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Preface

The present manuscript is intended to be a textbook that could serve both
undergraduate and graduate students when studying Fuzzy Set Theory and
Applications. It is also intended to deepen the research into some existing
directions and to investigate some new research directions. The book tries
to develop a systematic, Mathematically-based introduction into the theory
and applications of fuzzy sets and fuzzy logic. In this way the author tries
to cover a gap in the literature. Also, the book can be an introduction into
Fuzzy Sets and Systems for researchers who are interested in the topic of
fuzzy sets in all areas of Mathematics, Computer Science and Engineering,
or simply interested Mathematicians, Engineers and students in these areas.
The book starts from the basic theory and gets the reader to a level very
close to the current research topics in Fuzzy Sets.

The basis of the book is the author’s class notes for Fuzzy Sets and Fuzzy
Logic, class taught at DigiPen Institute of Technology.

Another goal that the author had when writing the present book is try to
see where Fuzzy Sets and Fuzzy Logic as a discipline, can be connected to
other areas of Mathematics. The manuscript tries to show that Fuzzy Sets
is an independent discipline having huge overlaps on one side with Analysis
and Approximation Theory and on the other side with Logic and Set Theory.
The approach of the present work leans toward Mathematical Analysis and
Approximation.

I am really thankful to my wife Emese, who provided very strong support
for me in writing this book. Also, the author is thankful to his colleagues, es-
pecially Sorin G. Gal, L. Stefanini, L.C. Barros, I.J. Rudas and many others
for comments that improved the manuscript. The author would like to express
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his thanks to all the students who contributed with comments that improved
the manuscript, especially Kia McDowel, Matt Peterson, Chris Barrett, and
many others.

Barnabas Bede
Redmond, WA
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1

Fuzzy Sets

1.1 Classical Sets

The concept of a set is fundamental in Mathematics and intuitively can be
described as a collection of objects possibly linked through some properties.
A classical set has clear boundaries, i.e. x ∈ A or x /∈ A exclude any other
possibility.

Definition 1.1. Let X be a set and A be a subset of X (A ⊆ X). Then the
function

χA(x) =

{
1 if x ∈ A
0 if x /∈ A

is called the characteristic function of the set A in X.

Classical sets and their operations can be represented by their characteristic
functions.

Indeed, let us consider the union A ∪ B = {x ∈ X |x ∈ A or x ∈ B}. Its
characteristic function is

χA∪B(x) = max{χA(x), χB(x)}.
For the intersection A ∩ B = {x ∈ X |x ∈ A and x ∈ B} the characteristic
function is

χA∩B(x) = min{χA(x), χB(x)}.
If we consider the complement of A in X , Ā = {x ∈ X |x /∈ A} it has the
characteristic function

χĀ(x) = 1− χA(x).

B. Bede: Mathematics of Fuzzy Sets and Fuzzy Logic, STUDFUZZ 295, pp. 1–12.
DOI: 10.1007/978-3-642-35221-8_1 c© Springer-Verlag Berlin Heidelberg 2013



2 1 Fuzzy Sets

1.2 Fuzzy Sets

Fuzzy sets were introduced by L. Zadeh in [154]. The definition of a fuzzy set
given by L. Zadeh is as follows: A fuzzy set is a class with a continuum of
membership grades. So a fuzzy set A in a referential (universe of discourse)
X is characterized by a membership function A which associates with each
element x ∈ X a real number A(x) ∈ [0, 1], having the interpretation A(x) is
the membership grade of x in the fuzzy set A.

Definition 1.2. (Zadeh [154]) A fuzzy set A (fuzzy subset of X) is defined
as a mapping

A : X → [0, 1],

where A(x) is the membership degree of x to the fuzzy set A. We denote by
F(X) the collection of all fuzzy subsets of X.

Fuzzy sets are generalizations of the classical sets represented by their char-
acteristic functions χA : X → {0, 1}. In our case A(x) = 1 means full mem-
bership of x in A, while A(x) = 0 expresses non-membership, but in contrary
to the classical case other membership degrees are allowed.

We identify a fuzzy set with its membership function. Other notations that
can be used are the following μA(x) = A(x).

Every classical set is also a fuzzy set. We can define the membership func-
tion of a classical set A ⊆ X as its characteristic function

μA(x) =

{
1 if x ∈ A
0 otherwise

.

Fuzzy sets are able to model linguistic uncertainty and the following examples
show how:

Example 1.3. In this example we consider the expression “young” in the
context “a young person” in order to exemplify how linguistic expressions can
be modeled using fuzzy sets. The fuzzy set A : [0, 100]→ [0, 1],

A(x) =

⎧⎨
⎩

1 if 0 ≤ x ≤ 20
40−x
20 if 20 < x ≤ 40
0 otherwise

is illustrated in Fig. 1.1.

Example 1.4. Let us consider the fuzzy set A : R → [0, 1], A(x) = 1
1+x2 .

This fuzzy set can model the linguistic expression “real number near 0” (see
Fig. 1.2).

Example 1.5. If given a crisp parameter which is known only through an
expert’s knowledge and we know that its values are in the [0, 60] interval, the
expert’s knowledge expressed in terms of estimates small, medium, and high
can be modeled, e.g. by the fuzzy sets in Fig. 1.3.
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Fig. 1.1 Example of a fuzzy set for modeling the expression young person

Fig. 1.2 Fuzzy set that models a real number near 0

Example 1.6. Fuzzy sets can be used to express subjective perceptions in
a mathematical form. Let X = [40, 100] be the interval of temperatures for
a room. Fuzzy sets A1, A2, ..., A5 can be used to model the perceptions: cold,
cool, just right, warm, and hot (see Figure 1.4):
cold:

A1(x) =

⎧⎨
⎩

1 if 40 ≤ x < 50
60−x
10 if 50 ≤ x < 60
0 if 60 ≤ x ≤ 100
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Fig. 1.3 Expert knowledge represented by fuzzy sets

cool:

A2(x) =

⎧⎪⎪⎨
⎪⎪⎩

0 if 40 ≤ x < 50
x−50
10 if 50 ≤ x < 60

70−x
10 if 60 ≤ x < 70
0 if 70 ≤ x ≤ 100

...
hot:

A5(x) =

⎧⎨
⎩

0 if 40 ≤ x < 80
x−80
10 if 80 ≤ x < 90
1 if 90 ≤ x ≤ 100

.

Definition 1.7. Let A : X → [0, 1] be a fuzzy set. The level sets of A are
defined as the classical sets

Aα = {x ∈ X |A(x) ≥ α},

0 < α ≤ 1.

A1 = {x ∈ X |A(x) ≥ 1}

is called the core of the fuzzy set A, while

suppA = {x ∈ X |A(x) > 0}

is called the support of the fuzzy set.
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Fig. 1.4 Fuzzy sets Cold, Cool, Just Right, Warm and Hot used in a room tem-

perature control example

Example 1.8. Let us consider the cool fuzzy set as in the previous example.

A2(x) =

⎧⎪⎪⎨
⎪⎪⎩

0 if, 40 ≤ x < 50
x−50
10 if 50 ≤ x < 60

1− x−60
10 if 60 ≤ x < 70

0 if 70 ≤ x ≤ 100

.

Its core is (A2)1 = {60}, the 1
2 -level set is (A2) 1

2
= [55, 65], the α-level set is

(A2)α = [50+10α, 70−10α], 0 < α ≤ 1 and the support is suppA2 = (50, 70).

Remark 1.9. If the universe of discourse is a finite set X = {x1, x2, ..., xn}
then a fuzzy set A : X → [0, 1] can be represented formally as

A =
A(x1)

x1
+
A(x2)

x2
+ ...+

A(xn)

xn
.

Example 1.10. Let us consider the expression “good grade in Mathematics”.
This expression can be represented as a fuzzy set G : {A,B,C,D, F} → [0, 1],
G = 1

A + 0.7
B + 0.3

C + 0
D + 0

F . The core of G is G1 = {A}, the support is
suppG = {A,B,C} and the 1

2− level set is G 1
2
= {A,B}.

1.3 The Basic Connectives

Let F(X) denote the collection of fuzzy sets on a given universe of dis-
course X.



6 1 Fuzzy Sets

The basic connectives in fuzzy logic and fuzzy set theory are inclusion,
union, intersection and complementation.

In fuzzy set theory these operations are performed on the membership
functions which represent the fuzzy sets. When Zadeh [154], introduced these
connectives, he based the union and intersection connectives on the max and
min operations. Later they were generalized and studied in detail.

1.3.1 Inclusion

Let A,B ∈ F(X). We say that the fuzzy set A is included in B if

A(x) ≤ B(x), ∀x ∈ X.
We denote A ≤ B. The empty (fuzzy) set ∅ is defined as ∅(x) = 0, ∀x ∈ X,
and the total set X is X(x) = 1, ∀x ∈ X .

1.3.2 Intersection

Let A,B ∈ F(X). The intersection of A and B is the fuzzy set C with

C(x) = min{A(x), B(x)} = A(x) ∧B(x), ∀x ∈ X.
We denote C = A ∧B.

1.3.3 Union

Let A,B ∈ F(X). The union of A and B is the fuzzy set C, where

C(x) = max{A(x), B(x)} = A(x) ∨B(x), ∀x ∈ X.
We denote C = A ∨B.

1.3.4 Complementation

Let A ∈ F(X) be a fuzzy set. The complement of A is the fuzzy set B
where

B(x) = 1−A(x), ∀x ∈ X.
We denote B = Ā.

Remark 1.11. We observe that the operations between fuzzy sets are defined
point-wise in terms of operations on the [0, 1] interval. Also, let us mention
here that throughout the text we will use the following notations min{x, y} =
x∧ y, max{x, y} = x∨ y with operands x, y ∈ [0, 1] or x, y ∈ R. Also, without
the danger of a major confusion we use the notations A ∧ B and A ∨ B to
denote the intersection and union of two fuzzy sets.
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Example 1.12. If we consider the fuzzy sets

A1(x) =

⎧⎨
⎩

1 if 40 ≤ x < 50
1− x−50

10 if 50 ≤ x < 60
0 if 60 ≤ x ≤ 100

,

A2(x) =

⎧⎪⎪⎨
⎪⎪⎩

0 if 40 ≤ x < 50
x−50
10 if 50 ≤ x < 60

1− x−60
10 if 60 ≤ x < 70

0 if 70 ≤ x ≤ 100

given in Example 1.6, then their union is

A1 ∨ A2(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if 40 ≤ x < 50
1− x−50

10 if 50 ≤ x < 55
x−50
10 if 55 ≤ x ≤ 60

1− x−60
10 if 60 ≤ x ≤ 70

0 if 70 < x ≤ 100

.

The intersection can be expressed as

A1 ∧ A2(x) =

⎧⎪⎪⎨
⎪⎪⎩

0 if 40 ≤ x < 50
x−50
10 if 50 ≤ x < 55

1− x−50
10 if 55 ≤ x ≤ 60

0 if 60 < x ≤ 100

.

The complement of A1 can be written

Ā1(x) =

⎧⎨
⎩

0 if 40 ≤ x < 50
x−50
10 if 50 ≤ x < 60
1 if 60 ≤ x ≤ 100

see Figs. 1.5, 1.6, 1.7.

Example 1.13. If the universe of discourse is a discrete set X = {x1, x2,
..., xn} then the union intersection and complementation can be easily ex-
pressed. If A,B : X → [0, 1], they can be represented as

A =
A(x1)

x1
+
A(x2)

x2
+ ...+

A(xn)

xn
.

B =
B(x1)

x1
+
B(x2)

x2
+ ...+

B(xn)

xn
.

Then the union is

A ∨B =
A(x1) ∨B(x1)

x1
+
A(x2) ∨B(x2)

x2
+ ...+

A(xn) ∨B(xn)

xn
,

the intersection is

A ∧B =
A(x1) ∧B(x1)

x1
+
A(x2) ∧B(x2)

x2
+ ...+

A(xn) ∧B(xn)

xn
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Fig. 1.5 Fuzzy Intersection

Fig. 1.6 Union of two fuzzy sets

and the complement of A is

Ā =
1−A(x1)

x1
+

1−A(x2)
x2

+ ...+
1−A(xn)

xn
.

Example 1.14. Consider X = [0,∞] and the fuzzy sets A(x) = x
x+1 , B(x) =

1
x2+1 . Then we can illustrate A ∨B, A ∧B and Ā as in figs. 1.8, 1.9.
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Fig. 1.7 The complement of a fuzzy set

Fig. 1.8 Two fuzzy sets A and B

1.4 Fuzzy Logic

Proposition 1.15. (see e.g., Dubois-Prade [51]) Considering the basic con-
nectives in fuzzy set theory, the following properties hold true:
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1. Associativity

A ∧ (B ∧ C) = (A ∧B) ∧ C
A ∨ (B ∨ C) = (A ∨B) ∨ C

2. Commutativity

A ∧B = B ∧ A
A ∨B = B ∨ A

3. Identity

A ∧X = A

A ∨ ∅ = A

4. Absorption by ∅ and X
A ∧ ∅ = ∅
A ∨X = X

5. Idempotence

A ∧ A = A

A ∨ A = A

6. De Morgan Laws

A ∧B = Ā ∨ B̄
A ∨B = Ā ∧ B̄

Fig. 1.9 Basic connectives for the fuzzy sets A and B
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7. Distributivity

A ∧ (B ∨C) = (A ∧B) ∨ (A ∧ C)
A ∨ (B ∧C) = (A ∨B) ∧ (A ∨ C)

8. Involution
A = A

9. Absorption

A ∧ (A ∨B) = A

A ∨ (A ∧B) = A

Proof. The proofs of properties 1-5, 7, and 8 are left to the reader.
Let us prove the first De Morgan law in 6. Let x ∈ X . Then

A ∧B(x) = 1−min{A(x), B(x)}
= max{1−A(x), 1 −B(x)} = Ā ∨ B̄(x).

Let us also prove one of the absorption laws in 9: A∨(A∧B) = A. Let x ∈ X.
Then we have

A ∨ (A ∧B)(x) = A(x) ∨ (A(x) ∧B(x)) ≤ A(x) ∨A(x)
= A(x) ≤ A(x) ∨ (A(x) ∧B(x)).

The algebraic structure obtained in this way is called a distributive pseudo-
complemented lattice.

Let us remark that the laws of contradiction and excluded middle (“tertio
non datur”) fail. More precisely:

Proposition 1.16. If A is a non-classical fuzzy set A : X → [0, 1] (i.e.,
there exists x ∈ X with A(x) /∈ {0, 1}) then

A ∧ Ā �= ∅
A ∨ Ā �= X.

Proof. If x ∈ X is such that 0 < A(x) < 1 then 0 < Ā(x) < 1 and then
0 < A ∧ Ā(x) < 1 and 0 < A ∨ Ā(x) < 1.

So, if we allow gradual membership for fuzzy sets, then the algebraic structure
is incompatible with the Boolean algebra structure which is at the basis of
classical set theory and classical logic. As a conclusion, we need a different
theory. This theory is the theory of fuzzy sets and fuzzy logic.

1.5 Problems

1. Set up membership functions for modeling linguistic expressions about
the speed of a car on a highway: “very slow”, “slow”, “average”, “fast”,
“very fast”.
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2. Consider the fuzzy sets A,B : {1, 2, ..., 10} → [0, 1] defined as A(x) =
0
1 + 0.2

2 + 0.7
3 + 1

4 + 0.7
5 + 0.2

6 + 0
7 + 0

8 +
0
9 + 0

10 , B(x) = 0
1 + 0

2 + 0
3 + 0.3

4 +
0.5
5 + 0.8

6 + 1
7 + 0.5

8 + 0.2
9 + 0

10 , . Calculate A ∧B, A ∨B, Ā, B̄. Calculate

and compare Ā ∨ B̄ and A ∧B.

3. Consider the fuzzy sets A,B : R+ → [0, 1] defined as A(x) = 1
1+x2 ,

B(x) = 1
10x . Calculate A ∧B, A ∨B, Ā, B̄ and graph them.

4. Consider the fuzzy sets

A(x) =

⎧⎪⎪⎨
⎪⎪⎩

0 if, x < 1
x−1
6 if 1 ≤ x < 7

10−x
3 if 7 ≤ x < 10
0 if 10 ≤ x

,

B(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if, x < 2
x− 2 if 2 ≤ x < 3
1 if 3 ≤ x < 4

6−x
2 if 4 ≤ x ≤ 6
0 if 6 < x

.

Find A ∧B, A ∨B, Ā and graph them.

5. Prove the properties 1-5, 7,8 in Proposition 1.15.

6. Prove that for any fuzzy set A ∈ F(X) we have

A ∨ Ā ≥ 0.5,

while
A ∧ Ā ≤ 0.5.

7. Prove that for any fuzzy sets A,B ∈ F(X) we have

(A ∧ B̄) ∨ (Ā ∧B) ≥ 0.5 ∧ (A ∨B) ∧ (Ā ∨ B̄)

and
(A ∨ B̄) ∧ (Ā ∨B) ≤ 0.5 ∨ (Ā ∧ B̄) ∨ (A ∧B) .



2

Fuzzy Set-Theoretic Operations

2.1 Negation

As we have seen in the previous section, we can identify the operations be-
tween fuzzy sets by the corresponding operations on the unit interval, fuzzy
set operations being defined point-wise. This implies that we can study oper-
ations between fuzzy sets by the corresponding operations over the real unit
interval.

Definition 2.1. (Trillas [147], see also Fodor-Roubens [60]) A function
N : [0, 1] → [0, 1] is called a negation if N(0) = 1, N(1) = 0 and N is
non-increasing (x ≤ y ⇒ N(x) ≥ N(y)). A negation is called a strict nega-
tion if it is strictly decreasing (x < y ⇒ N(x) > N(y)) and continuous. A
strict negation is said to be a strong negation if it is also involutive, i.e.
N(N(x)) = x.

Definition 2.2. If A ∈ F(X) is a fuzzy set then the N−complement of A
is defined point-wise as N(A)(x) = N(A(x)).

Example 2.3. The standard negation is N(x) = 1− x, and it is a strong
negation.

Example 2.4. The negation Nλ(x) = 1−x
1+λx , λ > −1, is a strong negation

called the λ-complement.

Remark 2.5. An alternative notation for any negation N(x) is x̄.

In the following theorem, strong negations are characterized:

B. Bede: Mathematics of Fuzzy Sets and Fuzzy Logic, STUDFUZZ 295, pp. 13–31.
DOI: 10.1007/978-3-642-35221-8_2 c© Springer-Verlag Berlin Heidelberg 2013
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Theorem 2.6. (Trillas [147]) A function N : [0, 1] → [0, 1] is a strong
negation if and only if there exists an automorphism (continuous invertible
function ϕ : [0, 1]→ [0, 1] with continuous inverse ϕ−1) such that

N(x) = ϕ−1(1 − ϕ(x)).

Proof. “ ⇒ ” If n is a strict negation then f(x) = N(x) − x is continuous,
f(0) = 1, and f(1) = −1. In which case there exists an x∗ ∈ (0, 1) such that
f(x∗) = 0, or equivalently, N(x∗) = x∗, i.e., N has a fixed point.

Now let N1, N2 be two strict negations. Then there exist s1, s2 ∈ (0, 1)
such that N1(s1) = s1and N2(s2) = s2. Let t =

s2
s1

and ϕ, ψ : [0, 1]→ [0, 1],

ϕ(x) =

{
x
t if x ≤ s2

N−1
1

(
N2(x)

t

)
if x > s2

,

ψ(x) =

{
tx if x ≤ s1

N2

(
tN−1

1 (x)
)

if x > s1
.

We claim that N2 = ψ ◦ N1 ◦ ϕ. Indeed, if x < s2 then x
t <

s2
t = s1, and

N1(
x
t ) > N1(s1) = s1. We have

ψ ◦N1 ◦ ϕ(x) = ψ(N1(
x

t
))

= N2[t ·N−1
1 (N1(

x

t
))] = N2

(
t · x

t

)
= N2(x).

If x ≥ s2 then N2(x) ≤ N2(s2) = s2 = s1t. Then we obtain N2(s2)
t ≤ s1. We

have

ψ ◦N1 ◦ ϕ(x) = ψ

(
N1

(
N−1

1

(
N2(x)

t

)))

= ψ

(
N2(x)

t

)
= t · N2(x)

t
= N2(x).

As a conclusion we obtain ψ ◦N1 ◦ϕ = N2. Let N1 be the standard negation
N1(x) = 1− x. Then

ϕ(x) =

{ x
t if x ≤ s2

1− N2(x)
t if x > s2

,

ψ(x) =

{
tx if x ≤ 1

2
N2(t(1 − x)) if x > 1

2

and t = 2s2.
If x ≤ s2 then x

t ≤ s2
t = 1

2 , i.e., ϕ(x) ≤ 1
2 and then we have

ψ ◦ ϕ(x) = tϕ(x) = t · x
t
= x.
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If x > s2 then N2(x) < N2(s2) = s2 and we obtain 1 − N2(x)
t > 1 − s2

t = 1
2 ,

i.e., ϕ(x) > 1
2 . Taking these into account we have

ψ ◦ ϕ(x) = N2(t(1− ϕ(x)) = N2

(
t

(
N2(x)

t

))
= N2(N2(x)).

If N2 is a strong negation then N2(N2(x)) = x, i.e., ψ ◦ ϕ(x) = x and as a
conclusion ψ ◦ ϕ = 1[0,1]

Now, let us calculate ϕ ◦ ψ.
If x ≤ 1

2 then xt ≤ t
2 = s2, i.e., ψ(x) ≤ 1

2 . Then ϕ ◦ ψ(x) = ϕ(xt) = xt
t

= x.
If x > 1

2 then 1 − x < 1
2 , then t(1 − x) ≤ t

2 = s2 and N2(t(1 − x)) ≥
N2(s2) = s2. Then

ϕ ◦ ψ(x) = ϕ(N2(t(1 − x))) = 1− N2(N2(t(1− x)))
t

.

If N2 is a strong negation we get

ϕ ◦ ψ(x) = 1− t(1− x)
t

= x.

The continuity of ϕ and ψ is easy to be checked and we obtain ϕ ◦ψ = 1[0,1],
i.e., ϕ and ψ are inverses of each other (ψ = ϕ−1).

As a conclusion if N is a strong negation then there exists an automor-
phism ϕ : [0, 1]→ [0, 1], such that N(x) = ϕ−1(1 − ϕ(x)).

“⇐” Now given ϕ, an automorphism of [0, 1], we consider N(x) = ϕ−1(1−
ϕ(x)). Then N is obviously continuous. Also,

N(0) = ϕ−1(1− ϕ(0)) = ϕ−1(1) = 1

N(1) = ϕ−1(1− ϕ(1)) = ϕ−1(0) = 0,

and
N(N(x)) = ϕ−1(1− ϕ(ϕ−1(1 − ϕ(x))))

= ϕ−1(1− 1 + ϕ(x)) = ϕ−1(ϕ(x)) = x.

To show that N is strictly decreasing, we observe that ϕ is increasing, 1−ϕ is
decreasing and ϕ−1 is increasing. Then ϕ−1(1 − ϕ(x)) is strictly decreasing.
As a conclusion N is a strong negation.

Remark 2.7. N(x) = ϕ−1(1−ϕ(x)) is called the ϕ-transform of the standard
negation.

Example 2.8. A very popular parametric family of strong negations is N(x) =

(1− xα) 1
α , for any α ∈ (0,∞).
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2.2 Triangular Norms and Conorms

Triangular norms and conorms generalize the basic connectives between fuzzy
sets. They were first introduced in the theory of probabilistic metric spaces.
Later these were found to be very suitable to be used with fuzzy sets.

Definition 2.9. (Schweizer-Sklar [130]) Let T, S : [0, 1]2 → [0, 1]. Consider
the following properties:
T1 : T (x, 1) = x (identity)
S1 : S(x, 0) = x
T2 : T (x, y) = T (y, x) (commutativity)
S2 : S(x, y) = S(y, x)
T3 : T (x, T (y, z)) = T (T (x, y), z) (associativity)
S3 : S(x, S(y, z)) = S(S(x, y), z)
T4 : If x ≤ u and y ≤ v then T (x, y) ≤ T (u, v) (monotonicity)
S4 : If x ≤ u and y ≤ v then S(x, y) ≤ S(u, v)
A triangular norm (t-norm) is a function T : [0, 1]2 → [0, 1] that satisfies

T1 − T4.
A triangular conorm (t-conorm or s-norm) is a function S : [0, 1]2 →

[0, 1] that satisfies S1 − S4.

We will occasionally use the notation xTy = T (x, y), xSy = S(x, y).

Definition 2.10. Given T, S : [0, 1]2 → [0, 1] a t-norm and a t-conorm, for
fuzzy sets A,B ∈ F(X) we define operations point-wise

ATB(x) = A(x)TB(x)

ASB(x) = A(x)SB(x)

for any x ∈ X.
Proposition 2.11. Given any t-norm T and t-conorm S, we have T (x, 0)
= 0 and S(x, 1) = 1, for all x ∈ [0, 1].

Proof. From T1 we have T (0, 1) = 0. Then from T4 it follows that

T (0, x) ≤ T (0, 1) = 0, ∀x ∈ [0, 1],

i.e., T (0, x) = 0. Then from T2 we get T (x, 0) = 0.
Similarly, we have S(1, 0) = 1 so,

1 = S(1, 0) ≤ S(1, x),

and then S(1, x) = 1 = S(x, 1), ∀x ∈ [0, 1].

Proposition 2.12. We have T (x, y) ≤ x ∧ y and S(x, y) ≥ x ∨ y for any
t-norm T , t-conorm S, and any x, y ∈ [0, 1].
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Proof. We have

T (x, y) ≤ T (x, 1) = x.

Also,

T (x, y) = T (y, x) ≤ T (y, 1) = y.

As a conclusion T (x, y) ≤ x ∧ y. Similarly, S(x, y) ≥ x ∨ y.
The connection between t-norms and t-conorms is made by strong negations
as follows.

Definition 2.13. (Zadeh [154]) A triplet (S, T,N) is called a De Morgan
triplet if T is a t-norm, S is a t-conorm, N is a strong negation, and if they
fulfill De Morgan’s law

S(x, y) = N(T (N(x), N(y))).

Remark 2.14. If (S, T,N) is a De Morgan triplet then we have T (x, y) =
N(S(N(x), N(y))). Indeed,

S(N(x), N(y)) = N(T (N(N(x)), N(N(y)))) = N(T (x, y)).

Then

N(S(N(x), N(y))) = N(N(T (x, y)) = T (x, y).

In what follows we give some examples of De Morgan triplets.

Example 2.15. (Zadeh [154])The minimum and maximum

x ∧ y = min{x, y}
x ∨ y = max{x, y}

together with the standard negation N(x) = 1−x, form a De Morgan triplet.
This De Morgan triplet (often called Gödel t-norm and t-conorm) plays a
special role in fuzzy logic, and it was proposed to be used for fuzzy sets by
Zadeh in [154]. Let us also observe that ∧ is the greatest t-norm and ∨ is the
least t-conorm as it was shown in Proposition 2.12

Example 2.16. (see e.g., Fodor-Roubens [60]) The product and the proba-
bilistic sum

xTGy = x · y
xSGy = x+ y − xy

together with the standard negation N(x) = 1−x, form a De Morgan triplet.
These are called Goguen’s t-norm and t-conorm.
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Example 2.17. (Hajek [76])The Lukasiewicz t-norm and t-conorm

xTLy = (x+ y − 1) ∨ 0

xSLy = (x+ y) ∧ 1

together with the standard negation N(x) = 1− x, form a De Morgan triplet
that plays a very special role in fuzzy logic, and the algebraic structure over
the [0, 1] interval generated by these operations is called an MV algebra (MV
stands for Multivalued, see Cignoli-D’Ottaviano-Mundici, [38], Di Nola-Lettieri
[47], Hajek [76]).

Example 2.18. (see e.g., Fodor [59]) The nilpotent minimum and nilpotent
maximum with the standard negation is a De Morgan triplet:

xT0y =

{
x ∧ y if x+ y > 1

0 otherwise

xS0y =

{
x ∨ y if x+ y < 1

1 otherwise
.

These were introduced by Fodor and Perny and led to the study of similar fuzzy
operations called uninorms and absorbing norms Rudas-Pap-Fodor [128].

Example 2.19. (see e.g. Klement-Mesiar-Pap [87])The drastic product and
sum with the standard negation is a De Morgan triplet:

xTDy =

{
x ∧ y if x ∨ y = 1

0 otherwise

xSDy =

{
x ∨ y if x ∧ y = 0

1 otherwise
.

This pair is also very important, because TD is the least t-norm and SD is the
greatest t-conorm. Therefore, TD ≤ T ≤ ∧ and ∨ ≤ S ≤ SD for any t-norm
T and t-conorm S.

Example 2.20. (see e.g. Klement-Mesiar-Pap [89]) There are several para-
metric families of t-norms and t-conorms. Perhaps the most famous one is
the Frank family:

xT s
F y = logs

(
1 +

(sx − 1)(sy − 1)

s− 1

)

xSs
F y = 1− (1− x)T s

F (1 − y),

where s ∈ (0,∞) \ {1}. By definition Frank’s t-norm and t-conorm form a
De Morgan triplet with the standard negation. The importance of these lies
in the fact that they satisfy the functional equation

xT s
F y + xSs

F y = x+ y.
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2.3 Archimedean t-Norms and t-Conorms

Let T be a t-norm and S be a t-conorm. Given x ∈ [0, 1] we define

x
(n)
T = T (x, ..., x

n−times
) = T (x

(n−1)
T , x), n ≥ 2

x
(n)
S = S(x, ..., x

n−times
) = S(x

(n−1)
S , x), n ≥ 2.

Definition 2.21. (see e.g. Klement-Mesiar-Pap [90], Fodor [59]) (i) A t-
norm T (and respectively a t-conorm S) is said to be continuous if it is
continuous as a function on the unit interval.

(ii) A t-norm T and respectively a t-conorm S is said to be Archimedean
if

lim
n→∞

x
(n)
T = 0,

and respectively

lim
n→∞

x
(n)
S = 1,

for any x ∈ (0, 1).

Proposition 2.22. (i) If T is Archimedean then T (x, x) < x, ∀x ∈ (0, 1).
(ii) If S is Archimedean then S(x, x) > x, ∀x ∈ (0, 1).

Proof. (i) Suppose the contrary, i.e., that x
(2)
T = T (x, x) ≥ x for some

x ∈ (0, 1). Then we have

x
(3)
T = T (T (x, x), x) ≥ T (x, x) ≥ x

and by induction we also have

x
(n)
T = T (x, ..., x

n−times
) ≥ x.

Then limn→∞ x
(n)
T ≥ x, which is a contradiction.

(ii) The proof of (ii) is similar.

Remark 2.23. Generally an Archimedean t-norm (or t-conorm) does not
need to be continuous. If a t-norm (or t-conorm) is continuous and
Archimedean then we obtain the following characterization:

Theorem 2.24. (i) Let T be a continuous t-norm. Then T is Archimedean
if and only if

T (x, x) < x, ∀x ∈ (0, 1).

(ii) Let S be a continuous t-conorm. Then S is Archimedean if and only
if

S(x, x) > x, ∀x ∈ (0, 1).
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Proof. (i) “⇒” If T is Archimedean then the previous proposition ensures
the property T (x, x) < x, ∀x ∈ (0, 1).

“⇐” Let us suppose now that T fulfills the condition T (x, x) < x, ∀x ∈
(0, 1) and that T is continuous. Then we have

x
(n)
T = T (x, ..., x

n−times
) = T (T (x, x), x, ..., x

n−2−times
) < T ( x, ..., x

n−1−times
) = x

(n−1)
T ,

so the sequence x
(n)
T is decreasing (strictly). Also, x

(n)
T is bounded from below

by 0. So, x
(n)
T is a convergent sequence. Let y = limn→∞ x

(n)
T . Let us suppose

now that y > 0. Then

x
(2n)
T = T (x

(n)
T , x

(n)
T )

and since T is continuous we have

lim
n→∞

x
(2n)
T = lim

n→∞
T (x

(n)
T , x

(n)
T ) = T ( lim

n→∞
x
(n)
T , lim

n→∞
x
(n)
T ).

Taking into account that limn→∞ x
(2n)
T is also y, we get y = T (y, y). But

from the hypothesis, T (y, y) < y, so we get a contradiction.
(ii) The proof of (ii) is similar.

Example 2.25. The product t-norm TG(x, y) = x · y is Archimedean, while
the min t-norm TM (x, y) = x ∧ y is not Archimedean.

Definition 2.26. (Klement-Mesiar-Pap [89]) Let f : [a, b]→ [c, d] be mono-
tonic, and [a, b], [c, d] ⊂ [−∞,∞]. The pseudo-inverse of f is defined as
f (−1) : [c, d]→ [a, b],

f (−1)(y) =

⎧⎨
⎩

sup({x|f(x) < y} ∪ {a}) if f(a) < f(b)
sup({x|f(x) > y} ∪ {a}) if f(a) > f(b)

a if f(a) = f(b)
.

Example 2.27. Let f : [−1, 1] → [c, d], [1.5, 2.5] ⊂ [c, d], and f(x) = x+4
2 .

Then we have
f (−1)(y) = max{min(2y − 4, 1),−1}.

Indeed, first we observe that the image of the function f, denoted by Im(f)
is Im(f) = f [−1, 1] = [1.5, 2.5]. Then

f (−1)(y) = sup

{
x ∈ [−1, 1]|x+ 4

2
< y

}
∪ {−1}

= sup{x ∈ [−1, 1]|x < 2y − 4} ∪ {−1}.
If 2y−4 < −1 then f (−1)(y) = −1. If −1 ≤ 2y−4 ≤ 1 then f (−1)(y) = 2y−4.
If 1 < 2y − 4 then f (−1)(y) = 1.

Also we observe that

max{min(2y − 4, 1),−1} =
⎧⎨
⎩

−1 if 2y − 4 < −1
2y − 4 if −1 ≤ 2y − 4 ≤ 1

1 if 1 < 2y − 4
.
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Lemma 2.28. Let f : [0, 1] → [0,∞], f(1) = 0 be strictly decreasing and
continuous. Then

f (−1)(y) =

{
f−1(y) if y ≤ f(0)

0 otherwise
,

where f−1 denotes the inverse function for the restriction f : [0, 1]→ Im(f).

Proof. Indeed, Im(f) = [0, f(0)], and f is invertible on Im(f) having its
inverse f−1. Then if y ∈ Im(f),

f (−1)(y) = sup{x|f(x) > y} = sup{x|f(x) > f(f−1(y))}

= sup{x|x < f−1(y)} = f−1(y).

If y > f(0) then f(x) > y > f(0) ⇐⇒ x < 0. Then sup{x ∈ [0, 1]|f(x) >
y} = ∅ and then sup{x|f(x) > y} ∪ {0} = 0.

Lemma 2.29. If f : [0, 1]→ [0,∞] is decreasing then
(i) f (−1)(f(x)) = x
(ii) f(f (−1)(x)) = min{x, f(0)}.

Proof. Since f(x) ≤ f(0) we have f (−1)(f(x)) = f−1(f(x)) = x.
If x ≤ f(0) then f(f (−1)(x)) = f(f−1(x)) = x. If x > f(0) then f (−1)(x) =

0,and so f(f (−1)(x)) = f(0)

Lemma 2.30. (see Aczél [1]) The only continuous solution F : R → R of
Cauchy’s functional equation

F (x+ y) = F (x) + F (y)

is F (x) = cx, for some constant c ∈ R.

Proof. We have F (0) = 2F (0), and so F (0) = 0. Then, F (n) = nF (1). Let

F (1) = c. It is easy to prove that F ( 1n ) =
F (1)
n and then F (mn ) = m

n F (1), i.e.,
F (r) = cr, ∀r ∈ Q. Then we extend F by continuity and we get F (x) = cx,
for any x ∈ R.

Theorem 2.31. (Representation of Archimedean t-norms, see e.g.
Klement-Mesiar-Pap, [87], Klement-Mesiar-Pap, [88]) For a continuous func-
tion T : [0, 1]2 → [0, 1] the following statements are equivalent:

(i) T is a continuous Archimedean t-norm
(ii) T has a continuous additive generator, i.e., there is a continuous

strictly decreasing t : [0, 1] → [0,∞], t(1) = 0, which is uniquely determined
up to a multiplicative constant such that for all x, y ∈ [0, 1] we have

T (x, y) = t(−1)(t(x) + t(y)).
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Proof. (ii)⇒(i). Let T (x, y) = t(−1)(t(x) + t(y)). We have to prove that it is
a continuous Archimedean t-norm.

T1: From the previous lemma we get T (x, 1) = t(−1)(t(x) + t(1)) =
t(−1)(t(x)) = x.

T2: T (x, y) = T (y, x) is obvious.
T3: We have

T (T (x, y), z) = t(−1)(t(−1)(t(x) + t(y)) + t(z))

= t(−1)(min(t(x) + t(y), t(0)) + t(z))

= min(min(t(x) + t(y), t(0)) + t(z), t(0)).

If t(x) + t(y) > t(0) then

T (T (x, y), z) = min(t(0) + t(z), t(0)) = t(0)

= min(t(x) + t(y) + t(z), t(0)) = T (x, T (y, z)).

If t(x) + t(y) ≤ t(0) then
T (T (x, y), z) = min(t(x) + t(y) + t(z), t(0)) = T (x, T (y, z)).

T4: To prove that T is increasing we consider x ≤ u and y ≤ v. Then
t(x) ≥ t(u) and t(y) ≥ t(v) and t(x) + t(y) ≥ t(u) + t(v). Since t(−1) is
decreasing we obtain

T (x, y) = t(−1)(t(x) + t(y)) ≤ t(−1)(t(u) + t(v)) = T (u, v).

T - continuous: Since t is continuous and since t−1 is continuous we get
t(−1)continuous when x �= f(0). Also,

lim
x↗t(0)

t(−1)(x) = lim
x↗t(0)

t−1(x) = t−1(t(0)) = 0.

T - Archimedean:

T (x, x) = t(−1)(2t(x)) < t(−1)(t(x)) = min{x, t(0)} ≤ x,
i.e., T (x, x) < x, ∀x ∈ (0, 1).

(i)⇒(ii) Now let T be a continuous Archimedean t-norm. As before let

x
(n)
T = T (x, ..., x

n−times
) = T (x, x

(n−1)
T ), x

(0)
T = 1. Then we define

x
( 1
n )

T = sup{y ∈ [0, 1]|y(n)T < x}
and

x
(m

n )

T =
(
x
( 1
n )

T

)(m)

T
.
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Since T is Archimedean we have limn→∞ x
( 1
n )

T = 1 and x
(m

n )

T is well defined

since x
(m

n )

T = x
( km

kn )

T .
Let a be an arbitrary positive number. Let h : Q ∩ [0,∞]→ [0, 1], h(r) =

a(r). Since T is continuous then h is continuous. Also, it is easy to check that

x
(m

n
+ p

q
)

T = T (x
(m

n )

T , x
( p
q
)

T ),

so we have

h(r + s) = a
(r+s)
T = T (a

(r)
T , a

(s)
T ) ≤ a(r)T = h(r),

so h is non-increasing. Moreover, h is strictly decreasing

h

(
m

n
+
p

q

)
= h

(
mq + np

nq

)
≤ h

(
mq + 1

nq

)

=

(
a
( 1
nq )

T

)(mq+1)

T

<

(
a
( 1
nq )

T

)(mq)

T

= h
(m
n

)
.

Since h is monotone and continuous we can uniquely extend it to a real
function h̄ : [0,∞]→ [0, 1]

h̄(x) = inf{h(r) : r ∈ Q ∩ [0, x]}.

Since T is continuous h̄(x + y) = T (h̄(x), h̄(y)). We define

t(x) = sup{y ∈ [0,∞]|h̄(y) > x} ∪ {0}.

We observe that t is the pseudo-inverse of h̄.
Then we obtain

T (x, y) = T (h̄(t(x), h̄(t(y)) = h̄(t(x) + t(y))

= t(−1)(t(x) + t(y)),

i.e., we have obtained the existence of the additive generator t.
To prove the uniqueness of t let us suppose that there are two additive

generators t1, t2. Then we have

t
(−1)
1 (t1(x) + t1(y)) = t

(−1)
2 (t2(x) + t2(y)).

Let u = t2(x), v = t2(y). Then

t
(−1)
1 (t1 ◦ t(−1)

2 (u) + t1 ◦ t(−1)
2 (v)) = t

(−1)
2 (u+ v).

If u, v ∈ [0, t2(0)] and u+ v ∈ [0, t2(0)] then
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t1 ◦ t(−1)
2 (u) + t1 ◦ t(−1)

2 (v) = t1 ◦ t(−1)
2 (u+ v),

i.e., t1 ◦ t(−1)
2 satisfies Cauchy’s functional equation F (u+ v) = F (u) + F (v)

which has its solution F (x) = bx with b being a constant in (0,∞). Then

t1 ◦ t(−1)
2 (x) = bx, x ∈ [0, t2(0)]. Recall that x = t2(y) and we get t1(y) =

bt2(y), ∀y ∈ [0, 1], so t is unique up to a multiplicative constant and the proof
is complete.

Theorem 2.32. (Representation of Archimedean t-conorms, e.g., Klement-
Mesiar-Pap [87]) For a continuous function S : [0, 1]2 → [0, 1] the following
affirmations are equivalent:

(i) S is a continuous Archimedean t-conorm
(ii) S has a continuous additive generator, i.e., there is a continuous

strictly increasing s : [0, 1] → [0,∞], s(0) = 0, which is uniquely determined
up to a multiplicative constant such that for all x, y ∈ [0, 1] we have

S(x, y) = s(−1)(s(x) + s(y)).

We can write T and S as

T (x, y) = t−1(min{t(x) + t(y), t(0)})

S(x, y) = s−1(max{s(x) + s(y), s(0)})
Example 2.33. By considering t(x) = − lnx as additive generator we obtain
the t-norm T (x, y) = x · y (product t-norm).

By taking t(x) = 1 − x we obtain the Lukasiewicz t-norm T (x, y) =
max{x+ y − 1, 0}.

For Frank’s t-norm

xT s
F y = logs

(
1 +

(sx − 1)(sy − 1)

s− 1

)

the additive generator is

ts(x) =

{ − lnx if s = 1

− ln sx−1
s−1 s ∈ (0,∞) \ {1} .

2.4 Fuzzy Implications

Fuzzy implications were studied by several authors and their usefulness in
fuzzy inference systems makes them very important.
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Definition 2.34. (Fodor [58]) Let I : [0, 1]× [0, 1]→ [0, 1] be a function. If
the following conditions are fulfilled

I1: If x ≤ y, then I(x, z) ≥ I(y, z), i.e., I is decreasing in its first variable;
I2: If y ≤ z, then I(x, y) ≤ I(x, z), i.e., I is increasing in its second

variable;
I3: I(1, 0) = 0, I(0, 0) = I(1, 1) = 1
then I is called a fuzzy implication.

Example 2.35. The operations I1(x, y) = max{1− x, y}
I2(x, y) = min{1− x+ y, 1} and
I3(x, y) =

{
1 if x ≤ y
y
x if x > y

are fuzzy implications.

A fuzzy implication is often denoted by x→ y.

Proposition 2.36. If I is a fuzzy implication and if N is a negation then
I ′(x, y) = I(N(y), N(x)) is a fuzzy implication too.

Proof. The proof is left as an exercise.

Proposition 2.37. If I is a fuzzy implication then
(i) I(0, x) = 1,∀x ∈ [0, 1];
(ii) I(x, 1) = 1,∀x ∈ [0, 1].

Proof. (i):
1 = I(0, 0) ≤ I(0, x) ≤ I(0, 1).

Then it follows that I(0, x) = 1 for any x ∈ [0, 1], and also I(0, 1) = 1.
(ii):

1 = I(0, 1) ≥ I(x, 1) ≥ I(1, 1) = 1.

Then I(x, 1) = 1, ∀x ∈ [0, 1].

Definition 2.38. Let S be a t-conorm and N be a strong negation. Then

I(x, y) = S(N(x), y)

is called an S- implication.

Proposition 2.39. I(x, y) = S(N(x), y) is an implication.

Proof. Let us suppose that x ≤ z. Then N(x) ≥ N(z) and then S(N(x), y)
≥ S(N(z), y), so I is decreasing in the first argument. The fact that I is
increasing in the second argument is obvious. We observe that

I(1, 0) = S(N(1), 0) = S(0, 0) = 0,

I(0, 0) = S(1, 0) = 1 and I(1, 1) = S(0, 1) = 1.

Example 2.40. (Kleene-Dienes) Let S = max, N(x) = 1 − x. Then the
associated S-implication is I(x, y) = max{1− x, y}.
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Example 2.41. (Reichenbach) Let S be the probabilistic sum, i.e. S(x, y) =
x+ y−xy, and N(x) = 1− x. Then I(x, y) = 1− x+ xy is the S-implication
associated to S.

Example 2.42. (Lukasiewicz) Let S(x, y) = min{x+ y, 1} and consider the
standard negation. Then we obtain the S-implication I(x, y) = min{1 − x +
y, 1}.
Remark 2.43. If I(x, y) is an S-implication then I(N(y), N(x)) is also an
S-implication.

Definition 2.44. Let T be a t-norm.

IT (x, y) = sup{z|T (x, z) ≤ y}

is called a residual implication (an R-implication).

Proposition 2.45. An residual implication IT is an implication.

Proof. Let x1 ≤ x2. Then T (x1, z) ≤ T (x2, z), ∀z ∈ [0, 1]. If z0 ∈ {z|T (x2, z)
≤ y} then z0 ∈ {z|T (x1, z) ≤ y}, i.e.,

{z|T (x2, z) ≤ y} ⊆ {z|T (x1, z) ≤ y}.

Then

IT (x2, y) = sup{z|T (x2, z) ≤ y}

≤ sup{z|T (x1, z) ≤ y} = IT (x1, y).

The verification of the other properties of an implication is straight-
forward.

Remark 2.46. We have IT (x, x) = 1, ∀x ∈ [0, 1]. Indeed, since IT (x, x) =
sup{z|T (x, z) ≤ x} and since T (x, 1) = x we have IT (x, x) = 1.

Example 2.47. T = min gives the Gödel implication

IT (x, y) =

{
1 if x ≤ y
y if x > y

.

T = product gives the Goguen implication

IT (x, y) =

{
1 if x ≤ y
y
x if x > y

.

T = Lukasiewicz t-norm, gives the R-implication IT (x, y) = min{1−x+y, 1}.
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2.5 Fuzzy Equivalence

Definition 2.48. (Fodor-Yager [61]) A function E : [0, 1]2 → [0, 1] is a
fuzzy equivalence if it satisfies the conditions:

E1: E(x, y) = E(y, x).
E2: E(0, 1) = E(1, 0) = 0.
E3: E(x, x) = 1, ∀x ∈ [0, 1].
E4: If x ≤ x′ ≤ y′ ≤ y then E(x, y) ≤ E(x′, y′).

A fuzzy equivalence is often denoted by x↔ y.

Theorem 2.49. (Fodor-Yager [61]) The following statements are equivalent:
(a) E is a fuzzy equivalence.
(b) There exists a fuzzy implication I with the property I(x, x) = 1, ∀x ∈

[0, 1] such that

E(x, y) = min{I(x, y), I(y, x)}.
(c) There exists a fuzzy implication I with the property I(x, x) = 1, ∀x ∈

[0, 1] such that

E(x, y) = I(max{x, y},min{x, y}).
Proof. (b)⇒(a). Let E(x, y) = min{I(x, y), I(y, x)}. Then we can easily
check the properties E1-E3. Regarding E4 we observe that if x ≤ x′ ≤ y′ ≤ y
then we have

I(y, x) ≤ I(x, x) ≤ I(x, y)
and so E(x, y) = I(y, x). Similarly E(x′, y′) = I(y′, x′). Also, I(y′, x′) ≥
I(y′, x) ≥ I(y, x). Then E(x, y) ≤ E(x′, y′).

(a)⇒(b). We consider

I(x, y) =

{
1 if x ≤ y

E(x, y) if x > y
.

Then I is a fuzzy implication. We show that I is decreasing in the first
argument. Let x ≤ z. If x ≤ y then I(x, y) = 1 ≥ I(z, y). If x > y then
y < x ≤ z and then

I(x, y) = E(x, y) ≥ E(z, y) = I(z, y).

Now we prove that I is increasing in the second argument. Let y ≤ z. If x > z
then

I(x, y) = E(x, y) ≤ E(x, z) = I(x, z).

If x ≤ z then I(x, z) = 1 so I(x, y) ≤ I(x, z). The boundary conditions for
the fuzzy implications can easily be verified.

Now we prove that

E(x, y) = min{I(x, y), I(y, x)}.
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Indeed, since

I(y, x) =

{
1 if y ≤ x

E(y, x) = E(x, y) if y > x

we observe that

E(x, y) =

{
I(x, y) if x > y
I(y, x) if x ≤ y .

Also, we observe that if x > y then

min{I(x, y), I(y, x)} = I(x, y).

Indeed, if x > y then

I(x, y) ≤ I(y, y) ≤ I(y, x).

The case x < y can be discussed in a similar way. If x = y then I(x, y) =
I(y, x) = 1.

The equivalence (b) ⇐⇒ (c) is obvious based on the fact that if x > y
then max{x, y} = x and min{x, y} = y. Also, in this case

I(x, y) ≤ I(y, y) ≤ I(y, x)

and
E(x, y) = I(x, y) = I(max{x, y},min{x, y}).

When x < y a similar reasoning applies. If x = y then

E(x, y) = I(x, y) = I(max{x, y},min{x, y}) = 1.

Example 2.50. The fuzzy equivalence x↔ y = min{1− x+ y, 1− y+ x} is
derived from the Lukasiewicz t-norm.

2.6 Problems

1. Verify that the λ-complement Nλ(x) =
1−x
1+λx , λ > −1, is a strong nega-

tion. Find a function ϕ : [0, 1]→ [0, 1]. Such that Nλ(x) = ϕ−1(1−ϕ(x)).
2. Prove that the product and the probabilistic sum:

xTGy = x · y
xSGy = x+ y − xy.

is a t-norm and a t-conorm respectively. Decide whether they form a
DeMorgan triplet with the standard negation.
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3. Prove that the Lukasiewicz operations

xTLy = (x+ y − 1) ∨ 0

xSLy = (x+ y) ∧ 1.

are a t-norm and a t-conorm respectively. Decide whether they form a
DeMorgan triplet together with the standard negation.

4. Show that the nilpotent minimum and nilpotent maximum are t-norm
and t-conorm respectively

xT0y =

{
x ∧ y if x+ y > 1

0 otherwise

xS0y =

{
x ∨ y if x+ y < 1

1 otherwise
.

Decide whether they form a De Morgan triplet with the standard nega-
tion.

5. Consider the fuzzy sets A,B : {1, 2, ..., 10} → [0, 1] defined as A(x) =
0
1 +

0.2
2 + 0.7

3 + 1
4 +

0.7
5 + 0.2

6 + 0
7 +

0
8 +

0
9 +

0
10 , B(x) = 0

1 +
0
2 +

0
3 +

0.3
4 +

0.5
5 + 0.8

6 + 1
7 +

0.5
8 + 0.2

9 + 0
10 , . Calculate ATLB, ASLB, ATGB, ASGB,

where TL,G and SL,G stand for the Lukasiewicz and Goguen t-norms and
t-conorms.

6. Consider the fuzzy sets A,B : R+ → [0, 1] defined as A(x) = 1
1+x2 ,

B(x) = 1
10x . Calculate ATLB, ASLB, ATGB, ASGB, where TL,G and

SL,G stand for the Lukasiewicz and Goguen t-norms and t-conorms, and
graph them.

7. Let us consider the fuzzy sets

A(x) =

⎧⎪⎪⎨
⎪⎪⎩

0 if, x < 2
x−2
4 if 2 ≤ x < 6

10−x
4 if 6 ≤ x < 10
0 if 10 ≤ x

,

B(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if, x < 3
x− 3 if 3 ≤ x < 4
1 if 4 ≤ x < 5

7−x
2 if 5 ≤ x ≤ 7
0 if 7 < x

.

Calculate ATLB, ASLB, ATGB, ASGB, where TL,G and SL,G stand for
the Lukasiewicz and Goguen t-norms and t-conorms, and graph them.
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8. Prove that Frank’s t-norm and t-conorm

xT s
F y = logs

(
1 +

(sx − 1)(sy − 1)

s− 1

)

xSs
F y = 1− (1 − x)T s

F (1− y),

where s ∈ (0,∞) \ {1} verify the relation

xT s
F y + xSs

F y = x+ y.

9. Prove that the drastic product and sum are the least t-norm and the
greatest t-conorm respectively.

10. Prove that any t-norm T and any t-conorm S is distributive with respect
to ∨ and ∧ i.e.,

(x ∨ y)Tz = (xTz) ∨ (yT z)

(x ∧ y)Tz = (xTz) ∧ (yT z)

(x ∨ y)Sz = (xSz) ∨ (ySz)

(x ∧ y)Sz = (xSz) ∧ (ySz)

for any x, y, z ∈ [0, 1].

11. Let us consider the fuzzy sets

A(x) =

⎧⎪⎪⎨
⎪⎪⎩

0 if, x < 2
x−2
5 if 2 ≤ x < 7

10−x
3 if 7 ≤ x < 10
0 if 10 ≤ x

,

B(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if, x < 3
x− 3 if 3 ≤ x < 4
1 if 4 ≤ x < 5

7−x
2 if 5 ≤ x ≤ 7
0 if 7 < x

.

Consider the fuzzy implications

I1(x, y) = max{1− x, y}

and

I2(x, y) =

{
1 if x ≤ y
y if x > y

.

Calculate and graph I1(A,B) and I2(A,B).
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12. Consider the fuzzy equivalences

E1 = min{I1(x, y), I1(y, x)}

and
E2 = min{I2(x, y), I2(y, x)}

generated by the implications in the previous problem. Calculate and
graph E1(A,B) and E2(A,B) based on the fuzzy sets considered in Prob-
lem 11.

13. Prove that the implications in Example 2.35 are fuzzy implications.

14. Prove Proposition 2.36.

15. Prove that the function in Example 2.50 is a fuzzy equivalence.

16. Find the fuzzy R-implication, S-implication and the associated fuzzy
equivalences that we can obtain starting from Goguen and Fodor-Perny
t-norm and t-conorm respectively.



3

Fuzzy Relations

3.1 Fuzzy Relations

Definition 3.1. (Classical relation). A subset R ⊆ X × Y where X and Y
are classical sets, is a classical relation.

A classical relation can be characterized by a function R : X × Y → {0, 1},

R(x, y) =

{
1 if (x, y) ∈ R
0 otherwise

.

Definition 3.2. (Fuzzy Relation, Sanchez [129], Di Nola-Sessa-Pedrycz-
Sanchez [48], De Baets [42]) Let X,Y be two classical sets. A mapping
R : X × Y → [0, 1] is called a fuzzy relation. The number R(x, y) ∈ [0, 1]
can be interpreted as the degree of relationship between x and y.

Remark 3.3. A fuzzy relation can be seen as a fuzzy subset of the set X×Y.
We denote by F(X × Y ) the family of all fuzzy relations between elements of
X and Y.

Example 3.4. R =”much greater than”

R(x, y) =

{
1

1+ 100
(x−y)2

if x > y

0 otherwise
.

