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Embedded Image Coding Using Zerotrees of Wavelet 
Coefficients 

Jerome M .  Shapiro 

Abstract-The embedded zerotree wavelet algorithm (EZW) 
is a simple, yet remarkably effective, image compression algo- 
rithm, having the property that the bits in the bit stream are  
generated in order of importance, yielding a fully embedded 
code. The embedded code represents a sequence of binary de- 
cisions that distinguish a n  image from the “null” image. Using 
a n  embedded coding algorithm, a n  encoder can terminate the 
encoding a t  any point thereby allowing a target rate or  target 
distortion metric to be met exactly. Also, given a bit stream, 
the decoder can cease decoding a t  any point in the bit stream 
and still produce exactly the same image that would have been 
encoded a t  the bit rate corresponding to the truncated bit 
stream. In addition to  producing a fully embedded bit stream, 
EZW consistently produces compression results that a re  com- 
petitive with virtually all known compression algorithms on 
standard test images. Yet this performance is achieved with a 
technique that requires absolutely no training, no pre-stored 
tables or codebooks, and requires no prior knowledge of the 
image source. 

The EZW algorithm is based on four key concepts: 1) a dis- 
crete wavelet transform or  hierarchical subband decomposi- 
tion, 2) prediction of the absence of significant information 
across scales by exploiting the self-similarity inherent in im- 
ages, 3) entropy-coded successive-approximation quantization, 
and 4) universal lossless data compression which is achieved via 
adaptive arithmetic coding. 

I.  INTRODUCTION AND PROBLEM STATEMENT 
HIS paper addresses the two-fold problem of 1) ob- T taining the best image quality for a given bit rate, and 

2) accomplishing this task in an embedded fashion, i.e., 
in such a way that all encodings of the same image at 
lower bit rates are embedded in the beginning of the bit 
stream for the target bit rate. 

The problem is important in many applications, partic- 
ularly for progressive transmission, image browsing [ 2 5 ] ,  
multimedia applications, and compatible transcoding in a 
digital hierarchy of multiple bit rates. It is also applicable 
to transmission over a noisy channel in the sense that the 
ordering of the bits in order of importance leads naturally 
to prioritization for the purpose of layered protection 
schemes. 
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A .  Embedded Coding 
An embedded code represents a sequence of binary de- 

cisions that distinguish an image from the “null,” or all 
gray, image. Since, the embedded code contains all lower 
rate codes “embedded” at the beginning of the bit stream, 
effectively, the bits are “ordered in importance. ” Using 
an embedded code, an encoder can terminate the encoding 
at any point thereby allowing a target rate or distortion 
metric to be met exactly. Typically, some target param- 
eter, such as bit count, is monitored in the encoding pro- 
cess. When the target is met, the encoding simply stops. 
Similarly, given a bit stream, the decoder can cease de- 
coding at any point and can produce reconstructions cor- 
responding to all lower-rate encodings. 

Embedded coding is similar in spirit to binary finite- 
precision representations of real numbers. All real num- 
bers can be represented by a string of binary digits. For 
each digit added to the right, more precision is added. 
Yet, the “encoding” can cease at any time and provide 
the “best” representation of the real number achievable 
within the framework of the binary digit representation. 
Similarly, the embedded coder can cease at any time and 
provide the “best” representation of an image achievable 
within its framework. 

The embedded coding scheme presented here was mo- 
tivated in part by universal coding schemes that have been 
used for lossless data compression in which the coder at- 
tempts to optimally encode a source using no prior knowl- 
edge of the source. An excellent review of universal cod- 
ing can be found in [3]. In universal coders, the encoder 
must learn the source statistics as it progresses. In other 
words, the source model is incorporated into the actual bit 
stream. For lossy compression, there has been little work 
in universal coding. Typical image coders require exten- 
sive training for both quantization (both scalar and vector) 
and generation of nonadaptive entropy codes, such as 
Huffman codes. The embedded coder described in this pa- 
per attempts to be universal by incorporating all learning 
into the bit stream itself. This is accomplished by the ex- 
clusive use of adaptive arithmetic coding. 

Intuitively, for a given rate or distortion, a nonembed- 
ded code should be more efficient than an embedded code, 
since it is free from the constraints imposed by embed- 
ding. In their theoretical work [9], Equitz and Cover 
proved that a successively refinable description can only 
be optimal if the source possesses certain Markovian 
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properties. Although optimality is never claimed, a 
method of generating an embedded bit stream with no ap- 
parent sacrifice in image quality has been developed. 

B. Features of the Embedded Coder 
The EZW algorithm contains the following features 

A discrete wavelet transform which provides a com- 
pact multiresolution representation of the image. 
Zerotree coding which provides a compact multi- 
resolution representation of signijicance maps, which 
are binary maps indicating the positions of the sig- 
nificant coefficients. Zerotrees allow the successful 
prediction of insignificant coefficients across scales 
to be efficiently represented as part of exponentially 
growing trees. 
Successive Approximation which provides a com- 
pact multiprecision representation of the significant 
coefficients and facilitates the embedding algorithm. 
A prioritization protocol whereby the ordering of im- 
portance is determined, in order, by the precision, 
magnitude, scale, and spatial location of the wavelet 
Coefficients. Note in particular, that larger coeffi- 
cients are deemed more important than smaller coef- 
ficients regardless of their scale. 
Adaptive multilevel arithmetic coding which pro- 
vides a fast and efficient method for entropy coding 
strings of symbols, and requires no training or pre- 
stored tables. The arithmetic coder used in the ex- 
periments is a customized version of that in [3 11. 
The algorithm runs sequentially and stops whenever 
a target bit rate or a target distortion is met. A target 
bit rate can be met exacrly, and an operational rate- 
vs.-distortion function (RDF) can be computed point- 
by-point. 

C. Paper Organization 
Section I1 discusses how wavelet theory and multi- 

resolution analysis provide an elegant methodology for 
representing “trends” and “anomalies” on a statistically 
equal footing. This is important in image processing be- 
cause edges, which can be thought of as anomalies in the 
spatial domain, represent extremely important informa- 
tion despite that fact that they are represented in only a 
tiny fraction of the image samples. Section 111 introduces 
the concept of a zerotree and shows how zerotree coding 
can efficiently encode a significance map of wavelet coef- 
ficients by predicting the absence of significant informa- 
tion across scales. Section IV discusses how successive 
approximation quantization is used in conjunction with 
zerotree coding, and arithmetic coding to achieve efficient 
embedded coding. A discussion follows on the protocol 
by which EZW attempts to order the bits in order of im- 
portance. A key point there is that the definition of im- 
portance for the purpose of ordering information is based 
on the magnitudes of the uncertainty intervals as seen from 
the viewpoint of what the decoder can figure out. Thus, 

there is no additional overhead to transmit this ordering 
information. Section V consists of a simple 8 x 8 ex- 
ample illustrating the various points of the EZW algo- 
rithm. Section VI discusses experimental results for var- 
ious rates and for various standard test images. A 
surprising result is that using the EZW algorithm, termi- 
nating the encoding at an arbitrary point in the encoding 
process does not produce any artifacts that would indicate 
where in the picture the termination occurs. The paper 
concludes with Section VII. 

11. WAVELET THEORY AND MULTIRESOLUTION 
ANALYSIS 

A. Trends and Anomalies 
One of the oldest problems in statistics and signal pro- 

cessing is how to choose the size of an analysis window, 
block size, or record length of data so that statistics com- 
puted within that window provide good models of the sig- 
nal behavior within that window. The choice of an anal- 
ysis window involves trading the ability to analyze 
“anomalies, ” or signal behavior that is more localized in 
the time or space domain and tends to be wide band in the 
frequency domain, from “trends,” or signal behavior that 
is more localized in frequency but persists over a large 
number of lags in the time domain. To model data as being 
generated by random processes so that computed statistics 
become meaningful, stationary and ergodic assumptions 
are usually required which tend to obscure the contribu- 
tion of anomalies. 

The main contribution of wavelet theory and multires- 
olution analysis is that it provides an elegant framework 
in which both anomalies and trends can be analyzed on 
an equal footing. Wavelets provide a signal representation 
in which some of the coefficients represent long data lags 
corresponding to a narrow band, low frequency range, and 
some of the coeficients represent short data lags corre- 
sponding to a wide band, high frequency range. Using the 
concept of scale, data representing a continuous tradeoff 
between time (or space in the case of images) and fre- 
quency is available. 

For an introduction to the theory behind wavelets and 
multiresolution analysis, the reader is referred to several 
excellent tutorials on the subject [6], 171, [ 171, [ 181, [20], 
1261, 1271. 

