
Studies in Fuzziness and Soft Computing

Laécio Carvalho de Barros
Rodney Carlos Bassanezi
Weldon Alexander Lodwick  

A First Course 
in Fuzzy Logic, 
Fuzzy Dynamical 
Systems, and 
Biomathematics
Theory and Applications



Studies in Fuzziness and Soft Computing

Volume 347

Series editor

Janusz Kacprzyk, Polish Academy of Sciences, Warsaw, Poland
e-mail: kacprzyk@ibspan.waw.pl



About this Series

The series “Studies in Fuzziness and Soft Computing” contains publications on
various topics in the area of soft computing, which include fuzzy sets, rough sets,
neural networks, evolutionary computation, probabilistic and evidential reasoning,
multi-valued logic, and related fields. The publications within “Studies in
Fuzziness and Soft Computing” are primarily monographs and edited volumes.
They cover significant recent developments in the field, both of a foundational and
applicable character. An important feature of the series is its short publication time
and world-wide distribution. This permits a rapid and broad dissemination of
research results.

More information about this series at http://www.springer.com/series/2941

http://www.springer.com/series/2941


Laécio Carvalho de Barros
Rodney Carlos Bassanezi
Weldon Alexander Lodwick

A First Course in Fuzzy
Logic, Fuzzy Dynamical
Systems, and
Biomathematics
Theory and Applications

123



Laécio Carvalho de Barros
Departamento de Matemática Aplicada
Universidade Estadual de Campinas
São Paulo
Brazil

Rodney Carlos Bassanezi
Centro de Matemática e Computação
Universidade Federal do ABC
Santo André, São Paulo
Brazil

Weldon Alexander Lodwick
Department of Mathematical and Statistical
Sciences

University of Colorado Denver
Denver, CO
USA

ISSN 1434-9922 ISSN 1860-0808 (electronic)
Studies in Fuzziness and Soft Computing
ISBN 978-3-662-53322-2 ISBN 978-3-662-53324-6 (eBook)
DOI 10.1007/978-3-662-53324-6

Library of Congress Control Number: 2016948236

© Springer-Verlag Berlin Heidelberg 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer-Verlag GmbH Germany
The registered company address is: Heidelberger Platz 3, 14197 Berlin, Germany



The authors wish to thank all their students
who over the years graced our presence and
with whom we share a space in time devoted
to our mutual love of mathematics and the
pursuit of truth. In particular, we would like
to thank Estevão Esmi Laurenao for the
assistance in reading, editing early versions,
and with the layout of the text and figures.



Preface

This book is the result of courses we have given for more than a decade to upper
level undergraduate students and to graduate students majoring in mathematics,
applied mathematics, statistics, and engineering. In this book the reader will
encounter the basic concepts that span the initial notions of fuzzy sets to more
advanced notions of fuzzy differential equation and dynamical systems. We follow,
in our ordering of topics, a pedagogical unfolding beginning with classical theory
such as set theory and probability in such a way that these serve as an opening into
the fuzzy case. Moreover, the classical differential and integral calculus is the
beginning step from which fuzzy differential and integral analysis are developed.

There are various derivatives and integrals that exist and applied in the context of
fuzzy functions. These are clearly delineated and interpreted in our presentation of
fuzzy integral and differential equations.

Each of the major topics is accompanied with examples, worked exercises and
exercises to be completed. Many applications of our concept to real problems are
found throughout the book.

Even though this book may be, and has been, used as a textbook for various
courses, in it are sufficient ideas for beginning the research projects in fuzzy
mathematics. It is the hope of the authors that our joy, passion, and respect for all
who seriously the study of fuzzy mathematics, modeling, and applications, emerges
through the written page.

Laécio Carvalho de Barros
Rodney Carlos Bassanezi

Weldon Alexander Lodwick
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Chapter 1
Fuzzy Sets Theory and Uncertainty
in Mathematical Modeling

Man is the measure of all things: of things which are, that they
are, and of things which are not, that they are not.

(Protagoras – 5th Century BCE)

Abstract This chapter presents a brief discussion about uncertainty based on philo-
sophical principles, mainly from the point of view of the pre-Socratic philosophers.
Next, the notions of fuzzy sets and operations on fuzzy sets are presented. Lastly,
the concepts of alpha-level and the statement of the well-known Negoita-Ralescu
Representation Theorem, the representation of a fuzzy set by its alpha-levels, are
discussed.

1.1 Uncertainty in Modeling and Analysis

The fundamental entity of analysis for this book is set, a collection of objects. A
second fundamental entity for this book is variable. The variable represents what
one wishes to investigate by a mathematical modeling process that aims to quantify
it. In this context, the variable is a symbolic receptacle of what one wishes to know.
The quantification process involves a set of values which is ascribed a-priori. Thus,
when one talks about a variable being fuzzy, a real-number, a random number, and
so on, one is ascribing to the variable its attribution.

A set also has an existence or context. That is, when one is in the process of
creating a mathematical model, one ascribes to sets attributions associated with the
model or problem at hand. One speaks of a set being a classical set, a fuzzy set, a set
of distributions, a random sets, and so on. Given that models of existent problems or
conditions are far from ideal deterministic mathematical entities, we are interested
in dealing directly with associated inexactitudes and so ascribe to our fundamental
objects of modeling and analysis properties of determinism (exactness) and non-
determinism (inexactness).

This book is about processes in which uncertainty both in the input or data side
and in the relational structure is inherent to the problem at hand. Social and biological

© Springer-Verlag Berlin Heidelberg 2017
L.C. de Barros et al., A First Course in Fuzzy Logic, Fuzzy
Dynamical Systems, and Biomathematics, Studies in Fuzziness
and Soft Computing 347, DOI 10.1007/978-3-662-53324-6_1
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2 1 Fuzzy Sets Theory and Uncertainty in Mathematical Modeling

the modeling are characterized by such uncertainties. The mathematical theory on
which we focus to enable modeling with uncertainty occurring in biological and
social systems is fuzzy set theory first developed by L. Zadeh [1].

Uncertainty has long been a concern of researchers and philosophers alike,
throughout the ages as it is to us in this present book. The pursuit of the truth,
of what is, of what exists, which is one aspect of uncertainty if we characterize truth
or existence certainty, has been debated since the dawn of thinking. In ancient Greece
individuals and schools explicitly asked the question: “What exists? Is everything in
transformation or is there permanence?” These are two dimensions of thought and
can be considered completely separate issues and even contradictory issues.

The pre-Socratic philosophers tried to make statements summarizing their
thoughts about the Universe in an attempt to explain what is existent in the uni-
verse. In the words of Heraclitus of Ephesus (6th to 5th Century BCE), “panta hei”,
which means “everything flows, everything changes”. By way of illustration, con-
sider a situation in which a river is never the same, one cannot bathe in the same river
twice. Cratylus, his disciple, took Heraclitus’ thoughts to the extreme by saying that
we cannot bathe in the river even once, because if we assign an identity to things or
give them names, we are also giving stability to these things which, in his view, are
undergoing constant change.

The Eleatic school, in contrast to Heraclitus, questions the existence of motion
or change itself. According to Parmenides of Elea (6th to 5th Century BCE): “the
only thing that exists is the being - which is the same as thinking”. Zeno, his main
follower, denies that there is motion as this was understood at the time by giving his
famous paradox of Achilles and the turtle [2].

The Sophists interpret what Parmenides said as the impossibility of false rhetoric.
According to Protagoras (5th Century BCE): “Man is the measure of all things”.
There is no absolute truth or falsehood. In the Sophists’ view, humankind must seek
solutions in the practical. The criterion of true or false is related to the theoretical
and must therefore be replaced by (more practical) patterns related to the concepts
of better or worse. Rhetoric is the way to find such patterns.

Most of the pre-Socratic philosophers with the exception of Heraclitus, believed
there was something eternal and unchanging behind the coming-to-be (that which is
in the process of being, of becoming), that was the eternal source, the foundation of
all beings. According to Thales, it was water; in the opinion of Anaximenes, the air;
Pythagoras thought it was numbers; and, Democritus believed that this source lay
in the atoms and in the void. This eternal something which was unchangeable and
which held all things was called by the Greeks arche.

Certainty and uncertainty were widely discussed by Greek philosophers. The
Sophists (a term derived from sophistes, sages) were known to teach the art of rhetoric.
Protagoras, the most important Sophist along with Górgias, taught students how to
turn weaknesses of argument into strengths. Rhetoric, for the Sophists, is a posture
or attitude with respect to knowledge that has a total skepticism in relation to any
kind of absolute knowledge. This, no matter how things are, is because everything
is relative and also depends on who gives judgement about them. Górgias said that
rhetoric surpasses all other arts, being the best because it makes all things submit
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to spontaneity rather than to violence. As is well known, Socrates confronted the
Sophists of his day with the question: “What is?” That is, if everything is relative,
what exists?

Plato, a disciple of Socrates, initially shared the ideas of Heraclitus that every-
thing is changing, the flow of coming-to-be, everything was in process. However, if
everything was in motion then knowledge would not be possible. To avoid falling
back into skepticism, Plato thought of a “world of ideas”. Around this world, there
would be changes, and things would be eternal beyond the space-time dimension.
The so-called “sensory world”, which is the world as perceived by the five senses,
would then come into being. It would be true that the “world of ideas” would be
behind the coming-to-be of this “sensory world”. For Plato the most important thing
was not the final concept, but the path taken to reach it. The “world of ideas” is not
accessible by the senses but rather just by intuition, while intellectual dialectics is the
movement of asceticism in pursuit of the truth. Therefore, Plato promotes a synthesis
between Heraclitus and Parmenides.

On the other hand, for Aristotle, the world of ideas and essences is not contained
in things themselves. Universal knowledge is linked to its underlying logic (the
Logos, the same reason, the principle of order and study of the consequences) and
also the syllogism, which is the formal mechanism for deduction. Based on certain
general assumptions, knowledge must strictly follow an order using the concept
of the demonstrative syllogism. In short, and perhaps naively, we think that the
most important difference between Aristotle and the Sophists is the fact that, for
Aristotle, there is an eternal, an immutable, independent of human beings, while
the Sophists consider that there is no eternal and absolute truth, but rather just the
knowledge obtained from our senses. For Plato and Aristotle, respectively, dialectics
and syllogisms are to be used in the quest for the truth. The Sophists consider that
rhetoric, the art of persuasion, is convincing in relation to the search for the truth,
because truth does not exist as an absolute.

Understanding that subjectivity, imprecision, uncertainty, are inherent to certain
terms of language, Górgias denied the existence of absolute truth: even if absolute
truth existed, it would be incomprehensible to man, even if it were comprehensible to
one man, it would not be communicable to others. In order to stimulate our thought
about this aspect of the uncertainty of language, we will try to reach a compromise
between the positions of the Sophists, on the one hand, and Plato and Aristotle, on
the other, by means of a simple example.

It is common practice to propose a meeting with another person by saying some-
thing like “Let’s meet at four o’clock”. Well, the abstract concept of “four o’clock”,
indicating a measurement of time, shows a need to establish communication (in the
abstract) and also enable the holding of the event, our meeting. If this were not
the case, how should we then communicate our meeting? - A point for Plato. On
the other hand, if we take this at face value, the meeting would never take place as
our respective clocks would never reach four o’clock simultaneously, even if they
had been synchronized, as we could not get to the point marked in hours, minutes,
seconds, and millionths of seconds. A point for Górgias. Admitting that we often
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carry out our commitments at the appointed time and place, it looks like we equally
need abstract truths and practical standards of a sensible world.

We articulated the thoughts above in order to point out the difficulty of talking
about certainty or uncertainty and of fuzzy or determinism. If we look in a dictionary
for terms synonymous with uncertainty, we find, for example: subjectivity, inaccu-
racy, randomness, doubt, ambiguity, and unpredictably, among others. Historically,
researchers, from what we have noticed, have, in their quantitative treatment, made
distinctions between the different types of uncertainty. The uncertainty arising from
the randomness of events has been well documented, and now occupies a prominent
position in the gallery of mathematics, in probability theory. Quantum physics has
used stochastic theories, and a series of formulae now try to explain the “relation-
ships of uncertainty”. One of the most widely known of these is the Uncertainty
Principle devised by the physicist W. Heisenberg (1927), which relates the position
and the velocity (momentum) of a particle. In a nutshell, Heisenberg’s Uncertainty
Principle says that one cannot know simultaneous for certain the exact position and
speed (momentum) of a subatomic particle. One can know one or the other, but not
both.

Unlike randomness, some variables used in our daily lives, and which are perfectly
understood when transmitted linguistically between partners, have always remained
outside the scope of traditional mathematical treatment. This is the case of some lin-
guistic variables that have arisen from the need to distinguish between qualifications
through a grading system. To describe certain phenomena within the sensible world,
we have used degrees that represent qualities or partial truths, or “better standards” to
use Sophist language. This is the case, for example, with such concepts as tall, heavy
smoker, or infections. This kind ambiguity in language which is a type of uncertainty
in terms of its precise meaning since these terms are by their very nature, imprecise,
is from a linguistic point of view, a flexibility regarding what elements belong to
the category/set (tall, heavy smoker). Moreover, the main contribution that fuzzy
logic made and is making, is to the mathematical analysis of fuzzy sets, these vague,
flexible, open concepts. Fuzzy logic gives precision to imprecise (linguistic) terms
so that mathematical analysis of these flexible categories is meaningful. In language
usage, we could refer to the sets of tall people, smokers or infections. These are
typical examples of “sets” whose boundaries can be considered transitional, flexible,
vague, since they are defined through subjective or flexible properties or attributes.

Let’s consider the example of tall people. To make a formal mathematical repre-
sentation of this set, we could approach it in at least two different ways. The first is the
classical approach, establishing a height above which a person could be considered
tall. In this case, the set is well-defined. The second and less conventional approach
to this issue would be that of considering all people as being tall with greater or less
extent, that is, there are people who are more or less tall or not tall at all. This means
that the less tall the individual, the lower the degree of relevance to this class. We
can therefore say that all people belong to the set of tall people, with greater or less
extent. This latter approach is what we intend to discuss in our book. It was from
such notions, where the defining characteristics or properties of the set is flexible,
transitional, open, that fuzzy theory appeared. Fuzzy set theory has grown consider-
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ably since it was introduced in 1965, both theoretically and in diverse applications
especially in the field of technology - microchips.

The word “fuzzy” is of English origin and means (see Concise Oxford English
Dictionary, 11th edition) indistinct or vague. Other meanings include blurred, hav-
ing the nature or characteristic of fuzzy. Fuzzy set theory was introduced in 1965 by
Lotfi Asker Zadeh [1] (an electrical engineer and researcher in mathematics, com-
puter science, artificial intelligence), who initially intended to impart a mathematical
treatment on certain subjective terms of language, such as “about” and “around”,
among others. This would be the first step in working towards programming and
storing concepts that are vague on computers, making it possible to perform calcu-
lations on vague or flexible entities, as do human beings. For example, we are all
unanimous in agreeing that the doubling of a quantity “around 3” results in another
“around 6 ”.

The formal mathematical representation of a fuzzy set is based on the fact that
any classic subset can be characterized by a function, its characteristic function, as
follows.

Definition 1.1 Let U be a non-empty set and A a subset of U . The characteristic
function of A is given by:

χA(x) =
{

1 if x ∈ A

0 if x /∈ A

for all x ∈ U.

In this context, a classical subset A of U can uniquely be associated with its
characteristic function. So, in the classical case, we may opt for using the language
from either “set theory” or “function theory”, depending on the problem at hand.

Note that the characteristic function χA : U → {0, 1} of the subset A shows
which elements of the universal set U are also elements of A, where χA(x) = 1
meaning that the element x ∈ A, while χA(x) = 0 means that x is not element
of A. However, there are cases where an element is partially in a set which means
we cannot always say that an element completely belongs to a given set or not. For
example, consider the subset of real numbers “near 2”:

A = {x ∈ R : x is near 2}.

Question. Does the number 7 and the number 2.001 belong to A? The answer to
this question is not no/yes (so is uncertain from this point of view) because we do
not know to what extent we can objectively say when a number is near 2. The only
reasonable information in this case is that 2.001 is nearer 2 than 7.

We now start the mathematical formalization of fuzzy set theory that shall be
addressed in this text, starting with the concept of fuzzy subsets.
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1.2 Fuzzy Subset

Allowing leeway in the image or range set of the characteristic function of a set from
the Boolean set {0, 1} to the interval [0, 1], Zadeh suggested the formalization of
the mathematics behind vague concepts, such as the case of “near 2,” using fuzzy
subsets.

Definition 1.2 Let U be a (classic universal) set. A fuzzy subset F of U is defined
by a function ϕF , called the membership function (of F)

ϕF : U −→ [0, 1].

The subscript F on ϕ identifies the subset (F in this case) and the function ϕF

is the analogue of the characteristic function of the classical subset as defined in
Definition 1.1 above. The value of ϕF (x) ∈ [0, 1] indicates the degree to which the
element x of U belongs to the fuzzy set F ; ϕF (x) = 0 and ϕF (x) = 1, respectively,
mean x for sure does not belong to fuzzy subset F and x for sure belongs to the fuzzy
subset F . From a formal point of view, the definition of a fuzzy subset is obtained
simply by increasing the range of the characteristic function from {0, 1} to the whole
interval [0, 1]. We can therefore say that a classical set is a special case of a fuzzy set
when the range of the membership function ϕF is restricted to {0, 1} ⊆ [0, 1], that
is, the membership function ϕF retracts to the characteristic function χF . In fuzzy
language, a subset in the classic sense is usually called a crisp subset.

A fuzzy subset F of U can be seen as a standard (classic) subset of the Cartesian
product U × [0, 1]. Moreover, we can identify a fuzzy subset F of U with the set of
ordered pairs (i.e., the graph of ϕF ):

{(x,ϕF (x)) : with x ∈ U }.

The classic subset of U defined below

supp F = {x ∈ U : ϕF (x) > 0}

is called the support of F and has a fundamental role in the interrelation between
classical and fuzzy set theory. Interestingly, unlike fuzzy subsets, a support is a crisp
set. Figure 1.1 illustrates this fact.

It is common to denote a fuzzy subset, say F , in fuzzy set literature, not by its
membership function ϕF but simply by the letter F . In this text we have decided
to distinguish between F and ϕF . In classical set theory, whenever we refer to a
particular set A we are actually considering a subset of a universal set U but for
the sake of simplicity or convenience, we say set A even though set A is actually a
subset. The fuzzy set literature also uses of these terms. This text will use both terms
interchangeably.

We now present some examples of fuzzy subsets.
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Fig. 1.1 Illustration of subsets fuzzy and crisp

Example 1.1 (Even numbers) Consider the set of natural even numbers:

E = {n ∈ N : n is even}.

This set E has characteristic function which assigns to any natural number n the
value χE (n) = 1 if n is even and χE (n) = 0 if n odd. This means that the set
of even numbers is a particular fuzzy set of the set of natural numbers N, since
χE (n) ∈ [0, 1], in particular

χE (n) = ϕE (n) =
{

1 if n is even
0 otherwise.

In this case, it was possible to determine all the elements of E , in the domain of the
universal set N of natural numbers, because every natural number is either even or
odd. However, this is not the case for other sets with imprecise boundaries.

Example 1.2 (Numbers near 2) Consider the following subset F of the real num-
bers near of 2:

F = {x ∈ R : x is near 2}.

We can define the function ϕF : R −→ [0, 1], which associates each real value
x proximity to point 2 using the expression

ϕF (x) =
{
(1 − |x − 2|) if 1 ≤ x ≤ 3

0 if x /∈ [1, 3]
, x ∈ R.

In this case the fuzzy subset F of points near 2, characterized in ϕF , is such that
ϕF (2.001) = 0.999 and ϕF (7) = 0. We say that x = 2.001 is near to 2 with
proximity degree 0.999; x = 7 is not near 2.
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On the other hand, in the example above, one may suggest a different membership
function to show proximity to the value 2. For example, if the closeness proximity
function were defined by

νF (x) = exp
[− (x − 2)2] ,

with x ∈ R, then the elements of the fuzzy set F , characterized by the function νF ,
as above, have different degrees of belonging from ϕF : νF (2.001) = 0.99999 and
νF (7) = 1.388 × 10−11.

We can see that the notion of proximity is subjective and also depends on the
membership function which can be expressed in countless different ways, depending
on how we wish to evaluate the idea of a “nearness”. Note that we could also define the
concept “numbers near 2” by a classic set with membership function ϕFε

, considering,
for example, a sufficiently small value of ε and the characteristic function for the
interval (2 − ε, 2 + ε), by following expression:

ϕεF (x) =
{

1 if |x − 2| < ε

0 if |x − 2| ≥ ε.

Note that being close to 2 means being within a preset neighborhood of 2. The
element of subjectivity lies in the choice of the radius of the neighborhood consid-
ered.In this specific case, all the values within the neighborhood are close to 2 with
the same degree of belonging, which is 1.

Example 1.3 (Small natural numbers) Consider the fuzzy subset F containing the
small natural numbers,

F = {n ∈ N : n is small}.

Does the number 0 (zero) belong to this set? What about the number 1.000? In
the spirit of fuzzy set theory, it could be said that both do indeed belong to F , but
with different degrees depending on the membership function ϕF with respect to the
fuzzy set F . The membership function associated with F must be built in a way that
is consistent with the term “small”, the context of the problem and the application
(mathematical model). One possibility for the membership function of F would be

ϕF (n) = 1

n + 1
, n ∈ N.

Therefore, we could say that the number 0 (zero) belongs to F with a degree of
belonging equal to ϕF (0) = 1, while 999 also belongs to F , albeit with a degree of
belonging equal to ϕF (999) = 0.001.

It is clear that in this case the choice of the function ϕF was made in a some-
what arbitrary fashion, only taking into account the meaning of “small”. To make a
mathematical model of the “small natural number” notion, and thus to link F to a
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membership function, we could, for example, choose any monotonically decreasing
sequence, starting at 1 (one) and converging to 0 (zero) as

{ϕn}n∈N; with ϕ0 = 1.

For example,

ϕF (n) = e−n;
ϕF (n) = 1

n2 + 1
;

ϕF (n) = 1

ln (n + e)
.

The function to be selected to represent the fuzzy set considered depends on
several factors related to the context of the problem under study. From the standpoint
of strict fuzzy set theory, any of the previous membership functions can represent the
subjective concept in question. However, what should indeed be noted is that each
of the above functions produces a different fuzzy set, according to Definition 1.2.

The examples we have presented above possess a universal set U for each fuzzy
set that is clearly articulated. However, this is not always the case. In most cases
of interest for mathematical modeling, the universal set needs to be delineated and
in most instances the support set as well. Let’s illustrate this point with a few more
examples.

Example 1.4 (Fuzzy set of young people, Y) Consider the inhabitants of a specific
city. Each individual in this population can be associated to a real number corre-
sponding to their age. Consider the whole universe as the ages within the interval
U = [0, 120] where x ∈ U is interpreted as the age of a given individual. A fuzzy
subset Y , of young people of this city, could be characterized by the following two
membership functions for young, Y1,Y2 according different experts:

ϕY1(x) =

⎧⎪⎨
⎪⎩

1 if x ≤ 10
80 − x

70
if 10 < x ≤ 80

0 if x > 80

,

ϕY2(x) =
⎧⎨
⎩

(
40 − x

40

)2

if 0 ≤ x ≤ 40

0 if 40 < x ≤ 120
.

In the first case Y1, the support is the interval [0, 80] and in the second case Y2, the
support is [0, 40]. The choice of which function to be used to represent the concept of
young people relies heavily on the context or analysis. Undoubtedly, about to retire
professors would choose Y1. Note that the choice of U = [0, 120] as the interval
for the universal set is linked to the fact that we have chosen to show how much
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an individual is young and our knowledge that statistically in the world, no one has
lived beyond 120. If another characteristic were to be adopted, such as the number
of grey hairs, to indicate the degree of youth, the universe would be different as well
as the support.

The next example shows a bit more about fuzzy set theory in the mathematical
modeling of “fuzzy concepts”. In this example, we shall present a mathematical
modeling treatment that allows the quantification and exploration of a theme of
important social concern, poverty. This concept could be modeled based on a variety
of appropriate variables, calorie intake, consumption of vitamins, iron intake, the
volume of waste produced, or even the income of every individual, among many other
features that are possible. However, we have chosen to represent poverty assuming
that the only variable is income level. A possible mathematical model for poverty is
shown below.

Example 1.5 (Fuzzy subset of the poor) Consider that the concept of poor is based
on the income level r . Hence, it is reasonable to assume that when you lower the
income level, you raise the level of poverty of the individual. This means that the
fuzzy subset Ak , of the poor in a given location, can be given by the following
membership function:

ϕAk (r) =
⎧⎨
⎩

{
1 −

[(
r
r0

)2
]}k

if r ≤ r0

0 if r > r0

.

The parameter k indicates a characteristic of the group we are considering. This
parameter might indicate such things as the environment in which the individual
people are situated. The parameter value, r0, is the minimum income level believed
to be required to be out of poverty.

As illustrated in Fig. 1.2 above, we have that if k1 ≥ k2, then ϕAk1
(r) ≤ ϕAk2

(r)
which means that an individual group in k1, with an income level r̄ , would be poorer
for this income level were the individual in group k2. We can also say that in terms of
income, it is easier to live in the places where k is greatest. So, intuitively, k shows

Fig. 1.2 The membership
function of the fuzzy subset
of “poor”

( )r

( )rAk1

ϕ

r 0r

Ak2

ϕ

r
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whether the environment where the group lives is less or more favorable to life. The
parameter k may give an idea of the degree of saturation that a group has on the
environment and, therefore, can be considered as an environmental parameter.

1.3 Operations with Fuzzy Subsets

This section presents the typical operations on fuzzy sets such as union, intersection
and complementation. Each one of these operations is obtained from membership
functions. Let A and B be two fuzzy subsets of U , with their respective membership
functions ϕA and ϕB . We say that A is a fuzzy subset of B, and write A ⊂ B if
ϕA(x) ≤ ϕB(x) for all x ∈ U . Remember that the membership function of the
empty set (∅) is given by ϕ∅(x) = 0, while the universal set U has membership
function ϕU (x) = 1 for all x ∈ U . Hence we can say that ∅ ⊂ A and A ⊂ U for all
A.

Definition 1.3 (Union) The union between A and B is the fuzzy subset of U whose
membership function is given by:

ϕA∪B (x) = max{ϕA (x) ,ϕB (x)}, x ∈ U.

We note that this definition is an extension of the classic case. In fact, when A and
B are classics subsets of U have:

max{χA (x) ,χB (x)} =
{

1 if x ∈ A or x ∈ B

0 if x /∈ A and x /∈ B

=
{

1 if x ∈ A ∪ B

0 if x /∈ A ∪ B

= χA∪B (x) , x ∈ U.

Definition 1.4 (Intersection) The intersection between A and B is the fuzzy subset
of U whose membership function is given by the following equation:

ϕA∩B (x) = min{ϕA (x) ,ϕB (x)}, x ∈ U.

Definition 1.5 (Complement) The complement of A is the fuzzy subset A
′

in U
whose membership function is given by:

ϕA′ (x) = 1 − ϕA (x) , x ∈ U.

Exercise 1.1 Suppose that A and B are classic subsets of U .

1. Check that
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min{χA (x) ,χB (x)} =
{

1 if x ∈ A ∩ B

0 if x /∈ A ∩ B.

2. Check that χA∩B (x) = χA (x)χB (x). Note that this identity is does not hold in
cases where A and B are fuzzy subsets.

3. Check that χA∩A′ (x) = 0
(

A ∩ A
′ = ∅)

and that χA∪A′ (x) = 1
(

A ∪ A
′ = U

)
for all x ∈ U.

Unlike the classical situation, in the fuzzy context (see Fig. 1.3) we can have:

• ϕA∩A′ (x) �= 0 = ϕ∅ (x) which means that we may not have
A ∩ A

′ = ∅;
• ϕA∪A′ (x) �= 1 = ϕU (x) which means that we may not have

A ∪ A
′ = U.

In the following example, we intend to exploit the special features presented by
the concept of the complement of a fuzzy set.

Example 1.6 (Fuzzy set of the elderly) The fuzzy set O of the elderly (the old) should
reflect a situation opposite of young people given above, when considering the ages
that belong to O . While youth membership functions should decrease with age, the
elderly should be increase with age. One possibility for the membership function of
O is:

ϕO (x) = 1 − ϕY (x) ,

where ϕY is the membership function of the fuzzy subset “young”. Therefore, the
fuzzy set O is the complement of fuzzy Y . In this example, if we take the set of
young people Y1 as having the membership function mentioned in the first part of
Example 1.4, then:

’

A

U

B

U

BA ∩

U

B∪A

U

A

U
(c)(b)(a)

Fig. 1.3 Operations with fuzzy subsets: a union, b intersection, and c complement



1.3 Operations with Fuzzy Subsets 13

Fig. 1.4 Fuzzy subsets of
young and elderly
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ϕ
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1

ϕO(x) = 1 − ϕY1 (x) =

⎧⎪⎪⎨
⎪⎪⎩

0 if x ≤ 10
x − 10

70
if 10 < x ≤ 80

1 if x > 80

.

A graphical representation for O and Y1 is shown in Fig. 1.4.
Note that this operation, complement, exchanges degrees of belonging for the

fuzzy subsets of O and Y1. This property characterizes the fuzzy complement, which
means that while ϕA (x) represents the degree of compatibility of x with the linguistic
concept in question, ϕA′ (x) shows the incompatibility of x with the same concept.

One consequence of the imprecision of fuzzy sets is that there is a certain overlap
of a fuzzy set with its complement. In Example 1.6, an individual who belongs to
the of fuzzy set young with grade 0.8, also belongs to its complement O with grade
0.2. Also note that it is quite possible for a member to belong to one set and also
its complementary set with the same degree of belonging (in Fig. 1.4 this value is
45), showing that the more doubt we have about an element belonging to the set, the
nearer to 0.5 is the degree of belong to this set. That is, the closer to a 0.5 membership
value an element is, the greater the doubt of whether or not this element belongs to
the set. The degree 0.5 is the maximum doubt (greatest entropy). This is a major
difference from classical set theory in which an element either belongs to a set or to
its complement, these being mutually exclusive, and there is absolutely no doubt.

Here it must also be noted that we have defined young and elderly (old), which
are admittedly linguistic terms of opposite meanings, through the use of fuzzy sets
that are not necessarily complementary. For example, we could have used ϕY1 :

ϕY2 (x) =

⎧⎪⎨
⎪⎩

(
40 − x

40

)2

if 0 ≤ x ≤ 40

0 if 40 < x ≤ 120,
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in which case we could have obtained

ϕO(x) =

⎧⎪⎨
⎪⎩

(
x − 40

80

)2

if 40 < x ≤ 120

0 if x ≤ 40.

Exercise 1.2 Assume that the fuzzy set for young people, Y , is given by

ϕY (x) =

⎧⎪⎨
⎪⎩

[
1 −

( x

120

)2
]4

if x ∈ [10, 120]

1 if x /∈ [10, 120]
.

1. Define a fuzzy set for the elderly.
2. Determine the age of an individual considered of middle age, which means grade

0.5, both in terms of youth and of elderly (old) age, assuming that the fuzzy set
of the elderly is the complement to that of the young.

3. Draw the graph of the young and elderly (old) for part 2, and then compare it with
Example 1.6.

We will next extend the concept to the complement for A ⊆ B where A is a
fuzzy subset of fuzzy set B and both in relation to the universe U . In this case, the
complement of A in relation to B is denoted by the fuzzy set A

′
B which has the

following membership function:

ϕA
′
B
(x) = ϕB (x) − ϕA (x) , x ∈ U.

Note also that the complement of A in relation to U is a particular case of the
complement of A in B since ϕU (x) = 1.

In the following example, we shall try to further exploit the concept of the ideas
of complements with fuzzy subsets as defined in Example 1.5.

Example 1.7 (Fuzzy set of the poor revisited) If the environment in which a group
lives suffers any kind of degradation, from what we saw in Example 1.5, this results
in a decreased environmental parameter, declining from k1 to a lower value k2, so
that the individual having income level r in k1 has degree of poverty ϕAk1

(r) less
than that of another ϕAk2

(r) with the same income r in k2. That is,

ϕAk1
(r) < ϕAk2

(r) ⇔ Ak1 ⊂ Ak2 .

Such a change could lead to the poverty level of a pauper, represented by Ak2 . The
fuzzy complement of Ak1 in Ak2 is the fuzzy subset given by

(
A

′)
Ak2

.



1.3 Operations with Fuzzy Subsets 15

This set is not empty, and its membership function is given by

ϕ(A′)Ak2

= ϕAk2
(r) − ϕAk1

(r) , r ∈ U.

A recompense to the group that has suffered such a fall should be that of the same
status of poverty as before. That is, given an income of r1, the group should have an
income of r2 (after the fall) which means that

ϕAk2
(r2) − ϕAk1

(r1) = 0.

Therefore r2 − r1 > 0 and the recompense should be r2 − r1 (see Fig. 1.5).
We shall now make some brief comments and also look at the consequences of

the major operations between fuzzy sets.
If A and B are sets in the classical sense, then the characteristic functions of their

operations also satisfy the definitions defined for the fuzzy case, showing coher-
ence between such concepts. For example, if A is a (classic) subset of U , then the
characteristic function χA′ (x) of its complement is such that

{
χA′ (x) = 0 if χA (x) = 1 ⇔ x ∈ A;
χA′ (x) = 1 if χA (x) = 0 ⇔ x /∈ A.

In this case, either x ∈ A or x /∈ A,while the theory of fuzzy sets does not necessarily
have this dichotomy. As seen in the Example 1.6, it is not always true that A∩ A

′ = ∅
for fuzzy sets, and it may not even true that A ∪ A

′ = U. The following example
reinforces these facts.

Example 1.8 (Fuzzy sets of fever and/or myalgia, muscular rheumatism) Let’s sup-
pose that the universal set U is the set of all patients within a clinic, identified by
numbers 1, 2, 3, 4 and 5. Let A and B be fuzzy subsets that represent patients with
fever and myalgia, respectively. Table 1.1 shows the operations union, intersection
and complement.

2r1r r0

r

1

ϕAk1
ϕAk2

ϕAk1
(r1) = ϕAk2

(r2)

Fig. 1.5 Recompense for changing in environment
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Table 1.1 Illustration of operations between fuzzy subsets

Patient Fever: A Myalgia: B A ∪ B A ∩ B A′ A ∩ A′ A ∪ A′

1 0.7 0.6 0.7 0.6 0.3 0.3 0.7

2 1.0 1.0 1.0 1.0 0.0 0.0 1.0

3 0.4 0.2 0.4 0.2 0.6 0.4 0.6

4 0.5 0.5 0.5 0.5 0.5 0.5 0.5

5 1.0 0.2 1.0 0.2 0.0 0.0 1.0

The values in all columns except the first, show the degree to which each patient
belongs to the fuzzy sets A, B, A∪ B, A∩ B, A′, A∩ A′, A∪ A′; respectively, where
A and B are hypothetical data. In the column A ∩ A′, the value of 0.3 shows that
patient number 1 is both in the first group of patients with a fever as well as in the
group with non-fever. As we have seen, this is a fact that would not be possible
in classical set theory in which there is the exclusion law by which any set and its
complement are mutually exclusive, A ∩ A′ = ∅.

The fuzzy subsets A and B of U are equal if their membership functions are
identical, that is, if ϕA (x) = ϕB (x) for all x ∈ U . Below is listed the main properties
of the operations as defined in this section.

Proposition 1.1 The operations between fuzzy subsets satisfying the following prop-
erties:

• A ∪ B = B ∪ A,
• A ∩ B = B ∩ A,
• A ∪ (B ∪ C) = (A ∪ B) ∪ C,
• A ∩ (B ∩ C) = (A ∩ B) ∩ C,
• A ∪ A = A,
• A ∩ A = A,
• A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C),
• A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C),
• A ∩ ∅ = ∅ and A ∪ ∅ = A,
• A ∩ U = A and A ∪ U = U,
• (A ∪ B)

′ = A′ ∩ B ′ and (A ∩ B)
′ = A′ ∪ B ′ (

DeMorgan′s Law
)
.

Proof The proof of each property is an immediate application of the properties
between maximum and minimum functions, which means

⎧⎪⎨
⎪⎩

max [ϕ (x) ,ψ (x)] = 1

2
[ϕ (x) + ψ (x) + |ϕ (x) − ψ (x) |]

min [ϕ (x) ,ψ (x)] = 1

2
[ϕ (x) + ψ (x) − |ϕ (x) − ψ (x) |] .

where ϕ and ψ are functions with image inR.We will only prove one of De Morgan’s
laws, because the other properties have similar proofs. If we consider that ϕA is the
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membership function associated with the subset A, then we have:

ϕA′∪B ′ (u) = max [1 − ϕA (u) , 1 − ϕB (u)]

= 1

2
[(1 − ϕA (u)) + (1 − ϕB (u)) + |ϕA (u) − ϕB (u) |]

= 1

2
[2 − (ϕA (u) + ϕB (u)) − |ϕA (u) − ϕB (u) |]

= 1 − 1

2
[ϕA (u) + ϕB (u) − |ϕA (u) − ϕB (u) |]

= 1 − min [ϕA (u) ,ϕB (u)] = 1 − ϕA∩B (u) = ϕ(A∩B)′ (u) ,

for all u ∈ U. �

Exercise 1.3 Consider the fuzzy subset of tall people (in meters) in Brazil as defined
by,

ϕA (x) =

⎧⎪⎪⎨
⎪⎪⎩

0 if 0 ≤ x ≤ 1.4
1

0.4
(x − 1.4) if 1.4 < x ≤ 1.8

1 if x > 1.8

.

And people of average height x (in meters) as follows,

ϕB (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if x ≤ 1.4
1

0.2
(x − 1.4) if 1.4 < x ≤ 1.6

1 if 1.6 < x ≤ 1.7
1

0.1
(1.8 − x) if 1.7 < x ≤ 1.8

0 if x > 1.8

.

Obtain (A ∪ B)′ and A′ ∪ B ′ and give an interpretation for such operations.

To end this chapter, we look, in the next section, at a special class of crisp sets
which are closely related to each fuzzy subset. These crisp sets can be interpreted as
representing the level of vagueness represented by each fuzzy set.

1.4 Concept of α-Level

A fuzzy subset A of U is “formed” by elements of U with an order (hierarchy) that
is given by the membership degrees. An element x of U will be in an “order class”
α if its degree of belonging (its membership value) is at least the threshold level
α ∈ [0, 1] that defines that class. The classic set of such elements is called an α-level
of A, denoted [A]α .
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Definition 1.6 (α-level) Let A be a fuzzy subset of U and α ∈ [0, 1] . The α-level
of the subset A is classical set [A]α of U defined by

[A]α = {x ∈ U : ϕA (x) ≥ α} for 0 < α ≤ 1.

When U is a topological space, the zero α-level of the fuzzy subset A is defined as
the smallest closed subset (in the classic sense) in U containing the support set of A.
In mathematical terms, [A]0 is the closure of the support of A and is also denoted
by suppA. This consideration becomes essential in theoretical situations appearing
in this text. Note also that the set {x ∈ U : ϕA (x) ≥ 0} = U is not necessarily equal
to [A]0 = suppA.

Example 1.9 Let U = R be the set of real numbers and let A be a fuzzy subset of R
with the following function membership function:

ϕA (x) =

⎧⎪⎨
⎪⎩

x − 1 if 1 ≤ x ≤ 2

3 − x if 2 < x < 3

0 if x /∈ [1, 3)

.

In this case we have:

[A]α = [α + 1, 3 − α] for 0 < α ≤ 1 and [A]0 = ]1, 3[ = [1, 3] (Fig. 1.6).

Example 1.10 Let U = [0, 1] and A be the fuzzy subset of U whose membership
function is given by ϕA (x) = 4

(
x − x2

)
. Then,

[A]α =
[

1

2

(
1 − √

1 − α
)
,

1

2

(
1 + √

1 − α
)]

for all α ∈ [0, 1] (Fig. 1.7).

We observed that if x is an element of [A]α, then x belongs to the fuzzy set A with
at least membership function degree α.We have also that if α ≤ β then [A]β ⊆ [A]α .

The following theorem shows that a fuzzy set is uniquely determined by its α-cuts.

Fig. 1.6 α-level of the fuzzy
subset A

[A ]α

ϕA
1

α

31 U
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Fig. 1.7 α-level of the fuzzy
subset A

[A ]α

ϕA
1

α

1
U

Theorem 1.2 Let A and B be fuzzy subset of U.A necessary and sufficient condition
for A = B to hold is that [A]α = [B]α , for all α ∈ [0, 1] .

Proof Of course A = B =⇒ [A]α = [B]α for all α ∈ [0, 1] . Let’s now suppose
that [A]α = [B]α for all α ∈ [0, 1] . If A �= B then there is an x ∈ U such that
ϕA (x) �= ϕB (x) . Therefore we have ϕA (x) < ϕB (x) or that, conversely, ϕA (x) >
ϕB (x) . If we imagine that ϕA (x) > ϕB (x) , then we come to the conclusion that
x ∈ [A]ϕA(x) and x /∈ [B]ϕA(x) and therefore [A]ϕA(x) �= [B]ϕA(x) , which contradicts
the hypothesis that [A]α = [B]α for all α ∈ [0, 1] . Similar contradiction is reached
if we assume that ϕA (x) < ϕB (x) . �

One consequence of this theorem is that we now have a relationship between the
membership function of a fuzzy subset and the characteristic functions of its α-levels.

Corollary 1.3 The membership function ϕA of a fuzzy set A can be expressed in
terms of the characteristic function of their α-levels, as follows:

ϕA (x) = sup{min
[
α,χ[A]α (x)

]}, where χ[A]α (x) =
{

1 if x ∈ [A]α

0 if x /∈ [A]α
.

The following theorem is of extreme importance in the study of fuzzy set theory
and shows a condition which is sufficient for a family of subsets, in the classical
sense, of U can be formed by different α-levels of a fuzzy subset.

Theorem 1.4 (Negoita and Ralescu’s Theorem of Representation [3]) Let Aα,α ∈
[0, 1], be a family of classical subsets of U, such that the following conditions hold:

1.
⋃

Aα ⊆ A0 with α ∈ [0, 1];
2. Aα ⊆ Aβ if β ≤ α;

3. Aα =
⋂
k≥0

Aαk if αk converges to α with αk ≤ α.

Under these conditions, there is one single fuzzy subset of A in U whose α-levels
are exactly the classic subsets Aα, in other words,

[A]α = Aα.
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The idea of the proof is to construct, for each x ∈ U , the membership function of
A, as following,

ϕA (x) = sup{α ∈ [0, 1] : x ∈ Aα}.

For a complete proof see Negoita and Ralescu [3].
Using the definition of α-levels, we have the following properties:

1. [A ∪ B]α = [A]α ∪ [B]α ,
2. [A ∩ B]α = [A]α ∩ [B]α .

On the other hand, since in general [A]α∪[
A′]α �= U,we have that

[
A′]α �= ([A]α)′ .

Definition 1.7 A fuzzy set is said to be normal when all its α-levels are not empty
or in other words, if [A]1 �= ∅.

Recalling that the support of the fuzzy subset A is the classic set

supp A = {x ∈ U : ϕA (x) > 0},

it is common to describe A using the following notation, when it has a denumerable
number of elements in its support, using the following notation,

A = ϕA (x1)

x1
+ ϕA (x2)

x2
+ .... =

∞∑
i=1

ϕA (xi )

xi
,

and

A = ϕA (x1)

x1
+ ϕA (x2)

x2
+ .... + ϕA (xn)

xn
=

n∑
i=1

ϕA (xi )

xi
.

when A has finite discrete support. That is, supp A = {x1, x2, . . . , xn}. It is worth

noting that the notation
ϕA (xi )

xi
, does not indicate division. It’s just a way to visualize

an element xi and its respective degree of belonging, its membership value, ϕA (xi ) .

Also here the “+” symbol in the notation does not mean addition and
∑

does not
mean summation. It’s just a way to connect the elements of U that are in A with their
respective degrees.

Example 1.11 (Finite fuzzy set) Let A be the fuzzy set of real numbers represented
by

A =
n∑

i=1

ϕA (xi )

xi
= 0.1

1
+ 0.2

2
+ 0.25

3
+ 0.7

5
+ 0.9

8
+ 1.0

10
.

So,

A′ =
n∑

i=1

[
1 − ϕA (xi )

xi

]
= 0.9

1
+ 0.8

2
+ 0.75

3
+ 0.3

5
+ 0.1

8
+ 0.0

10
.
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In this case we have for example, 0.15-level of A and its complement A′ are respec-
tively, [A]0.15 = {2, 3, 5, 8, 10} and

[
A′]0.15 = {1, 2, 3, 5}.

Example 1.12 (Fuzzy set of wolves) Let A be a pack of n wolves. The degree of
predation for each wolf may be associated with their age x ∈]0, 15], assuming that
the maximum age of a wolf is 15 years. The finite number of wolves means that one
has only a finite number of wolves for each wolf ages. We will denote the set of these
ages, as A = {x1, x2, . . . , xn} and let us define the degree of predation of a wolf
as ϕP (x), considering that many young wolves prey less than adults, and that old
wolves have reduced their ability for predation. Hence, the fuzzy subset of predators
in the pack can be given by the membership function

ϕP (x) =

⎧⎪⎨
⎪⎩

0.5 if 0 ≤ x ≤ 2

1.0 if 2 < x < 10

0.2 (15 − x) if 10 ≤ x ≤ 15

.

With the above notation, the fuzzy finite subset P is conveniently denoted by

P = ϕP (x1)

x1
+ ϕP (x2)

x2
+ · · · + ϕP (xn)

xn
,

meaning that ϕP
(
x j

)
is the predation capacity of an individual of age x j .

1.5 Summary

This chapter has discussed the differences of fuzzy set and uncertainty along with a
brief philosophical discussion of the difficulties associated with these concepts. Our
main interest is in fuzzy sets and their use in mathematical models of fuzzy logic and
fuzzy dynamical systems. Secondly, we defined and illustrated the basic operations
of fuzzy sets. More will be introduced in the context of the topics that follow. Lastly,
the classical sets, called α-levels, were discussed since they are central to the analysis
in the ensuing chapters.

References

1. L.A. Zadeh, Fuzzy sets. Inf. Control 8, 338–353 (1965)
2. B.J. Caraça, Conceitos fundamentais da matemática, 4th edn. (Gradiva Publicações Ltda, Lisboa,

2002)
3. C.V. Negoita, D.A. Ralescu, Applications of Fuzzy Sets to Systems Analysis (Wiley, New York,

1975)



Chapter 2
The Extension Principle of Zadeh
and Fuzzy Numbers

Everything has numbers and nothing can be understand without
numbers.

(Philolaus, Pythagorean-C.470 - C.385 BCE)

Abstract This chapter presents the Extension Principle of Zadeh, and as the name
suggests, it is a method used to extend to fuzzy set theory the typical operations of
classical set theory. It gives the framework to calculate the membership degree of
elements of a fuzzy set and functions of fuzzy sets, which are the result of operations.
Also, in the context of fuzzy sets, the concepts of fuzzy number and fuzzy number
arithmetic are introduced.

2.1 Zadeh’s Extension Principle

There is a need to extend concepts from the classical set theory to fuzzy set theory.
The extension method proposed by Zadeh, known also as the Extension Principle, is
one of the basic ideas that induces the extension of nonfuzzy mathematical concepts
into fuzzy ones.

The Zadeh’s Extension Principle for a function f : X −→ Z indicates how the
image of a fuzzy subset A of X should be computed when the function f is applied.
It is expected that this image will be a fuzzy subset of Z .

Definition 2.1 (Zadeh’s Extension Principle) Let f be a function such that f :
X −→ Z and let A be a fuzzy subset of X . Zadeh’s extension of f is the function
f̂ which applied to A gives us the fuzzy subset f̂ (A) of Z with the membership
function given by

ϕ f̂ (A)(z) =
{

sup
f −1(z)

ϕA(x) if f −1(z) �= ∅
0 if f −1(z) = ∅

, (2.1)

where f −1(z) = {x; f (x) = z} is the preimage of z.
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We can observe that if f is a bijective function, then

{x : f (x) = z} = {
f −1(z)

}
,

where f −1 means the inverse function of f . Thus, if A is a fuzzy subset of X , with
the membership function ϕA, and if f is bijective, then the membership function of
f̂ (A) is given as follows

ϕ f̂ (A)(z) = sup
{x : f (x)=z}

ϕA(x) = sup
{x∈ f −1(z)}

ϕA(x) = ϕA( f −1(z)). (2.2)

The graph of how to construct the extension f̂ of f is illustrated in Fig. 2.1, where
we have used a bijective function f . We observe that if f is injective, then z = f (x)

belongs to the fuzzy subset f̂ (A) with the same degree α as x belongs to A. This
may not happen if f is not injective.

Let f : X → Z be an injective function and A a countable (or finite) fuzzy subset
of X given by

A =
∞∑

i=1

ϕA(xi )�xi .

Then the extension principle ensures that f̂ (A) is a fuzzy subset of Z given by

f̂ (A) = f̂

( ∞∑
i=1

ϕA(xi )�xi

)
=

∞∑
i=1

ϕA(xi )� f (xi ).

Therefore, the image of A by f̂ can be derived from the knowledge of the images of
xi through f . The membership degree of zi = f (xi ) in f̂ (A) is the same as xi in A.

Example 2.1 Let A be a fuzzy set with countable support, f (x) = x2 and x ≥ 0.
Then

f̂ (A) =
∞∑

i=1

ϕA(xi )� f (xi ) =
∞∑

i=1

ϕA(xi )�x2
i .

The extension principle extends the concept to fuzzy sets of a function applied to a
classical subset of X . Indeed, let f : X −→ Z be a function and A a classical subset

Fig. 2.1 Image of a fuzzy
subset from the extension
principle for a function f

ϕA

ϕf (A )^ f

α

α
α

Z

1

1

X
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of X . The membership function of A is its characteristic function. The Zadeh’s
extension of f applied to A is the subset f̂ (A) of Z , which is the characteristic
function

ϕ f̂ (A)(z) = sup
{x : f (x)=z}

χA(x) =
{
1 if z ∈ f (A)

0 if z /∈ f (A)

= χ f (A)(z)

for all z. Clearly, the membership function of the fuzzy set f̂ (A) is just the charac-
teristic function of the crisp set f (A), that is, the fuzzy set f̂ (A) coincides with the
classical set f (A) :

f̂ (A) = f (A) = { f (a) : a ∈ A} .

As can be seen in the formula above, when A is a classical set, the image f̂ (A) is
clear, i.e., the formula (2.1) is unnecessary since each f (a) belongs to f (A) with
membership degree equal to 1. The Zadeh Extension Principle in the context of clas-
sical sets is precisely what is called the united extension used in set-valued function
theory and in interval analysis [1]. The difference between Zadeh’s Extension Prin-
ciple and United Extension is that Zadeh’s Extension Principle maps membership
functions into membership functions which is equivalent to mapping fuzzy sets to
fuzzy sets but does so via a membership functions. Set-valued functions including
real-valued intervals, map directly from set to set (without the intermediate mem-
bership function).

We can also notice that if A is a classical set, then [A]α = A for all α ∈]0, 1].
Consequently,

[ f̂ (A)]α = [ f (A)]α = f (A) = f ([A]α).

Recall that for α = 0 we mean that [A]0 is the closure of A, that is, the smallest
closed set containing the support of A, if X is a topological space. This result, stated
here as Theorem 2.1, can also be applied to a fuzzy subset of X [2–4].

Theorem 2.1 Let f : X −→ Z be a continuous function and let A be a fuzzy subset
of X. Then, for all α ∈ [0, 1], the following equality holds

[ f̂ (A)]α = f ([A]α). (2.3)

This result indicates that the α-levels of the fuzzy set obtained by the Zadeh’s
Extension Principle coincides with the images of the α-levels by the crisp function
(see Fig. 2.2). The proof of this theorem usesWeierstrass Theorem and it can be seen
in [2–4].

Example 2.2 Let A be a fuzzy set of real numbers whose membership function is
given by

ϕA(x) =
{
4(x − x2) if x ∈ [0, 1]

0 if x /∈ [0, 1]
.
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The α-levels of A are the intervals

[A]α =
[
1

2
(1 − √

1 − α),
1

2
(1 + √

1 − α)

]
.

Let us now consider the real function f (x) = x2 for x ≥ 0. Since f is an increasing
function, we have

f ([A]α) =
[

f (
1

2
(1 − √

1 − α)), f (
1

2
(1 + √

1 − α))

]

=
[
1

4
(1 − √

1 − α)2,
1

4
(1 + √

1 − α)2
]

= [ f̂ (A)]α.

Figure2.2 illustrates the fuzzy subset f̂ (A).

Fig. 2.2 Subset f̂ (A) from
the Example 2.2

f

f (A )^

ϕA

ϕ

X

1

1

1/4

1/2

Y

1

1

α

αα

Exercise 2.1 Consider f and A as in Example 2.2. Compute [ f̂ (A)]α for α = 0,
α = 3/4 and α = 1.

The relation between classical set functions and fuzzy functions is the following.
Let A be a classical set. Its membership function in this context is

χA(x) = μA(x) =
{
1 x ∈ A
0 otherwise

.

Classical set-valued functions compute the range of a classical set A by

f (A) = {y | y = f (x), x ∈ A} .

Simply, f (A) is the range set of f over the domain set A. Using Zadeh’s Extension
Principle, we have for the classical set A,
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ϕ f̂ (A)(z) =
{

sup
x∈ f −1(z)

χA(x) if f −1(z) �= ∅
0 if f −1(z) = ∅

(2.4)

=
{
1 z ∈ f (A)

0 z /∈ f (A)
. (2.5)

In particular, if A = [a, b], a ≤ b, a, b ∈ R,

ϕ f̂ ([a,b])(z) =
{

sup
x∈ f −1(z)

χ[a,b](x) if f −1(z) �= ∅
0 if f −1(z) = ∅

(2.6)

=
{
1 z ∈ f ([a, b])
0 z /∈ f ([a, b]) . (2.7)

This means that Zadeh’s Extension Principle is the same as the United Extension on
Intervals.

Let us introduce the Extension Principle for functions of two variables looking
towards operations between fuzzy numbers that we will present in the next section.

Definition 2.2 Let f : X ×Y −→ Z be a function and let A and B be fuzzy subsets
of X and Y , respectively. The extension f̂ of f , applied to A and B is the fuzzy
subset f̂ (A, B) of Z with membership function given by:

ϕ f̂ (A,B)(z) =
{
supmin

f −1(z)
[ϕA(x),ϕB(y)] if f −1(z) �= ∅

0 if f −1(z) = ∅
, (2.8)

where f −1(z) = {(x, y) : f (x, y) = z}.
Example 2.3 Let f : R × R → R be a function that satisfies f (x, y) = x + y.
Consider the finite fuzzy sets of R

A = 0.4/3 + 0.5/4 + 1/5 + 0.5/6 + 0.2/7

B = 0.2/6 + 0.5/7 + 1/8 + 0.5/9 + 0.2/10.

Let us compute the membership degree of z = 10 in f̂ (A, B):

ϕ f̂ (A,B)(10) = sup
{x+y=10}

min[ϕA(x),ϕB(y)] =
= max{min[ϕA(3),ϕB(7)],min[ϕA(4),ϕB(6)]}
= max{0.4; 0.2} = 0.4.

Exercise 2.2 Redo the Example 2.3 for the following two functions:

(a) Defining f (x, y) = x2 + y, determine f̂ (A, B) and the membership degrees of
z = 10 and z = 25 in f̂ (A, B).
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(b) Now, if f (x, y) = 2x + y, determine f̂ (A, B) and the membership degree of
z = 18 in f̂ (A, B).

2.2 Fuzzy Numbers

Concrete problems often involve many quantities that are idealizations of inaccurate
information involving numerical values. This is the reason why we use words like
“around” in such cases. For example, when we measure the height of a person, what
we obtain is a numerical value with a level of imprecision. These imprecisions may
be caused by the measuring instrument, by the individuals who took the measure-
ments, by the person who was measured, and for many other reasons. In the end,
an “accurate value” (real number) h is chosen to indicate the height of the person.
However, it would be more prudent to say that the height is around or approximately
h. Mathematically, we represent the expression around h by a fuzzy subset A, whose
domain of the membership function ϕA is the set of all real numbers. Also, it is
reasonable to expect that ϕA(h) = 1. The choice of real numbers as the domain is
due to the fact that, theoretically, the possible values to the height of a person are
real numbers.

Definition 2.3 (Fuzzy Number) A fuzzy subset A is called a fuzzy number when the
universal set on which ϕA is defined is the set of all real numbersR and satisfies the
following conditions:

(i) all the α-levels of A are not empty for 0 ≤ α ≤ 1;
(ii) all the α-levels of A are closed intervals of R;
(iii) supp A = {x ∈ R : ϕA(x) > 0} is bounded.

Let us represent the α-levels of the fuzzy number A by

[A]α = [aα
1 , aα

2 ].

We observe that every real number r is a fuzzy number whose membership func-
tion is the characteristic function:

χr (x) =
{
1 if x = r
0 if x �= r

.

We will denote χr or just by r̂ .
The set of all fuzzy numbers will be denoted by F(R), and accordingly to what

was observed above, the set of the real numbers R is a subset (classical or crisp) of
F(R). The most common fuzzy numbers are the triangular, trapezoidal and the bell
shape numbers.

Example 2.4 The fuzzy number 2̂ may be depicted as in Fig. 2.3.
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Definition 2.4 A fuzzy number A is said to be triangular if its membership function
is given by

ϕA(x) =

⎧⎪⎪⎨
⎪⎪⎩

0 if x ≤ a
x−a
u−a if a < x ≤ u
x−b
u−b if u < x ≤ b
0 if x ≥ b

, (2.9)

where a, u, b are given numbers. The membership function of a triangular fuzzy
number has a graphical representation of a triangle with [a, b] being the base of the
triangle and the point (u, 1) as the single vertex. Therefore, the real numbers a, u
and b define the triangular fuzzy number A which will be denoted by (a; u; b).

The α-levels of triangular fuzzy numbers have the following simplified form

[aα
1 , aα

2 ] = [(u − a)α + a, (u − b)α + b], (2.10)

for all α ∈ [0, 1].
Notice that a triangular fuzzy number is not necessarily symmetric, since b − u

may be different from u −a, however, ϕA(u) = 1.We can say that a fuzzy number A
is a reasonable mathematical model for the linguistic expression “nearly u”. For the
expression “around u” we expect symmetry. Imposing symmetry results in a simpli-
fication of the definition of a triangular fuzzy number. Indeed, let u be symmetric in
relation to a and b, that is, u − a = b − u = δ. In this case,

ϕA(x) =
{
1 − |x−u|

δ
if u − δ ≤ x ≤ u + δ

0 otherwise
.

Example 2.5 The expression around four o’clock can be mathematically modeled
by the symmetric triangular fuzzy number A, whose membership function is given
by

ϕA(x) =
{
1 − |x−4|

0.2 if 3.8 ≤ x ≤ 4.2
0 otherwise

,

and is represented in Fig. 2.4. From (2.10) we obtain theα-levels of this fuzzy subset,
which are the intervals [aα

1 , aα
2 ], where

Fig. 2.3 Representation of
the fuzzy number 2̂

2

1

crisp
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aα
1 = 0.2α + 3.8 and aα

2 = −0.2α + 4.2.

Definition 2.5 Afuzzy number A is said to be trapezoidal if itsmembership function
has the form of a trapezoid and is given by

ϕA(x) =

⎧⎪⎪⎨
⎪⎪⎩

x−a
b−a if a ≤ x < b
1 if b ≤ x ≤ c

d−x
d−c if c < x ≤ d
0 otherwise

,

where a, b, c, d are given numbers.

The α-levels of a trapezoidal fuzzy set are the intervals

[aα
1 , aα

2 ] = [(b − a)α + a, (c − d)α + d] (2.11)

for all α ∈ [0, 1].
Example 2.6 The fuzzy set of the teenagers can be represented by the trapezoidal
fuzzy number with the membership function

ϕA(x) =

⎧⎪⎪⎨
⎪⎪⎩

x−11
3 if 11 ≤ x < 14
1 if 14 ≤ x ≤ 17

20−x
3 if 17 < x ≤ 20
0 otherwise

,

and it is illustrated in Fig. 2.5. Equation (2.11) provides the α-levels for this example

[3α + 11, − 3α + 20], with α ∈ [0, 1].

Definition 2.6 A fuzzy number has the bell shape if the membership function is
smooth and symmetric in relation to a given real number. The following membership
function has those properties for fixed u, a and δ (see Fig. 2.6).

Fig. 2.4 Representation of
the fuzzy number “around 4”

1

4.23.8 4
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ϕA(x) =

⎧⎪⎨
⎪⎩
exp

(
−

(
x − u

a

)2
)

if u − δ ≤ x ≤ u + δ

0 otherwise

.

The α-levels of fuzzy numbers in bell shape are the intervals:

[
aα
1 , aα

2

] =

⎧⎪⎨
⎪⎩

[
u −

√
ln

(
1

αa2

)
, u +

√
ln

(
1

αa2

) ]
if α ≥ α = e−( δ

a )
2

[u − δ, u + δ] if α < α = e−( δ
a )

2
. (2.12)

Wenext present the arithmetic operations for fuzzy numbers, that is, the operations
that allow us “to compute” with fuzzy sets.

2.2.1 Arithmetic Operations with Fuzzy Numbers

The arithmetic operations involving fuzzy numbers are closely linked to the interval
arithmetic operations. Let us list some of those operations for closed intervals on the
real line R.

Interval Arithmetic Operations

Let λ be a real number and, A and B two closed intervals on the real line given by

A = [a1, a2] and B = [b1, b2].

Definition 2.7 (Interval Operations) The arithmetic operations between intervals
can be defined as:

(a) The sum between A and B is the interval

Fig. 2.5 Trapezoidal fuzzy
number

11 14 71 02

1

Fig. 2.6 Fuzzy number in
the bell shape

α
u−δ u+

1

δu
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A + B = [a1 + b1, a2 + b2].

(b) The difference between A and B is the interval

A − B = [a1 − b2, a2 − b1].

(c) The multiplication of A by a scalar λ is the interval

λA =
{ [λa1,λa2] if λ ≥ 0

[λa2,λa1] if λ < 0
.

(d) The multiplication of A by B is the interval

A · B = [min P,max P],

where P = {a1b1, a1b2, a2b1, a2b2}.
(e) The quotient of A by B, if 0 /∈ B, is the interval

A/B = [a1, a2] ·
[
1

b2
,
1

b1

]
.

Exercise 2.3 Compute the results of the operations defined above for the intervals

A = [−1, 2] and B = [5, 6].

Notice that the arithmetic operations for intervals extend the respective operations
for real numbers. To see this, it is sufficient to observe that each real number can be
considered as a closed interval with equal endpoints. Also the membership functions
obtained by interval arithmetic operations can be derived directly from the respective
operations for real numbers. Such a procedure uses the extension principle, which
will be a tool to obtain the arithmetic operations of fuzzy numbers.

Let us consider an arbitrary binary operation “⊗” between real numbers. Let χA

and χB be the characteristic functions of the intervals A and B, respectively. The
theorem that follows gives us the interval arithmetic operations for the respective
operations for real numbers via the extension principle.

Theorem 2.2 (Extension Principle for Real Intervals) Let A and B be two closed
intervals of R and ⊗ one of the arithmetic operations between real numbers. Then

χA⊗B(z) = sup
{(x,y):x⊗y=z}

min[χA(x),χB(y)]

It is simple to verify that

min(χA(x),χB(y)) =
{
1 if x ∈ A and y ∈ B
0 if x /∈ A or y /∈ B

.



