this chapter and observing the examples, and especially Fig-
ures 14.10 and 14.23, that this technique does not produce perfect values. There are several
possible CDFs that could be produced by these techniques. If the developer has sufficient
numerical data or some mathematical relationship to produce a PDF, then the standard sta-
tistical techniques will most likely work better. On the other hand, when data or reliable
mathematical descriptions are not available, a semantic description by an expert or knowl-
edgeable person can be very useful. We feel strongly that a PDF generated by a rule-based
method as described here is better than one that came directly from an expert’s imagination.
The quality should be better for no other reason than that the expert has to break down his/her
reasoning into small, logical steps in order to solve the problem. The choice of whether to use
a fuzzy technique or a probabilistic technique for the rule-based method probably should be
based on which technique the expert is more comfortable with, which in turn corresponds to
the form of his/her knowledge. The quality of the final solution highly depends on the quality
of the expert’s description. Finally, if the expert has no strong opinion about which method
to use, the developer is free to choose the technique. Remember, the analyst is judging the
quality of the results, not the technique used.



364 Chapter 14. Uncertainty Distributions Using Fuzzy Logic

References

B. Kosko (1994), Fuzzy systems as universal approximators, IEEE Trans. Comput., 43,
pp. 1329-1333.

M. LAVIOLETTE, J. W. SEAMAN Jr., J. D. BARRETT, AND W. H. WoODALL (1995), A proba-
bilistic and statistical view of fuzzy methods, Technometrics, 37, pp. 249-261.

M. A. MEYER AND J. M. BOOKER (2001), Eliciting and Analyzing Expert Judgment: A Prac-
tical Guide, ASA-SIAM Series on Statistics and Applied Probability, SIAM, Philadelphia,
ASA, Alexandria, VA.

W. J. PARKINSON, K. W. HENCH, M. R. MILLER, R. E. SMITH, T. R. BEMENT, M. A. MEYER,
J. M. BOOKER, AND P. J. WANTUCK (1999), The use of fuzzy expertise to develop uncertainty
distributions for cutting tool wear, in Proceedings of the 3rd International Conference on En-
gineering Design and Automation, Vancouver, BC, Canada, Integrated Technology Systems,
Inc., CD-ROM.

R. E. SmitH, J. M. BOOKER, T. R. BEMENT, W. J. PARKINSON, AND M. A. MEYER (1997),
The use of fuzzy control system methods for characterizing expert judgment uncertainty
distributions, in Proceedings of the Joint Statistical Meeting, Vol. 1, American Statistical
Association, Alexandria, VA, Elsevier, New York, pp. 497-502.

R. E. SMiTH, T. R. BEMENT, W. J. PARKINSON, F. N. MORTENSEN, S. A. BECKER, AND
M. A. MEYER (1998), The use of fuzzy control system techniques to develop uncertainty
distributions, in Proceedings of the 4th International Conference on Probabilistic Safety
Assessment and Management, Vol. 1, Springer-Verlag, New York, pp. 497-502.



Chapter 15

Signal Validation Using
Bayesian Belief Networks
and Fuzzy Logic’

Hrishikesh Aradhye and A. Sharif Heger

Abstract. Safe and reliable control of many processes, simple or complex, relies on sensor
measurements. Sophisticated control algorithms only partially satisfy the growing demand
for reliability in complex systems because they depend on the accuracy of the sensor input.
Noise-ridden or faulty sensors can lead to wrong control decisions, or may even mask a system
malfunction and delay critical evasive actions. Thus for optimal and robust operation and
control of a process system, correct information about its state in terms of signal validation
is of vital importance. To this end, process control methods need to be augmented with
sensor fault detection, isolation, and accommodation (SFDIAY} to detect and localize faults
in instruments. SFDIA can be defined as (a) the detection of sensor faults at the earliest,
(b) isolation of the faulty sensor, (c¢) classification of the type of fault, and (d) providing
alternative estimates for the variable under measurement.

In this chapter, we introduce the use of Bayesian belief networks (BBN) for SFDIA.
Bayesian belief networks are an effective tool to show flow of information and to represent and
propagate uncertainty based on a mathematically sound platform. Using several illustrations.
we will present its performance in detecting, isolating, and accommodating sensor faults. A
probabilistic representation of sensor errors and faults will be used for the construction of
the Bayesian network. We limit sensor fault modes considered in this work to bias, precision
degradation, and complete failure. Fuzzy logic forms the basis for our second approach to
SEDIA. In decision-making related to fault detection and isolation, fuzzy logic removes the
restrictions of hard boundaries set by crisp rules. The main advantage of fuzzy logic is its
simplicity without compromising performance. As shown in the results, three fuzzy rules
per variable are sufficient for a model-based fuzzy SFDIA scheme. A comparison of these
two methods based on the experience of this application provides valuable insights.

15.1 Introduction

This chapter focuses on sensor fault detection, isolation, and accommodation (SFDIA) using
Bayesian belief networks (BBN) and fuzzy logic. The intent is to apply these methods to

*This chapter is based on the first author’s thesis (Aradhye (1997)).
365
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this important field and highlight the advantages and limitations of each method. SFDIA is
particularly important in the operation of complex systems such as chemical processes, power
generation, aviation, and space exploration. In all these systems, any fault can have serious
consequences in terms of economics, environmental concerns, or human health effects.
Control actions designed to mitigate the effect of faults or maintain the system at its optimal
state depend on correct interpretation of its state. The determination of the system state
depends on the readings provided by sensors. Hence, noise-ridden or faulty sensors can lead
to wrong control decisions or may mask a system malfunction. Thus for reliable and optimal
operation and control of a system, sensor validation is of vital importance.

Almost all the SFDIA schemes use redundancies in available information to detect
inconsistencies between various sources, which lead to diagnoses of probable faults. One
of the common approaches is the use of hardware redundancy, i.e., the use of multiple
instruments to measure the same quantity. The functional or analytical redundancy approach
is based on the fact that readings of instruments measuring different quantities for the same
plant or device are correlated and are governed by the laws of known or unknown process
dynamics. Each of the two approaches has its benefits and drawbacks. Hardware redundancy
suffers from the obvious drawbacks of higher instrumentation and maintenance cost, higher
information processing load, and higher weight requirements. On the other hand, the model
predictions in an analytical redundancy approach may be wrong in cases of unforeseen
process faults and/or process conditions outside the operating limits of the model. The
hardware redundancy approach holds even in the case of abnormal process conditions and
may be necessary in safety-critical variables. To be effective, an SFDIA scheme must take
advantage of both these approaches and

1. must handle both dynamic and steady state sensor validation;
2. should allow for continuous as well as discrete-valued representation;

3. should incorporate analytical as well as knowledge-based, system-specific informa-
tion;

4. must learn and adapt from experience.

Current approaches to SFDIA fall into two broad categories of statistical and Al-based meth-
ods. Statistical methods can be further subcategorized into the parity-space approach (Potter
and Sunman (1977), Desai and Ray (1981)), observer-based approaches (Clark, Fosth, and
Walton (1975), Frank (1987a, 1987b, 1994a, 1994b)), parameter-based approaches (Iser-
mann (1984), Isermann and Freyermuth (1991a, 1991b)), and frequency-domain approaches
(Ding and Frank (1990), Frank and Ding (1994)). These methods are, in general, quantita-
tive and nonlearning. Examples of Al-based schemes are expert systems or decision support
systems (Singh (1987), Watton (1994), Lee (1994)), neural networks—based approaches
{Bernieri et al. (1994), Mageed et al. (1993), Napolitano et al. (1995)), fuzzy logic-based
approaches (Park and Lee (1993), Heger, Holbert, and Ishaque (1996)), and neurofuzzy ap-
proaches (Mourot et al. (1993), Sauter et al. (1994)). Al-based methods provide qualitative
reasoning and learning capability. It is desirable to combine the robustness and mathemat-
ical soundness of quantitative methods with the simplicity, intuitive appeal, and adaptation
capabilities of the qualitative methods. The methods presented in this chapter attempt to
achieve this goal. To this end, we will

¢ develop SFDIA methods using BBNs and fuzzy logic;

* compare the features of each method;
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* broaden the basic goal of SFDIA to encompass process as well as sensor fault detection,
multisensor fusion, data reconciliation, and analytical as well as knowledge-based
modeling.

BBNs are an effective tool to show flow of information and to represent and prop-
agate uncertainty based on a mathematically sound platform (Pearl (1988), Spiegelhalter
et al. (1993), Lauritzen and Spiegelhalter (1988)). Using provable schemes of inference and
evidence propagation, a Bayesian network modeling a system can help to detect, isolate,
and accommodate sensor faults in a single, unified scheme. It is no longer necessary to
construct separate modules to perform each of these functions. Uncertain instantiations and
unavailable data are handled implicitly. Addition, removal, or replacement of one or more
sensors can be handled by changing accordingly the nodes cotresponding to the sensors in
question and does not affect the entire network.

