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Preface for the Second Edition

The first edition of the book, which was published six years ago, was
extremely well received by the data mining research and development
communities. The positive reception, along with the fast pace of research
in the data mining, motivated us to update our book. We received many
requests to include the new advances in the field as well as the new
applications and software tools that have become available in the second
edition of the book. This second edition aims to refresh the previously
presented material in the fundamental areas, and to present new findings
in the field; nearly quarter of this edition is comprised of new materials.

We have added four new chapters and updated some of the existing
ones. Because many readers are already familiar with the layout of the
first edition, we have tried to change it as little as possible. Below is the
summary of the main alterations:

e The first edition has mainly focused on using decision trees for clas-
sification tasks (i.e. classification trees). In this edition we describe how
decision trees can be used for other data mining tasks, such as regression,
clustering and survival analysis.

e The new addition includes a walk-through-guide for using decision trees
software. Specifically, we focus on open-source solutions that are freely
available.

e We added a chapter on cost-sensitive active and proactive learning of
decision trees since the cost aspect is very important in many domain
applications such as medicine and marketing.

e Chapter 16 is dedicated entirely to the field of recommender systems
which is a popular research area. Recommender Systems help customers

vii
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to choose an item from a potentially overwhelming number of alternative
items.

We apologize for the errors that have been found in the first edition
and we are grateful to the many readers who have found those. We have
done our best to avoid errors in this new edition. Many graduate students
have read parts of the manuscript and offered helpful suggestions and we
thank them for that.

Many thanks are owed to Elizaveta Futerman. She has been the
most helpful assistant in proofreading the new chapters and improving
the manuscript. The authors would like to thank Amanda Yun and staff
members of World Scientific Publishing for their kind cooperation in
writing this book. Moreover, we are thankful to Prof. H. Bunke and Prof.
P.S.P. Wang for including our book in their fascinating series on machine
perception and artificial intelligence.

Finally, we would like to thank our families for their love and support.

Beer-Sheva, Israel Lior Rokach
Tel-Aviv, Israel Oded Maimon

April 2014



Preface for the First Edition

Data mining is the science, art and technology of exploring large and
complex bodies of data in order to discover useful patterns. Theoreticians
and practitioners are continually seeking improved techniques to make
the process more efficient, cost-effective and accurate. One of the most
promising and popular approaches is the use of decision trees. Decision
trees are simple yet successful techniques for predicting and explaining
the relationship between some measurements about an item and its target
value. In addition to their use in data mining, decision trees, which
originally derived from logic, management and statistics, are today highly
effective tools in other areas such as text mining, information extraction,
machine learning, and pattern recognition.
Decision trees offer many benefits:

e Versatility for a wide variety of data mining tasks, such as classification,
regression, clustering and feature selection

e Self-explanatory and easy to follow (when compacted)

e Flexibility in handling a variety of input data: nominal, numeric and
textual

e Adaptability in processing datasets that may have errors or missing
values

e High predictive performance for a relatively small computational effort

e Available in many data mining packages over a variety of platforms

e Useful for large datasets (in an ensemble framework)

This is the first comprehensive book about decision trees. Devoted
entirely to the field, it covers almost all aspects of this very important
technique.
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The book has three main parts:

e Part I presents the data mining and decision tree foundations (including
basic rationale, theoretical formulation, and detailed evaluation).

e Part II introduces the basic and advanced algorithms for automatically
growing decision trees (including splitting and pruning, decision forests,
and incremental learning).

e Part III presents important extensions for improving decision tree
performance and for accommodating it to certain circumstances. This
part also discusses advanced topics such as feature selection, fuzzy
decision trees and hybrid framework.

We have tried to make as complete a presentation of decision trees
in data mining as possible. However, new applications are always being
introduced. For example, we are now researching the important issue of
data mining privacy, where we use a hybrid method of genetic process with
decision trees to generate the optimal privacy-protecting method. Using
the fundamental techniques presented in this book, we are also extensively
involved in researching language-independent text mining (including ontol-
ogy generation and automatic taxonomy).

Although we discuss in this book the broad range of decision trees
and their importance, we are certainly aware of related methods, some
with overlapping capabilities. For this reason, we recently published a
complementary book “Soft Computing for Knowledge Discovery and Data
Mining”, which addresses other approaches and methods in data mining,
such as artificial neural networks, fuzzy logic, evolutionary algorithms,
agent technology, swarm intelligence and diffusion methods.

An important principle that guided us while writing this book was the
extensive use of illustrative examples. Accordingly, in addition to decision
tree theory and algorithms, we provide the reader with many applications
from the real-world as well as examples that we have formulated for
explaining the theory and algorithms. The applications cover a variety
of fields, such as marketing, manufacturing, and bio-medicine. The data
referred to in this book, as well as most of the Java implementations of
the pseudo-algorithms and programs that we present and discuss, may be
obtained via the Web.

We believe that this book will serve as a vital source of decision tree
techniques for researchers in information systems, engineering, computer
science, statistics and management. In addition, this book is highly useful
to researchers in the social sciences, psychology, medicine, genetics, business
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intelligence, and other fields characterized by complex data-processing
problems of underlying models.

Since the material in this book formed the basis of undergraduate and
graduates courses at Ben-Gurion University of the Negev and Tel-Aviv
University and it can also serve as a reference source for graduate/
advanced undergraduate level courses in knowledge discovery, data mining
and machine learning. Practitioners among the readers may be particularly
interested in the descriptions of real-world data mining projects performed
with decision trees methods.

We would like to acknowledge the contribution to our research and to
the book to many students, but in particular to Dr. Barak Chizi, Dr. Shahar
Cohen, Roni Romano and Reuven Arbel. Many thanks are owed to Arthur
Kemelman. He has been a most helpful assistant in proofreading and
improving the manuscript.

The authors would like to thank Mr. Ian Seldrup, Senior Editor, and
staff members of World Scientific Publishing for their kind cooperation in
connection with writing this book. Thanks also to Prof. H. Bunke and Prof
P.S.P. Wang for including our book in their fascinating series in machine
perception and artificial intelligence.

Last, but not least, we owe our special gratitude to our partners,
families, and friends for their patience, time, support, and encouragement.

Beer-Sheva, Israel Lior Rokach
Tel-Aviv, Israel Oded Maimon

October 2007
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Chapter 1

Introduction to Decision Trees

1.1 Data Science

Data Science is the discipline of processing and analyzing data for the
purpose of extracting valuable knowledge. The term “Data Science” was
coined in the 1960’s. However, it really took shape only recently when
technology has become sufficiently mature.

Various domains such as commerce, medicine and research are applying
data-driven discovery and prediction in order to gain some new insights.
Google is an excellent example of a company that applies data science on a
regular basis. It is well-known that Google tracks user clicks in an attempt
to improve the relevance of its search engine results and its ad campaign
management.

One of the ultimate goals of data mining is the ability to make
predictions about certain phenomena. Obviously, prediction is not an easy
task. As the famous quote says, “It is difficult to make predictions, especially
about the future” (attributed to Mark Twain and others). Still, we use
prediction successfully all the time. For example, the popular YouTube
website (also owned by Google) analyzes our watching habits in order to
predict which other videos we might like. Based on this prediction, YouTube
service can present us with a personalized recommendation which is mostly
very effective. In order to roughly estimate the service’s efficiency you could
simply ask yourself how often watching a video on YouTube lead you to
watch a number of similar videos that were recommended to you by the
system? Similarly, online social networks (OSN), such as Facebook and
LinkedIn, automatically suggest friends and acquaintances that we might
want to connect with.

Google Trends enables anyone to view search trends for a topic across
regions of the world, including comparative trends of two or more topics.
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This service can help in epidemiological studies by aggregating certain
search terms that are found to be good indicators of the investigated disease.
For example, Ginsberg et al. (2008) used search engine query data to detect
influenza epidemics. However, a pattern forms when all the flu-related
phrases are accumulated. An analysis of these various searches reveals that
many search terms associated with flu tend to be popular exactly when flu
season is happening.

Many people struggle with the question: What differentiates data
science from statistics and consequently, what distinguishes data scientist
from statistician? Data science is a holistic approach in the sense that
it supports the entire process including data sensing and collection, data
storing, data processing and feature extraction, data mining and knowledge
discovery. As such, the field of data science incorporates theories and meth-
ods from various fields including statistics, mathematics, computer science
and particularly, its sub-domains: Artificial Intelligence and information
technology.

1.2 Data Mining

Data mining is a term coined to describe the process of shifting through
large databases in search of interesting and previously unknown patterns.
The accessibility and abundance of data today makes data mining a
matter of considerable importance and necessity. The field of data mining
provides the techniques and tools by which large quantities of data can
be automatically analyzed. Data mining is a part of the overall process
of Knowledge Discovery in Databases (KDD) defined below. Some of the
researchers consider the term “Data Mining” as misleading, and prefer the
term “Knowledge Mining” as it provides a better analogy to gold mining
[Klosgen and Zytkow (2002)].

Most of the data mining techniques are based on inductive learning
[Mitchell (1997)], where a model is constructed explicitly or implicitly by
generalizing from a sufficient number of training examples. The underlying
assumption of the inductive approach is that the trained model is applicable
to future unseen examples. Strictly speaking, any form of inference in which
the conclusions are not deductively implied by the premises can be thought
of as an induction.

Traditionally, data collection was regarded as one of the most important
stages in data analysis. An analyst (e.g. a statistician or data scientist)
would use the available domain knowledge to select the variables that were
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to be collected. The number of selected variables was usually limited and the
collection of their values could be done manually (e.g. utilizing hand-written
records or oral interviews). In the case of computer-aided analysis, the
analyst had to enter the collected data into a statistical computer package
or an electronic spreadsheet. Due to the high cost of data collection, people
learned to make decisions based on limited information.

Since the dawn of the Information Age, accumulating and storing data
has become easier and inexpensive. It has been estimated that the amount
of stored information doubles every 20 months [Frawley et al. (1991)].
Unfortunately, as the amount of machine-readable information increases,
the ability to understand and make use of it does not keep pace with its
growth.

1.3 The Four-Layer Model

It is useful to arrange the data mining domain into four layers. Figure 1.1
presents this model. The first layer represents the target application. Data
mining can benefit many applications, such as:

(1) Credit Scoring — The aim of this application is to evaluate the credit
worthiness of a potential consumer. Banks and other companies use
credit scores to estimate the risk posed by doing a business transaction
(such as lending money) with this consumer.

Applications
‘ Fraud Detection ‘ vee ‘ Demand Planning
Tasks
Classification P00 ‘ Regression ‘ eee ‘ Clustering ‘
Models

| Decision Trees | | Artificial Neural Networks

(T ,Tr‘tltlm

Fig. 1.1 The four layers of data mining.
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(2) Fraud Detection — Oxford English Dictionary defines fraud as “An
act or instance of deception, an artifice by which the right or interest
of another is injured, a dishonest trick or stratagem.” Fraud detec-
tion aims to identify fraud as quickly as possible once it has been
perpetrated.

(3) Churn Detection — This application helps sellers to identify customers
with a higher probability of leavingand potentially moving to a
competitor. By identifying these customers in advance, the company
can act to prevent churning (for example, offering a better deal to the
consumer).

Each application is built by accomplishing one or more machine
learning tasks. The second layer in our four layers model is dedicated to
the machine learning tasks, such as: Classification, Clustering, Anomaly
Detection, Regression etc. Each machine learning task can be accomplished
by various machine learning models as indicated in the third layer. For
example, the classification task can be accomplished by the following two
models: Decision Trees or Artificial Neural Networks. In turn, each model
can be induced from the training data using various learning algorithms.
For example, a decision tree can be built using either C4.5 algorithm or
CART algorithm that will be described in the following chapters.

1.4 Knowledge Discovery in Databases (KDD)

KDD process was defined by [Fayyad et al. (1996)] as “the nontrivial process
of identifying valid, novel, potentially useful, and ultimately understandable
patterns in data.” Friedman (1997a) considers the KDD process as an
automatic exploratory data analysis of large databases. Hand (1998) views
it as a secondary data analysis of large databases. The term “Secondary”
emphasizes the fact that the primary purpose of the database was not data
analysis. Data Mining can be considered as the central step for the overall
process of the KDD process. Because of the centrality of data mining for
the KDD process, there are some researchers and practitioners who use the
term “data mining” as synonymous with the complete KDD process.
Several researchers, such as [Brachman and Anand (1994)], [Fayyad
et al. (1996)] and [Reinartz (2002)] have proposed different ways of dividing
the KDD process into phases. This book adopts a hybridization of these
proposals and suggests breaking the KDD process into nine steps as
presented in Figure 1.2. Note that the process is iterative at each step,
which means that going back to adjust previous steps may be necessary. The
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Fig. 1.2 The process of KDD.

process has many “creative” aspects in the sense that one cannot present
one formula or make a complete taxonomy for the right choices for each
step and application type. Thus, it is necessary to properly understand the
process and the different needs and possibilities in each step.

The process starts with determining the goals and “ends” with the
implementation of the discovered knowledge. As a result, changes would
have to be made in the application domain (such as offering different
features to mobile phone users in order to reduce churning). This closes the
loop and the effects are then measured on the new data repositories, after
which the process is launched again. In what follows is a brief description
of the nine-step process, starting with a managerial step:

1. Developing an understanding of the application domain. This
is the initial preparatory step that aims to understand what should
be done with the many decisions (about transformation, algorithms,
representation, etc.). The people who are in charge of a data mining
project need to understand and define the goals of the end-user and the
environment in which the knowledge discovery process will take place
(including relevant prior knowledge). As the process proceeds, there
may be even revisions and tuning of this step. Having understood the
goals, the preprocessing of the data starts as defined in the next three
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steps (note that some of the methods here are similar to Data Mining
algorithms, but these are used in the preprocessing context).

2. Creating a dataset on which discovery will be performed.
Having defined the goals, the data that will be used for the knowl-
edge discovery should be determined. This step includes finding out
what data is available, obtaining additional necessary data and then
integrating all the data for the knowledge discovery into one dataset,
including the attributes that will be considered for the process. This
process is very important because the Data Mining learns and discovers
new patterns from the available data. This is the evidence base for
constructing the models. If some important attributes are missing, then
the entire study may fail. For a successful process it is good to consider
as many as possible attributes at this stage. However, collecting,
organizing and operating complex data repositories is expensive.

3. Preprocessing and cleansing. At this stage, data reliability is
enhanced. It includes data clearing, such as handling missing values and
removing noise or outliers. It may involve complex statistical methods,
or using specific Data Mining algorithm in this context. For example,
if one suspects that a certain attribute is not reliable enough or has
too much missing data, then this attribute could become the goal of a
data mining supervised algorithm. A prediction model for this attribute
will be developed and then, the missing value can be replaced with
the predicted value. The extent to which one pays attention to this
level depends on many factors. Regardless, studying these aspects is
important and is often insightful about enterprise information systems.

4. Data transformation. At this stage, the generation of better data for
the data mining is prepared and developed. One of the methods that
can be used here is dimension reduction, such as feature selection and
extraction as well as record sampling. Another method that one could
use at this stage is attribute transformation, such as discretization of
numerical attributes and functional transformation. This step is often
crucial for the success of the entire project, but it is usually very
project-specific. For example, in medical examinations, it is not the
individual aspects/characteristics that make the difference rather, it
is the quotient of attributes that often is considered to be the most
important factor. In marketing, we may need to consider effects beyond
our control as well as efforts and temporal issues such as, studying the
effect of advertising accumulation. However, even if we do not use the
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right transformation at the beginning, we may obtain a surprising effect
that hints to us about the transformation needed. Thus, the process
reflects upon itself and leads to an understanding of the transformation
needed. Having completed the above four steps, the following four
steps are related to the Data Mining part where the focus is on the
algorithmic aspects employed for each project.

5. Choosing the appropriate Data Mining task. We are now ready
to decide which task of Data Mining would fit best our needs, i.e.
classification, regression, or clustering. This mostly depends on the
goals and the previous steps. There are two major goals in Data
Mining: prediction and description. Prediction is often referred to as
supervised Data Mining, while descriptive Data Mining includes the
unsupervised classification and visualization aspects of Data Mining.
Most data mining techniques are based on inductive learning where
a model is constructed explicitly or implicitly by generalizing from a
sufficient number of training examples. The underlying assumption of
the inductive approach is that the trained model is applicable to future
cases. The strategy also takes into account the level of meta-learning
for the particular set of available data.

6. Choosing the Data Mining algorithm. Having mastered the strat-
egy, we are able to decide on the tactics. This stage includes selecting
the specific method to be used for searching patterns. For example, in
considering precision versus understandability, the former is better with
neural networks, while the latter is better with decision trees. Meta-
learning focuses on explaining what causes a Data Mining algorithm to
be successful or unsuccessful when facing a particular problem. Thus,
this approach attempts to understand the conditions under which a
Data Mining algorithm is most appropriate.

7. Employing the Data Mining algorithm. In this step, we might
need to employ the algorithm several times until a satisfied result is
obtained. In particular, we may have to tune the algorithm’s control
parameters such as the minimum number of instances in a single leaf
of a decision tree.

8. Evaluation. In this stage, we evaluate and interpret the extracted
patterns (rules, reliability, etc.) with respect to the goals defined in the
first step. This step focuses on the comprehensibility and usefulness
of the induced model. At this point, we document the discovered
knowledge for further usage.
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9. Using the discovered knowledge. We are now ready to incorporate
the knowledge into another system for further action. The knowledge
becomes active in the sense that we can make changes to the system
and measure the effects. In fact, the success of this step determines
the effectiveness of the entire process. There are many challenges in
this step, such as losing the “laboratory conditions” under which we
have been operating. For instance, the knowledge was discovered from a
certain static snapshot (usually a sample) of the data, but now the data
becomes dynamic. Data structures may change as certain attributes
become unavailable and the data domain may be modified (e.g. an
attribute may have a value that has not been assumed before).

1.5 Taxonomy of Data Mining Methods

It is wuseful to distinguish between two main types of data min-
ing: verification-oriented (the system verifies the user’s hypothesis) and
discovery-oriented (the system finds new rules and patterns autonomously).
Figure 1.3 illustrates this taxonomy. Each type has its own methodology.
Discovery methods, which automatically identify patterns in the data,
involve both prediction and description methods. Description methods

Data Mining Paradigms ]
‘ | ,
Verification Discovery
Goodness of fit l _1
Hypothesis testing Description

Analysis of variance Prediction
Clustering

Summarization

Classification Regression Linguistic summary
Visualization
I I I | |
Neutral Bayesian Decision S\;'e'l':g:t Instance
Networks Networks Trees Machines Based

Fig. 1.3 Taxonomy of data mining methods.
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focus on understanding the way the underlying data operates while
prediction-oriented methods aim to build a behavioral model for obtaining
new and unseen samples and for predicting values of one or more variables
related to the sample. Some prediction-oriented methods, however, can also
contribute to the understanding of the data.

While most of the discovery-oriented techniques use inductive learning
as discussed above, verification methods evaluate a hypothesis proposed
by an external source, such as expert. These techniques include the most
common methods of traditional statistics, like the goodness-of-fit test, the
t-test of means and analysis of variance. These methods are not as much
related to data mining as are their discovery-oriented counterparts because
most data mining problems are concerned with selecting a hypothesis (out
of a set of hypotheses) rather than testing a known one. While one of the
main objectives of data mining is model identification, statistical methods
usually focus on model estimation [Elder and Pregibon (1996)].

1.6 Supervised Methods
1.6.1 Owverview

In the machine learning community, prediction methods are commonly
referred to as supervised learning. Supervised learning stands in opposition
to unsupervised learning which refers to modeling the distribution of
instances in a typical, high-dimensional input space.

According to Kohavi and Provost (1998), the term “unsupervised
learning” refers to “learning techniques that group instances without a
prespecified dependent attribute”. Thus, the term “unsupervised learning”
covers only a portion of the description methods presented in Figure 1.3. For
instance, the term covers clustering methods but not visualization methods.

Supervised methods are methods that attempt to discover the rela-
tionship between input attributes (sometimes called independent variables)
and a target attribute (sometimes referred to as a dependent variable).
The relationship that is discovered is represented in a structure referred
to as a Model. Usually, models describe and explain phenomena which are
hidden in the dataset and which can be used for predicting the value of
the target attribute whenever the values of the input attributes are known.
The supervised methods can be implemented in a variety of domains such
as marketing, finance and manufacturing.

It is useful to distinguish between two main supervised models: Clas-
sification Models (Classifiers) and Regression Models. Regression models
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map the input space into a real-valued domain. For instance, a regressor can
predict the demand for a certain product given its characteristics. Classifiers
map the input space into predefined classes. For example, classifiers can
be used to classify mortgage consumers as good (full mortgage pay back
on time) and bad (delayed pay back). Among the many alternatives for
representing classifiers, there are for example, support vector machines,
decision trees, probabilistic summaries, algebraic function, etc.

This book deals mainly with classification problems. Along with
regression and probability estimation, classification is one of the most
studied approaches, possibly one with the greatest practical relevance.
The potential benefits of progress in classification are immense since the
technique has great impact on other areas, both within data mining and in
its applications.

1.7 Classification Trees

While in data mining a decision tree is a predictive model which can
be used to represent both classifiers and regression models, in operations
research decision trees refer to a hierarchical model of decisions and their
consequences. The decision maker employs decision trees to identify the
strategy which will most likely reach its goal.

When a decision tree is used for classification tasks, it is most commonly
referred to as a classification tree. When it is used for regression tasks, it is
called a regression tree.

In this book, we concentrate mainly on classification trees. Classifica-
tion trees are used to classify an object or an instance (such as insurant)
into a predefined set of classes (such as risky/non-risky) based on their
attributes values (such as age or gender). Classification trees are frequently
used in applied fields such as finance, marketing, engineering and medicine.
The classification tree is useful as an exploratory technique. However, it
does not attempt to replace existing traditional statistical methods and
there are many other techniques that can be used to classify or predict
the affiliation of instances with a predefined set of classes, such as artificial
neural networks or support vector machines.

Figure 1.4 presents a typical decision tree classifier. This decision tree is
used to facilitate the underwriting process of mortgage applications of a cer-
tain bank. As part of this process the applicant fills in an application form
that includes the following data: number of dependents (DEPEND), loan-
to-value ratio (LTV), marital status (MARST), payment-to-income ratio
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Fig. 1.4 Underwriting decision tree.

(PAYINC), interest rate (RATE), years at current address (YRSADD),
and years at current job (YRSJOB).

Based on the above information, the underwriter will decide if the
application should be approved for a mortgage. More specifically, this
decision tree classifies mortgage applications into one of the following two
classes:

e Approved (denoted as “A”) — The application should be approved.

e Denied (denoted as “D”) — The application should be denied.

e Manual underwriting (denoted as “M”) — An underwriter should
manually examine the application and decide if it should be approved (in
some cases after requesting additional information from the applicant).
The decision tree is based on the fields that appear in the mortgage
application forms.

The above example illustrates how a decision tree can be used to
represent a classification model. In fact, it can be seen as an expert system
which partially automates the underwriting process. Moreover, the decision
tree can be regarded as an expert system which has been built manually by
a knowledge engineer after interrogating an experienced underwriter at the
company. This sort of expert interrogation is called knowledge elicitation
namely, obtaining knowledge from a human expert (or human experts) to
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be used by an intelligent system. Knowledge elicitation is usually difficult
because it is challenging to find an available expert who would be willing
to provide the knowledge engineer with the information he or she needs to
create a reliable expert system. In fact, the difficulty inherent in the process
is one of the main reasons why companies avoid intelligent systems. This
phenomenon constitutes the knowledge elicitation bottleneck.

A decision tree can be also used in order to analyze the payment ethics
of customers who received a mortgage. In this case there are two classes:

e Paid (denoted as “P”) — The recipient has fully paid off his or her
mortgage.

e Not Paid (denoted as “N”) — The recipient has not fully paid off his or
her mortgage.

This new decision tree can be used to improve the underwriting decision
model presented in Figure 16.1. It shows that there are relatively many
customers who pass the underwriting process but that they have not yet
fully paid back the loan. Note that as opposed to the decision tree presented
in Figure 16.1, this decision tree is constructed according to data that
was accumulated in the database. Thus, there is no need to manually
elicit knowledge. In fact, the tree can be built automatically. This type of
knowledge acquisition is referred to as knowledge discovery from databases.

The employment of a decision tree is a very popular technique in data
mining. Many researchers argue that decision trees are popular due to their
simplicity and transparency. Decision trees are self-explanatory; there is
no need to be a data mining expert in order to follow a certain decision
tree. Usually, classification trees are graphically represented as hierarchical
structures, which renders them easier to interpret than other techniques. If
the classification tree becomes complicated (i.e. has many nodes) then its
straightforward graphical representation become useless. For complex trees,
other graphical procedures should be developed to simplify interpretation.

1.8 Characteristics of Classification Trees

A decision tree is a classifier expressed as a recursive partition of the
instance space. The decision tree consists of nodes that form a Rooted
Tree, namely, it is a Directed Tree with a node called a “root” that has no
incoming edges. All other nodes have exactly one incoming edge. A node
with outgoing edges is referred to as an “internal” node or a “test” node.
All other nodes are called “leaves” (also known as “terminal” nodes or
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“decision” nodes). In a decision tree, each internal node splits the instance
space into two or more sub-spaces according to a certain discrete function
of the input attributes values. In the simplest and most frequent case, each
test considers a single attribute, such that the instance space is partitioned
according to the attributes value. In the case of numeric attributes, the
condition refers to a range.

Each leaf is assigned to one class representing the most appropriate
target value. Alternatively, the leaf may hold a probability vector (affinity
vector) indicating the probability of the target attribute having a certain
value. Figure 1.6 describes another example of a decision tree that predicts
whether or not a potential customer will respond to a direct mailing.
Internal nodes are represented as circles, whereas leaves are denoted as
triangles. Two or more branches may grow out from each internal node.
Each node corresponds with a certain characteristic and the branches
correspond with a range of values. These ranges of values must be
mutually exclusive and complete. These two properties of disjointness and
completeness are important since they ensure that each data instance is
mapped to one instance.

Instances are classified by navigating them from the root of the tree
down to a leaf according to the outcome of the tests along the path. We
start with a root of a tree; we consider the characteristic that corresponds
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Fig. 1.6 Decision tree presenting response to direct mailing.

to the root and we define to which branch the observed value of the given
characteristic corresponds. Then, we consider the node in which the given
branch appears. We repeat the same operations for this node until we reach
a leaf. Note that this decision tree incorporates both nominal and numeric
attributes. Given this classifier the analyst can predict the response of
a potential customer (by sorting it down the tree) and understand the
behavioral characteristics of the entire population of potential customers
regarding direct mailing. Each node is labeled with the attribute it tests,
and its branches are labeled with its corresponding values.

In case of numeric attributes, decision trees can be geometrically
interpreted as a collection of hyperplanes, each orthogonal to one of
the axes.

1.8.1 Tree Size

Naturally, decision makers prefer a decision tree that is not complex since
it is apt to be more comprehensible. Furthermore, tree complexity has a
crucial effect on its accuracy [Breiman et al. (1984)]. Typically, the tree
complexity is measured by one of the following metrics: the total number
of nodes, total number of leaves, tree depth and number of attributes used.
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Tree complexity is explicitly controlled by the stopping criteria and the
pruning method that are employed.

1.8.2 The Hierarchical Nature of Decision Trees

Another characteristic of decision trees is their hierarchical nature. Imagine
that you want to develop a medical system for diagnosing patients according
to the results of several medical tests. Based on the result of one test,
the physician can perform or order additional laboratory tests. Specifically,
Figure 1.7 illustrates the diagnosis process using decision trees of patients
who suffer from a certain respiratory problem. The decision tree employs
the following attributes: CT findings (CTF), X-ray findings (XRF), chest
pain type (CPT) and blood test findings (BTF). The physician will order
an X-ray if chest pain type is “1”. However, if chest pain type is “2”, then
the physician will not order an X-ray but rather, he or she will order a
blood test. Thus, medical tests are performed just when needed and the
total cost of medical tests is reduced.

1.9 Relation to Rule Induction

Decision tree induction is closely related to rule induction. Each path from
the root of a decision tree to one of its leaves can be transformed into a rule



16 Data Mining with Decision Trees

simply by conjoining the tests along the path to form the antecedent part
and taking the leaf’s class prediction as the class value. For example, one of
the paths in Figure 1.6 can be transformed into the rule: “If customer age
is less than or equal to 30, and the gender of the customer is male — then
the customer will respond to the mail”. The resulting rule set can then be
simplified to improve its comprehensibility to a human user, and possibly
its accuracy [Quinlan (1987)].



Chapter 2

Training Decision Trees

2.1 What is Learning?

The aim of this chapter is to provide an intuitive description of training in
decision trees. The main goal of learning is to improve at some task with
experience. This goal requires the definition of three components:

(1) Task T that we would like to improve with learning.
(2) Experience E to be used for learning.
(3) Performance measure P that is used to measure the improvement.

In order to better understand the above components, consider the
problem of email spam. We all suffer from email spam in which spammers
exploit the electronic mail systems to send unsolicited bulk messages.
A spam message is any message that the user does not want to receive
and did not ask to receive. Machine learning techniques can be used to
automatically filter such spam messages. Applying machine learning in this
case requires the definition of the above-mentioned components, as follows:

(1) The task T is to identify spam emails.

(2) The experience E is a set of emails that were labeled by users as spams
and non-spam (ham).

(3) The performance measure P is the percentage of spam emails that
were correctly filtered and the percentage of ham (non-spam) emails
that were incorrectly filtered-out.

2.2 Preparing the Training Set

In order to automatically filter spam messages, we need to train a
classification model. Obviously, data is very crucial for training the classifier

17
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or as Prof. Deming puts it: “In God we trust; all others must bring
data”.

The data that is used to train the model is called the “training set”. In
the spam filtering example, a training set, that is represented as a database
of previous emails, can be extracted from the past experience. Possible
attributes that can be used as indicators for spam activity are: Number of
recipients, Size of message, Number of attachments, Number of times the
string “re” appears in the subject line, the country from which the email is
sent, etc.

The training set is usually represented as a table. Each row represents
a single email instance that was delivered via the mail server. Each column
corresponds to an attribute that characterizes the email instance (such as
the Number of recipients). In any supervised learning task and particularly
in classification tasks, one column corresponds to the target attribute that
we try to predict. In our example, the target attribute indicates if the email
is spam or ham (non-spam). All other columns hold the input attributes
that are used for making the predicted classification. There are three main
types of input attributes:

(1) Numeric — such as in the case of the attribute “Number of recipients”.

(2) Ordinal (or categorical) — that provides an order by which the data can
be sorted, but unlike the numeric type there is no notion of distance.
For example, the three classes of medal (Gold, Silver and Bronze) can
suit an ordinal attribute.

(3) Nominal — in which the values are merely distinct names or labels with
no meaningful order by which one can sort the data. For example, the
Gender attribute can be referred as a nominal value.

Since in many machine learning algorithms, the training set size and
the predictive performance are positively correlated, usually we will prefer
to use the largest possible training set. In practice, however, we might
want to limit the training set due to resource constraints. Having a large
training set implies that the training time will be long as well, therefore
we might select a sample of our data to fit our computational resources.
Moreover, data collection and particularly labeling the instances may come
with a price tag in terms of human effort. In our email filtering example,
labeling the training emails as either “spam” or “ham” is done manually
by the users and therefore it might be too expensive to label all the
emails.
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Fig. 2.2 A decision tree (decision stump) based on a horizontal split.

2.3 Training the Decision Tree

For the sake of simplicity, let us simplify the spam filtering task and assume
that there are only two numeric input attributes. This allows us to project
the training set onto a two-dimensional graph as illustrated in Figure 2.1.
The z-axis corresponds to the “New Recipients” attribute and the y-axis
corresponds to the “Email Length”. Each email instance is represented as
a circle. More specifically, spam emails are indicated by a filled circle; ham
emails are marked by an empty circle.

A decision tree divides the space into axis-parallel boxes and associates
each box with the most frequent label in it. It begins by finding the best
horizontal split and the best vertical split (best in the sense of yielding the
lowest misclassification rate). Figure 2.2 presents the best horizontal split
and its corresponding decision tree. Similarly, Figure 2.3 presents the best
vertical split and its corresponding decision tree. A single node decision tree
as presented in Figures 2.2 and 2.3 is sometimes called a Decision Stump.
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Fig. 2.4 A decision tree obtained after two splits.

Comparing the two trees reveals that the horizontal split leads to
9 misclassification errors (1 misclassification in the left leaf and 8 misclassifi-
cations in the right leaf), while the vertical split yields 15 misclassifications.
Therefore, by adopting a greedy strategy, we select the former tree and move
on to develop the tree’s branches. The procedure is recursively applied to
each of the resulting branches. Namely, for each branch we try to split the
corresponding sub-sample even further as illustrated in Figure 2.4.

Note that the number of classification regions in the graph is equal to
the number of leaves in the tree. Moreover, since we are dealing with a
binary tree, the amount of internal nodes (i.e. non-leaf nodes) equals the
number of leaves minus 1.

Each node continues to branch out until we reach a sub-sample that
contains only instances from the same label, or until no further splitting is
possible. In the above spam filtering example, the process continues until
the graph in Figure 2.5 is reached. Note that there are nine regions in this
graph. Each region consists of instances of only one label. Namely, there
are no misclassification errors in regard to the training set. However, the
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Fig. 2.5 A graph splited to regions with a single label.

corresponding tree is relatively bushy with nine leaves and eight internal
nodes.

Complicated decision trees might have a limited generalization capabili-
ties, i.e. although it seems to correctly classify all training instances, it fails
to do so in new and unseen instances. As we will see later in Section 4.9,
in many cases we should prefer simple trees over complicated ones even if
the latter seems to outperform the former in the training set.

In the following chapters, we will provide formal definitions and detailed
description of the decision tree learning algorithms.
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Chapter 3

A Generic Algorithm for Top-Down
Induction of Decision Trees

3.1 Training Set

Before presenting the pseudo code for top-down inducing algorithm of a
decision tree, we present several definitions and notations that will be used.

In a typical supervised learning scenario, a training set is given and the
goal is to form a description that can be used to predict previously unseen
examples.

In many machine learning algorithms, the training set size and the
classification accuracy are positively correlated. In particular, the predictive
performance of a decision tree is expected to be poor if the training set
used to train the model is too small. Moreover, the size of a classification
tree is strongly correlated to the training set size. This phenomenon can be
explained by the fact that in most decision trees algorithms (such as CART
and C4.5) the number of leaves is bounded by the number of instances (as
you can’t split a node if you don’t have enough instances).

The training set can be described in a variety of ways. Most frequently,
it is described as a bag instance of a certain bag schema. A bag instance
is a collection of tuples (also known as records, rows or instances) that
may contain duplicates. Each tuple is described by a vector of attribute
values. The bag schema provides the description of the attributes and their
domains. In this book, a bag schema is denoted as B(AUy) where A denotes
the set of input attributes containing n attributes: A = {a1,..., a4, ..., an}
and y represents the class variable or the target attribute.

Attributes (sometimes called field, variable or feature) are typically
one of two types: nominal (values are members of an unordered set), or
numeric (values are real numbers). In attribute a;, it is useful to
denote its domain values by dom(a;) = {vi1,vi2,. .-,V |dom(a:)|}» Where
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|dom(a;)| stands for its finite cardinality. In a similar way, dom(y) =
{c1,. .., Cldom(y)|} Tepresents the domain of the target attribute. Numeric
attributes have infinite cardinalities.

The instance space (the set of all possible examples) is defined as a
Cartesian product of all the input attributes domains: X = dom(ai) X
dom(az) X ... x dom(ay). The universal instance space (or the labeled
instance space) U is defined as a Cartesian product of all input attribute
domains and the target attribute domain, i.e.: U = X x dom(y).

The training set is a bag instance consisting of a set of m tuples.
Formally, the training set is denoted as S(B) = ((z1,¥1),-- -, (Tm,>Ym))
where z, € X and y, € dom(y).

Usually, it is assumed that the training set tuples are generated
randomly and independently according to some fixed and unknown joint
probability distribution D over U. Note that this is a generalization of
the deterministic case when a supervisor classifies a tuple using a function
y = f(z).

This book uses the common notation of bag algebra to present
projection (7) and selection (o) of tuples. For example, given the dataset
S presented in Table 3.1, the expression Ta, q504;=“Yes” AND ay>69 COITe-
sponds with the dataset presented in Table 3.2.

Table 3.1 Illustration of a dataset
S with five attributes.

aj az as a4 Yy
Yes 17 4 7 0
No 81 1 9 1
Yes 17 4 9 0
No 671 5 2 0
Yes 1 123 2 0
Yes 1 5 22 1
No 6 62 1 1
No 6 58 54 0
No 16 6 3 0

Table 3.2 The result of the expre-

SSION  Tajz,a304; =“Yes” ANDg,>6 s

based on Table 3.1.

a as
17 4
17 4
1 5
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3.2 Definition of the Classification Problem

The machine learning community was among the first to introduce the
problem of concept learning. Concepts are mental categories for objects,
events, or ideas that have a common set of features. According to Mitchell
(1997): “each concept can be viewed as describing some subset of objects or
events defined over a larger set” (e.g. the subset of a vehicle that constitutes
trucks). To learn a concept is to infer its general definition from a set
of examples. This definition may be either explicitly formulated or left
implicit, but either way it assigns each possible example to the concept
or not. Thus, a concept can be regarded as a function from the instance
space to the Boolean set, namely: ¢ : X — {—1,1}. Alternatively, one can
refer a concept ¢ as a subset of X, namely: {x € X : ¢(z) = 1}. A concept
class C' is a set of concepts.

To learn a concept is to infer its general definition from a set of
examples. This definition may be either explicitly formulated or left
implicit, but either way it assigns each possible example to the concept
or not. Thus, a concept can be formally regarded as a function from the set
of all possible examples to the Boolean set {True, False}.

Other communities, such as the KDD community, prefer to deal with
a straightforward extension of concept learning, known as the classification
task. In this case, we search for a function that maps the set of all possible
examples into a predefined set of class labels which are not limited to the
Boolean set. Most frequently, the goal of the classifiers inducers is formally
defined as:

Given a training set S with input attributes set A = {a1,as,...,a,}
and a nominal target attribute y from an unknown fixed distribution D
over the labeled instance space, the goal is to induce an optimal classifier
with minimum generalization error.

The generalization error is defined as the misclassification rate over the
distribution D. In case of the nominal attributes, it can be expressed as:

e(DT(S),D)= > D(x,y)- L(y, DT(S)()), (3.1)
(z,y)eU

where L(y, DT(S)(z)) is the zero one loss function defined as:

[0 if y=DT(S)(x)
L(y, DT (S)(z)) = { 1 if y# DT(S)(z) "

In case of numeric attributes the sum operator is replaced with the
integration operator.

(3.2)
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Table 3.3 An illustration of direct mailing dataset.

Age Gender Last Reaction Buy
35 Male Yes No
26 Female No No
22 Male Yes Yes
63 Male No Yes
47 Female No No
54 Male No No
27 Female Yes Yes
38 Female No Yes
42 Female Yes Yes
19 Male No No

Consider the training set in Table 3.3 containing data about 10 cus-
tomers. Each customer is characterized by three attributes: Age, Gender
and Last Reaction (an indication whether the customer has positively
responded to the last previous direct mailing campaign). The last attribute
(“Buy”) describes whether that customer was willing to purchase a product
in the current campaign. The goal is to induce a classifier that most
accurately classifies a potential customer to “Buyers” and “Non-Buyers”
in the current campaign, given the attributes: Age, Gender, Last Reaction.