B. Bede: Mathematics of Fuzzy Sets and Fuzzy Logic, STUDFUZZ 295, pp. 33–49.
DOI: 10.1007/978-3-642-35221-8_3 c© Springer-Verlag Berlin Heidelberg 2013
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A fuzzy relation between elements in two finite sets X = {x1, x2, ..., xm} and
Y = {y1, y2, ..., yn} can be represented as a matrix

R =

⎛
⎜⎜⎝

R(x1, y1) R(x1, y2) ... R(x1, yn)
R(x2, y1) R(x2, y2) ... R(x2, yn)

... ... ... ...
R(xm, y1) R(xm, y2) ... R(xm, yn)

⎞
⎟⎟⎠ .

Since fuzzy relations are themselves fuzzy sets, it is possible to perform fuzzy
set operations on them

N(R(x, y)) = R̄(x, y) = 1−R(x, y),

(R ∨ S)(x, y) = R(x, y) ∨ S(x, y),

(R ∧ S)(x, y) = R(x, y) ∧ S(x, y).
The inverse in a set-theoretic approach for a fuzzy relation would be

R−1(x, y) = R(y, x),

i.e. the transpose. We can also consider t-norm and t-conorm operations

T (R,P )(x, y) = T (R(x, y), P (x, y)),

S(R,P )(x, y) = S(R(x, y), P (x, y)),

where T, S are a t-norm and a t-conorm respectively.

3.2 Max-Min Composition

Definition 3.5. Let R ∈ F(X × Y ) and S ∈ F(Y × Z) be fuzzy relations.
Then R ◦ S ∈ F(X × Z), defined as

R ◦ S(x, z) =
∨
y∈Y

R(x, y) ∧ S(y, z),

is called the max-min composition of the fuzzy relations R and S.

Remark 3.6. The max-min composition is well defined being the supremum
of a nonempty bounded subset of real numbers.

If R ∈ F(X×X) then we can define R2 = R◦R, and generally Rn = R◦Rn−1,
n ≥ 2.
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LetX = {x1, ..., xn}, Y = {y1, ..., ym}, and Z = {z1, ..., zp} be finite sets. If
R = (rij)i=1,...,n,j=1,...,m ∈ F(X×Y ), and S = (sjk)j=1,...,m,k=1,...,p ∈ F(Y ×
Z) are discrete fuzzy relations then the composition T =
(tik)i=1,...,n,k=1,...,p = R ◦ S ∈ F(X × Z) is given by

tik =

m∨
j=1

rij ∧ sjk,

i = 1, ..., n, k = 1, ..., p.

Example 3.7. If R =

(
0.3 0.7 0.2
1 0 0.9

)
and S =

⎛
⎝ 0.8 0.3

0.1 0
0.5 0.6

⎞
⎠ then

R ◦ S =

(
0.3 0.3
0.8 0.6

)
.

Proposition 3.8. (i) The max-min composition is associative, i.e.,

(R ◦ S) ◦Q = R ◦ (S ◦Q),

where R ∈ F(X × Y ), S ∈ F(Y × Z) and Q ∈ F(Z × U).
(ii) Let R1, R2 ∈ F(X × Y ) and Q ∈ F(Y × Z). If R1 ≤ R2 then

R1 ◦Q ≤ R2 ◦Q.
Proof. The proof of (i) is left to the reader.

(ii)

R1 ◦Q(x, z) =
∨
y∈Y

R1(x, y) ∧Q(y, z)

≤
∨
y∈Y

R2(x, y) ∧Q(y, z) = R2 ◦Q(x, z).

Proposition 3.9. For any R,S ∈ F(X × Y ) and Q ∈ F(Y × Z) we have
(i) (R ∨ S) ◦Q = (R ◦Q) ∨ (S ◦Q)
(ii) (R ∧ S) ◦Q ≤ (R ◦Q) ∧ (S ◦Q).

Proof. (i) We prove the equality by double inclusion.

(R ∨ S) ◦Q(x, z) =
∨
y∈Y

(R ∨ S)(x, y) ∧Q(y, z)

=
∨
y∈Y

(R(x, y) ∧Q(y, z)) ∨ (S(x, y) ∧Q(y, z))

≤
∨
y∈Y

(R(x, y) ∧Q(y, z)) ∨
∨
y∈Y

(S(x, y) ∧Q(y, z)),
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i.e.,

(R ∨ S) ◦Q ≤ (R ◦Q) ∨ (S ◦Q).

On the other hand, from the previous proposition we have R◦Q ≤ (R∨S)◦Q
and S ◦Q ≤ (R ∨ S) ◦Q, and then

(R ◦Q) ∨ (S ◦Q) ≤ (R ∨ S) ◦Q.

Combining the two inequalities, the required conclusion follows.
(ii) We have

(R ∧ S) ◦Q(x, z) =
∨
y∈Y

(R ∧ S)(x, y) ∧Q(y, z)

=
∨
y∈Y

(R(x, y) ∧Q(y, z)) ∧ (S(x, y) ∧Q(y, z))

≤
∨
y∈Y

(R(x, y) ∧Q(y, z)) ∧
∨
y∈Y

(S(x, y) ∧Q(y, z))

= (R ◦Q) ∧ (S ◦Q)(x, z).

Remark 3.10. Equality in (ii) does not hold. Indeed, if we consider R =(
1 0
1 1

)
, S =

(
0 1
1 1

)
, Q =

(
1 1
1 1

)
then (R ∧ S) ◦ Q =

(
0 0
1 1

)

while (R ◦Q) ∧ (S ◦Q) =

(
1 1
1 1

)
.

3.3 Min-Max Composition

Definition 3.11. (e.g. Nobuhara-Bede-Hirota [118]) Let R ∈ F(X×Y ) and
S ∈ F(Y × Z). Then R • S ∈ F(X × Z), defined as

R • S(x, z) =
∧
y∈Y

R(x, y) ∨ S(y, z)

is called the min-max composition of the fuzzy relations R and S.

Example 3.12. If R =

(
0.3 0.7 0.2
1 0 0.9

)
and S =

⎛
⎝ 0.8 0.3

0.1 0
0.5 0.6

⎞
⎠ then

R • S =

(
0.5 0.3
0.1 0

)
.
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Proposition 3.13. (i) The min-max composition is associative, i.e., for any
R ∈ F(X × Y ), S ∈ F(Y × Z) and T ∈ F(Z × U) we have

(R • S) • T = R • (S • T ).

(ii) Consider R1, R2 ∈ F(X × Y ), Q ∈ F(Y × Z). If R1 ≤ R2 then

R1 •Q ≤ R2 •Q.

Proof. The proof is left to the reader as an exercise.

Proposition 3.14. For any R,S ∈ F(X × Y ) and T ∈ F(Y × Z) we have
(i) (R ∧ S) • T = (R • T ) ∧ (S • T ).
(ii) (R ∨ S) • T ≥ (R • T ) ∨ (S • T ).

Proof. The proof of the proposition is similar to the corresponding result in
the max-min composition case and is left as an exercise.

Remark 3.15. Equality in (ii) does not hold. Indeed, R =

(
1 0
1 1

)
, S =(

0 1
1 1

)
, T =

(
0 0
0 0

)
then (R∨S) •T =

(
1 1
1 1

)
while (R •T )∨ (S •

T ) =

(
0 0
1 1

)
.

Proposition 3.16. If we consider the standard negation we have R ◦ S =
R̄ • S̄ and R • S = R̄ ◦ S̄.
Proof. We observe that

R ◦ S(x, z) =
∨
y∈Y

R(x, y) ∧ S(y, z) =
∧
y∈Y

R(x, y) ∧ S(y, z)

=
∧
y∈Y

R̄(x, y) ∨ S̄(y, z) = R̄ • S̄(x, z).

The equality R • S = R̄ ◦ S̄. can be obtained in a similar way.

Remark 3.17. The min-max composition can be naturally generalized to
min-t-conorm compositions

R •S P (x, z) =
∧
y∈Y

R(x, y)SP (y, z),

where S is an arbitrary t-conorm.
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3.4 Min → Composition

Let → be the standard Gödel implication defined as

x→ y = sup{z ∈ [0, 1]|x ∧ z ≤ y} =
{

1 if x ≤ y
y otherwise

.

Proposition 3.18. For any x, y, z ∈ [0, 1] we have
(i) (x ∨ y)→ z = (x→ z) ∧ (y → z).
(ii) (x ∧ y)→ z = (x→ z) ∨ (y → z).
(iii) x→ (y ∨ z) = (x→ y) ∨ (x→ z).
(iv) x→ (y ∧ z) = (x→ y) ∧ (x→ z).
(v) x ∧ (x→ y) ≤ y.
(vi) x→ (x ∧ y) ≥ y.
(vii) (x→ y)→ y ≥ x.

Proof. (i) Case 1. If x ∨ y ≤ z then (x ∨ y)→ z = 1 and also we have x ≤ z
and y ≤ z. Then (x→ z) ∧ (y → z) = 1 ∧ 1 = 1.

Case 2. If x ∨ y > z then (x ∨ y)→ z = z and x ≥ z or ,y ≥ z so we have
(x→ z) = z or (y → z) = z and then (x→ z) ∧ (y → z) = z.

(ii) Case 1. If x ∧ y ≤ z then (x ∧ y) → z = 1. Also, we have either
x ≤ z or y ≤ z in which case either x → z = 1 or y → z = 1 and so
(x→ z) ∨ (y → z) = 1.

Case 2. If x ∧ y > z, then (x ∧ y)→ z = z. Also, if (x ∧ y) > z then both
x > z and y > z and x→ z = z and y → z = z.

(iii) Case 1. If x ≤ (y∨ z) then x→ (y ∨ z) = 1. Also we have either x ≤ y
or x ≤ z and so x→ y = 1 or x→ z = 1.

Case 2. Otherwise x→ (y ∨ z) = y ∨ z and we have x > y and x > z and
x→ y = y and x→ z = z. Then (x→ y) ∨ (x→ z) = y ∨ z.

(iv) The proof is left as an exercise to the reader.
(v) Case 1. If x ≤ y then x ∧ (x→ y) = x ∧ 1 = x ≤ y.
Case 2. Otherwise x ∧ (x→ y) = x ∧ y = y.
(vi) Case 1. If x ≤ y then x→ (x ∧ y) = x→ x = 1 ≥ y.
Case 2. Otherwise when x > y then we have x→ (x ∧ y) = x→ y = y.
(vii) The proof is left as an exercise to the reader.

Definition 3.19. The min→ composition can be defined as:

R � S(x, z) =
∧
y∈Y

R(x, y)→ S(y, z).

Often in the literature (see e.g. De Baets [42]) it is called subcomposition and
a dual operation is considered as

R � S(x, z) =
∧
y∈Y

S(y, z)→ R(x, y)

called the supercomposition. The relation between the two is given by the
next proposition.
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Proposition 3.20. For R1 ∈ F(X × Y ) and R2 ∈ F(Y × Z) we have
(i) R1 � R2 = (R−1

2 � R−1
1 )−1;

(ii) R1 � R2 = (R−1
2 � R−1

1 )−1.

Proof. The proof is left to the reader as an exercise.

In the present work we will mainly use the subcomposition and we call it
simply min→ composition.

Proposition 3.21. If R,S ∈ F(X × Y ) and Q ∈ F(Y × Z) are such that
R ≤ S then R � Q ≥ S � Q.

Proof. Since → is decreasing in the first argument we have

R � Q(x, z) =
∧
y∈Y

R(x, y)→ Q(y, z)

≥
∧
y∈Y

S(x, y)→ Q(y, z) = R � S(x, z).

Proposition 3.22. For any R,S ∈ F(X × Y ) and Q ∈ F(Y × Z) we have
(i) (R ∨ S) � Q = (R � Q) ∧ (S � Q).
(ii) (R ∧ S) � Q ≥ (R � Q) ∨ (S � Q).

Proof. (i) From the previous proposition we have (R ∨ S) � Q ≤ R � Q and
(R ∨ S) � Q ≤ S � Q and then

(R ∨ S) � Q ≤ (R � Q) ∧ (S � Q).

Also, from Proposition 3.18, (i)

(R ∨ S) � Q(x, z) =
∧
y∈Y

(R(x, y) ∨ S(x, y))→ Q(y, z)

=
∧
y∈Y

(R(x, y)→ Q(y, z)) ∧ (S(x, y)→ Q(y, z))

≥
∧
y∈Y

(R(x, y)→ Q(y, z)) ∧
∧
y∈Y

(S(x, y)→ Q(y, z))

= (R � Q) ∧ (S � Q)(x, z).

(ii) Similar to (i) we have (R ∧ S) � Q ≥ R � Q and (R ∧ S) � Q ≥ S � Q
and then

(R ∧ S) � Q ≥ (R � Q) ∨ (S � Q).
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3.5 Fuzzy Relational Equations with Max-Min and
Min → Compositions

We consider the following two fuzzy relational equations

R ◦ P = Q

and
R � P = Q

with R ∈ F(X × Y ), P ∈ F(Y × Z) and Q ∈ F(X × Z).

Theorem 3.23. The following inequalities hold true:
(i) P ≤ R−1 � (R ◦ P );
(ii) R ◦ (R−1 � Q) ≤ Q;
(iii) R ≤ (P � (R ◦ P )−1)−1;
(iv) (P � Q−1)−1 ◦ P ≤ Q.

Proof. (i) Using Proposition 3.18, (vi) we have for every y ∈ Y and z ∈ Z,

R−1 � (R ◦ P )(y, z) =
∧
x∈X

R−1(y, x)→ (R ◦ P )(x, z)

=
∧
x∈X

R−1(y, x)→
∨
t∈Y

R(x, t) ∧ P (t, z)

≥
∧
x∈X

R(x, y)→ R(x, y) ∧ P (y, z) ≥
∧
x∈X

P (y, z) = P (y, z).

(ii) From Proposition 3.18, (v) we obtain for every x ∈ X and z ∈ Z

R ◦ (R−1 � Q)(x, z) =
∨
y∈Y

R(x, y) ∧ (R−1 � Q)(y, z)

=
∨
y∈Y

R(x, y) ∧ (
∧
t∈X

R−1(y, t)→ Q(t, z))

≤
∨
y∈Y

R(x, y) ∧ (R(x, y)→ Q(x, z)) ≤
∨
y∈Y

Q(x, z) = Q(x, z).

(iii) We have for every x ∈ X and y ∈ Y

(P � (R ◦ P )−1)−1(x, y) = P � (R ◦ P )−1(y, x)

=
∧
z∈Z

P (y, z)→ (R ◦ P )−1(z, x)
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=
∧
z∈Z

P (y, z)→
∨
t∈Y

R(x, t) ∧ P (t, z)

≥
∧
z∈Z

P (y, z)→ R(x, y) ∧ P (y, z) ≥
∧
z∈Z

R(x, y) = R(x, y).

(iv) The proof of (iv) is similar to that of (iii), and it uses Proposition
3.18.

Theorem 3.24. (Sanchez [129]) (i) Consider the equation R ◦ P = Q with
unknown P. The equation has solutions if and only if R−1 � Q is a solution
and in this case it is the greatest solution of this equation.

(ii) Consider the equation R ◦ P = Q with unknown R. The equation has
solutions if and only if (P � Q−1)−1 is a solution and in this case it is the
greatest solution of this equation.

Proof. (i) “⇐” If P = R−1 �Q is a solution of the equation R ◦P = Q then
the equation possesses solutions.

“⇒” Let us suppose now that the equation R ◦ P = Q has a solution
denoted by P. Then by Theorem 3.23, (i) we have

P ≤ R−1 � (R ◦ P ) = R−1 � Q,

i.e., R−1 � Q is greater than or equal to any solution P of the equation
R ◦ P = Q.

To show that R−1 � Q is a solution we use double inclusion. By Theorem
3.23, (ii) we know

R ◦ (R−1 � Q) ≤ Q.
On the other hand since P ≤ R−1 � Q and since ◦ is increasing in its second
argument, we have

R ◦ (R−1 � Q) ≥ R ◦ P = Q.

Combining the two inequalities we get R ◦ (R−1 � Q) = Q, i.e., R−1 � Q is a
solution and moreover, it is the greatest solution.

(ii) The proof of (ii) is similar.

Example 3.25. Let us consider the fuzzy relational equation

⎛
⎝ 0.3 0.2 0.4

0.1 0.3 0.5
0.5 0.4 0.6

⎞
⎠ ◦ P =

⎛
⎝ 0.3 0.4 0.4

0.3 0.5 0.5
0.3 0.5 0.6

⎞
⎠ .

Then

R−1 � Q =

⎛
⎝ 0.3 1 1

0.3 1 1
0.3 0.5 1

⎞
⎠ ,
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and since⎛
⎝ 0.3 0.2 0.4

0.1 0.3 0.5
0.5 0.4 0.6

⎞
⎠ ◦

⎛
⎝ 0.3 1 1

0.3 1 1
0.3 0.5 1

⎞
⎠ =

⎛
⎝ 0.3 0.4 0.4

0.3 0.5 0.5
0.3 0.5 0.6

⎞
⎠ ,

then R−1 � Q is a solution of the equation. From the previous theorem it
follows that it is the greatest solution of the given equation.

Theorem 3.26. The following inequalities hold true:
(i) (Q � P−1) � P ≥ Q;
(ii) (R � P ) � P−1 ≥ R;
(iii) R−1 ◦ (R � P ) ≤ P ;
(iv) R � (R−1 ◦Q) ≥ Q.

Proof. (i) Using Proposition 3.18, (vii), and taking into account that → is
decreasing in its first argument we have

(Q � P−1) � P (x, z) =
∧
y∈Y

(Q � P−1)(x, y)→ P (y, z)

=
∧
y∈Y

(
∧
t∈Z

Q(x, t)→ P (y, t))→ P (y, z)

≥
∧
y∈Y

(Q(x, z)→ P (y, z))→ P (y, z) ≥
∧
y∈Y

Q(x, z) = Q(x, z).

(ii), (iii), (iv) The proofs of these properties are similar and they are using
the results in Proposition 3.18

Theorem 3.27. (Miyakoshi-Shimbo [112]) (i) Consider the equation R�P =
Q with unknown R. The equation has solutions if and only if Q � P−1 is a
solution and in this case it is the greatest solution of this equation.

(ii) Consider the equation R � P = Q with unknown P. The equation has
solutions if and only if R−1 ◦Q is a solution and in this case it is the least
solution of this equation.

Proof. (i) “⇐” Obvious.
“⇒” Let us suppose now that the equation R � P = Q has solution R.

Then by Theorem 3.26, (ii) we have

R ≤ (R � P ) � P−1 = Q � P−1.

i.e., Q � P−1 is greater then any solution R.
By Theorem 3.26, (i) we know that

Q ≤ (Q � P−1) � P.
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On the other hand since R ≤ Q � P−1 and since � is decreasing in its first
argument, we have

Q = R � P ≥ (Q � P−1) � P.

Combining the two inequalities we get Q = (Q � P−1) � P.
(ii) “⇐” Obvious.
“⇒” Let P be a solution of R � P = Q. Then by Theorem 3.26, (iii),

P ≥ R−1 ◦ (R � P ) = R−1 ◦Q,
i.e., R−1 ◦Q is less then any solution P .

Also, by Theorem 3.26, (iv)

Q ≤ R � (R−1 ◦Q)

since P ≥ R−1 � Q and taking into account that � is increasing in its second
argument we have

Q = R � P ≥ R � (R−1 ◦Q)

and we get Q = R � (R−1 ◦Q).

Example 3.28. Let us consider the fuzzy relational equation⎛
⎝ 0.3 0.2 0.4

0.1 0.3 0.5
0.5 0.4 0.6

⎞
⎠ � P =

⎛
⎝ 0.3 0.4 0.4

1 0.6 0.5
0.5 0.5 0.6

⎞
⎠ .

Then

R−1 ◦Q =

⎛
⎝ 0.5 0.5 0.5

0.4 0.4 0.4
0.5 0.5 0.6

⎞
⎠ .

Since ⎛
⎝ 0.3 0.2 0.4

0.1 0.3 0.5
0.5 0.4 0.6

⎞
⎠ �

⎛
⎝ 0.5 0.5 0.5

0.4 0.4 0.4
0.5 0.5 0.6

⎞
⎠ =

⎛
⎝ 1 1 1

1 1 1
0.5 0.5 1

⎞
⎠ .

is not a solution of the equation, by the preceding theorem it follows that the
equation has no solutions.

3.6 Max-t-Norm Composition

Definition 3.29. The max-min composition can be naturally generalized to
max-t-norm compositions

R ◦T P (x, z) =
∨
y∈Y

R(x, y) T P (y, z),

where T is an arbitrary t-norm.
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Proposition 3.30. (i) The max-t-norm composition is associative, i.e.,

(R ◦T S) ◦T Q = R ◦T (S ◦T Q),

for any R ∈ F(X × Y ), S ∈ F(Y × Z) and Q ∈ F(Z × U).
(ii) If R1 ≤ R2 then

R1 ◦T Q ≤ R2 ◦T Q
for any R1, R2 ∈ F(X × Y ) and Q ∈ F(Y × Z).
Proof. Since the t-norm T is increasing we have

(R ◦T S) ◦T Q(x, u) =
∨
z∈Z

⎛
⎝ ∨

y∈Y

R(x, y) T S(y, z)

⎞
⎠T Q(z, u)

=
∨
z∈Z

∨
y∈Y

R(x, y) T S(y, z) T Q(z, u) = R ◦T (S ◦T Q)(x, u).

(ii) The proof of (ii) is based on the fact that T is increasing in both of its
variables.

Proposition 3.31. For any R,S ∈ F(X × Y ), Q ∈ F(Y × Z) and any
t-norm T we have

(i) (R ∨ S) ◦T Q = (R ◦T Q) ∨ (S ◦T Q)
(ii) (R ∧ S) ◦T Q ≤ (R ◦T Q) ∧ (S ◦T Q).

Proof. (i) Since T is distributive with respect to ∨ we have

(R ∨ S) ◦T Q(x, z) =
∨
y∈Y

(R ∨ S)(x, y) T Q(y, z)

≤
∨
y∈Y

(R(x, y) T Q(y, z)) ∨
∨
y∈Y

(S(x, y) T Q(y, z)),

Also, R ◦T Q ≤ (R ∨ S) ◦T Q and S ◦T Q ≤ (R ∨ S) ◦T Q, and then

(R ◦T Q) ∨ (S ◦T Q) = (R ∨ S) ◦T Q.

(ii) Is left to the reader as an exercise.

3.7 Min →T Composition

Let T be an arbitrary continuous t-norm and→T be the R-implication defined
as

x→T y = sup{z|x T z ≤ y}.
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Proposition 3.32. For any x, y, z ∈ [0, 1] and for any t-norm T the residual
implication →T has the following properties:

(i) xT (x→T y) ≤ y.
(ii) x→T (xTy) ≥ y.
(iii) (x→T y)→T y ≥ x.

Proof. (i) We have

xT (x→T y) = xT sup{z|xTz ≤ y}.
Let now ε > 0 arbitrary. Then there exist a z0 ∈ {z|xTz ≤ y} such that
x→T y < z0 + ε. Then

xT (x→T y) < xT (z0 + ε).

Since T is continuous this implies

xT (x→T y) ≤ xTz0.
Now, the condition z0 ∈ {z|xTz ≤ y} implies xTz0 ≤ y, and then we get
xT (x→T y) ≤ y.

(ii) It is easy to observe that y ∈ {z|xTz ≤ xTy} and so,

x→T (xTy) = sup{z|xTz ≤ xTy} ≥ y.
(iii) To prove the last inequality we observe that

(x→T y)→T y = sup{z|(x→T y)Tz ≤ y}.
Using now (i) we have (x →T y)Tx ≤ y and then x ∈ {z|(x →T y)Tz ≤ y}.
Then (x→T y)→T y ≥ x.

Definition 3.33. The min→T composition can be defined in a similar
way as the min → composition:

R �T S(x, z) =
∧
y∈Y

R(x, y)→T S(y, z)

Proposition 3.34. If R,S ∈ F(X × Y ) are such that R ≤ S and if Q ∈
F(Y × Z) then R �T Q ≥ S � Q.
Proof. The proof is left to the reader.

3.8 Fuzzy Relational Equations with Max-t-Norm and
Min →T Compositions

Fuzzy relational equations with max-t-norm or min→T compositions can be
studied in a similar way as the equations above.
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We consider the following two fuzzy relational equations with max-t-norm
and min →T compositions

R ◦T P = Q

and

R �T P = Q

with R ∈ F(X × Y ), P ∈ F(Y × Z) and Q ∈ F(X × Z).
Theorem 3.23 can be generalized as follows.

Theorem 3.35. The following inequalities hold true:
(i) P ≤ R−1 �T (R ◦T P );
(ii) R ◦T (R−1 �T Q) ≤ Q;
(iii) R ≤ (P �T (R ◦T P )−1)−1;
(iv) (P �T Q

−1)−1 ◦T P ≤ Q.

Proof. First let us observe that since →T is a fuzzy implication, it is de-
creasing in the first argument and increasing in the second argument.

(i) Using Proposition 3.32, (ii) we have for y ∈ Y and z ∈ Z,

R−1 �T (R ◦T P )(y, z) =
∧
x∈X

R−1(y, x)→T

∨
t∈Y

R(x, t)TP (t, z) ≥

≥
∧
x∈X

R(x, y)→T (R(x, y)TP (y, z)) ≥
∧
x∈X

P (y, z) = P (y, z).

(ii) From Proposition 3.18, (i) we obtain

R ◦T (R−1 �T Q)(x, z) =
∨
y∈Y

R(x, y)T (
∧
t∈X

R−1(y, t)→T Q(t, z)) ≤

≤
∨
y∈Y

R(x, y)T (R(x, y)→T Q(x, z)) ≤
∨
y∈Y

Q(x, z) = Q(x, z).

(iii), (iv) The proofs of (iii) and (iv) are similar to those of (i), (ii).

Theorem 3.36. (Sanchez [129], Miyakoshi-Shimbo [112]) (i) Consider the
equation R◦T P = Q with unknown P. The equation has solutions if and only
if R−1 �T Q is a solution and in this case it is the greatest solution of this
equation.

(ii) Consider the equation R ◦T P = Q with unknown R. The equation has
solutions if and only if (P � Q−1)−1 is a solution and in this case it is the
greatest solution of this equation.

Proof. The proof of this theorem is similar to that of Theorem 3.24.
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Theorem 3.37. The following inequalities hold true:
(i) (Q �T P

−1) �T P ≥ Q;
(ii) (R �T P ) �T P

−1 ≥ R;
(iii) R−1 ◦T (R �T P ) ≤ P ;
(iv) R �T (R−1 ◦T Q) ≥ Q.

Proof. (i) Using Proposition 3.32, (iii), and taking into account that →T is
decreasing in its first argument we have

(Q �T P
−1) �T P (x, z) =

∧
y∈Y

(
∧
t∈Z

Q(x, t)→T P (y, t))→T P (y, z) ≥

≥
∧
y∈Y

(Q(x, z)→T P (y, z))→T P (y, z) ≥
∧
y∈Y

Q(x, z) = Q(x, z).

(ii), (iii), (iv) The proofs of these properties are similar to the previous
reasoning.

Theorem 3.38. (Miyakoshi-Shimbo [112]) (i) Consider the equation R �T
P = Q with unknown R. The equation has solutions if and only if Q �T P

−1

is a solution and in this case it is the greatest solution of this equation.
(ii) Consider the equation R�T P = Q with unknown P. The equation has

solutions if and only if R−1 ◦T Q is a solution and in this case it is the least
solution of this equation.

Proof. The proof follows the ideas in the proof of Miyakoshi-Shimbo
Theorem 3.27.

3.9 Problems

1. Consider the fuzzy relations

R =

⎛
⎜⎜⎝

0.1 0.4 0.2 0.5
0 0.2 0.3 0.4
0.4 0.5 0.2 0.1
1 0.3 0.3 0

⎞
⎟⎟⎠

and

Q =

⎛
⎜⎜⎝

0.3 0.3 0.2 0.1
0.6 0.5 0 0.2
0.2 0.1 0.4 0.1
0.4 0.1 0.2 0.5

⎞
⎟⎟⎠ .

Calculate R ◦Q, R •Q, R � Q, R � Q.
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2. Given

R =

⎛
⎝ 0.1 0.4 0.2 0.4

0.4 0.5 0.2 0.1
0.8 0.3 0.6 0.2

⎞
⎠

and

Q =

⎛
⎝ 0.3 0.1 0.2

0.5 0.1 0.5
0.3 0.2 0.6

⎞
⎠

decide whether the equation R◦P = Q does or does not have a solution.
If the answer is yes, find the greatest solution.

3. Given

R =

⎛
⎝ 0.1 0.4 0.2 0.4

0.4 0.5 0.2 0.1
0.8 0.3 0.6 0.2

⎞
⎠

and

Q =

⎛
⎝ 0.3 0.1 0.2

0.5 0.1 0.5
0.3 0.2 0.6

⎞
⎠

decide whether the equation R�P = Q does or does not have a solution.
If the answer is yes, find the least solution.

4. Prove Proposition 3.18, (iv) and (vii)

5. Prove Proposition 3.20.

6. Prove Theorem 3.23, (iv)

7. Prove Theorem 3.24, (ii)

8. Prove Theorem 3.26, (ii), (iii), (iv).

9. Prove Proposition 3.31.

10. Prove Proposition 3.34.

11. Consider the fuzzy relational equation R•P = Q. Find a solvability con-
dition and find a solution of this equation, supposing that it is solvable.

12. Let R ∈ F(X ×X) be a fuzzy relation. Let us consider the eigen fuzzy
sets equation R ◦A = A, with A ∈ F(X). Prove that the equation has a
least and a greatest solution and these can be calculated as

Al = lim
n→∞

Rn ◦ ∅.

and
Ag = lim

n→∞
Rn ◦X.

Hint: Use Tarski-Knaster and Kleene’s fixed point theorems (see
appendix).
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13. Let R ∈ F(X ×X) be a fuzzy relation. Let us consider the eigen fuzzy
sets equation R •A = A, with A ∈ F(X). Prove that the equation has a
least and a greatest solution.

14. Given R ∈ F(X × X) we consider the convex combined composition
defined as

R ∗A = λ(R ◦A) + (1− λ)(R •A),
with A ∈ F(X). Prove that the equation has a least and a greatest
solution.

15. Generalize problems 12, 13, 14 to the case of max-t-norm composition
R ◦T A, min-t-conorm R •S A and convex combined composition

R ∗T A = λ(R ◦T A) + (1− λ)(R •T A).

16. Let R ∈ F(X × X) be a fuzzy relation. Consider the eigen fuzzy sets
equation with min → composition R � A = A, A ∈ F(X). Investigate
existence and the structure of solutions of this equation.
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Fuzzy Numbers

4.1 Definition of Fuzzy Numbers

Fuzzy numbers generalize classical real numbers and roughly speaking a fuzzy
number is a fuzzy subset of the real line that has some additional properties.
Fuzzy numbers are capable of modeling epistemic uncertainty and its prop-
agation through calculations. The fuzzy number concept is basic for fuzzy
analysis and fuzzy differential equations, and a very useful tool in several
applications of fuzzy sets and fuzzy logic.

Definition 4.1. (see e.g., Diamond-Kloeden [44]) Consider a fuzzy subset
of the real line u : R → [0, 1]. Then u is a fuzzy number if it satisfies the
following properties:

(i) u is normal, i.e. ∃x0 ∈ R with u(x0) = 1;
(ii) u is fuzzy convex (i.e. u(tx + (1 − t)y) ≥ min{u(x), u(y)}, ∀t ∈ [0, 1],

x, y ∈ R);
(iii) u is upper semicontinuous on R (i.e. ∀ε > 0 ∃δ > 0 such that u(x)−

u(x0) < ε, |x− x0| < δ).
(iv) u is compactly supported i.e., cl{x ∈ R; u(x) > 0} is compact, where

cl(A) denotes the closure of the set A.
Let us denote by RF the space of fuzzy numbers.

Example 4.2. The fuzzy set u : R→ [0, 1],

u(x) =

⎧⎪⎪⎨
⎪⎪⎩

0 if x < 0
x3 if 0 ≤ x < 1

(2 − x)3 if 1 ≤ x ≤ 2
0 if x ≥ 2

is a fuzzy number. See figure 4.1.

B. Bede: Mathematics of Fuzzy Sets and Fuzzy Logic, STUDFUZZ 295, pp. 51–64.
DOI: 10.1007/978-3-642-35221-8_4 c© Springer-Verlag Berlin Heidelberg 2013
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Fig. 4.1 Example of a fuzzy number and its level sets

Fig. 4.2 Example of a fuzzy number and its core

Example 4.3. The fuzzy set

u(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if x < 0
x3 if 0 ≤ x ≤ 1
1 if 1 ≤ x ≤ 1.5

(2.5− x)3 if 1.5 < x ≤ 2.5
0 if x > 2.5

in Figure 4.2 is a fuzzy number as well.

Example 4.4. The fuzzy set represented in Figure 4.3 is not a fuzzy number
since it is not fuzzy convex.
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Fig. 4.3 Example of a fuzzy set that is not a fuzzy number

Fig. 4.4 A singleton fuzzy number

Remark 4.5. Obviously any real number is also a fuzzy number, i.e., R ⊂
RF . Here R ⊂ RF is understood as

R =
{
χ{x};x is usual real number

}
.

χ{x} is a singleton fuzzy number for any given real number x ∈ R and it can
be identified with x ∈ R (see Figure 4.4)

Also, fuzzy numbers generalize closed intervals. Indeed, if I denotes the set
of all real intervals, then I ⊂ RF , where
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Fig. 4.5 Example of a closed interval interpreted as a fuzzy number

I =
{
χ[a,b]; [a, b] is a usual real interval

}
(see Figure 4.5).

Definition 4.6. For 0 < r ≤ 1, we denote

ur = {x ∈ R;u(x) ≥ r}

and

u0 = cl{x ∈ R; u(x) > 0}.
Then ur will be called the r−level set of the fuzzy number u. The 1-level
set is called the core of the fuzzy number, while the 0-level set is called the
support of the fuzzy number.

The following Theorem is known as the Stacking Theorem.

Theorem 4.7. (Stacking Theorem, Negoita-Ralescu [115]) If u ∈ RF is a
fuzzy number and ur are its level-sets then:

(i) ur is a closed interval ur = [u−r , u
+
r ] , for any r ∈ [0, 1];

(ii) If 0 ≤ r1 ≤ r2 ≤ 1, then ur2 ⊆ ur1 .
(iii) For any sequence rn which converges from below to r ∈ (0, 1] we have

∞⋂
n=1

urn = ur.

(iv) For any sequence rn which converges from above to 0 we have

cl

( ∞⋃
n=1

urn

)
= u0.
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Proof. (i) Let us first remark that all the sets ur are nonempty and bounded
since u1 �= ∅ and because u0 is bounded (a compact set in R is closed and
bounded). Let u be a fuzzy number and r ∈ (0, 1]. If a, b ∈ ur, then u(a) ≥ r
and u(b) ≥ r. Then from the fuzzy convexity, if x ∈ [a, b] we get

u(x) ≥ min{u(a), u(b)} = r,

i.e., x ∈ [a, b]. As a conclusion u contains any closed interval [a, b] together
with the points [a, b] this means that ur is convex. All is left to be proven is
that ur is closed. Upper semicontinuity implies that if u(x0) < r then there is
an open intervalW with x0 ∈W such that u(x) < r, ∀x ∈ W. It immediately
follows that the set {x|u(x) < r} is open and then it has a closed complement,
i.e., ur is closed. On the real line, closed convex sets are closed intervals so
ur is a closed interval for any r ∈ [0, 1].

(ii) It is easy to check that (ii) holds. Indeed, if 0 < r1 ≤ r2 ≤ 1 then if
x ∈ ur2 then u(x) ≥ r2 ≥ r1 and so, x ∈ ur1 . If r1 = 0 or r2 = 0 then the
proof of (ii) is immediate.

(iii) Let rn ↗ r be non-decreasing. Then urn ⊆ urn−1 , is a descending
sequence of closed intervals urn = [u−rn , u

+
rn ]. Then it is easy to see that

u−rn , u
+
rn converge, in which case let u−rn → a, u+rn → b and

[a, b] =

∞⋂
n=1

urn .

We have to prove that ur = [a, b]. For a given x ∈ [a, b] we have

u(x) ≥ min{u(a), u(b)}.
So, it is enough to show that u(a) ≥ r and u(b) ≥ r. Suppose that u(a) < r,
then since u is upper semicontinuous, there is a neighborhood W of a, such
that u(x) < r. This implies the existence of a rank N ∈ N with u(u−rn) < r for
any n ≥ N . Then since rn → r we obtain that there exists n ∈ N such that
u(u−rn) < rn which is a contradiction. Then it follows that u(a) ≥ r. Similarly
we can show that u(b) ≥ r so, u(x) ≥ r and then [a, b] ⊆ ur. Form (ii), we
have ur ⊆ urn and it implies ur ⊆ [a, b]. Then finally we get ur = [a, b], i.e.,

∞⋂
n=1

urn = ur.

(iv) For (iv) we observe that the inclusion

∞⋃
n=1

urn ⊆ u0

is straightforward. Since u0 is closed we get

cl

( ∞⋃
n=1

urn

)
⊆ u0
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Reciprocally, x ∈ u0 implies that there is a sequence

xn ∈ {x ∈ R; u(x) > 0}

that converges to x. Without loss of generality we may assume that

xn ∈ urn ⊆
∞⋃

n=1

urn .

Then we obtain

x ∈ cl
( ∞⋃

n=1

urn

)
.

The two inclusions lead to the required conclusion.

The endpoints of the r-level set ur are given by u−r = inf ur and u
+
r = supur.

Then also ur = [u−r , u
+
r ] . (See Figure 4.1).

4.2 Characterization Theorems for Fuzzy Numbers

The following theorem is Negoita-Ralescu characterization theorem, and it is
the reciprocal of the stacking theorem.

Theorem 4.8. (Negoita-Ralescu characterization theorem, Negoita-
Ralescu [115]) Given a family of subsets {Mr : r ∈ [0, 1]} that satisfies con-
ditions (i)-(iv)

(i) Mr is a non-empty closed interval for any r ∈ [0, 1];
(ii) If 0 ≤ r1 ≤ r2 ≤ 1, we have Mr2 ⊆Mr1 ;
(iii) For any sequence rn which converges from below to r ∈ (0, 1] we have

∞⋂
n=1

Mrn =Mr;

(iv) For any sequence rn which converges from above to 0 we have

cl

( ∞⋃
n=1

Mrn

)
=M0.

Then there exists a unique u ∈ RF , such that ur =Mr, for any r ∈ [0, 1].

Proof. Let Mr fulfill the properties (i)-(iv). Then by defining

u(x) =

{
0 if x /∈M0

sup{r ∈ [0, 1]|x ∈Mr} if x ∈M0
,
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we obtain a fuzzy number (i.e., u is a normal, fuzzy convex, upper semicon-
tinuous and compactly supported fuzzy set). The level sets of u are ur =Mr,
r ∈ (0, 1] and u0 ⊆M0. Now we prove these statements step by step.

“Normal:” Since M1 is nonempty, for x ∈M1 we have u(x0) = 1, for some
x0 ∈M0, so u is normal.

“Fuzzy Convex:” In order to prove fuzzy convexity we consider now a fixed
element in a fixed interval x ∈ [a, b] ⊆M0. Suppose that

u(a) = ra = sup{r|a ∈Mr}

and
u(b) = rb = sup{r|b ∈Mr}.

Suppose that ra ≤ rb. Then from (ii) we have Mrb ⊆Mra so b ∈Mrb ⊆Mra .
Now since both a, b ∈Mra and since Mra are closed intervals it follows that
[a, b] ⊆Mra . Then

u(x) ≥ ra = u(a) = min{u(a), u(b)}.

A symmetric reasoning can be followed in the case when ra ≥ rb.
“ur = Mr” Now let us prove that ur = {x|u(x) ≥ r} = Mr by double

inclusion. Let r0 ∈ (0, 1] be fixed and x ∈Mr0 . Then r0 ∈ {r|x ∈Mr}. Then

u(x) = sup{r|x ∈Mr} ≥ r0
and this implies x ∈ ur0. So, we have obtainedMr0 ⊆ ur0 . For the symmetric
inclusion we consider x ∈ ur0, i.e., u(x) ≥ r0. Now let us suppose that strict
inequality u(x) > r0 holds. Then sup{r|x ∈Mr} > r0 and there exists r1 ≥ r0
with x ∈ Mr1 . Since Mr1 ⊆ Mr0 according to (ii), we obtain x ∈ Mr0 which
completes the reasoning in this case.

If we suppose
u(x) = r0 = sup{r|x ∈Mr}

then there exists a sequence rn that converges from below to r0 such that
x ∈Mrn , n ≥ 1. From (iii) we have

x ∈
∞⋂
n=1

Mrn =Mr0 .

As a conclusion we obtain ur0 ⊆Mr0 . So, ur0 =Mr0 .
“Upper semicontinuity:” Since ur = Mr are closed according to (i) we

have the complement of ur, that is R \ ur = {x|u(x) < r} an open set. This
implies that u is upper semicontinuous.

“Compact support:” It is easy to observe that

u0 = cl{x|u(x) > 0} = cl

∞⋃
n=1

{x|u(x) ≥ rn} = cl

∞⋃
n=1

Mrn
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is closed and we have u0 =M0. Finally we obtain that u0 is a bounded subset
of the real line. Then, it is compact and the proof is complete.

The following pair of Theorems is due to Goetschel and Voxman [74] and
it gives another representation of a fuzzy number as a pair of functions that
satisfy some properties. The representation provided by this theorem is called
the LU (lower-upper) representation of a fuzzy number.

Theorem 4.9. (LU-representation, Goetschel-Voxman [74]) Let u be a fuzzy
number and let ur = [u−r , u

+
r ] = {x|u(x) ≥ r}. Then the functions u−, u+ :

[0, 1] → R, defining the endpoints of the r−level sets, satisfy the following
conditions:

(i) u−(r) = u−r ∈ R is a bounded, non-decreasing, left-continuous function
in (0, 1] and it is right-continuous at 0.

(ii) u+(r) = u+r ∈ R is a bounded, non-increasing, left-continuous function
in (0, 1] and it is right-continuous at 0.

(iii) u−1 ≤ u+1 .
Proof. For a given u ∈ RF , and given 0 ≤ r1 ≤ r2 ≤ 1, from the stacking
theorem we obtain ur2 ⊆ ur1 . Then we have

u−r1 ≤ u−r2 ≤ u−1 ≤ u+1 ≤ u+r2 ≤ u+r1 ,

∀r1, r2, 0 ≤ r1 ≤ r2 ≤ 1 which implies immediately the monotonicity prop-
erties and (iii). Left continuity at r ∈ (0, 1] follows from property (iii) of the
Stacking theorem. Indeed, let r0 ∈ (0, 1] be fixed and rn converging from be-
low to r0, i.e., rn ↑ r0. Then from the property (iii) of the Stacking Theorem
we obtain

∞⋂
n=1

urn = ur0 ,

which immediately implies u−rn → u−r0 and u+rn → u+r0 , i.e., both functions are
left continuous at arbitrary r0 ∈ (0, 1]. In order to prove right continuity at 0
we consider rn ↓ 0, a sequence that converges from above to 0. We have

u0 = cl{x|u(x) > 0} = cl
∞⋃

n=1

{x|u(x) ≥ rn} = cl

( ∞⋃
n=1

urn

)
.

Since u0 is compact then it is closed and bounded and we get u−rn → u−0 and

u+rn → u+0 , which implies right continuity at 0.

The reciprocal of the LU-representation is the Goetschel-Voxman character-
ization theorem.

Theorem 4.10. (Goetschel-Voxman [74]) Let us consider the functions u−, u+ :
[0, 1]→ R, that satisfy the following conditions:

(i) u−(r) = u−r ∈ R is a bounded, non-decreasing, left-continuous function
in (0, 1] and it is right-continuous at 0.
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(ii) u+(r) = u+r ∈ R is a bounded, non-increasing, left-continuous function
in (0, 1] and it is right-continuous at 0.

(iii) u−1 ≤ u+1 .
Then there is a fuzzy number u ∈ RF that has u−r , u

+
r as endpoints of its

r−level sets, ur.

Proof. We will prove that the sets Mr = [u−r , u
+
r ] satisfy the conditions

in Negoita-Ralescu characterization theorem and then this family of subsets
defines a fuzzy number u ∈ RF . From the monotonicity properties and from
(iii) we immediately obtain u−r1 ≤ u−r2 ≤ u−1 ≤ u+1 ≤ u+r2 ≤ u+r1 and this
implies Mr = [u−r , u

+
r ] are non-empty, closed intervals and that Mr2 ⊆ Mr1 ,

for any r1 ≤ r2. Let us consider now a sequence rn which converges from below
to r ∈ (0, 1]. Then from the left continuity properties we obtain u−rn → u−r
and u+rn → u+r and then we have

∞⋂
n=1

Mrn =Mr.

From the right continuity at 0 we obtain

cl {x ∈ R : u (x) > 0} =M0.

Then there exists u ∈ RF , such that

ur =Mr = [u−r , u
+
r ],

for any r ∈ [0, 1].

Remark 4.11. The conditions in the definition of fuzzy numbers are shown
to be too restrictive in some applications. There are several new research
directions that are generalizing, revising the fuzzy number concept in different
directions (see Fortin-Dubois-Fargier [62], Bica [29], etc). This represents an
interesting topic for further investigation.

4.3 L-R Fuzzy Numbers

The so-called L-R fuzzy numbers are considered important in the theory of
fuzzy sets. L-R fuzzy numbers, and their particular cases, as e.g., triangular
and trapezoidal fuzzy numbers, are very useful in applications.

Definition 4.12. (Dubois-Prade [50]) Let L,R : [0, 1] → [0, 1] be two con-
tinuous, increasing functions fulfilling L (0) = R (0) = 0, L (1) = R (1) = 1.
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Fig. 4.6 Example of a trapezoidal fuzzy number

Let a−0 ≤ a−1 ≤ a+1 ≤ a+0 be real numbers. The fuzzy set u : R → [0, 1] is an
L-R fuzzy number if

u (x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 if x < a−0

L
(

x−a−
0

a−
1 −a−

0

)
if a−0 ≤ x < a−1

1 if a−1 ≤ x < a+1

R
(

a+
0 −x

a+
0 −a+

1

)
if a+1 ≤ x < a+0

0 if a+0 ≤ x

.

Symbolically, we write u =
(
a−0 , a

−
1 , a

+
1 , a

+
0

)
L,R

, where [a−1 , a
+
1 ] is the core

of u, and a = a−1 − a−0 , a = a+0 − a+1 are called the left and the right spread
respectively. If u is an L-R fuzzy number then its level sets can be calculated
as

ur =
[
a−0 + L−1 (r) a, a+0 −R−1 (r) a

]
.

As a particular case, one obtains trapezoidal fuzzy numbers when the
functions L andR are linear. A trapezoidal fuzzy number u can be represented
by the quadruple (a, b, c, d) ∈ R

4, a ≤ b ≤ c ≤ d, (see Fig. 4.6)

u (t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if t < a
t−a
b−a if a ≤ t < b

1 if b ≤ t ≤ c
d−t
d−c if c < t ≤ d
0 if d < t

.

In this case the endpoints of the r-level sets are given by

u−r = a+ r (b− a)
and

u+r = d− r (d− c) .
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Fig. 4.7 Example of a triangular fuzzy number

If we have b = c in the representation (a, b, c, d), the fuzzy number is called
a triangular fuzzy number. Then a triplet (a, b, c) ∈ R

3, a ≤ b ≤ c is
sufficient to represent the fuzzy number (see Figure 4.7).

Example 4.13. Let us consider L,R : [0, 1]→ [0, 1], L(x) = R(x) = x2. Let
a−1 = a+1 = 1 and a = 1, a = 2 respectively. Then the L − R fuzzy number
determined by Definition 4.12 has the level sets

ur =
[√
r, 3− 2

√
r
]

and the shape depicted in Fig. 4.8.

We will consider in what follows other useful classes of fuzzy numbers.
A Gaussian fuzzy number has the membership degree

u (x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if x < x1 − aσl
e
− (x−x1)2

2σ2
l if x1 − aσl ≤ x < x1

e
− (x1−x)2

2σ2
r if x1 ≤ x < x1 + aσr

0 if x1 + aσr ≤ x

,

where x1 is the core of the fuzzy number, σl, σr are the left and right spreads
and a > 0 is a tolerance value. Its graph is shown in Figure 4.9. Often in
fuzzy control applications we have a→∞ in which case the fuzzy set is not
a fuzzy number since it fails to have a compact support, however it is very
useful in fuzzy control systems.



62 4 Fuzzy Numbers

Fig. 4.8 Example of an L−R fuzzy number

Fig. 4.9 Example of a Gaussian Fuzzy number

An exponential fuzzy number has the membership degree given by

u (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if x < x1 − aτl
e

x−x1
τl if x1 − aτl ≤ x < x1

e
x1−x

τr if x1 ≤ x < x1 + aτr
0 if x1 + aτr ≤ x

,

where x1 is the core of the exponential fuzzy number τl, τr are the left and
right spread of it respectively, and a represents a tolerance value. Its graph
is shown in Figure 4.10.
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Fig. 4.10 Example of an exponential fuzzy number

Remark 4.14. In some applications, to have a compact support is not im-
portant. Then we will consider fuzzy sets that are not fuzzy numbers in the
proper sense of the term, but they are very simple and useful in applications.
Moreover, if e.g. the Universe of discourse is restricted to a closed compact
interval, then all the fuzzy sets that fulfill (i), (ii) and (iii) of Definition 4.1
become fuzzy numbers. As examples of such fuzzy sets we mention fuzzy sets
with Gaussian membership function

u(x) = e−
(x−x1)2

2σ2

and fuzzy sets with exponential membership function

u(x) = e−
|x−x1|

τ .

Remark 4.15. In this section we investigated L − R fuzzy numbers, which
were based on Negoita-Ralescu characterization. Similarly L−U representa-
tion of fuzzy sets was recently investigated in several papers as e.g., Stefanini-
Sorini-Guerra[137], Stefanini[135]. Another interesting idea
within the topic of the present chapter is the problem of approximation of a
fuzzy number by trapezoidal or other types of fuzzy numbers (Grzegorzewski-
Mrówka [75], Ban-Coroianu-Grzegorzewski[11]).

4.4 Problems

1. Prove that if u is an L-R fuzzy number then its level sets are given by

ur =
[
a−0 + L−1 (r) a, a+0 −R−1 (r) a

]
, r ∈ [0, 1].
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2. In the definition of an L − R fuzzy number the functions L and R are
considered increasing L,R : [0, 1]→ [0, 1]. Considering however L,R two
decreasing functions would allow us to give an alternative definition of
the L − R fuzzy number concept. Write the membership function of an
L −R fuzzy number based on decreasing functions L,R. Find the level-
sets of the fuzzy number obtained by this definition. Show examples of
L−R fuzzy numbers of this type.

3. Write the membership function and find the level sets for a general trian-
gular fuzzy number u = (a, b, c), then use the results to find the member-
ship function and the level sets, for the particular case of the triangular
fuzzy number (2, 4, 5).

4. Write the membership function for the L-R fuzzy number in Example
4.13 and prove that its level sets are given by

ur =
[√
r, 3− 2

√
r
]
.

5. Given the sets Mr =
[
e+ er, 4e− er2

]
show that these sets define a

fuzzy number such that ur =Mr. Find the expression of the membership
function of u.

6. Set up triangular, Gaussian and exponential membership functions for
fuzzy sets that model the linguistic expression “about 100”.

7. Find an expression for the level sets of a Gaussian fuzzy number.

8. Find an expression for the level sets of an exponential fuzzy number.

9. Consider L(x) = R(x) = xa, a > 0. Write the membership function and
find the level sets of the L−R fuzzy number based on these functions.

10. Find a function of the form a+b cos(cx+d) such that L,R will be correct
shape functions for an L − R fuzzy number and additionally, such that
the L − R fuzzy numbers that we obtain will have smooth membership
functions. Write the membership function and the level sets of the L−R
fuzzy number obtained.
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Fuzzy Arithmetic

5.1 Zadeh’s Extension Principle

Often, we have to perform operations with uncertain parameters. In this
case we will have to define the fuzzy counterparts of the classical operations
between real numbers.

We begin our discussion on fuzzy arithmetic with Zadeh’s extension prin-
ciple. It serves for extending a real-valued function into a corresponding fuzzy
function.

Definition 5.1. (Zadeh’s Extension Principle, Zadeh [156]) Given a func-
tion f : X → Y, where X and Y are crisp sets, it can be extended to a
function F : F(X)→ F(Y ) (a fuzzy function) such that v = F (u), where

v(y) =

{
sup{u(x) : x ∈ X, f(x) = y}, when f−1(y) �= ∅

0, otherwise
.

We call the function F as Zadeh’s extension of f .

Remark 5.2. Zadeh’s extension is well defined for any fuzzy set u ∈ F(X).
Indeed, when f−1(y) �= ∅, the set {u(x) : x ∈ X, f(x) = y} is non-empty and
bounded and so, it has a least upper bound.

Naturally raises the question whether a fuzzy number in the input generates
a fuzzy number in the output.

Theorem 5.3. (Nguyen [116], Barros-Bassanezi-Tonelli [12], Fullér-
Keresztfalvi [65]) Given a continuous f : R→ R, it can be extended to a fuzzy

B. Bede: Mathematics of Fuzzy Sets and Fuzzy Logic, STUDFUZZ 295, pp. 65–78.
DOI: 10.1007/978-3-642-35221-8_5 c© Springer-Verlag Berlin Heidelberg 2013
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function F : RF → RF , and given u ∈ RF we can determine v = F (u) ∈ RF
by its level sets vr = F (ur), ∀r ∈ [0, 1], i.e., we have vr = [v−r , v

+
r ], where

v−r = inf{f(x)|x ∈ ur}
v+r = sup{f(x)|x ∈ ur}.

ur, r ∈ [0, 1] denote the level sets of u.

Proof. First let us prove that if ur and vr are level sets of the fuzzy sets u
and v = F (u) respectively then vr = f(ur).

The case f−1(y) = ∅ is obvious. If f−1(y) �= ∅ we have v = F (u) given as

v(y) = sup{u(x)|x ∈ X, f(x) = y}.

If x ∈ ur then u(x) ≥ r and it implies also that v(y) ≥ r and so y = f(x) ∈ vr,
i.e., f(ur) ⊆ vr. On the other hand if v(y) ≥ r then for any ε > 0 there exists
an x ∈ f−1(y) such that

v(y)− ε < u(x)

which implies u(x) ≥ r and so, we obtain that Zadeh’s extension satisfies
vr ⊆ f(ur) so finally vr = f(ur). So, if vr = [v−r , v

+
r ], we obtain

v−r = inf{f(x)|x ∈ ur}
v+r = sup{f(x)|x ∈ ur}.

Let us prove now that if ur are level sets of a fuzzy number u ∈ RF then
vr = f(ur) define level sets of a fuzzy number v ∈ RF , v = F (u). For
this aim we will prove that vr satisfy the hypotheses of the Negoita-Ralescu
characterization. First we observe that since ur are compact convex intervals
in R and since f is continuous, we get vr = f(ur) compact convex. This
means that vr is a closed interval for any r ∈ [0, 1].

If r ≤ s then we have us ⊆ ur. This implies

vs = f(us) ⊆ f(ur) = vr.

Let us consider the sequence rn that converges from below to r. Then

∞⋂
n=1

urn = ur.

We will prove that
∞⋂

n=1

vrn = vr,

i.e.,
∞⋂

n=1

f(urn) = f(ur)
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which is equivalent to

∞⋂
n=1

f(urn) = f

( ∞⋂
n=1

urn

)
.