B.  Relevance to Image Coding 
In image processing, most of the image area typically 

represents spatial “trends,” or areas of high statistical 
spatial correlation. However “anomalies,” such as edges 
or object boundaries, take on a perceptual significance that 
is far greater than their numerical energy contribution to 
an image. Traditional transform coders, such as those us- 
ing the DCT, decompose images into a representation in 
which each coefficient corresponds to a fixed size spatial 
area and a fixed frequency bandwidth, where the band- 
width and spatial area are effectively the same for all coef- 
ficients in the representation. Edge information tends to 
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disperse so that many non-zero coefficients are required 
to represent edges with good fidelity. However, since the 
edges represent relatively insignificant energy with re- 
spect to the entire image, traditional transform coders, 
such as those using the DCT, have been fairly successful 
at medium and high bit rates. At extremely low bit rates, 
however, traditional transform coding techniques, such as 
JPEG [30], tend to allocate too many bits to the “trends,” 
and have few bits left over to represent “anomalies.” As 
a result, blocking artifacts often result. 

Wavelet techniques show promise at extremely low bit 
rates because trends, anomalies, and information at all 
“scales” in between are available. A major difficulty is 
that fine detail coefficients representing possible anoma- 
lies constitute the largest number of coefficients, and 
therefore, to make effective use of the multiresolution 
representation, much of the information is contained in 
representing the position of those few coefficients corre- 
sponding to significant anomalies. 

The techniques of this paper allow coders to effectively 
use the power of multiresolution representations by effi- 
ciently representing the positions of the wavelet coeffi- 
cients representing significant anomalies. 

C.  A Discrete Wavelet Trrrnsform 
The discrete wavelet transform used in this paper is 

identical to a hierarchical subband system, where the sub- 
bands are logarithmically spaced in frequency and repre- 
sent an octave-band decomposition. To begin the decom- 
position, the image is divided into four subbands and 
critically subsampled as shown in Fig. 1.  Each coefficient 
represents a spatial area corresponding to approximately 
a 2 X 2 area of the original image. The low frequencies 
represent a bandwidth approximately corresponding to 0 
< (wI < a/2.  whereas the high frequencies represent the 
band from a / 2  < IwI < a. The four subbands arise from 
separable application of vertical and horizontal filters. The 
subbands labeled LHI , H L I ,  and H H ,  represent the finest 
scale wavelet coefficients. To obtain the next coarser scale 
of wavelet coefficients, the subband LL,  is further decom- 
posed and critically sampled as shown in Fig. 2. The pro- 
cess continues until some final scale is reached. Note that 
for each coarser scale, the coefficients represent a larger 
spatial area of the image but a narrower band of frequen- 
cies. At each scale, there are three subbands; the remain- 
ing lowest frequency subband is a representation of the 
information at all coarser scales. The issues involved in 
the design of the filters for the type of subband decom- 
position described above have been discussed by many 
authors and are not treated in  this paper. Interested read- 
ers should consult [ l ] ,  161, 1321, [35], in addition to ref- 
erences found in the bibliographies of the tutorial papers 
cited above. 

It is a matter of terminology to distinguish between a 
transform and a subband system as they are two ways of 
describing the same set of numerical operations from dif- 
fering points of view. Let x be a column vector whose 
elements represent a scanning of the image pixels, let X 

Fig. 1 .  First stage of a discrete wavelet transform: The image is divided 
into four subbands using separable filters. Each coefficient represents a spa- 
tial area corresponding to approximately a 2 X 2 area of the original pic- 
ture. The low frequencies represent a bandwidth approximately corre- 
sponding to 0 < I w I  < n/2,  whereas the high frequencies represent the 
band from 7/2  < I w (  < n. The four subbands arise from separable appli- 
cation of vertical and horizontal filters 

Fig. 2. A two-scale wavelet decomposition: The image is divided into four 
subbands using separable filters. Each coefficient in the subbands LL,, LH,, 
HL2 and HH2 represents a spatial area corresponding to approximately a 4 
x 4 area of the original picture. The low frequencies at this scale represent 
a bandwidth approximately corresponding to 0 < I w /  < 7r/4, whereas the 
high frequencies represent the band from n/4 < 1 0 )  < n/2.  

be a column vector whose elements are the array of coef- 
ficients resulting from the wavelet transform or subband 
decomposition applied to x. From the transform point of 
view, X represents a linear transformation of x repre- 
sented by the matrix W, i.e., 

x = wx. (1) 

Although not actually computed this way, the effective 
filters that generate the subband signals from the original 
signal form basis functions for the transformation, i.e.,  
the rows of W. Different coefficients in the same subband 
represent the projection of the entire image onto translates 
of a prototype subband filter, since from the subband point 
of view, they are simply regularly spaced different outputs 
of a convolution between the image and a subband filter. 
Thus, the basis functions for each coefficient in a given 
subband are simply translates of one another. 

In subband coding systems [32], the coefficients from 
a given subband are usually grouped together for the pur- 
poses of designing quantizers and coders. Such a group- 
ing suggests that statistics computed from a subband are 
in some sense representative of the samples in that sub- 



3448 

[Transformation I Quantization 

IEEE TRANSACTIONS ON SIGNAL PROCESSING. VOL. 41, NO. 12, DECEMBER 1993 

1 Compression I band. However this statistical grouping once again im- 
plicitly de-emphasizes the outliers, which tend to repre- 
sent the most significant anomalies or edges. In this paper, 
the term “wavelet transform” is used because each wave- 
let coefficient is individually and deterministically com- 
pared to the same set of thresholds for the purpose of 
measuring significance. Thus, each coefficient is treated 
as a distinct, potentially important piece of data regard- 
less of its scale, and no statistics for a whole subband are 
used in any form. The result is that the small number of 
“deterministically’ ’ significant fine scale coefficients are 
not obscured because of their “statistical” insignificance. 

The filters used to compute the discrete wavelet trans- 
form in the coding experiments described in this paper are 
based on the 9-tap symmetric quadrature mirror filters 
(QMF) whose coefficients are given in [ 11. This transfor- 
mation has also been called a QMF-pyramid. These filters 
were chosen because in addition to their good localization 
properties, their symmetry allows for simple edge treat- 
ments, and they produce good results empirically. Addi- 
tionally, using properly scaled coefficients, the transfor- 
mation matrix for a discrete wavelet transform obtained 
using these filters is so close to unitary that it can be 
treated as unitary for the purpose of lossy compression. 
Since unitary transforms preserve L2 norms, it makes 
sense from a numerical standpoint to compare all of the 
resulting transform coefficients to the same thresholds to 
assess significance. 

111. ZEROTREES OF WAVELET COEFFICIENTS 
In this section, an important aspect of low bit rate im- 

age coding is discussed: the coding of the positions of 
those coefficients that will be transmitted as nonzero val- 
ues. Using scalar quantization followed by entropy cod- 
ing, in order to achieve very low bit rates, i .e.,  less than 
1 bit/pel, the probability of the most likely symbol after 
quantization-the zero symbol-must be extremely high. 
Typically, a large fraction of the bit budget must be spent 
on encoding the significance map, or the binary decision 
as to whether a sample, in this case a coefficient of a 2-D 
discrete wavelet transform, has a zero or nonzero quan- 
tized value. It follows that a significant improvement in 
encoding the significance map translates into a corre- 
sponding gain in compression efficiency. 

A .  Signijicance Map Encoding 
To appreciate the importance of significance map en- 

coding, consider a typical transform coding system where 
a decorrelating transformation is followed by an entropy- 
coded scalar quantizer. The following discussion is not 
intended to be a rigorous justification for significance map 
encoding, but merely to provide the reader with a sense 
of the relative coding costs of the position information 
contained in the significance map relative to amplitude 
and sign information. 

A typical low-bit rate image coder has three basic com- 
ponents: a transformation, a quantizer and data compres- 

Representation 

Stream 
Decorrelates of Symbol 

Samples 

Fig. 3 .  A generic transform coder. 

sion, as shown in Fig. 3.  The original image is passed 
through some transformation to produce transform coef- 
ficients. This transformation is considered to be lossless, 
although in practice this may not be the case exactly. The 
transform coefficients are then quantized to produce a 
stream of symbols, each of which corresponds to an index 
of a particular quantization bin. Note that virtually all of 
the information loss occurs in the quantization stage. The 
data compression stage takes the stream of symbols and 
attempts to losslessly represent the data stream as effi- 
ciently as possible. 

The goal of the transformation is to produce coefficients 
that are decorrelated. If we could, we would ideally like 
a transformation to remove all dependencies between 
samples. Assume for the moment that the transformation 
is doing its job so well that the resulting transform coef- 
ficients are not merely uncorrelated, but statistically in- 
dependent. Also, assume that we have removed the mean 
and coded it separately so that the transform coefficients 
can be modeled as zero-mean, independent, although per- 
haps not identically distributed random variables. Fur- 
thermore, we might additionally constrain the model so 
that the probability density functions (PDF) for the coef- 
ficients are symmetric. 