3.3 Induction Algorithms

An induction algorithm, or more concisely an inducer (also known as
learner), is an entity that obtains a training set and forms a model that
generalizes the relationship between the input attributes and the target
attribute. For example, an inducer may take as an input specific training
tuples with the corresponding class label, and produce a classifier.

The notation DT represents a decision tree inducer and DT(S)
represents a classification tree which was induced by performing DT on
a training set S. Using DT(S), it is possible to predict the target value of
a tuple x,. This prediction is denoted as DT'(S)(z,).

Given the long history and recent growth of the machine learning field,
it is not surprising that several mature approaches to induction are now
available to the practitioner.

3.4 Probability Estimation in Decision Trees

The classifier generated by the inducer can be used to classify an unseen
tuple either by explicitly assigning it to a certain class (crisp classifier)
or by providing a vector of probabilities representing the conditional
probability of the given instance to belong to each class (probabilistic
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classifier). Inducers that can construct probabilistic classifiers are known
as probabilistic inducers. In decision trees, it is possible to estimate
the conditional probability PDT(S)(y = ¢jla; = xq; ;4 = 1,...,n) of
an observation z,. Note the addition of the “hat” — = — to the
conditional probability estimation is used for distinguishing it from the
actual conditional probability.

In classification trees, the probability is estimated for each leaf sepa-
rately by calculating the frequency of the class among the training instances
that belong to the leaf.

Using the frequency vector as is, will typically over-estimate the
probability. This can be problematic especially when a given class never
occurs in a certain leaf. In such cases we are left with a zero probability.
There are two known corrections for the simple probability estimation which
avoid this phenomenon. The following sections describe these corrections.

3.4.1 Laplace Correction

According to Laplace’s law of succession [Niblett (1987)], the probability of
the event y = ¢; where y is a random variable and ¢; is a possible outcome
of y which has been observed m; times out of m observations is:
m; + kp,
m+k
where p, is an a priori probability estimation of the event and k is the

: (3.3)

equivalent sample size that determines the weight of the a priori estimation
relative to the observed data. According to [Mitchell (1997)], k is called
“equivalent sample size” because it represents an augmentation of the m
actual observations by additional k virtual samples distributed according to
pq. The above ratio can be rewritten as the weighted average of the a priori
probability and a posteriori probability (denoted as pp):

m; + k- pq
m+k
oy m k
E.m+k+pa.m+k (3.4)
m k
:pp.m—i—k_'—pa'm—i—k

= Pp - W1 +pa cWa.
In the case discussed here, the following correction is used:
o ‘Uy:c]- ANDa;=x4; S| + k- p

PLaplace(ai = Tq,i |y = Cj) = |O’ S| K . (35)
y=c;
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In order to use the above correction, the values of p and k should be selected.
It is possible to use p = 1/ |dom(y)| and k = |dom(y)|. Some are using k = 2
and p = 1/2 in any case even if |dom(y)| > 2 in order to emphasize the fact
that the estimated event is always compared to the opposite event, while
others are using k = |dom(y)|/|S| and p = 1/ |[dom(y)|.

3.4.2 No Match

According to Clark and Niblett (1989), only zero probabilities are corrected
and replaced by the following value: p,/|S|. Kohavi et al. (1997) suggest
using p, = 0.5. They also empirically compared the Laplace correction and
the no-match correction and indicate that there is no significant difference
between them. However, both of them are significantly better than not
performing any correction at all.

3.5 Algorithmic Framework for Decision Trees

Decision tree inducers are algorithms that automatically construct a
decision tree from a given dataset. Typically, the goal is to find the optimal
decision tree by minimizing the generalization error. However, other target
functions can be also defined, for instance, minimizing the number of nodes
or minimizing the average depth of the tree.

Induction of an optimal decision tree from a given data is considered
to be a difficult task. Hancock et al. (1996) have shown that finding a
minimal decision tree consistent with the training set is NP-hard while
Hyafil and Rivest (1976) have demonstrated that constructing a minimal
binary tree with respect to the expected number of tests required for
classifying an unseen instance is NP-complete. Even finding the minimal
equivalent decision tree for a given decision tree [Zantema and Bodlaender
(2000)] or building the optimal decision tree from decision tables is known
to be NP-hard [Naumov (1991)].

These results indicate that using optimal decision tree algorithms
is feasible only in small problems. Consequently, heuristics methods are
required for solving the problem. Roughly speaking, these methods can be
divided into two groups: top-down and bottom-up with clear preference in
the literature to the first group.

There are various top-down decision trees inducers such as ID3
[Quinlan (1986)], C4.5 [Quinlan (1993)], CART [Breiman et al. (1984)].
Some inducers consist of two conceptual phases: Growing and Pruning (C4.5
and CART). Other inducers perform only the growing phase.

Figure 3.1 presents a typical pseudo code for a top-down inducing
algorithm of a decision tree using growing and pruning. Note that these
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TreeGrowing (S, A,y,SplitCriterion, StoppingCriterion)
Where:

S - Training Set

A - Input Feature Set

y — Target Feature
SplitCriterion — the method for evaluating a certain split
StoppingCriterion — the criteria to stop the growing process

Create a new tree T with a single root node.
IF StoppingCriterion(S) THEN
Mark 7' as a leaf with the most
common value of y in S as a label.
ELSE
Va; € A find a that obtain the best SplitCriterion(a;,S).
Label ¢t with a
FOR each outcome v; of a:
Set Subtree; = TreeGrowing (04—y,5, 4,y).
Connect the root node of ¢{r to Subtree; with
an edge that is labeled as v;
END FOR
END IF
RETURN TreePruning (S,7,y)

TreePruning (S,T,y)
Where:
S - Training Set

y — Target Feature
T - The tree to be pruned

DO
Select a node ¢t in T such that pruning it
maximally improve some evaluation criteria
IF ¢ #@ THEN T = pruned(T,t)
UNTIL t =0
RETURN T

Fig. 3.1 Top-down algorithmic framework for decision trees induction.
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algorithms are greedy by nature and construct the decision tree in a
top-down, recursive manner (also known as divide and conquer). In each
iteration, the algorithm considers the partition of the training set using the
outcome of discrete input attributes. The selection of the most appropriate
attribute is made according to some splitting measures. After the selection
of an appropriate split, each node further subdivides the training set into
smaller subsets, until a stopping criterion is satisfied.

3.6 Stopping Criteria

The growing phase continues until a stopping criterion is triggered. The
following conditions are common stopping rules:

(1) All instances in the training set belong to a single value of y.

(2) The maximum tree depth has been reached.

(3) The number of cases in the terminal node is less than the minimum
number of cases for parent nodes.

(4) If the node were split, the number of cases in one or more child nodes
would be less than the minimum number of cases for child nodes.

(5) The best splitting criterion is not greater than a certain threshold.



Chapter 4

Evaluation of Classification Trees

4.1 Overview

An important problem in the KDD process is the development of efficient
indicators for assessing the quality of the analysis results. In this chapter, we
introduce the main concepts and quality criteria in decision trees evaluation.

Evaluating the performance of a classification tree is a fundamental
aspect of machine learning. As stated above, the decision tree inducer
receives a training set as input and constructs a classification tree that
can classify an unseen instance. Both the classification tree and the inducer
can be evaluated using evaluation criteria. The evaluation is important
for understanding the quality of the classification tree and for refining
parameters in the KDD iterative process.

While there are several criteria for evaluating the predictive perfor-
mance of classification trees, other criteria such as the computational
complexity or the comprehensibility of the generated classifier can be
important as well.

4.2 Generalization Error

Let DT(S) represent a classification tree trained on dataset S. The
generalization error of DT'(S) is its probability to misclassify an instance
selected according to the distribution D of the labeled instance space. The
classification accuracy of a classification tree is one minus the generalization
error. The training error is defined as the percentage of examples in the
training set correctly classified by the classification tree, formally:

&DT(S),S)= > L(y,DT(5)(x)), (4.1)

(z,y)€S
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where L(y, DT(S)(z)) is the zero-one loss function defined in Equa-
tion (3.2).

In this book, classification accuracy is the primary evaluation criterion
for experiments.

Although generalization error is a natural criterion, its actual value is
known only in rare cases (mainly synthetic cases). The reason for that is
that the distribution D of the labeled instance space is not known.

One can take the training error as an estimation of the generalization
error. However, using the training error as is will typically provide an
optimistically biased estimate, especially if the inducer overfits the training
data. There are two main approaches for estimating the generalization error:
Theoretical and Empirical. In this book, we utilize both approaches.

4.2.1 Theoretical Estimation of Generalization Error

A low training error does not guarantee low generalization error. There is
often a trade-off between the training error and the confidence assigned to
the training error as a predictor for the generalization error, measured by
the difference between the generalization and training errors. The capacity
of the inducer is a major factor in determining the degree of confidence
in the training error. In general, the capacity of an inducer indicates the
variety of classifiers it can induce. The VC-dimension presented below can
be used as a measure of the inducers capacity.

Decision trees with many nodes, relative to the size of the training
set, are likely to obtain a low training error. On the other hand, they
might just be memorizing or overfitting the patterns and hence exhibit
a poor generalization ability. In such cases, the low error is likely to be
a poor predictor of the higher generalization error. When the opposite
occurs, that is to say, when capacity is too small for the given number of
examples, inducers may underfit the data, and exhibit both poor training
and generalization error.

In “Mathematics of Generalization”, Wolpert (1995) discusses four
theoretical frameworks for estimating the generalization error: PAC, VC,
Bayesian, and statistical physics. All these frameworks combine the training
error (which can be easily calculated) with some penalty function expressing
the capacity of the inducers.

4.2.2 Empirical Estimation of Generalization Error

Another approach for estimating the generalization error is the holdout
method in which the given dataset is randomly partitioned into two sets:
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training and test sets. Usually, two-thirds of the data is considered for the
training set and the remaining data are allocated to the test set. First,
the training set is used by the inducer to construct a suitable classifier and
then we measure the misclassification rate of this classifier on the test set.
This test set error usually provides a better estimation of the generalization
error than the training error. The reason for this is the fact that the training
error usually under-estimates the generalization error (due to the overfitting
phenomena). Nevertheless, since only a proportion of the data is used to
derive the model, the estimate of accuracy tends to be pessimistic.

A variation of the holdout method can be used when data is limited.
It is common practice to resample the data, that is, partition the data into
training and test sets in different ways. An inducer is trained and tested for
each partition and the accuracies averaged. By doing this, a more reliable
estimate of the true generalization error of the inducer is provided.

Random subsampling and n-fold cross-validation are two common
methods of resampling. In random subsampling, the data is randomly
partitioned several times into disjoint training and test sets. Errors obtained
from each partition are averaged. In n-fold cross-validation, the data is
randomly split into n mutually exclusive subsets of approximately equal
size. An inducer is trained and tested n times; each time it is tested on one
of the k folds and trained using the remaining n — 1 folds.

The cross-validation estimate of the generalization error is the overall
number of misclassifications divided by the number of examples in the data.
The random subsampling method has the advantage that it can be repeated
an indefinite number of times. However, a disadvantage is that the test sets
are not independently drawn with respect to the underlying distribution of
examples. Because of this, using a t-test for paired differences with random
subsampling can lead to an increased chance of type I error, i.e. identifying
a significant difference when one does not actually exist. Using a ¢-test on
the generalization error produced on each fold lowers the chances of type
I error but may not give a stable estimate of the generalization error. It
is common practice to repeat n-fold cross-validation n times in order to
provide a stable estimate. However, this, of course, renders the test sets
non-independent and increases the chance of type I error. Unfortunately,
there is no satisfactory solution to this problem. Alternative tests suggested
by Dietterich (1998) have a low probability of type I error but a higher
chance of type II error, that is, failing to identify a significant difference
when one does actually exist.

Stratification is a process often applied during random subsampling
and n-fold cross-validation. Stratification ensures that the class distribution
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from the whole dataset is preserved in the training and test sets. Stratifi-
cation has been shown to help reduce the variance of the estimated error
especially for datasets with many classes.

Another cross-validation variation is the bootstraping method which
is a n-fold cross-validation, with n set to the number of initial samples. It
samples the training instances uniformly with replacement and leave-one-
out. In each iteration, the classifier is trained on the set of n — 1 samples
that is randomly selected from the set of initial samples, S. The testing is
performed using the remaining subset.

4.2.3 Alternatives to the Accuracy Measure

Accuracy is not a sufficient measure for evaluating a model with an
imbalanced distribution of the class. There are cases where the estimation of
an accuracy rate may mislead one about the quality of a derived classifier. In
such circumstances, where the dataset contains significantly more majority
class than minority class instances, one can always select the majority
class and obtain good accuracy performance. Therefore, in these cases, the
sensitivity and specificity measures can be used as an alternative to the
accuracy measures [Han and Kamber (2001)].

Sensitivity (also known as recall) assesses how well the classifier can
recognize positive samples and is defined as

true_positive

Sensitivity = (4.2)

positive
where true_positive corresponds to the number of the true positive samples
and positive is the number of positive samples.
Specificity measures how well the classifier can recognize negative
samples. It is defined as

true_negative

Specificity = (4.3)

negative
where true_negative corresponds to the number of the true negative exam-
ples and negative the number of samples that is negative.

Another well-known performance measure is precision. Precision mea-
sures how many examples classified as “positive” class are indeed “positive”.
This measure is useful for evaluating crisp classifiers that are used to classify
an entire dataset. Formally:

true_positive

Precision = (4.4)

true_positive + false_positive’
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Recall

Precision

Fig. 4.1 A typical precision-recall diagram.

Based on the above definitions, the accuracy can be defined as a
function of sensitivity and specificity:

Accuracy = Sensitivity - —L225Uve ___ 4 Grocificity - —negative (4.5)

positive+negative positive+negative

4.2.4 The F-Measure

Usually, there is a tradeoff between the precision and recall measures.
Trying to improve one measure often results in a deterioration of the second
measure. Figure 4.1 illustrates a typical precision-recall graph. This two-
dimensional graph is closely related to the well-known receiver operating
characteristics (ROC) graphs in which the true positive rate (recall) is
plotted on the Y-axis and the false positive rate is plotted on the X-axis
[Ferri et al. (2002)]. However, unlike the precision-recall graph, the ROC
diagram is always convex.

Given a probabilistic classifier, this trade-off graph may be obtained
by setting different threshold values. In a binary classification problem, the
classifier prefers the class “not pass” over the class “pass” if the probability
for “not pass” is at least 0.5. However, by setting a different threshold value
other than 0.5, the trade-off graph can be obtained.

The problem here can be described as multi-criteria decision-making
(MCDM). The simplest and the most commonly used method to solve
MCDM is the weighted sum model. This technique combines the criteria
into a single value by using appropriate weighting. The basic principle
behind this technique is the additive utility assumption. The criteria
measures must be numerical, comparable and expressed in the same unit.
Nevertheless, in the case discussed here, the arithmetic mean can mislead.
Instead, the harmonic mean provides a better notion of “average”. More
specifically, this measure is defined as [Van Rijsbergen (1979)]:

2-P-R

F=—-: 4.
P+ R (46)
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Fig. 4.2 A graphic explanation of the F-measure.

The intuition behind the F-measure can be explained using Figure 4.2.
Figure 4.2 presents a diagram of a common situation in which the right
ellipsoid represents the set of all defective batches and the left ellipsoid
represents the set of all batches that were classified as defective by a certain
classifier. The intersection of these sets represents the true positive (TP),
while the remaining parts represent false negative (FN) and false positive
(FP). An intuitive way of measuring the adequacy of a certain classifier is
to measure to what extent the two sets match, namely, to measure the size
of the unshaded area. Since the absolute size is not meaningful, it should
be normalized by calculating the proportional area. This value is the F-
measure:
2.(True Positive) _F. (4'7)

Proportion of unshaded area = — - -
False Positive + False Negative + 2-(True Positve)

The F-measure can have values between 0 to 1. It obtains its highest
value when the two sets presented in Figure 4.2 are identical and it obtains
its lowest value when the two sets are mutually exclusive. Note that
each point on the precision-recall curve may have a different F-measure.
Furthermore, different classifiers have different precision-recall graphs.

4.2.5 Confusion Matriz

The confusion matrix is used as an indication of the properties of a
classification (discriminant) rule. It contains the number of elements that
have been correctly or incorrectly classified for each class. We can see on its
main diagonal the number of observations that have been correctly classified
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Table 4.1 A confusion matrix.

Predicted negative  Predicted positive

Negative Examples A B
Positive Examples C D

for each class; the off-diagonal elements indicate the number of observations
that have been incorrectly classified. One benefit of a confusion matrix is
that it is easy to see if the system is confusing two classes (i.e. commonly
mislabeling one as an other).

For every instance in the test set, we compare the actual class to
the class that was assigned by the trained classifier. A positive (negative)
example that is correctly classified by the classifier is called a TP (true
negative); a positive (negative) example that is incorrectly classified is
called a false negative (false positive). These numbers can be organized
in a confusion matrix shown in Table 4.1.

Based on the values in Table 4.1, one can calculate all the measures
defined above:

Accuracy is: (a+d)/(a+b+c+d)
Misclassification rate is: (b+¢)/(a 4+ b+ ¢+ d)
Precision is: d/(b + d)

True positive rate (Recall) is: d/(c + d)

False positive rate is: b/(a + b)

True negative rate (Specificity) is: a/(a + b)
False negative rate is: ¢/(c+ d)

4.2.6 Classifier FEvaluation under Limited Resources

The above-mentioned evaluation measures are insufficient when probabilis-
tic classifiers are used for choosing objects to be included in a limited
quota. This is a common situation that arises in real-life applications due
to resource limitations that require cost-benefit considerations. Resource
limitations prevent the organization from choosing all the instances. For
example, in direct marketing applications, instead of mailing everybody on
the list, the marketing efforts must implement a limited quota, i.e. target
the mailing audience with the highest probability of positively responding
to the marketing offer without exceeding the marketing budget.

Another example deals with a security officer in an air terminal.
Following September 11, the security officer needs to search all passengers
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who may be carrying dangerous instruments (such as scissors, penknives
and shaving blades). For this purpose the officer is using a classifier that is
capable of classifying each passenger either as class A, which means, “Carry
dangerous instruments” or as class B, “Safe”.

Suppose that searching a passenger is a time-consuming task and that
the security officer is capable of checking only 20 passengers prior to each
flight. If the classifier has labeled exactly 20 passengers as class A, then the
officer will check all these passengers. However, if the classifier has labeled
more than 20 passengers as class A, then the officer is required to decide
which class A passenger should be ignored. On the other hand, if less than
20 people were classified as A, the officer, who must work constantly, has
to decide who to check from those classified as B after he has finished with
the class A passengers.

There are also cases in which a quota limitation is known to exist but its
size is not known in advance. Nevertheless, the decision maker would like
to evaluate the expected performance of the classifier. Such cases occur,
for example, in some countries regarding the number of undergraduate
students that can be accepted to a certain department in a state university.
The actual quota for a given year is set according to different parameters
including governmental budget. In this case, the decision maker would like
to evaluate several classifiers for selecting the applicants while not knowing
the actual quota size. Finding the most appropriate classifier in advance
is important because the chosen classifier can dictate what the important
attributes are, i.e. the information that the applicant should provide the
registration and admission unit.

In probabilistic classifiers, the above-mentioned definitions of precision
and recall can be extended and defined as a function of a probability
threshold 7. If we evaluate a classifier based on a given test set which
consists of n instances denoted as (< x1,y1 >,..., < Tp, Yy, >) such that z;
represents the input features vector of instance ¢ and y; represents its true
class (“positive” or “negative”), then:

) — H< @i,y > pDT(POS\xi) > T, = pos}|

. . (48)
H{< @i,y >: Ppor(pos|z;) > 7|

Precision (7
H< i, ys >: I:’DT(pos\xi) > T,y; = pos}|

Recall (1) =
ecall (7) H{< 2i,yi >: yi = pos}|

;o (49)

where DT represents a probabilistic classifier that is used to estimate the
conditional likelihood of an observation x; to “positive” which is denoted as
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IE’DT(pos\xi). The typical threshold value of 0.5 means that the predicted
probability of “positive” must be higher than 0.5 for the instance to be
predicted as “positive”. By changing the value of 7, one can control the
number of instances that are classified as “positive”. Thus, the 7 value can
be tuned to the required quota size. Nevertheless, because there might be
several instances with the same conditional probability, the quota size is
not necessarily incremented by one.

The above discussion is based on the assumption that the classification
problem is binary. In cases where there are more than two classes,
adaptation could be easily made by comparing one class to all the others.

4.2.6.1 ROC Curves

Another measure is the ROC curves which illustrate the tradeoff between
true positive to false positive rates [Provost and Fawcett (1998)]. Figure 4.3
illustrates a ROC curve in which the X-axis represents a false positive rate
and the Y-axis represents a true positive rate. The ideal point on the ROC
curve would be (0,100), that is, all positive examples are classified correctly
and no negative examples are misclassified as positive.

The ROC convex hull can also be used as a robust method of identifying
potentially optimal classifiers [Provost and Fawcett (2001)]. Given a family
of ROC curves, the ROC convex hull can include points that are more
towards the north-west frontier of the ROC space. If a line passes through
a point on the convex hull, then there is no other line with the same
slope passing through another point with a larger TP intercept. Thus, the
classifier at that point is optimal under any distribution assumptions in
tandem with that slope.

True positive
rate

0.8
0.6
0.4

> False

1 08 06 04 02 positive

rate

Fig. 4.3 A typical ROC curve.
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4.2.6.2 Hit-Rate Curve

The hit-rate curve presents the hit ratio as a function of the quota size. Hit-
rate is calculated by counting the actual positive labeled instances inside
a determined quota [An and Wang (2001)]. More precisely, for a quota of
size j and a ranked set of instances, hit-rate is defined as:

J

3 K]

Hit-Rate(j) = =L (4.10)
J

where ¥ represents the truly expected outcome of the instance located
in the k’th position when the instances are sorted according to their
conditional probability for “positive” by descending order. Note that if the
k’th position can be uniquely defined (i.e. there is exactly one instance that
can be located in this position) then t*! is either 0 or 1 depending on the
actual outcome of this specific instance. Nevertheless, if the k’th position
is not uniquely defined and there are m, ; instances that can be located in
this position, and my o of which are truly positive, then:

ST (4.11)

The sum of ¢t} over the entire test set is equal to the num-
ber of instances that are labeled “positive”. Moreover, Hit-Rate(j) =
Precision(pll) where pll denotes the j'th order of Pr(pos|zi),...,
Py (pos|i,y,). The values are strictly equal when the value of 5’th is uniquely
defined.

It should be noted that the hit-rate measure was originally defined
without any reference to the uniqueness of a certain position. However, there
are some classifiers that tend to provide the same conditional probability
to several different instances. For instance, in a decision tree, any instances
in the test set that belongs to the same leaf get the same conditional
probability. Thus, the proposed correction is required in those cases.
Figure 4.4 illustrates a hit-curve.

4.2.6.3 Qrecall (Quota Recall)

The hit-rate measure, presented above, is the “precision” equivalent for
quota-limited problems. Similarly, we suggest the Qrecall (for quota recall)
to be the “recall” equivalent for quota-limited problems. The Qrecall for
a certain position in a ranked list is calculated by dividing the number of
positive instances, from the head of the list until that position, by the total
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Fig. 4.4 A typical hit curve.

positive instances in the entire dataset. Thus, the Qrecall for a quota of j
is defined as:

3 ¢lk

Qrecall(j) = k:7i+ . (4.12)

The denominator stands for the total number of instances that are
classified as positive in the entire dataset. Formally, it can be calculated as:

n* =< @i,y > yi = pos}|. (4.13)
4.2.6.4 Lift Curve

A popular method of evaluating probabilistic models is lift. After a ranked
test set is divided into several portions (usually deciles), lift is calculated as
follows [Coppock (2002)]: the ratio of really positive instances in a specific
decile is divided by the average ratio of really positive instances in the
population. Regardless of how the test set is divided, a good model is
achieved if the lift decreases when proceeding to the bottom of the scoring
list. A good model would present a lift greater than 1 in the top deciles and
a lift smaller than 1 in the last deciles. Figure 4.5 illustrates a lift chart for
a typical model prediction. A comparison between models can be done by
comparing the lift of the top portions, depending on the resources available
and cost/benefit considerations.

4.2.6.5 Pearson Correlation Coefficient

There are also some statistical measures that may be used as performance
evaluators of models. These measures are well known and can be found in
many statistical books. In this section, we examine the Pearson correlation
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Fig. 4.5 A typical lift chart.

coefficient. This measure can be used to find the correlation between the
ordered estimated conditional probability (p[k]) and the ordered actual
expected outcome (t*1). A Pearson correlation coefficient can have any
value between —1 and 1 where the value 1 represents the strongest positive
correlation. It should be noticed that this measure take into account not
only the ordinal place of an instance but also its value (i.e. the estimated
probability attached to it). The Pearson correlation coefficient for two
random variables is calculated by dividing the co-variance by the product
of both standard deviations. In this case, the standard deviations of the
two variables assuming a quota size of j are:

o) = |2 (00 = 50)); o) = | 2 S (- G),  (a14)

J i=1 J =1

where p(j),(j) represent the average of pll’s and t/1’s respectively:

e

J ) .
3 pld il
pli) = izlj D)) = l:fj = Hit-Rate(j). (4.15)
The co-variance is calculated as follows:
1<~ o o
Coupa(§) = =3 (" = 2)) (411~ (7). (4.16)
i—1

Thus, the Pearson correlation coefficient for a quota j, is:

Covy+(j)

o) -0 )" (4.17)

Pp,t (J) =
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4.2.6.6 Area Under Curve (AUC)

Evaluating a probabilistic model without using a specific fixed quota is
not a trivial task. Using continuous measures like hit curves, ROC curves
and lift charts, mentioned previously, is problematic. Such measures can
give a definite answer to the question “Which is the best model?” only if
one model dominates in the curve space, meaning that the curves of all
the other models are beneath it or equal to it over the entire chart space.
If a dominating model does not exist, then there is no answer to that
question, using only the continuous measures mentioned above. Complete
order demands no intersections of the curves. Of course, in practice there is
almost never one dominating model. The best answer that can be obtained
is in regard to which areas one model outperforms the others. As shown in
Figure 4.6, every model gets different values in different areas. If a complete
order of model performance is needed, another measure should be used.
Area under the ROC curve (AUC) is a useful metric for classifier
performance since it is independent of the decision criterion selected
and prior probabilities. The AUC comparison can establish a dominance
relationship between classifiers. If the ROC curves are intersecting, the total
AUC is an average comparison between models [Lee (2000)]. The bigger it
is, the better the model is. As opposed to other measures, the area under
the ROC curve (AUC) does not depend on the imbalance of the training
set [Kolcz (2003)]. Thus, the comparison of the AUC of two classifiers is
fairer and more informative than comparing their misclassification rates.

True positive
A
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Fig. 4.6 Areas of dominancy. A ROC curve is an example of a measure that gives areas
of dominancy and not a complete order of the models. In this example, the equally dashed
line model is the best for f.p < 0.2. The full line model is the best for 0.2 < f.p < 0.4. The
dotted line model is best for 0.4 < f.p < 0.9 and from 0.9 to 1 again the dashed line model
is the best.
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4.2.6.7 Average Hit-Rate

The average hit-rate is a weighted average of all hit-rate values. If the model
is optimal, then all the really positive instances are located in the head of
the ranked list, and the value of the average hit-rate is 1. The use of this
measure fits an organization that needs to minimize type II statistical error
(namely, to include a certain object in the quota although in fact this object
will be labeled as “negative”). Formally, the Average Hit-Rate for binary
classification problems is defined as:

S tbl. Hit-Rate(y)
Average Hit-Rate = =1

¥ , (4.18)
where U] is defined as in Equation (4) and is used as a weighting factor.
Note that the average hit-rate ignores all hit-rate values on unique positions
that are actually labeled as “negative” class (because t1=0 in these cases).

4.2.6.8 Awverage Qrecall

Average Qrecall is the average of all the Qrecalls which extends from the
position that is equal to the number of positive instances in the test set
to the bottom of the list. Average Qrecall fits an organization that needs
to minimize type I statistical error (namely, not including a certain object
in the quota although in fact this object will be labeled as “positive”).
Formally, average Qrecall is defined as:

zn: Qrecall(j)

j:n+

o1 (4.19)

where n is the total number of instances and n™ is defined in Equation
(4.13).

Table 4.2 illustrates the calculation of average Qrecall and average hit-
rate for a dataset of 10 instances. The table presents a list of instances
in descending order according to their predicted conditional probability to
be classified as “positive”. Because all probabilities are unique, the third
column (¢ indicates the actual class (“1” represent “positive” and “0”
represents “negative”). The average values are simple algebraic averages of
the highlighted cells.

Note that both average Qrecall and average hit-rate get the value 1 in
an optimum classification, where all the positive instances are located at
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Table 4.2 An example for calculating average Qrecall and average hit-rate.

Place in list (j) Positive probability tlk] Qrecall Hit-rate

1 0.45 1 0.25 1
2 0.34 0 0.25 0.5
3 0.32 1 0.5 0.667
4 0.26 1 0.75 0.75
5 0.15 0 0.75 0.6
6 0.14 0 0.75 0.5
7 0.09 1 1 0.571
8 0.07 0 1 0.5
9 0.06 0 1 0.444

10 0.03 0 1 0.4

Average: 0.893 0.747

Table 4.3 Qrecall and Hit-rate in an optimum prediction.

Place in list (j) Positive probability tlx] Qrecall Hit-rate
1 0.45 1 0.25 1
2 0.34 1 0.5 1
3 0.32 1 0.75 1
4 0.26 1 1 1
5 0.15 0 1 0.8
6 0.14 0 1 0.667
7 0.09 0 1 0.571
8 0.07 0 1 0.5
9 0.06 0 1 0.444
10 0.03 0 1 0.4
Average: 1 1

the head of the list. This case is illustrated in Table 4.3. A summary of the
key differences are provided in Table 4.4.

4.2.6.9 Potential Extract Measure (PEM)

To better understand the behavior of Qrecall curves, consider the cases of
random prediction and optimum prediction.

Suppose no learning process was applied on the data and the list
produced as a prediction would be the test set in its original (random)
order. On the assumption that positive instances are distributed uniformly
in the population, then a quota of random size contains a number of
positive instances that are proportional to the a priori proportion of positive
instances in the population. Thus, a Qrecall curve that describes a uniform
distribution (which can be considered as a model that predicts as well as a
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Table 4.4 Characteristics of Qrecall and Hit-rate.

Parameter Hit-rate Qrecall

Function Non-monotonic Monotonically increasing
increasing/decreasing

End point Proportion of positive 1

samples in the set

Sensitivity of the Very sensitive to positive Same sensitivity to
measures value to instances at the top of positive instances in all
positive instances the list. Less sensitive places in the list.

on going down to the
bottom of the list.

Effect of negative class on A negative instance A negative instance does
the measure affects the measure and not affect the measure.
cause its value to
decrease.
Range 0 < Hit-rate <1 0 <Qrecall< 1

random guess, without any learning) is a linear line (or semi-linear because
values are discrete) which starts at 0 (for zero quota size) and ends in 1.

Suppose now that a model gave an optimum prediction, meaning that
all positive instances are located at the head of the list and below them, all
the negative instances. In this case, the Qrecall curve climbs linearly until
a value of 1 is achieved at point, n™ (nT = number of positive samples).
From that point, any quota that has a size bigger than n™t, fully extracts
test set potential and the value 1 is kept until the end of the list.

Note that a “good model”, which outperforms random classification,
though not an optimum one, will fall “on average” between these two curves.
It may drop sometimes below the random curve but generally, more area is
delineated between the “good model” curve and the random curve, above
the latter than below it. If the opposite is true then the model is a “bad
model” that does worse than a random guess.

The last observation leads us to consider a measure that evaluates
the performance of a model by summing the areas delineated between the
Qrecall curve of the examined model and the Qrecall curve of a random
model (which is linear). Areas above the linear curve are added and areas
below the linear curve are subtracted. The areas themselves are calculated
by subtracting the Qrecall of a random classification from the Qrecall of the
model’s classification in every point as shown in Figure 4.7. The areas where
the model performed better than a random guess increase the measure’s
value while the areas where the model performed worse than a random guess
decrease it. If the last total computed area is divided in the area delineated
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Fig. 4.7 A qualitative representation of PEM.

between the optimum model Qrecall curve and the random model (linear)
Qrecall curve, then it reaches the extent to which the potential is extracted,
independently of the number of instances in the dataset.
Formally, the PEM measure is calculated as:
S1— 5o
Sz

where S is the area delimited by the Qrecall curve of the examined model
above the Qrecall curve of a random model; S5 is the area delimited by the
Qrecall curve of the examined model under the Qrecall curve of a random
model; and S3 is the area delimited by the optimal Qrecall curve and the
curve of the random model. The division in S5 is required in order to
normalize the measure, thus datasets of different size can be compared. In
this way, if the model is optimal, then PEM gets the value 1. If the model
is as good as a random choice, then the PEM gets the value 0. If it gives
the worst possible result (that is to say, it puts the positive samples at the
bottom of the list), then its PEM is —1. Based on the notations defined
above, the PEM can be formulated as:

En: (Qrecall(j) - %)

PEM = (4.20)

PEM = Sl; 52 _ e - (4.21)
’ () +n - X ()
j=1 j=1

S (Qrecall(j)) — (n11) (Qrecall(j)) — D
-5 D = . (4.22)
-

(n

.
it:

n—
2
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Table 4.5 An example for calculating PEM for instances of Table 4.2.

Place Success Model Random  Optimal
in list  probability ¢¥]  Qrecall Qrecall Qrecall S1 S2 S3
1 0.45 1 0.25 0.1 0.25 0.15 0 0.15
2 0.34 0 0.25 0.2 0.5 0.05 0 0.3
3 0.32 1 0.5 0.3 0.75 0.2 0 0.45
4 0.26 1 0.75 0.4 1 0.35 0 0.6
5 0.15 0 0.75 0.5 1 0.25 0 0.5
6 0.14 0 0.75 0.6 1 0.15 0 04
7 0.09 1 1 0.7 1 0.3 0 0.3
8 0.07 0 1 0.8 1 0.2 0 0.2
9 0.06 0 1 0.9 1 0.1 0 0.1
10 0.03 0 1 1 1 0 0 0
Total 1.75 0o 3

where n~ denotes the number of instances that are actually classified as
“negative”. Table 4.5 illustrates the calculation of PEM for the instances
in Table 4.2. Note that the random Qrecall does not represent a certain
realization but the expected values. The optimal grecall is calculated as if
the “positive” instances have been located in the top of the list.

Note that the PEM somewhat resembles the Gini index produced from
Lorentz curves which appear in economics when dealing with the distribu-
tion of income. Indeed, this measure indicates the difference between the
distribution of positive samples in a prediction and the uniform distribution.
Note also that this measure gives an indication of the total lift of the model
at every point. In every quota size, the difference between the Qrecall of the
model and the Qrecall of a random model expresses the lift in extracting
the potential of the test set due to the use in the model (for good or for
bad).

4.2.7 Which Decision Tree Classifier is Better?

Below we discuss some of the most common statistical methods proposed
[Dietterich (1998)] for answering the following question: Given two inducers
A and B and a dataset S, which inducer will produce more accurate
classifiers when trained on datasets of the same size?

4.2.7.1 McNemar’s Test

Let S be the available set of data, which is divided into a training set R
and a test set T. Then we consider two inducers A and B trained on the
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Table 4.6 McNemar’s test: contingency table.

Number of examples misclassified  Number of examples misclassified by
by both classifiers (noo) fa but not by fg(no1)

Number of examples misclassified Number of examples misclassified
by fp but not by fA(nlo) neither by fa nor by fg (n11)

Table 4.7 Expected counts under Hy.

100 (no1 +mn10)/2)
(nOI +7’Z10)/2) nll)

training set and the result is two classifiers. These classifiers are tested on
T and for each example x € T we record how it was classified. Thus, the
contingency table presented in Table 4.6 is constructed.

The two inducers should have the same error rate under the null
hypothesis Hy. McNemar’s test is based on a x? test for goodness-of-fit
that compares the distribution of counts expected under null hypothesis
to the observed counts. The expected counts under Hy are presented in
Table 4.7.

The following statistic, s, is distributed as x? with 1 degree of freedom.
It incorporates a “continuity correction” term (of —1 in the numerator) to
account for the fact that the statistic is discrete while the y? distribution
is continuous:

_ _1)2
5= (o —noil ~ 1) (4.23)
n10 + No1
According to the probabilistic theory [Athanasopoulos, 1991], if the null
hypothesis is correct, the probability that the value of the statistic, s, is

greater than X7 g5 is less than 0.05, i.e. P(|s| > x3 g.95) < 0.05. Then, to
compare the inducers A and B, the induced classifiers f 4 and f B are tested
on T and the value of s is estimated as described above. Then if |s| > Xio.%v
the null hypothesis could be rejected in favor of the hypothesis that the two
inducers have different performance when trained on the particular training
set R.

The shortcomings of this test are:

(1) It does not directly measure variability due to the choice of the
training set or the internal randomness of the inducer. The inducers are
compared using a single training set R. Thus McNemar’s test should
be only applied if we consider that the sources of variability are small.
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(2) It compares the performance of the inducers on training sets, which
are substantially smaller than the size of the whole dataset. Hence, we
must assume that the relative difference observed on training sets will
still hold for training sets of size equal to the whole dataset.

4.2.7.2 A Test for the Difference of Two Proportions

This statistical test is based on measuring the difference between the
error rates of algorithms A and B [Snedecor and Cochran (1989)]. More
specifically, let pg = (ngo + no1)/n be the proportion of test examples
incorrectly classified by algorithm A and let pp = (ngp + n19)/n be the
proportion of test examples incorrectly classified by algorithm B. The
assumption underlying this statistical test is that when algorithm A classi-
fies an example x from the test set T, the probability of misclassification is
pa. Then the number of misclassifications of n test examples is a binomial
random variable with mean np4 and variance pa(l — pa)n.

The binomial distribution can be well approximated by a normal distri-
bution for reasonable values of n. The difference between two independent
normally distributed random variables is itself normally distributed. Thus,
the quantity pa — pp can be viewed as normally distributed if we assume
that the measured error rates p4 and pp are independent. Under the null
hypothesis, Hy, the quantity ps — pp has a mean of zero and a standard

se = \/Qp- (1 _ p“LTpB)/n, (4.24)

where n is the number of test examples.
Based on the above analysis, we obtain the statistic:

deviation error of

y— _PATPB (4.25)

V2p(1=p)/n’
which has a standard normal distribution. According to the probabilistic
theory, if the z value is greater than Zj 975, the probability of incorrectly
rejecting the null hypothesis is less than 0.05. Thus, if |z] > Zy.g975 = 1.96,
the null hypothesis could be rejected in favor of the hypothesis that the
two algorithms have different performances. Two of the most important
problems with this statistic are:

(1) The probabilities p4 and pp are measured on the same test set and
thus they are not independent.
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(2) The test does not measure variation due to the choice of the training
set or the internal variation of the learning algorithm. Also it measures
the performance of the algorithms on training sets of a size significantly
smaller than the whole dataset.