Let

y ∈ f
( ∞⋂

n=1

urn

)
.

Then there exist an x ∈ urn , ∀n = 1, 2, ... such that y = f(x). Then y ∈
f(urn), ∀n = 1, 2, ... , i.e.,

y ∈
∞⋂
n=1

f(urn).

On the other hand let

y ∈
∞⋂
n=1

f(urn).

Then y ∈ f(urn), ∀n = 1, 2, ... Then there exists an xn ∈ urnwith y =
f(xn), ∀n = 1, 2, ... Since xn is a bounded sequence and since xn ∈ u0
with u0 compact, we get the existence of a sub-sequence xnk

, k = 1, 2, ...
that converges. Let x = limk→∞ xnk

. It is easy to see that x ∈ ur. Indeed,
ur ⊆ urn , ∀n = 1, 2, ... and if we suppose that x /∈ ur we get that there exists
k such that x /∈ uk. Taking into account that x = limk→∞ xnk

we obtain a
contradiction.

Combining the two inclusions we obtain

∞⋂
n=1

vrn = vr.

Let us consider the sequence rn that converges from above to 0. Then it is
known that

cl

( ∞⋃
n=1

urn

)
= u0.

It is easy to check that since f is continuous we have f(cl(A)) ⊆ cl(f(A)),
and then

v0 = f

(
cl

( ∞⋃
n=1

urn

))
⊆ cl

( ∞⋃
n=1

f(urn)

)
= cl

( ∞⋃
n=1

vrn

)
,

which immediately implies

v0 = cl

( ∞⋃
n=1

vrn

)
,
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and so, the hypotheses of Negoita-Ralescu characterization theorem are ful-
filled. Using the theorem we have proved that vr are level sets of a fuzzy
number, i.e., v ∈ RF .

The two dimensional case of Zadeh’s extension principle is very important
because it allows us to extend operations between real numbers to the fuzzy
case.

Definition 5.4. In the case of two variables (f : X × Y → Z ) the function
can be extended to F : F(X)×F(Y )→ F(Z) such that w = F (u, v), where

w(z) =

{
sup

x∈X,y∈Y
{min{u(x), v(y)}f(x, y) = z} if f−1(z) �= ∅

0, otherwise
.

Remark 5.5. We should exercise however caution, because there are pitfalls
as it was shown in Huang [78]. Namely, an extension principle based on
compact convex subsets of R2 is not possible. The following correct extension
result allows us to extend real operations to the fuzzy number’s case.

Theorem 5.6. (Nguyen [116], Barros-Bassanezi-Tonelli [12], Fullér-
Keresztfalvi [65]) If we assume that f : R × R → R, continuous, then we
can extend it to F : RF × RF → RF such that w = F (u, v) has its level sets

wr = {f(x, y)|x ∈ ur, y ∈ vr}.

for any u, v ∈ RF , i.e. if wr = [w−
r , w

+
r ] then

w−
r = inf{f(x, y)|x ∈ ur, y ∈ vr}

w+
r = sup{f(x, y)|x ∈ ur, y ∈ vr}.

Proof. First let us prove that if ur, vr and wr are level sets of the fuzzy sets
u, v and w = F (u, v) respectively then wr = f(ur, vr).

The case f−1(z) = ∅ is obvious. If f−1(z) �= ∅ we have w = F (u, v) given
as

w(y) = sup{min{u(x), v(y)} : x ∈ X, y ∈ Y, f(x, y) = z}.
If x ∈ ur, y ∈ vr then u(x) ≥ r, v(y) ≥ r and for z = f(x, y) it implies also
that w(z) ≥ r i.e., f(ur, vr) ⊆ wr. On the other hand if w(y) ≥ r then for
any ε > 0 there exists an (x, y) ∈ f−1(z) such that

w(z)− ε < u(x) and w(z)− ε < v(y)

which implies u(x) ≥ r and v(y) ≥ r so, we obtain wr = f(ur, vr). From now
on the reasoning is similar to that of the preceding result.

Since ur, vr are compact convex intervals in R and since f is continuous,
we get wr = f(ur, vr) compact convex.
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If r ≤ s then we have us ⊆ ur and vs ⊆ vr. This implies

ws = f(us, vs) ⊆ f(ur, vr) = wr.

Let now rn be a sequence that converges from below to r. Then the relations

∞⋂
n=1

wrn = wr

can be obtained in a similar way as in the previous theorem. Finally, if rn
converges from above to 0 we get

w0 = cl

( ∞⋃
n=1

wrn

)
,

and so, the hypotheses of Negoita-Ralescu characterization theorem are ful-
filled and finally we obtain w ∈ RF .

5.2 The Sum and Scalar Multiplication

For u, v ∈ RF and λ ∈ R, based on the extension principle, one can define
the sum of two fuzzy numbers u + v and the multiplication between a real
and a fuzzy number λ · u. Then by Theorem 5.6, since the sum and scalar
multiplication are continuous functions, we obtain,

(u+ v)r = {x+ y|x ∈ ur, y ∈ vr} = ur + vr,

(λ · u)r = {λx|x ∈ ur} = λur, ∀r ∈ [0, 1] ,

where ur + vr is the sum of two intervals (as subsets of R), and λur is the
usual product of a number and a subset of R. So, fuzzy arithmetic extends
interval arithmetic.

Example 5.7. Let u = (1, 2, 3), v = (2, 3, 5) be triangular fuzzy numbers
then u+ v = (3, 5, 8). Also we have 2u = (2, 4, 6) and −2v = (−10,−6,−4).
The following Theorem deals with the algebraic properties of RF .

Theorem 5.8. (Anastassiou-Gal [5], Dubois-Prade [50], Gal [69]) (i) The
addition of fuzzy numbers is associative and commutative i.e.,

u+ v = v + u

and
u+ (v + w) = (u+ v) + w,

∀u, v, w ∈ RF .
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(ii) The singleton fuzzy set 0 = X{0} ∈ RF is the neutral element w.r.t. +
i.e.,

u+ 0 = 0 + u = u,

for any u ∈ RF .
(iii) None of u ∈ RF \ R has an opposite in RF (w.r.t. +).
(iv) For any a, b ∈ R with a · b ≥ 0 and any u ∈ RF , we have

(a+ b) · u = (a · u) + (b · u) .
For general a, b ∈ R, this property does not hold.

(v) For any λ ∈ R and u, v ∈ RF , we have

λ · (u+ v) = λ · u+ λ · v.
(vi) For any λ, μ ∈ R and any u ∈ RF , we have

(λ · μ) · u = λ · (μ · u)
Proof. The properties are easy to be verified. Also, it is easy to see that
(2−1)(1, 2, 3) = (1, 2, 3), while 2(1, 2, 3)− (1, 2, 3) = (−1, 2, 5), where u−v =
u+ (−1)v.
As a conclusion from the previous Theorem we obtain that the space of fuzzy
numbers is not a linear space.

5.3 The Product of Two Fuzzy Numbers

The product w = u · v of fuzzy numbers u and v, is defined (see e.g. Hanss
[77]) based on Zadeh’s extension principle. Using again Theorem 5.6 we have
it defined by its endpoints as

w−
r = inf{x · y|x ∈ ur, y ∈ vr}

w+
r = sup{x · y|x ∈ ur, y ∈ vr}.

The product attains its extrema at the corners of its domain. Then,

(u · v)−r = min{u−r v−r , u−r v+r , u+r v−r , u+r v+r }
and

(u · v)+r = max{u−r v−r , u−r v+r , u+r v−r , u+r v+r }.
Example 5.9. As an example, consider u = (0, 2, 4, 6) and v = (2, 3, 8).
Then the endpoints if the level sets of u · v are

(u · v)−r = 2r · (r + 2)

(u · v)+r = (6− 2r) · (8 − 5r)

which leads (u·v)1 = [6, 12], (u·v)0 = [0, 48], and membership function shown
in Figure 5.1.
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Fig. 5.1 Product of two fuzzy numbers

The following Theorem discusses the algebraic properties of RF related to
the multiplication.

Theorem 5.10. (i) The singleton fuzzy set 1 = χ{1} ∈ RF is the neutral
element w.r.t. · i.e., u · 1 = 1 · u = u, for any u ∈ RF .

(ii) None of u ∈ RF \ R has an inverse in RF (w.r.t. ·).
(iii) For any u, v, w ∈ RF we have

((u+ v) · w)r ⊆ (u · w)r + (v · w)r, ∀r ∈ [0, 1],

and, in general, distributivity does not hold.
(v) For any u, v, w ∈ RF are such that none of the supports of u, v, w does

not contain 0, we have

u · (v · w) = (u · v) · w .

Proof. The properties are easily verified. Let us prove (iii). From Theorem
5.6 we have

((u+ v) · w)−r = min{(u−r + v−r
) · w−

r ,
(
u−r + v−r

)
·w+

r ,
(
u+r + v+r

) · w−
r ,

(
u+r + v+r

) · w+
r }

≥ min{u−r · w−
r , u

−
r · w+

r , u
+
r · w−

r , u
+
r · w+

r }
+min{v−r · w−

r , v
−
r · w+

r , v
+
r · w−

r , v
+
r · w+

r },
which combined with the symmetric inequality leads to

((u+ v) · w)r ⊆ (u · w)r + (v · w)r, ∀r ∈ [0, 1].
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Zadeh’s extension based product has certain disadvantages. The most impor-
tant one is that the product of two triangular or trapezoidal fuzzy numbers is
not triangular trapezoidal, etc. To improve on this aspect the cross product
of fuzzy numbers was proposed in [8], [9] and [10].

We will say in this following discussion that a fuzzy number is positive if
for the lower endpoint of its core we have w−

1 ≥ 0. Also we call a fuzzy number
negative if w+

1 ≤ 0. Let us denote by R
∗
F the set of positive or negative fuzzy

numbers, i.e.,
R

∗
F = {w ∈ RF |0 /∈ int(w1)},

where int(w1) denotes the set of interior points of w1.

Proposition 5.11. (Ban-Bede [8], [9], Bede-Fodor [17]) If u and v are pos-
itive fuzzy numbers, then w = u� v defined by wr = [w−

r , w
+
r ], where

w−
r = u−r v

−
1 + u−1 v

−
r − u−1 v−1

and
w+

r = u+r v
+
1 + u+1 v

+
r − u+1 v+1 ,

for every r ∈ [0, 1], is a positive fuzzy number.

Proof. We have

w+
r − w−

r =
(
u+r − u+1

)
v+1 +

(
u−1 − u−r

)
v−1

+u+1 v
+
r − u−1 v−r ≥ 0,

for every r ≥ 0, and so wr = [w−
r , w

+
r ], is a closed interval. This verifies (i)

in Theorem 4.8.
Let us consider r1, r2 ∈ [0, 1] , r1 ≤ r2. Because ur2 ⊆ ur1 and vr2 ⊆ vr1 we

obtain
w−

r1 = u−r1v
−
1 + u−1 v

−
r1 − u−1 v−1

≤ u−r2v−1 + u−1 v
−
r2 − u−1 v−1 = w−

r2

and
w+

r1 = u+r1v
+
1 + u+1 v

+
r1 − u+1 v+1

≤ u+r2v+1 + u+1 v
+
r2 − u+1 v+1 = w+

r2

which implies (ii) of Theorem 4.8.
Let us consider (rn)n∈N converging increasingly to r ∈ [0, 1]. The condi-

tions in Theorem 4.8 imply

u−rnv
−
1 + u−1 v

−
rn − u−1 v−1 ↘ u−r v

−
1 + u−1 v

−
r − u−1 v−1

and
u+rnv

+
1 + u+1 v

+
rn − u+1 v+1 ↗ u+r v

+
1 + u+1 v

+
r − u+1 v+1 .

such that we obtain (iii) of Theorem 4.8. The proof of (iv) is similar to (iii).
The conclusion of the Theorem 4.8 is that the level sets wr define a fuzzy
number.
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Proposition 5.12. Let u and v two fuzzy numbers.
(i) If u is positive and v is negative then

u� v = − (u� (−v))
is a negative fuzzy number.

(ii) If u is negative and v is positive then

u� v = − ((−u)� v)
is a negative fuzzy number.

(iii) If u and v are negative then

u� v = (−u)� (−v)
is a positive fuzzy number.

Proof. It is left to the reader as an exercise.

Definition 5.13. (Ban-Bede [8]) The binary operation on R
∗
F introduced as

above is called the cross product of fuzzy numbers.

The cross product is defined for any fuzzy numbers in

R
∧
F = {u ∈ R

∗
F ; there exists an unique x0 ∈ R such that u (x0) = 1} ,

therefore it is well defined for triangular fuzzy numbers.

Example 5.14. The cross product of two positive triangular fuzzy numbers
u = (a1, b1, c1) and v = (a2, b2, c2) is

u� v = (a1b2 + a2b1 − b1b2, b1b2, b1c2 + b2c1 − b1c1).
For example if u = (2, 3, 4) and v = (3, 4, 6) is

u� v = (5, 12, 22).

5.4 Difference of Fuzzy Numbers

The standard difference induced by Zadeh’s extension principle, has the prop-
erty u − u �= 0. This is a shortcoming in some theoretical results and appli-
cations of fuzzy numbers. To avoid this shortcoming several new differences
were proposed.

Definition 5.15. (Hukuhara [79], Puri-Ralescu [123]) The Hukuhara differ-
ence (H-difference �H) is defined by

u�H v = w ⇐⇒ u = v + w,

being + the standard fuzzy addition.
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If u�H v exists, its α− cuts are

[u�H v]α = [u−α − v−α , u+α − v+α ].

It is easy to verify that u�H u = 0 for any fuzzy numbers u, but as we have
earlier discussed u− u �= 0.

The Hukuhara difference rarely exists, so several alternatives and general-
izations were proposed as e.g. the generalized Hukuhara differentiability.

Definition 5.16. (Stefanini [136], Stefanini-Bede [141]) Given two fuzzy
numbers u, v ∈ RF , the generalized Hukuhara difference (gH-difference for
short) is the fuzzy number w, if it exists, such that

u�gH v = w ⇐⇒
{

(i) u = v + w
or (ii) v = u− w .

In terms of α-cuts we have

Proposition 5.17. For any u, v ∈ RF we have

[u�gH v]α = [min{u−α − v−α , u+α − v+α },max{u−α − v−α , u+α − v+α }].

Proof. The proof is left to the reader as an exercise.

The level-wise expression that we have obtained is the interval arithmetic
proposed in Markov [108], [109].

The generalized Hukuhara difference exists in many more situations than
the usual Hukuhara difference, but it does not always exist. We consider the
following generalized difference (g-difference) that presents some advantages.

Definition 5.18. (Stefanini [136], Bede-Stefanini [27])The generalized dif-
ference (g-difference for short) of two fuzzy numbers u, v ∈ RF is given by its
level sets as

[u�g v]α = cl
⋃
β≥α

([u]β �gH [v]β), ∀α ∈ [0, 1],

where the gH-difference �gH is with interval operands [u]β and [v]β and it is
well defined in this case.

Proposition 5.19. (Bede-Stefanini [27]) The g-difference is given by the
expression

[u�g v]α =

[
inf
β≥α

min{u−β − v−β , u+β − v+β }, sup
β≥α

max{u−β − v−β , u+β − v+β }
]
.
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Proof. Let α ∈ [0, 1] be fixed. We observe that for any β ≥ α we have

[u]β �gH [v]β =
[
min{u−β − v−β , u+β − v+β },max{u−β − v−β , u+β − v+β }

]

⊆
[
inf
λ≥β

min{u−λ − v−λ , u+λ − v+λ }, sup
λ≥β

max{u−λ − v−λ , u+λ − v+λ }
]

and it follows that
cl

⋃
β≥α

([u]β �gH [v]β)

⊆
[
inf
β≥α

min{u−β − v−β , u+β − v+β }, sup
β≥α

max{u−β − v−β , u+β − v+β }
]

Let us consider now
cl

⋃
β≥α

([u]β �gH [v]β)

= cl
⋃
β≥α

[
min{u−β − v−β , u+β − v+β },max{u−β − v−β , u+β − v+β }

]
.

For any n ≥ 1, there exist

an ∈ {u−β − v−β , u+β − v+β : β ≥ α}
such that

inf
β≥α

min{u−β − v−β , u+β − v+β } > an − 1

n
.

Also there exist
bn ∈ {u−β − v−β , u+β − v+β : β ≥ α}

such that

sup
β≥α

max{u−β − v−β , u+β − v+β } < bn +
1

n
.

We have
cl

⋃
β≥α

([u]β �gH [v]β) ⊇ [an, bn], ∀n ≥ 1

and we obtain

cl
⋃
β≥α

([u]β �gH [v]β) ⊇
⋃
n≥1

[an, bn] ⊇
(
lim
n→∞

an, lim
n→∞

bn

)

and finally

cl
⋃
β≥α

([u]β �gH [v]β)

⊇
[
inf
β≥α

min{u−β − v−β , u+β − v+β }, sup
β≥α

max{u−β − v−β , u+β − v+β }
]
.
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The conclusion
[
inf
β≥α

min{u−β − v−β , u+β − v+β }, sup
β≥α

max{u−β − v−β , u+β − v+β }
]

= cl
⋃
β≥α

([u]β �gH [v]β)

of the proposition follows.

Proposition 5.20. For any fuzzy numbers u, v ∈ RF the g-difference u�g v
exists and it is a fuzzy number.

Proof. According to the previous result, if we denote w− = (u�g v)
−

and

w+ = (u�g v)
+ we have

w−(α) = inf
β≥α

min{u−β − v−β , u+β − v+β }

≤ w+(α) = sup
β≥α

max{u−β − v−β , u+β − v+β }.

Obviously w− is bounded and non-decreasing while w+ is bounded non-
increasing. Also, w−, w+ are left continuous on (0, 1], since u−− v−, u+− v+
are left continuous on (0, 1] and they are right continuous at 0 since so are
the functions u− − v−, u+ − v+.

Example 5.21. Consider the trapezoidal u = (2, 3, 5, 6) and the triangular
v = (0, 4, 8) fuzzy numbers. It is easy to see that their gH-difference does not
exists. Indeed, if we suppose the contrary then we need to have

u−α − v−α ≤ u+α − v+α
simultaneously for every α ∈ [0, 1] or

u−α − v−α ≥ u+α − v+α
simultaneously for every α ∈ [0, 1]. But we observe that

2 = u−0 − v−0 ≥ u+0 − v+0 = −2,

while

−1 = u−1 − v−0 ≤ u+0 − v+0 = 1.

Since the same inequality should hold for every α ∈ [0, 1], we obtain a
contradiction.

From the previous proposition the g-difference always exists so it exists and
it is given as in Fig. 5.2.
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Fig. 5.2 The g-difference of two fuzzy numbers

5.5 Problems

1. Let u = (2, 5, 6, 7) and v = (1, 4, 5) be a trapezoidal and a triangular
fuzzy number. Calculate u+ v, u− v, −2u+ v, u− u and 2v − v.

2. Prove the properties in Theorem 5.8. (Hint: you can prove that the prop-
erties are true for every level set).

3. Find the product of the trapezoidal and triangular fuzzy numbers u =
(2, 5, 6, 8), v = (1, 4, 5).

4. Find an expression for the level-sets of the product of two triangular fuzzy
numbers u = (a1, b1, c1) and v = (a2, b2, c2), knowing that a1, a2 > 0.

5. Find an expression for the level-sets of the product of two Gaussian
fuzzy numbers u, v ∈ RF with left endpoints of their level sets u−0 ,
v−0 > 0.

6. Find an expression for the level-sets of the product of two exponen-
tial fuzzy numbers u, v ∈ RF with left endpoints of their level sets u−0 ,
v−0 > 0.

7. Prove Proposition 5.12.

8. Prove that the cross product of two positive trapezoidal fuzzy numbers
u = (a1, b1, c1, d1) and v = (a2, b2, c2, d2) is

u� v = (a1b2 + a2b1 − b1b2, b1b2, c1c2, c1d2 + c2d1 − c1c2).

Calculate the cross product with u = (2, 3, 4, 5) and v = (3, 4, 6, 8).
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9. Find the Hukuhara difference u� v, where u = (2, 5, 6, 8), v = (1, 4, 5).

10. Find the generalized Hukuhara difference u �gH v, where u = (1, 2, 3),
v = (1, 3, 5). Does their Hukuhara difference exist?

11. Prove that the generalized Hukuhara difference u�gH v, of two triangular
fuzzy numbers u, v always exists. Find an expression for the gH-difference
for this case.

12. Find the generalized difference u�g v, where u = (0, 2, 4), v = (0, 1, 2, 3).
Does their gH-difference exist?

13. Find the generalized difference u�gv, where u = (4, 5, 6, 8), v = (0, 5, 10).
Does their gH-difference exist?

14. Prove Proposition 5.17.



6

Fuzzy Inference

Reasoning with imprecise information is one of the central topics of fuzzy
logic. A fuzzy inference system consists of linguistic variables, fuzzy rules
and a fuzzy inference mechanism. Linguistic variables allow us to interpret
linguistic expressions in terms of fuzzy mathematical quantities. Fuzzy Rules
are a set of rules that make association between typical input and output
data sometimes in an intuitive way, or, on other occasions, in a data driven
way. A fuzzy inference mechanism is able to model the process of approx-
imate reasoning, through interpolation between the fuzzy rules. Of course
good interpolations are also approximations, and in this way approximate
reasoning is performed.

6.1 Linguistic Variables

Definition 6.1. (Zadeh [156]) A linguistic variable is a quintuple

(X,T, U,G,M)

where
X is the name of the variable
T is the set of linguistic terms which can be values of the variable
U is the universe of discourse
G is a collection of syntax rules, grammar, that produces correct expres-

sions in T .
M is a set of semantic rules that map T into fuzzy sets in U.

B. Bede: Mathematics of Fuzzy Sets and Fuzzy Logic, STUDFUZZ 295, pp. 79–103.
DOI: 10.1007/978-3-642-35221-8_6 c© Springer-Verlag Berlin Heidelberg 2013
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We can see from the previous definition that a linguistic variable works as a
dictionary that translates linguistic terms into fuzzy sets. Often we use the
term linguistic variable for a given value of the linguistic variable and also, if
confusion is avoided, we use the same term for the fuzzy set that is associated
to it, i.e., if A is a fuzzy set that is associated through a semantic rule to an
instance of a linguistic variable, then we say that A is a linguistic variable.

Example 6.2. We consider an example of a linguistic variable (Age, T, U,
G,M) where
X = Age.
T = {young, very young, very very young, ...}
U = [0, 100] is the universe of discourse for age.
G : The syntax rules can be expressed as follows: young ∈ G. If x ∈ G then

very x ∈ G.
M : T → F(X), M(young) = u, where u = (0, 0, 18, 40).
M(verynyoung) = un(x).

As the previous example pointed out linguistic terms are sometimes composed
of two parts. A fuzzy predicate (young, smart, small, tall, low) and modifiers
(hedges) (very, likely, unlikely, extremely). Hedges may be interpreted as a
composition between a given function and a basic membership function.

Example 6.3. We consider an example linked to room temperature control
(Temperature, T, U,G,M) where
X = Temperature.
T = {cold, very cold, ...cool, very cool,...,....,hot, very hot,...}.
U = [40, 100] is the universe of discourse for temperature.

Fig. 6.1 Example of fuzzy values of a linguistic variable
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Fig. 6.2 Modifiers with linguistic variables

G : The syntax rules can be expressed as follows: cold, cool, just right,
warm, hot ∈ G. If x ∈ G then very x ∈ G. Let us observe that very warm �=hot,
they have different membership functions. Also, the expression very just right
is correctly obtained by applying the hedge very to just right. It is a correct
expression in our syntax however the linguistic term for it is not used in
natural language.
M : T → F(X), M(cold) = u1, where u1 = (40, 40, 50, 60), M(cool) = u2,

where u2 = (50, 60, 70), ..., M(hot) = u5, where u5 = (80, 90, 100, 100).
M(veryncold) = un1 (x),..., M(verynhot) = un5 (x). See Figures 6.1, 6.2.

6.2 Fuzzy Rules

Fuzzy rules (fuzzy if-then rules) are able to model expert opinion or com-
monsense knowledge often expressed in linguistic terms. The intuitive associ-
ation that exists between given typical input data and typical output data is
hard to be described in a mathematically correct way, because of the uncer-
tain, often subjective nature of this information. Fuzzy rules are tools that
are able to model and use such knowledge.

A fuzzy rule is a triplet (A,B,R) that consists of an antecedent A ∈ F(X),
a consequence B ∈ F(X) that are linguistic variables, linked through a fuzzy
relation R ∈ F(X × Y ).

Using fuzzy sets a fuzzy rule is written as follows:

If x is A then y is B
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Example 6.4. An example of a fuzzy rule that naturally can be considered
in the room temperature control problem is the following:

If temperature is cold then heat is high

It is a natural idea to interpret fuzzy rules using fuzzy relations, since any
rule is a natural expression of a relationship between the input and output
variable. The fuzzy relation is obtained by a composition of the antecedent
and consequence.

Definition 6.5. (Mamdani-Assilian [107]) We define the fuzzy rule

If x is A then y is B.

as a fuzzy relation as follows
(i) Mamdani rule:

RM (x, y) = A(x) ∧B(y);

(ii) Larsen rule:
RL(x, y) = A(x) · B(y);

(iii) t-norm rule:
RT (x, y) = A(x)TB(y),

with T being an arbitrary t-norm.
(iv) Gödel rule:

RG(x, y) = A(x)→ B(y),

with → being Gödel implication;
(v) Gödel residual rule:

RR(x, y) = A(x)→T B(y)

with →T being a residual implication with a given t-norm.

Example 6.6. An example of a fuzzy rule interpreted as a fuzzy relation
is represented in Fig. 6.3. Two Gaussian fuzzy sets A : [0, 1] → [0, 1] and
B : [0, 1] → [0, 1] are considered with x̄1 = 0.6 and σ1 = 0.1 being the mean
and spread of A, while x̄2 = 0.4 and σ2 = 0.1 are the mean and the spread
of B.

Remark 6.7. In many applications a fuzzy rule will have several antecedents
that are used in conjunction to build our fuzzy rule. For example a more
complex fuzzy rule can be considered

If x is A and y is B then z is C.

In this case the antecedents are naturally combined into a fuzzy relation

D(x, y) = A(x) ∧B(y)
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Fig. 6.3 A fuzzy rule interpreted as a fuzzy relation

that is regarded as a fuzzy set on its own. Then the fuzzy rule uses the an-
tecedent D. For example, in this case the Mamdani rule will be

RM (x, y, z) = A(x) ∧B(y) ∧ C(z).

Between the antecedents we can use a general fuzzy conjunction (t-norm) but
we do not have usually an implication between the antecedents since they are
not in a cause effect relation with each-other. So, for example when a fuzzy
rule with more antecedents is transformed into a fuzzy relation we can define
the Gödel rule as

RG(x, y, z) = A(x) ∧B(y)→ C(z).

6.3 Fuzzy Rule Base

A single fuzzy relation is barely enough to make an informed decision. Often
in applications we will have a fuzzy knowledge base or fuzzy rule base, i.e.
a finite collection of fuzzy rules.

Example 6.8. Fuzzy rule bases are able to express expert or commonsense
knowledge

If temperature is cold then heat is high

If temperature is cool then heat is low

If temperature is just right then heat is off
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If temperature is warm then cool is low

If temperature is hot then cool is high.

A fuzzy rule base can be expressed as a sequence of fuzzy rules

If temp is Ai then heat/cool is Bi, i = 1, ..., n.

We saw in the previous section that it is natural to translate one fuzzy rule
into a fuzzy relation. In a similar manner, a fuzzy rule base can be translated
into a fuzzy relation. The fuzzy relation is obtained by a max-min type or a
min→ type composition of the antecedents and consequences.

Definition 6.9. (Mamdani-Assilian [107]) We define the fuzzy rule base

If x is Ai then y is Bi, i = 1, ..., n.

as a fuzzy relation as follows:
(i) Mamdani rule base:

RM (x, y) =

n∨
i=1

Ai(x) ∧Bi(y)

(ii) Larsen rule base:

RL(x, y) =
n∨

i=1

Ai(x) ·Bi(y)

(iii) max-t-norm rule base:

RT (x, y) =

n∨
i=1

Ai(x)TBi(y),

with T being an arbitrary t-norm
(iv) Gödel rule base:

RG(x, y) =

n∧
i=1

Ai(x)→ Bi(y),

with → being Gödel implication
(v) Gödel residual rule base:

RR(x, y) =

n∧
i=1

Ai(x)→T Bi(y),

with →T being a residual implication with a given t-norm T .
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Fig. 6.4 The Mamdani rule base

Remark 6.10. As individual rules may have more antecedents linked
through conjunctions we can have the same situation for a fuzzy rule base

If x is Ai and y is Bi then z is Ci, i = 1, ..., n.

In this case the antecedents are combined into a fuzzy relation Ai(x)∧Bi(y).
Then the Mamdani rule will be

RM (x, y, z) =

n∨
i=1

Ai(x) ∧Bi(y) ∧Ci(z).

Between the antecedents we do not have an implication, instead we will have
conjunction or eventually a t-norm. So, when a fuzzy rule base with more
antecedents is translated into a fuzzy relation we obtain the Gödel rule base
as

RG(x, y, z) =

n∧
i=1

Ai(x) ∧Bi(y)→ Ci(z).

Example 6.11. Considering the temperature control example described above,
the output can be scaled on the [−2, 2] interval (−2 being the strongest cooling
and 2 stands for the strongest heating. The consequences B1, ..., B5 are tri-
angular fuzzy numbers B1 = (−2,−2,−1), B2 = (−2,−1, 0), B3 = (−1, 0, 1),
B4 = (0, 1, 2), B5 = (1, 2, 2). The Mamdani rule base can be represented as
in Fig. 6.4. The Gödel rule base of the same example is shown in Fig. 6.5.

Remark 6.12. We can see that there is not a unique way to interpret a
fuzzy rule or a fuzzy rule base. This seems to be a drawback of fuzzy inference
systems at first sight. We can turn this into an advantage because it gives us
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Fig. 6.5 The Gödel rule base

increased flexibility. Indeed, mainly in practical problems, it is an advantage
to have more flexibility and to be able to select the method that best fits our
problem.

6.4 Fuzzy Inference

Fuzzy inference is the process of obtaining a conclusion for a given input
that was possibly never encountered before. The basic rule (law) for a fuzzy
inference system is the compositional rule of inference (Zadeh [155]) It
is based on the classical rule of Modus Ponens. Let us recall first the classical
Modus Ponens of Boolean logic:

premise : if p then q

fact : p

conclusion : q

Given a fuzzy rule or a fuzzy rule base R ∈ F(X × Y ), the compositional
rule of inference is a function F : F(X) → F(Y ) determined through a
composition B′ = F (A′) = A′ ∗R, with ∗ : F(x)×F(X × Y )→ F(Y ) being
a composition of fuzzy relations.

The compositional rule of inference consists of a

premise : if x is Ai then y is Bi, i = 1, ..., n

fact : x is A′

conclusion : y is B′
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Definition 6.13. (Mamdani-Assilian [107], see also e.g. Fullér [64], Fullér
[63])We define a fuzzy inference based on a composition law as follows:

(i) Mamdani Inference:

B′(y) = A′ ◦R(x, y) =
∨
x∈X

A′(x) ∧R(x, y)

(ii) Larsen inference:

B′(y) = A′ ◦L R(x, y) =
∨
x∈X

A′(x) ·R(x, y)

(iii) Generalized modus ponens or t-norm-based inference:

B′(y) = A′ ◦ TR(x, y) =
∨
x∈X

A′(x)TR(x, y)

with T being an arbitrary t-norm.
(iv) Gödel Inference

B′(y) = A′ � R(x, y) =
∧
x∈X

A′(x)→ R(x, y)

with → being Gödel implication.
(v) Gödel residual inference

B′(y) = A′ �T R(x, y) =
∧
x∈X

A′(x)→T R(x, y)

with →T being a residual implication with a given t-norm.
Throughout the definition, R(x, y) is a fuzzy relation that is used for in-

terpreting the fuzzy rule base in the premise.

Remark 6.14. We can combine the above rule bases with any inference tech-
nique given in the previous definition. The combination that is most closely
matching our real-world problem can be chosen or can be adaptively calcu-
lated.

Remark 6.15. As previously discussed we may have a fuzzy rule base with
more antecedents, so we also need a fuzzy inference system to be able to deal
with more antecedents. This is possible to be done by using the same strategy
to combine the premises as the one used for the antecedents in the fuzzy rule
base.

For example if we have a fuzzy inference system of the following form

premise : If x is Ai and y is Bi then z is Ci

fact : x is A′ and y is B′

conclusion z is C′
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Fig. 6.6 The input of a fuzzy inference system

where C′ is determined based on a composition as for example

C′(z) = (A′ ∧B′) ◦R(x, y, z) =
∨

x∈X,y∈Y

A′(x) ∧B′(y) ∧R(x, y, z)

(for a Mamdani inference) and

C′(z) = (A′ ∧B′) � R(x, y, z)

=
∧

x∈X,y∈Y

A′(x) ∧B′(y)→ R(x, y, z)

(for Gödel inference).
The fuzzy relation R(x, y, z) is being used here to interpret the fuzzy rule

base in the premise.

Example 6.16. To build a fuzzy inference system that solves the room tem-
perature control problem discussed in the previous sections we can use e.g. a
Mamdani or Gödel inference together with a Mamdani or a Gödel rule base.
In Fig. 6.6 the input of the system is represented.

6.5 The Interpolation Property of a Fuzzy Inference
System

A natural property to be required for a fuzzy inference system is the following
interpolation property (see Fullér [64]).
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Fig. 6.7 The output of a Mamdani inference system with Mamdani rule base

Fig. 6.8 Output of a Mamdani fuzzy inference system with Gödel rule base

If the input of the system coincides with the antecedent of a fuzzy rule,
then the output should coincide with the consequence that corresponds to
the given antecedent through the fuzzy rule.

Let us consider first systems based on a single fuzzy rule. We saw that we
can consider any combination of a fuzzy rule with a fuzzy inference, however
the combinatorial nature of the problem does not permit an exhaustive anal-
ysis. So, we will consider some of the typical pairs of fuzzy rules and fuzzy
inferences.
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Fig. 6.9 Output of a Gödel fuzzy inference system with Mamdani rule base

Fig. 6.10 Output of a Gödel fuzzy inference system with Gödel rule base

Let us start by considering the Mamdani inference with Mamdani rule.
The system is described by

B′(y) =
∨
x∈X

A′(x) ∧R(x, y), R(x, y) = A(x) ∧B(y)

The interpolation property says that when the input of the system coincides
with the antecedent (A′ = A) then the output has to be coincident with
the consequence (B′ = B), i.e., our fuzzy inference is a generalization of the
Modus Ponens of classical logic.
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Proposition 6.17. The Mamdani inference with Mamdani rule

B′(y) =
∨
x∈X

A′(x) ∧R(x, y), R(x, y) = A(x) ∧B(y),

such that there exists an x0 ∈ X with A(x0) = 1, satisfies the interpolation
property, i.e., if A′ = A, then B′ = B.

Proof. We have

B′(y) =
∨
x∈X

A(x) ∧R(x, y) =
∨
x∈X

A(x) ∧ A(x) ∧B(y)

=
∨
x∈X

(A(x) ∧B(y)) =

( ∨
x∈X

A(x)

)
∧B(y).

Since A is normalized we have
∨

x∈X A(x) = 1 and then B′(y) = 1 ∧B(y) =
B(y).

Remark 6.18. The hypothesis of the previous proposition can be weakened
from A being normal to

∨
x∈X A(x) ≥ ∨

y∈X B(y).

Let us consider the Mamdani inference with Larsen rule.

Proposition 6.19. The Mamdani inference with Larsen rule

B′(y) =
∨
x∈X

A′(x) ∧R(x, y), R(x, y) = A(x) ·B(y)

such that there exists an x0 ∈ X with A(x0) = 1 satisfies the interpolation
property, i.e., if A′ = A then B′ = B.

Proof. We leave the proof as an exercise to the reader.

We can generalize the previous two propositions for an arbitrary t-norm.

Proposition 6.20. The Mamdani inference with t-norm rule

B′(y) =
∨
x∈X

A′(x) ∧R(x, y), R(x, y) = A(x)TB(y)

such that there exists an x0 ∈ X with A(x0) = 1 satisfies the interpolation
property, i.e., if A′ = A then B′ = B.

Proof. From the properties of a t-norm we immediately get A(x)TB(y) ≤
A(x). We have

B′(y) =
∨
x∈X

A(x) ∧R(x, y)

=
∨
x∈X

A(x) ∧ (A(x)TB(y)) =
∨
x∈X

A(x)TB(y)
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=

( ∨
x∈X

A(x)

)
TB(y) = 1TB(y) = B(y).

Let us consider the Mamdani inference with Gödel rule

B′(y) =
∨
x∈X

A′(x) ∧R(x, y), R(x, y) = A(x)→ B(y).

Remark 6.21. We observe here that we can interpret the interpolation prop-
erty of a Mamdani inference with Gödel rule as a fuzzy relational equation.
Indeed, the interpolation property can be written as A◦R = B. This equation,
by Sanchez Theorem 3.24 has a solution if and only if R(x, y) = A−1 � B
is a solution, and in this case it is the greatest solution (A(x) = A(1, x),
B(y) = B(1, y) are interpreted here as row vectors then

R(x, y) = A−1 � B(x, y)

=
∧
i=1

A(x, 1)→ B(1, y) = A(x)→ B(y)

becomes the Gödel implication. As a conclusion, the fuzzy relational equation
is solvable if and only if the inference system with Mamdani inference and
Gödel rule has the interpolation property.

Proposition 6.22. The Mamdani inference with Gödel rule

B′(y) =
∨
x∈X

A′(x) ∧R(x, y), R(x, y) = A(x)→ B(y)

such that A is continuous and there exists an x0 ∈ X such that A(x0) = 1
fulfills the interpolation property, i.e., if A′ = A then B′ = B.

Proof. We have
B′(y) =

∨
x∈X

A(x) ∧R(x, y)

=
∨
x∈X

A(x) ∧ (A(x)→ B(y)).

Let
Uy = {x ∈ X |A(x) ≤ B(y)}.

Then we have

=
∨

x∈Uy

A(x) ∧ (A(x)→ B(y)) ∨
∨

x/∈Uy

A(x) ∧ (A(x)→ B(y))

=
∨

x∈Uy

A(x) ∧ 1 ∨
∨

x/∈Uy

A(x) ∧B(y)
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=
∨

x∈Uy

A(x) ∨
∨

x/∈Uy

B(y) = B(y) ∨B(y) = B(y).

We have used here the property that if A is continuous then it attains its
boundary which is B(y) within Uy.

Let us consider the Gödel inference with Mamdani rule. The system is de-
scribed by

B′(y) =
∧
x∈X

A′(x)→ R(x, y), R(x, y) = A(x) ∧B(y).

Remark 6.23. We observe here that we can interpret the interpolation prop-
erty of a Gödel inference with Mamdani rule as a fuzzy relational equation
A�R = B. This equation, by Miyakoshi-Shimbo Theorem 3.27 has a solution
if and only if R(x, y) = A−1 ◦B is a solution, and in this case it is the least
solution and then

R(x, y) = A−1 ◦B(x, y) =
∨
i=1

A(x, 1) ∧B(1, y) = A(x) ∧B(y)

becomes the Mamdani rule. As a conclusion, the equation is solvable if and
only if the inference system with Mamdani inference and Gödel rule has the
interpolation property.

Proposition 6.24. The Gödel inference with Mamdani rule

B′(y) =
∧
x∈X

A′(x)→ R(x, y), R(x, y) = A(x) ∧B(y)

with A ∈ F such that there exists an x0 ∈ X such that A(x0) = 1 possesses
the interpolation property, i.e., if A′ = A then B′ = B.

Proof. We have

B′(y) =
∧
x∈X

A(x)→ R(x, y) =
∧
x∈X

A(x)→ (A(x) ∧B(y)).

Let Uy = {x ∈ X |A(x) ≤ B(y)}. Then we have

=
∧

x∈Uy

A(x)→ (A(x) ∧B(y)) ∧
∧

x/∈Uy

A(x)→ (A(x) ∧B(y))

=
∧

x∈Uy

A(x)→ A(x) ∧
∧

x/∈Uy

A(x)→ B(y)

= 1 ∧
∧

x/∈Uy

B(y) = B(y).
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The infimum
∧

x/∈Uy
B(y) exists since the normality of A implies that X−Uy

is nonempty whenever B(y) < 1.

As we have discussed before we can rarely rely on one single fuzzy rule when
designing a fuzzy inference system, instead, in most of the situations we have
a rule base. So we will analyze the interpolation property of a fuzzy inference
system together with a fuzzy rule base.

Proposition 6.25. Let us consider the Mamdani inference with Mamdani
rule base

B′(y) =
∨
x∈X

A′(x) ∧R(x, y), R(x, y) =
n∨

i=1

Ai(x) ∧Bi(y)

such that
(i) for every i = 1, ..., n there exists an xi ∈ X such that Ai(xi) = 1;
(ii) any two antecedents Ai, Aj , i �= j have disjoint supports
Then the interpolation property is verified, i.e., if A′ = Aj then B′ = Bj.

Proof. We have

B′(y) =
∨
x∈X

Aj(x) ∧R(x, y) =
∨
x∈X

Aj(x) ∧
n∨

i=1

Ai(x) ∧Bi(y)

=
n∨

i=1

∨
x∈X

Aj(x) ∧ Ai(x) ∧Bi(y) =
n∨

i=1

Bi(y) ∧
∨
x∈X

Aj(x) ∧ Ai(x)

= Bj(y) ∧
∨
x∈X

Aj(x) ∧ Aj(x) = Bj(y).

The fact that Ai and Aj have disjoint support gives
∨

x∈X Aj(x)∧Ai(x) = δij
(δij being Kronecker delta).

Next we consider the Mamdani inference with Larsen rule base.

Proposition 6.26. Let us consider the Mamdani inference with Larsen rule
base

B′(y) =
∨
x∈X

A′(x) ∧R(x, y), R(x, y) =
n∨

i=1

Ai(x) ·Bi(y)

such that
(i) for every i = 1, ..., n there exists an xi ∈ X such that Ai(xi) = 1;
(ii) any two antecedents Ai, Aj , i �= j have disjoint supports
Then the interpolation property is verified, i.e., if A′ = Aj then B′ = Bj.

Proof. The proof is left as an exercise.
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Remark 6.27. The requirement that the antecedents have disjoint support
in the previous two propositions is too strong. This requirement gives that
if A′ has its support disjoint from any of the antecedents, the output of the
fuzzy system is 0. If we do not require a disjoint support then we can prove
the following result.

Proposition 6.28. Let us consider the Mamdani inference with Mamdani
rule base

B′(y) =
∨
x∈X

A′(x) ∧R(x, y), R(x, y) =
n∨

i=1

Ai(x) ∧Bi(y)

such that for every i = 1, ..., n there exists an xi ∈ X such that Ai(xi) = 1.
Under this condition, if A′ = Aj then B′ ≥ Bj.

Proof. The proof is left as an exercise.

Let us consider now a Mamdani inference with Gödel rule base. The system
is described by

B′(y) =
∨
x∈X

A′(x) ∧R(x, y), R(x, y) =
n∧

i=1

Ai(x)→ Bi(y).

Remark 6.29. We observe here that we can interpret the interpolation
property of a Mamdani inference with Gödel rule base as a fuzzy relational
equation. Indeed, the interpolation property can be written as Ai ◦ R = Bi,
i = 1, ..., n. If Ai(x) = A(i, x), Bi(y) = B(i, y), i = 1, ..., n are interpreted as
fuzzy relations we can rewrite our equation as A ◦R = B. This equation has
a solution if and only if R(x, y) = A−1 � B is a solution, and in this case it
is the greatest solution

R(x, y) = A−1 � B(x, y) =

n∧
i=1

A(x, i)→ B(i, y)

=

n∧
i=1

Ai(x)→ Bi(y).

As a conclusion, the equation is solvable if and only if the inference system
with Mamdani inference and Gödel rule base has the interpolation property.

Proposition 6.30. Let us consider a Mamdani inference with Gödel rule
base

B′(y) =
∨
x∈X

A′(x) ∧R(x, y), R(x, y) =
n∧

i=1

Ai(x)→ Bi(y).
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(i) If Ai are normal and continuous and
(ii) if the core of any Ai and the support of any Aj are disjoint when i �= j,
then the Mamdani inference with Gödel rule base satisfies the interpolation

property: if A′ = Aj then B′ = Bj.

Proof. We have

B′(y) =
∨
x∈X

Aj(x) ∧
n∧

i=1

Ai(x)→ Bi(y)

≤
∨
x∈X

Aj(x) ∧ (Aj(x)→ Bj(y)) ≤ Bj(y),

where the last equality is obtained from the property x ∧ (x→ y) ≤ y. Also,

B′(y) =
∨
x∈X

Aj(x) ∧
n∧

i=1

Ai(x)→ Bi(y)

=
∨
x∈X

n∧
i=1

Aj(x) ∧ (Ai(x)→ Bi(y))

≥
n∧

i=1

Aj(x̄) ∧ (Ai(x̄)→ Bi(y)), ∀x̄ ∈ X.

We take x̄ ∈ core(Aj) and x̄ /∈ supp(Ai) then

B′(y) ≥ Aj(x̄) ∧ (Aj(x̄)→ Bj(y))

∧
∧
i�=j

Aj(x̄) ∧ (Ai(x̄)→ Bi(y))

= 1 ∧ (1→ Bj(y)) ∧
∧
i�=j

1 ∧ (0→ Bi(y))

= Bj(y) ∧ 1 = Bj(y).

Combining the two inequalities leads to the required conclusion.

Condition (ii) and continuity are not too strong requirements, however if
released we still have an inequality.

Proposition 6.31. Let us consider a Mamdani inference with Gödel rule
base

B′(y) =
∨
x∈X

A′(x) ∧R(x, y), R(x, y) =
n∧

i=1

Ai(x)→ Bi(y).

If Ai are normal and if A′ = Aj then B′ ≤ Bj.
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Proof. We leave the proof to the reader as an exercise.

A rule base that has the antecedents fulfilling the property described in this
theorem is said to be separated.

Let us consider the Gödel inference with Mamdani rule base. The system
is described by

B′(y) =
∧
x∈X

A′(x)→ R(x, y), R(x, y) =
n∨

i=1

Ai(x) ∧Bi(y).

Remark 6.32. We observe here that we can interpret the interpolation prop-
erty of a Gödel inference with Mamdani rule base as a fuzzy relational equa-
tion Ai � R = Bi, i = 1, ..., n or considering A(i, x) = Ai(x) and B(i, x) =
Bi(x) we can write A �R = B. This equation, by Miyakoshi-Shimbo theorem
has a solution if and only if R(x, y) = A−1 ◦B is a solution, and in this case
it is the least solution and we also have

R(x, y) = A−1 ◦B(x, y) =
∨
i=1

A(x, i) ∧B(i, y)

=

n∨
i=1

Ai(x) ∧Bi(y).

becomes the Gödel implication. As a conclusion, the equation is solvable if
and only if the inference system with Mamdani inference and Gödel rule base
has the interpolation property.

Proposition 6.33. Let us consider the Gödel inference with Mamdani rule
base

B′(y) =
∧
x∈X

A′(x)→ R(x, y), R(x, y) =

n∨
i=1

Ai(x) ∧Bi(y).

(i) If Ai are normal and continuous
(ii) and if the core of any Ai and the support of any Aj are disjoint when

i �= j,
then the interpolation property holds i.e., if A′ = Aj then B′ = Bj.

Proof. We have
B′(y) =

∧
x∈X

Aj(x)→ R(x, y)

=
∧
x∈X

Aj(x)→
n∨

i=1

Ai(x) ∧Bi(y)

≥
∧
x∈X

Aj(x)→ Aj(x) ∧Bj(y) ≥ Bj(y).
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We take x̄ ∈ core(Aj) and x̄ /∈ supp(Ai) then

B′(y) =
∧
x∈X

Aj(x)→
n∨

i=1

Ai(x) ∧Bi(y)

≤ Aj(x̄)→
n∨

i=1

Ai(x̄) ∧Bi(y)

= (Aj(x̄)→ Aj(x̄) ∧Bj(y)) ∨
∨
i�=j

Aj(x̄)→ Ai(x̄) ∧Bi(y)

(1→ 1 ∧Bj(y)) ∨
∨
i�=j

1→ 0 ∧Bi(y) = Bj(y) ∨ 0 = Bj(y).

We can obtain one of the inequalities under very light conditions.

Proposition 6.34. Let us consider the Gödel inference with Mamdani rule
base

B′(y) =
∧
x∈X

A′(x)→ R(x, y), R(x, y) =
n∨

i=1

Ai(x) ∧Bi(y).

If Ai are normal and if A′ = Aj then B′ ≥ Bj.

Proof. The proof is left to the reader.

Proposition 6.35. Let us consider the Gödel residual inference with Mam-
dani rule base

B′(y) =
∧
x∈X

A′(x)→T R(x, y), R(x, y) =
n∨

i=1

Ai(x) ∧Bi(y).

(i) If Ai are normal and continuous
(ii) and if the core of any Ai and the support of any Aj are disjoint when

i �= j,
then the interpolation property holds i.e., if A′ = Aj then B′ = Bj.

Proof. We leave the proof to the reader as an exercise.

6.6 Example of a Fuzzy Inference System

As an application of a fuzzy inference system we consider a problem of Com-
puting with Words (see Zadeh [157]).

Let us consider a problem with Lt. Columbo. The problem was proposed
in the paper Dvorak-Novak [54], but with a different solution, not the one
presented here. The problem’s statement is as follows (see Dvorak-Novak
[54]):



6.6 Example of a Fuzzy Inference System 99

Example 6.36. “Mr. John Smith has been shot dead in his house. He was
found by his friend, Mr. Carry. Lt. Columbo suspects Mr. Carry to be the
murderer.

Mr. Carry’s testimony is the following: I have started from my home at
about 6:30, arrived to John’s house at about 7, found John dead and went
immediately to the phone box to call police. They told me to wait and came
immediately.

Lt. Columbo has found the following evidence about dead Mr. Smith: He
had high quality suit with broken wristwatch stopped at 5:45. No evidence of
strong strike on his body. Lt. Columbo touched engine of Mr. Carry’s car and
found it to be more or less cold.”

To be able to analyze the problem we need to understand and implement
(following the ideas in Dvorak-Novak [54]) commonsense knowledge. We will
use fuzzy if then rules for this task. Let us start with describing how engine
temperature depends on drive duration.

1. If drive duration is big and time stopped is small then engine is hot.

2. If drive duration is small then engine is cold.

3. If time stopped is big then engine is cold.

Another set of fuzzy rules concerns the wristwatch quality.

1. If suit quality is high then wristwatch quality is high.

2. If suit quality is low then wristwatch quality is low.

The last set of fuzzy rules concerns how likely the wristwatch is broken.

1. If wristwatch quality is high and strike is unlikely then broken is unlikely.

Fig. 6.11 Drive duration small (dash), big (dash-dot) and about 30’ from Mr.

Carry’s testimony (solid line)
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Fig. 6.12 Time stooped small (dash), big (dash-dot) and the fuzzy set representing

the fact that police came immediately (solid line)

Fig. 6.13 Engine Temperature cold (dash-double dot), hot (dash), more or less

cold (dash-dot), and the output of the inference system (solid line)

2. If wristwatch quality is low and strike is likely then broken is likely.

3. If strike is likely then broken is more or less likely.

The antecedents for the first set of rules are drive duration with antecedents
small and big represented in Fig. 6.11, together with Mr. Carry’s drive dura-
tion of about 30’ as he started from home at about 6:30 and arrived at John’s
house at about 7. The time since the car has stopped and cooled down is
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Fig. 6.14 Watch broken unlikely (dash-dot), more or less likely (dash-double dot)

likely (dash), and the output fuzzy set obtained by fuzzy inference (solid line)

represented in Fig. 6.12. The engine temperature is represented in Fig 6.13.
As an input considering Mr. Carry’s drive duration and time stopped we can
consider a fuzzy inference system to compute the fuzzy sets associated Mr.
Carry’s testimony and compare it with Lt. Columbo’s observations. We used
a Mamdani inference and a Mamdani rule base for simplicity but similar re-
sults are obtained using other inference systems. The output of the inference
system (solid line in Fig. 6.13) represents the engine temperature inferred
from Mr. Carry’s testimony and it is compared with the engine temperature
observed by Lt. Columbo. The result shows that according to Mr. Carry’s
testimony the engine temperature should be much higher than the one ob-
served by Lt. Columbo, so Mr. Carry is lying. We have also considered a
fuzzy inference system to determine how likely the wristwatch was broken at
the time of John’s death. We will skip some details and we show the output
of the fuzzy system with Mamdani inference and rule base in Fig. 6.14. The
evidence gathered by Lt. Columbo regarding qualitative estimates is used as
input of a fuzzy inference system consisting of the last two set of fuzzy rules
and we obtain that it is unlikely that the watch broke at the time of death of
the victim. Since the watch is broken, this is considered indirect testimony by
Mr. Carry and it turns out again that it contradicts the evidence, i.e., Mr.
Carry is lying.

6.7 Problems

1. Consider the fuzzy rule

If x is A then y is B
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where the fuzzy sets A,B : {1, 2, 3, 4, 5} → [0, 1] are defined as A(x) =
0.2
1 + 0.7

2 + 1
3 + 0.7

4 + 0.2
5 , B(y) = 0

1 + 0.5
2 + 0.8

3 + 1
4 + 0.5

5 . Find the
Mamdani and Gödel fuzzy rules associated to the given fuzzy sets. Write
the Mamdani and Gödel inference associated to the fuzzy rule. If A′(x) =
0.1
1 + 0.7

2 + 0.3
3 + 0.2

4 + 0
5 find the output of the Mamdani and Gödel inference

with Mamdani and Gödel rule respectively (each rule can be combined
with each inference).

2. Consider the fuzzy rule

If x is A then y is B

where the fuzzy sets A : [0, 10] → [0, 1] and B : [0, 100] → [0, 1] are
triangular numbers defined as A = (3, 5, 6) B = (10, 20, 30). Find the
Mamdani fuzzy rule associated to the given fuzzy sets and then graph it.
Write the Mamdani inference associated to the fuzzy rule. If A′ = (2, 3, 4)
then calculate the output of the Mamdani inference with Mamdani rule
and then graph it.

3. Consider the fuzzy rule

If x is A then y is B

where the fuzzy sets A : [0, 10] → [0, 1] and B : [0, 100] → [0, 1] are
trapezoidal numbers defined as A = (3, 5, 6, 8) B = (10, 20, 30, 40). Find
the Mamdani fuzzy rule associated to the given fuzzy sets and then graph
it. Write the Mamdani inference associated to the fuzzy rule. If A′ = χ{4}
is a singleton input then find the output of the Mamdani inference with
Mamdani rule and then graph it.

4. Set up a fuzzy rule base and a fuzzy inference system for the problem
of filling up a reservoir with water. We can consider for example three
antecedents: water level is low, medium, high) and correspondingly three
consequences debit is high, medium, low. Give the fuzzy if then rules,
the antecedents and the consequences and explain what fuzzy rule base
and inference you would use with them.