Many examples of the use of BBNs for process fault detection can be found in the
published literature (Deng (1993), Kirch and Kroschel (1994), Nicholson and Brady (1994),
Nicholson (1996)). The message-passing and inference schemes in these networks are based
on sound theorems of probability, whereas the network structure has the ability to capture
causal relationships. Thus this network is a combination of analytical as well as knowledge-
based approaches. The use of BBNs for the detection of sensor faults is introduced in this
chapter. This method has the potential to incorporate the four features listed above, as
demonstrated through several examples. This scope of the examples is limited to sensor
bias, precision degradation, and complete failure.

The relative speed and simplicity of approximate reasoning and calculation have been
the basis of the fuzzy logic domain. Traditional sensor validation methods rely on crisp
data and produce either a valid or failed decision. A binary-valued decision for the sensor
status increases the probability of a missed or false alarm, which may be reduced due to the
continuous-valued approach used in fuzzy logic.

A solution to the fault detection problem with this approach has been proposed as
application of fuzzy rule bases either on residual readings or along with neural nets using
the functional redundancy approach (Dexter (1993), Singer (1991), Mourot, Bousghiri, and
Kratz (1993), Goode and Chow (1993), Sauter et al. (1994)). The fuzzy logic—based hard-
ware redundancy scheme (Holbert, Heger, and 1shaque (1995), Heger, Holbert, and Ishaque
(1996)) uses two or three redundant sensors. In contrast, the work presented in this chapter
makes use of fuzzy rules in an analytical redundancy-based setup.

15.2 Bayesian belief networks

In this section, we start with a brief introduction of BBNs. Following that, we present
the use of the networks for SFDIA through a simple example for a single-variable, single-
sensor case. Sample calculations demonstrate the mechanisms by which new evidence is
propagated through the network, and new inferences are drawn. A good SFDIA system
uses the redundancy in information to detect and mitigate the effects of faults and provide
reduction in noise. To this end, the incorporation of redundancies in the network structure is
discussed in the next section. Application of the method to a continuous stirred tank reactor
(CSTR) is presented.

BBNs (probabilistic networks) are causal acyclic graphs which are hypothesized to
represent the flow of human reasoning in domains with inherent uncertainty (Pearl (1988),
Lauritzen and Spiegelhalter (1988), Spiegelhalter et al. (1993)). The nodes in this network
represent propositional variables and the directed link between two nodes represents a causal



368 Chapter 15. Signal Validation Using Bayesian Belief Networks and Fuzzy Logic

influence of the parent node on the child node. Associated with each child node is a probability
distribution conditional on its parents. The nodes with no parents are called “root nodes”
and each has an a priori probability distribution.

At any instant, a certain body of external information is made available to the network.
This “evidence” is incorporated by instantiating the corresponding nodes. The directed
structure of the network and the conditional probabilities associated with each link store
a body of prior knowledge. This allows for the calculation of probability distributions of
the uninstantiated nodes in the network, given the evidence. This represents the conclusion
inferred by the network in light of the evidence presented and is called “inference.” The
process of message passing that results in the inference is called “propagation” of evidence.

The inference scheme uses the Bayesian method to calculate updated “beliefs,” i.e.,
the probabilities. A typical inference process consists of one initialization step, a series of
updating probabilities, and exchanging 7 and A messages among nodes. A A-message, which
is sent by a child node to its parent, represents the diagnostic information. A w-message from
a parent node to a child node represents the causal influence. Once the network stabilizes,
the updated probabilities associated with each node represent the belief about the state of the
node in light of the evidence.

Consider a simple system that consists of a temperature sensor/indicator (Figure 15.1).
If the sensor is operational, then there is a correlation between its value and that of the
temperature. The lack of correlation in a faulty sensor is represented as a uniform probability
distribution in the conditional probability table of the indicator node; i.e., both high and low
are equally probable values for sensor reading, irrespective of the high or low value of the
temperature. When the temperature is above a certain threshold (high), the indicator is red;
otherwise it is blue. The network representation of this system uses three discrete-valued
nodes: one for the indicator reading (node /), one for the status of the sensor (node S),
and another (node 7') for temperature, whose actual value is unknown at any given time.
The causal relationships and dependencies between the nodes are shown in Figure 15.1.
Node I has two possible values of “red” and “blue.” Node § can be either “functional” or
“inoperative” representing the corresponding status of the sensor. Node T represents the
actual temperature that can be “high” if it is above the threshold or “low” otherwise. The
actual states of nodes S and 7 are not known at any given time. The network helps to form
a probabilistic inference about these states based on the indicator reading.

Based on the manufacturer’s specifications, let the a priori probability of the functional
state of node § be 0.65. Since each node is binary-valued, a total of four conditional
probability statements are needed to uniquely define the dependence of I on 7 and S. These
values are shown in boxes attached to each node in Figure 15.1. At this point, the a priori
distribution for the node T needs to be provided for the network to be completely defined.
As a starting point, assume a noninformative prior, assigning 0.5 for the two possible states.
An observation about the indicator reading is presented to the network via instantiation of
the node /. Given this evidence, the network updates its beliefs about the other two nodes, §
and 7. For example, if the indicator is observed to be red, the probability of the temperature
being high increases from 50% to 82.5%. Beliefs about node § remain unchanged, due to
the noninformative prior. The calculations showing the propagation of probabilities in the
network and the resultant inference about the status of the sensor are shown in detail below.

Initialization. The objective of this stage is to initialize the BBN such that the network
becomes ready to accept evidence. Probabilities for all nodes and all & and A messages are
initialized for this purpose.
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Figure 15.1. The basic unit of a BBN for SFDIA. The sensor-reading node is
dependent on the sensor-status node and the process-variable node. The links and the
conditional probability tables define this causal relationship. The sensor-reading node is
shown with a single line, the sensor-status node with double lines, and the process-variable

node is shown with triple lines. This representation scheme is used for all BBNs presented
in this chapter.

[. Setall w and A messages and A values to I:
7(S) = P(S) = (0.65 0.35),
a(T)= P(T)= (05 0.5).

1I. Calculate m messages, exchange messages between S and /, and calculate updated
probabilities for /.

A. Calculate m messages from [ to S:

P'(S = functional) _ 065 0.65
A/(S = functional) ~ 1

(S = functional) =

where P’ denotes the updated (posterior) probability, which at this point is equal
to the a priori probability P for the root nodes:
P'(S = inoperative) _ 035

7;(S = inoperative) = - - = — =0.35.
A (S = Inoperative) I

B. Calculate r values for node /:

(Il = red) = P(red|high, functional) - 7, (S = functional) - 7, (7T = high)

+ -+ 4+ P(red|low, inoperative) - 7, (S = inoperative)

-1 (T = low)
=1.0x065x1.0+00+05%x035x1.0+0.5x%x0.35x1
= 1.0,

7({ =blue) =00+1.0x065x1.04+05x035x1.04+05x035x1
=1.0.
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C. Update probabilities for / based on its 7 and A values and a proportionality

constant o
P'(I=red)=a- -A(l =red) (] =red)
=ax1.0x1.0
=q,
P’(I =blue) = o - A(I = blue) - 7 (I = blue)
=ax1.0x1.0
—_—
P'(I =red) + P'(I =blue) = 1.0,
soa+a=1.0,
=a =05,

- P'(I =red) = P'(I =blue) =0.5.

I has no child to send any 7 messages. Hence this branch of the propagation
algorithm terminates.

III. Repeat step II for node 7'; i.e., calculate 7 messages, exchange messages between T
and 7, and calculate updated probabilities for 1.

A. Calculate 7 messages from / to 7

, P/(T =high) 0.5
T = high) = ——— 280 _ 2 _ 5
(T =high) = e = 1

T =1 )_P’(T:low)_0.5_05
T =low) = o = 1 T 0

B. Calculate 7 values for node I:

(I = red) = P(red|high, functional) - ; (S = functional)

- 77 (T = high)

+ - -+ + P(red{low, inoperative) - ; (S = inoperative)

- (T =low)
=1.0x065%x054+00+05x035x05+05x%x035x%x0.5
=0.5,

(I =blue) =0.04+ 1.0 x0.65 x 0.54+0.5 x 0.35 x0.54+0.5x0.35x 0.5
= 0.5.

C. Update probabilities for I based on its = and A values and a proportionality
constant a:

P =red) =0 - (I =red) - n({ =red)
=a x1.0x0.5
= 0.5,
P'(I =blue) =a - A(] = blue) - 7 (/ = blue)
=ax1.0x05
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= 0.5,
Soa = 1.0,
o P'(I =red) = P'(I = blue) = 0.5.

I has no child to send any 7 messages. Hence this branch of the propagation
terminates.

Since all branches of the propagation scheme have terminated, the computation stops. The
network now is completely initialized and is ready to accept new evidence.

Instantiation. The indicator is observed to be red and hence / is instantiated to red. This
instantiation causes node I to send A messages to its parents and 7 messages to its children.