4.2.7.3 The Resampled Paired t Test

The resampled paired t test is the most popular in machine learning.
Usually, there are a series of 30 trials in the test. In each trial, the available
sample S is randomly divided into a training set R (it is typically two
thirds of the data) and a test set 7. The algorithms A and B are both
trained on R and the resulting classifiers are tested on T'. Let pfz) and pg)
be the observed proportions of test examples misclassified by algorithm A
and B respectively during the ¢th trial. If we assume that the 30 differences
pl) = pfz) — pg) were drawn independently from a normal distribution, then

we can apply Student’s ¢ test by computing the statistic:

p-vn

t= —, (4.26)
n—1
where p = % . Z?le(i). Under the null hypothesis, this statistic has a

t distribution with n — 1 degrees of freedom. Then for 30 trials, the null
hypothesis could be rejected if |t| > ta9,0.975 = 2.045. The main drawbacks
of this approach are:

(1) Since pfj) and pg) are not independent, the difference p(* will not have
a normal distribution.
(2) The p(1’s are not independent, because the test and training sets in

the trials overlap.

4.2.7.4 The k-fold Cross-validated Paired t Test

This approach is similar to the resampled paired ¢ test except that instead of
constructing each pair of training and test sets by randomly dividing S, the
dataset is randomly divided into k disjoint sets of equal size, 171,75, ..., Tk.
Then £ trials are conducted. In each trial, the test set is T; and the training
set is the union of all of the others T}, j # i. The t statistic is computed
as described in Section 4.2.7.3. The advantage of this approach is that
each test set is independent of the others. However, there is the problem
that the training sets overlap. This overlap may prevent this statistical test
from obtaining a good estimation of the amount of variation that would
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be observed if each training set were completely independent of the others
training sets.

4.3 Computational Complexity

Another useful criterion for comparing inducers and classifiers is their
computational complexity. Strictly speaking computational complexity
is the amount of CPU consumed by each inducer. It is convenient to
differentiate between three metrics of computational complexity:

e Computational complexity for generating a new classifier: This is the
most important metric, especially when there is a need to scale the data
mining algorithm to massive datasets. Because most of the algorithms
have computational complexity, which is worse than linear in the numbers
of tuples, mining massive datasets might be prohibitively expensive.

e Computational complexity for updating a classifier: Given new data,
what is the computational complexity required for updating the current
classifier such that the new classifier reflects the new data?

o Computational complexity for classifying a new instance: Generally this
type of metric is neglected because it is relatively small. However, in
certain methods (like k-nearest neighborhood) or in certain real-time
applications (like anti-missiles applications), this type can be critical.

4.4 Comprehensibility

Comprehensibility criterion (also known as interpretability) refers to how
well humans grasp the induced classifier. While the generalization error
measures how the classifier fits the data, comprehensibility measures the
“mental fit” of that classifier.

Many techniques, like neural networks or support vector machines,
are designed solely to achieve accuracy. However, as their classifiers are
represented using large assemblages of real valued parameters, they are
also difficult to understand and are referred to as black-box models.

However, it is often important for the researcher to be able to inspect
an induced classifier. For such domains as medical diagnosis, users must
understand how the system makes its decisions in order to be confident
of the outcome. Since data mining can also play an important role in
the process of scientific discovery, a system may discover salient features
in the input data whose importance was not previously recognized. If
the representations formed by the inducer are comprehensible, then these
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discoveries can be made accessible to human review [Hunter and Klein
(1993)].

Comprehensibility can vary between different classifiers created by the
same inducer. For instance, in the case of decision trees, the size (number
of nodes) of the induced trees is also important. Smaller trees are preferred
because they are easier to interpret. There are also other reasons for
preferring smaller decision trees. According to a fundamental principle in
science, known as the Occam’s razor, when searching for the explanation
of any phenomenon, one should make as few assumptions as possible, and
eliminating those that make no difference in the observable predictions of
the explanatory hypothesis. The implication in regard to decision trees is
that the tree which can be defined as the smallest decision tree that is
consistent with the training set is the one that is most likely to classify
unseen instances correctly. However, this is only a rule of thumb; in some
pathologic cases a large and unbalanced tree can still be easily interpreted
[Buja and Lee (2001)]. Moreover, the problem of finding the smallest
consistent tree is known to be NP-complete [Murphy and McCraw (1991)].

As the reader can see, the accuracy and complexity factors can be
quantitatively estimated; the comprehensibility is more subjective.

4.5 Scalability to Large Datasets

Scalability refers to the ability of the method to construct the classification
model efficiently given large amounts of data. Classical induction algorithms
have been applied with practical success in many relatively simple and
small-scale problems. However, trying to discover knowledge in real life
and large databases introduces time and memory problems.

As large databases have become the norm in many fields (including
astronomy, molecular biology, finance, marketing, health care, and many
others), the use of data mining to discover patterns in them has become a
potentially very productive enterprise. Many companies are staking a large
part of their future on these “data mining” applications, and looking to
the research community for solutions to the fundamental problems they
encounter.

While a very large amount of available data used to be a dream of
any data analyst, nowadays the synonym for “very large” has become
“terabyte”, a hardly imaginable volume of information. Information-
intensive organizations (like telecom companies and banks) are supposed
to accumulate several terabytes of raw data every one to two years.
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However, the availability of an electronic data repository (in its
enhanced form known as a “data warehouse”) has caused a number of
previously unknown problems, which, if ignored, may turn the task of
efficient data mining into mission impossible. Managing and analyzing
huge data warehouses requires special and very expensive hardware and
software, which often causes a company to exploit only a small part of the
stored data.

According to Fayyad et al. (1996), the explicit challenges for the data
mining research community is to develop methods that facilitate the use of
data mining algorithms for real-world databases. One of the characteristics
of a real-world databases is high volume data.

Huge databases pose several challenges:

e Computing complexity: Since most induction algorithms have a computa-
tional complexity that is greater than linear in the number of attributes
or tuples, the execution time needed to process such databases might
become an important issue.

e Poor classification accuracy due to difficulties in finding the correct
classifier. Large databases increase the size of the search space, and thus
it increases the chance that the inducer will select an over fitted classifier
that is not valid in general.

e Storage problems: In most machine learning algorithms, the entire
training set should be read from the secondary storage (such as magnetic
storage) into the computer’s primary storage (main memory) before the
induction process begins. This causes problems since the main memory’s
capability is much smaller than the capability of magnetic disks.

The difficulties in implementing classification algorithms as-is on high vol-
ume databases derives from the increase in the number of records/instances
in the database and from the increase in the number of attributes/features
in each instance (high dimensionality).

Approaches for dealing with a high number of records include:

e Sampling methods — statisticians are selecting records from a population
by different sampling techniques.

e Aggregation — reduces the number of records either by treating a group
of records as one, or by ignoring subsets of “unimportant” records.

e Massively parallel processing — exploiting parallel technology — to
simultaneously solve various aspects of the problem.



Evaluation of Classification Trees 55

e Efficient storage methods — enabling the algorithm to handle many
records. For instance, Shafer et al. (1996) presented the SPRINT which
constructs an attribute list data structure.

e Reducing the algorithm’s search space — For instance, the PUBLIC
algorithm [Rastogi and Shim (2000)] integrates the growing and pruning
of decision trees by using Minimum Description Length (MDL) approach
in order to reduce the computational complexity.

4.6 Robustness

The ability of the model to handle noise or data with missing values
and make correct predictions is called robustness. Different decision trees
algorithms have different robustness levels. In order to estimate the
robustness of a classification tree, it is common to train the tree on a clean
training set and then train a different tree on a noisy training set. The
noisy training set is usually the clean training set to which some artificial
noisy instances have been added. The robustness level is measured as the
difference in the accuracy of these two situations.

4.7 Stability

Formally, stability of a classification algorithm is defined as the degree to
which an algorithm generates repeatable results, given different batches of
data from the same process. In mathematical terms, stability is the expected
agreement between two models on a random sample of the original data,
where agreement on a specific example means that both models assign it to
the same class. The instability problem raises questions about the validity
of a particular tree provided as an output of a decision-tree algorithm. The
users view the learning algorithm as an oracle. Obviously, it is difficult to
trust an oracle that says something radically different each time you make
a slight change in the data.

Existing methods of constructing decision trees from data suffer from a
major problem of instability. The symptoms of instability include variations
in the predictive accuracy of the model and in the model’s topology.
Instability can be revealed not only by using disjoint sets of data, but even
by replacing a small portion of training cases, like in the cross-validation
procedure. If an algorithm is unstable, the cross-validation results become
estimators with high variance which means that an algorithm fails to make
a clear distinction between persistent and random patterns in the data. As
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we will see below, certain type of decision trees can be used to solve the
instability problem.

4.8 Interestingness Measures

The number of classification patterns generated could be very large and it
is possible that different approaches result in different sets of patterns. The
patterns extracted during the classification process could be represented in
the form of rules, known as classification rules. It is important to evaluate
the discovered patterns identifying the ones that are valid and provide
new knowledge. Techniques that aim at this goal are broadly referred
to as interestingness measures and the interestingness of the patterns
that are discovered by a classification approach may also be considered
as another quality criterion. Some representative measures [Hilderman
and Hamilton, 1999] for ranking the usefulness and utility of discovered
classification patterns (each path from the root to the leaf represents a
different pattern) are:

e Rule-Interest Function. Piatetsky-Shapiro introduced the rule-interest
[Piatetsky-Shapiro, (1991)] that is used to quantify the correlation
between attributes in a classification rule. It is suitable only for single
classification rules, i.e. rules where both the left- and right-hand sides
correspond to a single attribute.

e Smyth and Goodman’s J-Measure. The J-measure is a measure for
probabilistic classification rules and is used to find the best rules relating
discrete-valued attributes [Smyth and Goodman (1991)]. A probabilistic
classification rule is a logical implication, X — Y, satisfied with
some probability p. The left- and right-hand sides of this implication
correspond to a single attribute. The right-hand side is restricted to
simple single-valued assignment expressions while the left-hand side may
be a conjunction of simple expressions.

e General Impressions. In Liu et al. (1997), general impression is proposed
as an approach for evaluating the importance of classification rules. It
compares discovered rules to an approximate or vague description of
what is considered to be interesting. Thus a general impression can be
considered as a kind of specification language.

e (Gago and Bento’s Distance Metric. The distance metric measures the
distance between classification rules and is used to determine the rules
that provide the highest coverage for the given data. The rules with the
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highest average distance to the other rules are considered to be most
interesting [Gago and Bentos, 1998].

4.9 Overfitting and Underfitting

The concept of overfitting is very important in data mining. It refers to
the situation in which the induction algorithm generates a classifier which
perfectly fits the training data but has lost the capability of generalizing to
instances not presented during training. In other words, instead of learning,
the classifier just memorizes the training instances. Overfitting is generally
recognized to be a violation of the principle of Occams razor presented in
Section 4.4.

In decision trees, overfitting usually occurs when the tree has too many
nodes relative to the amount of training data available. By increasing the
number of nodes, the training error usually decreases while at some point
the generalization error becomes worse.

Figure 4.8 illustrates the overfitting process. The figure presents the
training error and the generalization error of a decision tree as a function
of the number of nodes for a fixed training set. The training error continues
to decline as the tree become bigger. On the other hand, the generalization
error declines at first then at some point starts to increase due to overfitting.
The optimal point for the generalization error is obtained for a tree with
130 nodes. In bigger trees, the classifier is overfitted. In smaller trees, the
classifier is underfitted.
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Fig. 4.8 Overfitting in decision trees.
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Fig. 4.9 Overfitting in decision trees.

Another aspect of overfitting is presented in Figure 4.9. This graph
presents the generalization error for increasing training set sizes. The
generalization error decreases with the training set size. This can be
explained by the fact that for a small training set, it is relatively hard
to generalize, and the classifier memorizes all instances.

It was found that overfitting decreases prediction accuracy in decision
trees either in the presence of significant noise or when the input attributes
are irrelevant to the classification problem [Schaffer (1991)].

In order to avoid overfitting, it is necessary to estimate when further
training will not result in a better generalization. In decision trees there are
two mechanisms that help to avoid overfitting. The first is to avoid splitting
the tree if the split is not useful (for instance by approving only statistically
significant splits). The second approach is to use pruning; after growing the
tree, we prune unnecessary nodes.

4.10 “No Free Lunch” Theorem

Empirical comparison of the performance of different approaches and their
variants in a wide range of application domains has shown that each
performs best in some, but not all, domains. This has been termed the
selective superiority problem [Brodley (1995)].

It is well known that no induction algorithm can be the best in all possi-
ble domains; each algorithm contains an explicit or implicit bias that leads it
to prefer certain generalizations over others [Mitchell (1980)]. The algorithm
will be successful only insofar as this bias matches the characteristics of
the application domain [Brazdil et al. (1994)]. Furthermore, other results
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have demonstrated the existence and correctness of the “conservation law”
[Schaffer (1994)] or “no free lunch theorem” [Wolpert (1996)]: if one inducer
is better than another in some domains, then there are necessarily other
domains in which this relationship is reversed.

The “no free lunch theorem” implies that for a given problem, a
certain approach can yield more information from the same data than other
approaches.

A distinction should be made between all the mathematically possible
domains, which are simply a product of the representation languages used,
and the domains that occur in the real world, and are therefore the ones
of primary interest [Rao et al. (1995)]. Without doubt there are many
domains in the former set that are not in the latter, and average accuracy
in the realworld domains can be increased at the expense of accuracy in
the domains that never occur in practice. Indeed, achieving this is the
goal of inductive learning research. It is still true that some algorithms
will match certain classes of naturally occurring domains better than other
algorithms, and so achieve higher accuracy than these algorithms. While
this may be reversed in other realworld domains, it does not preclude an
improved algorithm from being as accurate as the best in each of the domain
classes.

Indeed, in many application domains, the generalization error of even
the best methods is far above 0%, and the question of whether it can be
improved, and if so how, is an open and important one. One aspect in
answering this question is determining the minimum error achievable by
any classifier in the application domain (known as the optimal Bayes error).
If existing classifiers do not reach this level, new approaches are needed.
Although this problem has received considerable attention (see for instance
[Tumer and Ghosh (1996)]), no generally reliable method has so far been
demonstrated.

The “no free lunch” concept presents a dilemma to the analyst
approaching a new task: Which inducer should be used?

If the analyst is looking for accuracy only, one solution is to try each
one in turn, and by estimating the generalization error, to choose the one
that appears to perform best [Schaffer (1994)]. Another approach, known as
multistrategy learning [Michalski and Tecuci (1994)], attempts to combine
two or more different paradigms in a single algorithm. Most research in
this area has been concerned with combining empirical approaches with
analytical methods (see for instance [Towell and Shavlik (1994)]. Ideally, a
multistrategy learning algorithm would always perform as well as the best
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of its “parents” obviating the need to try each one and simplifying the
knowledge acquisition task. Even more ambitiously, there is hope that this
combination of paradigms might produce synergistic effects (for instance,
by allowing different types of frontiers between classes in different regions
of the example space), leading to levels of accuracy that neither atomic
approach by itself would be able to achieve.

Unfortunately, this approach has often been used with only moderate
success. Although it is true that in some industrial applications (like in
the case of demand planning) this strategy proved to boost the error
performance, in many other cases the resulting algorithms are prone to
be cumbersome, and often achieve an error that lies between those of their
parents, instead of matching the lowest.

The dilemma of which method to choose becomes even greater, if other
factors such as comprehensibility are taken into consideration. For instance,
for a specific domain, a neural network may outperform decision trees in
accuracy. However, from the comprehensibility aspect, decision trees are
considered better. In other words, even if the researcher knows that neural
network is more accurate, he still has a dilemma regarding which method
to use.



Chapter 5

Splitting Criteria

5.1 Univariate Splitting Criteria
5.1.1 Owverview

In most decision trees inducers, discrete splitting functions are univariate,
i.e. an internal node is split according to the value of a single attribute.
Consequently, the inducer searches for the best attribute upon which
to perform the split. There are various univariate criteria which can be
characterized in different ways, such as:

e according to the origin of the measure: Information Theory, Dependence,
and Distance.

e according to the measure structure: Impurity-based criteria, Normalized
Impurity-based criteria and Binary criteria.

The following section describes the most common criteria appearing in
the literature.

5.1.2 Impurity-based Criteria

Given a random variable x with k discrete values, distributed according to
P = (p1,p2,- - -, Pr), an impurity measure is a function ¢ : [0,1]¥ — R that
satisfies the following conditions:

¢ (P)=

¢ (P) is minimum if 3¢ such that component p; = 1.
¢ (P) is maximum if Vi, 1 < i <k, p; = 1/k.

¢ (P) is symmetric with respect to components of P.
¢ (P)

P) is smooth (differentiable everywhere) in its range.

61
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It should be noted that if the probability vector has a component of 1
(the variable x gets only one value), then the variable is defined as pure.
On the other hand, if all components are equal the level of impurity reaches
maximum.

Given a training set S the probability vector of the target attribute y
is defined as:

|oy=c, S| |7y=claomn S|
P,(S) = Y=o L . 5.1

The goodness-of-split due to discrete attribute a; is defined as reduction
in impurity of the target attribute after partitioning S according to the
values v; ; € dom(a;):

|dom(a;)|
ai:vijS
A0 8) =Ry (5) - Y 1 Zmend] 5 BBy (0uma,S). (52)
j=1

5.1.3 Information Gain

Information Gain is an impurity-based criteria that uses the entropy
measure (originating from information theory) as the impurity measure.

Information Gain(a;, S) =

Caz=v, ;5
EntTOpy(yv S) - Z % ! Entropy(y, Oa;=v; ; S)a (53)
v;,j€dom(a;)
where:
Oy—c, S Oy—c, S
Entropy(y,S) = Z —| U|S|] | - log, | U|S‘J ‘ (5.4)
c;jedom(y)

Information gain is closely related to the maximum likelihood estima-
tion (MLE), which is a popular statistical method used to make inferences
about parameters of the underlying probability distribution from a given
dataset.

5.1.4 Gini Index

The Gini index is an impurity-based criteria that measures the divergences
between the probability distributions of the target attributes values. The
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Gini index has been used in various works such as [Breiman et al. (1984)]
and [Gelfand et al. (1991)] and it is defined as:

2
Gini(y,S) =1- > (%) : (5.5)

c;jEdom(y)

Consequently, the evaluation criterion for selecting the attribute a; is
defined as:

GiniGain(a;, S) = Gini(y, S)

_ Z |U‘L|—+S‘ - Gini(y, 0a,=0, , S)- (5.6)

v;,;Edom(as)

5.1.5 Likelthood Ratio Chi-squared Statistics
The likelihood-ratio is defined as [Attneave (1959)]

G*(a;, S) = 2-1n(2) - || - InformationGain(a;, S). (5.7)

This ratio is useful for measuring the statistical significance of the
information gain criterion. The zero hypothesis (Hp) is that both the
input and target attributes are conditionally independent. If Hy holds,
the test statistic is distributed as x? with degrees of freedom equal to:
(dom(a;) — 1) - (dom(y) — 1).

5.1.6 DKM Criterion

The DKM criterion is an impurity-based splitting criteria designed for
binary class attributes [Kearns and Mansour (1999)]. The impurity-based
function is defined as:

DKMy, 5) = 2. \/ (|ay|_§15|> _ (|ay_scrs|)_ (58)

It has been theoretically proved that this criterion requires smaller trees

for obtaining a certain error than other impurity-based criteria (information
gain and Gini index).

5.1.7 Normalized Impurity-based Criteria

The impurity-based criterion described above is biased towards attributes
with larger domain values. Namely, it prefers input attributes with many
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values over those with less values [Quinlan (1986)]. For instance, an input
attribute that represents the national security number will probably get
the highest information gain. However, adding this attribute to a decision
tree will result in a poor generalized accuracy. For that reason, it is useful
to “normalize” the impurity-based measures, as described in the following
sections.

5.1.8 Gain Ratio

The gain ratio normalizes the information gain as follows [Quinlan (1993)]:

, _ Information Gain(a;, S)
Gain Ratio|(a;, S) = Entropy(ar, S)

(5.9)

Note that this ratio is not defined when the denominator is zero.
Furthermore, the ratio may tend to favor attributes for which the denomi-
nator is very small. Accordingly, it is suggested that the ratio be carried out
in two stages. First, the information gain is calculated for all attributes. As
a consequence of considering only attributes that have performed at least
as well as the average information gain, the attribute that has obtained the
best ratio gain is selected. Quinlan (1988) has shown that the gain ratio
tends to outperform simple information gain criteria, both in accuracy and
in terms of classifier complexity. A penalty is assessed for the information
gain of a continuous attribute with many potential splits.

5.1.9 Distance Measure

The Distance Measure, like the Gain Ratio, normalizes the impurity
measure. However, it is performed differently [Lopez de Mantras (1991)]:

A(I)(GJZ‘,S)
_ Z Z ‘aai:'l)m,j AND y:CkS‘ o |Ua7,:vq,,j AND y:CkS‘ .
2
S| 5]

v;,;€dom(a;) c€dom(y)

(5.10)

5.1.10 Binary Criteria

The binary criteria are used for creating binary decision trees. These
measures are based on division of the input attribute domain into two
subdomains.
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Let §(a;, domi(a;), domsz(a;),S) denote the binary criterion value for
attribute a; over sample S when dom; (a;) and doma(a;) are its correspond-
ing subdomains. The value obtained for the optimal division of the attribute
domain into two mutually exclusive and exhaustive subdomains is used for
comparing attributes, namely:

8*(as, S) = max B(ai, domi(a;), doms(a;), S).  (5.11)
Ydom (a;); doma(a;)

5.1.11 Twoing Criterion

The Gini index may encounter problems when the domain of the target
attribute is relatively wide [Breiman et al. (1984)]. In such cases, it is

possible to employ binary criterion called twoing criterion. This criterion is
defined as:

twoing(a;, domy(a;), doma(a;), S)

|o-a,i6dom1(ai)s| . }aaiedomg(ai)s| )

=0.25-
S| 5]
2
Z |Uai€d0m,1 (a;) AND y:ciS| - ’Uaiedomg(ai) AND y:ciS|
cicdom(y) ’Uaiedoml (a1)S| |0aiedomz(ai)s|
(5.12)

When the target attribute is binary, the Gini and twoing criteria are
equivalent. For multi-class problems, the twoing criteria prefers attributes
with evenly divided splits.

5.1.12 Orthogonal Criterion

The ORT criterion was presented by [Fayyad and Irani (1992)]. This binary
criterion is defined as:

ORT (a;,domq(a;),doma(a;),S) =1 — cosO(Py 1, Py.2), (5.13)

where §(Py 1, P, 2) is the angle between two vectors P, ; and P, . These
vectors represent the probability distribution of the target attribute in the
partitions o4, cdom (a;)S and g, ecdoms(a;)S, Tespectively.

It has been shown that this criterion performs better than the
information gain and the Gini index for specific constellations of problems.
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5.1.13 Kolmogorov—Smirnov Criterion

A binary criterion that uses Kolmogorov—Smirnov distance has been
proposed by [Friedman (1977)] and [Rounds (1980)]. Assuming a binary
target attribute, namely dom(y) = {c1, ca}, the criterion is defined as:

KS(a;,dom(a;),doms(a;), S)

_ |0-a,3 €domi(a;) AND y:cl‘g| |0ai€dom1(ai) AND y:cz‘g| (514)

|0y201 S| ‘Uy2025|

This measure was extended by [Utgoff and Clouse (1996)] to handle
target attribute with multiple classes and missing data values. Their results
indicate that the suggested method outperforms the gain ratio criteria.

5.1.14 AUC Splitting Criteria

In Section 4.2.6.6, we have shown that the AUC metric can be used for
evaluating the predictive performance of classifiers. The AUC metric can
be also used as a splitting criterion [Ferri et al. (2002)]. The attribute
that obtains the maximal area under the convex hull of the ROC curve
is selected. It has been shown that the AUC-based splitting criterion
outperforms other splitting criteria both with respect to classification
accuracy and area under the ROC curve. It is important to note that unlike
impurity criteria, this criterion does not perform a comparison between the
impurity of the parent node with the weighted impurity of the children after
splitting.

5.1.15 Other Univariate Splitting Criteria

Additional univariate splitting criteria can be found in the literature, such
as permutation statistic [Li and Dubes (1986)]; mean posterior improvement
[Taylor and Silverman (1993)]; and hypergeometric distribution measure
[Martin (1997)].

5.1.16 Comparison of Univariate Splitting Criteria

Over the past 30 years, several researchers have conducted comparative
studies of splitting criteria both those described above and others. Among
these researchers are: [Breiman (1996)]; [Baker and Jain (1976)]; [Mingers
(1989)]; [Fayyad and Irani (1992)]; [Buntine and Niblett (1992)]; [Loh and
Shih (1997)]; [Loh and Shih (1999)]; and [Lim et al. (2000)]. The majority
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of the comparisons are based on empirical results, although there are some
theoretical conclusions.

Most of the researchers point out that in nearly all of the cases the
choice of splitting criteria will not make much difference on the tree
performance. As the no-free lunch theorem suggests, each criterion is
superior in some cases and inferior in others.

5.2 Handling Missing Values

Missing values are a common experience in real-world datasets. This
situation can complicate both induction (a training set where some of its
values are missing) as well as classification of a new instance that is missing
certain values.

The problem of missing values has been addressed by several researchers
such as [Friedman (1977)], [Breiman et al. (1984)] and [Quinlan (1989)].
Friedman (1977) suggests handling missing values in the training set in the
following way. Let 04,=25 indicate the subset of instances in S whose a;
values are missing. When calculating the splitting criteria using attribute
a;, simply ignore all instances whose values in attribute a; are unknown.
Instead of using the splitting criteria A®(a;, S) we use A®(a;, S —04,=29).

On the other hand, Quinlan (1989) argues that in case of missing values,
the splitting criteria should be reduced proportionally as nothing has been
learned from these instances. In other words, instead of using the splitting
criteria A®(a;, S), we use the following correction:

S — 0a,=25]

5]

In cases where the criterion value is normalized (as in the case of
gain ratio), the denominator should be calculated as if the missing values
represent an additional value in the attribute domain. For instance, the
gain ratio with missing values should be calculated as follows:

Ad(a;, S — 0q,=25). (5.15)

GainRatio(a;, S) =

|S*Ga.:?s| . . )
lisi‘lnformatwnGain(ai,Sfcrai=75) . (516)
|aai:?S|1 |7a,=25] |7as=vs,; 5] |7as=vs,; 5]
— st loe(—fsr ) X s log(t— s )

v;, jEdom(a;)

Once a node is split, Quinlan (1989) suggests adding o,,-25 to each
one of the outgoing edges with the following corresponding weight:

|oa,=v,.;S|/1S = 0a,=25]. (5.17)
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The same idea is used for classifying a new instance with missing
attribute values. When an instance encounters a node where its splitting
criteria can be evaluated due to a missing value, it is passed through to
all outgoing edges. The predicted class will be the class with the highest
probability in the weighted union of all the leaf nodes at which this instance
ends up.

Another approach known as surrogate splits is implemented in the
CART algorithm. The idea is to find for each split in the tree a surrogate
split which uses a different input attribute and which most resembles the
original split. If the value of the input attribute used in the original split
is missing, then it is possible to use the surrogate split. The resemblance
between two binary splits over sample S is formally defined as:

res(a;, domi(a;), doma(a;), aj, domy(a;), doms(a;), S)

|o—ai €domi(a;) AND ajedomi(aj) S| |Uai €doms(a;) AND ajedoma(aj) S|
= + 5
5] 5]
(5.18)
where the first split refers to attribute a; and it splits dom(a;) into domy (a;)
and doma(a;). The alternative split refers to attribute a; and splits its
domain to dom1(a;) and doms(a;).

The missing value can be estimated based on other instances. On the
learning phase, if the value of a nominal attribute a; in tuple ¢ is missing,
then it is estimated by its mode over all instances having the same target
attribute value. Formally,

estimate(a;, yq, S) = argmax |0a,—v,; AND y=y, S|, (5.19)
v;,jEdom(a;)
where y, denotes the value of the target attribute in the tuple g. If the
missing attribute a; is numeric, then, instead of using mode of a;, it is
more appropriate to use its mean.



Chapter 6

Pruning Trees

6.1 Stopping Criteria

The growing phase continues until a stopping criterion is triggered. The
following conditions are common stopping rules:

(1) All instances in the training set belong to a single value of y.

(2) The maximum tree depth has been reached.

(3) The number of cases in the terminal node is less than the minimum
number of cases for parent nodes.

(4) If the node were split, the number of cases in one or more child nodes
would be less than the minimum number of cases for child nodes.

(5) The best splitting criteria is not greater than a certain threshold.

6.2 Heuristic Pruning
6.2.1 Overview

Employing tight stopping criteria tends to create small and underfitted
decision trees. On the other hand, using loose stopping criteria tends to
generate large decision trees that are overfitted to the training set. To
solve this dilemma, Breiman et al. (1984) developed a pruning methodology
based on a loose stopping criterion and allowing the decision tree to overfit
the training set. Then the overfitted tree is cut back into a smaller tree
by removing sub-branches that are not contributing to the generalization
accuracy. It has been shown in various studies that pruning methods can
improve the generalization performance of a decision tree, especially in noisy
domains.

Another key motivation of pruning is “trading accuracy for simplicity”
as presented by Bratko and Bohanec (1994). When the goal is to produce a
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sufficiently accurate, compact concept description, pruning is highly useful.
Since within this process the initial decision tree is seen as a completely
accurate one, the accuracy of a pruned decision tree indicates how close it
is to the initial tree.

There are various techniques for pruning decision trees. Most perform
top-down or bottom-up traversal of the nodes. A node is pruned if this
operation improves a certain criteria. The following subsections describe
the most popular techniques.

6.2.2 Cost Complexity Pruning

Cost complexity pruning (also known as weakest link pruning or error
complexity pruning) proceeds in two stages [Breiman et al. (1984)]. In the
first stage, a sequence of trees Ty, 71, ..., Ty is built on the training data
where Tj is the original tree before pruning and T} is the root tree.

In the second stage, one of these trees is chosen as the pruned tree,
based on its generalization error estimation.

The tree T;11 is obtained by replacing one or more of the sub-trees in
the predecessor tree T; with suitable leaves. The sub-trees that are pruned
are those that obtain the lowest increase in apparent error rate per pruned
leaf:

e(pruned(T,t),S) — (T, S)

— 1
@ [leaves(T)| — |leaves(pruned(T,t))|’ (6.1)

where (T, .5) indicates the error rate of the tree T' over the sample S and
|leaves(T')| denotes the number of leaves in T'. pruned(T,t) denotes the
tree obtained by replacing the node ¢ in T with a suitable leaf.

In the second phase, the generalization error of each pruned tree is
estimated. The best pruned tree is then selected. If the given dataset is large
enough, the authors suggest breaking it into a training set and a pruning
set. The trees are constructed using the training set and evaluated on the
pruning set. On the other hand, if the given dataset is not large enough,
they propose using cross-validation methodology, despite the computational
complexity implications.

6.2.3 Reduced Error Pruning

A simple procedure for pruning decision trees, known as Reduced Error
Pruning, has been suggested by Quinlan (1987). While traversing over the
internal nodes from the bottom to the top, the procedure checks each
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internal node to determine whether replacing it with the most frequent
class does not reduce the trees accuracy. The node is pruned if accuracy
is not reduced. The procedure continues until any further pruning would
decrease the accuracy.

In order to estimate the accuracy, Quinlan (1987) proposes the usage
of a pruning set. It can be shown that this procedure ends with the smallest
accurate sub-tree with respect to a given pruning set.

6.2.4 Minimum Error Pruning (MEP)

MEP, proposed by Niblett and Bratko (1986), involves bottom-up traver-
sal of the internal nodes. This technique compares, in each node, the
l-probability error rate estimation with and without pruning.

The [-probability error rate estimation is a correction to the simple
probability estimation using frequencies. If S; denotes the instances that
have reached a leaf ¢, then the expected error rate in this leaf is:

g'(t)=1—- max |oy=c:St| + 1 Papr(y = Ci),
ci€dom(y) ISt| +l

(6.2)

where papr (Y = ¢;) is the a priori probability of y getting the value ¢;, and
[ denotes the weight given to the a priori probability.

The error rate of an internal node is the weighted average of the error
rate of its branches. The weight is determined according to the proportion
of instances along each branch. The calculation is performed recursively up
to the leaves.

If an internal node is pruned, then it becomes a leaf and its error rate is
calculated directly using the last equation. Consequently, we can compare
the error rate before and after pruning a certain internal node. If pruning
this node does not increase the error rate, the pruning should be accepted.

6.2.5 Pessimistic Pruning

Pessimistic pruning avoids the need of a pruning set or cross-validation and
uses the pessimistic statistical correlation test instead [Quinlan (1993)].

The basic idea is that the error ratio that was estimated using the
training set is not reliable enough. Instead, a more realistic measure, known
as the continuity correction for binomial distribution, should be used:

|leaves(T)|

/ _
e(T,S)=¢e(T,S)+ 2. 19]

(6.3)
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However, this correction still produces an optimistic error rate. Conse-
quently, Quinlan (1993) suggests pruning an internal node ¢t if its error rate
is within one standard error from a reference tree, namely:

(T, 8) - (1— (T, S))
1S

' (pruned(T,t),S) < &'(T,S) + \/ . (6.4)

The last condition is based on the statistical confidence interval for
proportions. Usually, the last condition is used such that T refers to a sub-
tree whose root is the internal node ¢t and S denotes the portion of the
training set that refers to the node t¢.

The pessimistic pruning procedure performs top-down traversal over
the internal nodes. If an internal node is pruned, then all its descendants
are removed from the pruning process, resulting in a relatively fast pruning.

6.2.6 Error-Based Pruning (EBP)

EBP is an evolution of the pessimistic pruning. It is implemented in the
well-known C4.5 algorithm.

As in pessimistic pruning, the error rate is estimated using the upper
bound of the statistical confidence interval for proportions.

€(T7 S) ) (1 — €(T7 S))
5] ’

ev(T,S)=¢e(T,S)+ Zq - \/ (6.5)
where (T, S) denotes the misclassification rate of the tree T on the training
set S; Z is the inverse of the standard normal cumulative distribution; and
« is the desired significance level.

Let subtree(T,t) denote the subtree rooted by the node ¢. Let
maxchild(T,t) denote the most frequent child node of ¢ (namely most of
the instances in S reach this particular child) and let S; denote all instances
in S that reach the node t. The procedure traverses bottom-up all nodes
and compares the following values:

(1) eup(subtree(T,t),St)
(2) eyp(pruned(subtree(T,t),t), St)
(3) eu(subtree(T, maxchild(T,t)), Smazchitd(T,t))-

According to the lowest value, the procedure either leaves the tree as
is; prune the node ¢; or replaces the node t with the subtree rooted by
maxchild(T,t).



Pruning Trees 73

6.2.7 Minimum Description Length (MDL) Pruning

MDL can be used for evaluating the generalized accuracy of a node
([Rissanen (1989)], [Quinlan and Rivest (1989)] and [Mehta et al. (1995)]).
This method measures the size of a decision tree by means of the number
of bits required to encode the tree. The MDL method prefers decision trees
that can be encoded with fewer bits. Mehta et al. (1995) indicate that the
cost of a split at a leaf t can be estimated as:

Cost(t) = Z |0y—e; Si| - In - |5t\S | I |d0m(g)| -1 In %
ci€dom(y) et
ldom(w)| (6.6)
+ In

I( IdOTg(y)l)

where S; denotes the instances that have reached node t. The splitting
cost of an internal node is calculated based on the cost aggregation of its
children.

6.2.8 Other Pruning Methods

There are other pruning methods reported in the literature. Wallaces
and Patrick (1993) proposed a Minimum Message Length (MML) pruning
method while Kearns and Mansour (1998) provide a theoretically-justified
pruning algorithm. Mingers (1989) proposed the Critical Value Pruning
(CVP). This method, which prunes an internal node if its splitting criterion
is not greater than a certain threshold, is similar to a stopping criterion.
However, contrary to a stopping criterion, a node is not pruned if at least
one of its children does not fulfill the pruning criterion.

6.2.9 Comparison of Pruning Methods

Several studies compare the performance of different pruning techniques:
([Quinlan (1987)], [Mingers (1989)] and [Esposito et al. (1997)]). The results
indicate that some methods (such as Cost-Complexity Pruning, Reduced
Error Pruning) tend to over-pruning, i.e. creating smaller but less accurate
decision trees. Other methods (like error-based pruning, pessimistic error
pruning and minimum error pruning) bias toward under-pruning. Most of
the comparisons concluded that the no free lunch theorem also applies
to pruning, namely, there is no pruning method that outperforms other
pruning methods.
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6.3 Optimal Pruning

The issue of finding the optimal pruning method has been studied by
Bratko and Bohanec (1994) and Almuallim (1996). The Optimal Pruning
Technique (OPT) algorithm guarantees optimality based on dynamic
programming, with the complexity of ©(|leaves(T)), where T is the
initial decision tree. Almuallim (1996) introduced an improvement of
OPT called OPT-2, which also performs optimal pruning using dynamic
programming. However, the time and space complexities of OPT-2 are both
O(|leaves(T*)|-|internal (T')|), where T* is the target (pruned) decision tree
and T is the initial decision tree.

Since the pruned tree is habitually much smaller than the initial tree
and the number of internal nodes is smaller than the number of leaves,
OPT-2 is usually more efficient than OPT in terms of computational
complexity.

According to Almuallim, when pruning a given decision tree (DT)
with s leaves, it is common to progressively replace various sub-trees
of DT by leaves, thus leading to a sequence of pruned DT, DT,_;,
DTy o,...,DT;,..., DTy, such that each DT; has at most ¢ leaves. When
seeing the error as the difference from the original tree (DT, the trees in
the sequence are of increasing error. The goal in choosing the best tree from
the above sequence of pruned trees, according to some appropriate criteria,
is to achieve a good balance between the trees size and accuracy.

In their paper, Bratko and Bohanec (1994) address the following prob-
lem: “Given a completely accurate but complex definition of a concept,
simplify the definition, possibly at the expanse of accuracy, so that the
simplified definition still corresponds to the concept ‘sufficiently’ well”. In
this context, “concepts” are represented by decision trees and the method
of simplification is tree pruning. Therefore, the problem can be stated as:
“Given a decision tree that accurately specifies a concept, the problem is to
find the smallest pruned tree that still represents the concept within some
specified accuracy.”

In a new algorithm [Almuallim (1996)], OPT-2, which also performs
optimal pruning, is introduced. The problem of optimal pruning is formally
presented in this paper as follows: “Given a DT and a positive integer
C, find a pruned DT from DT such that s(DT') < C and error(DT") is
minimized.” where s(DT") is the size of DT (number of leaves in DT") and
error(D T/) is the proportion of cases that are incorrectly handled by DT'.