5. Set up a fuzzy inference system for an agent in a video-game that has to
avoid the enemy. The antecedents that can be considered have to take
into account that the enemy can be near or far form our agent and the
enemy may be approaching, stationary or departing. The agent we are
considering may be stationary, or moving away slow, moving away fast
(from the enemy). Give the fuzzy if then rules, the antecedents and the
consequences and explain what fuzzy rule base and inference you would
use with them.
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6. Set up a fuzzy inference system which has to decide on the tip at a
restaurant depending on the quality of service and the quality of food.
Write a set of fuzzy rules with antecedents and consequences, and a
fuzzy inference. Consider a set of premises and find the corresponding
conclusion.

7. Let us consider the Mamdani inference with Larsen rule. The system is
described by

B′(y) =
∨
x∈X

A′(x) ∧R(x, y), R(x, y) = A(x) ·B(y)

Prove that if A is normal then the system has the interpolation property,
i.e. if A′ = A then B′ = B.

8. Let us consider the Mamdani inference with Larsen rule base. The system
is described by

B′(y) =
∨
x∈X

A′(x) ∧R(x, y), R(x, y) =
n∨

i=1

Ai(x) · Bi(y)

Prove that if Ai are normal and if they have disjoint supports, then the
system has the interpolation property, i.e. if A′ = Aj then B′ = Bj .

9. Let us consider the Mamdani inference with t-norm rule base

B′(y) =
∨
x∈X

A′(x) ∧R(x, y), R(x, y) =
n∨

i=1

Ai(x)TBi(y)

such that for every i = 1, ..., n there exists an xi ∈ X such that Ai(xi) =
1. Prove that the following property is verified: If A′ = Aj then B′ ≥ Bj

10. Let us consider a Mamdani inference with Gödel rule base

B′(y) =
∨
x∈X

A′(x) ∧R(x, y), R(x, y) =
n∧

i=1

Ai(x)→ Bi(y).

if Ai are normal and if A′ = Aj then B′ ≤ Bj .

11. Let us consider the Gödel residual inference with Mamdani rule base

B′(y) =
∧
x∈X

A′(x)→T R(x, y), R(x, y) =

n∨
i=1

Ai(x) ∧Bi(y).

(i) If Ai are normal and continuous
(ii) and if the core of any Ai and the support of any Aj are disjoint when
i �= j,
then the interpolation property holds i.e., if A′ = Aj then B′ = Bj .
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Single Input Single Output
Fuzzy Systems

In the previous chapter we have described in detail Fuzzy Inference Systems.
These have fuzzy sets as inputs, and their output is a fuzzy set as well, so these
systems work exclusively in a fuzzy setting. Often, in practical applications
we need to be able to accept crisp inputs and also, the system needs to
produce a crisp number for the output. Surely this is often a well defined
classical functional relationship between inputs and outputs. Naturally raises
the question why do we need fuzzy systems when we have a crisp relationship,
crisp input and also a crisp output for a classical system. The reason for
this fact lies in epistemic uncertainty. However we have a crisp relationship,
this is often unknown or only partially known to us. As we will see in this
chapter fuzzy systems can fill in the gaps and approximate any desired output
with arbitrary precision. Approximation properties of fuzzy systems were
widely investigated in the literature starting from B. Kosko’s paper [97]. Since
then many authors dealt with approximation properties of fuzzy systems
Kosko [111], Li-Shi-Li [100], Li-Shi-Li [101] Tikk-Kóczy-Gedeon [146], Kóczy-
Zorat [95]. Yet a fully constructive method providing also an error estimate is
still missing. The approach in Li-Shi-Li [100], Li-Shi-Li [101] is constructive
but not fully constructive, because it requires the knowledge of the inverse
image of the function to be approximated. The present approach solves this
problem. The difficulty in studying such systems is in the fact that they
are nonlinear operators, based on max, min and → type operations. Tools
to deal with similar problems were recently developed in Bede-Nobuhara-
Dankova-Di Nola [22] and Bede-Coroianu-Gal [16]. The results in Section 7.3
are published for the first time in the present work.

B. Bede: Mathematics of Fuzzy Sets and Fuzzy Logic, STUDFUZZ 295, pp. 105–136.
DOI: 10.1007/978-3-642-35221-8_7 c© Springer-Verlag Berlin Heidelberg 2013
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Besides Mamdani approach (Mamdani Assilian [107]) there is another ma-
jor direction, that of Takagi-Sugeno fuzzy systems (Sugeno [138]). Sugeno sys-
tems and their approximation capability were studied in Buckley [33], Ying
[153], Celikyilmaz-Türksen [34], Sonbol-Fadali [132] etc. Again the construc-
tive results are either missing from the literature or they are not accompa-
nied by error estimates. In Section 7.5 we prove approximation properties for
Takagi-Sugeno fuzzy systems and higher order Takagi-Sugeno fuzzy systems
(see Celikyilmaz-Türksen [34]). The results of Section 7.4 are new, published
in the present work for the first time. The error estimates presented here are
simple and they open up new research directions and applications.

Combining these approximation properties of a fuzzy system with the abil-
ity to model linguistic expressions makes them very interesting to study and
also very efficient in applications. This motivates us to emphasize the idea
that the topic of Fuzzy Sets and Fuzzy Systems is an independent disci-
pline within Mathematics, being a unique combination of ideas overlapping
strongly with topics in Logic and Approximation Theory.

7.1 Structure of a SISO Fuzzy System

A single input single output fuzzy system (SISO Fuzzy System) uses
a crisp input, fuzzifies it, maps it through a fuzzy inference system and the
fuzzy output that is obtained is transformed into a crisp output. Often SISO
Fuzzy Systems are used in a control problem and then they are called fuzzy
controllers.

The diagram of a SISO fuzzy system is represented in Fig. 7.1.

Fig. 7.1 The components of a fuzzy controller

Let us discuss in what follows each of the components.

7.1.1 Fuzzification

Most of the systems use the most basic fuzzifier that is the canonical inclusion.
If x0 ∈ X is a crisp input then the fuzzy set associated with it is the singleton
fuzzy set x0, given by the characteristic function

A′(x) = χ{x0}(x) =

{
1 if x = x0
0 if x �= x0

.
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Fuzzy Systems can take into account uncertainty at this step. If the input
crisp value is influenced by uncertainties then these can be taken into account
when building a non-singleton fuzzy input. In the present chapter we consider
the inclusion fuzzifier.

7.1.2 Fuzzy Rule Base

The fuzzy rule base can be described as a fuzzy relation R(x, y). For a fuzzy
controller we can select among different types of fuzzy rule bases as described
previously.

7.1.3 Fuzzy Inference

The fuzzy inference system that we consider can be of any type that have
been discussed before (Mamdani, Gödel, Larsen etc.). Mamdani Inference
gives

B′(y) = (R ◦A′)(x) =
∨
x∈X

A′(x) ∧R(x, y),

where the fuzzy relation R is the fuzzy rule base.

7.1.4 Defuzzification

Defuzzification is the final step in a fuzzy control algorithm. Based on the
output of a fuzzy controller one has to give an estimate of the crisp quan-
tity (a representative crisp element) for the output value of the SISO fuzzy
system. In this case one has to use a defuzzification. There are many differ-
ent defuzzification methods and based on the given application that we are
working on, we can select a suitable defuzzification.

Center of Gravity (COG). The value selected is the center of gravity of
the fuzzy set u ∈ F(X). More formally, we have

COG(u) =

´
W x · u(x)dx
´
W
u(x)dx

,

whereW = supp(u). In the present work the Center of Gravity defuzzification
is the most frequently used.

Center of Area (COA). If u ∈ F(R) then the number COA(u) is defined
as the point of the support of u that divides the area under the membership
function into two equal parts. If COA(u) = a then a satisfies

ˆ a

−∞
u(x)dx =

ˆ ∞

a

u(x)dx.
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Expected value and expected interval (EV and EVI). If u is a con-
tinuous fuzzy number then the expected value EV (u) is given by

EV (u) =
1

2

ˆ 1

0

(
u−r + u+r

)
dr.

and the expected interval is

EV I(u) =

[ˆ 1

0

u−r dr,

ˆ 1

0

u+r dr

]
.

The expected value is the midpoint of the expected interval.

Mean of Maxima (MOM). The mean of maxima defuzzifier selects the
mean value of the points where the membership grade attains its maximum.

MOM(u) =

´
x∈U xdx´
x∈U dx

,

where U = {x ∈ X |u(x) = maxt∈X u(t)}.
Maximum criterion. Sometimes, to avoid practical difficulties the choice
of the defuzzification can be arbitrary fulfilling the max criterion i.e., we may
select arbitrary x ∈ U with

U = {x ∈ X |u(x) = max
t∈X

u(t)}.

7.2 Fuzzy Inference and Rule Base for a SISO Fuzzy
System

Mamdani inference has simple expression on par with great computational
and intuitive properties. Also, these were historically the systems used in the
first fuzzy controllers. Using a Gödel inference has apparently some theoret-
ical advantages over Mamdani inference because of their interpretation via
fuzzy relational equations. The choice of Mamdani inference in SISO fuzzy
systems is motivated by the following property.

Proposition 7.1. If A′(x) = χ{x0}(x) is a crisp input of a fuzzy inference
system with a given rule base R(x, y), then the outputs of Mamdani, Larsen,
t-norm, Gödel and Gödel residual inference systems coincide.

Proof. Let

A′(x) =

{
1 if x = x0
0 if x �= x0

.

Then for the Mamdani inference we have

B′(y) =
∨
x∈X

A′(x) ∧R(x, y) = A′(x0) ∧R(x0, y)
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= 1 ∧R(x0, y) = R(x0, y).

For Larsen inference we have

B′(y) =
∨
x∈X

A′(x) · R(x, y)

= A′(x0) · R(x0, y) = R(x0, y).

Then for the t-norm based inference we have

B′(y) =
∨
x∈X

A′(x)TR(x, y) = A′(x0)TR(x0, y)

= 1TR(x0, y) = R(x0, y).

For the Gödel inference we have

B′(y) =
∧
x∈X

A′(x)→ R(x, y)

= 1 ∧ A′(x0)→ R(x0, y)

= 1→ R(x0, y) = R(x0, y).

For the Gödel residual inference we have

B′(y) =
∧
x∈X

A′(x)→T R(x, y)

= 1 ∧ A′(x0)→T R(x0, y)

= 1→T R(x0, y) = R(x0, y).

Similar result holds for the more general case of having more antecedents.
In a SISO fuzzy system the inference system used does not have an impact
on the output of the fuzzy system, so the output is determined solely by the
rule base used. The rule base that we are using can still be chosen to be of
Mamdani, Larsen, t-norm, Gödel or Gödel residual type. Since the inference
system in the SISO case does not matter, the fuzzy rule base is the one that
will be specified and it will decide the output of the system.

The following results show a simplification for the calculations of the out-
put of a SISO fuzzy system and so, these systems will be computationally
very inexpensive, making them widely applicable in real-time situations.
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Proposition 7.2. If A′(x) = χ{x0}(x) is a crisp input of a fuzzy inference
system with a Mamdani rule base

R(x, y) =

n∨
i=1

Ai(x) ∧Bi(y)

then the output of the system can be calculated as

B′(y) =
n∨

i=1

αi ∧Bi(y),

where αi = Ai(x0) is the firing strength of the ith fuzzy rule.

Proof. Let

A′(x) =

{
1 if x = x0
0 if x �= x0

.

Then we have

B′(y) =
∨
x∈X

A′(x) ∧
n∨

i=1

Ai(x) ∧Bi(y)

= A′(x0) ∧
n∨

i=1

Ai(x0) ∧Bi(y)

= 1 ∧
n∨

i=1

Ai(x0) ∧Bi(y) =

n∨
i=1

αi ∧Bi(y),

where αi = Ai(x0).

Similar results hold for the Larsen and t-norm based inferences.

Proposition 7.3. If A′(x) is a crisp input of a fuzzy inference system with
a Larsen rule base

R(x, y) =

n∨
i=1

Ai(x) · Bi(y)

then

B′(y) =
n∨

i=1

αi · Bi(y),

where αi = Ai(x0) is the firing strength of the ith fuzzy rule.

Proof. The proof is left as an exercise.
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Proposition 7.4. If A′(x) is a crisp input of a fuzzy inference system with
a t-norm rule base

R(x, y) =

n∨
i=1

Ai(x)TBi(y)

then

B′(y) =
n∨

i=1

αiTBi(y),

where αi = Ai(x0) is the firing strength of the ith fuzzy rule.

Proof. Let

A′(x) =

{
1 if x = x0
0 if x �= x0

.

Then we have

B′(y) =
∨
x∈X

A′(x) ∧
n∨

i=1

Ai(x)TBi(y)

=

n∨
i=1

Ai(x0)TBi(y) =

n∨
i=1

αiTBi(y)

with αi = Ai(x0).

Proposition 7.5. If A′(x) is a crisp input of a fuzzy inference system with
a Gödel rule base

R(x, y) =
n∧

i=1

Ai(x)→ Bi(y)

then

B′(y) =
n∧

i=1

αi → Bi(y),

where αi = Ai(x0) is the firing strength of the ith fuzzy rule.

Proof. Let

A′(x) =

{
1 if x = x0
0 if x �= x0

.

Then we have

B′(y) =
∨
x∈X

A′(x) ∧
n∧

i=1

Ai(x)→ Bi(y)

=
n∧

i=1

A′(x0) ∧ (Ai(x0)→ Bi(y))

=
n∧

i=1

Ai(x0)→ Bi(y) =
n∧

i=1

αi → Bi(y),

where αi = Ai(x0).
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Proposition 7.6. If A′(x) is a crisp input of a fuzzy inference system with
a residual Gödel rule base

R(x, y) =

n∧
i=1

Ai(x)→T Bi(y)

then

B′(y) =
n∧

i=1

αi →T Bi(y),

where αi = Ai(x0) is the firing strength of the ith fuzzy rule.

Proof. The proof is left as an exercise.

These properties suggest a simplified implementation of a SISO fuzzy system,
when the input of the system is crisp.

Algorithm 7.7. 1. Input the crisp value x0.

2. Calculate the firing strengths of each fuzzy rule: αi = Ai(x0).

3. Calculate for a given y ∈ Y the output fuzzy set that is

B′(y) =
n∨

i=1

αi ∧Bi(y)

for a Mamdani rule base.

4. Defuzzify B′ (y0 = defuzz(B′).)

5. Output y0.

Example 7.8. Let us consider a simple Mamdani SISO fuzzy system with
two fuzzy rules

If x is Ai then y is Bi, i = 1, 2,

with A1 = (1, 2, 3), A2 = (2, 3, 4), B1 = (2, 4, 6), B2 = (4, 6, 8). Let x0 = 2.25.
Then the firing strength of the first rule is 0.75 while the firing strength of
the second rule is 0.25. Then the output of the system is

B′(y) = (0.75 ∧B1(y)) ∨ (0.25 ∧B2(y)).

The output can be expressed as

B′(y) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

y−2
2 if 2 ≤ y < 3.5

0.75 if 3.5 ≤ y < 4.5
6−y
2 if 4.5 ≤ y < 5.5

0.25 if 5.5 ≤ y < 7.5
8−y
2 if 7.5 ≤ y ≤ 8
0 otherwise

.

Now we have to defuzzify this result. We have
´ 8
2
B′(y) · y · dy = 10.875,

´ 8
2 B

′(y) · dy = 2.375 and COG(B′) = 4.579.
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Remark 7.9. If the fuzzy rule base has more than one antecedent, similar
conclusions hold true. Indeed, if e.g.

R(x, y, z) =

n∨
i=1

Ai(x) ∧Bi(y) ∧Ci(z)

is a Mamdani rule base in a Mamdani inference with crisp input (x0, y0),
then similar to the previous results we have

C′(z) =
n∨

i=1

Ai(x0) ∧Bi(y0) ∧ Ci(z)

=

n∨
i=1

αi ∧Ci(z),

where the firing strength of the ith rule is

αi = Ai(x0) ∧Bi(y0).

7.3 Approximation Properties of SISO Fuzzy Systems

Let us consider the problem of approximating an unknown continuous func-
tion f : [a, b] → [c, d], with [c, d] ⊆ R by a SISO Fuzzy System. We consider
[c, d] to be the range of the function f , i.e., f([a, b]) = [c, d]. The problem has
been solved for the first time in B. Kosko’s works (see [97]). There were sev-
eral results, most of them showing that under some conditions, fuzzy systems
are able to approximate any continuous function with arbitrary accuracy. In
the approach presented here, the proofs of the approximation properties are
constructive and error estimates are also provided. This approach is published
in the present work for the first time.

Let a = x0 < x1 < ... < xn < xn+1 = b be a partition of the input domain
with norm

δ = sup
i=1,...,n+1

{xi − xi−1}.

Let f(xi) = yi, i = 0, ..., n + 1 be sample values of the function. Let us
construct a SISO fuzzy system that describes the functional relationship
f(x) = y, x ∈ [a, b].

We consider fuzzy systems with the support of each fuzzy set in the an-
tecedent part, satisfying Ai(xi) = 1 and

(Ai)0 = [xi−1, xi+1], i = 1, ..., n.

Additionally we consider Ai(x) to be continuous. The fuzzy set Ai can be
seen as a model for the expression x is about xi, i = 1, ..., n.
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The consequence partBi will be considered integrable and it is constructed
such that Bi(yi) = 1 and it has the support

(Bi)0 = [min{yi−1, yi, yi+1},max{yi−1, yi, yi+1}], i = 1, ..., n.

The fuzzy set Bi can be seen as a model for the expression y is about yi,
i = 1, ..., n.

The fuzzy rule base in this case becomes

If x is about xi then y is about yi, i = 1, ..., n

or
If x is Ai then y is Bi, i = 1, ..., n,

rule which is consistent with our intuitive idea on function approximation.

7.3.1 Approximation by Mamdani, Larsen and
t-Norm Based SISO Fuzzy Systems

Now we consider a SISO fuzzy system with Mamdani rule base and Center
of Gravity defuzzification. Let x ∈ [a, b] be a crisp input. The fuzzy output
is calculated as

B′(y) =
n∨

i=1

Ai(x) ∧Bi(y),

which is subject to defuzzification and the result is

COG(B′) =

´ d
c
B′(y) · y · dy
´ d
c B

′(y)dy
.

Combining these two relations we can write a SISO fuzzy system as

F (f, x) =

´ d
c

∨n
i=1(Ai(x) ∧Bi(y)) · y · dy

´ d
c

∨n
i=1(Ai(x) ∧Bi(y)) · dy

.

Since Ai is continuous, and Bi integrable, i = 1, ..., n we have F (f, x) well
defined and continuous.

Usually, the error estimates in classical approximation theory are provided
in terms of the modulus of continuity (see appendix).

We will need two lemmas.

Lemma 7.10. (see e.g. Bede-Nobuhara-Dankova-Di Nola)For any ai, bi ∈
[0,∞), i ∈ {0, ..., n} we have

∣∣∣∣∣
n∨

i=0

ai −
n∨

i=0

bi

∣∣∣∣∣ ≤
n∨

i=0

|ai − bi| .
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Proof. Since max operation is non-decreasing in its arguments, we have

n∨
i=0

ai =

n∨
i=0

|bi + ai − bi| ≤
n∨

i=0

bi + |ai − bi|

and it follows
n∨

i=0

ai ≤
n∨

i=0

bi +

n∨
i=0

|ai − bi|.

This inequality together with the symmetric case implies the statement of
the lemma.

Remark 7.11. If Ai, i = 1, ..., n are continuous and Bi, i = 1, ..., n are inte-
grable functions then taking into account that the max and min are continu-
ous bi-variate functions, we obtain that the function F (f, ·) : [a, b]→ [c, d] is
continuous, being a composition of continuous functions. If we consider the
operator F (·, x) : C[a, b]→ C[a, b] we observe that it is a nonlinear operator,
so approximation by F (f, x) can be studied in the framework of nonlinear
approximation.

The following approximation theorem can be obtained.

Theorem 7.12. (Approximation property of the Mamdani SISO fuzzy sys-
tem) Any continuous function f : [a, b] → R can be uniformly approximated
by a Mamdani SISO fuzzy system

F (f, x) =

´ d
c
[
∨n

i=1Ai(x) ∧Bi(y)] · y · dy
´ d
c

∨n
i=1(Ai(x) ∧Bi(y)) · dy

with any membership functions for the antecedents and consequences Ai,
Bi, i = 1, ..., n satisfying

(i) Ai continuous with (Ai)0 = [xi−1, xi+1], i = 1, ..., n;
(ii) Bi integrable with

(Bi)0 = [min{yi−1, yi, yi+1},max{yi−1, yi, yi+1}]

for i = 1, ..., n, where yi = f(xi), i = 0, ..., n+ 1.
Moreover the following error estimate holds true

‖F (f, x)− f(x)‖ ≤ 3ω (f, δ) ,

with δ = maxi=1,...,n{xi − xi−1}.
Proof. We observe that

´ d
c
[
∨n

i=1Ai(x) ∧Bi(y)] · f(x) · dy
´ d
c

∨n
i=1(Ai(x) ∧Bi(y)) · dy

= f(x)
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and we have

|F (f, x)− f(x)| =
∣∣∣∣∣
´ d
c
[
∨n

i=1(Ai(x) ∧Bi(y))] · (y − f(x)) · dy
´ d
c

∨n
i=1(Ai(x) ∧Bi(y)) · dy

∣∣∣∣∣

≤
´ d
c
|[∨n

i=1(Ai(x) ∧Bi(y))] · (y − f(x))| dy
´ d
c

∨n
i=1(Ai(x) ∧Bi(y)) · dy

.

By Lemma 7.10 we have

|F (f, x)− f(x)| ≤
´ d
c [
∨n

i=1(Ai(x) ∧Bi(y))] · |y − f(x)| dy
´ d
c

∨n
i=1(Ai(x) ∧Bi(y)) · dy

.

The membership degrees Ai(x) are null outside of their support. Also, any
fixed value of x ∈ [a, b] belongs to the support of at most two fuzzy sets Ai.
Suppose that x ∈ (Aj)0 ∪ (Aj+1)0. Then we have

|F (f, x)− f(x)|

≤
´ d
c
[(Aj(x) ∧Bj(y)) ∨ (Aj+1(x) ∧Bj+1(y))] · |y − f(x)| dy
´ d
c [(Aj(x) ∧Bj(y)) ∨ (Aj+1(x) ∧Bj+1(y))] · dy

Taking now into account that

(Bi)0 = [min{yi−1, yi, yi+1},max{yi−1, yi, yi+1}]
we can restrict the integrals to the union of the supports of Bj and Bj+1,
which is a subset of

[min{yj−1, yj , yj+1, yj+2},max{yj−1, yj , yj+1, yj+2}].
We obtain

|F (f, x)− f(x)|

≤
´
(Bj)0∪(Bj+1)0

[(Aj(x) ∧Bj(y)) ∨ (Aj+1(x) ∧Bj+1(y))] · |y − f(x)| dy
´
(Bj)0∪(Bj+1)0

[(Aj(x) ∧Bj(y)) ∨ (Aj+1(x) ∧Bj+1(y))] · dy .

By the definition of Bj , Bj+1, and by the intermediate value theorem applied
to the continuous function f, given y ∈ (Bj)0 ∪ (Bj+1)0 there exist z ∈
[xj−1, xj+2] such that f(z) = y. Then using the properties of the modulus of
continuity in Theorem A.39 we get

|y − f(x)| = |f(z)− f(x)| ≤ ω (f, |xj+2 − xj−1|)
≤ ω (f, 3δ) ≤ 3ω (f, δ) ,

with δ = maxi=1,...,n{xi − xi−1}. Finally we obtain

|F (f, x)− f(x)| ≤ 3ω (f, δ) .
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Corollary 7.13. A Mamdani SISO fuzzy system F (f, x) is able to approxi-
mate any continuous function f(x) with arbitrary accuracy.

Proof. From Theorem A.39 we have If δ → 0 then F (f, x) → f(x) and the
result is immediate.

Corollary 7.14. If we consider f : [0, 1]→ [c, d] a continuous function and
the partition a = x0 < x1 < ... < xn+1 = b with equally spaced knots, then
we have

‖F (f, x)− f(x)‖ ≤ 3ω

(
f,

1

n+ 1

)
.

Proof. From Theorem 7.12 the result is immediate.

Remark 7.15. We observe that the fuzzy sets Ai, Bi do not need to be nor-
mal. A small support ensures the convergence of a fuzzy system to the target
function. Also, we can consider fuzzy systems with more than two overlap-
ping supports at a time. For example if (Aj)0, (Aj+1)0, ..., (Aj+r)0 overlap
and likewise (Bj)0, (Bj+1)0, ..., (Bj+r)0, then one can obtain the error esti-
mate

‖F (f, x) − f(x)‖ ≤ (r + 1)ω (f, δ)

in a similar way to Theorem 7.12.

The preceding Theorem can be extended to Mamdani Fuzzy systems with
Larsen rule base. In fact one can extend the Theorem to any t-norm.

Theorem 7.16. (Approximation property of the Larsen SISO fuzzy system)
Any continuous function f : [a, b] → R can be uniformly approximated by a
Mamdani SISO fuzzy system with Larsen rule base

F (f, x) =

´ d
c [
∨n

i=1Ai(x) ·Bi(y)] · y · dy
´ d
c
[
∨n

i=1Ai(x) ·Bi(y)] · dy
with any membership functions for the antecedents and consequences Ai,
Bi, i = 1, ..., n satisfying

(i) Ai continuous, (Ai)0 = [xi−1, xi+1], i = 1, ..., n;
(ii) Bi integrable,

(Bi)0 = [min{yi−1, yi, yi+1},max{yi−1, yi, yi+1}],

yi = f(xi), i = 1, ..., n.
Moreover the following error estimate holds true

‖F (f, x)− f(x)‖ ≤ 3ω (f, δ) ,

with δ = maxi=1,...,n{xi − xi−1}.
Proof. The proof is left as an exercise.
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Corollary 7.17. A Larsen SISO fuzzy system F (f, x) is able to approximate
any continuous function f(x) with arbitrary accuracy.

Proof. The proof is immediate.

Theorem 7.18. (Approximation property of the t-norm based SISO fuzzy
system) Any continuous function f : [a, b] → R can be uniformly approxi-
mated by a Mamdani SISO fuzzy system with t-norm (we consider a contin-
uous t-norm T ) rule base

F (f, x) =

´ d
c
[
∨n

i=1Ai(x)TBi(y)] · y · dy
´ d
c [
∨n

i=1Ai(x)TBi(y)] · dy
with any membership functions for the antecedents and consequences Ai,
Bi, i = 1, ..., n satisfying

(i) Ai continuous, (Ai)0 = [xi−1, xi+1], i = 1, ..., n;
(ii) Bi integrable,

(Bi)0 = [min{yi−1, yi, yi+1},max{yi−1, yi, yi+1}],

yi = f(xi), i = 1, ..., n.
Moreover the following error estimate holds true

‖F (f, x)− f(x)‖ ≤ 3ω (f, δ) ,

with δ = maxi=1,...,n{xi − xi−1}.
Proof. The proof is left as an exercise for the reader.

7.3.2 Approximation by SISO Fuzzy System of Gödel
and Gödel Residual Types

Similar to the Mamdani case we consider a continuous function f : [a, b] →
[c, d], and a = x0 < x1 < ... < xn < xn+1 = b be a partition of the input
domain with norm

δ = sup
i=1,...,n+1

{xi − xi−1}.

Let f(xi) = yi, i = 0, ..., n + 1 be known values of the function. The an-
tecedents satisfy Ai(xi) = 1 and

(Ai)0 = [xi−1, xi+1], i = 1, ..., n.

Additionally we consider Ai to be continuous.
The consequences Bi are such that Bi(yi) = 1 and

(Bi)0 = [min{yi−1, yi, yi+1},max{yi−1, yi, yi+1}], i = 1, ..., n.
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and they are supposed to be integrable. Now we consider a SISO fuzzy system
with Gödel rule base and Center of Gravity defuzzification. Let x ∈ [a, b] be
a crisp input. The fuzzy output is calculated as

B′(y) =
n∧

i=1

Ai(x)→ Bi(y),

which is subject to defuzzification and the result is

COG(B′) =

´ d
c B

′(y) · y · dy
´ d
c
B′(y)dy

.

The continuity of Ai and the integrability of Bi ensures the integrability
of B′.

Combining these two relations we can write a SISO fuzzy system as

F (f, x) =

´ d
c [

∧n
i=1Ai(x)→ Bi(y)] · y · dy

´ d
c
[
∧n

i=1 Ai(x)→ Bi(y)] · dy
.

Let us remark here that the implication → is not continuous as a bi-variate
function but since Bi are integrable the output F (f, x) is well defined. In
general we cannot conclude that F (f, x) is continuous.

We will need the following Lemma.

Lemma 7.19. For any ai ∈ [0,∞), i ∈ {0, ..., n} and y, z ∈ [0,∞) we have

∣∣∣∣∣
n∧

i=0

aiy −
n∧

i=0

aiz

∣∣∣∣∣ ≤
n∧

i=0

ai · |y − z|.

Proof. We observe that

n∧
i=0

aiy =
n∧

i=0

ai(z + y − z) ≤
n∧

i=0

ai(z + |y − z|)

≤
n∧

i=0

aiz +

n∧
i=0

ai|y − z|

and symmetrically
n∧

i=0

aiz ≤
n∧

i=0

aiy +
n∧

i=0

ai|y − z|.

The required inequality follows by combining the two cases.
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Remark 7.20. A result similar to Lemma 7.10 does not hold. In fact, the
following inequality can be proved

∣∣∣∣∣
n∧

i=0

ai −
n∧

i=0

bi

∣∣∣∣∣ ≤
n∨

i=0

|ai − bi|,

but this inequality cannot be used in the approximation result we are about to
prove. This inconvenience was resolved by Lemma 7.19.

Theorem 7.21. (Approximation property of the Gödel SISO fuzzy system)
Any continuous function f : [a, b] → R can be uniformly approximated by a
Gödel SISO fuzzy system

F (f, x) =

´ d
c
[
∧n

i=1 Ai(x)→ Bi(y)] · y · dy
´ d
c [

∧n
i=1 Ai(x)→ Bi(y)] · dy

with any membership functions for the antecedents and consequences Ai,
Bi, i = 1, ..., n satisfying

(i) Ai continuous (Ai)0 = [xi−1, xi+1], i = 1, ..., n;
(ii) Bi are integrable

(Bi)0 = [min{yi−1, yi, yi+1},max{yi−1, yi, yi+1}]

for i = 1, ..., n, where yi = f(xi), i = 0, ..., n+ 1.
Moreover the following error estimate holds true

‖F (f, x)− f(x)‖ ≤ 3ω (f, δ) ,

with δ = maxi=1,...,n{xi − xi−1}.
Proof. We observe that

´ d
c [

∧n
i=1 Ai(x)→ Bi(y)] · f(x) · dy

´ d
c
[
∧n

i=1 Ai(x)→ Bi(y)] · dy
= f(x)

and we have

|F (f, x)− f(x)| ≤
´ d
c |[

∧n
i=1 Ai(x)→ Bi(y)] · (y − f(x))| dy
´ d
c
[
∧n

i=1 Ai(x)→ Bi(y)] · dy
.

By Lemma 7.19 we obtain

|F (f, x)− f(x)| ≤
´ d
c
[
∧n

i=1Ai(x)→ Bi(y)] · |y − f(x)| dy
´ d
c [

∧n
i=1 Ai(x)→ Bi(y)] · dy

.

The membership degrees Ai(x) are null outside of their support so the im-
plication Ai(x) → Bi(y) = 1 whenever x /∈ (Ai)0. Also, any fixed value of
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x ∈ [a, b] belongs to the support of at most two fuzzy sets Ai. Suppose that
x ∈ (Aj)0 ∪ (Aj+1)0, then we have

|F (f, x)− f(x)|

≤
´ d
c [(Aj(x)→ Bj(y)) ∧ (Aj+1(x)→ Bj+1(y))] · |y − f(x)| dy
´ d
c
[(Aj(x)→ Bj(y)) ∧ (Aj+1(x)→ Bj+1(y))] · dy

.

Taking now into account that

(Bi)0 = [min{yi−1, yi, yi+1},max{yi−1, yi, yi+1}]
we can restrict the integrals to the union of the supports of Bj and Bj+1,
and by the intermediate value theorem given y ∈ (Bj)0 ∪ (Bj+1)0 there exist
z ∈ [xj−1, xj+2] such that f(z) = y. Then using Theorem A.39 we obtain

|y − f(x)| ≤ 3ω (f, δ)

with δ = maxi=1,...,n{xi − xi−1}. Finally we obtain

|F (f, x)− f(x)| ≤ 3ω (f, δ) .

Corollary 7.22. A Gödel SISO fuzzy system F (f, x) is able to approximate
any continuous function f(x) with arbitrary accuracy.

Proof. The proof is immediate.

For a residual rule based system we obtain the following property.

Theorem 7.23. (Approximation property of the residual SISO fuzzy system)
Any continuous function f : [a, b] → R can be uniformly approximated by a
Gödel residual SISO fuzzy system

F (f, x) =

´ d
c
[
∧n

i=1 Ai(x)→T Bi(y)] · y · dy
´ d
c [

∧n
i=1Ai(x)→T Bi(y)] · dy

with any membership functions for the antecedents and consequences Ai, Bi,
i = 1, ..., n satisfying

(i) Ai are continuous and (Ai)0 = [xi−1, xi+1], i = 1, ..., n;
(ii) Bi are integrable with

(Bi)0 = [min{yi−1, yi, yi+1},max{yi−1, yi, yi+1}]
for i = 1, ..., n, where yi = f(xi), i = 0, ..., n+ 1.

Moreover the following error estimate holds true

‖F (f, x)− f(x)‖ ≤ 3ω (f, δ) ,

with δ = maxi=1,...,n{xi − xi−1}.
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Fig. 7.2 Approximation by Mamdani Fuzzy System. The function f(x) (dashed)

is approximated by Mamdani SISO fuzzy system with triangular (dash-dot) and

Gaussian (solid line) membership functions.

Fig. 7.3 Approximation by Larsen Fuzzy System. The function f(x) (dashed) is ap-

proximated by Larsen SISO fuzzy system with triangular (dash-dot) and Gaussian

(solid line) membership functions.

Proof. The proof is left as an exercise.

Corollary 7.24. A residual SISO fuzzy system F (f, x) is able to approximate
any continuous function f(x) with arbitrary accuracy.

Proof. The proof is immediate.
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Fig. 7.4 Approximation by Gödel Fuzzy System. The function f(x) (dashed) is

approximated by Gödel SISO fuzzy system with triangular (dash-dot) and Gaussian

(solid line) membership functions.

Example 7.25. We consider the function f : [0, 2] → R, f(x) = 2x +
sin 10x. The function is approximated by Mamdani (Fig. 7.2) Larsen (Fig.
7.3) and Gödel (Fig. 7.4) SISO fuzzy systems. The membership functions of
antecedents and consequences are of triangular and Gaussian types and there
are 20 fuzzy rules describing each system.

7.4 Takagi-Sugeno Fuzzy System

Takagi-Sugeno fuzzy systems (Sugeno [138]) are intrinsically single input
single output systems. A Takagi-Sugeno system has the rule base consisting
of antecedents of linguistic type and conclusions that are piecewise linear
crisp outputs. This makes the defuzzification step redundant.

premise : If x is Ai then zi = aix+ bi, i = 1, ..., n

fact : x is x0

conclusion : z is z0.

Takagi-Sugeno (TS) fuzzy controllers do not use an inference system as the
Mamdani or Gödel type systems described in the previous section, instead
they use the firing strength of each fuzzy rule in the computation of the con-
clusions. TS fuzzy controller has crisp inputs, singleton fuzzifier and practi-
cally it does not have a defuzzifier.

The control algorithm for a TS fuzzy system is as follows:



124 7 Single Input Single Output Fuzzy Systems

Algorithm 7.26. 1. Input the crisp value x0.

2. Calculate the firing strengths of each fuzzy rule:

αi = Ai(x0).

3. Calculate the individual rule outputs

zi = aix0 + bi.

4. Aggregate the individual rule outputs and the system’s output is

z0 =

∑n
i=1 αizi∑n
i=1 αi

.

A Takagi-Sugeno system with more antecedents can be described as follows:

premise : if x is Ai and y is Bi then zi = aix+ biy + ci, i = 1, ..., n

fact : x is x0 and y is y0

conclusion : z is z0

The control algorithm for a TS fuzzy system of this type is modified as follows

Algorithm 7.27. 1. Input the crisp values x0, y0.

2. Calculate the firing strengths of each fuzzy rule

αi = Ai(x0) ∧Bi(y0).

3. Calculate the rule outputs

zi = aix0 + biy0 + ci.

4. The output is

z0 =

∑n
i=1 αizi∑n
i=1 αi

.

Remark 7.28. Designing the rule base for a TS fuzzy system requires knowl-
edge of the parameters ai, bi, ci, i = 1, ..., n. The values of the parameters
ai, bi and ci can be given in advance or they can be obtained using adaptive
techniques that will be discussed later.
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Example 7.29. Consider the following TS fuzzy system

if x is big and y is small then z1 = x+ y

if x is medium and y is big then z2 = 2x− y.
Consider the crisp inputs x0 = 3 and y0 = 2. Also, we know that μbig(3) =
0.8, μsmall(2) = 0.2, μmedium(3) = 0.6, μbig(2) = 0.9.

We can compute the firing strength of the rules

α1 = 0.8 ∧ 0.2 = 0.2, α2 = 0.6 ∧ 0.9 = 0.6

The rule outputs are

z1 = x0 + y0 = 5, z2 = 2x0 − y0 = 4

and the output of the system is

z0 =
0.2 · 5 + 0.6 · 4

0.2 + 0.6
= 4.25.

7.5 Approximation Properties of Takagi-Sugeno Fuzzy
Systems

Let us consider the problem of approximating an unknown continuous func-
tion f : [a, b] → [c, d], with [c, d] ⊆ R by a Takagi-Sugeno Fuzzy System. In
the present section we adapt a constructive approach. Let a = x0 ≤ x1 ≤
... ≤ xn ≤ xn+1 = b be a partition of the input domain and let f(xi) = yi,
i = 1, ..., n, be sample data. Let Ai ∈ F([a, b]), i = 1, ..., n be fuzzy sets with
continuous membership degree such that (Ai)0 = [xi−1, xi+1]. The output of
the Takagi-Sugeno fuzzy System can be written as

F (f, x) =

∑n
i=1 Ai(x) · (aix+ bi)∑n

i=1 Ai(x)
,

with ai, bi ∈ R.
Also, it is possible to generalize a TS fuzzy system such that the individual

rule outputs are polynomials.

F (f, x) =

∑n
i=1Ai(x) · (am,ix

m + am−1,ix
m−1 + ...+ a1,ix+ a0,i)∑n

i=1 Ai(x)
.

This combination builds a higher-order Takagi-Sugeno fuzzy system. The
idea to consider combinations between different approximation operators is
not new, it was used before in several works in Approximation Theory see
Gal [67], open problem 1.6.11. Also in the same direction see e.g. Lucyna
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[102], where the authors combine approximation operators of Favard type
with Taylor series and Coman [39], for a Shepard-Taylor combined operator
(see also Stancu-Coman-Blaga [134]). These ideas can be used successfully
to prove that Takagi-Sugeno fuzzy systems have very good approximation
properties.

In a Takagi-Sugeno fuzzy system the coefficients ai, bi, i = 1, .., n (for the
linear individual rule output) and respectively ak,i, i = 1, ..., n, k = 0, ...,m
(for higher order Takagi-Sugeno system) are obtained through an optimiza-
tion process.

We adopt a constructive approach here. Surely, starting with the values
that we select further optimization is still possible.

Theorem 7.30. (Approximation property of Takagi-Sugeno fuzzy system)
Any continuously differentiable function f : [a, b] → R can be uniformly ap-
proximated by a Takagi-Sugeno fuzzy system defined as

F (f, x) =

∑n
i=1 Ai(x) · (ai(x− xi) + bi)∑n

i=1 Ai(x)
,

with the antecedents Ai, i = 1, ..., n continuous, satisfying (Ai)0 =
[xi−1, xi+1], i = 1, ..., n and the individual rule outputs satisfying bi = f(xi)
and ai = f ′(xi), i = 1, ..., n.

Moreover the following error estimate holds true

‖F (f, x)− f(x)‖ ≤ 9δω (f ′, δ) ,

with δ = maxi=1,...,n{xi − xi−1}.
Proof. Let us start with Lagrange’s Theorem. If f is continuous on [xi, x]
(or [x, xi] if x < xi) and differentiable on (xi, x) (or (x, xi)) then there is a
ci between x and xi such that

f(x) = f ′(ci)(x − xi) + f(xi).

Then we have

f(x) =

∑n
i=1 Ai(x) · f(x)∑n

i=1 Ai(x)

=

∑n
i=1Ai(x) · (f ′(ci)(x − xi) + f(xi))∑n

i=1 Ai(x)
.

The Takagi-Sugeno fuzzy system can be written

F (f, x) =

∑n
i=1 Ai(x) · (f ′(xi)(x− xi) + f(xi))∑n

i=1 Ai(x)
.

Then we have

|F (f, x) − f(x)| =
∣∣∣∣
∑n

i=1 Ai(x) · (f ′(ci)− f ′(xi))(x− xi)∑n
i=1 Ai(x)

∣∣∣∣
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≤
∑n

i=1Ai(x) · |f ′(ci)− f ′(xi)| |x− xi|∑n
i=1 Ai(x)

.

For a fixed value of x there are only two nonzero terms of the sum i.e.,
x ∈ [xj−1, xj+2] produces the only two nonzero terms Aj(x) and Aj+1(x).
Then, taking into account properties of the modulus of continuity we obtain

|F (f, x) − f(x)| ≤
∑n

i=1Ai(x) · ω(f ′, |ci − xi|) |x− xi|∑n
i=1 Ai(x)

≤
∑n

i=1Ai(x) · ω(f ′, 3δ)3δ∑n
i=1Ai(x)

≤ 9δω(f ′, δ).

Corollary 7.31. Let f be twice continuously differentiable. Then the follow-
ing quadratic error estimate holds true

‖F (f, x)− f(x)‖ ≤ 9δ2 ‖f”‖ ,
here the norm is the supremum norm.

Proof. The proof is immediate.

Remark 7.32. We observe that the fuzzy sets Ai, do not need to be normal.
Also, we can consider fuzzy systems with more than two overlapping supports
at a time. For example if

(Aj)0, (Aj+1)0, ..., (Aj+r)0

overlap, then one can obtain the error estimate

‖F (f, x) − f(x)‖ ≤ (r + 1)2δω (f ′, δ) .

Remark 7.33. We observe that the Takagi-Sugeno fuzzy system constructed
with fixed membership functions Ai is a linear operator. So, TS fuzzy systems
can be studied using techniques of classical approximation theory. But a TS
fuzzy system combined with adaptive techniques will not be a linear operator
any more.

Theorem 7.34. (Approximation property of higher-order Takagi-Sugeno fuzzy
system) Let f : [a, b]→ R be m times continuously differentiable. The it can
be uniformly approximated by a higher-order Takagi-Sugeno fuzzy system de-
fined as

F (f, x) =

∑n
i=1Ai(x) · (am,i(x − xi)m + ...+ a1,i(x− xi) + a0,i)∑n

i=1 Ai(x)
.

with the antecedents Ai, i = 1, ..., n satisfying (Ai)0 = [xi−1, xi+1], i = 1, ..., n
and the individual rule outputs being Taylor polynomials about xi of f(x),
i.e.,

ak,i =
f (k)(xi)

k!
.
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Moreover the following error estimate holds true

‖F (f, x) − f(x)‖ ≤ 3m+1

m!
δmω(f (m), δ)

with δ = maxi=1,...,n{xi − xi−1}.
Proof. We start with a Taylor expansion which insures the existence of ξi
between x and xi such that

f(x) = f(xi) +
f ′(xi)

1!
(x − xi) + ...+

f (m)(ξi)

m!
(x− xi)m.

Then we have

f(x) =

∑n
i=1 Ai(x) · f(x)∑n

i=1 Ai(x)

and so

f(x) =

∑n
i=1Ai(x) ·

[
f(xi) +

f ′(xi)
1! (x− xi) + ...+ f(m)(ξi)

m! (x− xi)m
]

∑n
i=1Ai(x)

.

The Takagi-Sugeno fuzzy system can be written

F (f, x) =

∑n
i=1Ai(x) ·

[
f(xi) +

f ′(xi)
1! (x− xi) + ...+ f(m)(xi)

m! (x − xi)m
]

∑n
i=1 Ai(x)

.

Then we have

|F (f, x)− f(x)| =
∑n

i=1Ai(x) ·
∣∣∣ f(m)(xi)

m! − f(m)(ξi)
m!

∣∣∣ |x− xi|m∑n
i=1Ai(x)

.

Taking into account that x ∈ [xj−1, xj+2] produces the only two nonzero
terms Aj(x) and Aj+1(x), we obtain

|F (f, x)− f(x)| ≤
∑n

i=1 Ai(x) · 1
m!ω(f

(m), |xi − ξi|) |x− xi|m∑n
i=1 Ai(x)

≤
∑n

i=1 Ai(x) · 1
m!ω(f

(m), 3δ)(3δ)m∑n
i=1Ai(x)

≤ 3m+1

m!
δmω(f (m), δ).

Corollary 7.35. Let f be m+1 times continuously differentiable. Then the
following error estimate holds true

‖F (f, x)− f(x)‖ ≤ 3m+1

(m+ 1)!
δm+1

∥∥∥f (m+1)
∥∥∥

here the norm is the supremum norm.
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Fig. 7.5 Approximation by Takagi-Sugeno Fuzzy System. f(x) = sin(6x) (solid

line) is approximated by Takagi-Sugeno system with triangular (dashed line) and

Gaussian (dash-dot line) membership functions.

Proof. The proof is immediate.

Remark 7.36. We observe that the fuzzy sets Ai, do not need to be normal.
Also, we can consider fuzzy systems with more than two overlapping supports
in this higher order system as well. If (Aj)0, (Aj+1)0, ..., (Aj+r)0 have non-
empty intersection, then one can obtain the error estimate

‖F (f, x)− f(x)‖ ≤ (r + 1)m+1

(m+ 1)!
δm+1

∥∥∥f (m+1)
∥∥∥ .

Example 7.37. We consider the problem of approximating f(x) = sin(6x),
x ∈ [0, 1] by a Takagi Sugeno fuzzy system with 5 rules.

premise : If x is Ai then zi = aix+ bi, i = 1, ..., n

We can construct the TS fuzzy system in Theorem 7.30 using Gaussian or
triangular membership functions. The results can be compared in Fig. 7.5.

7.6 Fuzzy Control

A dynamical system is a function which describes the time-dependence of a
point’s position in space

Φ : U ⊆ T ×M →M,

where T is either a real interval (for continuous dynamical systems) or it is
a subset of integers (for discrete dynamical systems), M is a set of states,
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coordinates for the system. The behavior of a dynamical system is often
described by differential equations

x′ = f(t, x)

for continuous-time systems, or difference equations

xn+1 = f(tn, xn, ..., x0),

for the case of discrete dynamical system. The function f(t, x) besides time
and coordinate may depend on parameters

x′ = f(t, x, u).

xn+1 = f(tn, xn, ..., x0, u).

This allows us to get a desired position or trajectory by manipulating pa-
rameters of the system. The evolution of the values of the parameter u that
give the desired position (track) is called the control signal. Classical control
engineering uses mathematical analysis to update in time the control signal
u. The approach needs intense computational and theoretical efforts.

The idea of Zadeh was to formulate the control algorithmically in terms
of simple (fuzzy) logical rules. This idea lead to the development of fuzzy
controllers.

A fuzzy controller aims to implement fuzzy inference systems in control
theory. The first fuzzy controller was designed by Mamdani and Assilian
[107]. Since then many applications have used fuzzy controllers and there
are several types of fuzzy controllers. A fuzzy controller is essentially a SISO
fuzzy inference system. Often one may make the confusion to call a SISO
fuzzy inference system as a fuzzy controller. The usage of this terminology
is inconsistent with control theory. Fuzzy controller should have the output
linked into a control system as described above. So in the current work we
make a distinction between SISO fuzzy system and fuzzy controller.

7.7 Example of a Fuzzy Controller

An inverted pendulum has its lower end fixed to a cart (see Fig. 7.6). A fuzzy
controller has the goal to balance the inverted pendulum.

The differential equation that describes an inverted pendulum is

lθ̈ − g sin θ = ẍ cos θ

where θ, x are as in the figure. The inverted pendulum system can be con-
trolled by a fuzzy system described by a set of fuzzy rules. The antecedent
variables considered in this problem are θ and its derivative θ̇. The control
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Fig. 7.6 An inverted pendulum

Fig. 7.7 The membership functions of the antecedents for the angle θ and θ̇

signal is u = ẍ, the acceleration of the cart. The antecedents we consider are
positive big (PB), positive small (PS), near zero (Z), negative small (NS),
and negative big (NB), both for θ and its derivative θ̇ and as well for the
control signal u (see Fig. 7.7).

All the fuzzy sets we consider are described by Gaussian membership func-
tions with parameters x1, x2, σ different for different variables.

PB(x) =

{
e−

(x−x1)2

2σ2 if x < x1
1 if x1 ≤ x

PS(x) = e−
(x−x2)2

2σ2 , Z(x) = e−
x2

2σ2 , NS(x) = e−
(x+x2)2

2σ2
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Fig. 7.8 The membership functions of the consequences for the acceleration of the

cart ẍ

Fig. 7.9 The time dependence of the angle θ for an inverted pendulum with a fuzzy

controller

NB(x) =

{
e−

(x+x1)2

2σ2 if −x1 < x
1 if x ≤ −x1

.

The fuzzy rule base consists of five fuzzy rules
If θ is PB and θ̇ is PB then u is NB
If θ is PS and θ̇ is PS then u is NS
If θ is Z and θ̇ is Z then u is Z
If θ is NS and θ̇ is NS then u is PS
If θ is NB and θ̇ is NB then u is PB
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Fig. 7.10 The time dependence of the angular velocity θ̇ for an inverted pendulum

with a fuzzy controller

Fig. 7.11 The control signal ẍ provided by a fuzzy controller

A Mamdani SISO fuzzy system provides the output u(θ, θ̇). The equation
of the Mamdani system is

u(θ, θ̇) =

´ d
c

[∨5
i=1 Ai(θ) ∧Bi(θ̇) ∧Ci(z)

]
· z · dz

´ d
c

[∨5
i=1 Ai(θ) ∧Bi(θ̇) ∧ Ci(z)

]
· dz

,
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and it is used as a parameter in the differential equation of the inverted
pendulum to stabilize it. The differential equation becomes

lθ̈ − g sin θ = u cos θ.

To solve this equation one can use different numerical procedures. We have
used a standard Runge-Kutta method, which is outside of the scope of the
present text. The angle θ as provided by the Runge-Kutta method is rep-
resented in Fig. 7.9. The angular velocity is given in Fig. 7.10. The control
signal that is provided by the Mamdani system is shown in Fig. 7.11.

7.8 Problems

1. Consider a triangular fuzzy number (1, 2, 4). Find its center of gravity
defuzzification. Find the expected value of the fuzzy number.

2. Compare the center of gravity and the center of area defuzzifications for
fuzzy numbers of trapezoid type. (Numeric example (1, 2, 3, 6)).

3. Consider a fuzzy inference system with singleton fuzzifier and a given rule
base R(x, y). Prove that, for the output of an inference system with any
t-norm we have

B′(y) =
∨
x∈X

A′(x)TR(x, y) = R(x0, y).

4. Consider a Mamdani fuzzy inference system with two antecedents A1 =
(1, 3, 5) and A2 = (3, 5, 7) and two consequences B1 = (5, 10, 15) and
B2 = (10, 15, 20).
a) Let x0 = 4 be a crisp input for the fuzzy system considered. Find the
firing strength of each rule, then graph the output B′ of the fuzzy inference
system.
b) Let x0 = 3.5 Find the firing strength of each rule, then graph the
output B′ of the fuzzy inference system.
c) Does the output change if we consider the same fuzzy rule base with a
Gödel inference?

5. Design a SISO fuzzy system that controls a spaceship that has to avoid
asteroids taking into account the closest one. The variables that can be
considered are: asteroid is near, relatively close, far. The direction of the
asteroid’s velocity can be expressed as a linguistic variable as: approaching,
not approaching, departing. Describe the fuzzy rules and fuzzy controller
that could control the spaceship.
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6. Consider the following TS fuzzy system

if x is A1 and y is B1 then z = 2x+ y

if x is A2 and y is B2 then z = x− 2y

Consider the crisp inputs x0 = 5 and y0 = 6. Also, we know that A1(5) =
0.7, A2(5) = 0.5, B1(6) = 0.6, B2(6) = 0.8. Find the firing strengths of
each rule and then find the output z0 of the TS fuzzy controller.

7. Consider the fuzzy sets A1 = (1, 2, 3), A2 = (1, 3, 4), B1 = (10, 14, 18),
and B2 = (14, 18, 20), and the following TS fuzzy system

if x is A1 and y is B1 then z = 5x+ y

if x is A2 and y is B2 then z = 4x+ y

Consider the crisp inputs x0 = 2 and y0 = 16. Find the firing strengths of
each rule and then find the output z0 of the TS fuzzy controller.

8. Describe and implement a SISO version of the room temperature con-
trol problem discussed in detail previously. The system has the input as
the room temperature and the output is the defuzzification of one of the
inference systems used (Mamdani, Larsen, t-norm, Gödel, Gödel residual).

9. We consider a ball and beam system. This consists of a ball that is rolling
on a beam that can be tilted. The differential equation that describes a
ball and beam system has the form

ẍ = x(θ̇)2 − g sin θ

where θ is the angle between the beam and the horizontal direction, while
x is the coordinate of the ball. The ball and beam system can be controlled
by a fuzzy system. The antecedent variables considered in this problem
are x and the angle θ. The control signal is u = θ̈, the angular acceleration
of the system. The antecedents we consider are positive (P), and negative
(N), both for x and θ. For the control signal u we consider four fuzzy
variables positive big (PB), positive small (PS), near zero (Z), negative
small (NS), and negative big (NB). All the fuzzy sets we consider can have
trapezoidal or Gaussian membership functions. The fuzzy sets PB, PS, Z,
NS and NB are as in the inverted pendulum problem. The fuzzy rule base
consists of five fuzzy rules of the form
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If x is P and θ is P then u is NS
If x is P and θ is N then u is PB
If x is Z and θ is Z then u is Z
If x is N and θ is P then u is NB
If x is N and θ is N then u is NS
Construct and implement a fuzzy controller to perform the desired task.
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Fuzzy Analysis

The topological structure of Fuzzy Numbers was investigated in detail by
several authors (e.g., Diamond-Kloeden[44], Puri-Ralescu [123], Ma [104],
Goetschel-Voxman [74]). There are some properties that in a classical Math-
ematical structure (e.g. that of a Banach space) are easily fulfilled, while in
the fuzzy setting they do not hold. In this sense, in this chapter we present
several negative results through several counterexamples. Some of these re-
sults are known but the counterexamples presented in Sections 8.2, 8.3, 8.4
are new, being published for the first time here. Mathematical Analysis on
Fuzzy Number’s space is an interesting topic (see Anastassiou [4], Bede-Gal
[18], [20], [19], Chalco-Cano-Román-Flores-Jiménez-Gamero [35] Gal [66],
Lakshimikantham-Mohapatra [98] Wu-Gong [151]). We study in this chapter
mainly integration and differentiability of fuzzy-number-valued functions.