[. Change the posterior probabilities and A values of [ to reflect the evidence:

A P'(I =red) = 1.0,
P’(I =blue) =0.0.
A =red) = 1.0,

A(I = blue) = 0.0.
B. Calculate A messages from / to its parents:

At (S = functional) = 7,(T = high)
- (P (red|high, functional) - A(/ = red)
+ P(blue|high, functional) - A(/ = blue))
+ 7T = low)
- (P(red|low, functional) - A(J = red)
+ P(blue|low, functional) - (I = blue))
=0.5(1.0 x 1.0 +0.0) +0.5(0.0 + 0.0)
=0.5,
A7 (S = inoperative) = 0.5(0.5 4+ 0.0) + 0.5(0.5 + 0.0)
=0.5,
AT = high) = 0.65(1.0 + 0.0) + 0.35(0.5 + 0.0)
= ().825,
AT = low) = 0.65(0.0 + 0.0) + 0.35(0.5 + 0.0)
=0.175.

{ has no child to send any = messages. Hence this branch of the propagation terminates.

Propagation. Receiving A messages from node / triggers nodes § and T iato the appro-
priate updating procedure.

[. S receives a X message from [I.
A. Update A values for S:

A(S = functional) = A, (S = functional) = 0.5,
A(S = inoperative) = A, (S = inoperative) = 0.5.
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B. Update probabilities for S:

P’(S = functional) = « - A(S = functional) - 7 (S = functional)
= x 0.5 x 0.65
= 0.325¢,

P’(S = functional) = « - A(§ = functional) - 7(S = functional)
=a x0.5x035
=0.175¢,

0.325« + 0.175« = 1.0,
=2,
. P'(S = functional) = 0.65,
P’(S = functional) = 0.35.

S has no parent to send A messages. Hence this branch of the propagation terminates.
Also, S has no other children to send new m messages; hence this branch of the
propagation terminates.

II. T receives a A message from /:
A. Update A values for 7':

A(T =high) = »;(T = high) = 0.825,
MT =low) = A(T =low) = 0.175.

B. Update probabilities for S:

P'(T = high) = & - A(T = high) - 7(T = high)
=a x 0.825 x 0.5
= 0.4125¢,
P(T =low) = o - M(T =low) - (T = low)
=ax0.175x0.5
= 0.0875«,
0.4125a + 0.0875«¢ =1,
La=2,
. P'(T = high) = 0.825,
P(T =low) = 0.175.

T has no parent to send A messages. Hence this branch of the propagation termi-
nates. Also, 7' has no other child to send new 7 messages. Hence this branch of the
propagation terminates.

Since all branches of the propagation scheme have terminated, the computation stops.
The arrival of evidence results in updating the probabilities that are stored as posterior
probabilities with each node.
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15.2.1 BBNs for SFDIA

Using the inference and evidence propagation methods from the previous section, a BBN can
be used to detect, isolate, and accommodate sensor faults in a single, unified scheme. With
this approach it is no longer necessary to construct separate modules to perform each of these
functions. In addition, the network can handle uncertain or missing data implicitly. Further,
the network can accommodate the addition, removal, or replacement of one or more sensors
by changing the corresponding nodes without affecting the entire network. This approach is
relatively new for SFDIA. Its use in the past has been limited to discrete domain, where the
network structure encodes the rules defining the system. The message-passing and inference
schemes in these networks are based on sound theorems of probability, whereas the network
structure has the ability to capture causal relationships. Thus this network is a combination
of analytical as well as knowledge-based approaches. These networks also can be dynamic,
leading to online and localized learning (Deng (1993), Kirch and Kroschel (1994), Nicholson
and Brady (1994), Nicholson (1996)). Unlike neural networks, these learning schemes do
not aim at minimizing a measure for training error, but update themselves according to what
is probabilistically correct.

15.2.2 Construction of nodes, links, and associated functions

For a BBN representation of SFDIA, three basic types of nodes are associated with each
SENSor:

1. “sensor-reading” nodes that represent the mechanisms by which the information is
communicated to the BBN;

2. “sensor-status” nodes that convey the status of the corresponding sensors at any
given time;

3. “process-variable” nodes that are a conceptual representation of the actual values of
the process variables, which are unknown.

To define the communication of information among the basic types of nodes, specification
of the links among them is necessary. In a BBN, there exists a link between each cause
and its direct effect, directed from the former to the latter. A sensor reading is a reflection
of the value of the process variable that it is measuring. Hence a parent process-variable
node exists for each sensor-reading node. Also, a normal or faulty mode of operation of a
sensor affects the sensor reading, and hence the sensor-status node forms the other parent of
a sensor-reading node.

In addition to the directed links, its conditional probability table specifies the depen-
dence of each child on its parents. Distributions of the root variables are defined in terms of
the a priori probabilities. The network structure and the probability tables completely define
the knowledge about how the basic unit models an SFDIA system.

Figure 15.2 shows a BBN representing the basic SFDIA unit. It contains three nodes of
the three basic types—sensor-reading, sensor-status, and process-variable. The sensor-status
node, being a root node, has an a priori probability table associated with it. The same is
true for the process-variable node. The sensor-reading node is a common child of the nodes
sensor-status and process-variable, and it has a conditional probability table.

After identification of the basic types of nodes, further model developments are based
on the following assumptions:
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|
| P(T =high)=0.5,' , P(S =functional) = 0. 65, |
l P(T=low)=0.5 I P(S =inoperative) = 0.35 |

_— e e = = - e e e o Em o = -

: P(red|high, functional) = 1.0, :
| P(red|high, inoperative) = 0.5, |
I P(red}low, functional) = 0.0,

' P(red|low, inoperative) = 0.5 l

Figure 15.2. Bayesian network representation of the single-sensor single-variable
problem. It consists of one SFDIA basic unit. All three nodes are binary-valued. Nodes
S and T are root nodes, and both have their a priori probability tables in attached boxes.
Node I has a conditional probability table attached to it. For example, when T = low and
S = functional, the probability of I = red is 0.0.

1. Given the parent process variable, the sensors are independent of each other.
2. The status of one sensor is independent of the status of any other sensor.

3. The status of a sensor is independent of the state of the process, i.e., the values of the
process variables.

A complete BBN for an SFDIA problem will involve several sensor-reading, sensor-status,
and process-variable nodes. The primary functions associated with the task of SFDIA are
divided between these nodes. The functions are providing input to the network and detecting,
classifying, and accommodationing faults. In SFDIA, evidence consists of the sensor read-
ings available at that instant, achieved via instantiations of the sensor-reading nodes. Given
the sensor readings, it is desired to infer the status of each sensor and also estimates of actual
values of the process variables that the sensors are measuring. Updated beliefs (i.e., probabil-
ities) about the sensor-status and process-variable nodes represent the inferred knowledge.
After evidence propagation, monitoring of the updated beliefs of the sensor-status nodes
leads to fault detection and classification. The updated beliefs about the process-variable
nodes are a result of multisensor fusion and fault accommodation functions. Thus although
the functions associated with each node are different, they are achieved via a single unified
evidence propagation and inference scheme.

15.2.3 A ssingle-variable, single-sensor system

Earlier in this section, we demonstrated the use of BBNs for representing a single temperature
sensor/indicator and updating its state as new data become available. Any statement about
the value of temperature is a logical consequence of our knowledge about the sensor. The
higher the reliability of the sensor, the stronger the effect of the indicator reading on the belief
about temperature. The values of belief about the actual value of temperature as a function
of the a priori sensor fault probability are summarized in Table 15.1. As the a priori sensor
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fault probability increases, the sensor becomes less reliable and hence the actual value of the
temperature has a lower contribution from the sensor reading. Hence the updated probability
of P(T = high) is lower, showing lower belief in the sensor reading. For example, as shown
in Table 15.1, as the a priori sensor fault probability goes from 0.45 to 0.05, the updated
probability of T = high increases from 0.775 to 0.995. More definitive statements about
the a priori temperature distribution result in a stronger statement about the sensor status, as
shown in Table 15.2. When the a priori P(T = high) is low, the network concludes that
the sensor is inoperative. When P(T = high) is high, it is more probable that the sensor is
functional. For example, as shown in Table 15.2, as the a priori P(T = high) is increased
from 0.02 to 0.09, updated P (S = functional) rises from 0.07 to 0.77.

Table 15.1. Updated belief about node T as a function of the a priori fault probabil-
ity of the sensor, given that a sensor reading of high has been observed. A priori temperature
distribution remains constant at equal values of 0.5.

A priori sensor fault probability | Updated probability of 7 = high
0.45 0.775
0.35 0.825
0.15 0.925
0.05 0.975

Table 15.2. The effect of prior knowledge on the inference of the network, given
that a sensor reading of high has been observed. A priori P(S = functional) is kept constant.
Note that when the a priori P(T = high) is low, the network concludes that the sensor is
inoperative and thus the sensor reading is invalid. When P(T = high) is high, there is a
high degree of belief in the sensor being operational and thus the sensor reading being valid.