The goal is to quantize the transform coefficients so that 
the entropy of the resulting distribution of bin indexes is 
small enough so that the symbols can be entropy-coded at 
some target low bit rate, say for example 0.5 bits per pixel 
(bpp.). Assume that the quantizers will be symmetric 
midtread, perhaps nonuniform, quantizers, although dif- 
ferent symmetric midtread quantizers may be used for dif- 
ferent groups of transform coefficients. Letting the central 
bin be index 0, note that because of the symmetry, for a 
bin with a nonzero index magnitude, a positive or nega- 
tive index is equally likely. In other words, for each non- 
zero index encoded, the entropy code is going to require 
at least one-bit for the sign. An entropy code can be de- 
signed based on modeling probabilities of bin indices as 
the fraction of coefficients in which the absolute value of 
a particular bin index occurs. Using this simple model, 
and assuming that the resulting symbols are independent, 
the entropy of the symbols H can be expressed as 

H = -p  log2p - (1 - p )  log2 (1 - P )  

+ (1 - PIU + H N Z l ,  (2) 

where p is the probability that a transform coefficient is 
quantized to zero, and HNz represents the conditional en- 
tropy of the absolute values of the quantized coefficients 
conditioned on them being nonzero. The first two terms 
in the sum represent the first-order binary entropy of the 
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significance map, whereas the third term represents the 
conditional entropy of the distribution of nonzero values 
multiplied by the probability of them being nonzero. Thus, 
we can express the true cost of encoding the actual sym- 
bols as follows: 

Total Cost = Cost of Significance Map 

+ Cost of Nonzero Values. (3) 

Returning to the model, suppose that the target is H = 
0.5. What is the minimum probability of zero achievable? 
Consider the case where we only use a 3-level quantizer, 
i.e. HNZ = 0. Solving for p provides a lower bound on 
the probability of zero given the independence assump- 
tion 

(4) 

In this case, under the most ideal conditions, 91.6% of 
the coefficients must be quantized to zero. Furthermore, 
83 % of the bit budget is used in encoding the significance 
map. Consider a more typical example where H N Z  = 4, 
the minimum probability of zero is 

( 5 )  

In this case, the probability of zero must increase, while 
the cost of encoding the significance map is still 54% of 
the cost. 

As the target rate decreases, the probability of zero in- 
creases, and the fraction of the encoding cost attributed 
to the significance map increases. Of course, the inde- 
pendence assumption is unrealistic and in practice, there 
are often additional dependencies between coefficients that 
can be exploited to further reduce the cost of encoding the 
significance map. Nevertheless, the conclusion is that no 
matter how optimal the transform, quantizer or entropy 
coder, under very typical conditions, the cost of deter- 
mining the positions of the few significant coefficients 
represents a significant portion of the bit budget at low 
rates, and is likely to become an increasing fraction of the 
total cost as the rate decreases. As will be seen, by em- 
ploying an image model based on an extremely simple 
and easy to satisfy hypothesis, we can efficiently encode 
significance maps of wavelet coefficients. 

B. Compression of Signijicance Maps using Zerotrees of 
Wavelet Coeficients 

To improve the compression of significance maps of 
wavelet coefficients, a new data structure called a zerotree 
is defined. A wavelet coefficient x is said to be insigniji- 
canr with respect to a given threshold T if 1x1 < T. The 
zerotree is based on the hypothesis that if a wavelet coef- 
ficient at a coarse scale is insignificant with respect to a 
given threshold T, then all wavelet coefficients of the same 
orientation in the same spatial location at finer scales are 
likely to be insignificant with respect to T. Empirical evi- 
dence suggests that this hypothesis is often true. 

More specifically, in a hierarchical subband system, 
with the exception of the highest frequency subbands, 

p,,,i,,(HNz = 0,  H = 0.5) = 0.916. 

p,,,,,,(HNz = 4, H = 0.5) = 0.954. 

every coefficient at a given scale can be related to a set of 
coefficients at the next finer scale of similar orientation. 
The coefficient at the coarse scale is called theparent, and 
all coefficients corresponding to the same spatial location 
at the next finer scale of similar orientation are called chil- 
dren. For a given parent, the set of all coefficients at all 
finer scales of similar orientation corresponding to the 
same location are called descendants. Similarly, for a 
given child, the set of coefficients at all coarser scales of 
similar Orientation corresponding to the same location are 
called ancestors. For a QMF-pyramid subband decom- 
position, the parent-child dependencies are shown in Fig. 
4. A wavelet tree descending from a coefficient in sub- 
band HH3 is also seen in Fig. 4. With the exception of 
the lowest frequency subband, all parents have four chil- 
dren. For the lowest frequency subband, the parent-child 
relationship is defined such that each parent node has three 
children. 

A scanning of the coefficients is performed in such a 
way that no child node is scanned before its parent. For 
an N-scale transform, the scan begins at the lowest fre- 
quency subband, denoted as LLN, and scans subbands 
HLN, LHN, and HHN, at which point it moves on to scale 
N - 1, etc. The scanning pattern for a 3-scale QMF-pyr- 
amid can be seen in Fig. 5. Note that each coefficient 
within a given subband is scanned before any coefficient 
in the next subband. 

Given a threshold level T to determine whether or not 
a coefficient is significant, a coefficient x is said to be an 
element of a zerotree for threshold T if itself and all of its 
descendents are insignificant with respect to T. An ele- 
ment of a zerotree for threshold T is a Zerotree root if it 
is not the descendant of a previously found zerotree root 
for threshold T,  i .e.,  it is not predictably insignijicant 
from the discovery of a zerotree root at a coarser scale at 
the same threshold. A zerotree root is encoded with a spe- 
cial symbol indicating that the insignificance of the coef- 
ficients at finer scales is completely predictable. The sig- 
nificance map can be efficiently represented as a string of 
symbols from a 3-symbol alphabet which is then entropy- 
coded. The three symbols used are 1) zerotree root, 2) 
isolated zero, which means that the coefficient is insignif- 
icant but has some significant descendant, and 3) signifi- 
cant. When encoding the finest scale coefficients, since 
coefficients have no children, the symbols in the string 
come from a 2-symbol alphabet, whereby the zerotree 
symbol is not used. 

As will be seen in Section IV, in addition to encoding 
the significance map, it is useful to encode the sign of 
significant coefficients along with the significance map. 
Thus, in practice, four symbols are used: 1) zerotree root, 
2) isolated zero, 3) positive significant, and 4) negative 
significant. This minor addition will be useful for embed- 
ding. The flow chart for the decisions made at each coef- 
ficient are shown in Fig. 6 .  

Note that it is also possible to include two additional 
symbols such as ‘‘positive/negative significant, but des- 
cendants are zerotrees” etc. In practice, it was found that 
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Fig. 4. Parent-child dependencies of subbands: Note that the arrow points 
from the subband of the parents to the subband of the children. The lowest 
frequency subband is the top left, and the highest frequency subband is at 
the bottom right. Also shown is a wavelet tree consisting of all of the de- 
scendents of a single coefficient in subband H H 3 .  The coefficient in H H 3  
is a zerotree root if it is insignificant and all of its descendants are insig- 
nificant. 

Fig. 5.  Scanning order of the subbands for encoding a significance map: 
Note that parents must be scanned before children. Also note that all po- 
sitions in a given subband are scanned before the scan moves to the next 
subband. 

at low bit rates, this addition often increases the cost of 
coding the significance map. To see why this may occur, 
consider that there is a cost associated with partitioning 
the set of positive (or negative) significant samples into 
those whose descendents are zerotrees and those with sig- 
nificant descendants. If the cost of this decision is C bits, 
but the cost of encoding a zerotree is less than C/4 bits, 
then it is more efficient to code four zerotree symbols sep- 
arately than to use additional symbols. 