The OPT-2 algorithm is based on dynamic programming. In its most
basic form, the time and space complexities of OPT-2 are both ©(nC),
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where n is the number of internal nodes in the initial decision tree and
C' is the number of leaves in the target (pruned) decision tree. This
is an improvement of the OPT algorithm presented by Bohanec and
Bratko (1994). One important characteristic of the OPT-2 algorithm is its
significant flexibility. The OPT-2 works sequentially, generating the trees
of the sequence one after the other in increasing order of the number
of leaves (that is in the order DTy, DTs, DT5,....). This differs from
OPT which simultaneously generates the whole sequence of pruned trees.
Sequence generation in OPT-2 can be terminated once a tree with adequate
predetermined criteria is found.

Given that trees DTy, DT5,...,DT;_1 have already been generated,
OPT-2 finds DT in time O(n), where n is the number of the internal nodes
of the initial decision tree. Thus, if the number of leaves of the target tree is
C, the total running time of OPT-2 will be ©(nC'). Since the goal is to prune
the tree, C'is habitually much smaller then s. Additionally, n is smaller than
s, specifically in the case of attributes with many values. Hence, OPT-2 is
usually more efficient than OPT in terms of execution time.

Although both OPT and OPT-2 are based on dynamic programming
the two algorithms differ substantially in the way the problem is divided
into sub-problems. The approach adopted in OPT is usually viewed as a
“bottom-up” approach, where the idea is to compute solutions for the sub-
trees rooted at the lowest level of the tree. These solutions are then used to
compute the nodes of the next upper level. This process is repeated until the
root of the initial tree is reached. A basic characteristic of this “bottom-up”
approach is that the trees DT; of the pruning sequence are simultaneously
computed as we advance towards the root. These pruned trees are not final
unless we reach the root. However, once it is reached, the whole sequence
becomes available at once.

The OPT-2 produces the pruned trees one after the other using an
algorithm derivative of a dynamic programming method given by Johnson
and Niemi (1983). Unlike the bottom-up approach of OPT, processing
in OPT-2 is done in a left to right fashion: Given that we have already
computed trees DTy, DTs,...,DT;—1 and that necessary intermediate
results for these computations are kept in memory the OPT-2 algorithm
finds DT; from these through a linear ‘left to right’ pass over the tree.

In optimal pruning the error of each DT; in the sequence should be a
minimum over all pruned trees of ¢ (or less) leaves. To date, the only two
works that address optimal pruning are Bohanec and Bratko’s paper (1994)
and Almuallim’s paper (1996).
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Chapter 7

Popular Decision Trees Induction
Algorithms

7.1 Overview

In this chapter, we shortly review some of the popular decision trees
induction algorithms, including: ID3, C4.5, and CART. All of these
algorithms are using splitting criterion and pruning methods that were
already described in previous chapters. Therefore, the aim of this chapter
is merely to indicate which setting each algorithm is using and what are
the advantages and disadvantages of each algorithm.

7.2 1ID3

The ID3 algorithm is considered to be a very simple decision tree algorithm
[Quinlan (1986)]. Using information gain as a splitting criterion, the ID3
algorithm ceases to grow when all instances belong to a single value of a
target feature or when best information gain is not greater than zero. ID3
does not apply any pruning procedure nor does it handle numeric attributes
or missing values.

The main advantage of ID3 is its simplicity. Due to this reason, ID3
algorithm is frequently used for teaching purposes. However, ID3 has several
disadvantages:

(1) ID3 does not guarantee an optimal solution, it can get stuck in local
optimums because it uses a greedy strategy. To avoid local optimum,
backtracking can be used during the search.

(2) ID3 can overfit to the training data. To avoid overfitting, smaller
decision trees should be preferred over larger ones. This algorithm

7
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usually produces small trees, but it does not always produce the
smallest possible tree.

(3) ID3 is designed for nominal attributes. Therefore, continuous data can
be used only after converting them to nominal bins.

Due to the above drawbacks, most of the practitioners prefer the C4.5
algorithm over ID3 mainly because C4.5 is an evolution of the ID3 algorithm
that tries to tackle its drawbacks.

7.3 C4.5

C4.5, an evolution of ID3, presented by the same author [Quinlan (1993)],
uses gain ratio as splitting criteria. The splitting ceases when the number
of instances to be split is below a certain threshold. Error-based pruning
is performed after the growing phase. C4.5 can handle numeric attributes.
It can also induce from a training set that incorporates missing values by
using corrected gain ratio criteria as described in Section 5.1.8.

C4.5 algorithm provides several improvements to ID3. The most
important improvements are:

(1) C4.5 uses a pruning procedure which removes branches that do not
contribute to the accuracy and replace them with leaf nodes.

(2) C4.5 allows attribute values to be missing (marked as 7).

(3) C4.5 handles continuous attributes by splitting the attribute’s value
range into two subsets (binary split). Specifically, it searches for the
best threshold that maximizes the gain ratio criterion. All values above
the threshold constitute the first subset and all other values constitute
the second subset.

C5.0 is an updated, commercial version of C4.5 that offers a number
of improvements: it is claimed that C5.0 is much more efficient than C4.5
in terms of memory and computation time. In certain cases, it provides an
impressive speedup from hour and a half (that it took to C4.5 algorithm)
to only 3.5 seconds. Moreover, it supports the boosting procedure that can
improve predictive performance and is described in Section 9.4.1.

J48 is an open source Java implementation of the C4.5 algorithm in
the Weka data mining tool (see Section 10.2 for additional information).
Because J48 algorithm is merely a reimplementation of C4.5, it is expected
to perform similarly to C4.5. Nevertheless, a recent comparative study that
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compares C4.5 with J48 and C5.0 [Moore et al. (2009)] indicates that C4.5
performs consistently better (in terms of accuracy) than C5.0 and J48 in
particular on small datasets.

7.4 CART

CART stands for Classification and Regression Trees. It was developed by
Breiman et al. (1984) and is characterized by the fact that it constructs
binary trees, namely each internal node has exactly two outgoing edges.
The splits are selected using the Twoing Criteria and the obtained tree is
pruned by Cost-Complexity Pruning. When provided, CART can consider
misclassification costs in the tree induction. It also enables users to provide
prior probability distribution.

An important feature of CART is its ability to generate regression trees.
In regression trees, the leaves predict a real number and not a class. In case
of regression, CART looks for splits that minimize the prediction squared
error (the least-squared deviation). The prediction in each leaf is based on
the weighted mean for node.

7.5 CHAID

Starting from the early Seventies, researchers in applied statistics developed
procedures for generating decision trees [Kass (1980)]. Chi-squared-
Automatic-Interaction-Detection (CHIAD) was originally designed to han-
dle nominal attributes only. For each input attribute a;, CHAID finds
the pair of values in V; that is least significantly different with respect to
the target attribute. The significant difference is measured by the p value
obtained from a statistical test. The statistical test used depends on the type
of target attribute. An F test is used if the target attribute is continuous;
a Pearson chi-squared test if it is nominal; and a likelihood ratio test if it
is ordinal.

For each selected pair of values, CHAID checks if the p value obtained
is greater than a certain merge threshold. If the answer is positive, it merges
the values and searches for an additional potential pair to be merged. The
process is repeated until no significant pairs are found.

The best input attribute to be used for splitting the current node is
then selected, such that each child node is made of a group of homogeneous
values of the selected attribute. Note that no split is performed if the
adjusted p value of the best input attribute is not less than a certain split
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threshold. This procedure stops also when one of the following conditions is
fulfilled:

(1) Maximum tree depth is reached.

(2) Minimum number of cases in a node for being a parent is reached, so
it cannot be split any further.

(3) Minimum number of cases in a node for being a child node is reached.

CHAID handles missing values by treating them all as a single valid
category. CHAID does not perform pruning.

7.6 QUEST

The Quick, Unbiased, Efficient Statistical Tree (QUEST) algorithm sup-
ports univariate and linear combination splits [Loh and Shih (1997)]. For
each split, the association between each input attribute and the target
attribute is computed using the ANOVA F-test or Levene’s test (for
ordinal and continuous attributes) or Pearson’s chi-square (for nominal
attributes). An ANOVA F-statistic is computed for each attribute. If
the largest F-statistic exceeds a predefined threshold value, the attribute
with the largest F-value is selected to split the node. Otherwise, Levene’s
test for unequal variances is computed for every attribute. If the largest
Levene’s statistic value is greater than a predefined threshold value, the
attribute with the largest Levene value is used to split the node. If no
attribute exceeded either threshold, the node is split using the attribute
with the largest ANOVA F-value.

If the target attribute is multinomial, two-means clustering is used to
create two super-classes. The attribute that obtains the highest association
with the target attribute is selected for splitting. Quadratic Discriminant
Analysis (QDA) is applied to find the optimal splitting point for the input
attribute. QUEST has negligible bias and yields a binary decision tree.
Ten-fold cross-validation is used to prune the trees.

7.7 Reference to Other Algorithms

Table 7.1 describes other decision tree algorithms available in the literature.
Although there are many other algorithms which are not included in this
table, nevertheless, most are a variation of the algorithmic framework
presented in previous sections. A profound comparison of the above
algorithms and many others has been conducted in [Lim et al. (2000)].
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Table 7.1 Additional decision tree inducers.
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Algorithm Description Reference

CAL5 Designed specifically for numerical-valued [Muller and
attributes. Wysotzki (1994)]

FACT An earlier version of QUEST. Uses statistical tests [Loh and
to select an attribute for splitting each node and Vanichsetakul
then uses discriminant analysis to find the split (1988)]
point.

LMDT Constructs a decision tree based on multivariate [Brodley and
tests which are linear combinations of the Utgoff (1995)]
attributes.

T1 A one-level decision tree that classifies instances [Holte (1993)]
using only one attribute. Missing values are
treated as a “special value”. Support both
continuous an nominal attributes.

PUBLIC Integrates the growing and pruning by using MDL [Rastogi and Shim
cost in order to reduce the computational (2000)]
complexity.

MARS A multiple regression function is approximated [Friedman (1991)]

using linear splines and their tensor products.

7.8 Advantages and Disadvantages of Decision Trees

Several advantages of the decision tree as a classification tool appear in the

literature:

(1)

Decision trees are self-explanatory and when compacted they are also
easy to follow. That is to say, if the decision tree has a reasonable
number of leaves it can be grasped by non-professional users. Further-
more, since decision trees can be converted to a set of rules, this sort
of representation is considered as comprehensible.

Decision trees can handle both nominal and numeric input attributes.
Decision tree representation is rich enough to represent any discrete-
value classifier.

Decision trees can handle datasets that may have errors.

Decision trees can deal with handle datasets that may have missing
values.

Decision trees are considered to be a non-parametric method, i.e.
decisions tress do mnot include any assumptions about the space
distribution and on the classifier structure.



82

(7)
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When classification cost is high, decision trees may be attractive in that
they ask only for the values of the features along a single path from the
root to a leaf.

Among the disadvantages of decision trees are:

Most of the algorithms (like ID3 and C4.5) require that the target
attribute will have only discrete values.

As decision trees use the “divide and conquer” method, they tend to
perform well if a few highly relevant attributes exist, but less so if many
complex interactions are present. One of the reasons for this happening
is that other classifiers can compactly describe a classifier that would be
very challenging to represent using a decision tree. A simple illustration
of this phenomenon is the replication problem of decision trees [Pagallo
and Huassler (1990)]. Since most decision trees divide the instance space
into mutually exclusive regions to represent a concept, in some cases
the tree should contain several duplications of the same subtree in order
to represent the classifier. The replication problem forces duplication of
subtrees into disjunctive concepts. For instance, if the concept follows
the following binary function: y = (41N A3)U(A3NA4) then the minimal
univariate decision tree that represents this function is illustrated in
Figure 7.1. Note that the tree contains two copies of the same subtree.
The greedy characteristic of decision trees leads to another disadvantage
that should be pointed out. The over-sensitivity to the training set,
to irrelevant attributes and to noise [Quinlan (1993)] make decision
trees especially unstable: a minor change in one split close to the root
will change the whole subtree below. Due to small variations in the

Fig. 7.1 TIllustration of decision tree with replication.
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training set, the algorithm may choose an attribute which is not truly
the best one.

The fragmentation problem causes partitioning of the data into smaller
fragments. This usually happens if many features are tested along the
path. If the data splits approximately equally on every split, then
a univariate decision tree cannot test more than O(logn) features.
This puts decision trees at a disadvantage for tasks with many
relevant features. Note that replication always implies fragmentation,
but fragmentation may happen without any replication.

Another problem refers to the effort needed to deal with missing values
[Friedman et al. (1996)]. While the ability to handle missing values
is considered to be advantage, the extreme effort which is required
to achieve it is considered a drawback. The correct branch to take is
unknown if a feature tested is missing, and the algorithm must employ
special mechanisms to handle missing values. In order to reduce the
occurrences of tests on missing values, C4.5 penalizes the information
gain by the proportion of unknown instances and then splits these
instances into subtrees. CART uses a much more complex scheme of
surrogate features.

The myopic nature of most of the decision tree induction algorithms
is reflected by the fact that the inducers look only one level ahead.
Specifically, the splitting criterion ranks possible attributes based on
their immediate descendants. Such strategy prefers tests that score high
in isolation and may overlook combinations of attributes. Using deeper
lookahead strategies is considered to be computationally expensive and
has not proven useful.
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Chapter 8

Beyond Classification Tasks

8.1 Introduction

Up to this point, we have mainly focused on using decision trees for
classification tasks (i.e. classification trees). However, decision trees can
be used for other data mining tasks. In this chapter, we review the
other common tasks that decision trees are used for, including: regression,
clustering and survival analysis.

8.2 Regression Trees

Regression models map the input space into a real-value domain. For
instance, a regressor can predict the demand for a certain product given its
characteristics. Formally, the goal is to examine y|X for a response y and
a set of predictors X.

Regression trees are decision trees that deal with a continuous target.
The basic idea is to combine decision trees and linear regression to forecast
numerical target attribute based on a set of input attributes. These methods
perform induction by means of an efficient recursive partitioning algorithm.
The choice of the best split at each node of the tree is usually guided by a
least squares error criterion.

Regression tree models are successfully used for day ahead forecasting
of power consumption using input features such as temperature, day of the
week and location.

CART and CHAID regression tree algorithms assign a constant value
to the leaves. The constant value is usually the mean value of the
corresponding leaf. RETIS and M5 algorithms are able to use linear
regression models at the leaves. Linear regression is a well-known statistics
method that was studied rigorously.

85



86 Data Mining with Decision Trees

CART can be applied to both categorical and quantitative response
variables. When CART is applied with a quantitative response variable,
the procedure is known as “Regression Trees”. At each step, heterogeneity
is now measured by the within-node sum of squares of the response:

i(r) =Y (i —9(r)> (8.1)

where for node 7 the summation is over all cases in that node, and g(7) is
the mean of those cases. The heterogeneity for each potential split is the
sum of the two sums of squares for the two nodes that would result. The
split is chosen that reduces most this within-nodes sum of squares; the sum
of squares of the parent node is compared to the combined sums of squares
from each potential split into two offspring nodes. Generalization to Poisson
regression (for count data) follows with the deviance used in place of the
sum of squares.

Several software packages provide implementation of regression tree
models. MATLAB provides the REPTree function that fits a regression
tree model according to the threshold and tree pruning setting. The party
package in R provides a set of tools for training regression trees. Section
10.3 presents a walk-through-guide for building Regression Trees in R.

8.3 Survival Trees

Survival analysis is a collection of statistical procedures for data analysis for
which the outcome variable of interest is the time until an event occurs. An
event might be a death, machine end of life, disease incidence, component
failure, recovery or any designated experience of interest that may happen
to an individual/object on which the study is focused.

The main goals of survival analysis are estimating the relative effects
of risk factors and predicting survival probabilities/survival times. Cox’s
proportional hazards model is probably the most obvious way to fulfill the
first goal by assuming there is a linear association between survival time
and covariates.

Survival analysis has been used extensively in medical research. Most of
the work in the medical field focuses on studying survival curves of patients
suffering from different ailments. However, survival analysis can be used in
the engineering domain. For example, Eyal et al. (2014) show that survival
analysis can be used to predict failures of automobiles. Automobiles can
be considered analogous to humans due to their complexity and the wide
variety of factors which impact their life expectancy.
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In order to learn the above characteristics of a population or group of
components, speaking in terms of engineering systems, a sufficient amount
of data is needed. The data should include enough instances of objects
in the population, information about several properties of each individual
(values of the explanatory variables), and the time of failure or at least
the maximal time in which a subject is known to have survived. The basic
terms of survival analysis are described below.

In survival analysis, tree structures are used for analyzing multi-
dimensional data by partitioning it and identifying local structures in
it. Tree methods are non-parametric, since they do not assume any
distributional properties about the data. Tree-based methods for univariate
and multivariate survival data have been proposed and evaluated by many
authors. Some of these works suggest extensions to the CART algorithm.
The leaves of the tree hold the hazard functions. The hazard function is
the probability that an individual will experience an event (for example,
death) within a small time interval, given that the individual has survived
up to the beginning of the interval.

Some survival trees are based on conditional hypothesis testing. This
framework provides a solution to models with continuous and categorical
data and includes procedures applicable to censored, ordinal, or multivari-
ate responses. In this framework, the conditional distribution of statistics
to measure the association between responses and factors. This would serve
as a basis for unbiased selection among factors. This algorithm, known as
Conditional Inference Trees (C-Tree algorithm), uses classical statistical
tests to select a split point. It is based on the minimum p-value among
all tests of independence between the response variable and each factor,
where p-value is the probability incorrectly rejecting the null hypothesis.
This framework derives unbiased estimates of factors and correctly han-
dles ordinal response variables. Statistically motivated stopping criteria
implemented via hypothesis tests yield a predictive performance that is
equivalent to the optimally pruned trees. Based on this observation, they
offered an intuitive and computationally efficient solution to the overfitting
problem.

In the recent years, survival tree methods became popular tools for
survival analysis. As survival trees are non-parametric models, they do
not require predefined distributional assumptions. When a single tree
framework is used, the data is split only by a subset of factors and the
rest are disregarded due to the trees stopping conditions, e.g. minimum
number of observations in a terminal node. Therefore, a single tree-based
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method may not offer information on the influence of many of the factors on
the behavior of the component. Ensemble tree-based algorithms are strong
methods which overcome this limitation.

The survival trees method is highly popular among the tree-based
methods. This method is useful for identifying factors that may influence a
failure event and the mileage or time to an event of interest. Survival trees
do not require any defined distribution assumptions and they tend to be
resistant to the influence of outliers. When a single tree framework is used,
the data are split by only a subset of factors and the rest are disregarded
due to the trees stopping conditions, e.g. minimum number of observations
in a terminal node. Therefore, a single tree-based method may not offer
information on the influence of many of the factors on the behavior of the
component. In order to overcome this limitation, a new ensemble approach
is proposed.

The Random Survival Forests (RSF) is a method for the analysis
of right-censored survival data. Both Random Forest (RF) and RSF are
very efficient algorithms for analyzing large multidimensional datasets.
However, due to their random nature they are not always intuitive and
comprehensible to the user. Different trees in the forest might yield
conflicting interpretations. In contrast to the RF, the C-Forest function
in R creates random forests from unbiased classification trees based on a
conditional inference framework.

Like in classification trees, also in survival trees the splitting criterion
that is very crucial to the success of the algorithm. Bou-Hamad et al. (2011)
provide a very detailed comparison of splitting criteria. Most of the existing
algorithms are using statistical tests for choosing the best split. One possible
approach is to use the logrank statistic to compare the two groups formed
by the children nodes. The chosen split is the one with the largest significant
test statistic value. The use of the logrank test leads to a split which
assures the best separation of the median survival times in the two children
nodes. Another option is to use the likelihood ratio statistic (LRS) under an
assumed model to measure the dissimilarity between the two children nodes.
Another option is to use the KolmogorovSmirnov statistic to compare the
survival curves of the two nodes. Some researchers suggest to select the split
based on residuals obtained from fitting a model. The degree of randomness
of the residuals is quantified and the split that appears the least random is
selected. The party package in R provides a set of tools for training survival
trees. Section 10.3 presents a walk-through-guide for building Regression
Trees in R.
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8.4 Clustering Tree

Clustering groups data instances into subsets in such a manner that similar
instances are grouped together, while different instances belong to different
groups. The instances are thereby organized into an efficient representation
that characterizes the population being sampled. Formally, the clustering
structure is represented as a set of subsets C' = C,...,Cy of S, such that:
S = Ule C; and C; N C; = O for i # j. Consequently, any instance in S
belongs to exactly one and only one subset.

Clustering of objects is as ancient as the human need for describing
the salient characteristics of men and objects and identifying them with a
type. Therefore, it embraces various scientific disciplines: from mathematics
and statistics to biology and genetics, each of which uses different terms
to describe the topologies formed using this analysis. From biological
“taxonomies”, to medical “syndromes” and genetic “genotypes” to manu-
facturing “group technology” — the problem is identical: forming categories
of entities and assigning individuals to the proper groups within it. A clus-
tering tree is a decision tree where the leaves do not contain classes but each
node of a tree corresponds to a concept or a cluster, and the tree as a whole
thus represents a kind of taxonomy or a hierarchy. To induce clustering
trees, Blockeel et al. (1998) introduce the top-down induction of clustering
trees which adapt the basic top-down induction of decision trees method
towards clustering. To this end, a distance measure is used to compute the
distance between two examples. Specifically, in order to compute the dis-
tance between two sets of instances, they employ a function that induces a
prototype of a set instances. Thus, the distance between two set of instances
is calculated as the distance between their prototypes. Given a distance
measure for clusters and the view that each node of a tree corresponds to
a cluster, the decision tree algorithm selects in each node the test that will
maximize the distance between the resulting clusters in its subnodes. Each
node in the tree corresponds to a cluster of examples, and the hierarchical
structure of the tree shows the way that clusters are split into subclusters.
The test in a node can be seen as a discriminant description of the two
clusters in which the current cluster of examples is divided. One cluster is
described by saying that the test succeeds, the other by saying that it fails.

8.4.1 Distance Measures

Since clustering is the grouping of similar instances/objects, some sort of
measure that can determine whether two objects are similar or dissimilar
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is required. There are two main type of measures used to estimate this
relation: distance measures and similarity measures.

Many clustering methods use distance measures to determine the
similarity or dissimilarity between any pair of objects. It is useful to denote
the distance between two instances z; and x; as: d(z;, xj). A valid distance
measure should be symmetric and obtains its minimum value (usually zero)
in case of identical vectors. The distance measure is called a metric distance
measure if it also satisfies the following properties:

(1) Triangle inequality d(z;,zx) < d(x;, ;) + d(xj, xk) Vo, z;, 2z, € S.
(2) d(xi,mj) =0=x; = Z; V.%‘i,l'j es.

8.4.2 Minkowski: Distance Measures for Numeric

Attributes
Given two p-dimensional instances, z; = (Z1,%i2,...,%ip) and x; =
(le,xjg,...,xjp), the distance between the two data instances can be

calculated using the Minkowski metric:

1
d(ws, x5) = (Jzir — 21|° + |zio — 2j2|? + - + |2ip — 75 |9) 7.

The commonly used Euclidean distance between two objects is achieved
when g =2. Given g =1, the sum of absolute paraxial distances (Manhattan
metric) is obtained, and with g =00 one gets the greatest of the paraxial
distances (Chebychev metric).

The measurement unit used can affect the clustering analysis. To avoid
the dependence on the choice of measurement units, the data should be
standardized. Standardizing measurements attempts to give all variables an
equal weight. However, if each variable is assigned with a weight according
to its importance, then the weighted distance can be computed as:

1
d(wi, ) = (wn |z — x0]° + w2 |zio — j2|* + -+ wp |wiy — 5|97,

where w; € [0, 00).

8.4.2.1 Distance Measures for Binary Attributes

The distance measure described in the last section may be easily computed
for continuous-valued attributes. In the case of instances described by
categorical, binary, ordinal or mixed type attributes, the distance measure
should be revised.

In the case of binary attributes, the distance between objects may be
calculated based on a contingency table. A binary attribute is symmetric
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if both of its states are equally valuable. In that case, using the simple
matching coefficient can assess dissimilarity between two objects:

r+s

d i lj) = ’
(s, 3) qg+r+s+t

where ¢ is the number of attributes that equal 1 for both objects; ¢ is the
number of attributes that equal 0 for both objects; and s and r are the
number of attributes that are unequal for both objects.

A binary attribute is asymmetric, if its states are not equally important
(usually the positive outcome is considered more important). In this case,
the denominator ignores the unimportant negative matches (¢). This is
called the Jaccard coefficient:

r+s

dlz;,x;) = ———.
(331»%) qtr+s

8.4.2.2 Distance Measures for Nominal Attributes

When the attributes are nominal, two main approaches may be used:

(1) Simple matching:

p—m
d(x;,x;) = ,
! p

where p is the total number of attributes and m is the number of
matches.

(2) Creating a binary attribute for each state of each nominal attribute
and computing their dissimilarity as described above.

8.4.2.3 Distance Metrics for Ordinal Attributes

When the attributes are ordinal, the sequence of the values is meaningful.
In such cases, the attributes can be treated as numeric ones after mapping
their range onto [0,1]. Such mapping may be carried out as follows:

. 77’1')”—1
nwm
M, —1’

where z; 5, is the standardized value of attribute a,, of object i. r; ,, is that
value before standardization, and M, is the upper limit of the domain of
attribute a,, (assuming the lower limit is 1).
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8.4.2.4 Distance Metrics for Mized-Type Attributes

In the cases where the instances are characterized by attributes of mized-
type, one may calculate the distance by combining the methods mentioned
above. For instance, when calculating the distance between instances ¢ and
7 using a metric such as the Euclidean distance, one may calculate the
difference between nominal and binary attributes as 0 or 1 (“match” or
“mismatch”, respectively), and the difference between numeric attributes
as the difference between their normalized values. The square of each such
difference will be added to the total distance. Such calculation is employed
in many clustering algorithms presented below.

The dissimilarity d(z;,x;) between two instances, containing p
attributes of mixed types, is defined as:

where the indicator 52(?) = 0 if one of the values is missing. The contribution
of attribute n to the distance between the two objects d™ (z;x;) is
computed according to its type:

e If the attribute is binary or categorical, d™ (z;,2;) = 0 if zin = Tjn,
otherwise d™ (z;,z;) = 1.

(n) _ |I'Ln7$ 'n‘

ij T maxy zhn_nflinh Thn’ where
runs over all non-missing objects for attribute n.

e If the attribute is ordinal, the standardized values of the attribute are

computed first and then, z;,, is treated as continuous-valued.

e If the attribute is continuous-valued, d

8.4.3 Similarity Functions

An alternative concept to that of the distance is the similarity function
s(xi, x;) that compares the two vectors z; and x;. This function should be
symmetrical (namely s(z;, ;) = s(z;,z;)) and have a large value when z;
and z; are somehow “similar” and constitute the largest value for identical
vectors.

A similarity function where the target range is [0,1] is called a
dichotomous similarity function. In fact, the measures described in the
previous sections for calculating the “distances” in the case of binary
and nominal attributes may be easily converted to similarity functions,
by subtracting the distance measure from 1.
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8.4.3.1 Cosine Measure

When the angle between the two vectors is a meaningful measure of their
similarity, the normalized inner product may be an appropriate similarity
measure:

T
4

[EAREA N

x '.Tj

s(xi, xj) =

8.4.3.2 Pearson Correlation Measure

The normalized Pearson correlation is defined as:

s(xi, ) = (wi —x)" - (x; — 7;)
U e = &l -l - 20

where Z; denotes the average feature value of x over all dimensions.

8.4.3.3 FEaxtended Jaccard Measure

The extended Jaccard measure is defined as:

T )
i X

s(xs, ) d

= 2 2 :
i | + llasl|” = 2] - 2

8.4.3.4 Dice Coefficient Measure

The dice coefficient measure is similar to the extended Jaccard measure
and it is defined as:

2¢7 - x;
s(wi, i) = —+—L—.
U )

8.4.4 The OCCT Algorithm

Dror et al. (2014) recently introduced the Omne-Class Clustering Tree
algorithm (OCCT) which is a clustering tree for implementing One-to-Many
data linkage. Data linkage refers to the task of matching entities from two
different data sources that do not share a common identifier (i.e. a foreign
key). Data linkage is usually performed among entities of the same type. It
is common to divide data linkage into two types, namely, one-to-one and
one-to-many. In one-to-one data linkage, the goal is to associate one record
in the first table with a single matching record in the second table. In the
case of one-to-many data linkage, the goal is to associate one record in
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the first table with one or more matching records in the second table. The
OCCT algorithm characterizes the entities that should be linked together.
The tree is built such that it is easy to understand and transform into
association rules, i.e. the inner nodes consist only of features describing the
first set of entities, while the leaves of the tree represent features of their
matching entities from the second dataset. OCCT can be applied with four
different splitting criteria:

e Coarse-grained Jaccard (CGJ) coefficient — It is based on the Jaccard
similarity coefficient described above. It aims to choose the splitting
attribute which leads to the smallest possible similarity between the
subsets (i.e. an attribute that generates subsets that are different from
each other as much as possible). In order to do so, we need examine each
of the possible splitting attributes and measure the similarity between
the subsets.

e Fine-grained Jaccard (FGJ) coefficient — The fine-grained Jaccard
coefficient is capable of identifying partial record matches, as opposed
to the coarse-grained method, which identifies exact matches only. It not
only considers records which are exactly identical, but also checks to
what extent each possible pair of records is similar.

e Least probable intersections (LPI) — In this measure the optimal
splitting attribute is the attribute that leads to the minimum amount
of instances that are shared between two item-sets. The criterion relies
on the cumulative distribution function (CDF) of the Poisson distribution
and described in details in the next chapter.

e Maximum likelihood estimation (MLE) — Given a candidate split, a
probabilistic model is trained (such as decision tree) for each of the
split’s subsets. The idea is to choose the split that achieves the maximal
likelihood.

8.5 Hidden Markov Model Trees

Hidden Markov Model is a method for sequence learning which is capable
to estimate the probability of sequences by training from data. HMM is
a type of dynamic Bayesian network (DBN). It is a stochastic process
with an underlying unobservable (hidden) stochastic process that can only
be observed through another set of stochastic processes that produce the
sequence of observed symbols. HMM can be viewed as a specific instance of
a state-space model in which the latent variables are discrete. In HMM, the
probability distribution of z, depends on the state of the previous latent
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variable z,_1 through a conditional distribution p(z,|z,—1). The following
characterize a HMM:

e N — the number of states in the model. The individual states are denoted
as Z = {z1,22...2zn} and the state at time t as g;.

e M — the number of distinct observation symbols per state. The
observation symbols correspond to the physical output of the system
being modeled. The symbols are represented as X = {z1,2z2...2p}.

e The state transition probability distribution A = {a;;} where a;; =
Plgi+1 = 2zjlgr = 2] 1 <i,j < N.

e The observation symbol probability distribution in state j, B = {b;(k)}

1<j<N

"1<k< M’

e The initial state distribution 7 = {m;} where # = P[g1 = z;], 1 <i < N.

where b;(k) = Plzg at t g = 2]

Antwarg et al. (2012) present the notion of HMM tree. Each node in
the tree is a HMM which uses the same states from the higher level or
only some of them but with different transition probabilities. Because the
number of available training instances drops as we move down the tree, the
number of hidden states should generally drop accordingly. In particular, if
the number of observations is very large, then we can choose a large number
of hidden states to capture more features. The hierarchical structure that
forms a tree is used to differentiate between cases and better estimate HMM
parameters.

Consider the task of intention prediction which aims to predict what the
user wants to accomplish when performing a certain sequence of activities.
Predicting user intentions when using a system can improve the services
provided to users by adjusting the system services to their needs. This goal
is achieved by training a specific learning algorithm in order to generate
models that will maximize the accuracy of the prediction. The challenge
in predicting the intention of the user given a sequence of interactions
can be categorized as a problem with a sequential problem space which
is commonly solved using sequence learning algorithms.

Using intention prediction methods will enable a company to improve
the services provided to users by adjusting the system services to their
needs (e.g. the interface). Predicting user intentions can be also used for
assisting users to perform or complete tasks, to alert them regarding the
availability of features, and to increase their general knowledge. Effective
assistance will allow users to acquire the new skills and knowledge they
need to easily operate an unfamiliar device or function.
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Different users tend to select different sequences for accomplishing the
same goal. Specifically, the user’s attributes and context (such as age or the
operating system) indicate which sequence the user will eventually perform.
For example, if a young male uses a system, it is possible to use the model
to predict the goal that he intends to accomplish and provide him with a
user interface (UI) more appropriate to his usage and intentions.

The reason for using hidden Markov models is that the sequence of
actions that users perform is not always observable but can only be observed
through another set of stochastic processes that produce the sequence of
observations. For example, in a mobile device the sequence of buttons that
the user pressed is unknown (hidden) but the sequence of screens that was
created from using these buttons is known (observable). Thus, we can learn
the sequence of buttons from the sequence of screens using HMM.

Figure 8.1 illustrates a HMM tree. In this case, the tree is branched
according to the user’s attributes and each node in the tree consists of
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Fig. 8.1 Structure of attribute-driven HMM tree. Each node in the hierarchical structure
contains a model and an attribute. All nodes contain the same model but with different
transition probabilities.
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a single HMM. When the user performs a new task, we first employ her
attributes to find the suitable node in each of the goal trees. Then, based
on the actions the user has already performed in implementing this task, we
anticipate the goal she is trying to accomplish and the action she intends
to perform next.

In a typical sequence learning problem, a training set of sequences S =
{s1,82,...,8m} is given. Each sequence s; € S is an ordered set of n;
elements (actions) {e;,ez,...,ey}. G denotes the set of all possible goals
(for example, in an email application G = {*Add recipient’, ‘Send an email’,
‘Read email’}). Each training sequence is associated with one goal and
several characterizing attributes. The notation U denotes the set of input
attributes containing 7 attributes: U = {vy,...,v,}. The domain (possible
values for each attribute) of an attribute is denoted by dom(v;). User space
(the set of all possible users) is defined as a Cartesian product of all the
input attribute domains. The input in the problem consists of a set of m
records and is denoted as Train = ((S1,91,u1),- -, (Sm, gm, Um)) Where
sq € 5,84 € G,uq € U.

The notation L represents a probabilistic sequence learning algorithm
such as HMM. We mainly focus on HMM, but the same algorithm can be
used with other base models, for example, conditional random field (CRF)
as a base model. These algorithms generate models that can estimate the
conditional probability of a goal g given a sequence and the input user
attributes. Let A represent a probabilistic model which was induced by
activating L onto dataset Train. In this case, we would like to estimate
the conditional probability pA(G = gj|sq,uq) of a sequence s, that was
generated by user u4. Thus, the aim of intention prediction is to find the
most accurate probability estimations.

As indicated in Figure 8.1, we are using a tree structure to improve the
accuracy of training models. For each goal in the system, a different tree
is generated. This structure is built using user attributes in an attempt to
differentiate between various usage behaviors in the system. For example,
in Figure 1 we are employing the age, gender and device for differentiating
between usage behaviors. In this structure, each node contains a model
and an attribute v; that splits the node. Assuming this tree structure, the
problem can be formally phrased as follows:

Given a sequence learning algorithm L and a training set Train with
input sessions set S, users U and goals GG, the aim is to find an optimal set
of trees (a tree for each goal). Optimality is defined in terms of minimizing
prediction errors.
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Fig. 8.2 Overall diagram of the attribute-driven HMM tree-based method for intention
prediction.

We assume that L is an algorithm for training HMMs. Particularly,
the model A in each of the tree’s nodes is trained using the Baum—-Welch
algorithm and the probability px(G = gj|sq,ue) is estimated using the
forward—backward algorithm as we show below.

Figure 8.2 presents the HMM training process schematically. The left
side in Figure 8.2 specifies the generation of the models used for intention
prediction based on an attribute-driven HMM tree for each possible goal.
The input for this process is a set of user action sequences divided into
goals and user attributes. The output of the process is a tree for each
goal based on different usage behavior of users in attaining this goal, and
user attributes. The right side of the figure presents the prediction process.
The inputs for the process are: the goal trees generated during the model
generation phase, a specific user session (i.e. a sequence of actions), and the
attributes of a user. The output is the predicted goal that the specific user
was trying to accomplish in this sequence (i.e. the goal with the highest
probability estimation).



Chapter 9

Decision Forests

9.1 Introduction

The main idea of an ensemble methodology is to combine a set of models,
each of which solves the same original task, in order to obtain a better
composite global model, with more accurate and reliable estimates or
decisions than can be obtained from using a single model. The idea of
building a predictive model by integrating multiple models has been under
investigation for a long time. In fact, ensemble methodology imitates our
second nature to seek several opinions before making any crucial decision.
We weigh individual opinions, and combine them to reach our final decision
[Polikar (2006)].

It is well known that ensemble methods can be used for improving
prediction performance. Researchers from various disciplines such as statis-
tics, machine learning, pattern recognition, and data mining considered the
use of ensemble methodology. This chapter presents an updated survey of
ensemble methods in classification tasks. The chapter provides a profound
descriptions of the various combining methods, ensemble diversity generator
and ensemble size determination.

In the literature, the term “ensemble methods” is usually reserved for
collections of models that are minor variants of the same basic model.
Nevertheless, in this chapter we also cover hybridization of models that
are not from the same family. The latter is also referred in the literature as
“multiple classifier systems.”

9.2 Back to the Roots

Marie Jean Antoine Nicolas de Caritat, marquis de Condorcet (1743-1794)
was a French mathematician who among others wrote in 1785 the Essay on

99
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the Application of Analysis to the Probability of Majority Decisions. This
work presented the well-known Condorcet’s jury theorem. The theorem
refers to a jury of voters who need to make a decision regarding a binary
outcome (for example, to convict or not a defendant). If each voter has a
probability p of being correct and the probability of a majority of voters
being correct is M then:

e p > 0.5 implies M > p.
e Also M approaches 1, for all p > 0.5 as the number of voters approaches
infinity.

This theorem has two major limitations: the assumption that the
votes are independent; and that there are only two possible outcomes.
Nevertheless, if these two preconditions are met, then a correct decision
can be obtained by simply combining the votes of a large enough jury
that is composed of voters whose judgments are slightly better than a
random vote.

Originally, the Condorcet Jury Theorem was written to provide a
theoretical basis for democracy. Nonetheless, the same principle can be
applied in pattern recognition. A strong learner is an inducer that is given
a training set consisting of labeled data and produces a classifier which can
be arbitrarily accurate. A weak learner produces a classifier which is only
slightly more accurate than random classification. The formal definitions
of weak and strong learners are beyond the scope of this book. The reader
is referred to [Schapire (1990)] for these definitions under the PAC theory.
A decision stump inducer is one example of a weak learner. A Decision
Stump is a one-level Decision Tree with either a categorical or a numerical
class label.

For the sake of clarity, let us demonstrate the ensemble idea by applying
it to the Labor dataset presented in Table 9.1. Each instance in the table
stands for a collective agreement reached in the business and personal
services sectors (such as teachers and nurses) in Canada during the years
1987-1988. The aim of the learning task is to distinguish between acceptable
and unacceptable agreements (as classified by experts in the field). The
selected input-features that characterize the agreement are:

Dur — the duration of agreement

Wage — wage increase in first year of contract
Stat — number of statutory holidays

Vac — number of paid vacation days
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Table 9.1 The labor dataset.