Prior probability distribution | Posterior probability distribution
P(T = high) = 0.02, P(T = high) = 0.09,
P(S = functional) = 0.65 P(S = functional) = 0.07
P(T = high) = 0.20. P(T = high) = (.54,
P(S = functional) = 0.65 P(S = functional) = 0.46
P(T = high) = 0.50, P(T = high) = 0.825,
P(S = functional) = 0.65 P (S = tunctional) = 0.650
P(T = high) = 0.90, P(T = high) = 0.98,
P{(S = tunctional) = 0.65 P(S = tunctional) = 0.77

15.2.4 Incorporation of redundancies in the network structure

The basic unit developed in the previous section is devoid of any redundant information and
its function as an SFDIA unitis limited. As was discussed earlier in the chapter, hardware and
analytical redundancies are typically used for SFDIA. This section builds on the basic unit
to construct BBNs that incorporate these redundancies. To this end, we will progressively
develop a general network structure for a system with hardware and analytical redundancy
and discuss it with respect to an example system.

15.2.4.1 Hardware redundancy

Hardware redundancy is a direct means of sensor fault accommodation. The BBN represen-
tation of a system with multiple sensors measuring the same process variable must contain
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multiple sensor-reading nodes for the same process-variable node. Each sensor-reading node
will have its own sensor-status node as one of its parents. The other parent for all sensor-
reading nodes will be common, viz., the process-variable node representing the process
variable that the sensors are measuring.

Consider an ensemble of five indicators, I, through /s, assigned to measure and report
the temperature of a given process (Smets (1992)). The description of operational char-
acteristics of the sensors are similar to those for the single-sensor case, i.e., a priori fault
probabilities of all sensors are available. Given the sensor readings, the objective is to make
a statement about the actual value of the process variable. The BBN model of the system is
given in Figure 15.3, where node T represents the temperature being measured. The actual
temperature influences the sensor reading as reported by its indictor. This influence is shown
in form of the directed link from node T to any indicator node /. If the sensor is operational,
there is a correlation between its value and that of the temperature. The lack of correla-
tion in a faulty sensor is represented as a uniform probability distribution in the conditional
probability table of the indicator node; i.e., both high and low are equally probable values
for sensor reading, irrespective of the high or low value of the temperature. Obviously, the
status of the sensor, as represented by node S, influences the corresponding indicator node.
This pattern of influence is represented as a directed link from nodes §' to nodes 1.

Figure 15.3. The Bayesian network model of a system consisting of one process
variable and five sensors, measuring its value. Nodes I through Is are the sensor-reading
nodes. Nodes S\ through Ss are the corresponding sensor-status nodes. Node T represents
the temperature.
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15.2.4.2 Analytical redundancy

Correlations exist among process variables and these can be taken advantage of for the goal
of sensor fault detection and accommodation. A process model attempts to encompass these
relationships that exist between different process variables. In a BBN representation, each
variable is represented as a process-variable node. Thus a model has to be represented as
conditional dependence of one or more process-variable nodes on the rest of the process-
variable nodes.

A BBN representation would require separation of the process variables into parent,
intermediate, and terminal nodes. Advantage can be taken of the fact that a process model is
often represented as difterential and/or algebraic equations. A state-space type reorganiza-
tion of the characteristic equation(s) will allow distinction into independent and dependent
variables, thus facilitating a causal representation of the dependency.

After constructing the part of the BBN representing the process model, the next re-
quirement is formulation of the conditional probability tables for the dependent variables
and the a priori probability tables for the independent variables. As a first step, a discrete
representation for the process variables, which are continuous-valued in real life, is neces-
sary. Each parent variable is assigned one of its possible values. The value of the child
process variable is then calculated and discretized. This process is then repeated until all
possible combinations of parent variables are covered. This data is then used to construct
the conditional probability table for the child variable.

15.2.4.3 Construction of a discrete, steady-state knowledge base

Consider a simple example of an adiabatic CSTR (Karjala and Himmelblau (1994)). Descrip-
tion of the process, its definition in terms of the characteristic equations, and a progressive
development of a BBN model are discussed. The system consists of a CSTR undergoing a
first order, exothermic reaction. The reactor is provided with a cooling jacket or coil. The
process variables considered here are the temperature and concentration of the inlet stream,
and the temperature and concentration prevailing inside the CSTR. A schemaltic diagram
is shown in Figure 15.4, which shows the symbols used to denote the variables and the
corresponding sensors.
The steady-state equations that model this system are as tollows:

AT ¢ AH, —E, UA,

— = —(Ty —-T)— koC exp — (T —T.) =0, (15.1)
dr v C, T ) pC,v

dc L(Co =)= kC “Ea) oy, (15.2)
— = — cX = J.
dr 0— 0 p T

All variables except T, C, Ty, and C, are assumed to be constant. The physical meanings
of the variables involved and their typical values and units are provided in Table 15.3.
For simulation, the equations are made dimensionless using the following dimensionless
variables:

4 T ’ C ’ T B C
I'=—. C'=—. T():l. and C():—“_
I; ¢, T, C,

(15.3)

Substituting into (15.1) and (15.2),
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inlet temperature 7y rT-meter 1!
/ I
—_— 1 C-meter 1,

inlet concentration Cy 1 /

I T-meter 2 | Z outlet temperature 7
' T meter 3 ! —_——

; C-meter 2 : outlet concentration C
| C-meter 3 |

Figure 15.4. A schematic diagram of the CSTR. Partial hardware redundancy is as-
sumed. The sensors T-meter | and C-meter 1 measure inlet temperature and concentration,
respectively. Qutlet temperature is reported by two sensors, viz. T -meter 2 and T -meter 3.
Similarly, the sensors C-meter 2 and C-meter 3 report on the value of outlet concentration.

Table 15.3. CSTR model parameters (Karjala and Himmelblau (1994)).

Parameter Value Units
flow rate (g) 10.0 cm’ 57!
volume (V) 1, 000.0 cm’
heat of reaction (A H,) —27,000.0 cal - mol !
density (p) 0.001 g-cm—>
specific heat (C,) 1.0 cal(g - K)~!
heat transfer coefficient (U) 50x 1074 cal(cm? - s-K) !
heat transfer area (A, ) 10.0 cm?
coolant temperature (7,) 340.0 K
arrhenius constant (ko) 7.86 x 1012 s !
activation energy (E,;) 14, 090.0 K
reference concentration (C,) | 1.0 x 1079 mol - cm™3
reference temperature (7,) 100.0 K

dT’ AH, —E,\ UA, _,

=L -1)- koC'C, exp( : ) - (T =T)=0, (154)
dr Vv oC,T, T'T,) ~ pC,V
dc’ g , —E,
— = =—(Cy — — koC’ =0. 15.5
i (Cy = C) —koCexp (T/Tr (15.5)

Using (15.4) and (15.5), C’ and T’ may be treated as variables dependent on the values of
Cy and T;j. As shown in Figure 15.5, the central structure of the BBN representing the CSTR
contains these four process-variable nodes, with the independent variables being the parents
of the dependent variables. For the requirements of stability, the random perturbations in
the input variables are restricted to be within +3% of the steady-state values. Fractional
deviation about the steady state for each variable is discretized into five equal slots: very
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Figure 15.5. Discretized Bavesian network for the CSTR. Corresponding to the
schematic diagram of the CSTR in Figure 15.4, four process-variable nodes (C, T, Cy, Ty)
are involved. Each process variable is linked to sensor-reading nodes corresponding to the
sensors measuring that variable (Figure 15.4). Sensor-status nodes represent the status of
these sensors.

low (VL), low (L), medium (M), high (H), and very high (VH). This discretization enables
the approximation of the steady-state correlation as conditional probability tables for the
dependent variables. These values are provided as Tables 15.4(a) and (b).

Each of the process-variable nodes is linked, as a parent, to a number of sensor-reading
nodes equal to the number of sensors measuring that variable. Each sensor-reading node in
turn will have its own sensor-status node as the other parent. Specifications about a priori fault
probability are available for each sensor, enabling the definition of the conditional dependence
of the corresponding sensor-status node. A uniform distribution for a priori probabilities for
all process-variable nodes is assumed. Readings of faulty sensors are assumed to be uniformly
distributed random values. They are thus completely independent of the process variable
under measurement. Table 15.5 shows three simulated instances of steady-state data, each
involving a sensor fault.

Eachentry inTable 15.5 contains simulated sensor readings for a steady state. These are
provided as input to the network via instantiations of the corresponding sensor-reading nodes.
The BBN responds to this evidence by updating the probabilities of all the uninstantiated
nodes, i.e., the process-variable and sensor-status nodes. Figures 15.6, 15.7. and 15.8 show
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Table 15.4. Conditional probability tables for the discrete CSTR BBN as shown in
Figure 15.5. (a) Representation of conditional probability table for node T (outlet tempera-
ture). This table shows various values taken by T corresponding to different combinations
of the values of the parent nodes. For example, when Co = M and Ty = H, T = H with
a probability of 1.0. (b) Representation of conditional probability table for node C (outlet
concentration). Similar to part (), this table shows various values taken by C corresponding
to different combinations of the values of the parent nodes.