Zerotree coding reduces the cost of encoding the sig- 
nificance map using self-similarity. Even though the im- 
age has been transformed using a decorrelating transform 
the occurrences of insignificant coefficients are not inde- 
pendent events. More traditional techniques employing 
transform coding typically encode the binary map via 
some form of run-length encoding [30]. Unlike the zero- 
tree symbol, which is a single “terminating” symbol and 
applies to all tree-depths, run-length encoding requires a 
symbol for each run-length which much be encoded. A 
technique that is closer in spirit to the zerotrees is the end- 
of-block (EOB) symbol used in JPEG [30], which is also 
a “terminating” symbol indicating that all remaining 
DCT coefficients in the block are quantized to zero. To 

Input Coefficient 

Code Code Code Code 
Positive Negative Isolated Zero 
Symbol Symbol Symbol Symbol 

Zerotree Root 

Fig. 6 .  Flow chart for encoding a coefficient of the significance map. 

see why zerotrees may provide an advantage over EOB 
symbols, consider that a zerotree represents the insignif- 
icance information in a given orientation over an approx- 
imately square spatial area at all finer scales up to and 
including the scale of the zerotree root. Because the wave- 
let transform is a hierarchical representation, varying the 
scale in which a zerotree root occurs automatically adapts 
the spatial area over which insignificance is represented. 
The EOB symbol, however, always represents insignif- 
icance over the same spatial area, although the number of 
frequency bands within that spatial area varies. Given a 
fixed block size, such as 8 X 8 ,  there is exactly one scale 
in the wavelet transform in which if a zerotree root is 
found at that scale, it corresponds to the same spatial area 
as a block of the DCT. If a zerotree root can be identified 
at a coarser scale, then the insignificance pertaining to 
that orientation can be predicted over a larger area. Sim- 
ilarly, if the zerotree root does not occur at this scale, then 
looking for zerotrees at finer scales represents a hierar- 
chical divide and conquer approach to searching for one 
or more smaller areas of insignificance over the same spa- 
tial regions as the DCT block size. Thus, many more coef- 
ficients can be predicted in smooth areas where a root typ- 
ically occurs at a coarse scale. Furthermore, the zerotree 
approach can isolate interesting non-zero details by im- 
mediately eliminating large insignificant regions from 
consideration. 

Note that this technique is quite different from previous 
attempts to exploit self-similarity in image coding [ 191 in 
that it is far easier to predict insignificance than to predict 
significant detail across scales. The zerotree approach was 
developed in recognition of the difficulty in achieving 
meaningful bit rate reductions for significant coefficients 
via additional prediction. Instead, the focus here is on re- 
ducing the cost of encoding the significance map so that, 
for a given bit budget, more bits are available to encode 
expensive significant coefficients. In practice, a large 
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fraction of the insignificant coefficients are efficiently en- 
coded as part of a zerotree. 

A similar technique has been used by Lewis and 
Knowles (LK) [15], [16]. In that work, a “tree” is said 
to be zero if its energy is less than a perceptually based 
threshold. Also, the “zero flag” used to encode the tree 
is not entropy-coded. The present work represents an im- 
provement that allows for embedded coding for two rea- 
sons. Applying a deterministic threshold to determine sig- 
nificance results in a zerotree symbol which guarantees 
that no descendant of the root has a magnitude larger than 
the threshold. As a result, there is no possibility of a sig- 
nificant coefficient being obscured by a statistical energy 
measure. Furthermore, the zerotree symbol developed in 
this paper is part of an alphabet for entropy coding the 
significance map which further improves its compression. 
As will be discussed subsequently, it is the first property 
that makes this method of encoding a significance map 
useful in conjunction with successive-approximation. Re- 
cently, a promising technique representing a compromise 
between the EZW algorithm and the LK coder has been 
presented in [34]. 

C.  Interpretation as a Simple Image Model 
The basic hypothesis-if a coefficient at a coarse scale 

is insignificant with respect to a threshold then all of its 
descendants, as defined above, are also insignificant-can 
be interpreted as an extremely general image model. One 
of the aspects that seems to be common to most models 
used to describe images is that of a “decaying spectrum.” 
For example, this property exists for both stationary au- 
toregressive models, and non-stationary fractal, or 
“nearly-l/f” models, as implied by the name which re- 
fers to a generalized spectrum [33]. The model for the 
zerotree hypothesis is even more general than “decaying 
spectrum” in that it allows for some deviations to “de- 
caying spectrum” because it is linked to a specific thresh- 
old. Consider an example where the threshold is 50, and 
we are considering a coefficient of magnitude 30, and 
whose largest descendant has a magnitude of 40. Al- 
though a higher frequency descendant has a larger mag- 
nitude (40) than the coefficient under consideration (30), 
i.e., the “decaying spectrum” hypothesis is violated, the 
coefficient under consideration can still be represented us- 
ing a zerotree root since the whole tree is still insignificant 
(magnitude less than 50). Thus, assuming the more com- 
mon image models have some validity, the zerotree hy- 
pothesis should be satisfied easily and extremely often. 
For those instances where the hypothesis is violated, it is 
safe to say that an informative, i.e., unexpected, event 
has occurred, and we should expect the cost of represent- 
ing this event to be commensurate with its self-informa- 
tion. 

It should also be pointed out that the improvement in 
encoding significance maps provided by zerotrees is spe- 
cifically not the result of exploiting any linear dependen- 
cies between coefficients of different scales that were not 

removed in the transform stage. In practice, the linear 
correlation between the values of parent and child wavelet 
coefficients has been found to be extremely small, imply- 
ing that the wavelet transform is doing an excellent job of 
producing nearly uncorrelated coefficients. However, 
there is likely additional dependency between the squares 
(or magnitudes) of parents and children. Experiments run 
on about 30 images of all different types, show that the 
correlation coefficient between the square of a child and 
the square of its parent tends to be between 0.2 and 0.6 
with a string concentration around 0.35. Although this de- 
pendency is difficult to characterize in general for most 
images, even without access to specific statistics, it is rea- 
sonable to expect the magnitude of a child to be smaller 
than the magnitude of its parent. In other words, it can be 
reasonably conjectured based on experience with real- 
world images, that had we known the details of the sta- 
tistical dependencies, and computed an “optimal” esti- 
mate, such as the conditional expectation of the child’s 
magnitude given the parent’s magnitude, that the “opti- 
mal” estimator would, with very high probability, predict 
that the child’s magnitude would be the smaller of the 
two. Using only this mild assumption, based on an inex- 
act statistical characterization, given a fixed threshold, and 
conditioned on the knowledge that a parent is insignificant 
with respect to the threshold, the “optimal” estimate of 
the significance of the rest of the descending wavelet tree 
is that it is entirely insignificant with respect to the same 
threshold, i.e., a zerotree. On the other hand, if the parent 
is significant, the “optimal” estimate of the significance 
of descendants is highly dependent on the details of the 
estimator whose knowledge would require more detailed 
information about the statistical nature of the image. Thus, 
under this mild assumption, using zerotrees to predict the 
insignificance of wavelet coefficients at fine scales given 
the insignificance of a root at a coarse scale is more likely 
to be successful in the absence of additional information 
than attempting to predict significant detail across scales. 

This argument can be made more concrete. Let x be a 
child of y ,  where x and y are zero-mean random variables, 
whose probability density functions (PDF) are related as 

p, (x)  = ap,(@, a > 1. (6) 
This states that random variables x and y have the same 
PDF shape, and that 

0 5  = a2a:. (7) 

E[xy] = 0. (8) 

Assume further that x and y are uncorrelated, i.e., 

Note that nothing has been said about treating the sub- 
bands as a group, or as stationary random processes, only 
that there is a similarity relationship between random 
variables of parents and children. It is also reasonable be- 
cause for intermediate subbands a coefficient that is a child 
with respect to one coefficient is a parent with respect to 
others; the PDF of that coefficient should be the same in 
either case. Let u = x 2  and U = y 2 .  Suppose that u and 
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v are correlated with correlation coefficient p .  We have 
the following relationships: 

E[u] = 0; (9) 

E[v] = 0; (10) 

Notice in particular that 

U:, = ~ ~ 0 2 , .  

Using a well known result, the expression for the best 
linear unbiased estimator (BLUE) of U given U to mini- 
mize error variance is given by 

If it is observed that the magnitude of the parent is below 
the threshold T ,  i.e., U = y 2  < T 2 ,  then the BLUE can 
be upper bounded by 

Consider two cases a) T I uv and b) T < ov. In case (a), 
we have 

T 2  
~ ~ B L ” E ( v ~ v  < T*)  I < T ~ ,  (17) 

which implies that the BLUE of x 2  given I yI < T is less 
than T 2 ,  for any p ,  including p = 0. In case (b), we can 
only upper bound the right hand side of (16) by T 2  if p 
exceeds the lower bound 

a lT2 
1 - 7  

I - - ,  
0, 

Of course, a better nonlinear estimate might yield dif- 
ferent results, but the above analysis suggests that for 
threshold exceeding the standard deviation of the parent, 
which by (6) exceeds the standard deviation of all de- 
scendants, if it is observed that a parent is insignificant 
with respect to the threshold, then, using the above BLUE, 
the estimates for the magnitudes of all descendants is that 
they are less than the threshold, and a zerotree is expected 
regardless of the correlation between squares of parents 
and squares of children. As the threshold decreases, more 
correlation is required to justify expecting a zerotree to 
occur. Finally, since the lower bound p o  --+ 1 as T --+ 0, 
as the threshold is reduced, it becomes increasingly dif- 
ficult to expect zerotrees to occur, and more knowledge 
of the particular statistics are required to make inferences. 
The implication of this analysis is that at very low bit 

rates, where the probability of an insignificant sample 
must be high and thus, the significance threshold T must 
also be large, expecting the occurrence of zerotrees and 
encoding significance maps using zerotree coding is rea- 
sonable without even knowing the statistics. However, 
letting T decrease, there is some point below which the 
advantage of zerotree coding diminishes, and this point is 
dependent on the specific nature of higher order depen- 
dencies between parents and children. In particular, the 
stronger this dependence, the more T can be decreased 
while still retaining an advantage using zerotree coding. 
Once again, this argument is not intended to “prove” the 
optimality of zerotree coding, only to suggest a rationale 
for its demonstrable success. 