2.2 Fuzzy Numbers 33

Thus, for the sum case (⊗ = +), we have

sup
{(x,y):x+y=z}

min[χA(x),χB(y)] =
{
1 if x ∈ A + B
0 if x /∈ A + B

.

The other cases can be obtained analogously.
An important consequence of the Theorem 2.2 for operations with fuzzy numbers

is the corollary that follows.

Corollary 2.3 The α-levels of the crisp set A + B with the characteristic function
χ(A+B) are given by

[A + B]α = A + B

for all α ∈ [0, 1].
Remember that the intervals A and B are fuzzy sets of the real line, so that the

result of this corollary is an immediate consequence of the characteristic function
definition of a classical set. The arithmetic operations for fuzzy numbers may be
defined from the extension principle for fuzzy sets in analogous way. Actually, they
are particular cases of the extension principle where the functions that must be
extended are traditional operations for real numbers.

Arithmetic Operations with Fuzzy Numbers

The definitions that follow can be interpreted as particular cases of the extension
principle, both for a function of one and two variables.

Definition 2.8 Let A and B be two fuzzy numbers and λ a real number.

(a) The sum of the fuzzy numbers A and B is the fuzzy number A + B, whose
membership function is

ϕ(A+B)(z) = sup
φ(z)

min[ϕA(x),ϕB(y)]

where φ(z) = {(x, y) : x + y = z}.
(b) Themultiplication ofA by a scalarλ is the fuzzy numberλA, whosemembership

function is

ϕλA(z) =
{

sup
{x :λx=z}

[ϕA(x)] if λ �= 0

χ{0}(z) if λ = 0
=

{
ϕA(λ−1z) if λ �= 0
χ{0}(z) if λ = 0

,

where χ{0} is the characteristic function of {0}.
(c) The difference A − B is the fuzzy number whose membership function is given

by:
ϕ(A−B)(z) = sup

φ(z)
min[ϕA(x),ϕB(y)]
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where φ(z) = {(x, y) : x − y = z}.
(d) The multiplication of A by B is the fuzzy number A.B, whose membership

function is given by:

ϕ(A.B)(z) = sup
φ(z)

min[ϕA(x),ϕB(y)]

where φ(z) = {(x, y) : xy = z}.
(e) The quotient is the fuzzy number A/B whose membership function is

ϕ(A/B)(z) = sup
φ(z)

min[ϕA(x),ϕB(y)]

where φ(z) = {(x, y) : x/y = z} and 0 /∈ suppB.

Theorem 2.4 below ensures that the result of the arithmetic operations between
fuzzy numbers is a fuzzy number. Moreover, it generalizes Corollary 2.3, relating,
via α-levels, arithmetic operations for fuzzy numbers with the respective interval
arithmetic operations.

Theorem 2.4 The α-levels of the fuzzy set A ⊗ B are given by

[A ⊗ B]α = [A]α ⊗ [B]α

for all α ∈ [0, 1], where ⊗ is any arithmetic operations {+,−,×,÷}.
Although the proof of this theoremwill be donehere,we can say it is a consequence

of the Theorem 2.1 applied to the function ⊗, since it is continuous as long as we do
not divide by zero. The interested reader can find the proof in the classical books of
Klir and Yuan [5], Nguyen [6], Pedrycz and Gomide [7] or more generally in Fuller
[8].

The combination of the Theorems 2.1 and 2.4 produces “practical methods” to
obtain the results of each operation between fuzzy numbers. We observe again that
the α-levels of a fuzzy number is always a closed interval of R given by:

[A]α = [
aα
1 , aα

2

]
, with aα

1 = min{ϕ−1
A (α)} and aα

2 = max{ϕ−1
A (α)},

where ϕ−1
A (α) = {x ∈ R : ϕA(x) = α} is the preimage of α.

Hereafter we illustrate such “practical methods” through properties given below.

Proposition 2.5 Let A and B be fuzzy numbers with α-levels respectively given by
[A]α = [

aα
1 , aα

2

]
and [B]α = [

bα
1 , bα

2

]
. Then the following properties hold:

(a) The sum of A and B is the fuzzy number A + B whose α-levels are

[A + B]α = [A]α + [B]α = [
aα
1 + bα

1 , aα
2 + bα

2

]
.
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(b) The difference of A and B is the fuzzy number A − B whose α-levels are

[A − B]α = [A]α − [B]α = [
aα
1 − bα

2 , aα
2 − bα

1

]
.

(c) The multiplication of A by a scalar λ is the fuzzy number λA whose α-levels are

[λA]α = λ[A]α =
{ [λaα

1 ,λaα
2 ] if λ ≥ 0

[λaα
2 ,λaα

1 ] if λ < 0
.

(d) The multiplication of A by B is the fuzzy number A · B whose α-levels are

[A · B]α = [A]α [B]α = [
min Pα,max Pα

]
,

where Pα = {aα
1 bα

1 , aα
1 bα

2 , aα
2 bα

1 , aα
2 bα

2 }.
(e) The division of A by B, if 0 /∈ supp B, is the fuzzy number whose α-levels are

[
A

B

]α

= [A]α

[B]α
= [

aα
1 , aα

2

] [
1

bα
2

,
1

bα
1

]
.

Example 2.7 Consider the expressions nearly 2 and nearly 4 and let A and B be the
triangular fuzzy numbers that indicate these expressions. Thus, we define

A = (1; 2; 3) and B = (3; 4; 5).

The results of A ⊗ B for each of the arithmetic operations between fuzzy numbers
are shown next. First, let us notice that according to formula (2.10)

[A]α = [1 + α, 3 − α] and [B]α = [3 + α, 5 − α].

Then by Proposition 2.5 we get

(a) [A + B]α = [A]α + [B]α = [4 + 2α, 8 − 2α]. Thus, A + B = (4; 6; 8);
(b) [A − B]α = [A]α − [B]α = [−4 + 2α,−2α]. Thus, A − B = (−4;−2; 0);
(c) [4 · A]α = 4 [A]α = [4 + 4α, 12 − 4α]. Thus, 4A = (4; 8; 12);
(d) [A · B]α = [A]α [B]α = [(1 + α)(3 + α), (3 − α)(5 − α)];
(e)

[
A
B

]α = [A]α

[B]α = [(1 + α)/(5 − α), (3 − α)/(3 + α)].
Notice that the fuzzy numbers obtained in (d) and (e) are not triangular. However,

it is easy to verify that with triangular fuzzy numbers, the sum, the difference and the
multiplication by a scalar results in a triangular fuzzy number. To see this, it suffices
to consider the numbers A = (a1; u; a2) and B = (b1; v; b3). Then, from Eq. (2.10),
we have

[A]α = [(u − a1)α + a1, (u − a2)α + a2]
[B]α = [(v − b1)α + b1, (v − b2)α + b2].



36 2 The Extension Principle of Zadeh and Fuzzy Numbers

Thus
[A + B]α = [A]α + [B]α

and then

[A+ B]α = [{(u +v)− (a1 +b1)}α+ (a1 +b1), {(u +v)− (a2 +b2)}α+ (a2 +b2)].

Using Eq. (2.10) again, we see that these intervals are the α-levels of the following
triangular fuzzy number:

((a1 + b1); (u + v); (a2 + b2)).

Finally, it is possible to conclude that (A − B) + B �= A so that it follows that
A − A �= 0. That is, the space of fuzzy numbers is not a vector space since there are
no additive (nor multiplication) inverses. This is a property that hampers many areas
of the fuzzy mathematics, for example, the area of fuzzy differential equations (see
Chap.8) and is a challenge to fuzzy linear systems to mention but two areas.

Exercise 2.4 Redo theExample 2.7 from the point of viewof the extension principle.

The next example presents an explicit way to obtain the function f̂ in the case
that f is linear.

Example 2.8 Let f : R → R be the function f (x) = λx , withλ �= 0 a scalar. If A is
a fuzzy number with membership function ϕA, then according to the Definition 2.1,
the membership function of f̂ (A) is given by

ϕ f̂ (A)(z) = sup
{x : f (x)=z}

ϕA(x) = sup
{x :λx=z}

ϕA(x)

=sup
{z/λ}

ϕA(x) = ϕA(z/λ) = ϕA(λ−1z),

which, according to Definition 2.9b, is the membership function of λA. Thus, if
f (x) = λx , then f̂ : F(R) → F(R) is given by f̂ (A) = λA.

Exercise 2.5 Verify that if f (x) = λx + b, with λ �= 0, then for any fuzzy number
A the fuzzy set f̂ (A) has the following membership function

ϕ f̂ (A)(z) = ϕA(λ−1(z − b)).

After, verify that f̂ (A) is a triangular fuzzy number if A is triangular.

Exercise 2.6 From Theorem 2.1 and the proprieties of the arithmetic operations,
show that Zadeh’s Extension of an affine function f (x) = ax + b, is the affine
function f̂ (X) = aX + b̂ if X ∈ F(R).

http://dx.doi.org/10.1007/978-3-662-53324-6_8
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Let us use the extension principle to compute the image of a triangular fuzzy
number by a known function. Similar to the example of the operations of division and
multiplication, the image of a function of triangular numbers may not be triangular
even if the function is continuous.

Example 2.9 Consider the function f (x) = ex and the triangular fuzzy number
A = (0; ln 2; ln 3).

According to Theorem 1.2, f̂ (A) is determined by its α-levels. From (2.10) it is
easy to see that the α-levels of A are the intervals

[A]α = [(ln 2)α, (ln 2 − ln 3)α + ln 3] =
[
ln 2α, ln

(
3

(
2

3

)α)]
,

with α ∈ [0, 1].
Now, we obtain the α-levels of f̂ (A) using Theorem 2.1, that is,

[ f̂ (A)]α = f ([A]α) = f

([
ln 2α, ln 3

(
2

3

)α])
=

[
2α, 3

(
2

3

)α]
,

with α ∈ [0, 1]. Figure2.7 illustrates f̂ (A) of this example. Therefore,

• if α = 0 then [ f̂ (A)]0 = [1, 3];
• if α = 1

2 then [ f̂ (A)] 1
2 = [√2,

√
6];

• if α = 1 then [ f̂ (A)]1 = {2}.
Now, it is easy to verify that the points (1, 0); (

√
2, 1

2 ) and (2, 1) are not aligned,
that is, not a straight line. So f̂ (A) is not a triangular number.

Example 2.10 Consider that a bus trip from the city of Campinas to São Paulo is
subject to the following:

• The distance between the two cities is nearly 100km;
• The speed can not exceed 120km/h;
• The traffic is usually intense and the speed also decreases at the toll booths;
• The bus usually leaves Campinas late, but the lateness never exceeds more than
30min.

Question: What is the total time (T ) spent on a trip from Campinas to São Paulo
by bus?

The solution to this problem from a classical mathematics point of view with an
exact real number answer is impossible, since we just have partial information and
ill-defined reports. An intuitive approach to solve this problem as may be answered
by a person questioned about the solution of this problemmay be something like: “the
total time is just a little bit more than one hour” or “between one and one hour and a
half”. These answers may be based on personal experience of those who have faced
the same or similar situations. The reasoningmay be as follows: This bus goes fast on
the road but the intense traffic and the toll booths force the bus to slow down, besides,

http://dx.doi.org/10.1007/978-3-662-53324-6_1
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Fig. 2.7 Zadeh’s Extension
of the triangular fuzzy
number A = (0; ln 2; ln 3)
for f (x) = ex

the bus usually leaves the station late. Therefore, if we want a precise value (real
number) for the answer, we need to adopt precise values for the data. For example,
a mean speed of 90km/h and a delay of 15min (T1) would result in the answer:

T = T1 + T2 = 15min + (1 h and 6.66min) = 1.36 h.

But the idea here is to propose amathematical model for this “intuitive arithmetic”
that allows people to compute with imprecise data (as the ones in our problem) to
obtain a result with information based on fuzzy numbers, even though they might be
linguistic answers and at the same time informative and numerically based. There-
fore, we want a model that allows this type of reasoning used by people.

Let approach this example from a fuzzy set theoretic point of view.

• Since the distance (D) of the route is approximate, we can consider it a fuzzy num-
ber around 100km. It can be, for example, a triangular number D = (90; 100; 110)
whose membership function is

ϕD(x) =

⎧⎪⎪⎨
⎪⎪⎩

0 if x ≤ 90
x
10 − 9 if 90 < x ≤ 100
11 − x

10 if 100 < x ≤ 110
0 if x > 110

and α-levels given by [D]α = [10α+90,−10α+110]. Notice that formula (2.6)
can be used to get these α-levels.

• The uncertain about the speed of the bus (V ) can also be modeled by a triangular
fuzzy number. Taking into account that the speed never exceeds 120km/h and
that we have some low speeds in route, we can suppose that V = (30; 100; 120),
whose α-levels are [V ]α = [70α + 30,−20α + 120].
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• The fact that the bus usually leaves the station late indicates that we should have
an extra time (T1) that does not exceed half an hour. This time can be modeled by
the triangular fuzzy number T1 = (0; 0; 0.5), whose α-levels are

[T1]α = [0,−0.5α + 0.5] =
[
0,

1 − α

2

]
.

From physics, the time that is spent on the road (T2) is obtained by the fuzzy
number T2 = D

V . From Proposition 2.5 we have that the α-levels of T2 are:

[T2]α = [10α + 90, 110 − 10α]
[

1

120 − 20α
,

1

70α + 30

]
.

Therefore, the total time (T ) is given by the fuzzy number T = T1 + T2 whose
α-levels are:

[T ]α =
[
0,

1 − α

2

]
+

[
10α + 90

120 − 20α
,
110 − 10α

70α + 30

]

=
[
10α + 90

120 − 20α
,
1 − α

2
+ 110 − 10α

70α + 30

]

= [ f (α), g(α)].

This would be the fuzzy solution of the problemwhich includes the times between
3
4 h and 25

6 h. We can also observe that the time with the highest possibility (α = 1)
is t = 1h. The time t = 1.36h given at the beginning of the discussion (with precise
data) would have membership degree of α∗ � 0.8 in the total time set T , since

1.36 = 1 − α∗

2
+ 110 − 10α∗

70α∗ + 30
.

In the fuzzy context, a real number - obtained a-posteriori by the defuzzification of
the fuzzy set T (see Sect. 5.4) or considering the fuzzy expectation of T (Definition
7.10) - could also be used to represent the solution to this problem.

Exercise 2.7 Redo the example, but now, using the arithmetic operations from the
extension principle. For that, the reader must consider the membership functions of
each fuzzy set. Also, verify that, even though all the sets are triangular, the answer
T is not a triangular fuzzy number. Sketch the graphs of f (α) and g(α) to observe
that.

Definition 2.9 (Hukuhara Difference: A−H B) Let A and B be two fuzzy numbers.
If there exists a fuzzy number C such that A = B +C , then C is called the Hukuhara
Difference of A and B and we denote it by A −H B.

In terms of α-levels this is equivalent to saying that

http://dx.doi.org/10.1007/978-3-662-53324-6_5
http://dx.doi.org/10.1007/978-3-662-53324-6_7
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[A −H B]α = [aα
1 − bα

1 , aα
2 − bα

2 ] ∀ α ∈ [0, 1].

Since
[A − B]α = [aα

1 − bα
2 , aα

2 − bα
1 ],

it follows that
A − B = A −H B ⇔ bα

1 = bα
2 ,

that is,
A − B = A −H B ⇔ B ∈ R.

Notice that, in general,

A − B = A + (−1)B �= A −H B.

This difference, historically, was first used to study derivatives of fuzzy functions
(see Chap.8).

Let us look at a relationship between the extension principle and the probability
theory before we close this chapter. Consider the following Tables2.1 and 2.2.

The question is: “How can we obtain the uncertain distribution for Z = X +Y ?”.
It is clear that the “possible” values for Z = X + Y are the elements of the set
{5, 6, 7}. Table2.3 shows the values of ϕX+Y (zi ) and PX+Y (zi ), where P denote the
probability and ϕ the membership function:

According to the formulas

ϕX+Y (zi ) = sup
x j +yk=zi

min(ϕA(x j ),ϕB(yk)) (2.13)

and
PX+Y (zi ) =

∑
x j +yk=zi

P(X,Y )(X = x j , Y = yk), (2.14)

where P(X,Y )(X = x j , Y = yk) is the joint probability distribution of the random
vector (X, Y ) (see [9, 10]).

The main observation that we have here is that to obtain the probability of X +Y ,
we need to add the independence hypothesis. However, to compute the membership
distribution of X + Y according to the extension principle, the analogous hypothesis
is not needed.We stress that if X and Y are independent andwe note that the formulas

Table 2.1 Membership and
probability distributions of X

X = x j ϕX (x j ) PX (x j )

2 0.5 0.5

3 0.5 0.5

http://dx.doi.org/10.1007/978-3-662-53324-6_8
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Table 2.2 Membership and
probability distributions of Y

Y = yk ϕY (yk) PY (yk)

3 0.5 0.5

4 0.5 0.5

Table 2.3 Membership and
probability distributions of
X + Y

Z = X + Y ϕX+Y (zi ) PX+Y (zi )

5 0.5 0.25

6 0.5 0.50

7 0.5 0.25

(2.13) and (2.14) have some kind of similarity, exchanging sup by � and min by
product.

Finally, we observe that the last two columns of the Table2.3 represent, respec-
tively, the “membership” and the “occurrence” of each element of the first column to
the sum set. Intuitively, a higher probability for 6 is expected, since its “occurrence”
is more than the others. On the other hand, from the fuzzy set theory point of view,
which is an extension of the classical set theory, the value 6 belongs to the sum set
with the same membership of the others. The number of times that it “occurs” does
not matter.
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Chapter 3
Fuzzy Relations

Everything that exists in nature is due to chance and need.
(Democritus, C.460–C.370 BCE)

Abstract This chapter presents a short discussion of mathematical relations, basic
concepts of fuzzy relations, and the composition between two fuzzy relations. Lastly,
the chapter presents the rule for the composition of inferences, which is relevant to
the modus ponens discussed in the next chapter.

Do the individuals of a species agree with Democritus: they relate to one another so
as to construct the trajectories in the course of their lives only to survive apparently
without any interest of optimizing anything? Or do they seek the maximum return
for the minimum of effort, as was advocated by Leibniz when he said “that we live
in the best of all worlds?” Maybe the difference between these two poles is just a
matter of gradual truth.

Studies dealing with associations, relations or interactions between elements of
many classes is of great interest in the analysis and understanding of many phenomena
of real world problems and mathematics. Such studies are always concerned with
establishing such relations. We will see in this chapter that fuzzy relations are a
natural extension of classical mathematical relations and these fuzzy relations have
wide applications.

3.1 Fuzzy Relations

The concept of relation in mathematics is formalized from the point of view of set
theory. We will follow the same path. Intuitively, we say that the relation is fuzzy
when we adopt a fuzzy set theory point of view, and is crisp when we use classical
set theory to conceptualize the relation. The choice of the relation depends on the
phenomenon that we are studying. However, fuzzy set theory is always more general
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than classical set theory, since fuzzy set theory includes classical set theory as a
particular case (remember that a classical set—crisp set—is a particular fuzzy set).
A classical relation indicates if there is or is not some association between two
elements, while fuzzy relations indicate, in addition, the degree of this association.

Definition 3.1 A (classical) relation R over U1×U2× · · · ×Un is any (classical)
subset of the Cartesian product U1×U2× · · · ×Un . If the Cartesian product is formed
by just two sets U1×U2, this relation is called a binary relation over U1×U2. If
U1 = U2 = · · · = Un = U , we say that R is a n-ary relation over U .

A crisp relation R is a subset of the Cartesian product and can be represented by
its characteristic function

χR : U1×U2× . . . ×Un −→ {0, 1} ,

with

χR(x1, x2, . . . , xn) =
{

1 if (x1, x2, . . . , xn) ∈ R
0 if (x1, x2, . . . , xn) /∈ R . (3.1)

The mathematical concept of fuzzy relation is formalized from the usual Cartesian
product between sets, extending the characteristic function of a classical relation to
a membership function.

Definition 3.2 A fuzzy relation R over U1 × U2× . . . ×Un is any fuzzy subset of
U1 × U2× . . . ×Un . Thus, a fuzzy relation R is defined by a membership function
ϕR : U1×U2× . . . ×Un −→ [0, 1].

If the Cartesian product is formed by just two sets U1×U2, the relation is called
a binary fuzzy relation over U1×U2. If the sets Ui , i = 1, 2, . . . , n, are all equal to
U , then we say that R is a n-ary fuzzy relation over U . For example, a binary fuzzy
relation over U is a fuzzy relation R over U×U . If a membership function of the
fuzzy relation R is indicated by ϕR, then the number

ϕR(x1, x2, . . . , xn) ∈ [0, 1]

indicates the degree to which the elements xi that compose the n-tuple
(x1, x2, . . . , xn) are related according to the relation R.

The fuzzy inference relationships which are used in making decisions are of
great importance, especially in the theory of the fuzzy controllers, as we shall see
in Chap. 5. Technically, in fuzzy set theory this operation is similar to intersection,
as seen in Chap. 1, Sect. 1.3. The great difference is in the associated universe from
which the set comes. While in the intersection of fuzzy subsets, the same universal
sets are the same, in the Cartesian product they can be different, as we shall see in
the next definition.
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Definition 3.3 The fuzzy Cartesian product of the fuzzy subsets A1, A2, ..., An of U1,
U2, ..., Un , respectively, is the fuzzy relation A1×A2× · · · × An , whose membership
function is given by

ϕA1×A2×···×An (x1, x2, . . . , xn) = ϕA1(x1) ∧ ϕA2(x2) ∧ · · · ∧ ϕAn (xn),

where ∧ represents the minimum.

Notice that if A1, A2, . . . , An are classical sets, then the classical Cartesian product
A1×A2× · · · ×An may be obtained by Definition 3.3, substituting the membership
functions by the respective characteristic functions of the sets A1, A2, . . . , An . The
next example illustrates the application of the Cartesian product.

Example 3.1 Let us consider again the Table 1.1 of the Example 1.8 which relates
the diagnostics of 5 patients with two symptoms: fever and myalgia.

Patient F : Fever M : Myalgia D: Diagnosis
1 0.7 0.6 0.6
2 1.0 1.0 1.0
3 0.4 0.2 0.2
4 0.5 0.5 0.5
5 1.0 0.2 0.2

To diagnose a patient the doctor evaluates the symptoms that are specific to each
disease. Many diseases can present symptoms like fever and myalgia with different
intensities and measures. For example, for flu, the patient with fever and myalgia
with intensities that, if represented by fuzzy subsets, must have distinct universal
sets. The universe that indicates the fever can be given by the possible temperatures
of a person, while the myalgia can be assessed by the numbers of painful areas.

The indication of how much an individual has flu can be taken as the degree of
membership of the set of the fever symptoms and the set of myalgia. For example,
the patient 1 in Table 1.1 has temperature x whose membership in the fever set F
is ϕF (x) = 0.7 and the value y to myalgia is ϕM(y) = 0.6. The diagnosis of the
patient 1 for the flu is then given by:

Patient 1: ϕflu(x, y) = ϕF (x) ∧ ϕM(y) = 0.7 ∧ 0.6 = 0.6.

Here we have used the fuzzy binary relationship “and” as “min”. This means that
the patient 1 is in the fuzzy subset of the ones who have fever and myalgia with
membership degree 0.6 which coincides with the degree of its diagnosis for flu.

This number obtained can give support to a physician’s decision of which adopted
treatment is best for the patient. It is clear that from the theoretical point of view, the
classical Cartesian product could also be employed for the diagnoses. In this case the
information would be flu (degree one) or not flu (degree zero). Consequently, just
patient 2 of Table 1.1 would be considered to have flu.

http://dx.doi.org/10.1007/978-3-662-53324-6_1
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Chapter 6, Sect. 6.2.3, will present a more complete study about medical diag-
noses. However, we want to note that in the example above we have used the “min”
binary relationship because we have assumed that flu occurs with myalgia. However,
if myalgia was not a strong correlated part of the diagnosis, we would use a different
fuzzy relationship.

Exercise 3.1 Compare the Example 3.1 with the Example 1.8 and explain the dif-
ference between them.

Exercise 3.2 Investigate one more symptom that is typical for flu (coryza, for exam-
ple) and add it as a fuzzy subset in Table 1.1 (create some values) and diagnose the
patients who have flu using the “and” operator.

3.1.1 Forms of Representation and Properties
of the Binary Relations

This text will just stress the forms of representation and some properties of the binary
relations and fuzzy binary relations, which will be illustrated by some examples. The
interested reader can consult other texts for more detailed discussion of relationships.
The following example will help to illustrate the main representations that we will
be using in this text.

Example 3.2 Let U be an ecosystem with the following populations: eagles (e),
snakes (s), insects (i), hare (h) and frogs ( f ). A possible study between the individuals
of these populations might be the predation process, that is, the relation prey-predator.
To study the relation between two individuals from this ecosystem, this relation can
be mathematically modeled by a binary relation R with ϕR(x, y) = 0 if y is not a
predator of x and ϕR (x, y) �= 0 if y is a predator of x , where x and y are individuals
from the set U .

Next, we will discuss two possible cases of the use of the classical relation and
of the fuzzy relation for this example.

• If the interest regarding the relation is just to indicate who is the predator and who
is the prey in U , then we can choose the classical theory and R will be a classical
binary relation. In this case,

ϕR(x, y) = χR(x, y) =
{

1 if y is a predator of x
0 if y is not a predator of x

.

A graphic representation for this relation is in Fig. 3.1, where we put the animals
in alphabetical order on a pair of axes.
The points that are highlighted in Fig. 3.1 indicate the pairs that belong to the
relation R, that is, the relation R reveals who is the predator of whom accordingly
to some specialist.

http://dx.doi.org/10.1007/978-3-662-53324-6_6
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Fig. 3.1 Representation of
the classical relation between
the predators and their prey
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Fig. 3.2 Fuzzy relation and
the many degrees of
preference

• If there is interest in knowing, for example, the gradual preference of a predator for
some prey in U , then a good option is to choose R as a fuzzy relation. In that case,
ϕR(x, y) indicates the preference degree of y for prey x . Supposing that there is no
difference in the predation degree in each species, one possibility for ϕR(x, y) for
this example, might be measured according to a specialist as illustrated in Fig. 3.2,
where in the third axis (vertical axis) this (fuzzy) measure is represented as degree
ϕR(x, y).

When X and Y are finite, the most common forms to represent a binary fuzzy
relation in X×Y are the tabular and the matrix forms. Let us define X =
{x1, x2, . . . , xm}, Y = {y1, y2, . . . , yn} and the fuzzy relation R over X × Y with
membership function given by ϕR(xi , y j ) = ri j , for 1 ≤ i ≤ n and 1 ≤ j ≤ m.
The representations of R can be in table or in matrix form as it follows below.

R y1 y2 . . . yn

x1 r11 r12 . . . r1n

x2 r21 r22 . . . r2n
...

...
...

. . .
...

xm rm1 rm2 . . . rmn

or R =

⎡
⎢⎢⎢⎣

r11 r12 . . . r1n

r21 r22 . . . r2n
...

...
. . .

...

rm1 rm2 . . . rmn

⎤
⎥⎥⎥⎦ .
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To exemplify the representations in table and in matrix form for Example 3.2 we
have, respectively,

p r e d a t o r

p
r
e
y
s

R e s i h f
e 0.0 0.0 0.0 0.0 0.0
s 1.0 0.2 0.0 0.0 0.0
i 0.1 0.0 0.3 0.0 1.0
h 1.0 0.8 0.0 0.0 0.0
f 0.2 1.0 0.0 0.0 0.1

and

R =

⎡
⎢⎢⎢⎢⎣

0.0 0.0 0.0 0.0 0.0
1.0 0.2 0.0 0.0 0.0
0.1 0.0 0.3 0.0 1.0
1.0 0.8 0.0 0.0 0.0
0.2 1.0 0.0 0.0 0.1

⎤
⎥⎥⎥⎥⎦ .

The following definition will be used in subsequent analyses.

Definition 3.4 Let R be a binary fuzzy relation defined over X × Y . The inverse
binary fuzzy relation, R−1, defined over Y × X , has the following membership func-
tion ϕR−1 : Y × X −→ [0, 1], with ϕR−1(y, x) = ϕR(x, y).

Notice that the matrix of R−1 coincides with the transpose of R, since ϕR−1(y, x)

= ϕR(x, y). For this reason many texts of fuzzy logic adopt the term transpose
relation instead of inverse (see Pedrycz and Gomide [1]). Thus, if R is the fuzzy
relation of the Example 3.2, then the matrix representation of its inverse R−1 is
given by its transpose

R� =

⎡
⎢⎢⎢⎢⎣

0.0 1.0 0.1 1.0 0.2
0.0 0.2 0.0 0.8 1.0
0.0 0.0 0.3 0.0 0.0
0.0 0.0 0.0 0.0 0.0
0.0 0.0 1.0 0.0 0.1

⎤
⎥⎥⎥⎥⎦ .

The transpose, R−1, for our prey-predator example, indicates that x is a prey of
y, while by R we have that y is a predator of x .

3.2 Composition Between Binary Fuzzy Relations

The composition between relations is of great importance in many applications.
This operation will be explored extensively in Chap. 6, where the main applications
in medical diagnoses are developed. Also in Chap. 6 we will study many types of

http://dx.doi.org/10.1007/978-3-662-53324-6_6
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compositions between fuzzy relations. Here, in this section, we will present only the
more traditional compositions of fuzzy logic.

Definition 3.5 Let R and S be two binary fuzzy relations in U×V and V ×W ,
respectively. The composition R ◦ S is a binary fuzzy relation in U×W whose mem-
bership function is given by

ϕR◦S(x, z) = sup
y ∈ V

[min(ϕR(x, y), ϕS(y, z))]. (3.2)

Let the sets U , V and W be finite. Then the matrix form of the relationR ◦ S, given
by the composition [max–min], is obtained by a matrix multiplication, substituting
the product by the minimum and the sum by the maximum. Indeed, suppose that

U = {u1, u2, . . . , um};V = {v1, v2, . . . , vn} and W = {w1, w2, . . . , wp}

and that

R =

⎡
⎢⎢⎢⎣

r11 r12 . . . r1n

r21 r22 . . . r2n
...

...
. . .

...

rm1 rm2 . . . rmn

⎤
⎥⎥⎥⎦

m×n

and S =

⎡
⎢⎢⎢⎣

s11 s12 . . . s1p

s21 s22 . . . s2p
...

...
. . .

...

sn1 sn2 . . . snp

⎤
⎥⎥⎥⎦

n×p

.

According to Definition 3.5, the binary fuzzy relation given by the composition
[max–min] has the following matrix form

T = R ◦ S =

⎡
⎢⎢⎢⎣

t11 t12 . . . t1p

t21 t22 . . . t2p
...

...
. . .

...

tm1 tm2 . . . tmp

⎤
⎥⎥⎥⎦

m×p

,

where

ti j = sup
1≤k≤n

[min(ϕR(ui , vk), ϕS(vk, w j ))] = sup
1≤k≤n

[min(rik, sk j )]. (3.3)

The special case of the composition [max–min], which will be presented next,
will be used in a more general way in Chap. 6.

Definition 3.6 (Rule of inference composition) Let U and V be two sets with the
respective classes of the fuzzy subsets F(U ) and F(V ) and R a binary relation over
U×V .

(i) The relation R defines a function of F(U ) into F(V ) such that for each A ∈
F(U ) there is a corresponding element B ∈ F(V ) whose membership function
is given by

http://dx.doi.org/10.1007/978-3-662-53324-6_6


50 3 Fuzzy Relations

ϕB(y) = ϕR(A)(y) = sup
x ∈ U

[min(ϕR(x, y), ϕA(x))]. (3.4)

This composition is known as the rule of inference composition which will
produce other rules as we shall see in Chaps. 4 and 5.

(ii) The relation R also defines a function of F(V ) into F(U ): for each B ∈ F(V )

there is a corresponding element A ∈ F(U ) whose membership function is given
by

ϕA(x) = ϕR−1(B)(x) = sup
y ∈ V

[min(ϕR−1(y, x), ϕB(y))]. (3.5)

A is called the inverse image of B by R.

Notice that formula (3.4) can be rewritten as

ϕB(y) = ϕR(A)(y) = sup
x ∈ U

[min(ϕA(x), ϕR(x, y))].

Thus, according to (3.2),
B = R(A) = A ◦ R.

In a similar way the inverse image is given by

A = B ◦ R−1.

Exercise 3.3 Suppose that the universal sets U and V are finite so that A, B and R
can be represented in matrix form. From the observation above verify that

B = A ◦ R and A = B ◦ R�

where A and B are the matrix forms of the respective fuzzy sets whose elements are
obtained from (3.3).

We will present some important definitions to deepen our understanding of binary
relations which will be made first for classical binary relations and next for the
binary fuzzy relations. The definitions for the classical binary relations R will be
made by the use of their characteristic functions χR : U×U −→ {0, 1}, for a better
understanding of the fuzzy case.

Definition 3.7 Let R be a (classical) binary relation over U . Then, for any x, y
and z of U , the relation R is

(i) reflexive if χR(x, x) = 1;
(ii) symmetric if χR(x, y) = 1 implies χR(y, x) = 1;

(iii) transitive if χR(x, y) = χR(y, z) = 1 implies χR(x, z) = 1;
(iv) anti-symmetric if χR(x, y) = χR(y, x) = 1 implies x = y.

http://dx.doi.org/10.1007/978-3-662-53324-6_4
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Observe that the definitions above represent exactly each one of the traditional
definitions used in classical set theory. The use of the characteristic function was just
an “artifice” to facilitate the understanding of those concepts in the fuzzy case. There
are some little differences in the extensions of the concepts given in the Definition 3.7,
when adapted to the fuzzy case, mainly the concept of transitivity (see [2, 3]).

Definition 3.8 LetR be a binary fuzzy relation over U , whose membership function
is ϕR. Then, for any x, y and z of U , the fuzzy relation R is

(i) reflexive if ϕR(x, x) = 1;
(ii) symmetric if ϕR(x, y) = ϕR(y, x);

(iii) transitive if ϕR(x, z) ≥ ϕR(x, y) ∧ ϕR(y, z), where ∧ = minimum.
(iv) anti-symmetric if ϕR(x, y) > 0 and ϕR(y, x) > 0 implies x = y.

The reflexive relation is the relation in which all element have the maximum
relation to themselves; the symmetric relation is characterized by the reciprocity
between their elements; the transitive indicates that the relation between any two
individuals can not be simultaneously less than the relation of each of them with
the rest; and the last, the anti-symmetric, is the relation that does not admit any
reciprocity between distinct elements. Relations that satisfy simultaneously the four
properties above are, generally, very artificial. Typically when they are required to
fulfill (ii) and (iv) the relation tends to be artificial. For example, if U has just one
element x , the Cartesian product U×U = {(x, x)} satisfies the properties (i)–(iv)
from the Definition 3.8. Relations that satisfy just the first three conditions are called
equivalence relations. Concepts (i)–(iv) can be seen in the following example:

Example 3.3 Intuitively, the relation of the military hierarchy (M): “is a higher rank
than” is based on the rank of the individual, that is, x is related to y if the rank of x is
higher than y. So, M is reflexive, transitive and anti-symmetric but not symmetric.
On the other hand, the relation (A): “is friend of ” is reflexive, symmetric but not
transitive.

The relations M and A are not necessarily fuzzy relations. However, if we want
to indicate the degree that x is higher than y, based not on rank but in subjective
factors, say status, then M can be considered a fuzzy relation. The same can be said
about the relation A.
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Chapter 4
Notions of Fuzzy Logic

The purpose of theoretical science is the truth.
(Aristotle – C.384 – 322 BCE)

Abstract This chapter presents the basic notions of classical and fuzzy logic
followed by the concepts of t-norms, t-conorms, fuzzy negation, and fuzzy
implication, which are the key ideas of propositional calculus of fuzzy logic. Next
the chapter discusses modus ponens and generalized modus ponens together with
the concepts of linguistic variables that are used in logical reasoning. The chapter
closes with linguistic modifiers and the concept of interactivity between fuzzy sets.

The task of knowledge, according to Aristotle, is the truth, without practical concerns.
On the other hand, for sophist philosophers, knowledge must be concerned with
practical things and, for this reason, the search for “true” or “false” must be replaced
by measurements of “better” or “worse”. In this and the next two chapters these
“measurements” will be elaborated, mainly through study of generalized modus
ponens.

The literature uses the term “fuzzy logic” in at least two ways: the first one is to
represent and manipulate inexact information with the purpose of making decisions
through use of the fuzzy set theory, its membership functions and algebras. The
second one refers to the extension of the classical logic which is the main goal of
this chapter.

From an historical point of view, logic was developed from studies of Aristotelian
syllogisms whose purpose was to better understand “truth”. Building on the work of
Plato, who was a disciple of Socrates; Aristotle developed laws governing thought
whose aim was to deduce knowledge from hypotheses. In this case, there is no
possible interpretations from the method of deduction in the sense it is either true or
false (but not both). Thus, the motto of Sophists “man is the measure of all things”,
seems to be mistaken. An example truth in sense of Aristotle is given by statement
about Socrates:
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“Every human is mortal
Socrates is human
Then, Socrates is mortal”

The syllogism above is typical of the structure of logic which illustrates “true knowl-
edge” as developed by Aristotle.

The study of Aristotelian logic was restarted only in seventeenth century when
Leibniz created symbolic logic. In the nineteenth century, Boole created an algebra
for this symbolic logic. This tool started to be widely used in the first half of the
twentieth century for computer circuits and in the computer language. In the same
century, logic was studied by great mathematicians like Peano, Frege, Whitehead,
Russel and Gödel, among others. During the first half of the twentieth century, there
arose many scholars who extended the logic of two values to logics with many values
known as multi-valued logic. Among them we stress the Lukasiewicz’s logic which
in a way is considered the precursor of the fuzzy logic [1, 2]. However, it was only
in 1960 that there arises the first study that is the originator of fuzzy logic [3].

Chapter 1 already commented that it is important to understand that fuzzy logic is
“subjective”. However, this does mean that fuzzy logic is not part of logic. Logic is a
discipline that studies implications. Indeed, fuzzy logic is a logic with methodology
of its own [1]. On the other hand, fuzzy logic does not deal with ambiguity. The
uncertainties of fuzzy logic are monotonic, in the sense that the less the premises
are uncertain, the less the conclusions will be uncertain as well. Ambiguity is not
monotonic in this sense. Intuitively, we can say that the fuzzy logic tends to classical
logic when the uncertainties go to zero.

The main success of the fuzzy logic is due to its practical approach, since it
can handle uncertain propositions to obtain conclusions. The field that deals with
the formalization of these propositions is known as approximate reasoning whose
structure has the same structure as the method proposed by Socrates. For example,

Intense flu causes high fever;
High fever frequently causes headache;

Conclusion: Intense flu frequently causes headache.

The conclusion above is a deduction obtained from the assumptions. However, some
of these predicates are not precise terms (for example: intense, high and frequently)
and for this reason classical logic can not handle these sentences. The next section
delineates some concepts of traditional logic that will be a foundation for our fuzzy
logic development.

4.1 Basic Connectives of Classical Logic

The first steps in mathematical logic begin with the study of connectives: “and”,
“or”, “not” and “implication”. These connectives are typically used in the mathe-
matical modeling in sentences like:

http://dx.doi.org/10.1007/978-3-662-53324-6_1
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“If a is in A and b is in B,

then c is in C or d is not in D”
(4.1)

The logical values for each connective are studied using truth tables. Thus, the
logical value of a sentence, formed from two or more propositions, is obtained by
the composition of the truth tables for the connectives in this sentence. If we suppose
that A and B are sets, the proposition

“a is in A and b is in B”

is true only if a belongs to A is true and also that b belongs to B. The logical value
of this sentence is a consequence of the classical truth table to the connective and.

True sentences have a logical value 1, while false sentences have a logical value
0 in classical logic. In the extension to the fuzzy case, truth values range between
0 and 1. Regardless, for either the classical or the fuzzy case we are going to use
the notation ∧ (minimum) for the conjunction and, ∨ (maximum) for or, ¬ for the
negation, and =⇒ for the implication (Tables 4.1, 4.2 and 4.3).

Let p and q be two propositions. The classical truth tables for the connectives
presented above are given in Table 4.4. We can notice that in each truth table, p and
q just have the values 0 and 1. For that reason, the classical logic is sometimes called
“two-valued logic”.

Each one of the logical connectives above can be seen as a mathematical operator
whose values match with the respective truth tables, and it is this fact that justifies
the notation ∧ for and and ∨ for or. With the exception of the negation, the other
connectives are binary operations.

Table 4.1 Truth table of ∧ p q p ∧ q

1 1 1

1 0 0

0 1 0

0 0 0

Table 4.2 Truth table of ∨ p q p ∨ q

1 1 1

1 0 1

0 1 1

0 0 0

Table 4.3 Truth table of ¬ p ¬p

1 0

0 1
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Table 4.4 Truth table of =⇒ p q p =⇒ q

1 1 1

1 0 0

0 1 1

0 0 1

• Connective and: ∧
∧ : {0, 1} × {0, 1} −→ {0, 1}

(p, q) �−→ ∧ (p, q) = p ∧ q = min {p, q} .

Thus,

∧(1, 1) = 1 ∧ 1 = 1;
∧(1, 0) = 1 ∧ 0 = 0;
∧(0, 1) = 0 ∧ 1 = 0;
∧(0, 0) = 0 ∧ 0 = 0.

• Connective or: ∨
∨ : {0, 1} × {0, 1} −→ {0, 1}

(p, q) �−→ ∨ (p, q) = p ∨ q = max {p, q} .

Therefore,

∨(1, 1) = 1 ∨ 1 = 1;
∨(1, 0) = 1 ∨ 0 = 1;
∨(0, 1) = 0 ∨ 1 = 1;
∨(0, 0) = 0 ∨ 0 = 0.

• The negation is an unary operation: ¬

¬ : {0, 1} −→ {0, 1}
p �−→ ¬p,

where, ¬1 = 0 and ¬0 = 1. It is interesting to notice that ¬p = 1 − p.

• Implication: =⇒
=⇒: {0, 1} × {0, 1} −→ {0, 1}

(p, q) �−→=⇒ (p, q) = (p =⇒ q).

We can observe that
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(p =⇒ q) =
{

1 if p ≤ q
0 if p > q

that is, (p =⇒ q) is true if q is at least p.
The previous connectives generate at least three formulas that reproduce the truth

table associated with implication:

(1) (p =⇒ q) = (¬p) ∨ q;
(2) (p =⇒ q) = (¬p) ∨ (p ∧ q);
(3) (p =⇒ q) = max{x ∈ {0, 1} : p ∧ x ≤ q}.

Let us verify that “not p or q” is the implication “p implies q”, that is, (¬p)∨q =
(p =⇒ q) is in fact an implication:

=⇒ (1, 1) = (1 =⇒ 1) = (¬1) ∨ 1 = 1;
=⇒ (1, 0) = (1 =⇒ 0) = (¬1) ∨ 0 = 0;
=⇒ (0, 1) = (0 =⇒ 1) = (¬0) ∨ 1 = 1;
=⇒ (0, 0) = (0 =⇒ 0) = (¬0) ∨ 0 = 1.

We leave as exercise for the reader to verify the other two cases.
Although each one of the operators (1), (2) and (3), define the same classical

implications, this does not occur when we extend each one of these formulas to the
fuzzy case. In general, case (2) does not define a fuzzy implication as we are going
to see later.

Let us go back to sentence (4.1). This sentence can have a logical evaluation
using logical values of the connectives. Since we are dealing with classical sets, this
evaluation can only take the values 0 or 1. Let us consider

P︷ ︸︸ ︷
If a belongs to A︸ ︷︷ ︸

p

and b belongs to B︸ ︷︷ ︸
q

, then

Q︷ ︸︸ ︷
c belongs to C︸ ︷︷ ︸

r

or d is not in D︸ ︷︷ ︸
s

.

The values of each expressions p, q, r and s can only be 0 or 1, depending if each
element belongs or not to the indicated set. For example, p = 1 if a ∈ A while p = 0
if a /∈ A. Analogously, the same is true for q, r and s. Thus, it is easy to evaluate
sentence (4.1) for each situation. For example, if

a ∈ A(p = 1); b /∈ B(q = 0); c ∈ C(r = 1) and d /∈ D(s = 1),

then the logical value of sentence (4.1) is

(1 ∧ 0) =⇒ (1 ∨ 1) = (0 =⇒ 1) = 1.

Note that the logical value of the sentence p : “a belongs to A” coincides with
that value obtained from the membership function of the set A evaluated at a, that
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is, the value of p is given by χA(a). In the same way, χB gives the logical value of
q; χC , of r and the value of s is given by 1 − χD.

The next section is dedicated to the mathematical formulation of (4.1), keeping
in mind that now the sets are fuzzy.

4.2 Basic Connectives of Fuzzy Logic

We observe that, to logically evaluate the expression (4.1) defined by connectives in
the classical case, it can only assume the values 0 or 1. This assumption is consistent
with the fact that the related sets are classical. Now, if we allow the sets in (4.1) to be
fuzzy sets, how can we logically evaluate this expression? Initially, we need to give a
value that indicates how much the proposition “a belongs to A” is true, where A is a
fuzzy set and knowing that an element a can belong to A with values in the set [0, 1].
To do the logical evaluation of the connectives in the fuzzy case, we need to extend
the classical ones. These extensions are obtained by triangular norms and conorms.
These operators were originally developed for the study of metric spaces associated
with statistical analysis (Menger, 1942 [4]). The name, triangular norm (conorm),
comes from the generalization of the triangular property for these spaces [5].

4.2.1 Operations T-Norm and T-Conorm

Definition 4.1 (t-norm) The operator 	 : [0, 1] × [0, 1] −→ [0, 1], 	(x, y) = x 	
y, is a t-norm, if it satisfies the following conditions:

(t1) Neutral element: 	(1, x) = 1	x = x ;
(t2) Commutative: 	(x, y) = x	y = y	x = 	(y, x);
(t3) Associative: x	(y	z) = (x	y)	z;
(t4) Monotonicity: if x ≤ u and y ≤ v, then x	y ≤ u	v.

The operator t-norm extends the operator ∧ that models the connective “and”.

Example 4.1 Let us consider the operator

	1(x, y) = min {x, y} = x ∧ y.

It is easy to see that this operator reproduces the truth table of the connective ∧. The
proof is left to the reader. Other examples of t-norms are:
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	2(x, y) = xy;
	3(x, y) = max {0, x + y − 1} ;

	4(x, y) =
⎧⎨
⎩

x if y = 1
y if x = 1
0 otherwise

.

Exercise 4.1 Verify that 	1, 	2, 	3 are t-norm and 	3 ≤ 	2 ≤ 	1.

Definition 4.2 (t-conorm) The operator 
(x, y) = x 
 y is a t-conorm if it satisfies
the following conditions

(c1) Neutral element: 
(0, x) = 0 
 x = x ;
(c2) Commutative: 
(x, y) = x 
 y = y 
 x = 
(y, x);
(c3) Associative: x 
 (y 
 z) = (x 
 y) 
 z;
(c4) Monotonicity: if x ≤ u and y ≤ v, then x 
 y ≤ u 
 v.

The operator t-conorm 
 : [0, 1] × [0, 1] −→ [0, 1] extends the operator ∨ of the
connective “or”.

Example 4.2 The operator


1(x, y) = max {x, y} = x ∨ y.

is a t-conorm that reproduces the truth table of the connective ∨. Other examples of
t-conorm are (verify!):


2(x, y) = min {1, x + y} ;

3(x, y) = x + y − xy.

The following operation extends the truth table for the negation:

Definition 4.3 (negation) A map η : [0, 1] −→ [0, 1] is a negation if it satisfies the
following conditions:

(n1) Boundary conditions: η(0) = 1 and η(1) = 0;
(n2) Monotonicity: η is decreasing.

Moreover if η is strictly decreasing, (n1) holds and

(n3) Involution: η(η(x)) = x ,

then η is called strong negation.

The maps

η1(x) = 1 − x and η2(x) = 1 − x

1 + x
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reproduce the negation truth table ¬. In reality, they are strong negations. However,

η3(x) =
{

0 if x = 1
1 if x ∈ [0, 1[

is a negation but not a strong one. Moreover, we observe that the operations 	 = ∧,

 = ∨, and η = 1 − x , satisfy the De Morgan’s laws, that is, for all pairs (x, y) of
[0, 1] × [0, 1] we have

η (x ∧ y) = η(x) ∨ η (y)

η (x ∨ y) = η(x) ∧ η (y) .

Exercise 4.2 Prove that for any t-norm 	, t-conorm 
 and strong negation η, De
Morgan’s laws are satisfied. That is, in the formulas above, change ∧ to 	 and ∨ to

.

We say that the t-norm 	 and the t-conorm 
 are dual with respect to a negation
η if they satisfy the two laws of De Morgan.

Exercise 4.3 Verify that

ηλ(x) = 1 − x

1 + λx
, λ > −1

is a strong negation.

Exercise 4.4 Verify which of the systems given below are dual t-norms and t-
conorms with respect to the negation η(x) = 1 − x :

(1)

{
x 	 y = max {x + y − 1, 0}
x 
 y = min {x + y, 1} ;

(2)

{
x 	 y = xy
x 
 y = x + y − xy

;

(3)

{
x 	 y = max {x + y − 1, 0}
x 
 y = x + y − xy

;

(4)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x 	H y = xy

a + (1 − a)(x + y − xy)

x 
H y = (a − 2)xy + x + y

1 + (a − 1)xy

, a ≥ 0;

	H and 
H are known as t-norm and t-conorm of Hamacher [5].

(5)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x 	F y = loga

[
1 + (ax − 1)(ay − 1)

a − 1

]

x 
F y = 1 − loga

[
1 + (a1−x − 1)(a1−y − 1)

a − 1

] , 0 < a �= 1;

	F and 
F are the denominated t-norm and t-conorm of Frank [5].

A complete study about t-norms and t-conorms can be found in [5].
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Definition 4.4 (Fuzzy implication) An operator ⇒: [0, 1] × [0, 1] → [0, 1] is a
fuzzy implication if it satisfies the following conditions:

1. Reproduces the classical implication table;
2. Is decreasing in the first variable, that is, for each x ∈ [0, 1] we have

(a ⇒ x) ≤ (b ⇒ x) if a ≥ b;

3. Is increasing in the second variable, that is, for each x ∈ [0, 1] we have

(x ⇒ a) ≥ (x ⇒ b) if a ≥ b.

Thus, the class of fuzzy implications consists of all the maps from the square
[0, 1] × [0, 1] to [0, 1], whose restrictions on the vertices coincide with the values of
the classical implication and are decreasing with respect to the abscissas, and increas-
ing with respect to the ordinates. As we have already mentioned in the exposition of
the classical implication, it can be represented by one of the formulas:

(1) (p =⇒ q) = (¬p) ∨ q;
(2) (p =⇒ q) = (¬p) ∨ (p ∧ q);
(3) (p =⇒ q) = max{x ∈ {0, 1} : p ∧ x ≤ q}.
For the fuzzy case, these formulas do not produce the same fuzzy implications (verify
this fact!). Moreover, due to the second condition in Definition 4.4, formula (2) above
does not always reproduce a fuzzy implication. Thus, we distinguish formulas (1)

and (3):

(4) A S-implication has the form (x =⇒ y) = η(x) 
 y;
S-implications are build from the conorms, which are frequently called s-norms [5].

(5) A R-implication has the form

(x =⇒ y) = sup{z ∈ [0, 1] : x 	 z ≤ y}.

The R-implication name comes from the residual operation [5] and can be interpreted
as (x =⇒ y) is the greatest value for which y overcomes x according to 	. In other
words, it is the residue of x with respect to y, according to 	.

Notice that for the classical case, (p =⇒ q) is what is “lacking” in order that p
is q according to ∧. For a more complete study about the extension of formula (2)

((¬p) ∨ (p ∧ q)) to the fuzzy case, the reader might consult [6].

Exercise 4.5 Verify that each of the operators S and R, of Definition 4.4 are in
fact fuzzy implications for any t-norms, t-conorms and negation. Next, verify (using
examples) that (2) does not always reproduces a fuzzy implication, except when the
negation is given by

η(x) =
{

0 if x = 1
1 if x ∈ [0, 1[ .
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Example 4.3 (Fuzzy implications) The following operators are fuzzy implications:

(a) Gödel’s implication:

(x =⇒ y) = g(x, y) =
{

1 if x ≤ y
y if x > y

.

(b) Goguen’s implication:

(x =⇒ y) = gn(x, y) =
{

1 if x ≤ y
y

x
if x > y

.

(c) Lukasiewicz’s implication:

(x =⇒ y) = �(x, y) = min {(1 − x + y), 1} .

(d) Kleene-Dienes’ implication:

(x =⇒ y) = kd(x, y) = max {(1 − x), y} .

(e) Reichenbach’s implication:

(x =⇒ y) = r(x, y) = (1 − x + xy).

(f) Gaines–Rescher’s implication:

(x =⇒ y) = gr (x, y) =
{

1 if x ≤ y
0 if x > y

.

(f) Wu’s implication:

(x =⇒ y) = w(x, y) =
{

1 if x ≤ y
min {1 − x, y} if x > y

.

Exercise 4.6 Solve the items below.

(a) Verify that the Gödel’s and Goguen’s implications are R-implications, supposing
that 	 = min for Gödel’s and 	 = product for Goguen’s.

(b) Among the fuzzy implications above, give examples of S-implications and of
R-implications, supposing η(x) = 1 − x .

(c) Verify that g(x, y) ≤ gn(x, y) for x and y in the interval [0, 1].
Exercise 4.7 Graphically depict of the implications from Example 4.3.

The reader who wants to know more about logical operators and fuzzy propo-
sitional calculus can consult Baczynski and Jayaram [6], Hajék [1], Nguyen [2],
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Klir and Yuan [7], Pedrycz and Gomide [8], Wangning [9] and their references. Our
interest here is focused on calculations and interpretations of formulas in which these
basic connectives appear.

Example 4.4 Let us return to expression (4.1) and obtain its logical value when we
consider 	 = ∧, 
 = ∨, η(x) = 1 − x and the Gödel’s implication. Initially, for
each cell p, q, r and s of expression (4.1), we take its logical value as a membership
degree of each element from the related set. For example, let us consider that those
values are: ϕA(a) = 0.6; ϕB(b) = 0.7; ϕC(c) = 0.4 and ϕD(d) = 0.7. Then,
we have:

p 	 q = min(0.6; 0.7) = 0.6;
s = 1 − ϕD(d) = 1 − 0.7 = 0.3;

r 
 s = max(0.4; 0.3) = 0.4.

Therefore, the logical value of (4.1) is the result of

(p 	 q) =⇒ (r 
 s).

Assuming that the implication is the Gödel implication, then

(p 	 q) =⇒ (r 
 s) =
{

1 if (p 	 q) ≤ (r 
 s)
(r 
 s) if (p 	 q) > (r 
 s)

= 0.4;

since (p 	q) = 0.6 and (r 
s) = 0.4. Thus, for the memberships above, expression
(4.1) is true with degree 0.4.

Exercise 4.8 Redo the Example 4.4 for other implications given by Example 4.3.

Many of the implications in Example 4.3 are obtained from the combination of
t-norms and t-conorms and they are used to model fuzzy propositions in approximate
reasoning. This topic is of great interest in the resolution methods of the relational
equations and of the systems based on fuzzy rules, such as Mamdani’s controllers.
These topics will be studied in Chaps. 5 and 6. The reader who wants greater details
about fuzzy implications for process modeling in engineering should consult [2, 7–9].
In biomathematics, we have expanded some classical models and changed the product
operation to t-norms in mathematical models of epidemics [10].

4.3 Approximate Reasoning and Linguistic Variables

Approximate reasoning refers to the process where we can make conclusions from
uncertain premises. When this uncertainty involves fuzzy sets, it is common to use
the term fuzzy reasoning.

http://dx.doi.org/10.1007/978-3-662-53324-6_5
http://dx.doi.org/10.1007/978-3-662-53324-6_6
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The following form of reasoning is very common in life:

“If the banana is yellow then the banana is ripe” (4.2)

that is,

“If we have a yellow banana, it is automatic classified as ripe”.

In a general form we obtain something like:

“If X is ♦ then Y is �.” (4.3)

In this case, if we know that X is ♦, we conclude that Y is �.
This is a generalization of the well known deductive method modus ponens. The

difference between the classical modus ponens and fuzzy modus ponens is the sub-
jectivity of the predicates involved. The general sentences (4.3) above are expressed
in a “natural” language without the formalism of the mathematical language. Our
interest here is in a mathematical model for some sentences using fuzzy logic.

Sentence (4.1) is substantially different from sentence (4.3). In (4.3) there is no
set (classical or fuzzy) involved, only qualifications about the variables X and Y .
To formally express sentences with variables like (4.3) we relate fuzzy set theory to
fuzzy logic. To obtain a logical evaluation of (4.3) the idea is to rewrite it in the way
that the sentence (4.1) appears, and for that, it is necessary to define the concept of
linguistic variable.

Definition 4.5 (Linguistic Variable) A linguistic variable X in the universe U is a
variable whose values are fuzzy subsets of U .

Intuitively, a linguistic variable is a noun, while its values are adjectives represented
by fuzzy sets. For example, “flu” is a linguistic variable that can assume the attributes
“intense” or “weak”.

Sentences where linguistic variables appear with its subjective values (attributes)
are commonly called as fuzzy propositions. However, the interest here are those
variables whose assumed values are fuzzy numbers where the universe of discourse
is the set of real numbers. In this case, we say that the support of variable is the set
of real numbers and X is a real linguistic variable.

The logical value of “X = x is A” is given by number ϕA(x) that indicates how
much X = x is in agreement with the linguistic term modeled by the fuzzy set A. For
this reason, and to have an easier notation when there is no doubt about the variables,
we will use just the values of interest assumed by them in each fuzzy proposition,
that is, we are going to use “x is A”, instead of “X = x is A”.

Next, we are going to use the notion of linguistic variables to formulate the
deductive method of modus ponens for the fuzzy case.
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4.4 Modus Ponens and Generalized Modus Ponens

Our initial interest is to model mathematically the fuzzy modus ponens:

p =⇒ q : If x is A then y is B
Fact: x is A

Conclusion: y is B

Notice that (p =⇒ q) is a conditional fuzzy proposition that is modeled by a
fuzzy relation R of U × V , whose membership function is

ϕR(x, y) = [ϕA(x) =⇒ ϕB(y)] ,

where x and y are values of linguistic variables in U and V , respectively. Thus, the
sentence value “If x is A then y is B” depends on the chosen implication.

The classical implication, that is, ϕA(x) ∈ {0, 1} and ϕB(y) ∈ {0, 1}, produces a
fuzzy relation whose membership function is given by:

ϕR(x, y) = χR(x, y) = (χA(x) =⇒ χB(y))

=
{

1 if (x /∈ A and y is arbitrary) or (x ∈ A and y ∈ B)

0 if x ∈ A and y /∈ B

so that

sup
x ∈ U

[χR(x, y) ∧ χA(x)] =
{

1 if y ∈ B
0 if y /∈ B

= χB(y).

That is, for the classical case, the modus ponens can be mathematically written by
the formula:

χB(y) = sup
x ∈ U

[χR(x, y) ∧ χA(x)].

According to the notation that was seen in Chap. 3, the classical modus ponens can be
given by the max − min inference composition rule B = A ◦R, where the relation
R is obtained by a fuzzy implication that models the conditional sentence

“If x ∈ A then y ∈ B”.

Our aim is to inference with fuzzy sets, so this formula will be extended to fuzzy
situations which we will call the fuzzy modus ponens and the generalized fuzzy
modus ponens. The fuzzy modus ponens models the following syllogism:

Rule: “If the banana is yellow, then it is ripe”
Fact: “The banana is yellow”

Conclusion: “The banana is ripe”

http://dx.doi.org/10.1007/978-3-662-53324-6_3
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Fuzzy logic reveals its great potential when modeling each of the sentences above.
The nouns and its attributes are modeled by the fuzzy sets (by membership func-
tions), while the connectives are modeled by operators like t-norms and t-conorms,
implications and/or negations. The conclusion, which must be a fuzzy set, is obtained
by the extension of the inference composition rule

χB(y) = sup
x∈U

[χR(x, y) ∧ χA(x)] , (4.4)

replacing the characteristic functions by membership functions and the operator ∧
by some t-norm, that is,

ϕB(y) = sup
x∈U

[ϕR(x, y) 	 ϕA(x)] . (4.5)

In short, the formula (4.5) is the inference rule that models the modus ponens fuzzy

Rule: “if x is A, then y is B”
Fact: “x is A”

Conclusion: “ is B”

The right side of the Eq. (4.5) demands that the t-norm and the fuzzy implication that
is adopted are chosen in a way that the output coincides with ϕB(y) for all y.

This is a problem of relational equations and can engender some difficulties. Our
focus here is in approximate reasoning so we only study these issues by mentioning
that they may arise and leave their more detailed discussion to Chap. 6. For this
reason, we extend Eq. (4.5) by admitting an input A∗ instead of A and we will make
it more flexible by not demanding that the output B∗ be B for the input A = A∗. In
this case we will call the syllogism a generalized fuzzy modus ponens, which has
the general form:

Rule: “If x is A, then y is B”
Fact: “x is A∗”

Conclusion: “y is B∗”

The output from the generalized fuzzy modus ponens is a fuzzy set B∗, whose
membership function is

ϕB∗(y) = sup
x ∈ U

[ϕR(x, y) 	 ϕA∗(x)], (4.6)

which, by analogy to the inference composition rule seen in Chap. 3, has the form

R(A∗) = A∗ ⊗t R = B∗,

where ⊗t is a similar operation to the composition “ ◦ ”, that replaces the minimum
t-norm by 	. In Chap. 6 we will see this operation in more details.

http://dx.doi.org/10.1007/978-3-662-53324-6_6
http://dx.doi.org/10.1007/978-3-662-53324-6_3
http://dx.doi.org/10.1007/978-3-662-53324-6_6
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It is worth stressing that: in the classical case, we always have R(A) = B.

Although, in fuzzy case, depending on the t-norm and the implication, we will not
ever have R(A) = B. This fact does not belie the use of formulas (4.5) or (4.6).

It is very common to obtain a theoretical functional that does not reproduce the
data that generated it. This is the case of the well known least-squares method,
whose main property is to obtain the functional with the lowest possible quadratic
error of the data set. Methods to obtain functionals that reproduce exactly the data
that generated it are called interpolation methods. This subject will appear again in
subsequent chapters where we will make further observations.

Example 4.5 Suppose we have the product t-norm x 	 y = xy, and the implication

(x =⇒ y) =
{

1 if x = 0

1 ∧ y

x
if x �= 0

.

Given the fuzzy numbers A and B, we have

(ϕA(x) =⇒ ϕB(y)) · ϕA(x) = ϕA(x) ∧ ϕB(y).

Thus,

sup
x∈U

[ϕR(x, y) 	 ϕA(x)] = sup
x∈U

[(ϕA(x) =⇒ ϕB(y)) · ϕA(x)]
= sup

x∈U
[ϕA(x) ∧ ϕB(y)] = ϕB(y).

that is, R(A) = B.

Exercise 4.9 Verify whether or not R(A) = B with the minimum t-norm, x 	 y =
x ∧ y, for:

(a) Reichenbach’s implication;
(b) Wu’s implication.

Let us analyze a case where the sets are finite.