8.1 Metric Spaces of Fuzzy Numbers

The most well known, and also the most employed metric in the space of
fuzzy numbers is the Hausdorff distance. The Hausdorff (or in fact Hausdorff-
Pompeiu) distance for fuzzy numbers (Erceg [56], Puri-Ralescu [123], Diamond-
Kloeden[44]) is based on the classical Hausdorff-Pompeiu distance between
compact convex subsets of Rn. Let us recall the Definition of the Hausdorff
distance in this case.

(i) Let K denote the collection of all nonempty compact convex subsets of
R

n and let A ∈ K. The distance from a point x to the set A is

B. Bede: Mathematics of Fuzzy Sets and Fuzzy Logic, STUDFUZZ 295, pp. 137–170.
DOI: 10.1007/978-3-642-35221-8_8 c© Springer-Verlag Berlin Heidelberg 2013
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d(x,A) = inf{||x− a|| : a ∈ A}.

(ii) Let now A,B ∈ K. The Hausdorff separation of B from A and A from
B respectively, are

d∗H(B,A) = sup{d(b, A) : b ∈ B}
d∗H(A,B) = sup{d(a,B) : a ∈ A}.

(iii) The Hausdorff distance between A,B ∈ K is

dH(A,B) = max{d∗H(A,B), d∗H(B,A)}.

For the particular case when A = [a1, a2], B = [b1, b2] are two intervals (we
denote A,B ∈ I) the Hausdorff-Pompeiu distance is

dH(A,B) = max{|a1 − b1|, |a2 − b2|}.

It is known that with respect to the Hausdorff distance, K (and in particular
I) is a complete separable metric space. Let us now turn to our object that
is the metric space of Fuzzy Numbers.

Definition 8.1. (Diamond-Kloeden [44]) Let D∞ : RF × RF → R+

⋃ {0} ,
D∞ (u, v) = sup

r∈[0,1]

max
{∣∣u−r − v−r ∣∣ , ∣∣u+r − v+r ∣∣}

= sup
r∈[0,1]

{dH (ur, vr)} ,

where ur = [u−r , u
+
r ] , vr = [v−r , v

+
r ] ⊆ R and dH is the classical Hausdorff-

Pompeiu distance between real intervals. Then D∞ is called the Hausdorff
distance between fuzzy numbers.

An Lp- type distance can also be defined

Definition 8.2. (Diamond-Kloeden [44]) Let 1 ≤ p <∞. We define the Dp

distance between fuzzy numbers as

Dp(u, v) =

(ˆ 1

0

dH(ur, vr)
pdr

)1/p

=

(ˆ 1

0

max
{∣∣u−r − v−r ∣∣ , ∣∣u+r − v+r ∣∣}p

dr

)1/p

.

The next Theorem gives a list of properties of the Hausdorff distance between
fuzzy numbers.
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Proposition 8.3. (Diamond-Kloeden [44]) (i)(RF , D∞) is a metric space
and moreover, the following properties hold true:

(ii)
D∞ (u+ w, v + w) = D∞ (u, v) , ∀u, v, w ∈ RF ,

i.e., D∞ is translation invariant.
(iii)

D∞ (k · u, k · v) = |k|D∞ (u, v) , ∀u, v ∈ RF , ∀k ∈ R;

(iv)

D∞ (u+ v, w + e) ≤ D∞ (u,w) +D∞ (v, e) , ∀u, v, w, e ∈ RF .

Proof. (i) It is easy to see that

D∞ (u, v) = sup
r∈[0,1]

max
{∣∣u−r − v−r ∣∣ , ∣∣u+r − v+r ∣∣} ≥ 0

with D∞ (u, v) = 0 if and only if u−r = v−r , u
+
r = v+r , r ∈ [0, 1]. Also it is

obvious that D∞ (u, v) = D∞ (v, u) . For the triangle inequality we have∣∣u−r − w−
r

∣∣ ≤ ∣∣u−r − v−r ∣∣+ ∣∣v−r − w−
r

∣∣
≤ D∞(u, v) +D∞(v, w)

and ∣∣u+r − w+
r

∣∣ ≤ ∣∣u+r − v+r ∣∣+ ∣∣v+r − w+
r

∣∣
≤ D∞(u, v) +D∞(v, w)

which implies
D∞(u,w) ≤ D∞(u, v) +D∞(v, w).

As a conclusion (RF , D∞) is a metric space.
(ii) We have

D∞ (u, v) = sup
r∈[0,1]

max
{∣∣u−r − v−r ∣∣ , ∣∣u+r − v+r ∣∣}

= sup
r∈[0,1]

max
{∣∣u−r + w−

r − v−r − w−
r

∣∣ , ∣∣u+r + w+
r − v+r − w+

r

∣∣}

= D∞(u + w, v + w).

(iii) It is easy to see that

D∞ (ku, kv) = sup
r∈[0,1]

max
{∣∣ku−r − kv−r ∣∣ , ∣∣ku+r − kv+r ∣∣}

= |k|D∞ (u, v) .

(iv) For (iv) we use the triangle inequality with the translation invariance.
Indeed,

D∞(u+ v, w + e) ≤ D∞(u+ v, w + v) +D∞(w + v, w + e)

= D∞(u,w) +D∞(v, e).
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Proposition 8.4. (Diamond-Kloeden[44], Wu-Gong [151]) Let 1 ≤ p < ∞.
(i) Then (RF , Dp) is a metric space and moreover the following properties
hold true:

(ii)
Dp (u+ w, v + w) = Dp (u, v) , ∀u, v, w ∈ RF ;

(iii)
Dp (k · u, k · v) = |k|Dp (u, v) , ∀u, v ∈ RF , ∀k ∈ R;

(iv)

Dp (u+ v, w + e) ≤ Dp (u,w) +Dp (v, e) , ∀u, v, w, e ∈ RF .

Proof. The proof is left to the reader as an exercise.

8.2 Completeness

The following Theorem shows that the Hausdorff distance defines a complete
metric on fuzzy numbers.

Theorem 8.5. (Diamond-Kloeden[44]) (RF , D∞) is a complete metric space.

Proof. For the proof, we need to show that any Cauchy sequence of fuzzy
numbers in D∞ is convergent in RF . So let un ∈ RF , n ≥ 1 be a Cauchy
sequence. Then for any ε > 0 there exists N ≥ 1 with

D∞(un, un+p) < ε, ∀n ≥ N, p ≥ 1,

i.e.,

sup
r∈[0,1]

max
{∣∣∣(un)−r − (un+p)

−
r

∣∣∣ , ∣∣∣(un)+r − (un+p)
+
r

∣∣∣} < ε.

This last condition means that the sequences (un)
−
r and (un)

+
r are Cauchy

sequences in R so they converge as sequences of real numbers. Besides, (un)r
also converges as a sequence of real intervals in the Hausdorff-Pompeiu dis-
tance. Let u−r and u+r be the limits of the sequences (un)

−
r and (un)

+
r respec-

tively. It is easy to see that since (un)
+
r ≤ (un)

+
r we will have u−r ≤ u+r and

Mr = [u−r , u
+
r ] is a well defined real interval. We will prove in the next step

that the sets Mr satisfy the hypothesis of Negoita-Ralescu characterization
theorem 4.8.

(i) The fact that Mr is a real interval was proven above.
(ii) Let α ≤ β. Then we have (un)β ⊆ (un)α i.e.,

(un)
−
α ≤ (un)

−
β ≤ (un)

+
β ≤ (un)

+
α

and by taking the limit in this inequality we obtain

u−α ≤ u−β ≤ u+β ≤ u+α ,
which proves (ii).
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(iii) Let rn be a convergent sequence rn ↗ r. By (ii) we have ur ⊆ urn , n ≥
1 and then

ur ⊆
∞⋂
n=1

urn .

We will have to prove the converse inclusion. First let us start with the
remark that since (um)

−
r → u−r and (um)

+
r → u+r for any ε1 > 0 there exists

an M1 ≥ 1 such that for m ≥M1 we have

[(um)
−
r , (um)

+
r , ] ⊆ [u−r − ε1, u+r + ε1].

Since um,m ≥ 1 is a fuzzy number, we have

(um)r =

∞⋂
n=1

(um)rn .

Also, from (um)
−
rn
→ u−rn and (um)

+
rn
→ u+rn we have that for any ε2 > 0

there exists M2 ≥ 1 such that for m ≥M2 and any n ≥ 1,

[u−rn + ε2, u
+
rn − ε2] ⊆ (um)rn .

which implies
∞⋂

n=1

[u−rn + ε2, u
+
rn − ε2] ⊆

∞⋂
n=1

(um)rn .

Now from these relations we obtain that for any ε1, ε2 > 0 we have

∞⋂
n=1

[u−rn + ε2, u
+
rn − ε2] ⊆ [u−r − ε1, u+r + ε1]

which leads to
∞⋂
n=1

urn ⊆ ur.

The double inclusion proves (iii) of Negoita-Ralescu characterization
theorem.

(iv) Let now rn ↘ 0 be a sequence in [0, 1]. We will have to prove that

cl

( ∞⋃
n=1

urn

)
= u0.

Since u0 is closed and since urn ⊆ u0 the inclusion

cl

( ∞⋃
n=1

urn

)
⊆ u0
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is immediate. For the converse we follow a reasoning similar to the previous
point. Let ε1, ε2 > 0 be arbitrary. Then we have

[u−0 + ε1, u
+
0 − ε1] ⊆ (um)0 = cl

( ∞⋃
n=1

(um)rn

)
,

with m ≥M1. Also

cl

( ∞⋃
n=1

(um)rn

)
⊆ cl

( ∞⋃
n=1

[u−rn − ε2, u+rn + ε2]

)
,

for m ≥M2. Finally we obtain

[u−0 + ε1, u
+
0 − ε1] ⊆ cl

( ∞⋃
n=1

[u−rn − ε2, u+rn + ε2]

)
,

ε1, ε2 > 0. The required relation

cl

( ∞⋃
n=1

urn

)
= u0

follows.
Conditions (i)-(iv) imply that u is a fuzzy number, i.e., the Cauchy se-

quence un ∈ RF converges to u ∈ RF and the proof is complete.

The next theorem shows that the Lp-type metric for fuzzy numbers is not
generating a complete space of fuzzy numbers, property which makes the
Lp-type metric difficult to be used.

Theorem 8.6. (RF , Dp) is not complete, 1 ≤ p <∞.
Proof. We will construct a Cauchy sequence that is not convergent within
(RF , Dp). In this proof we assume p to be an integer, but the result can be
extended to real values 1 ≤ p <∞, using special functions.

Let

un(x) =

{
0 if x /∈ [0, n]
e−x if x ∈ [0, n]

, n ≥ 1

be a sequence of fuzzy numbers. Its level sets are given by

(un)r =

{
[0, n] if r < e−n

− ln r if r ≥ e−n .

We have

Dp(un, un+k) =

(ˆ e−n−k

0

kpdr +

ˆ e−n

e−n−k

(− ln r − n)pdr
) 1

p

.
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Let us denote

Ip =

ˆ e−n

e−n−k

(− ln r − n)pdr.

We have
I0 = e−n − e−n−k.

By integration by parts we obtain

Ip = kpe−n−k + pIp−1.

Also,
Ip−1 = kp−1e−n−k + (p− 1)Ip−2

and then
Ip = kpe−n−k + pkp−1e−n−k + p(p− 1)Ip−2.

By induction we have

Ip = (kp + pkp−1 + ...+ p(p− 1)...2 · k)e−n−k

+p!
(
e−n − e−n−k

)
.

Then we have

Dp(un, un+k) =
(
kpe−n−k + (kp + pkp−1 + ...

+p(p− 1)...2 · k)e−n−k + p!
(
e−n − e−n−k

)) 1
p ,

that is
Dp(un, un+k)

≤ (
(kp + (kp + pkp−1 + ...+ p(p− 1)...2 · k)− p!)e−n−k + p!e−n

) 1
p .

If k < p we can estimate this Hausdorff distance by

Dp(un, un+k)

≤ (
(pp + (pp + ppp−1 + ...+ p(p− 1)...2 · p)− p!)e−k + p!

) 1
p · e−n

p .

Now, if k ≥ p then we have

Dp(un, un+k) =
(
(kp + kp+1 − p!)e−k + p!

) 1
p · e−n

p ,

and we obtain
lim
n→∞

Dp(un, un+k) = 0.

Then it follows that the sequence un is a Cauchy sequence. Now we can see
that un does not converge within RF . Indeed, it converges point-wise to

u(x) =

{
0 if x < 0
e−x if x ≥ 0

.



144 8 Fuzzy Analysis

Indeed, we have

Dp(un, u) =

(ˆ e−n

0

(− ln r − n)pdr
) 1

p

.

We calculate

Jp =

ˆ e−n

0

(− ln r − n)pdr.

We have J0 = e−n and by integration by parts we get

Jp = r(− ln r − n)p|e−n

0 + p

ˆ e−n

0

r(− ln r − n)p−1 1

r
dr,

i.e Jp = pJp−1 which leads to

Jp = p!e−n.

Finally we obtain

lim
n→∞

Dp(un, u) = lim
n→∞

(
p!e−n

) 1
p = 0.

Since u /∈ RF we obtain that RF is not complete with respect to the metric
Dp.

8.3 Compactness

A metric space is locally compact if every point has a compact neighborhood.
This means that we will need to study compact subsets in the metric space of
fuzzy numbers when considering the different metrics that we have studied in
the previous sections. A subset of a metric space on its turn is compact if and
only if it is complete and totally bounded or also, equivalently, if and only
if it is sequentially compact. Recall that a subspace is sequentially compact
if any sequence has a convergent subsequence. A compact neighborhood in a
metric space can be only closed and since it is closed, it contains the closure
of an open ball that would be at its turn also compact. In (RF , D∞) and in
(RF , Dp) the closed unit ball is the closure of the open unit ball (please note
that this is not generally true in metric spaces). So, if we succeed to show
that a closed ball is not compact then the space we consider would not be
locally compact. So we begin with the following theorem:

Theorem 8.7. The closed unit ball of (RF , D∞) is not compact.

Proof. The closed unit ball in RF is

B̄(0, 1) = {u ∈ RF |D∞(u, 0) ≤ 1},
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where we consider the singleton 0 coincident with the real number 0. We will
construct a sequence without a convergent subsequence. It is known that the
rational numbers set Q is countable. So let us write it as a sequence qn ∈ [0, 1]
and we define

un(x) =

⎧⎨
⎩

0 if x /∈ [0, 1]
qn if 0 ≤ x < 1

2
2(1− qn)x+ 2qn − 1 if 1

2 ≤ x ≤ 1
.

The level sets of un can be written

(un)r =

{
[0, 1] if 0 ≤ r < qn[

r+1−2qn
2(1−qn)

, 1
]

if qn ≤ r ≤ 1
.

Then the Hausdorff-Pompeiu distance level-wise between two elements un
and un+k of the sequence (qn < qn+k is assumed for simplicity without re-
stricting the generality) is given as

dH((un)r, (un+k)r) =

⎧⎪⎨
⎪⎩

0 if 0 ≤ r < qn
r+1−2qn
2(1−qn)

if qn ≤ r < qn+k

r+1−2qn
2(1−qn) − r+1−2qn+k

2(1−qn+k)
if qn+k ≤ r ≤ 1

.

We have

D∞(un, un+k) = sup
r∈[0,1]

dH((un)r, (un+k)r).

i.e.,

D∞(un, un+k) = sup
r∈[qn,qn+k]

r + 1− 2qn
2(1− qn)

=
qn+k + 1− 2qn

2(1− qn) ≥ 1

2
.

This last relation means that the distance between any two elements of this
sequence is at least 1

2 . Now let us suppose that the sequence un has a con-
vergent subsequence. That subsequence would be a Cauchy sequence, which
is in contradiction with the fact that any two elements of it are at least 1

2
apart. This shows that it cannot have a convergent subsequence. So, the unit
ball is not sequentially compact and as a consequence it is not compact.

Remark 8.8. It is easy to see that the unit ball is not preferred by compact-
ness properties over balls with a different radius, so in general we can assume
that a closed ball is not compact in D∞.This means that a point in RF does
not have a compact neighborhood and this also implies that RF is not locally
compact.

A similar result can be deduced concerning the Lp type metrics on fuzzy
numbers.
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Theorem 8.9. The closed unit ball

B̄p(0, 1) = {u ∈ RF |Dp(u, 0) ≤ 1}

in (RF , Dp) is not compact.

Proof. We will prove the result for integer values 1 ≤ p < ∞, however the
proof can be extended to the case of real values using special functions. As
in the proof of the previous Theorem we will construct a sequence of fuzzy
numbers in the unit ball of (RF , Dp) . The construction is similar to the one
in Theorem 8.6.

Let

un(x) =

{
0 if x /∈ [0, n]

e−(p!)
1
p x if x ∈ [0, n]

, n ≥ 1

be a sequence of fuzzy numbers. Its level sets are given by

(un)r =

⎧⎨
⎩

[0, n] if r < e−(p!)
1
p n

− 1

(p!)
1
p
ln r if r ≥ e−(p!)

1
p n

.

Let us consider the point-wise limit of the sequence

u(x) =

{
0 if x < 0

e−(p!)
1
p x if x ≥ 0

.

It is easy to see that un(x) ≤ u(x), ∀x ∈ R. The level-wise Hausdorff distance
is

dH((un)r, 0) =

⎧⎨
⎩

n if r < e−(p!)
1
p n

− 1

(p!)
1
p
ln r if r ≥ e−(p!)

1
p n

We have

Dp(un, 0) =

(ˆ 1

0

dH ((un)r , 0)
p
dr

) 1
p

≤
(ˆ 1

0

(
− 1

(p!)
1
p

ln r

)p

dr

) 1
p

=

(
1

p!

ˆ 1

0

(− ln r)
p
dr

) 1
p

=

(
1

p!
Ip

) 1
p

.

To compute Ip we integrate by parts and we obtain

Ip = r (− ln r)
p |10 + p

ˆ 1

0

(− ln r)
p−1

dr = pIp−1.
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This shows that Ip = p! and we obtain Dp(un, 0) ≤ 1 that means un ∈
B̄p(0, 1) ⊆ RF . Using the same calculation as that in the proof of Theorem
8.6 we obtain that un does not converge in (RF , Dp). It is easy to check that
the sequence is a Cauchy sequence. In a metric space, a Cauchy sequence
that has a convergent subsequence is itself convergent, but this is not true
about our sequence un. So, un does not have a convergent subsequence. As
a conclusion B̄p(0, 1) is not compact.

Remark 8.10. It is easy to see that the conclusion can be generalized and a
closed ball is not compact in Dp. This means that a point in RF does not have
a compact neighborhood and this also implies that RF is not locally compact
with respect to the Dp metric.

8.4 Separability

Separability is another important property mainly for approximation pur-
poses. A metric space is separable if it has a dense countable subset. Based
on the same construction ideas as those in the previous sections we will prove
that (RF , Dp) 1 ≤ p <∞ are separable spaces while (RF , D∞) is not separa-
ble. Let us suppose that there is a dense countable subset Y of a given metric
space X . If there would be an open ball that is disjoint from the countable
dense subset Y then the center of that open ball cannot be reached by a
convergent sequence in Y . As a conclusion the center of the open ball we
considered would not be in the closure of Y i.e., Y could not be dense in
X . As a conclusion, to show that a space is not separable it is enough to
find a family of uncountably many disjoint open balls in X . Then each of
them would necessarily contain at least an element of Y so there would be
uncountably many elements in the countable dense subset. Of course this is
a contradiction. So, to show that a metric space is not separable, it is enough
to exhibit uncountably many disjoint open balls.

First we have a positive result about (RF , Dp).

Theorem 8.11. The metric space (RF , Dp) is separable.

Proof. The proof is following the basic idea of Diamond-Kloeden [44], but it
is simplified. We consider a fixed fuzzy number u ∈ RF . Since its support is
compact it is totally bounded, i.e., we can cover it with finitely many balls
of any given radius ε > 0. We can assume that we find a specific minimal
covering, provided by rational numbers r1 < r2 < ... < rn as intervals with
endpoints at rational numbers, of length ri+1 − ri < 2ε. We have

(u)0 ⊆
n−1⋃
i=1

[ri, ri+1).
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Also, in this case we have for any level-set

(u)α ⊆
⋃
i∈Iα

[ri, ri+1),

with Iα minimal. Let us consider now αi rational numbers such that

αi ≤ sup
x∈[ri,ri+1]

u(x) < αi + ε.

Let us define

v(x) =
n−1∑
i=1

χ[ri,ri+1]αi.

It is easy to see that the cardinality of the set of all such functions is the
same as that of Q, i.e., it is countable. Also, it is easy to see that

(v)α ⊆
⋃
i∈Jα

[ri, ri+1)

where Jα = {i|αi ≥ α}. It is easy to see that Iα and Jα consist of the same
intervals, except possibly they may differ at the end on intervals that have
length less than 2ε. Let

A = {α ∈ [0, 1]|dH((u)α, (v)α) < ε}.
We can see that [0, 1] \ A ⊆ [rj , rj+1) ∪ [rk, rk+1) for some j, k ∈ {1, ..., n}.
We can conclude

Dp(u, v) =

(ˆ 1

0

dH((u)α, (v)α)
pdα

) 1
p

=

(ˆ
A

dH((u)α, (v)α)
pdα

) 1
p

+

(ˆ
[0,1]\A

dH((u)α, (v)α)
pdα

) 1
p

< ε+ 4ε · diam(u)0.

As a conclusion we find an element v of a countable set in any neighborhood
of a fuzzy number u ∈ RF with respect to the distance Dp and this completes
the proof.

Now let us prove that (RF , D∞) is not separable.

Theorem 8.12. The closed unit ball

B̄(0, 1) = {u ∈ RF |D∞(u, 0) ≤ 1}
in (RF , D∞) is not separable.
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Proof. The construction is similar to that in Theorem 8.7. For a given t ∈
[0, 1] we define

ut(x) =

⎧⎨
⎩

0 if x /∈ [0, 1]
t if 0 ≤ x < 1

2
2(1− t)x+ 2t− 1 if 1

2 ≤ x ≤ 1
.

The level sets of ut can be written

(ut)r =

{
[0, 1] if 0 ≤ r < t[

r+1−2t
2(1−t) , 1

]
if t ≤ r ≤ 1

.

Then the Hausdorff-Pompeiu distance level-wise between two elements ut
and us of the sequence, t < s is given as

dH((ut)r, (us)r) =

⎧⎨
⎩

0 if 0 ≤ r < s
r+1−2t
2(1−t) if t ≤ r < s

r+1−2t
2(1−t) − r+1−2s

2(1−s) if s ≤ r ≤ 1
.

We have

D∞(ut, us) = sup
r∈[t,s]

r + 1− 2t

2(1− t) ≥
1

2
>

1

3
.

So the open balls B
(
ut,

1
3

)
are disjoint and uncountably many. So a countable

dense subset if there would exist, would need to have an element in each
such ball, which is impossible. So, the closed unit ball in (RF , D∞) is not
separable.

It is known that a metric space is separable if and only if it is Lindelöf (i.e.,
any open covering has a countable sub-cover). We can conclude that the space
(RF , D∞) is not a Lindelöf space, while (RF , Dp) is Lindelöf.

As a consequence we can mention two of the problems which should be
avoided when we want to use the metrics over the fuzzy reals. First, if we
have a Cauchy sequence in (RF , Dp), for 1 ≤ p <∞ we cannot be sure about
its convergence. In (RF , D∞) we cannot use a density argument (we cannot
reduce a problem to a sub-problem of a countable dimension). Finally in both
(RF , D∞) and (RF , Dp) we face serious difficulties when we want to extract
a convergent subsequence of a bounded sequence.

The fuzzy analysis literature is using mostly the Hausdorff distance be-
tween the fuzzy numbers, because in this case the structure of the metric
space (RF , D∞) being complete, is near to the structure of a Banach space.
Surely we do not have a linear space structure, so it cannot be a Banach space,
but several properties which hold in Banach spaces also hold in (RF , D∞).
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8.5 Norm of a Fuzzy Number

Let us denote ‖u‖F = D∞ (u, 0), ∀u ∈ RF the norm of a fuzzy number. The
following theorem shows us that this has properties similar to the properties
of a norm in the usual crisp sense, without being a norm. It is not a norm
because RF is not a linear space.

Proposition 8.13. (Anastassiou-Gal [5], Gal [69])‖·‖F has the following
properties

(i) ‖u‖F = 0 if and only if u = 0;
(ii) ‖λ · u‖F = |λ| · ‖u‖F , ∀λ ∈ R and u ∈ RF ;
(iii) ‖u+ v‖F ≤ ‖u‖F + ‖v‖F , ∀u, v ∈ RF ;
(iv) |‖u‖F − ‖v‖F | ≤ D∞ (u, v) , ∀u, v ∈ RF ;
(v) For any a and b having the same sign and any u ∈ RF we have

D∞(a · u, b · u) = |b− a| · ‖u‖F ;

(vi) D∞(u, v) = ‖u�gH v‖F , ∀u, v ∈ RF .

Proof. The proofs of (i)-(iv) and (vi) are left to the reader as an exercise.
We will prove (v). Let u ∈ RF , and a > b > 0. Then we have

D∞(a · u, b · u) = D∞([b + (a− b)] · u, b · u) = D∞(b · u+ (a− b) · u, b · u).

Since D∞ is invariant to translations we get

D∞(a · u, b · u) = D∞((a− b) · u, 0) = |b− a| · ‖u‖F .

Remark 8.14. The concepts of limit, convergence of a sequence in RF and
continuity of a function f : [a, b] → RF will all be considered in the metric
space (RF , D∞) . For example continuity of a fuzzy number valued function
at a point x0 means that ∀ε > 0, ∃δ > 0 such that D∞(f(x), f(x0)) < ε for
|x− x0| < δ. From the definition of the Hausdorff distance this implies

sup
r∈[0,1]

max{|f−
r (x)− f−

r (x0)|, |f+
r (x)− f+

r (x0)|} < ε

which results in |f±
r (x) − f±

r (x0)| < ε, ∀r ∈ [0, 1], i.e., equicontinuity of the
family {f±

r |r ∈ [0, 1]}. In particular it also means that these functions are
continuous.

The algebraic-analytic properties of fuzzy number’s space makes them very
interesting. Recently in Gal [69] it was shown that the general properties
shown in Theorem 5.8, and 8.3 allow a generalization in a natural way yielding
the definition and study of the following abstract space.
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Definition 8.15. We say that (X,+, ·, d) is a fuzzy-number type space (shortly
FN-type space), if the following properties are satisfied :

(i) (X, d) is a metric space (complete or not) and d has the properties in
Theorem 8.3.

(ii) The operations +, · on X have the properties in Theorem 5.8, (i),(iv),
(v),(vi);

(iii) There exists a neutral element 0 ∈ X, i.e. u + 0 = 0 + u = u, for any
u ∈ X and a subspace Y ⊂ X (with respect to + and ·), non-dense in X, such
that with respect to 0, none of u ∈ X \ Y has an opposite element in X.

Obviously (RF , D∞), (RF , Dp) are both FN-type spaces. The uniform dis-
tance is defined as in the usual case for continuous functions f, g : [a, b]→ RF

D(f, g) = sup{D∞(f(x), g(x)|x ∈ [a, b]}.

Then (C[a, b], D) is an FN-type space. Indeed, because (RF , D) is a complete
metric space, it is easy to prove that (C ([a, b] ;RF) , D) is a complete metric
space. Also, if we define

(f + g) (x) = f (x) + g (x) ,

(λ · f) (x) = λ · f (x)
(for simplicity, the addition and scalar multiplication in C ([a, b] ;RF ) are
denoted as in RF ), also 0 : [a, b]→ RF , 0 (t) = 0, for all t ∈ [a, b] ,

‖f‖F = sup {D (0, f (x)) ;x ∈ [a, b]} .

Other examples and several new properties were shown in Gal [69].

8.6 Embedding Theorem for Fuzzy Numbers

In the followings we will discuss an embedding result concerning fuzzy num-
bers.

Let C[0, 1] = {F : [0, 1] → R; F bounded on [0, 1], left continuous for
x ∈ (0, 1], right continuous at 0}. Together with the norm

||F || = sup{|F (x)|;x ∈ [0, 1]},

C[0, 1] is a Banach space. We can embed RF into the Banach space C[0, 1]2

according to the following theorem:

Theorem 8.16. (Ma [104]) Let

j : RF → C[0, 1]× C[0, 1]
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given by
j(u) = (u−, u+),

where u−, u+ : [0, 1]→ R, u−(r) = u−r , u
+(r) = u+r . Then j(RF ) is a closed

convex cone having its vertex at 0 in C[0, 1]× C[0, 1]. Here C[0, 1]× C[0, 1]
is a Banach space w.r.t. the norm

||(f, g)|| = max{||f ||, ||g||}.
Moreover, j satisfies:

(i)
j(a · u+ b · v) = aj(u) + bj(v),

∀u, v ∈ RF , a, b ≥ 0;
(ii)

D∞(u, v) = ||j(u)− j(v)||.
Proof. The representation of a fuzzy number through the functions u−, u+

in Theorem 4.10 ensures that j is well defined and injective. We can deduce
based on the same theorem, that

j(RF) = {(u−, u+) ∈ C[0, 1]2|u−-nondecreasing,
u+-nonincresing, u−1 ≤ u+1 }.

To check that it is closed it is enough to observe that taking a sequence of
elements in j(RF ) has monotone components that converge to a monotone
limit in the uniform norm. Also, convergence keeps the relation u−1 ≤ u+1
intact and so, the space j(RF ) is closed. Considering now

(u−, u+), (v−, v+) ∈ j(RF )

and a, b > 0 we have

j(a · u+ b · v) = a(u−, u+) + b(v−, v+) = aj(u) + bj(v),

which proves (i) and also the fact that j(RF ) is a convex cone. To prove (ii)
we observe

||j(u)− j(v)|| = max{ sup
r∈[0,1]

|u−r − v−r |, sup
r∈[0,1]

|u+r − v+r |} = D∞(u, v),

and the proof is complete.

8.7 Fuzzy Numbers with Continuous Endpoints of the
Level Sets

Let us now consider the set of fuzzy numbers such that the left and right
endpoint of the level set functions are continuous.

R
c
F = {u ∈ RF |ur = [u−r , u

+
r ], u

±
r ∈ C[0, 1]}.
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Let us observe that this space does not coincide with the space of fuzzy
numbers with continuous membership degrees. Indeed, for example single-
tons, and crisp intervals regarded as fuzzy sets through their characteristic
functions

u(x) =

{
1 if x ∈ [a, b]
0 otherwise

are discontinuous while the level-set functions associated to them will be con-
tinuous. The level set functions in this case being constant u−r = a, u+r = b, r ∈
[0, 1] they are continuous, while the characteristic function is discontinuous.
Also, there are fuzzy numbers with continuous membership
function such that the level set functions u±r are discontinuous. It is enough
to consider u : [0, 4]→ [0, 1],

u(x) =

⎧⎪⎪⎨
⎪⎪⎩

x
2 if x ∈ [0, 1)
1
2 if x ∈ [1, 2]

x−1
2 if x ∈ [2, 3]

4− x if x ∈ [3, 4]

,

and we have u−1
2

= 1 while limr↘ 1
2
(u−r ) = 2. As we can see restriction to

continuous endpoints of the level set is not too restrictive.
Another research direction (see Rojas-Medar and Roman-Flores [126] Barros-

Bassanezi-Tonelli [12]), which is leading to a larger space within fuzzy num-
bers space is to consider those fuzzy numbers which do not have a proper
local minimum of their membership function, i.e., there is no 0 < x0 < 1
such that u(x0) ≤ u(x) in a neighborhood x ∈ [x0 − ε, x0 + ε] and their core
consists of a single point. The subset of fuzzy numbers obtained by these
restrictions will be separable and complete.

In most of the situations we try to address the more general space of fuzzy
numbers without any restriction.

Proposition 8.17. R
c
F with D∞ is a separable, complete metric space.

Proof. First let us observe that being a closed subspace of a complete metric
space, Rc

F is complete. Let us consider C[0, 1] the Banach space of continuous
real-valued functions on [0, 1] and the embedding

j : Rc
F → C[0, 1]× C[0, 1]

given by
j(u) = (u−, u+),

where u−, u+ : [0, 1]→ R, u−(r) = u−r , u
+(r) = u+r . Then j(RF ) is a closed

convex cone having its vertex at 0 in C[0, 1]× C[0, 1] with the norm

||(f, g)|| = max{||f ||, ||g||}.
The embedding j is the same as the one defined in an earlier section but its
image is now within the space of continuous functions. Being isometrically
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embedded in a subspace of C[0, 1] each component of j(Rc
F) is separable

according to the Banach-Mazur theorem. Then as a consequence itself j(Rc
F)

is separable and so is Rc
F itself.

Remark 8.18. It is well known that the closed unit ball in C[0, 1] is not
compact, so clearly the closed unit ball in R

c
F will not be compact. Bounded-

ness and continuity of elements of a subset of a function space is insufficient
for compactness. It is replaced by equicontinuity in e.g. Arzela-Ascoli type
results.

8.8 Integration of Fuzzy-Number-Valued Functions

In is easy to observe that the definition of the integral of a fuzzy-number-
valued function does not raise serious problems. In the followings Aumann,
Riemann and Henstock type integrals will be introduced.

First we introduce an Aumann-type integral, used in several works.

Definition 8.19. (Diamond-Kloeden [44]) A mapping f : [a, b]→ RF is said
to be strongly measurable if the level set mapping [f(x)]α are measurable for
all α ∈ [0, 1]. Here measurable means Borel measurable.

A fuzzy-valued mapping f : [a, b]→ RF is called integrably bounded if there
exists an integrable function h : [a, b]→ R, such that

||f(t)||F ≤ h(t), ∀t ∈ [a, b]

A strongly measurable and integrably bounded fuzzy-valued function is called
integrable. The fuzzy Aumann integral of f : [a, b]→ RF is defined level-
wise by the equation

[
(FA)

ˆ b

a

f (x) dx

]r

=

ˆ b

a

[f (x)]
r
dx, r ∈ [0, 1].

The following Riemann type integral presents an alternative to Aumann-type
definition.

Definition 8.20. (Gal [66]) A function f : [a, b] → RF , [a, b] ⊂ R is called
Riemann integrable on [a, b], if there exists I ∈ RF , with the property: ∀ε > 0,
∃δ > 0, such that for any division of [a, b], d : a = x0 < ... < xn = b of norm
ν (d) < δ, and for any points ξi ∈ [xi, xi+1], i = 0, ..., n− 1, we have

D∞

(
n−1∑
i=0

f (ξi) (xi+1 − xi) , I
)
< ε.

Then we denote I = (FR)
´ b
a
f (x) dx and it is called fuzzy Riemann in-

tegral.
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In Wu-Gong [151] the Henstock integral of a fuzzy-valued function is intro-
duced. Surely as a particular case the Riemann-type integral of a fuzzy-valued
function can be re-obtained.

Definition 8.21. (Wu-Gong [151], Bede-Gal [19])Let f : [a, b] → RF a
fuzzy-number-valued function and

Δn : a = x0 < x1 < ... < xn−1 < xn = b

a partition of the interval [a, b], ξi ∈ [xi, xi+1] , i = 0, 1, ..., n− 1, a sequence
of points of the partition Δn and δ (x) > 0 a real-valued function over [a, b].
The division P = (Δn, ξ) is said to be δ-fine if

[xi, xi+1] ⊆ (ξi − δ (ξi) , ξi + δ (ξi)) .

The function f is said to be Henstock (or (FH)-) integrable having the integral
I ∈ RF if for any ε > 0 there exists a real-valued function δ, such that for
any δ-fine division P we have

D∞

(
n−1∑
i=0

f (ξi) · hi, I
)
< ε,

where hi = xi+1 − xi. Then I is called the fuzzy Henstock integral of f and

it is denoted by (FH)
´ b
a f (t) dt.

Proposition 8.22. A continuous fuzzy-number-valued function is fuzzy Au-
mann integrable, fuzzy Riemann integrable and fuzzy Henstock integrable too,
and moreover

(FA)

ˆ b

a

f (x) dx = (FH)

ˆ b

a

f (x) dx = (FR)

ˆ b

a

f (x) dx.

Proof. It is immediate to observe that

[
(FA)

ˆ b

a

f (x) dx

]r

=

[ˆ b

a

f r
− (x) dx,

ˆ b

a

f r
+ (x) dx

]
, ∀r ∈ [0, 1].

If f is Riemann integrable then it is also Henstock integrable. Indeed, if the
function δ is constant in the Henstock definition, it will generate the Riemann
case. The Riemann sum can be written level-wise

[
n−1∑
i=0

f (ξi) (xi+1 − xi)
]

r

=

[
n−1∑
i=0

f−
r (ξi) (xi+1 − xi) ,

n−1∑
i=0

f+
r (ξi) (xi+1 − xi)

]
.
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Equicontinuity implies integrability of the functions f−
r and f+

r uniformly
w.r.t. r ∈ [0, 1]. Then we obtain

[
(FR)

ˆ b

a

f (x) dx

]r

=

[ˆ b

a

f r
− (x) dx,

ˆ b

a

f r
+ (x) dx

]
,

and combining the above results we obtain the equality of the three types of
integrals.

The common value of these integrals for a continuous function f : [a, b]→ RF
will be denoted by

´ b
a f (x) dx. For general f : [a, b]→ RF the above assertion

does not hold.
The properties of the integrals for fuzzy functions are similar to the prop-

erties of their classical counterparts.

Proposition 8.23. (Gal [66]) The fuzzy integral has the following properties.
(i) If f, g : [a, b]→ RF are integrable and α, β ∈ R we have

ˆ b

a

(αf(x) + βg(x))dx = α

ˆ b

a

f(x)dx + β

ˆ b

a

g(x)dx.

(ii) If f : [a, b]→ RF is integrable and c ∈ [a, b], then

ˆ c

a

f(x)dx +

ˆ b

c

f(x)dx =

ˆ b

a

f(x)dx.

(iii) If c ∈ RF and f : [a, b]→ R has constant sign on [a, b], then

ˆ b

a

c · f(x)dx = c

ˆ b

a

f(x)dx.

For general f the property does not hold.

Proof. The proof is left as an exercise.

Example 8.24. (Bede [14]) Let us consider the Green function on [0, 1]
interval

G(t, s) =

{ −s(1− t), s ≤ t
−t(1− s), s > t

.

Then

y(t) =

ˆ t

0

G(t, s)(0, 1, 2)ds+

ˆ 1

t

G(t, s)(0, 1, 2)ds

=

ˆ t

0

(−2s(1− t),−s(1− t), 0)ds+
ˆ 1

t

(−2t(1− s),−t(1− s), 0)ds.

We can integrate the terms level-wise and we obtain

y(t) =

(
t2 − t, 1

2
(t2 − t), 0

)
.
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8.9 Differentiability of Fuzzy-Number-Valued
Functions

The Hukuhara derivative of a fuzzy-number-valued function was introduced
in Puri-Ralescu [123] and it has its starting point in the Hukuhara derivative
of multivalued functions. The approach based on the Hukuhara derivative
has the disadvantage that a differentiable function has increasing length of
its support interval (Diamond [45]). This is not always a realistic assumption.
Strongly generalized differentiability of fuzzy-number-valued functions is in-
troduced and studied in Bede-Gal [20]. In this case a differentiable function
may have decreasing length of its support. Recently this line of research was
continued by introducing gH-derivative and the g-derivative (Bede-Stefanini
[27]) of a fuzzy-valued function.

8.9.1 Hukuhara Differentiability

Definition 8.25. (Puri-Ralescu [123], Hukuhara [79]) A function f : (a, b)→
RF is called Hukuhara differentiable if for h > 0 sufficiently small the the H-
differences f(x + h) � f(x) and f(x) � f(x − h) exist and if there exist an
element f ′(x) ∈ RF such that

lim
h↘0

f(x+ h)� f(x)
h

= lim
h↘0

f(x)� f(x− h)
h

= f ′(x).

The fuzzy number f ′(x) is called the Hukuhara derivative of f at x.

Definition 8.26. (Seikkala [131]) The Seikkala derivative of a fuzzy-
number-valued function f : (a, b)→ RF is defined by

f ′(x)r = [(f−
r (x))′, (f+

r (x))′],

0 ≤ r ≤ 1, provided that it defines a fuzzy number f ′(x) ∈ RF .

Remark 8.27. Suppose that the functions f−
r (x) and f+

r (x) are continuously
differentiable with respect to x, uniformly with respect to r ∈ [0, 1]. Then f is
Hukuhara differentiable if and only if it is Seikkala differentiable and the two
derivatives coincide. Indeed, if f is Hukuhara differentiable we can write

lim
h↘0

f(x+ h)� f(x)
h

=

[
lim
h↘0

f−
r (x+ h)− f−

r (x)

h
, lim
h↘0

f+
r (x+ h)− f+

r (x)

h

]
.

relation that shows that f is Seikkala differentiable.
Reciprocally if f is Seikkala differentiable then we have its length

len(f(x)r) = f+
r (x) − f−

r (x) ≥ 0,
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which implies the existence of the Hukuhara difference f(x + h) � f(x) and
considering the limit with h↘ 0 we get Hukuhara differentiability. The equal-
ity of the two derivatives is immediate.

Proposition 8.28. A Seikkala differentiable function has non-decreasing
length of the closure of the support.

Proof. Indeed, by supposing the contrary, let f : (a, b) → RF be such that
len(f(x)) is decreasing for some neighborhood of x ∈ (a, b). Then we have

[f ′(x)]0 = [(f−
0 (x))′, (f+

0 (x))′].

Since len(f(x)) = f+
0 (x) − f−

0 (x) is decreasing we obtain a contradiction.
Moreover, if for some x ∈ (a, b), f ′(x) ∈RF \ R then len(f(x)) is strictly
increasing.

Example 8.29. (i) If

f(t) = (x(t), y(t), z(t))

is triangular number-valued function, then if u is Hukuhara differentiable and
x, y, z are real-valued differentiable functions then

f ′(t) = (x′(t), y′(t), z′(t))

is a triangular fuzzy number.
(ii) Let f(t) = (−et, 0, et). Then f ′(t) = (−et, 0, et). And in this case, it

is easy to see that f ′(t) = f(t) but also, f ′(t) = −f(t).
(iii) Let f(t) = (1, 2, 3)e−t. Suppose that f(t) is differentiable. Then we

would have f ′(t) = (−e−t,−2e−t,−3e−t) which is not a fuzzy number.

The following example shows a disadvantage of the Hukuhara derivative.

Example 8.30. Let c ∈ RF and g : (a, b) → R+ be differentiable on x0 ∈
(a, b) and let us define f : (a, b)→ RF by

f(x) = c · g(x), x ∈ (a, b).

Let us suppose that g′(x0) > 0. Then for h > 0 sufficiently small, since g is
increasing on [x0, x0 + h] we obtain

g(x0 + h)− g(x0) = ω(x0, h) > 0.

Multiplying by c, it follows

c · g(x0 + h) = c · g(x0) + c · ω(x0, h),
i.e. there exists the H-difference f(x0 + h) � f(x0). Similarly, reasoning as
above we get that there exists the H-difference f(x0) � f(x0 − h) too. Also,
simple reasoning shows in this case that f ′(x0) = c·g′(x0). Now, if we suppose
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g′(x0) < 0, we easily see that we cannot use the above kind of reasoning
to prove that the H-differences f(x0 + h) � f(x0), f(x0) � f(x0 − h) and
the derivative f ′(x0) exist. Consequently, we cannot say that f ′(x0) exists.
Moreover, we can easily prove that if g′(x0) < 0 then the Hukuhara differences
f(x0 + h) � f(x0), f(x0) � f(x0 − h) cannot exist, so the function is not
Hukuhara differentiable.

8.9.2 Generalized Differentiabilities

The definition of strongly generalized differentiability was introduced in Bede-
Gal [18], Bede-Gal [20].

Definition 8.31. (Bede-Gal [20]) Let f : (a, b) → RF and x0 ∈ (a, b). We
say that f is strongly generalized differentiable at x0, if there exists an
element f ′(x0) ∈ RF , such that

(i) for all h > 0 sufficiently small, ∃f(x0 + h)� f(x0), f(x0)� f(x0 − h)
and the limits (in the metric D)

lim
h↘0

f(x0 + h)� f(x0)
h

= lim
h↘0

f(x0)� f(x0 − h)
h

= f ′(x0),

or
(ii) for all h > 0 sufficiently small, ∃f(x0)� f(x0 + h), f(x0 − h)� f(x0)

and the limits

lim
h↘0

f(x0)� f(x0 + h)

(−h) = lim
h↘0

f(x0 − h)� f(x0)
(−h) = f ′(x0),

or
(iii) for all h > 0 sufficiently small, ∃f(x0 + h)� f(x0), f(x0− h)� f(x0)

and the limits

lim
h↘0

f(x0 + h)� f(x0)
h

= lim
h↘0

f(x0 − h)� f(x0)
(−h) = f ′(x0),

or
(iv) for all h > 0 sufficiently small, ∃f(x0)� f(x0 + h), f(x0)� f(x0− h)

and the limits

lim
h↘0

f(x0)� f(x0 + h)

(−h) = lim
h↘0

f(x0)� f(x0 − h)
h

= f ′(x0).

(h and (−h) at denominators mean 1
h · and − 1

h ·, respectively)
Case (i) of the previous definition corresponds to the Hukuhara derivative
discussed in the previous section.
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Remark 8.32. 1) This definition is not contradictory, i.e. if for f and x0,
at least two from the possibilities (i)-(iv) simultaneously hold, then we do not
obtain a contradiction. Indeed, let us suppose, for example, that (i) and (iii)
hold. Then by

f(x0 + h) = f(x0) +A,

f(x0) = f(x0 − h) +B,

f(x0 − h) = f(x0) + C,

with A,B,C ∈ RF , we get f(x0) = f(x0)+B+C but this means B+C = 0,
which implies B = C = 0, i.e., f ′(x0) = 0, or B,C ∈ R, B = −C, case
when f ′(x0) ∈ R. But in all these cases it is easy to see that all the limits
in the previous definition are equal. Similar conclusion follows for any other
combination from (i)-(iv).

2) Let f : (a, b) → RF be strongly generalized differentiable on each point
x ∈ (a, b) in the sense of Definition 8.31, (iii) or (iv). Then f ′(x) ∈ R for all
x ∈ (a, b).

Example 8.33. If g : (a, b) → R is differentiable on (a, b) such that g′ has
at most a finite number of roots in (a, b) and c ∈ RF , then f(x) = c · g(x)
is strongly generalized differentiable on (a, b) and f ′(x) = c · g′(x), ∀x ∈
(a, b). Indeed, if g′(x) > 0, as we have seen above the function is Hukuhara
differentiable and so it is strongly generalized differentiable too. If g′(x) < 0
then the differences f(x0) � f(x0 + h), f(x0 − h) � f(x0) exist, and the (ii)
case of the above definition 8.31 is satisfied. As g′(x) = 0 may involve a sign
change, it results in a case (iii) or (iv) of the above definition.

The concept in Definition 8.31 can be further generalized as follows.

Definition 8.34. (Bede-Gal [20]) Let f : (a, b)→ RF and x0 ∈ (a, b). For a
sequence hn ↘ 0 and n0 ∈ N, let us denote

A(1)
n0

=
{
n ≥ n0; ∃E(1)

n := f(x0 + hn)� f(x0)
}
,

A(2)
n0

=
{
n ≥ n0; ∃E(2)

n := f(x0)� f(x0 + hn)
}
,

A(3)
n0

=
{
n ≥ n0; ∃E(3)

n := f(x0)� f(x0 − hn)
}
,

A(4)
n0

=
{
n ≥ n0; ∃E(4)

n := f(x0 − hn)� f(x0)
}
.

We say that f is weakly generalized differentiable on x0, if for any se-
quence hn ↘ 0, there exists n0 ∈ N, such that

A(1)
n0
∪ A(2)

n0
∪ A(3)

n0
∪ A(4)

n0
= {n ∈ N;n ≥ n0}
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and moreover, there exists an element in RF denoted by f ′(x0), such that if

for some j ∈ {1, 2, 3, 4} we have card(A
(j)
n0 ) = +∞, then

lim
hn↘0n→∞n∈A

(j)
n0

D

(
E

(j)
n

(−1)j+1hn
, f ′(x0)

)
= 0.

Example 8.35. Let c ∈ RF and g : (a, b) → R. If g is differentiable on x0
(in usual sense), then the function f : (a, b)→ RF defined by f(x) = c · g(x),
∀x ∈ (a, b), is weakly generalized differentiable on x0 and we have f ′(x0) =
c · g′(x0).

Let f(t) = (1, 2, 3)e−t. Then it is easy to see that f ′(t) = −(1, 2, 3)e−t =
(−3e−t,−2e−t,−e−t).

Let f(t) = (1, 2, 3) sin t, then f ′(t) = (1, 2, 3) cos t, ∀t ∈ R.

Proposition 8.36. If u(t) = (x(t), y(t), z(t)) is triangular number valued
function, then

a) If u is (i)-differentiable (Hukuhara differentiable) then u′ = (x′, y′, z′).
b) If u is (ii)-differentiable then u′ = (z′, y′, x′).

Proof. The proof of b) is as follows. Let us suppose that the H-difference
u(t)� u(t+ h) exists. Then we get:

lim
h↘0

u(t)� u(t+ h)

−h

= lim
h↘0

(x(t) − x(t+ h), y(t)− y(t+ h), z(t)− z(t+ h))

−h

= lim
h↘0

(
z(t)− z(t+ h)

−h ,
y(t)− y(t+ h)

−h ,
x(t)− x(t + h)

−h
)

= (z′, y′, x′).

Similarly

lim
h↘0

u(t− h)� u(t)
−h = (z′, y′, x′),

and the required conclusion follows.

Other generalizations were recently obtained.

Definition 8.37. (Stefanini-Bede [141], Bede-Stefanini [27]) Let x0 ∈ (a, b).
Then the fuzzy gH-derivative of a function f : (a, b)→ RF at x0 is defined
as

f ′
gH(x0) = lim

h→0

1

h
[f(x0 + h)�gH f(x0)].

If f ′
gH(x0) ∈ RF exists, then we say that f is generalized Hukuhara differen-

tiable (gH-differentiable for short) at x0 (�gH is the gH-difference) .
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Theorem 8.38. (Bede-Stefanini [27]) The gH-differentiability concept and
the weakly generalized (Hukuhara) differentiability given in Definition 8.34
coincide.

Proof. Let us suppose that f is gH-differentiable (as in Definition 8.37). For
any sequence hn ↘ 0, for n sufficiently large, at least two of the Hukuhara
differences f(x0 + hn)�H f(x0), f(x0)�H f(x0 + hn), f(x0)�H f(x0 − hn),
f(x0 − hn)�H f(x0) exist. As a conclusion we have

A(1)
n0
∪ A(2)

n0
∪A(3)

n0
∪ A(4)

n0
= {n ∈ N ;n ≥ n0}

for any n0 ∈ N . Now we observe that

E
(j)
n

(−1)j+1hn
=
f(x0 + hn)�gH f(x0)

hn
,

so f is weakly generalized differentiable.
Reciprocally, if we assume f to be weakly generalized differentiable then

since at least two of the sets A
(1)
n0 , A

(2)
n0 , A

(3)
n0 , A

(4)
n0 are infinite we get

lim
h→0

1

h
[f(x0 + h)�gH f(x0)] = lim

hn↘0

E
(j)
n

(−1)j+1hn

for at least two indices from j ∈ {1, 2, 3, 4}, so f is gH-differentiable. As a
conclusion weakly generalized (Hukuhara) differentiability is equivalent to
gH-differentiability.

Theorem 8.39. (Bede-Stefanini [27]) Let f : (a, b) → RF be such that
[f(x)]α = [f−

α (x), f+
α (x)]. Suppose that the functions f−

α (x) and f+
α (x) are

real-valued functions, differentiable with respect to x, uniformly in α ∈ [0, 1].
Then the function f(x) is gH-differentiable at a fixed x ∈]a, b[ if and only if
one of the following two cases holds:

a) (f−
α )

′
(x) is increasing, (f+

α )
′
(x) is decreasing as functions of α, and

(
f−
1

)′
(x) ≤ (

f+
1

)′
(x),

or
b) (f−

α )
′
(x) is decreasing, (f+

α )
′
(x) is increasing as functions of α, and

(
f+
1

)′
(x) ≤ (

f−
1

)′
(x).

Moreover, ∀α ∈ [0, 1] we have

[
f ′
gH(x)

]
α
= [min{(f−

α

)′
(x),

(
f+
α

)′
(x)}

,max{(f−
α

)′
(x),

(
f+
α

)′
(x)}].
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Proof. Let f be gH-differentiable and assume that f−
α (x) and f+

α (x) are
differentiable. Clearly, gH-differentiability implies that level-wise we have

[
f ′
gH(x)

]
α
= [

(
f−
α

)′
(x),

(
f+
α

)′
(x)].

or [
f ′
gH(x)

]
α
= [

(
f+
α

)′
(x),

(
f−
α

)′
(x)].

In the first step let us suppose that there is a sign change in the difference of
derivatives (f+

α )
′
(x) − (f−

α )
′
(x) at a fixed α0 ∈ (0, 1). Then

[
f ′
gH(x)

]
α0

is a

singleton and, for all α such that α0 ≤ α ≤ 1, also
[
f ′
gH(x)

]
α
is a singleton

because [
f ′
gH(x)

]
α
⊆ [

f ′
gH(x)

]
α0

it follows that, for the same values of α,

(
f+
α

)′
(x)− (

f−
α

)′
(x) = 0

which is a contradiction with the fact that (f+
α )

′
(x)− (f−

α )
′
(x) changes sign.

We then conclude that (f+
α )

′
(x)− (f−

α )
′
(x) cannot change sign.

Case 1. If
(
f−
1

)′
(x) <

(
f+
1

)′
(x) then

(
f+
α

)′
(x)− (

f−
α

)′
(x) ≥ 0

for every α ∈ [0, 1] and

[
f ′
gH(x)

]
α
= [

(
f−
α

)′
(x),

(
f+
α

)′
(x)];

since f is gH-differentiable, the intervals [(f−
α )

′
(x), (f+

α )
′
(x)] should form a

fuzzy number, i.e., for any α > β,

[
(
f−
α

)′
(x),

(
f+
α

)′
(x)] ⊆ [

(
f−
β

)′
(x),

(
f+
β

)′
(x)]

which shows that (f−
α )

′
(x) has to be increasing and (f+

α )
′
(x) needs to be

decreasing as a function of α.
Case 2. If

(
f−
1

)′
(x) >

(
f+
1

)′
(x), then

(
f+
α

)′
(x)− (

f−
α

)′
(x) ≤ 0

for every α ∈ [0, 1] and, in this case,

[
f ′
gH(x)

]
α
= [

(
f+
α

)′
(x),

(
f−
α

)′
(x)]

so we get

[
(
f+
α

)′
(x),

(
f−
α

)′
(x)] ⊆ [

(
f+
β

)′
(x),

(
f−
β

)′
(x)],
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for any α > β, which shows that (f−
α )

′
(x) is decreasing and (f+

α )
′
(x) is

increasing as a function of α.
Case 3. If we have (

f−
1

)′
(x) =

(
f+
1

)′
(x)

and if (fgH)
′
(x) ∈ R is a crisp number, the conclusion is obvious. Otherwise

we may have either (
f−
0

)′
(x) <

(
f+
0

)′
(x)

or (
f−
0

)′
(x) >

(
f+
0

)′
(x)

when α < α0 and equality

(
f−
0

)′
(x) =

(
f+
0

)′
(x)

for α ≥ α0. We have in this case the monotonicity satisfied.
Reciprocally, let us consider the Banach space B = C̄[0, 1]× C̄[0, 1], where

C̄[0, 1] is the space of left continuous functions on (0, 1], right continuous at
0, with the uniform norm. For any fixed x ∈ (a, b), the mapping jx : RF → B,
defined by

jx(f) = (f−(x), f+(x)) = {(f−
α (x), f+

α (x))|α ∈ [0, 1]},
is an isometric embedding. Assuming that, for all α, the two functions f−

α (x)
and f+

α (x) are differentiable with respect to x, the limits

(
f−
α

)′
(x) = lim

h→0

f−
α (x+ h)− f−

α (x)

h(
f+
α

)′
(x) = lim

h→0

f+
α (x + h)− f+

α (x)

h

exist uniformly for all α ∈ [0, 1]. Taking a sequence hn → 0, we will have

(
f−
α

)′
(x) = lim

n→∞

f−
α (x+ hn)− f−

α (x)

hn(
f+
α

)′
(x) = lim

n→∞

f+
α (x+ hn)− f+

α (x)

hn
,

i.e., (f−
α )

′
(x), (f+

α )
′
(x) are uniform limits of sequences of left continuous

functions at α ∈ (0, 1], so they are themselves left continuous for α ∈ (0, 1].
Similarly the right continuity at 0 can obtained.