D. Zerotree-Like Structures in Other Subband 
Conjgurations 

The concept of predicting the insignificance of coeffi- 
cients from low frequency to high frequency information 
corresponding to the same spatial localization is a fairly 
general concept and not specific to the wavelet transform 
configuration shown in Fig. 4. Zerotrees are equally ap- 
plicable to quincunx wavelets [2], [13], [23], [29], in 
which case each parent would have two children instead 
of four, except for the lowest frequency, where parents 
have a single child. 

Also, a similar approach can be applied to linearly 
spaced subband decompositions, such as the DCT, and to 
other more general subband decompositions, such as 
wavelet packets [5] and Laplacian pyramids [4]. For ex- 
ample, one of many possible parent-child relationship for 
linearly spaced subbands can be seen in Fig. 7. Of course, 
with the use of linearly spaced subbands, zerotree-like 
coding loses its ability to adapt the spatial extent of the 
insignificance prediction. Nevertheless, it is possible for 
zerotree-like coding to outperform EOB-coding since 
more coefficients can be predicted from the subbands 
along the diagonal. For the case of wavelet packets, the 
situation is a bit more complicated, because a wider range 
of tilings of the ‘ ‘space-frequency ” domain are possible. 
In that case, it may not always be possible to define sim- 
ilar parent-child relationships because a high-frequency 
coefficient may in fact correspond to a larger spatial area 
than a co-located lower frequency coefficient. On the other 
hand, in a coding scheme such as the “best-basis’’ ap- 
proach of Coifman et al. [ 5 ] ,  had the image-dependent 
best basis resulted in such a situation, one wonders if the 
underlying hypothesis-that magnitudes of coefficients 
tend to decay with frequency-would be reasonable any- 
way. These zerotree-like extensions represent interesting 
areas for further research. 

IV . SUCCESSIVE-APPROXIMATION 
The previous section describes a method of encoding 

significance maps of wavelet coefficients that, at least em- 
pirically, seems to consistently produce a code with a 
lower bit rate than either the empirical first-order entropy, 
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Fig. 7. Parent-child dependencies for linearly spaced subbands systems, 
such as the DCT. Note that the arrow points from the subband of the par- 
ents to the subband of the children. The lowest frequency subband is the 
top left, and the highest frequency subband is at the bottom right. 

or a run-length code of the significance map. The original 
motivation for employing successive-approximation in 
conjunction with zerotree coding was that since zerotree 
coding was performing so well encoding the significance 
map of the wavelet coefficients, it was hoped that more 
efficient coding could be achieved by zerotree coding more 
significance maps. 

Another motivation for successive-approximation de- 
rives directly from the goal of developing an embedded 
code analogous to the binary-representation of an approx- 
imation to a real number. Consider the wavelet transform 
of an image as a mapping whereby an amplitude exists for 
each coordinate in scale-space. The scale-space coordi- 
nate system represents a coarse-to-fine “logarithmic” 
representation of the domain of the function. Taking the 
coarse-to-fine philosophy one-step further, successive-ap- 
proximation provides a coarse-to-fine, multiprecision 
“logarithmic” representation of amplitude information, 
which can be thought of as the range of the image function 
when viewed in the scale-space coordinate system defined 
by the wavelet transform. Thus, in a very real sense, the 
EZW coder generates a representation of the image that 
is coarse-to-fine in both the domain and range simulta- 
neously. 

A. Successive-Approximation Entropy-Coded 
Quantization 

To perform the embedded coding, successive-approxi- 
mation quantization (SAQ) is applied. As will be seen, 
SAQ is related to bit-plane encoding of the magnitudes. 
The SAQ sequentially applies a sequence of thresholds 
To, * , T+, to determine significance, where the 
thresholds are chosen so that T, = T, - ,  /2. The initial 
threshold To is chosen so that IXjl < 2T0 for all transform 
coefficients x j .  

During the encoding (and decoding), two separate lists 
of wavelet coefficients are maintained. At any point in the 
process, the dominant list contains the coordinates of 
those coefficients that have not yet been found to be sig- 
nificant in the same relative order as the initial scan. This 
scan is such that the subbands are ordered, and within 
each subband, the set of coefficients are ordered. Thus, 

using the ordering of the subbands shown in Fig. 5 ,  all 
coefficients in a given subband appear on the initial dom- 
inant list prior to coefficients in the next subband. The 
subordinate list contains the magnitudes of those coeffi- 
cients that have been found to be significant. For each 
threshold, each list is scanned once. 

During a dominant pass, coefficients with coordinates 
on the dominant list, i.e., those that have not yet been 
found to be significant, are compared to the threshold T, 
to determine their significance, and if significant, their 
sign. This significance map is then zerotree coded using 
the method outlined in Section 111. Each time a coefficient 
is encoded as significant, (positive or negative), its mag- 
nitude is appended to the subordinate list, and the coeffi- 
cient in the wavelet transform array is set to zero so that 
the significant coefficient does not prevent the occurrence 
of a zerotree on future dominant passes at smaller thresh- 
olds. 

A dominant pass is followed by a subordinate pass in 
which all coefficients on the subordinate list are scanned 
and the specifications of the magnitudes available to the 
decoder are refined to an additional bit of precision. More 
specifically, during a subordinate pass, the width of the 
effective quantizer step size, which defines an uncertainty 
interval for the true magnitude of the coefficient, is cut in 
half. For each magnitude on the subordinate list, this re- 
finement can be encoded using a binary alphabet with a 
“1” symbol indicating that the true value falls in the up- 
per half of the old uncertainty interval and a “0” symbol 
indicating the lower half. The string of symbols from this 
binary alphabet that is generated during a subordinate pass 
is then entropy coded. Note that prior to this refinement, 
the width of the uncertainty region is exactly equal to the 
current threshold. After the completion of a subordinate 
pass the magnitudes on the subordicate list are sorted in 
decreasing magnitude, to the extent that the decoder has 
the information to perform the same sort. 

The process continues to alternate between dominant 
passes and subordinate passes where the threshold is 
halved before each dominant pass. (In principle one could 
divide by other factors than 2. This factor of 2 was chosen 
here because it has nice interpretations in terms of bit 
plane encoding and numerical precision in a familiar base 
2, and good coding results were obtained). 

In the decoding operation, each decoded symbol, both 
during a dominant and a subordinate pass, refines and re- 
duces the width of the uncertainty interval in which the 
true value of the coefficient (or coefficients, in the case of 
a zerotree root) may occur. The reconstruction value used 
can be anywhere in that uncertainty interval. For mini- 
mum mean-square error distortion, one could use the cen- 
troid of the uncertainty region using some model for the 
PDF of the coefficients. However, a practical approach, 
which is used in the experiments, and is also MINMAX 
optimal, is to simply use the center of the uncertainty in- 
terval as the reconstruction value. 

The encoding stops when some target stopping condi- 
tion is met, such as when the bit budget is exhausted. The 
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encoding can cease at any time and the resulting bit stream 
contains all lower rate encodings. Note, that if the bit 
stream is truncated at an arbitrary point, there may be bits 
at the end of the code that do not decode to a valid symbol 
since a codeword has bene truncated. In that case, these 
bits do not reduce the width of an uncertainty interval or 
any distortion function. In fact, it is very likely that the 
first L bits of the bit stream will produce exactly the same 
image as the first L + 1 bits which occurs if the additional 
bit is insufficient to complete the decoding of another 
symbol. Nevertheless, terminating the decoding of an 
embedded bit stream at a specific point in the bit stream 
produces exactly the same image that would have resulted 
had that point been the initial target rate. This ability to 
cease encoding or decoding anywhere is extremely useful 
in systems that are either rate-constrained or distortion- 
constrained. A side benefit of the technique is that an op- 
erational rate vs. distortion plot for the algorithm can be 
computed on-line. 