Example 4.6 Consider the fuzzy subsets:

A = 0.4/x1 + 1.0/x2 + 0.6/x3 and B = 0.8/y1 + 0.4/y2

the Lukasiewicz’s implication,

(x =⇒ y) = min {(1 − x + y), 1}

and the t-norm 	1 = ∧.
Let us obtain the outputs from the formula (4.5) for each input. Recall that the

relation is given by
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ϕR(x, y) = (ϕA(x) =⇒ ϕB(y))

and for the Lukasiewicz, implication, we have

R = 1.0/(x1, y1) + 1.0/(x1, y2) + 0.8/(x2, y1) +
+ 0.4/(x2, y2) + 1.0/(x3, y1) + 0.8/(x3, y2).

So, for the input
A = 0.4/x1 + 1.0/x2 + 0.6/x3 ,

we have the output B̃ with the membership function

ϕB̃(y1) = max
xi

[ϕR(xi , y1) ∧ ϕA(xi )] =
= max[min(1.0; 0.4); min(0.8; 1.0); min(1.0; 0.6)] = 0.8;

ϕB̃(y2) = max
xi

[ϕR(xi , y2) ∧ ϕA(xi )] =
= max[min(1.0; 0.4); min(0.4; 1.0); min(0.8; 0.6)] = 0.6.

and for the input
A∗ = 0.6/x1 + 0.9/x2 + 0.7/x3 ,

we have the output of B∗ with membership function

ϕB∗(y1) = max
xi

[ϕR(xi , y1) ∧ ϕA(xi )]

= max[min(1.0; 0.6); min(0.8; 0.9); min(1.0; 0.7)] = 0.8;
ϕB∗(y2) = max

xi

[ϕR(xi , y2) ∧ ϕA(xi )]

= max[min(1.0; 0.6); min(0.4; 0.9); min(0.8; 0.7)] = 0.7.

So, for this example, the outputs obtained from generalized fuzzy modus ponens are

R(A) = B̃ = 0.8/y1 + 0.6/y2 and R(A∗) = B∗ = 0.8/y1 + 0.7/y2.

It is interesting to notice that B ⊂ B̃. This fact is of interest for approximate
reasoning, because it indicates that B could be an optimal output in some sense.
Studies that investigate properties like this one and/or that B̃ = B will be seen in
a little different context in Chap. 6. The reader who wants to know more about this
topic may consult [9, 11–13] and many other articles about approximate reasoning.

Practical Method

The observation presented after formula (4.6) means we have

B∗ = A∗ ⊗t R,

http://dx.doi.org/10.1007/978-3-662-53324-6_6
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where for the finite domain case, A∗ and B∗ are written as row vectors and

[R] = [ϕR(xi , y j )]i× j

where “⊗t ” is the composition sup–t (see Chap. 6).
The previous example has

R = [ϕR(xi , y j )]3×2 =
⎡
⎣ 1.0 1.0

0.8 0.4
1.0 0.8

⎤
⎦

3×2

,

A = [
0.4 1.0 0.6

]
and the composition is the max-min once we have 	 = ∧.

So,

B̃ = A ◦ R = [
0.4 1.0 0.6

] ◦
⎡
⎣ 1.0 1.0

0.8 0.4
1.0 0.8

⎤
⎦ = [

0.8 0.6
]
,

that is,

B̃ = 0.8

y1
+ 0.6

y2
.

Our objective now is to use the generalized modus ponens to model situations
where the attributes may be modified. For example, in the case “banana”, if it is
observed that its color is almost yellow, this color may be considered yellow slightly
modified. In cases like this we use the operators called modifiers.

4.5 Linguistic Modifiers

As its name suggests, linguistic modifiers, are frequently used to change attributes,
that is, modeling adverbs. Fuzzy set theory, when combined with the generalized
fuzzy modus ponens, helps in the production of fuzzy sets that represent attributes of
linguistic variables. In this case, the linguistic modifiers are called fuzzy modifiers.

Definition 4.6 (Fuzzy modifier) A fuzzy modifier m over U is a map defined on
F(U ) with values on F(U ) :

m : F(U ) −→ F(U ). (4.7)

The main fuzzy modifiers are:

(i) Expansive if, for all A ∈ F(U ), A ⊆ m(A), that is, ϕA(x) ≤ ϕm(A)(x);
(ii) Restrictive if, for all A ∈ F(U ), A ⊇ m(A), that is, ϕA(x) ≥ ϕm(A)(x).

http://dx.doi.org/10.1007/978-3-662-53324-6_6
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The most commonly used fuzzy modifiers are of power type. A modifier is a
power type if for each A ∈ F(U ) we have

ms(A) := (A)s,

that is,
ϕm(A)(x) = (ϕA(x))s,

for some s ∈ [0,∞).

We can observe that if s < 1 then ms is expansive and if s > 1 then ms is
restrictive, since ϕA(x) ∈ [0, 1].
Example 4.7 Consider the fuzzy set of young individuals defined by the membership
function

ϕY (x) =
⎧⎨
⎩

1 if x ≤ 25(
1 + x − 25

5

)−2

if x > 25
.

When we apply fuzzy modifiers on primary terms like the adjective “young”, we
define new fuzzy terms like “very young”. Thus, if we define for “very young” the
fuzzy subset V Y , whose membership function is given by

ϕV Y (x) = ϕm(Y )(x) = (ϕY (x))2,

we have the modifier m(A) = (A)2 and, for an individual whose age is x = 30,
his/her membership degree to the “young” set is ϕY (30) = 0.25 while for the “very
young” set we have ϕV Y (30) = 0.252 = 0.0625 < ϕY (30).

For a more complete study, the reader may consult [7, 14].

Example 4.8 Let us return to the “banana” example, which motivated the study of
this section.

Rule: “If the banana is yellow, then it is ripe”
Fact: “The banana is yellow”

Conclusion: “The banana is ripe”

Now the idea is to rewrite the conditional

“If the banana is yellow then it is ripe”

in the form
“If X is A then Y is B”,

and then obtain the relation R, given by an implication function, whose membership
function is
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ϕR(x, y) = (ϕA(x) =⇒ ϕB(y)).

The concept “yellow” is represented here by a fuzzy set that is obtained from a set
of coloration which shows different types of yellow. That is, various yellow colors
are not equal. We can describe the concept of yellow by a membership function
obtained by the color spectrum that goes from green to yellow, whose wave-length λ
varies between 530 and 597 nm. We use for the shade associated with the yellowness
of a banana the difference between its wave-length and the green one 530 nm. So,
the membership function that defines “yellow banana” can be given by:

ϕA(x) =
{ x

60
if 0 ≤ x ≤ 60

1 if 60 < x ≤ 67
.

This memberships supposes that for x between 60 and 67 nm, the yellow shades are
indistinguishable and therefore in this interval the membership degree to the fuzzy
set “yellow” will be 1 (see Fig. 4.1).

Modeling of the term “ripe banana” is related to the percentage of sugar in the fruit.
Experts say that a banana is ripe for sure when the sugar concentration is between 19
and 25 %. A way to detect the sugar level is the human palate. For our purposes, the
membership function of the fuzzy set “ripe banana” can be given by (see Fig. 4.2).

ϕB(y) =
{ y

19
if 0 ≤ y ≤ 19

1 if 19 < y ≤ 25
.

Fig. 4.1 Membership
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Now let us suppose that the term “almost yellow” is modeled by a fuzzy set A∗,
that is obtained by a map of an expansive fuzzy modifier to the fuzzy subset A:

ϕA∗(x) = ϕm(A)(x) = (ϕA(x))s with s ≤ 1.

Lastly, to obtain the output B∗ that indicates the term “almost ripe”, we will adopt
a generalized modus pones with the Wu’s implication and the minimum t-norm:
x 	 y = x ∧ y.

So, B∗ = R(A∗), whose membership function is given by

ϕB∗ (y) = ϕR(A∗)(y) = ϕRm(A)(y) = sup
x

[
ϕR(x, y) ∧ ϕm(A)(x)

]
= sup

x

[
(ϕA(x) =⇒ ϕB(y)) ∧ ϕm(A)(x)

]

= max

{
sup

ϕA(x)≤ϕB (y)

[
ϕm(A)(x) ∧ 1

]
, sup
ϕA(x)>ϕB (y)

[
(1 − ϕA(x)) ∧ ϕB(y) ∧ ϕm(A)(x)

]}

= max

{
sup

ϕA(x)≤ϕB (y)

(ϕA(x))s , sup
ϕA(x)>ϕB (y)

[
(1 − ϕA(x)) ∧ ϕB(y) ∧ (ϕA(x))s]}

= max

{
sup

ϕA(x)≤ϕB (y)

(ϕA(x))s , sup
ϕA(x)>ϕB (y)

(1 − ϕA(x)) ∧ ϕB(y)

}

= max
{
(ϕB(y))s , (1 − ϕB(y)) ∧ ϕB(y)

} = (ϕB(y))s .

Therefore,
ϕB∗(y) = (ϕB(y))s ≥ ϕB(y), for s ∈ (0,1].

Notice that R(A) = B (s = 1) . The derivation above is valid because I m(ϕA) =
[0, 1], that is, A is normal. This hypothesis is necessary [7], because otherwise, the
derivation would not be valid. See Exercise 4.8 (b) with data from Example 4.6.

In set-theoretic language, we have

B∗ = m(B) ⊃ B.

The fact that B is contained in m(B) means that a banana that is almost ripe will
always be less than ripe (Fig. 4.3). If a yellow banana is ripe, then a less yellow
banana will be less ripe. The conclusion given by the set B∗ “almost ripe” or “less
ripe” can be seen in Fig. 4.3b.

To conclude this example, let us explore a little more the condition B∗ = m(B).
Notice that

R(m(A)) = R(A∗) = B∗ = m(B) = m(R(A)),

or in diagram form this can be seen in Fig. 4.4. The fact that R(m(A)) = m(R(A))

indicates that the diagram commutes and means that the modified output of A is the
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Fig. 4.3 Modified fuzzy sets

Fig. 4.4 Commutation
diagram of R and m A

m(A)

R(A)
R

R(m(A)) = m(R(A))

mm

R

same as the output modification of A. For our example, the commutativity of the
above diagram means that the modification degree undergone by banana maturation
is the same modification degree of its shade. In fuzzy logic, the commutativity of the
diagram is still not explored very much and the reader is invited to investigate such
property both from a theoretical standpoint as well as in applications.

Exercise 4.10 Redo the Example 4.8 considering the power modifier with s > 1
and verify for this case whether R(m(A)) = m(R(A)) holds. Next, use other impli-
cations and t-norms to obtain new output fuzzy sets B∗.

4.6 Independence and Non-interactivity

This section briefly introduces the concept of possibilistic non-interactivity intro-
duced by Zadeh [15], which is closely related to probabilistic independence. The
term “possibilistic” is used here as a reference to “membership degree”. This con-
cept will be formalized in the next chapter in Sect. 7.1.3.

There are currently a large number of researchers interested in interactivity and
non-interactivity, with applications in many fields (see [16–19]). Our main goal
here is in how this concept is linked to modus ponens. Intuitively, independence is
associated to the idea of “noninterference” while interactivity is linked to “mutual
action” between two or more things. For example, two chemical substances are non-
interactive if their particles can be identified when we look at them separately and
then jointly. For example, consider water and oil.

http://dx.doi.org/10.1007/978-3-662-53324-6_7
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Both independence and non-interactivity between two objects strongly depend
on what we want to measure, as well as the measurement adopted. For example, in
the mixture of two chemical substances we may be interested in changes in density
first seen separately and then jointly. On the other hand, we may be interested in the
color change, separately and jointly. The density may be associated to the probability
while the color may be associated to the membership, or possibility.

The comment above illustrates that in the same experiment (the mixture of two
substances) many studies might be done on density and color, and for each of them,
we should adopt appropriate tools. In this case, probability is used to measure density
and possibility is used to measure color. In order to draw a parallel with the theme
that we will study, we next present the concept of probabilistic independence and
non-interactivity.

4.6.1 Probabilistic Independence and Non-interactivity

We will limit ourselves to just the discrete case. The continuous case is analogous
by replacing the probability distribution with the probability density function. Let X
and Y be two discrete random variables. Suppose that P(X,Y ) is the joint probability
distribution of the random vector (X, Y ), we know that [7, 20]:

(p1) The marginal distributions of X and Y are given, respectively, by

PX (x) =
∑

y

P(X,Y )(x, y) and PY (y) =
∑

x

P(X,Y )(x, y);

(p2) X and Y are non-interactive, probabilistically, if

P(X,Y )(x, y) = PX (x)PY (y)

for all pairs (x, y). Otherwise, they are called interactive [7];
(p3) The conditional distributions of X and Y are given, respectively, by

PX |Y (x |y) = P(X,Y )(x, y)

PY (y)
⇔ P(X,Y )(x, y) = PX |Y (x |y)PY (y)

if PY (y) �= 0 and

PY |X (y|x) = P(X,Y )(x, y)

PX (x)
⇔ P(X,Y )(x, y) = PY |X (y|x)PX (x)

if PX (x) �= 0 ;
(p4) X and Y are independent, probabilistically, if

P(X |Y )(x |y) = PX (x) and P(Y |X)(y|x) = PY (y)
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for all pairs (x, y). Otherwise, they are called dependent.

Of course the concepts of independence (p4) and probabilistic non-interactivity (p2)
are equivalent if the marginal do not cancel themselves. This fact is the consequence
of the mathematical operation “multiplication” used to model such concepts.

However, there are authors who do not agree that we have an equivalence between
(p2) and (p4) and instead use more general mathematical operations to represent
these concepts. These operations are known as copula and have close relations to
t-norms. As we already know, the operation “multiplication” used in (p2) and (p4)
is a particular t-norm. A general result that relates the joint probability distribution
with the marginal via copulas is due to Sklar [5].

4.6.2 Possibilistic Independence and Non-interactivity

Here the mathematical objects are fuzzy sets instead of random variables. Conse-
quently, possibility distributions as used here are synonymous to membership func-
tion. Unlike the probabilistic case, where the most common copula is the product,
in the fuzzy case the most common operator to deal with the non-interactivity is the
minimum. However, in this text we will use a general t-norm to mathematically deal
with the involved concepts.

Suppose that ϕ(A,B) is a possibility distribution (see Definition 7.5) of the uni-
versal set U × V of the fuzzy sets A and B. That is, ϕ(A,B)(x, y) ∈ [0, 1], for x ∈ U
and y ∈ V .

( f1) Reference [19] The marginal distributions of possibilities of A and B are
respectively given by

ϕA(x) = sup
y

ϕ(A,B)(x, y) and ϕB(y) = sup
x

ϕ(A,B)(x, y).

( f2) A and B are possibilistically non-interactive, according to the 	 t-norm, if

ϕ(A,B)(x, y) = ϕA(x)	ϕB(y),

for all pair (x, y). In particular, A and B are called non-interactive if 	 is the
minimum t-norm, that is

ϕ(A,B)(x, y) = ϕA(x) ∧ ϕB(y),

or equivalently [(A, B)]α = [A]α × [B]α.
( f3) The distributions conditional possibilities of A and B, according to the 	

t-norm are respectively, given by the formulas

ϕ(A,B)(x, y) = ϕ(A|B)(x |y)	ϕB(y)

http://dx.doi.org/10.1007/978-3-662-53324-6_7
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and
ϕ(A,B)(x, y) = ϕ(B|A)(y|x)	ϕA(x)

for all (x, y).
( f4) A and B are possibilistically independent if

ϕ(A|B)(x |y) = ϕA(x) and ϕ(B|A)(y|x) = ϕB(y).

for all (x, y). Otherwise, they are possibilistically dependent.

Unlike the probabilistic case, non-interactivity is not equivalent to independence.
Independence implies non-interactivity. However, the converse is not generally true.
It is interesting to notice that in both cases - probabilistic and possibilities - the
marginals are related to the joint distribution by similar formulas except that in the
probabilistic case we use the sum, while for the possibilistic case we use sup instead
of sum.

4.6.3 The Conditional Distributions and Modus Ponens

The conditional rule
R : If x is A then y is B

in the modus ponens may be interpreted as “y is B with degree ϕB(y), given that x
is A with degree ϕA(x)”. From this point of view, the membership function ϕR that
represents the rule R is a typical distribution of conditional membership, that is,

ϕR(x, y) = (ϕA(x) ⇒ ϕB(y)) = ϕB|A(y|x). (4.8)

With this interpretation, we have a formula to obtain conditional distribution, that
is, for a causality logical rule, we have a way to obtain its membership conditional
distribution. For that, we just have to know the fuzzy implication to be adopted and
from this, use formula (4.8). So, from the modus ponens, formula (4.5) becomes

ϕR(A)(y) = sup
x

(ϕB|A(y|x)	ϕA(x)). (4.9)

Extrapolating this idea for the generalized modus ponens, we can say that
ϕB∗(y) = ϕR(A∗)(y) is the possibility distribution of B when we observe A∗ and
(4.6) becomes

ϕR(A∗)(y) = sup
x

(ϕB|A(y|x)	ϕA∗(x)). (4.10)

The interested reader might want to consult [21–23].
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Thus, we have a way to obtain the conditional distribution ϕB|A(y|x) using (4.8).
However, in general, we do not have a formula that give us the conditional distribu-
tions from the marginals. Moreover, it is worth noticing that the conditional rule

R : “if x is A then y is B” (4.11)

is not always causal as is the case of fuzzy controllers (see Chap. 5). The relation
R associated with fuzzy controllers represents the Cartesian product, that is, each
pair (x, y) is an element of the Cartesian product. The relation R above is usually
modeled by the minimum t-norm. In this case ϕR may be interpreted as the joint
distribution. This was initially suggested by Zadeh [15].

Thus, we have that (4.11) is given by

ϕR(x, y) = ϕ(A,B)(x, y) = ϕA(x)	ϕB(y), (4.12)

suggesting non-interactivity between the fuzzy sets A and B, according to the 	
t-norm. Specifically in Mamdani’s method (Chap. 5), we have an assumption in (4.12)
of non-interactivity where 	 = ∧. That is Mamdani uses (4.12) for fuzzy controllers
with 	 = ∧ which means that it is assuming non-interactivity.

Exercise 4.11 Verify that if A and B are crisp, then they are non-interactivity if and
only if they are possibilistically independent.

Exercise 4.12 Check that possibilistic independence is equivalent to the non-
interactive if the adopted t-norm is the product.

Exercise 4.13 Verify that if A and B are non-interactive and 	 = ∧ in (4.9), then

ϕB|A(y|x) =
{

ϕB(y) if ϕB(y) < ϕA(x)

α ∈ [ϕA(x), 1] if ϕB(y) ≥ ϕA(x)
.

Exercise 4.14 Give examples, if possible, of fuzzy sets A and B with:

(a) Discrete and continuous fuzzy numbers such that B is possibilistically indepen-
dent of A, when ϕB|A(y|x) is given by the modus ponens, that is, when

ϕB|A(y|x) = (ϕA(x) ⇒ ϕB(y)).

(b) Noninteractivity where B depends possibilistically on A.

Exercise 4.15 Consider the fuzzy sets from Example 4.6.

(a) If the implication is the Gödel implication and 	 = ∧, check to see if the
distributions of R(A) and B match;

(b) Do the same as in (a) for Lukasiewicz’s implication and 	 = ∧;
(c) Do the same an in (a) for Goguen’s implication and the product t-norm.

http://dx.doi.org/10.1007/978-3-662-53324-6_5
http://dx.doi.org/10.1007/978-3-662-53324-6_5
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Chapter 5
Fuzzy Rule-Based Systems

There are and there will be many tasks that men can do easily,
which that is beyond any machine and any logical system that
we can conceive of today.

(Lotfi A. Zadeh)

Abstract This chapter explores fuzzy logic controllers from the point of view of
its applications. The chapter covers the fuzzy logic controllers of Mamdani and
Takagi-Sugeno-Kang. These are illustrated with applications in biology, ecology,
HIV dynamics, and pharmacological decay.

All of us agree intuitively with Zadeh’s thought as stated above. However, as it is well
known, it was his first studies about fuzzy set theory that originated what nowadays
is called fuzzy logic, a subject with many applications in execution and control of
tasks that in many domains is challenging human abilities to perform tasks.

Human actions control many systems in the world using inaccurate information.
Each individual works as a “black box”; receives information that is interpreted
according to her or his parameters and then decides which action should be taken.
For a computer procedure, the control and the execution of tasks must follow a
sequence of linguistic “instructions” translated by a set of rules that can be decoded
by the controller. The following example illustrates the above remark.

Example 5.1 An expert is able to wash clothes until they are clean (according to her
or his concept of clean). The following scheme (Fig. 5.1) represents, in a simple way,
the actions of the expert (human controller) in the execution of the laundry task. In
this example, we can observe a possible way to automate this task. The rules and the
orders in which they must be followed can be given by Frame 5.1.

An attempt to reproduce the strategy of a human controller in his or her task
execution is made by a Fuzzy Controller which is a typical case of a Fuzzy Rule-
Based Sytem (FRBS), that is, a system that makes use of the fuzzy logic to produce
outputs for each fuzzy input. Many examples of this process can be found in various
texts [1–4].
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Fig. 5.1 A scheme for a
human control system to do
laundry Dirty

clothes

“Condition”
Level of dirt

Type of
clothes

“Action”

Wash

Decision
maker

New level
of dirty

Clean
clothes

R1: If the weight of the clothes are “heavy”
and the dirt is “very dirty”, then wash
it “for a long time”.

or
R2: If the weight of the clothes are “heavy”

and the dirt is “lightly dirty”, thenwash
it “in average time”.

or
R3: If the weight of the clothes are “light”

and the dirt is “lightly dirty”, thenwash
it “very briefly”.

or
R4: If the weight of the clothes are “light”

and the dirt is “very dirty”, then wash
it “briefly”.

Frame 5.1: Rules for an automation system to wash clothes

The modus ponens seen in Chap. 4 is an example of fuzzy rule-based system.
The particularity of the various fuzzy controllers is in their interpretation. In the
first FRBS applications that arose, each output represented the “action” relative
to the “condition” or to the FRBS input. When the inputs and outputs have this
connotation the FRBS are called Fuzzy Controllers. With the aid of the methods
that we saw in approximate reasoning, in Chap. 4, it becomes possible to translate
linguistic terms that are regularly used by experts, whose goal is to control some
tasks, into mathematical formulas, enabling the automation of some tasks. This is one
fundamental distinction between fuzzy control theory and classical control theory.
Classical control has the aim of developing strategies for a dynamical system to
optimize a given criterion, or in a more technical language, a cost functional. In
fuzzy controllers the tasks are controlled using terms of common language, related
to some variable of interest. It is in this context that linguistic variables play an
important role in this methodology. The linguistic terms translated by fuzzy sets are

http://dx.doi.org/10.1007/978-3-662-53324-6_4
http://dx.doi.org/10.1007/978-3-662-53324-6_4
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used to translate the knowledge base into a collection of fuzzy rules bases, called
Fuzzy Rule Bases. From this rule base we can obtain a fuzzy relation, which will
produce the output from input.

5.1 Fuzzy Rule Bases

A fuzzy rule base has the form

R1: “Fuzzy proposition 1”
or

R2: “Fuzzy proposition 2”
............................

or
Rr : “Fuzzy proposition r”

Frame 5.2: General form of a fuzzy rule base

In systems based on fuzzy rules each fuzzy proposition has the form

If “state” then “answer”

where each “state” and each “answer” is a fuzzy value taken on by linguistic vari-
ables. The fuzzy sets that compose the “state” are called antecedents. On the other
hand, the fuzzy sets that compose the “answer” are called consequents. The charac-
teristic of fuzzy controllers, as we have already observed, is that each rule has the
form

If “condition” then “action”.

Example 5.1 above supposes that each task is executed by a human being, which
requires no mathematical tool. This is not the case with fuzzy controllers. The vari-
ables of interest are: clothes (r) to be washed; its level of dirt (s) and the adopted
control (e), having classifications “heavy load” or “light load” for the clothes, and
“lighty dirty” or “very dirty” for the dirt, “for a long time”, “very briefly” or “aver-
age time” for the action of washing process that must be modeled by fuzzy sets. In
a similar way to that of Chap. 4, each one of the classifications of the variables that
are in the rule base are modeled by a fuzzy set. Fuzzy logic is the other part used to
obtain the fuzzy relation that synthesizes the mathematical informations in the base
rule.

The rule base fulfills the role of “translate” mathematically the informations that
form the knowledge base of the fuzzy system. In a certain way, we can say that the
more accurate such results are, the less fuzzy (more crisp) will be the fuzzy relations
that represents the knowledge base. In an ideal situation such relations are functions
in the classical way.

The following section deals with the methodology of the fuzzy controllers and
their associated basic modules.

http://dx.doi.org/10.1007/978-3-662-53324-6_4
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5.2 Fuzzy Controller

Fuzzy Controllers consists of a fuzzy system, where the inputs represent “conditions”
while the outputs are “actions”. However, if the input is crisp (an element of Rn), we
expect that the output is also crisp (an element of Rm). In that case, a fuzzy system
is a function of Rn into R

m built in an specific way. The following modules indicate
a process for the construction of this function.

5.2.1 Fuzzification Module

Fuzzification is the step where the inputs of the system are modeled by fuzzy sets with
their respective domains. It is this step that great importance is given to experts in
the domain of the modeled phenomenon. Together with the experts, the membership
functions are formulated for each fuzzy set involved in the process. If the input is
crisp, it will be fuzzyfied by its characteristic function.

5.2.2 Base-Rule Module

The Rule-Base Module may be considered as a module forming part of the “kernel”
of the fuzzy controller. It consists of the fuzzy propositions and each one of these
propositions is described by the linguistic form

If x1 is A1 and x2 is A2 and . . . and xn is An

Then u1 is B1 and u2 is B2 and . . . and um is Bm

according to information gathered from the expert. It is at this point that the variables
and its linguistic classifications are delineated and subsequently modeled by fuzzy
sets, that is, its membership functions. Methods to obtain those membership functions
are many: intuitive appeal, curve fitting, interpolation and even neural networks
[1, 4, 5].

5.2.3 Fuzzy Inference Module

The Fuzzy Inference Module, using fuzzy logic techniques, translates fuzzy proposi-
tion into fuzzy relations. It is this module where we define which t-norms, t-conorms
and inference rules, including fuzzy implications are used to obtain the fuzzy rela-
tion that models the rule base. This module is as important as the rule base module.
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Fuzzyfication

Module

Rule
Base

Fuzzy
Inference
Module

Defuzzyfication

Module

Fig. 5.2 General sketch of a fuzzy controller

Basically, it is from this that the success of the fuzzy controller depends since it will
give the fuzzy output (control) to be utilized by the controller from each fuzzy input.

5.2.4 Defuzzification Module

The last module is Defuzzification. In stochastic theory is common to indicate the
mathematical expectation (or mean) as the number that best represents a random
variable (or distribution of data). Other values such as mode and the median are also
used to represent the centralization of such distributions. In the fuzzy set theory, it
is the defuzzification process that allows us to represent a fuzzy set by a crisp value
(real number).

Figure 5.2 represents a general sketch of a fuzzy controller. The rule base is math-
ematically modeled by a fuzzy relationR. The membership function ofR is given by

ϕR(x, u) = �(ϕRi(x, u)), with 1 ≤ i ≤ r, (5.1)

where � is a t-conorm and Ri is a fuzzy relation obtained from rule i, whose mem-
bership function ϕRi is obtained by various means – for example, by the generalized
modus ponens. The values x and u represent the state and the control, respectively.

The inference that represents the control B for a state A is given by an inference
composition rule

ϕB(u) = sup
x

(ϕR(x, u) � ϕA(x)), (5.2)

where � is a t-norm. We illustrate how to obtain the relation R in a similar way as
was done for the generalized modus ponens, as we can see in Frame 5.3.

The first published article in automation having to do with control tasks that was
based in fuzzy logic was proposed by Mamdani and Assilian [6]. Their experiments
dealt with the control of a steam engine. They based their controls on the fact that
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R1: “If x1 is A11 and · · · and xn is A1n then u1 is B11 and · · · and um is B1m”

or

R2: “If x1 is A21 and · · · and xn is A2n then u1 is B21 and · · · and um is B2m”

or
.
.
.

.

.

.

or

Rr : “If x1 is Ar1 and · · · and xn is Arn then u1 is Br1 and · · · and um is Brm”

Fact: A = x1 is A1 and x2 is A2 and · · · and xn is An

Conclusion: u is B = R(A)

Frame 5.3: Illustration of the relation R

human operators express control strategies in linguistic form and not in a mathe-
matical way. This research influenced others to use fuzzy controllers in the control
theory. Nowadays, fuzzy controllers are used in electrical appliances, Japan was
the first country to invest extensively in the “fuzzy industry”. The next section will
illustrate Mamdani inference method.

5.3 Mamdani Inference Method

Mamdani proposed, from the theoretical point of view, a binary fuzzy relation M
between x and u to mathematically model the rule base. The Mamdani method
is based on the inference composition rule max–min according to the following
procedure.

• Each rule Rj from the fuzzy rule base, the conditional “if x is Aj then u is Bj” is
modeled by the operation ∧ (minimum). This has been wrongly called Mamdani’s
implication. We say “wrongly called Mamdani’s implication” because ∧ is not a
fuzzy implication since it does not preserve the classical implication table.

• It uses the t-norm ∧ (minimum) for the logical conective “and”;
• For the logical connective “or” the t-conorm∨ (maximum) is adopted that connects

the fuzzy rules of the rule base.

Formally, the fuzzy relation M is the fuzzy subset of X × U whose membership
function is given by
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ϕM(x, u) = max
1≤j≤r

(ϕRj (x, u)) = max
1≤j≤r

[ϕAj (x) ∧ ϕBj (u)], (5.3)

where r is the number of rules that compose the rule base and, Aj and Bj are the
fuzzy subsets of the rule j. Each one of the values ϕAj (x) and ϕBj (u) is interpreted as
the degree that x and u are in the fuzzy subsets Aj and Bj, respectively. Thus, M is
nothing more than the union of the fuzzy Cartesian products between the antecedents
and the consequents of each rule.

There are various types of fuzzy controllers, Mamdani–Assilian being one of
the most important. Another important fuzzy controller is the Takagi–Sugeno [7]
controller which will be discussed after we present the Mamdani–Assilan controller.

Observations:

(1) It is common to find in the literature the initialsMISO (multiple inputs and single
output) and MIMO (multiple inputs and multiple outputs).

(2) The fuzzy subsets Aj and Bj that appears in the formula (5.3) can represent the
fuzzy Cartesian product of the fuzzy subsets Aji and Bjk . For example, it might
occur that

ϕAj (x) = ϕAj1(x1) ∧ ϕAj2(x2) and ϕBj (u) = ϕBj1(u1) ∧ ϕBj2(u2),

so it is a MIMO fuzzy controller with two inputs and two outputs.

The next example illustrates the Mamdani inference method for the case of a
fuzzy system with two inputs and a single output.

Example 5.2 Consider a fuzzy controller with two inputs and a single output, whose
rule base is given in Frame 5.4.

R1: If x1 is A11 and x2 is A12 then u is B1

or
R2: If x1 is A21 and x2 is A22 then u is B2

Frame 5.4: Rule base for a controller with two inputs and a single output

For each t = (x1, x2, u), we have

ϕM(t) = {ϕA11 (x1) ∧ ϕA12 (x2) ∧ ϕB1 (u)} ∨ {ϕA21 (x1) ∧ ϕA22 (x2) ∧ ϕB2 (u)}
= max

{
ϕA11 (x1) ∧ ϕA12 (x2) ∧ ϕB1 (u),ϕA21 (x1) ∧ ϕA22 (x2) ∧ ϕB2 (u)

}

representing the fuzzy relation obtained from the rule base by the Mamdani method.
Now, for a given fuzzy set with input A = A1 × A2, where A1 and A2 are two fuzzy

numbers, the output fuzzy set, which represents the control to be adopted for A by
the Mamdani method, is given by B = M ◦ A, whose membership function is
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ϕB(u) = (ϕM◦A)(u) = sup
x

{ϕM(x, u) ∧ ϕA(x)}.

Since
A = A1 × A2,

then
ϕA(x1, x2) = ϕA1(x1) ∧ ϕA2(x2).

Therefore,

ϕB(u) = sup
x

{ϕM(x, u) ∧ ϕA(x)}
= sup

(x1,x2)

{ϕM(x1, x2, u) ∧ [ϕA1(x1) ∧ ϕA2(x2)]}
= sup

(x1,x2)

{[(ϕA11 (x1)∧ϕA12 (x2)∧ϕB1 (u)) ∨
(ϕA21 (x1)∧ϕA22 (x2)∧ϕB2 (u))]∧[ϕA1 (x1)∧ϕA2 (x2)]}

= sup
(x1,x2)

{[ϕA1 (x1)∧ϕA11 (x1)]∧[ϕA2 (x2)∧ϕA12 (x2)]∧ϕB1 (u)} ∨
sup

(x1,x2)

{[ϕA1 (x1)∧ϕA21 (x1)]∧[ϕA2 (x2)∧ϕA22 (x2)]∧ϕB2 (u)}
= ϕBR1

(u) ∨ ϕBR2
(u).

where BR1 and BR2 are the partial outputs due to the rules R1 and R2, respectively.
We can observe, from the formula above, that the output from the Mamdani method
results from the union between the partial outputs of each rule. To obtain each partial
output, we proceed in the following manner. Perform an intersection of each input
with each antecedent of the rule and next, calculate the Cartesian product (distinct
universes) of these intersections with the rule consequents. The projection of this
Cartesian product onto the space U is the partial output for the fuzzy set of input A.

Graphically we have Fig. 5.3.
The general output is given by the union of the partial outputs according to Fig. 5.4.
Notice that the last graphic of Fig. 5.4 represents the membership function ϕB of

the control B that was obtained by the conective ∨, which is the maximum t-conorm.

The following example is a particular case of the last one in the sense that now
the input A is crisp.

Example 5.3 For the last example consider the case where the input fuzzy set A is
crisp and whose membership function is concentrated at a point (x0, y0) ∈ R × R.

Thus,

ϕA(x, y) =
{

1 if (x, y) = (x0, y0)

0 if (x, y) 	= (x0, y0)
,

that is,
A = A1 × A2
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Fig. 5.3 Partial outputs in the Mamdani method

Fig. 5.4 Final output of the Mamdani fuzzy controller

where

ϕA1(x) =
{

1 if x = x0

0 if x 	= x0
and ϕA2(y) =

{
1 if y = y0

0 if y 	= y0
.

In this case, the fuzzy control B is obtained according to the graphic given by
Fig. 5.5.

The final output B is represented in Fig. 5.6.

Example 5.3 shows that the output from the fuzzy controller given by the Mamdani
inference method, is a fuzzy subset even for the case with a crisp input. Thus, when
it is necessary to have a real number final output we need to defuzzify the output
fuzzy subset to obtain a crisp value that represents it.

5.4 Defuzzification Methods

A fuzzy controller produces fuzzy output that indicates the control to be adopted.
However, if the input is a real number, it is expected that the related output is also a
real number. But, in general, it does not occur in fuzzy controllers, because even for a
crisp input, the output is fuzzy. Thus, we must indicate a method to defuzzificate the
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Fig. 5.5 Partial outputs of the Mamdani’s fuzzy controller for Example 5.3

Fig. 5.6 Final output of the Mandani’s fuzzy controller for the Example 5.3

output and obtain a real number that will finally indicate the control to be adopted.
There are many methods of defuzzification that can be adopted. Any real number that
somehow can reasonably represent the fuzzy set B can be called a defuzzification
of B. Here, we will present the most common ones.

5.4.1 Centroid or Center of Mass or Center of Gravity (G(B))

This defuzzification method is similar to the arithmetic mean for frequency distri-
butions of a given variable, with the difference that here the weights are the values
ϕB(ui), which indicates the degree of compatibility of the value ui with the concept
modeled by the fuzzy set B. Among all the methods of defuzzification, this one is
preferred, even though it might be the most complicated one. Equations (5.4) and
(5.5) refer to the discrete domain and continuous domain, respectively. The Fig. 5.7
shows the graphic of the defuzzificator G(B).

G(B) =

n∑
i=0

uiϕB(ui)

n∑
i=0

ϕB(ui)

. (5.4)
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Fig. 5.7 Defuzzificator
center of gravity G(B)

G(B) =

∫
R

uϕB(u)du∫
R

ϕB(u)du
. (5.5)

5.4.2 Center of Maximum (C(B))

This is a radical procedure, in the sense that it takes into account just the regions
of major possibility among the possible values of the variable that models the fuzzy
concept involved. In that case, we have:

C(B) = i + s

2
, (5.6)

where

i = inf{u ∈ R : ϕB(u) = max
u

ϕB(u)}
and

s = sup{u ∈ R : ϕB(u) = max
u

ϕB(u)}. (5.7)

Figure 5.8 illustrates this defuzzificator

5.4.3 Mean of Maximum (M(B))

For discrete domains it is common to use as defuzzificator the mean of maximum
whose definition is given by

M(B) =
∑

ui

n
, (5.8)
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Fig. 5.8 Defuzzificator
center of maximum C(B)

where n is given and ui, with 1 ≤ i ≤ n, are the values with highest membership to
the fuzzy set B.

Fuzzy controllers, as we have mentioned, are composed of four modules: fuzzifi-
cation, rule base, inference and defuzzification. The method of Mamdani is a typical
case. However, for some situations, the module of defuzzification might be sup-
pressed. This is the case of Takagi–Sugeno–Kang’s inference method that we will
describe next.

5.5 Takagi–Sugeno–Kang Inference Method (TSK)

The basic differences between the Takagi–Sugeno–Kang inference method (now
called TSK) and of Mamdani is in the way we write the consequent of each rule and
in the procedure of defuzzification to obtain the general output of the system. With
the TSK method, the consequent of each rule is explicitly given by a function of the
input values of this rule.

As an illustration of this method we can imagine a rule base with r fuzzy rules,
where each one of them has n inputs (x1, x2, . . . , xn) ∈ Rn, and an output u ∈ R,
according to Frame 5.5, which Aij are fuzzy subsets of R.

The general output of the method is given by

u = fr(x1, x2, . . . , xn)

=

r∑
j=1

ωjgj(x1, x2, . . . , xn)

r∑
j=1

ωj

=

r∑
j=1

ωjuj

r∑
j=1

ωj

, (5.9)

where the weights ωj are given by

ωj = ϕAj1(x1) � ϕAj2(x2) · · · � ϕAjn(xn),
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R1: If x1 is A11 and x2 is A12 and · · · and xn is A1n then u is u1 = g1(x1, x2, . . . , xn)

or

R2: If x1 is A21 and x2 is A22 and · · · and xn is A2n then u is u2 = g2(x1, x2, . . . , xn)

or
.
.
.

or

Rr : If x1 is Ar1 and x2 is Ar2 and · · · and xn is Arn then u is ur = gr(x1, x2, . . . , xn)

Frame 5.5: Rule base to illustrating the TSK method

and � is a t-norm. The weight ωj corresponds to the contribution of Rj to the general
output. The most common cases of t-norms are the product and the minimum.

For the case of two rules, each one with two input variables and one output, the
TSK method is illustrated in Frame 5.6. Supposing that � is the minimum t-norm,
we have as general output, representing the control for the actions x1 and x2, the
value of u given by the equation:

R1: If x1 is A11 and x2 is A12 then u is u1 = g1(x1, x2)

or

R2: If x1 is A21 and x2 is A22 then u is u2 = g2(x1, x2)

Frame 5.6: Rule base of two rules for the TSK method

u = ω1u1 + ω2u2

ω1 + ω2
= ω1g1(x1, x2) + ω2g2(x1, x2)

ω1 + ω2
= fr(x1, x2), (5.10)

where ωi = min[ϕAi1(x1),ϕAi2(x2)] corresponds to the weight of rule Ri in the general
output of the process. In the literature, the case that appears most frequently, due to
its efficiency and applicability, is the one which the consequents of each rule are
affine linear functions, that is, each one of the functions gi has the form

gi(x1, x2) = aix1 + bix2 + ci.

This case is commonly called Takagi–Sugeno method (TS).

Example 5.4 Consider a fuzzy controller with two inputs and one output, where the
fuzzy sets involved, Aij, are triangular fuzzy numbers and the outputs of each rule are
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Fig. 5.9 Output of the TSK fuzzy controller for the Example 5.4

given by affine linear functions gi. For each pair of input x0 and y0 Fig. 5.9 depicts
how the output is obtained where the output represents the control to be adopted for
those inputs. For this example, we have the rule base given in Frame 5.7 In this case
the fuzzy control is illustrated in Fig. 5.9 and is given by

R1: If x is A11 and y is A12 then u is u1 = g1(x, y) = a1x + b1y + c1

or

R2: If x is A21 and y is A22 then u is u2 = g2(x, y) = a2x + b2y + c2

Frame 5.7: Rule base for the Example 5.4

u = ω1u1 + ω2u2

ω1 + ω2
= ω1g1(x0, y0) + ω2g2(x0, y0)

ω1 + ω2
.

Example 5.5 Consider the rules in Frame 5.8

R1: If x is low (A1) then y1 = x + 2

or

R2: If x is tall (A2) then y2 = 2x

Frame 5.8: Rule base for the Example 5.5
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Fig. 5.10 Output y and the
rule base of Example 5.5.
The lines “under” the
abscissa axis represents the
membership functions of the
antecedents A1 and A2.
Notice that for “x low” the
general output y is closer to
the line x + 2. On the other
hand, for “x tall” the output
y is closer to 2x

Suppose that the domain is x ∈ [0, 4],

ϕA1(x) = 1 − x

4
and ϕA2(x) = x

4
.

The, the output of the system, using the TS method, is

y = ϕA1(x)y1 + ϕA2(x)y2

ϕA1(x) + ϕA2(x)
= ϕA1(x)y1 + ϕA2(x)y2

= x2

4
+ x

2
+ 2

which is a concave up parable, whose vertex is
(−1, 7

4

)
. Figure 5.10 illustrates the

output (y) and the rule base with the membership functions ϕA1 and ϕA2 . Observe
that those functions are represented under the x − axis.

Exercise 5.1 Consider the rule base

R1 : If x is short (A11) and y is short (A12) then z is tall (B1)

R2 : If x is tall (A21) and y is tall (A22) then z is short (B2),

where the fuzzy sets are triangular: A11 = (1; 2; 3), A12 = (5; 6; 7), B1 = (4; 5; 6),
A21 = (2; 3; 4), A22 = (6; 7; 8) and B2 = (3; 4; 5).

(a) Supposing that the inputs are x = 2.3 and y = 6.8, draw a figure representing
the output obtained by the Mamdani inference method for this given rule base.

(b) Is the output of item (a) a real number or a fuzzy set? If it is a fuzzy set,
defuzzify it. The fuzzy controller simulates a function f whose domain has what
dimension? What is the range?
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Exercise 5.2 Consider the rule base

R1 : If x is (A1) then y is (B1)

R2 : If x is (A2) then y is (B2),

where the fuzzy numbers are triangular: A1 = (0; 1; 2), A2 = (1; 3; 5), B1 =
(2; 3; 4) and B2 = (3; 4; 5). Do the following:

(a) Graphically represent the rule base.
(b) Calculate the output using the Mamdani method if the input is A = A1.
(c) Using item (b), verify that B = B1, where B1 is the consequent of the rule R1.

Exercise 5.3 (a) Redo Example 5.5 and the graphical representations by changing
the consequents to y1 = x + 2 and y2 = 4 − x.

(b) Redo Example 5.5 and the graphical representations by changing the conse-
quents to y1 = 2 − x and y2 = x and considering that the membership function of
A1 is the line that goes through the points (0, 1) and (10, 0) while the membership
function of A2 is the line that goes through the points (0, 0) and (10, 1).

Exercise 5.4 Redo the last exercise changing the membership functions to trape-
zoids. In particular let fuzzy set A1 be given by the trapezoid with major base [0, 3]
and minor base [0, 1] and the fuzzy set A2 is a trapezoid whose major base is [1, 4]
and minor base [3, 4]. Is the output a continuous function? Why or why not?

We have mentioned that fuzzy controllers have the ability to model phenomenon
(process) by using linguistic variables. Suppose that a certain phenomenon of interest
is modeled by a function. If the output of each rule is given by an affine linear function,
we can consider that the function is locally approximated by a line. For example, if
we know that the function is smooth, we can use tangent lines to the function to be
the consequent function of each rule.

It is interesting to observe that if the functions gi of the consequents are constants,
then the two methods (Mamdani and Takagi–Sugeno) produce the same output if
the defuzzification used in the Mamdani’s method is the center of gravity. This is
particularly easy to see in Example 5.4 where the general output is

u = ω1c1 + ω2c2

ω1 + ω2

since in this case we have that a1 = b1 = a2 = b2 = 0. This is also the output in the
Mamdani’s method for this particular case because the membership functions of the
consequents are the characteristic functions of the constants c1 and c2 (verify this!).

We want to stress that the fuzzy controllers have important mathematical prop-
erties such as, for example, the capacity to approximate continuous functions. In
Chap. 6 we will show this fact in greater detail for the Takagi–Sugeno–Kang con-
trollers. We note that TSK controllers might be much more general in the sense that
the functions of each consequent can have fuzzy arguments and the input values
might be fuzzy subsets.

http://dx.doi.org/10.1007/978-3-662-53324-6_6
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Next we present some comparisons between the two methods presented:

(i) The Mamdani method is simpler and more intuitive than the TSK;
(ii) The Mamdani method is less efficient than the TSK if we speak in terms of

speed of computation;
(iii) The Mamdani method has fewer mathematical properties than the TSK;
(iv) Both methods coincides when the consequents are constants and the defuzzifi-

cation method is the centroid.

Nowadays, the theory of fuzzy controllers is quite advanced and there are specific
texts about this subject [2, 4, 8, 9]. We have used fuzzy controllers to compute
coefficients of partial differential equations that represents the temporal and spatial
evolution of some epidemics [10]. From the initial studies of Castanho [11], who uses
fuzzy controllers to classify prostate cancer, Silveira et al [12] developed a computer
program with the objective of helping urologists decide the cancer stage of a patient.
Using the Gleason Scale, clinical status, and the level of PSA, the software gives
the risk (factor) that the tumor might be in some of the following linguistic classes:
locally contained initial stage, locally advanced, and metastatic.

The following section will be dedicated to the applications, some which were
developed by our students, illustrating the potential that the fuzzy controllers have
when used in biomathematics.

5.6 Applications

The following models use the Mamdani and TSK method for the particular case
that the initial conditions (inputs) are crisp, with the goal of showing the power
of the fuzzy controller methodology. The efficiency, efficacy, and accuracy of the
applications fundamentally depends on the information provided by experts for the
construction of the fuzzy rule base.

5.6.1 Model 1 – Forecasting the Salinity of an Estuary
in Cananeia and Ilha Comprida

This model was developed by Sobrinho [13] together with the town hall of Ilha
Comprida, using fuzzy controllers. His goal was to forecast the variation of surface
salinity at a given location in Ilha de Cananeia. The input variables were rainfall and
the flow rate from Rio Ribeira de Iguape.

The proposed model estimates the surface salinity variation for up to two days
and over an area of 80 km in radius. This prediction allows the city to inform the
aquaculture employers of the estuary with some antecedence to take appropriate
action. Figure 5.11 illustrates the area of the study on the southern coast of the state
of São Paulo.
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Fig. 5.11 Area of study in
the southern coast of the
state of São Paulo, Brazil

The Problem

The estuary is a lagoon ecosystem that covers three towns located along the southern
coast of state of São Paulo in a region of significant ecological importance due to its
natural state and size. It was classified by IUCN (International Union for the Nature
Conservation) as the third largest estuary in the world with primary productivity
(see in Sobrinho [13]). This estuary is bounded on the north side by the Icapara
sandbar and on the south side by the Cananeia sandbar, both on the Atlantic Ocean.
The supply of fresh water to the estuary is provided by several rivers, the largest
volume coming from the Ribeira river. Its waters enter the estuary on the north side,
through a town by way of a man-made the canal built in the late nineteenth century.
The contribution from the waters of the Ribeira river region was changed in 1978
when a dam was constructed 2 km from the city of Iguape. As a consequence of this
action, the pattern of some environmental variables, such as the surface salinity was
changed.

The Model

The model is based on a system of fuzzy controls using the Mamdani inference
method. The input variables are: rainfall, initial salinity and flow of the Ribeira
river. The output variable is the final salinity. The struture of the model is given in
Fig. 5.12.
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Fig. 5.12 Architecture of the prediction model of salinity in the estuary of Cananeia and Ilha
Comprida

Table 5.1 Classifications used in the salinity model of the Ribeira River, according to the rule base
of the Frame 5.9

Accumulated rain Initial sal. Flow Final sal.

Low = Cb Low = SIb Low = Vb Very low = SFba

Average = Cm Average low = SImb Average = Vm Low = SFb

Average high = Cma Average = SIm Average high = Vma Average low = SFmb

High = Ca High = SIa High = Va Average = SFm

Very high = Cat Very high = Vat

The variables are linguistic and each one of its values is a fuzzy number with
triangular or trapezoidal membership functions (see Fig. 5.13a–c).

Analyzing the data set with the above mentioned variables, it is possible to estab-
lish a knowledge base with linguistic rules relating them, to estimate the value of the
final salinity where this estimation is made by the defuzzification process using the
center of gravity.

Rule Base

Each one of the rules (see Frame 5.9) has the following form:
R4 - If the accumulated precipitation of the region within a 1–3day period is low

and the flow of Ribeira river is high then the final salinity is low.
R23 - If the accumulated precipitation of the region within a 1–3day period is

average high and the initial salinity of the period is average low and the flow of
Ribeira river is low then the final salinity is average low.

Frame 5.9 outlines all the rules (rule base with three inputs and one output) and
Table 5.1 shows the legend for the rule base.

As we did in Example 5.3, here we will illustrate, step by step, the Mamdani
inference method for this application.
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Fig. 5.13 Membership functions – a Rain; b Final and initial salinity and c Flow of the river

Inference

The inference process computes the output variable from the values of the input vari-
ables. The process uses the values of the membership degrees of the input variables
to obtain the value of the membership degree of the output variable.

To illustrate Mamdani inference method for this problem, we will compute as
follows:

• Consider the following input values: rainfall= 23 mm, initial salinity= 23 0/00
1

and flow of the Ribeira river = 1454 m3/s, that is, the initial conditions are crisp;
• Each one of the initial values has a membership degree in relation to fuzzy subsets

that define the three input variables. Thus, the rainfall value 23 mm belongs to the
fuzzy subset “low” with membership degree ϕCb

(23) according to the Fig. 5.13a,
that is, ϕCb

(23) = ϕlow precipitation(23) = 1.

1Symbol that means “for thousand”.
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If accumulated rain and Initial Sal and Flow Then Final Sal
R1 low average low average average low
R2 low average average high average low
R3 low average low average high low
R4 low average low high low
R5 low low high average low
R6 low average very high low
R7 low average low very high average low
R8 low low very high average low
R9 low average low average
R10 low average average average low
R11 low low low low
R12 average average low average low
R13 average average low low average low
R14 average average average average low
R15 average average average high average low
R16 average average low average low
R17 average high low average
R18 average high average average low
R19 average high average high low
R20 average low average low
R21 average low low low
R22 average high average low average low
R23 average high average low low average low
R24 high average low average low
R25 high average low low low
R26 very high average low very low
R27 very high average low low very low
R28 very high low low very low

Frame 5.9: Rule base for forecasting the salinity in the estuary of Cananeia and Ilha
Comprida

The initial salinity value, 23, belongs to the fuzzy subsets “average low” and
“average” (Fig. 5.13b), with membership degree ϕSImb(23) = 0.67 and ϕSIm(23) =
0.25, respectively. The flow value of the Ribeira river, 1454 m3/s belongs to the fuzzy
set“average high”, with membership degree ϕVma(1454) = 0.82 . Each combination
of these sets driven by input values activates some rule of the knowledge base. In
this case 2 rules were fired, namely, R2 and R3 of the rule base (Frame 5.9).

R2 If the accumulated rainfall in the region within a 1–3 day period is low and
the initial salinity of the period is average and the flow of the Ribeira river is
average high then the final salinity will be average low.
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Fig. 5.14 Output of the Mamdani controller without defuzzification

R3 If the accumulated rainfall in the region within a 1–3 day period is low and the
initial salinity of the period is average low and the flow of the Ribeira river is
average high then the final salinity will be low.

The Mamdani inference method aggregates the membership degrees related to
each one of the input values using the minimum t-norm. Thus, for rules R2 and R3,
we have, respectively

R2 : min
{
ϕCb(23),ϕSIm(23),ϕVma(1454)

} = min[1; 0.25 ; 0.82 ] = 0.25 .

R3 : min
{
ϕCb(23),ϕSImb(23),ϕVma(1454)

} = min[1; 0.67 ; 0.82 ] = 0.67 .

The minimum aggregation operation is used for each one of the fired rules. The
membership value obtained by each rule (0.25 for R2 and 0.67 for R3) will be
projected onto the membership function of the output variable of the related rule in a
way that only the values of the output membership that are less or equal to the output
numbers, 0.25 for R2 and 0.67 for R3, are kept (see the dark regions in Fig. 5.14).

The outputs of each of the fired rules in turn are aggregated using the maximum
t-conorm to obtain the general output of the Mamdani controller without defuzzifi-
cation (Fig. 5.14). Finally, using the center of gravity method of defuzzification on
the final fuzzy output, we obtain as crisp output the value 15.2 to represent the final
salinity.
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Table 5.2 Relations between the observed final salinity values and the estimated ones by the fuzzy
model

Precipitation
accumulated (mm)

Salinity initial
(0/00)

Flow river
(m3/s)

Salinity
observed( 0/00)

Salinity
modeled (0/00)

13.6 14 2016 6 3.4

115 30 1163 18 17.7

148 24 763 18 17.6

31 18 1515 15 13.2

3 18 2273 8 7.6

320 26 687 5 3.4

110 20 938 13 14.4

180 18 800 16 15.8

102 25 584 25 23.5

123 30 469 26 24.2

23 23 1454 17 15.2

The Table 5.2 has all the values of the input variables, the values of the observed
salinities and the values of the salinities obtained by the model. The results of the
FRBS were very favorable, according to Sobrinho [13].

Summary and Final Comments

Because the ecosystem is very large, relating input variables with dynamic temporal
patterns, statistical methods become difficult to adopt since the effort to obtain the
data and construct statistical distributions is significant. In fuzzy modeling, with
some data and expert knowledge, it is possible to construct a rule base that allows
us to predict salinity. The rule base can be improved as new data are developed
and/or obtained. The results in this example show the power of fuzzy system in the
modeling ecological phenomena especially where the data and statistical demands
are significant and/or difficult.

The next model uses the Fuzzy Toolbox of Matlab 6.5�, which has implemented
the Mamdani method with defuzzification of the Center of Mass, as well as the TSK
method.

5.6.2 Model 2 – Rate of Seropositive Transfer (HIV+)

Model 2 illustrates the use of fuzzy controllers in the AIDS epidemiological phe-
nomena that is of concern of many public health units in many countries, including
Brazil. The methodology that we present below was part of Jafelice’s thesis [14, 15]
and was developed with the goal to obtain the value of a parameter for a differential
equation that models the time evolution of the number of symptomatic individuals
in a seropositive population.
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The number of researchers who study mathematical models of AIDS has sub-
stantially grown in the last years. The mathematical models to study the evolution
of AIDS in a populations are, in general, given by a system of differential equations.
In the simplest classical models the infected population is divided in asymptomatic
and symptomatic individuals, whose conversion rate is given by a parameter λ, also
known as the incidence rate [15].

The diagram below represents such a system with conversion rate λ.

Asymptomatic
λ=⇒ Symptomatic

A statistical fit method given data is a traditional method by which the rate λ is
computed. Our aim here is to present an alternative to this method using a fuzzy
system which takes into account expert knowledge to estimate λ.

The study of AIDS by health experts takes into account two basic parameters:
viral load (V) and the concentration of CD4+ (the main lymphocyte attacked by
the virus) of the seropositive individuals. These same experts also agree that the
rate λ fundamentally depends on the viral load and on the level of CD4+ of the
seropositive population. However, to date, the establishment of such dependencies
is very subjective. In this example we will suggest a way of establish this relation,
considering the conversion rate λ depending on the viral load (v) and on the level (c)
of CD4+ of each individual of the seropositive population, that is, we show how to
compute

λ = λ(v, c).

However, to begin, we are going to discuss a little how HIV in an individual works.
HIV mainly attacks the lymphocyte T of CD4+ type in the bloodstream. The

low concentration of the CD4+ cells in the bloodstream has implications in the
evolution of the HIV infection. When the virus comes into contact with the host’s
cell membrane, the RNA-viral is injected. In the cytoplasm the viral RNA serves as a
model in the synthesis of a DNA chain that in turn serves as a model for an additional
one, thus forming a DNA molecule with a double chain. This DNA with a double
chain goes in the nucleus and incorporates its genetic information into the cell.

The strange DNA (pro-virus) may be indefinitely inactive and with the multipli-
cation of the host cell, a copy of the altered DNA is taken to the replicated cells.
For reasons not well understood, the pro-virus activates itself and starts the synthe-
sis of new RNA molecules to form new viruses. This RNA, together with the viral
proteases, guide both the synthesis of the capsule protein and the virus enzymes to
create a new virus. Then, the host cell is destroyed.

The human defense system is formed by macrophages located at many places
in the organism and is always looking for foreign a body. When they detect them,
they send a first chemical alert sign that is recognized by lymphocytes T of CD4+
type which in turn make them “be alert” and starts the activation of the immune
system cells, namely, lymphocytes B. Those transform themselves into plasma cells
to produce antibodies and the lymphocytes CD8 that recognize the infected cells and



5.6 Applications 103

destroy them. Since the virus attacks the lymphocytes CD4+, the general alarm is not
given and so the immune activation is not started. The defense system is not notified
and the immune system loses its effectiveness.

The CD4+ cell counts in blood has implications for the evolution of the HIV
infection because it is the marker of an immune deficiency and it is associated with
certain clinical factors. The measure of cellular immunocompetence is the most
useful factor to monitoring HIV infected patients and the most widely accepted one,
although it is not the only one. Today, it is commonly believed that the amount of
immunocompetence cells somehow regulates the proliferation of the virus and it is
responsible for the retardation in the transfer of asymptomatic to symptomatic ones.

CD4+ cell counts may be divided into four groups for the modeling, according
to concentration per milliliter of blood draw from patient and the infection stages of
HIV are classified according to these groups in the bloodstream2 as follows:

(1) The stage of HIV characterized by low risk to develop AIDS, occurs when
CD4+ > 0.5 cell/ml;

(2) The stage of HIV characterized by appearance of signs of mild symptoms occurs
when 0.2 < CD4+ < 0.5 cells/ml and this we classify as moderate risk to
develop AIDS;

(3) An moderately high risk to develop AIDS occurs when 0.05 < CD4+ <

0.2 cells/ml;
(4) If CD4+ < 0.05 cells/ml, we have a high risk to appear opportunistic diseases

such as Kaposi sarcoma. If this the case, the possibility of survival is low.

There is a relation, on the other hand, between the HIV viral load and the possibility
of developing AIDS. High viral loads greatly destroy CD4+ lymphocytes and the
immune system loses its defensive ability. A low viral load does not substantially
affect the immune system. The following data are relevant for the construction of the
model [14, 15]:

(a) There is a low risk of disease progression when there is a viral load under 10000
parts of RNA/ml, that is, V < 10000;

(b) If the viral load is between 10 thousand and 100 thousand parts of RNA/ml, that
is, if 10000 < V < 100000, there is a moderate risk of progression;

(c) If V > 100000, there is a high risk of progression.

Notice that in the parameters of interest – viral load (V) and level of
CD4+ – we do not have a single value that characterizes the group but a range of
values. The boundaries of each of these classifications is not rigid and this is precisely
how the experts in the field deal with HIV. For example, suppose there is one patient
with CD4+ = 0.49 cells/ml and there is another patient with CD4+ = 0.51 cells/ml.
One would be classifieds as having moderate risk for AIDS and the other low risk.
However, it is not reasonable that individuals with CD4+ equal to 0.49 cells/ml to be
treated differently from the one with CD4+ equal to 0.51 cells/ml. The uncertainties

2Source: Brazilian Health Ministery – http://www.aids.gov.br.

http://www.aids.gov.br
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Fig. 5.15 Scheme of the TSK controller with 2 inputs and 1 output

of the viral load and the level of CD4+ are not stochastic. They have their origin in
a language that uses graduations to express expert knowledge.

The viral load V and the level of CD4+ are typical cases of linguistic variables,
since they are classified into groups with uncertain boundaries, that is, fuzzy bound-
aries. Thus, the assumed values of the viral load and the level of CD4+ are fuzzy sets.
As a consequence, the transfer rate will also be a linguistic variable �. The precise
relationship λ = λ(v, c) between the transfer rate �, the viral load V and the level of
CD4+ is not known since the relationship is understood and expressed linguistically.
Fuzzy logic is an effective and natural way to evaluate this relationship. The scheme
is depicted in Fig. 5.15.

Fuzzy Rule Base
The fuzzy rule base presented in Frame 5.10 was developed in collaboration with
AIDS experts, researchers and physicians. A simple way to present a rule base is
via table (Table 5.3). We can use either the Mamdani method or the TSK method
to obtain λ = λ(v, c). As an illustration, we compute λ using TSK method with
constant consequent, that is, the values to which classification � belong are real
numbers given by experts (as, for example, those given in Table 5.4).

R1 . If V is low (B) and CD4+ is very low (MB) then � is strong (F);
R2 . If V is low (B) and CD4+ is low (B) then � is average (M);
R3 . If V is low (B) and CD4+ is average (M) then � is average (M);
R4 . If V is low (B) and CD4+ is high average (MA) then � is average weak (Mf);
R5 . If V is low (B) and CD4+ is high (A) then � is weak (f);
R6 . If V is average (M) and CD4+ is very low (b) then � is strong (F);
R7 . If V is average (M) and CD4+ is low (B) then � is strong (F);
R8 . If V is average (M) and CD4+ is average (M) then � is average (M);
R9 . If V is average (M) and CD4+ is average high (MA) then � is average weak (Mf);
R10. If V is average (M) e CD4+ is high (A) then � is weak (f);
R11. If V is high (A) and CD4+ is very low (MB) then � is forte (F);
R12. If V is high (A) and CD4+ is low (B) then � is strong (F);
R13. If V is high (A) and CD4+ is average (M) then � is average (M);
R14. If V is high (A) and CD4+ is average high (MA) then � is average (M);
R15. If V is high (A) and CD4+ is high (A) then � is average (M).

Frame 5.10: Rule base for the model of seropositive transfer rate
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Table 5.3 Transfer rate �

Level of CD4+

MB B M MA A

Viral B F M M Mf f

Load M F F M Mf f

A F F M M M

Table 5.4 Classification of � Level of � Classification

� = λ1 = 0.00 for f : Weak

� = λ2 = 0.15 for Mf : Average weak

� = λ3 = 0.65 for M: Average

� = λ4 = 1.00 for F: Strong

Fig. 5.16 Viral load
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Membership Functions

The membership functions of the assumed fuzzy subsets by each one of the variables
V , CD4+ are modeled as trapezoidal. On the other hand, the values of conversion
rates are singletons (See Figs. 5.16, 5.17 and 5.18).
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The TSK method to obtain λ from the rule base described previously and from
the membership functions, generates a surface (Fig. 5.19). From this surface, we can
suggest an analytic expression for λ = λ(v, c). According to medical practice, the
parameter most used to control and diagnose HIV+ is the value of CD4+. Thus, in a
first approximation, we can simply use λ = λ(c) as a transfer rate in the fuzzy model.
According to the Fig. 5.19, for each viral load value V = v, we have λ = λ(c), with
configuration approximately piecewise linear as is shown in Fig. 5.20. The parameter
cmin represents the minimum level of CD4+ an individual becomes symptomatic and,
cM represents the level of CD4+ from which the chances to becomes symptomatic
is minimum.