(a)

Co v

T VL L M H VH
VL VL VL L L L

L L L L M M
M L M M H H

H M H H H VH
VH H H VH VH VH

(b)

Co

To VL L M H VH
VL VH H H M M

L H M M L L

M M L L VL VL

H L VL { VL | VL VL
VH VL | VL { VL | VL VL

Table 15.5. Simulated steady-state data and sensor readings for the CSTR example.
Three sets of data are presented in this table. Values of the independent variables (i.e.,
Ty and Cy) are generated randomly. Values of variables T and C are then calculated.
Sensor readings are then generated for each variable. These sensor readings are used to
instantiate the BBN in Figure 15.5. Each experiment involves one faulty sensor. The rest of
the sensors are assumed to be working in the normal mode. For example, T -meter | reading

in experiment 1 shows a faulty reading H (high). Its response in the normal mode would
have been L (low), which is the actual value of Cy.

Experiment Ty Co T C
number |Actual | T-meter 1|Actual | C-meter 1|Actual | 7-meter 2| 7-meter 3 | Actual | C-meter 2| C-meter 3
value | reading | value | reading | value | reading | reading | value | reading | reading

1 L H M M L L L M M M
2 H H L L H H H VL H VL
3 VH VH VL H VH VH VH VL VL VL

the results corresponding to the input from Table 15.5. Each figure shows the updated
probability distributions and the actual values of these nodes. As can be seen, the network
is capable of correctly inferring the status of each sensor and the actual value of the process
variable. Thus the network can model a system with hardware and analytical redundancies
together. Sensor faults are correctly detected and isolated. Therefore, in a discrete, steady-
state domain, the network is capable of fault detection, isolation, and accommodation with
a single, unified scheme.
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(b) Updated beliefs of sensor-status nodes.

Figure 15.6. Results corresponding to experiment 1 in Table 15.5. Sensor T -meter |
reports a faulty reading H corresponding to the actual value L of the inlet temperature. This
fault is detected as seen from the high probability of its status being faulty (part (b)). This
implies a successful fault detection and isolation. The updated beliefs of process variable
nodes show that updated beliefs corresponding to actual values of the variables are high
(part (a)). Thus correct inference about all process variables, including inlet temperature,
is drawn. This is a result of multisensor fusion and fault accommodation.

15.3 Fuzzy logic

In terms of the crisp set theory, a point either is or is not a member of a set. This enforces hard
boundaries on the definitions of sets and their membership functions. Fuzzy or multiple-
valued logic on the other hand allows infinite possible truth-values between the interval 0
to 1. Any proposition thus can be partly true and partly false. Sets defined in terms of this
concept are termed “fuzzy sets.” Data thus can have different degrees of memberships of
these sets.

Consider a fuzzy set defined over a domain consisting of data points. Each data point
can be said to be a member of the fuzzy set with the degree of membership ranging from
0 (no membership) to | (full membership). A fuzzy set thus can be said to be a collection
of elements in a universe of information where the boundary of the set is ambiguous or
imprecise. When the data points are real-valued, this relationship between the point and its
membership in the fuzzy set can be defined in terms of a function. Such a function is called
a “membership function,”
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Figure 15.7. Results corresponding to experiment 2 in Table 15.5. A fault in
C-meter 2 causes it to report an erroneous value of H, whereas the actual value of out-
let concentration is VL. The fault is correctly detected, isolated, and accommodated, as
can be seen from the high updated probability of C-meter 2 being faulty (part (b)). Also,
probabilities corresponding to actual values of the process variables are high (part (a)).

15.3.1 Using fuzzy logic for fault detection

The fuzzy logic—based hardware redundancy SFDIA scheme (Holbert, Heger, and Ishaque
(1995), Heger, Holbert, and Ishaque (1996)) uses two or three redundant sensors. The
deviation (i.e., the residual) between each sensor pairing is computed and classified into
three fuzzy sets. A fuzzy rule base, which is created allowing human perception of the
situation to be represented mathematically, is made to operate on these fuzzy input variables.
Finally, a defuzzification scheme is used to find the centroid location and hence the sensor
status. The potential for error is reduced with the fuzzy logic approach of sensor validation
by introducing an intermediate state of “suspect” between the failed and the valid status.
The approach due to Park and Lee (1993) applies fuzzy logic to instrument fault
detection by dividing the process into three different stages—multisensor fusion process,
temporal fusion process, and diagnostic fusion process—using the uncertainty reductive
fusion technique (URFT). It uses redundant hardware and does not use analytical redun-
dancy. Each sensor reading is represented as a fuzzy number with a mean value and a
triangular spread with uncertainty values. The multisensor fusion process consists of fusion
of mean values and fusion of uncertainty levels. The temporal fusion process is used for time
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Figure 15.8. Results corresponding to experiment 3 in Table 15.5. C-meter 1
reports a value of VL when the actual value of inlet concentration is H. This fault is correctly
detected and isolated, as seen from the high probability of C-meter 1 being in its faulty mode
of operation (part (b)). Due to a higher number of possible combinations, the network was
unable to accurately accommodate the fault as seen by the distribution of Cy (part (a)). This
implies unsuccessful fault accommodation. This is caused by a large number of possible
hypotheses to explain the observed sensor readings.

consistency with the prior information stored in the system database. Temporal fusion detects
the change in the state of the system, whereas the multisensor fusion combines the readings
from the redundant hardware. The diagnostic fusion stage uses the information about the
nominal state of the system, which is the last known state without a fault. A multiplexer is
used to choose between the output of the temporal fusion process and the diagnostic fusion
process. This reduces the possibility of propagation of the fault in the system. The data flow
is designed to be sensitive to sensor faults with a minimum number of false alarms.

The use of fuzzy logic for (a) adaptive thresholding for residual evaluation and (b)
isolation of a faulty sensor is proposed by Sauter et al. (1994). This work uses the quantitative
approach of a Kalman filter for residual generation. Residuals may be nonzero even under
tault-free conditions due to measurement noise and model uncertainties, and hence decisions
are based on the difference between a residual and a certain threshold residual. Adaptive
threshold selection chooses a threshold based on the distance of the current state of the system
trom the nominal condition. Fuzzy logic is used for this purpose. Fuzzy rules and a statistical
dedicated observer scheme are combined for fault isolation as well. Calculated residuals are
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separated into clusters using the fuzzy c-means clustering algorithm. The allocation of a
new data point to one of these clusters leads to fault isolation.

In this section we present a possible approach to SFDIA that is mainly based on fuzzy
processing of deviations from model predictions. It makes use of a mathematical predictive
model (i.e., an observer) for the system. The model uses the sensor readings at the current
time step to predict system state at the next time step. In case of a sensor fault, the deviation
between the sensor reading and the model prediction rises, leading to fault detection and
isolation. The fault is accommodated by replacing the reading of the faulty sensor by the
model prediction.

15.3.1.1 Fuzzy flow control

Consider a simple example frequently found in control engineering literature. A system
consists of a reactor vessel with an intake with dimensionless volumetric flow rate ¢; and a
dimensionless drainage ¢, through an orifice at the bottom of the tank. The equation used
for simulation is

dh

< =V —§d,, whereg, = vh and h(k=0)=0.5. (15.6)
Parameter £ is the dimensionless height of liquid level, and vy, £ are constants equal to 0.1.
The input disturbance g; is simulated as random step changes. The values of 4 and ¢, can be
found by numerically integrating the system, given the initial condition. Random Gaussian
noise with zero mean was added to each variable to obtain simulated sensor readings ¢; (k),
hy(k), and g, (k).

In this application, the inlet flow rate is the dependent variable and can be used to
control the level of the tank. A simple heuristic may be to increase the inflow if the level is
dropping below the desired value and decrease it if the level is too high. Two simple fuzzy
rules encompass this control algorithm:

1. TF the level is high and the rate of change of level is positive, THEN change the inflow
to low.

2. IF the level is low and the rate of change of level is negative, THEN change the inflow
to high.

15.3.1.2 Flow of data
The steps for fuzzy logic-based SFDIA can be outlined as given below and in Figure 15.9.

1. Actual values of level and outlet flow-rate at time k + 1 (i.e., h(k + 1) and g,(k + 1))
are simulated using h(k), q,(k), and g; (k).

2. Random Gaussian noise is added to obtain simulated normal or faulty sensor readings
hs(k + 1) and g,,_(k + 1).

3. In parallel to step 2, two independent observers (observers 1 and 2 in Figure 15.9)
are used to calculate estimates l;(k + 1) and §,(k + 1) in terms of hy(k), g, (k),
qi (k), hSTPA (k), and gSFP™A (k). The values ASFPMA (k) and ¢5FP!A (k) are the estimates
provided by the fuzzy SFDIA scheme at the previous time step.
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Figure 15.9. Schematic diagram of fuzzy SFDIA and control for the draining tank.