B. Relationship to Bit Plane Encoding 
Although the embedded coding system described here 

is considerably more general and more sophisticated than 
simple bit-plane encoding, consideration of the relation- 
ship with bit-plane encoding provides insight into the suc- 
cess of embedded coding. 

Consider the successive-approximation quantizer for the 
case when all thresholds are powers of two, and all wave- 
let coefficients are integers. In this case, for each coeffi- 
cient that eventually gets coded as significant, the sign 
and bit position of the most-significant binary digit 
(MSBD) are measured and encoded during a dominant 
pass. For example, consider the 10-bit representation of 
the number 41 as 0000101001. Also, consider the binary 
digits as a sequence of binary decisions in a binary tree. 
Proceeding from left to right, if we have not yet encoun- 
tered a “1  ,” we expect the probability distribution for the 
next digit to be strongly biased toward “0.” The digits to 
the left and including the MSBD are called the dominant 
bits, and are measured during dominant passes. After the 
MSBD has been encountered, we expect a more random 
and much less biased distribution between a “0” and a 
“1,” although we might still expect P ( 0 )  > P ( l )  be- 
cause most PDF models for transform coefficients decay 
with amplitude. Those binary digits to the right of the 
MSBD are called the subordinate bits and are measured 
and encoded during the subordinate pass. A zeroth-order 
approximation suggests that we should expect to pay close 
to one bit per ‘‘binary digit” for subordinate bits, while 
dominant bits should be far less expensive. 

By using successive-approximation beginning with the 
largest possible threshold, where the probability of zero 
is extremely close to one, and by using zerotree coding, 
whose efficiency increases as the probability of zero in- 
creases, we should be able to code dominant bits with 
very few bits, since they are most often part of a zerotree. 

In general, the thresholds need not be powers of two. 

However, by factoring out a constant mantissa, M ,  the 
starting threshold To can be expressed in terms of a thresh- 
old that is a power of two 

To = M 2 E ,  (19) 

where the exponent E is an integer, in which case, the 
dominant and subordinate bits of appropriately scaled 
wavelet coefficients are coded during dominant and sub- 
ordinate passes, respectively. 

C. Advantage of Small Alphabets for Adaptive 
Arithmetic Coding 

Note that the particular encoder alphabet used by the 
arithmetic coder at any given time contains either 2, 3, or 
4 symbols depending whether the encoding is for a sub- 
ordinate pass, a dominant pass with no zerotree root sym- 
bol, or a dominant pass with the zerotree root symbol. 
This is a real advantage for adapting the arithmetic coder. 
Since there are never more than four symbols, all of the 
possibilities typically occur with a reasonably measurable 
frequency. This allows an adaptation algorithm with a 
short memory to learn quickly and constantly track chang- 
ing symbol probabilities. This adaptivity accounts for 
some of the effectiveness of the overall algorithm. Con- 
trast this with the case of a large alphabet, as is the case 
in algorithms that do not use successive approximation. 
In that case, it takes many events before an adaptive en- 
tropy coder can reliably estimate the probabilities of un- 
likely symbols (see the discussion of the zero-frequency 
problem in [3]). Furthermore, these estimates are fairly 
unreliable because images are typically statistically non- 
stationary and local symbol probabilities change from re- 
gion to region. 

In the practical coder used in the experiments, the arith- 
metic coder is based on [31]. In arithmetic coding, the 
encoder is separate from the model, which in [31], is bas- 
ically a histogram. During the dominant passes, simple 
Markov conditioning is used whereby one of four histo- 
grams is chosen depending on 1) whether the previous 
coefficient in the scan is known to be significant, and 2) 
whether the parent is known to be significant. During the 
subordinate passes, a single histogram is used. Each his- 
togram entry is initialized to a count of one. After encod- 
ing each symbol, the corresponding histogram entry is in- 
cremented. When the sum of all the counts in a histogram 
reaches the maximum count, each entry is incremented 
and integer divided by two, as described in [3 11 .  It should 
be mentioned, that for practical purposes, the coding gains 
provided by using this simple Markov conditioning may 
not justify the added complexity and using a single his- 
togram strategy for the dominant pass performs almost as 
well (0.12 dB worse for Lena at 0.25 bpp.). The choice 
of maximum histogram count is probably more critical, 
since that controls the learning rate for the adaptation. For 
the experimental results presented, a maximum count of 
256 was used, which provides an intermediate tradeoff be- 
tween the smallest possible probability, which is the re- 
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ciprocal of the maximum count, and the learning rate, 
which is faster with a smaller maximum histogram count. 

D. Order of Importance of the Bits 
Although importance is a subjective term, the order of 

processing used in EZW implicitly defines a precise or- 
dering of importance that is tied to, in order, precision, 
magnitude, scale, and spatial location as determined by 
the initial dominant list. 

The primary determination of ordering importance is 
the numerical precision of the coefficients. This can be 
seen in the fact that the uncertainty intervals for the mag- 
nitude of all coefficients are refined to the same precision 
before the uncertainty interval for any coefficient is re- 
fined further. 

The second factor in the determination of importance is 
magnitude. Importance by magnitude manifests itself dur- 
ing a dominant pass because prior to the pass, all coeffi- 
cients are insignificant and presumed to be zero. When 
they are found to be significant, they are all assumed to 
have the same magnitude, which is greater than the mag- 
nitudes of those coefficients that remain insignificant. Im- 
portance by magnitude manifests itself during a subordi- 
nate pass by the fact that magnitudes are refined in 
descending order of the center of the uncertainty inter- 
vals, i.e., the decoder’s interpretation of the magnitude. 

The third factor, scale, manifests itself in the a priori 
ordering of the subbands on the initial dominant list. Until 
the significance of the magnitude of a coefficient is dis- 
covered during a dominant pass, coefficients in coarse 
scales are tested for significance before coefficients in fine 
scales. This is consistent with prioritization by the decod- 
er’s version of magnitude since for all coefficients not yet 
found to be significant, the magnitude is presumed to be 
zero. 

The final factor, spatial location, merely implies that 
two coefficients that cannot yet be distinguished by the 
decoder in terms of either precision, magnitude, or scale, 
have their relative importance determined arbitrarily by 
the initial scanning order of the subband containing the 
two coefficients. 

In one sense, this embedding strategy has a strictly non- 
increasing operational distortion-rate function for the dis- 
tortion metric defined to be the sum of the widths of the 
uncertainty intervals of all of the wavelet coefficients. 
Since a discrete wavelet transform is an invertible repre- 
sentation of an image, a distortion function defined in the 
wavelet transform domain is also a distortion function de- 
fined on the image. This distortion function is also not 
without a rational foundation for low-bit rate coding, 
where noticeable artifacts must be tolerated, and percep- 
tual metrics based on just-noticeable differences (JND’s) 
do not always predict which artifacts human viewers will 
prefer. Since minimizing the widths of uncertainty inter- 
vals minimizes the largest possible errors, artifacts, which 
result from numerical errors large enough to exceed per- 
ceptible thresholds, are minimized. Even using this dis- 
tortion function, the proposed embedding strategy is not 

optimal, because truncation of the bit stream in the middle 
of a pass causes some uncertainty intervals to be twice as 
large as others. 

Actually, as it has been described thus far, EZW is un- 
likely to be optimal for any distortion function. Notice 
that in (19), dividing the thresholds by two simply dec- 
rements E leaving M unchanged. While there must exist 
an optimal starting M which minimizes a given distortion 
function, how to find this optimum is still an open ques- 
tion and seems highly image dependent. Without knowl- 
edge of the optimal M and being forced to choose it based 
on some other consideration, with probability one, either 
increasing or decreasing M would have produced an 
embedded code which has a lower distortion for the same 
rate. Despite the fact that without trial and error optimi- 
zation for M ,  EZW is probably suboptimal, it is never- 
theless quite effective in practice. 

Note also that using the width of the uncertainty inter- 
val as a distance metric is exactly the same metric used in 
finite-precision fixed-point approximations of real num- 
bers. Thus, the embedded code can be seen as an “im- 
age” generalization of finite-precision fixed-point ap- 
proximations of real numbers. 