We observe that if we were interested in studying the conversion rate as function
of a viral load, λ = λ(v), then it would be possible, especially in the particular case
where there is no treatment. In this case, there is a discrete correlation between V
and CD4+. Moreover, as the viral load becomes large, the level of CD4+ dimin-
ishes. Simple models of relations between viral load and CD4+ level, c = c(v), are
suggested by analysis. One such relationship might be given by the equations:
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Fig. 5.20 Conversion rate in
function of CD4+ λ

c +
CD4cMmin

1

c(v) = r

a + βυ
or c(v) = λ0 + ae−βv,

so that, for this case, we have λ = λ(v).
To conclude this example, we want to stress that the transfer rate obtained here

from the information given by experts has strong biological meaning, since it depends
on others parameters of the disease: viral load V and level of CD4+. This is the
difference from the classical case where this rate is generally given by a type of fit
or simulations of the sample data.

5.6.3 Model 3 – Pharmacological Decay

Another application of fuzzy controllers in biomathematics is in pharmacokinetics.
The first part uses a TSK model and the second part uses the Mamdani model. In the
first part we model the dynamic of the state variable of interest, concentration versus
time. In the second part we estimate the parameter of decay of the model equation
using expert information.

A fundamental problem on pharmacology is to know how the concentration of
a drug decays in the blood of a individual. The drug moves through the body by
the bloodstream and it is known that different groups of tissue have more or less
resistance to the circulation according to the amount of blood vessels. Tissues group
rich in blood vessels are heart, lungs, liver, kidneys and brain. Groups of muscle
tissues have an intermediate number of vessels. A small number of blood vessels
occur in fat, skin and bones. These groups of tissues, together with physico-chemical
properties of the drug, strongly influence the distribution, retention and disposal
of the substance in the body [16]. The movement from one compartment group
of tissue, for example, to another continuously modifies the concentration of drug
in each compartment to achieve a dynamic equilibrium, when there is no more
transfer of drug concentration between the compartments. In practice, the number
of compartments corresponds to the number of compartments from which the data
of drug concentration in the individual was collected and arranged in a logarithm
scale. See, for example, Fig. 5.21b with two lines, one for each phase in the drug
concentration collection process (distribution and elimination): yα = b1 − a1t and
yβ = b2 − a2t.
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Most drugs are analyzed by bicompartimental or tricompartimentals models and
the mathematical treatment to predict the blood concentration is usually given by a
system of ordinary differential equations. In bicompartimental models we have two
stages: the distribution phase (α - fast) and the elimination phase (β - slower) of the
drug from the body [17]. The solution of this systems of differential equations has
the form

C(t) = A1e−αt + A2e−βt .

The example that we give was proposed by Menegotto and Barros [18] and is
based on data extracted from [17] that plotted on a Cartesian plane of time t (in
hours) versus the logarithm of concentration C. The data clearly indicates that it is
a two-compartment pharmacokinetic model (see Fig. 5.21b). Thus, the traditional
mathematical model is given by a system of two linear differential equations whose
solution (which is the drug concentration in the individual at each time t) is

C(t) = 1.3e−0.173t + 0.82e−0.0092t (5.11)

and the graphs of each phase for these data are

yα = 0.255 − 0.0278t and yβ = −0.086 − 0.004t.

Our aim now is to reproduce a fuzzy model of the bicompartimental system
taking into account that the outputs are derived from these graphs. Since the outputs
are linear functions, we adopted the TSK inference method where the antecedents
are “low time” and “high time”, using a triangular and trapezoidal fuzzy number,
respectively.

There is a value t∗ of great indecision in the phases (see Fig. 5.21a) which is

ϕA1(t
∗) = ϕA2(t

∗) = 0.5.

This time can be computed from the intersection of the lines yα and yβ which in
this case is t∗ � 14.3h. From this, we have the value t = 28.6 that appears in the
formulas of ϕA1 and ϕA2 :

ϕA1(t) =
{

1 − t
28.6 if 0 ≤ t ≤ 28.6

0 if t > 28.6

and

ϕA2(t) =
{

t
28.6 if 0 ≤ t ≤ 28.6

1 if t > 28.6
.

The fuzzy rules are described below:

R1 : If t is low(A1), then yα = log Cα = b1 − a1t ⇔ Cα = 10yα (α-phase)
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Fig. 5.21 a Antecedents. b Consequents yα and yβ
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Fig. 5.22 Data, curves of the deterministic and fuzzy models

R2 : If t is high (A2), then yβ = log Cβ = b2 − a2t ⇔ Cβ = 10yβ (β-phase)

Thus, by the TSK inference method, formula (5.10), the drug concentration in the
blood of the individual is given by

C(t) = ϕA1(t)10yα + ϕA2(t)10yβ

ϕA1(t) + ϕA2(t)
(5.12)

so that from the expressions of yα, yβ , ϕA1 and ϕA2 we have

C(t) =
⎧⎨
⎩

(
1 − t

28.6

)
100.255−0.0278t + t

28.6 10−0.086−0.004t if 0 ≤ t ≤ 28.6

10−0.086−0.004t if t > 28.6
, (5.13)

whose graphical representation is found in Fig. 5.22.
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It is interesting to notice that the graphs of the deterministic solution (5.11) and
the TSK solution (5.12) are very similar and both of them fit the data set well.
If the data generates three drug concentration response lines, the model should be
tricompartimental and, consequently, the fuzzy rule base would be composed of three
rules whose consequents would be given by each one of those lines. We want to stress
that the idea is not to substitute the way that the pharmacological models have been
treated via differential equation. We are just pointing out a new possibility to study
the decay of the concentrations since from a practical point of view, drug response
lines show up (namely, yα and yβ) and the TSK inference method is excellently suited
in the cases where the consequents are lines. An advantage that we can point out in
the fuzzy method is that one does not demand any kind of knowledge of ordinary
differential equations. The models that are based on fuzzy rules are very intuitive and
TKS and Mamdani method, in particular, are part of available software (for example,
Matlab).

Now suppose we are only interested in modeling the elimination of the drug. In
this case, we are choosing just one phase. The elimination phase whose mathematical
model is given by

C(t) = C0e−λt,

where C0 is the initial dose of the drug and λ is the decay rate in the organism.
The decay rate λ, generally is obtained by the fitting of data. The dose of the drug

concentration is from the elimination rate and from particularities of the medicated
individual. Suppose we have only renal elimination. The biological characteristic
that influences the rate λ are: urinary volume (v), clearance of creatinine (c) and Ph
serum (p), that is,

λ = λ(v, c, p) ⇒ C(t) = C0e−λ(v,c,p)t .

The function λ, dependent on these three variable, which are the ones with med-
ical interest since they can be measured in laboratory, was obtained by Lopes and
Jafelice [19], together with an expert, a fuzzy rule base was developed. The input
variables were urinary volume, Clearance of creatinine and Ph serum and the out-
put was the elimination rate λ. Each input variable was assigned linguistic terms
which in turn was translated into fuzzy sets according to the expert. Then, using the
Mamdani inference method, it was possible to compute the decay rate.

The great advantage of this approach is that there is no need, in principle, for a data
set to estimate λ. Besides, individuals with some problem, like renal incontinence,
the concentration of the drug remains in the blood for a longer time compared with
a normal individual. In this case, it is still possible to calibrate the right dose, since
what is expected is that the drug remains in the body for a certain period of time until
the administration of a new dose. Thus, it is possible to program the dosage taking
into account the deficiencies of each patient.
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Chapter 6
Fuzzy Relational Equations and Universal
Approximation

All Knowledge should be useful and be involve the pratical.
(Sophists – 5th Century BCE)

Abstract This chapter presents the concepts of fuzzy relationships and fuzzy rela-
tional equations. These are applied to medical diagnosis and Bayesian inference. The
notion of universal approximator with applications to dynamical systems, complete
the chapter.

This chapter presents two topics that are theoretically distinct: fuzzy relational equa-
tions and universal approximation. The first topic extends the application of gen-
eralized modus ponens that was discussed in Chap. 4. The second topic deals with
theoretical issues associated with the use of fuzzy sets to approximate functions. In
particular, it allows us to connect fuzzy rule-based systems, that represent useful
practical tools, with possible theoretical models of a certain phenomenon described
as mathematical functions.

Although the main concepts and results concerning the relational equations that
we present in this chapter may be regarded in other contexts such as image process-
ing by means of fuzzy mathematical morphology and pattern recognition via fuzzy
associative memories [1–4], they were specifically chosen in order to study medical
diagnoses. In contrast, the ones concerning the universal approximation are geared
to approximate any theoretical functional using fuzzy controllers. Such a fact has
important consequences for ordinary differential equations where the direction fields
(also called slope fields) are neither explicitly given nor totally known.

For didactical reasons, we opted to present these two subjects in the same chapter
since that are based in Chaps. 4 and 5, respectively. The interested reader can find
more information and details in the cited references of this chapter.

The max–min composition between binary fuzzy relations discussed in Chap. 3
play an important role in the first part of this chapter. However, other types of com-
positions between fuzzy relations are also used here. Next, we listed some of them
based on t-norms, t-conorms, negations, and fuzzy implication.
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6.1 Generalized Compositions of Fuzzy Relations

In the following definitions, R and S stand for binary fuzzy relations defined on
U × V and V × W , respectively; � stands for a t-norm; � stands for a t-conorm;
and =⇒ stands for a fuzzy implication.

Definition 6.1 The sup–t composition defines a fuzzy relation R ⊗t S on U × W
whose membership function is given by

ϕR⊗tS(x, z) = sup
y∈V

[ϕR(x, y)�ϕS(y, z)] .

Example 6.1 If � = min and sup = max, then we have the max–min composition:

ϕR⊗tS(x, z) = ϕR◦S(x, z) = max
y∈V

[ϕR(x, y) ∧ ϕS(y, z)] .

Definition 6.2 The inf–c composition yields a fuzzy relation R⊗cS on U × W
whose membership function is given by

ϕR⊗cS(x, z) = inf
y∈V

[ϕR(x, y)�ϕS(y, z)] .

Example 6.2 If � denotes the maximum t-conorm, then we have the [inf − max]
composition:

ϕR⊗cS(x, z) = inf
y∈V

[ϕR(x, y)∨ϕS(y, z)] .

Definition 6.3 The inf–implication defines a fuzzy relation R ⊗=⇒S on U × W
whose membership function is given by

ϕR⊗=⇒S(x, z) = inf
y∈V

[ϕR(x, y) =⇒ ϕS(y, z)] .

We now (and for the remainder of the chapter) focus only in inf–implications
based on R-implications (see Definition 4.4 of Chap. 4):

(x =⇒ y) = sup{z ∈ [0, 1] : x � z ≤ y}.

Example 6.3 A well-known example of R-implications is the Gödel’s implication:

(x =⇒ y) = g(x, y) = sup{w ∈ [0, 1] : x ∧ w ≤ y} =
{

1 if x ≤ y
y if x > y

.

Since

(ϕR(x, y) =⇒ ϕS(y, z)) =
{

1 if ϕR(x, y) ≤ ϕS(y, z)
ϕS(y, z) if ϕR(x, y) > ϕS(y, z)

,

we have that ϕR⊗=⇒S (x, z) ∈ {1, inf
y∈V

[ϕS(y, z)]}.

http://dx.doi.org/10.1007/978-3-662-53324-6_4
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Similar to the previous comments concerning max–min composition in Chap. 3,
it is worth to note that for finite universes the above compositions are obtained as
products of matrices by replacing the sum and product operators by the maximum
(minimum) and a t-norm (t-conorm or fuzzy implication), respectively.

Exercise 6.1 Let us consider the following binary fuzzy relations given by the matri-
ces

R = [ 0.6 0.6 0.5 ] and S =
⎡
⎣ 0.9 0.6 1.0

0.8 0.8 0.5
0.6 0.4 0.6

⎤
⎦ .

Determine the matrix form of the fuzzy relation R ⊗t S for each t-norm �:

(a) �(x, y) = x ∧ y;
(b) �(x, y) = xy;
(c) �(x, y) = max(0, x + y − 1);
(d) �(x, y) = xy

x + y − xy
;

(e) �(x, y) = xy

2 − (x + y − xy)
;

(f) �(x, y) =
{

x ∧ y if max(x, y) = 1
0 otherwise

.

Exercise 6.2 For the fuzzy relations of Exercise 6.1, determine the matrix form of
R ⊗=⇒ S for the each one of the following implications:

(a) Gödel: (x =⇒ y) = g(x, y) =
{

1 if x ≤ y
y if x > y

;

(b) Goguen: (x =⇒ y) = gn(x, y) =
{

1 if x ≤ y
y
x if x > y

.

Recall that the above implications represent R-implications

(x =⇒ y) = sup{w ∈ [0, 1] : x � w ≤ y}.

In particular, for � = min we obtain the case (a) and for � = product we obtain the
case (b).

Exercise 6.3 Verify that for any t-norm and for any fuzzy relations R and S the
following equality holds

(R ⊗t S)−1 = S−1 ⊗t R−1

We next focus on the study of fuzzy relational equations. Firstly, we will present
some methods for solving particular cases of relational equations. Secondly, we
will investigate necessary conditions for existence of solution to such equations.
For compositions in what follows have finite universes. Thus, the relations can be
represented in matrix form.

http://dx.doi.org/10.1007/978-3-662-53324-6_3
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6.2 Fuzzy Relational Equations

Let us consider the finite universes

U = {u1, u2, . . . , um}, V = {v1, v2, . . . , vn} and W = {w1, w2, . . . , wp}.

Relational equations deal with the problem of finding a matrix form of a binary
fuzzy relation based on two other known ones. Here, we deal with fuzzy relational
equations of the form

R ∗ X = T or X ∗ R = T ,

where R and T denote the matrix form of two given binary fuzzy relations, “∗”
stands for any fuzzy relational composition, and X denotes the matrix form of the
unknown fuzzy relation. For instance, solving equation

R ∗ X = T

means to find the matrix form of a binary fuzzy relation X in V × W assuming that
the matrix forms R in U × V and T in U × W are known.

6.2.1 Fuzzy Relational Equations with themax–min
Composition

Initially, let us investigate the case where the operation “∗” is the max–min compo-
sition and the equation is given by

R ◦ X = T . (6.1)

Assuming that the associated universes are finite, the fuzzy relations have matrix
representations

R = [ri j ], X = [x jk] and T = [tik]

where ri j = ϕR(ui , v j ), x jk = ϕX (v j , wk) and tik = ϕT (ui , wk). Since we are deal-
ing with the max–min composition, solving (6.1) means to find x jk ∈ [0, 1] such that

max
1≤ j≤n

[min(ri j , x jk)] = tik, (6.2)

for each 1 ≤ i ≤ m and 1 ≤ k ≤ p.
Therefore, in order to investigate the solution of (6.1), the first thing to be done

by us is to verify if such an equation system has solution. From (6.2) we have
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max
1≤ j≤n

[min(ri j , x jk)] = tik =⇒ max
1≤ j≤n

ri j ≥ tik

for every i and k. Thus, follows immediately that if there exists a row i satisfying

max
1≤ j≤n

ri j < max
1≤k≤p

tik , (6.3)

then there is noX that solves the equation. The last statement leads us to the following
result:

Proposition 6.1 If the above inequality (6.3) holds true, then the fuzzy relational
equation (6.1) has no solution.

Example 6.4 Consider the following relational equation

R ◦ X = T ⇐⇒
[

0.7 0.6
0.2 0.3

]
◦

[
x11 x12

x21 x22

]
=

[
0.4 0.8
0.3 0.2

]
.

In order to determine X we must solve the system of four equations

⎧⎪⎪⎨
⎪⎪⎩

max[min(0.7; x11),min(0.6; x21)] = 0.4
max[min(0.2; x11),min(0.3; x21)] = 0.3
max[min(0.7; x12),min(0.6; x22)] = 0.8
max[min(0.2; x12),min(0.3; x22)] = 0.2

. (6.4)

Applying Proposition 6.1, we can easily verify that the system (6.4) has no solution
because

max[min(0.7; x12),min(0.6; x22)] ≤ max[0.7; 0.6] = 0.7 < 0.8 = max tik .

Note that, whereas the two first equations of system (6.4) only have the variables
x11 and x21, the two last ones only have the variables x12 and x22. This allows us to
conclude that the relational equation

[
0.7 0.6
0.2 0.3

]
◦

[
x11

x21

]
=

[
0.4
0.3

]

has a solution, for instance

X1 =
[

0.4
0.3

]
.

Besides X1, the reader can also observe that X1,

X2 =
[

0.1
0.4

]
and X3 =

[
0.4
0.4

]
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are also solutions of the same relational equation. In this way, a relational equation
may have many possible solutions. Furthermore, in this example, X3 is the maximal
of them, that is, its components are greater or equal to the corresponding components
of any other solution of the given equation.

Solutions such as X3, that is, with xi j as great as possible, are said to be maximal.
Thus, a maximal solution is the fuzzy relation that solves the given equation where
each element has the greatest degree of membership.

Exercise 6.4 Solve the following relational equation

⎡
⎣ 0.2 0.9 0.1

0.1 0.2 0.8
0.9 0.1 0.2

⎤
⎦ ◦

⎡
⎣ x1

x2

x3

⎤
⎦ =

⎡
⎣ 0.8

0.2
0.3

⎤
⎦ .

Verify if this equation has more than one solution. In this case, determine the maximal
solution.

Let us complete this section by observing that there is a method for solving (6.1)
that also can be used to solve relational equations with the variables on the left side
of R:

Y ◦ R = T .

From Exercise 6.3, we have that (Y ◦ R)−1 = T −1 ⇐⇒ R−1 ◦ Y−1 = T −1. Thus,
the solution of equation Y ◦ R = T is the inverse (the transpose of the matrix) of
the solution of R−1oX = T −1, where X = Y−1, which is the typical case (6.1).

Exercise 6.5 Solve the equation

[ x1 x2 ] ◦
[

0.7 0.6
0.2 0.3

]
= [ 0.5 0.5 ].

6.2.2 Fuzzy Relational Equations with the sup–t
Composition

This subsection generalizes (6.1) by using other compositions besides max–min.
Moreover, we will enunciate the main result concerning these relational equations.

We now consider any of the compositions presented in Sect. 6.1. Hence, the equa-
tion of interest is

R ⊗t X = T . (6.5)

Similar to the max–min case, the set of equations

X ⊗t R = T
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can be solved using a method that solves (6.5) since we have

(R ⊗t X )−1 = X−1 ⊗t R−1.

Therefore, let us focus only on equations of the form (6.5), where R is in U × V
and T is in U × W are two known relations and X is the binary relation in V × W
to be determined such that Eq. (6.6) below holds true,

R ⊗t X = T . (6.6)

In contrast with the max–min case, here, we will not investigate necessary con-
ditions for existence of solutions of (6.5). This study is analogous to that done in
Sect. 6.2.1. However, we will prove a result that indicates how to obtain a solution
of equation (6.5), if it exists.

Theorem 6.2 Given a t-norm � and fuzzy relations R and T defined in U × V and
U × W , respectively, if the equation R ⊗t X = T has a solution, then its maximal
solution is D = R−1 ⊗=⇒T , where the implication is given by

(x =⇒ y) = sup{z ∈ [0, 1] : x � z ≤ y}.

Proof The reader can find the proof of this theorem in [5]. �
The next corollaries follow from the above theorem.

Corollary 6.3 If D = R−1 ⊗=⇒T is not a solution of equation R ⊗t X = T , then
it has no solution.

Corollary 6.4 If there exists a solution of (6.5) for � = ∧, that is, if there exists a
solution of the equation R ◦ X = T with the minimum t-norm, then D = R−1 ⊗g T
is its maximal solution, where g is the Gödel’s implication.

Corollary 6.5 If there exist a solution of (6.5) for � = product, that is, if there exist a
solution of the equationR ⊗t X = T with the product t-norm, thenD = R−1 ⊗gn T
is its maximal solution, where gn denotes the Goguen’s implication.

Exercise 6.6 Use the above corollaries to verify if the following relational equation

⎡
⎣ 0.9 0.3 1.0

0.8 0.8 0.5
0.6 0.4 0.7

⎤
⎦ ⊗t

⎡
⎣ x1

x2

x3

⎤
⎦ =

⎡
⎣ 0.6

0.4
0.5

⎤
⎦

has solution. If it exists, exhibit one of them for each of the following t-norm: �:

(a) � = min
(b) � = product.

The next subsection proposes a diagnostic model that indicates the potential of
relational equations in application. Specifically, we will make use of Corollary 6.4
to illustrate such potential.
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6.2.3 Mathematical Modelling: Medical Diagnosis

The following experiment [6] was performed to see if a fuzzy model is useful to
obtain diagnostics of diseases. The basic idea for a medical diagnosis is to relate
symptoms or patients’ signs with possible diseases according to an expert’s medical
knowledge. This application can be summarized in an input-output system:

Input
(Symptoms)

Knowledge-
Based
System

Output
(Diagnosis)

Let us consider the following universal sets:

U = set of patients;
V = set of symptoms;
W = set of diseases.

Specifically, we deal with childhood illnesses where we have knowledge of four
patients P1, P2, P3, and P4, with symptoms s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, and s11,
that were diagnosed with d1, d2, d3, and d4, where:

s1 = fever; s5 = ganglion; s9 = photophobia;
s2 = headache; s6 = coryza; s10 = dry cough;
s3 = sore throat; s7 = conjunctivitis; s11 = vomit
s4 = exanthema; s8 = strawberry tongue;

and

d1 = scarlet fever; d2 = rubella; d3 = measles; d4 = flu.

These data will draw upon the knowledge base which will be described in terms
of fuzzy relations.

We want to obtain a fuzzy relation D such that S ◦ D = T , where S and T are
respectively the matricial forms of the fuzzy relations of symptoms and patients
defined in U × V and U × W .

Knowledge Base – Building of Fuzzy System

The knowledge base is composed of the fuzzy relations S and T whose matrices are
given below in a tabular form:

In this example, the data in each one of the above tables were obtained from the
literature (such a fact allows us to use data corresponding to diseases that may not
be diagnosed any more). However, expert’s data can be used in the model.
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Table 6.1 Matrix of the relation S: patients and their symptoms

P\s s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11

P1 0.8 0.4 0.5 0.8 0.2 0.1 0.1 0.9 0.1 0.1 0.4

P2 0.3 0.1 0.4 0.8 0.9 0.2 0.1 0.1 0.1 0.1 0.3

P3 0.8 0.3 0.5 0.8 0.1 0.2 0.9 0.1 0.6 0.3 0.6

P4 0.8 0.7 0.7 0.2 0.1 0.9 0.1 0.1 0.1 0.9 0.4

Table 6.2 Matrix of the
relation T : diagnostic pattern

P\d d1 d2 d3 d4

P1 0.9 0.3 0.4 0.2

P2 0.3 0.9 0.1 0.1

P3 0.4 0.1 0.9 0.3

P4 0.2 0.1 0.3 0.9

Table 6.3 Matrix of the
Relation D = S−1 ⊗g T :
symptoms and diagnoses

s\d d1 d2 d3 d4

s1 0.2 0.1 0.1 0.1

s2 0.2 0.1 0.3 0.2

s3 0.2 0.1 0.1 0.1

s4 0.3 0.1 0.1 0.1

s5 0.3 1.0 0.1 0.1

s6 0.2 0.1 0.1 0.1

s7 0.4 0.1 1.0 0.3

s8 1.0 0.3 0.4 0.2

s9 0.4 0.1 1.0 0.3

s10 0.2 0.1 0.3 1.0

s11 0.2 0.1 0.1 0.1

We have that D = S−1 ⊗g T using Corollary 6.4 and the matrices of Tables
6.1 and 6.2, where the matrix D is given in Table 6.3. Thus, each element of the
relation D indicates the degree of connection of each symptom with the diseases
under consideration. For instance, the value d23 = 0.3 indicates that, on a range
from zero to one, the symptom s2 (headache) is related to the disease d3 (measles)
with degree 0.3. It is important to note that the matrix of diagnoses D = S−1 ⊗g T
was obtained applying Corollary 6.4 that solves the relational equation S ◦ X = T .
In other words, the diagnosis of each patient Pi in the knowledge base, that were
mathematically translated by the matrices S and T , can be retrieved by means of
relation D. For example, let us use the matrix D to obtain the diagnosis of patient P1

from the associated symptoms.
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The mathematical model to obtain a diagnosis is S ◦ D, according to formula
(3.3), so that we can obtain the first patient’s diagnosis by calculating P1 ◦ D where
P1 denotes the matrix of symptoms:

P1 ◦ D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.8
0.4
0.5
0.8
0.2
0.1
0.1
0.9
0.1
0.1
0.4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

◦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.2 0.1 0.1 0.1
0.2 0.1 0.3 0.2
0.2 0.1 0.1 0.1
0.3 0.1 0.1 0.1
0.3 1.0 0.1 0.1
0.2 0.1 0.1 0.1
0.4 0.1 1.0 0.3
1.0 0.3 0.4 0.2
0.4 0.1 1.0 0.3
0.2 0.1 0.3 1.0
0.2 0.1 0.1 0.1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= [
0.9 0.3 0.4 0.2

]
.

and v� stands for the transpose of the vector v.
The resulting matrix is composed of membership degrees for each of the diseases

with respect to first patient. Indeed, since the matrixP1 is a relation in U × V (patients
× symptoms) and D is a relation in V × W (symptoms × diseases), the composition
of P1 with D yields a relation in U × W (patients × diseases). Similarly, we can
obtain diagnoses for other patients

Exercise 6.7 Solve the items below.

(a) Show that if a mathematical model for diagnosis is given by equation S ⊗t X =
T with the product t-norm, then the diagnostic matrix is given by D = S−1 ⊗gn

T , where gn denotes the Goguen’s implication (hint: use Corollary 6.5)
(b) For (a), repeat the above replacing the minimum t-norm by product t-norm.
(c) Compare the result obtained in (b) with the ones in the above application using

the max-min operation.

The interested reader can find more applications in [7, 8].
Two important properties of the fuzzy relation D are discussed below. Let D =

S−1 ◦ T . The following properties hold true:

(p1) D “retrieves” the diagnoses of the patients in the knowledge base.
(p2) Diagnoses of new patients can be incorporated in the knowledge base and

thus increasing the capacity of obtaining more diagnoses by means of the fuzzy
relation D, as happens with an experienced doctor.

These two properties of the fuzzy relationD validate its use in diagnostic formulation.
Property (p1) is the main characteristic of so called Expert Systems. Expert sys-

tems are those that mimic human experts. Property (p2), that permits update the
knowledge base, is the one that characterizes Neural Networks. Neural networks are
systems that learn in the sense of incorporating new situations in its knowledge base
and thus are analogous to the human systems (see [9, 10]).

http://dx.doi.org/10.1007/978-3-662-53324-6_3
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Let us conclude this section by recalling that several relational equations have
no solution, mainly because they do not satisfy the necessary conditions given by
inequality (6.3). In this case, we use the notion of approximate solution for the given
equation (see [5, 11]).

Fundamentally, an approximate solution of equation (6.1) is a solution of another
fuzzy relational equation in which the relation R is slightly expanded whereas T
is slightly reduced in order to satisfy the inequality (6.3). For this case with respect
to medical diagnostics, we can postulate (even though intuitively) that the relational
equation would satisfy inequality (6.3) whenever the matrix T (dataset) is composed
of at least an instance of each disease. In other words, whenever there exists at least
one element in each column of T close to 1. In our case, patients P1, P2, P3, and P4

had scarlet fever, rubella, measles, and flu, respectively.
The diagnostic matrix D is given in terms of a fuzzy implication in which T is

implicated — D = S−1 ⊗=⇒ T (D = S−1 =⇒ T ). Thus, intuitively the condition
(6.3) is automatically satisfied. In other words, the largest values of D are greater or
equal to the largest values of T so that the values of an implication are at least equal
to the implicated values.

Finally, the choice of the relational equation S ⊗t X = T as a medical diag-
nostic model was made by means of logical coherence: symptoms imply treatment
((S−1 =⇒ T )). Hence, we chose the equation whose solution is D = S−1 ⊗=⇒ T .

More detailed studies concerning this subject can be found in [5, 11–14].

6.3 Fuzzy Relational Equation and Bayesian Inference

The purpose of this section is to interpret the solution of (6.5) from the Bayesian
viewpoint by considering membership functions as possibility distributions of vari-
ables (see Chap. 7). In the classical stochastic case, Bayes’s rule is useful to revise a
distribution g(x) (called priori) in light of new information concerning the variable
of interest X . Such information is derived from a variable Y that is related to X .
Thus, they are incorporated into Bayes’s model by means of a probability density
represented by f (y | x). It is worth noting that, on the one hand, f (y | x) represents
a likelihood function of X for a fixed y. On the other hand, f (y | x) is the conditional
probability of Y given X = x .

After correcting g(x), we obtain a “new” distribution η(x | y) called the posteriori
probability distribution of X . Here, the main issue is to obtain η(x | y) given the priori
distribution g(x) and likelihood f (y | x). The classical proposal due to Bayes [15,
16] is

η(x | y) = f (y | x)g(x)∫
X f (y | x)g(x)

. (6.7)

The possibilistic rule of Bayes “emerges” as a solution to the fuzzy relational
equation of the form (6.5) where the variable is the posteriori distribution. Note
that this approach is quite different from the stochastic approach where the formula

http://dx.doi.org/10.1007/978-3-662-53324-6_7
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(6.7) is “postulated” as the way to correct the priori distribution g(x). In order to
address our issue of interest, we will suppose that the relational equations always
have solutions.

Although we are dealing of possibility distributions and not of membership func-
tions of fuzzy sets, there is a close relation between these functions (see Sect. 7.1.3
of Chap. 7) that allows us to use some results from fuzzy set theory in possibility
theory such as relational equations.

According to Equation (6.6), given fuzzy relations A and B respectively in the
universal sets U × V and U × W , when it exists, it is known [5, 12] that the maximal
(or less specific) solution of

A ⊗t Z = B (6.8)

is the fuzzy relation R in V × W whose membership function is

ϕR(v,w) = inf
u∈U

(ϕA−1(v, u) =⇒ ϕB(u, w))

= inf
u∈U

(ϕA(u, v) =⇒ ϕB(u, w))
(6.9)

where A−1 denotes the inverse of A (i.e. ϕA−1(v, u) = ϕA(u, v)) and “=⇒” denotes
the residual fuzzy implication, that is,

(a =⇒ b) = sup{z ∈ [0, 1] : a � z ≤ b}. (6.10)

Let us consider the particular case where A and B are fuzzy sets (or unary relations)
in U and V , respectively. In this case, the membership function of the solution R of
(6.8) (when it exists) is given by

ϕR(u, v) = (ϕA(u) =⇒ ϕB(v))

= sup{z ∈ [0, 1] : ϕA(u) � z ≤ ϕB(v)} (6.11)

where � stands for a t − norm.
On the one hand, once that R is given by an implication, we can apply the typ-

ical interpretation of a conditional ϕR(u, v) which corresponds to the result of the
implication pair

(ϕA(u),ϕB(v))

where ϕB(v) denotes the membership degree of v in B given u in A where the
membership degree of A is ϕA(u). We use the notation ϕR(u, v) = ϕB|A(v | u) if
R stands for the solution in (6.11). On the other hand, ϕR(u, ·) is a function with
respect to variable v for a given u in A with membership degree of ϕA(u). Thus,
let us denote ϕR(u, ·) using the symbol ϕB|A(· | u) where ϕB|A(v | u) indicates the
membership degree of v in B given u in A with membership degree of ϕA(u).

Using the above comments, the compositional rule of inference (3.2) can be
rewritten as

http://dx.doi.org/10.1007/978-3-662-53324-6_7
http://dx.doi.org/10.1007/978-3-662-53324-6_3
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ϕB∗(v) = sup
u∈U

(
ϕA(u) � ϕB|A(u | v)) . (6.12)

As we discussed in Chap. 3, B∗ does not necessarily equals B since Eq. (6.12) may
not have a solution [12]. For each v ∈ V , the following functional equation

ϕB∗(v) �1 ϕS(v, u) = ϕA(u) �2 ϕR(u, v), ∀u ∈ U, (6.13)

is equivalent to the relational equation with the arguments given explicitly

ϕB∗(v) ⊗t ϕS(v, u) = ϕA(u) �2 ϕR(u, v)∀u ∈ U (6.14)

where S denotes an unknown fuzzy relation. If a solution of (6.14) exists, then the
membership function of S according to (6.11) is given by

ϕS(v, u) = (ϕB∗(v) =⇒ (ϕA(u) �2 ϕR(u, v))) . (6.15)

Remarks

1. The t-norms �1 and �2 in (6.11) may be different;
2. Given the above interpretation of (6.11), the membership function ϕS(v, u) in

(6.15) represents a typical conditional membership ϕS(u | v);
3. Recall that ϕR(u, v) = ϕB|A(v | u) in (6.15) for a given fixed v represents the

“correction” of a priori ϕA(u) according to the Bayesian approach;
4. Similar to remark 3, ϕB|A(v | u) can be interpreted as a “likelihood” and not as a

“conditional of v given u” since u is the variable;
5. The option to adopt an operation of type ⊗t (= sup − t) in the left-side of (6.14)

is due to the max-min theories which deal with “central measures”such as the
mathematical expectation.

6.3.1 Possibility Distribution and Bayesian Inference

We will make use of all previous notation and results concerning fuzzy relational
equations by replacing membership functions by possibility distributions. In this
context, (6.8) has the form

X ⊗t Z = Y (6.16)

and Eq. (6.15), according to Remark 3, has the form

π�(x | y) = (
π∗

Y (y) =⇒ (
πX (x) � πY |X (y | x)

))
(6.17)

where (a =⇒ b) denotes a residual implication as in (6.10) and

π∗
Y (y) = sup

x∈X
πX (x) � πY |X (y | x). (6.18)

http://dx.doi.org/10.1007/978-3-662-53324-6_3
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Based on Remarks 2–4, we can interpret the term πX (x) � πY |X (y | x) as an update
of πX (x) from the likelihood function πY |X (y | x) that was adjusted according
to some historical record such as datasets, expert’s knowledge, etc.. The term
πY ∗(y) = supx πX (x) � πY |X (y | x) operates as a normalization constant. Finally,
given X and Y , if (6.16) has solution, then π�(x | y) and π(Y |X)(y | x) must have
their arguments interchanged such as in formula (6.17). Such a fact directly arises
from fuzzy relational equations theory and perfectly matches Bayesian methodol-
ogy. Based on these observations, we will consider (6.17) as a possibilistic general
formula of Bayes for an arbitrary t-norm �.

Let us leave as an exercise for the reader the task of verifying that for the minimum
t-norm (� = ∧ = min) we have

π∧(x | y) =
{

1 if π∗
Y (y) = πX (x) ∧ πY |X (y | x)

πX (x) ∧ πY |X (y | x) if π∗
Y (y) > πX (x) ∧ πY |X (y | x)

.

For product t-norm (� = “·”), Eq. (6.17) is given by (6.21) which is discussed below.
In this case, the above interpretation of (6.17) is more apparent if compared to the
classical equation of Bayes (see Eq. (6.7)).

Remark For the product t-norm, we will use the notation π(x | y) instead of π(·)
(x | y).

6.3.2 Possibilistic Rule of Bayes

Let us focus only on solutions for (6.17) given by residual implications. These solu-
tions, when they exist, are less specific than any other solution, that is, they are
maximal solutions. In particular, let us study maximal solutions of equation (6.17)
for several t-norms.

• In the case where � = ·, i.e., the product t-norm, (6.10) has the form

(a =⇒ b) =
{

1 if a ≤ b
b
a if a > b

. (6.19)

Therefore, since

π∗
Y (y) = sup

x∈X
πX (x) � πY |X (y | x) ≥ πX (x) � πY |X (y | x), (6.20)

we have that (6.17) can be rewritten as follows

π(x | y) = πX (x)πY |X (y | x)

supx∈X πX (x)πY |X (y | x)
. (6.21)
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The analogy between the formula (6.21) and the Bayes’s rule (6.7) is evident and sug-
gest naming (6.21) the possibilistic rule of Bayes. For the product t-norm, Eqs. (6.17)
and (6.21) are equivalent which implies that we can use one or the other to obtain
the posteriori distribution π(x | y).

It is worth noting that if Y is less specific than X , that is, πY ≥ πX , then the
likelihood given by means of residual implication satisfies πY |X ≡ 1. Consequently,
the posteriori distribution π�(x | y) coincides with the a priori πX (x). Such a fact
also occurs in the stochastic case and means that the variable Y is not able to improve
the information contained in X . For a deeper study of this subject and its applications
we recommend the interested reader to consult [17–19].

The next section deals with another sense of approximation which is different
from the above one discussed for relational equations.

6.4 Universal Approximation

Mathematical methods, in general, that yield conclusions (outputs: y) from a given
information (inputs: x), are given by functions: y = f (x). Usually, these methods
require mathematically “precise” data and functions. However, the use of fuzzy sets
with fuzzy logic allows us to extend these input-ouput systems. Fuzzy controllers
arise as a typical example in this context. The usual mathematical modeling of a
input-output system is one where the inputs and outputs are real numbers and the
knowledge base is given by means of a function.

Example 6.5 The function that relates the side l of a square with its perimeter p is
given by p = 4l. In this case, we have the following input-output pairs (in meters):

Input (l) Output (p)
1 4
2 8
3 12

This example deals with a ideal situation where the procedure, which associates
each input to an output, is given by a mathematical function. In this case, the knowl-
edge base is summarized by the function p(l) = 4l. However, even for this simple
case, outputs are only produced from precise inputs (real numbers). For instance,
what is the perimeter of a square whose length “around 3 m”? The impossibility of
producing a suitable output for such a question by a crisp model is due to classical
mathematical model’s inability to deal with imprecise or ambiguous information as
input. In general, we have two options to deal with this kind of situation. The first
option consists of electing a real number as input, eliminating the uncertainty of the
input. In our context, this approach consists of applying a defuzzification technique
on the input in order to obtain a real number thus allowing the use of classical math-
ematics. The second option consists of increasing the knowledge base in order to
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include such a input. For example, for the above input, an expert could provide a
linguist output such as “around 12 m”.

The imprecisions, such as those above, are present only in the inputs and out-
puts, but not in the knowledge base which must be designed and adjusted in order to
understand each uncertain input. However, there are situations in which the knowl-
edge base contains several imprecisions due to the possibility of dealing with partial
information or misinformation, mainly when they are provided by experts. This is
the case when the system is produced by means of linguistic terms. When the impre-
cisions are mathematically modeled using fuzzy tools such as fuzzy sets and fuzzy
logic, then the resulting input-output system is said to be a Fuzzy System.

The inputs in Example 6.5 have the form “around” so that we could model them
as triangular fuzzy numbers (as in Chap. 2). Suppose that the knowledge base is given

as before, that is, given by the function p̂ = 4̂l, where l̂ stands for the fuzzy number
“around l”, we can use the extension principle of Zadeh as well as the multiplication
of a real number by a fuzzy number to obtain a fuzzy number as the output having
the form “around”

Fuzzy logic demonstrates its usefulness and indeed its contribution to situations
where the knowledge base is composed of a collection of rules of the form if . . . then
. . .. Obviously, connectives, implications and fuzzy relations play a fundamental role
in this context.

6.4.1 Approximating Capability

Let us consider a fuzzy system that associates each input x ∈ X with an unique output
y ∈ Y . In Chap. 5, we presented several examples of fuzzy systems most notably
fuzzy controllers. Example 5.3 corresponds to a fuzzy system with two inputs and
one output: each pair of real numbers (x, y) is associated with a real number u.
Thus, the corresponding fuzzy system defines a function f ∗ : D ⊂ R2 −→ R. Such
a property can also be found in Model 5.6.2 (HIV). In contrast, the controller of
Model 5.6.1 (Salinity) yields a function g∗ : D ⊂ R3 −→ R.

Note that each one of these examples produces a mapping from an input domain X
to an output range Y . This is a typical characteristic of rule-based fuzzy systems and is
essential for the following discussion concerning the approximation of a (theoretical)
function which describes a certain phenomenon.

The great utility of fuzzy systems (fuzzy controllers) in the study of approximation
is the fact that we can replace the corresponding (theoretical) function, that may be
hard to deal with due to some difficulties such as only having partial knowledge of
it, by a fuzzy system with a certain degree of reliability. For instance, what could we
propose as a (theoretical) function for the problem of forecasting of surface salinity
presented in Model 5.6.1?

The above examples used either the Mamdani inference method or the TSK infer-
ence method. Therefore, we chose the minimum t-norm and maximum t-conorm

http://dx.doi.org/10.1007/978-3-662-53324-6_2
http://dx.doi.org/10.1007/978-3-662-53324-6_5
http://dx.doi.org/10.1007/978-3-662-53324-6_5
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in these cases. However, in these examples, we can also employ other types of
controllers as well as other t-norms and t-conorms. Generally, each function f ∗
given by a fuzzy system depends on:

(a) the membership functions of the fuzzy sets of the rule base;
(b) the t-norm and t-conorm used;
(c) the method of defuzzification adopted.

The next observation is geared to help the reader, mainly those with a certain
experience in numerical simulation, to understand mathematically the role played
by fuzzy systems (especially by fuzzy controllers).

For each set of data pairs (xi , yi ), 1 ≤ i ≤ r , with xi ∈ X and yi ∈ Y , the appli-
cation of the ordinary least square method yields a function f ∗

r : X −→ Y . Let f be
an unknown (theoretical) function that satisfies yi = f (xi ) for i = 1, . . . , r . Thus, it
seems reasonable to assume that the adjusted function f ∗

r approximates f when the
number of data r increases. In other words, the more the information of f the better
its approximation f ∗

r will be.
Analogously, fuzzy systems are given by data pairs (Ai , Bi ) of the form “if x is

Ai then y is Bi ”, where Ai and Bi are fuzzy sets of X and Y , respectively. Based on
the above properties (a), (b), and (c), a fuzzy system yields a function f ∗

r where r
denotes the number of rules in the rule base. To present the main result of this section,
which establishes the approximation of a theoretical function ( f ) by a sequence of
fuzzy systems, let us require that the rule base must contain the graph of the function
f . Now suppose that the rule base is given as in Frame 6.1.

R1: “If x is A1 then y is B1”
or

R2: “If x is A2 then y is B2”
or

.

.

.
.
.
.

or
Rr : “If x is Ar then y is Br ”

Frame 6.1: Rule Base for approximating the theoretical function f

The graphical representation of each one of the rules is called a granule. Figure 6.1
graphically depicts the granules corresponding to the above rules.

The graph of Fig. 6.1 illustrates how a fuzzy system can approximate a function.
As mentioned above, it is necessary that the granules of a rule base contain the graph
of the theoretical function to be approximated.

Generally, a class of objectsB approximates a classA if for each element of A there
exists an element in B such that they are close enough. In this case, mathematically
speaking, B is said to be dense in A. For example, the set of rational numbers
Q is dense in the set of real numbers R, which means that any real number can be
approximated by a rational number. Another example is the set of polynomials that is
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Fig. 6.1 Granules and theoretical function f

dense in the set of continuous functions as established in Weierstrass’s well-known
theorem. In addition, a neural network can approximate any continuous function
defined in a compact universe [9].

Next, let us present two important results from a theoretical point of view con-
cerning the study of approximation of continuous functions by means of a fuzzy
systems or, more specifically, fuzzy controllers. Before this, some notation is intro-
duced which will help in the understanding of the results we present. Let F be the
class of the functions f ∗

r : Rn −→ R obtained from a fuzzy system:

f ∗
r (x1, x2, . . . , xn) =

r∑
j=1

y j � (ϕA1 j (x1) � · · · � ϕAnj (xn))

r∑
j=1

ϕA1 j (x1) � · · · � ϕAnj (xn)

, (6.22)

where r is the number of rules and ϕA1 j , . . . ,ϕAnj are the corresponding membership
functions of the fuzzy sets Ai j , 1 ≤ i ≤ n and 1 ≤ j ≤ r , and � is a t-norm.

Theorem 6.6 (Nguyen and Walker) If membership functions are given by Gaus-
sians, and if � is the minimum t-norm or the product t-norm, then the class F
(obtained from fuzzy systems) is dense in the set of the continuous functions defined
in a compact set (such as a closed real interval).

Proof The proof of this theorem can be found in [20]. �

The above theorem can be interpreted as follows. For each continuous function f
(in our context, a “theoretical” function f ) there exists a sequence of functions f ∗

r ,
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obtained by fuzzy systems, that are sufficiently close of f . Furthermore, Theorem
6.6 has a special importance for fuzzy controllers of type TSK where the outputs are
not defuzzified and the functions f ∗

r have the form of Eq. (6.22).

Theorem 6.7 (Nguyen and Walker) Suppose that the membership functions, which
compose the rule base, are continuous with bounded support (such as triangular and
trapezoidal fuzzy sets). If both t-norm and t-conorm are continuous and a defuzzi-
fication method such as center of gravity or mean of maximum is adopted, then the
class F of the functions f ∗

r is dense in the class of the continuous functions defined
in compact sets.

Proof The proof of this theorem can be found in [20]. �
The central idea in these theorems is that the greater the number of rules r , the

closer the output of the controller and the expected theoretical function value are.
The more rules, the narrower the supports of the fuzzy sets in the rule base are and
thus the smaller the granules which cover the graph of the theoretical function are
(see Fig. 6.1).

Note that the above result is similar to the theorem of Weierstrass if we replace
the degrees of the polynomial (n) by the number of rules (r). The approximating
capability is fundamental in certain areas of mathematics such as numerical analysis
and approximation theory, implying that the fuzzy controllers can play an important
role in these areas.

Next, let us illustrate the potential of the approximating capability of the fuzzy
controllers by means of certain evolutionary systems.

6.5 Applications of Fuzzy Controllers in Dynamic Systems

This section highlights the approximation property of fuzzy controllers for appli-
cations in dynamic systems. Furthermore, we propose a method to solve classical
dynamic systems by means of fuzzy controllers.

A classical dynamic system has the form

xt+1 = F(xt ) ⇐⇒ xt+1 − xt = f (xt ) (6.23)

for the discrete case and
dx

dt
= f (x) (6.24)

for the continuous case.
The field f , in both cases, represents rates of change or variation and is central

in the study of these systems. However, if f is not explicitly given or, worse, if
f is partially known based only on certain characteristics of a given phenomenon,
then, how can we study the evolution of the system? The usual approach consists in
assuming that f is a given mathematical expression that satisfies certain properties.
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We propose a rule-based fuzzy linguistic model derived from certain characteris-
tics of the phenomenon. The inputs are the state variables whereas the outputs are
the state variations. This is a necessity in applying fuzzy controllers to dynamic
systems. From the modeling point of view, such a procedure is reasonable when
the available information is incomplete and the phenomenon is partially understood.
Since the formulation of the rules is based on the knowledge about the phenomenon,
we expect that the resulting function fr of the controller (Sect. 6.3.1) to be able to
capture such a knowledge.

We can study the solution of the differential equation by replacing the theoretical
field f by fr

xt+1 − xt = fr (xt ) (6.25)

for the discrete case and the differential equation

dx

dt
= fr (x) (6.26)

for the continuous case. Depending on the mathematical properties of f (for example,
continuity) and the chosen methodology, we expect that the solutions of (6.25) and
(6.26) respectively to converge to the solutions of (6.23) and (6.24) since fr converges
to f when the number of rules (r ) increases. In some cases the function fr is explicitly
given (see Theorem 6.6, [21, 22], and the references therein). For instance, fr can
be given by a rational form – quotient of polynomials (see [23]). In this cases, (6.25)
and/or (6.26) may have analytical solutions.

Next, we will provide some details concerning the method we employ here. How-
ever, in Chap. 9 we will present a more detailed development of the application of
fuzzy controllers to dynamic systems.

Suppose that a certain phenomenon can be modeled by the following initial value
problem (IVP) {

dx
dt = f (t, x)

x(t0) = x0
(6.27)

where the solution is

x(t) = x0 +
t∫

t0

f (s, x(s))ds. (6.28)

Let us consider a fuzzy controller with r rules that describe the characteristics of
the field f , that is, our rules produce a function fr . Now, suppose that fr −→

r→∞ f , as

discussed in Sect. 6.3.1. Further, suppose that the function fr satisfies the necessary
conditions such that the IVP {

dx
dt = fr (t, x)

x(t0) = x0
(6.29)

http://dx.doi.org/10.1007/978-3-662-53324-6_9
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has the solution

xr (t) = x0 +
t∫

t0

fr (s, x(s))ds. (6.30)

An interesting question that arises in this context is, under what conditions do you
have

xr −→
r→∞ x if fr −→

r→∞ f ?

That is, under what conditions does the convergence of the functions fr to f imply
that their integrals converge to the integral of f ?

The answers to these kinds of questions are typically found in area of mathematical
analysis, for instance, in theorems of monotonic convergence as well as Lebesgue’s
dominated convergence theorem. An answer to the above question concerning the
compact sets a the real line can be found in [21].

In order to study the presented method, besides supposing that xr −→
r→∞ x , let us

assume that each function fr has sufficient properties to ensure that the problem
(6.29) is well-defined and has a solution given by (6.30). Finally, since the function
fr of a fuzzy controller is usually given in a tabular form, let us use classical numer-
ical methods to obtain numerical solutions of (6.29), that is, the method will provide
a sequence {xr }n that approximates xr . Because xr −→

r→∞ x , and {xr }n −→
n→+∞ xr , we

expect that {xr }n
n→∞−→
r→∞ x . Basically, this is the method that we employ to estimate

solutions of ordinary differential equations using fuzzy controllers when we are deal-
ing with partial information of the direction field (see the first example of Sect. 8.1.5
in Chap. 8). In addition to this method for continuous models, we will study an
analogous methodology for the discrete system in Chap. 9.
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Chapter 7
Measure, Integrals and Fuzzy Events

In every field of knowledge, there is a tendency for the
quantitative, for the measure. So, it can be stated that the
scientific study of each branch of knowledge begins when a
measure is introduced and the study of quantitative variation is
the evolution of the qualitative.

(B. J. Caraça)

Abstract This chapter reviews classical measure theory including probability and
Lebesgue measures. This discussion is followed by fuzzy measures, Sugeno mea-
sures, and possibilistic measures in order to understand the integration of Lebesgue,
Choquet and Sugeno. These concepts are used in the development of fuzzy expected
value. Lastly, the chapter closes with a discussion of the concepts of fuzzy event,
the probability of a fuzzy event, dependence of fuzzy events, independence of fuzzy
events, together with the concepts of random linguistic variables and random fuzzy
variables.

The main objective in this chapter is to discuss questions related to the mathematical
formulations of certain types of qualitative subjectivities and their measurements.
We seek to discuss and clarify some differences and similarities between probability
theory and possibility theory. Intuitively, the probability of an event is related to
its occurrence. A possibility distribution function is related to the identification of
the event itself. In a random experiment, the uncertainty ends at the time the event
occurs. In the possibilistic case, the question remains. The event is not totally clear;
it has uncertain boundaries. For example, in the probabilistic case, after tossing a
coin, we have no doubts about the outcome: heads or tails. In the possibilistic case,
doubt occurs even after the coin is tossed if one cannot clearly see the coin.

The axiomatic foundation of possibility theory lies in fuzzy measure. Moreover,
we will use fuzzy measures as the basis for fuzzy integration and fuzzy expectation.
We use these in various application found subsequently. Consequently we begin this
chapter with fuzzy measure.
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7.1 Classic Measure and Fuzzy Measure

Measure theory is a major area of mathematical analysis. The notion of measure
generalizes the usual concepts of length, area, volume, etc. A probability measure
is a typical case of a measure, where range is restricted to the interval [0, 1]. As we
shall see, fuzzy measures also have the same range. The classical measure of interest
in this chapter is the probability measure. The reader interested in general measure
theory can see, for example, [1] or [2] among others.

7.1.1 Probability Measure

Probability measures have been frequently been used to make predictions. Many
experiments analyze random events. In this case, the stochastic approach associates
each random experiment to a sample space. For each sample space the occurrence
of event is studied.

The measure of the chance of occurrence of an event is its probability which is
represented by a real number in the interval [0, 1]. For experiments with a finite
number of outcomes, the probability of an event is defined as the ratio between the
number of favorable cases divided by the number of a possible cases in the sample
space. An axiomatic definition of probability was developed by Kolmogorov [3].

As already mentioned, the central idea in the definition of probability is to associate
each event of a sample space a number in the interval [0, 1] which indicates its
likelihood of occurrence. Thus, the probability is simply a real function of sets, a
set-value function. Formally, a function of sets is a probability measure if it satisfies
some properties, specific to measures and its domain is called σ-algebra.

Definition 7.1 Let � be a sample spaces. A family A of subsets of � is called
σ-algebra if it satisfies the following axioms:

(σ1) The empty set ∅ is in A;
(σ2) If a event A belongs to A, then its complement A′ = � − A also belongs

to A;
(σ3) If the event A1, A2, . . . belong to A, then their union also belongs to A.

As consequence of the axioms of a σ-algebra A it follow that:

(σ4) The sample space � belongs to A;
(σ5) If the events A1, A2, . . . belong to A, then the intersection of events must belong

to A.
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Thus, we have ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(σ1) ∅ ∈ A
(σ2) A ∈ A =⇒ A′ ∈ A
(σ3) A1, A2, . . . , Ai, . . . ∈ A =⇒

⋃
i∈N

Ai ∈ A

(σ4) � ∈ A
(σ5) A1, A2, . . . , Ai, . . . ∈ A =⇒

⋂
i∈N

Ai ∈ A.

(7.1)

An example of a σ-algebra is the set of all subsets of � called the power set of
omega � : P(�) = {A : A ⊂ �}.
Definition 7.2 Given the domain A, a probability measure P must satisfy the fol-
lowing axioms:

(P1) For every event A of A, the probability measure P(A) is a real number between
0 and 1;

(P2) The probability measure of the sample space � is 1;
(P3) The probability of the union of events that are pairwise disjoint is the sum of

each probability

This is formally written as:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(P1) ∀A ∈ A =⇒ 0 ≤ P(A) ≤ 1;
(P2) P(�) = 1;
(P3) If A1, A2, . . . , Ai, . . . ∈ A and Ai ∩ Aj = ∅, i 
= j,

then P
(⋃

i∈N Ai
) =

∑
i∈N

P(Ai)

(7.2)

Property P3 is called sigma-additivity. As consequence of the axions of probability
measure we have:

(P4) P(∅) = 0; because � = � ∪ ∅ ∪ ∅ ∪ . . .. Then, it follows that P(�) =
P(�) + �P(∅). Therefore, P(∅) = 0.

(P5) If A ⊆ B then P(A) ≤ P(B) (monotonicity);
(P6) ∀A ∈ A, P(A′) = 1 − P(A) (complement), where A′ is the complement of A;
(P7) ∀A, B ∈ A, P(A ∪ B) = P(A) + P(B) − P(A ∩ B) (additivity);
(P8) If A1 ⊆ A2 ⊆ . . . ⊆ Ai ⊆ . . . then P

(⋃
i∈N Ai

) = lim
i→∞ P(Ai) (continuity);

(P9) If A1 ⊇ A2 ⊇ . . . ⊇ Ai ⊇ . . . then P
(⋂

i∈N Ai
) = lim

i→∞ P(Ai) (continuity).

Probability measures are σ-additive. However, sigma-additivity of probability
measures excludes many intuitive ways that measures operate. The next example
illustrate how strong the requirement of sigma-additivity is.
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Example 7.1 Suppose that we want to measure the productivity of a group of workers
in an industry. Let μ(A) represent the productivity of the subgroup A of workers.
In this case, it is unreasonable to require that μ(A) is necessarily additive, that is,
μ(A ∪ B) = μ(A) + μ(B), for A ∩ B = ∅. It may occur thatμ(A ∪ B) < μ(A) + μ(B)

if there is an incompatibility between the operation of subgroup A and subgroup B. Or
it may occur that μ(A ∪ B) > μ(A) + μ(B) if there is synergy between the subgroups
A and B.1

Many areas where phenomena must be “measured ” are not sigma-additive as illus-
trated by the example. So it is unreasonable to always expect additivity. In the 1950s,
Choquet [5] used the concept of capacity measure in problems of mechanics. Such
measures do not require σ-additivity in the definition of a classic measure.

In summary, measures of uncertainty need to also have a place for non-additive
functions. The question is what types of uncertainties are needed in a mathematical
model? While this question is difficult to answer, what is clear, is that non-additive
measures are needed in many models of uncertainty.

7.2 Fuzzy Measure

Sugeno in 1974 [6] proposed the concept of fuzzy measure by replacing axiom P3

of the definition of probability measure by the continuity property P7. This text calls
the measure with this change the Sugeno measure.

Definition 7.3 (Sugeno Measure) Let A be a σ-algebra on � 
= ∅. A set-valued
function μS : A → [0, 1] is called a Sugeno Measure if

(i) μS(∅) = 0 and μS(�) = 1;
(ii) ∀A, B ∈ A, if A ⊆ B, then μS(A) ≤ μS(B);

(iii) If A1 ⊆ A2 ⊆ . . . ⊆ Ai ⊆ . . . then μS
(⋃

i∈N Ai
) = lim

i→∞ μS(Ai);
(iv) If A1 ⊇ A2 ⊇ . . . ⊇ Ai ⊇ . . . then μS

(⋂
i∈N Ai

) = lim
i→∞ μS(Ai).

The Sugeno measure is also called in many texts (see Klir/Yuan pp. xxx) a fuzzy
measure. The basic propriety that any measure must have for a theory of integra-
tion is monotonicity. With a Sugeno Measure, it is possible to extend the scope of
mathematical modeling to encompass non-additive uncertainties.

The definition of fuzzy measure is not always the same in the literature. For
example it is very common to demand measures to be monotonic and positive. How-
ever, among the several various definitions, what is common is the requirement
of monotonicity and that a measure of empty set is null. The capacity measure of
Choquet (see [5]) is such an example. This text will adopts the following definition
of fuzzy measure.

1Adapted from Murofushi [4].
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Definition 7.4 Let A be a σ−algebra on � 
= ∅. A set-valued function μ : A −→
[0, 1] is called a fuzzy measure if

(i) μ(∅) = 0 and μ(�) = 1;
(ii) μ(A) ≤ μ(B) whenever A ⊆ B.

The Sugeno measure is a particular fuzzy measure.

Example 7.2 Let A be a σ-algebra and the function gλ : A −→ [0, 1] satisfying:

(1) gλ(�) = 1;
(2) gλ(A ∪ B) = gλ(A) + gλ(B) + λgλ(A)gλ(B), for some λ > −1, if A ∩ B = ∅.

We show that gλ is a fuzzy measure. Indeed it is enough to check that gλ(∅) = 0
and gλ(A) ≤ gλ(B) if A ⊆ B.

• 1 = gλ(�) = gλ(� ∪ ∅) = gλ(�) + gλ(∅) + λgλ(�)gλ(∅) =
= 1 + gλ(∅) + λgλ(∅),

This means that,

1 = 1 + gλ(∅) + λgλ(∅) ⇐⇒ (1 + λ)gλ(∅) = 0.

Then, from (2), follows that gλ(∅) = 0 because λ > −1.
• If A ⊆ B then B = A ∪ (B − A) and A ∩ (B − A) = ∅

gλ(B) = gλ(A ∪ (B − A))

= gλ(A) + gλ(B − A) + λgλ(A)gλ(B − A)

= gλ(A) + [1 + λgλ(A)]gλ(B − A).

However, [1 + λgλ(A)]gλ(B − A) ≥ 0. Thus, gλ(B) ≥ gλ(A).

Exercise 7.1. Show that for λ = 0, gλ is a Sugeno measure if, and only if, gλ is a
probability measure (Suggestion: see Proposition 1.4 in [7, 8]).

Example 7.3 Consider a pack of n wolves, i.e., the set � = {x1, x2, . . . , xn} . For each
element of � we attribute a number pi ∈ [0, 1] for degree of predation. Predation pi

will be dependent on age (puppy, young, adult, old). Let’s define a function g in the
set P(�), the power set of �, to be the “potentiality of predation in a hunt”.

The potential predation for the whole pack is maximum, that is,

g(�) = g({x1, x2, . . . , xn}) = 1.

For each one of the subgroups A and B, with A ∩ B = ∅, it is possible that

g(A ∪ B) = g(A) + g(B) + λg(A)g(B) for any λ > −1.

According to Example 7.2, the potential of predation, given by g, is a fuzzy measure.
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Let us further explore Example 7.3 by investigating the power of fuzzy measures to
model the phenomenon “predation”, evaluating the performance of the participation
of younger wolves in a hunt:

• if they do not contribute very much (sometimes capture the prey but sometimes
scare away the prey), then we choose λ in the interval (−1, 0);

• if they moderately contribute to the hunt (do not startle the prey) we have λ = 0;
• if they strongly contribute to the hunt (capture and run the prey towards stronger

wolves), then we consider λ > 0.

Another concept that is typically studied in the context of fuzzy set theory is
possibility. This subject was introduced by Zadeh and has grown both in its theory
and in its applicability.

Possibility measures are special measure within evidence theory (see Klir and
Yuan [9]) and so are associated with probability theory.

7.3 Possibility Measure

In 1978 Zadeh published the first article on possibility measure [10]. This article
brings to the fore an important discussions dealing with the theoretical, semantic,
and practical distinctions between possibility and probability. One of these distinction
is with respect to an affirmation, seemingly naive, but quite common in day-to-day
usage, “a fact is possible but unlikely”. This suggests that, whatever concept we
use for possibility (a measure that we denote by �), we need have �(A) ≥ P(A).
Currently, this inequality has been much debated and is often called the Principle
of Consistency (see Klir and Yuan [9]).To introduce the concept of a possibility
measure, it is interesting to bring up a few preliminary reflections.

Suppose that for a given problem we wish to get the value of a parameter ω0.
However, the only information available is that the value belongs to certain space
�. This partial knowledge about ω0 indicates that some model of uncertainty should
be used to estimate ω0. If for some reason it is known that all elements of � are
equally possible, then it is possible to assume a uniform distribution in � to estimate
ω0. However, from the point of view of possibility theory all elements of � have the
same degree of possibility.

Now, if there is gradation associated with the information (given by a specialist,
for example), that is, there are elements more plausible than others in �, how does
one treat such information? Again, the stochastic treatment suggests the adoption of
a probability distribution and use it in order to obtain ω0. From a fuzzy set theory
point of view, the information of a specialist in fuzzy sets theory, is treated by mean
membership functions where the expert indicates which of the elements of � must
be given more or less “weight” according to their knowledge. The adoption of a
mathematical model designed a priori or constructed together with a expert is a key
difference between probability theory and possibility in the mathematical treatment
of uncertainties.
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In summary, for stochastic theory, the available information is treated by prob-
ability density functions. In possibility theory it is via a possibility measure. The
possibility function will be function viewed as a distribution of possibilities on �.
Note that, formally, ϕ is a typical derived from a membership function of a fuzzy
subset of �.

The following example illustrates a typical way information is treated by expert
which can be modeled by a possibility distribution.