4. Inthe decision-making unit (DMU), the deviations 8; (k 4+ 1) between the actual sensor
reading and observer prediction are calculated as a crisp number. Each §; (k+1) is then
mapped by the fuzzy rule builder (FRB) onto three fuzzy membership functions: small,
medjum, and large. It is then subjected to fuzzy rules that evaluate the sensor status
(o0;) in terms of three fuzzy sets: valid, suspect, and failed (Figures 15.10 and 15.11).
The status is then subjected to defuzzification. Thus we have a crisp number for o;,
which ranges from 0 to 1. This value is then compared to a threshold, and a fault is
declared to be present if o; is greater than the threshold. Appropriate values (sensor
reading or observer estimate) are assigned to 25" (k + 1) and g™ (k + 1). For
example, when a fault in the level sensor is detected, A5T2'A = /. In the absence of
level sensor fault, #5PPIA = .

5. The output estimates by the DMU, A5 (k + 1), and ¢>P'A (k + 1) are used by the
controller for providing the control action ¢; (k + 1). Step 1 is then repeated.
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Figure 15.10. Universe of discourse for deviation. The deviation is fuzzified (i.e.,
converted from crisp number to a fuzzy number) into three fuzzy sets: small, medium,
and large. The membership functions of these three fuzzy sets have been defined in the
above chart.
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Figure 15.11. Universe of discourse for sensor status. The fuzzy rule base deter-
mines the status of a sensor as three fuzzy sets: valid, suspect, and failed. The membership
Jfunctions of these sets are defined above. These membership functions are used to defuzzify
the sensor status, i.e., to convert from a fuzzy value to a crisp number.

15.3.1.3 Simulation results

To simulate the dynamic control system, the fuzzy rule base for SFDIA was constructed
in FuLDeK® (Bell Helicopter Textron (1995)) using the membership functions and rules
described above. It was then converted to C using the FuLDeK FULCODE-C utility. Thus
the simulator, controller, and FRB could communicate with one another. Initially, a precision
degradation fault is introduced in the sensor measuring the liquid level. This is reflected in
the sensor error plotted in Figure 15.12(a). As aresult, the calculated deviation (i.e., residual)
also increases as shown in Figure 15.12(b). The FRB for SFDIA detects this increase, which
isreflected as the stepping up of a “’sensor fault detection flag’’ used internally by the program.
A value of 0 for this flag is intended to represent the absence of any detected faults, and a
value of 1 represents the detection of a fault. As can be seen from Figure 15.12(a), the change
in the fault detection flag corresponds to the occurrence of the fault in the sensor.

This method has several limitations. The most important is that the observers must
assume a mathematical model and, at any given step, the sensor readings at the previous
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Figure 15.12. Fuzzy logic—based SFDIA scheme. The graph with solid lines (left
ordinate) in (a) depicts the simulated sensor fault by a large increase in the magnitude of
its error between time steps 206 and 306. The deviation between predicted and observed
sensor readings is calculated and provided as an input to the FRB (b). As can be seen,
these deviations increase during the period of sensor fault. The output of the FRB is used to
raise a flag for sensor fault detection. The value of 1 of this flag means a detected sensor
fault, while a value of 0 means the absence of a detected fault. The value of this flag is
plotted on the right ordinate of part (a). It can be seen that the flag remains O throughout
the normal operation period and is raised to the maximum value more often during faulty
sensor operation. 1t shows that both the onset and removal of the sensor fault is promptly
detected.

time step are used as its input. Since these readings are noisy, the observer estimate itself
could be further away from the actual value. The system is nonlearning: it does not try to
improve upon the model. There is no attempt at data reconciliation and the system, at best,
can mimic normal sensor readings.

15.3.1.4 Neurofuzzy SFDIA

A combination of an internally recurrent neural network (IRNN) and fuzzy logic for SFDIA
can reduce the limitations that were discussed in the previous section. For this combined
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approach, the overall structure and data flow remains the same as those in section 15.3.1.2,
except that the IRNN is used as an observer for residual generation. The IRNN has an input
layer, an output layer, and a hidden layer with full interconnections onto itself but with a unit
delay. This type of simple recurrence can be expressed in terms of a regular feed-forward
network with a set of “context nodes” as shown in Figure 15.13. The advantage of this
recurrent structure for dynamic modeling is due to its implicit representation of time via
these context nodes. For predictive purposes, the use of any moving window of input is no
longer necessary. Thus the network size is trimmed and hence the training period. Similar to
the fuzzy scheme, the fuzzy DMU then evaluates the residuals. This arrangement combines
the respective strengths of both the approaches and hence is more effective.

ol 02 03

H1 H2 H3

11 2 3 11 n I3

Figure 15.13. Schematic diagram of an IRNN. The nodes 11, 12, and I3 represent
input nodes; nodes H1, H2, and H3 are hidden layer nodes; and nodes O1, 02, and O3
are output nodes. Nodes C1, C2, and C3 are “context layer” nodes, which store the outputs
of the hidden, layer nodes at the previous time step.

The IRNN is an n-input, n-output predictive network. For a process with n variables,
the input vector to the IRNN consists of the readings of the corresponding # sensors. In
other words, the IRNN does not need redundant sensors. The network can be trained using
standard backpropagation with the sensor readings at the next time step as the desired output,
thus learning to predict its own input at the next time step. Let & be the time step index such
that 1 = kAt¢, where ¢ is time and At is the duration of a unit time step. Let X (k) be
an n-dimensional vector representing the values of the n process variables at time step &,
{x1(k), x2(k), ..., x;(k), ..., x,(k)}. Let the measurement vector X s (k) be comprised of the
corresponding sensor readings {x; (k), xo,(k), ..., x;, (k), ..., x, (k)}. At time step &, the
IRNN takes the previous measurement vector X (k — 1) as its input and provides an estimate

of X (k) as its output vector, X rNN (k). Ttis, however, incapable of totally eliminating bias in
the sensor reading. Since the output of IRNN is dependent on the readings of all sensors, its
accuracy is affected by faults in any of these. Hence, although it is a good data reconciliation
tool, a single IRNN cannot be used as a fully functional SFDIA tool.
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Figure 15.14 shows the relative performance of these three cases—ideal, in presence
of faults without SFDIA, and with the neurofuzzy SFDIA in conjunction with a fuzzy control
algorithm. The draining tank system is simulated first without any sensor noise and later
with a sensor failure of the precision degradation type introduced at time step 200, followed
by a bias introduced at time step 700. The objective of the fuzzy controller is to maintain the
fluid level in the tank at 0.5 using the inlet flow rate as the manipulated variable. In the ideal
case, the fuzzy control works very well as it succeeds in maintaining the desired tank fluid
level. On introduction of sensor failures, however, the controller performs poorly, as the
input sensor readings used for control decision-making are not accurate due to sensor faults.
On the other hand, both bias and precision degradation types of sensor faults are promptly
detected and successfully accommodated using our neurofuzzy scheme. As a result, the
controller can maintain the level closer to the desired level of 0.5.
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Figure 15.14. Fuzzy control with neurofuzzy SFDIA scheme. This figure shows that
the neurofuzzy SFDIA scheme assists the controller to maintain the liquid level close to the
desired value of 0.5.

15.4 Summary

Each of the methods discussed in this chapter has its own advantages and disadvantages. In
general, it is desirable to combine the mathematical soundness and robustness of quantitative
model-based methods with the knowledge encoding, reasoning, and learning capabilities of
the qualitative, Al-based methods. Some researchers have achieved this task by providing
an outer qualitative shell over a quantitative residual generation scheme. On the other hand,
Bayesian networks have the unique capability of representation of quantitative as well as
qualitative information in a single network structure and inference scheme via a mechanism
which is both mathematically sound and close to intuitive human reasoning. Hence Bayesian
networks form an effective powerful framework for a fault diagnosis.

The results presented in this work demonstrate a simple scheme that can carry out sen-
sor fault detection, isolation, and accommodation (SFDIA) using Bayesian belief networks
(BBNs) over a discrete problem domain. It inherently integrates both analytical and hard-
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ware redundancy approaches for instrument fault diagnosis into an elegant unified scheme.
Process systems are dynamic environments: new sensors are frequently added and removed.
Unforeseen uncertainties may need to be represented such as weather conditions or changes
in demands on the system. The BBN mechanism can be incrementally updated in light of
these possibilities. New process-variable and sensor-reading nodes can be added, or existing
nodes can be modified or removed.

On the other hand, fuzzy rule-based systems provide a means of encoding the ex-
perience of an operator into heuristics. The fuzzy logic-based approach presented in this
chapter is both simple and efficient. The method, however, lacks the mathematical basis
that BBNs provide. Based on the needs of a given SFDIA application domain, one of the
two approaches can be selected and implemented. Making use of internally recursive neural
networks (IRNNs), the system can learn a dynamic model of the process and thus improves
on the basic fuzzy logic-based SFDIA framework.