Dur Wage Stat Vac Dis Dental Ber Health Class
1 5 11 average ? ? yes ? good
2 4.5 11 below ? full ? full good
? ? 11 generous  yes half yes half good
3 3.7 ? ? ? ? yes ? good
3 4.5 12 average ? half yes half good
2 2 12 average ? ? ? ? good
3 4 12 generous  yes none yes half good
3 6.9 12 below ? ? ? ? good
2 3 11 below yes half yes ? good
1 5.7 11 generous  yes full ? ? good
3 3.5 13 generous ? ? yes full good
2 6.4 15 ? ? full ? ? good
2 3.5 10 below no half ? half bad
3 3.5 13 generous ? full yes full good
1 3 11 generous ? ? ? ? good
2 4.5 11 average ? full yes ? good
1 2.8 12 below ? ? ? ? good
1 2.1 9 below yes half ? none bad
1 2 11 average no none no none bad
2 4 15 generous ? ? ? ? good
2 4.3 12 generous ? full ? full good
2 2.5 11 below ? ? ? ? bad
3 3.5 ? ? ? ? ? ? good
2 4.5 10 generous ? half ? full good
1 6 9 generous ? ? ? ? good
3 2 10 below ? half yes full bad
2 4.5 10 below yes none ? half good
2 3 12 generous ? ? yes full good
2 5 11 below yes full yes full good
3 2 10 average ? ? yes full bad
3 4.5 11 average ? half ? ? good
3 3 10 below yes half yes full bad
2 2.5 10 average ? ? ? ? bad
2 4 10 below no none ? none bad
3 2 10 below no half yes full bad
2 2 11 average yes none yes full bad
1 2 11 generous  no none no none bad
1 2.8 9 below yes half ? none bad
3 2 10 average ? ? yes none bad
2 4.5 12 average yes full yes half good
1 4 11 average no none no none bad
2 2 12 generous  yes none yes full bad
2 2.5 12 average ? ? yes ? bad
2 2.5 11 below ? ? yes ? bad
2 4 10 below no none ? none bad
2 4.5 10 below no half ? half bad

(Continued)
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Table 9.1 (Continued)

Dur Wage Stat Vac Dis Dental Ber Health Class

2 4.5 11 average ? full yes full good
2 4.6 ? ? yes half ? half good
2 5 11 below yes ? ? full good
2 5.7 11 average yes full yes full good
2 7 11 ? yes full ? ? good
3 2 ? ? yes half yes ? good
3 3.5 13 generous ? ? yes full good
3 4 11 average yes full ? full good
3 5 11 generous  yes ? ? full good
3 5 12 average ? half yes half good
3 6 9 generous  yes full yes full good

Bad Good
0.171 0.829
Bad Good
0 1
Bad Good
0.867 0.133

Fig. 9.1 Decision stump classifier for solving the labor classification task.

Dis — employer’s help during employee longterm disability
Dental — contribution of the employer towards a dental plan
Ber — employer’s financial contribution in the costs of bereavement

Health — employer’s contribution towards the health plan.

Applying a Decision Stump inducer on the Labor dataset results in the
model that is depicted in Figure 9.1. Using 10-folds cross-validation, the
estimated generalized accuracy of this model is 59.64%.

Next, we execute an ensemble algorithm using Decision Stump as the
base inducer and train four decision trees. Specifically we use the Bagging
(bootstrap aggregating) ensemble method. Bagging is simple yet effective
method for generating an ensemble of classifiers or in this case forest of
decision trees. Each decision tree in the ensemble is trained on a sample of
instances taken with replacement (allowing repetitions) from the original
training set. Consequently, in each iteration some of the original instances
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from S may appear more than once and some may not be included at all.
Table 9.2 indicates for each instance the number of times it was sampled
in every iteration.

Figure 9.2 presents the four trees that were built. The estimated
generalized accuracy of this forest rises from 59.64% to 77.19%

Table 9.2 The bagging sample sizes for the labor dataset.

Instance  Iteration 1  Iteration 2  Iteration 3  Iteration 4

1 1 1
2 1 1 1
3 2 1 1 1
4 1 1
5 1 2 1
6 2 1 1
7 1 1 1
8 1 1 1
9 2
10 1 1 2
11 1 1
12 1 1 1
13 1 1 2
14 1 1 2
15 1 1 1
16 2 3 2 1
17 1
18 1 2 2 1
19 1
20 1 3
21 2 1 1
22 1 1
23 1 2 1
24 1 1 1
25 2 2 1 2
26 1 1 1 1
27 1
28 2 1 1
29 1 1 1
30 1 1
31 1 1 3
32 2 1 2
33 1 1
34 2 2 1
35
36 1 1 1
37 1
38 2 1 1

(Continued)
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Table 9.2 (Continued)

Instance  Iteration 1  Iteration 2  Iteration 3  Iteration 4

39 2 1 1
40 1 1 1 2
41 1 2 2 2
42 3 2 1
43 2 1
44 1 2 1 3
45 3 1 2 1
46 1 1 2
47 1 1 2 1
48 1 1 1
49 1 2 1 2
50 2 1 1
51 1 1 1 1
52 1 1 1
53 1 2 2 2
54 1 1
55 2
56 1 1 1 1
57 1 1 2 1
Total 57 57 57 57
. ) B:
Iteration 1 Bad Good Iteration 2 ad Good
0.0476 0.9524 0 1
© N
2 v
) 2 Bad Good Bad Good
o ‘
ES 0 1 0 1
%)
S Bad Good Bad Good
0.676 0.323 0.611 0.389
| ) Bad Good lteration 4 Bad Good
teration 3 0 1 0.171 0.829
Bad Good o) Bad Good
()]
0.167 0.833 g 0 1
~
e&
Bad Good Bad Good
0.667 0.333 0.933 0.067

Fig. 9.2 Decision stumps for solving the labor classification task.
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One of the basic questions that has been investigated in ensemble
learning is: “Can a collection of weak classifiers create a single strong one?”.
Applying the Condorcet Jury Theorem insinuates that this goal might be
achieved. Namely, construct an ensemble that (a) consists of independent
classifiers, each of which correctly classifies a pattern with a probability of
p > 0.5; and (b) has a probability of M > p to jointly classify a pattern to
its correct class.

Sir Francis Galton (1822-1911) was an English philosopher and statisti-
cian that conceived the basic concept of standard deviation and correlation.
While visiting a livestock fair, Galton was intrigued by a simple weight-
guessing contest. The visitors were invited to guess the weight of an ox.
Hundreds of people participated in this contest, but no one succeeded to
guess the exact weight: 1,198 pounds. Nevertheless, surprisingly enough,
Galton found out that the average of all guesses came quite close to
the exact weight: 1,197 pounds. Similarly to the Condorcet jury theorem,
Galton revealed the power of combining many simplistic predictions in order
to obtain an accurate prediction.

James Michael Surowiecki, an American financial journalist, published
in 2004 the book “The Wisdom of Crowds: Why the Many Are Smarter
Than the Few and How Collective Wisdom Shapes Business, Economies,
Societies and Nations”. Surowiecki argues, that under certain controlled
conditions, the aggregation of information from several sources, results in
decisions that are often superior to those that could have been made by
any single individual — even experts.

Naturally, not all crowds are wise (for example, greedy investors of a
stock market bubble). Surowiecki indicates that in order to become wise,
the crowd should comply with the following criteria:

e Diversity of opinion — Each member should have private information
even if it is just an eccentric interpretation of the known facts.

e Independence — Members’ opinions are not determined by the opin-
ions of those around them.

e Decentralization — Members are able to specialize and draw conclu-
sions based on local knowledge.

e Aggregation — Some mechanism exists for turning private judgments
into a collective decision.

In statistics, the idea of building a predictive model that integrates
multiple models has been investigated for a long time. The history of
ensemble methods dates back to as early as 1977 with Tukeys Twicing
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[1]: an ensemble of two linear regression models. Tukey suggested to fit
the first linear regression model to the original data and the second
linear model to the residuals. Two years later, Dasarathy and Sheela
(1979) suggested to partition the input space using two or more classifiers.
The main progress in the field was achieved during the Nineties. Hansen
and Salamon (1990) suggested an ensemble of similarly configured neural
networks to improve the predictive performance of a single one. At the same
time Schapire (1990) laid the foundations for the award winning AdaBoost
[Freund and Schapire (1996)] algorithm by showing that a strong classifier
in the probably approzimately correct (PAC) sense can be generated by
combining “weak” classifiers (that is, simple classifiers whose classification
performance is only slightly better than random classification). Ensemble
methods can also be used for improving the quality and robustness
of unsupervised tasks. Nevertheless, in this book we focus on classifier
ensembles.

In the past few years, experimental studies conducted by the machine-
learning community show that combining the outputs of multiple classi-
fiers reduces the generalization error [Domingos (1996); Quinlan (1996);
Bauer and Kohavi (1999); Opitz and Maclin (1999)] of the individual
classifiers. Ensemble methods are very effective, mainly due to the phe-
nomenon that various types of classifiers have different “inductive biases”
[Mitchell (1997)]. Indeed, ensemble methods can effectively make use of
such diversity to reduce the variance-error [Tumer and Ghosh (1996)]
[Ali and Pazzani (1996)] without increasing the bias-error. In certain
situations, an ensemble method can also reduce bias-error, as shown by
the theory of large margin classifiers [Bartlett and Shawe-Taylor (1998)].

The ensemble methodology is applicable in many fields such as:
finance [Leigh et al. (2002)]; bioinformatics [Tan et al. (2003)]; medicine
[Mangiameli et al. (2004)], cheminformatics [Merkwirth et al. (2004)];
manufacturing [Maimon and Rokach (2004)]; geography [Bruzzone et al.
(2004)] and pattern recognition [Pang et al. (2003)].

Given the potential usefulness of ensemble methods, it is not surprising
that a vast number of methods is now available to researchers and
practitioners. Several surveys on ensemble are available in the literature,
such as [Clemen (1989)] for forecasting methods or [Dietterich (2000b)]
for machine learning. Nevertheless, this survey proposes an updated and
profound description of issues related to ensemble of classifiers. This chapter
aims to organize all significant methods developed in this field into a
coherent and unified catalog.
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A typical ensemble framework for classification tasks contains the

following building blocks:

(1)

Training set — A labeled dataset used for ensemble training. In
semi-supervised methods of ensemble generation, such as ASSEMBLE
[Bennett et al. (2002)], unlabeled instances can be also used for the
creation of the ensemble.

Inducer — The inducer is an induction algorithm that obtains a training
set and forms a classifier that represents the generalized relationship
between the input attributes and the target attribute.

Ensemble generator — This component is responsible for generating
the diverse classifiers.

Combiner — The combiner is responsible for combining the classifica-
tions of the various classifiers.

We use the notation M; = I(S;) for representing a classifier M; which

was induced by inducer I on a training set S;. The notation of M;, a;;t =

1.

.., T represents an ensemble of T' classifiers.

The nature of each building block and the relation between them

characterizes the ensemble framework design. The following list describes

the main properties.

(1)

(2)

Classifier dependency — During the classifier training how does each
classifier affect the other classifiers? Classifiers may be dependent or
independent.

Diversity generator — In order to make the ensemble more effective,
there should be some sort of diversity between the classifiers [Kuncheva
(2005)]. Diversity may be obtained through different presentations of
the input data, as in bagging, variations in learner design, or by adding
a penalty to the outputs to encourage diversity.

Ensemble size — The number of classifiers in the ensemble and how
the undesirable classifiers are removed from the ensemble.

Inducer usage — This property indicates the relation between the
ensemble generator and the inducer used. Some ensemble have been
specifically designed for a certain inducer and cannot have been used
for other inducers.

Combiner usage — This property specifies the relation between the
ensemble generator and the combiner.

Training data overlap — This property indicates which portion of the
input data, used to induce a certain classifier, was also used to train
other classifiers.
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The issues of classifier dependency and diversity are very closely linked.
More specifically, it can be argued that any effective method for generating
diversity results in dependent classifiers (otherwise obtaining diversity is
just luck). Nevertheless, as we will explain later one can independently
create the classifiers and then, as a post-processing step, select the most
diverse classifiers. Naturally there might be other properties which can be
used to differentiate an ensemble scheme. We begin by surveying various
combination methods. Following that we discuss and describe each one of
the above-mentioned properties in details.

9.3 Combination Methods

There are two main methods for combining classifiers: weighting methods
and meta-learning. The weighting methods are best suited for problems
where the individual classifiers perform the same task and have comparable
success or when we would like to avoid problems associated with added
learning (such as overfitting or long training time).

9.3.1 Weighting Methods

When combining classifiers with weights, a classifier’s classification has a
strength proportional to its assigned weight. The assigned weight can be
fixed or dynamically determined for the specific instance to be classified.

9.3.1.1 Majority Voting

In this combining scheme, a classification of an unlabeled instance is

performed according to the class that obtains the highest number of votes

(the most frequent vote). This method is also known as the plurality vote

(PV) or the basic ensemble method (BEM). This approach has frequently

been used as a combining method for comparing newly proposed methods.
Mathematically, it can be written as:

class(x) = argmax (Zg (yk(x),ci)>, (9.1)
k

ciedom(y)

where yi(z) is the classification of the k’th classifier and g¢(y,c) is an
indicator function defined as:

g(yﬂﬁ):{

1 y=c

0 bae (9.2)
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Note that in case of a probabilistic classifier, the crisp classification
yi(x) is usually obtained as follows:

yr(z) = argmax Zf’Mk, (y =ci|z), (9.3)
ci€dom(y)

where M}, denotes classifier k and Py, (y = ¢|z) denotes the probability of
y obtaining the value ¢ given an instance x.

9.3.1.2 Performance Weighting

The weight of each classifier can be set proportional to its accuracy
performance on a validation set [Opitz and Shavlik (1996)]:

(1-FE)

T
;(1 - Ej)

o =

: (9-4)

where E; is a normalization factor which is based on the performance
evaluation of classifier i on a validation set.

9.3.1.3 Distribution Summation

The idea of the distribution summation combining method is to sum up
the conditional probability vector obtained from each classifier [Clark and
Boswell (1991)]. The selected class is chosen according to the highest value
in the total vector. Mathematically, it can be written as:

Class(z) = argmax Z P, (y = ¢ |z). (9.5)
ci€dom(y) Lk

9.3.1.4 Bayesian Combination

In the Bayesian combination method the weight associated with each
classifier is the posterior probability of the classifier given the training set
[Buntine (1990)].

Class(z) = argmax ZP(Mk 1S) - Par, (y = ¢ |2), (9.6)
ci€dom(y) L

where P(M}|S) denotes the probability that the classifier M} is correct
given the training set S. The estimation of P(My|S) depends on the

classifier’s representation. To estimate this value for decision trees the
reader is referred to [Buntine (1990)].
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9.3.1.5 Dempster—Shafer

The idea of using the Dempster—Shafer theory of evidence [Buchanan and
Shortliffe (1984)] for combining classifiers has been suggested in [Shilen
(1990)]. This method uses the notion of basic probability assignment defined
for a certain class ¢; given the instance x:

bpa(ci,z) =1— H (1 — Py (y=c¢; |33)) (9.7)
k
Consequently, the selected class is the one that maximizes the value of the
belief function:
1 bpa(ci7 l’)

Bel(ci,z) = — - — 202 9.8
where A is a normalization factor defined as:
bpa(c;, x)
A= — 7 1. 9.9
Z 1 —bpa(c;, x) + (9:9)
Ve;€dom(y)

9.3.1.6 Vogging

The idea behind the vogging approach (Variance Optimized Bagging) is to
optimize a linear combination of base-classifiers so as to aggressively reduce
variance while attempting to preserve a prescribed accuracy [Derbeko et al.
(2002)]. For this purpose, Derbeko et al. implemented the Markowitz Mean-
Variance Portfolio Theory that is used for generating low variance portfolios
of financial assets.

9.3.1.7 Naive Bayes

Using Bayes’ rule, one can extend the naive Bayes idea for combining
various classifiers:

. P — c
Class(z) = argmax P(y =¢;) - H M
cjedom(y) k=1 P(y = Cj)
P(y=c;)>0

(9.10)

9.3.1.8 Entropy Weighting

The idea in this combining method is to give each classifier a weight that
is inversely proportional to the entropy of its classification vector.

Class(z) = argmax Z E(My,x), (9.11)

i €d .
ci€dom(y) kici= argmax P, (y=cj|z)
cj€dom(y) .
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where:

E(Mi,x) = =3 Pa (y = ¢ ) log(Pas (y = ¢; [)) (9.12)

Cj

9.3.1.9 Density-based Weighting

If the various classifiers were trained using datasets obtained from different
regions of the instance space, it might be useful to weight the classifiers
according to the probability of sampling = by classifier M}, namely:

Class(x) = argmax Z Pa, (2). (9.13)

..ed A
ci€dom(y) kic;= argmax P, (y=cjlz)
cj€dom(y)

The estimation of PMk () depends on the classifier representation and can
not always be estimated.

9.3.1.10 DEA Weighting Method

Recently there has been attempt to use the data envelop analysis (DEA)
methodology [Charnes et al. (1978)] in order to assign weights to different
classifiers [Sohn and Choi (2001)]. These researchers argue that the weights
should not be specified according to a single performance measure, but
should be based on several performance measures. Because there is a trade-
off among the various performance measures, the DEA is employed in
order to figure out the set of efficient classifiers. In addition, DEA provides
inefficient classifiers with the benchmarking point.

9.3.1.11  Logarithmic Opinion Pool

According to the logarithmic opinion pool [Hansen (2000)], the selection of
the preferred class is performed according to:

3 ak-log(Pary, (y=¢;la))
Class(z) = argmax e * MR (9.14)
c;jedom(y)

where oy, denotes the weight of the k-th classifier, such that:

ap>0; Y =1 (9.15)
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Fig. 9.3 Illustration of n-expert structure.

9.3.1.12 Gating Network

Figure 9.3 illustrates an n-expert structure. Each expert outputs the
conditional probability of the target attribute given the input instance.
A gating network is responsible for combining the various experts by
assigning a weight to each network. These weights are not constant but
are functions of the input instance x. The gating network selects one or a
few experts (classifiers) which appear to have the most appropriate class
distribution for the example. In fact, each expert specializes on a small
portion of the input space.

An extension to the basic mixture of experts, known as hierarchical
mixtures of experts (HME), has been proposed in [Jordan and Jacobs
(1994)]. This extension decomposes the space into sub-spaces, and then
recursively decomposes each sub-space into sub-spaces.

Variations of the basic mixture of experts methods have been developed
to accommodate specific domain problems. A specialized modular networks
called the Meta-p; network has been used to solve the vowel-speaker prob-
lem [Hampshire and Waibel (1992); Peng et al. (1996)]. There have been
other extensions, such as nonlinear gated experts for time-series [Weigend
et al. (1995)]; revised modular network for predicting the survival of AIDS
patients [Ohno-Machado and Musen (1997)]; and a new approach for
combining multiple experts for improving handwritten numeral recognition
[Rahman and Fairhurst (1997)].
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9.3.1.13 Order Statistics

Order statistics can be used to combine classifiers [Tumer and Ghosh
(2000)]. These combiners offer the simplicity of a simple weighted combi-
nation method together with the generality of meta-combination methods
(see the following section). The robustness of this method is helpful when
there are significant variations among classifiers in some part of the instance
space.

9.3.2 Meta-combination Methods

Meta-learning means learning from the classifiers produced by the inducers
and from the classifications of these classifiers on training data. The follow-
ing sections describe the most well-known meta-combination methods.

9.3.2.1 Stacking

Stacking is a technique for achieving the highest generalization accuracy
[Wolpert (1992)]. By using a meta-learner, this method tries to induce
which classifiers are reliable and which are not. Stacking is usually employed
to combine models built by different inducers. The idea is to create a
meta-dataset containing a tuple for each tuple in the original dataset.
However, instead of using the original input attributes, it uses the predicted
classifications by the classifiers as the input attributes. The target attribute
remains as in the original training set. A test instance is first classified
by each of the base classifiers. These classifications are fed into a meta-
level training set from which a meta-classifier is produced. This classifier
combines the different predictions into a final one.

It is recommended that the original dataset should be partitioned into
two subsets. The first subset is reserved to form the meta-dataset and
the second subset is used to build the base-level classifiers. Consequently,
the meta-classifier predications reflect the true performance of base-level
learning algorithms.

Stacking performance can be improved by using output probabilities for
every class label from the base-level classifiers. In such cases, the number of
input attributes in the meta-dataset is multiplied by the number of classes.

It has been shown that with stacking the ensemble performs (at best)
comparably to selecting the best classifier from the ensemble by cross-
validation [Dzeroski and Zenko (2004)]. In order to improve the existing
stacking approach, they employed a new multi-response model tree to learn
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at the meta-level and empirically showed that it performs better than
existing stacking approaches and better than selecting the best classifier
by cross-validation.

The SCANN (for Stacking, Correspondence Analysis and Nearest
Neighbor) combining method [Merz (1999)] uses the strategies of stacking
and correspondence analysis. Correspondence analysis is a method for
geometrically modeling the relationship between the rows and columns
of a matrix whose entries are categorical. In this context Correspondence
Analysis is used to explore the relationship between the training examples
and their classification by a collection of classifiers.

A nearest neighbor method is then applied to classify unseen examples.
Here, each possible class is assigned coordinates in the space derived by
correspondence analysis. Unclassified examples are mapped into the new
space, and the class label corresponding to the closest class point is assigned
to the example.

9.3.2.2 Arbiter Trees

According to Chan and Stolfo’s approach [Chan and Stolfo (1993)], an
arbiter tree is built in a bottom-up fashion. Initially, the training set is
randomly partitioned into k disjoint subsets. The arbiter is induced from a
pair of classifiers and recursively a new arbiter is induced from the output
of two arbiters. Consequently for k classifiers, there are log, (k) levels in the
generated arbiter tree.

The creation of the arbiter is performed as follows. For each pair
of classifiers, the union of their training dataset is classified by the
two classifiers. A selection rule compares the classifications of the two
classifiers and selects instances from the union set to form the training
set for the arbiter. The arbiter is induced from this set with the same
learning algorithm used in the base level. The purpose of the arbiter is to
provide an alternate classification when the base classifiers present diverse
classifications. This arbiter, together with an arbitration rule, decides on
a final classification outcome, based upon the base predictions. Figure 9.4
shows how the final classification is selected based on the classification of
two base classifiers and a single arbiter.

The process of forming the union of data subsets; classifying it using
a pair of arbiter trees; comparing the classifications; forming a training
set; training the arbiter; and picking one of the predictions, is recursively
performed until the root arbiter is formed. Figure 9.5 illustrates an arbiter
tree created for kK = 4. T — Ty are the initial four training datasets from
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Fig. 9.4 A prediction from two base classifiers and a single arbiter.
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Fig. 9.5 Sample arbiter tree.

which four classifiers M; — M, are generated concurrently. 715 and T34 are
the training sets generated by the rule selection from which arbiters are
produced. Ajs and Asy are the two arbiters. Similarly, T74 and A14 (root
arbiter) are generated and the arbiter tree is completed.

There are several schemes for arbiter trees; each is characterized by a
different selection rule. Here are three versions of selection rules:

e Only instances with classifications that disagree are chosen (group 1).

e Like group 1 defined above, plus instances where their classifications
agree but are incorrect (group 2).

e Like groups 1 and 2 defined above, plus instances that have the same
correct classifications (group 3).

Of the two versions of arbitration rules that have been implemented, each
corresponds to the selection rule used for generating the training data at
that level:

e For selection rules 1 and 2, a final classification is made by a majority
vote of the classifications of the two lower levels and the arbiter’s own
classification, with preference given to the latter.
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e For selection rule 3, if the classifications of the two lower levels are not
equal, the classification made by the sub-arbiter based on the first group
is chosen. In case this is not true and the classification of the sub-arbiter
constructed on the third group equals those of the lower levels, then
this is the chosen classification. In any other case, the classification of
the sub-arbiter constructed on the second group is chosen. In fact it is
possible to achieve the same accuracy level as in the single mode applied
to the entire dataset but with less time and memory requirements [Chan
and Stolfo (1993)]. More specifically, it has been shown that this meta-
learning strategy required only around 30% of the memory used by the
single model case. This last fact, combined with the independent nature
of the various learning processes, make this method robust and effective
for massive amounts of data. Nevertheless, the accuracy level depends on
several factors such as the distribution of the data among the subsets and
the pairing scheme of learned classifiers and arbiters in each level. The
decision regarding any of these issues may influence performance, but the
optimal decisions are not necessarily known in advance, nor initially set
by the algorithm.

9.3.2.3 Combiner Trees

The way combiner trees are generated is very similar to arbiter trees.
Both are trained bottom-up. However, a combiner, instead of an arbiter,
is placed in each non-leaf node of a combiner tree [Chan and Stolfo
(1997)]. In the combiner strategy, the classifications of the learned base
classifiers form the basis of the meta-learner’s training set. A composition
rule determines the content of training examples from which a combiner
(meta-classifier) will be generated. In classifying an instance, the base
classifiers first generate their classifications and based on the composition
rule, a new instance is generated. The aim of this strategy is to combine the
classifications from the base classifiers by learning the relationship between
these classifications and the correct classification. Figure 9.6 illustrates the
result obtained from two base classifiers and a single combiner.

Two schemes for composition rules were proposed. The first one is
the stacking scheme. The second is like stacking with the addition of the
instance input attributes. It has been shown that the stacking scheme per se
does not perform as well as the second scheme [Chan and Stolfo (1995)].
Although there is information loss due to data partitioning, combiner trees
can sustain the accuracy level achieved by a single classifier. In a few cases,
the single classifier’s accuracy was consistently exceeded.
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Fig. 9.6 A prediction from two base classifiers and a single combiner.

9.3.2.4 Grading

This technique uses “graded” classifications as meta-level classes [Seewald
and Furnkranz (2001)]. The term “graded” is used in the sense of
classifications that have been marked as correct or incorrect. The method
transforms the classification made by the k different classifiers into k
training sets by using the instances k times and attaching them to a
new binary class in each occurrence. This class indicates whether the kth
classifier yielded a correct or incorrect classification, compared to the real
class of the instance.

For each base classifier, one meta-classifier is learned whose task is to
classify when the base classifier will misclassify. At classification time, each
base classifier classifies the unlabeled instance. The final classification is
derived from the classifications of those base classifiers that are classified to
be correct by the meta-classification schemes. In case several base classifiers
with different classification results are classified as correct, voting, or a
combination considering the confidence estimates of the base classifiers,
is performed. Grading may be considered as a generalization of cross-
validation selection [Schaffer (1993)], which divides the training data into k
subsets, builds & — 1 classifiers by dropping one subset at a time and then
uses it to find a misclassification rate. Finally, the procedure simply chooses
the classifier corresponding to the subset with the smallest misclassification.
Grading tries to make this decision separately for each and every instance
by using only those classifiers that are predicted to classify that instance
correctly. The main difference between grading and combiners (or stacking)
is that the former does not change the instance attributes by replacing them
with class predictions or class probabilities (or adding them to it). Instead
it modifies the class values. Furthermore, in grading several sets of meta-
data are created, one for each base classifier. Several meta-level classifiers
are learned from those sets.
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The main difference between grading and arbiters is that arbiters use
information about the disagreements of classifiers for selecting a training
set; grading uses disagreement with the target function to produce a new
training set.

9.4 Classifier Dependency

This property indicates whether the various classifiers are dependent or
independent. In a dependent framework the outcome of a certain classifier
affects the creation of the next classifier. Alternatively each classifier is
built independently and their results are combined in some fashion. Some
researchers refer to this property as “the relationship between modules”
and distinguish between three different types: successive, cooperative and
supervisory [Sharkey (1996)]. Roughly speaking, “successive” refers to
“dependent” while “cooperative” refers to “independent”. The last type
applies to those cases in which one model controls the other model.

9.4.1 Dependent Methods

In dependent approaches for learning ensembles, there is an interaction
between the learning runs. Thus it is possible to take advantage of
knowledge generated in previous iterations to guide the learning in the
next iterations. We distinguish between two main approaches for dependent
learning, as described in the following sections [Provost and Kolluri (1997)].

9.4.1.1 Model-guided Instance Selection

In this dependent approach, the classifiers that were constructed in previous
iterations are used for manipulating the training set for the following
iteration (see Figure 9.7). One can embed this process within the basic
learning algorithm. These methods usually ignore all data instances on
which their initial classifier is correct and only learn from misclassified
instances.

The most well-known model-guided instance selection is boosting.
Boosting (also known as arcing adaptive resampling and combining) is
a general method for improving the performance of a weak learner (such
as classification rules or decision trees). The method works by repeatedly
running a weak learner (such as classification rules or decision trees), on
various distributed training data. The classifiers produced by the weak
learners are then combined into a single composite strong classifier in
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Fig. 9.7 Model-guided instance selection diagram.

order to achieve a higher accuracy than the weak learners classifiers would
have had.

Freund and Schapire (1996) introduced the AdaBoost algorithm. The
main idea of this algorithm is to assign a weight in each example in the
training set. In the beginning, all weights are equal, but in every round,
the weights of all misclassified instances are increased while the weights
of correctly classified instances are decreased. As a consequence, the weak
learner is forced to focus on the difficult instances of the training set. This
procedure provides a series of classifiers that complement one another.

The pseudo-code of the AdaBoost algorithm is described in Figure 9.8.
The algorithm assumes that the training set consists of m instances, labeled
as —1 or +1. The classification of a new instance is made by voting on all
classifiers {M;}, each having a weight of a;. Mathematically, it can be
written as:

T

H(z) = sign (Z oy Mt(x)> . (9.16)

t=1
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Require: I (a weak inducer), T (the number of iterations), S (training

set)
Ensure: M, a4t =1,...,T
1: t+1
2: D1(i) < 1/m;i=1,....m
3: repeat

4:  Build Classifier M; using I and distribution D,

5: gt Z Dt(l)
@My (x3)FYs
if &, > 0.5 then

T+—t—-1
exit Loop.
end if
10: oy % 1n(12_ft)
11: Dypq(i) = Dy(i) - e~ @yeMe(@i)
12 Normalize Dy to be a proper distribution.
13 t++
14: until t > T

Fig. 9.8 The AdaBoost algorithm.

For using the boosting algorithm with decision trees, the decision
tree inducer should be able to handle weighted instances. Some decision
trees inducers (such as C4.5) can provide different treatments to different
instances. This is performed by weighting the contribution of each instance
in the analysis according to a provided weight (between 0 and 1). If weighted
instances are used, then one may obtain probability vectors in the leaf nodes
that consist of irrational numbers. This can be explained by the fact that
counting weighted instances is not necessarily summed up with an integer
number.

The basic AdaBoost algorithm, described in Figure 9.8, deals with
binary classification. Freund and Schapire (1996) describe two versions
of the AdaBoost algorithm (AdaBoost.M1, AdaBoost.M2), which are
equivalent for binary classification and differ in their handling of mul-
ticlass classification problems. Figure 9.9 describes the pseudo-code of
AdaBoost.M1. The classification of a new instance is performed according
to the following equation:

1
H(z) = argmax Z log g | o
yEdom(y) t: My (z)=y ﬂt

where 3; is defined in Figure 9.9.
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Require: I (a weak inducer), T' (the number of iterations), S (the training

set)
Ensure: My, Byt =1,...,T
1: t+1
2: D1(i) < 1/m;i=1,....m
3: repeat

4:  Build Classifier M; using I and distribution Dy

5: & > Dy (4)
My (xi)Zyi

6: if ¢, > 0.5 then
7: T<+t—1

8: exit Loop.

9: end if

10: By + fst

o o~ (4 M

12:  Normalize Dy, 1 to be a proper distribution.
13: t++

14: until ¢ > T

Fig. 9.9 The AdaBoost.M.1 algorithm.

All boosting algorithms presented here assume that the weak inducers
which are provided can cope with weighted instances. If this is not the case,
an unweighted dataset is generated from the weighted data by a resampling
technique. Namely, instances are chosen with a probability according to
their weights (until the dataset becomes as large as the original training set).

Boosting seems to improve performance for two main reasons:

(1) Tt generates a final classifier whose error on the training set is small by
combining many hypotheses whose error may be large.

(2) Tt produces a combined classifier whose variance is significantly lower
than those produced by the weak learner.

On the other hand, boosting sometimes leads to a deterioration in
generalization performance. According to Quinlan (1996), the main reason
for boosting’s failure is overfitting. The objective of boosting is to construct
a composite classifier that performs well on the data, but a large number
of iterations may create a very complex composite classifier, that is
significantly less accurate than a single classifier. A possible way to avoid
overfitting is by keeping the number of iterations as small as possible. It
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has been shown that boosting approximates a large margin classifier such
as the SVM [Rudin et al. (2004)].

Another important drawback of boosting is that it is difficult to
understand. The resulting ensemble is considered to be less comprehensible
since the user is required to capture several classifiers instead of a single
classifier. Despite the above drawbacks, Breiman (1996) refers to the
boosting idea as the most significant development in classifier design of
the Nineties.

9.4.1.2 Incremental Batch Learning

In this method, the classification produced in one iteration is given as
“prior knowledge” to the learning algorithm in the following iteration.
The learning algorithm uses the current training set together with the
classification of the former classifier for building the next classifier. The
classifier constructed at the last iteration is chosen as the final classifier.

9.4.2 Independent Methods

In independent ensemble methodology, the original dataset is partitioned
into several subsets from which multiple classifiers are induced (please see
Figure 9.10). The subsets created from the original training set may be
disjointed (mutually exclusive) or overlapping. A combination procedure
is then applied in order to produce a single classification for a given
instance. Since the method for combining the results of induced classifiers
is usually independent of the induction algorithms, it can be used with
different inducers at each subset. Moreover, this methodology can be
easily parallelized. These independent methods aim either at improving
the predictive power of classifiers or decreasing the total execution time.
The following sections describe several algorithms that implement this
methodology.

9.4.2.1 DBagging

The most well-known independent method is bagging (bootstrap aggre-
gating). The method aims to increase accuracy by creating an improved
composite classifier, I*, by amalgamating the various outputs of learned
classifiers into a single prediction.

Figure 9.11 presents the pseudo-code of the bagging algorithm [Breiman
(1996)]. Each classifier is trained on a sample of instances taken with a
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Require: [ (an inducer), T (the number of iterations), S (the training
set), u (the sub-sample size).

Ensure: Myt=1,...,T

1
2
3
4:
5
6

st 1
: repeat

t+ 4+
cuntil ¢t > T

St < Sample p instances from S with replacement.
Build classifier M; using I on S

Fig. 9.11 The bagging algorithm.

replacement from the training set. Usually each sample size is equal to the

size of the original training set.

Note that since sampling with replacement is used, some of the original

instances of S may appear more than once in S; and some may not be
included at all. To classify a new instance, each classifier returns the class
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prediction for the unknown instance. The composite bagged classifier, I*,
returns the class that has been predicted most often (voting method). The
result is that bagging produces a combined model that often performs better
than the single model built from the original single data. Breiman (1996)
notes that this is true especially for unstable inducers because bagging
can eliminate their instability. In this context, an inducer is considered
unstable if perturbing the learning set can cause significant changes in the
constructed classifier.

Bagging, like boosting, is a technique for improving the accuracy of a
classifier by producing different classifiers and combining multiple models.
They both use a kind of voting for classification in order to combine the
outputs of the different classifiers of the same type. In boosting, unlike
bagging, each classifier is influenced by the performance of those built before
with the new classifier trying to pay more attention to errors that were made
in the previous ones and to their performances. In bagging, each instance
is chosen with equal probability, while in boosting, instances are chosen
with a probability proportional to their weight. Furthermore, according to
Quinlan (1996), as mentioned above, bagging requires that the learning
system should not be stable, where boosting does not preclude the use
of unstable learning systems, provided that their error rate can be kept
below 0.5.

9.4.2.2 Wagging

Wagging is a variant of bagging [Bauer and Kohavi (1999)] in which
each classifier is trained on the entire training set, but each instance is
stochastically assigned a weight. Figure 9.12 presents the pseudo-code of
the wagging algorithm.

Require: [ (an inducer), T' (the number of iterations), S (the training
set), d (weighting distribution).
Ensure: Myt=1,...,T
1t 1
2: repeat
3 S; < S with random weights drawn from d.
4:  Build classifier M; using I on S}
5 t+ +
6: untilt > T

Fig. 9.12 The wagging algorithm.
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In fact bagging can be considered to be wagging with allocation of
weights from the Poisson distribution (each instance is represented in the
sample a discrete number of times). Alternatively, it is possible to allocate
the weights from the exponential distribution, because the exponential
distribution is the continuous valued counterpart to the Poisson distribution
[Webb (2000)].

9.4.2.3 Random Forest

A Random Forest ensemble uses a large number of individual, unpruned
decision trees which are created by randomizing the split at each node of
the decision tree [Breiman (2001)]. Each tree is likely to be less accurate
than a tree created with the exact splits. But, by combining several of
these “approximate” trees in an ensemble, we can improve the accuracy,
often doing better than a single tree with exact splits.

The individual trees are constructed using the algorithm presented
in Figure 9.13. The input parameter N represents the number of input
variables that will be used to determine the decision at a node of the tree.
This number should be much less than the number of attributes in the
training set. Note that bagging can be thought of as a special case of random
forests obtained when N is set to the number of attributes in the original
training set. The I DT in Figure 9.13 represents any top-down decision tree
induction algorithm with the following modification: the decision tree is
not pruned and at each node, rather than choosing the best split among all
attributes, the I DT randomly samples IV of the attributes and chooses the
best split from among those variables. The classification of an unlabeled
instance is performed using majority vote.

Require: DT (a decision tree inducer), T' (the number of iterations), S
(the training set), p (the sub sample size). N (number of attributes
used in each node)

Ensure: Myt=1,...,T

1t 1

2: repeat

3:  S;  Sample p instances from S with replacement.
4:  Build classifier M; using IDT(N) on S;

5 t+ +

6: until t > T

Fig. 9.13 The random forest algorithm.
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There are other ways to obtain random forests. For example, instead of
using all the instances to determine the best split point for each feature, a
sub-sample of the instances is used [Kamath and Cantu-Paz (2001)]. This
sub-sample varies with the feature. The feature and split value that optimize
the splitting criterion are chosen as the decision at that node. Since the split
made at a node is likely to vary with the sample selected, this technique
results in different trees which can be combined in ensembles.

Another method for randomization of the decision tree through his-
tograms was proposed by Kamath et al. (2002). The use of histograms
has long been suggested as a way of making the features discrete, while
reducing the time to handle very large datasets. Typically, a histogram is
created for each feature, and the bin boundaries used as potential split
points. The randomization in this process is expressed by selecting the split
point randomly in an interval around the best bin boundary.

Although the random forest was defined for decision trees, this
approach is applicable to all types of classifiers. One important advantage
of the random forest method is its ability to handle a very large number of
input attributes [Skurichina and Duin (2002)]. Another important feature
of the random forest is that it is fast.

9.4.2.4 Rotation Forest

Similarly to Random Forest, the aim of Rotation Forest is to independently
build accurate and diverse set of classification trees. Recall that in Random
Forest the diversity among the base trees is obtained by training each tree
on a different bootstrap sample of the dataset and by randomizing the
feature choice at each node. On the other hand, in Rotation forest the
diversity among the base trees is acheived by training each tree on the whole
dataset in a rotated feature space. Because tree induction algorithms split
the input space using hyperplanes parallel to the feature axes, rotating the
axes just before running the tree induction algorithm, may result with a
very different classification tree.