Example 7.4 In the proposition “X is a small number”, consider that small number
is given by a fuzzy subset of non-negative integer numbers. In this case, we have a
possibility distribution (not formally defined yet) instead of a probability distribution
for X because in the absence of a survey on what a “small number ”is among a
population, this concept in not probabilistic. That is, it is still possible to say to what
degree an integer n conforms to the subjective notion of small numbers without a
survey. This degree can be given by a number, ϕX(n) which indicates a “tendency ”
of n to be small and ϕX : N → [0, 1] is interpreted as a possibility distribution of X
on the set of natural numbers. On the other hand, how does one obtain P(n) for the
probability of n?

We present a short summary of the theory of possibilities.

Definition 7.5 A possibility distribution on the set � 
= ∅ is a function ϕ : � →
[0, 1] satisfying sup

ω∈�

ϕ(ω) = 1.

We note that any normal fuzzy subset of � can be used to define a possibility
distribution on �. However, as Zadeh [11] points out, the semantics of the entity
being modeled is associated with information deficiency or lack of information, or
incomplete information.

Definition 7.6 Let A be a σ−algebra on � 
= ∅. A set-valued function � : A →
[0, 1] is called a possibility measure if it satisfies:

(a) �(∅) = 0 and �(�) = 1;
(b) For any family {Ai∈J} of subsets on � follows

�
(⋃

i∈J Ai

)
= sup{�(Ai) : i ∈ J},

where J is an index set.

Note that, given the possibility measure �, this induces a possibility distribution
function, ϕ� on � through its restriction on the elements of �, in other words,
ϕ�(ω) = �({ω}). On the other hand, given a possibility distribution function, this
measure induces a possibility over � given by

�(A) =
{

sup
ω∈A

ϕ(ω) if A 
= ∅
0 if A = ∅ ,

for all A ∈ A.
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It follows from the definition of possibility measure that, for any subsets A, B
∈ A,

�(A ∪ B) = max {�(A),�(B)} .

Moreover, �(A) ≤ �(B) whenever A ⊆ B. Thus, any possibility measure is a fuzzy
measure.

We next look at the differences between the probability and possibility distribution
by considering the following example.

Example 7.5 2After a few days lost in the desert a man finds an oasis with two
water sources. The first source has a sign written: “the probability of the water being
contaminated is 0.02 ”. That is, p(A) = 0.02. At the second source the inscription
on the sign reads: “the degree of possible contamination of this source is 0.02 ”, i.e.,
�(A) = 0.02. The question to be answered is which source should the individual
choose.

We observed that the question in this case is not just a semantic matter but of
health because if the individual drinks water from the first source, there is great
chance that she or he will drink clean water, but there is a 2 % risk of being poisoned.
If the person chooses the second source, she or he is not completely sure of drinking
potable water and her or his only risk is something like diarrhea or headache.

Note that only posteriori analysis is it possible be sure of the content of each source.
The process of inference is a rational effort to predict the unknown. What should be
debated is what kind of knowledge best instructs decision making. It may be noted
by this example has the two logical structures resulting in two distinct processes of
knowledge acquisition, two epistemological alternatives. What is the better informed
approach to knowledge, chance or trend? Chance/probability affirms that the water
is or is not contaminated indicating whether or not the water is drinkable. The second
source indicates the degree of contamination which is the level of contamination.

Probability and degrees of possibility have distinct natures in their interpretations.
Although both are expressed by values between zero and one and both indicate
uncertainty, probability assesses and describes the chance of a particular event to
occur, whereas possibility measures the tendency of an event (to occur).

The following example continues our discussion of the difference the between
probability and possibility, though stressing that not all fuzzy membership functions
can be interpreted as a possibility distribution.

Example 7.6 (Epidemiology) In epidemic studies it is a very common concern to
know how strong the infectiousness of a disease is, that is, how many people are
infected by an infectious element. This is closely related to the parameter, β ∈ [0, 1]
which indicates the rate at which susceptible individuals become infected. Biologi-
cally, the parameter β, called the transmission coefficient rate, is directly linked to the
chance of disease transmission to occur when there is contact between a susceptible
and an infected individual.

2Adapted from Bezdek [12].
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This parameter is evaluated in classical models (deterministic) by a kind of average
obtained from the population and, thereby, all infecting individuals have the same
“power ” to infect susceptible individuals. It is as if we were to assume homogeneity
in the class of those infected. However, this assumption is a very naive one since it
is quite reasonable to expect the opposite, that is, there exist individuals with greater
power to transmit the disease than others. The reasons for this are quite different
(see Sadegh-Zadeh [13]). One of those, which will be the only one considered here,
is the viral load that can be modeled by β = β(v) where v represents the the viral
load which the infectious individual possesses. Given the considerations made so far,
the parameter β can be seen as a membership function of some fuzzy subset over a
universe in which the viral load assumes its values. Since v can be translated into a
number, its domain is the set of nonnegative real numbers. Thus,

β : R+ → [0, 1].

The number β(v) just reflects the degree to which that β is related to v, that is,
the effect of v on the parameter β. Knowing the value v0 of the viral load we have
an effect on the value of β.

So far we have not considered any kind of uncertainty. No information about the
viral load was given in obtaining v0 and thus we have no indication that the function
β corresponds to a possibility distribution. However, from an expert of the disease in
question, we may obtain information such as v0 belongs to the interval [vmin, vmax].
In this case, we can think of a mathematical model in an attempt to evaluate v0,
in a selected space for the parameter in question. In addition to which the space
the parameter belongs, we know that there are values of v ∈ [vmin, vmax] that are
more plausible than others, given by “weights” ρ(v) ∈ [0, 1]. With this, it possible
to establish a possibility distribution

ρ : [vmin, vmax] → [0, 1]

for v in an attempt to evaluate v0.
This function ρ can be directly “built” by the specialist according to their empirical

knowledge or from data. Such a function need not be a probability density distrib-
ution known a priori. Further, ρ is not necessarily a probability density distribution
- its integral can be different than 1. This discussion points out differences between
possibilistic and stochastic methods in obtaining an estimation of the parameter v0.

We can say that the probability density distribution is to the probability measure
what the possibility distribution is to the possibility measure. For example, con-
sider A ⊂ � = R. If for any v ∈ [vmin, vmax] we have ρ(v) = 1, then the possibility
distribution ρ induces a possibility measure � given by

�(A) =
{

sup
v∈A

ρ(v) if A 
= ∅
0 If A = ∅ .
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Fig. 7.1 Relationships of
fuzzy measures

It is not difficult to see that, in this case, � is also a possibility measurement.

If
∫

�

ρ(v)dv = 1, then ρ is a probability density distribution that induces a prob-

ability measure on �, given by

P(A) =
∫

A
ρ(v)dv.

It is not difficult to see that P is also a Sugeno measure. However � is not a Sugeno
measure [14]. On the other hand, in any finite space the concepts of possibility
measure and Sugeno measure are equivalent (see [14, 15]).

Figure 7.1 summarizes the relationships among the measures we discussed above.
The following subsection concludes our discussion about measures.

7.4 Probability/Possibility Transformations

It is essential find a way to transform possibility to probability vice versa in many
practical problems. For example, we may wish to construct a possibility function
from a set of statistical data or the reverse, that is, to construct a probability density
function from a possibility distribution. Also, in many cases, it may be interesting
to compare the information obtained from the two methods applied to the same
phenomenon.

All the methods in the literature used to transform probability into possibility, or
vice versa, have something in common, they all obey the Principle of Consistency,
commented at the beginning of Sect. 7.1.3, that is

P(A) ≤ �(A) for all A ⊆ �.

Here we focus only on the method of transformation between probability and
possibility in the case in which � is a finite space. Thus, we suppose that � =
{ω1,ω2, . . . ,ωn}, and that

�(ω1) ≥ �(ω2) ≥ . . . ≥ �(ωn) and P(ω1) ≥ P(ω2) ≥ . . . ≥ P(ωn).
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The simplest transformation, and the only one discussed here, is:

(a) �(ωi) = P(ωi)

P(ω1)
and (b) P(ωi) = �(ωi)

n∑
i=1

�(ωi)

.

The example below is a summary of a study made by Castanho [16] in her doctoral
thesis.

Example 7.7 (Diagnosis of Prostate Cancer) The physician, in the process of diag-
nosing, evaluates the stage of prostate cancer to indicate a proper treatment. It is
known that treatments, such as surgery or radiotherapy, have a high chance of cure
if the cancer is confined to the organ. To evaluate the stage of the prostate cancer
the physician has reviewed information provided by clinical examinations (rectal
examination and/or imaging, blood test that measures the level of prostate specific
antigen (PSA) which is a substance that increases with the increase of the tumor, and
biopsy). A biopsy of the tumor is classified by the Gleason Score according to the
degree of differentiation of cells (tumor aggressiveness).

Combining these three variables (rectal exam, PSA, biopsy) and using data in
the urological literature, there are several tables that indicate the likelihood of the
patient being at a particular developmental stage of the disease (incursions into the
prostatic capsule, vesicles seminal, and pelvic lymph nodes). These ratings are clearly
subjective. The boundaries between each of these stages are fuzzy, which suggests
treating them as linguistic variables as we saw in Chap. 4.

Castanho [16] developed a system based on fuzzy rules to obtain the stage of the
disease using the linguistic variables associated with the type of the incursions. In
this system the output variable (disease stage) is modeled by means of fuzzy sets.
For every real value that represents the system output there is a corresponding degree
of membership of the fuzzy set that describes a stage of the disease. The proposition
“stage of the disease is confined ”, for example, allows one to see this level as a
possibility of the disease to be confined to the prostate. Accordingly, this proposition
defines a possibility distribution in the set of individuals.

The same phenomenon with information given in probabilistic terms (probability
tables) can be transformed into a possibilistic distribution using the method initially
proposed by [16, 17]. Consistency needs to be checked. For example, suppose a
patient has the following pre-surgical data: clinical state classified as palpable; lim-
ited to less than half of one lobe (a lobe is each of the two parts in which a prostate is
anatomically subdivided); PSA level equal to 5.3 ng/ml (ng means nanogram) and
Gleason biopsy degree of 7.0. According to the rule-based system, the possibility
of this patient having cancer confined to the prostate is 0.60; that he has capsular
involvement is 0.93 and incursion into the vesicle and/or lymph nodes is 0.11. Using
the transformation

http://dx.doi.org/10.1007/978-3-662-53324-6_4
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P(ωi) = �(ωi)
n∑

i=1

�(ωi)

,

we obtain the following probabilities: 0.36; 0.57 and 0.07, respectively. In the prob-
ability tables of Partin (see [16]) we found 0.33; 0.52 and 0.14 respectively. At least
for this case, we can say that the results given in terms of probability indicating the
likelihood results is about the same as that obtained from a possibilistic approach.

Castanho et al. [16, 18] developed a method she called the ROC-Fuzzy which
is an adaptation of the classic Roc Curve (Receiver Operating Characteristic), used
in signal systems and also in medicine to assess the power of a test. More recently,
Silveira [19] redid the study of Castanho to compare the fuzzy method with nomo-
grams of Katan [20] and developed a software system to help the urologist in similar
ways as those of traditional nomograms.

The reader can find other possibility to probability transformations in various texts
of fuzzy logic [9, 16, 21–24]. Let us close this section by commenting that, in an
effort to obtain an expected value that estimates a certain parameter, as discussed in
Example 7.6, beyond the concept of measure, we need the notion of integral, similar
to what is done in the classical case.

Briefly, we can draw a parallel among the methodologies of fuzzy and stochastic
in order to obtain values that estimate parameters for example. In the stochastic case,
from a randomized experiment, we have a density distribution function that in turn
induces a probability measure. From this measure we can construct integrals and
then in the possibilistic case, which can be constructed from expert knowledge or
constructed from a set of statistical data, we have a possibility distribution function
which induces a possibility measure.

The idea is to construct a fuzzy integral from the fuzzy measure and finally obtain
an expected value. Thus, in the following section we will focus our study on several
kinds of integrals.

7.5 Fuzzy Integrals

The above presented a short justification of the need to study the concept of inte-
gral, although both in mathematics or most commonly in the exact sciences, such a
concept does not need any motivation. Its importance in the theoretical disciplines
of mathematical analysis is no less than that in applied mathematical analysis where
the integral is used in various types of problems such as the calculation of volumes,
areas, energy, work to mention a few uses. This section presents some concepts and
properties of integrals with respect to both classical and fuzzy measures.
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7.5.1 Lebesgue Integral

We will next show the basic idea of how to construction of the Lebesgue integral
with respect to an abstract measure, without being concerned with more theoretical
issues such as the existence of the integral. This will serve as a model for integration
from fuzzy measure which is the main concern of this section. The basic idea is the
following: given the fact that all positive functions f are limits of a sequence of simple
functions, we initially define the Lebesgue integral for simple functions. Therefore,
the integral of an arbitrary positive function f is defined as the limit of integrals of
these simple functions that converge to f .

Suppose that g : � → [0,∞) is a simple function,

g(ω) =
k∑

i=1

αiχAi(ω),

with Ai, 1 ≤ i ≤ k, a countable partition of � and χAi the characteristic function
of Ai.

Definition 7.7 Let μ be a (σ-additive) measure in �. The Lebesgue Integral of the
simple function g over �, with respect to the (classic) measure μ, is given by

∫
�

g dμ =
k∑

i=1

αiμ(Ai). (7.3)

Example 7.8 Consider that g is given by only three distinct (positive) values: α1,α2,
and α3. Then,

g(ω) = α1χA1
(ω) + α2χA2

(ω) + α3χA3
(ω), ∀ω ∈ �.

Therefore ∫
�

g dμ = α1μ(A1) + α2μ(A2) + α3μ(A3).

Note that each parcel αiμ(Ai) can be seen as a “area” and the integral of g is the
total area defined by its graph. Figure 7.2 illustrates the Lebesgue integral of g.

On the other hand, the area mentioned above, which gives the Lebesgue integral
of g, can be obtained by partitioning on the vertical axis α. From this point of view,
this area is given by

μ{ω ∈ � : g(ω) > 0}(α1 − 0) + μ{ω ∈ � : g(ω) > α1}(α2 − α1)

+μ{ω ∈ � : g(ω) > α2}(α3 − α2) =
=
∫ α3

0
μ{ω ∈ � : g(ω) > α} dα
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where the latter corresponds to the Riemann integral of the function h(α) = μ{ω ∈
� : g(ω) > α} with respect to α. Thus, we obtain

∫
�

g dμ =
∫ α3

0
μ{ω ∈ � : g(ω) > α} dα.

This example can be generalized to any simple function, that is,

∫
�

g dμ =
∞∑

i=0

μ{ω ∈ � : g(ω) > αi}(α(i+1) − αi)

=
∫ ∞

0
μ{ω ∈ � : g(ω) > α} dα. (7.4)

According to we have said above, a positive function f : � → [0,∞) is the limit
of a sequence of simple functions. The Lebesgue integral with respect to (classical)
measure μ is the limits of the integrals of these simple functions. Hence, and from
(7.4) we have ∫

�

f dμ = (“area” defined by the graph of f over �)

=
∫ ∞

0
h(α) dα (7.5)

with h(α) = μ{ω ∈ � : f (ω) > α}. Formula (7.5) indicates that the abstract
Lebesgue integral of f can be obtained from the Riemann integral of the function
that provides a measure of the “levels” of f (see Fig. 7.3).

An immediate consequence of Formula (7.5) is that if X : � → [0,∞) is a random
variable in � with probability measure P, then

E(X) =
∫

�

X dP =
∫ ∞

0
P[X > x] dx,

where E(X) is the expected value of X and

Fig. 7.2 Lebesgue integral
of a simple function
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[X > x] = {ω ∈ � : X(ω) > x}.

This is a widely used result in the calculation of expected value of random variables
and it serves as a motivation for the Choquet Integral, which has also been used in
the theory of fuzzy integrals since the Choquet integral, requires no additivity in the
measure. Note that if X is a random variable with X(ω) ≥ 0 ,∀ ω ∈ �, it follows
that E(X) = ∫∞

0 (1 − F(x)) dx where F(x) = P(X ≤ x) is cumulative distribution
function of X. For discrete case, we have

E(X) =
∞∑

n=0

P(X > n) =
∞∑

n=1

P(x ≥ n).

7.5.2 Choquet Integral

The Choquet Integral, being one that does not require an additive measure, brings
us closer to our construction of integrals with fuzzy measure. Thus, it is presented
next.

Definition 7.8 The Choquet Integral of the f : � → [0,∞) with the respect to a
measure, not necessarily additive, μ, is given by:

(C)

∫
�

f dμ =
∫ ∞

0
μ{ω ∈ � : f (ω) > α} dα.

Note that if μ is not additive, some properties of the Lebesgue integral no longer
apply. The main property is that of linearity, which means, if μ is not additive then
it may happen that

(C)

∫
�

(af + g) dμ 
= a

[
(C)

∫
�

f dμ

]
+ (C)

∫
�

g dμ.

Fig. 7.3 Riemann Integral
of the function
h = μ{ω ∈ � : f (ω) > α}
and Lebesgue Integral of the
function f

α

dα

μ{ω ∈ Ω : f(ω) > α} dα

μ{ω ∈ Ω : f(ω) > α} Ω
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Intuitively, to obtain the Choquet Integral of a function

f : � → [0,∞),

one only uses the concept of Riemann integral on the levels of f which are defined
in the range of that function, the real numbers. Choquet has used this concept of
integral with respect to the capacity measure (which is not additive) in studies
of mechanics [5]. Recently, Sugeno has been proposed calculus theory based on
Choquet Integral [25, 26].

7.5.3 Sugeno Integral

The Sugeno integral was introduced in the early 70 s and was called fuzzy integral
[6]. The fuzzy integral was created to defuzzify fuzzy numbers using a measure that
was not necessarily σ-additive.

The definition given here is for functions whose range is the interval [0, 1] so that
it is applicable to fuzzy membership functions. However, this concept can be used
for more general functions where the range is the set of positive real numbers. Thus,
the requirement that the range of the function be [0, 1] could be set aside [27].

Definition 7.9 Let f : � → [0, 1] be a function and μ a fuzzy measure on �. The
Sugeno Integral of f on � with respect to μ is the number

(S)

∫
�

f dμ = sup
0≤α≤1

[α ∧ μ{ω ∈ � : f (ω) ≥ α}]
= sup

0≤α≤1
[α ∧ μ{ω ∈ � : f (ω) > α}]. (7.6)

A first observation to be made is that the Sugeno integral can be formally obtained
by replacing the sum by supremum (sup) and the product by minimum (∧) in the
Lebesgue integral (or the Choquet integral) with respect to the measure. If A is a
classic subset of �, then

(S)

∫
A

f dμ = sup
0≤α≤1

[α ∧ μ(A ∩ H(α)],

where
H(α) = μ{ω ∈ � : f (ω) ≥ α}

is called level function of f . It is interesting to note that H : [0, 1] −→ [0, 1] is a
non-increasing and continuous function almost everywhere [15]. This observation
will be useful in understanding the following results.
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Ω

1

α =⇒
f

{ω : f(ω) > α}

1

H

H(α) = α

bisectrix

(a) (b)

αCurve of f and its   -level.  = Sugeno Integral of f.

α
⎯

α
⎯

α
⎯

Fig. 7.4 Illustration of Theorem 7.1

Theorem 7.1 Let f : � −→ [0, 1] be a function (typically a membership function)
and μ a fuzzy measure on �. If the function H(α) = μ{ω ∈ � : f (ω) ≥ α} has a
fixed point α, then

(S)

∫
�

f dμ = α = H(α). (7.7)

In other words, the Sugeno Integral of f coincides with the fixed point of H, if it
exists.

Proof The proof of this theorem can be found in [6]. �

The Fig. 7.4 is an illustration of this theorem.
The part of the curve in Fig. 7.4b indicates the value of [α ∧ H(α)], for α ∈ [0, 1],

and has as the supremum the value α, which is the intersection of the 45◦ line, y = x,
with the graph of H(α) and therefore, α is the fixed point of H(α).

Example 7.9 Let F be a fuzzy subset of R whose membership function f : R →
[0, 1] is given by f (x) = −4x2 + 4x. Then,

[F]α = {
x ∈ R : −4x2 + 4x ≥ α

} =
[

1 − √
1 − α

2
,

1 + √
1 − α

2

]
.

If we consider the usual Lebesgue measure m of the line which is, obviously, also a
fuzzy measure, then

m([F]α) = 1 + √
1 − α

2
− 1 − √

1 − α

2
= √

1 − α = H(α).

Therefore,

(S)

∫
R

f dm = sup
0≤α≤1

[
α ∧ √

1 − α
]
.
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α

α

1
6

α> 8
9α< 8

9

ff

A A

1[F ]α [F ]α 1
A∩[F ]α=A

α
α∧H(α)

m(A∩[F ]α)

bisectrix
=⇒

Fig. 7.5 Geometric layout of the Sugeno integral of f on A

The function H(α) = m([F]α) = √
1 − α, which associates to each α-level its

measure, is monotone and decreasing and, in this case, it is continuous. By the
Theorem 7.1, we have (Fig. 7.5)

(S)

∫
R

f dm = H(α) = α = −1 + √
5

2

because

H(α) = α ⇐⇒ √
1 − α = α =⇒ α = −1 + √

5

2
.

Now, consider A = [
1
3 , 1

2

]
. Then

m(A ∩ [F]α) =

⎧⎪⎨
⎪⎩

1

6
if α ≤ 8

9√
1 − α

2
if

8

9
≤ α ≤ 1

=⇒

[
α ∧ m(A ∩ [F]α)

] =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

α if α ≤ 1

6
1

6
if

1

6
< α ≤ 8

9√
1 − α

2
if

8

9
< α ≤ 1

=⇒
∫

[ 1
3 , 1

2 ]

f dm = 1

6
.

We leave to the reader the task of obtaining

(C)

∫
f dμ; and

∣∣∣∣(C)

∫
f dμ − (S)

∫
f dμ

∣∣∣∣
for f from Example 7.9.

Theorem 7.2 Let f : � → [0, 1] be a function (typically a membership function)
and μ a (classic) measure on �. Then,
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∣∣∣∣(S)

∫
�

f dμ −
∫ 1

0
H(α) dα

∣∣∣∣ ≤ 1

4
. (7.8)

Note that
∫ 1

0
H(α) dα =

∫ 1

0
μ{ω ∈ � : f (ω) ≥ α} dα is the Choquet integral of the

function f .

Proof We will only sketch the proof. The complete proof may be found in [6]. Let
α = H(α) be the fixed point of H(α). Then,

∣∣∣∣(S)

∫
�

f dμ −
∫ 1

0
H(α) dα

∣∣∣∣ =
∣∣∣∣α −

∫ 1

0
H(α) dα

∣∣∣∣ =

∣∣∣∣
∫ α

0
1 dα −

[∫ α

0
H(α) dα +

∫ 1

α

H(α) dα

]∣∣∣∣ .
It follows that∣∣∣∣

∫ α

0
(1 − H(α)) dα −

∫ 1

α

H(α) dα

∣∣∣∣ ≤
∫ α

0
(1 − H(α)) dα ≤

∫ α

0
(1 − H(α)) dα =

∫ α

0
(1 − α) dα = (1 − α)α ≤ 1

4
,

since that ᾱ ∈ [0, 1]. �

Remark The penultimate inequality above is valid because H is a decreasing func-
tion. Importantly, it is not possible to reduce the maximum difference of 1

4 appearing
in the above theorem. This means that there are functions f for which this difference
is reached [28].

Properties of the Sugeno Integral

The Sugeno integral is not linear, similar to the Choquet integral. Moreover, both are
monotone, that is,

(S)

∫
�

f dμ ≤ (S)

∫
�

g dμ if f ≤ g.

Below are several properties of the Sugeno integral whose proofs can be found
in [6].

Let f : � −→ [0, 1] and g : � −→ [0, 1] be functions, μ a fuzzy measure on �,
and A and B subsets of �. Then the following properties hold:

(i) If f (x) = k, then (S)

∫
A

f dμ = k ∧ μ(A);

(ii) If f ≤ g, then (S)

∫
A

f dμ ≤ (S)

∫
A
g dμ;
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(iii) (S)

∫
A
(f ∨ g) dμ ≥ (S)

∫
A

f dμ ∨ (S)

∫
A
g dμ;

(iv) (S)

∫
A
(f ∧ g) dμ ≤ (S)

∫
A

f dμ ∧ (S)

∫
A
g dμ;

(v) If A ⊂ B, then (S)

∫
A

f dμ ≤ (S)

∫
B

f dμ;

(vi) (S)

∫
A∪B

f dμ ≥ (S)

∫
A

f dμ ∨ (S)

∫
B

f dμ;

(vii) (S)

∫
A∩B

f dμ ≤ (S)

∫
A

f dμ ∧ (S)

∫
B

f dμ;

where f ∨ g and f ∧ g are, respectively, the maximum and minimum of the functions
f and g.

The Lebesgue integral was used to obtain the expected value of a random variable
with respect to a probability measure. In the same manner, we will use the Sugeno
integral to obtain the fuzzy expected value FEV of an uncertainty variable with
respect to a fuzzy measure.

Definition 7.10 Let X : � → [0, 1] be an uncertainty variable (typically given by a
membership function) and μ a fuzzy measure on �. The fuzzy expected value of X
is the real number

FEV(X) = (S)

∫
�

X dμ = sup
0≤α≤1

[α ∧ μ{ω ∈ � : X(ω) ≥ α}]. (7.9)

The following result was stated by Sugeno [6] and it is a consequence of
Theorem 7.2.

Corollary 7.3 Let X : � → [0, 1] be a normalized random variable (which is typ-
ically given by a membership function) and P a probability measure on �. Then,

(a) (Sugeno)

| FEV(X) − E(X) | ≤ 1

4
.

(b)
FEV(X) ≤ √

E(X).

Proof (a) Recall that, given the fuzzy measure

FEV(X) = (S)

∫
�

X dP

and

E(X) =
∫

�

X dP =
∫ 1

0
P{ω ∈ � : X(ω) ≥ α} dα =

∫ 1

0
H(α) dα.

The result follow from Theorem 7.2.
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(b) Note that 0 ≤ E(X) ≤ 1. From the Chebyshev inequality [7, 8]

H(α) = P {ω : X(ω) ≥ α} ≤ 1

α
E(X),

which implies that

FEV(X) = sup
0≤α≤1

[α ∧ H(α)] ≤ sup
0≤α≤1

[
α ∧ 1

α
E(X)

]
= ᾱ,

where ᾱ is the solution α = 1
α

E(X).
Therefore, ᾱ = √

E(X), hence the result follows. �

This corollary legitimizes the use of fuzzy expected value instead of the classical
expected value when the uncertainty of the studied phenomenon is not coming solely
from randomness, but of different possibilities for the variable of interest.

Because FEV(X) is a fixed point of the function H : [0, 1] → [0, 1], fixed point
theorems such as Banach’s contraction mapping theorem or Brouwer’s fixed point
theorem [29] can help one to estimate FEV(X).

The following are some examples of random variables with density function
distribution f for which the difference between FEV(X) and E(X) is smaller than 1

4 .
First, it is worth remembering the following identities [7, 8].

(a) H(α) = P{ω ∈ � : X(ω) ≥ α} =
∫ 1

α

f (x) dx;

(b) E(X) =
∫

�

X dP =
∫

R
xf (x) dx.

(c) If g : R → R, then, for the random variable g(X), we have that

E(g(X)) =
∫

�

g(X)dP =
∫
R

g(x)f (x)dx, (7.10)

where X a is continuous random variable with density f . In particular,

E(X) =
∫

�

XdP =
∫
R

xf (x)dx.

In the case that X is discrete, we have that

E(g(X)) =
∑

i

g(xi)P[X = xi], (7.11)

with P[X = xi] = P {ω ∈ � : X = xi}. In particular,

E(X) =
∑

i

xiP[X = xi].
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(d) In the case that X is continuous

P {ω ∈ � : X(ω) ≥ t} =
∫ ∞

t
f (x)dx. (7.12)

In particular, if α ∈ [0, 1],

H(α) = P {ω ∈ � : X(ω) ≥ α} =
∫ 1

α

f (x)dx.

Example 7.10 (Uniform Distribution) Suppose that the random variable X : � →
[0, 1] has a uniform distribution, that is, its probability density function is given by

f (x) =
{

1 if 0 ≤ x ≤ 1
0 otherwise

.

It is easy to see that E(X) =
∫ 1

0
xf (x) dx = 1

2
. On the other hand,

H(α) = P{ω ∈ � : X(ω) ≥ α} =
∫ 1

α

f (x) dx = 1 − α.

Now, since FEV(X) is the solution of H(α) = α or 1 − α = α, this means α = 1
2 . In

this example it follows that FEV(X) = E(X) = 1
2 . Therefore, |FEV(X) − E(X)| =

0.

Example 7.11 (β Distribution) Let the random variable X : � → [0, 1] have a β
distribution where its density function probability is given by

f (x) = 1

β(a, b)
xa−1(1 − x)b−1, x ∈ [0, 1].

It is known that [7, 8] the stochastic expected value of X is given by

E(X) = a

a + b
.

By means of numerical methods we have obtained the fuzzy expected values FEV(X)

for some parameters a and b of the β distribution, which are shown in Table 7.1.
Note that for any value of the parameters a and b, the difference between FEV(X)

and E(X) is less than or equal to 0.25 which is according to Sugeno’s Theorem and
FEV(X) ≤ √

E(X). Furthermore, if a = b in the β distribution, then the stochastic
and fuzzy expected value coincide. Actually, this result was proved for a more general
case [30].
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Table 7.1 A few values of E(X) and FEV(X) for beta distribution (β)

a b |a−b| E(X) FEV(X) |E(X)-FEV(X)|

1 1 0 0.5000 0.5000 0.0000

1 2 1 0.3333 0.3820 0.0486

1 3 2 0.2500 0.3177 0.0677

1 4 3 0.2000 0.2755 0.0755

2 1 1 0.6667 0.6180 0.0486

2 2 0 0.5000 0.5000 0.0000

2 3 1 0.4000 0.4278 0.0278

2 4 2 0.3333 0.3773 0.0440

3 1 2 0.7500 0.6823 0.0677

3 2 1 0.6000 0.5722 0.0278

3 3 0 0.5000 0.5000 0.0000

3 4 1 0.4286 0.4472 0.0186

4 1 3 0.8000 0.7245 0.0755

4 2 2 0.6667 0.6227 0.0440

4 3 1 0.5714 0.5528 0.0186

4 4 0 0.5000 0.5000 0.0000

Theorem 7.4 Let X : � → [0, 1] be a random variable with density function f :
[0, 1] → [0, 1] that is symmetrical in relation to x = 1

2 , that is, f (x) = f (1 − x) for
all x ∈ [0, 1]. Then, FEV(X) = E(X).

Proof From f (x) = f (1 − x) we have

∫ 1
2

0
f (x) dx =

∫ 1
2

0
f (1 − x) dx =

∫ 1
2

1
−f (x) dx =

∫ 1

1
2

f (x) dx.

On the other hand,

∫ 1

0
f (x) dx = 1 =

∫ 1
2

0
f (x) dx +

∫ 1

1
2

f (x) dx =⇒

∫ 1
2

0
f (x) dx =

∫ 1

1
2

f (x) dx = 1

2

and H(α) = P{ω ∈ � : X(ω) ≥ α} =
∫ 1

α

f (x) dx.

Therefore,

H(
1

2
) =

∫ 1

1
2

f (x) dx = 1

2
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and, consequently, FEV(X) = 1
2 . Now, it is known that the stochastic expected value

in this case is 1
2 for any symmetric random variable which coincides with the median.

Thus, the theorem is proved. �

This section ends with a method to obtain FEV(X) in the case where X is an
uncertain variable that assumes only a finite number of values.

Theorem 7.5 Suppose that the variable X : � → [0, 1] assumes only n + 1 values
{xi}1≤i≤n+1 and

μi = μ{ω ∈ � : X(ω) ≥ xi}, i = 1, . . . , n,

(excluding μ = 1 and μ = 0).
Then,

FEV(X) =
∫

�

X dμ = median of A,

where A = {x1, x2, . . . , xn+1,μ1, . . . ,μn} sorted in ascending order.

Proof See [31, Theorem 4.2.3]. �

Remember that the median of a ordered sequence {an}n∈N is defined by

med({an}) =
{

a(n+1)/2 if n is odd
[an/2 + a(n/2)+1]

2
if n is even

.

Example 7.12 Suppose the fuzzy set of people with an “excellent income” in a certain
enterprise, is given by:

• 1 person earns per hour U$ 23.00 −→ α5 = 0.40
• 2 people earn per hour U$ 24.00 −→ α4 = 0.50
• 4 people earn per hour U$ 24.20 −→ α3 = 0.55
• 2 people make per hour U$ 24.50 −→ α2 = 0.60
• 3 people make per hour U$ 30.00 −→ α1 = 1.00

where αi indicates the degree to which each person has an “excellent income”.
Suppose that μ(S) = # S

# �
= # S

12 , where # S is the number of elements of S.
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μ{ω ∈ � : X ≥ α} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 = μ0 if 0 ≤ α ≤ α5

11

12
= μ1 if α5 < α ≤ α4

9

12
= μ2 if α4 < α ≤ α3

5

12
= μ3 if α3 < α ≤ α2

3

12
= μ4 if α2 < α ≤ α1

0 = μ5 if α1 < α ≤ 1

.

Therefore,

FEV(X) =
∫

�

X dμ

= med

{
3

12
; 0.40 ; 5

12
; 0.50 ; 0.55 ; 0.60 ; 9

12
; 11

12
, 1

}
= 0.55,

where “med” is the median. Also note that the arithmetic mean in this case is 0.65.

The Sugeno integral, in Example 7.12, gives a good indication of the data, since
the extreme value of U$30, 00 does not affect the result. On the other hand, the
classical arithmetic mean is significantly affected by the extreme values.

7.6 Fuzzy Events

Historically, some researchers argue that the theories of probability and fuzzy are
somehow ‘competitors’. The notion of fuzzy events, introduced by Zadeh [11], indi-
cates precisely the opposite. This concept illustrates the potential of the combination
of the two theories: fuzzy, treating the identification of the event; and probabilistic,
dealing with the occurrence of the same. Since then, several authors have devoted
themselves to the study of this subject both from a theoretical standpoint as well
as applications. Massad et al. [32] applied the concept of fuzzy event to assess the
risk of being infected HIV for very sexually active, sexually active, and less sexually
active individuals. Unlike Zadeh, Buckley [33] considers the probability P(A) of an
event A as a fuzzy number, that is, P(A) ∈ F(R). However, this text, with the except
in Subsection 7.3.3 which deals with fuzzy random variables, follows the approach
of Zadeh where A is fuzzy and P(A) is a real number. Let (�, P,A) be a probability
space, that is, � is a non-empty set, A is a σ-algebra and P is a probability measure.
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Definition 7.11 A fuzzy event in � is simply a fuzzy subset of � whose α-levels are
in the σ-algebra A.

A classic event A satisfies the above definition and, therefore, can be regarded
as a fuzzy event. In this case, the characteristic function of A is a discrete random
variable χA : � → {0, 1}. On the other hand, if A is a fuzzy set, its membership
function ϕA : � → [0, 1] is a random variable which is not discrete. The question
that arises is how to calculate the probability of A?

7.6.1 Probability of Fuzzy Events

The point we made above is that fuzzy looks at the identification of an event since
fuzzy is about the gradualness of a set whereas probability looks at the level of
occurrence of an event.

Let’s start with the classic case where the sample space is finite with equiprobable
elementary events. Suppose � = {ω1,ω2, . . . ,ωn}, so that each element has equal
probability of 1

n . It is known that A is an event with m elements, then

P(A) = m

n
(7.13)

defines a probability �.
Given the event A, its characteristic function χA : � → {0, 1} yields the number

of positive cases as
m =

∑
i

χA(ωi).

Therefore

P(A) =

∑
i

χA(ωi)

n
.

By extension, if A is fuzzy, and knowing the membership function ϕA : � →
[0, 1], the “number of favorable cases” is

m =
∑

i

ϕA(ωi),

so that

P(A) =

∑
i

ϕA(ωi)

n
. (7.14)

Of course, in this case, m is no longer necessarily an integer.
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Example 7.13 Consider � = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} to be the sample space and
the finite fuzzy event (see notation in Chap. 1)

A = 0.1

1
+ 0.25

2
+ 0.25

3
+ 0.0

4
+ 0.8

5
+ 0.0

6
+ 0.0

7
+ 0.8

8
+ 0.0

9
+ 1.0

10
.

Calculating P(A) and P(A′) from (7.14) we have,

P(A) =

∑
i

ϕA(ωi)

10
= 0.1 + 0.25 + 0.25 + 0.8 + 0.8 + 1.0

10
= 0.32,

and, remembering that ϕA′(ωi) = 1 − ϕA(ωi) it follows that

A′ = 0.9

1
+ 0.75

2
+ 0.75

3
+ 1.0

4
+ 0.2

5
+ 1.0

6
+ 1.0

7
+ 0.2

8
+ 1.0

9
+ 0.0

10

so that

P(A′) =

∑
i

ϕA′(ωi)

10

= 0.9 + 0.75 + 0.75 + 1.0 + 0.2 + 1.0 + 1.0 + 0.2 + 1.0

10

= 0.68.

Note that this result was expected, since P(A′) = 1 − P(A) = 1 − 0.32 = 0.68.

Now, any other event B, with the same number of positive cases m as A, is equally
probable as A. This is because, according to formula (7.13), what matters is the ratio
between m and the number of possible cases n, regardless which elements are part
of A or B.

The number of positive cases m in the classic case can be obtained through count-
ing methods of combinatorial analysis, permutation, arrangement and/or combina-
tion. As the reader may already know, clearly these principles do not take into account
“qualities” of the elements forming part of the event. However, for the fuzzy case, if
A is unknown, the number of favorable cases is not so easy to obtain as a gradual set.

Thinking about the adaptation of counting methods to the fuzzy case, one should
take into consideration “the quality of each element” of the fuzzy event. For the
number of favorable cases, what can be done is “relativize” the “contribution” of
each element in order to determining the total number of positive cases m.

Let A be a fuzzy event with α being its α-level, where

α1 > α2 > . . . > αk > αk+1 = 0.

http://dx.doi.org/10.1007/978-3-662-53324-6_1
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It follows that [A]α1 ⊂ [A]α2 ⊂ . . . ⊂ [A]αk ⊂ [A]0. The number of favorable cases
is

m = α1m1 + α2(m2 − m1) + . . . + αk(mk − mk−1)

or
m = (α1 − α2)m1 + (α2 − α3)m2 + . . . + αkmk,

where each mi is the number of favorable cases associated with the classic set [A]αi ,
which may be obtained by conventional counting methods since [A]αi is a classical
set.

Thus, (7.13) becomes

P(A) =

k∑
i=1

(αi − αi+1)mi

n
, (7.15)

which gives us a formula for a probability associated with a fuzzy set. For example,
the above fuzzy event A, has

m = (1.0 − 0.8)1 + (0.8 − 0.25)3 + (0.25 − 0.1)5 + (0.1 − 0.0)6 = 3.2

and

P(A) = 3.2

10
= 0.32.

Although our interest is the case where the event A is given so that its membership
function ϕA is known, we will explore expression (7.15) a bit more.

Formula (7.15) can be rewritten as

P(A) =
k∑

i=1

(αi − αi+1)
mi

m
=

k∑
i=1

(αi − αi+1)P([A]αi)

=
k∑

i=1

(αi − αi+1)P[ϕA ≥ αi] =
∫

�

ϕAdP (7.16)

Formulas (7.15) and (7.16) indicate that, for the finite case, P(A) is exactly the
expected value of the random variable ϕA. More generally, if A is any classic event
(finite or not), its characteristic function is a discrete random variable since χA :
� → {0, 1} and in this case

E(χA) = 1 · P(χA = 1) + 0 · P(χA = 0) = P(A).

The above comments suggest the following definition.
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Definition 7.12 Let (�, P,A) be a probability space and let A be a fuzzy event with
membership function ϕA : � → [0, 1]. The probability of A is given by the expected
value of ϕA, that is

P(A) = E(ϕA).

It is opportune to observe that the fuzzy expected value of ϕA, E(ϕA), is also well-
defined since ϕA : � → [0, 1]. Moreover, it’s an exercise for the reader to prove that
if A is a classical event then

E(χA) = P(A).

To explore the concepts presented here, we will consider real-valued events, that
is, those that are subsets (classical or fuzzy) of real line R equipped with some
probability measure. Thus, to calculate P(A), we will avail ourselves of the comments
made just before Example 7.10. Specifically, formulas (7.10) and (7.11) suggest that
R is a sample space whose measure P is induced by the probability distribution of a
random variable X.

Suppose that X is a random variable and A is a fuzzy real-valued event with
membership function ϕA : R → [0, 1]. Then, the probability of A is given by

P(A) = E(ϕA) = E(ϕA(X)) =
∑

i

ϕA(xi)P(X = xi) (7.17)

if X is discrete, and if X is continuous

P(A) = E(ϕA) = E(ϕA(X)) =
∫
R

ϕA(x)f (x)dx =
∫

suppA
ϕA(x)f (x)dx (7.18)

where f is the probability density function of X.
Figure 7.6 illustrates the probability P(A), of the A event for the two cases: classic

and fuzzy.

(a) (b)

Fig. 7.6 a Exhibits a classical event, probability density function f , and P(A) = probability of A.
b Exhibits a fuzzy event, probability density function f , and P(A) = probability of A
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Firstly, in Fig. 7.6, P(A) may be interpreted as the “area” bounded by the graph
f and the support of A. In the fuzzy case, P(A) is the “area” under the graph ϕA · f
and the support of A. Both cases are depicted by the gray areas.

It is not difficult to see that P(A), as defined in (7.18) above, satisfies the axioms
of probability. For example,

P(∅) = E(ϕ∅) =
∫
R

0 · f (x)dx = 0

and

P(�) = E(ϕR) =
∫
R

1 · f (x)dx = 1.

The other properties are left as an exercise for the reader. Remember that

ϕA∪B(x) = ϕA(x) + ϕB(x) + |ϕA(x) − ϕB(x)|
2

and

ϕA∩B(x) = ϕA(x) + ϕB(x) − |ϕA(x) − ϕB(x)|
2

.

7.6.2 Independence Between Fuzzy Events

The concept of independence between fuzzy events necessarily involves the con-
ditional probability. To extend the classical notion of conditional probability as it
relates to the fuzzy case, we must rethink the mathematical modeling of simulta-
neous occurrence of two events A and B. For the classical case, the simultaneous
occurrence is given by the intersection A ∩ B. However, to extend this concept to the
fuzzy case, the function must involve the characteristic function χA∩B. As we know,
any t-norm can model the conjunction “and”, in particular, we are thinking of the
t-norms of product and minimum. For these cases we have

χA∩B(x) = χA(x) · χB(x) and χA∩B(x) = χA(x) ∧ χB(x),

so that, in principle, we could adopt either “·” or “∧” to represent conjunction.
The most common in the classical case is “·”. We are interested in the extension to
the fuzzy case, so we will adopt the product to represent simultaneous occurrence.
The minimum is closely linked to membership and the product to the occurrence,
which correspond with our choice for non-fuzzy events.

The classical case, where A and B are events of � with P(B) > 0, is

P(A|B) = P(AB)

P(B)
= E(χA.χB)

E(χB)
. (7.19)
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A is said to be independent of B if the occurrence of B does not interfere with the
probability of A, that is, if P(A|B) = P(A). The notation AB instead of A ∩ B is not
by chance. It comes from the fact that we choose χA.χB to represent χA∩B.

Therefore, A independent of B if, and only if,

E(χA · χB)

E(χB)
= E(χA) ⇔ E(χA · χB) = E(χA) · E(χB) (7.20)

or
P(AB) = P(A)P(B).

Formula (7.20) above makes it possible to see that A is independent of B if, and
only if, B is independent of A. Moreover, A and B are independent if, and only if,
the random variables χA and χB are uncorrelated, that is, the correlation coefficient
ρ = 0. As a matter of fact, χA and χB are independent random variables whereas A
and B are independent events. This fact is a consequence of χA and χB being discrete
and taking on just two values (see Exercise 7.8). In general, random variables that
are not correlated are not necessarily independent (see Exercise 7.9).

Definition 7.13 Consider A and B, two fuzzy events of R, with P(B) > 0 (⇔
E(ϕB) > 0). In view of (7.19), the conditional probability of A given B is defined by

P(A|B) = P(AB)

P(B)
= E(ϕA.ϕB)

E(ϕB)
. (7.21)

As in the classical case, A is said to be independent of B if the occurrence of B
does not interfere with probability of A, that is, if P(A|B) = P(A). From (7.21), A
independent of B if, and only if,

E(ϕA · ϕB)

E(ϕB)
= E(ϕA) ⇔ E(ϕA · ϕB) = E(ϕA) · E(ϕB). (7.22)

Therefore, since the probabilities do not cancel, A and B are independent if, and
only if, the random variables ϕA and ϕB are uncorrelated. Here unlike the classical
case, the independence between A and B is not equivalent to independence between
ϕA and ϕB. Of course, if ϕA and ϕB are independent, then A and B will be. But the
reciprocal is not necessarily true (see Exercise 7.9).

According to Eq. (7.21), P(B|B) may not equal 1 if B is not a crisp set. Such a fact
is criticized by some authors [34] that prefer to adopt the minimum t-norm instead of
the product t-norm in formula (7.21). However, the classical notion of independence
can not be generalized to the fuzzy domain by means of formula (7.22) if we use the
minimum t-norm. In addition, it is not obvious that we should have P(B|B) = 1 for a
fuzzy event B since P(A|B) represents chance of elements of A occurring in fuzzy set
B but it is not clear which are the elements of B. Note that, from (7.21), P(B|B) = 1
holds if B is crisp.
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The next subsection is a rapid look at a topic known in the literature as fuzzy
random variable. From a random experiment, there are at least two ways to introduce
the study of fuzzy random variables: the first is connected with the recognition of the
uncertainty in the outcome of the experiment. The second, beyond the recognition of
the uncertainty, deals with the mechanism of the experiment itself being uncertain;
the way in which the events are drawn from the sample, for example. Although
comments are made regarding the second theme, we will emphasize the first case.
For this, unlike the latter, it follows that the probability of a fuzzy event is not
necessarily a real number.

7.6.3 Random Linguistic Variable and Fuzzy Random
Variable

The idea here is to explore the concept of linguistic variable assuming it is also
random. Variables with these two characteristics will be called linguistic random
variables or fuzzy random variables depending on the range of the variable in ques-
tion. As we presented in the previous subsection, a random variable X induces a
probability measure on R. Hence, the question that arises [11] is how to calculate
the probability

P(X is A),

where A is a linguistic term, for example, tall, low, very tall . . ., modeled as a real
fuzzy event A.

This issue has already been addressed in previous subsections in an informal
manner. From the point of view of classical theory, P(X is A) = P(X ∈ A), the above
the question is translated into

P(X ∈ A) =
⎧⎨
⎩
∑
xi∈A

P[X = xi] =
∑

i

χA(xi)P[X = xi]∫
A f (x)dx = ∫

R
χA(x)f (x)dx

,

depending whether or not X is a discrete or continuous variable. Regardless, P(X ∈ A)

= E(χA).
Thus, it is natural to define P(X is A) as

P(X is A) = E(ϕA) = P(A),

where A is a real fuzzy set modeling the linguistic term of interest. This line of
investigation leads us to the concept of linguistic random variable since we are
translating P(X is A) into a real number.

Now, if we understand that P(X is A) = P(X = A), then we must give a meaning
to the identity X = A, since originally X takes on real values (numbers) and A is a
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fuzzy event of the sample space R. It is precisely here that the notion arises of a
fuzzy random variable, as we will explained below.

Formally, a fuzzy random variable is simply a function

X : � → F(R).

Clearly we see that this concept extends the concept of random variable since R ⊂
F(R).

Note that originally X : � → R so that to consider X = A, it must follow that
X : � → F(R). Therefore, there is an abuse of notation since the range of the original
variable has changed. Thus, we are dealing, in fact, with another variable X̂ : � →
F(R) whose probability density is F : F(R) → F(R), since by definition of density,
this must be a subset of the range of the random variable. Thus, while the density
function f of X induces a probability in R, F induces a probability measure in F(R).
In this approach, the probability of a fuzzy event happens to be a fuzzy number.

Without extending the theme of the fuzzy random variable, both X̂ and F may
be obtained by fuzzification of the functions X and f , via Zadeh extension principle,
for example. To distinguish both cases, the first we call a random variable and the
second a linguistic fuzzy random variable. For a study on the various approaches to
fuzzy random variable the reader may consult [35].

Continuing with our study of the linguistic random variables, a case of interest
is the calculation of P(X is A∗), in which A∗ is an event obtained by some fuzzy
modifier (Sect. 4.5) of the event A. Like in Chap. 4, here we will also only deal with
powers of modifiers for the sole purpose of clarifying the main ideas of this theme
and exploring their potential application in obtaining membership functions. Clearly,
for a particular application, other modifiers should be taken into account.

Assuming that A∗ = As, that is, ϕA∗ = (ϕA)s,

P(X is A∗) = E(ϕA∗) = E(ϕs
A).

A case of particular interest is when s = 2:

P(A2) = E(ϕ2
A),

which is the second moment of ϕA, and

P(A2) − [P(A)]2 = E(ϕ2
A) − [E(ϕA)]2 = Var(ϕA),

where Var(Y) is the variance of the random variable Y . By abuse of notation, we
sometimes write Var(A) instead of Var(ϕA).

According to Jensen’s inequality [7, 8], it follows that, for a restrictive modifier
(s > 1, for example s = 2),

E(Xs) − [E(X)]s ≥ 0,

http://dx.doi.org/10.1007/978-3-662-53324-6_4
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since in this case the modifier is given by the concave function m(x) = xs.
A possible application of the above study is the “construction” of A and A∗, that is,

in constructing of ϕA and ϕA∗ . The problem becomes one of getting the parameters
(s is one of the parameters) for the distributions of possibilities for A and A∗. For this
case, from principles such as maximum likelihood (see [36]), we may think of the
parameters as being based on one or two principles below:

(a) P(A∗) is maximum (maximum likelihood);
(b) Var(ϕA∗) is minimal (smaller variance).

Of course, other methods, such as least squares, polynomial interpolation or even
statistical inference methods can be used for the distribution of the possibility of A
and A∗.

Another area of application is the estimation of parameters of a given density
distribution, assuming that a fuzzy set A is given with membership function ϕA.
Such a set may be provided by a specialist or by a dataset. The parameter in question
can be estimated from classical statistical parametric techniques. Of course one can
also use non-parametric techniques for estimating the density function. The interested
reader can consult [37].

Before going to the exercises, we call the reader’s attention to the difference
between the concepts of independence for fuzzy sets seen here and in Section 4.6.
In Chap. 4 independence is given by the possibility measure which is technically
related to the conditional membership function of each of the membership functions
of the fuzzy sets involved (see Sect. 4.6.2). Furthermore, independence between
fuzzy events, seen in this section, is given by the probability measure and technically,
involves the expected value of membership functions of the fuzzy sets in question as
can be seen in the formula (7.22).

The following example illustrates the concepts presented in this section. Both in
this example and in the exercises, the random variables that appear are linguistics
and the probabilities of events are real numbers.

Example 7.14 A manufacturer produces parts, 5 % of which are faulty. For a sample
of 10 parts, consider X to be the number of faulty parts. Calculate:

(a) P(X ≤ 1);
(b) P(Xis small), with “small” being the triangular fuzzy number (0; 0; 2);
(c) P(A ∩ B), where A and B are the events of (a) and (b), respectively;
(d) P(A ∪ B);
(e) P(B|A);
(f) Are A and B independent?

Solutions

X has binomial distribution with n = 10 and p = 0.05 (see [36]).

(a) It follows that

ϕA(x) =
{

1 if 0 ≤ x ≤ 1
0 otherwise

.

http://dx.doi.org/10.1007/978-3-662-53324-6_4
http://dx.doi.org/10.1007/978-3-662-53324-6_4
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Then, by the formula (7.17),

P(A) =
∑

i

ϕA(xi)P(X = xi) = ϕA(0)P(X = 0) + ϕA(1)P(X = 1)

= 1 · P(X = 0) + 1 · P(X = 1) =
(

10
0

)
0.9510 +

(
10
1

)
0.959 · 0.051

= 0.91.

(b)

ϕB(x) =
{

1 − x
2 if 0 ≤ x ≤ 2

0 otherwise
.

Therefore,

P(B) =
∑

i

ϕB(xi)P(X = xi) = ϕB(0)P(X = 0) + ϕB(1)P(X = 1)

+ϕB(2)P(X = 2) = 1 · P(X = 0) + 1
2 P(X = 1) + 0 · P(X = 2)

=
(

10
0

)
0.9510 + 1

2

(
10
1

)
0.959 · 0.051 = 0.7563.

(c) ϕA∩B(x) = min[ϕA(x),ϕB(x)]. Therefore,

P(A ∩ B) =
∑

i

ϕA∩B(xi)P(X = xi) = ϕA∩B(0)P(X = 0)

+ϕA∩B(1)P(X = 1) + ϕA∩B(2)P(X = 2)

= 1 · P(X = 0) + 1

2
· P(X = 1) + 0 · P(X = 2) = 0.7563.

(d) P(A ∪ B) = P(A) + P(B) − P(A ∩ B) = 0.7563 + 0.91 − 0.7563

= 0.91.

(e) P(B|A) = P(AB)

P(A)
= E(ϕAϕB)

E(ϕA)
=

ϕA(0)ϕB(0)P(X = 0) + ϕA(1)ϕB(1)P(X = 1) + ϕA(2)ϕB(2)P(X = 2)

0.91

= 1 · P(X = 0) + 0.5 · P(X = 1)

0.91
= 0.7563

0.91

= 0.7563 = P(B).
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(f) According to (e), A and B are not independent events.

Exercise 7.1 Repeat the previous example assuming X has binomial distribution
with n = 8 and p = 0.02.

Exercise 7.2 Calculate the probability of the fuzzy event in Example 7.12.

Exercise 7.3 In a telephone call center, N calls arrive according to a Poisson dis-
tribution, with average λ = 8 calls per minute. Knowing the probability law of a
Poisson distribution is given by

P(N = k) = e−λλk

k! ,

determine what is the probability that in a minute we have:

(a) Ten or more calls;
(b) Less than nine call;
(c) A small number of calls, where small is the fuzzy set given by the triangular

fuzzy number (0; 0; 9);
(d) A low average number of calls, where low average is the fuzzy event given by

trapezoidal fuzzy number (0; 1; 4; 9);
(e) P(C|B) and P(D|B), with A, B, C and D being the events respectively from the

a), b), c), and d) above.

Exercise 7.4 Suppose that the time T of the duration of some disease is an expo-
nential random variable (T ∼ exp(λ)) with the parameter λ = 1

5 , that is, its density
is given by

f (t) =
{

1
5 e− t

5 if t ≥ 0
0 if t < 0

.

Calculate:

(a) The expected value of T ;
(b) P(M) where M is the event “average” given by the triangular fuzzy set (0; 5; 8);
(c) P(M/B) where B is the event “low” given by the triangular fuzzy set (0; 0; 8);
(d) Are M and B independent?

Exercise 7.5 Suppose that X ∼ exp(1), that is, X is a random variable with expo-
nential distribution with the parameter λ = 1.

(a) Calculate P(A), where A is the triangular fuzzy number (0; 1; 1).
(b) Calculate P(C) with

ϕC(x) =
{

x − x2 if 0 ≤ x ≤ 1
0 otherwise

.

(c) Repeat the (a) assuming X ∼ N(0, 1).
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Exercise 7.6 Suppose that X has a uniform distribution between [0, 1], A is the fuzzy
event with membership function

ϕA(x) = a ∈ [0, 1],

and B is a triangular fuzzy number (0; 0; 1). Calculate:

(a) P(A) and P(B);
(b) P(A ∩ B) and P(AB);
(c) Are A and B independent?
(d) Let C be the event of Exercise 7.6 (b), check if A and C are independent. What

about B and C?

Exercise 7.7 Show that if X and Y take on only the values 0 or 1, then X and Y are
not correlated if, and only if, they are independent.

Exercise 7.8 Suppose that both X and Y assume the values −1, 0 and 1, with joint
distribution

PXY (−1,−1) = PXY (−1, 1) = PXY (1,−1) = PXY (1, 1) = PXY (0, 0) = 1

5
.

Show that X and Y are not correlated (ρ = 0), nor are they independent.

Exercise 7.9 Show that if X and Y are normal distributions, then X and Y are not
correlated if, and only if, they are independent.

Exercise 7.10 Prove that:

(a) P(A ∩ B) ≥ P(AB);
(b) P(A|B) = 0, if A and B are mutually empty, that is, A ∩ B = ∅.

Exercise 7.11 Consider X ∼ U[0, 2] and the triangular fuzzy number (0; 0; δ), with
0 < δ ≤ 2. Calculate:

(a) δ so that P(A) is maximum;
(b) s > 0 so that P(A∗) is maximum with A∗ = As and A is the fuzzy set given in a);
(c) Var(ϕA) and Var(ϕA∗).

Exercise 7.12 Consider the triangular fuzzy number A = (0; 0; 2) and X a triangular
random variable whose density is given by

f (x; θ) =
{

1
θ2 (θ − |x − 1|) if x ∈ [1 − θ, 1 + θ]

0 if x /∈ [1 − θ, 1 + θ] .

Calculate:

(a) θ > 0 so that P(A) is maximum;
(b) Plot the graph of the density found in the previous item.



172 7 Measure, Integrals and Fuzzy Events

We end this section by commenting that we have been dealing with phenomena
that exhibit both types of uncertainties discussed herein. Generally, we are inter-
ested in the dynamics of these phenomena. The methodology we have used involves
coupling methods of statistical simulation and fuzzy controllers, specifically of the
Mamdani type. The fuzzy sets that form the rule base are used to simulate the dynam-
ics of interest. However, the entries to these systems are extracted using a method
of statistical simulation (Monte Carlo, for example), taking into account a priori
distribution. Thus, we can look to the antecedent of fuzzy sets as fuzzy events. Mis-
sio [38] used this methodology to study the evolution of hoof-and-mouth disease in
Mato Grosso do Sul. Gomes [39] used the same methodology to study the evolution
Dengue in the city of Campinas, São Paulo, Brazil.
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Chapter 8
Fuzzy Dynamical Systems

God evaluates several worlds, but makes exists the best of them.
(Leibniz – 16th Century)

Abstract This chapter presents an introduction to fuzzy dynamical systems both
continuous and discrete. To study the dynamical case, the concept of fuzzy deriva-
tive and fuzzy integral are presented. Several kinds of derivatives are explored and
consequently, several types of fuzzy differential equations are studied. The discrete
case is studied by means of an interactive process. Lastly, all cases are illustrated
using the Malthusian Model.

Certainly Leibniz considered many facts that lead him to conclude his thought above.
In remains for us to resolve if this best world given to us by God is clear (exact,
precise, deterministic) or hazy (inexact, imprecise, fuzzy). As we shall see next, our
resolution of the “best of all worlds” is that this world in many instances is hazy.

This chapter briefly introduces fuzzy dynamical systems with the intention to
illustrate the power of the fuzzy logic for studying evolutionary systems. As usually
done in deterministic and stochastic systems we distinguish two cases here: contin-
uous and discrete. In the continuous case, some type of derivative to represent the
continuous variation rate will appear. In the discrete case, the system evolution is
established in an iterative process.

8.1 Continuous Fuzzy Dynamical Systems

This section presents some approaches used to study continuous fuzzy dynamical
systems. The fundamental difference of each one of the methods is the treatment
given to the variation rate and/or how it is related to the state variables. The first
approach evolves the Hukuhara derivative. Originally developed for functions with
values in classical sets [1] and subsequently adapted for functions with values in fuzzy
sets [2]. This adaptation to fuzzy functions (functions with values in fuzzy sets) is
done using Theorem 1.4 which gives the representation of fuzzy sets (Chap. 1). The
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176 8 Fuzzy Dynamical Systems

second approach uses fuzzy differential inclusions [3, 4], while the third is simply
given by the fuzzification of the deterministic solution, supposing that the initial
condition and/or some parameter of the differential equation is given by a fuzzy set.
Finally, the fourth approach differs from the others because the rate is related to the
state variables given by some fuzzy rules instead of an equation. We would like to
stress that in the last three cases, we did not use any notion of derivatives of fuzzy
functions, but just the concept of derivative for deterministic functions.

Before we develop each concept listed above, we want to note that recently,
Barros, Gomes and Tonelli [5] and Gomes, Barros and Bede [6] have investigated
a “new” type of fuzzy differential equation in which the extension principle is used
to fuzzify the derivative operator and not the deterministic solution as cited in the
third approach above. From Theorem 1.4 and some other conditions, it is possible to
conclude that this methodology yields fuzzy differential equations whose solutions
match those of Hüllermeier [4]. We emphasize that in this approach we have, in fact,
derivatives for fuzzy functions, which do not exist in Hüllermeier’s methodology.
Also, the derivative for fuzzy interactive processes have been studied from a “new”
view point (see [7, 8]).

We motivate the derivatives for the above approaches using the “Malthusian
growth model”. We emphasize that Malthus did not originally prescribe any mathe-
matical equation describing population growth, he just enunciated that the population
would grow geometrically while the food would grow at an arithmetic rate, once there
was no control mechanism (disease, poverty, etc.). The first mathematical interpre-
tation of the Malthus conjecture was through a deterministic model that posits that
“the growth of a population is proportional to the population itself”. So, the contin-
uous mathematical model, known as the Malthus model, is given by the differential
equation {

dx
dt = λx
x(0) = x0

, (8.1)

where x(t) is the number of individuals at each instant t and x0 indicates the initial
number of individuals of the population.

This model assumes that all involved quantities are given by real numbers. We
suppose that both λ and x0 are well determined, and so, there is no uncertain data.
However, if we consider that there are uncertainties in the growth rate λ or in the
initial condition x0, we must rethink the meaning of dx

dt and how this variation is
related to the state variable x.

Assuming that the uncertainties are random, the model (8.1) can be treated by
stochastic differential equations [9–11]. However, if the uncertainty is modeled by
fuzzy subsets, the differential equation can be treated in several forms such as:

• Fuzzy differential equations (from the Hukuhara derivative point of view) - in this
case the notion of fuzzy derivative is necessary [2, 12–15];

• Fuzzy differential inclusions [3, 4, 16, 17];
• Extension of the deterministic solution [17, 18];
• Fuzzy Rule Base (Sect. 6.4 of Chap. 6 and Chap. 9).

http://dx.doi.org/10.1007/978-3-662-53324-6_1
http://dx.doi.org/10.1007/978-3-662-53324-6_6
http://dx.doi.org/10.1007/978-3-662-53324-6_9
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We next present an introduction to the integral and differential calculus for fuzzy
functions, that is, functions with domain in the set real numbers and the set of fuzzy
number.

8.1.1 Integration and Differentiation of Fuzzy Functions

Here we consider only the one dimensional case, that is, the case in which the function
is defined on an interval of the real line with values in the set of fuzzy numbers:

u : [a, b] → F(R), a ≥ 0,

where F(R) denotes the set of fuzzy numbers. Information of the more general case
about integration and differentiation of fuzzy functions can be found in [12–15, 19]
or articles on fuzzy mathematics.

For the one dimensional case, we define the derivative of u(.) from its α-levels.
We recall (see [14]) that the function u : [a, b] → F(R) associating a fuzzy number
u(t) to each real number t is well-defined if, and only if, for each α ∈ [0, 1] there
exists real functions

uα
1 , uα

2 : [a, b] → R

such that the α-levels of u(t) are [uα
1 (t), uα

2 (t)], that is,

[u(t)]α = [uα
1 (t), uα

2 (t)]. (8.2)

Before we present the concepts of derivative and integral we will use u′ to denote
the derivative and

∫ b
a u(t)dt to denote the integral of fuzzy functions u : [a, b] →

F(R).