Sensor fault detection is often considered the single most important task that plant
operators would like automated. A missed sensor fault can cause severe damage to the
process equipment and is a hazard from the point of view of human safety. On the other
hand, afalse alarm can prove costly due to the plant downtime and involved human labor. The
schemes discussed in this chapter apply the principles of machine learning for this important
problem and help alleviate the information load on the human operator.
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eliciting, 1, 23, 67, 68, 105, 107-
121, 247-249, 260

knowledge, 67
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motivating participation, 117
multiple experts, 109
qualitative, 106
quantitative, 106
review and refinement, 119
selecting the experts, 117
system, 85, 111, 113, 128, 139
testimony, 62
worksheet, 248

subjective, 107, 201

kernel, 215
K L (Kullback-Leibler) information, 67
knowledge, 68

acquisition, xxi, 105

deeper, 43

expert, 67

interpretation of, 68

management, Xxi

priot, 368

shallow, 43

subjective, 13
Kullback-Leibler information, 67

Laplace, 57, 74
domain, 148
genie, 97
transform, 148, 149
lattice, 92
law
DeMorgan’s, 33, 38
of contradiction, 16
of inverse probability, 75
of the excluded-middle, 9, 15, 16, 19,
33,93
of total probability, 74, 75
least squares method, 197
likelihood, 68, 77, 98, 249, 250, 258
function, 12, 21, 77, 85, 95
maximum, 79
principle, 65, 78
values, 17
limit
central, 217
theorem, 217
confidence, 347
control, 292, 296, 309
lower, 266, 268, 273, 274, 286,
296, 308, 313

upper, 266, 268-270, 274, 296,
308, 313, 314
natural process, 267, 271, 296
three-sigma, 267
tolerance, 267, 269, 271, 274, 296
linear combination, 360-363
linguistic
imprecision, 13
rule, 39, 344
variable, 113, 115, 119
link between probability theory and fuzzy
set theory, 85
load-bearing capability, 326
loading mechanisms, 194
log-normal distribution, 197
logic
binary, 90
bivalent, xv
Boolean, 91, 325
classical, 41, 325
predicate, 36
crisp, 37
fault tree, 325-345
fuzzy, 17, 41, 91, 94, 138, 219, 259,
325, 341, 365-390
choice between probability and, 253
controller, 145
/probability hybrid, 253-256, 260
proposition, 41
used to solve problems, xxi
infinite-valued, 94
Lukasiewicz, 325
methodology, 328
general, 328-331
model, 246
n-valued, 91
probability
standard, 91
three-valued, 90
two-valued, 41
uncertainty
basic, 91
general, 15
logical
connectives, 36
equivalence, 41
inference, 40
or, 36
theory, 57
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of probability, 57

union, 15
Los Alamos National Laboratory, xxiii
lower control limit, 266, 268, 273, 274,

286, 296, 308, 313

Lukasiewicz

implication, 335

logic, 325

1 (mean), 65, 83, 196
machine

intelligence, 43

tool, 349
Mamdani implication, 45, 335
manufacturing defects, 247
marginal distribution, 65
max—min, see also min—max

composition, fuzzy, 35

inference method, 45
maximal element, 92
maximum

entropy, 228

likelihood, 79
mean, 65, 83, 196
measured variable, 265
measurement, 18, 68

data, 288-294

error, 199

numerical, 68

qualitative, 68
membership, 30, 42

binary, 30

degrees of, 31

function, 12, 42, 45, 80, 85, 94, 95,

101, 117, 211, 243, 254, 257,

327,333,341
-theoretic, 35
set, 29
values, 31
methodology
fuzzy, 362
general logic, 328-331
probabilistic, 362

MF (membership function), 12, 42, 45,
80, 85, 94, 95, 101, 117, 211,
243,254, 257, 327, 333, 341

-theoretic, 35

MIMO (multi-input-multi-output), 167-

174

block flow diagram, 172
control, 167-174
problem, 174-187
min-max, see also max—min, 168, 185,
281, 303
centroid, 300
defuzzification, 186
method, 348
rule, 169, 170, 281, 303, 352
minimal element, 92
MISO (multi-input (binary)—single-output),
167, 170
controller, 167
mixture, 360-362
modal
data, 199
parameter, 198
vector, 199
vibration, 198
modeling
error, 198
finite element, 201
uncertainty, 201, 208
modes of failure, 194, 203
monotonicity, 31
Monte Carlo simulation, 197, 361
motivating expert participation, 117

multi-input (binary)-single-output, 167, 170

controller, 167
multi-input-multi-output, 167-174
block flow diagram, 172
problem, 174-187
multimodality, 363
multinomial, 296, 314, 322
attribute, 296, 312
data, 312-322
x? technique, 322
chart
p-, 298
multiple experts’ judgments, 109
multiplication, 15
multisensor fusion process, 382
multistory frame structure, 193
mutual exclusivity, 15, 19, 37, 55, 75, 84,
102

n-valued logic, 91
native prior distribution, 250
natural
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language, 13, 36, 254

process limit, 267, 271, 296

negation, 36, 37, 42
networks
Bayesian, 83
belief, 24, 125, 365-390
neural, 226-228
artificial, 22, 52
internally recurrent, 387
probabilistic, 367
neural networks, 226228
artificial, 22, 52
internally recurrent, 387
neurofuzzy, 387-389
nl-generalization, xvi
noise, 199
noninformative prior, 80
nonlinear
process, 46
relation, 47
fuzzy, 47
nonrandom uncertainty, 13
nonspecific evidence, 101
nonstationary process, 19
norm, 328
fuzzy, 20
-, 230-231, 325,333
Frank’s, 20, 230
triangular, 99, 326, 330
normal, 65
distribution, 82, 255, 258
normality, 31
normalization, 14
np-chart, 294
null
hypothesis, 200
set, 32

objective probability, 60
observation, 68
one-of-a-kind, 62
onotonicity, 334
optimization

fuzzy set, 21

probabilistic, 21
or

exclusive, 36

inclusive, 36, 37

logical, 36

organized debates, 6
overshoot, 150, 179

p
-chart, 294, 296-299, 304, 308, 311,

313-316, 318, 319, 322
binomial, 313
fuzzy, 307-309, 312, 313
generalized, 316-318
multinomial, 298
-values, 312
fuzzy, 308
paradox, 11, 41
complementation, 16
sorites, xvii, 41
partial
failure, 326
truth, xv, 43
passive system, 328, 341, 343-344
pattern recognition process, 46
PD (proportional-derivative), 150
controller, 150
PDF (probability density function), 12, 64,
78. 85, 197, 212, 347
Weibull, 246
PDF (probability distribution function), 64—
67, 244
conditional, 66
continuous, 64
cumulative, 64, 68, 204, 212, 347
perceptions, xvi, 18, 21
performance, 107, 108, 243
degradation, 354-356, 358-362
-level set, 255
personal probability, 73
personalistic theory, 57, 60
phases and steps for eliciting expert judg-
ment, 108-121
PI (proportional-integral), 173
controller, 173, 174, 178-180, 186,
189, 190
PID (proportional-integral-derivative), 145
control, 163, 173
controller, 145, 148, 149, 151, 152,
156, 160-167, 170, 179, 188,
190
fuzzy, 152
pilot test, 109, 116, 118, 121
plastic deformation, 211
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plausibility, 101
polemics, 7, 10
possibilistic histogram, 101
possibility, 9, 217
distribution, 8, 102
measure, 100, 101
proper, 100
theory, 4, 21
posterior
distribution, 77, 249
uncertainty in, 77
probability, 17, 199, 200
potable liquids, 13
power set, 33, 98, 99
PRA (probabilistic risk assessment), 253,
325,348
precision, 13, 18, 22
PREDICT, 107, 244, 259
principle
of indifference, 58, 60
of likelihood, 65
of uncertainty, 60
prior, 73, 249
conjugate, 81, 82, 251
induced, 250
information, 73
updating, 73
knowledge, 368
native, 250
noninformative, 80
probabilities, 17, 21
probability, 97
distribution, 77
representing the uncertainty, 79
probabilistic
control, 12, 152-156, 160, 162, 174—
178, 263
controller, 145, 152, 155, 157, 160—
162, 165, 167, 169, 170, 173-
175, 179, 181-186, 188
density function, 20
disturbance rejection, 189
information, 194
methodology, 362
networks, 367
optimization, 21
risk assessment, 253, 325, 348
safety assessment, 348
probability, 4, 11, 14, 127, 337