Assuming that, for a fixed x ∈ [a, b], the function (f−
α )

′
(x) is increasing

and the function (f+
α )

′
(x) is decreasing as functions of α, and that

(
f−
1

)′
(x) ≤ (

f+
1

)′
(x)

then also (
f−
α

)′
(x) ≤ (

f+
α

)′
(x), ∀α ∈ [0, 1]



8.9 Differentiability of Fuzzy-Number-Valued Functions 165

and it is easy to see that the pair of functions (f−
α )

′
(x), (f+

α )
′
(x) fulfill the

conditions in Theorem 4.8 and the intervals

[
(
f−
α

)′
(x),

(
f+
α

)′
(x)], α ∈ [0, 1]

determine a fuzzy number. Now we observe that the following limit uniformly
exists [

lim
h→0

f(x+ h)�gH f(x)

h

]
α

=

[
lim
h→0

f−
α (x+ h)− f−

α (x)

h
, lim
h→0

f+
α (x+ h)− f+

α (x)

h

]

= [
(
f−
α

)′
(x),

(
f+
α

)′
(x)], ∀α ∈ [0, 1],

and it is a fuzzy number. As a conclusion, finally we obtain that f is
gH-differentiable. The symmetric case being analogous, the proof is
complete.

Remark 8.40. Any of the derivative concepts defined above can be restricted
to the case of closed real intervals. For example f : (a, b)→ I, with

I = {[a, b]|a ≤ b, a, b ∈ R}
has its gH-derivative (Stefanini-Bede [141])

f ′
gH(x) = lim

n→∞

f(x+ h)�gH f(x)

h

= [min{(f−)′ (x), (f+
)′
(x)},max{(f−)′ (x), (f+

)′
(x)}].

This expression always represents a well-defined real interval.

Based on the g-difference, we consider the following g-differentiability con-
cept, that further extends the gH-differentiability.

Definition 8.41. (Stefanini-Bede [27]) Let x0 ∈ (a, b). Then the fuzzy
g-derivative of a function f : (a, b)→ RF at x0 is defined as

f ′
g(x0) = lim

h→0

1

h
[f(x0 + h)�g f(x0)].

If f ′
g(x0) ∈ RF exists, we say that f is generalized differentiable

(g-differentiable for short) at x0.

Remark 8.42. We observe that the g-derivative is the most general among
the previous definitions. Indeed,

f(x0 + h)�g f(x0) = f(x0 + h)�gH f(x0)

whenever the gH-difference exists. This also implies that f ′
g(x) = f ′

gH(x)
whenever this later exists.
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In the following Theorem we prove a characterization and a practical for-
mula for the g-derivative.

Theorem 8.43. (Stefanini-Bede [27]) Let f : [a, b]→ RF be such that

[f(x)]α = [f−
α (x), f+

α (x)], α ∈ [0, 1].

If f−
α (x) and f+

α (x) are differentiable real-valued functions with respect to x,
uniformly with respect to α ∈ [0, 1], then f(x) is g-differentiable and we have

[
f ′
g(x)

]
α
=

[
inf
β≥α

min{
(
f−
β

)′
(x),

(
f+
β

)′
(x)}, sup

β≥α
max{

(
f−
β

)′
,
(
f+
β

)′
(x)}

]
.

Proof. By Proposition 5.19 we have

1

h
[f(x+ h)�g f(x)]α

=
1

h
[ inf
β≥α

min{f(x+ h)−β − f(x)−β , f(x+ h)+β − f(x)+β },

sup
β≥α

max{f(x+ h)−β − f(x)−β , f(x+ h)+β − f(x)+β }].

Since f−
α (x), f+

α (x) are differentiable we obtain

lim
h→0

1

h
[f(x+ h)�g f(x)]α

=

[
inf
β≥α

min{
(
f−
β

)′
(x),

(
f+
β

)′
(x)}, sup

β≥α
max{

(
f−
β

)′
(x),

(
f+
β

)′
(x)}

]

for any α ∈ [0, 1]. Also, let us observe that if f−
α , f

+
α are left continuous

with respect to α ∈ (0, 1] and right continuous at 0, considering a sequence
hn → 0, the functions

f−
α (x+ hn)− f−

α (x)

hn
,
f+
α (x+ hn)− f+

α (x)

hn

are left continuous at α ∈ (0, 1] and right continuous at 0. Also, the functions

inf
β≥α

min

{
f−
β (x+ hn)− f−

β (x)

hn
,
f+
β (x+ hn)− f+

β (x)

hn

}

and

sup
β≥α

max

{
f−
β (x+ hn)− f−

β (x)

hn
,
f+
β (x+ hn)− f+

β (x)

hn

}
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fulfill the same properties. A limit of a sequence of left (right) continuous
functions is left (right) continuous. Then it follows that

inf
β≥α

min{
(
f−
β

)′
(x),

(
f+
β

)′
(x)},

sup
β≥α

max{
(
f−
β

)′
(x),

(
f+
β

)′
(x)}

are left continuous for α ∈ (0, 1] and right continuous at 0. To check mono-
tonicity properties we observe that for α1 ≤ α2 we have

{
(
f−
β

)′
(x),

(
f+
β

)′
(x)|β ≥ α2} ⊆ {

(
f−
β

)′
(x),

(
f+
β

)′
(x)|β ≥ α1}.

Then

inf
β≥α

min{
(
f−
β

)′
(x),

(
f+
β

)′
(x)}

is increasing with respect to α ∈ [0, 1] and

sup
β≥α

max{
(
f−
β

)′
(x),

(
f+
β

)′
(x)}

is decreasing in α ∈ [0, 1]. The condition

min{(f−
1

)′
(x),

(
f+
1

)′
(x)} ≤ max{(f−

1

)′
(x),

(
f+
1

)′
(x)}

concludes the reasoning that allows us to infer that the above functions define
a fuzzy number with

[
f ′
g(x)

]
α
=

[
inf
β≥α

min{
(
f−
β

)′
(x),

(
f+
β

)′
(x)}, sup

β≥α
max{

(
f−
β

)′
,
(
f+
β

)′
(x)}

]
.

As a conclusion, the level sets
[
f ′
g(x)

]
α
define a fuzzy number, and so, the

derivative f ′
g(x) exists in the sense of the g-derivative.

Theorem 8.44. (Bede-Stefanini [27]) Let f : (a, b) → RF be uniformly
level-wise gH-differentiable at x0. Then f is g-differentiable at x0 and, for
any α ∈ [0, 1],

[f ′
g(x0)]α = cl

⎛
⎝ ⋃

β≥α

(f ′
gH(x0))β

⎞
⎠



168 8 Fuzzy Analysis

Proof. For the definition of the g-difference (Definition 5.18) we have

[f(x0 + h)�g f(x0)]α = cl
⋃
β≥α

([f(x0 + h)]β �gH [f(x0)]β), ∀α ∈ [0, 1].

Taking the uniform limit in the above relation we obtain

[f ′
g(x0)]α = cl

⎛
⎝ ⋃

β≥α

(f ′
gH(x0))β

⎞
⎠ .

We conclude with an example of a fuzzy valued function that is not gH-
differentiable but it is g-differentiable.

Example 8.45. Consider the fuzzy valued function f : [−2, 2]→ RF having
triangular values as outputs:

f(x) =

(
x3

3
,
x3

3
+ x+ 3,

2x3

3
+ 4

)

having the level sets defined by

f−
α (x) =

x3

3
+ α(x+ 3)

f+
α (x) = (2 − α)x

3

3
+ xα + 4− α.

We have (
f−
α

)′
(x) = x2 + α(

f+
α

)′
(x) = (2− α)x2 + α.

Fig. 8.1 The level sets of a fuzzy valued function
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Fig. 8.2 The level sets of the g-derivative of a fuzzy valued function

We observe that on the interval [−2,−1] and [1, 2] intervals the function is
gH-differentiable, namely it is Hukuhara differentiable. In the interval [−1, 1]
it is not gH-differentiable but it is g-differentiable. The function and its g-
derivative are represented in Figs. 8.1 and 8.2 respectively.

8.10 Problems

1. Calculate the Haussdorff distance between two arbitrary triangular fuzzy
numbers u = (a1, b1, c1) and v = (a2, b2, c2) in a simple form. Can
we extend this result to trapezoidal fuzzy numbers? (Numerical ex-
amples u = (−1, 1, 2), v = (3, 4, 6) and respectively u = (1, 2, 3, 5),
v = (3, 3, 4, 6).

2. Calculate the D1 distance between two arbitrary triangular fuzzy num-
bers u = (a1, b1, c1) and v = (a2, b2, c2) in a simple form. Can we ex-
tend this result to trapezoidal fuzzy numbers? (Numerical examples u =
(−1, 1, 2), v = (3, 4, 6) and respectively u = (1, 2, 3, 5), v = (3, 3, 4, 6).

3. Prove the properties of the Dp distance listed in Proposition 8.4.

4. Prove the properties (i)-(iv) and (vi) of a norm of a fuzzy number in
Proposition 8.13.

5. Show that the Hausdorff distance is linked to the generalized difference
through the relation

D∞(u, v) = ‖u�g v‖F .
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6. Prove that the space of continuous fuzzy-number-valued functions
(C ([a, b] ;RF ) , D∞) is a complete metric space and also, that it is an
FN-type space.

7. Calculate the integral of a fuzzy function f : [a, b]→ RF , f(x) = c · g(x),
with c ∈ RF being a fuzzy constant and g(x) ∈ R a real function possibly
changing sign once in (a, b).

8. Calculate the strongly generalized derivative of the function f(x) =
(1, 2, 3, 5) · sinx, directly using the definition of this concept.

9. a) For a given continuous fuzzy-number-valued function f : [a, b] →
RF , prove that the function F (x) =

x́

a

f(t)dt is gH-differentiable and

F ′
gH(x) = f(x),

b) Prove that the function G(x) =
b́

x

f(t)dt is gH-differentiable and

G′
gH(x) = −f(x).

10. Prove that if f is a strongly generalized differentiable function as in case
(i) or (ii) of strongly generalized differentiability over the entire interval
[a, b] then we have

ˆ b

a

f ′
gH(x)dx = f(b)�gH f(a).

11. Prove that the function given level-wise for α ∈ [0, 1] as

f−
α (x) = xe−x + α2

(
e−x2

+ x− xe−x
)

f+
α (x) = e−x2

+ x+ (1− α2)
(
ex − x+ e−x2

)

is g-differentiable without being gH-differentiable.
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Fuzzy Differential Equations

Fuzzy differential equations (FDEs) appear as a natural way to model the
propagation of epistemic uncertainty in a dynamical environment. There are
several interpretations of a fuzzy differential equation. The first one histori-
cally was based on the Hukuhara derivative introduced in Puri-Ralescu [123]
and studied in several papers (Wu-Song-Lee [150], Kaleva [83], Ding-Ma-
Kandel [46], Rodriguez-Lopez [125]). This interpretation has the disadvan-
tage that solutions of a fuzzy differential equation have always an increasing
length of the support. This fact implies that the future behavior of a fuzzy
dynamical system is more and more uncertain in time. This phenomenon
does not allow the existence of periodic solutions or asymptotic phenomena.
That is why different ideas and methods to solve fuzzy differential equations
have been developed. One of them solves differential equations using Zadeh’s
extension principle (Buckley-Feuring [30]), while another approach interprets
fuzzy differential equations through differential inclusions. Differential inclu-
sions and Fuzzy Differential Inclusions are two topics that are very interest-
ing but they do not constitute the subject of the present work (see Diamond
[45], Lakshmikantham-Mohapatra [98]). Recently new approaches have been
developed based on generalized fuzzy derivatives discussed in the previous
chapter. In the present work we will work with the interpretations based
on Hukuhara differentiability, Zadeh’s extension principle and the strongly
generalized differentiability concepts.

9.1 FDEs under Hukuhara Differentiability

In this section we consider the fuzzy initial value problem x′ = f(t, x), x(t0) =
x0 ∈ RF under Hukuhara differentiability. The function f : R × RF→ RF

B. Bede: Mathematics of Fuzzy Sets and Fuzzy Logic, STUDFUZZ 295, pp. 171–191.
DOI: 10.1007/978-3-642-35221-8_9 c© Springer-Verlag Berlin Heidelberg 2013
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is assumed to be continuous. The following lemma transforms the fuzzy dif-
ferential equation into integral equations. In the present section the differ-
entiability concept is that of Hukuhara differentiability. A fuzzy differential
equation is written using the Hukuhara derivative.

Lemma 9.1. For t0 ∈ R, the fuzzy differential equation x′ = f(t, x), x(t0) =
x0 ∈ RF where f : R× RF→ RF is continuous, is equivalent to the integral
equation

x(t) = x0 +

ˆ t

t0

f(s, x(s))ds,

on some interval [t0, t1] ⊂ R.

Proof. Let us suppose that x is a solution of the differential equation x′ =
f(t, x), x(t0) = x0 ∈ RF . Then by integration we get

ˆ t

t0

x′(s)ds =

ˆ t

t0

f(s, x(s))ds

and using the result in problem 10 of the previous chapter we get

x(t) � x0 =

ˆ t

t0

f(s, x(s))ds,

i.e.,

x(t) = x0 +

ˆ t

t0

f(s, x(s))ds.

Reciprocally given a solution x of the integral equation we can write

x(t+ h) = x0 +

ˆ t+h

t0

f(s, x(s))ds

and

lim
h↘0

x(t+ h)� x(t)
h

= lim
h↘0

1

h

ˆ t+h

t

f(s, x(s))ds.

We observe that

D

[ˆ t+h

t

f(s, x(s))ds, h · f(t, x(t))
]

= D

[ˆ t+h

t

f(s, x(s))ds,

ˆ t+h

t

f(t, x(t))ds

]

≤
ˆ t+h

t

D(f(s, x(s)), f(t, x(t)))ds

≤
ˆ t+h

t

ω(f(t, x(t)), h)ds = h · ω(f(t, x(t)), h),
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where ω(f(t, x(t)), h) denotes the modulus of continuity of the function f(t, x(t))
which is a continuous as a function of t ∈ [t0, t1]. Then

lim
h↘0

D

(
x(t+ h)� x(t)

h
, f(t, x(t))

)

= lim
h↘0

1

h
h · ω(f(t, x(t)), h) = 0

and this implies that x is a solution of the fuzzy initial value problem x′ =
f(t, x), x(t0) = x0.

In Song-Wu-Lee [150] the existence of uniqueness and solutions in this in-
terpretation was proved. This approach is close to Pickard-Lindelöf Theo-
rem and uses Banach fixed-point Theorem in the proof. Different approaches
based on Arzela-Ascoli results are found in literature, but they usually fail
on the extraction of a convergent subsequence of a bounded sequence.

First we will show that Lipshitz functions are also bounded, following
Lupulescu.

Lemma 9.2. ( Lupulescu [103]) Let R0 = [t0, t0 + p] × B(x0, q) and let us
assume that f : R0 → RF is continuous and fulfills the Lipschitz condition

D(f(t, x), f(t, y)) ≤ L ·D(x, y), ∀(t, x), (t, y) ∈ R0.

Then f is bounded, i.e., there exists M > 0 such that

D(f(t, x), 0) ≤M.

Proof. We observe that

D(f(t, x), 0) ≤ D(f(t, x), f(t, x0)) +D(f(t, x0), 0)

The real function D(f(t, x0), 0) is bounded when t ∈ [t0, t0 + p], i.e., there
exists M1with D(f(t, x0), 0) ≤M1. We get

D(f(t, x), 0) ≤ L ·D(x, x0) +M1 ≤ Lq +M1 =M,

i.e., f is bounded.

Theorem 9.3. (Wu-Song-Lee [150], Lupulescu [103], Bede-Gal [21]) Let
R0 = [t0, t0 + p]×B(x0, p), p > 0, x0 ∈ RF and f : R0 → RF be continuous
such that the following Lipschitz condition holds:

There exist a constant L > 0 such that

D(f(t, x), f(t, y)) ≤ L ·D(x, y), ∀(t, x), (t, y) ∈ R0.

Then the Fuzzy Initial Value Problem (FIVP)

x′(t) = f(t, x), x(t0) = x0,

has a unique solution defined in an interval [t0, t0 + k] for some k > 0.
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Proof. Let us considerK0 = C([t0, t0+p],RF) and the operator P : K0 → K0

defined by:

P (x0)(t) = x0,

P (x)(t) = x0 +

ˆ t

t0

f(s, x(s))ds

It is easy to see that P is well defined. By Lemma 9.2, and the Lipschitz
condition, f is bounded and also P is bounded,

D(P (x)(t), x0) ≤
ˆ t

t0

D(f(s, x(s)), 0)ds ≤M(t− t0)

where

M = sup
(t,x)∈R0

D(f(t, x), 0)

is provided by Lemma 9.2. Let d = min
{
p, q

M

}
and

K1 = C([t0, t0 + d], B(x0, q)).

Let us consider now P : K1 → C([t0, t0 + d],RF ). We have

D(P (x)(t), x0) ≤ q

and so given x ∈ K1 gives P (x) ∈ K1. We observe that K1 is a complete
metric space considered with the uniform distance, as a closed subspace of a
complete metric space.

Now we prove that P is a contraction. Indeed,

D(P (x)(t), P (y)(t)) ≤
ˆ t

t0

D(f(s, x(s)), f(s, y(s))ds

≤ 2L(t− t0)D(x, y).

Now choosing k = min{d, 1
2L} and further restricting P : K2 → K2, with

K2 = C([t0, t0 + k], B(x0, q))

we obtain that P is a contraction. From Banach’s fixed point theorem there
exists a fixed point x∗ ∈ K2 with P (x∗) = x∗ i.e., x∗ is a solution of Lemma
9.1. Finally from Lemma 9.1 we obtain that x∗ is a solution of the FIVP

x′(t) = f(t, x(t)), x(t0) = x0,

for t ∈ [t0, t0 + k]. The uniqueness follows from the uniqueness of the fixed
point of P , which is a consequence of Banach’s fixed point Theorem.

Next we prove a characterization result.
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Theorem 9.4. (Bede [15]) Let R0 = [t0, t0 + p]× B(x0, p), p > 0, x0 ∈ RF
and f : R0 → RF be continuous such that

f(t, x)r = [f−
r (t, x−r , x

+
r ), f

+
r (t, x−r , x

+
r )], r ∈ [0, 1].

If
f−
r (t, x−r , x

+
r ), f

+
r (t, x−r , x

+
r ), r ∈ [0, 1]

are equicontinuous (∀ε > 0, ∃δ > 0 such that

|f−
r (t, x−r , x

+
r )− f−

r (t0, (x0)
−
r , (x0)

+
r )| < ε

when ∥∥∥(t, x−r , x+r )− (t0, (x0)
−
r , (x0)

+
r )

∥∥∥ < δ,

∀r ∈ [0, 1]) and uniformly Lipschitz in the second and third argument i.e.,
there exist a constant L > 0 such that∣∣f±

r (t, x−r , x
+
r ),−f(t, y−r , y+r )

∣∣ ≤ L · (|x−r − y−r |+ |x+r − y+r |),
for any (t, x), (t, y) ∈ R0 and for any r ∈ [0, 1]. Then the Fuzzy Initial Value
Problem (FIVP)

x′(t) = f(t, x), x(t0) = x0,

has a unique solution defined in an interval [t0, t0 + k] for some k > 0 and
moreover, the unique solution is level-wise xr = [x−r , x

+
r ] characterized by the

system of ODEs {
(x−r )

′
= f−

r (t, x−r , x
+
r )

(x+r )
′
= f+

r (t, x−r , x
+
r )

, r ∈ [0, 1].

Proof. It is easy to see that the conditions of the theorem ensure by the clas-
sical Picard-Lindelöf Theorem the existence and uniqueness of solutions for
the given crisp system. Also, equicontinuity ensures that f(t, x) is continuous
as a fuzzy number valued function. The uniform Lipschitz condition provides
Lipschitz condition in Theorem 9.3 and so the existence of the unique solution
of the fuzzy initial value problem

x′ = f(t, x), x(t0) = x0.

Now, a Hukuhara differentiable function x(t) has level sets differentiable and

(x′)r = [
(
x−r

)′
,
(
x+r

)′
],

r ∈ [0, 1]. Also, the equation x′ = f(t, x) level-wise holds so we get
{

(x−r )
′
= f−

r (t, x−r , x
+
r )

(x+r )
′
= f+

r (t, x−r , x
+
r )

, r ∈ [0, 1].

But this equation has a unique solution. As a conclusion we obtain that the
unique solution of the system characterizes the unique solution of the fuzzy
initial value problem.
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Fig. 9.1 Hukuhara solution of a fuzzy differential equation

Example 9.5. Consider as an example the FIVP

x′ = −x+ 2e−t(−1, 0, 1), x(0) = (−1, 0, 1).
It is easy to check that the conditions in Theorem 9.3 and also 9.4 are met.
Also, based on Proposition 8.36. We search for triangular solution of the form
x = (x−0 , x1, x

+
0 ). Then we have

⎧⎨
⎩

(
x−0

)′
= −x+0 − 2e−t

x′1 = −x1(
x+0

)′
= −x−0 + 2e−t

and we obtain the solution

x(t) = (e−t − 2et, 0, 2et − e−t), t ∈ (0,∞)

represented in Fig. 9.1

9.2 The Interpretation Based on Zadeh’s Extension
Principle

Under this interpretation, an FIVP is solved as follows: We consider the
crisp ODE which leads to the fuzzy equation considered and solve it. Then,
solution of the FIVP are generated by using Zadeh’s extension principle on
the classical solution. So, we start with a classical ODE x′ = f(t, x, a), x(t0) =
x0 ∈ R, where a ∈ R is a parameter that appears in the given differential
equation. Let us recall the following result concerning existence, uniqueness
and continuous dependence on the parameters and initial value of an ODE.
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Theorem 9.6. (see e.g. Perko [122]) Let

f : [t0, t0 + p]× [x0 − q, x0 + q]× B̄(a0, r)→ R

(here
B̄Rn(a0, r) = {a ∈ R

n| ‖a− a0‖ ≤ r} ⊆ R
n

denotes a closed ball in R
n with the Euclidean norm ‖·‖). Let us assume that

f is Lipschitz in its second variable i.e. there exists L1 such that,

‖f(t, x, a)− f(t, y, a)‖ ≤ L1 ‖x− y‖ .

Let us further assume that f is Lipschitz in the third variable i.e., there exists
L2 such that,

‖f(t, x, a)− f(t, x, b)‖ ≤ L2 ‖a− b‖ .
Then the initial value problem

x′ = f(t, x, a), x(t0) = x0,

has a unique solution. Moreover, the unique solution depends continuously
both on the initial condition and parameters.

Proof. The proof can be found in e.g., Perko [122] (we omit this proof since
it is not involving fuzzy sets)

Let f̃ : [t0, t0 + p] × B̄(x0, q) × B̄(a0, r) → RF (here B̄(x0, q), B̄(a0, r) are
closed balls in RF) be the Zadeh extension of f(t, x, a).

Definition 9.7. Let A,X0 ∈ RF be fuzzy numbers and f̃ the Zadeh extension
of f. The fuzzy initial value problem

X ′ = f̃(t,X,A), X(t0) = X0,

is said to have the solution X : [t0, t0 + p] → RF where X is the Zadeh
extension of the solution x : [t0, t0 + p] → R of the classical problem x′ =
f(t, x, a), x(t0) = x0.

Based on the previous Theorem combined with Theorem 5.6 we can obtain
the following existence and uniqueness result.

Theorem 9.8. Let f : [t0, t0 + p]× [x0 − q, x0 + q]× B̄(a0, r). Let us assume
that f is Lipschitz in its second variable i.e. there exists L1 such that,

‖f(t, x, a)− f(t, y, a)‖ ≤ L1 ‖x− y‖

and that f is Lipschitz in the third variable i.e., there exists L2 such that,

‖f(t, x, a)− f(t, x, b)‖ ≤ L2 ‖a− b‖ .
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Then the solution of the initial value problem

X ′ = f̃(t,X,A), X(t0) = X0,

interpreted as in Definition 9.7 is well defined and continuous. Moreover X
can be defined level-wise as

Xr = x (t, (X0)r , Ar) = {x(t, x0, a)|x0 ∈ (X0)r, a ∈ Ar},
where x(t, x0, a) denotes the unique solution of the

x′ = f(t, x, a), x(t0) = x0

classical problem.

Proof. According to Theorem 9.6, the problem

x′ = f(t, x, a), x(t0) = x0

has a unique solution x(t, x0, a) that depends continuously on x0, a. From
Theorem 5.6 the Zadeh extension of x(t, x0, a) is unique, well defined and
continuous. Let us denote it by X(t,X0A). Also, from Theorem 5.6 we get
level-wise for r ∈ [0, 1] that

Xr = x (t, (X0)r , Ar) = {x(t, x0, a)|x0 ∈ X0, a ∈ A}.

Let us consider the following very simple FIVP{
x′ = −(1, 2, 3) · x
x(0) = (1, 2, 3)

.

with triangular fuzzy numbers. We consider this problem under the interpre-
tation using the extension principle.

The solution of the problem obtained symbolically from the IVP for the
ODE {

x′ = −a · x
x(0) = x0

with the solution
x(t) = x0e

−at.

Using Zadeh’s extension principle we obtain the fuzzy solution

x(t) = (1, 2, 3)e−(1,2,3)t,

which can be written level-wise as

x(t)−r = (1 + r)e−(3−r)t

x(t)−r = (3− r)e−(1+r)t.

which exists for t ∈ [0, 1].
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Fig. 9.2 Zadeh extension based solution of a fuzzy differential equation

9.3 Fuzzy Differential Equations under Strongly
Generalized Differentiability

9.3.1 Existence and Uniqueness of Two Solutions

Fuzzy differential equations under generalized differentiability were investi-
gated first in Bede-Gal [20]. Later more general results were proposed in
Bede-Gal [21]. Under strongly generalized differentiability there is a new be-
havior that emerges in the theory of differential equations in abstract space,
namely that of the existence and local uniqueness of two solutions and that
of switching. These very interesting phenomena are under investigation by
many authors (Bede-Rudas-Gal [25], Chalco-Cano-Roman-Flores [36], Mali-
nowski [106], Lupulescu [103] etc.) Other interesting research topics include
the topics of Semigroups of operators on FN-type spaces (Gal-Gal [71], Gal-
Gal-Guerekata [72], Kaleva [85])

We need one lemma:

Lemma 9.9. (Bede-Gal, [21]) Let x ∈ RF be such that the functions xr =
[x−r , x

+
r ], r ∈ [0, 1]are differentiable, with x− strictly increasing and x+ strictly

decreasing on [0, 1], such that there exist the constants c1 > 0, c2 < 0 satis-
fying (x−α )

′ ≥ c1 and (x+α )
′ ≤ c2 for all α ∈ [0, 1].

Let f : [a, b] → RF be continuous with respect to t, having the level sets

f−
α (t) and f+

α (t) with bounded partial derivatives
∂f−

α (t)
∂α and

∂f+
α (t)
∂α , with re-

spect to α ∈ [0, 1], t ∈ [a, b].
If
a) x−1 < x+1
or if
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b) x−1 = x+1 and the core [f(s)]1 consists of exactly one element for any
s ∈ T = [a, b], then there exists h > a such that the H-difference

x�
ˆ t

a

f(s)ds

exists for any t ∈ [a, h].

Proof. We observe that the H-difference of two fuzzy numbers u� v exists if
and only if the functions (u− − v−, u+ − v+) define a fuzzy number. Indeed,
let us suppose that u� v = z, this is equivalent to z + v = u and taking the
α-levels we have equivalently

[z−α , z
+
α ] + [v−α , v

+
α ] = [u−α , u

+
α ],

i.e.,

z−α = u−α − v−α ,
z+α = u+α − v+α ,

α ∈ [0, 1]. By Theorem 4.10, the assumption that u � v exists is equivalent
with the fact that (u−−v−, u+−v+) define a fuzzy number. Moreover, since
left and right continuity requirements of Theorem 4.10 obviously hold true
whenever u, v are fuzzy numbers, the existence of u � v becomes equivalent
to

v+1 − v−1 ≤ u+1 − u−1 ,
and that u− − v− is non-decreasing and u+ − v+ is non-increasing.

Therefore, in order to prove the existence of x�´ t
a
f(s)ds in the statement,

we have to check that

[ˆ t

a

f(s)ds

]+
1

−
[ˆ t

a

f(s)ds

]−
1

≤ x+1 − x−1 = len(x1),

x−α −
[ˆ t

a

f(s)ds

]−
α

is nondecreasing w.r.t. α,

x+α −
[ˆ t

a

f(s)ds

]+
α

is nonincreasing w.r.t. α.

But [ˆ t

a

f(s)ds

]
α

=

[ˆ t

a

f−
α (s)ds,

ˆ t

a

f+
α (s)ds

]
,

which implies that the above conditions are equivalent to

ˆ t

a

len([f(s)]1)ds ≤ len([x]1),
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(x−α )
′ −
ˆ t

a

∂f−
α (s)

∂α
ds ≥ 0, for all α ∈ [0, 1]

and

(x+α )
′ −
ˆ t

a

∂f+
α (s)

∂α
ds ≤ 0, for all α ∈ [0, 1].

Since f is continuous, it is bounded and the function len[f(t)]1 is bounded
as well. Let M be such that

len[f(t)]1 ≤M, t ∈ [a, b].

Also, note that we always have

ˆ t

a

len[f(s)]1ds ≤M(t− a).

Suppose we are under assumption a) in statement. Then, since for all t ∈
[a, a+ len([x]1)/M ], we get

M(t− a) ≤ len([x]1),

by the above inequality it easily follows that

ˆ t

a

len([f(s)]1)ds ≤ len([x]1).

Let M1,M2 > 0 be such that

∣∣∣∣∂f
−
α (s)

∂α

∣∣∣∣ ≤M1

and ∣∣∣∣∂f
−
α (s)

∂α

∣∣∣∣ ≤M2,

for all s ∈ [a, b] and α ∈ [0, 1]. Since (x−α )
′ ≥ c1 for all α ∈ [0, 1], we have

ˆ t

a

∂f−
α (s)

∂α
ds ≤ (t− a)M1 ≤ c1 ≤

(
x−α

)′

for any t ∈
[
a, a+ c1

M1

]
and for all α ∈ [0, 1], which implies that x−α −

´ t
a f

−
α (s)ds is non-decreasing with respect to α for t ∈

[
a, a+ c1

M1

]
. Similarly,

since (x+α )
′ ≤ c2 for all α ∈ [0, 1] we have have

−
ˆ t

a

∂f+
α (s)

∂α
ds ≤ (t− a)M2 ≤ |c2| ≤ −

(
x+α

)′
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and for any t ∈
[
a, a+ |c2|

M2

]
and for all α ∈ [0, 1], i.e. x+α −

´ t
a
f+
α (s)ds is

non-increasing with respect to α.
By the above reasoning it follows that x�´ t

a
f(s)ds exists, for all t ∈ [a, h],

where

h = min

{
c1
M1

,
|c2|
M2

,
len([x]1)

M

}
> 0.

If we are under the assumption b), then it follows that len([f(s)]1) = 0, for
all s ∈ [a, b] and ˆ t

a

len([f(s)]1)ds = len([x]1) = 0,

for all t ∈ [a, b]. The other two required inequalities can be obtained by similar

reasoning as above, for all t ∈ [a, a+h], where h = min
{

c1
M1
, |c2|M2

}
> 0, which

proves the lemma.

The following result concerns the existence and uniqueness of solutions of a
fuzzy differential equation under generalized differentiability.

Theorem 9.10. (Bede-Gal [20], Bede-Gal [21])Let R0 = [t0, t0+p]×B(x0, q),
p, q > 0, x0 ∈ RF and f : R0 → RF be continuous such that the following
assumptions hold:

(i) There exists a constant L > 0 such that

D(f(t, x), f(t, y)) ≤ L ·D(x, y), ∀(t, x), (t, y) ∈ R0.

(ii) Let [f(t, x)]α = [f−
α (t, x), f+

α (t, x)] be the level set representation of
f , then f−

α , f
+
α : R0 → R have bounded partial derivatives with respect to

α ∈ [0, 1], the bounds being independent of (t, x) ∈ R0 and α ∈ [0, 1].
(iii) The functions x−0 and x+0 are differentiable (as functions of α), and

there exist c1 > 0 with (x0)
−
α ≥ c1, and there exists c2 < 0 with (x0)

+
α ≤ c2,

for all α ∈ [0, 1] and we have the possibilities
a) x−1 < x+1
or
b) if x−1 = x+1 then the core [f(t, x)]1 consists in exactly one element for

any (t, x) ∈ R0, whenever [x]1 consist in exactly one element.
Then the fuzzy initial value problem

x′(t) = f(t, x), x(t0) = x0,

has exactly two solutions defined in an interval [t0, t0 + k] for some k > 0.

Proof. We use Lemma 9.2 together with the previous Lemma 9.9. The ex-
istence result in Theorem 9.3 ensures the existence of one solution which
is Hukuhara differentiable. Here we will prove the existence of the other
solution.
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First, let us observe that assumptions (ii) and (iii), by Lemma 9.9 ensure
the existence of the H-difference

x0 �
(
−
ˆ t

t0

F (t, x(t))dt

)

for t ∈ [t0, t0 + c] for some 0 < c ≤ p. Now we consider R1 = [t0, t0 + c] ×
B(x0, q),K0 = C([t0, t0+c],RF) and the operatorQ : K0 → K0 (C([a, b],RF)
being the space of continuous functions x : [a, b]→ RF) defined as follows:

Q(x0)(t) = x0

Q(x)(t) = x0 �
(
−
ˆ t

t0

F (t, x(t))dt

)
.

We observe that Q is well defined on [t0, t0+ c] by the choice of c. By Lemma
9.2, and the Lipschitz condition (i) of the present Theorem, f is bounded and
we have

D(Q(x)(t), x0) ≤
ˆ t

t0

D(f(t, x(t)), 0)dt ≤M(t− t0),

where M = sup(t,x)∈R1
D(f(t, x), 0) is provided by Lemma 9.2. Let d =

min
{
c, q

M

}
and

K1 = C([t0, t0 + d], B(x0, q)).

Then for the restriction Q : K1 → C([t0, t0 + d],RF), we have

D(Q(x)(t), x0) ≤ q,

i.e., x ∈ K1 gives Q(x) ∈ K1, and K1 is a complete metric space considered
with the uniform distance, as a closed subspace of a complete metric space.
Now we will show that Q is a contraction. Indeed,

D(Q(x)(t), Q(y)(t)) ≤
ˆ t

t0

D(f(t, x(t)), f(t, y(t)))dt

≤ 2L(t− t0)D(x, y).

Now choosing k < min{d, 1
2L}, Q becomes a contractions. Banach’s fixed

point theorem implies the existence of a fixed point of Q. To conclude, we
observe that the fixed point of Q is strongly generalized differentiable as in
case (ii) of Definition 8.31 and it solves the fuzzy initial value problem

x′(t) = f(t, x), x(t0) = x0,

for any t ∈ [t0, t0 + k]. The local uniqueness of this solution on [t0, t0 + k]
follows by the uniqueness of the fixed point for Q.



184 9 Fuzzy Differential Equations

9.3.2 Characterization Results

We will extend in this section the Characterization result of Theorem 9.4 to
the case of generalized differentiability.

Theorem 9.11. (Bede [15], Bede-Gal [20]) Let R0 = [t0, t0 + p]×B(x0, q),
p > 0, x0 ∈ RF and f : R0 → RF be such that

[f(t, x)]α = [f−
α (t, x−α , x

+
α ), f

+
α (t, x−α , x

+
α )], ∀α ∈ [0, 1]

and the following assumptions hold:
(i) f±

α (t, x−α , x
+
α ) are equicontinuous, uniformly Lipschitz in their second

and third arguments i.e., there exist a constant L > 0 such that

|f±
α (t, x−α , x

+
α )− f±

α (t, y−α , y
+
α )| ≤ L(|x−α − y−α |+ |x+α − y+α |),

∀(t, x), (t, y) ∈ R0, α ∈ [0, 1].
(ii) f−

α , f
+
α : R0 → R have bounded partial derivatives with respect to

α ∈ [0, 1], the bounds being independent of (t, x) ∈ R0 and α ∈ [0, 1].
(iii) The functions x−0 and x+0 are differentiable, existing c1 > 0 with

(x0)
−
α ≥ c1, and c2 < 0 with (x0)

+
α ≤ c2, for all α ∈ [0, 1], and we have the

following possibilities
a) (x0)

−
1 < (x0)

+
1

or
b) if (x0)

−
1 = (x0)

+
1 then the core [(t, x, u)]1 consists in exactly one element

for any (t, x) ∈ R0, whenever [x]1 and [u]1 consist in exactly one element.
Then the fuzzy initial value problem

x′(t) = f(t, x), x(t0) = x0, (9.1)

is equivalent on some interval [t0, t0 + k] with the union of the following two
ODEs: ⎧⎨

⎩
(x−α )

′
(t) = f−

α (t, x−α (t), x
+
α (t))

(x+α )
′
(t) = f+

α (t, x−α (t), x
+
α (t))

x−α (t0) = (x0)
−
α , x

+
α (t0) = (x0)

+
α

, α ∈ [0, 1] (9.2)

⎧⎨
⎩

(x−α )
′
(t) = f+

α (t, x−α (t), x
+
α (t))

(x+α )
′
(t) = f−

α (t, x−α (t), x
+
α (t))

x−α (t0) = (x0)
−
α , x

+
α (t0) = (x0)

+
α

, α ∈ [0, 1]. (9.3)

Proof. Condition (i) of the theorem ensures the existence of a unique solu-
tion for each of the systems of equations (9.2), (9.3) for any fixed α ∈ [0, 1].

Let us denote these solutions by (x−α )
i
, (x+α )

i
and (x−α )

ii
, (x+α )

ii
respectively.

The equicontinuity of f±
α ensures the continuity of f as a fuzzy valued func-

tion, while the Lipschitz condition in (i) is sufficient for the corresponding
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Lipschitz property of f. All these conditions together ensure the existence
and uniqueness of two solutions xi and xii for the fuzzy initial value problem

(9.1). Let
[
xi
]
α
= [

(
xi
)−
α
,
(
xi
)+
α
] and

[
xii

]
α
= [

(
xii

)−
α
,
(
xii

)+
α
], α ∈ [0, 1].

Then, since xi Hukuhara differentiable then

[(
xi
)′]

α
= [

((
xi
)−
α

)′
,
((
xi
)+
α

)′
]

and
(
xi
)−
α
,
(
xi
)+
α

is a solution of the system (9.2). Since (x−α )
i
, (x+α )

i
is the

unique solution of the system we obtain

((
xi
)−
α
,
(
xi
)+
α

)
=

((
x−α

)i
,
(
x+α

)i)
, ∀α ∈ [0, 1].

Similar reasoning for the (ii)-differentiable solution implies

[(
xii

)′]
α
= [

((
xii

)+
α

)′
,
((
xii

)−
α

)′
],

so
(
xii

)+
α
,
(
xii

)−
α

is a solution of the second system (9.3) considered in the
Theorem, so

((
xii

)−
α
,
(
xii

)+
α

)
=

((
x−α

)ii
,
(
x+α

)ii)
, ∀α ∈ [0, 1].

As a conclusion the solutions of the initial value problem (9.1) are exactly
those of the given systems (9.2) and (9.3).

In the followings we formulate a particularization of the existence, uniqueness
and characterization Theorem 9.11 for fuzzy initial value problems with trian-
gular data. We denote by RT the space of triangular fuzzy
numbers.

Theorem 9.12. Let R0 = [t0, t0+p]×
(
B(x0, p) ∩ RT

)
, p > 0, x0 ∈ RT and

f : R0 → RT be such that

f(t, x) = (f−(t, x−, x1, x+), f1(t, x−, x1, x+), f+(t, x−, x1, x+))

and the following assumptions hold:
(i) f−, f1, f+ are continuous, Lipschitz in their second through last

arguments.
(ii) x0 = (x−0 , x

1
0, x

+
0 ) is a nontrivial triangular number such that x−0 <

x10 < x+0 . Then
(a) The fuzzy initial value problem

x′(t) = f(t, x), x(t0) = x0, (9.4)

has exactly two triangular valued solutions on some interval [t0, t0 + k].
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(b) Problem (9.4) is equivalent to the union of the following two ODEs:⎧⎪⎪⎨
⎪⎪⎩

(x−)
′
= f−(t, x−, x1, x+)(

x1
)′

= f1(t, x−, x1, x+)

(x+)
′
= f+(t, x−, x1, x+)

x−(t0) = x−0 , x
1(t0) = x10, x

+(t0) = x+0

, (9.5)

⎧⎪⎪⎨
⎪⎪⎩

(x−)
′
= f+(t, x−, x1, x+)(

x1
)′

= f1(t, x−, x1, x+)

(x+)
′
= f−(t, x−, x1, x+)

x−(t0) = x−0 , x
1(t0) = x10, x

+(t0) = x+0

, (9.6)

Proof. It is easy to check that since f is triangular valued, the solutions of
(9.4) are triangular valued. Further the conditions (i) and (ii) ensure that
the problem (9.4) has two unique solutions locally. It is easy to check that
the conditions in Theorem 9.11 are fulfilled and the problems (9.2) and (9.3),
in the case of triangular-valued functions are equivalent with (9.5) and (9.6)
respectively, and the proof is complete.

9.3.3 Examples of Fuzzy Differential Equations
under Strongly Generalized Differentiability

In what follows we solve several fuzzy differential equations under generalized
differentiability.

Example 9.13. Let us begin with the homogeneous decay equation

x′ = −x, x(0) = (−1, 0, 1).
Surely since (i)-differentiability is in fact Hukuhara differentiability we obtain
the solution x(t) = et(−1, 0, 1). Under (ii)-differentiability condition we get
the solution x(t) = e−t(−1, 0, 1). The behaviors of the two solutions differ
substantially, as shown in Fig. 9.3.

Example 9.14. By adding a forcing term we obtain the following equation
(see Tenali-Lakshmikantham-Devi [145] and Bede-Tenali-Lakshmikantham [26])

x′ = −x+ e−t(−1, 0, 1).
Let us keep the initial condition the same as in the previous problem, i.e.
x0 = (−1, 0, 1) under strongly generalized differentiability cases (i) or (ii).

For the case of Hukuhara or (i)-differentiability we get

⎧⎨
⎩

(
x−0

)′
= −x+0 − e−t

x′1 = −x1(
x+0

)′
= −x−0 + e−t

and it has the solution x(t) =
(
1
2e

−t − 3
2e

t, 0, 32e
t − 1

2e
−t

)
.
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Fig. 9.3 Two solutions of a fuzzy differential equation (solid line is (i) differentiable

solution, dash-dot line is the (ii) differentiable solution

Under (ii)-differentiability, the fuzzy differential equation becomes

⎧⎨
⎩

(x−0 )
′ = −x−0 + e−t

x′1 = −x1
(x+0 )

′ = −x+0 − e−t

and we get x(t) = e−t(1 − t)(−1, 0, 1). In Fig.9.4 the (i)-differentiable and
(ii)-differentiable solutions are presented.

Example 9.15. This example was proposed in Bede-Gal [21]. In Barros-
Bassanezi [13] and Nieto-Rodriguez-Lopez [117] a logistic fuzzy model is ana-
lyzed in detail and the findings are that it is an adequate model for population
dynamics under uncertainty. We use the strongly generalized differentiability
and the results on characterization previously discussed to analyze a fuzzy
logistic equation

x′ = ax(K �gH x), x(0) = x0

where aKx is the growth rate, ax2 is the inhibition term and K is the en-
vironment capacity. The generalized Hukuhara difference K �gH x is used
here. The advantage of this difference over the Hukuhara difference in this
example is that the generalized Hukuhara difference exists in situations when
the usual Hukuhara difference fails to exist. We consider a,K ∈ RT sym-
metric triangular numbers and x0,K ∈ R. We use in our example x0 =
500, a = (0.98, 1, 1.02) · 10−3, K = (9, 10, 11) · 103. Let us remark that the
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Fig. 9.4 Two solutions of a fuzzy differential equation (solid line is (i) differentiable

solution, dash-dot line is the (ii) differentiable solution

function f(t, x) = ax(K�gx) is not a triangular-number-valued function even
if the inputs are triangular numbers, since the product of two triangular fuzzy
numbers is not generally triangular. In this case we have for any α ∈ [0, 1],

F−
α (x−, x1, x+) = a−α min

α∈[0,1]

{
x−α

(
K−

α − x−α
)
, x+α

(
K+

α − x+α
)}

F 1(x−, x1, x+) = a1x1
(
K1 − x1)

F+
α (x−, x1, x+) = a+α max

α∈[0,1]

{
x−α

(
K−

α − x−α
)
, x+α

(
K+

α − x+α
)}
.

These are piecewise quadratic functions of α and the more general character-
ization result 9.11 is necessarily used. Locally, the FIVP is equivalent to the
problem ⎧⎨

⎩
(x−α )

′
= F−

α (t, x−, x1, x+)

(x+α )
′
= F+

α (t, x−, x1, x+)
x−(t0) = x−0 , x

1(t0) = x10, x
+(t0) = x+0

. (9.7)

It is easy to see that the only solution we have locally on some interval [0, p]
is the solution according to case (i) of differentiability, since x0 ∈ R. Let p =
inf{t > 0 : x−α (t) (K

−
α − x−α (t)) = x+α (t)(K

+
α − x+α (t))}. We have numerically

obtained p ≈ 0.407. We observe that if we use now p and x0 = x(p) as initial
values for a new initial value problem

x′ = ax(K �gH x), x(p) = x0
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Fig. 9.5 Two solutions of a fuzzy differential equation

two solutions will emerge according to Theorem 9.10 characterized by the
systems (9.7) and (9.8),

⎧⎨
⎩

(x−α )
′
= F−

α (t, x−, x1, x+)

(x+α )
′
= F+

α (t, x−, x1, x+)
x−(t0) = x−0 , x

1(t0) = x10, x
+(t0) = x+0

. (9.8)

One is differentiable as in (i) and another differentiable as in (ii) case of Def-
inition 8.31. Let us remark also, that we can paste together the solutions and
we obtain two solutions on the [0, 1] interval. We can see that the most real-
istic model appears to be the one which starts with case (i) of differentiability
on [0, p] and continues with case (ii) of differentiability on [p, 1]. The solution
which is (i) differentiable is the Hukuhara solution on [0, 1] and it is unreal-
istic from practical point of view since the population may increase according
to that solution much more than the environment’s capacity. In Figure 9.5
these solutions are shown, where xi represents the lower and upper endpoints
of the 0-level set of the solution according to case (i) of differentiability, xii

is the 0 level set of the solution as in case (ii) of differentiability. x1is the
common 1-level set of the two solutions.

This example also allows us to underline the practical superiority of the
strongly generalized differentiability with respect to the Hukuhara derivative
case. Several other practical examples were proposed in the literature.

9.4 Problems

1. Solve the fuzzy differential equations

x′ = x, x(0) = x0
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x′ = −x, x(0) = x0

under Hukuhara differentiability, for arbitrary trapezoidal fuzzy initial
value x0 ∈ RF x0 = (a, b, c, d).

2. Solve the fuzzy differential equations

x′ = x, x(0) = x0

x′ = −x, x(0) = x0

using Zadeh’s extension principle-based method, for arbitrary trapezoidal
fuzzy initial value x0 ∈ RF x0 = (a, b, c, d).

3. Solve the fuzzy differential equations

x′ = x, x(0) = x0

x′ = −x, x(0) = x0

under generalized differentiability, for arbitrary trapezoidal fuzzy initial
value x0 ∈ RF x0 = (a, b, c, d).

4. Using Zadeh extension principle-based approach solve the fuzzy differen-
tial equation

x′ = a · x+ b, x(0) = x0

under strongly generalized differentiability with a ∈ R, b, x0 ∈ RF , b =
(b−, b1, b+), x0 = (x−0 , x

1
0, x

+
0 ) triangular fuzzy numbers.

5. Solve the fuzzy differential equation

x′ = a · x+ b, x(0) = x0

under strongly generalized differentiability with a ∈ R, b, x0 ∈ RF , b =
(b−, b1, b+), x0 = (x−0 , x

1
0, x

+
0 ) triangular fuzzy numbers.

Try to consider a generalization to a triangular number a=(a−, a1, a+),
with a restriction to the case when a− > 0 and x−0 > 0.

6. State and prove a more general version of the Characterization result in
Theorem 9.11, for a system of fuzzy differential equations and respectively
for a second order fuzzy differential equation.
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7. Consider a first order linear differential equation

y′ = a(x) · y + b(x), y(x0) = y0

with a(x) real valued function, and b : R→ RF . Prove that

y1(x) = e
´ x
x0

a(t)dt

(
y0 +

ˆ x

x0

b(t) · e−
´ t
x0

a(u)du
dt

)
(9.9)

and

y2(x) = e
´
x
x0

a(t)dt

(
y0 �

ˆ x

x0

(−b(t)) · e−
´
t
x0

a(u)du
dt

)
, (9.10)

provided that the H-difference y0 �
´ x
x0
(−b(t)) · e−

´ t
x0

a(u)du
dt exists, are

solutions of the fuzzy differential equation y′ = a(x) · y + b(x).

8. Describe Euler’s method to calculate the solution of a fuzzy differential
equation using the characterization theorem presented in this chapter.
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Extensions of Fuzzy Set Theory

In fuzzy set theory the membership function of a fuzzy set is a classical
function A : X → [0, 1]. In some applications the shape of the member-
ship function is itself uncertain. This problem appears mainly because of
the subjectivity of expert knowledge and imprecision of our models. In these
situations we can use a higher order extension of fuzzy set theory.

10.1 Lattice Valued Fuzzy Sets (L-Fuzzy Sets)

Definition 10.1. Let (L,≤), be a complete lattice (i.e., any non-empty subset
of L has an infimum and a supremum). A negation on a complete lattice is
an operator N : L→ L such that N is involutive, i.e.

N(N(x)) = x, ∀x ∈ L,

and non-increasing, i.e., if x ≤ y then N(x) ≥ N(y), x, y ∈ L.
In the followings we assume that L is a complete lattice with a negation.

Definition 10.2. (Goguen [73]) An L-fuzzy set on the universe X is a map-
ping A : X → L. The class of L-fuzzy sets is denoted by FL(X). The oper-
ations on L-fuzzy sets are point-wise provided by the inf and sup that come
from the lattice structure. The basic connectives of L-fussy sets are

A ∧B(x) = inf(A(x), B(x)),

A ∨B(x) = sup(A(x), B(x)),

B. Bede: Mathematics of Fuzzy Sets and Fuzzy Logic, STUDFUZZ 295, pp. 193–199.
DOI: 10.1007/978-3-642-35221-8_10 c© Springer-Verlag Berlin Heidelberg 2013
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N(A)(x) = N(A(x)),

for any x ∈ X.

In general, for L-fuzzy sets distributivity does not hold. In order to be able
to use this property we need to have a distributive lattice i.e., such that the
sup is distributive w.r.t. inf and vice versa

a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c)

and
a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c).

Also, in some problems complete distributivity could be required i.e.,

a ∨
(∧

i∈I

bi

)
=

∧
i∈I

a ∨ bi and a ∧
(∨

i∈I

bi

)
=

∨
i∈I

a ∧ bi.

If L is a distributive (completely distributive) lattice, then the L-fuzzy set
operations become distributive (completely distributive).

Example 10.3. ([0, 1],≤) is a completely distributive lattice. Then classical
fuzzy sets can be seen as L-fuzzy sets with L = [0, 1]. We observe that [0, 1] is
complete and completely distributive lattice. We observe that the L-fuzzy sets
with L = [0, 1] coincide with the fuzzy sets F(X).

Example 10.4. (F(X),≤) the family of fuzzy sets over the same universe
of discourse X with the inclusion. Then F(X) is a lattice. The infimum is
the fuzzy intersection ∧, while the supremum will be the fuzzy union ∨. We
can now use L = F(X) as a lattice to define L-fuzzy sets. Surely iteration on
this procedure is possible.

10.2 Intuitionistic Fuzzy Sets

Definition 10.5. (Atanassov [6]) Let X be a non-empty set. An intuitionistic
fuzzy set is a pair of mappings A = (μA, νA) : X → [0, 1] that fulfill the
condition

μA + νA ≤ 1, ∀x ∈ X.

μA represents the degree of membership while νA is the degree of non-
membership.

Remark 10.6. A fuzzy set μA can be interpreted as the intuitionistic fuzzy
set A = (μA, 1− μA). The reciprocal is not necessarily true.
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The basic operations between intuitionistic fuzzy sets are defined as follows:

A ∩B = (min(μA, μB),max(νA, νB))

A ∪B = (max(μA, μB),min(νA, νB))

N(A) = (νA, μA).

We denote the collection of all Intuitionistic fuzzy sets by IFS(X). Intuition-
istic fuzzy sets were studied by several authors (e.g. Szmidt-Kacprzyk [143],
Ban [7]) and they were used successfully in applications (Sussner et. al. [140]
etc.)

Proposition 10.7. The set IFS(X) with the operations of union intersec-
tion and complement defined as above is a distributive lattice. Moreover it is
complete and completely distributive.

Proof. The proof is immediate.

Remark 10.8. Intuitionistic fuzzy sets can be seen as L-fuzzy sets by con-
sidering the lattice L ⊆ [0, 1]2,

L = {(x, y) ∈ [0, 1]2|x+ y ≤ 1}
where the inequality relation generating the Lattice structure is defined by

(x, y) ≤L (z, t)⇔ [x ≤ z and y ≥ t].
Moreover, L in this case is a complete, completely distributive lattice.

10.3 Interval Type II Fuzzy Sets

Let I[0, 1] denote the set of closed sub-intervals of [0, 1].

Definition 10.9. (see e.g. Mendel, [110]) An interval valued fuzzy set is a
mapping A : X → I[0, 1]. Let us denote

A(x) = [A(x), Ā(x)].

Then A(x), Ā(x) can be interpreted as the lower and upper bounds of the
membership grade.