Definition 8.1 (Hukuhara Derivative) The fuzzy function u′ : [a, b] −→ F(R)

whose α-levels are given by

[u′(t)]α = [(uα
1 )′(t), (uα

2 )′(t)], (8.3)

for all α ∈ [0, 1], is the derivative of the fuzzy function u(.), which we call the
Hukuhara derivative. Of course we are supposing the existence of the classical deriv-
atives (uα

1 )′(t) and (uα
2 )′(t).

Thus the α-levels of the fuzzy derivative are the classical derivatives at the end-
points of the α-levels of u. For example, the fuzzy function u that associates for each
t > 0 the triangular fuzzy number (0; t; 2t), that is, u(t) = (0; t; 2t), has α-levels
[u(t)]α = [αt, 2t − αt] according to (2.6). Therefore, [u′(t)]α = [α, 2 − α], for all
t > 0. We observe that the existence of u′(t) necessarily implies that the interval
[uα

1 (t), uα
2 (t)] satisfies Theorem 1.4.

http://dx.doi.org/10.1007/978-3-662-53324-6_2
http://dx.doi.org/10.1007/978-3-662-53324-6_1
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Fig. 8.1 Fuzzy function
u(t) = At and its α-levels
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The integral of u : [a, b] → F(R) is also defined by its α-levels. The Aumann1

integral, originally defined for functions that assume values in classical sets (see
[12]), is defined next.

Definition 8.2 The integral of u in [a, b], denoted
∫ b

a
u(t) dt, is the fuzzy number

with α-levels:

[∫ b

a
u(t) dt

]α

=
[∫ b

a
uα

1 (t) dt,
∫ b

a
uα

2 (t) dt

]
, (8.4)

where
∫ b

a
uα

1 (t) dt and
∫ b

a
uα

2 (t) dt are the Riemann integrals of the real functions

uα
1 and uα

2 .

Existence of
∫ b

a u(t)dt necessarily implies that the intervals

[∫ b

a
uα

1 (t) dt,
∫ b

a
uα

2 (t) dt

]

satisfy Theorem 1.4. As observed for derivatives, we also suppose that the functions
uα

1 and uα
2 are Riemann integrable in the interval [a, b]. Observe that if u is a real

function (u : [a, b] → R ⊂ F(R)), then the concepts of derivative and integral
above are the same as the classical ones.

Example 8.1 Let us consider the fuzzy function u(t) = At, t ≥ 0, where A is a fuzzy
number, such that the α-levels are given by the intervals [A]α = [aα

1 , aα
2 ] (Fig. 8.1).

We have [u(t)]α = [uα
1 (t), uα

2 (t)] = [aα
1 t, aα

2 t], so that

1Aumann won the Nobel prize for economics 2005.

http://dx.doi.org/10.1007/978-3-662-53324-6_1
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[u′(t)]α = [(uα
1 )′(t), (uα

2 )′(t)] = [(aα
1 t)′, (aα

2 t)′] = [aα
1 , aα

2 ] = [A]α.

Therefore,
u′(t) = A.

On the other hand,

[∫ b

a
u(t) dt

]α

=
[∫ b

a
uα

1 (t) dt,
∫ b

a
uα

2 (t) dt

]
=

[∫ b

a
aα

1 t dt,
∫ b

a
aα

2 t dt

]

=
[

aα
1

(
b2

2
− a2

2

)
, aα

2

(
b2

2
− a2

2

)]
=

(
b2

2
− a2

2

) [
aα

1 , aα
2

]
=

(∫ b

a
t dt

)
[A]α.

Thus, ∫ b

a
u(t) dt =

∫ b

a
At dt = A

∫ b

a
t dt =

(
b2 − a2

2

)
A.

We observe that
∫ b

a
tdt is the Riemann integral that, multiplied by a fuzzy number

A, gives us the Aumann’s integral of u(t) = At.

We do not have the aim of making an extended and deep study of differentiability
and integrability of fuzzy functions. However, for the study of stability of dynamical
systems, we need the basic concepts of integral and derivative as well as that of
metric in F(R).

Definition 8.3 The metric in the space fuzzy numbers, F(R), stems from the
Hausdorff–Pompeiu metric, and is given by

D(A, B) = sup
0≤α≤1

dH([A]α, [B]α), (8.5)

where dH is the Hausdorff–Pompeiu’s metric for compact intervals of R, whose
definition is

dH(I, J) = max(sup
x∈I

d(x, J), sup
y∈J

d(y, I)), (8.6)

where d(x, J) = inf
j∈J

d(x, j) and d(r, s) = |r − s| .

Puri and Ralescu [20] proved that, with this metric, the metric space F(R) is
complete, that is, they proved that every convergent sequence of fuzzy numbers
converges to a fuzzy number.

The following theorem is important in the study of fuzzy differential equations.
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Theorem 8.1 If F, G : [a, b] → F(R) are differentiable functions and λ ∈ R, then

(a) F and G are continuous under the metric D;
(b) (F + G)′(t) = F ′(t) + G′(t);
(c) (λF)′(t) = λF ′(t).

Proof See [12, 14]. �

The following theorem is a version of the Fundamental Theorem of Calculus for
the fuzzy case, using derivative and integral concepts presented above.

Theorem 8.2 Let F : [a, b] −→ F(R) be continuous. Then the function G(t) =∫ t

a
F(s) ds is derivable and G′(t) = F(t) for all t ∈ [a, b].

Proof See [12, 14]. �

Moreover, the following result also holds:

Theorem 8.3 Let F : [a, b] −→ F(R) be integrable. Then for all c ∈ [a, b] we
have ∫ c

a
F(t) dt +

∫ b

c
F(t) dt =

∫ b

a
F(t) dt. (8.7)

These theorems give us the basics needed to study of fuzzy differential equations.
From the concepts of derivative and integrals above, we begin the study of fuzzy
differential equations.

8.1.2 Fuzzy Initial Value Problem (FIVP)

We consider the fuzzy initial value problem to be

{
u′(t) = F(t, u(t))
u(a) = u0

, (8.8)

where F : [a, b] × F(R) → F(R) and a > 0.

Lemma 8.4 Let F : [a, b] × F(R) → F(R) be continuous. Then the function

u : [a, b] −→ F(R)

is a solution of (8.8) if, and only if, it is continuous and satisfies the integral equation

u(t) = u(a) +
∫ t

a
F(s, u(s)) ds. (8.9)
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Proof See [12, 14].
As an illustration, let us consider u(t) = At. We saw in the Example 8.1 that

u′(t) = A. So,

u(t) = Aa +
∫ t

a
A ds = u(a) +

∫ t

a
u′(s) ds.

�

Corollary 8.5 If u(t) is a solution of (8.8) then, for each α ∈ [0, 1], the function
d(t) = diam[u(t)]α is nondecreasing.

Proof diam([u(t)]α) = uα
2 (t) − uα

1 (t). So, according to Lemma 8.4, we have

[u(t)]α = [uα
1 (a), uα

2 (a)] +
[∫ t

a
Fα

1 (s, u(s)) ds,
∫ t

a
Fα

2 (s, u(s)) ds

]

=
[

uα
1 (a) +

∫ t

a
Fα

1 (s, u(s)) ds, uα
2 (a) +

∫ t

a
Fα

2 (s, u(s)) ds

]
.

Thus,

diam([u(t)]α) = uα
2 (t) − uα

1 (t)

= (uα
2 (a) − uα

1 (a)) +
∫ t

a

[
Fα

2 (s, u(s)) − Fα
1 (s, u(s))

]
ds

is nondecreasing, since (Fα
2 (s, u(s)) − Fα

1 (s, u(s))) ≥ 0 for all s ∈ [a, b]. �

Example 8.2 To illustrate some applications of fuzzy differential equations we sup-
pose that in the Malthus model, only the initial condition is fuzzy and we con-
sider positive variation rate (population in expansion) and negative variation rate
(population in retraction).

• Let us consider the fuzzy Malthusian model with positive variation rate λ > 0,

population in expansion. {
u′(t) = λu(t)

u(0) = u0 ∈ F(R)
. (8.10)

Suppose that [u(t)]α = [uα
1 (t), uα

2 (t)] and that the initial condition is fuzzy and is
given by the α-levels [u0]α = [uα

01, uα
02].

According to Definition 8.1, for each α ∈ [0, 1], we need to solve the equation

{ [u′(t)]α = λ[uα
1 (t), uα

2 (t)]
u0 ∈ F(R) and λ > 0

. (8.11)

Multiplying fuzzy numbers by a positive real number λ, we have that the solution to
this equation is obtained from the solution of the deterministic α-levels equations:
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{
(uα

1 )′(t) = λuα
1 (t), with uα

1 (0) = uα
01

(uα
2 )′(t) = λuα

2 (t), with uα
2 (0) = uα

02
.

For each α, the solution of the system (8.11) exists and is given by:

{
uα

1 (t) = uα
01eλt

uα
2 (t) = uα

02eλt . (8.12)

Observe that if [u0]1 is a zero width interval, that is, u01 = u02 = x0 then [u(t)]1

behaves like the solution of the deterministic Malthusian model, that is, [u(t)]1 =
x0eλt .

• We now consider the fuzzy Malthusian model with negative variation rate λ < 0,

population in retraction.

{
u′(t) = −λu(t)

u0 ∈ F(R) and λ > 0
. (8.13)

According to Definition 8.1, for each α ∈ [0, 1] we must solve the equation

[u′(t)]α = −λ[uα
1 (t), uα

2 (t)],

The multiplication of a negative and an α − level interval yields

{
(uα

1 )′(t) = −λuα
2 (t), with uα

1 (0) = uα
01

(uα
2 )′(t) = −λuα

1 (t), with uα
2 (0) = uα

02
, (8.14)

whose solution is

uα
1 (t) = uα

01 − uα
02

2
eλt + uα

01 + uα
02

2
e−λt (8.15)

uα
2 (t) = uα

02 − uα
01

2
eλt + uα

01 + uα
02

2
e−λt .

Thus, the solution of problem (8.14) is the fuzzy function u(·) with α-levels
given by the above equations (8.15). Figure 8.3 represents the solution of decay in
Malthusian fuzzy model.

Remarks:

1. The diameter of [u(t)]α, given by

diam([u(t)]α) = uα
2 (t) − uα

1 (t) = (uα
02 − uα

01)e
λt,

is always increasing in t, except if uα
02 = uα

01, that is, u0 ∈ R. This is the major
criticism of the fuzzy derivative and in particular of Hukuhara derivative. There
is a clear difficulty in defining the concept of stability, as well as an attractor, with
that type of fuzzy differential equation.
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2. Solving u′ = −λu is different from solving u′ + λu = 0 [21].
3. If we have a FIVP whose direction field is an extension of a deterministic field, then

every deterministic solution is a preferred solution, in sense that it has membership
degree equal to one on the set of fuzzy solutions. This result is formalized and
proved in [12]. To illustrate this fact, let us restrict ourselves to the FIVP of the
Malthusian equation previously studied. Associated with this problem we have
the deterministic IVP {

x′(t) = −λx(t)
x0 ∈ R

, (8.16)

whose solution is
x(t) = x0e−λt .

Thus, if x0 ∈ [u0]1, then it is easy to see that

uα
1 (t) ≤ x(t) ≤ uα

2 (t), ∀α ∈ [0, 1].

This means that x(t) ∈ [u(t)]1 for all t. Then the deterministic solution x(t) has
membership degree 1 in the set of fuzzy solutions. Therefore, it is a preferred
solution (see Figs. 8.2 and 8.3).

According to Remark 1, there is a difficulty in defining stability for this type
of differential equation, since the diameter of the solutions increases with time for
all α in the interval [0, 1]. Researchers have sought to circumvent this anomaly
by using other methods to study continuous fuzzy dynamical systems, that is, with
continuous variation rate in some sense. Two methods that are able to resolve the
problem of increasing diameters in the solution to some FIVP obtained via Hukuhara
derivative are fuzzy differential inclusion and the Extension Principle methods (see
[17]). Another approach was proposed by Bede and Gal [22] extending the Hukuhara
derivative (this method will not be discussed here).

1
α

[u0]
α

[u(t)]α

u0
1(t)

u0
2(t)

t

x

x(t) ∈ [u(t)]1

Fig. 8.2 Solution of the fuzzy Malthusian model for population in expansion (λ > 0)
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x

α

1

α

u0
1

u0
2

x(t) ∈ [u(t)]1

t

Fig. 8.3 Decay in Malthusian fuzzy model (λ < 0)

The method of fuzzy differential inclusions requires knowledge of multivalued
function analysis and classical differential inclusions. For this reason, we only present
the main ideas to introduce and illustrate its potential applications (the reader might
consult [16, 17, 23–26], and others texts of multivalued analysis).

The Extension Principle method can be considered to be simpler because it
requires only the application of the extension principle on deterministic solutions.
More specifically, from the deterministic solution, for every fixed t, it can be seen
as a function of the initial condition x0 to which we apply the Extension Principle
of Zadeh. Therefore, this method is applicable only for fuzzy systems that originate
from deterministic ones.

8.1.3 Generalized Fuzzy Initial Value Problem (GFIVP)

We continue our study of continuous fuzzy systems by looking at the GFIVP from
two distinct approaches, via fuzzy differential inclusions and via the principle of
Zadeh’s extension.

Let us consider the problem

{ du

dt
= F(t, u(t))

u(a) = u0

, (8.17)

where F : [a, b] × F(R) −→ F(R), u0 ∈ F(R) and
du

dt
represents the continuous

variation rate of the function u(.) in some sense. If
du

dt
is the Hukuhara’s derivative
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of the unknown function u(.), the study of GFIVP is reduced to what we discussed
in Sect. 8.1.2.

A function u : [a, b] → F(R) is a solution of (8.17) in the various ways we will
analyze it, if, and only if, it satisfies Eq. (8.17) and u(a) = u0. To this generalized
problem we define, for each fixed t ≥ 0, a family of functions given by

ψt : F(R) → F(R)

u0 	→ ψt(u0) := u(t, u0),

where u(t, u0) is a solution of (8.17) at the instant t, with initial condition u(a) = u0.

The purpose of the following subsections is to suggest two ways to obtain the
family ψt .

Fuzzy Initial Value Problem via Fuzzy Differential Inclusion

We begin with differential inclusions as an alternative approach to the Hukuhara
derivative. To study a fuzzy initial value problem, the concept of derivative of a fuzzy
function is not used. The derivative used is the usual one of deterministic functions
and the fuzzy solution of (8.17) is “constituted” from deterministic functions. There
are several ways of using the differential inclusions to adapt them to the fuzzy context
(see [3, 4, 17, 24]).

Here we will follow the suggestion of Hüllermeier [4]. The idea is the following:
the field F : [a, b]×F(R) → F(R) is such that, for each pair (t, u) we have F(t, u) ∈
F(R), and so the fuzzy solution of (8.17) will be made up of all deterministic
trajectories that satisfy the classical differential inclusions,

{
x′(t) ∈ [F(t, x(t))]α

x(a) ∈ [u0]α . (8.18)

A deterministic function xα : [a, b] → R is a solution of (8.17), with membership
degree α, if it is absolutely continuous and satisfies (8.18) for almost every t ≥ a.
Then, the fuzzy solution of (8.17) is the fuzzy function u : [a, b] → F(R) whose
α-levels are

[u]α = {xα : [a, b] → R, that are solutions of (18)}.

Under certain conditions of regularity of F, Diamond [27] proved that the sets {xα :
[a, b] −→ R, that are solutions of (8.18)} satisfy Theorem 1.4 of the representation
in the space of functions, and in this case, the function u is well-defined.

Thus, for each t, the functions ψt : F(R) −→ F(R) associated with GFIVP
(8.17) are given by:

ψt(u0) = u(t, u0),

where u is a solution of (8.17) in the Hüllermeier’s sense. In this case, the α-levels
of ψt(u0) are the intervals [ψt(u0)]α.

http://dx.doi.org/10.1007/978-3-662-53324-6_1
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Let us illustrate the concepts presented here with the Malthusian model and verify
that the diameters of the α-levels of the solutions [ψt(u0)]α are slowly increasing for
populations in expansion and decrescent for populations that are contracting.

Example 8.3 (Growth rate well determined) If λ ∈ R and u0 ∈ F(R), then the
Malthus model has the form{

x′(t) = λx(t)
xα(0) ∈ [u0]α = [uα

01, uα
02] (8.19)

whose fuzzy solution is formed by the deterministic functions

xα(t) = xα(0)eλt , with xα(0) ∈ [uα
01, uα

02].

Thus,
[ψt(u0)]α = [uα

01eλt, uα
02eλt] = [uα

01, uα
02]eλt,

so that
ψt(u0) = u0eλt .

The diameters of the α-levels of the fuzzy solution ψt(u0) are

diam([ψt(u0)]α) = (uα
02 − uα

01)e
λt .

Therefore, for populations in expansion (λ > 0), we have the diameter increasing
with time t, and for contracting populations in retraction (λ < 0) the diameter is
decreasing.

Example 8.4 (Growth rate and uncertain initial condition) If the growth rate and
the initial condition are uncertain, that is, � ∈ F(R), with [�]α = [λα

1 ,λα
2 ], and

u0 ∈ F(R), then the Malthusian model takes the form:

{
x′(t) ∈ [�x(t)]α = x(t)[λα

1 ,λα
2 ]

xα(0) ∈ [u0]α = [uα
01, uα

02] (8.20)

whose fuzzy solution is given by the deterministic functions:

xα(t) = xα(0)eλt, with λ ∈ [λα
1 ,λα

2 ] and xα(0) ∈ [uα
01, uα

02].

Therefore, assuming that λα
1 ≥ 0 (strong expansion), we have

[ψt(u0)]α = [uα
01eλ1t, uα

02eλ2t],

and in this case, diam[ψt(u0)]α grows with t, since λα
2 > λα

1 > 0.
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On the other hand, supposing that λα
2 < 0 (strong contraction),

[ψt(u0)]α = [uα
01eλα

2 t, uα
02eλα

1 t],

and in this case, diam[ψt(u0)]α decreases with t, since λα
2 > λα

1 . We leave to the
reader the cases in which λα

1 and λα
2 have opposite signs.

Applications of fuzzy differential inclusions to biological phenomena can be
found in the literature, but as yet, they are few in number. The reader might consult
[16] for models in epidemiology, and [17, 26] in population dynamics. Comparisons
between the solutions of Hukuhara and Hüllermeier can be found in [28].

Fuzzy Initial Value Problem Via Zadeh’s Extension

Another approach to obtain a fuzzy solution to the GFIVP (8.17) is by using the Zadeh
extension that was explained in Chap. 2. In this case, if only the initial condition and/or
some parameter of the field F are/is fuzzy, then the GFIVP solutions are obtained
through the fuzzification of the deterministic solutions by the principle of extension.

As we did in the case of fuzzy differential inclusions, we will study two different
cases here. In the first case, only the initial condition is given by a fuzzy number. In
the second case, we assume that the initial condition and/or some parameter of the
initial value problem are/is fuzzy.

Case (a) – Fuzzy Initial Condition

• We consider that only the initial condition is fuzzy. In this case, the initial value
problem is given by ⎧⎨

⎩
dx

dt
= f (t, x(t))

x(a) = u0 ∈ F(R)

, (8.21)

with f : [a, b] → R continuous.
Assuming that for every initial condition x0 ∈ R the deterministic problem

⎧⎨
⎩

dx

dt
= f (t, x(t))

x(a) = x0

, (8.22)

admits unique solution φt then, for every t, the fuzzy solution ψt of (8.21) is defined
as the Zadeh’s extension of the deterministic solution φt , namely

If u0 ∈ F(R) then ψt(u0) = φ̂t(u0).

In this case, because φt is continuous with respect to the initial condition so that,
by Theorem 2.1, we have

[ψt(u0)]α = [φ̂t(u0)]α = φt([u0]α) = φt([uα
01, uα

02]).

http://dx.doi.org/10.1007/978-3-662-53324-6_2
http://dx.doi.org/10.1007/978-3-662-53324-6_2
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We notice that the above formula indicates that the membership degree of x0 to u0

is the same as that of φt(x0) to φ̂t(u0), for all t. With this procedure we find the
solution to the Malthusian model.

• If λ ∈ R and u0 ∈ F(R), we have

⎧⎨
⎩

dx

dt
= λx(t)

x(0) = u0

. (8.23)

The deterministic flow of the Malthusian model (8.1) is given by φt(x0) = x0eλt .
Therefore, using Definition 2.1, the fuzzy flow is φ̂t(u0) = u0eλt , whose α-levels
are given by

[φ̂t(u0)]α = φt([u0]α) = [u0]αeλt = [uα
01, uα

02]eλt .

So, for every t, the diameters of the α-levels of the fuzzy solution are given by

diam([φ̂t(u0)]α) = (uα
02 − uα

01)e
λt

which coincides with those obtained in the previous case of differential inclusions
(8.19). This allows us to conclude that such diameters grow for populations in
expansion and decrease for contracting populations.

Case (b) – Fuzzy Parameter and Initial Condition

• We suppose now that the GFIVP (8.17) is fuzzy because some parameters (�) and
also the initial condition are fuzzy. Thus, the initial value problem takes the form

⎧⎨
⎩

dx

dt
= f̂ (t,�, x(t))

xα(0) = u0 ∈ F(R)

. (8.24)

In this case, we have the previous case and add a new equation (y = λ, with y′ = 0).
That is, looking at the parameter as a variable and in the original deterministic
model (8.22), we add the pair (λ, x0) to initial condition. For a mathematical
formalism of this method the reader may consult [17, 29]. Let us illustrate this
case still considering the Malthusian model.

• Suppose we have that the growth rate � ∈ F(R) and the initial condition u0 ∈
F(R). We know that the deterministic solutions of the expanded Malthusian model
(8.1) ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dx

dt
= λx

dy

dt
= 0

x(0) = x0 and y(0) = λ

http://dx.doi.org/10.1007/978-3-662-53324-6_2
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are given by φt(λ, x0) = x0eλt , where x0 and λ are real numbers.
Now, if

[�]α = [λα
1 ,λα

2 ] and [u0]α = [uα
01, uα

02]

then the solution of (8.24) with f̂ (t,�, x(t)) = �x is given by

[ψt(�, u0)]α = [φ̂t(�, u0)]α = φt([λα
1 ,λα

2 ], [uα
01, uα

02]). (8.25)

Therefore, assuming that λα
1 ≥ 0 (strong expansion),

[ψt(�, u0)]α = [uα
01eλα

1 t, uα
02eλα

2 t],

and in this case, diam[ψt(�, u0)]α increase with t, since λα
2 > λα

1 .
On the other hand, supposing that λα

2 ≤ 0 (strong contraction),

[ψt(�, u0)]α = [uα
01eλα

2 t, uα
02eλα

1 t],

and in this case, diam[ψt(�, u0)]α decreases with t, since λα
2 > λα

1 . The cases in
which λα

1 and λα
2 have opposite signs we leave to the reader.

As the reader can see, the solutions to the model of Malthus obtained via differ-
ential inclusion and via extension principle are the same. This was not a coincidence
just for the model that was chosen. Under certain conditions such methods produce
the same solutions (see [17] for details).

The use of this type of variational equations has been accepted by researchers
from many areas, in particular with regard to issues related to biological phenom-
ena. Jafelice et al. [30] used this methodology to study the dynamics of HIV with
treatment, considering the action of the fuzzy delay in action of the drug.

The study of stability of stationary states (equilibrium) plays a key role in dynami-
cal systems. Therefore, we present next, an introduction to stability of fuzzy dynam-
ical systems formulated via fuzzy differential inclusions and/or via the Extension
Principle. We want to emphasize that there is a consolidated theory of stability of
fuzzy dynamical systems. We offer some results below. But these are somewhat
specific.

Stability of Continuous Fuzzy Dynamical Systems

Let us start this section defining stationary states (or equilibrium) for GFIVP (8.17).

Definition 8.4 (Equilibrium) A fuzzy number u ∈ F(R) is a point of equilibrium
or a stationary state of (8.17) if

ψt(u) = u, for all t ≥ a,

that is, if u is a fixed point for all ψt .
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Remember that for a deterministic initial value problem, equilibrium points are
those whose derivative is zero, and these are exactly the fixed points of their solutions,
viewed as functions of the initial conditions. Because here we have no notion of
derivative to fuzzy functions we define equilibrium as fixed points of the flows
generated by GFIVP’S.

Now we are only interested in the initial value problems that are autonomous, that
is, the field F does not depend explicitly on t. Let us consider only the autonomous
systems whose IVP’s has unique solution. The great advantage of autonomous sys-
tems, which will be explored here, comes from the fact that their solutions have the
property of flow, which we will explain below.

We will present results of stability only for autonomous generalized fuzzy initial
value problems AGFIVP namely

{ du

dt
= F(u(t))

u(a) = u0 ∈ F(R)
. (8.26)

It is known that, for this problem, the family of solutions ψt has the property of
flow:

(1) ψ0(u0) = u0 for all u0 ∈ F(R), that is, ψ0 is the identity function on F(R);
(2) ψt+s(u0) = ψt(ψs(u0)) = (ψtoψs) (u0) for all u0 ∈ F(R).

Property (2) above characterizes a flow. It means that, starting from a state u0, the
state reached at time t + s, ψt+s(u0), is the same as that reached ψt(ψs(u0)), at time t,
starting with ψs(u0).

Examples of such flows are the solutions of deterministic autonomous initial value
problems and also those flows generated by differential inclusions (see [4]).

Proposition 8.6 Given the deterministic autonomous initial value problem

{ dx

dt
= f (x(t))

x(a) = x0

, (8.27)

let us consider the AGFIVP (8.26) associated with IVP (8.27)

{ dx

dt
= f (x(t))

x(a) = u0 ∈ F(R)
. (8.28)

Under these conditions, any equilibrium point of (8.27) is an equilibrium point of
(8.28). Moreover the real numbers that are equilibria of (8.28) are also equilibria
of (8.27) if the solution is given by the extension method or by fuzzy differential
inclusion.
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Proof By Theorem 2.1 we have

[φ̂t(χ{x})]α = φt([χ{x}]α) = φt(x),

where χ{x} is the membership function of x, φt is the deterministic flow and φ̂t is the
fuzzy flow.

Thus,
φt(x) = x ⇐⇒ [φ̂t(χ{x})]α = [χ{x}]α,

that is, x is an equilibrium of (8.27) if and only if χ{x} is an equilibrium of (8.28). �

The stability of continuous dynamical systems will be studied through flows of
its solutions. Using the metric D (Definition 8.3), we define stability of equilibrium
points.

Definition 8.5 (Stability) Let u be an equilibrium point of (8.28). Then it is:

(a) Stable, if ∀ε > 0 there exists δ > 0 such that

if D(u, u) ≤ δ, then D(u,ψt(u)) ≤ ε, for all t ≥ a,

(the equilibrium points that are not stable are said unstable);
(b) Asymptotically stable, if it is stable and there is r > 0 such that

lim
t→+∞D(ψt(u), u) = 0 whenever D(u, u) ≤ r.

It is easily seen that with this notion of stability, it is not possible to have asymptot-
ically stable equilibrium for continuous fuzzy systems, for which the derivative used
is the Hukuhara derivative. Recall that for such systems the diameters of α-levels of
the solutions are always increasing. The main stability result that we next develop
is for continuous fuzzy systems whose solutions are obtained through the Zadeh’s
extension principle.

We remark that, with the Definition 8.5 of stability, it is easy to verify that the
Malthusian population model in contraction, whose solutions are obtained via fuzzy
differential inclusions or Zadeh’s extension, are asymptotically stable. The following
result generalizes this observation.

Theorem 8.7 Let x be an equilibrium of the deterministic initial value problem
(8.27). Then,

(a) x is stable for IVP (8.27) if and only if χ{x} is stable for AGFIVP (8.28);
(b) x is asymptotically stable for IVP (8.27) if and only if χ{x} is asymptotically

stable for AGFIVP (8.28).

Proof See [17]. �

Corollary 8.8 Let x be an equilibrium point of (8.27). Then, the equilibrium point
χ{x} of (8.28) will be stable if f ′(x) < 0, and unstable if f ′(x) > 0.

http://dx.doi.org/10.1007/978-3-662-53324-6_2
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Proof Recall that this hypothesis is sufficient for asymptote stability in the classical
case. The conclusion follows from Theorem 8.7. �

To end this section we notice that although Theorem 8.7 is quite intuitive, it reveals
something that we consider important. If x is asymptotically stable for (8.27) then x
attracts points of R. Now, to be asymptotically stable in the fuzzy space (F(R),D)

means that the point attracts fuzzy sets, and therefore attracts their level sets, which
are compact subsets of R. From the modeling point of view, this means that the
stability of x is independent of the uncertainties of the initial conditions. A more
general study of stability of fuzzy systems via the Extension Principle can be found
in [17]. By using Zadeh’s extension, Cecconello [29] studied the flows in fuzzy metric
spaces and the existence of periodic orbits from classical autonomous systems.

At the beginning of Sect. 8.1 we promised four approaches for continuous fuzzy
dynamical systems, so we introduce the last one, fuzzy systems where the directions
field is given by a fuzzy rule base.

P-Fuzzy Initial Value Problem

The nomenclature p-fuzzy means partially fuzzy. These systems are partially fuzzy
in the sense that the direction field F of the respective IVP is known only partially.
However, its solution (trajectory) is crisp, since in each instant t it is a real number
obtained after a process of defuzzification. Formally we have,

Definition 8.6 A p-fuzzy IVP is given by

{ du

dt
= F(t, u(t))

u(a) = u0

, (8.29)

where F is partly known and described by a fuzzy rule base (see Chap. 5).

Given a fuzzy rule base and a particular defuzzification of the output of fuzzy rule
base, we have that the solution u(t) of (8.29) belongs to R. In this case, we have the
method of Sect. 6.4 where F is the function given by fuzzy controllers. Following
this line of thinking, we will study the IVP

{ dx

dt
= f (x)

x(a) = x0

, (8.30)

where f is replaced by a fuzzy rule base consistent with studied phenomenon. For
example, in the Malthusian model, the growth rate of a population is directly pro-
portional to the population. The rule base built here is for the rate of change per unit
of time, denoted by dX

dt , with respect to the population X. Thus x is the value of input
variable X, while dx

dt is the value of the output variable dX
dt . We will take only four

qualifiers for each of these linguistic variables, summarized in Frame 8.1.

http://dx.doi.org/10.1007/978-3-662-53324-6_5
http://dx.doi.org/10.1007/978-3-662-53324-6_6
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R1 : If the population (X) is “very small” (MB) then the rate is

“very small” (MB)

R2 : If the population (X) is “small” (B) then the rate is “small” (B)

R3 : If the population (X) is “average” (M) then the rate is “average” (M)

R4 : If the population (X) is “high” (A) then the rate is “high” (A)

Frame 8.1: Rule base for modeling the variation of population based on its density.

The membership functions that correspond to each value of the linguistic variables
of the rule base are given in Fig. 8.4.

Fig. 8.4 Membership
functions of rule base
(Frame 8.1)
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Fig. 8.5 Granules for the
Malthusian model and
possible growth function f

Fig. 8.6 Solutions x(.) for
the Malthusian p-fuzzy and
for deterministic case with
a = 9.5 % and x0 = 2
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Figure 8.5 illustrates the rules of Frame 8.1 in granular form, supposing that each
of the above quantifiers are given by a triangular fuzzy number and corresponding
to the underlying f .

Adopting the Mamdani fuzzy controller and with center of mass as a defuzzi-
ficator, combined with the Euler method (see details in Sect. 6.4 and in Chap. 9),
we obtain the solution of the p-fuzzy Malthusian model whose graph is depicted in
Fig. 8.6. A more detailed study about p-fuzzy systems will be given in Chap. 9.

http://dx.doi.org/10.1007/978-3-662-53324-6_6
http://dx.doi.org/10.1007/978-3-662-53324-6_9
http://dx.doi.org/10.1007/978-3-662-53324-6_9
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8.2 Discrete Fuzzy Dynamic System

A discrete dynamical system is given by a recurrence or iterative process. In this
section we introduce discrete fuzzy dynamical systems as a generalization of the
classical ones. To illustrate the process, we use once more the population models -
the exponential (Malthus) and logistic (Verhulst) models.

Definition 8.7 A discrete fuzzy dynamic system is an iterative process of fuzzy sub-
sets {

ut+1 = F(ut)

u0 ∈ F(R)
, (8.31)

where F : F(R) → F(R) is a function between spaces of fuzzy subsets.

Definition 8.8 Given u0 ∈ F(R) and F as in Definition 8.7, the iteration sequence
u0, F(u0), F(F(u0)), . . ., is called a solution or a positive orbit of u0.

According to these definitions, the flow ψt for discrete systems is given by suc-
cessive compositions of field F:

ψ0(u0) = F0(u0) = u0

ψ1(u0) = F1(u0) = F(u0)

ψ2(u0) = F2(u0) = F(F(u0))
... = ... = ...

ψt(u0) = Ft(u0) = F(Ft−1(u0)),

for t ∈ N.
Thus, if u0 ∈ F(R), then the iterates defined above and its limit, when limit exists

in the metric D), are in F(R), since the metric space (F(R),D) is complete (see
[20]). We note that, in a discrete system, the time is proportional to the number of
iterations performed. Based on Definition 8.4 we have the following definition.

Definition 8.9 (Equilibrium) A fuzzy number u ∈ F(R) is an equilibrium point of
the fuzzy discrete system (8.31) if ψt(u) = u, for all t ≥ 0. That is, F(u) = u, and u
is a fixed point of F.

Next we will briefly analyze the dynamics of the Malthusian model, assuming that
we have the uncertainty in the initial condition, which is reasonable for problems
of dynamics of population, especially when starting with a very large or estimated
population. A typical example is the initial number of bacteria in a culture.

8.2.1 Discrete Fuzzy Malthusian Model

Let us assume that, as in the continuous case, in each generation t, the number of
individuals is proportional to the population in the previous generation. Furthermore,
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the initial condition is uncertain and is given by u0 ∈ F(R) so that their α-levels are
the closed intervals [u0]α = [uα

01, uα
02] ⊂ R+, for all α ∈ [0, 1]. As we did in the

continuous case, we also distinguish two situations:

Case (a) Growth rate is crisp and initial condition is uncertain

• If λ > 0, the discrete fuzzy Malthusian model is given by:

{
ut+1 = λut

u0 ∈ F(R)
. (8.32)

The solution of (8.32) is given by

ut = λtu0, (8.33)

whose α-levels are [ut]α = λt[u0]α = [λtuα
01,λ

tuα
02].

Case (b) Growth rate and initial condition are uncertain

• In this case, besides the initial condition, we also have that the growth rate (�)

is fuzzy. If � ∈ F(R) with [�]α = [λα
1 ,λα

2 ] and u0 ∈ F(R), the discrete fuzzy
Malthusian model is given by:

{
ut+1 = �ut

u0 ∈ F(R)
, (8.34)

with fuzzy solution
ut = �tu0, (8.35)

whose α-levels are [ut]α = [(λα
1 )tuα

01, (λ
α
2 )tuα

02].
Equilibrium Points

According to the above solutions (8.33) and (8.35), we conclude that if λ = 1
(� = 1̂) then the unique equilibrium of the discrete fuzzy Malthusian system is the
fuzzy point χ{0}, and if λ = 1 (� = 1) then any initial condition u0 ∈ F(R) is an
equilibrium point.

Unlike the continuous case, the fuzzy differential equations, as we saw in
Sect. 8.1.2, can have diameters of the solution that decrease, increase or stay the
same. For our example above we have, if λ ∈ R,

diam[ut]α = diam[λtu0]α = λtdiam[u0]α

and so,

lim
t→+∞ diam[ut]α =

⎧⎨
⎩

0 if 0 < λ < 1
+∞ if λ > 1

diam[u0]α if λ = 1
.
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Stability of the Equilibrium Point χ{0}

We have, for metric D , that

D(χ{0}, u0) = sup
0≤α≤1

dH([χ{0}]α, [u0]α) = u0
02

and
D(χ{0}, ut) = D(χ{0},λtu0) = λtu0

02.

Thus, for the model (8.32), χ{0} is stable if 0 < λ ≤ 1, and asymptotically stable if
0 < λ < 1 since at this case lim

n→+∞D(χ{0}, ut) = 0. For λ > 1, the equilibrium χ{0}
is unstable. We leave it to the reader to study the case in which the growth rate � is
fuzzy.

The conclusions we obtain for the discrete fuzzy Malthusian model with respect to
stability, are actually more general as we discuss below. Let the discrete deterministic
system be

xt+1 = f (xt). (8.36)

Associated with this system, we have a fuzzy system (8.31) (it is sufficient to consider
in (8.31) the extension f̂ of the function f ). Now, if x is an equilibrium point of the
system (8.36), then χ{x} is an equilibrium of system (8.31) obtained by the fuzzifica-
tion of the deterministic field f , and these equilibria have the same characteristics of
stability. The following theorem allows us to characterize the types of stability for
the equilibrium of discrete fuzzy dynamical systems which come from deterministic
systems. This is the discrete version of Theorem 8.7.

Theorem 8.9 Let f : R → R be a continuous function and f̂ its Zadeh’s extension.
Then,

(a) χ{x} is an equilibrium to the fuzzy system ut+1 = f̂ (ut) if, and only if, x is an
equilibrium of the deterministic system xt+1 = f (xt);

(b) χ{x} is stable to the fuzzy system ut+1 = f̂ (ut) if, and only, if x is stable of the
deterministic system xt+1 = f (xt);

(c) χ{x} is asymptotically stable to the fuzzy system ut+1 = f̂ (ut) if, and only if, x is
asymptotically stable of the deterministic system xt+1 = f (xt).

Proof (see [12, 31, 32]). �

Corollary 8.10 Suppose that f is continuously differentiable. Then the equilibrium
χ{x} of the discrete fuzzy system ut+1 = f̂ (ut) will be asymptotically stable if |f ′(x)| <

1, and unstable if |f ′(x)| > 1.

Proof Remember that the hypotheses of the corollary above are sufficient for sta-
bility on the deterministic case (see [33]). The conclusion is a consequence of
Theorem 8.9. �
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These last two results hold in a more general context (see [12, 31]).
Returning to the Malthus model, because x = 0 is asymptotically stable for the

deterministic case, Corollary 8.10 allows us to conclude that χ{0} is asymptotically
stable for the discrete fuzzy model of Malthus, if 0 < λ < 1.

For cases of nonlinear systems, such as the logistic model, the dynamic changes
dramatically for discrete fuzzy systems. Since the fuzzy space F(R) contains R, it
is reasonable that the number of critical points of fuzzy systems is greater than the
deterministic case. Furthermore, new periodic orbits appear. Also, the bifurcation
diagram is different from the one that appear in the classical case. Let us check these
facts for the logistic model (or Verhulst).

8.2.2 Discrete Fuzzy Logistic Model

The deterministic logistic model (or Verhulst model) supposes an inhibition in growth
when the population is very high as t → +∞. Its mathematical formulation is
given by {

xt+1 = axt(1 − xt)

x0 ∈ R+ , (8.37)

where xt denotes the population density in the generation t and a is the rate of intrinsic
growth, 1 ≤ a ≤ 4.

The equilibria of this equation are x = 0 and xa = 1− 1

a
. We also known that x = 0

is unstable, and xa = 1− 1

a
is asymptotically stable if 1 < a < 3. Furthermore, when

a = a1 = 3 (the first bifurcation value), the fixed point xa = 1 − 1

a
loses stability

and thereafter, the population oscillates between two values [x1, x2] until the next
value of the bifurcation that is a = a2 = 1 + √

6. At a2 this orbit of period 2 loses
stability and there appears an orbit of period 4 that is stable until the next value of
the bifurcation a = a3. This duplication behavior of the orbit periods (Fig. 8.7) still
occurs until the system reaches chaos at a∗ = 3.569 . . . (see [33]).

Remember that in the discrete logistic model, we are assuming that the popula-
tion is homogeneous and that the growth rate a is constant for the entire population.
However, in any community there are physical and behavioral differences among
the individuals of the population. This heterogeneity is more pronounced when indi-
viduals are considered separately and less pronounced when considering the group.
However, in this example, we consider the same rate a for the entire population.
Unlike the analysis we made on the Malthusian model, here we will study only the
case where the initial condition is fuzzy and the parameter a is deterministic. We
leave, as a challenge to the reader, the case where the growth rate is also fuzzy (the
reader may consult [34]).

So, let us consider the fuzzy case where a is real, with 1 ≤ a ≤ 4, and the initial
condition being a fuzzy number, that is
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Fig. 8.7 Deterministic
bifurcation diagram [31]

1

ū

1 2 3 4 a

{
ut+1 = f̂ (ut)

u0 ∈ F(R)
, (8.38)

where f is the normalized logistic function f (x) = ax(1 − x) and f̂ is its Zadeh’s
extension.

Equilibrium Points

The equilibrium points of the fuzzy system (8.38) are the fixed points of f̂ , that is,
the fuzzy numbers u that are solutions of the equation

f̂ (u) = u

or equivalently, for the level set, since f is continuous (from Theorem 2.1),

[̂f (u)]α = f ([u]α) = [u]α = [uα
1 , uα

2 ]

for all α ∈ [0, 1], that is, ⎧⎨
⎩

uα
1 = min

uα
1 ≤x≤uα

2

f (x)

uα
2 = max

uα
1 ≤x≤uα

2

f (x)
. (8.39)

Denoting by 0̂ and x̂a the characteristic functions of the fixed points 0 and xa =
1 − 1

a of the function f and using a direct calculation, we obtain the fixed points of

f̂ on F(R) (see [12, 31]).

• If 1 ≤ a ≤ 2, the fixed points of the fuzzy logistic equation are 0̂, x̂a and u1, where
u1 is given by [u1]α = [0, xa],∀α ∈ [0, 1].

• If 2 < a ≤ 3, beyond the fixed points 0̂ and x̂a, we also have u2, given by
[u2]α = [0, a

4 ], ∀α ∈ [0, 1].

http://dx.doi.org/10.1007/978-3-662-53324-6_2
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u1 u2 u3

u4 u5

α

u6

Fig. 8.8 Equilibrium points of the logistic fuzzy system [31]

• If 3 < a ≤ 1 + √
5, beyond the fixed points 0̂, x̂a and u2, we have the fixed point

u3 with [u3]α = [x1, x2],∀α ∈ [0, 1], where x1 and x2 are fixed points of f̂ , that
isf (x1) = x2 and f (x2) = x1.

• If 1 + √
5 < a < 4, the fixed points are 0̂, x̂a, u2, u3, u4, where [u4]α = [f ( a

4 ), a
4 ]

and u5 which is given by

[u5]α =
{

[0, f ( a
4 )] if α ≤ α

[f ( a
4 ), a

4 ] if α > α

for all α ∈ [0, 1] and some α.
• If a = 4, the fixed points are: 0̂, x̂a and u6 with [u6]α = [0, 1] for all α ∈ [0, 1].

Figure 8.8 illustrates the fixed points of this example.

Stability of Equilibria

The stability of the equilibrium points 0̂, x̂a and cycles of f̂ , which are characteristic
functions of f cycles, are the same when studying f or f̂ , according to Theorem 8.9.

The only new fixed points (fuzzy) of f̂ that are asymptotically stable are u3 and
u4. The others are unstable. Details of this study can be found in [12, 31, 34].

Figure 8.9 represents the bifurcations of equilibrium points and shows the change
in magnitude when we vary the parameter a. For the fuzzy model, the deterministic
branch is equal to the classical bifurcation diagram (Fig. 8.7) and fuzzy bifurcation
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Fig. 8.9 Bifurcation
diagram for the fuzzy case
[31] 1

ū

Deterministic branch

Fuzzy branch

1 2 3 1+
√
5 4 a

ū1
ū2 ū3 ū5

ū4

ū6

illustrates the new fixed points according to our results. As already pointed out for
the deterministic case, a = 3 is a bifurcation value, that is, if a is slightly greater
than 3, the fixed point xa ceases to be stable and there appears a new orbit with period
2. For values of a slightly more than 1 + √

6, there appears an orbit of period 4. For
values near to 3.89, there is a chaotic behavior in the dynamics of this equation (see
[33, 35]). The fuzzy equation also has bifurcation values of a = 1, a = 2, a = 3 and
a = 1 + √

5. The bifurcation diagram below illustrates the dynamics of the logistic
model above assuming an initial condition fuzzy.

We stress that the above study deals only with fuzzy equilibrium points. The
periodic orbits (cycles) studied are deterministic and as can be shown (see [31, 32]),
does not change the type of stability when they are considered in Euclidean or fuzzy
spaces. Studies of fuzzy periodic orbits have been developed recently and we already
know that every deterministic periodic orbit of period 2p gives rise to a fuzzy orbit
of period 2p−1, p ≥ 2 (see [34]).

An example of this is the deterministic orbit of period 2 that became the fuzzy
equilibrium point u3, with α-levels [u3]α = [x1, x2] for all α ∈ [0, 1]. We will not
study fuzzy chaos. The interested reader might consult [36, 37].

We want to close this chapter by commenting that, as we saw above, there are
several approaches to fuzzy dynamical systems. Besides those presented here, the
reader can find others referring, for example, to [38]. The p-fuzzy systems, formally
described in Sect. 8.1.5, both for the discrete and continuous cases, will be revisited
in greater detail in Chap. 9.
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Chapter 9
Modeling in Biomathematics: Demographic
Fuzziness

The word is the golden thread of thought.
(Socrates – 5th Century)

Abstract This chapter explores the notion of demographic fuzziness in modeling of
bio-mathematical phenomena. The concept of demographic fuzziness is illustrated
by looking at both continuous and discrete models. The relatively new idea of p-fuzzy
systems, which combines dynamical systems with fuzzy logic, is illustrated via the
dynamical models.

This chapter and the next use the concepts of demographic and environmental fuzzi-
ness. These terms come from the stochastic literature (see [1–3]) and our use is an
adaptation for fuzzy biomathematical models presented in this chapter and Chap. 10.

The essential feature of mathematical modelling of variational processes using
deterministic equations is the “exactness” obtained in the prediction of the studied
phenomenon. Such predictions are definitely dependent on the hypotheses about the
precision of the state variables and about the parameters inserted in the models via
“mean values” of a data set.

The classical biomathematical models, in particular population dynamics and epi-
demiology models, are mostly based on physical-chemical hypotheses, in which the
reaction between two substances (state variables) is modeled by the product of their
concentration - the law of mass action. The same law is used in the Lotka–Volterra
models of interactions between two species and in the Kermack–MacKendrick
epidemiology models (see [4]). The parameter representing predation rate of the
predator-prey model or the force of infection in the epidemiology models are “mean”
values simulated or obtained empirically.

In the models that deal with uncertainty, for instance the stochastic models, the
solutions are stochastic processes whose mean values can be obtained a posteriori,
when the variable’s distribution density and/or the parameters related to the analyzed
phenomenon are available. However, if in addition to quantifying the elements of a
population, we also want to take into account certain qualities of the individuals, the
variables should “capture” such uncertainties. For instance, in the prey population
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of some species, we can consider the difficulty of preying each specific prey, such as
age, health, habitat, etc.

The various types of uncertainty arising from biomathematical phenomena may
generate distinct models. When we choose a stochastic model, we are implicitly
assuming knowledge of the parameter’s probability distribution. Nevertheless, if in
the given phenomenon we intend to take into account the heterogeneity as being
gradual, that is, fuzzy and not originating from randomness, how do we model these
characteristics mathematically?

For example, if we have a “smoker” population at instant t0, subject to some
mortality rate, we may want to know how this population will be composed in the
future. If we consider that each individual is simply a smoker or non-smoker, the
problem can be solved through a deterministic model, considering each population
individually. On the other hand, if we initially have the probability distribution of
the smokers, we can use a stochastic model to study the evolution of this initial
distribution. However, if the characteristic of being a smoker depends on how many
cigarettes a person smokes a day, the potency of such cigarettes, smoking intervals,
etc., we should also characterize smoking as degree. In this case, each individual
belongs to the smoker population with a specific degree of belonging. If the individ-
ual does not smoke, the degree of belonging is zero. If s/he smokes 3 packs a day we
can say that s/he is a smoker of degree 1. Now, if s/he smokes 10 cigarettes a day, how
much of a “smoker” will s/he be? This subjectivity may be expressed by a function
ϕA, where ϕA(x) indicates the degree which a person who smokes x cigarettes is
in agreement with the definition of “smoker”. A study about the life expectancy
of a group, considering the quantity of cigarettes smoked a day, was done by
A. Kandel [5].

The variational fuzzy models may admit many types of uncertainties (fuzziness),
described in coefficients, initial conditions or by the state variables themselves. If the
subjectivity comes from the state variable or from the parameters, we have demo-
graphic fuzziness or environmental fuzziness, respectively. Thus, when the state vari-
ables are modeled by fuzzy set theory, we have demographic fuzziness, and when
only the parameters are fuzzy we have environmental fuzziness. In general, both
types of fuzziness are present in the biological phenomena.

The observation above suggest that adopting environmental fuzziness allows us to
use classical concepts of variation rate, since the state variables are deterministic. This
approach will be explored in Chap. 10. For demographic fuzziness, we should employ
some variation concept that is compatible with the notion of uncertain variables.

There are many possibilities for modeling demographic fuzziness. Given that, in
this case, the state variation is uncertain, any of the processes seen in the Sects. 8.1.2
and 8.1.3 could be used for continuous models. The chosen process is related to the
most suitable phenomenon in question. On the other hand, if the model is discrete,
we have the methodology of Sect. 8.2 as an option. However, due to the richness of
p-fuzzy systems (see below), we will use this methodology to study the evolution of
dynamical systems in which the state variables are uncertain.

The systems considered here are autonomous, i.e., the variations (or variation
rates) do not depend explicitly on time. Furthermore, the state variables and their

http://dx.doi.org/10.1007/978-3-662-53324-6_10
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variations are considered linguistic. This way, the state variables are correlated to their
variations, not by means of equations - which is the most common case in the literature
- but by means of fuzzy rules whose main characteristic is having the state variables
as input, while the variations are outputs. As noted in Sect. 8.1.5, the systems studied
here are referred to as p-fuzzy, because the direction field, partially known a priori,
is obtained from fuzzy controllers. Recall that p-fuzzy is an abbreviation for partially
fuzzy. Since in such methodologies, processes of defuzzification are expected, the
final solution of a p-fuzzy system is crisp, this is, a precise value x(t) that represents
the state variable in each instant t . The p-fuzzy systems may be discrete or continuous.
For clarity, we first study the discrete case and then the continuous case.

9.1 Demographic Fuzziness: Discrete Modeling

Many concepts in this section the reader can find in [6, 7]. The mathematical mod-
elling of the phenomena analysed here are fundamentally provided by fuzzy con-
trollers. For this reason, we will not adopt the index “r”, that indicates the number
of rules in the direction field, to distinguish it from the deterministic model.

The discrete p-fuzzy systems have the form:

{
xt+1 = F(xt )

x0 = x(t0)
, (9.1)

where F : Rn → Rn is the function F(x) = x + �x , and �x is the defuzzified
output, given by a fuzzy controller for the input x . A discrete p-fuzzy system is
nothing but a sequence of differences xt+1 − xt = f (xt ), in which the variation
function f (x) = �x is the output of the fuzzy controller. Figure 9.1 represents
a discrete p-fuzzy system schematically. Ortega et al. [8] applied this method in
association with Zadeh’s Extension Principle to study the evolution the rabies in
dogs for the sate of São Paulo in Brazil.

We are modeling with linguistic variables. What we wish to convey is not only
how obtain meaningful qualitative models compatible with words but also show
how some linguistic variables already exhibit a quantitative character suggesting its

Fig. 9.1 Architecture in a
discrete p-fuzzy model [7] Fuzzy

Controller

Mathematical Model
xk+1= +xk Δxk

Δxkkx

http://dx.doi.org/10.1007/978-3-662-53324-6_8
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relation in the model itself. For example, we might have a linguistic variable “tall”.
Linguistically, tall already suggests short as well as positively tall and negatively tall.
That is, some words suggest opposites.

For a better understanding of the stability of equilibrium points of p-fuzzy systems,
some remarks about the fuzzy rule-base with semantic opposition are necessary.

9.1.1 Fuzzy Rules with Opposite Semantics

The Malthusian principle for population growth is

“the population’s variation is proportional to the population at each instant”.

The first attempt to model this principal could generate Frame 8.1, whose antecedents
and consequents are represented in Fig. 8.4a, b, respectively. Based on these rules, the
Mamdani controller and the defuzzification given by the center of mass, the p-fuzzy
system (9.1) leads us to the trajectory illustrated in Fig. 9.2.

According to Fig. 9.2, the discrete p-fuzzy system produces a trajectory com-
patible with the Malthusian exponential model, in which the number of deaths is
smaller than the number of births. However, this exponential unbounded growth is
not observed in reality. There are factors in nature such as food, competition with
other individuals, competition for space, light, etc, that limit the population to a cer-
tain threshold carrying capacity, providing stability in a given environment. Factors
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Fig. 9.2 Number of fuzzy individuals as a function of time from the discrete p-fuzzy system and
rule base Frame 8.1, with x(0) = 2

http://dx.doi.org/10.1007/978-3-662-53324-6_8
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such as these result in a process of population “inhibition” in such a way that, for
very large populations, the variation is small or even negative.

R1 : If (X) is “low” (A1) then the variation is “low positive” (B1)

R2 : If (X) is “average low” (A2) then the variation is “average positive” (B2)

R3 : If (X) is average (A3) then the variation is “high positive” (B3)

R4 : If (X) is “average high” (A4) then the variation is “average positive” (B4 = B2)

R5 : If (X) is “high” (A5) then the variation is “low positive” (B5 = B1)

R6 : If (X) is “very high” (A6) then a variation is “low negative” (B6)

Frame 9.1: Fuzzy rule-base to model population variation based on its density, with
semantic opposition

In order to improve the Malthusian model, information such as those that limit
growth, should be included in the rule base. If we expect stability of equilibrium,
the rule base should contain rules with semantic opposition in the consequents.
Semantic opposition is characterized here by the alternating signs in the variations.
A theoretical study of this subject can be found in [9]. For instance, we could refine
the rule-base of Frame 8.1 in order to obtain the rule-base of Frame 9.1 with semantic
opposition in the successive rules R5 and R6, in which the fuzzy sets of antecedents
and consequents are illustrated in Fig. 9.3a, b, respectively. This rule base using
Mamdani’s controller and the defuzzification of the center of mass, the p-fuzzy
system produces the trajectory shown in Fig. 9.4.

The trajectory presented in Fig. 9.4 has qualitative behavior compatible with the
models that present inhibition, such as the logistic models of Gompertz, Montroll,
etc [4, 10, 11].

To simplify the study of equilibrium of p-fuzzy systems, we will make some
requirements of the rule base. One of them is regarding its monotonicity, i.e., the
rules must be displayed using an ordinal scaling. For example, the rules of Frame
9.1 exhibit such an order: the antecedents are monotonically displayed from the
“smallest” to the “largest”. This facilitates the search for possible equilibria of the
model. Clearly, not ordering does not eliminate equilibrium points. The existence of
such points depend, among other factors, of the existence of semantic opposition in
the rules. Rules without semantic opposition imply the non-existence of hyperbolic
equilibria (see [12]), which are the ones of our interest. On the other hand, rules
with semantic opposition imply the possibility of such equilibria. The existence of
such points depends on the “continuity” in the rule base. In the classic case, such a
guarantee comes from Bolzano’s Theorem [13, 14].

It is worth noting that we are not interested in the study of dynamics around non-
hyperbolic equilibrium points. Intuitively, non-hyperbolic equilibrium means that
the variation around it does not change in sign (see [12]).
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Antecedent fuzzy sets for population (X).

Consequent fuzzy sets for variations (ΔX).

Fig. 9.3 Membership function for Frame 9.1



9.1 Demographic Fuzziness: Discrete Modeling 211

0 2 4 6 8 10 12 14
0

20

40

60

80

100

120

140

160

180

200

Time

P
op

ul
at

io
n

Fig. 9.4 Solution of the discrete p-fuzzy system for the rule-base of Frame 9.1 and x0 = 2

9.1.2 Equilibrium and Stability of One-Dimensional Discrete
p-Fuzzy Systems

The fuzzy rule base we use for this chapter will satisfy some properties, enumerated
below, in such a way that facilitates the search for possible equilibrium points of the
system.

(i) The universes must be bounded interval sets of real numbers.
(ii) The fuzzy sets of the rule base must be fuzzy numbers.

(iii) The rule base must cover its associated universe, in the sense that each element
of the universe has a non-zero degree of belonging to at least one of the fuzzy
numbers of the rule base.

(iv) At most two rules can be activated at once, i.e., each element of the universe
must have non-zero belonging to at most two antecedents.

(v) Any element whose membership value is 1 can belong to only one fuzzy set,
that is, this element has a zero degree of belonging to any other fuzzy member
of the rule-base.

(vi) The rule base must be monotonically ordered (increasing or decreasing), i.e.,
the qualifiers of the antecedents must be “ordered”: small, medium, large, for
example. Formally, this means that the largest element of the support of the
antecedent of rule Ri should be smaller than the one that follows, rule Ri+1.

We next study equilibrium and stability for dynamical system given by field F(x) =
x + �x of p-fuzzy system (9.1).
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Definition 9.1 (Rule ordering) A rule base with the six properties above will be
called well-ordered.

Proposition 9.1 Suppose the the rule base with the p-fuzzy system (9.1) is well-
ordered and that the p-fuzzy numbers Ai and Ai+1, of consecutive rules, have contin-
uous membership functions. Then, for each x ∈ I ∗ = supp{Ai } ⋂

supp{Ai+1} �= ∅,
the output �x is continuous and differentiable.

Proof See [6, 7] �

Corollary 9.2 Suppose that the rule base for (9.1) is well-ordered and is composed
of triangular, trapezoidal and/or bell-shaped fuzzy numbers. Under these conditions,
for all x ∈ I ∗ = supp {Ai } ⋂

supp {Ai+1} �= ∅, the output �x is continuous and
differentiable.

Definition 9.2 (Equilibrium) A real number x is an equilibrium point of the discrete
p-fuzzy system (9.1) if

F(x) = x ⇐⇒ x + �x = x ⇐⇒ �x = 0.

Theorem 9.3 (Existence of Equilibrium) Suppose that a rule base satisfies condi-
tions of Proposition 9.1 and that the rules Ri and Ri+1, with antecedents Ai and Ai+1,
exhibit semantic opposition in the consequents Bi and Bi+1. Under these conditions,
the interval

I ∗ = supp {Ai }
⋂

supp {Ai+1} �= ∅

contains at least one equilibrium of the system (9.1).

Proof The proof is based on the fact that the semantic opposition implies a change
of sign of �x in the interval I ∗. We know that �x is continuous (Proposition 9.1)
therefore from Bolzano’s Theorem, the proof is complete. �

Figure 9.5 illustrates Theorem 9.3.
The study of uniqueness of equilibrium of p-fuzzy systems is large and the inter-

ested reader can consult [7]. In what follows we will only mention some results.
For p-fuzzy systems in which the rule base satisfies Proposition 9.1, the output �x

has an explicit expression with respect to the membership functions of the antecedents
and consequents of the rules that exhibit semantic opposition. Given this, it is possible
to study properties regarding uniqueness of equilibrium in the interval I ∗.

A first general result is the following. If �x vanishes in I ∗ and is monotone, then
the p-fuzzy system (9.1) has an unique equilibrium point in I ∗. A sufficient condition
for �x to be monotone is that its derivative does not change its sign. In what follows,
we will only state the result for determining the equilibrium for consequents that are
symmetric.

Theorem 9.4 (Uniqueness of equilibrium for symmetric outputs) Suppose that a
rule base satisfies the conditions of Proposition 9.1, and that the rules Ri and Ri+1,
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Fig. 9.5 Existence of equilibrium for the rule base with semantic opposition: “Bi > 0 and Bi+1<0”

with antecedents Ai and Ai+1, exhibit semantic opposition and the membership func-
tions of the consequentes Bi and Bi+1 are symmetric, i.e.,ϕBi (s) = ϕBi+1(−s) for all s
in the universe. Under these conditions, the intervalI ∗ = supp {Ai } ⋂

supp {Ai+1}
has an unique equilibrium x of the p-fuzzy system (9.1), given by

x = max
x∈I ∗ [min(ϕAi (x),ϕAi+1(x))],

or as the solution of the equation

ϕAi (x) = ϕAi+1(x),

provided it exists.
Moreover, the following useful formula for the stability study holds:

d(�x)

dx
|x=x =

[ϕ−1
B+

i+1
(ϕAi (x))]2[ϕ′

Ai
(x) − ϕ′

Ai+1
(x)]

4
∫ ϕAi (x)

0
ϕ−1

B+
i+1

(s) ds

. (9.2)

where ϕB+
i+1

is the membership function of Bi+1 restricted to the right side of this set.

Proof See [6, 7]. An illustration of the existence of x is given in Fig. 9.5 �

The study we will present next on the stability of equilibrium of discrete p-fuzzy
systems is developed using Corollary 8.10 for classic discrete systems.

Theorem 9.5 (Stability of equilibrium of discrete p-fuzzy systems) Suppose that
x is an equilibrium of the p-fuzzy system (9.1). Under this condition, the following
statements hold:

http://dx.doi.org/10.1007/978-3-662-53324-6_8
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(a) x is asymptotically stable if

|F ′
(x)| < 1 ⇐⇒

∣∣∣∣∣1 + d(�x)

dx

∣∣∣∣
x=x

∣∣∣∣∣ < 1

⇐⇒ −2 <
d(�x)

dx

∣∣∣∣
x=x

< 0.

(b) x is unstable if
d(�x)

dx

∣∣∣∣
x=x

< −2 or
d(�x)

dx

∣∣∣∣
x=x

> 0.

It is worth observing that, depending on the sign of d(�x)

dx |x=x , we will have a
variety of forms for the behavior of the stability of discrete systems:

(i) If −1 < d(�x)

dx |x=x < 0, x is asymptotically stable with monotone convergence;
(ii) If −2 < d(�x)

dx |x=x < −1, x is asymptotically stable with oscillant convergence;
(iii) If d(�x)

dx |x=x < −2, x is an unstable oscillant.

The following example illustrates the concepts seen above.

Example 9.1 Consider the discrete p-fuzzy system whose rule base exhibits self-
inhibition and is given by the rules of Frame 9.1, and whose antecedents and conse-
quents are given in Fig. 9.3. We can observe semantic opposition in the consequents
B5 and B6 of the rule base. Therefore, we have only one equilibrium region, the
interval

I ∗ = supp {A5}
⋂

supp {A6} = [200, 210].

Since in this region the consequents B5 and B6 are symmetric and

ϕA5(x) = 210 − x

20
and ϕA6(x) = x − 200

20
,

then, from Theorem 9.4, the only equilibrium point is the solution of the equation

ϕA5(x) = ϕA6(x) ⇐⇒ 210 − x

20
= x − 200

20
⇐⇒ x = 205.

The stability of this equilibrium is determined from formula (9.2) for
d(�x)

dx
|x=x ,

in Theorem 9.4. Since
ϕB+

6
(x) = 1 − x =⇒ ϕ−1

B+
6
(x) = 1 − x =⇒ ϕ−1

B+
6
(ϕA5(x)) = 3

4 . Moreover,

ϕA5(x) = 1

4
, ϕ′

A5
(x) = − 1

20
, ϕ′

A6
(x) = 1

20
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and ∫ ϕA5 (x)

0
ϕ−1

B+
6
(s) ds =

∫ 1
4

0
(1 − s) ds = 7

32
.