aggregation of, 330
calculus of, 55, 98
choice between fuzzy logic and, 253
choosing an interpretation of, 61
conditional, 18, 56, 73, 75, 95
controller, 347
definition of, 59
density function, 12, 64, 78, 85, 197,
212, 347
Weibull, 246
distribution, 100
joint, 84
prior, 77
distribution function, 64—67, 244
conditional, 66
continuous, 64
cumulative, 64, 68, 204, 212
failure, 338
conditional, 198
unconditional, 198
/fuzzy logic hybrid, 253-256, 260
initial, 56, 57
source of, 59
interpreting, 56
by frequentists, 79
inverse, 75
law of, 75
logic
standard, 91
measure, 96, 99, 101
objective, 60
of a simple unique event, 61
of an event, 55, 76
personal, 73
posterior, 17, 199, 200
prior, 17,21, 97
response, 119
subjective, 4, 73, 76, 97, 107
theory, 1, 4,9, 17, 21
a priori, 57, 58
additivity axiom of, 17
axioms of, 73
Bayesian, 1
classical, 57
conditional, 4
link with fuzzy set theory, 85
logical, 57
three rules of, 55
total, 74, 75
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law of, 74, 75
updating, 77
problem-solving process, 106
process
control
engineering, 23, 125, 145-191
fuzzy, 263
statistical, 23, 125, 263-323
decision-making, 46
engineer, 114
fusion
diagnostic, 382
multisensor, 382
temporal, 382
limit, 267
natural, 267, 271, 296
nonlinear, 46
nonstationary, 19
pattern recognition, 46
problem-solving, 106
propagation
back, 250
of uncertainties, 249
properly possible, 100
proportional. 150
control, 148
controller, 173
SISO, 173
-derivative, 150
controller, 150
-integral, 173
controller, 173, 174, 178—180, 186,
189, 190
-integral-derivative, 145
control, 163, 173
controller, 145, 148, 149, 151, 152,
156, 160-167, 170, 179, 188,
190
-only, 172
proposition, 36
compound, 37, 39
fuzzy, 42, 43
logic, 41
simple, 36
propositional calculus, 37
classical, 43
pulse-height distribution, 107, 111, 113

qualitative information, 68, 106

quantitative information, 68, 106

R (range), 265, 270, 273
chart, 265, 266, 269, 272, 274, 276,
283, 285-287, 289, 290, 292,
293, 296
fuzzy, 284-288
regression, 291-293
radioisotope, 107
random, 326
error, 269
interval, 101
consistent, 101
uncertainty, 204
variable, 29, 63
continuous, 64
discrete, 64
randomness, 31, 196
range, 265, 270, 273, 274
average, 268
chart, 265, 266, 269, 272, 274, 276,
283, 285-287, 289, 290, 292,
293, 296
fuzzy, 284-288, 290, 292, 293
regression, 291-293
redundancy
analytical, 366
functional, 366
hardware, 366
redundant
member, 326
truss, 338
regression, 288-294
chart
R,291-293
range, 291-293
X bar, 291-293
equation, 289
relation
causal, 330
dependence, 327
fuzzy, 34-36, 42
nonlinear, 47
nonlinear, 47
fuzzy, 47
similarity, 341, 345
relational matrix, 342
relative frequency, 10, 59
theory. 4, 57. 58
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definition of probability, 59
key ideas, 58
source of initial probabilities, 59
virtues and criticisms of, 59
reliability, 23, 55, 82, 85, 107, 111, 125,
243, 347
aircraft, 219-242
analysis, 348
block diagram, 112, 244, 249
characterization, 119, 244, 250
engineering, 82
growth, 249
/risk analysis, xxi
seismic, 197
representation of the phenomena, 112
response
function, 194
structural, 198
surface method, 197
Reverend Thomas Bayes, 73
review and refinement, 119
risk
assessment, 253
probabilistic, 253, 325, 348
/reliability analysis, xxi
rule, 343-345
Bayes’, 10, 12, 13
fuzzy, 43, 231-235
aggregation of, 43
eliciting, 119
IF-THEN, 40, 68, 106, 254, 255,
257
-based, 43
linguistic, 39, 344
min-max, 169, 170, 185, 281, 303,
352
scoring, 56
system of
conjunctive, 44
disjunctive, 44
three rules of probability, 55

safety, 194, 203, 325
analysis, 125
structural, 23, 193-218
assessment, 348
probabilistic, 348
scaling, 216
scoring rules, 56

seismic
damage, 197
detection, 197
reliability, 197
selecting the experts, 117
sensor fault detection, isolation, and ac-
commodation, 365
set
classical, 16, 30
component-condition, 255
control-action, 254
crisp, 15, 30
falsity, 36
fuzzy, 15, 29-31, 328
optimization, 21
theory, 4, 9, 18, 217
membership, 29
null, 32
performance-level, 255
power, 33, 98, 99
-theoretic, 31, 32, 38, 39
theory, 55
binary, 5
crisp, 55
fuzzy, 4,9, 18, 217
truth, 36, 38
whole, 32
setpoint tracking, 145, 161, 174, 175, 1717,
179-181, 184-186
SFDIA (sensor fault detection, isolation,
and accommodation), 365
shallow knowledge, 43
sigma
-additive, 19
-field, 19
three-, 267
signal validation, 365-390
similarity, 344
relation, 341, 345
simple proposition, 36
simulated annealing, 222
simulation, 49
single-input-single-output, 148, 156, 173
control, 148, 156-167
controller, 173
proportional, 173
problem, 169
singleton, 16, 331, 345
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SISO (single-input-single-output), 148, 156, substructure, 200
173 supersethood, 9
control, 148, 156-167 syllogisms, 41
controller, 173 symmetry, 31
proportional, 173 system
problem, 169 active, 328, 342, 344
small-scale damage, 213 independent, 340
soft cognitive, 52
computing, 53, 221 continuous, 340
data, 68 dependent, 340
-sensor, 163, 165-167 discrete, 340
sorites paradox, xvii, 41 expert/expert judgment, 85, 111, 113,
SPC (statistical process control), 23, 125, 128, 349
263-323 fuzzy, 139, 349
special-cause, 296 failure, 194, 330
event, 264, 267, 269-271, 273, 274 engineering, 325
spectra, 107, 111, 113 fuzzy
spills, 248 control, 254, 355
standard probability logic, 91 rule-based, 43
state variable, 172 high-consequence, 100
statistic identification problem, 46
x*, 296,314, 315,317 independent, 340
Z2,317-319 active, 340
statistical industrial control, 46
independence, 19 of rules
of events, 92 conjunctive, 44
process control, 23, 125, 263-323 disjunctive, 44
statistically independent events, 92 passive, 328, 341, 343-344
statistics, 11 reliability, 20
classical, 193 systematic uncertainty, 196, 216
stochastic behavior, 63
stress, 340 t (triangular), 326
strict implication, 94 -conorm, 230-231, 325, 326, 333
strong -norm, 230-231, 325, 326, 333
compatibility, 100 Frank’s, 20, 230
truth-functionality, 19, 94 temporal fusion process, 382
structural test planning, 245
engineering, 325 TEN (triangular fuzzy number), 304, 305,
integrity, 23 307,310
response, 198 think
safety analysis, 23, 193-218 aloud, 110, 118
subjective group, 116
judgment, 107, 201 bias, 117
knowledge, 13 three rules of probability, 55
probability, 4, 73, 76, 97, 107 three-sigma limit, 267
theory, 57, 60 three-valued logic, 90
arguments against, 61 tint, 130
subsethood theorem, 10 tolerance limit, 267, 269, 271, 274, 296

subsets, 33 tool
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cutting, 349-352
wear, 349-352
machine, 349
torsion, 194
total
probability, 74, 75
law of, 74, 75
uncertainty, 196
transfer function, 148
transform, 148
Laplace, 148, 149
triangular, 326
conorm, 326
fuzzy number, 304, 305, 307, 310
inequality, 326
norm, 99, 326, 330
truss, 326, 328, 337-338
redundant, 338
truth, 328, 337
degree of, 42
-functionality, 19, 94
strong, 19, 94
partial, xv, 43
set, 36, 38
value, 38, 92
binary, 36
two-sided bet, 76
two-valued logic, 41

u-chart, 294
uncertainty, 4, 5, 9, 11, 15, 22, 29, 89, 97
about X, 75,77
designing under, 21
distribution, 125, 249,254,255, 347-
363
eliciting, 67
estimation, 20
Heisenberg’s principle of, 60
in the posterior distribution, 77
logic
basic, 91
general, 15
modeling, 201, 208
nonrandom, 13
propagation of, 249
random, 204
range, 107
reductive fusion technique, 382
represented by the prior, 79

systematic, 196, 216
total, 196
unconditional failure probability, 198
union, 32, 35, 326, 332
logical, 15
uniqueness, 31
universe of discourse, 32, 38, 92, 99
updating, 249
Bayesian, 81, 107, 250
prior information with existing infor-
mation, 73
probability, 77
upper control limit, 266, 268-270, 274,
296, 308, 313, 314
useful life, 246

vagueness, 10, 13, 22, 29, 87, 99
variability, 5, 87
variable
controlled, 147
Gaussian, 217
linguistic, 113, 115, 119
measured, 265
random, 29, 63
continuous, 64
discrete, 64
state, 172
variance, 65, 83, 196
vector
frequency, 199
modal, 199
Venn diagrams, 32, 38, 39
extended, 34
vibration
modal, 198
test, 199

wearout, 246
Weibull, 247

probability density function, 246
weighting mechanism, 78
what if questions, 245, 250, 253, 259
whole set, 32
worksheet, 248

elicitation, 248

X bar, 265, 270, 273
chart, 265, 266, 269, 272, 273, 276,
283, 285, 287, 289, 290, 293,
296
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fuzzy, 284-288, 290
regression, 291-293
X bar—R chart, 265, 268, 269, 275, 282,
286, 290, 308, 321, 322
fuzzy, 284

ZZ
statistic, 317-319
value, 318
72,317
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