More specifically the main idea is to use feature extraction methods
to build a full feature set for each tree in the forest. To this end, we first
randomly split the feature set into K mutually exclusive partitions. Then
we use a principal component analysis (PCA) separately on each feature
partition. PCA is a well-established statistical procedure that was invented
in 1901 by Karl Pearson. The idea of PCA is to orthogonaly transforms
possibly correlated features into a set of linearly uncorrelated features
(called principal components). Each component is a linear combination
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of the original. The transformation guarantee that the first principal
component has the largest possible variance. Every subsequent component
has the highest variance possible under the constraint that is orthogonal to
the previous components.

The principal components is used to construct the new set of features.
The original dataset is transformed linearly into the new feature space to
construct the new training set. This new training set is fed into the tree
induction algorithm which train a classification tree. Note that different
feature partitions will lead to different set of transformed features, thus
different classification trees are generated.

Figure 9.14 presents the Rotation Forest pseudocode. For each one
of the T base classifiers to be built, we divide the feature set into K

Rotation Forest
Require: I (a base inducer), S (the original training set), T (number of
iterations), K (number of subsets),
1: fori=1toT do
2:  Split the feature set into K subsets: F;; (for j=1..K)
3: for j=1to K do
4: Let S; ; be the dataset S for the features in Fj ;
5 Eliminate from S; ; a random subset of classes
6 Select a bootstrap sample from S, ; of size 75% of the number of
objects in §; ;. Denote the new set by S;)j
Apply PCA on S;j to obtain the coefficients in a matrix C; ;
end for
Arrange the C; ;, for j = 1 to K in a rotation matrix R; as in the

® 3

equation:

1 2 M
al) al?, .. ali 0] (0]

) (2 My
R = [0] aly,aly, .. al?) . (0]
O .
0] 0] aga . ah
10:  Construct R} by rearranging the columns of R; so as to match the
order of features in F
11: end for
12: Build classifier M; using (SR, X) as the training set

Fig. 9.14 The rotation forest.
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disjoint subsets F; ; of equal size M. For every subset, we randomly select
a non-empty subset of classes and then draw a bootstrap sample which
includes 3/4 of the original sample. Then we apply PCA using only the
features in F; ; and the selected subset of classes. The obtained coefficients
of the principal components, aZ{l, %2,1’ ..., are employed to create the sparse
“rotation” matrix R;. Finally, we use SR; from training the base classifier
M;. In order to classify an instance, we calculate the average confidence
for each class across all classifiers, and then assign the instance to the class
with the largest confidence.

The rotation forest algorithm is implemented as part of the Weka
suite. The matlab code of rotation forest can be obtained from: http://
www.mathworks.com / matlabcentral / fileexchange / 38792-rotation- forest-
algorithm.

The experimantal study conducted by the inventors of Rotation Forest,
show that Rotation Forest outperforms random forest in terms of accuracy.
However, Rotation Forest has two drawbacks. First, Rotation Forest
is usually more computationally intensive than Random Forest. Mainly
because the computational complexity of PCA is more than linear (more
specially mn?, where m is the number of instances and n is the number
of features). Another drawback is that the nodes in the obtained trees are
the transformed features and not the original features. This can make it
harder for the user to understand the tree because instead of examining a
single feature in each node of the tree, the user needs to examine a linear
combination of the features in each node of the tree.

Zhang and Zhang (2008) present the RotBoost algorithm which
combines the ideas of Rotation Forest and AdaBoost. RotBoost achieves an
even lower prediction error than either one of the two algorithms. RotBoost
is presented in Figure 9.15. In each iteration a new rotation matrix is
generated and used to create a dataset. The AdaBoost ensemble is induced
from this dataset.

In conclustion, Rotation Forest is an ensemble generation method which
aims at building accurate and diverse classifiers [Rodriguez et al. (2006)].
The main idea is to apply feature extraction to subsets of features in order
to reconstruct a full feature set for each classifier in the ensemble. Rotation
Forest ensembles tend to generate base classifiers which are more accurate
than those created by AdaBoost and by Random Forest, and more diverse
than those created by bagging. Decision trees were chosen as the base classi-
fiers because of their sensitivity to rotation of the feature axes, while remain-
ing very accurate. Feature extraction is based on PCA which is a valuable
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RotBoost

Require: I (a base inducer), S (the original training set), K (number of
attribute subsets), 71 (number of iterations for Rotation Forest), T
(number of iterations for AdaBoost).

1: fors=1, ---T5 do
2:  Use the steps similar in Rotation Forest to compute the rotation
matrix, R? and let S = [X R?Y] be the training set for classifier Cs.
3:  Initialize the weight distribution over S* as Dy(i) = 1/N(i =
1,2, - N).
fort=1, ---Ty do
According to the distribution D;, perform N extractions randomly
f or §% with replacement to compose a new set S}
6: Apply I to S¢ to train a classifier C{ and then compute the error
of Cfas € = Priwp, (Cf(xi) # yi) = Yivy Ind(CF(x:) # yi) Da(i).
if &y > 0.5 then

set Di(i) =1/N(i =1, 2, --- N) and continue with the next

loop iteration
9: end if
10: if ¢, =0) then
11: set ¢, = 10710
12: end if

1-— [
13: Choose oy = _ In(——)
2 € )

14: Update the distribution D, over S* as Dy11(i) = D}—E’) X

* where Z; is a normalization factor being cho-

e~ fCH(x;) =y
{ea‘ﬁfC’? (x:) # yi
sen so that Dy is a probability distribution over S®.
15:  end for
16: end for

Fig. 9.15 The RotBoost algorithm.

diversifying heuristic. Rotation Forest is a powerful method for generating
an ensemble of classification trees. While it has gained less popularity than
Random Forest, we highly recommend to prefer it over Random Forest
especially if the predictive performance is the main criterion for success.

9.4.2.5 Cross-validated Committees

This procedure creates k classifiers by partitioning the training set into
k-equal-sized sets and training, in turn, on all but the ¢th set. This method,
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first used by Gams (1989), employed 10-fold partitioning. Parmanto
et al. (1996) have also used this idea for creating an ensemble of neural
networks. Domingos (1996) used cross-validated committees to speed up
his own rule induction algorithm RISE, whose complexity is O(n?), making
it unsuitable for processing large databases. In this case, partitioning
is applied by predetermining a maximum number of examples to which
the algorithm can be applied at once. The full training set is randomly
divided into approximately equal-sized partitions. RISE is then run on each
partition separately. Each set of rules grown from the examples in partition
p is tested on the examples in partition p+ 1, in order to reduce overfitting
and to improve accuracy.

9.5 Ensemble Diversity

In an ensemble, the combination of the output of several classifiers is only
useful if they disagree about some inputs [Tumer and Ghosh (1996)].

Creating an ensemble in which each classifier is as different as possible
while still being consistent with the training set is theoretically known to be
an important feature for obtaining improved ensemble performance [Krogh
and Vedelsby (1995)]. According to Hu (2001), diversified classifiers lead to
uncorrelated errors, which in turn improve classification accuracy.

In the regression context, the bias-variance-covariance decomposition
has been suggested to explain why and how diversity between individual
models contribute toward overall ensemble accuracy. Nevertheless, in the
classification context, there is no complete and agreed upon theory [Brown
et al. (2005)]. More specifically, there is no simple analogue of variance—
covariance decomposition for the zero—one loss function. Instead, there
are several ways to define this decomposition. Each way has its own
assumptions.

Sharkey (1999) suggested a taxonomy of methods for creating diversity
in ensembles of neural networks. More specifically, Sharkey’s taxonomy
refers to four different aspects: the initial weights; the training data used;
the architecture of the networks; and the training algorithm used.

Brown et al. (2005) suggest a different taxonomy which consists of the
following branches: varying the starting points within the hypothesis space;
varying the set of hypotheses that are accessible by the ensemble members
(for instance by manipulating the training set); and varying the way each
member traverses the space.
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In this paper, we suggest the following taxonomy. Note however that
the components of this taxonomy are not mutually exclusive, namely, there
are a few algorithms which combine two of them.

(1) Manipulating the Inducer — We manipulate the way in which the base
inducer is used. More specifically, each ensemble member is trained with
an inducer that is differently manipulated.

(2) Manipulating the Training Sample — We vary the input that is used
by the inducer for training. Each member is trained from a different
training set.

(3) Changing the target attribute representation — Each classifier in the
ensemble solve a different target concept.

(4) Partitioning the search space — Each member is trained on a different
search sub-space.

(5) Hybridization — Diversity is obtained by using various base inducers
or ensemble strategies.

9.5.1 Manipulating the Inducer

A simple method for gaining diversity is to manipulate the inducer used
for creating the classifiers. Below we survey several strategies to gain this
diversity.

9.5.1.1 Manipulation of the Inducer’s Parameters

The base inducer usually can be controlled by a set of parameters. For
example, the well-known decision tree inducer C4.5 has the confidence level
parameter that greatly affect learning.

In the neural network community, there were several attempts to gain
diversity by using different number of nodes. Nevertheless, these researches
concludes that variation in numbers of hidden nodes is not effective method
of creating diversity in neural network ensembles. Nevertheless the CNNE
algorithm which simultaneously determines the ensemble size along with
the number of hidden nodes in individual NNs, has shown encouraging
results.

Another effective approach for ANNs is to use several network topolo-
gies. For instance, the Addemup algorithm [Opitz and Shavlik (1996)] uses
genetic algorithm to select the network topologies composing the ensemble.
Addemup trains with standard backpropagation, then selects groups of
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networks with a good error diversity according to the measurement of
diversity.

9.5.1.2 Starting Point in Hypothesis Space

Some inducers can gain diversity by starting the search in the Hypothesis
Space from different points. For example, the simplest way to manipulate
the back-propagation inducer is to assign different initial weights to the
network [Kolen and Pollack (1991)]. Experimental study indicates that the
resulting networks differed in the number of cycles in which they took to
converge upon a solution, and in whether they converged at all. While it
is very simple way to gain diversity, it is now generally accepted that it is
not sufficient for achieving good diversity [Brown et al. (2005)].

9.5.1.3 Hypothesis Space Traversal

These techniques alter the way the inducer traverses the space, thereby
leading different classifiers to converge to different hypotheses [Brown et al.
(2005)]. We differentiate between two techniques for manipulating the space
traversal for gaining diversity: Random and Collective-Performance.

9.5.1.3.1 Random-based Strategy

The idea in this case is to “inject randomness” into the inducers in order
to increase the independence among the ensemble’s members. Ali and
Pazzani (1996) propose to change the rule learning HYDRA algorithm
in the following way: Instead of selecting the best literal at each stage
(using, for instance, an information gain measure), the literal is selected
randomly such that its probability of being selected is proportional to its
measured value. A similar idea has been implemented for C4.5 decision trees
[Dietterich (2000a)]. Instead of selecting the best attribute in each stage, it
selects randomly (with equal probability) an attribute from the set of the
best 20 attributes. Markov Chain Monte Carlo (MCMC) methods can also
be used for introducing randomness in the induction process [Neal (1993)].

9.5.1.3.2 Collective-Performance-based Strategy

In this case the evaluation function used in the induction of each member
is extended to include a penalty term that encourages diversity. The most
studied penalty method is the Negative Correlation Learning [Liu (2005);
Brown and Wyatt (2003); Rosen (1996)]. The idea of negative correlation
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learning is to encourage different individual classifiers in the ensemble to
represent different sub-spaces of the problem. While simultaneously creating
the classifiers, the classifiers may interact with each other in order to
specialize (for instance by using a correlation penalty term in the error
function to encourage such specialization).

9.5.2 Manipulating the Training Samples

In this method, each classifier is trained on a different variation or subset of
the original dataset. This method is useful for inducers whose variance-error
factor is relatively large (such as decision trees and neural networks). That
is to say, small changes in the training set may cause a major change in
the obtained classifier. This category contains procedures such as bagging,
boosting and cross-validated committees.

9.5.2.1 Resampling

The distribution of tuples among the different classifier could be random as
in the bagging algorithm or in the arbiter trees. Other methods distribute
the tuples based on the class distribution such that the class distribution in
each subset is approximately the same as that in the entire dataset. It has
been shown that proportional distribution as used in combiner trees [Chan
and Stolfo (1993)] can achieve higher accuracy than random distribution.

Instead of performing sampling with replacement, some methods (like
AdaBoost or Wagging) manipulate the weights that are attached to each
instance in the training set. The base inducer should be capable to take
these weights into account. Recently, a novel framework was proposed
in which each instance contributes to the committee formation with a
fixed weight, while contributing with different individual weights to the
derivation of the different constituent classifiers [Christensen et al. (2004)].
This approach encourages model diversity without biasing the ensemble
inadvertently towards any particular instance.

9.5.2.2 Creation

The DECORATE algorithm [Melville and Mooney (2003)] is a dependent
approach in which the ensemble is generated iteratively, learning a classifier
at each iteration and adding it to the current ensemble. The first member
is created by using the base induction algorithm on the original training
set. The successive classifiers are trained on an artificial set that combines
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tuples from the original training set and also on some fabricated tuples.
In each iteration, the input attribute values of the fabricated tuples are
generated according to the original data distribution. On the other hand,
the target values of these tuples are selected so as to differ maximally
from the current ensemble predictions. Comprehensive experiments have
demonstrated that this technique is consistently more accurate than the
base classifier, Bagging and Random Forests. Decorate also obtains higher
accuracy than boosting on small training sets, and achieves comparable
performance on larger training sets.

9.5.2.3 Partitioning

Some argue that classic ensemble techniques (such as boosting and bagging)
have limitations on massive datasets, because the size of the dataset can
become a bottleneck [Chawla et al. (2004)]. Moreover, it is suggested
that partitioning the datasets into random, disjoint partitions will not
only overcome the issue of exceeding memory size, but will also lead to
creating an ensemble of diverse and accurate classifiers, each built from a
disjoint partition but with the aggregate processing all of the data. This can
improve performance in a way that might not be possible by subsampling.
In fact, empirical studies have shown that the performance of the multiple
disjoint partition approach is equivalent to the performance obtained by
popular ensemble techniques such as bagging. More recently, a framework
for building thousands of classifiers that are trained from small subsets
of data in a distributed environment was proposed [Chawla et al. (2004)].
It has been empirically shown that this framework is fast, accurate, and
scalable.

Clustering techniques can be used to partitioning the sample. The
cluster-based concurrent decomposition (CBCD) algorithm first clusters the
instance space by using the K-means clustering algorithm. Then, it creates
disjoint sub-samples using the clusters in such a way that each sub-sample is
comprised of tuples from all clusters and hence represents the entire dataset.
An inducer is applied in turn to each sub-sample. A voting mechanism is
used to combine the classifiers classifications. Experimental study indicates
that the CBCD algorithm outperforms the bagging algorithm.

9.5.3 Manipulating the Target Attribute Representation

In methods that manipulate the target attribute, instead of inducing a
single complicated classifier, several classifiers with different and usually
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simpler representations of the target attribute are induced. This manipula-
tion can be based on an aggregation of the original target’s values (known
as Concept Aggregation) or more complicated functions (known as Function
Decomposition).

Classical concept aggregation replaces the original target attribute with
a function, such that the domain of the new target attribute is smaller than
the original one.

Concept aggregation has been used to classify free text documents
into predefined topics [Buntine (1996)]. This application suggests breaking
the topics up into groups (co-topics) and then, instead of predicting the
document’s topic directly, classifying the document into one of the co-topics.
Another model is then used to predict the actual topic in that co-topic.

A general concept aggregation algorithm called Error-Correcting Out-
put Coding (ECOC) which converts multi-class problems into multiple,
two-class problems has been suggested by Dietterich and Bakiri (1995).
A classifier is built for each possible binary partition of the classes.
Experiments show that ECOC improves the accuracy of neural networks
and decision trees on several multi-class problems from the UCI repository.

The idea to convert K class classification problems into K-two class
classification problems has been proposed by [Anand et al. (1995)]. Each
problem considers the discrimination of one class to the other classes. Lu
and Ito [Lu and Ito (1999)] extend Anand’s method and propose a new
method for manipulating the data based on the class relations among the
training data. By using this method, they divide a K class classification
problem into a series of K (K —1)/2 two-class problems where each problem
considers the discrimination of one class to each one of the other classes.
The researchers used neural networks to examine this idea.

Function decomposition was originally developed in the Fifties and
Sixties for designing switching circuits. It was even used as an evaluation
mechanism for checker playing programs [Samuel (1967)]. This approach
was later improved by Biermann et al. (1982). Recently, the machine
learning community has adopted this approach. A manual decomposition
of the problem and an expert-assisted selection of examples to construct
rules for the concepts in the hierarchy was studied in [Michie (1995)].
Compared to standard decision tree induction techniques, structured
induction exhibits about the same degree of classification accuracy with
the increased transparency and lower complexity of the developed models.
A general-purpose function decomposition approach for machine learning
was proposed in [Zupan et al. (1998)]. According to this approach, attributes
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are transformed into new concepts in an iterative manner to create a
hierarchy of concepts. A different function decomposition which can be
applied in data mining is the Bi-Decomposition [Long (2003)]. In this
approach, the original function is decomposed into two decomposition
functions that are connected by a two-input operator called a “gate”. Each
of the decomposition functions depends on fewer variables than the original
function. Recursive bi-decomposition represents a function as a structure
of interconnected gates.

9.5.4 Partitioning the Search Space

The idea is that each member in the ensemble explores a different part of
the search space. Thus, the original instance space is divided into several
sub-spaces. Each sub-space is considered independently and the total model
is a (possibly soft) union of such simpler models.

When using this approach, one should decide if the sub-spaces will
overlap. At one extreme, the original problem is decomposed into several
mutually exclusive sub-problems, such that each sub-problem is solved
using a dedicated classifier. In such cases, the classifiers may have significant
variations in their overall performance over different parts of the input
space [Tumer and Ghosh (2000)]. At the other extreme, each classifier
solves the same original task. In such cases, “If the individual classifiers
are then appropriately chosen and trained properly, their performances will
be (relatively) comparable in any region of the problem space. [Tumer and
Ghosh (2000)]”. However, usually the sub-spaces may have soft boundaries,
namely sub-spaces are allowed to overlap.

There are two popular approaches for search space manipulations:
divide and conquer approaches and feature subset-based ensemble methods.

9.5.4.1 Divide and Conquer

In the neural-networks community, Nowlan and Hinton (1991) examined the
mixture of experts (ME) approach, which partitions the instance space into
several sub-spaces and assigns different experts (classifiers) to the different
sub-spaces. The sub-spaces, in ME, have soft boundaries (i.e. they are
allowed to overlap). A gating network then combines the experts’ outputs
and produces a composite decision.

Some researchers have used clustering techniques to partition the space.
The basic idea is to partition the instance space into mutually exclusive
subsets using K-means clustering algorithm. An analysis of the results
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shows that the proposed method is well suited for datasets of numeric input
attributes and that its performance is influenced by the dataset size and its
homogeneity.

NBTree [Kohavi (1996)] is an instance space decomposition method
that induces a decision tree and a Naive Bayes hybrid classifier. Naive
Bayes, which is a classification algorithm based on Bayes’ theorem and a
Naive independence assumption, is very efficient in terms of its processing
time. To induce an NBTree, the instance space is recursively partitioned
according to attributes values. The result of the recursive partitioning is
a decision tree whose terminal nodes are Naive Bayes classifiers. Since
subjecting a terminal node to a Naive Bayes classifier means that the hybrid
classifier may classify two instances from a single hyper-rectangle region
into distinct classes, the NBTree is more flexible than a pure decision tree.
In order to decide when to stop the growth of the tree, NBTree compares
two alternatives in terms of error estimation — partitioning into a hyper-
rectangle region and inducing a single Naive Bayes classifier. The error
estimation is calculated by cross-validation, which significantly increases the
overall processing time. Although NBTree applies a Naive Bayes classifier
to decision tree terminal nodes, classification algorithms other than Naive
Bayes are also applicable. However, the cross-validation estimations make
the NBTree hybrid computationally expensive for more time-consuming
algorithms such as neural networks.

More recently, Cohen et al. (2007) generalizes the NBTree idea and
examines a decision-tree framework for space decomposition. According to
this framework, the original instance-space is hierarchically partitioned into
multiple sub-spaces and a distinct classifier (such as neural network) is
assigned to each sub-space. Subsequently, an unlabeled, previously-unseen
instance is classified by employing the classifier that was assigned to the
sub-space to which the instance belongs.

The divide and conquer approach includes many other specific methods
such as local linear regression, CART/MARS, adaptive sub-space models,
etc [Johansen and Foss (1992); Ramamurti and Ghosh (1999); Holmstrom
et al. (1997)].

9.5.4.2 Feature Subset-based Ensemble Methods

Another less common strategy for manipulating the search space is to
manipulate the input attribute set. Feature subset-based ensemble methods
are those that manipulate the input feature set for creating the ensemble
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members. The idea is to simply give each classifier a different projection
of the training set. [Tumer and Oza]. Feature subset-based ensembles
potentially facilitate the creation of a classifier for high dimensionality data
sets without the feature selection drawbacks mentioned above. Moreover,
these methods can be used to improve the classification performance due to
the reduced correlation among the classifiers. Rokach and Maimon (2001)
also indicate that the reduced size of the dataset implies faster induction
of classifiers. Feature subset avoids the class under-representation which
may happen in instance subsets methods such as bagging. There are three
popular strategies for creating feature subset-based ensembles: random-
based, reduct-based and collective-performance-based strategy.

9.5.4.2.1 Random-based Strategy

The most straightforward techniques for creating feature subset-based
ensemble are based on random selection. Ho (1998) creates a forest of
decision trees. The ensemble is constructed systematically by pseudo-
randomly selecting subsets of features. The training instances are projected
to each subset and a decision tree is constructed using the projected training
samples. The process is repeated several times to create the forest. The
classifications of the individual trees are combined by averaging the condi-
tional probability of each class at the leaves (distribution summation). Ho
shows that simple random selection of feature subsets may be an effective
technique because the diversity of the ensemble members compensates for
their lack of accuracy.

Bay (1999) proposed using simple voting in order to combine outputs
from multiple KNN (K-Nearest Neighbor) classifiers, each having access
only to a random subset of the original features. Each classifier employs
the same number of features. A technique for building ensembles of simple
Bayesian classifiers in random feature subsets was also examined [Tsymbal
and Puuronen (2002)] for improving medical applications.

9.5.4.2.2 Reduct-based Strategy

A reduct is defined as the smallest feature subset which has the same
predictive power as the whole feature set. By definition, the size of the
ensembles that were created using reducts are limited to the number of
features. There have been several attempts to create classifier ensembles by
combining several reducts.
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9.5.4.2.3 Collective-Performance-based Strategy

Cunningham and Carney (2000) introduced an ensemble feature selection
strategy that randomly constructs the initial ensemble. Then, an iterative
refinement is performed based on a hill-climbing search in order to improve
the accuracy and diversity of the base classifiers. For all the feature subsets,
an attempt is made to switch (include or delete) each feature. If the resulting
feature subset produces a better performance on the validation set, that
change is kept. This process is continued until no further improvements are
obtained. Similarly, Zenobi and Cunningham (2001) suggest that the search
for the different feature subsets will not be solely guided by the associated
error but also by the disagreement or ambiguity among the ensemble
members.

Tsymbal et al. (2004) compare several feature selection methods that
incorporate diversity as a component of the fitness function in the search for
the best collection of feature subsets. This study shows that there are some
datasets in which the ensemble feature selection method can be sensitive
to the choice of the diversity measure. Moreover, no particular measure is
superior in all cases.

Gunter and Bunke (2004) suggest employing a feature subset search
algorithm in order to find different subsets of the given features. The feature
subset search algorithm not only takes the performance of the ensemble into
account, but also directly supports diversity of subsets of features.

Combining genetic search with ensemble feature selection was also
examined in the literature. Opitz and Shavlik (1996) applied GAs to
ensembles using genetic operators that were designed explicitly for hidden
nodes in knowledge-based neural networks. In a later research, Opitz (1999)
used genetic search for ensemble feature selection. This genetic ensemble
feature selection (GEFS) strategy begins by creating an initial population of
classifiers where each classifier is generated by randomly selecting a different
subset of features. Then, new candidate classifiers are continually produced
by using the genetic operators of crossover and mutation on the feature
subsets. The final ensemble is composed of the most fitted classifiers.

9.5.4.2.4 Feature Set Partitioning

Feature set partitioning is a particular case of feature subset-based ensem-
bles in which the subsets are pairwise disjoint subsets. At the same time,
feature set partitioning generalizes the task of feature selection which aims
to provide a single representative set of features from which a classifier is
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constructed. Feature set partitioning, on the other hand, decomposes the
original set of features into several subsets and builds a classifier for each
subset. Thus, a set of classifiers is trained such that each classifier employs
a different subset of the original feature set. Subsequently, an unlabeled
instance is classified by combining the classifications of all classifiers.

Several researchers have shown that the partitioning methodology can
be appropriate for classification tasks with a large number of features
[Kusiak (2000)]. The search space of a feature subset-based ensemble
contains the search space of feature set partitioning, and the latter contains
the search space of feature selection. Mutually exclusive partitioning has
some important and helpful properties:

(1) There is a greater possibility of achieving reduced execution time
compared to non-exclusive approaches. Since most learning algorithms
have computational complexity that is greater than linear in the
number of features or tuples, partitioning the problem dimensionality
in a mutually exclusive manner means a decrease in computational
complexity [Provost and Kolluri (1997)].

(2) Since mutual exclusiveness entails using smaller datasets, the classifiers
obtained for each sub-problem are smaller in size. Without the mutually
exclusive restriction, each classifier can be as complicated as the classi-
fier obtained for the original problem. Smaller classifiers contribute to
comprehensibility and ease in maintaining the solution.

(3) According to Bay (1999), mutually exclusive partitioning may help
avoid some error correlation problems that characterize feature sub-
set based ensembles. However, Sharkey (1996) argues that mutually
exclusive training sets do not necessarily result in low error correlation.
This point is true when each sub-problem is representative.

(4) In feature subset-based ensembles, different classifiers might generate
contradictive classifications using the same features. This inconsistency
in the way a certain feature can affect the final classification may
increase mistrust among end-users. We claim that end-users can grasp
mutually exclusive partitioning much easier.

(5) The mutually exclusive approach encourages smaller datasets which
are generally more practicable. Some data mining tools can process
only limited dataset sizes (for instance, when the program requires that
the entire dataset will be stored in the main memory). The mutually
exclusive approach can ensure that data mining tools can be scaled
fairly easily to large datasets [Chan and Stolfo (1997)].
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In the literature, there are several works that deal with feature set
partitioning. In one research, the features are grouped according to the
feature type: nominal value features, numeric value features and text
value features [Kusiak (2000)]. A similar approach was also used for
developing the linear Bayes classifier [Gama (2000)]. The basic idea consists
of aggregating the features into two subsets: the first subset containing only
the nominal features and the second only the continuous features.

In another research, the feature set was decomposed according to
the target class [Tumer and Ghosh (1996)]. For each class, the features
with low correlation relating to that class were removed. This method
was applied on a feature set of 25 sonar signals where the target was
to identify the meaning of the sound (whale, cracking ice, etc.). Feature
set partitioning has also been used for radar-based volcano recognition
[Cherkauer (1996)]. The researcher manually decomposed a feature set of
119 into 8 subsets. Features that were based on different image processing
operations were grouped together. As a consequence, for each subset,
four neural networks with different sizes were built. A new combining
framework for feature set partitioning has been used for text-independent
speaker identification [Chen et al. (1997)]. Other researchers manually
decomposed the features set of a certain truck backer-upper problem and
reported that this strategy has important advantages [Jenkins and Yuhas
(1993)].

The feature set decomposition can be obtained by grouping features
based on pairwise mutual information, with statistically similar features
assigned to the same group [Liao and Moody (2000)]. For this purpose, one
can use an existing hierarchical clustering algorithm. As a consequence,
several feature subsets are constructed by selecting one feature from each
group. A neural network is subsequently constructed for each subset. All
networks are then combined.

In statistics literature, the well-known feature-oriented ensemble algo-
rithm is the MARS algorithm [Friedman (1991)]. In this algorithm, a
multiple regression function is approximated using linear splines and their
tensor products. It has been shown that the algorithm performs an ANOVA
decomposition, namely, the regression function is represented as a grand
total of several sums. The first sum is of all basic functions that involve
only a single attribute. The second sum is of all basic functions that involve
exactly two attributes, representing (if present) two-variable interactions.
Similarly, the third sum represents (if present) the contributions from three-
variable interactions, and so on.
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A general framework that searches for helpful feature set partitioning
structures has also been proposed [Rokach and Maimon (2005b)]. This
framework nests many algorithms, two of which are tested empirically over a
set of benchmark datasets. The first algorithm performs a serial search while
using a new Vapnik—Chervonenkis dimension bound for multiple oblivious
trees as an evaluating scheme. The second algorithm performs a multi-
search while using a wrapper evaluating scheme. This work indicates that
feature set decomposition can increase the accuracy of decision trees.

9.5.5 Multi-Inducers

In Multi-Inducer strategy, diversity is obtained by using different types of
inducers [Michalski and Tecuci (1994)]. Each inducer contains an explicit or
implicit bias [Mitchell (1980)] that leads it to prefer certain generalizations
over others. Ideally, this multi-inducer strategy would always perform as
well as the best of its ingredients. Even more ambitiously, there is hope that
this combination of paradigms might produce synergistic effects, leading to
levels of accuracy that neither atomic approach by itself would be able to
achieve.

Most research in this area has been concerned with combining empirical
approaches with analytical methods (see for instance [Towell and Shavlik
(1994)]). Woods et al. (1997) combine four types of base inducers (decision
trees, neural networks, k-nearest neighbor, and quadratic Bayes). They
then estimate local accuracy in the feature space to choose the appropriate
classifier for a given new unlabled instance. Wang et al. (2004) examined the
usefulness of adding decision trees to an ensemble of neural networks. The
researchers concluded that adding a few decision trees (but not too many)
usually improved the performance. Langdon et al. (2002) proposed using
Genetic Programming to find an appropriate rule for combining decision
trees with neural networks.

The model class selection (MCS) system fits different classifiers to
different sub-spaces of the instance space, by employing one of three
classification methods (a decision-tree, a discriminant function or an
instance-based method). In order to select the classification method, MCS
uses the characteristics of the underlined training-set, and a collection of
expert rules. Brodley’s expert-rules were based on empirical comparisons
of the methods’ performance (i.e. on prior knowledge).

The NeC4.5 algorithm, which integrates decision tree with neural
networks [Zhou and Jiang (2004)], first trains a neural network ensemble.
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Then, the trained ensemble is employed to generate a new training set by
replacing the desired class labels of the original training examples with the
output from the trained ensemble. Some extra training examples are also
generated from the trained ensemble and added to the new training set.
Finally, a C4.5 decision tree is grown from the new training set. Since its
learning results are decision trees, the comprehensibility of NeC4.5 is better
than that of neural network ensembles.

Using several inducers can solve the dilemma which arises from the
“no free lunch” theorem. This theorem implies that a certain inducer
will be successful only insofar its bias matches the characteristics of the
application domain [Brazdil et al. (1994)]. Thus, given a certain application,
the practitioner need to decide which inducer should be used. Using the
multi-inducer obviate the need to try each one and simplifying the entire
process.

9.5.6 Measuring the Diversity

As stated above, it is usually assumed that increasing diversity may decrease
ensemble error [Zenobi and Cunningham (2001)]. For regression problems,
variance is usually used to measure diversity [Krogh and Vedelsby (1995)].
In such cases it can be easily shown that the ensemble error can be reduced
by increasing ensemble diversity while maintaining the average error of a
single model.

In classification problems, a more complicated measure is required to
evaluate the diversity. There have been several attempts to define diversity
measure for classification tasks.

In the neural network literature, two measures are presented for
examining diversity:

e Classification coverage: An instance is covered by a classifier, if it yields
a correct classification.

e Coincident errors: A coincident error amongst the classifiers occurs when
more than one member misclassifies a given instance.

Based on these two measures, Sharkey (1997) defined four diversity levels:

e Level 1 — No coincident errors and the classification function is
completely covered by a majority vote of the members.

e Level 2 — Coincident errors may occur, but the classification function is
completely covered by a majority vote.
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e Level 3 — A majority vote will not always correctly classify a given
instance, but at least one ensemble member always correctly classifies it.

e Level 4 — The function is not always covered by the members of the
ensemble.

Brown et al. (2005) claim that the above four-level scheme provides
no indication of how typical the error behavior described by the assigned
diversity level is. This claim, especially, holds when the ensemble exhibits
different diversity levels on different subsets of instance space.

There are other more quantative measures which categorize these
measures into two types [Brown et al. (2005)]: pairwise and non-pairwise.
Pairwise measures calculate the average of a particular distance metric
between all possible pairings of members in the ensemble, such as Q-statistic
[Brown et al. (2005)] or kappa-statistic [Margineantu and Dietterich
(1997)]. The non-pairwise measures either use the idea of entropy (such
as [Cunningham and Carney (2000)]) or calculate a correlation of each
ensemble member with the averaged output. The comparison of several
measures of diversity has resulted in the conclusion that most of them are
correlated [Kuncheva and Whitaker (2003)].

9.6 Ensemble Size
9.6.1 Selecting the Ensemble Size

An important aspect of ensemble methods is to define how many component
classifiers should be used. There are several factors that may determine this
size:

e Desired accuracy — In most cases, ensembles containing 10 classifiers
are sufficient for reducing the error rate [Hansen and Salamon (1990)].
Nevertheless, there is empirical evidence indicating that: when AdaBoost
uses decision trees, error reduction is observed in even relatively large
ensembles containing 25 classifiers [Opitz and Maclin (1999)]. In disjoint
partitioning approaches, there may be a trade-off between the number
of subsets and the final accuracy. The size of each subset cannot be too
small because sufficient data must be available for each learning process
to produce an effective classifier.

e Computational cost — Increasing the number of classifiers usually
increases computational cost and decreases their comprehensibility. For
that reason, users may set their preferences by predefining the ensemble
size limit.
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e The nature of the classification problem — In some ensemble methods,
the nature of the classification problem that is to be solved, determines
the number of classifiers. For instance, in the ECOC algorithm the
number of classes determine the ensemble size.

e Number of processors available — In independent methods, the number
of processors available for parallel learning could be put as an upper
bound on the number of classifiers that are treated in paralleled process.

There three methods that are used to determine the ensemble size, as
described by the following subsections.

9.6.2 Pre-selection of the Ensemble Size

This is the most simple way to determine the ensemble size. Many ensemble
algorithms have a controlling parameter such as “number of iterations”,
which can be set by the user. Algorithms such as Bagging belong to this
category. In other cases, the nature of the classification problem determine
the number of members (such as in the case of ECOC).

9.6.3 Selection of the Ensemble Size while Training

There are ensemble algorithms that try to determine the best ensemble size
while training. Usually as new classifiers are added to the ensemble these
algorithms check if the contribution of the last classifier to the ensemble
performance is still significant. If it is not, the ensemble algorithm stops.
Usually these algorithms also have a controlling parameter which bounds
the maximum size of the ensemble.

An algorithm that decides when a sufficient number of classification
trees have been created was recently proposed [Banfield et al. (2007)]. The
algorithm uses the out-of-bag error estimate, and is shown to result in an
accurate ensemble for those methods that incorporate bagging into the
construction of the ensemble. Specifically, the algorithm works by first
smoothing the out-of-bag error graph with a sliding window in order to
reduce the variance. After the smoothing has been completed, the algorithm
takes a larger window on the smoothed data points and determines the
maximum accuracy within that window. It continues to process windows
until the maximum accuracy within a particular window no longer increases.
At this point, the stopping criterion has been reached and the algorithm
returns the ensemble with the maximum raw accuracy from within that
window.
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9.6.4 Pruning — Post Selection of the Ensemble Size

As in decision tree induction, it is sometimes useful to let the ensemble
grow freely and then prune the ensemble in order to get more effective
and compact ensembles. Post selection of the ensemble size allows ensemble
optimization for such performance metrics as accuracy, cross entropy, mean
precision, or the ROC area. Empirical examinations indicate that pruned
ensembles may obtain a similar accuracy performance as the original
ensemble [Margineantu and Dietterich (1997)]. In another empirical study
that was conducted in order to understand the affect of ensemble sizes on
ensemble accuracy and diversity, it has been shown that it is feasible to
keep a small ensemble while maintaining accuracy and diversity similar to
those of a full ensemble [Liu et al. (2004)].

The pruning methods can be divided into two groups: pre-combining
pruning methods and post-combining pruning methods.

9.6.4.1 Pre-combining Pruning

Pre-combining pruning is performed before combining the classifiers. Clas-
sifiers that seem to perform well are included in the ensemble. Prodromidis
et al. (1999) present three methods for pre-combining pruning: based on an
individual classification performance on a separate validation set, diversity
metrics, the ability of classifiers to classify correctly specific classes.

In attribute bagging, classification accuracy of randomly selected
m~attribute subsets is evaluated by using the wrapper approach and only
the classifiers constructed on the highest ranking subsets participate in the
ensemble voting.

9.6.4.2 Post-combining Pruning

In post-combining pruning methods, we remove classifiers based on their
contribution to the collective.

Prodromidis examines two methods for post-combining pruning assum-
ing that the classifiers are combined using meta-combination method: Based
on decision tree pruning and the correlation of the base classifier to the
unpruned meta-classifier.

A forward stepwise selection procedure can be used in order to select
the most relevant classifiers (that maximize the ensemble’s performance)
among thousands of classifiers [Caruana et al. (2004)]. It has been shown
that for this purpose one can use feature selection algorithms. However,
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instead of selecting features one should select the ensemble’s members [Liu
et al. (2004)].

One can also rank the classifiers according to their ROC performance.
Then, they suggest to plot a graph where the Y-axis displays a performance
measure of the integrated classification. The X-axis presents the number of
classifiers that participated in the combination. i.e. the first best classifiers
from the list are combined by voting (assuming equal weights for now) with
the rest getting zero weights. The ensemble size is chosen when there are
several sequential points with no improvement.

The GASEN algorithm was developed for selecting the most appro-
priate classifiers in a given ensemble [Zhou et al. (2002)]. In the initial-
ization phase, GASEN assigns a random weight to each of the classifiers.
Consequently, it uses genetic algorithms to evolve those weights so that
they can characterize to some extent the fitness of the classifiers in joining
the ensemble. Finally, it removes from the ensemble those classifiers whose
weight is less than a predefined threshold value.

Recently, a revised version of the GASEN algorithm called GASEN-b
has been suggested [Zhou and Tang (2003)]. In this algorithm, instead of
assigning a weight to each classifier, a bit is assigned to each classifier
indicating whether it will be used in the final ensemble. In an experimental
study, the researchers showed that ensembles generated by a selective
ensemble algorithm, which selects some of the trained C4.5 decision trees
to make up an ensemble, may be not only smaller in size but also
stronger in the generalization than ensembles generated by non-selective
algorithms.