Operations with interval valued fuzzy sets are defined by:

A ∪B(x) = [sup{A(x), B(x)}, sup{Ā(x), B̄(x)}]

A ∩B(x) = [inf{A(x), B(x)}, inf{Ā(x), B̄(x)}]

NA(x) = [1− Ā(x), 1 −A(x)].
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If A = (μA, νA) is an intuitionistic fuzzy set then we define an interval valued
fuzzy set, A(x) = μA(x) and Ā(x) = 1 − νA(x). Then we have a correspon-
dence between interval valued fuzzy sets and intuitionistic fuzzy sets because
we can reciprocally consider μA(x) = A(x) and νA(x) = 1− Ā(x).

This correspondence is well defined since

A(x) ≤ Ā(x)

⇔ 1− Ā(x) ≤ 1−A(x)
⇔ νA(x) ≤ 1− μA(x)

⇔ μA(x) + νA(x) ≤ 1.

Proposition 10.10. The set of interval valued fuzzy sets with the operations
of union intersection and complement defined as above is a distributive lattice.
Moreover it is complete and completely distributive.

Proof. The proof is a direct consequence of the above discussion with Propo-
sition 10.7.

Remark 10.11. Interval valued fuzzy sets can be seen as L-fuzzy sets, by
considering the complete distributive lattice L = I[0, 1] with the inequality
defined as

[a, b] ≤ [c, d]⇔ a ≤ c and b ≤ d.

10.4 Fuzzy Sets of Type 2

Type m fuzzy sets can be defined recursively as follows.

Definition 10.12. (see e.g. Mendel, [110]) Type 1 fuzzy sets are regular
fuzzy sets

F1(X) = {A : X → [0, 1]}.
Type m fuzzy sets, m > 1 are L-fuzzy sets whose membership degrees are type
m− 1 fuzzy sets

Fm(X) = {A : X → Fm−1([0, 1])},m ≥ 2.

Type 2 fuzzy sets are the most important cases of type m fuzzy sets. They
are characterized by membership function μA : X → F [0, 1].

μA(x)(u) ∈ [0, 1],

∀x ∈ X and u ∈ [0, 1].
For a given x ∈ X we denote by Jx the support of μA(x), i.e.,

Jx = {u : |μ(x)(u) �= 0}.



10.4 Fuzzy Sets of Type 2 197

The notations used for fuzzy sets of type 2 are as follows

Ã = {(x, u, μÃ(x, u))|x ∈ X, u ∈ JX},

Ã =

ˆ

x∈X,

ˆ

u∈Jx

μÃ(x, u)/(x, u), Jx ⊆ [0, 1],

or

Ã(x) =

ˆ

u∈Jx

μÃ(x)(u)/u, Jx ⊆ [0, 1],

where the integral sign denotes union over all admissible values.
There is a strong connection between fuzzy sets of type 2 and interval

valued fuzzy sets. Namely, if we consider a fuzzy set of type 2 Ã then its
footprint of uncertainty is defined as

FOU(Ã) =
⋃
x∈X

Jx.

We can determine two type 1 fuzzy sets

μ
Ã
(x) = Jx = inf Jx, μ̄Ã(x) = J̄x = sup Jx.

Now we define Ix = [Jx, J̄x], and in this way we have obtained an interval
valued fuzzy set B : X → I[0, 1], B(x) = Ix.

As a conclusion from a type 2 fuzzy set we can obtain an interval valued
fuzzy set. The reciprocal is not true, i.e. from an interval valued fuzzy set we
cannot obtain the type 2 fuzzy set that was initially considered. This shows
that type 2 fuzzy sets are more general than interval valued fuzzy sets or
intuitionistic fuzzy sets.

The operations between interval type 2 fuzzy sets can be directly defined
as follows.

Ã ∪ B̃(x)(u) = μÃ(x, u) ∨ μB̃(x, u)

Ã ∩ B̃(x)(u) = μÃ(x, u) ∧ μB̃(x, u)

N(Ã)(x)(u) = 1− μÃ(x, u).

These operations do not have some desirable properties and interpretation.
For example they do not satisfy Zadeh’s extension principle. Different opera-
tions are introduced and studied in the literature, based on Zadeh’s extension
principle as follows:

Ã ∨ B̃(x)(u) = sup{min(μÃ(x, v), μB̃(x,w))|max(v, w) = u}
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Ã ∧ B̃(x)(u) = sup{min(μÃ(x, v), μB̃(x,w))|min(v, w) = u}

N(Ã)(x)(u) = 1− μÃ(x, u).

10.5 Problems

1. Prove that the operations defined on intuitionistic fuzzy sets verify De
Morgan laws:

N(A ∨B) = N(A) ∧N(B)

2. Consider the following intuitionistic fuzzy set

A(x) = (μA(x), νA(x)),

where μA(x) = (7, 8, 9) and

νA(x) =

⎧⎪⎪⎨
⎪⎪⎩

1 if x < 6
8−x
2 if 6 ≤ x < 8

x−8
2 if 8 ≤ x ≤ 10
0 if 10 < x

.

Verify that the membership functions considered are defining indeed an
intuitionistic fuzzy set.

3. Prove that L = I[0, 1] with the inequality defined as [a, b] ≤ [c, d] ⇐⇒
a ≤ c and b ≤ d is a lattice. Find the supremum and infimum of two
intervals [0.2, 0.5], [0.3, 0.6].

4. Consider the following interval valued fuzzy sets A(x) = [A(x), Ā(x)] and
B(x) = [B(x), B̄(x)] where

A(x) =

⎧⎪⎪⎨
⎪⎪⎩

0 if x < 2
x− 2 if 2 ≤ x < 3
4− x if 3 ≤ x ≤ 4
0 if 4 < x

,

Ā(x) =

⎧⎪⎪⎨
⎪⎪⎩

0 if x < 1
x−1
2 if 1 ≤ x < 3

5−x
2 if 3 ≤ x ≤ 5
0 if 5 < x

.

B(x) =

⎧⎪⎪⎨
⎪⎪⎩

0 if x < 4
x− 4 if 4 ≤ x < 5
6− x if 5 ≤ x ≤ 6
0 if 6 < x

,
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B̄(x) =

⎧⎪⎪⎨
⎪⎪⎩

0 if x < 3
x−3
2 if 3 ≤ x < 5

7−x
2 if 5 ≤ x ≤ 7
0 if 7 < x

.

Verify that the given membership degrees define an interval valued fuzzy
set by sketching the membership functions. Calculate A ∧ B and A ∨ B
and graph them.

5. Given interval valued fuzzy sets A(x) = [A(x), Ā(x)] and B(x) =
[B(x), B̄(x)] with

A(x) =

⎧⎪⎪⎨
⎪⎪⎩

0 if x < 2
x− 2 if 2 ≤ x < 3
4− x if 3 ≤ x ≤ 4
0 if 4 < x

,

Ā(x) =

⎧⎪⎪⎨
⎪⎪⎩

0 if x < 1
x−1
2 if 1 ≤ x < 3

x−t
2 if 3 ≤ x ≤ 5
0 if 5 < x

.

and

B(x) =

⎧⎪⎪⎨
⎪⎪⎩

0 if x < 20
x−20
10 if 20 ≤ x < 30

40−x
10 if 30 ≤ x ≤ 40
0 if 40 < x

,

B̄(x) =

⎧⎪⎪⎨
⎪⎪⎩

0 if x < 10
x−10
20 if 10 ≤ x < 30

50−x
20 if 30 ≤ x ≤ 50
0 if 50 < x

.

we consider the fuzzy rule

if x is A then y is B

with a Mamdani inference system. Given the crisp input x = 2.5 find
the firing level (interval) for the given fuzzy rule. Sketch the graph of the
output of the inference system.

6. Prove Proposition 10.7.
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Possibility Theory

11.1 Fuzzy Sets and Possibility Distributions

Let X be a set, adopted as the universe of discourse in what follows. We ask
the question whether a value for a variable is possible. The answer will be a
fuzzy set when the problem we are considering has uncertainties that are not
of statistical type.

Definition 11.1. (Dubois-Prade [51]) A possibility distribution π of a fuzzy
variable x on a set of possible situations X is a fuzzy set π : X → [0, 1], such
that there exists an x0 ∈ X such that π(x0) = 1.

A possibility distribution aims to distinguish between what is expected and
what is surprising, with the following convention π(u) = 0 means that x = u
is rejected as impossible, π(u) = 1 is totally possible, while π(u) = 0.7 means
that it is possible with the degree 0.7. So, π(u) means the degree of possibility
of the assignment x = u, some values u being more possible.

Now we can ask the question: If we consider a crisp set of values A ⊆
X what is the possibility degree of x ∈ A. Also, a related question is the
following: Does x necessarily belong to A?

Definition 11.2. (Dubois-Prade [51]) The possibility degree of x to belong
to A is

Π(A) = sup
x∈A

π(x).

The necessity degree is
N(A) = inf

x∈A
n(π(A)),

where n is the standard negation.

B. Bede: Mathematics of Fuzzy Sets and Fuzzy Logic, STUDFUZZ 295, pp. 201–212.
DOI: 10.1007/978-3-642-35221-8_11 c© Springer-Verlag Berlin Heidelberg 2013
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The mathematical theory for possibility distributions is Fuzzy Measure
Theory.

11.2 Fuzzy Measures

Definition 11.3. (Sugeno-Murofushi [139]) Let μ be a function from a σ−
algebra B ⊆ P(X) to [0, 1]. μ is a fuzzy measure if

(i) μ(∅) = 0, μ(X) = 1
(ii) For any A,B ∈ B we have μ(A) ≤ μ(B).
(iii) If {Ai}i=1,2,... ⊆ B is an ascending (respectively descending) mono-

tone sequence A1 ⊆ A2 ⊆ ... ⊆ An ⊆ ... (respectively A1 ⊇ A2 ⊇ ... ⊇ An ⊇
...) then

lim
n→∞

μ(An) = μ( lim
n→∞

An),

where limn→∞An = ∪∞n=1An (respectively limn→∞ An = ∩∞n=1An)

Proposition 11.4. (Gal-Ban [70])For a fuzzy measure we have
(i) μ(A ∪B) ≥ max(μ(A), μ(B))
(ii) μ(A ∩B) ≤ min(μ(A), μ(B))

Proof. Since

A ∩B ⊆ A ⊆ A ∪B
A ∩B ⊆ B ⊆ A ∪B

from the monotonicity of g the statement easily follows.

Example 11.5. Probability measures are fuzzy measures. The additional
property that they have is that of σ−additivity

P

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

P (Ai),

where Ai ∩ Aj = ∅ when i �= j.

Example 11.6. Dirac measure

μ(A) =

{
1 if x0 ∈ A
0 otherwise

,

where x0 ∈ X is fixed, is a fuzzy measure.

Definition 11.7. (Gal-Ban [70]) A set function gλ : B → [0, 1] that fulfills
(i) gλ(X) = 1
(ii)

gλ(A ∪B) = gλ(A) + gλ(B) + λ · gλ(A) · gλ(B)

with A ∩B = ∅, is called a Sugeno λ−measure.
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Remark 11.8. If λ = 0 then a Sugeno λ−measure becomes a classical mea-
sure.

Lemma 11.9. If Bi are disjoint sets and λ �= 0 then

gλ

( ∞⋃
i=1

Bi

)
=

1

λ

[ ∞∏
i=1

(1 + λgλ(Bi))− 1

]
.

Proof. The relation

gλ

(
n⋃

i=1

Bi

)
=

1

λ

[
n∏

i=1

(1 + λgλ(Bi))− 1

]
,

with arbitrary n ≥ 1 can be proved by induction. By taking the limit as
n→∞ we obtain the relation in the statement of the Lemma.

Lemma 11.10. If gλ is a λ−fuzzy measure then

gλ(Ā) =
1− gλ(A)
1 + λgλ(A)

.

Proof. The proof is left to the reader as an exercise.

Proposition 11.11. (Gal-Ban [70]) A Sugeno λ−measure is a fuzzy measure
for λ > −1.
Proof. (i) We have

gλ(X ∪ ∅) = gλ(X) + gλ(∅) + λgλ(X)gλ(∅).

Since gλ(X) = 1 we get gλ(∅)(1 + λ) = 0 and then gλ(∅) = 0, since λ > −1.
(ii) Let A ⊆ B. Then there exist C = B\A with A∪C = B and A∩C = ∅.

Then

gλ(B) = gλ(A ∪ C) = gλ(A) + gλ(C) + λgλ(A)gλ(C)

= gλ(A) + (1 + λgλ(A))gλ(C) ≥ gλ(A).

(iii) Let A1 ⊆ A2 ⊆ ... ⊆ An ⊆ ... be an ascending sequence. Let B1 =
A1, B2 = A2 \ B1, ..., Bn = An \ Bn−1, .... Then Bi ∩ Bj = ∅, i �= j and
∪∞n=1An = ∪∞n=1Bn.

Taking into account Lemma 11.9 we obtain

gλ( lim
n→∞

An) = gλ

( ∞⋃
i=1

Ai

)
= gλ

( ∞⋃
i=1

Bi

)

=
1

λ

[ ∞∏
i=1

(1 + λgλ(Bi))− 1

]
.
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On the other hand since An = ∪ni=1Bi we obtain

lim
n→∞

gλ(An) = lim
n→∞

gλ

(
n⋃

i=1

Bi

)

= lim
n→∞

1

λ

[
n∏

i=1

(1 + λgλ(Bi))− 1

]

Comparing the two relations above we get

gλ( lim
n→∞

An) = lim
n→∞

gλ(An),

i.e., the continuity by ascending sequences.
For the continuity by descending sequences we consider A1 ⊇ A2 ⊇ ... ⊇

An ⊇ .... Then the complements Ā1 ⊆ Ā2 ⊆ ... ⊆ Ān ⊆ ... form an ascending
sequence. Taking into account Lemma 11.10 we get

gλ( lim
n→∞

An) = gλ

( ∞⋃
n=1

Ān

)

=

1− gλ
( ∞⋃

n=1
Ān

)

1 + λgλ

( ∞⋃
n=1

Ān

) .

Taking into account the continuity by ascending sequences we get

gλ( lim
n→∞

An) =
1− limn→∞ gλ

(
Ān

)
1 + λ limn→∞ gλ

(
Ān

)

= lim
n→∞

1− gλ
(
Ān

)
1 + λgλ

(
Ān

) .
Using Lemma 11.10, finally we obtain

gλ( lim
n→∞

An) = lim
n→∞

1− 1−gλ(An)
1+λgλ(An)

1 + λ 1−gλ(An)
1+λgλ(An)

= lim
n→∞

(1 + λ)gλ(An)

(1 + λ)
= lim

n→∞
gλ(An).

Proposition 11.12. Let A,B ∈ B not necessarily disjoint. Then we have

gλ(A ∪B) =
gλ(A) + gλ(B)− gλ(A ∩B) + λ · gλ(A) · gλ(B)

1 + gλ(A ∩B)
.

Proof. The proof is left as an exercise to the reader.
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11.3 Possibility Measures

Definition 11.13. (Dubois-Prade [51]) A possibility measure is a set func-
tion Π : B → [0, 1] such that

(i) Π(∅) = 0, Π(X) = 1
(ii) If {Ai|i ∈ I} ⊆ B then

Π

(⋃
i∈I

Ai

)
= sup

i∈I
Π(Ai).

Definition 11.14. A possibility distribution is a fuzzy set π : X → [0, 1]
such that there exists x0 ∈ X with π(x0) = 1.

Proposition 11.15. Given a possibility distribution π, for any A ∈ B we
define Π(A) = supx∈A π(x). Then Π is a possibility measure.

Proof. (i) We adopt the convention Π(∅) = 0.We have Π(X) = supx∈X π(x)
= 1.

(ii) Let {Ai|i ∈ I} ⊆ B. Then

Π

(⋃
i∈I

Ai

)
= sup{π(x)|x ∈

⋃
i∈I

Ai}

= sup
i∈I

sup
x∈Ai

π(x) = sup
i∈I

Π(Ai).

Proposition 11.16. If Π is a possibility measure then π(x) = Π({x}) is a
possibility distribution.

Proof. We have to prove that π(x0) = 1 for some x0 ∈ X. Since Π(X) = 1
and since we can write X =

⋃
x∈X

{x} we obtain

Π(X) = sup
x∈X

Π({x}) = 1

so there exists x0 ∈ X with Π({x0}) = 1, or equivalently π(x0) = 1.

Proposition 11.17. Let X be a finite set and g : X → [0, 1] be such that
(i) g(∅) = 0, g(X) = 1
(ii) If A ∩B = ∅ then g(A ∪B) = max{g(A), g(B)}.
Then g is a possibility measure.

Proof. It is enough to prove that g(A ∪ B) = max{g(A), g(B)} with A,B
not necessarily disjoint. For this aim we observe that

A ∪B = (A \B) ∪ (A ∩B) ∪ (B \A),
which is a union with disjoint components.
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Condition (ii) implies

g(A ∪B) = max{g(A \B), g(A ∩B), g(B \A)}

= max{max{g(A \B), g(A ∩B)},max{g(A ∩B), g(B \A)}}
= max{g(A), g(B)}.

The next theorem makes the connection between possibility measures and
fuzzy measures.

Theorem 11.18. A possibility measure that is continuous by descending
sequences is a fuzzy measure.

Proof. We can see that the condition Π

(⋃
i∈I

Ai

)
= supi∈I Π(Ai) implies

monotonicity. Also, continuity by descending sequences is assumed. The only
condition that needs to be proved is continuity by ascending sequences. Let
A1 ⊆ A2 ⊆ ... ⊆ An ⊆ ... be an ascending sequence. Then, since the limit of
an increasing sequence coincides with its supremum we get

Π

( ∞⋃
i=1

Ai

)
= sup

i=1,2,..
Π(Ai) = lim

n→∞
Π(An).

Remark 11.19. Continuity by descending sequences is assumed, it is not a
consequence of the properties of a possibility distribution in general. If X is
a finite set continuity by descending sequences is obtained, so the following
corollary holds true.

Corollary 11.20. A possibility measure on a finite set is a fuzzy measure.

Proof. Let A1 ⊇ A2 ⊇ ... ⊇ An ⊇ ... be a descending sequence and A =
∞⋂
i=1

Ai. On a finite set we have A =
∞⋂
i=1

Ai = Ak for some k ∈ {1, 2, ...}.
Similar conclusion holds for ascending sequences. The rest of the proof is left
to the reader as an exercise.

11.4 Fuzzy Integrals

We will study in the present section fuzzy integrals, i.e., integrals obtained
starting from the concepts of fuzzy measure. We will dedicate most of the
section to Sugeno integrals and their equivalent definition due to Ralescu
-Adams and we discuss the Choquet integral too.
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Definition 11.21. (Murofushi-Sugeno [113]) Let μ be a fuzzy measure. The
Sugeno fuzzy integral of a positive measurable function f : X → [0,∞) on a
measurable subset A ⊆ X is defined by

(S)

ˆ

A

f dμ =
∨

α∈[0,∞)

α ∧ μ(Fα ∩ A),

where

Fα = {x ∈ X |f(x) ≥ α}.

Proposition 11.22. The Sugeno fuzzy integral has the following properties.
a) If A ⊆ B then

(S)

ˆ

A

f dμ ≤ (S)

ˆ

B

f dμ.

b) If μ(A) = 0 then

(S)

ˆ

A

f dμ = 0.

c) If c ≥ 0 is a constant then

(S)

ˆ

A

c dμ = c ∧ μ(A).

d) For f, g : X → [0,∞), f ≤ g we have

(S)

ˆ

A

fdμ ≤ (S)

ˆ

B

g dμ.

Proof. The proof of a), b) and d) of the proposition are left to the reader as
an exercise. Let us prove c) here. We observe that

Fα = {x ∈ X |c ≥ α} =
{ ∅ if c < α
X if c ≥ α .

(S)

ˆ

A

c dμ =
∨

α∈[0,∞)

α ∧ μ(Fα ∩ A)

=

⎛
⎝ ∨

α∈[0,c)

α ∧ 0

⎞
⎠ ∨ ∨

α∈[c,∞)

α ∧ μ(A) = c ∧ μ(A)



208 11 Possibility Theory

Definition 11.23. (Ralescu-Adams, [124]) Let μ be a fuzzy measure and let

s =

n∑
i=1

αiχAi

be a simple function (i.e., piecewise constant with Ai measurable). Further
we denote by S the set of simple functions on X. Let

QA(s) =
n∨

i=1

αi ∧ μ(A ∩ Ai).

The Ralescu-Adams fuzzy integral of a positive measurable function f : X →
[0,∞) on a subset A ⊆ X is

(RA)

ˆ

A

f dμ = sup
s∈S

QA(s),

Proposition 11.24. The Ralescu-Adams fuzzy integral given in this defini-
tion has the following properties.

a) If A ⊆ B then

(RA)

ˆ

A

f dμ ≤ (RA)

ˆ

B

f dμ.

b) If μ(A) = 0 then

(RA)

ˆ

A

f dμ = 0.

c) If c ≥ 0 is a constant then

(RA)

ˆ

A

c dμ = c ∧ μ(A).

d) For f, g : X → [0,∞), f ≤ g we have

(RA)

ˆ

A

fdμ ≤ (RA)

ˆ

B

g dμ.

Proof. The proof of a), b) and d) of the proposition are left to the reader
as an exercise. Let us prove c) here. We observe that we can write s = cχA

which makes the integrand a simple function and then

QA(x) = c ∧ μ(A)
and we obtain

(RA)

ˆ

A

c dμ = c ∧ μ(A).

Let us prove in the followings that the two integral concepts coincide.



11.4 Fuzzy Integrals 209

Theorem 11.25. (see e.g. Gal-Ban [70]) The Takagi-Sugeno and Ralescu-
Adams integrals coincide and moreover

(S)

ˆ

X

f dμ = (RA)

ˆ

X

f dμ = sup
A∈B

[μ(A) ∧ inf
x∈A

f(x)]

Proof. First we prove that

(RA)

ˆ

X

f dμ = sup
A∈B

[μ(A) ∧ inf
x∈A

f(x)]

Let A ∈ B be measurable with infx∈A f(x) = α0. Let us consider the simple
function

s0 = α0χA.

By the definition of s0 we have s0 ≤ f which allows us to write

(RA)

ˆ

X

f dμ ≥ (RA)

ˆ

X

s0 dμ ≥ Q(s0)

= α0 ∧ μ(A) = μ(A) ∧ inf
x∈A

f(x), ∀A ∈ B.
We obtain

(RA)

ˆ

X

f dμ ≥ sup
A∈B

[μ(A) ∧ inf
x∈A

f(x)].

For the converse inequality we take

s =

n∑
i=1

αiχAi ≤ f.

Then

Q(s) =

n∨
i=1

αi ∧ μ(Ai).

Let us assume that the maximal element is attained at i0 i.e.,

Q(s) = αi0 ∧ μ(Ai0 ).

Then we have
αi0 ≤ inf

x∈Ai0

f(x)

(otherwise we would not have Q(s) ≤ f(x)).
It follows that

Q(s) ≤ μ(Ai0 ) ∧ inf
x∈Ai0

f(x) ≤ sup
A∈B

[μ(A) ∧ inf
x∈A

f(x)]

and finally

(RA)

ˆ

X

f dμ ≤ sup
A∈B

[μ(A) ∧ inf
x∈A

f(x)].
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Together with the symmetric case we obtain

(RA)

ˆ

X

f dμ = sup
A∈B

[μ(A) ∧ inf
x∈A

f(x)].

For the Sugeno integral we take α0 = infx∈A f(x) then it is immediate that

A ⊆ Fα0 = {x ∈ X |f(x) ≥ α0}.

Then we get

(S)

ˆ

X

f dμ =
∨

α∈[0,∞)

α ∧ μ(Fα ∩ A)

≥ α0 ∧ μ(A) = μ(A) ∧ inf
x∈A

f(x)

and finally

(S)

ˆ

X

f dμ ≥ sup
A∈B

[μ(A) ∧ inf
x∈A

f(x)].

Since Fα is measurable we have Fα ∈ B. Then

(S)

ˆ

A

f dμ =
∨

α∈[0,∞)

α ∧ μ(Fα) ≤
∨
A∈B

α ∧ μ(A).

Example 11.26. (see e.g. Gal-Ban [70]) Let f : [0, 2] → [0,∞), f(x) = x.
Let μ be the Lebesgue measure. The Lebesgue measure is in particular a fuzzy
measure too. Then

μ{x|f(x) ≥ α} = μ{x ∈ [0, 2]|x ≥ α} = 2− α

and for the Sugeno integral we have

(S)

ˆ

A

f dμ =
∨

α∈[0,∞)

α ∧ μ(Fα)

=
∨

α∈[0,∞)

α ∧ (2− α) = 1.

Definition 11.27. (see e.g., Sugeno-Murofushi [139]) The Choquet integral
of a measurable function f with respect to the fuzzy measure μ is defined as

(C)

ˆ
f dμ =

ˆ ∞

0

μ{x|f(x) ≥ α}dα.
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In what follows we give an equivalent definition.

Definition 11.28. (see e.g., Sugeno-Murofushi [139]) Let 0 = a0 ≤ a1 ≤
a2 ≤ ... ≤ an and Ai = {x|f(x) ≥ ai}. We have An ⊆ ... ⊆ A1. We define
the Choquet integral of a function of the form

s =

n∑
i=1

(ai − ai−1)χAi ∈ S

as

(C)

ˆ
s dμ =

n∑
i=1

(ai − ai−1)μ(Ai).

For an arbitrary measurable function f we define

(C)

ˆ
f dμ = sup{(C)

ˆ
s dμ|s ∈ S, s ≤ f}.

Proposition 11.29. (see e.g., Sugeno-Murofushi [139]) The concepts defined
in the previous two definitions are equivalent i.e.,

ˆ ∞

0

μ{x|f(x) ≥ α}dα = sup{(C)
ˆ
s dμ|s ∈ S, s ≤ f}.

Proof. We observe that

sup{(C)
ˆ
s dμ|s ∈ S, s ≤ f}

= sup

{
n∑

i=1

μ(Ai)(ai − ai−1)|s ≤ f
}

=

ˆ ∞

0

μ{x|f(x) ≥ α}dα,

the later one being a Riemann integral.

We list below some properties of the Choquet integral.

Proposition 11.30. (see e.g., Sugeno-Murofushi [139])The Choquet integral
has the following properties.

1)
´
1A dμ = μ(A).

2)
´
af dμ = a

´
f dμ.

3) If f ≤ g then
´
f dμ ≤ ´ g dμ

4) If μ ≤ ν then
´
f dμ ≤ ´ f dν

5) If μ is the Lebesgue measure then the Choquet integral coincides with a
Lebesgue integral.
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Proof. The proofs of 1)-4) are left to the reader as an exercise. To prove 5)
we observe that if μ is Lebesgue measure then as in Definition 11.28 we have

μ(Ai) = μ(Ai+1) + μ(Ai −Ai+1).

Then

(C)

ˆ
s dμ =

n∑
i=1

(ai − ai−1)μ(Ai)

=

n∑
i=1

ai(μ(Ai)− μ(Ai+1))

=

n∑
i=1

aiμ(Ai − Ai+1),

which converges to the Lebesgue integral and we get

(C)

ˆ
s dμ =

ˆ
f dμ.

11.5 Problems

1. Prove Lemma 11.10.

2. Prove Proposition 11.12.

3. Prove Properties a), b), d) of Proposition 11.22.

4. Prove Properties a), b), d) of Proposition 11.24.

5. Prove Properties 1)-4) in Proposition 11.30.

6. Let f : [0, 2]→ R, f(x) = x2. Calculate the Sugeno integral

(S)

ˆ

[0,2]

f dμ,

with μ being the Lebesgue measure.
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Fuzzy Clustering

12.1 Classical k-Means Clustering

Intuitively, clustering means partitioning a data set into clusters (subsets)
whose objects share similar properties, i.e., they are near to each other in
some well defined sense for “near” (see e.g., Jain-Dubes [82]). In this section
we discuss the classical k-means clustering algorithm which is one of the basic
classical clustering methods. It also stands at the basis of the subsequently de-
scribed corresponding fuzzy techniques. Also, Faber [57] has proposed a con-
tinuous k-means clustering method. We discuss here a fuzzy version of Faber’s
algorithm the continuous fuzzy c-means method in Section 12.3. Those ideas
are published here for the first time up to the author’s best knowledge.

The classical k-means clustering (MacQueen [105]) is aimed to partition a
data set into k clusters (classical subsets), k ∈ N, such that the data contained
within each cluster is near to an average value.

More precisely the clustering problem can be formulated as an optimiza-
tion question as follows.

Clustering Problem. Given X = {x1, x2, ..., xn} ⊆ R
n, a data set, and

k ≤ n find S1, ..., Sk a partition of X such that it minimizes

J((Si)i=1,...,k, (mi)i=1,...,k) =

k∑
i=1

∑
xj∈Si

‖xj −mi‖2 ,

where mi is the mean of the points in Si, i = 1, ..., k. We can simplify the
notation above to J(Si,mi), for convenience.

B. Bede: Mathematics of Fuzzy Sets and Fuzzy Logic, STUDFUZZ 295, pp. 213–219.
DOI: 10.1007/978-3-642-35221-8_12 c© Springer-Verlag Berlin Heidelberg 2013
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The following algorithm is called k-means algorithm and it is aimed to
solve the above clustering problem. The algorithm consists of two steps.

k-means algorithm. (MacQueen [105])
Assign:

Si = {xp| ‖xp −mi‖ ≤ ‖xp −mj‖ , j = 1, ..., k}
Update:

mi =

∑
xj∈Si

xj

|Si| ,

where |Si| =
∑

xj∈Si
1 denotes the cardinality (number of elements) of the

finite set.

Proposition 12.1. The k-means algorithm converges in the sense that after
a finite number of steps neither the Assignment nor the Update steps modify
the output of the algorithm.

Proof. It is easy to check that both the assignment and the update steps
decrease the objective function. Indeed, if e.g., Si denotes the partition before
update then we can denote

S′
i = {xp| ‖xp −m′

i‖ ≤
∥∥xp −m′

j

∥∥ , j = 1, ..., k}.
If a given value xq was previously “misplaced” in S′

k, i.e.,

‖xq −m′
k‖ ≥

∥∥xq −m′
j

∥∥ ,
for some j ∈ {1, ..., k} then it will be placed in S′

j and in this way J(Si,mi)
will decrease.

Let us analyze now the update step. We observe that if the sets Si, i =
1, ..., k are fixed we have

∂J

∂mi
= 2

∑
xj∈Si

(mi − xj), i = 1, ..., k

and also, J is convex. Then a local minimum of J is a global minimum and
it is attained at its critical point i.e.,

mi

∑
xj∈Si

1 =
∑

xj∈Si

xj

and finally

mi =

∑
xj∈Si

xj∑
xj∈Si

1
.

Since the point is a global minimum, the update step will decrease the value
of J(Si,mi). Finally since the search space for our problem is a finite set and
since every step decreases the value of the functional J(Si,mi), the algorithm
will be convergent.
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12.2 Fuzzy c-Means

A crisp partition of a set does not allow partial membership degrees of a point
in a cluster. Often it is convenient to have soft boundaries for clusters because
e.g., a given point cannot be harshly categorized as belonging to a cluster or
another. To allow partial membership to the clusters, these will need to be
fuzzy sets. Based on this idea and based on the classical k-means algorithm,
Bezdek proposed the fuzzy c-means algorithm described in the followings.

Fuzzy Clustering Problem. (Bezdek [28]) Given

X = {x1, x2, ..., xn} ⊆ R
n,

a data set, and c ≤ n and m > 1, find a fuzzy partition u1, ..., uc of X , i.e.,
fuzzy sets on X that fulfill the property

c∑
i=1

uik = 1, uik = ui(xk)

such that the functional

J(u, v) =

c∑
i=1

n∑
k=1

(uik)
m ‖xk − vi‖2 ,

is minimized, where

vi =

∑n
k=1 (uik)

m
xk∑n

k=1 (uik)
m .

is the center of the i− th cluster, i = 1, ..., c.
The fuzzy c-means algorithm has two steps.

Fuzzy c-means algorithm
Assignment:

uik =
1

∑c
j=1

(
dik

djk

) 2
m−1

, i = 1, ..., c

where

dik = ‖xk − vi‖ , i = 1, ..., c, k = 1, ..., n

and the norm is the Euclidean norm in R
n (however other norms could be

also considered).
Update:

vi =

∑n
k=1 (uik)

m
xk∑n

k=1 (uik)
m , i = 1, ..., c.

Considering the fuzzy clustering algorithm we can prove the following
result.
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Theorem 12.2. (Bezdek [28]) The fuzzy c-means algorithm converges in the
sense that Jp(u, v) converges (Jp denotes the value of the objective function
in the p-th iteration).

Proof. First we will consider the functional

J(u, v) =

c∑
i=1

n∑
k=1

(uik)
m ‖xk − vi‖2 ,

as a function of uik with fixed vi, and we prove that it has a minimum at

uik =
1

∑c
j=1

(
dik

djk

) 1
m−1

, i = 1, ..., c.

Indeed if we consider the Lagrange function

L(u, v) =

c∑
i=1

n∑
k=1

(uik)
m ‖xk − vi‖2 +

n∑
k=1

λk

(
1−

c∑
i=1

uik

)

we obtain
∂L

∂uik
= m(uik)

m−1d2ik − λk

with dik = ‖xk − vi‖. Then

uik =

(
λk
md2ik

) 1
m−1

, i = 1, ..., c.

The fuzzy partition condition implies

c∑
i=1

uik =

c∑
i=1

(
λk
md2ik

) 1
m−1

= 1

and we obtain (
λk
m

) 1
m−1

=
1

∑c
i=1

(
1

dik

) 2
m−1

Then we obtain the critical point

uik =
1

∑c
j=1

(
dik

djk

) 2
m−1

, i = 1, ..., c.

It is easy to check that the Hessian is positive semidefinite and so it is a
convex function in its domain, and then uik provided by the assignment step
is a local minimum of J(u, v), which is in particular a global minimum too,
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because of convexity. As a conclusion J(u, v) is decreased in every assignment
step.

Then, considering J(u, v) as a function of vi with fixed uik we can find a
critical point of J(u, v) from

∂J

∂vi
= −2

n∑
k=1

(uik)
m
(xk − vi) = 0

as

vi =

∑n
k=1 (uik)

m
xk∑n

k=1 (uik)
m , i = 1, ..., c.

Similar to the previous step the Hessian is positive semidefinite and so J(u, v)
with fixed u has a local minimum at vi, which is a global minimum too, and
so the functional J(u, v) is decreased in every update step.

Together the two steps of the algorithm will decrease the objective func-
tion, which ensures that the algorithm is convergent the objective function
being bounded from below by 0.

Remark 12.3. Surely the above theorem ensures only the convergence of the
algorithm without proving that it indeed converges to a local minimum of the
functional J(u, v). A deeper investigation of the fuzzy c-means algorithm is
possible using Karush-Kuhn-Tucker theorems (see Jain-Dubes [82]).

12.3 Continuous Fuzzy c-Means

Starting from Bezdek’s fuzzy c-means [28] and Faber’s continuous k-means
[57] algorithms we can combine them into a continuous variant of the fuzzy
c-means algorithm.

Fuzzy Clustering Problem. Given Ω ⊆ R
n, a region, and c ∈ N, and

m > 1, find a fuzzy partition A1, ..., Ac of X , i.e., fuzzy sets on X that fulfill
the property

c∑
i=1

Ai(x) = 1,

such that the functional

J(u, v) =

ˆ

Ω

c∑
i=1

(Ai(x))
m ‖x− vi‖2 dx,

is minimized, where

vi =

´
Ω
(Ai(x))

m xdx
´
Ω (Ai(x))

m
dx

.

is the center of the i− th cluster, i = 1, ..., c.
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The continuous fuzzy c-means algorithm like its other variants will have
two steps.

Continuous fuzzy c-means algorithm
Assignment:

Ai(x) =
1

∑c
j=1

(
‖x−vi‖
‖x−vj‖

) 2
m−1

, i = 1, ..., c.

The norm can be any norm in R
n (however in the present discussion we use

the Euclidean norm).
Update:

vi =

´
Ω (Ai(x))

m
xdx

´
Ω
(Ai(x))

m , i = 1, ..., c.

Considering the continuous fuzzy clustering algorithm we can prove the fol-
lowing result.

Theorem 12.4. The continuous fuzzy c-means algorithm converges in the
sense that Jp(u, v) converges (Jp denotes the value of the objective function
in the p-th iteration).

Proof. The approach presented here is not the most elegant, because it
reduces the problem described here to the previous situation using a Riemann
sum for approximating the integrals. First we will consider the functional

J(u, v) =

c∑
i=1

ˆ

Ω

(Ai(x))
m ‖x− vi‖2 dx,

as a function of Ai(x) with fixed vi. We can approximate the functional
J(u, v) using a Riemann sum

Jn(u, v) =

c∑
i=1

n∑
k=1

(Ai(xk))
m ‖xk − vi‖2 (xk+1 − xk).

and by the proof of Theorem 12.2 it has a minimum at

Ai(xk) =
1

∑c
j=1

(
‖xk−vi‖
‖xk−vj‖

) 2
m−1

, i = 1, ..., c.

If the assignment step calculates

Ai(x) =
1

∑c
j=1

(
‖x−vi‖
‖x−vj‖

) 2
m−1

, i = 1, ..., c.

then Ai(xk) is automatically getting the value as described above, and so
at the Assignment step the value of Jn(u, v) is reduced, for any value of n.
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J(u, v) is within the approximation error of the Riemann sum, but it is still
possible that it is increased. Let us assume that

|J(u, v)− Jn(u, v)| ≤ ε.
Then

Jn(u, v)− ε ≤ J(u, v) ≤ Jn(u, v) + ε,

i.e., however J(u, v) may increase, at an individual step, its approximation
Jn(u, v) is decreased at the assignment step.

Then, considering J(u, v) as a function of vi with fixed fuzzy partitions we
can find a critical point of J(u, v) from

∂J

∂vi
= −2

ˆ

Ω

(Ai(x))
m (x− vi) dx = 0

and we obtain

vi =

´
Ω
(Ai(x))

m
xdx

´
Ω (Ai(x))

m
dx

, i = 1, ..., c.

Similar to the previous step the Hessian is positive semidefinite and so J(u, v)
has a local minimum at vi, which is a global minimum too, and so the func-
tional J(u, v) is decreased in every update step. Same can be said in particular
about Jn, which also decreases at every update step.

Taking ε = 1
n we obtain that in the assignment step we have

Jn(u, v)− 1

n
≤ J(u, v) ≤ Jn(u, v) + 1

n
,

so J(u, v) is bounded by the sequence Jn(u, v)− 1
n and Jn(u, v) +

1
n and so

the algorithm converges.

12.4 Problems

1. Let us consider the functional

J(u, v) =
c∑

i=1

n∑
k=1

euik ‖xk − vi‖2 .

Describe a fuzzy c-means algorithm that should minimize the given func-
tional.

2. Prove that the algorithm described in Problem 1 is convergent.

3. Investigate generalizations of the fuzzy c-means algorithms similar to
Problem 1.
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Fuzzy Transform

13.1 Definition of Fuzzy Transforms

Fuzzy Transform was proposed in Perfilieva in [121] and Perfilieva [120] and
it is an approximation method based on fuzzy sets. Also, it can be seen as
a fuzzy set-based analogue of the Fourier Transform. In the present chapter
we follow in great lines the presentation and discussion in Bede-Rudas [23].

Definition 13.1. A fuzzy partition of an interval [a, b] is defined as a family
A = {A1, A2, ..., Ak} of fuzzy sets on [a, b], Ai : [a, b]→ [0, 1], i = 1, ..., k such
that

k∑
i=1

Ai(x) = 1, ∀x ∈ [a, b].

The fuzzy sets Ai are called the atoms of the partition.

Example 13.2. We consider a classical partition a = y0 = y1 ≤ ... ≤ yk =
yk+1 = b of the interval [a, b], with triangular fuzzy numbers

Ai = (xi−1, xi, xi+1), i = 1, ..., k.

These fuzzy sets form a fuzzy partition (see Fig. 13.1).

If a = y0 ≤ y1 < ... < yk ≤ yk+1 = b is a classical partition of the interval
[a, b] and let δ = maxi=0,...,k |yi+1 − yi| be the norm of the partition.

In what follows we present the Fuzzy Transform (F-transform) proposed
in Perfilieva [121].

B. Bede: Mathematics of Fuzzy Sets and Fuzzy Logic, STUDFUZZ 295, pp. 221–246.
DOI: 10.1007/978-3-642-35221-8_13 c© Springer-Verlag Berlin Heidelberg 2013
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Fig. 13.1 A fuzzy partition with triangular atoms

Definition 13.3. (Perfilieva [121]) We consider a fuzzy partition A. The
continuous F-transform is given by

fi =

´ b
a Ai (x) f(x)dx
´ b
a
Ai(x)dx

, (13.1)

i = 1, ..., k.
The discrete F-transform is given by

fi =

∑n
j=1 Ai(xj)f(xj)∑n

j=1 Ai(xj)
, (13.2)

where xj ∈ I, j = 1, ..., n are given data (n ≥ 1) such that for each i ∈
{1, ..., k} there exists p ∈ {1, ..., n} with xp ∈suppAi, i.e. in the support of
each atom of the partition we find at least one data point.

where fi are the components of the continuous F-transform.

Definition 13.4. (Perfilieva [121]) The continuous inverse F-
transform is

Fk(x) =

k∑
i=1

Ai(x)fi. (13.3)

where fi are the components of the continuous F-transform, and the discrete
inverse F-transform is

Fn,k(x) =

k∑
i=1

Ai(x)fi. (13.4)

where fi are the components of the discrete F-transform.
Positive linear operators are playing a special role in our investigation.
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Definition 13.5. For the discrete case let Fn,k : C([a, b]) → C([a, b]) be
given by

Fn,k(f)(x) = Fn,k(x),

where Fn,k(x) is given by (13.4) and fi given by (13.2). The operator Fn,k is
called the discrete inverse F-transform approximation operator.

If we consider the composition between the inverse F-transform and the
continuous F-transform we take Fk : C([a, b])→ C([a, b]), given by

Fk(f)(x) = Fk(x),

where Fk(x) is given by (13.3) and fi given by (13.1). The operator Fk is
called the continuous inverse F-transform approximation operator.

Example 13.6. Let us consider the fuzzy partition with four triangles in
Fig. 13.1

A1 = (0, 0, 1), A2 = (0, 1, 2), A3 = (1, 2, 3), A4 = (2, 3, 3)

Let us calculate the components of the continuous F-transform associated to
the function f(x) = x2.

f1 =

´ 1
0
(1− x)x2dx
´ 1
0 (1− x)dx

=
1

6
,

f2 =

´ 1
0
xx2dx+

´ 2
1
(2− x)x2dx

´ 1
0 xdx+

´ 1
0 (2− x)dx

=
7

6
,

f3 =

´ 2
1
(x− 1)x2dx +

´ 3
2
(3− x)x2dx

´ 2
1 (x − 1)dx+

´ 3
2 (3− x)dx

=
25

6
,

f4 =

´ 3
2
(x− 2)x2dx
´ 3
2 (x− 2)dx

=
43

6
.

Then the inverse F-transform becomes

Fk(f)(x) = Fk(x) = A1(x) · 1
6
+A2(x) · 7

6
+A3(x) · 25

6
+A4(x) · 43

6
.

The direct and inverse continuous F-transform are illustrated in Fig. 13.2.
The more practical discrete F-transform can be numerically calculated.

Example 13.7. Let us consider a fuzzy partition based on trigonometric
functions. Let a = y0 ≤ ... ≤ yn = b be a partition with equally spaces knots
yi = a + h · i, with h = b−a

n , i = 0, ..., n. Let us consider y−1 ≤ a, b ≤ yn+1

two auxiliary knots. Let us take (see Fig. 13.3)

Ai(x) =

{
1
2

(
cos π

h (x− yi) + 1
)

if x ∈ [yi−1, yi+1]
0 otherwise

i = 0, ..., n.

Let us calculate the discrete F-transform associated to the function f(x) = x2.
The direct and inverse discrete F-transform are illustrated in Fig. 13.4.
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Fig. 13.2 Direct and inverse continuous fuzzy transform

Fig. 13.3 Fuzzy Partition with trigonometric membership functions

Proposition 13.8. Fn,k ∈ L(C[a, b]) and Fk ∈ L(C[a, b]) are positive linear
operators.

Proof. The proof is left to the reader as an exercise.

Also, we can regard each of the direct F-transforms fi as a linear form fi :
C([a, b])→ R, fi(f) = fi as in (13.1) or (13.2).

An interesting result concerning F-transforms is their optimality property
obtained in Perfilieva [121].
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Fig. 13.4 Direct and inverse discrete fuzzy transform

Proposition 13.9. For each i = 1, ..., k, the point y = fi, (with fi being
a component of the continuous F-transform) minimizes in terms of y the
function

Φ(y) =

ˆ b

a

(f(x) − y)2Ai(x)dx.

Proof. We observe that a minimizer has to be a critical point of the convex
function Φ, i.e.,

Φ′(y) = −2
ˆ b

a

(f(x)− y)Ai(x)dx = 0,

and we obtain that the critical point is indeed the F-transform

y =

´ b
a Ai (x) f(x)dx
´ b
a
Ai(x)dx

= fi, i = 1, ..., k.

Proposition 13.10. The component fi of the discrete F-transform mini-
mizes in terms of y the function

Φ(y) =
n∑

j=1

(f(xj)− y)2Ai(xj).

Proof. The proof is left to the reader as an exercise.

13.2 Error Estimates for F-Transforms Based on Fuzzy
Partitions with Small Support

The original definition of the Fuzzy transform assumes a fuzzy partition with
small support. In this case the uniform convergence of the composition of the
inverse and direct F-transform was shown in Perfilieva [121]. We consider a
generalization proposed in Bede-Rudas [23].
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Theorem 13.11. (Perfilieva [121], [120]) Let a = y0 ≤ y1 ≤ ... ≤ yk ≤
yk+1 = b be a partition of the interval [a, b] having the norm δ. If A =
{A1, ..., Ak} is a fuzzy partition with

(Ai)0 ⊆ [yi−1, yi+1], i = 1, ..., k,

then the following error estimate holds true

|Fn,k(f)(x) − f(x)| ≤ 2ω(f, δ), ∀x ∈ [a, b],

where Fn,k(f)(x) denotes the discrete inverse F-transform approximation op-
erator.

Proof. Let x ∈ [a, b] be arbitrary fixed. The discrete inverse F-transform
approximation operator can be expressed as

Fn,k(f)(x) =

k∑
i=1

Ai(x)

∑n
j=1 Ai(xj)f(xj)∑n

j=1 Ai(xj)

and f(x) can be written as

f(x) =

k∑
i=1

Ai(x)

∑n
j=1 Ai(xj)f(x)∑n

j=1 Ai(xj)
.

Then we get
|Fn,k(f)(x) − f(x)|

≤
k∑

i=1

Ai(x)

∑n
j=1 Ai(xj) |f(x)− f(xj)|∑n

j=1 Ai(xj)
,

and from Theorem A.39 we have

|Fn,k(f)(x) − f(x)| ≤
k∑

i=1

∑n
j=1Ai(x)Ai(xj)ω(f, |x− xj |)∑n

j=1 Ai(xj)
.

We observe that the product Ai(x)Ai(xj) �= 0 only when x, xj are in the
same interval [yi−1, yi+1]. In this case we have |x− xj | ≤ 2δ and we get

|Fn,k(f)(x)− f(x)| ≤ 2

k∑
i=1

∑n
j=1 Ai(x)Ai(xj)ω(f, δ)∑n

j=1 Ai(xj)

and finally
|Fn,k(f)(x)− f(x)| ≤ 2ω(f, δ).

In the next theorem we obtain an error estimate in the context of a fuzzy
partition with small support. This below result slightly extends those in Per-
filieva [121].
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Theorem 13.12. Let a = y1−r ≤ y1 ≤ ... ≤ yk ≤ yk+r = b be a partition of
the interval [a, b] having the norm δ. If A = {A1, ..., Ak} is a fuzzy partition
with supports

(Ai)0 ⊆ [yi−r, yi+r], i = 1, ..., k

then the following error estimate holds true

|Fn,k(f)(x)− f(x)| ≤ 2rω(f, δ), ∀x ∈ [a, b],

where Fn,k(f)(x) denotes the discrete inverse F-transform approximation op-
erator.

Proof. The proof is left as an exercise.

The following Corollary gives the uniform convergence of the composition of
the direct and inverse discrete F-transforms.

Corollary 13.13. If f is continuous, then there exists a sequence of fuzzy
partitions Am such that the composition of the inverse and direct discrete
F-transform converges uniformly to f .

Similar results hold for the case of continuous fuzzy transforms.

Theorem 13.14. Let a = y0 ≤ y1 ≤ ... ≤ yk ≤ yk+1 = b be a partition of
the interval [a, b] having the norm δ. If A = {A1, ..., Ak} is a fuzzy partition
with

(Ai)0 ⊆ [yi−1, yi+1], i = 1, ..., k

then the following error estimate holds true

|Fk(f)(x) − f(x)| ≤ 2ω(f, δ), ∀x ∈ [a, b],

where Fk(f)(x) denotes the continuous inverse F-transform approximation
operator.

Proof. Similar to the proof of Theorem 13.11 we have

|Fk(f)(x) − f(x)| ≤
k∑

i=1

´ b
a
Ai(x)Ai(t)ω(f, |x− t|)dt

´ b
a Ai(t)dt

Since the product Ai(x)Ai(t) �= 0 if and only if x, t ∈ [yi−1, yi+1], and in this
interval we have |x− t| ≤ 2δ we get

|Fk(f)(x) − f(x)| ≤ 2

k∑
i=1

´ yi+1

yi−1
Ai(x)Ai(t)dt

´ yi+r

yi
Ai(t)dt

ω(f, δ)

≤ 2ω(f, δ).
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Theorem 13.15. Let a = y0 ≤ y1 ≤ ... ≤ yk ≤ yk+1 = b be a partition of
the interval [a, b] having the norm δ. If A = {A1, ..., Ak} is a fuzzy partition
with

(Ai)0 ⊆ [yi−r, yi+r], i = 1, ..., k

then the following error estimate holds true

|Fk(f)(x) − f(x)| ≤ 2rω(f, δ), ∀x ∈ [a, b],

where Fk(f)(x) denotes the continuous inverse F-transform approximation
operator.

Proof. The proof is immediate, being similar to the proof of the previous
theorem.

Corollary 13.16. If f is continuous, then there exists a sequence of fuzzy
partitions Am such that the composition of the inverse and direct continuous
F-transform converges uniformly to f .

13.3 B-Splines Based F-Transform

Let us recall the definitions of the classical B-splines of order r−1 with r ≥ 1.
Let t0 ≤ t1 ≤ .... ≤ tr be points in R, with tr �= t0. The B-spline M is given
by

M(x) =M(x; t0, ..., tr) = r[t0, ..., tr](· − x)r−1
+ ,

where for fixed x, the notation (· − x)+ denotes the function

(· − x)+(t) = (t− x)+ = max{0, t− x}

and [t0, ..., tr]f denotes the divided difference of f (see e.g. DeVore- Lorentz
[43]) defined recursively as

[tk]f = f(tk), k = 0, ..., r

[ti, ..., tj ]f =
[ti+1, ..., tj ]f − [ti, ..., tj−1]f

tj − ti , 0 ≤ i < j ≤ r.

The B-spline N is defined by

N(x; t0, ..., tr) =
1

r
(tr − t0)M(x; t0, ..., tr). (13.5)

Let t0 ≤ t1 ≤ ... ≤ tn be a sequence of points in a given interval [a, b],
called basic knots. We need some auxiliary knots t−r+1 ≤ ... ≤ t0 = a and
b = tn+1 ≤ ... ≤ tn+r. To a given sequence of knots corresponds a sequence
of crisp B-splines

N r
i (x) = N(x; ti, ..., ti+r),
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Fig. 13.5 Cubic B-spline based fuzzy partition

for i ∈ {−r + 1, ..., n}. The following identity holds

n∑
i=−r+1

N r
i (x) = 1, (13.6)

i.e., the B-splines form a fuzzy partition. Cox-de Boor recursion formula (see
DeVore- Lorentz [43]) is important both from practical and theoretical point
of view

N1
i (x) =

{
1 if ti ≤ x < ti+1

0 otherwise

N r
i (x) =

x− ti
ti+r−1 − tiN

r−1
i (x) +

ti+r − x
ti+r − ti+1

N r−1
i+1 (x),

for any r ≥ 2, i = −r + 1, ..., n.
If we consider an equidistant knot sequence, B-splines form a fuzzy parti-

tion as shown in Fig. 13.5.
Based on the results of the previous section we consider the B-spline based

fuzzy transform proposed in Bede-Rudas [23]. The B-spline-based continuous
F-transform is given by

fi =

´ b
a
N r

i (x) f(x)dx
´ b
a N

r
i (x)dx

, i = −r + 1, ..., n

and the discrete F-transform is

fi =

∑m
j=1N

r
i (xj)f(xj)∑m

j=1N
r
i (xj)

, i = −r + 1, ..., n
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where xj ∈ I, are given data (j = 1, ...,m). The composition of the inverse
and direct F-transform for x ∈ [a, b] is

Fn(f)(x) =

n∑
i=−r+1

N r
i (x)fi,

for the continuous case, and

Fn,k(f)(x) =

n∑
i=−r+1

N r
i (x)fi,

for the discrete case.

Proposition 13.17. Let f : [a, b] → R be a continuous function and let
Fn(f)(x) and Fn,k(f)(x) be the inverse B-spline based F-transform approxi-
mation operators. Then we have

|Fn(f)(x)− f(x)| ≤ rω(f, δ) and (13.7)

|Fn,k(f)(x)− f(x)| ≤ rω(f, δ)

where r − 1 is the order of the spline considered, and δ = maxni=0 |ti+1 − ti|.
Proof. The proof is similar to that of Theorem 13.12 and it is left to the
reader as exercise.

The estimate in (13.7) can be generally improved, but if r is small compared to
n, we have a sufficiently good estimate. In applications, to keep the problem’s
simplicity one needs to choose a relatively small value for r. Indeed, the most
popular applications of classical B-splines use cubic splines.

Example 13.18. We will take F-transforms and inverse F-transforms of the
functions f1, f2 : [0, 1]→ R+

f1(x) = 2 + sin
1

x+ 0.15
(13.8)

and

f2(x) =

⎧⎨
⎩

1 if 0 ≤ x ≤ 0.4
10x− 3 if 0.4 < x ≤ 0.5

2 if 0.5 < x ≤ 1
. (13.9)

B-splines of different orders can be used to approximate these functions on
the [0, 1] interval. We use cubic B-splines here. In Fig.13.6 we show the F-
transform approximation for the function f1.

In Fig. 13.7, cubic B-spline based F-transform is considered for the func-
tion f2.
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Fig. 13.6 Approximation by cubic B-spline F-transform. Dashed line = f1, solid

line = inverse F-transform

Fig. 13.7 Approximation by cubic B-spline F-transform. Solid line = f2 Dashed

line = inverse F-transform

13.4 Shepard Kernels Based F-Transform

We consider in what follows a Shepard-like fuzzy partition. This was proposed
in Bede-Rudas [23].

Definition 13.19. Consider y0 < . . . < yk ∈ [a, b]. We say that a fuzzy
partition A = {Ai}i∈{0,...,k} determines the Shepard-like fuzzy partition if it
is of the following form
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Fig. 13.8 Shepard type fuzzy partition

Ai(x) =

{
|x−yi|−λ

∑k
j=0|x−yj|−λ , if x ∈ [a, b] \ {y0, ..., yk} ,

δij , otherwise,
(13.10)

where δij is Kronecker’s delta, and λ > 2 is a parameter.