E. Relationship to Priority-Position Coding 
In a technique based on a very similar philosophy, 

Huang et al. discusses a related approach to embedding, 
or ordering the information in importance, called priority- 
position coding (PPC) [lo]. They prove very elegantly 
that the entropy of a source is equal to the average entropy 
of a particular ordering of that source plus the average 
entropy of the position information necessary to recon- 
struct the source. Applying a sequence of decreasing 
thresholds, they attempt to sort by amplitude all of the 
DCT coefficients for the entire image based on a partition 
of the range of amplitudes. For each coding pass, they 
transmit the significance map which is arithmetically en- 
coded. Additionally, when a significant coefficient is 
found they transmit its value to its full precision. Like the 
EZW algorithm, PPC implicitly defines importance with 
respect to the magnitudes of the transform coefficients. In 
one sense, PPC is a generalization of the successive-ap- 
proximation method presented in this paper, because PPC 
allows more general partitions of the amplitude range of 
the transform coefficients. On the other hand, since PPC 
sends the value of a significant coefficient to full preci- 
sion, its protocol assigns a greater importance to the least 
significant bit of a significant coefficient than to the iden- 
tification of new significant coefficients on next PPC pass. 
In contrast, as a top priority, EZW tries to reduce the 
width of the largest uncertainty interval in all coefficients 
before increasing the precision further. Additionally, PPC 
makes no attempt to predict insignificance from low fre- 
quency to high frequency, relying solely on the arithmetic 
coding to encode the significance map. Also unlike EZW, 
the probability estimates needed for the arithmetic coder 
were derived via training on an image database instead of 
adapting to the image itself. It would be interesting IO 
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experiment with variations which combine advantages of 
EZW (wavelet transforms, zerotree coding, importance 
defined by a decreasing sequence of uncertainty intervals, 
and adaptive arithmetic coding using small alphabets) with 
the more general approach to partitioning the range of am- 
plitudes found in PPC. In practice, however, it is unclear 
whether the finest grain partitioning of the amplitude range 
provides any coding gain, and there is certainly a much 
higher computational cost associated with more passes. 
Additionally, with the exception of the last few low-am- 
plitude passes, the coding results reported in [lo] did use 
power-of-two amplitudes to define the partition suggest- 
ing that, in practice, using finer partitioning buys little 
coding gain. 

V .  A SIMPLE EXAMPLE 
In this section, a simple example will be used to high- 

light the order of operations used in the EZW algorithm. 
Only the string of symbols will be shown. The reader in- 
terested in the details of adaptive arithmetic coding is re- 
ferred to [3 13. Consider the simple 3-scale wavelet trans- 
form of an 8 x 8 image. The array of values is shown in 
Fig. 8.  Since the largest coefficient magnitude is 63, we 
can choose our initial threshold to be anywhere in (31.5,  
631. Let To = 32. Table I shows the processing on the 
first dominant pass. The following comments refer to Ta- 
ble I: 

1 )  The coefficient has magnitude 63 which is greater 
than the threshold 32, and is positive so a positive symbol 
is generated. After decoding this symbol, the decoder 
knows the coefficient in the interval [32, 64) whose center 
is 48. 

2) Even though the coefficient 31 is insignificant with 
respect to the threshold 32, it has a significant descendant 
two generations down in subband LH 1 with magnitude 
47. Thus, the symbol for an isolated zero is generated. 

3) The magnitude 23 is less than 32 and all descen- 
dants which include (3, - 12, -14, 8) in subband HH2 and 
all coefficients in subband HH 1 are insignificant. A zero- 
tree symbol is generated, and no symbol will be generated 
for any coefficient in subbands HH2 and HH 1 during the 
current dominant pass. 

4) The magnitude 10 is less than 32 and all descen- 
dants (-12, 7, 6, - 1 )  also have magnitudes less than 32. 
Thus a zerotree symbol is generated. Notice that this tree 
has a violation of the “decaying spectrum” hypothesis 
since a coefficient (-12) in subband HL1 has a magnitude 
greater than its parent (10). Nevertheless, the entire tree 
has magnitude less than the threshold 32 so it is still a 
zerotree. 

5) The magnitude 14 is insignificant with respect to 32. 
Its children are (-1, 47, -3, 2). Since its child with mag- 
nitude 47 is significant, an isolated zero symbol is gen- 
erated. 

6) Note that no symbols were generated from subband 
HH2 which would ordinarily precede subband HL1 in the 
scan. Also note that since subband HL1 has no descen- 
dants, the entropy coding can resume using a 3-symbol 

TABLE I 
PROCEWNG OF FIRST DOMINANT PASS AT THRESHOLD T = 32. SYMBOLS 

ARE POS FOR POSITIVE SIGNIFICANT, NEG FOR NEGATIVE SIGNIFICANT, Iz 
FOR ISOLATED ZERO, ZTR FOR ZEROTREE ROOT, AND z FOR A ZERO WHEN 
THERE ARE NO CHILDREN. THE RECONSTRUCTION MAGNITUDES ARE TAKEN 

AS THE CENTER OF THE UNCERTAINTY INTERVAL 

alphabet where the IZ and ZTR symbols are merged into 
the 2 (zero) symbol. 

7) The magnitude 47 is significant with respect to 32. 
Note that for the future dominant passes, this position will 
be replaced with the value 0, so that for the next dominant 
pass at threshold 16, the parent of this coefficient, which 
has magnitude 14, can be coded using a zerotree root 
symbol. 

During the first dominant pass, which used a threshold 
of 32, four significant coefficients were identified. These 
coefficients will be refined during the first subordinate 
pass. Prior to the first subordinate pass, the uncertainty 
interval for the magnitudes of all of the significant coef- 
ficients is the interval [32, 64). The first subordinate pass 
will refine these magnitudes and identify them as being 
either in interval [32, 48), which will be encoded with the 
symbol “0,” or in the interval [48, 64), which will be 
encoded with the symbol “1 .” Thus, the decision bound- 
ary is the magnitude 48. It is no coincidence that these 
symbols are exactly the first bit to the right of the MSBD 
in the binary representation of the magnitudes. The order 
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TABLE I1 
PROCESSING OF THE FIRST SUBORDINATE PASS. MAGNITUDES ARE 

PARTITIONED INTO T H E  UNCERTAINTY INTERVALS [32,48) AND 
[48,64), WITH SYMBOLS “0” AND “1” RESPECTIVELY 

47 I 0 1  40 n 
of operations in the first subordinate pass is illustrated in 
Table 11. 

The first entry has magnitude 63 and is placed in the 
upper interval whose center is 56. The next entry has 
magnitude 34, which places it in the lower interval. The 
third entry 49 is in the upper interval, and the fourth entry 
47 is in the lower interval. Note that in the case of 47, 
using the center of the uncertainty interval as the recon- 
struction value, when the reconstruction value is changed 
from 48 to 40, the reconstruction error actually increases 
from 1 to 7. Nevertheless, the uncertainty interval for this 
coefficient decreases from width 32 to width 16. At the 
conclusion of the processing of the entries on the subor- 
dinate list corresponding to the uncertainty interval [32, 
64), these magnitudes are reordered for future subordinate 
passes in the order (63,49, 34,47). Note that 49 is moved 
ahead of 34 because from the decoder’s point of view, the 
reconstruction values 56 and 40 are distinguishable. How- 
ever, the magnitude 34 remains ahead of magnitude 47 
because as far as the decoder can tell, both have magni- 
tude 40, and the initial order, which is based first on im- 
portance by scale, has 34 prior to 47. 

The process continues on to the second dominant pass 
at the new threshold of 16. During this pass, only those 
coefficients not yet found to be significant are scanned. 
Additionally, those coefficients previously found to be 
significant are treated as zero for the purpose of determin- 
ing if a zerotree exists. Thus, the second dominant pass 
consists of encoding the coefficient -31 in subband LH3 
as negative significant, the coefficient 23 in subband HH3 
as positive significant, the three coefficients in subband 
HL2 that have not been previously found to be significant 
(10, 14, -13) are each encoded as zerotree roots, as are 
all four coefficients in subband LH2 and all four coeffi- 
cients in subband HH2. The second dominant pass ter- 
minates at this point since all other coefficients are pre- 
dictably insignificant. 

The subordinate list now contains, in order, the mag- 
nitudes (63, 49, 34, 47, 31, 23) which, prior to this sub- 
ordinate pass, represent the three uncertainty intervals [48, 
64), [32, 48) and [16, 31), each having equal width 16. 
The processing will refine each magnitude by creating two 
new uncertainty intervals for each of the three current un- 
certainty intervals. At the end of the second subordinate 
pass, the order of the magnitudes is (63, 49, 47, 34, 31, 
23), since at this point, the decoder could have identified 
34 and 47 as being in different intervals. Using the center 
of the uncertainty interval as the reconstruction value, the 
decoder lists the magnitudes as (60, 52, 44, 36, 28, 20). 

The processing continues alternating between dominant 
and subordinate passes and can stop at any time. 