A comparative study of pre-combining and post-combining methods
when meta-combining methods are used has been performed in [Prodro-
midis et al. (1999)]. The results indicate that the post-combining pruning
methods tend to perform better in this case.

9.7 Cross-Inducer

This property indicates the relation between the ensemble technique and
the inducer used.

Some implementations are considered as an inducer-dependent type,
namely these ensemble generators which use intrinsic inducer, have been
developed specifically for a certain inducer. They can neither work nor
guarantee effectiveness in any other induction method. For instance, the
works of [Hansen (1990); Lu and Ito (1999); Sharkey (1996)] were developed
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specifically for neural networks. The works of [Breiman (2001); Rokach and
Maimon (2005b)] were developed specifically for decision trees.

Other implementations are considered to be the inducer-independent
type. These implementations can be performed on any given inducer and
are not limited to a specific inducer like the inducer-dependent.

9.8 Multistrategy Ensemble Learning

Multistrategy ensemble learning combines several ensemble strategies. It
has been shown that this hybrid approach increases the diversity of
ensemble members.

MultiBoosting, an extension to AdaBoost expressed by adding wagging-
like features [Webb (2000)], can harness both AdaBoost’s high bias and
variance reduction with wagging’s superior variance reduction. Using C4.5
as the base learning algorithm, MultiBoosting, significantly more often
than the reverse, produces decision committees with lower error than either
AdaBoost or wagging. It also offers the further advantage over AdaBoost
of suiting parallel execution. MultiBoosting has been further extended by
adding the stochastic attribute selection committee learning strategy to
boosting and wagging [Webb and Zheng (2004)]. The latter’s research has
shown that combining ensemble strategies would increase diversity at the
cost of a small increase in individual test error resulting in a trade-off that
reduced overall ensemble test error.

Another multistrategy method suggests to create the ensemble by
decomposing the original classification problem into several smaller and
more manageable sub-problems. This multistrategy uses an elementary
decomposition framework that consists of five different elementary decom-
positions: Concept Aggregation, Function, Sample, Space and Feature Set.
The concept of elementary decomposition can be used to obtain a compli-
cated decomposition by using the elementary decomposition concept recur-
sively. Given a certain problem, the procedure selects the most appropriate
elementary decomposition (if any) to that problem. A suitable decomposer
then decomposes the problem and provides a set of sub-problems. A similar
procedure is performed on each sub-problem until no beneficial decomposi-
tion is anticipated. The selection of the best elementary decomposition for
a given problem is performed by using a meta-learning approach.

9.9 Which Ensemble Method Should be Used?

Recent research has experimentally evaluated bagging and seven other
randomization-based approaches for creating an ensemble of decision tree
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classifiers [Banfield et al. (2007)]. Statistical tests were performed on
experimental results from 57 publicly available datasets. When cross-
validation comparisons were tested for statistical significance, the best
method was statistically more accurate than bagging on only eight of the
57 datasets. Alternatively, examining the average ranks of the algorithms
across the group of datasets, Banfield found that boosting, random forests,
and randomized trees is statistically significantly better than bagging.

9.10 Open Source for Decision Trees Forests

There are two open source software packages which can be used for creating
decision trees forests. Both systems, which are free, are distributed under
the terms of the GNU General Public License.

e The OpenDT [Banfield (2005)] package has the ability to output
trees very similar to C4.5, but has added functionality for ensemble
creation. In the event that the attribute set randomly chosen provides a
negative information gain, the OpenDT approach is to randomly rechoose
attributes until a positive information gain is obtained, or no further split
is possible. This enables each test to improve the purity of the resultant
leaves. The system is written in Java.

e The Weka package [Frank et al. (2005)] is an organized collection of state-
of-the-art machine learning algorithms and data preprocessing tools. The
basic way of interacting with these methods is by invoking them from the
command line. However, convenient interactive graphical user interfaces
are provided for data exploration, for setting up large-scale experiments
on distributed computing platforms, and for designing configurations
for streamed data processing. These interfaces constitute an advanced
environment for experimental data mining. Weka includes many decision
tree learners: decision stumps, ID3, a C4.5 clone called “J48”, trees
generated by reduced error pruning, alternating decision trees, and
random trees and forests thereof, including random forests, bagging,
boosting, and stacking.



This page intentionally left blank



Chapter 10

A Walk-through-guide for Using
Decision Trees Software

10.1 Introduction

There are several decision trees software packages available over the
internet. In the following section, we will review some of the most popular
softwares. We will focus on open-source solutions that are freely available.

For illustrative purposes we will use the Iris dataset. This is one of the
best known datasets in pattern recognition literature. It was first introduced
by R. A. Fisher (1936). The goal in this case is to classify flowers into the Iris
subgeni (such as Iris Setosa, Iris Versicolour and Iris Virginica) according
to their characteristics.

The dataset consists of 150 instances. Each instance refers to one of
the flowers and obtains the flowers’ features, such as the length and the
width of the sepal and petal. The label of every instance will be one of
the strings Iris Setosa, Iris Versicolour and Iris Virginica. The task is to
induce a classifier which will be able to predict the class to which a flower
belongs to using its four attributes: sepal length in cm, sepal width in cm,
petal length in cm and petal width in cm.

Table 10.1 illustrates a segment of the Iris dataset. The dataset
contains three classes that correspond to three types of iris flowers:
dom (y) = {IrisSetosa, IrisVersicolor, IrisVirginica}. Each instance is
characterized by four numeric features (measured in centimeters): A =
{sepallength, sepalwidth, petallength, petalwidth}.
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Table 10.1 The Iris dataset consists of four numeric features and three possible
classes.

Sepal Length  Sepal Width  Petal Length ~ Petal Width  Class (Iris Type)

5.1 3.5 1.4 0.2 Iris-setosa
4.9 3.0 1.4 0.2 Iris-setosa
6.0 2.7 5.1 1.6 Iris-versicolor
5.8 2.7 5.1 1.9 Iris-virginica
5.0 3.3 1.4 0.2 Iris-setosa
5.7 2.8 4.5 1.3 Iris-versicolor
5.1 3.8 1.6 0.2 Iris-setosa
10.2 Weka

Weka is a popular machine learning suit developed at the University of
Waikato. Weka is an open source software written in Java and available
under the GNU General Public License.

The latest version and installation instructions can be down-
loaded from: http://www.cs.waikato.ac.nz/~ml/weka/downloading.
html. Note that from version 3.7.2, Weka is installed with only the most
popular learning algorithms. In order to install other algorithms one should
use the package manager to select which additional component is to be
installed. The Inventors of Weka have written a book that provides a
detailed description of the Weka suite [Witten et al. (2011)]. The book
is very popular and it is highly cited (more than 20,000 citations until 2013
according to Google Scholar). In this section, we only provide a brief step-
by-step description on how to use Weka for training classification trees.

We begin by initiating the main Weka application. A window with
Weka GUI Chooser is opened. For our walk-through-guide we choose the
Explorer application. After clicking the Explorer button, the explorer
window is opened. At the top of the new window, one can find a tab
that corresponds to various tasks (see Figure 10.1) such as: preprocess,
classification, clustering etc. At this stage, since no data has been loaded
yet, the only task that is available is the preprocess task.

In the preprocess tab, please click the open file and using the windows
explorer load the Iris dataset. The Iris dataset is distributed as part of the
Weka installation in the $WEKAHOME/data directory, where $WEKAHOME is
the directory of your Weka installation (in Windows the default location
is C:/ProgramFiles/Weka-3-X, where x stands for the installed version).
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Fig. 10.1 Weka preprocessing.

Figure 10.2 illustrates the preprocess windows after loading the Iris dataset.
Note that on the left part of the screen, we can see the list of attributes
in the Iris dataset is presented. The right side shows the properties of the
selected attribute and how the selected attribute and the target attribute
are co-distributed. In the preprocess, it is possible to edit the dataset
by clicking the Edit button or run a filtering procedure (such as feature
selection) on the raw dataset. This is done by choosing a filter and clicking
on Apply.

10.2.1 Training a Classification Tree

Weka implements several decision tree induction algorithms. The most
frequently used algorithm is the J48 which is a variation of the well-known
C4.5 algorithm development. While many consider J48 identical to C45,
it should be noted that there are some differences. A comparison study
performed by Moore et al. (2009) reveals that J48 consistently performs
worse than C4.5 on the datasets that were evaluated.
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Fig. 10.2 Data view in Weka.

To train the J48 classifier, first go classifier tab (the second tab right to
the preprocess tab). Figure 10.3 presents the resulted user interface. In this
window, you can select the learning algorithm (with the Choose button),
set the algorithm’s parameters, select the evaluation procedure (the default
is 10 folds cross-validation) and change the target attribute (by default the
last attribute is considered as the target attribute).

Click the choose button and select the J48 algorithm under the trees
folder as illustrated in Figure 10.4.

It is possible to set the algorithm’s parameters by clicking the white
text box that contains the algorithm’s title along with its current list of
parameters’ values. Clicking this box opens up a window that lists all the
parameters of J48 algorithm that can be set by the user, including:

(1) minNumObj — A numeric parameter that indicates the minimum
number of instances that a leaf should have.

(2) binarySplits — A binary parameter that indicates whether nominal
attributes should be partitioned using binary splits.
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Fig. 10.3 Weka classifier panel.

(3) unpruned — A binary parameter that indicates whether the second

step of pruning is disabled.
(4) useLaplace — A binary parameter that indicates whether the posterior
probabilities in the leaves are smoothed based on Laplace correction.

In order to train the classifier, click start button (located in the right
side of the classifier window). Weka will run the training algorithm 11 times.
First it trains a classification tree using the entire dataset. This tree is
presented to the user. Then it performs the 10 folds cross-validation proce-
dure to evaluate the predictive performance of the classification tree. Note
that in the 10 folds cross-validation procedure the training set is randomly
partitioned into 10 disjoint instance subsets. Each subset is utilized once in
a test set and nine times in a training set. Figure 10.5 presents the resulted
window. The output sub-window presents various predictive performance
measures such as: accuracy, AUC and confusion matrix.

Scrolling up through the output sub-windows shows that the tree
classifier is presented as a text (see Figure 10.6). Indentation is used
to convey the tree topology. The information for each internal node
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Fig. 10.4 Selecting the J48 classifier.
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Fig. 10.5 Weka classifier results.
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Fig. 10.6 Weka classifier results — Part B.

includes the split condition. The information for each leaf node includes
the suggested class (most frequent class) and the number of instances
belonging to this leaf. In case there are instances that do not belong to
the suggested class, their number would appear. For example, the numbers
48.0/1.0 presented in Figure 10.6 indicate that there are 48 instances in the
training set that fit the path: petalwidth>0.6 -> petalwidth<=1.7 ->
petallength<=4.9. From which 47 are classified as Iris-versicolor whereas
one is classified differently (i.e. not Iris-versicolor).

It is possible to produce the tree in a graphics mode. For this purpose
right click the J48 classifier that is listed in the “resulted list” (located to
the left of the output sub-window) and select Visualize tree as illustrated
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Fig. 10.7 Opening the J48 tree visualization.

in Figure 10.7. Following the last action, a graphical visualization of the
J47 is presented (see Figure 10.8).

10.2.2 Butilding a Forest

Weka has a very rich list of ensemble algorithms that can be used to build
a decision forest. Ensemble algorithms that were specifically designed for
decision trees, such as random forest, are located in the trees section of the
hierarchical menu. Other ensemble methods such as bagging, AdaBoost and
rotation forest can be applied to any classification algorithm and therefore
are located in the meta section. Most meta learning algorithms include
one parameter for specifying the base classifier and one parameter for
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Fig. 10.8 J48 tree visualization.

indicating the ensemble size (i.e. the number of iterations). Figure 10.9
presents the properties list of the Rotation Forest algorithm. Note that a
classifier property should refer to a decision tree algorithm (such as J48)
in order to actually build a forest. In many cases altering the number of
iterations by a trial-and-error procedure is very helpful for improving the
predictive performance.

10.3 R

R is a free software programming language that is widely used among data
scientists to develop data mining algorithms. Most of the data scientist’s
tasks can be accomplished in R with a short script code thanks to the
diversity and richness of the contributed packages in CRAN (comprehensive
R archive network). In this section, we review the packages: party, rpart
and randomForest which are used to train decision trees and decision
forests.

10.3.1 Party Package

The party package provides a set of tools for training classification and
regression trees [Hothorn et al. (2006)]. At the core of the party package
there is the ctree() function which implements a conditional inference
procedure to train the tree. The following R script illustrates the usage of
the ctree function for training a classification tree.
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£ weka.guiGenericObjectEditor ﬁ
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seed (1

Cpen... ] I Save... I [ oK ] [ Cancel

Fig. 10.9 Weka rotation forest.

library (¢ ‘party’’)
IrisClassifcationTree<—ctree (Species ~ .,data = iris)

plot(irisct)

The above R script first loads the party package (assuming it has been
already installed, see Section Installing packages in your “R, Installation and
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Fig. 10.10 The classifier tree is obtained for Iris dataset.

Administration” for instructions how to install a package). Then it trains a
classification tree for the Iris dataset where Species is the target attribute
and all other attributes are used as input attributes. Then in the third line
the plot function is used to visualize c the tree as illustrated in Figure 10.10.
The nodes are numbered. Each leaf node contains a histogram that shows
the probability of an instance to be labeled with each one of the classes.

The tree induction algorithm can be configured wusing the
ctree_control() function. In particular, the following parameters can
be set:

(1) mincriterion — The threshold value of the splitting criterion that must
be exceeded in order to implement a split.

(2) minsplit — The minimum number of instances in a node in order to be
considered for splitting.

(3) minbucket — The minimum number of instances in a terminal node.

(4) stump — A Boolean parameter that indicates whether a decision stump
should be built.

(5) maxdepth — The maximum depth of the tree.

The following script illustrates a more complicated learning process.
It begins by splitting the Iris data into train (2/3 of the instances) and
test (the remaining instances). Then it trains a classification tree for the
Species target attribute by using only the train data with the following
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input attributes: Sepal.Length, Petal.Length and Sepal. Width. The training
algorithm’s parameters are set to the following values: minsplit=3 and
maxdepth=3.

After training the tree, we plot it using a simple style (instead of
showing the histogram, it shows the class distribution). Finally, we classify
the instances in the test data and evaluate the predictive performance of
the tree by presenting the confusion matrix.

library (¢ ‘party’’)

# split the data into train and test
trainIndex<—sample(nrow(iris ), 2/3xnrow(iris))
trainData <— iris [trainIndex ,]

testData <— iris[—trainIndex ,]

# train the classification tree

irisClassifcationTree <— ctree(Species ~ Sepal.Length+
Petal.Length + Sepal.Width,
data = trainData, control =
ctree _control (minsplit =3,

maxdepth=3))
# plot a simple tree
plot (irisClassifcationTree ,type="‘‘simple’’)

# predict on test data
testPrediction <— predict(irisClassifcationTree ,
newdata = testData)

# show the confusion matrizc
table (testPrediction, testData$Species)

10.3.2 Forest

The party package provides an implementation of the random forest and
bagging ensemble algorithms utilizing ctree algorithm as a base inducer.
The following script illustrates the creation and evaluation of a random
forest with 10 trees (ntree=10). The number of randomly preselected
attributes is set by mtry parameter.



A Walk-through-guide for Using Decision Trees Software 163

irisForest <— cforest(Species”™ ., data=trainData,
control = cforest _unbiased (ntree =
10, mtry = 2))

testPrediction <— predict(irisForest ,
newdata = testData)

table(testPrediction, testData$Species)

10.3.3 Other Types of Trees

With party package, it is possible to train different types of trees other
than classification trees using the Model-based Recursive Partitioning
functionality. The mob() function provides a specific implementation of
recursive partitioning based on parametric models for building linear
regression trees, logistic regression trees or survival trees.

With mob() function [Zeileis et al. (2008)] some input attributes are
used for fitting the model while others are used for partitioning. For
example, the following script trains a tree using the attributes Sepal. Width,
Species and Petal. Width as partitioning attributes. Each leaf tries to
predict the value of Sepal.Length by fitting a simple linear regression with
Petal.Length serving as an explanatory variable. Figure 10.11 presents the
resulting regression tree. The regression coefficients for each leaf node can
be obtained by the function coef(SepalLengthRegression).

Sepal Width
p<0.001
Spemes
p <0.001

{Setosa versicolor} wrgmu:a

Node 3 (n = 35) Node4 (n=21) Node 5 (n=44)

8 8 M 8
5 <
M . M

4 4 T4 T
05 74 05 74 05 74

Fig. 10.11 Regression tree.
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SepalLengthRegression<—mob( Sepal . Length™Petal . Length |
Sepal . Width+Species+
Petal . Width, control =
mob_control (minsplit = 10)
data=trainData ,
model = linearModel)

plot(SepalLengthRegression)

In addition to linear regression, it is possible to train other
parametric models such as logistic regression (model = glinearModel,
family = binomial()) and survival regression (model=survReg).

10.3.4 The Rpart Package

The package rpart [Therneau and Atkinson (1997)] is another imple-
mentation for training classification and regression trees using recursive
partitioning and a two-stage procedure. In the first stage, the tree is built
recursively until no sufficient data is left or until no improvement can be
noticed. The second stage of the procedure consists of using cross-validation
to prune the tree.

The following script trains a classification tree for the Iris dataset using
the rpart package and plots the resulted model as presented in Figure 10.12.
Note that the leaf nodes include the class frequency and the most frequent
class.

Petal.Length=< 2.45
1

Petal Wigith< 1.75

setosa
50/0/0

versitolor virginica
0/49/5 0/1/45

Fig. 10.12 RPart output.
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library (rpart)

fit <— rpart(Species ~ ., data = iris)
plot( fit)

text (fit , use.n = TRUE))

The function rpart () is capable to induce not only classification trees
but also regression trees, survival tree and Poisson tree. This is done by
setting the method argument to the following values: anova (for regression
tree), class (for classification tree), exp (for survival tree) or poisson
(for Poisson Regression tree). If the method argument is not set then the
function makes an intelligent guess. Note that Poisson regression is a type of
regression that aims to model event rate that follows a Poisson distribution.
For example, in a manufacturing scenario the target attribute may refer to
defective rate. Poisson regression assumes that the logarithm of the target
attribute’s expected value can be represented as a linear combination of the
input attributes.

The function rpart() lets the user select the splitting criterion: gini
index or information gain. This is done by setting the split parameter
to either split = ¢‘information’’ or split=‘‘gini’’. In addition,
similarly to ctree(), a control object can be included to set various
parameters such as minsplit, minbucket and maxdepth. The following
script illustrates this tuning capability by indicating that splitting criterion
is information gain and that the number of instances should exceed 5 in
order to consider splitting a certain node.

fit <— rpart(Species ~ ., data = iris ,
split=‘‘information’’,
control = rpart.control(minsplit = 5)

10.3.5 RandomForest

In the previous section, we have seen how the function cfores() can be
used to build an ensemble of classification trees. An alternative way to build
a random forest is to use the RandomForest package [Liaw and Wiener
(2002)].
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library (¢ ‘randomForest’ )

# split the data into to train and test
trainIndex<-—sample (nrow(iris ), 2/3xnrow(iris))
trainData <— iris [trainIndex ,]

testData <— iris[—trainIndex ,]

# build the forest
irisRandomForest <— randomForest(Species ~ .,
data = trainData)

# predict on test data
testPrediction <— predict(irisRandomForest
newdata = testData)

# show the confusion matrix
table(testPrediction, testData$Species)

The function randomForest () has several arguments that control the
execution of the algorithm, such as: ntree (Number of trees to grow),
mtry (Number of attributes randomly sampled as candidates at each split),
replace- (whether sampling of cases can be done with or without a
replacement), sampsize (the sizes of the samples to draw) and nodesize
(Minimum size of terminal nodes). Finally, the random Forest package
provides additional useful functions such as the function getTree() for
extracting a certain single tree from a forest and the function grow() for

adding additional trees to an existing forest.



Chapter 11

Advanced Decision Trees

11.1 Oblivious Decision Trees

Oblivious decision trees are those in which all nodes at the same level test
the same feature. Despite its restriction, oblivious decision trees are effective
for feature selection. Almuallim and Dietterich (1994) as well as Schlimmer
(1993) have proposed a forward feature selection procedure by constructing
oblivious decision trees, whereas Langley and Sage (1994) suggested
backward selection using the same means. Kohavi and Sommerfield (1998)
have shown that oblivious decision trees can be converted to a decision
table.

Figure 11.1 illustrates a typical oblivious decision tree with four input
features: Glucose level (G), Age (A), Hypertension (H) and Pregnant (P)
and the Boolean target feature representing whether that patient suffers
from diabetes. Each layer is uniquely associated with an input feature by
representing the interaction of that feature and the input features of the
previous layers. The number that appears in the terminal nodes indicates
the number of instances that fit this path. For example, regarding patients
whose glucose level is less than 107 and whose age is greater than 50, 10 are
positively diagnosed with diabetes while 2 are not diagnosed with diabetes.

The principal difference between the oblivious decision tree and a
regular decision tree structure is the constant ordering of input attributes
at every terminal node of the oblivious decision tree. This latter property
is necessary for minimizing the overall subset of input attributes (resulting
in dimensionality reduction). The arcs that connect the terminal nodes and
the nodes of the target layer are labeled with the number of records that
fit this path.

An oblivious decision tree is usually built by a greedy algorithm, which
tries to maximize the mutual information measure in every layer. The

167
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Fig. 11.1 Illustration of oblivious decision tree.

recursive search for explaining attributes is terminated when there is no
attribute that explains the target with statistical significance.

11.2 Online Adaptive Decision Trees

A classification scheme called online adaptive decision trees (OADT) was
proposed by Basak (2004). As with the decision trees, OADT is a tree-
structured network which is capable of online learning like neural networks.
This leads to better generalization scores.

The fact that OADT can only handle two-class classification tasks
with a given structure is a major drawback. The ExOADT algorithm
[Basak (2006)] can handle multiclass classification tasks and is able to
perform function approximation. ExOADT is structurally similar to OADT
extended with a regression layer.

11.3 Lazy Tree

In lazy tree algorithms learning is delayed until the query point is observed
[Friedman et al. (1996)]. An ad hoc decision tree (actually a rule) is
constructed just to classify a certain instance. The LazyDT algorithm
constructs the best decision tree for each test instance. In practice, only
a path needs to be constructed. A caching scheme makes the algorithm
run fast.

With the LazyDT algorithm, a single decision tree built from the
training set offers a compromise: the test at the root of each subtree is
chosen to be the best split on average. This “average” approach can lead to
many irrelevant splits for a given test instance, thus fragmenting the data
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Require: z (an unlabelled instance I to classify), S (training set)
Ensure: A label for instance x
1: If all instances in S have label [, then return [.
2: if all instances in S have the same feature values, return the majority
Class in S.
3: select a test A and let v be the value of the test on the instance x.
Recursively apply the algorithm to the set of instances in S with A = v.

Fig. 11.2 The LazyDT algorithm.

unnecessarily. Such fragmentation reduces the significance of tests at lower
levels since they are based on fewer instances. Classification paths, built for
a specific instance may be much shorter and hence may provide a better
explanation.

A generic pseudo-code of the LazyDT algorithm is described in
Figure 11.2. The lazy decision tree algorithm, which gets the test instance
as part of the input, follows a separate-and-classify methodology: a test is
selected and the sub-problem containing the instances with the same test
outcome as the given instance is then solved recursively.

11.4 Option Tree

Regular decision trees make a single test at each node and trace a single
path corresponding to test outcomes until a leaf is reached and a prediction
is made. Option decision trees (also known as and—or trees), first introduced
by Buntine (1992), generalize regular decision trees by allowing option
nodes in addition to decision nodes; such nodes make it possible to conduct
several possible tests instead of the commonly used single test. Classification
is similar to regular decision trees, except that a rule is applied to option
nodes to combine the predictions of the children nodes.

There are several reasons for using option trees. Option decision trees
can reduce the error of decision trees in handling real-world problems
by combining multiple options. This is similar to what we find when
implementing ensemble methods that learn multiple models and combine
the predictions. However, unlike ensemble methods, an option decision tree
yields a single tree, which is a compact representation of many possible
trees and which can be easily interpreted by humans. The myopic nature of
top-down classification tree inducers and the stability of the classifiers are
the reasons for the option decision trees improved performance compared
to regular decision trees.
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YRSJOB

Fig. 11.3 Illustration of option tree.

Figure 11.3 illustrates an option tree. Recall that the task is to classify
mortgage applications into: approved (“A”), denied (“D”) or manual
underwriting (“M”). The tree looks like any other decision tree with a
supplement of an option node, which is denoted as a rectangle. If years at
current job (YRSJOB) is greater than or equals two years, then there are
two options to choose from. Each option leads to a different subtree that
separately solve the problem and make a classification.

In order to classify a new instance with an option tree, it is required to
weight the labels predicted by all children of the option node. For example,
in order to classify an instance with YRSJOB=3, MARST=“Married” and
DEPEND=3, we need to combine the fifth leaf and the sixth leaf (from left
to right), resulting in the class “A” (since both are associated with class
“A”). On the other hand, in order to classify an instance with YRSJOB=3,
MARST=“Single” and DEPEND=3, then we need to combine the fourth
leaf and sixth leaf, resulting in either class “A” or “D”. Since in simple
majority voting, the final class is selected arbitrarily, it never makes sense
to create an option node with two children. Consequently the minimum
number of choices for an option node is three. Nevertheless, assuming that
a probability vector is associated with each leaf, it is possible to use a
Bayesian combination to obtain a non-arbitrary selection. In fact, the model
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Fig. 11.4 TIllustration of two regular trees which are equivalent to the option tree
presented in Figure 11.3.

presented in Figure 11.3 can be seen as combining the two regular decision
trees presented in Figure 11.4.

TDDTOP is a Top-Down Decision-Tree (TDDT) inducer which is quite
similar to C4.5 but with the additional ability to create option nodes
[Kohavi and Kunz (1997)]. The principal modication to the basic TDDT
algorithm is that instead of always selecting a single test, when several tests
evaluate close to the best test, the TDDTOP algorithm creates an option
node. All the data is sent to each child of an option node, which then splits
the data according to its predetermined test. As for the pruning phase, the
C4.5 pruning algorithm was modified so that the pessimistic error of an
option node was the average of the pessimistic errors of its children.
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Require: S — training set, f(a) — a function of the input attributes val-
ues, SimpleSplitCriterion — a splitting criterion function, Depth — the
lookahead depth.

Ensure: The lookahead criterion value

1: if Depth = 1 then

2:  return SimpleSplitCriterion(S,f(A))

3: end if

4: Split S into subsets S1,...,Sk according to the values of f(A).

5: for all subset S; do
6:  Find a function g(A) of the input attributes values which gets the best

value v; of LookAhead(S;, g(A), SimpleSplitCriterion, Depth — 1)

end for

N

8: Return weighted average of v;

Fig. 11.5 Algorithm for calculating lookahead splitting criterion.

11.5 Lookahead

The splitting criteria in regular top-down decision tree inducers is usually
greedy and local. Fixed-depth lookahead search is a standard technique
for improving greedy algorithms. More extensive search quickly leads to
intolerable time consumption. Moreover, limited lookahead search does not
produce significantly better decision trees [Murthy and Salzberg (1995)].
On average, it produces trees with approximately the same generalization
error and size as greedy induction. In fact, pruning methods are usually at
least as beneficial as limited lookahead.

Figure 11.5 specifies an algorithm of lookahead splitting criterion by
wrapping a regular splitting criterion (denoted as SimpleSplitCriterion).
Note that the proposed algorithm performs a lookahead of Depth levels.

LSID3 [Esmeir and Markovitch (2004)], a variation of the well-known
ID3 algorithm, invests more resources for making better split decisions. For
every possible candidate split, LSID3 estimates the size of the resulting
subtree, and prefers the one with the smallest expected size. For this
purpose, it uses a sample of the space of trees rooted at the evaluated
attribute. The sample is obtained by selecting attributes with a probability
proportional to its information gain.

11.6 Oblique Decision Trees

Regular top-down decision trees inducers, such as C4.5, use only a single
attribute in each node. Consequently these algorithms are partitioning
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the instance space using only axis-parallel separating surfaces (typically,
hyperplanes). Several cases presented in the literature use multivariate
splitting criteria.

In multivariate splitting criteria, several attributes may participate in
a single node split test. Obviously, finding the best multivariate criteria
is more complicated than finding the best univariate split. Furthermore,
although this type of criteria may dramatically improve the trees perfor-
mance, these criteria are much less popular than the univariate criteria.

Figure 11.6 presents a typical algorithmic framework for top-down
inducing of oblique decision trees. Note that this algorithm is very similar

TreeGrowing (S,A,y) Where: S - Training Set

A - Input Feature Set y - Target Feature
Create a new tree 7' with a single root node.

IF One of the Stopping Criteria is fulfilled THEN
Mark T as a leaf with the most
common value of y in S as a label.
ELSE
Find a discrete function f(A) of the input
attributes values such that splitting S
according to f(A)’s outcomes (v1,...,v,) gains
the best splitting metric.
IF best splitting metric > threshold THEN
Label ¢t with f(A)
FOR each outcome v; of f(A):
Set Subtree;= TreeGrowing (oj(a)=., S, A,y).
Connect the root node of tp to Subtree; with
an edge that is labelled as v;
END FOR
ELSE
Mark the root node in 7' as a leaf with the most
common value of y in S as a label.
END IF
END IF RETURN T

Fig. 11.6 Top-down algorithmic framework for oblique decision trees induction.
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to that presented in Figure 3.1. But, instead of looking for a split with a
single attribute, it looks for the best function of the input attributes. In each
iteration, the algorithm considers the partition of the training set using the
outcome of a discrete function of the input attributes. The selection of the
most appropriate function is made according to some splitting measures.
After the selection of an appropriate split, each node further subdivides
the training set into smaller subsets, until no split gains sufficient splitting
measures or a stopping criterion is satisfied. Because there are endless
functions, the main challenge is to decide on which functions the algorithm
should concentrate.

Most of the multivariate splitting criteria are based on the linear
combination of the input attributes. In this case the algorithm constructs
hyperplanes that are oblique, that is, not parallel to a coordinate axis.
Figure 11.7 illustrates an Oblique Decision Tree. The left node in the second
level tests a linear combination of the two input attributes 3- Y RSJOB —
2-DEPFEND. It is reasonable to assume that oblique decision trees would
require several less planes then a regular decision tree, resulting in a smaller
tree.

Finding the best linear combination can be performed using greedy
search ([Breiman et al. (1984)], [Murthy (1998)]); linear programming
([Duda and Hart (1973)]; [Bennett and Mangasarian (1994)]); linear dis-
criminant analysis ([Duda and Hart (1973)]; [Friedman (1977)]; [Sklansky
and Wassel (1981)]; [Lin and Fu (1983)]; [Loh and Vanichsetakul (1988)];

Fig. 11.7 TIllustration of oblique decision tree.
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[John (1996)] and others ([Utgoff (1989a)]; [Lubinsky (1993)]; [Sethi and
Yoo (1994)]).

Growing of oblique decision trees was first proposed as a linear
combination extension to the CART algorithm. This extension is known
as the CART-LC [Biermann et al. (1982)]. oblique classifier 1 (OC1) is an
inducer of oblique decision trees designed for training sets with numeric
instances [Murthy et al. (1994)]. OC1 builds the oblique hyperplanes by
using a linear combinations of one or more numeric attributes at each
internal node; these trees then partition the space of examples with both
oblique and axis-parallel hyperplanes.

11.7 Incremental Learning of Decision Trees

To reflect new data that has become available, most decision trees inducers
must be rebuilt from scratch. This is time-consuming and expensive and
several researchers have addressed the issue of updating decision trees
incrementally. Utgoff [Utgoff (1989b); Utgoff (1997)], for example, presents
several methods for incrementally updating decision trees while Crawford
(1989) describes an extension to the CART algorithm that is capable of
inducing incremental changes.

11.7.1 The Motives for Incremental Learning

In the ever-changing world of information technology there are two
fundamental problems to be addressed:

e Vast quantities of digital data continue to grow at staggering rates.
In organizations such as e-commerce sites, large retailers and telecom-
munication corporations, data increases of gigabytes per day are not
uncommon. While this data could be extremely valuable to these
organizations, the tremendous volume makes it virtually impossible to
extract useful information. This is due to the fact that KDD systems in
general, and traditional data mining algorithms in particular, are limited
by several crippling factors. These factors, referred to as computational
resources, are the size of the sample to be processed, running time
and memory. As a result, most of the available data is unused which
leads to underfitting. While there is enough data to model a compound
phenomenon, there is no capability for fully utilizing this data and
unsatisfactorily simple models are produced.
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e Most machine learning algorithms, among them those underlying the
data mining process assume that the data, which needs to be learned
(training data), serves as a random sample drawn from a stationary
distribution. The assumption is unfortunately violated by the majority of
databases and data streams available for mining today. These databases
accumulate over large periods of time, with the underlying processes
generating them changing respectively and at times quite drastically.
This occurrence is known as concept drift. According to Hulten et al.
(2001), “in many cases...it is more accurate to assume that data
was generated by ... a concept function with time-varying parameters.”
Incorrect models are learned by the traditional data mining algorithms
when these mistakenly assume that the underlying concept is stationary,
when it is, in fact, drifting. This may serve to degrade the predictive
performance of the models.

A prime example of systems which may have to deal with the
aforementioned problems are on-line learning systems, which use continuous
incoming batches of training examples to induce rules for a classification
task. Two instances in which these systems are currently utilized are
credit card fraud detection and real-time monitoring of manufacturing
processes.

As a result of the above-mentioned problems it is now common practice
to mine a sub-sample of the available data or to mine for a model
drastically simpler than the data could support. Ideally, the KDD systems
will function continuously, constantly processing data received so that
potentially valuable information is never lost. In order to achieve this goal,
many methods have been developed. Termed incremental (online) learning
methods, these methods aim to extract patterns from changing streams
of data.

11.7.2 The Inefficiency Challenge

According to Hulten et al. (2001), incremental learning algorithms suffer
from numerous inadequacies from the KDD point of view. Whereas some
of these algorithms are relatively efficient, they do not guarantee that the
model that emerges will be similar to the one obtained by learning on
the same data in the non-incremental (batch) methods. Other incremental
learning algorithms produce the same model as the batch version, but at a
higher cost in efficiency, which may mean longer training times.
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In order to overcome this trade-off, Domingos and Hulten (2000)
proposed VFDT a decision-tree learning method which is aimed at learning
online from high-volume data streams by using sub-sampling of the entire
data stream generated by a stationary process. This method uses constant
time per example and constant memory and can incorporate tens of
thousands of examples per second using off-the-shelf hardware. This method
involves learning by seeing each example only once; there is no necessity for
storing them. As a result it is possible to directly mine online data sources.
The sample size is determined in VFDT from distribution-free Hoeffding
bounds to guarantee that its output is asymptotically nearly identical to
that of a conventional learner.

11.7.3 The Concept Drift Challenge

The second problem, centered around concept drift, is also addressed by
incremental learning methods that have been adapted to work effectively
with continuous, time-changing data streams. Black and Hickey (1999)
identified several important sub-tasks involved in handling drift within
incremental learning methods. The two most fundamental sub-tasks are
identifying that drift is occurring and updating classification rules in the
light of this drift.

Time-windowing is one of the most known and acceptable approaches
for dealing with these tasks. The basic concept of this approach is the
repeated application of a learning algorithm to a sliding window, which
contains a certain amount (either constant or changing) of examples. As
new examples arrive, they are placed into the beginning of the window. A
corresponding number of examples are removed from the end of the window.
The latest model is the one used for future prediction of incoming instances
until concept drift is detected. At this point the learner is reapplied on the
last window of instances and a new model is built.

FLORA, the time-windowing approach developed by Widmer and
Kubat (1996) describes a family of incremental algorithms for learning
in the presence of drift. This method uses a currently trusted window of
examples as well as stored, old concept hypothesis description sets which
are reactivated if they seem to be valid again. The first realization of
this framework of this family of incremental algorithms is FLORAZ2, which
maintains a dynamically adjustable window of the latest training examples.
The method of adjusting the size of the window is known as window
adjustment heuristic (WAH). Whenever a concept drift is suspected as a
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result of a drop in predictive accuracy, the size of the window is decreased
by disposing of the oldest examples. The window size is left unchanged if
the concept appears to be stable. If concept drift remains uncertain, none of
the examples are forgotten, and thus the window size is gradually increased
until a stable concept description can be formed. As long as a relatively low
rate of concept drift is preserved this strategy of window adjustment can
detect radical changes in the underlying concept efficiently.

FLORAZ3 stores concepts for later use and reassesses their utility when
a context change is perceived. FLORA4 is designed to be exceptionally
robust with respect to noise in the training data since it is very difficult in
incremental learning to distinguish between slight irregularities due to noise
and actual concept drift. Both of these algorithms serve as an extension of
FLORA2.

According to Hulten et al. (2001), as long as the window size is small
relative to the rate of concept drift, the time-windowing procedure assures
availability of a model reflecting the current concept generating the data.
However, if the window is too small, this may result in insufficient examples
to satisfactorily learn the concept. Furthermore, the computational cost of
reapplying a learner may be prohibitively high, especially if examples arrive
at a rapid rate and the concept changes quickly.

To meet these challenges, Domingos and Hulten (2001) proposed an
efficient algorithm for mining decision trees from continuously changing
data streams. Called CVFDT (concept-adapting very fast decision trees
learner), the algorithm is based on the ultra-fast VFDT decision tree
learner. CVFDT, a VFDTn extension, maintains VFDTs speed and
accuracy advantages but adds the ability to detect and respond to changes
in the example-generating process.

Like other systems with this capability, CVFDT works by keeping its
model consistent with a sliding window of examples. However, it does not
need to learn a new model from scratch every time a new example arrives;
instead, it updates the sufficient statistics at its nodes by incrementing
the counts corresponding to the new example and by decrementing the
counts corresponding to the oldest example in the window (which now
must be forgotten). This will statistically have no effect if the underlying
concept is stationary. If the concept is changing, however, some splits
that previously passed the Hoeffding test will no longer do so because an
alternative attribute now has higher gain. In this case, CVFDT begins to
grow an alternative sub-tree with the new best attribute at its root. When
this alternate sub-tree becomes more accurate on new data than the old



Advanced Decision Trees 179

one, the new one replaces the old sub-tree. CVFDT learns a model which is
similar in accuracy to the one that would be learned by reapplying VFDT
to a moving window of examples every time a new example arrives, but
with O(1) complexity per example, as opposed to O(w), where w is the size
of the window.

Black and Hickey (1999) offer a new approach to handling the
aforementioned sub-tasks dealing with drift within incremental learning
methods. Instead of utilizing the time-windowing approach presented thus
far, they employ a new purging mechanism to remove examples that are no
longer valid while retaining valid examples, regardless of age. As a result,
the example base grows, thus assisting good classification. Black and Hickey
describe an algorithm called CD3, which utilizes ID3 with post-pruning,
based on the time-stamp attribute relevance or TSAR approach.

In this approach, the time-stamp is treated as an attribute, and its
value is added as an additional input attribute to the examples description,
later to be used in the induction process. Consequently, if the time-stamp
attribute appears in the decision tree, the implication is that it is relevant
to classification. This, in turn, means that drift has occurred. Routes where
the value of the time-stamp attribute refers to the old period (or periods)
represent invalid rules. When the process is stable for a sufficiently long
period, the time-stamp attribute should not appear in any path of the tree.