We consider the interval [0, 1] and the points y1, ..., yk are considered equally
spaced. Now, let us recall that if zi, i = 1, ..., n are equally-spaced points in
the unit interval then

(
n∑

i=0

|x− zi|−γ

)−1

= O(n−γ), (13.11)

for any γ > 1 (see Szabados [142]), where f(h) = O(g(h)) has the usual
interpretation, i.e., there exist C, x0 such that f(x) ≤ Cg(x) for any x ≥ x0.
Let us recall the following lemma:

Lemma 13.20. (Xiao-Zhou [152], Lemma 1)For any x ∈ [0, 1] and γ > 1,
if zi, i = 1, ..., n are equally-spaced points in the unit interval then

|x− zk|−γ∑n
i=0 |x− zi|−γ

≤ O (|[(n+ 1)x]− k|+ 1)
−γ
, (13.12)

where [x] is the greatest integer not exceeding x.

The following theorem provides an error estimate for the inverse F-transform
based on Shepard kernels.

Theorem 13.21. (Bede-Rudas [23]) Let y0, ..., yk and x0, ..., xn be equally-
spaced points in [0, 1]. If Ai(x) denote Shepard kernels (13.10) having the
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parameter λ > 2, then for the discrete inverse F-transforms approximation
operator Fn,k(f)(x) given by (13.3) and (13.2) there exists an absolute con-
stant C such that the following error estimate

|Fn,k(f)(x)− f(x)| ≤ Cω
(
f,

1

m

)
,

holds, with m = min{n, k}.
Proof. As in the proof of the previous theorem we have

|Fn,k(f)(x) − f(x)| ≤
k∑

i=0

∑n
j=0Ai(x)Ai(xj)ω(f, |x− xj |)∑n

j=0 Ai(xj)
.

The following inequality is obtained from properties of the modulus of con-
tinuity:

|Fn,k(f)(x)− f(x)| (13.13)

≤
(
1 +m

k∑
i=0

Ai(x)

∑n
j=0Ai(xj) |x− xj |∑n

j=0 Ai(xj)

)
ω

(
f,

1

m

)
.

We have to estimate the expression

En,k(x) =

k∑
i=0

Ai(x)

∑n
j=0 Ai(xj) |x− xj |∑n

j=0 Ai(xj)

=
k∑

i=0

|x− yi|−λ

∑k
l=0 |x− yl|−λ

∑n
j=0

|xj−yi|−λ

∑k
l=0|xj−yl|−λ |x− xj |∑n

j=0
|xj−yi|−λ

∑k
l=0|xj−yl|−λ

.

We observe that

En,k(x) =

k∑
i=0

|x− yi|−λ

∑k
l=0 |x− yl|−λ

n∑
j=0

|xj − yi|−λ |x− xj |∑n
j=0 |xj − yi|−λ

≤
k∑

i=0

|x− yi|−λ

∑k
l=0 |x− yl|−λ

n∑
j=0

|xj − yi|−λ
(|x− yi|+ |xj − yi|)∑n

j=0 |xj − yi|−λ

=

k∑
i=0

|x− yi|−λ

∑k
l=0 |x− yl|−λ

|x− yi|
n∑

j=0

|xj − yi|−λ

∑n
j=0 |xj − yi|−λ

+

k∑
i=0

|x− yi|−λ

∑k
l=0 |x− yl|−λ

n∑
j=0

|xj − yi|−λ

∑n
j=0 |xj − yi|−λ

|xj − yi| .
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From Lemma 13.20, for the equally spaced points y0, ..., yk, we have

|x− yi|−λ

∑k
l=0 |x− yl|−λ

= O (|[(k + 1)x]− i|+ 1)
−λ

,

and for the equally spaced points x0, ..., xn we obtain

|xj − yi|−λ

∑n
j=0 |xj − yi|−λ

= O (|[(n+ 1)yi]− j|+ 1)−λ ,

and it follows

En,k(x) = O
(

k∑
i=0

(|[(k + 1)x]− i|+ 1)
−λ |x− i/k|

·
n∑

j=0

(|[(n+ 1)yi]− j|+ 1)
−λ

⎞
⎠

+O
⎛
⎝ k∑

i=0

(|[(k + 1)x]− i|+ 1)
−λ ·

n∑
j=0

(|[(n+ 1)yi]− j|+ 1)
−λ |j/n− yi|

⎞
⎠

= O
⎛
⎝1

k

k∑
i=0

(|[(k + 1)x]− i|+ 1)
−λ |kx− i| ·

n∑
j=0

(|[(n+ 1)yi]− j|+ 1)
−λ

⎞
⎠

+O
⎛
⎝ 1

n

k∑
i=0

(|[(k + 1)x]− i|+ 1)
−λ ·

n∑
j=0

(|[(n+ 1)yi]− j|+ 1)
−λ |nyi − j|

⎞
⎠ .

Now let us observe that |kx− i| ≤ |[(k + 1)x]− i| + 1. Indeed, if kx ≥ i we
have

|kx− i| = kx− i ≤ (k + 1)x− i
≤ |[(k + 1)x]− i+ 1| ≤ |[(k + 1)x]− i|+ 1.

Similarly, if kx < i we obtain

|kx− i| = i − kx ≤ i− (k + 1)x

≤ |[(k + 1)x]− i| ≤ |[(k + 1)x]− i|+ 1.

Also, we have
|nyi − j| ≤ |[(n+ 1)yi]− j|+ 1
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and we obtain

En,k(x) = O
⎛
⎝1

k

k∑
i=0

(|[(k + 1)x]− i|+ 1)
−λ+1 ·

n∑
j=0

(|[(n+ 1)yi]− j|+ 1)
−λ

⎞
⎠

+O
⎛
⎝ 1

n

k∑
i=0

(|[(k + 1)x]− i|+ 1)
−λ ·

n∑
j=0

(|[(n+ 1)yi]− j|+ 1)
−λ+1

⎞
⎠ .

We observe that

En,k(x) = O
⎛
⎝1

k

∞∑
α=1

α−λ+1
∞∑

βα=1

β−λ
α

⎞
⎠

+O
⎛
⎝ 1

n

∞∑
α=1

α−λ
∞∑

βα=1

β−λ+1
α

⎞
⎠ .

Since for λ > 2 we have both

∞∑
β=1

β−λ
α = O(1)

and
∞∑
β=1

β−λ+1
α = O(1)

we obtain

En,k(x) = O
(
1

k

)
+O

(
1

n

)
.

Now in (13.13) we get

|Fn,k(f)(x) − f(x)| ≤
(
1 +m

(
O

(
1

k

)
+O

(
1

n

)))
ω

(
f,

1

m

)
.

If we put m = min{k, n} we get m
(O (

1
k

)
+O (

1
n

))
= O(1) and finally we

obtain that there exists a constant C such that

|Fn,k(f)(x)− f(x)| ≤ Cω
(
f,

1

m

)
.

Corollary 13.22. If Ai(x) denote Shepard kernels (13.10) having the pa-
rameter λ > 2, then the composition of the inverse and direct F-transform
given by (13.3) and (13.2) converges uniformly to f.
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Fig. 13.9 Approximation by Shepard type F-transform. Dashed line = f1, solid

line = inverse F-transform

Fig. 13.10 Approximation by Shepard type F-transform. Dashed line = f2, solid

line = inverse F-transform

Similar result can be obtained for the continuous F-transform with Shepard
kernels.

Example 13.23. Functions f1, f2 in (13.8), (13.9) are approximated by
Shepard type inverse F-transform operators. The results are shown in Figs.
13.9, 13.10 respectively.

13.5 Korovkin Type Theorems for the F-Transform

The first of Korovkin’s Theorems is an important result in classical approxi-
mation theory. Let us recall it here.



13.5 Korovkin Type Theorems for the F-Transform 237

Theorem 13.24. (Korovkin [96]) Let Ln ∈ L(C[a, b]), n = 1, 2, ... be a
sequence of positive linear operators. If limn→∞ Ln(ei) = ei, i = 0, 1, 2 where
e0(x) = 1, e1(x) = x, e2(x) = x2, then limn→∞ Ln(f) = f, for any f ∈
C[a, b].

A particularization can be considered for our F-transforms as follows:

Theorem 13.25. (Korovkin’s Theorem for the discrete F-transform, see
Bede-Rudas [23]) Let F n,k ∈ L(C[a, b]), n, k = 1, 2, ... be the composi-
tion between the inverse and direct discrete F-transforms with respect to a
fixed fuzzy partition. The following general error estimate holds true for any
δ > 0 :

‖Fn,k(f)− f‖ ≤
(
1 +

1

δ

√
e2 − 2e1Fn,k(e1) + Fn,k(e2)

)
ω(f, δ),

where e1(x) = x, e2(x) = x2.

Proof. The composition of the inverse and direct discrete F-transform can
be expressed as

Fn,k(f)(x) =

k∑
i=1

Ai(x)

∑n
j=1 Ai(xj)f(xj)∑n

j=1 Ai(xj)
.

Let us observe that for the inverse F-transform we have Fn,k(e0) = e0, where
e0(x) = 1 ∀x ∈ [a, b], and it is immediate to observe that

|Fn,k(f)− f(x)| ≤
k∑

i=1

Ai(x)

∑n
j=1 Ai(xj) |f(x)− f(xj)|∑n

j=1 Ai(xj)
,

and then by standard reasoning

|Fn,k(f)− f(x)|

≤
(
1 +

1

δ

k∑
i=1

Ai(x)

∑n
j=1 Ai(xj)|x − xj |∑n

j=1Ai(xj)

)
ω(f, δ),

for any fixed δ > 0. The error is controlled by the ratio

Rn,k(x) =
k∑

i=1

Ai(x)

∑n
j=1 Ai(xj)|x− xj |∑n

j=1 Ai(xj)
. (13.14)
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Using Cauchy-Schwarz inequality we have

n∑
j=1

Ai(xj)|x− xi| ≤
⎛
⎝ n∑

j=1

Ai(xj)|x− xj |2
⎞
⎠

1
2
⎛
⎝ n∑

j=1

Ai(xj)

⎞
⎠

1
2

and using Cauchy-Schwarz inequality successively we obtain

Rn,k(x) ≤
k∑

i=1

Ai(x)

(∑n
j=1 Ai(xj)|x − xj |2

) 1
2

(∑n
j=1 Ai(xj)

) 1
2

=

k∑
i=1

√
Ai(x)

(
Ai(x)

∑n
j=1 Ai(xj)|x− xj |2

) 1
2

(∑n
j=1 Ai(xj)

) 1
2

≤
(

k∑
i=1

Ai(x)

) 1
2
(

k∑
i=1

Ai(x)
∑n

j=1 Ai(xj)|x− xj |2∑n
j=1Ai(xj)

) 1
2

.

Since Ai(x) is a fuzzy partition we have

Rn,k(x) ≤
(

k∑
i=1

Ai(x)

∑n
j=1 Ai(xj)(x

2 − 2xxj + x2j )∑n
j=1 Ai(xj)

) 1
2

and finally

Rn,k(x) =
(
x2 − 2xFn,k(e1)(x) + Fn,k(e2)(x)

) 1
2 ,

which completes the proof.

Corollary 13.26. If
lim

n,k→∞
Fn,k(ei) = ei,

i = 1, 2, then
lim

n,k→∞
Fn,k(f) = f,

for any f ∈ C[a, b].
If we consider the case of the continuous F-transform then we obtain a similar
result.

Theorem 13.27. (Korovkin’s Theorem for the continuous F-transform, Bede-
Rudas [23]) Let Fk ∈ L(C[a, b]), k = 1, 2, ... be the composition of the inverse
and direct continuous F-transforms. The following general error estimate
holds true for any δ > 0 :

‖Fk(f)− f‖ ≤
(
1 +

1

δ

√
e2 − 2e1Fk(e1) + Fk(e2)

)
ω(f, δ),

where e1(x) = x, e2(x) = x2.
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Proof. The proof uses the integral version of Cauchy-Schwarz inequality and
it is left to the reader as an exercise.

Corollary 13.28. If limk→∞ Fk(ei) = ei, i = 1, 2, then limn→∞Fk(f) = f,
for any f ∈ C[a, b].
The Korovkin type Theorems above show that if we are able to have small
values of

E =
√
e2 − 2e1Fn,k(e1) + Fn,k(e2)

for the discrete case, or

E =
√
e2 − 2e1Fk(e1) + Fk(e2)

for the continuous case, for a given sequence of fuzzy partitions Ai, i = 1, ..., k,
then we have small approximation error for any continuous function.

13.6 F-Transform with Bernstein Basis Polynomials
and the Durrmeyer Operator

Using the Korovkin-type results we can study F-transforms with Bernstein
basis polynomials used as a fuzzy partition this time. The proposed con-
struction leads to the well-known Durrmeyer operator (Bede-Rudas [23]).
The Bernstein basis polynomials are

pk,i(x) =

(
k

i

)
xi(1− x)k−i,

k = 1, 2, ... i = 0, 1, ..., k x ∈ [0, 1]. In Fig. 13.11 elements of Bernstein basis
are illustrated.

It is easy to check that

k∑
i=0

pn,i(x) = (x+ (1− x))k = 1,

i.e. pn,i is a fuzzy partition.
The inverse F-transform is given by

Fk(f)(x) =

k∑
i=0

pk,i(x)

´ 1
0
pk,i(x)f(x)dx
´ 1
0 pk,i(x)dx

,

that is the classical Durrmeyer operator Durrmeyer [53].

Theorem 13.29. Let f : [0, 1]→ R be continuous, and let Fk(f)(x) denote
the inverse F-transform approximation operator, i.e., the Durrmeyer opera-
tor. Then the following error estimate holds true

‖Fk(f)− f‖ ≤ Cω
(
f,

√
x(1 − x)

k

)
.
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Fig. 13.11 The Bernstein basis polynomials

Proof. Let us calculate Fk(e1) and Fk(e2) in this case. It is easy to check
that

p′k,i(x) = k(pk−1,i−1(x) − pk−1,i(x)).

By integrating we obtain

ˆ 1

0

pk−1,i−1(x)dx =

ˆ 1

0

pk−1,i(x)dx,

i.e., for fixed k the integrals of all Bernstein basis polynomials are the same
namely ˆ 1

0

pk,i(x)dx =
1

k + 1
, i = 1, ..., k.

By direct calculation

ˆ 1

0

pk,i(x)xdx =

ˆ 1

0

(
k

i

)
xi+1(1− x)k−idx

=
i + 1

k + 1

ˆ 1

0

pk+1,i+1dx =
i+ 1

(k + 1) (k + 2)
.

Also, ˆ 1

0

pk,i(x)x
2dx =

ˆ 1

0

(
k

i

)
xi+2(1− x)k−idx

=
i+ 1

k + 1

i+ 2

k + 2

ˆ 1

0

pk+2,i+2dx

=
(i+ 1) (i+ 2)

(k + 1) (k + 2) (k + 3)
.
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Then we obtain

fi(e1) =

´ 1
0
pk,i(x)xdx
´ 1
0 pk,i(x)dx

=
i+ 1

k + 2
= O

(
i

k

)

and

fi(e2) =

´ 1
0
pk,i(x)x

2dx
´ 1
0 pk,i(x)dx

=
(i+ 1) (i+ 2)

(k + 2) (k + 3)
= O

(
i2

k2

)
.

Fk(e1)(x) = O
(

k∑
i=1

pk,i(x)
i

k

)

= O (Bk(e1)(x)) = O (e1) ,

where Bk denotes the usual Bernstein operator

Bk(f)(x) =

k∑
i=1

pk,i(x)f

(
i

k

)

and it is well known that Bk(e1)(x) = x. We also have

Fk(e2)(x) = O
(

k∑
i=1

pk,i(x)

(
i

k

)2
)

= O (Bk(e2)(x)) = O
(
x2 +

x(1 − x)
k

)
,

and finally we obtain:
√
e2 − 2e1Fk(e1) + Fk(e2) = O

√
x(1−x)

k and by the

above Korovkin type results we have

‖Fk(f)− f‖ ≤ Cω
(
f,

√
x(1 − x)

k

)
.

Example 13.30. We consider the problem to approximate f1, f2 in (13.8),
(13.9) by Bernstein inverse F-transform. The results are illustrated in Figs.
13.12, 13.13.



242 13 Fuzzy Transform

Fig. 13.12 Approximation by Bernstein type F-trasform. Dashed line = f1 Solid

line = inverse F-transform.

Fig. 13.13 Approximation by Bernstein type F-transform. Dashed line = f2, solid

line = inverse F-transform.

13.7 F-Transform of Favard-Szász-Mirakjan Type

It is possible to further generalize Fuzzy Transforms by considering un-
bounded intervals and infinitely many atoms for a fuzzy partition. Let f :
[0,∞) → R be a bounded function. We consider now on the [0,∞) interval
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the fuzzy partition A = (A0, A1, ....), with
∑∞

i=0Ai(x) = 1, ∀x ∈ I. We can
consider for example a Favard-Szász-Mirakjan kernel (see e.g. Gal [67])

Ai(x) = e−nx (nx)
i

i!
,

n ≥ 1, i = 0, 1, .... The continuous F-transform in this case is given by

fi =

´∞
0 Ai (x) f(x)dx´∞

0 Ai(x)dx
,

and the discrete F-transform is given by

fi =

∑∞
j=1 Ai(xj)f(xj)∑∞

j=1 Ai(xj)
,

where xj ∈ I, given data (j ≥ 1). The composition of the continuous inverse
and direct F-transform is

Fn(f)(x) =

∞∑
i=0

Ai(x)fi,

and in the discrete case

Fn,k(f)(x) =
∞∑
i=0

Ai(x)fi,

for x ∈ [0,∞). We observe here an analogy between fuzzy transform and the
Fourier transform, inverse fuzzy transform and Fourier series respectively.
We will discuss here the Favard-Szász-Mirakjan type inverse F-transform ap-
proximation operator. We restrict Fn to any compact interval [0, b] ⊂ [0,∞).

Theorem 13.31. (Bede-Rudas [23]) Let f : [0,∞) → R be continuous and
bounded function and let Fn(f)(x) denote the continuous inverse F-transform
approximation operator. Then the following error estimate

‖Fn(f)− f‖ ≤ Cω
(
f,

√
x

n

)
,

holds true on any compact sub-interval of [0,∞).

Proof. Then the Korovkin-type theorems can be used. On any fixed compact
interval we estimate the quantity

√
e2 − 2e1Fn(e1) + Fn(e2).

We have

fi(e1) =

´∞
0 Ai (x) xdx´∞
0 Ai(x)dx

=
1

i!n2Γ(i+ 2)
1
i!nΓ(i+ 1)

,
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where Γ(x) =
´∞
0
tx−1e−tdt is Euler’s gamma function. It is well known that

Γ(n+ 1) = n!, ∀n ∈ N and we get

fi(e1) =
i+ 1

n
,

Similarly

fi(e2) =
(i+ 1) (i+ 2)

n2
.

For the inverse F-transforms we get

Fn(e1)(x) =

∞∑
i=0

Ai(x)
i + 1

n
=

∞∑
i=0

e−nx (nx)
i

i!

i

n
+

1

n

= xe−nx
∞∑
i=1

(nx)i−1

(i− 1)!
+

1

n
= e1(x) +

1

n
.

and

Fn(e2)(x) =

∞∑
i=0

Ai(x)
(i+ 1) (i+ 2)

n2

=

∞∑
i=0

e−nx (nx)
i

i!

i2

n2
+

3x

n
+

2

n2

= x2e−nx
∞∑
i=2

(nx)i−2

(i− 2)!
+

4x

n
+

2

n2

= x2 +
4x

n
+

2

n2
.

As a conclusion the error is controlled by

√
e2 − 2e1Fn(e1) + Fn(e2)(x)

=

√
x2 − 2x

(
x+

1

n

)
+ x2 +

4x

n
+

2

n2

=

√
2x

n
+

2

n2
= O

(√
x

n

)
.

Example 13.32. In Figs. 13.14 and 13.15 the approximation capabilities of
Favard-Szász-Mirakjan type F-transforms are illustrated.
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Fig. 13.14 Approximation by Favard-Szász-Mirakjan type F-trasform. Dashed line

= f1, solid line = inverse F-transform.

Fig. 13.15 Approximation by Favard-Szász-Mirakjan type F-transform. Dashed

line = f2, solid line = inverse F-transform.

13.8 Problems

1. Consider the function f : [0, 1] → R, f(x) = x and let xi = i
n , i =

0, ..., n. For a fuzzy partition with triangular fuzzy numbers Ai(x) =
(xi−1, xi, xi+1), i = 1, ..., n − 1 calculate the F-transforms fi, i = 1, ..., n
and then calculate the inverse F-transform F (x) =

∑n
i=1 Ai(x) · fi. Per-

form detailed calculations for n = 4.

2. Consider the function f : [0, 1]→ R, f(x) = x2 and let xi =
i
n , i = 0, ..., n.

For a fuzzy partition with triangular fuzzy numbers Ai(x)
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= (xi−1, xi, xi+1), i = 1, ..., n−1 calculate the F-transforms fi, i = 1, ..., n
and then calculate the inverse F-transform F (x) =

∑n
i=1 Ai(x) · fi. Per-

form detailed calculations for n = 4.

3. Using the results of the previous two problems show that the error term
in the Korovkin type Theorem 13.27 converges to 0 as n→∞.

4. Consider the function f : [0, 1] → R, f(x) = ex. Calculate the direct and
inverse F-transform for a triangular fuzzy partition for the given function.

5. Let us consider equally spaces knots yi =
i
n , i = 0, ..., n in the [0, 1] interval

. Let us consider y−1 ≤ 0, 1 ≤ yn+1 two auxiliary knots. Let us take

Ai(x) =

{
1
2

(
cos π

h (x− yi) + 1
)

if x ∈ [yi−1, yi+1]
0 otherwise

i = 0, ..., n.

Calculate the F-transform and the inverse F-transform of the function
f(x) = ex. Consider n = 4 as a particular case.

6. Prove Proposition 13.8.

7. Prove Proposition 13.10.

8. Prove Proposition 13.12.

9. Starting from one of the F-transform techniques presented in the present
chapter construct a two-dimensional F-transform.
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Artificial Neural Networks and
Neuro-Fuzzy Systems

14.1 Artificial Neuron

Computational Intelligence is a discipline within Artificial Intelligence and
it studies the topics of Fuzzy Sets and Systems, Neural Networks, Genetic
Algorithms, Swarm Intelligence and combination of these topics (see Engel-
brecht [55]). The present chapter will present an introduction to the Theory
of Neural Networks, and also the combination of Neural and Fuzzy systems,
i.e., the Adaptive Network-based Fuzzy Inference System (Jang [81]).

A neural network is a nonlinear mapping f : Rn → R
m, wherem,n are the

dimensions of the input and output spaces. The building block of a neural
network is an artificial neuron, or simply neuron. The simplest neural network
has its input signals x1, ..., xn transformed into an output y, by propagating
them through the synapses, with synaptic weights w1, ..., wn with a bias b
and an activation function ϕ. The structure is described as in Fig. 14.1.

The definition of a neural network in this simple form is as follows:

Definition 14.1. A neural network is a function of the form

y = ϕ

⎛
⎝ n∑

j=1

wjxj + b

⎞
⎠ ,

where ϕ : R → [a, b] is an activation function, i.e., limx→−∞ ϕ(x) = a and
limx→∞ ϕ(x) = b.

B. Bede: Mathematics of Fuzzy Sets and Fuzzy Logic, STUDFUZZ 295, pp. 247–258.
DOI: 10.1007/978-3-642-35221-8_14 c© Springer-Verlag Berlin Heidelberg 2013
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Fig. 14.1 The structure of an artificial neuron

Different types of activation functions can be used in a neuron, as for example

• Threshold function

ϕ(x) =

{
1 if x > 0
0 , otherwise

.

• Piecewise linear

ϕ(x) =

⎧⎨
⎩

0 if x < −ε
1
2ε (x+ ε) if −ε ≤ x ≤ ε

1 if ε < x
.

• Sigmoid

ϕ(x) =
1

1 + e−x
.

• tanh
ϕ(x) = tanhx.

• etc.

14.2 Feed-Forward Neural Network

The simple structure in the previous section can be generalized by adding
different layers with different entities. Feed-forward neural network archi-
tecture has three layers: Input layer, hidden layer and output layer. The
input layer contains the input variables of the system. The hidden layer has
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Fig. 14.2 The structure of a feed-forward neural network with a single input

multiple neurons. The output layer is aggregating the output that comes
from the intermediate hidden layer with given synaptic weights. Figure 14.2
illustrates the structure of a feed-forward neural network with a single input.

Definition 14.2. A feed forward neural network is a function

y =
n∑

j=1

wjϕ (ajx+ bj) ,

where ϕ : R→ [a, b] is an activation function.

A more general case is that of a network handling multiple inputs. The inputs
are linked to the hidden layer through different synaptic weights. In Fig. 14.3,
a feed-forward neural network with multiple inputs is shown.

Definition 14.3. A feed-forward neural network with multiple inputs and
single output, is a function

y =

n∑
j=1

wjϕ

(
m∑
i=1

aijxi + bj

)
,

where ϕ : R→ [a, b] is an activation function.

We may have neural networks with multidimensional input and output (see
Fig. 14.4).
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Fig. 14.3 The structure of a feed-forward neural network with multiple inputs and

a single output

Fig. 14.4 The structure of a feed-forward neural network with multiple inputs and

a single output

Definition 14.4. A feed-forward neural network with both multiple inputs
xi, i = 1, ...,m and outputs yl, l = 1, ..., k is expressed as a function

yl =

n∑
j=1

wljϕ

(
m∑
i=1

aijxi + bj

)
, l = 1, ..., k

where ϕ : R→ [a, b] is an activation function.

Remark 14.5. Neural networks are motivated by several important
properties:

• Nonlinearity. Since ϕ is a nonlinear function, it can approximate well
nonlinear phenomena.
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• Input output mapping. Typical inputs of the neural network should be
mapped into typical outputs.

• Learning. The pairs of corresponding input-output values provided in a
given application are used for training a neural network so that it ful-
fills the input-output mapping property. The neural network weights are
updated according to a learning rule, to fulfill these conditions.

• Adaptivity. A neural network is able to adapt when the input-output values
change.

• Fault Tolerance. A neural network is a robust system. If one single neuron
is lost the network output does not change significantly.

14.3 Learning of a Neural Network

Learning of a neural network is the process of updating the synaptic weights
such that given known inputs, propagated through the network, lead to ap-
proximations of the desired outputs. The learning process can be supervised,
unsupervised, reinforcement learning.

Supervised learning provides input-output data for the network, and the
network is adapting its weights such that the input-output mapping is real-
ized. In an unsupervised learning no input-output data is provided for the
network, and the network is adapting its weights such that a clustering of
data is realized. Reinforcement learning updates the synaptic weights in such
a way that the neurons that produce the worst output are punished (rein-
forced). For different learning algorithms see e.g. Engelbrecht [55], Thrun
[148].

Let us consider a feed-forward neural network with one hidden layer of the
particular form

y =
n∑

j=1

wjϕ (x− xj) .

A set of training inputs x̂i, i = 1, ..., k, is considered and then the correspond-
ing training (typical) outputs are ŷi, i = 1, ..., k. The actual output is

oi =

n∑
j=1

wjϕ (x̂i − xj) .

Then the error function

E =

k∑
i=1

(oi − ŷi)2 =

k∑
i=1

⎛
⎝ n∑

j=1

wjϕ (x̂i − xj)− ŷi
⎞
⎠

2

.



252 14 Artificial Neural Networks and Neuro-Fuzzy Systems

We have

∂E

∂wj
= 2

k∑
i=1

(oi − ŷi) ∂oi
∂wj

= 2

k∑
i=1

(oi − ŷi)ϕ (x̂i − xj) .

The basic algorithm for the learning process of a neural network is the gra-
dient descent algorithm. It is described as follows:

• Step 1. Assume random synaptic weights wj , j = 1, ..., k and ε > 0.

• Step 2. Calculate the actual outputs given the training data,

oi =

n∑
j=1

wjϕ (x̂i − xj)

• Step 3. Update the synaptic weights

witer+1
i = witer

i − η ∂E

∂witer
j

• Step 4. If the error

E =
k∑

i=1

(oi − ŷi)2 > ε

and if a maximal number of iterations is not attained then go to step 2.

Gradient descent algorithm can be used as the learning algorithm for the
synaptic weights in the hidden layer. Let

y =

n∑
j=1

wjϕ

(
m∑
i=1

aijxi + bj

)
,

be a feed-forward network. We assume given training data x̂li, ŷl, l = 1, ..., k,
i = 1, ...,m. The error function is

E =

k∑
l=1

(ol − ŷl)2

=
k∑

l=1

⎛
⎝ n∑

j=1

wjϕ

(
m∑
i=1

aij x̂li − xj
)
− ŷl

⎞
⎠

2

.

We will find the gradient. We have

∂E

∂aij
= 2

k∑
l=1

(ol − ŷl) ∂ol
∂aij

,
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∂E

∂aij
= 2

k∑
i=1

(ol − ŷl)wj
dϕ

du
x̂li,

where dϕ
du can be calculated based on the activation function. If ϕ is the

sigmoid function then we have

∂E

∂aij
= 2

k∑
i=1

(ol − ŷl)ol(1− ol)x̂li.

This is based on the fact that for the sigmoid function ϕ we have ϕ′(u) =
ϕ(u)(1 − ϕ(u)).

If ϕ is the threshold function then this partial derivative is always 0. This
is not a convenient result, so in this case we need a different learning rule. In
this case the derivative dϕ

du is replaced by the approximation ol(1− ol). So we
have the same expression

∂E

∂aij
= 2

k∑
i=1

(ol − ŷl)ol(1− ol)x̂li.

14.4 Approximation Properties of Neural Networks

We denote by C[0, 1] the space of continuous functions endowed with the
uniform norm. We will show that any continuous function can be uniformly
approximated by neural networks using a constructive approach. Let 0 =
x0 ≤ x1 ≤ ... ≤ xn ≤ xn+1 = 1 be a partition with equally spaces points and
f ∈ C[0, 1]. We define the neural network

Nnf(x) =
n∑

i=0

ωiτ(x − xi),

where τ is the threshold function and

ωi =
χ(f, i)

2
−

i−1∑
j=0

ωj ,

with
χ(f, i) = sup

x∈[xi,xi+1)

f(x) + inf
x∈[xi,xi+1)

f(x), i = 0, ..., n

Theorem 14.6. (see Csáji [40])The following error estimate holds true

‖f −Nnf‖ ≤
ω(f, 1

n )

2
.
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Proof. As the first step of the proof we will show that Nnf(x) = χ(f,i)
2 .

Indeed, if x ∈ [xi, xi+1) then

Nnf(x) =

n∑
i=0

ωiτ(x − xi) =
i−1∑
j=0

ωj + ωi

=

i−1∑
j=0

ωj +
χ(f, i)

2
−

i−1∑
j=0

ωj =
χ(f, i)

2
.

Now we turn our attention to the estimate. First we observe that

ω

(
f,

1

n

)
≥ sup

x,y∈[xi,xi+1)

|f(x)− f(y)| = sup
x∈[xi,xi+1)

f(x)− inf
x∈[xi,xi+1)

f(x)

= sup
x∈[xi,xi+1)

f(x)− χ(f, i)

2
+
χ(f, i)

2
− inf

x∈[xi,xi+1)
f(x)

= 2 sup
x∈[xi,xi+1)

∣∣∣∣f(x)− χ(f, i)

2

∣∣∣∣ .
Now, for x ∈ [xi, xi+1)

sup
x∈[xi,xi+1)

|f(x)−Nnf(x)| = sup
x∈[xi,xi+1)

|f(x)− χ(f, i)

2
| ≤ 1

2
ω

(
f,

1

n

)

and as a conclusion we get

‖f −Nnf‖ ≤
ω(f, 1

n )

2
.

Corollary 14.7. If f is continuous then limn→∞Nnf(x) = f(x).

The theorem can be extended to the case of sigmoid activation function
(Cybenko [41]) and other neural networks (Anastassiou [3]).

Example 14.8. Let us consider the function f1 = e−
x
5 sin 2x. Its neural

network approximation is given in Fig. 14.5.

14.5 Adaptive Network Based Fuzzy Inference System
(ANFIS)

An adaptive network based fuzzy inference system (ANFIS Jang [81]) is able
to combine a fuzzy system’s ability to model a reasoning process and to handle
uncertainty, with the learning ability and adaptivity of a neural network.
ANFIS is based on a Takagi-Sugeno fuzzy system. Let us consider an example
of a Takagi Sugeno fuzzy system with a single input and output and n fuzzy
rules.
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Fig. 14.5 Approximation by a neural network. Dashed line f1 and solid line =neural

network

• Rule 1: If x is A1 then f1 = p1x+ r1

• ......

• Rule n: If x is An then fn = pnx+ rn

The architecture of the ANFIS is as in Fig. 14.6.
The layers are described as follows:

• The input layer receives data x.

• Layer 1: The membership grades A1(x), A2(x), ..., An(x) are calculated.

• Layer 2: The firing levels of the fuzzy rules, namely

w1 = A1(x) ... wn = An(x)

are calculated.

• Layer 3: Normalized firing levels

w′
1 =

w1

w1 + ...+ wn
and w′

n =
wn

w1 + ...+ wn

are calculated.

• Layer 4: The individual output of each fuzzy rule can now be calculated
as

w′
1f1 = w′

1(p1x+ r1),

...

w′
nfn = w′

n(pnx+ rn).
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Fig. 14.6 The structure of a feedforward neural network with a single inputs and

a single output

• Layer 5: The individual outputs of the rules are combined

f =

n∑
i=1

w′
i(pix+ ri).

• The output layer has outcome f .

The difference between ANFIS and a Takagi-Sugeno system is that the weights,
and the membership functions in ANFIS are learned through an optimization
algorithm. Surely, as Takagi-Sugeno systems without an added optimization
are approximation operators, the ANFIS system will be able to approximate
any continuous function.

Let us consider an example of a Takagi Sugeno fuzzy system with two
linguistic antecedents, and two fuzzy rules.

• Rule 1: If x is A1 and y is B1 then f1 = p1x+ q1y + r1

• Rule 2: If x is A2 and y is B2 then f2 = p2x+ q2y + r2

The architecture of the ANFIS is as in Fig. 14.7.
The layers are described as follows:

• The input layer receives data x, y.

• Layer 1: The membership grades A1(x), A2(x) and B1(x), B2(x) are cal-
culated. (Ai, Bi, are given fuzzy sets).

• Layer 2: The firing levels of the fuzzy rules, namely

w1 = A1(x) · B1(y) and w2 = A2(x) ·B2(y)

are calculated.
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Fig. 14.7 The structure of a feedforward neural network with multiple inputs and

a single output

• Layer 3: Normalized firing levels

w′
1 =

w1

w1 + w2
and w′

2 =
w2

w1 + w2

are calculated.

• Layer 4: The individual output of each fuzzy rule can now be calculated
as

w′
1f1 = w′

1(p1x+ q1y + r1)

and
w′

2f2 = w′
2(p2x+ q2y + r2)

• Layer 5: The individual outputs of the two rules are combined

f = w′
1f1 + w′

2f2 = w′
1(p1x+ q1y + r1) + w′

2(p2x+ q2y + r2)

• The output layer has outcome f .

The learning of an ANFIS can adaptively derive the coefficient values p1, p2,
q1, q2, r1, r2 using a least squares method. Also, parameters of the fuzzy sets
A1, A2, B1, B2 can be determined or adjusted by a suitable learning algo-
rithm. This improves the flexibility and adaptability of the network.

Let us describe for example the learning algorithm for the parameter p1.
The Error function can be written

E =

n∑
j=1

(f(xj , yj)− zj)2,

where xj , yj , zj , j = 1, ..., n is training data. Then

∂E

∂p1
= 2

n∑
j=1

(f(xj , yj)− zj) ∂f
∂p1

= 2

n∑
j=1

(f(xj , yj)− zj)w′
1xj .
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The gradient descent algorithm is then the usual one

piter+1
1 = piter1 − η ∂E

∂piter1

.

As an immediate consequence of Theorem 7.30 we obtain that the ANFIS
system can approximate any continuous function with any accuracy, moreover
the order of approximation is at least the same as in Theorem 7.30. Indeed,
ANFIS is in essence a particular case of a Takagi-Sugeno fuzzy system. ANFIS
is a fuzzy system with a neural network used to perform its optimization
adaptation. ANFIS is not a neural network in the strict meaning of Definitions
14.1 or 14.3. Surely the idea of adaptivity combined with that of fuzziness
makes the system very useful and extremely powerful in applications.

14.6 Problems

1. Consider the Neural Network

yl =

n∑
j=1

wljϕ

(
m∑
i=1

aijxi + bj

)
,

with ϕ(x) = 1
1+eαx , α > 0 being a parameter. Deduce learning rules for

the synaptic weights wlj , aij .

2. Repeat the previous problem with the activation function ϕ(x) = tanhx.

3. Consider

ϕ(x) =

⎧⎨
⎩
−1 if x < −π

2
sinx if −π

2 ≤ x ≤ π
2

1 if π
2 < x

.

Show that ϕ is an activation function and use this function to construct
a neural network with one hidden layer. Describe learning rules for the
given network.

4. Given ϕ(x) an activation function prove that ϕ(ax) with a > 0 is also an
activation function. Use this method to construct neural networks with
variants of tanh and sin as given above.

5. Prove that ANFIS can approximate any continuous function based on
Theorem 7.30,
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als. Birkhäuser, Boston (2008)

[69] Gal, S.G.: Linear continuous functionals on FN-type spaces. J. Fuzzy
Math. 17(3), 535–553 (2009)

[70] Gal, S.G., Ban, A.I.: Elemente de Matematica Fuzzy. University of Oradea
(1996) (in Romanian)

[71] Gal, C.S., Gal, S.G.: Semigroups of operators on spaces of fuzzy-number-
valued functions with applications to fuzzy differential equations. J. Fuzzy
Math. 13, 647–682 (2005)

[72] Gal, C.S., Gal, S.G., N’guerekata, G.M.: Existence and uniqueness of almost
automorphic mild solutions to some semilinear fuzzy differential equations,
Trends in African diaspora math. research, pp. 23–35. Nova Sci. Publ., Hunt-
ington (2007)

[73] Goguen, J.A.: L-fuzzy sets. J. Math. Anal. Appl. 18, 145–174 (1967)
[74] Goetschel, R., Voxman, W.: Elementary fuzzy calculus. Fuzzy Sets and Sys-

tems 18, 31–43 (1986)
[75] Grzegorzewski, P., Mrówka, E.: Trapezoidal approximations of fuzzy num-

bers. Fuzzy Sets and Systems 153(1), 115–135 (2005)
[76] Hajek, P.: Metamathematics of Fuzzy Logic. Kluwer (1998)
[77] Hanss, M.: Applied Fuzzy Arithmetic. Springer (2005)
[78] Huang, H.: Some notes on Zadeh’s extensions. Information Sciences 180,

3806–3813 (2010)
[79] Hukuhara, M.: Integration des applications measurables dont la valeur est un

compact convexe. Funkcialaj Ekvacioj 10, 205–223 (1967)
[80] Hullermeier, E.: An approach to modeling and simulation of uncertain dynam-

ical systems. Int. J. Uncertainty Fuzziness Knowledge-Based Syst. 5, 117–137
(1997)



References 263

[81] Jang, J.S.R.: ANFIS: Adaptive-Network-Based Fuzzy Inference System. IEEE
Trans. Systems, Man, Cybernetics 23, 665–685 (1993)

[82] Jain, A.K., Dubes, R.C.: Algorithms for Clustering Data. Prentice Hall (1988)
[83] Kaleva, O.: Fuzzy differential equations. Fuzzy Sets and Systems 24, 301–317

(1987)
[84] Kaleva, O.: A note on fuzzy differential equations. Nonlinear Analysis 64,

895–900 (2006)
[85] Kaleva, O.: Nonlinear iteration semigroups of fuzzy Cauchy problems. Fuzzy

Sets and Systems (to appear)
[86] Khastan, A., Nieto, J.J.: A boundary value problem for second order fuzzy

differential equations. Original Research Article Nonlinear Analysis: Theory,
Methods & Applications 72, 3583–3593 (2010)

[87] Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer, Dordrecht
(2000)

[88] Klement, E.P., Mesiar, R., Pap, E.: Triangular norms. Position paper I: basic
analytical and algebraic properties. Fuzzy Sets and Systems 143(1), 5–26
(2004)

[89] Klement, E.P., Mesiar, R., Pap, E.: Triangular norms. Position paper II: gen-
eral constructions and parameterized families. Fuzzy Sets and Systems 145(3),
411–438 (2004)

[90] Klement, E.P., Mesiar, R., Pap, E.: Triangular norms. Position paper III:
continuous t-norms. Fuzzy Sets and Systems 145(3), 439–454 (2004)

[91] Klir, G.J.: Fuzzy arithmetic with requisite constraints. Fuzzy Sets and Sys-
tems 91, 165–175 (1997)

[92] Klir, G.J.: The role of constrained fuzzy arithmetic in engineering. In: Ayyub,
B.M. (ed.) Uncertainty Analysis in Engineering and the Sciences. Kluwer,
Boston (1997)

[93] Klir, G.J., Pan, Y.: Constrained fuzzy arithmetic: Basic questions and some
answers. Soft Computing 2, 100–108 (1998)

[94] Klir, G.J., Yuan, B.: Fuzzy sets and fuzzy logic: theory and applications.
Prentice Hall PTR (1995)
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Appendix A

Mathematical Prerequisites

In the present Appendix we recall a few basic definitions and theorems from
Mathematics, especially Mathematical Analysis, that are used throughout
the text. This is not intended to be an exhaustive treatise or a replacement
of a solid mathematics background for students, instead we will concentrate
on results cited in the text in an effort to make the text more independent.

A.1 Lattices

Let L be a set and ≤ be a relation (classical relation) on L.

Definition A.1. A classical relation is said to be a partial order on L if it
is:

(i) reflexive, i.e., a ≤ a, ∀a ∈ L
(ii) antisymmetric, i.e., if a ≤ b and b ≤ a then a = b, a, b ∈ L
(iii) transitive i.e., if a ≤ b and b ≤ c then a ≤ c, a, b, c ∈ L
We say that L is a partially ordered set (poset).

Example A.2. As examples of partial orders we mention: ≤ the standard
inequality of real numbers, ⊆ inclusion of classical sets or fuzzy sets, | divis-
ibility of integers, etc.

Let us recall the following general definition of the infimum and supremum.

Definition A.3. (i) The greatest lower bound (infimum) of two elements a, b
of a poset L is an element c ∈ L such that c ≤ a, c ≤ b and for any c′ ≤ a
and c′ ≤ b we have c′ ≤ c. We denote c = inf{a, b} or c = a ∧L b.
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(ii) The least upper bound (supremum) of two elements a, b of a poset L
is an element d ∈ L such that a ≤ d, b ≤ d and for any a ≤ d′ and b ≤ d′ we
have d ≤ d′. We denote d = sup{a, b} or c = a ∨L b.

(iii) The greatest lower bound (infimum) of a nonempty subset A ⊆ L is
c ∈ L if c ≤ x, ∀x ∈ A and if c′ ∈ L is such that c′ ≤ x, ∀x ∈ A then c′ ≤ c.

(iv) The least upper bound (supremum) of a nonempty subset A ⊆ L is
d ∈ L if x ≤ d, ∀x ∈ A and if d′ ∈ L is such that x ≤ d′, ∀x ∈ A then d ≤ d′.
One of the possible ways to define a lattice is the following.

Definition A.4. We say that a partially ordered set L is a lattice if any two
elements in L have a supremum and an infimum.

A lattice can also be defined based on interpretation of the inf and sup as
algebraic operations.

Example A.5. (R,≤), (N, |), (P(X),⊆) are lattices. In (R,≤) the infimum
is the minimum and supremum coincides with the maximum. In (N, |) the
infimum of two elements a, b is their greatest common divisor, while their
supremum is their least common multiple.

If the inf and sup operations are distributive w.r.t. each-other then we call
the lattice a distributive lattice.

Definition A.6. A complete lattice is a partially ordered set (L,≤), such
that any non-empty subset of L has an infimum and a supremum.

Definition A.7. A lattice L is called completely distributive if

a ∧
(∨

i∈I

bi

)
=

∨
i∈I

a ∧ bi

and

a ∨
(∧

i∈I

bi

)
=

∧
i∈I

a ∨ bi

hold ∀a, bi ∈ L, i ∈ I and I any index set.

Example A.8. ([0, 1],≤) is a complete, completely distributive lattice.

The next theorems are due to Tarski–Knaster and Kleene respectively (see
e.g. Tarski [144])

Theorem A.9. Let L be a complete lattice and f : L → L be a monotonic
function. If the set {x ∈ L|f(x) ≤ x} ({x ∈ L|x ≤ f(x)}) is non-empty, then
the set of fixed points forms a complete lattice and f has a least (greatest)
fixed point x∗ ∈ L (x∗ ∈ L).
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Theorem A.10. Let L be a complete lattice having first and last element
that is ∃0, 1 ∈ L, i.e. 0 ≤ x, ∀x ∈ L and x ≤ 1, ∀x ∈ L) and let f : L→ L be
≤-continuous (i.e., f is such that for c1 ≤ c2 ≤ ... ≤ cn ≤ ... we have

∞∨
n=1

f(cn) = f

( ∞∨
n=1

cn

)
.

Then the least and greatest fixed points satisfy

x∗ =

∞∨
n=1

fn(0), x∗ =

∞∧
n=1

fn(1),

where fn means here n times composition of f by f .

A.2 Real Numbers

Definition A.11. We consider a field R (i.e., a set endowed with additive
and multiplicative operation with certain properties), with a total order rela-
tion (reflexive, transitive, antisymmetric relation, such that any two elements
are comparable) compatible with the operations. If additionally R has the least
upper bound property then R is called the real numbers set, and its elements
are called real numbers.

The least upper bound property is an axiom of the real-numbers and it is
used throughout the text.

Axiom A.12. (Least Upper Bound property) Any nonempty set A ⊆ R

bounded from above (i.e., if there exists M ∈ R with x ≤ M, ∀x ∈ A), has a
supremum (least upper bound).

Dually any nonempty set bounded from below (i.e., if there exists m ∈ R

with m ≤ x, ∀x ∈ A) will have an infimum (greatest lower bound).

A.3 Metric Spaces

Let us recall here the definition of a metric space.

Definition A.13. Let X be a set and d : X × X → [0,∞) be a function.
The function d is called a metric on X (and in this case X is called a metric
space) if the following properties are fulfilled.

(i) d(x, y) ≥ 0, ∀x, y ∈ X with d(x, y) = 0 if and only if x = y.
(ii) d(x, y) = d(y, x), ∀x, y ∈ X
(iii) d(x, z) ≤ d(x, y + d(y, z), ∀x, y, z ∈ X.

As examples of metric spaces let us mention R
n with e.g. Euclidean distance

which in the one-dimensional case becomes d(x, y) = |x− y|.
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Definition A.14. A sequence (xn)n≥0 ⊆ X is said to converge to x ∈ X if
∀ε > 0 there exist N(ε) ≥ 0 such that d(xn, x) < ε, ∀n ≥ N(ε).

Definition A.15. A sequence (xn)n≥0 ⊆ I is fundamental if ∀ε > 0 there
exist N(ε) ≥ 0 such that d(xn, xn+p) < ε, ∀n ≥ N(ε), p ≥ 1.

Definition A.16. A metric space is complete if any fundamental sequence
converges.

The Euclidean space R
n and in particular R are complete metric spaces.

Definition A.17. An open ball centered at x0 and radius r in a metric space
X is

B(x0, r) = {x ∈ X |d(x, x0) < r}.
A closed ball in a metric space is defined as

B̄(x0, r) = {x ∈ X |d(x, x0) ≤ r}.

A set V ⊆ X is a neighborhood of x ∈ X if it contains an open ball x ∈
B(x, r) ⊆ V. A set A ⊆ X is open if it is a neighborhood of every of its
points.

An important property is that arbitrary unions of open sets are open.

Definition A.18. A set is closed if its complement is open.

Sets may be closed and open simultaneously, so the concepts of open and
closed set do not exclude each-other.

Proposition A.19. A set A ⊆ X is closed if and only if any convergent
sequence (xn)n≥0 ⊆ A converges to x ∈ A.
Definition A.20. The closure of a set is the least closed set (in the sense of
the inclusion) that contains the set.

The closure of a set consists of all the points of the set and the limits of all
sequences with terms in the set. For example the closure of the set of rational
numbers Q is the set of real numbers R. The notation cl(A) is used to denote
the closure of the set A.

Definition A.21. A subset A ⊆ X is said to be compact if from any covering
A ⊆ ⋃

i∈I Ui with open sets we can extract a finite sub-covering A ⊆ ⋃n
i=1 Ui.

A compact set must be closed. A subset of a metric space is compact if and
only if it is sequentially compact (i.e, any bounded sequence has a convergent
subsequence). Also, a subset A of a complete metric space is compact if and
only if it is totally bounded, i.e. ∀r > 0 we can cover A with finitely many
open balls B(xi, r), i = 1, .., n with the radius r.

Theorem A.22. (Heine-Borel) A subset A ⊆ R
n is compact if and only if

it is closed and bounded.
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A Lindelöf space is a generalization of the concept of compactness.

Definition A.23. A subset A ⊆ X is said to be Lindelöf if from any covering
A ⊆ ⋃

i∈I Ui with open sets we can extract a countable sub-covering A ⊆⋃∞
i=1 Ui.

Separability is another important property.

Definition A.24. A metric space X is said to be separable if it is the closure
of a countable subset A ⊆ X.
If a space is compact then it is also separable. For example R is separable
being the closure of Q.

Another important property is convexity.

Definition A.25. A subset A ⊆ R
n is said to be convex if for any x, y ∈ A

we have λx+ (1 − λ)y ∈ A.
A subset of R is a closed interval if and only if it is both compact and convex.

A.4 Continuity

Definition A.26. A function f : X → Y is continuous at x ∈ X if for any
neighborhood V of f(x) we can find a neighborhood U of x with f(U) ⊆ V.
Equivalently we can formulate continuity using the distances on X and Y .

Proposition A.27. A function f : X → Y is continuous at x ∈ X if for any
ε > 0 there exists δ > 0 such that d2(f(y), f(x)) < ε whenever d1(x, y) < δ.
If it is continuous for every value of x ∈ X then we say it is continuous on
X. (We denote the distance on X by d1 and the distance on Y by d2.)

Continuity and compactness work together in the following way.

Proposition A.28. The image of a compact set K ⊆ X through a continu-
ous function f : X → Y (X,Y metric spaces) is compact.

The space of all continuous functions f : K → Y on a compact metric space
K, with Y being a metric space, is denoted by C(K,Y ). On C(K,Y ) we can
define the metric

D(f, g) = sup
x∈K

d(f(x), f(g)),

and then the function space itself will become a metric space. The metric D
on C(K,Y ) is called the uniform distance. If additionally Y is complete then
C(K,Y ) is a complete metric space with respect to the uniform distance.

Upper semicontinuity is used when we define fuzzy numbers.

Definition A.29. A function f : X → R (X being a metric space) is upper
semicontinuous at x0 if ∀ε > 0 there exists δ > 0 such that f(x) < f(x0) + ε
for d(x, y) < δ.
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Theorem A.30. A function is upper semicontinuous if and only if the sets

{x ∈ X |f(x) < α}, α ∈ R

are open, or equivalently if the sets

{x ∈ X |f(x) ≥ α}, α ∈ R

are closed.

Definition A.31. A function f : X → R (X being a metric space) is lower
semicontinuous at x0 if ∀ε > 0 there exists δ > 0 such that f(x) > f(x0)− ε
for d(x, y) < δ.

Theorem A.32. A function is lower semicontinuous if and only if the sets

{x ∈ X |f(x) ≤ α}, α ∈ R

are closed, or equivalently if the sets

{x ∈ X |f(x) > α}, α ∈ R

are open.

If a function is both upper and lower semicontinuous then it is continuous.
Left and right continuity appear in a characterization theorem.

Definition A.33. A function f : R→ R is right continuous at x0 if ∀ε > 0
there exists δ > 0 such that |f(x)− f(x0)| < ε for x0 < x < x0 + δ.

Definition A.34. A function f : R → R is left continuous at x0 if ∀ε > 0
there exists δ > 0 such that |f(x)− f(x0)| < ε for x0 − δ < x < x0.

If a function is both left and right continuous then it is continuous.

Definition A.35. Let (X, d1), (Y, d2) be metric spaces. A function f : X →
Y is of Lipschitz type if there exists L such that d2(f(x), f(y)) ≤ Ld1(x, y),
∀x, y ∈ X.

Definition A.36. Let (X, d) be a metric space. A function f : X → X is
a contraction if there exists 0 < q < 1 such that d(f(x), f(y)) ≤ qd(x, y),
∀x, y ∈ X.

Theorem A.37. (Banach fixed point theorem) Let (X, d) be a complete met-
ric space. Any contraction f : X → X has a unique fixed point, i.e., there
exists a unique x∗ ∈ X such that f(x∗) = x∗.

A.5 Modulus of Continuity

The modulus of continuity is often used in the text so, let us recall its defi-
nition and main properties.
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Definition A.38. Let (X, d) be a compact metric space and ([0,∞), | · |) the
metric space of positive reals endowed with the usual Euclidean distance. Let
f : X → [0,∞) be bounded. Then the function

ω (f, ·) : [0,∞)→ [0,∞),

defined by

ω (f, δ) =
∨
{|f (x)− f (y) |;x, y ∈ X, d(x, y) ≤ δ}

is called the modulus of continuity of f.

Theorem A.39. The following properties hold true
i)

|f (x)− f (y) | ≤ ω (f, d(x, y))

for any x, y ∈ X;
ii) ω (f, δ) is nondecreasing in δ;
iii) ω (f, 0) = 0;
iv)

ω (f, δ1 + δ2) ≤ ω (f, δ1) + ω (f, δ2)

for any δ1, δ2,∈ [0,∞);
v)

ω (f, nδ) ≤ nω (f, δ)

for any δ ∈ [0,∞) and n ∈ N;
vi)

ω (f, λδ) ≤ (λ+ 1) · ω (f, δ)

for any δ, λ ∈ [0,∞);
vii) f is continuous if and only if

lim
δ→0

ω (f, δ) = 0.

A.6 Normed Spaces

Definition A.40. Consider a linear space X. A norm is a function ‖·‖ :
X → [0,∞) having the following properties.

1) ‖x‖ ≥ 0, ∀x ∈ X and ‖x‖ = 0 if and only if x = 0.
2) ‖λx‖ = |λ| ‖x‖ , ∀λ ∈ R, x ∈ X.
3) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ , ∀x, y ∈ X.
In this case the space X is called a normed linear space or simply a normed

space.

The norm induces on X a metric structure with the distance being d(x, y) =
‖x− y‖ .
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Definition A.41. If a normed space is a complete metric space with the
induced metric, then it is called a Banach space.

We denote by C([a, b]) the space of continuous functions f : [a, b] → R with
the uniform norm ‖f‖ = supx∈[a,b] |f(x)|. Then C([a, b]) is a Banch space.

Also, let L(C([a, b])) be the space of linear operators T : C([a, b]) →
C([a, b]). Inequality between functions is considered point-wise, i.e., f ≤ g if
f(x) ≤ g(x) for any x ∈ [a, b]. In particular we say that f ≥ 0 if f(x) ≥ 0 for
every x ∈ [a, b].

An operator is said to be positive if T (f) ≥ 0 whenever f ≥ 0.
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