VI. EXPERIMENTAL RESULTS 
All experiments were performed by encoding and de- 

coding an actual bit stream to verify the correctness of the 
algorithm. After a 12-byte header, the entire bit stream is 
arithmetically encoded using a single arithmetic coder 
with an adaptive model 1311. The model is initialized at 
each new threshold for each of the dominant and subor- 
dinate passes. From that point, the encoder is fully adap- 
tive. Note in particular that there is no training of any 
kind, and no ensemble statistics of images are used in any 
way (unless one calls the zerotree hypothesis an ensemble 
statistic). The 12-byte header contains 1) the number of 
wavelet scales, 2) the dimensions of the image, 3) the 
maximum histogram count for the models in the arith- 
metic coder, 4) the image mean and 5) the initial thresh- 
old. Note that after the header, there is no overhead ex- 
cept for an extra symbol for end-of-bit-stream, which is 
always maintained at minimum probability. This extra 
symbol is not needed for storage on computer medium if 
the end of a file can be detected. 

The EZW coder was applied to the standard black and 
white 8 bpp. test images, 512 x 512 “Lena” and the 512 
x 512 “Barbara,” which are shown in Figs. 9(a) and 
1 l(a). Coding results for “Lena” are summarized in Ta- 
ble I11 and Fig. 9. Six scales of the QMF-pyramid were 
used. Similar results are shown for “Barbara” in Table 
IV and Fig. 10. Additional results for the 256 X 256 
“Lena” are given in [22]. 

Quotes of PSNR for the 512 x 512 “Lena” image are 
so abundant throughout the image coding literature that it 
is difficult to definitively compare these results with other 
coding results.’ However, a literature search has only 
found two published results where authors generate an ac- 
tual bit stream that claims higher PSNR performance at 
rates between 0.25 and 1 bit/pixel [12] and [21], the lat- 
ter of which is a variation of the EZW algorithm. For the 
“Barbara” image, which is far more difficult than 
“Lena, ” the performance using EZW is substantially bet- 
ter, at least numerically, than the 27.82 dB for 0.534 bpp. 
reported in [28]. 

The performance of the EZW coder was also compared 
to a widely available version of JPEG [14]. JPEG does 
not allow the user to select a target bit rate but instead 
allows the user to choose a “Quality Factor.” In the ex- 
periments shown in Fig. 11, “Barbara” is encoded first 
using JPEG to a file size of 12 866 bytes, or a bit rate of 
0.39 bpp. The PSNR in this case is 26.99 dB. The EZW 
encoder was then applied to “Barbara” with a target file 

‘Actually there are multiple versions of the luminance only “Lena” 
floating around, and the one used in [22] is darker and slightly more diffi- 
cult than the “official” one obtained by this author from RPI after [22] was 
published. Also note that this should not be confused with results using 
only the green component of an RGB version which are also commonly 
cited. 
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Fig. 9. Performance of EZW Coder operating on “Lena.“ (a) Original 
512 x 512 “Lena” image at 8 bits/pixel (b) 1.0 bits/pixel, 8 :  1 Compres- 
sion, PSNR = 39.55 dB, (c) 0 .5  bits/pixel 16: 1 Compression. PSNR = 
36.28, (d )  0.25 bits/pixel, 32 :  1 Compression. PSNR = 33.17 dB. (e) 
0.0625 bits/pixel, 128: 1 Compression. PSNR = 27.54 dB, ( f )  0.015625 
bits/pixel. 512: 1 Compression, PSNR = 23.63 dB. 

size of exactly 12 866 bytes. The resulting PSNR is 29.39 
dB, significantly higher than for JPEG. The EZW encoder 
was then applied to “Barbara” using a target PSNR to 
obtain exactly the same PSNR of 26.99. The resulting file 
size is 8820 bytes, or 0.27 bpp. Visually, the 0.39 bpp. 
EZW version looks better than the 0.39 bpp. JPEG ver- 
sion. While there is some loss of resolution in both, there 

are noticeable blocking artifacts in the JPEG version. For 
the comparison at the same PSNR, one could probably 
argue in favor of the JPEG. 

Another interesting figure of merit is the number of sig- 
nificant coefficients retained. DeVore et al. used wavelet 
transform coding to progressively encode the same image 
[8]. Using 68 272 bits, (8534 bytes, 0.26 bpp.), they re- 
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TABLE 111 
CODING RESULTS FOR 5 12 x 5 12 LENA SHOWING PEAK-SIGNAL-TO-NOISE 

(PSNR) AND THE NUMBER O F  WAVELET COEFFICIENTS THAT WERE 
CODED AS NONZERO 

tained 2019 coefficients and achieved a RMS error of 
15.30 (MSE = 234, 24.42 dB), whereas using the embed- 
ded coding scheme, 9774 coefficients are retained, using 
only 8192 bytes. The PSNR for these two examples dif- 
fers by over 8 dB. Part of the difference can be attributed 
to fact that the Haar basis was used in [8]. However, closer 
examination shows that the zerotree coding provides a 
much better way of encoding the positions of the signifi- 
cant coefficients than was used in [8]. 

An interesting and perhaps surprising property of 
embedded coding is that when the encoding or decoding 
is terminated during the middle of a pass, or in the middle 
of the scanning of a subband, there are no artifacts pro- 
duced that would indicate where the termination occurs. 
In other words, some coefficients in the same subband are 
represented with twice the precision of the others. A pos- 
sible explanation of this phenomena is that at low rates, 
there are so few significant coefficients that any one does 
not make a perceptible difference. Thus, if the last pass 
is a dominant pass, setting some coefficient that might be 
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TABLE IV 
CODING RESULTS FOR 5 12 X 5 12 BARBARA SHOWING PEAK-SIGNAL-TO- 
NOISE ( P S N R )  AND THE NUMBER OF WAVELET COEFFICIENTS THAT WERE 

CODED AS NONZERO 

# b y t e s  I R 1 Compress ion I MSE I PSNR (dB) 1 signif. coef 
32768 I 1.0 I 8:l I 19.92 1 35.14 I 40766 

significant to zero may be imperceptible. Similarly, the 
fact that some have more precision than others is also im- 
perceptible. By the time the number of significant coeffi- 
cients becomes large, the picture quality is usually so good 
that adjacent coefficients with different precisions are im- 
perceptible. 

Another interesting property of the embedded coding is 
that because of the implicit global bit allocation, even at 
extremely high compression ratios, the performance 
scales. At a compression ratio of 5 12 : 1 ,  the image qual- 
ity of “Lena” is poor, but still recognizable. This is not 
the case with conventional block coding schemes, where 
at such high compression ratios, there would be insuffi- 
cient bits to even encode the DC coefficients of each 
block. 

The unavoidable artifacts produced at low bit rates us- 
ing this method are typical of wavelet coding schemes 
coded to the same PSNR’s. However, subjectively, they 
are not nearly as objectionable as the blocking effects typ- 
ical of block transform coding schemes. 
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Fig. I O .  Performance of EZW Coder operating on “Barbara” at (a) 1.0 
bits/pixel, 8 :  1 Compression, PSNR = 35.14 dB (b) 0 .5  hits/pixel, 16: I 
Compression, PSNR = 30.53 dB, (c) 0.125 hits/pixel, 6 4 :  1 Compres- 
sion, PSNR = 24.03 dB. (d) 0.0625 bits/tixel, 128: 1 Compression, PSNR 
= 23.10 dB 

VII. CONCLUSION 0 

A new technique for image coding has been presented 
that produces a fully embedded bit stream. Furthermore, 
the compression performance of this algorithm is com- 
petitive with virtually all known techniques. The remark- 
able performance can be attributed to the use of the fol- 
lowing four features: 

* 

a discrete wavelet transform, which decorrelates 
most sources fairly well, and allows the more signif- 
icant bits of precision of most coefficients to be ef- 
ficiently encoded as part of exponentially growing 
zerotrees, 
zerotree coding, which by predicting insignificance 
across scales using an image model that is easy for 
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Fig. 1 1 .  Comparison of EZW and JPEG operating on "Barbara" (a) Orig- 
inal 512 X 512 (h) EZW at 12 866 bytes, 0.39 bits/pixel, 29.39 dB, (c) 
EZW at 8820 bytes, 0.27 bits/pixel, 26.99 dB. (d)  JPEG at 12 866 bytes, 
0.39 bits/pixel. 26.99 dB. 

most images to satisfy, provides substantial coding 
gains over the first-order entropy for significance 
maps, 
successive-approximation, which allows the coding 
of multiple significance maps using zerotrees, and 
allows the encoding or decoding to stop at any point, 
adaptive arithmetic coding, which allows the entropy 

coder to incorporate learning into the bit stream it- 
self. 

The precise rate control that is achieved with this al- 
gorithm is a distinct advantage. The user can choose a bit 
rate and encode the image to exactly the desired bit rate. 
Furthermore, since no training of any kind is required, 
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the algorithm is fairly general and performs remarkably 
well with most types of images. 
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