Hence,
d(�x)

dx
|x=205 = ( 3

4 )2[(− 1
20 ) − 1

20 ]
4 · ( 7

32 )
= − 9

240
.

In this way,

−1 <
d(�x)

dx

∣∣∣∣
x=205

< 0.

Therefore, according to Theorem 9.5(a), x = 205 is asymptotically stable.

It is possible to verify that small perturbations in the rule base sets cause qualitative
changes in the type of stability of the system’s equilibrium (see [6, 7, Sect. 4.1.1]
and Exercise 9.1). This means that the p-fuzzy system considered is structurally
unstable. This fact is in complete agreement with the discrete model of Verhulst
studied in Sect. 8.2.2.

An interesting aspect of the discrete p-fuzzy systems that may be explored, from
a practical point of view, is its use in adjusting parameters from theoretical models.
Supposing that the system of Example 9.1 represents the dynamics of a population
with inhibition, a deterministic model should have the same properties as the p-fuzzy
model. For example, if we wanted to adjust a discrete Verhulst model to the p-fuzzy
model studied above, the carrying capacity K and the intrinsic growth rate a should
satisfy 205 = K − 1

a , since the equilibrium of the discrete Verhults model is given
by x = K − 1

a . The adjustment itself would be done from the values generated
by the p-fuzzy system. Clearly this methodology should be applied more carefully
if we wanted to adjust the discrete p-fuzzy model to a classic continuous model,
for the previously observed reasons regarding structural stability. However, if the
equilibrium of the discrete p-fuzzy system has the same qualitative properties as the
continuous one, that is if the p-fuzzy equilibrium is stable, then it is possible to use
the data generated by the discrete p-fuzzy model for the parameter adjustment of the
continuous theoretical model.

Exercise 9.1 Change the support of the antecedents A5 and A6 of Frame 9.1 that
contains equilibrium, in order to obtain a stable oscillatory equilibrium, and study it
from the point of view of the previously obtained results. After that, make changes
to obtain unstable non-zero equilibrium. (Suggestion: Combine Formula (9.2) with
the results of Theorem 9.5).

We will conclude this section by presenting an introduction to bi-dimensional
p-fuzzy systems.

http://dx.doi.org/10.1007/978-3-662-53324-6_8
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9.1.3 Discrete p-Fuzzy Predator-Prey Model

Our approach deals with a specific predator-prey type model, in which we simulate
the population of prey and predators and calculate its phase plane. In order to study
this dynamical system by means of a discrete p-fuzzy system, we consider that the
input variables are the number of prey (X) and the number of predators (Y ), where
the qualitative properties are that the prey favors the predators and are disfavored
by them. The outputs �X and �Y represent, respectively, the variation of prey and
predator populations. All the variables are linguistic and each one of them can be
described by terms such as low (B), average (M) and high (A) for the state variables
while high positive (A+), average positive (M+), low positive(B+), low negative
(B−), and high negative (A−) are terms for the respective variations. Suppose that
such terms are modeled by fuzzy sets whose membership functions are obtained
from a specialist. Such functions are represented in Fig. 9.6.

The membership functions of the consequents for the population variations are
illustrated in Fig. 9.7.

The correlation of the linguistic variables is given by a rule base, which should
be consistent with the characteristics of an iterative predator-prey type system, as
mentioned above.

The rule base, presented in Frame 9.2 can be represented graphically in Fig. 9.8,
where the arrows indicate the magnitudes and directions of the variations. As in
the one dimensional case, here we also adopt Mamdani’s inference method with
defuzzification given by the center of mass.

The dynamics of the bi-dimensional discrete p-fuzzy system consists of obtaining
the populations from the iterative system:

0 20 40 60 80 100 120 140

1
B M A

0 5 10 15 20 25 30 35

1
B M A

(a) (b)

Prey (X) Predators (Y )

Fig. 9.6 Antecedent membership functions of populations of Frame 9.2
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ΔX: X variation. ΔY: Y variation.

Fig. 9.7 Consequent membership functions of the population variation of Frame 9.2

1. If X is B and Y is B then �X is M+ and �Y is M−

2. If X is B and Y is M then �X is B+ and �Y is A−

3. If X is B and Y is A then �X is M− and �Y is M−

4. If X is M and Y is B then �X is A+ and �Y is B+

5. If X is M and Y is A then �X is A− and �Y is B−

6. If X is A and Y is B then �X is M+ and �Y is M+

7. If X is A and Y is M then �X is B− and �Y is A+

8. If X is A and Y is A then �X is M− and �Y is M+

Frame 9.2: Rule base for a discrete p-fuzzy prey-predator system

Fig. 9.8 Representation of
the rule base of (9.3)
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⎩

xn+1 = xn + �1 [xn, yn]
yn+1 = yn + �2 [xn, yn]

x0, y0 ∈ R are given
(9.3)

where �1 [x, y] and �2 [x, y] are the defuzzified outputs for the input (X, Y ) =
(x, y).

The solution of the p-fuzzy system (9.3), with the fuzzy sets given in Figs. 9.6
and 9.7, and (x0, y0) = (70, 14), can be visualized in Fig. 9.9, and its phase plane in
Fig. 9.10.

We observe that there exists a region E not “covered” by any rule. However, since
there is semantic opposition in the consequents of the rules 4 and 5, related to E, it is
expected that the equilibria of the system lies in this region. If we wanted to fill the
whole regionE “continuously”, we should have rules relating to average populations.

For example:

“If X is M and Y is M then �X is B and �Y is B”.

We stress the fact that when we use the term “Average Population” for the linguistic
variable, we are in fact, a priori, considering the existence of an equilibrium fuzzy
value for the real system. It is like saying that we have some information of the type,
“the prey favor the predators and are disfavored by them”, i.e. the equilibrium is
always around the average.
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Fig. 9.9 The dashed and solid lines represent the predators and prey, respectively
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Fig. 9.10 Phase-plane of the system, with initial condition (70, 14)

9.2 Demographic Fuzziness: Continuous Modeling

There are many approaches to continuous fuzzy dynamical systems (see Chap. 8).
Here our interest in the p-fuzzy approach. Such systems play an important role when
one wants to model some continuous dynamical system where the direction field is
only partially known, as discussed in Sect. 6.4 of Chap. 6. We observed there that
such systems are good approximators of theoretic systems. As in the discrete case,
here we are not interested in this property, therefore we will omit the index “r” of
the field “ fr ”. Here the mathematical model for the studied phenomenon is given by
the IVP { dx

dt
= f (x)

x(t0) = x0

, (9.4)

where the direction field is given by a fuzzy controller. The following section has the
objective of emphasizing the differences between the discrete and continuous p-fuzzy
systems, since in both cases we essentially use the outputs of a fuzzy controller.

9.2.1 Characteristics of a Continuous p-Fuzzy Systems

Recall that we are studying autonomous systems (the direction fields do not depend
explicitly on the time). This means that the rules correlate the inputs, which are state
variables, with the variation rates which are the output variables. Formally, the rule
base of a continuous p-fuzzy systems is similar to the one of a discrete system. The
difference lies essentially on the formulation of each rule. In the discrete systems,

http://dx.doi.org/10.1007/978-3-662-53324-6_8
http://dx.doi.org/10.1007/978-3-662-53324-6_6
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the variations are qualified in absolute terms. That is, the qualifications are stated for
the time intervals in which the generation successions occur (successive changes in
the inputs). The generations overlap for continuous case and the variation rate must
have qualitative properties consistent with the concept of derivative. Therefore, the
qualifications for the outputs must be compatible with the concept of variation per
unit of time. This unit of time has nothing to do with successive generations, which is
not defined here. As we said before, in a continuous model the generations overlap.

The methodology of fuzzy controllers that we will use here is Mamdani’s method-
ology with defuzzification given by the center of mass. Moreover, we will consider
well-ordered rule bases (Definition 9.1). Hence, depending on the rules, the field
f (which is the output of the controller) may have properties that guarantee the
existence and uniqueness of the solution of the IVP (9.4). For instance, under the
hypotheses of Theorem 9.3, the function f may be known to be continuous or dif-
ferentiable. If f is explicitly known, we can find the analytic solution of the IVP
(9.4) by traditional methods. However, depending on the complexity of f , one has
to employ numerical methods in order to obtain numerical estimates for the solution
of the given IVP. Since, by fuzzy controller methods, f is implicitly known, it is
always possible, under mild assumptions to use numerical methods.

9.2.2 Numerical Methods for the Solution of the Continuous
p-Fuzzy System IVP

The estimates xn will be obtained by means of numerical methods for the ordinary
differential equations (ODE) such as Euler and Runge–Kutta methods, or by means
of numerical methods for integration (see [15–17]).

(a) (Euler Method for ODE) This method generates the estimates xn as follows:

xn+1 = xn + h f (tn, xn),

where h is the step size and f is the mapping produced by the fuzzy controller.

(b) (Second Order Runge–Kutta Methods for ODE) The second-order Runge–
Kutta method we adopt here, also known as Improved Euler’s Method, generate the
estimates

xn+1 = xn + h

2
[ f (tn, xn) + f (tn + h, xn + h f (tn, xn)].

Higher order methods can also be used.

(c) (Numerical Integration Methods) The estimates xn can also be obtained by
some integration numerical method such as Trapezoidal or Simpson’s Rule, modify-
ing the IVP (9.4) in such a way that the ODE is transformed into an integral equation
(see [18]).
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Fig. 9.11 Trajectories of Verhults model with K = 200, x0 = 25; 200 and 270

We illustrate, in what follows, the methodology proposed here for the model
of population growth with inhibition, as Verhulst’s model. The traditional Verhulst
model for population growth is governed by the IVP⎧⎨

⎩
1

x

dx

dt
= a

(
1 − x

K

)
x(t0) = x0

, (9.5)

where a is the intrinsic growth rate and K is the carrying capacity. The classical
solution of (9.5), that represent the populations x(t) at each instant t , is given by

x(t) = K

( K
x0

− 1)e−at + 1
. (9.6)

Hence, ⎧⎨
⎩

x is increasing if x0 < K
x is constant if x0 = K

x is decreasing if x0 > K
,

which is illustrated in Fig. 9.11.
Recall that in this example, the function that models the direction field is given

explicitly by

g(x) = dx

dt
= ax

(
1 − x

K

)
. (9.7)

However, to adopt our methodology we do not need to know explicitly such an expres-
sion. Here it is presented for the sake of comparison with the qualitative properties
of the classic trajectories and those produced by the continuous p-fuzzy system.
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In what follows we will obtain the estimates for the logistic trajectories from the
methodology described at the beginning of this ODE section. To compare the the
rules with the classic models, we re-write (9.7) as

1

x

dx

dt
= a

(
1 − x

K

)
= f (x), (9.8)

where f is linear. Note that Eq. (9.8) is written in terms of the specific growth rate.
This formulation facilitates the development of the p-fuzzy system’s rules. Rules
constructed from the percent variation per unit of time may be, in some cases, more
intuitive than the formulation derived from the absolute variations. For this reason,
we will not use the rule base in Frame 9.1.

We will denote by X the population (input) and 1
X

dX
dt the relative growth rate per

unit of time (or specific growth rate - the output).

R1 : If X is “very low” (A1) then 1
X

dX
dt is “high positive” (B1)

R2 : If X is “low” (A2) then 1
X

dX
dt is “high positive” (B2 = B1)

R3 : If X is “average” (A3) then 1
X

dX
dt is “average positive” (B3)

R4 : If X is “average high” (A4) then 1
X

dX
dt is “average positive” (B4 = B3)

R5 : If X is “high” (A5) then 1
X

dX
dt is “low positive” (B5)

R6 : If X is “very high” (A6) then 1
X

dX
dt is “baixa negativa” (B6)

Frame 9.3: Rules for the continuous fuzzy model

Rule Base
In this rule base, the fuzzy numbers Ai and Bi are the same as the rules of the Frame
9.1, except that the support of Bi , should be between −1 and 1 for modelling opposite
semantics, which now must admit positive and negative values. Thus, using the rules
of Frame 9.3, we obtain values for f, and with one of the previous numerical methods
(see Sect. 9.2.2) we calculate the estimates for Verhulst’s model.

To illustrate, we choose Euler’s method (for the function x f (x), since the rate for
rules of the Frame 9.3 is the specific one) and we obtained the estimates xn:

xn+1 = xn + hxn f (xn),

whose representation can be seen in Fig. 9.12.
The rules of Frame 9.3 are in agreement with the main characteristics of a general

model with inhibited growth that is regulated by a carrying capacity. Verhulst’s model,
considered above, is a particular case. Besides this model, with small modifications,
the same rule base can be made suitable for the inhibition models of Gompertz,
Montroll, von Bertalanffy, and others (see [4, 11, 19]).
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Fig. 9.12 Trajectory of the continuous p-fuzzy model, with x0 = 5, of Frame 9.3

We next briefly study Montroll’s general model, and, supposing that the rule
base (Frame 9.3) corresponds to Verhulst’s model, we will illustrate a method for
“adjusting” such rules in order to take into account the particularities of Montroll’s
model.

9.2.3 A Study of Montroll’s p-Fuzzy Model

Most of the continuous autonomous models of population growth, formalized in
terms of differential equations, have the form

dx

dt
= x f (x).

The function f, given by
1

x

dx

dt
, is called specific growth of the population, x . We

present below some functions extensively used in the literature (see [4, 11, 12]).

Verhulst’s Model f is linear and given by

f (x) = a
(

1 − x

K

)
.

Montroll’s Model
f (x) = a

(
1 −

( x

K

)s)
, with s > 0.
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Figure 9.13 below illustrates a rule base in granular form, as well as possibilities for
various specific growth functions ( f ) with inhibition.

Although the models described above have a general form for their rule-base, each
of them has a particularity. Here we are only interested in the “adjustment” of the
rules in Frame 9.3 for Montroll’s model. Depending on the parameter s in Montroll’s
model, the specific growth is smaller or greater than the one in Verhult’s Model (see
Fig. 9.13).

• If s > 1, the specific growth of Montroll’s model is greater than Verhulst’s model
up to the carrying capacity. After the carrying capacity, Montroll’s model grows
slower.

• If 0 < s < 1, we have an inverse situation from the case s > 1.

These particularities suggest the changes to be made in Frame 9.3, supposing that
it represents Verhulst’s model, in order to obtain rules consistent with Montroll’s
model.

Example 9.2 In what follows we make changes in order to incorporate the particu-
larities of Montroll’s models, supposing 0 < s < 1:
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Rule base for Montroll’s model with 0 < s < 1

R1 : If X is “very low” (A1) then 1
X

dX
dt is “high positive” (pB1)

R2 : If X is “low” (A2) then 1
X

dX
dt is “high positive” (pB2 = pB1)

R3 : If X is “average” (A3) then 1
X

dX
dt is “average positive” (pB3)

R4 : If X is “average high” (A4) then 1
X

dX
dt is “average positive” (pB4 = pB3)

R5 : If X is “high” (A5) then 1
X

dX
dt is “low positive” (m B5)

R6 : If X is “very high” (A6) then 1
X

dX
dt is “low negative” (m B6)

Frame 9.4: Rules for the continuous Montroll fuzzy model

The antecedents of the rules of Frame 9.4 are the same as those of Frame 9.3. To
model the changes specified in the rules of Frame 9.4, we will use the concept of
fuzzy modifier, seen in Sect. 4.5 of Chap. 4.

We will use power modifiers for the specific case considered above, where the
power is a parameter 0 < γ < 1, or its inverse 1

γ
. We will apply the following

modifiers in the consequentes of the rules of Frame 9.3 to obtain the rules of Frame 9.4

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

pBi = (Bi )
γ ⇐⇒ ϕpBi (x) = (ϕBi (x))γ, i = 1, 2.

pBi =
{

(B−
i )γ ⇐⇒ ϕpB−

i
(x) = (ϕB−

i
(x))γ

(B+
i )

1
γ ⇐⇒ ϕpB+

i
(x) = (ϕB+

i
(x))

1
γ

, i = 3, 4.

m Bi = (Bi )
1
γ ⇐⇒ ϕm Bi (x) = (ϕBi (x))

1
γ , i = 5, 6.

where B−
i and B+

i are respectively the right-hand side and left-hand side of the fuzzy
set Bi . Figure 9.14 illustrates the consequents of the rules of Frames 9.3 and 9.4.

With this new rule base we obtain a trajectory for Montroll’s p-fuzzy model, that
may be visualized in Fig. 9.15.

Exercise 9.2 Redo the example above assuming s > 1.

We conclude this section with remarks about the parameter estimates of the
p-fuzzy model. For example, as in Verhulst’s model, the equilibrium in the Mon-
troll’s p-fuzzy model belongs of the interval

I ∗ = supp (A5)
⋂

supp (A6) = [200, 210],

since there is semantic opposition in the consequents m B5 and m B6. This value will
be the carrying capacity (K ) of Montroll’s theoretic model, in which the direction
field is given by f (x) = a(1 − ( x

K )s). Since the antecedents A5 and A6 are the same
as in Example 9.1, the equilibrium is the solution to the equation

ϕA5(x) = ϕA6(x) =⇒ x = 205.

http://dx.doi.org/10.1007/978-3-662-53324-6_4
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Fig. 9.14 Consequents of rule base of Frame 9.3 and their respective modifications
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Fig. 9.15 Trajectory of the continuous p-fuzzy models for the base rules of Frame 9.3 and modified
rules (γ = 0.05), according to Frame 9.4

Therefore, the carrying capacity K must be equal to 205. The parameter a can be
obtained from a least squares type adjustment. Clearly both a and K may be obtained
by adjusting the direction field or the classic solution of the model.
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A study on how to obtain the parameters for continuous p-fuzzy models can be
found in [7, 20]. The stability of such systems are obtained through similar results
to the ones we employed in the discrete p-fuzzy systems.

The suggestion above to approach Montroll’s model from Verhulst’s model is
not unique. It is only one among many other possibilities, such as translating the
consequents of the rule base or apply the extension principle to the function f (x) =
1 − xs .

The following section concludes this chapter and deals with p-fuzzy continuous
systems for two-dimensional models.

9.3 Bi-Dimensional Models: Predator-Prey and p-Fuzzy
Lotka–Volterra

We will briefly review the classical Lotka–Volterra model and develop the corre-
sponding p-fuzzy model. We want to point out that our formulation of the p-fuzzy
Lotka–Volterra model does not use the solution given by classical model. The hypoth-
esis (see below) of classical model are re-interpreted by fuzzy rules for p-fuzzy model.
The objective of describing this model is to compare both approaches, classic and
p-fuzzy.

Lotka–Volterra Predator-Prey Model
About the year 1925, Lotka and Volterra developed one of the most widely used

biomathematical models that tracks remarkably well the interactions between prey
and predators and is of great importance to the field of biomathematics. The model
is known as the Lotka–Volterra Predator-Prey Model.

The model created by Volterra explained the changes observed in the weakfish
and shark populations in the Adriatic Sea, given the downtime in the fishing activities
during World War I and resumed after the end of the war.

The classic Lotka–Volterra Predator-Prey Model assumes that:

1. The prey and the predators are distributed uniformly in the same habitat, i.e., all
the predators have the same chance of finding each prey;

2. An encounter between the elements of the two species is random, and has rate
proportional to the size of both populations, the higher the number of prey, the
easier it is to find them, and the greater number of predators, the more the attacks;

3. The prey population grows exponentially in the absence of predators (unlimited
growth in the presence of lack of predators);

4. The predator population decreases exponentially in the absence of prey (decreas-
ing by lack of food);

5. The predator population is favored by the excess of food;
6. The prey population is disfavored by the increase of predators.
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These six hypothesis (see [4, 10, 19])) are summarized in the next equations,
which is called the Lotka–Volterra Model:⎧⎪⎪⎨

⎪⎪⎩
dx

dt
= ax − αxy

dy

dt
= −by + βxy

. (9.9)

The state variables x and y are, respectively, the number of prey and predators at
each instant t . The parameters represent:

• a: population growth rate in the absence of predators;
• α

β
: predator efficiency, i.e., the efficiency of conversion of a unit of mass of prey

in a unit of mass of predators, since α represents the success of the attacks and β
represents the conversion rate of prey biomass into predators;

• b: mortality rate of predators in the absence of prey.

The equilibrium points of the system (9.9) are (0, 0), that is an unstable saddle

point, and
(

b
β
, a

α

)
, that is a stable center (see [4, 19]). The cyclic nature of the

solutions explains the variations observer empirically found in a population of prey
and predators.

9.3.1 Predator-Prey p-Fuzzy Model

The previous subsection presented Lotka–Volterra’s hypotheses that characterize
a predator-prey model whose population oscillate in time. This is consistent with
empirical observations in such an ecosystems [4, 10, 11]. The results, consistent
with the studied phenomenon, made Lotka–Volterra theoretic model a paradigm for
the predator-prey type models. In Sect. 9.1.3 we modeled the main property of a
predator-prey system, which was that the prey favors the growth of the predators and
are disfavored by the them. As a consequence, the phase plane results in oscillating
trajectories. In this section we want to go beyond this. We intend to reproduce, by
means of a two-dimensional continuous p-fuzzy system, a phase plane similar to the
Lotka–Volterra continuous model, in which the trajectories are cycles (see Fig. 9.16).
To do so, it is necessary to re-interpret the six hypotheses above as follows:

1’. No individual in either species has an advantage coming from the environment,
so that there does not exist individual “quality” involved, and it is natural that
the state variables just represent quantities;

2’. There is interaction between the species;
3’. There is no self-inhibition in the prey, so that for a given number of predators,

the specific growth of the prey is a negative or a positive constant;
4’. For a given number of prey, the specific growth of the predators is a negative or

a positive constant;
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Fig. 9.16 Phase plane of the Lotka–Volterra model (9.9)

5’. The specific growth of the predators increases with the number of prey;
6’. The specific growth of the prey decreases with the number of predators.

The hypotheses 3’–6’ indicate that interaction is typical of prey-predator and
that, if one species is maintained constant, the other one will have Malthusian
increase/decrease that is, its specific growth will be constant.

Note that if the rules of Malthusian p-fuzzy model (Frame 8.1) had been stated in
terms of the specific growth,the rules should have been qualified with the same adjec-
tive, that is, the consequent would be the same for all rules. Considering the above
observations, our objective is to obtain a fuzzy rule base that “replaces” Eq. (9.9) in
order to model the dynamics between prey and predators by means of a continuous
Lotka–Volterra p-fuzzy model.

We have all the linguistic input variables, the number of prey (X ) and the number
of predators (Y ), and we have two output variables, the relative variation of the
number of prey per unit of time, denoted by 1

X
dX
dt , which is the specific growth of the

prey, and the relative variation of the number of predators per unit of time, denoted
by 1

Y
dY
dt , the specific growth of the predators. Figure 9.17 represents a scheme of the

model.
The values assumed by the variable X are: low (A1), average low (A2), average

high (A3), and high (A4). The values assumed by the variable Y are: low (B1),
average low (B2), average high (B3), and high (B4).

Both specific growths, 1
X

dX
dt and 1

Y
dY
dt , will assume the values: high positive (P2),

low positive (P1), low negative (N1) and high negative (N2). In the above scheme
(Fig. 9.17), the knowledge base is translated into a set of fuzzy rules that play the role
of a direction field. From the six re-interpretations for Lotka–Volterra’s hypotheses
above, specially observation 6’, we propose the fuzzy rule base of Frame 9.5.
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Fig. 9.17 System based on fuzzy rules for (9.9)
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Fig. 9.18 Graphic representation of the rules in Frame 9.5 as direction vectors

We can represent the rule base graphically considering that there is no variation
in the specific growths, with respect to the magnitudes and direction of each species
when we maintain the quantity of the other one constant (Malthusian growth for
each species, given by the other). For example, for a fixed quantity of predators, the
specific variation of prey must be constant (see horizontal arrows in Fig. 9.18). Of
course, other rule bases could have been adopted. Note that the related magnitudes
are uncertain, both for the variables and for the specific growths.

Figure 9.18 illustrates the rule base of Frame 9.5. The horizontal and verti-
cal arrows represent the magnitudes and direction of 1

X
dX
dt and 1

Y
dY
dt , respectively.

Figure 9.18 is exhibited in order to make a comparison with the representation of the
classic differential equations direction field. For the sake of curiosity, and to convince



9.3 Bi-Dimensional Models: Predator-Prey and p-Fuzzy Lotka–Volterra 231

If X is A1 and Y is B1 then 1
X

dX
dt is P2 and 1

Y
dY
dt is N2

If X is A2 and Y is B1 then 1
X

dX
dt is P2 and 1

Y
dY
dt is N1

If X is A3 and Y is B1 then 1
X

dX
dt is P2 and 1

Y
dY
dt is P1

If X is A4 and Y is B1 then 1
X

dX
dt is P2 and 1

Y
dY
dt is P2

If X is A1 and Y is B2 then 1
X

dX
dt is P1 and 1

Y
dY
dt is N2

If X is A2 and Y is B2 then 1
X

dX
dt is P1 and 1

Y
dY
dt is N1

If X is A3 and Y is B2 then 1
X

dX
dt is P1 and 1

Y
dY
dt is P1

If X is A4 and Y is B2 then 1
X

dX
dt is P1 and 1

Y
dY
dt is P2

If X is A1 and Y is B3 then 1
X

dX
dt is N1 and 1

Y
dY
dt is N2

If X is A2 and Y is B3 then 1
X

dX
dt is N1 and 1

Y
dY
dt is N1

If X is A3 and Y is B3 then 1
X

dX
dt is N1 and 1

Y
dY
dt is P1

If X is A4 and Y is B3 then 1
X

dX
dt is N1 and 1

Y
dY
dt is P2

If X is A1 and Y is B4 then 1
X

dX
dt is N2 and 1

Y
dY
dt is N2

If X is A2 and Y is B4 then 1
X

dX
dt is N2 and 1

Y
dY
dt is N1

If X is A3 and Y is B4 then 1
X

dX
dt is N2 and 1

Y
dY
dt is P1

If X is A4 and Y is B4 then 1
X

dX
dt is N2 and 1

Y
dY
dt is P2

Frame 9.5: Fuzzy rules for the predator-prey p-fuzzy model

ourselves of the power of the p-fuzzy methodology, the rule base in fact “generates”
a classic direction field for an ODE. Figure 9.19 below illustrates the direction field
produced by the rule base of Frame 9.5.

Let us go back to our example. Figure 9.19 is very useful in the study of the system
dynamics. For example, from this figure, one can locate the region of the plane that
contains the possible non-zero equilibrium points of the system. In our case, this
region is

E = [supp (A2)
⋂

supp (A3)] × [supp (B2)
⋂

supp (B3)] = Ix × Iy .
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Fig. 9.19 Graphic
representation of the
direction field generated by
the rules of Frame 9.5

Prey

P
re

da
to

r

We observe that the semantic opposition occurs in this region. It is also possible to
suggest that the interactions of ϕA2 with ϕA3 and of ϕB2 with ϕB3 are strong candidates
for being the equilibrium of this system. We can adopt such values for the equilibrium
of a classic Lotka–Volterra model (9.9) and, together with the adjustments, obtain
the value of a, b,α, and β. However, we will study next methods for obtaining the
parameters of the classic models from p-fuzzy models. We refer the reader interested
in this topic to some recent work on p-fuzzy systems [7, 18, 20, 21].

Our interest here is to illustrate the proposed method in order to produce a tra-
jectory that represents the evolution of the p-fuzzy system. Figures 9.20 and 9.21
represent the membership functions of each of the fuzzy values used for antecedents/
consequents in our example. Using Mamdani’s Inference Method and the defuzzifi-
cation of the center of mass we obtain the values for 1

x
dx
dt and 1

y
dy
dt .
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Fig. 9.20 Membership function of the antecedents
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Fig. 9.21 Membership function of the consequents

At each instant t , the number of prey and predators is given by the formulas⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x(t) = x(t0) +
t∫

t0

dx

dt
(s) ds

y(t) = y(t0) +
t∫

t0

dy

dt
(s) ds

. (9.10)

Since the outputs are 1
x

dx
dt and 1

y
dy
dt , we should multiply them by the input values x

and y, respectively, in order to obtain the derivatives dx
dt and dy

dt . However, the analytic
expressions for each of these derivatives are not known. To estimate the trajectories
given by (9.10), in each interval [ti−1, ti ], we approximate dx

dt (t) by dx
dt (ti−1), in such

a way that the integral
ti∫

ti−1

dx
dt (s) ds is approximated by (ti − ti−1)

dx
dt (ti−1).

The values of x(t) and y(t) are thus given by the equations,{
x(ti ) = x(ti−1) + hx ′

i−1
y(ti ) = y(ti−1) + hy′

i−1
, (9.11)

where ti = t0 + ih and x ′, y′ are the outputs of the controller corresponding to the
input values xi−1 ≈ x(ti−1) and yi−1 ≈ y(ti−1), respectively.

Simulations of the trajectories produced by the p-fuzzy system above follow the
steps:

• To start the process, we use the values x0 = 100, y0 = 3, h = 0.1 and t0 = 0;
• Initial data for the fuzzy controller are prey population x0 and predator

population y0;
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Fig. 9.22 a Evolution of population in time; b Phase plane for p-fuzzy system with x0 = 100 and
y0 = 3 [22]

• The outputs provided by the fuzzy controller, multiplied by the inputs, give us the
values x ′

0 and y′
0;• From (9.11), we find x1 and y1;

• x1 and y1 are the new input values of the controller, and so on.

Using Eq. (9.11), we obtain the phase plane and the trajectories illustrated in Fig. 9.22.
Moreover, using the initial data above and the p-fuzzy system given by the rule

base of Frame 9.5, combined with the system (9.11), it is possible to conclude that
the equilibrium point is Pe = (77.5; 3.5).

We could compare the coordinates of Pe with the classical theoretical equilibrium

P =
(

b
β
, a

α

)
, to obtain relations between a, b,αβ, if we were interested in finding

the parameters of a classic Lotka–Volterra model to produce the trajectories repre-
sented in Fig. 9.16. From this, we could use adjustments to finally find each of these
parameters.

The first published work that uses continuous p-fuzzy models to the interaction
between species can be found in [18]. If uses the methodology given above to model
the relation between plant lice and lady-bugs in the biological control of a disease
called “Sudden Death of the Citrus”. The plant louse is supposedly the host of the
virus that causes sudden death and is the prey. The lady-bug, that eats the plant louse,
is the predator. In this predator-prey system the p-fuzzy model assumes inhibition
in both species. Therefore, the rules should take this into account in such a way that
the trajectories no longer exhibit a cyclic nature, but have cyclic limits. Such p-fuzzy
model exhibits qualitative properties that coincide with the classic Holling–Tanner
model. From this, a study of the stability and parameters adjustments of this model
was done.
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An important aspect of the p-fuzzy systems explored by the authors of [18, 22] is
how easy it deals with possible heterogeneities in the populations. For instance, for
the specific case of the sudden death, the predators show many levels of predation,
depending on its stage, larval or adult. In this case, the authors chose, as the state
variables the number of plant lice and the predation potential. This takes into account
not only the number of predators, but also their qualities.
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Chapter 10
Biomathematical Modeling in a Fuzzy
Environment

As far as the laws of mathematics refer to reality, they are not
certain; as far as they are certain, they do not refer to reality.

(Albert Einstein)

Abstract This chapter looks at the influence of the environment in a population as
a whole, that is, it looks at processes in which the environment affects all individuals
equally. We illustrate this phenomenon via four models.

Chapter9 stated that themethods of incorporating uncertainties inmathematicalmod-
els are quite varied and mentioned that there two such ways of incorporating fuzzy
uncertainty, environmental fuzziness and demographic fuzziness. Whereas the aim
of Chap.9 was the incorporation of demographic fuzziness in models, this chapter
focuses on environmental fuzziness. Thus, for pedagogical and didactic purposes
and for clarity, we have distinguished these two types of fuzziness inherent in mod-
eling biomathematical systems: demographic fuzziness (Chap. 9) and environmental
fuzziness, this chapter. These terms, demographic and environmental fuzziness, have
their origin in dynamic populationmodeling (see [1–3]). “Demographic stochasticity
(or ‘within-individual variability’, - ... individuals who are apparently identical have
different life spans and produce different numbers of offspring. ... Environmental
stochasticity - Environments vary unpredictably through time in ways that affect all
individuals equally” (Turelli [3], p. 321).

The estimation of the entity such as the future “number of descendents” in a
population, already inherently exhibits stochastic or fuzzy uncertainty properties
becauseof the existenceof perturbations in the conditions surrounding anypopulation
as awhole. Examples of this nature are abundant - how the cost of living in a particular
locality influences the life expectancy in a group of people, how, in a predator-
prey model, the natural surroundings favor either the predator or the prey, how in a
survival of the fittest model nature is favorable to one or another of the competitors at
various periods of time. Through translation of rules, environmental fuzziness may
be changed into a parameters or demographic fuzziness in biomathematical models.
In this chapter we study how to model with environmental fuzziness and compare
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this type of fuzzy model with the deterministic and stochastic ones. Details of similar
types ofmodels can be found in [4, 5]. Recall that what we have called environmental
fuziness is fuzziness in the parameters of model.

The models we treat next can, from the mathematical point of view, be treated by
classical methods without the necessity of new concepts of mathematics to model
the evolution of uncertainty in them. For example, if the phenomenon were mod-
eled with differential equations and the rate of change in the differential equation
were uncertain, the differential equation may be understood as a family of classical
differential equations dependent on the parameters governing the uncertain rates of
change (the derivatives) so that the theory of stochastic differential equations may
be used. These types of equations are called random dynamical equations (see [6]).

Most of the models with uncertainty of interest to us have both types of uncer-
tainties present (demographic and environmental fuzziness) and, in these cases, the
modeling is not very different than what has been developed in the previous chap-
ters of this book. However, depending on the purpose of the model, environmental
fuzziness can be treated as demographic fuzziness. For this, however, we need to
transform all the uncertainty of the variables into the parameters of the mathematical
model assuming that such a process makes sense. Let us begin with an example in
which environmental fuzziness appears in the model.

10.1 Life Expectancy and Poverty

We can use various indicators to model poverty, for example, caloric intake, vitamin
intake, basic sanitation, and so on. For this presentation, we will use income of the
relevant group we are studying [5].

10.1.1 The Model

Suppose that A is a closed group (no in-migration or out-migration) with n(t) indi-
viduals at instant t. Assuming that poverty, here evaluated as the income level, is one
factor in the reduction of the number of years of life of all the individuals in A, we
can consider that { dn

dt
= − [λ1 + β(r)λ2] n

n0 = n(0)
, (10.1)

where:

• λ1 is the natural death rate (obtained from a group who is under favorable survival
conditions);

• β(r)λ2 indicates the influence of poverty on the increase on the natural death rate
λ1;
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• β(r) indicates the level to which an individual with income r belongs to the fuzzy
set poverty, that is, β is a membership function.

Wenote that themaximummortality rate isλ1 + λ2 which is obtainedwhenβ(r) = 1.
The solution to the differential equation (10.1) is

n(t) = n0e−[λ1+β(r)λ2]t .

The membership function β can be represented by a function that is decreasing in r
and, here, we think it convenient to adopt a family of curves (see Example1.5)

βk(r) =
{ [1 − ( r

r0
)2]k if 0 < r < r0

0 if r ≥ r0
, (10.2)

where k is a parameter that supplies some characteristics of the group poverty.
Recall, from our previous models, the larger the value of k, the smaller the depen-

dence of the individual has in relation to income, that is, the smaller the influence
that income has on poverty. In this way, intuitively, k reveals if the environment in
which the group lives is more or is less favorable to life expectancy.

Observe that (10.1) is a family of ordinary differential equations. Thus, n(.) is a
family of solutions of the differential equation indexed by r, that is, for each fixed
r, n(.) is a solution of the differential equation corresponding to this r. This set
forms the solution of the fuzzy problem (10.1). In this way, suppose that r has a
statistical distribution, then n(t) is a random variable for each fixed t. If we wish to
select precisely one curve to represent the evolution of the number of individuals
over time, a strong candidate is the one that gives us numbers at the midpoint of n(t)
for each t. This “mid-curve” is obtained calculating the expectation in the same way
as it is done in stochastics/statistics.

Our object in what follows is to obtain an expectation of life expectancy of the
group by means of classical mathematical and fuzzy expectation according to the
concepts we have seen in Chap.7.

10.1.2 Statistical Expectation: E[n(t)]

Statistical expectation is given by

E[n(t)] =
∫ ∞

−∞
n(t)h(r)dr, (10.3)

where h(r) is the probability density function of income.

http://dx.doi.org/10.1007/978-3-662-53324-6_1
http://dx.doi.org/10.1007/978-3-662-53324-6_7
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Fig. 10.1 Probability
density function of income -
Pareto distribution

0 b

h

r

The Pareto distribution for developing countries (see [7]) with parameters a
and b,

h(r) =
{

abar−(a+1) if r ≥ b
0 if r < b

.

is used for our specific case (Fig. 10.1).
Therefore,

E[n(t)] = n(0)e−λ1taba
∫ ∞

b
e−βk(r)λ2tr−(a+1)dr

or

E

[
n(t)

n(0)

]
= e−λ1taba

∫ ∞

b
e−βk(r)λ2tr−(a+1)dr. (10.4)

• If r0 ≤ b, then βk(r) = 0 for r ≥ b and

E[n(t)] = n(0)e−λ1taba
∫ ∞

b
r−(a+1)dr = n(0)e−λ1t .

This means that E[ n(t)
n(0) ] = e−λ1t for all a > 0, that is, in this case the value of b is

sufficiently large so that there is no affect of poverty on the life expectancy of the
group.

• If r0 > b, we have that aba
∫ ∞

b
e−βk(r)λ2tr−(a+1)dr < 1, so that E[n(t)]

< n(0)e−λ1t . This means that we can interpret the number

aba
∫ ∞

b
e−βk(r)λ2tr−(a+1)dr

as a factor of reduction in the life expectancy due to poverty.

What follows is the calculation of fuzzy expectation in order for us to compare it
with the statistical expectation given above.
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10.1.3 Fuzzy Expectation Value: FEV
[
n(t)
n(0)

]

Let us consider Yt(r) = n(t)
n0

a membership function of a fuzzy set since we have
n(t)
n0

∈ [0, 1]. Let us next obtain FEV
[

n(t)
n(0)

]
using Theorem 7.1 applying the function

H(α) = P{r : Yt(r) = n(t)

n(0)
≥ α} = P{r : e−(λ1+λ2βk(r))t ≥ α}

= P{r : e−λ2βk(r)t ≥ αeλ1t}, (10.5)

where P is a probability defined by the density function for income h(r).
Thus, H(α) = 0 if α > e−λ1t . On the other hand, if α ≤ e−λ1t ,

H(α) = P{r : α ≤ e−(λ1+λ2βk(r))t < e−λ1t} + P{r : r ≥ r0}

which, with a little algebraic manipulation, we arrive at

H(α) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if 0 ≤ α ≤ e−(λ1+λ2βk(b))t⎡
⎣ b

r0
√
1 − (−( lnα

λ2t + λ1
λ2
))

1
k

⎤
⎦

a

if e−(λ1+λ2βk(b))t < α ≤ e−λ1t

0 if e−λ1t < α ≤ 1

. (10.6)

It is easy to see that H(α) is continuous over [0, 1], except when α = e−λ1t and
H has a fixed point between Yt(b) and e−λ1t , that is,

Yt(b) = e−(λ1+λ2βk(b))t ≤ FEV

[
n(t)

n(0)

]
≤ e−λ1t(Fig. 10.2).

Some conclusions can quickly be made which are different than that of statistical
expectation. Specifically, if (

b

r0

)a

≥ e−λ1t,

then

FEV

[
n(t)

n(0)

]
= e−λ1t = FEV [e−λ1t].

In particular, we have if b ≥ r0, then poverty does not affect life expectancy.
This was the case with the results that were obtained using statistic expectation.
However, fuzzy expectation indicates more. In order for poverty to have no effect

on life expectancy, what is of interest is the relationship
[(

b
r0

)a ≥ e−λ1t
]
between

individual income and the minimal group income. For example, an individual can

http://dx.doi.org/10.1007/978-3-662-53324-6_7
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Fig. 10.2 H(α) and Fuzzy
Expectation (FEV )

H

1

bisectrix

FEV

b
r0

a

Yt(r) FEV e−λ1t 1 α

have a relatively small income (b < r0) and even so, not have it interfere with his/her

life expectancy. For this to occur, we just need that
(

b
r0

)a ≥ e−λ1t . This is the typical

case of a single person who has all the infrastructure to survive.
We want to emphasize that, from a technical point of view, it is harder to obtain

E(n(t)), since it is not integrable in closed form, whereas FEV
[

n(t)
n(0)

]
whose value

is the fixed point of H, can be obtained by the Banach Fixed Point Theorem

(see [8, 9]). If
(

b
r0

)a
< e−λ1t , we can compute the value of FEV

[
n(t)
n(0)

]
determined

by the fixed point ofH once this function is continuous and decreasing forα < e−λ1t .

We observe that H has the same fixed point as its inverse, that is, as

H−1(α) = exp

{
−

[
λ1 + λ2βk(

b

α1/a
)

]}
t, if

(
b

r0

)a

< α < 1.

This model of poverty was used to evaluate the life expectancy of a group of metal
workers in the city of Recife (see Tables10.1 and 10.2), the capital of the state of
the northeast state of Pernambuco in Brazil. For this group we had some information
about the income and the calculation of life expectancy using classical statistical
methods thus permitting us to compare the statistical methods to the fuzzy methods.

10.1.4 Application: Life Expectancy of a Group of Metal
Workers in Recife, Pernambuco - Brazil

We can determine the values of the parameter a and b of the income variable from
Table10.1 for a Pareto distribution h(r). Now consider the cumulative distribution
of income

F(r) =
∫ r

b
h(x)dx =

∫ r

b
abax−a−1dx = 1 − bar−a = R.
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Table 10.1 Workers’ distribution by minimum wage ranges. Recife, 1988 Source: DIEESE

Minimal salary range Populational distribution % of total of payment

n0 %

0 to 2 4003 45.0 21.1

2 to 3 2099 23.6 18.8

3 to 4 933 10.5 12.0

4 to 5 670 7.5 11.0

5 to 6 300 3.4 6.0

6 to 7 264 303.0 6.2

7 to 10 367 4.1 11.1

10 to 15 171 1.9 7.8

over 15 81 0.9 6.1

Table 10.2 Source: Carvalho
and Wood (1977)

Income class Income Cr$ Life
expectance(years)

1 1 to 150 40.0

2 151 to 300 45.9

3 301 to 500 50.8

4 over 500 54.4

This means that,
ln(1 − R) = a ln b − a ln r.

Linearizing the data from Table10.1, we obtain an approximation of a � 2.031 and
b � 1.726. Thus,

h(r) =
{
6.15r−3031 if r ≥ 1.726

0 if r < 1.726
.

The table for life expectancy in the northeast of Brazil in 1977, in urban areas,
where the minimum salary (which we denote S) was Cr$ 156.00 per month, is given
in Table10.2.

Suppose that income r is proportional to a power of the minimum salary S of the
group we are studying, r = Sm, where m is a constant. Then, we have

βk(S
m) =

{
[1 −

(
S
S0

)2m]k if 0 < S < S0
0 if S ≥ S0

.
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Fig. 10.3 Membership
function of poor for k = 1.51

1.68

1

r

β 1,51

Life expectancy, independent of family income was 54.4 years. From this, the
natural mortality rate is λ1 = 1

54.4 . On the other hand, λ1 + λ2 is the highest rate of
mortality of the group which is 40, that is,

λ1 + λ2 = 1

40
=⇒ λ2 = 1

40
− 1

54.4
= 6.618 × 10−3.

Let us consider that the minimum livable wage in 1977 was Cr$ 500.00 per month
which is equivalent to S0 = 500

156 = 3.2 minimum salaries. From Table 10.2 we have
two values for life expectancy

If S = 1 =⇒ 1
λ1+λ2βk(1)

= 45.9

If S = 2 =⇒ 1
λ1+λ2βk(2m)

= 50.8
=⇒

λ2βk(1) = 1
45.9 − 1

54.4 = 3.404 × 10−3

λ2βk(2m) = 1
50.8 − 1

54.4 = 1.303 × 10−3.

Since λ2 = 6.618 × 10−3, we have

βk(1) = 0.514 =⇒
[
1 − ( 1

S0
)2m

]k = 0.514

βk(2m) = 0.197 =⇒
[
1 − ( 2

S0
)2m

]k = 0.197.

Then, m = 0.4435 and k = 1.51. Since S0 = 3.2, it must be that r0 = (3.2)0.4435 �
1.68 which means the membership function of the fuzzy set βk(r) (Fig. 10.3) is given
by

βk(r) =
{[

1 − (
r
3.2

)0.887]1.51
if 0 < r < 1.68

0 if r ≥ 1.68
. (10.7)
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Table 10.3 Statistical expectation and fuzzy of number of workers and difference between two
methodology

t E
[

n(t)
n(0)

]
EF

[
n(t)
n(0)

] ∣∣∣E [
n(t)
n(0)

]
−

EF
[

n(t)
n(0)

]∣∣∣ × 103

1 0.9810872 0.9800555 1.0317

2 0.9625352 0.9605718 1.9634

3 0.9443294 0.941537 2.7924

4 0.9264697 0.9229397 3.5300

5 0.908949 0.9047686 4.1804

10 0.8261962 0.8199376 6.2486

20 0.682632 0.6766003 6.0317

40 0.4660586 0.4687494 2.6908

10.1.5 Comparisons of the Statistical Expected Value
and the Fuzzy Expected Value

We have, in hand, the membership function of the set poverty (β1.51), so that we can
calculate the average for themetal workers that we have been studying in Sect. 10.1.4,
year by year, utilizing the results obtained in Sects. 10.1.2 and 10.1.3. Table10.3
illustrate these values.

The fourth column of Table10.3 shows us the various differences between the two
methods to calculate life expectancy. In a general manner, Corollary 7.3 guarantees
us that the differences are no greater than 0.25. For the values of the table, the largest
difference in life expectancy is on the order of 0.63%.

Moreover, for this specific example, it is easy to see that FEV
[

n(t)
n(0)

]
is in fact

between Y(cbm) and e−λ1t . Thus,

lim
t→∞

∣∣∣∣E
[

n(t)

n(0)

]
− FEV

[
n(t)

n(0)

]∣∣∣∣ = 0,

that is, E
[

n(t)
n(0)

]
� FEV

[
n(t)
n(0)

]
for t sufficiently large.

Now, as an example, let us suppose that income are given as fixed and let us use
Theorem 7.5. Moreover, suppose that the group of workers A have 150 individuals,
that is, #A = 150 = n0 and income is distributed in the following manner:
1. n1 = 100 individuals receive an income of about r = 2.0 minimum salaries →
Y(2) = e−0.0013te−λ1t;
2. n2 = 40 individuals receive an income of about r = 2.5 minimum salaries →
Y(2.5) = e−0.00057te−λ1t;

http://dx.doi.org/10.1007/978-3-662-53324-6_7
http://dx.doi.org/10.1007/978-3-662-53324-6_7
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3. n3 = 10 individuals receive an income of about r = 3.5 minimum salaries →
Y(3.5) = e−λ1t .

We can consider that

P {n |Y > α } = # {n |Y > α }
#A

.

Then,

if Y(2.5) < α ≤ Y(3.5) =⇒ n2
#A

= 10

150
= 0.0667;

if Y(2.0) < α ≤ Y(2.5) =⇒ n2 + n1
#A

= 50

150
= 0.333.

If we now use the fuzzy expected value at time t of Y(r), we have,

FEV [Yt(r)] = sup
0≤α≤1

inf [α,P {n |Y > α }]

= median
{
0.0667; 0.333; e−0.0013t−λ1t; e−0.00057t−λ1t; e−λ1t

}
= e−0.0013te−λ1t .

Observe that for t = 1 we have FEF(Y1(r)) � 0.9987e−λ1 .

On the other hand, if we take the classical average for these same data we obtain

E[Yt] = 100Y1 + 40Y2 + 10Y3

150
= e−λ1t

150
(100e−0.0013t + 40e−0.00057t + 10)

so that for t = 1
E[Y1] � 0.9998e−λ1 .

That is, the values FEF(Y1(r)) and E(Y1) are similar. This corroborates that, in gen-
eral, FEV [Y ] and E[Y ] are similar for normalized random variable.

The two following examples have similar characteristics in mathematical models
and as such are treated as analogousmathematical tools in terms of building blocks in
general biomathematical models. The principal similarity between the two examples
as we shall see, is the fact that their uncertainties have their origin in the state
variables and so we treat the uncertainty as environmental fuzziness. However, we
will “transform” this uncertainty into uncertainty in the parameters. This procedure
results in the reduction of complexity in the associated solution methods. To be
specific, to treat demographic fuzziness, we will need to use rule-based systems
which is generally more complex than if the uncertainty is all in the parameters -
environmental fuzziness. However, it is clear that we cannot always use this process
of transforming demographic fuzziness to environmental fuzziness. It depends on
the situation being modeled.
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10.2 The SI Epidemiological Model

The simplest mathematical model to describe the dynamics of directly transmitted
illnesses where there is interaction between susceptible individuals and infected
individuals is the SI model type and it can be represented by the compartmental
model depicted by Fig. 10.4.

The classical differential equations that describe the dynamics are given by:

⎧⎪⎨
⎪⎩
dS

dt
= −βSI

dI

dt
= βSI

, (10.8)

where S is the proportion of susceptible individuals, I is the proportion of infected
individuals and β is the coefficient of transmission of the disease. Taking into account
that the model is normalized, that is, S + I = 1, the number of infected individuals
is obtained by the solution to the logistic equation

dI

dt
= β(1 − I)I.

whose solution is given by:

I = I0eβt

S0 + I0eβt
, (10.9)

where S0 and I0 are the initial proportions of susceptible and infected individuals
respectively.

The SI model (10.8) is a part of a group of direct disease transmission models.
These models are formulated as differential equations and are based on the law of
mass actionwhose origin is in kinematic chemistry. The lawofmass action postulates
that the rate of formation of composites is proportional to the concentration of the
reactants. The acceptance of this law is based on the fact that each particle of the
reactants are moving independently with respect to all the other particles which
means that the mixture is homogeneous so that each particle has the same chance
of encountering the other particles. The translation of this law to biomathematical
models is made considering that the encounter between the variables of the model
is their product. Lotka and Volterra, in the same epoch also used this formulation to
model the interaction between animal species.

Fig. 10.4 Compartimental
diagram of SI model β

S I
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The incorporation of this law into epidemiological models was first made by
Kermack-Mackendric (see [10, 11]) based on the hypothesis that infected individuals
are homogeneously distributed in the entire population and each infected individual
has the same potential to transmit the illness. This is a rather considerable assumption
for epidemiological models since there are heterogeneous sources that interfere or
accelerate the propagation of an illness, for example, age and/or social class, health
habits (washing hands or quarantine, for example).

The model that we are going to propose uses the law of mass action, that is, each
infected individual has the same chance of encountering a susceptible individual.
This notwithstanding, let us also consider that the chance of new cases of the illness
varies from individual to individual. In particular let us consider that a new infection
can only occur if a minimal number of viruses (or another pathogenetic agent) is
transmitted by the host. In this way, we will take as a factor, the viral (or other
pathogen) load as a factor in the propagation of an illness where our assumption
is that individuals with a large viral load have a greater chance of transmitting an
illness than an individual with a lower viral load (see [12]). Thus, the SI model
that we present next takes into consideration viral load as a relevant property of an
infected individual.

10.2.1 The Fuzzy SI Model

With the heterogeneity in the population described above in mind as we build SI
model, we will consider that the higher the viral load, the higher the chance of
transmitting the disease. In other words, we will assume that β = β(v), where v

denotes the viral load which will be a non-decreasing function in v. On the other
hand,we expect thatwhen the viral load is very low, there is no chance of transmission
occurring. That is, we assume that there is a minimum viral load, vmı́n, necessary for
there to be the possibility of transmission of the illness. Moreover, after a viral load
of vM , the chance chance of infection is maximum. Lastly, we suppose the there is
an upper bound to the viral load which we denote as vmax.

We choose, keeping the above in mind, for β the following membership function,

β(v) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if v ≤ vmin
v − vmin

vM − vmin
if vmin < v ≤ vM

1 if vM < v ≤ vmax

0 if v > vmax

. (10.10)

The parameter vmin, as was mentioned, represents the minimal quantity of virus
(pathogens) necessary for there to be a transmission of the illness. This parameter
could be interpreted as the threshold value of susceptibility of the group in question.
In fact, the larger the value of vmin, the larger the quantity of virus necessary for a
transmission of the disease to occur and this means that the group in question has
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Fig. 10.5 Fuzzy
transmission coefficient β [4]

1

β

vMvmin v

low susceptibility to the illness. In other words, the larger that vmin is, the larger the
resistance of the susceptible individuals. Whereas the parameter vM represents the
viral load above which the chance of transmission is maximum, that is, β(v) = 1.
Obviously, this does not mean that a transmission of the disease will occur in fact
when β(v) = 1, just that the chance of transmission is the greatest at this value.

Since β(v) ∈ [0, 1], we can interpret β as a membership function of some fuzzy
set whose domain is the viral load (see Example7.6) (Fig. 10.5).

Fuzzy Solution

System (10.8), incorporating viral lood, can be seen as a family of ordinary differ-
ential equations that has as a solution the functions

I(v, t) = I0eβ(v)t

So + I0eβ(v)t
(10.11)

for each fixed v. Now, for each fixed t > 0, I(v, t) is a set of real numbers and this
means that for each instant t, a solution (10.11) of the fuzzy problem (10.8) is a
distribution of possible values for the number of infected individuals whose range
lies in the interval [0, 1]. Thus,

I(v, t) = It(v) ∈ [0, 1]

may be interpreted as a membership function of a fuzzy set. If for some reason it is
necessary to adopt a single real-value to represent the number in infected individuals,
we should choose some defuzzification. We could use, for example, the average at
every instant of time t by way of the fuzzy expected value FEV [I(V, t)] using as our
defuzzier of the fuzzy set I(v, t). To make a comparison between the classical and
fuzzy SI models we are calculating the statistic expected value E [I(V, t)] and the
fuzzy expected value FEV [I(V, t)]. To do this, let us consider that the viral load V is
a linguistic variable that can be considered weak (V−), medium (V +

− ) or strong (V+),
where each of these classifications is a fuzzy set whose membership function is a
triangular fuzzy number dependent on actual viral load associated with the disease
being studied,

http://dx.doi.org/10.1007/978-3-662-53324-6_7
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Fig. 10.6 Possibility
distribution of viral load ρ
[4]

1

ρ

0 vv̄ − δ v̄ v̄ + δ

ρ(v) =
{
1 − |v−v̄|

δ
if v ∈ [v̄ − δ, v̄ + δ]

0 if v /∈ [v̄ − δ, v̄ + δ] . (10.12)

Note that ρ(v) may be viewed as a possibility of occurrence V = v and, in this case
ρ becomes a possibility distribution for the variable V . For a fuller interpretation of
possibility (say of a fuzzy set like ρ) see Example 7.6 of Chap.7 (Fig. 10.6).

The parameter v̄ is an average value around which each one of the fuzzy sets
generated by V distributes itself, whereas δ is half of the distance of the base of the
triangles. This triangular fuzzy number may be considered as an ideal dispersion
around the average v̄. The fuzzy sets generated by the linguistic variable V are
classified based on the parameters vmin and vM that appear in the definition of β.

10.2.2 Expected Value of the Number of Infected Individuals

This section calculates the average number of infected individuals in the distinct cases
corresponding to the distributions of the viral load of the group. Since in Chap. 7 we
have already defined the fuzzy expected value FEV , we now use this definition to
define the expected value of the fuzzy set I(V, t) as follows

FEV [I(V, t)] = sup
0≤α≤1

min[α,μ{I(v, t) ≥ α}],

where μ{v : I(v, t) ≥ α} is the classical measure of the α − level [I(V, t)]α, which
is a classical set. In this way, for each t, the function H(α), whose fixed point is the
value of FEV [I(V, t)] according to Theorem 7.1 is given by

H(α) = μ{v : I(v, t) ≥ α} =
∫

[I(v,t)]α
ρ(v)dv = 1 − μ{v : I(v, t) < α}.

http://dx.doi.org/10.1007/978-3-662-53324-6_7
http://dx.doi.org/10.1007/978-3-662-53324-6_7
http://dx.doi.org/10.1007/978-3-662-53324-6_7
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First, observe that H(0) = 1 and H(1) = 0. For 0 < α < 1, and setting k = S0
I0

we have

H(α) = 1 − μ{v : I(v, t) < α} = 1 − μ{v : β(v) < ln

(
αk

1 − α

) 1
t

} =

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if ln( αk
1−α

)
1
t ≤ 0

μ{v ∈ [0,B)} if 0 < ln( αk
1−α

)
1
t < 1

0 if ln( αk
1−α

)
1
t ≥ 1

=

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if 0 ≤ α ≤ I0

μ{v ∈ [0,B)} if I0 < α < I0et

S0+I0et

0 if I0et

S0+I0et ≤ α ≤ 1
,

where B = vmin + (vM − vmin) ln( αk
1−α

)
1
t . Note that vmin < B ≤ vM .

To calculate the fuzzy expectation, any measure can be used not necessarily a
σ-additive one. To this end, in our case, let us adopt a fuzzy measure

μ(A) = 1

δ

∫
A
ρ(v)dv =

∫
A

ρ(v)

δ
dv,

which is also a probability measure where in that case, ρ(v)
δ

is the probability density
function and we note that

∫
A

ρ(v)
δ
dv = 1. With the aim of giving the example of the

cases where the viral load is weak, medium, or strong, let us calculate the fuzzy
expectation FEV [I(V, t)] for the three distinct cases according to Fig. 10.7.

• Weak viral load (V−).
This case B > vmin > v̄ + δ and we have μ {v ∈ [0,B]} = 1 and thus,

H(α) =
{
1 if 0 ≤ α ≤ I0
0 if I0 < α ≤ 1

.

Fig. 10.7 Classification of
viral load [4]

1

weak mediun strong

β

vMvmin v
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Therefore,
FEV [I(V, t)] = I0.

The number if infected at each instant of time t remains the same as at the initial
state and so the disease does not propagate. This result is concordant with the fact
that in this interval, β(v) = 0.

• Strong viral load (V +).
This case B ≤ vM ≤ v̄ − δ and we obtain μ {v ∈ [0,B]} = 0. As a result

H(α) =
{
1 if 0 ≤ α ≤ I0et

S0+I0et

0 if I0et

S0+I0et < α ≤ 1

and therefore,

FEV [I(V, t)] = I0et

S0 + I0et
.

In addition, we obtain the classical solution when β = 1.

• Medium viral load (V +
− ). This case has vmin < v̄ − δ < v̄ + δ < vM and a direct

calculation, though it requires quite a bit of work, gives us the following,

H(α) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 if 0 ≤ α ≤ I(v̄ − δ, t)

1 − 1
2

(
B − v̄

δ
+ 1

)2

if I(v̄ − δ, t) < α ≤ I(v̄, t)

1
2

(
v̄ − B

δ
+ 1

)2

if I(v̄, t) < α ≤ I(v̄ + δ, t)

0 if I(v̄ + δ, t) < α ≤ 1

. (10.13)

In accordance with expression (10.13) and the above figure, we can conclude that
H(α) is continuous and decreasing with H(0) = 1 and H(1) = 0. Consequently,
H has one and only one fixed point that coincides with FEV [I(V, t)] (Theorem
7.1). Once give the values of the parameters δ, v̄, vmin and vM are used to obtain
FEV [I(V, t)] (Fig. 10.8).

It is not hard to see that for each t > 0, if v ∈ [v − δ, v + δ] then I(v̄ − δ, t) and
I(v̄ + δ, t) are, respectively, the left and right endpoints of a real-valued interval. We
also have that if v2 ≥ v1, then I(v2, t) ≥ I(v1, t). In this way, by the Intermediate-
Value Theorem (see [13, 14]), for each t > 0 there exists a unique v = v(t) ∈ [v −
δ, v + δ] such that

FEV [I(V, t)] = I(v(t), t) = I0eβ(v(t))t

S0 + I0eβ(v(t))t
.

Therefore, the expectation of the solutions FEV [I(V, t)] does not coincide with any
of the solution curves (10.11) of the model. What we have is that for each t, the

http://dx.doi.org/10.1007/978-3-662-53324-6_7
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Fig. 10.8 Level function
H(α) for the medium viral
load [4] 1

H

I(v̄−δ,t) I(v̄+δ,t) 1 α

value of FEV [I(V, t)] coincides with I(v, t) for some v. Consequently, changing
the instant t, also will change the curve I(v, t), since FEV [I(V, t)] = I(v(t), t) and
v = v(t) varies with time. In other words, a curve FEV [I(V, t)] = I(v(t), t) is not a
solution of the original autonomous differential equation

dI

dt
= β(1 − I)I.

We make several observations based on what we presented above.

• While there are susceptible individuals and v̄ − δ − vmin > 0, the expectation of
the infected FEV [I(V, t)] grow with respect to t, because

lim
t→∞ FEV [I(V, t)] ≥ lim

t→∞ I(v̄ − δ, t) = 1.

• The disease can be controlled by I(v̄ + δ, t), that is, making v̄ + δ − vmin ≤ 0, the
average number of infected cannot grow since

lim
t→∞ FEV [I(V, t)] ≤ lim

t→∞ I(v̄ + δ, t) = I0.

10.2.3 Statistical Expected Values of the Number in Infected

The way we have considered the parameter β = β(v), the classical statistical
expected value of the number of infected individuals, E[I(V, t)], is given by

E[I(V, t)] =
+∞∫

−∞
I(v, t)

ρ(v)

δ
dv = 1

δ

v̄+δ∫
v̄−δ

I(v, t)ρ(v)dv, (10.14)
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since ρ(v) = 0 outside the interval [v̄ − δ, v̄ + δ]. So, we have

I(v̄ − δ, t) ≤ E[I(v, t)] ≤ I(v̄ + δ, t).

Since there exist various ways for us to calculate the expected value as a function
of the parameters, we choose the three particular cases already analyzed using the
fuzzy expected value (FEV ).

Weak viral load: vmin > v̄ + δ.
In this case, for all the infected individuals, the transmission coefficient β(v) is

zero. Substituting β(v) = 0 and I(V, t) given by (10.11) in (10.14), we obtain:

E[I(V, t)] = 1

δ

v̄+δ∫
v̄−δ

I(v, t)ρ(v)dv = I0.

Therefore, since all the infected individuals exhibit a viral load less than vmin,
that is, no individual possesses a minimal viral load necessary for transmission,
there occurs no propagation of the disease. We may interpret this situation as one in
which the group of individuals is highly resistant (vmin is high), that in turn makes
the susceptibility to the disease low. In this case the number of infected remains
unaltered from I0.

Strong viral load: vM < v̄ − δ.
In this case, the coefficient of transmission is maximum for all the infected indi-

viduals, that is, β(v) = 1. After some calculations we obtain

E[I(V, t)] = 1

δ

v̄+δ∫
v̄−δ

I(v, t)ρ(v)dv = I0et

S0 + I0et
. (10.15)

Observe that (10.15) coincides with the classical model when we consider the trans-
mission coefficient as constant, that is, β = 1.

Medium viral load: v̄ − δ > vmin and v̄ + δ < vM .
In this case, similar towe saw for the fuzzy expectation, here also the coefficient of

transmission is variable for all infected individuals. All the distribution, the support
of the distribution of V is in the regionwhere β(v) = v−vmin

vM−vmin
. So, to obtainE[I(V, t)]

it is necessary to know the values of all the parameters: δ, v̄, vmin, vM and vmax.
Analogous observations that weremade about the propagation of the diseasemade

for the fuzzy expected value also apply here remembering that

I(v̄ − δ, t) ≤ E[I(v, t)] ≤ I(v̄ + δ, t),

lim
t→∞ E[I(V, t)] ≥ lim

t→∞ I(v̄ − δ, t) = 1
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and
lim

t→∞ E[I(V, t)] ≤ lim
t→∞ I(v̄ + δ, t) = I0.

For the statistic expectation, we also have

E[I(V, t)] = I(v(t), t)),

for some function v = v(t).
To conclude this sectionwewould like to emphasize that unlike the statistic expec-

tation, we could have utilized other fuzzy measures to obtain the fuzzy expectation.
This possibility to choose different measures, according to the phenomenon being
studied, is what makes the fuzzy expectation a powerful tool in applications. For
example, instead of using the measure

μ(A) = 1

δ

∫
ρ(v)dv,

we could have used the possibilistic measure (see Chap.7)

μ(A) = sup
v∈A

ρ(v).

In our view, this is a very reasonable measure to use for our example if we want to
be very conservative in the following sense. It may be that for a particular disease, a
group A of infected individuals is evaluated by the one person with the greatest viral
load. The expectation of the number of infected individuals, FEV [I(V, t)], could be
evaluated with this more conservative measure and from this, mechanisms applied
to control the disease could be made according to this figure. To be specific, for
the possibility measure, we arrive at a very similar conclusion for the three cases
previously analyzed where in the possibilistic measure case the function H becomes

H(α) =

⎧⎪⎨
⎪⎩

1 if 0 ≤ α ≤ I0
sup

v∈[a,vmax]
ρ(v) if I0 < α ≤ I0et

S0+I0et

0 if I0et

S0+I0et < α ≤ 1

(10.16)

and FEV [I(V, t)] is the fixed point of the function H.
Let us do a comparative study between the approaches taken above and the deter-

ministic method with the aim of exploring a little more this example.

http://dx.doi.org/10.1007/978-3-662-53324-6_7
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10.2.4 I(FEV[V ], t) Versus FEV[I(V, t)]

This section will compare the trajectories of the three cases we have been studying
previously above of the curve FEV [I(V, t)], that is, I(FEV [V ], t) = I(v̄, t). From
the expression of H (10.16), we can conclude that H(I(v̄, t)) = 1

2 for all t. Thus
FEV [I(V, t)] = I(v̄, t) only when I(v̄, t) = 1

2 .
On the other hand, once FEV [I(V, t)] is a fixed point of H we have

FEV [I(V, t)] > I(v̄, t) if I(v̄, t) < 1
2

FEV [I(V, t)] < I(v̄, t) if I(v̄, t) > 1
2

.

In this way, a trajectory due to a medium viral load (v̄), does not produce the medium
number of infected individuals, as given byFEV [I(V, t)], at every instant. Therefore,
from our point of view, it is not correct to adopt an average or modal viral load, v̄, to
study the evolution of the disease in a population as a whole since FEV [I(V, t)] =
I(v̄, t) only at the instant t̄ = vM−vmin

v̄−vmin
ln( S0

I0
), S0 ≥ I0.Weobserve that t̄ is the inflection

point of I(v̄, t) and that I(v̄, t̄) = 1
2 , that is, at the instant t̄, the increment of the rate

of increase of I(v̄, t) is larger than I(v̄, t̄) = 1
2 (see Fig. 10.9). Starting with Jensen’s

inequality [15], we obtain similar results as those commented upon above for the
classical expectation, E(I(V, t)), by only changing the time t̄ at which the curve
I(v̄, t) lies above E(I(V, t)).

These facts reveal that, for heterogeneous systems, two distinct instants of time
can appear in which the uncertainties of the model can induce different values for
the system as a whole. If we adopt a deterministic model to study the system above,
it leads us to adopt I(v̄, t) as a solution since in this case, all the uncertainty should
be extracted right at the beginning of the mathematical model which in our case is,
V = v̄. On the other hand, the fuzzy model allows the uncertainties, in this case
inherent in the phenomenon, to be extracted in a desired (future) moment resulting
in the solution FEV [I(V, t)] or E[I(V, t)]which is more representative of the system
as a whole.

Fig. 10.9 Deterministic
solution I(v̄, t) with v̄ and
the fuzzy expected value
FEV [I(V, t)] [4]

I

I0

0.5

1

FEV [I(V, t)]
I(v̄, t)

t t
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Mathematical models of epidemics are studied, in large part, with the aim of the
implementation of policies or strategies to control the disease. We further illustrate
this by studying a fuzzy SI model.

10.2.5 Control of Epidemics and the Basic
Reproductive Number

The discussion in this section is based on the properties of the fuzzy SI model,
keeping in mind the curve given by the fuzzy expectation FEV [I(V, t)]. In our
previous development, we obtained conclusions based on the curve E[I(V, t)] [4,
16]. In our previous discussions we saw the following facts.

• If S0 > I0, while t < t̄ = vM−vmin
v̄−vmin

ln( S0
I0
), then FEV [I(V, t)] > I(v̄, t). Beginning

with t = t̄ we have that FEV [I(V, t)] < I(v̄, t). In this way we can say that the
deterministic model underestimates the number of infected individuals at the
beginning of the illness and overestimates the number of infected individuals
beginning with t̄ (see Fig. 10.9).

• If S0 ≤ I0 then FEV [I(V, t)] ≤ I(v̄, t) for all t > 0 and in this case, the determin-
istic model overestimates the number of infected individuals.

Therefore, at the beginning of the illness when t < t̄ = vM−vmin
v̄−vmin

ln( S0
I0
) and S0 >> I0,

we have
I(v̄, t) ≤ FEV [I(V, t)] ≤ I(v̄ + δ, t)

and thus, v(t) ∈ [v̄, v̄ + δ].
OnceFEV [I(V, t)] = I(v(t), t) increaseswith the increase in v(t), we can say that

the larger themedium viral load the larger the average number of infected individuals
FEV [I(V, t)]. Also, the larger the dispersal δ, the larger will be FEV [I(V, t)] and
the larger vmin is, the smaller FEV [I(V, t)] will be.

An essential parameter, for epidemiological classical models, is the basic repro-
ductive number R0, which gives the number of secondary cases caused by an infected
individual introduced in a population that is totally susceptible [10, 17]. In this way,
this parameter indicates under what conditions the disease is propagated in a pop-
ulation. If an infected individual causes more than one new case, that is, if R0 > 1
then the disease will propagate. On the other hand, when R0 < 1 the disease will be
extinguished.

The expression for the parameter R0, for the more simple epidemiological models
can be obtained beginning with the condition dI/dt > 0, that is, the condition that
there occurs an increase in the number of infected. In this case, for the classical
normalized SI model where I + S = 1, we will have

dI

dt
> 0 ⇐⇒ βSI = β(1 − I)I > 0,
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which holds as long as there exist susceptible individuals in the populations sinceβ >

0. In other words wewill always haveR0 > 1when β > 0 and I < 1. However, when
weuse a fuzzy set to describe the parameterβ this cannot occur. In our case, according
to the analysiswemade above, it is easy to verify that a sufficient condition for there to
be no transmission of the disease is that no infected individual possesses theminimum
or higher viral load. That is, the condition v̄ + δ < vmin should be satisfied. We can
therefore define the fuzzy basic reproductive number as being the value

Rfuzzy
0 = v̄ + δ

vmin
. (10.17)

Classical epidemiological models use, as a prevention control mechanism, the
policy of reducing the value of the parameter R0 in such a way that R0 < 1 so that the
disease will not propagate. But for the classical SI model this is not possible since
the number of susceptible individuals is always positive as we have seen above.

However, if we consider the number of susceptible individuals was a fuzzy set,
that is, β = β(v) in (10.8), even in this simple model, we will garner additional
information about the dynamics of the disease. For example, it is possible to interfere
in the illness’ transmission by reducing the value of the fuzzy parameter Rfuzzy

0 . This
can be done in two ways: (1) Increasing the value of vmin, which means that we
increase the resistance of the susceptible individuals (decrease the susceptibility);
Increasing the value of vmin could be done through, for example, vaccination, basic
sanitation, etc. In this sense, by the fact that the parameter vmin is related to the
susceptible individuals, the way to reduce the value of R0 is referred to as methods
of control; (2) the second way to reduce R0 would be to diminish the value of v̄ + δ,
by reducing the value of v̄ and/or δ. The reduction of the value of δ could be done
by means of control of the infected population as in, for example, quarantine or
isolation. The reduction in v̄ is related to measures of treatment of the infected
individuals.

Wefinishour discussionof this applicationbyemphasizing that unlike the classical
SI model that is quite simple as we presented it, and inadequate for most diseases,
even the simple fuzzy SI model is more inclusive whose results are more closely
associated with more complex models in which the class of infected are divided
into subclasses in accordance with the intensity of the infected (see [18]). A more
detailed study of the fuzzy SI models can be found in [4] and fuzzy SIS models in
[11, 16, 19].

10.3 A Fuzzy Model of the Transference from
Asymptomatic to Symptomatic in HIV+ Patients

The model that we present next can be found in [20, 21]. When we analyze the
evolution of a population of individuals from asymptomatic HIV+ to a class of
symptomatic ones,many factors are involved in the process since the rate at which the
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transference occurs is subject to the factors responsible for the change in the stages
of HIV+. Some of these factors are more crucial and influential than others. For
example, the viral load of an individual and the level of CD4+ are fundamental to the
determining the next state in aHIV+ the patient.What we exhibit with this example is
to show howwe can study a phenomenon, that is typically modeled deterministically,
as a fuzzy model that explicitly and effectively uses inexact variables and parameters
as they occur in the data and model statement. We demonstrate the transformation of
the subjective, uncertain, and inexact variables and parameters into a fuzzymodel via
environmental fuzziness. To this end, the demographic fuzziness (fuzzy variables) are
transformed into environmental (parameters) fuzziness. This being the case, we will
consider the rate of transference, from asymptomatic to symptomatic, subjectively
dependent on the viral load and the level CD4+. In this way, we can express the rate
of transference by a fuzzy set, that is, we express the transference rate via a linguistic
variable as developed and studied in Chap.5. However, to begin, we review the
classical deterministic case.

10.3.1 The Classical Model

In 1986 Anderson et al. [22] proposed the following model for the transference of
asymptomatic individuals to symptomatic HIV+ ones,⎧⎪⎨

⎪⎩
dx

dt
= −λ(t)x with x(0) = 1

dy

dt
= λ(t)x with y(0) = 0

, (10.18)

where the function λ(.) represents the rate of transference of infected asymptomatic
individuals with HIV+ into symptomatic ones. The state variable x is the proportion
of the infected individuals who still do not have symptoms indicative of AIDS and y
is the proportion of the individuals that possess clear symptoms of AIDS. As a first
approximation, Anderson proposes that this rate be given as a linear function

λ(t) = at, with a > 0,

which means that the solution of the deterministic system (10.18) is

x(t) = e− at2

2 and y(t) = 1 − e− at2

2 .

http://dx.doi.org/10.1007/978-3-662-53324-6_5
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10.3.2 The Fuzzy Model

Let us now consider the rate of transference to be dependent on viral load v and the
level of CD4+ c, that is,

λ = λ(υ, c).

Using the analogous deterministic model given by Anderson, we can write the model
as: { dx

dt
= −λ(υ, c)x

x(0) = 1
(10.19)

or as its complementary/dual equation in terms of the variable y,

dy

dt
= λ(υ, c)x = kλ(υ, c)(1 − y) with y(0) = 0.

The difference in the fuzzy model and the deterministic one is that now the rate
of transference λ has a clear biological and linguistical meaning whereas with the
deterministic case, this rate was a adjustable parameter. The fuzzy model solution is

x(t) = e−λ(υ,c)t or y(t) = 1 − e−λ(υ,c)t .

Each solution can be understood as an element of a family of curves which has initial
value equal to 1,

x(t) = e−λ(υ,c)t, with t > 0,

where λ assumes values dependent on the viral load and the level of CD4+ present
in the blood. The values υ and c of variables, are characteristic properties of the
infected population. The analytic definition of the parameter λ is obtained through a
combination of the linguistic meaning of the variables V and CD4+ and a rule base
as developed in Chap.5.

Medical knowledge and research seems to indicate that the parameter most used
to control the transference from asymptomatic HIV+ to symptomatic ones is the
value of CD4+. In this way we can simply use λ = λ(c) as the transference rate
in the fuzzy model (10.19). If for every viral load v we have λ = λ(c), then its
graph is approximately the decreasing curve depicted by Fig. 10.10. The equation
that defines λ = λ(c) given next and depicted in Fig. 10.10, was chosen taking in
consideration arguments similar to those of the models previously presented (see
Chap.5, Subsect. 5.6.2 for more technical justification) is,

λ(c) =

⎧⎪⎨
⎪⎩

1 if c < cmin
cM − c

cM − cmin
if cmin ≤ c ≤ cM,

0 if c > cM

(10.20)

http://dx.doi.org/10.1007/978-3-662-53324-6_5
http://dx.doi.org/10.1007/978-3-662-53324-6_5
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Fig. 10.10 Transference rate
λ = λ(c) [21]

λ

1

cmin cM cmax CD4+

where cmin represents theminimal level ofCD4+ required for an individual to become
symptomatic and cM represents the level of CD4+ after which the chance of an
infected individual becoming symptomatic is minimal or none.

10.3.3 The Fuzzy Expectation of the Asymptomatic
Individuals

The fuzzy expected value provides a type of average value for the values of x(t, c)
at each instant of time, since it is a type of defuzzification of the fuzzy set of asymp-
tomatic individuals

x(t, c) = e−λ(c)t .

As we have seen in Chap.7, to define fuzzy expectation we initially need to choose
a fuzzy measure μ. Once this is done, the value of the fuzzy expectation of the
asymptomatic individuals x(t, c) is given by

FEV [x] = sup
0≤α≤1

inf [α,μ {x ≥ α}] ,

where {x ≥ α} = {c : x(c) ≥ α} and μ is a fuzzy measure. Here, we have, recall-
ing Theorem 7.1, H(α) = μ{c : x(c) ≥ α} for each t > 0. For this case, a direct
calculation results in the following expression of the function H:

H(α) =
⎧⎨
⎩

μ [cM , cmax] if α = 1
μ [B, cmax] if e−t ≤ α < 1

1 if α ≤ e−t
, (10.21)

where B = cM − (cM − cmin)(
lnα

t ) =⇒ cmin < B ≤ cM .
The fuzzymeasure thatwe choose is a distribution of levels ofCD4+ with different

associated possibilities of occurrence. We will assume that the levels of CD4+ has a

http://dx.doi.org/10.1007/978-3-662-53324-6_7
http://dx.doi.org/10.1007/978-3-662-53324-6_7
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triangular distribution given by,

ρ(c) =
{
1 − |c−c̄|

δ
if c ∈ [c̄ − δ, c̄ + δ]

0 if c /∈ [c̄ − δ, c̄ + δ]
. (10.22)

Here, we take c̄ to be the modal or median value in [0, cmax], with cmax as a
maximum limit of viral load in an individual and δ being the dispersion of the levels
of CD4+ within the population of interest (those infected with HIV). Thus, with this
in mind, we suggest to use the following fuzzy measure μ

μ(A) =
{
sup
c∈A

ρ(c) if A 
= ∅
0 if A = ∅ ,

where A is a subset of real numbers, containing the domain of possible values of
CD4+ (Fig. 10.11).

The subsets A of real numbers of interest are the intervals A = [B, cmax], where
B = cM − (cM − cmin)(

− lnα
t ) =⇒ cmin < B ≤ cM . Observe that μ is an optimistic

measure in the sense that the level of CD4+ of a group is evaluated as being the best
level of the individuals of this group.

Consider the level of CD4+ as a linguistic variable with values low, medium and
high, each one of these being characterized by a triangular fuzzy set according to the
membership function ρ (see Fig. 10.12).

Fig. 10.11 Possibility
distribution of CD4+ [21]

ρ

1

c̄ − δ c̄ c̄ + δ CD4+

Fig. 10.12 Values of the
linguistic variable “level of
CD4+” [21] 1

β

cmin cM c
low medium high
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Case 1: The level of CD4+ low (C−).

In this case, we take cmin > c̄ + δ. Since B > cmin we have that
μ [cM, cmax] = 0 and μ [B, cmax] = 0. Thus,

H(α) =
{
1 if α ≤ e−t

0 if e−t < α ≤ 1

so that we obtain FEV [x] = e−t which means that the average number of
transferences from asymptomatic to symptomatic has an exponential decay
since the expected value of individuals with no HIV symptoms, x, goes to
zero exponentially and the transference to symptomatic is an exponential
decay.

Case 2: The level of CD4+ high (C+).

In this case, we take cM ≤ c̄ − δ and c̄ + δ ≤ cmax. Thus, we have B ≤ cM

and therefore μ[cM , cmin] = 1 and μ[B, cmax] = 1 which yields

H(α) =
{
1 ifα = 0
0 ifα > 0

.

This means that FEV [x] = 1, so that if in the group, the level of CD4+ is
high, then there is no transference of asymptomatic individuals to symp-
tomatic ones.

Case 3: The level of CD4+ medium (C+
−).

In this case, we take c̄ − δ > cmin and c̄ + δ < cM which implies that
μ [cM, cmax] = 1. After a few calculations we have that

H(α) =
⎧⎨
⎩

1 if 0 ≤ α ≤ e−λ(c̄)t

ρ(B) if e−λ(c̄)t < α < e−λ(c̄+δ)t

0 if e−λ(c̄+δ)t ≤ α ≤ 1
,

where ρ(B) = 1
δ
[−cM − (cM − cmin)(

lnα
t ) + c̄ + δ]. Since H(α) is a con-

tinuous decreasing function with H(0) = 1 and H(1) = 0, H has a unique
fixed point that coincideswithFEV [x] (seeChap.7). Figure10.13 illustrates
this fact.
Thus,

e−λ(c̄)t < FEV [x] < e− λ(c̄+δ)t .

We observe that for the three cases of low/medium/high, we always have
the inequality

e−EF[λ]t ≤ e−λ(c̄)t ≤ FEV [x] .

http://dx.doi.org/10.1007/978-3-662-53324-6_7
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Fig. 10.13 Representation
of FEV [x] [21]

1

H

e−λ(c̄)t e−λ(c̄+δ)t

bisectrix

FEV [x]

FEV [x]

1 α

Thismeans that the expectedvalueof the asymptomatic population, at each instant,
is larger than the deterministic model which considers the rate of transference (from
asymptomatic to symptomatic) as a constant λ(c̄) = λ̄.

10.4 Population Dynamics and Migration of Blow Flies

We close this chapter with the presentation of a two-dimensional model that repre-
sents a competition and migration of flies. This model was developed by Castanho
et al. [23]. Themodel comes from a discrete two-dimensional systemwhere the para-
meters were determined by means of a rule base. This is a environmental fuzziness
case because in the model, the uncertainties are all in the parameters. The uncer-
tainties in the parameters are treated by means of fuzzy set theory and the values
obtained are via fuzzy controllers.

Adeterministicmodel usedbyGodoy [24] to analyze the establishment of colonies
of blow flies has its foundation based on the incorporation of deterministic models
of Prout and McCheney [25] and the stochastic model of Roughgarden [26]. The
Godoy model is,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

N1,t+1 = (1 − m12)

2
F1S1e−(f +s)N1,t N1,t + m21

2
F2S2e−(f +s)N2,t N2,t

N2,t+1 = m12

2
F1S1e−(f +s)N1,t N1,t + (1 − m21)

2
F2S2e−(f +s)N2,t N2,t

. (10.23)

This model relates the dynamics of a population of blow flies with a process of
migration between two colonies of blow flies. The variables and parameters are:

1. Ni,t : the population of blow flies of colony i at time t;
2. Fi: maximal fecundity of the blow flies when these are encountered in colony i;
3. Si: maximal survival of the blow flies in colony i;
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4. mij: rate of migration from colony i to colony j;
5. f and s represent the variation in fecundity and the survival respectively.

The parameters mij, Fi and Si are dependent on a series of factors usually hard to
evaluate quantitatively. In this case, it seems that the approach of fuzzy set theory can
be useful. So, to obtain the solution of our model, we get the parameters via fuzzy
method and substituting them on the deterministic equation (10.23).

Let’s consider that the parameters mij, Fi and Si are uncertainty and modeled by
linguitic variable. Also, consider that these parameters are dependent on two input
variables, the Population (Ni,t) and its Environment (Ei) which is the habitat of each
colony. So,wehave based rule fuzzy system (if - then)with two input and three output,
according to Frame 10.1. For the input variable Population, using the experimen-
tal data found in Godoy [24], the linguistic terms adolted were, Small, Medium and
Large according to Fig. 10.14. For the input variableEnvironment the linguistic terms
considered were Hostile, Slightly Unfavourable and Favorable whose membership
functions are given in Fig. 10.15. To model the fuzzy parameter rate of Migration,
m, as an output variable, dependent on Population and on Environment, we adopt
a rule base given by Frame 10.1. The linguistic terms Small, Medium and Large
representing the rate of migration are given by Fig. 10.16. The memberships val-
ues of the output linguistic variables Fecundity F (Fig. 10.17) and fuzzy Survival
S (Fig. 10.18) are intuitively derived considering an interpolation between the
experimental values for maxima and minima of these variables.

The result of the equation of Godoy (10.23) with the parameters obtained
from fuzzy controller with inference of Mamdani (see Chap. 5) are showed in the
Figs. 10.19 and 10.20.

A study of metapopulations of blow flies using a fuzzy dynamic population model
was developed in [23, 27].

Fig. 10.14 Fuzzy values of
the populations [23]

100 200 300 400 500 600 7000

1
Small Medium Large

http://dx.doi.org/10.1007/978-3-662-53324-6_5
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Fig. 10.15 Fuzzy values of
the environment [23]

0 0.2 0.4 0.6 0.8 1

1
Hostile Slightly Unfavorable Favorable

1. If Population is Small and the Environment is Favorable then the Fecundity and
Survival are High and Migration is Low;

2. If Population is Small and the Environment is Slightly Unfavorable then the Fecun-
dity is High, the Survival is Medium and Migration is Low;

3. If Population is Small and theEnvironment isHostile then the Fecundity isMedium,
the Survival is Low and Migration is High;

4. If Population is Medium and the Environment is Favorable then the Fecundity is
High, the Survival is Medium and Migration is Low;

5. If Population is Medium and the Environment is Slightly Unfavorable then the
Fecundity is Medium, Survival is Low and Migration is High;

6. If Population is Medium and the Environment is Hostile then the Fecundity and
Survival are Low and Migration is High;

7. If Population is Large and the Environment is Favorable then the Fecundity is
Medium, the Survival is Low and Migration is Moderate;

8. If Population is Large and the Environment is Slightly Unfavorable then the Fecun-
dity and Survival are Low and Migration is High;

9. If Population is Large and the Environment is Hostile then the Fecundity and
Survival are Low and Migration is High;

Frame 10.1: Rule base for Blow flies [23].

Fig. 10.16 Fuzzy values of
migration [23]
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Fig. 10.17 Fuzzy values of
fecundity [23]
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Fig. 10.18 Fuzzy values of
survaival [23]
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Fig. 10.19 Stability solution
of the colonies for
N1,0 = 300, N2,0 = 700,
E1,0 = 0.01, and E2,0 = 0.3
[23]
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Fig. 10.20 Periodic
variations of the populations
for N1,0 = 300, N2,0 = 400,
E1,0 = 1, and E2,0 = 0.9
[23]
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Chapter 11
End Notes

“If you obey all the rules you miss all the fun”.
(Katharine Hepburn)

Abstract This chapter presents the concept of joint possibility distribution from the
point of view of fuzzy number membership. The concept of completely correlated
fuzzy numbers is presented. Next, an interactive fuzzy number subtraction operator
is discussed. Finally, two bio-mathematical models are studied using these concepts.
The first models the risk of getting dengue fever and second is an epidemiological
SI-model with completely correlated initial conditions.

This last chapter is a collection of various fun topics. So, if Katherine Hepburn is
correct, we are not following all rules. However, we are following fuzzy rule. Let
us start by presenting some more advanced topics associated with fuzzy number
arithmetic. Then we will present biomathematical models that use some of these
concepts, specifically, the concepts of t-norm, Takagi-Sugeno inference method, and
interactivity between fuzzy numbers.

The models that we will present here do not properly fit in either demographic or
environmental uncertainty as developed in Chaps. 9 and 10. So we opted to present
them into newchapter. In the firstmodelweuse the concepts of t-norm to represent the
interactivity between the involved individuals, but the equations are deterministic. In
the second model we employ the Takagi-Sugeno inference method in order to obtain
a partial differential equation that represent the evolution of an epidemic system in
time and space. Finally, in the third model we use a fuzzy differential equation whose
the variables are given by completely correlated fuzzy numbers.

Our first section starts with subtraction of fuzzy numbers of special type, interac-
tive fuzzy numbers. The reason we start with subtraction is that subtraction is where
additive inverses and change (derivatives) begin. The reason we start with interac-
tivity is that it is not always the case that the entities modeled by fuzzy numbers are
non-interactive.
© Springer-Verlag Berlin Heidelberg 2017
L.C. de Barros et al., A First Course in Fuzzy Logic, Fuzzy
Dynamical Systems, and Biomathematics, Studies in Fuzziness
and Soft Computing 347, DOI 10.1007/978-3-662-53324-6_11
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11.1 Subtration of Interactive Fuzzy Numbers

Intuitively, for the arithmetic presented in Chap. 2 there exists some type of indepen-
dence (or non-interactive) between the α-levels of the two fuzzy numbers involved,
since all elements of both intervals contribute to the result of operation in question.
Such a fact is corroborated by the minimum t-norm in the united extension and
Zadeh’s extension for fuzzy numbers. However, it is possible to define an arithmetic
for fuzzy numbers that resembles the arithmetic for random variables by means of
joint distributions.

The standard difference between two fuzzy numbers based on the difference
between intervals (see Proposition 2.5) and takes into account all the possible com-
binations between two elements, one at each α-level. Consequently, the result is
always greater (in diameter) than any of the sets involved in the operation. In fact,
the width of the result of subtracting of two intervals is the sum of the widths of these
two intervals. Thus, the difference between two non-crisp fuzzy numbers is always
a non-crisp number and subtracting a non-crisp number from itself is never zero.

Using the Hukuhara Difference (2.9), the result of subtracting a non-crisp number
A from itself (A �H A) is, in fact, non-zero. However, for this case, a necessary con-
dition for the subtraction between two different fuzzy numbers A and B to exist is
that the first term must have a bigger diameter than the second one. A proposed rem-
edy to some of the issues involving interval subtraction is the Generalized Hukuhara
difference, which also satisfies A −gH A = 0 [1, 2] and is defined for a bigger class
of fuzzy numbers than the Hukuhara difference. An extension of the generalized
Hukuhara difference is the generalized difference [1, 3], which has the same results
of the generalized Hukuhara operator (when it exists), but is defined for a larger class
of fuzzy numbers. Another possibility is CIA (Constraint Interval Arithmetic) [4].
In this case, the diameter of the difference between two fuzzy numbers using CIA is
often smaller than using standard difference.

All differences mentioned above make use of the interval arithmetic on α-levels.
Extensions to fuzzy numbers are computed viaNegoita andRalescu’s Representation
Theorem (Theorem 1.4) over the resulting α-levels.

Another way to subtract is similar to the arithmetic for random variables, that is,
the subtractions between fuzzy numbers are obtained using the joint possibility (or
membership) distribution between the involved fuzzy numbers [5]. The comparison
between the results obtained from the two approaches (interval-valued and joint
possibility distribution) is made via a kind of Nguyen extension theorem [5].

The following concepts are from possibility theory and will be used to define the
interactive difference between fuzzy numbers [5]. Some these concepts have been
presented in Chap.4.

Definition 11.1 Let A and B be fuzzy numbers and J ∈ FC(R2), the class of fuzzy
normal subsets of R2. Then J is a joint possibility distribution of A and B if

max
y∈R

ϕJ (x, y) = ϕA(x) and max
x∈R

ϕJ (x, y) = ϕB(y).

http://dx.doi.org/10.1007/978-3-662-53324-6_2
http://dx.doi.org/10.1007/978-3-662-53324-6_2
http://dx.doi.org/10.1007/978-3-662-53324-6_2
http://dx.doi.org/10.1007/978-3-662-53324-6_1
http://dx.doi.org/10.1007/978-3-662-53324-6_4
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Moreover, ϕA and ϕB are called marginal distributions of J .

If the joint possibility distribution is given by a t-norm �, then

ϕJ (x, y) = (ϕA(x)�ϕB(y)).

When � = min, A and B are called non-interactive fuzzy numbers. The results of
this section may be considered as a generalization of Zadeh’s extension for fuzzy
arithmetic which is a particular case of what is presented when the t-norm is the
minimum norm. The next definition describes a joint possibility distribution which
is not given by means of t-norm.

Definition 11.2 Two fuzzy numbers A and B are said to be completely correlated
if there are q, r ∈ R, with q �= 0, such that their joint possibility distribution C is
defined by

ϕC(x, y) = ϕA(x)X{qx+r=y}(x, y)
= ϕB(y)X{qx+r=y}(x, y) (11.1)

where

X{qx+r=y}(x, y) =
{
1 if qx + r = y
0 if qx + r �= y

is the membership function on the real line {(x, y) ∈ R
2 : qx + r = y}.

We have, in this case:

[C]α = {(x, qx + r) ∈ R
2 : x = (1 − s)aα

1 + saα
2 , s ∈ [0, 1]}

where [A]α = [aα
1 , a

α
2 ]; [B]α = q[A]α + r, for anyα ∈ [0, 1].Moreover, if asq �= 0,

ϕB(x) = ϕA

( x − r

q

)
,∀x ∈ R.

It is important to observe that some pairs of fuzzy numbers cannot be completely
correlated. For example, a triangular fuzzy number can not be completely correlated
with a trapezoidal fuzzy number. Recently, we presented a family of parametrized
joint possibility distributions which extend the properties of completely fuzzy num-
ber [6, 7].

In Definition 11.2, if q is positive (negative), the fuzzy numbers A and B are
said to be completely positively (negatively) correlated. If [B]α = q[A]α + r , the
correlated addition of A and B is the fuzzy number A + B with α-cuts

[A + B]α = (q + 1)[A]α + r. (11.2)
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We will formulate the extension principle in what follows for the joint possibility
distribution of fuzzy numbers [5].

Definition 11.3 Let J be a joint possibility distribution with marginal possibility
distributions ϕA and ϕB , and let f : R2 −→ R be a function. Then the extension f J
of f by J at pair (A, B) is the fuzzy set f J (A, B) whose membership function is
given by

ϕ f J (A,B)(z) =
⎧⎨
⎩

sup
z= f (x,y)

ϕJ (x, y) if f −1(z) �= ∅

0 if f −1(z) = ∅
where f −1(z) = {(x, y) : f (x, y) = z}.

The next result can be viewed as a generalization of Nguyen’s theorem [8].

Theorem 11.1 ([5]) Let A, B ∈ F(R) be completely correlated fuzzy numbers, C
its joint possibility distribution and f : R2 −→ R a continuous function. Then,

[ fC(A, B)]α = f ([C]α),∀α ∈ [0, 1].

11.1.1 Difference Between Fuzzy Numbers

Nextwepresent differentways, as found in literature, to obtain the difference between
fuzzy numbers.

Difference Via Interval Analytic Theory

Initially we present the fuzzy differences arising from the interval analysis theory.

Definition 11.4 (Standard difference) Let A, B be fuzzy numbers with α-levels
given by [aα

1 , a
α
2 ] and [bα

1 , b
α
2 ], respectively. The α-levels of the standard difference,

A − B, are defined by

[A − B]α = [aα
1 − bα

2 , a
α
2 − bα

1 ].

This standard difference can also be called Minkowski difference and it coincides
to the one introduced in Proposition 2.5.

Lodwick [4, 9] proposed constraint interval arithmetic (CIA) and in particular
subtraction is defined as follows.

Definition 11.5 (CIA) The subtraction between two fuzzy numbers A and B is
defined level-wise by

[A − CIA B]α = {[(1 − λA)a
α
1 + λAa

α
2 ] − [(1 − λB )b

α
1 + λBb

α
2 ],

0 ≤ λA ≤ 1, 0 ≤ λB ≤ 1}.

http://dx.doi.org/10.1007/978-3-662-53324-6_2
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Remark 11.2 Using CIA, we have

[A − CIA A]α =
{[(1 − λA)a

α
1 + λAa

α
2 ] − [(1 − λA)a

α
1 + λAa

α
2 ]} = {0}

where 0 ≤ λA ≤ 1. Therefore, A −CIA A = {0}.
Definition 11.6 Given two fuzzy numbers A, B the Hukuhara difference
(H-difference) A �H B = C is the fuzzy numberC such that A = B + C , if it exists.

Note that the above definition was presented in Chap.2 (see Definition 2.9).

Definition 11.7 ([1, 2]) Given two fuzzy numbers A, B the generalized Hukuhara
difference (gH-difference) A �gH B is the fuzzy number C (if it exists) such that in
this case we write A �gH B = C.

{
(i) A = B + C or
(i i) B = A − C.

Definition 11.8 ([1, 3]) Given two fuzzy numbers A, B the generalized difference
(g-difference) A 	g B = C is the fuzzy number C with α-levels

[A 	g B]α = cl
⋃
β≥α

([A]β 	gH [B]β),∀α ∈ [0, 1],

where the gH-difference (	gH ) is related to the intervals [A]β and [B]β .
Bede and Stefanini [1, 3] proposed the generalized difference between fuzzy

numbers as a difference that always exists and results in a fuzzy number. But for
this, as observed in [10], a convexification is required in order that the difference
is always a fuzzy number. For each of the differences presented in this subsection,
A − B is a fuzzy number according to Theorem 1.4.

Differences Via Joint Possibility Distribution

Differences via joint possibility distribution are obtained with the help of Defin-
ition 11.3. Note that this form of dealing with fuzzy numbers is inspired by the
arithmetic of random variables, which considers the joint probability distribution.

Definition 11.9 Suppose A and B are two fuzzy numbers. Let f : R2 → R be
defined by f (x, y) = x − y, that is, the subtraction operator for real numbers. The
difference using the joint distribution J is the fuzzy number A −J B, whose mem-
bership function is defined by

ϕ(A−J B)(z) = sup
(x,y)∈ f −1(z)

ϕJ (x, y), (11.3)

where f −1(z) = {(x, y) : f (x, y) = x − y = z}.

http://dx.doi.org/10.1007/978-3-662-53324-6_2
http://dx.doi.org/10.1007/978-3-662-53324-6_2
http://dx.doi.org/10.1007/978-3-662-53324-6_1
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Next the difference using the joint possibility distribution is given via t-norms.

Definition 11.10 (Differences via the t-norm) Let A, B be fuzzy numbers and
f (x, y) = x − y the subtraction operator, then the extension sup−T of the fuzzy
number A −� B is obtained by the following membership function

ϕA−�B(z) = sup
(x,y)∈ f −1(z)

(ϕA(x)�ϕB(y)), z ∈ R.

where f −1(z) = {(x, y) : f (x, y) = x − y = z}.
Note that Definition 2.9 (c) arises when � is the minimum t-norm.

Moreover, the difference using joint possibility distributions may not necessarily be
given by a t-norm.

Definition 11.11 ([5]) The subtraction of two completely correlated fuzzy numbers
A and B is defined by

ϕA−C B(z) = sup
(x,y)∈ f −1(z)

ϕC(x, y).

That is, ϕA−C B(z) = sup
z=x−y

ϕB(y)X{qx+r=y}(x, y).

From Theorem 11.1, [5], we have that, for all α ∈ [0, 1],

[A −C B]α = (q − 1)[B]α + r.

Remark 11.3 The sum of two completely correlated fuzzy numbers A and B is the
fuzzy number A +C B which α-levels are given by

[A +C B]α = (q + 1)[B]α + r.

Definition 11.12 Let C be a joint possibility distribution with marginal possibility
distributions A and B, and let f : R2 −→ R

2 be a function. If A and B are completely
correlated fuzzy numbers, then the extension of f applied to (A, B) is the fuzzy set
fC (A, B) whose membership function is defined by

ϕ fC (A,B) (u, v) =

⎧⎪⎨
⎪⎩

sup
(x,y)∈ f −1(u,v)

ϕC (x, y), if f −1(u, v) �= ∅

0 , if f −1(u, v) = ∅,

where f −1(u, v) = {(x, y) : f (x, y) = (u, v)}.

The next theorem will be used to study the solution of an epidemiological model
(SI) where S and I is considered completely correlated.

http://dx.doi.org/10.1007/978-3-662-53324-6_2
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Theorem 11.4 Let A, B ∈ F(R) be completely correlated fuzzy numbers, let C be
their joint possibility distribution, and let f : R2 −→ R

2 be a continuous function.
Then,

[ fC (A, B)]α = f ([C]α).

The proof of the Theorem 11.4 is found in [11]. We end this section by recalling that
the interactive difference can be used to define derivative for autocorrelated fuzzy
process (see [12, 13]).

11.2 Prey-Predator

The study presented in this section is based on [14, 15]. The classical models of
interaction between species of prey-predator type uses the hypothesis that the preda-
tion rates are related to the probability of encounters between a predator and a prey.
A typical case is in the Lotka-Volterra model below, already seen in Sect. 9.3,

{ dx
dt = ax − bxy
dy
dt = −cy + dxy

, (11.4)

where x and y are, respectively, the number (or density) of prey and predators,
a > 0 is the growth rate of prey, c > 0 is the mortality rate of predators, b > 0 is the
proportion of successful attacks of the predators and d > 0 is the biomass conversion
rate of the prey to predators.

This model supposes that both of species are uniformly distributed in the habitat
and this is implicit in the terms bxy and dxy which are proportional to the probability
of the number of encounters between prey and predators. In other words, we can say
that the rate of encounters is derived from the"mass action law" that in the context of
physicochemical establishes that the rates of molecular collisions of two chemicals
and is proportional to the product of their concentrations [16].

On the other hand, we know that if the habitat where the prey and predators
are living together is small, that is the area in which the two populations exist is
small, the predation happens immediately, because there are enough prey. Therefore
it is possible that if the number of prey is bigger than the number of predators, the
predation rate is proportional to just the number of predators. Now, if the number of
predators is bigger than the prey, then the predation rate is given by the number of
prey. So, in both cases the predation rate is proportional to the minimum between
the populations of prey and predators [17, 18]. These observations translate into
various t-norms operations, more specifically, other t-norms besides the product t-
normwhich is commonly used inmodels to represent the interaction between species.
The more detailed analysis of this situation is found in Sect. 9.3.

http://dx.doi.org/10.1007/978-3-662-53324-6_9
http://dx.doi.org/10.1007/978-3-662-53324-6_9
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11.2.1 Prey-Predator with the Minimum t-Norm

These observations and those found in [17] lead us to consider the predation rate
as proportional to the minimum between the populations of prey and predators. To
model this situation, we change the t-norm of the product to the minimum t − norm
to represent the interaction between species. Thus, we have the following model
[14, 15]: {

dx
dt = ax − b(x ∧ y)
dy
dt = −cy + d(x ∧ y)

, (11.5)

where a, b, c and d are the same as in (11.4).
The phase plane of the model (11.5) can be seen in the Fig. 11.1. From (11.5)

it is possible to see that the only equilibrium point is the trivial one (0, 0). But the
qualitative aspect of phase plane of (11.5) is very different to that of the one in
Sect. 9.3.

11.2.2 Prey-Predator with the Hamacher t-Norm

The Hamacher t-norm (see Chap.4), given by

�H (x, y) = xy

p + (1 − p)(x + y − xy)
, p ≥ 0 (11.6)

and it can replace the product t-norm in the prey-predator model (11.4). The para-
meter p can be tunned in order to fit the specific character of the population under
consideration. The various t-norms are obtained by a parameter p where the product
t-norm occurs for p = 1. Thus, we have the following model

Fig. 11.1 Phase plane of the
model (11.5) where
a = 0.08, b = 0.09,
c = 0.075 and d = 0.07
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http://dx.doi.org/10.1007/978-3-662-53324-6_9
http://dx.doi.org/10.1007/978-3-662-53324-6_4


11.2 Prey-Predator 279

(a) with a = 0.08, b = 0.09, c = 0.075 and
d = 0.07, for p = 0.5, 1, 1.5, and 2.

(b) with a = 0.08, b = 0.09, c = 0.075 and
d = 0.07, for p = 0.5, 1, 1.5, and 2.

Fig. 11.2 Solution x and y for time t

{
dx
dt = ax − bxy

p+(1−p)(x+y−xy)
dy
dt = −cy + dxy

p+(1−p)(x+y−xy)

, (11.7)

where a, b, c and d are the same as in (11.4). Figure11.2a, b illustrate solutions of
model (11.7) for some values of p.

It is interesting to note that the peaks of the solutions in Fig. 11.2a, b increase
as p gets bigger. In cases where p > 1, the solutions go together to an equilibrium
point, which differs from the classical case (p = 1), where there exists a periodic
curve [15, 16].

Figures11.3a up to 11.4b show the phase plane of the solutions of themodel (11.7)
for values of p = 0.5, 1.0, 1.5, 2.0. It is possible to observe that for 0 ≤ p < 1 we

(a) with p = 0.5. (b) with p = 1.

Fig. 11.3 Phase plane of the solution with parameters like Fig. 11.2a
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(a) with p = 1.5. (b) with p = 2.

Fig. 11.4 Phase plane of the solution with parameters like Fig. 11.2a

have repelling equilibrium points, for p = 1 we have closed orbits around the equi-
librium point and for p > 1 we have attractors equilibrium points and saddle points.
Therefore, the choice of the parameter p will determine the stability of the system
equilibrium (11.7).

11.3 Epidemiological Model

The more common epidemiological models that describe the dynamics of diseases
spread by direct contact are SI , SI S and SI R where S is susceptible, I is infected
and R is recovered. In these models the change of the state of a susceptible individual
to the class of infected ones occurs as a result of the contact between individuals with
infectious pathogens and healthy ones, that is, the transmission rate is proportional to
the encounter rate of those individuals which is traditionally modeled by the product
between the densities (quantities) [16, 19].

We have studied in Sect. 10.2 the simplest classical model that describes the
dynamics of the diseases transmitted by direct contact without vital dynamics, that
is, without birth/death. This is the SI model, given by{

dx
dt = −βxy; x(0) = x0 > 0
dy
dt = βxy; y(0) = y0 > 0,

(11.8)

where x(t) and y(t) are, respectively, the fractions of susceptible and infected indi-
viduals at time t and the parameter β > 0 is the disease transmission rate. From
(11.8) we have x(t) + y(t) = 1 and, as we saw in Sect. 10.2, the solution of (11.8)
is given by

http://dx.doi.org/10.1007/978-3-662-53324-6_10
http://dx.doi.org/10.1007/978-3-662-53324-6_10
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y(t) = y0eβt

x0 + y0eβt
and x(t) = 1 − y(t) = x0

x0 + y0eβt
. (11.9)

In some epidemiological SI models, an individual who is infected can not recover. A
typical case of this model is HIV, where the virus attacks the immune system which
is responsible for protecting the body against diseases. For more details the reader
might want to see [20].

One of the first models developed for populations of individuals that already have
HIV is due to Anderson et al. [21]. The Anderson model studies the transfer between
the individuals that are asymptomatic to the symptomatic ones, that is, it is not a
direct transmission model [22]. This model is given by

⎧⎪⎨
⎪⎩

dx

dt
= −λx; x(0) = x0 > 0

dy

dt
= λx; y(0) = y0 > 0,

(11.10)

where λ is the transfer rate from the asymptomatic to symptomatic phase (AIDS),
x(t) and y(t) are, respectively, the fractions of infected individuals who did not
develop AIDS and the others who did develop the disease. According to the model
above we have the constraint

x(t) + y(t) = 1, ∀t ≥ 0.

The solution of (11.10) is given by

x(t) = x0e
−λt and y(t) = 1 − x0e

−λt . (11.11)

In (11.10) the dynamics of the disease is not modeled by the product operation.
Since all individuals are already infected, the transmission does not depend on the
encounter between them.Epidemiologicalmodelers frequently discuss how to handle
these types ofmodels inwhich infections are not always transmitted by are interaction
between a product-like accumulation of two populations (infected and susceptible).

Apparently the models (11.8) and (11.10) are not linked. However we will see
that this is not one hundred percent true when different t-norms are used instead of
the product.

11.3.1 SI Model with Minimum t-Norm

We base this section on [17, 23] where the model we have chosen uses the minimum
t-norm, instead of product operation. This is because, when the susceptive population
is small, its variation rate is proportional to susceptive population. On the other hand,
the variation rate of infected population is proportional to this population when it is
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small. Thus, in both cases, the variation rate is proportional to the minimum between
susceptive and infected population.

The model is given by the following differential equations [14, 15],

{
dx
dt = −λ(x ∧ y)
dy
dt = λ(x ∧ y)

. (11.12)

The solution of (11.12) is given by

x(t) =
{

1 − y0eλt if t ≤ t
0.5e−λ(t−t) if t > t

(11.13)

and

y(t) =
{

y0eλt if t ≤ t
1 − 0.5e−λ(t−t) if t > t

, (11.14)

where t = 1
λ
ln 0.5

y0
. The model (11.10) coincides with (11.12) when the individuals

of population interact and the majority is already symptomatic, that is, (x ∧ y) = x .
Illustrations of the solutions (11.13) and (11.14) can be seen in Fig. 11.5a and b,

respectively. It is possible to verify the similarity between the curves that represent
the proportion of infected individuals in this section to those in Sect. 10.2.

11.3.2 SI Model with Hamacher t-Norm

We will next use the t-norm of Hamacher, which is given by
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(a) λ = 0.2 and x(0) = 0.7. (b) λ = 0.2 and y(0) = 0.3.

Fig. 11.5 Proportion of susceptible and infected individuals versus time
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�H (x, y) = xy

p + (1 − p)(x + y − xy)
, (11.15)

to model the interaction between the individuals. Thus, we have

{
dx
dt = −λxy

p+(1−p)(x+y−xy)
dy
dt = λxy

p+(1−p)(x+y−xy)

. (11.16)

Since x + y = 1, that is, there is no vital dynamics, we have

�H (x, 1 − x) = x(1 − x)

p + (1 − p)(1 − x(1 − x))
.

The implicit solution of (11.16) for the susceptible is given by

c1 + λt = (1 − p)x(t) − ln (1 − x(t)) + ln x(t)

while the infected ones follows from the equation

(p − 1 − c1) + λt = (p − 1)y(t) − ln (1 − y(t)) + ln y(t).

We next do a comparative study of the models (11.8) and (11.16). Let us suppose
that in (11.16) the interaction is proportional to the product (xy). Thus, in (11.16)
we can interpret β = λ

p+(1−p)(x+y−xy) as the transfer rate from susceptible to infected
class of individuals. In this case, the rate β = β(x, y) depends on both concentrations
of x and y. Therefore, the number of susceptible individuals is provided by (11.16)
and is inferior to the one that is provided by (11.8) for p < 1, and superior for p > 1.
The illustration of the solutions for some values of p can be seen in Fig. 11.6a and b.

We finish this section by observing that all model presented here are in fact
classical ones, in the sense that both are differential equation and their solutions are
deterministic.

0 5 10 15 20 25 30
t

0.02

0.04

0.06

0.08

0.10
x

(a) with λ = 0.2 and x(0) = 0.9. (b) with λ = 0.2 and y(0) = 0.1.

Fig. 11.6 Number of susceptible a and infected b versus time of the model (11.16)
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11.4 Takagi–Sugeno Method to Study the Risk of Dengue

This section discusses concepts related to the formulation of models of
Takagi–Sugeno and an application will be presented for the analysis of the risk
of dengue1 in the southern region of Campinas. The city of Campinas, located in
southeast region of Brazil in the state of São Paulo, experienced the largest epidemic
of dengue in 2007, with 1089.4 registered cases per 100, 000 inhabitants. High rates
of incidence of dengue have been reported in the south region of the city, leading
researchers from the Faculty of Medical Sciences of the University of Campinas to
initiate a study on the phenomenon and its possible causes [24, 25].

11.4.1 Takagi–Sugeno Model

Chapter 5 developed the theory of fuzzy inference processes of the
Takagi–Sugeno-Kang type where the consequent of each rule is explicitly given
by a function of the input values of this rule. Currently, researchers are using this
idea to construct fuzzy rules whose consequences are differential equations, applied
to different problems [26–28].

The formulation of Takagi–Sugeno model for the risk of dengue in the southern
region of Campinas, that will be presented, is based on references [24, 25]. The
following is a summary of the main concepts used by these authors.

Consider the nonlinear partial differential equation (PDE) problem,

∂y(x, t)

∂t
= κ(y(x, t))

∂2y(x, t)

∂x2
+ f (y(x, t)) + g(x)u(t) (11.17)

for 0 ≤ x ≤ L , t > 0 where y(x, t) is the displacement, κ(y(x, t)) ≥ 0 and
f (x, t) are nonlinear functions satisfying κ(0) = 0 and f (0, 0) = 0 , u(t) is the
distribution of the control force and g(x) is an influence function. The initial and
boundary conditions are given by

y(0, t) = y(L , t) = 0, yx (0, t) = yx (L , t) = 0 and y(x, 0) = y0(x) (11.18)

In the fuzzy formulation of systems (11.17)–(11.18) we will set u(t) = 0, i.e.,

∂y(x, t)

∂t
= κ(y(x, t))

∂2y(x, t)

∂x2
+ f (y(x, t)). (11.19)

A model of type Takagi–Sugeno is used to approximate equation (11.19) and it
has the following fuzzy rules:

1Dengue is a mosquito borne disease that causes fever and in some cases death.

http://dx.doi.org/10.1007/978-3-662-53324-6_5
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Rule i : If y(x, t) is Fi , then

∂y(x, t)

∂t
= κi

∂2y(x, t)

∂x2
+ ai y(x, t) (11.20)

where Fi are fuzzy sets, κi ≥ 0, ai are known constants for i = 1, 2, . . . ,M ; and M
is the number of rules.

Fuzzy rule i means that if the input variable y(x, t) is locally represented by
the fuzzy set Fi , then the non-linear partial differential equation (11.19) can be
represented by the linear equation (11.20). The process of fuzzy inference is done as
follows

∂y(x, t)

∂t
=

M∑
i=1

ϕi (y(x, t))

[
κi

∂2y(x, t)

∂x2
+ ai y(x, t)

]
, (11.21)

where

ϕi (y(x, t)) = ϕFi (y(x, t))/(
M∑
k=1

ϕFk (y(x, t)))

is themembershipdegreeof y(x, t) belonging to Fi . Thedenominator of ϕi (y(x, t))
is only for normalization so that the total sum is

M∑
k=1

ϕi (y(x, t))) = 1.

11.4.2 Dengue Risk Model

This section develops a model of the risk of dengue epidemic from the point of view
spacial temporal dynamics for the southeast part of the city of Campinas, Brazil.
With the collaboration of the Laboratory for Spacial Analysis of Epidemiological
Data (epiGeo) researchers of University of Campinas [29], we obtained data that
generated the initial risk map of dengue in the region studied as shown in Fig. 11.7.

The mesh adopted corresponds to a 40 × 40 grid which covers approximately
20 km × 20km of the region. Note that higher risks are associated with warm colors,
that is, with reddish hues.

The researchers of epiGeo determined, from the initial data that gave rise to
the map, the relative risk. The relative risk is given as the quotient between the
probabilities of the exposed individual and of the control (not exposed individual)
[25]. For example, if the risk is 2, then at that geographic location, the individuals
have twice the risk of contracting the dengue disease than individuals not exposed to
risk factors. From Fig. 11.7, the risk of dengue was classified as Low, Medium and
High and membership functions were constructed as illustrated in Fig. 11.8.
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Fig. 11.7 Map of dengue risk developed by the epiGeo [25]

Fig. 11.8 Membership
functions for the risk of
dengue [25]
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Let r(x, y, t) be the risk of dengue. The fuzzy rules that were developed, using
the ideas presented by [26], were the following.

Rule 1 : If r(x, y, t) is Low (L), then

∂r(x, y, t)

∂t
= κB

[
∂2r(x, y, t)

∂x2
+ ∂2r(x, y, t)

∂y2

]
+ aBr(x, y, t).
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Rule 2 : If r(x, y, t) is Medium (M), then

∂r(x, y, t)

∂t
= κM

[
∂2r(x, y, t)

∂x2
+ ∂2r(x, y, t)

∂y2

]
+ aMr(x, y, t).

Rule 3 : If r(x, y, t) is High (H), then

∂r(x, y, t)

∂t
= κA

[
∂2r(x, y, t)

∂x2
+ ∂2r(x, y, t)

∂y2

]
+ aAr(x, y, t).

In this case (M = 3), and from (11.21) we have

∂r(x, y, t)

∂t
=

M∑
i=1

ϕi (r(x, y, t))

[
κi

(
∂2r(x, y, t)

∂x2
+ ∂2r(x, y, t)

∂y2

)
+ air(x, t)

]
.

(11.22)
The parameters κi in (11.22) represent the spatial distribution of risk for the given
domain, that is, the associated geographical region.

A system based on fuzzy rules was constructed to find κi taking into account
environmental factors that influence the dynamics of Aedes aegypti and the affect
they have on the dispersion of risk. From this point of view, one might consider the
dynamics ofAedes aegypti as environment fuzziness (see Chaps. 9 and 10). The input
variables that affect the dynamics of Aedes aegypti are rainfall, human inhabitants
and mosquito breeding containers. The membership functions adopted for the input
variables can be found in [24, 25]. The membership functions constructed for the
output variable κi are shown in Fig. 11.9. A stochastic model was constructed to
determine the amount of rain, taking into account historical records provided by the
Agronomic Institute of Campinas.
References [24, 25] contain the details of the procedures used to calculate the para-
meters ai and the numerical methods to implement the equations.

Fig. 11.9 Membership
functions for κi [25]
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11.4.3 Simulations

We used MATLAB to implement computationally the PDE given in (11.22) and we
coupled the MATLAB toolkit for stochastic systems and fuzzy logic to determine
the parameters followed by their numerical methods solvers. The interested reader
can find a detailed development in [24, 25].

The spatial discretization we chose was WENO-5 (weighted essentially non-
oscillatory schemes) for the non-smooth regions of the map and CFDS-4 (centered
finite difference scheme of fourth order) for the smooth regions of the map. The time
discretization used Runge–Kutta TVD (Total Variation Diminishing). Figure11.10
shows a representative scheme of our coupling.

Case 1

Simulations of the evolution of dengue risk over time were implemented for the
months of December, January and February, corresponding to summer in the region.
Figure 11.11 shows the results obtained.

These results show, in general, that there was a spread of the disease risk over the
region. It is observed that there was a higher risk (red) of dengue that occurred in our
simulation during the three months. We conclude that, for the summer months, the
estimated values for the parameters κi and ai in this simulation favored the spread
of the risk of dengue in the southern region of Campinas.

Public health officials usually adopt measures to combat the Aedes aegypti mos-
quito breeding to decrease the incidence of dengue. So, the next simulation assumes
a reduction of potential mosquito breeding sites available in the region and this is
used in the fuzzy rules for κi , to see whether or not the model/simulation obtained a
decreased risk of dengue.

The fuzzy rules were developed according to [26] and it was assumed u(t) = 0 in
(11.17). The measure of control, which was the reduction of mosquito breeding sites,
was inserted into the parameter estimation procedure κi through the system based
on fuzzy rules. For a more comprehensive study, one could try to obtain a function
u(.) that takes into account other possible disease controls.

Fig. 11.10 Representative scheme of the coupling mathematical tools
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(a) Initial conditions (equal Figure 11.7). (b) After 30 days.

(c) After 60 days. (d) After 90 days.

Fig. 11.11 Evolution of the risk of dengue [25]

Case 2

Suppose we have a reduction of 80% in the number of mosquito breeding sites for
Aedes aegypti in the region. Starting from the given initial conditions, we have the
results illustrated in Fig. 11.12.

The figures show that after the first 30 days, there was reduction in the risk of
dengue in virtually the entire region considered, indicating that a relatively important
measure is to invest in a large reduction of sites available for the breeding of the
dengue vector. However note that after 60 and 90 days, in the vicinity of the red
regions, there was a growth and the spread of risk. This indicates that a public health
policy needs to be one of continuing reduction of mosquito breeding sites.

11.4.4 Final Considerations

This section proposed a Takagi–Sugeno model to assess the risk of dengue in the
southern region of Campinas. Preliminary studies regarding the risk of dengue in
this region were conducted by researchers at EpiGeo Laboratory of the University
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(a) Initial conditions. (b) After 30 days.

(c) After 60 days. (d) After 90 days.

Fig. 11.12 Evolution of the dengue risk [25]

of Campinas. Such information was the starting point for the proposed model. The
model was comprised of rules where the consequences are PDEs. The inference
combines such rules and the resulting equations are solved numerically by means of
methods developed in [24].

We observe from the situation, that an effective measure to reduce the risk of
dengue is to aggressively reduce the potential mosquito’s, Aedes aegypti, breeding
sites. For a more comprehensive study, one could try to obtain a function u(t) that
takes into account various possible disease controls such as genetically modified
mosquitoes, house screens, and/ormosquito eating animals such as bats and swallows
(birds).

11.5 The SI-model with Completely Correlated Initial
Conditions

This section presents the SI epidemiologicalmodel by consedering uncertain parame-
tersmodeled by completely correlated fuzzy numbers.More specifically wewill ana-
lyze themodel, via the extension principle that will account for the correlation among
the variables. The initial conditions are given by interactive fuzzy numbers [11].
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The SI-model, as we have already seen, is described by the system of differential
equations ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

dS

dt
= −βSI, S(0) = S0

d I

dt
= βSI, I (0) = I0 > 0,

(11.23)

where S(t) and I (t) are, respectively, the fractions of susceptible and infected indi-
viduals at the time t . The parameter β is a positive constant representing the rate of
contact of the disease.

Suppose that there is no variation in the total number of the population, that is,
consider the model without vital dynamics,

S(t) + I (t) = 1, ∀t ≥ 0. (11.24)

Thus, we get for each t ≥ 0, the deterministic solution of problem (11.23) given by

Lt (S0, I0) =
(

S0
S0 + I0eβt

,
I0eβt

S0 + I0eβt

)
. (11.25)

Now, consider system (11.23) where the initial conditions are uncertain and mod-
eled by fuzzy numbers. Since S0 + I0 = 1, we are dealingwith completely correlated
fuzzy numbers where r = 1 and q = −1 which we explain next. According to Def-
inition 11.2, S0 + I0 = 1 means that the joint possibility distribution C of S0 and I0
is such that

ϕC (s0, i0) = ϕS0(s0)X{s0+i0=1}(s0, i0) = ϕI0(i0)X{s0+i0=1}(s0, i0). (11.26)

In this case, for each α ∈ [0, 1], we have

ϕI0
(i0) = ϕS0

(1 − i0), [I0]α = [aα
1 , a

α
2 ], [S0]α = (−1)[I0]α + 1

and

[C]α = {(1 − i0, i0) ∈ R
2 : i0 = (1 − γ)aα

1 + γaα
2 , γ ∈ [0, 1]}. (11.27)

Thus, S0 + I0 = 1 implies q = −1 and r = 1.
Taking into consideration (11.27), and remembering the notions found in

Sect. 8.1.3, Eq. (11.23) becomes

⎧⎪⎪⎨
⎪⎪⎩

(
dS

dt
,
d I

dt

)
=

(
−βSI,βSI

)

(S0, I0) ∈ C

. (11.28)

http://dx.doi.org/10.1007/978-3-662-53324-6_8
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Solution of the Fuzzy SI-model Via Differential Inclusion

The solution to the Eq. (11.28) via fuzzy differential inclusion requires that we apply
the method described in Sect. 8.1.3 of Chap. 8, so that the solution of the problem
(11.28), using differential inclusion, is obtained from the solution of the auxiliary
problem ⎧⎨

⎩
( dSdt ,

d I
dt ) = (−βSI,βSI )

(S0, I0) ∈ [C]α,
(11.29)

where [C]α is given by Eq. (11.27). The attainable sets of the problem (11.29) are
given by

At ([C]α) =
{
x(t, S0, I0) : x(., S0, I0) is solution of (11.29)

}

=
{
x(t, S0, I0) : x ′(t, S0, I0) = (−βSI,βSI ), (S0, I0) ∈ [C]α

}

=
{(

s0
s0+i0eβt ,

i0eβt

s0+i0eβt

)
: (s0, i0) ∈ [C]α

}

=
{(

1−i0
(1−i0)+i0eβt ,

i0eβt

(1−i0)+i0eβt

)
:

i0 = (1 − γ)aα
1 + γaα

2 , γ ∈ [0, 1]
}
.

Solution of the Fuzzy SI-model Via Extension Principle

We will study the fuzzy SI-model given by (11.28) using as a tool the extension
principle via Definition 11.12 in (11.25). According to Theorem 11.4, the α-levels
of the solution obtained by the extension principle of the problem (11.28) are given
by the expression

[(Lt )C(S0, I0)]α = Lt ([C]α).

Therefore, the α-levels of the solution of the problem (11.28) are

[(Lt)C(S0, I0)]α = Lt ([C]α)
=

{
Lt (s0, i0) : (s0, i0) ∈ [C]α

}

=
{
Lt (1 − i0, i0) : i0 = (1 − γ)aα

1 + γaα
2 , γ ∈ [0, 1]

}

=
{(

1−i0
(1−i0)+i0eβt ,

i0eβt

(1−i0)+i0eβt

)
:

i0 = (1 − γ)aα
1 + γaα

2 , γ ∈ [0, 1]
}
.

That is, as predicted by Theorem 3.2 in [11], for every t ≥ 0, the sets (Lt )C(S0, I0)
and At (C) are identical.

http://dx.doi.org/10.1007/978-3-662-53324-6_8
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Fig. 11.13 Fuzzy solution to the problem (11.28) in the phase-portrait. The dots correspond
to the deterministic solution for different values of time t . The initial conditions are the com-
pletely correlated triangular fuzzy numbers I0 = (0.05; 0.08; 0.11) and S0 = (0.89; 0.92; 0.95),
with S0 + I0 = 1, and the contact rate is β = 0.3. Darker regions (for each t ≥ 0) mean greater
possibility (membership) of the number of susceptible and infected to the solution of the problem.
The deterministic solution has membership degree equal to 1 in the fuzzy solution [11, 30]

Figure11.13 represents the solution to the problem (11.28) employing the com-
pletely correlated triangular fuzzy numbers I0 = (0.05; 0.08; 0.11) and S0 = (0.89;
0.92; 0.95) as initial conditions, with S0 + I0 = 1 (according to Formula (11.3)) and
contact rate β = 0.3. Note that the fact that the fuzzy numbers are completely cor-
related forces the solution to problem (11.28) to be a curve contained within the line
S + I = 1, for each t ≥ 0.

We conclude this study by commenting that the solutions S(t) and I (t), of a
general epidemiological model are trajectories out of line x + y = 1 (see [16]). The
deterministic solution of problem (11.23), belong to line x + y = 1 becausewe admit
the correlation S(t) + I (t) = 1 for each t ≥ 0. If bise this we admit that S(t) and
I (t) are fuzzy numbers, then due S(t) + I (t) = 1, we have fuzzy numbers negatively
completely correlated.
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