The CD3 algorithm sustains a set of examples regarded as valid. This
set, referred to as the current example base, must be updated before another
round of learning can take place. Using invalid rules extracted from the CD3
tree, any example whose description matches (i.e. is covered by) that of an
invalid rule can be removed from the current example set. This process of
deletion is referred to as purging the current example set.

11.8 Decision Trees Inducers for Large Datasets

While the computaitonal complexity of decision tree induction algorithms is
considered to be relatively low, it can still come across difficulties when the
datasets are big and in particular if we are interested in building a forest.
With the recent growth in the amount of data collected by information
systems there is a need for decision trees that can handle large datasets.
Big data is a term coined recently to refer large datasets that are too
difficult to process using existing methods. Several improvements to decision
tree induction algorithms have been suggested to address big data. In this
chapter, we will review the main methods.
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11.8.1 Accelerating Tree Induction

Catlett (1991) has examined two methods for efficiently growing decision
trees from a large database by reducing the computation complexity
required for induction. However, the Catlett method requires that all
data will be loaded into the main memory before induction. Namely, the
largest dataset that can be induced is bounded by the memory size. Fifield
(1992) suggests parallel implementation of the ID3 Algorithm. However,
like Catlett it assumes that all dataset can fit in the main memory.
Chan and Stolfo (1997) suggest to partition the datasets into several
disjointed datasets, such that each dataset is loaded separately into the
memory and used to induce a decision tree. The decision trees are then
combined to create a single classifier. However, the experimental results
indicate that partition may reduce the classification performance, meaning
that the classification accuracy of the combined decision trees is not as
good as the accuracy of a single decision tree induced from the entire
dataset.

There are several decision tree algorithms which implement disk-based
approaches that remove the requirement of loading the entire dataset to the
main memory. These algorithms optimize the number of reads and writes
to secondary storage during tree construction.

The SLIQ algorithm [Mehta et al. (1996)] does not require loading the
entire dataset into the main memory, instead it uses a secondary memory
(disk) namely a certain instance is not necessarily resident in the main
memory all the time. SLIQ creates a single decision tree from the entire
dataset. However, this method also has an upper limit for the largest dataset
that can be processed, because it uses a data structure that scales with
the dataset size and this data structure is required to be resident in main
memory all the time.

The SPRINT algorithm uses a similar approach [Shafer et al. (1996)].
This algorithm induces decision trees relatively quickly and removes all of
the memory restrictions from decision tree induction. SPRINT scales any
impurity based split criteria for large datasets. Gehrke et al. (2000) intro-
duced RainForest; a unifying framework for decision tree classifiers that are
capable to scale any specific algorithms from the literature (including C4.5,
CART and CHAID). In addition to its generality, RainForest improves
SPRINT on a factor of three. In contrast to SPRINT, however, RainForest
requires a certain minimum amount of main memory, proportional to the
set of distinct values in a column of the input relation. However, this
requirement is considered modest and reasonable.
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Other decision tree inducers for large datasets can be found in the works
of [Alsabti et al. (1998)], [Freitas and Lavington (1998)] and [Gehrke et al.
(1999)].

Ping et al. (2007) introduced the Fast C4.5 (FC4.5) algorithm. This
new C4.5 implementation relaxes the memory restriction that the original
C4.5 implementation had. The original C4.5 implementation was developed
on the early nineties when main-memory was still scarce and therefore it
was designed to use as little space as possible. However, nowadays the
main memory are plentiful. Therefore by trading memory with speed it is
possible to greatly accelerate the tree growing of the C4.5 algorithm. One
well-known bottleneck in the induction of decision trees is the fact that
the training instances are unordered. However, for finding the best split for
continues attributes the instances should be sorted. Moreover, the need for
sorting the instances is repeated for every new tree node that is explored
and as indicated by Mehta et al. (1996), “for numeric attributes, sorting
time is the dominant factor when finding the best split at a decision tree
node”.

By adding a preprocessing step that is executed just before the tree
growing one can extract the order information of all the instances on every
attribute in advance. Specifically, every continuous attribute column is
ordered and the instance rank in the column is attached to the attribute
value. Then during the actual tree building, whenever we need to sort the
values instead of using quick-sort we can use indirect bucket-sort instead.
Finally when a certain numeric attributes is selected, FC4.5 searches for
the cutoff using the binary-search within the narrowest range.

Moreover, the sort order for the descendant nodes can be derived from
the sort order of the parent by a simple procedure with time complexity
of O(n) instead of the complexity of O(nlogn). However, for doing that we
will need to store an array of sorted indices for each numeric attribute.

In fact, the idea of presorting the instances for accelerating the
induction of a classification tree is being around since the second half of the
nineties. Mehta et al. (1996) suggest using a dedicated data structure which
holds a separate list for each input attribute. In addition, a class list holds
the class labels that are assigned to the training instances. An entry in an
attribute list has two values: the first value contains the actual attribute
value, the second value contains the corresponding index in the class list.
Similarly, an entry in the class list refers to a certain instance in the training
set and also has two values: one contains the class label, the second value
identifies the leaf node in the tree to which an instance belongs. Initially,
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all instances are referenced to the root node. The attribute lists for the
numeric features are then sorted independently.

11.8.2 Parallel Induction of Tree

PLANET is a recent classification and regression tree algorithm from
Google based on MapReduce. The basic idea of the parallel algorithm is to
iteratively build the regression tree in a breadth first manner, one complete
level at a time in a distributed environment, until the data partitions are
small enough to fit in memory and a “leaf” sub-tree can be constructed
locally on a single machine

Panda et al. (2009) proposed a parallel implemention of tree induction
with MapReduce framework. MapReduce is one of the most popular parallel
programming frameworks for data mining. In this framework, programmers
need to specify a map function which processes key/value pairs to emit a
set of intermediate key/value pairs and a reduce function that aggregates
all intermediate values associated with the same intermediate key. The
MapReduce framework was pioneered by Google and then popularized
by open-source Apache Hadoop project. While there are other parallel
programming frameworks (such as CUDA and MPI), MapReduce has
become the industry standard and implemented on cloud computing
services such as Amazon EC2 and various companies such as Cloudera
provide services to ease Hadoop deployment.

The greedy nature of tree induction algorithm does not scale well to
a large dataset. For example to find the best split in the root node, it
is required to go over all instances in the dataset. And when the entire
dataset does not fit in main memory, this full scan becomes a bottleneck
because of the cost of scanning data from secondary storage. The basic
idea of PLANET is to iteratively grow the decision tree, one layer at a
time, until the data partitions are small enough to fit the main memory
and the remaining sub-tree can be grown locally on a single machine. For
the higher levels the key idea of PLANET is that the splitting criterion
at a certain node does not need the entire dataset but a compact data
structure of sufficient statistics which in most cases can be fit-in-memory.
These statistics are calculated on the mappers.

Most recently, Yin et al. (2012) presented OpenPlanet, an open
implementation of a scalable regression tree machine learning algorithm
on Hadoop.



Chapter 12

Cost-sensitive Active and Proactive
Learning of Decision Trees

12.1 Overview

Although the inductive learning models are accurate, they suffer the
disadvantage of excessive complexity and are therefore incomprehensible
to experts pursuing high accuracy achievement, which may suffice in
cases when accuracy is the most important criterion or when there is no
background or domain knowledge available. However in real world problems
it is rarely the case. In many practical problems there is an abundance of
background information that can be incorporated to achieve better and
simpler solutions. The use of background knowledge in induction processes
produces trees that are easier to understand [Nunez (1991)]. The use of
background knowledge is necessary when the features attached to individual
examples do not capture abstractions and general distinctions that relate

«

many examples of a concept. The knowledge principle is defined as “a
system exhibits intelligent understanding and action at a high level of
competence primarily because of the specific knowledge that it contains
about its domain of endeavor” [Feigenbaum (1988)]. The main conclusion
from this principle is that reasoning processes of an intelligent system, being
general and therefore weak, are not the source of power that leads to high
levels of competence in behavior. The knowledge principle simply says that
if a program is to perform well, it must know a great deal about the world
in which it operates. In the absence of knowledge, reasoning won’t help.

One major form of background knowledge is ‘cost’ which needs to be
incorporated in any potential solution to make it more applicable.

In previous chapters we review a wide variety of algorithms for decision
tree induction. However, all of these algorithms assume that all errors have
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the same cost, which is seldom the case in real world problems. For instance,
when an expert in brain tumors receives a patient who suffers a headache,
he does not recommend the Scanner as a first diagnostic test, although it is
the most effective and accurate one, because the expert has the economic
criteria in mind. Therefore the expert asks simple questions and orders
other more economic tests in order to isolate the simplest cases, and only
recommends such an expensive test for the complex ones.

Effective learning algorithms should also take into consideration cost
in the concept learning process. Most of the currently available algorithms
for classification are designed to minimize zero-one loss or error rate: the
number of incorrect predictions made or, equivalently, the probability of
making an incorrect prediction. This implicitly assumes that all errors are
equally costly. But in most KDD applications this is far from the case.
According to Provost [Provost and Fawcett (1997)] “it is hard to imagine a
domain in which a learning system may be indifferent to whether it makes a
false positive or a false negative error.” Rarely are mistakes evenly weighted
in their cost. In such cases, accuracy maximization should be replaced with
cost minimization. In real-world applications of concept learning, there are
many different types of costs involved [Turney (1995)]. The majority of the
learning literature ignores all types of costs. The literature provides even
less guidance in situations where class distributions are imprecise or can be
changed [Provost and Fawcett (1997)].

Countless research results have been published based on comparisons
of classifier accuracy over benchmark data sets. Comparing accuracies on
benchmark data sets say little, if anything, about classifier performance
on real-world tasks [Provost and Fawcett (1998)]. Many learning programs
create procedures whose goal is to minimize the number of errors made
when predicting the classification of unseen examples. Few papers have
investigated the cost of misclassification errors [Provost (1994)] and very
few papers have examined the many other types of costs.

12.2 Type of Costs

A detailed bibliography of the different types of costs can be found in
[Turney (2000)]. The term cost is interpreted in its broadest meaning.
Cost may be measured in many different units, such as monetary units
(dollars), temporal units (seconds), or abstract units of utility. A benefit
can be considered as negative cost. A taxonomy for costs is presented in
[Turney (2000)], and it consists of the following types:
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e Cost of Misclassification Errors — specifies the cost of assigning a case
to class ¢, when it actually belongs in class j.

e Cost of Tests — specifies the cost of using a certain attribute. For
instance, in medical application, doing an X-Ray has a cost.

e Cost of Teacher — the cost associated with providing classified examples
(training set) to the inducer.

e Cost of Intervention — This is the cost required to change the value of
an attribute in order to gain more profits.

e Cost of Computation — The cost associated with using computers for
training a classifier or testing it.

e Human-Computer Interaction Cost — specifies the cost of a user to
employ a learning algorithm.

12.3 Learning with Costs

Individually making each classification learner cost-sensitive is laborious,
and often non-trivial. A framework that can be used to configure new deci-
sion tree models based on a combination of several factors (e.g. accuracy,
measurement cost, misclassification cost, achievement cost) is presented
in [Someren et al. (1997)]. On the other hand there are general methods
for making accuracy based classifiers cost-sensitive. [Domingos (1999);
Zadrozny and Elkan (2001)]. Nonetheless, these cost sensitive methods
where inseparable and inherent to the concept learning models. Almost all
such (accuracy-based and cost-based) learning models assume the passive
role of predicting class membership by producing accurate classifiers.

Few papers investigated different approaches to learning or revising
classification procedures that attempt to reduce the cost of misclassification.
The cost of misclassifying an example is a function of the predicted class
and actual class represented as the cost matrix C' [Pazzani et al. (1994)]:

C(predictedClass, actualClass) (12.1)

where C(P, N) is the cost of a false positive, and C(N, P) is the cost of
a false negative misclassification, then the misclassification cost can be
calculated as:

Cost=FP-C(P,N)+ FN-C(N,P) (12.2)

The cost matrix is an additional input to the learning procedure and
can also be used to evaluate the ability of the learning program to reduce
misclassification costs. Cost may have any units; the cost matrix reflects
the intuition that it is more costly to underestimate how ill someone is
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than overestimate, and that it is less costly to be slightly wrong than very
wrong. Cost matrix is different for cost vector, which has been used in some
previous learning research [Provost (1994)]. With a cost vector, the cost of
misclassifying an example depends on either the actual cost or the predicted
cost but not both. Any cost matrix C' can be transformed to an equivalent
matrix C’ with zeroes along the diagonal [Margineantu (2001)].

To reduce the cost of misclassification errors, some have incorporated
an average misclassification cost metric in the learning algorithm [Pazzani
et al. (1994)]:

N
> C(actualClass(i), predictedClass(i))

Cost = - 12.3
averageCos ¥ (12.3)

Several decision trees inducers, such as C4.5 and CART can be provided
with a cost matrix which consists of numeric penalties for classifying an item

into one class when it really belongs in another.

Few algorithms are based on a hybrid of accuracy and classification
error cost [Pazzani et al. (1994)] replacing the information gain measure-
ment with a combination of accuracy and cost. For example, Information
Cost Function (ICF) selects attributes based on both their information gain
and their cost [Turney (1995)]. ICF for the i-th attribute, ICF;, is defined
as follows:

2Ali -1
(Ci + 1)“’
where 0 < w < 1, Al; is the information gain associated with the i-th
attribute at a given stage in the construction of the decision tree, and
C; is the cost of measuring the i-th attribute. The parameter w adjusts
the strength of the bias towards lower cost attributes. When w = 0, cost
is ignored and selection by ICF; is equivalent to selection by AI; (i.e.,
selection based on the information gain measure). When w = 1, ICF; is
strongly biased by cost.

The altered prior method [Biermann et al. (1982)], which works with
any number of classes, operates by replacing the term for the prior
probability, 7(j), that an example belongs to class j with an altered
probability 7' (5):

ICF; = (12.4)

7(j) = 2T (12.5)

where C(j) = }_ cost(j, 1)
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The altered prior requires converting a cost matrix cost(j,7) to cost
vector C'(j) resulting in a single quantity to represent the importance of
avoiding a particular type of error. Accurately performing this conversion is
non-trivial since it depends both on the frequency of examples of each class
as well as the frequency that an example of one class might be mistaken for
another. There are different ways to overcome the difficulties of estimating
the class probability. Bayesian classifiers estimate the probability that an
example belongs to each class. Similarly, a decision tree can also produce
an estimate of the probability that an example belongs to each class given
that it is classified by a particular leaf.

ply=1i)= Ni:l (12.6)
k + Z N;
J

The above equations are a few of the existing main methods for dealing with
cost. In general these methods can be divided into three main categories:
The first category is a group of methods that replace the accuracy-
based criterion (i.e., information gain) with another cost-based or with
a combination of accuracy and cost criterion. However, methods in this
category sacrifice accuracy for cost. It also requires the user to select a
particular classifier with characteristics that may not suite his domain.
The second group is stratifying methods [Provost and Fawcett (1998)],
which change the frequency of classes in the training data in proportion
to their cost. However, this approach has several shortcomings. It distorts
the distribution of examples, which may seriously affect the performance of
some algorithms. It reduces the data available for learning if stratifying is
carried out by under-sampling. It increases the learning time if it is done by
over-sampling. The third category is a group of wrapping methods, which
converts error-based classifiers into cost-sensitive ones. These methods
minimize cost while seeking to minimize zero-one loss. It also assumes
that the user has chosen a particular classifier because its characteristics
are well suited to the domain. The vast majority of the methods (of all
three categories) fail to incorporate the widely available domain knowledge
in their algorithms, which leaves many of them in the theoretical realm.
The few that do consider domain knowledge and deals with cost, take into
considerations only the misclassification cost.

The MetaCost algorithm [Domingos (1999)] is a wrapper method that
can be used to make any inducer, in particular decision tree inducers, to be
cost-sensitive. Specifically, MetaCost forms multiple bootstrap replicates of
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the training set and learning a classifier on each; estimating each class’s
probability for each example by the fraction of votes that it receives from
the ensemble. It then relabels each training example with the estimated
optimal class, and reapplies the classifier to the relabeled training set.

12.4 Induction of Cost Sensitive Decision Trees

In this section we present the algorithm proposed in [Ling et al. (2006)].
The proposed algorithm takes into account the misclassification costs, and
the attribute costs. It selects attributes according to the expected reduction
in the total misclassification cost. If the largest expected cost reduction is
greater than 0, then the attribute is chosen as the split (otherwise, it is not
worth building the tree further, and a leaf is returned). Figure 12.1 presents
the algorithm.

For the sake of simplicity we assume that there are only two classes.
The notations CP and CN represent the total misclassification cost of
being a positive leaf or a negative leaf respectively. If C(P, N) is the cost
of false positive misclassification, and C(N, P) is the cost of false negative
misclassification, then CP = C(P,N) - FP and CN = C(N, P) - F'N is the
total misclassification cost of being a negative leaf, and the probability of

Require: S - training set
A - a set of input attributes
C - Cost matrix.
Ensure: T - a tree
1: Create a new tree T with a single root node.
2: if all instances are positive/negative or maximum expected cost reduc-
tion is less than 0 then

3:  Mark T as a leaf with the most common class in S as a label.

4: end if

5: Va; € A find a with maximum expected cost reduction

6: root < a

7: for all possible value v; of the attribute a do

8  Subtree;=CSDT(04=y, S, A — a,C) to build subtree

9:  Connect the root node of T to Subtree; with an edge that is labelled
as v;

10: end for

11: Return tree

Fig. 12.1 Algorithm for inducing cost sensitive decision trees.
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being positive is estimated by the relative cost of C'P and C'N; the smaller
the cost, the larger the probability (as minimum cost is sought). Thus, the
CPC;% and the expected
misclassification cost of being positive is: EP = PP - C'P. Similarly, the

probability of being a positive leaf is: PP =1 —

expected misclassification cost of being negative is: EN = (1 — PP)-CN.
Therefore, without splitting, the expected total misclassification cost of a
given set of examples is: E = EP + EN. Thus, we calculate the expected
total misclassification cost before (E) and after (F;) performing a certain
split using attribute a;. The total expected cost reduction is F — E; — T'C},
where T'C; is the cost of testing examples on attribute A;. Note that the
above algorithm can be easily adjusted to the case in which the cost of
obtaining values of a group of attributes is lower than obtaining the value
of each attribute independently.

12.5 Active Learning

When marketing a service or a product, firms increasingly use predictive
models to estimate the customer interest in their offer. A predictive model
estimates the response probability of potential customers and helps the
decision maker assess the profitability of the various customers. Predictive
models assist in formulating a target marketing strategy: offering the
right product to the right customer at the right time using the proper
distribution channel. The firm can subsequently approach those customers
estimated to be the most interested in the company’s product and propose a
marketing offer. A customer that accepts the offer and conducts a purchase
increases the firms profits. This strategy is more efficient than a mass
marketing strategy, in which a firm offers a product to all known potential
customers, usually resulting in low positive response rates. For example, a
mail marketing response rate of 2% predictive models can be built using
data mining methods. These methods are applied to detect useful patterns
in the information available about the customer’s purchasing behaviors.
Data for the models is available, as firms typically maintain databases that
contain massive amounts of information about their existing and potential
customer’s such as the customer’s demographic characteristics and past
purchase history.

Active learning refers to data mining policies which actively select
unlabeled instances for labeling. Active learning has been previously used
for facilitating direct marketing campaigns. In such campaigns there is
an exploration phase in which several potential customers are approached
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with a marketing offer. Based on their response, the learner actively selects
the next customers to be approached and so forth. Exploration does not
come without a cost. Direct costs might involve hiring special personnel
for calling customers and gathering their characteristics and responses to
the campaign. Indirect costs may be incurred from contacting potential
customers who would normally not be approached due to their low buying
power or low interest in the product or service offer.

A well-known concept of marketing campaigns is the explo-
ration/exploitation trade-off. Exploration strategies are directed towards
customers as a means of exploring their behavior; exploitation strategies
operate on a firm’s existing marketing model. In the exploration phase,
a concentrated effort is made to build an accurate model. In this phase,
the firm will try, for example, to acquire any available information which
characterizes the customer. During this phase, the results are analysed in
depth and the best modus operandi is chosen. In the exploitation phase
the firm simply applies the induced model with no intention of improving
the model to classify new potential customers and identify the best ones.
Thus, the model evolves during the exploration phase and is fixed during
the exploitation phase. Given the tension between these two objectives,
research has indicated that firms first explore customer behavior and then
follow with an exploitation strategy. The result of the exploration phase is
a marketing model that is then used in the exploitation phase.

Let consider the following challenge. Which potential customers should
a firm approach with a new product offer in order to maximize its net
profit? Specifically, our objective is not only to minimize the net acquisition
cost during the exploration phase, but also to maximize the net profit
obtained during the exploitation phase. Our problem formulation takes
into consideration the direct cost of offering a product to the customer,
the utility associated with the customer’s response, and the alternative
utility of inaction. This is a binary discrete choice problem, where the
customer’s response is binary, such as the acceptance or rejection of a
marketing offer. Discrete choice tasks may involve several specific problems,
such as unbalanced class distribution. Typically, most customers considered
for the exploration phase reject the offer, leading to a low positive response
rate. However, a simple classifier may predict that all customers in questions
will reject the offer.

It should be noted that the predictive accuracy of a classifier alone
is insufficient as an evaluation criterion. One reason is that different
classification errors must be dealt with differently: mistaking acceptance
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for rejection is particularly undesirable. Moreover, predictive accuracy alone
does not provide enough flexibility when selecting a target for a marketing
offer or when choosing how an offer should be promoted. For example, the
marketing personnel may want to approach 30% of the available potential
customers, but the model predicts only 6.

Active learning merely aims to minimize the cost of acquisition, and
does not consider the exploration/exploitation tradeoff. Active learning
techniques do not aim to improve online exploitation. Nevertheless, occa-
sional income is a byproduct of the acquisition process. We propose that the
calculation of the acquisition cost performed in active learning algorithms
should take this into consideration.

Several active learning frameworks are presented in the literature. In
pool-based active learning the learner has access to a pool of unlabeled data
and can request the true class label for a certain number of instances in the
pool. Other approaches focus on the expected improvement of class entropy,
or minimizing both labeling and misclassification costs. It is possible to
examine a variation in which instead of having the correct label for each
training example, there is one possible label (not necessarily the correct one)
and the utility associated with that label. Most active learning methods
aim to reduce the generalization accuracy of the model learned from the
labeled data. They assume uniform error costs and do not consider benefits
that may accrue from correct classifications. They also do not consider the
benefits that may be accrued from label acquisition.

Rather than trying to reduce the error or the costs, Saar-Tsechansky
and Provost (2007) introduced the GOAL (Goal-Oriented Active Learning)
method that focuses on acquisitions that are more likely to affect decision
making. GOAL acquires instances which are related to decisions for which
a relatively small change in the estimation can change the preferred order
of choice. In each iteration, GOAL selects a batch of instances based on
their effectiveness score. The score is inversely proportional to the minimum
absolute change in the probability estimation that would result in a decision
different from the decision implied by the current estimation. Instead of
selecting the instances with the highest scores, GOAL uses a sampling
distribution in which the selection probability of a certain instance is
proportional to its score.

To better understand the idea of active learning we consider a concrete
scenario. When marketing a service or a product, firms increasingly
use predictive models to estimate the customers’ interest in their offer.
A predictive model estimates the response probability of the potential
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customers in question, and helps the decision-maker assess the profitability
of the different customers. Predictive models assist a target marketing
strategy: offering the right product to the right customer at the right time
using the proper distribution channel. The firm approaches the customers
estimated as the most interested and proposes a marketing offer. A customer
that accepts the offer and conducts a purchase adds to the firms’ profits.
This strategy affords better efficiency than a mass marketing strategy, in
which a firm offers a product to all known potential customers, usually
resulting in low positive response rates. For example, a mail marketing
response rate of 2% or a phone marketing response of 10% are considered
good.

The main objective of a marketing campaign is to select which potential
customers a firm should approach with a new product offer, in order to
maximize the net profit. In the marketing problem presented in this paper,
we assume that the firm holds an initial dataset of potential customers
that can be used during the exploration phase. This initial dataset does
not, however, cover all potential customers. We also assume that, while
acquiring the customers’ response is costly, some of the courted customers
will respond positively to the offer and the income from their purchase will
offset the cost. We propose to refer to the net acquisition cost, which is the
total cost of acquiring customer response, less the income generated if the
courted customers purchase the products.

We also assume that during a marketing campaign, a firm will not
approach its customers one by one, but it will rather approach a batch of
customers simultaneously, so that the firm can concentrate its exploitation
of resources, such as marketing personnel and equipment. After a campaign
session is over and a batch of customers has been courted, the firm can
analyze the results and proceed to the next stage of the campaign. We
assume a fixed batch size.

In our targeted marketing context, an instance z; € X is defined
as the set of attributes, such as age and gender, of a unique potential
customer 4. For the sake of clarity, we will assume a binary outcome for
the target attribute y, specifically y = {“accept”, “reject”}. Unlabeled
instances are defined as instances with an unknown target attribute. A set
S of M unlabeled instances from the set X is obtained. The instances in
S are independent and behave according to some fixed and unknown joint
probability distribution D of X and Y. The cost of approaching customer
1 with an offer is denoted as C; € R. The probability that customer i will
respond positively to the offer is denoted as p;. If customer ¢ with some
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unknown probability p; agrees to the offer, the utility obtained from this
customer is denoted as U € R. If the customer rejects the offer, the utility

is denoted as U € R. Thus, the net acquisition cost of customer 4 is
defined as:

C; — Ul-S if customer i accepts the offer
NAC; = (12.7)

C; — UZ-F if customer ¢ rejects the offer

Note that all utility values are a function of the customer’s attribute
vector (z;).

Let the corresponding utility of inaction with respect to customer i be
denoted as ¥;. In order to maximize the expected profit, the decision-maker
should court customer i if the probability of a positive response is higher
than the cost of approach (Saar-Tsechansky and Provost, 2007). This is
represented in the following equivalent equations:

pi - US4+ —p)-UF —Ci > (12.8)
or:

Ci+9, — UzF 0;

i >
where o; and r; are merely shorthand for the numerator and denominator
of the decision threshold ratio. The notation p; represents the classifier’s
estimation for p;.

A pseudo code for the active learning framework used for the target
marketing process is presented in Figure 12.1. The received input includes:
a pool of unlabeled instances (.9), an inducer (I), and a stopping criterion
(CRIT). The first step is to initiate the labeled pool. An initial set of labeled
examples is selected. Once the potential customers are selected, they are
approached with a product offer. According to the customers’ response, the
newly labeled examples are added to the labeled pool. The labeled pool
is then used for building the classifier. Based on the classifier, the next
subset from the unlabeled pool is selected. This process is repeated until
triggering some sort of stopping criteria, such as running out of budget. The
final classifier (the output) is used to estimate the probability of positive
response p; of new customers. Customers with an estimated probability
that exceeds the threshold in Eq. (12.9) are contacted.
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Require: S - training set
A - An induction algorithm
CRIT - A stopping criterion.
Ensure: C'L — Classifier for predicting customer response.

1: Create a new tree T with a single root node.
2 L+

31+ 1

4: §7 < Select initial set of instances from S
5: while CRIT is not met do

6: Remove S; from S

7:  Acquire labels for examples in S;

8 Add S;to L

9:  Apply I to L, resulting in a classifier CL
10 141+1

11:  Select subset S; from S using C'L

12: end while

13: Return C'L

Fig. 12.2 Pseudo code for the active learning framework.

Based on the active learning framework presented in Figure 12.2, the
marketing learning problem can be defined as follows:

While keeping the total net acquisition cost to minimum, the goal is to
actively acquire from S mutually exclusive subsets S1, Ss, ..., Sk of a given
batch size M, such that the final classifier induced from Ule S; maximizes
the profitability of the campaign. The subsets are acquired sequentially.

This is a Multiple Criteria Decision-Making (MCDM) problem. The
first criterion is to improve the decisions of the campaign manager.
The positive reaction rate can be used to assess the profitability during
the exploitation phase. Higher rates indicate higher gross profit margins
and return of investments (ROI). The second criterion is to acquire labeled
instances with minimal net acquisition cost during the exploration phase.
Both criteria deal with financial utilities. Still, the two criteria cannot be
summed. We cannot represent the first criterion as total income during the
exploitation phase, since we do not know in advance how many customers
are going to be evaluated using the model. The only assumption we make
is that the instances in the unlabeled instances set used during the training
phase (S) and the instances examined during the operational phase are
both distributed according to a fixed and unknown distribution D. In
this paper, we consider the first criterion as primary and the second as
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secondary. Prioritization of these criteria agrees with the assumption that
the exploitation phase is longer than the exploration phase.

Assuming that we use a decision tree as the classifier, we are able to
estimate the probability p; by locating the appropriate leaf k& in the tree
that refers to the current instance z;. The frequency vector of each leaf node
captures the number of instances from each possible class. In the usual case
of target marketing, the frequency vector has the form: (my gccept, Mk, reject)
where my, . denotes the number of instances in the labeled pool that reach
leaf k and satisfy y = c. According to Laplace’s law of succession, the
probability p; is estimated as:

13 p(m m ) MEk,accept +1
i = k,accepty Mk, reject) — .
MEk,accept + Mk, reject +2

(12.10)

Besides estimating the point probability p;, we are interested in
estimating a confidence interval for this probability. An approach to a
customer can be considered as a Bernoulli trial. For the sake of simplicity,
we approximate the confidence interval of the Bernoulli parameter with the
normal approximation to the binomial distribution:

Di — 21—a/20i < Pi < Di + 21—a/20i

i = 0(Mk,accepts Mh,reject) = \/ mk,acift1+ ::k)’reject (12.11)
where ; represents the estimated standard deviation and 2;_, /2 denotes
the value in the standard normal distribution table corresponding to the
1—a«/2 percentile. For a small n we can use the actual binomial distribution
to estimate the interval.

To demonstrate the importance of a confidence level, consider two
leaves: leaf A and leaf B in a classification tree. Each leaf holds the
customers in the labeled pool that fits its path. These customers are labeled
as either “accept” or “reject”. If the “accept”/“reject” proportions are the
same, then according to Eq. (12.10), both leaves have the same estimated
probability. Given this, if leaf A has more customers than leaf B, then
according to Eq. (12.11), leaf B has a larger confidence interval. Thus,
acquiring an instance to leaf B will have a greater impact on the class
distribution than adding an example to leaf A. In the initial iterations,
when the data are limited and the confidence intervals are large, obtaining
an additional instance to the correct leaf is especially important. Moreover,
the potential contribution of labeling the 7" instance in the same leaf and
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adding it to the labeled pool decreases in ¢. Thus, the calculation of the
potential contribution of each instance in the new batch depends on the
other instances that are selected to this batch.

Rokach et al. (2008) introduce Pessimistic Active Learning (PAL). PAL
employs a novel pessimistic measure, which relies on confidence intervals
and is used to balance the exploration/exploitation trade-off. In order to
acquire an initial sample of labeled data, PAL applies orthogonal arrays
of fractional factorial design. PAL is particularly advantageous when the
estimation confidence intervals are relatively large. Once the decision tree
obtains sufficient evidence for each leaf, the relative advantage of PAL is
diminished.

12.6 Proactive Data Mining

Data mining algorithms are used as part of the broader process of
knowledge-discovery. The role of the data-mining algorithm, in this process,
is to extract patterns hidden in a dataset. The extracted patterns are then
evaluated and deployed. The objectives of the evaluation and deployment
phases include decisions regarding the interest of the patterns and the way
they should be used.

While data mining algorithms, particularly those dedicated to super-
vised learning, extract patterns almost automatically (often with the user
making only minor parameter settings), humans typically evaluate and
deploy the patterns manually. In regard to the algorithms, the best practice
in data mining is to focus on description and prediction and not on
action. That is to say, the algorithms operate as passive “observers” on
the underlying dataset while analyzing a phenomenon. These algorithms
neither affect nor recommend ways of affecting the real world. The
algorithms only report to the user on the findings. As a result, if the
user chooses not to act in response to the findings, then nothing will
change. The responsibility for action is in the hands of humans. This
responsibility is often overly complex to be handled manually, and the
data mining literature often stops short of assisting humans in meeting this
responsibility.

Consider the following scenario. In marketing and customer relationship
management (CRM), data mining is often used for predicting customer
lifetime value (LTV). Customer LTV is defined as the net present value of
the sum of the profits that a company will gain from a certain customer,
starting from a certain point in time and continuing through the remaining
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lifecycle of that customer. Since the exact LTV of a customer is revealed
only after the customer stops being a customer, managing existing LTVs
requires some sort of prediction capability. While data mining algorithms
can assist in deriving useful predictions, the CRM decisions that result from
these predictions (for example, investing in customer retention or customer-
service actions that will maximize her or his LTV) are left in the hands of
humans.

In proactive data mining, we seek automatic methods that will not
only describe a phenomenon, but also recommend actions that affect the
real world. In data mining, the world is reflected by a set of observations.
In supervised learning tasks, which are the focal point of this book,
each observation presents an instance of the explaining attributes and the
corresponding target results. In order to affect the real world and to assess
the impact of actions on the world, the data observations must encompass
certain changes. We discuss these changes in the following section.

12.6.1 Changing the Input Data

We consider the training record, < zin,%2n,...,%Tkn; Yn > for some
specific n. This record is based on a specific object in the real world. For
example, T1n,22p,...,TLy, may be the explaining attributes of a client,
and y,, the target attribute, might describe a result that interests the
company, whether the client has left or not.

It is obvious that some results are more beneficial to the company than
others, such as a profitable client remaining with the company rather than
leaving it or that clients with high LTV are more beneficial than those with
low LTV. In proactive data mining, our motivation is to search for means
of actions that lead to desired results (i.e., desired target values).

The underlying assumption in supervised learning is that the target
attribute is a dependent variable whose values depend on those of the
explaining attributes. Therefore, in order to affect the target attribute
towards the desired, more beneficial, values, we need to change the
explaining attributes in such a way that target attributes will receive the
desired values.

Consider the supervised learning scenario of churn prediction, where a
company observes its database of clients and tries to predict which clients
will leave and which will remain loyal. Assuming that most of the clients
are profitable to the company, the motivation in this scenario is churn
prevention. However, the decision of a client about whether to leave or not



198 Data Mining with Decision Trees

may depend on other considerations, such as her or his price plan. The
client’s price plan, hardcoded in the company’s database, is often part of
the churn-prediction models. Moreover, if the company seeks for ways to
prevent a client from leaving, it can consider changing the price plan of the
client as a churn-prevention action. Such action, if taken, might affect the
value of an explaining attribute towards a desired direction.

When we refer to “changing the input data”, we mean that in proactive
data mining we seek to implement actions that will change the values of
the explaining attributes and consequently lead to a desired target value.
We do not consider any other sort of action because it is external to the
domain of the supervised learning task. To look at the matter in a slightly
different light, the objective in proactive data mining is optimization, and
not prediction. In the following section we focus on the required domain
knowledge that results from the shift to optimization, and we define an
attribute changing cost function and a benefit function as crucial aspects of
the required domain knowledge.

12.6.2 Attribute Changing Cost and Benefit Functions

The shift from supervised learning to optimization requires us to consider
additional knowledge about the business domain, which is exogenous to
the actual training records. In general, the additional knowledge may
cover various underlying business issues behind the supervised learning
task, such as: What is the objective function that needs to be optimized?
What changes in the explaining attributes can and cannot be achieved?
At what cost? What are the success probabilities of attempts to change
the explaining attributes? What are the external conditions, under which
these changes are possible? The exact form of the additional knowledge may
differ, depending on the exact business context of the task. Specifically, in
this book we consider a certain form of additional knowledge that consists
of attribute changing costs and benefit functions. Although we describe
these functions below as reasonable and crucial considerations for many
scenarios, nevertheless, one might have to consider additional aspects of
domain knowledge, or maybe even different aspects, depending on the
particular business scenario being examined.

The attribute changing cost function, C: D x D — R, assigns a real
value cost for each possible change in the values of the explaining attributes.
If a particular change cannot be achieved (e.g., changing the gender of
a client, or making changes that conflict with laws or regulations), the



Active and Proactive Learning 199

associated costs are infinite. If for some reason the cost of an action depends
on attributes that are not included in the set of explaining attributes, we
include these attributes in D, and call them silent attributes — attributes
that are not used by the supervised learning algorithms, but are included
in the domain of the proactive data mining task.

The benefit function B : D x D(T) — R assigns a real value benefit (or
outcome) that represents the company’s benefit from any possible record.
The benefit from a specific record depends not only on the value of the
target attribute, but also on the values of the explaining attributes. For
example, benefit from a loyal client depends not only on the target value of
churning =0, but also on the explaining attributes of the client, such as his
or her revenue. As in the case of the attribute changing cost function, the
domain D may include silent attributes. In the following section we combine
the benefit and the attribute changing functions and formally define the
objective of the proactive data mining task.

12.6.3 Maximizing Utility

The objective in proactive data mining is to find the optimal decision
making policy. A policy is a mapping O : D — D that defines the impact
of some actions on the values of the explaining attributes. In order for a
policy to be optimal, it should maximize the expected value of a utility
function. The utility function that we consider in this book results from
the benefit and attribute changing cost functions in the following manner:
the addition to the benefit due to the move minus the attribute changing
cost that is associated with that move.

It should be noted that the stated objective is to find an optimal
policy. The optimal policy may depend on the probability distribution of
the explaining attributes which is considered unknown. We use the training
set as the empirical distribution, and search for the optimal actions with
regard to that dataset. That is, we search for the policy that, if followed,
will maximize the sum of the utilities that are gained from the N training
observations.

It should also be noted that the cost, which is associated to O,
can be calculated directly from the function C. The cost of a move —
that is, changing the values of the explaining attributes from z; =<
T1,5y L2455+ LThyi > to Tj =< X1,5,%2,5,--+,Tk,j > is surnply C(LL‘Z,IL’J)
However, in order to evaluate the benefit that is associated with the move,
we must also know the impact of the change on the target attribute. This
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observation leads to our algorithmic framework for proactive data mining
which we present in the following section.

12.6.4 An Algorithmic Framework for Proactive
Data Mining

In order to evaluate the benefit of a move, we must know the impact of
a change on the value of the target attribute. Fortunately, the problem
of evaluating the impact of the values of the explaining attributes on the
target attribute is well-known in data mining and is solved by supervised
learning algorithms. Similarly our algorithmic framework for proactive data
mining also uses a supervised learning algorithm for evaluating impact. Our
framework consists of the following phases:

(1) Define the explaining attributes and the target result as in the case of
any supervised-learning task.

(2) Define the benefit and the attribute changing cost functions.

(3) Extract patterns that model the dependency of the target attribute on
the explaining attributes by using a supervised learning algorithm.

(4) Using the results of phase 3, optimize by finding the changes in values
of the explaining attributes that maximize the utility function.

The main question regarding phase 3 is what supervised algorithm to
use. One alternative is to use an existing algorithm, such as a decision tree
(which we use in the following chapter). Most of the existing supervised
learning algorithms are built in order to maximize the accuracy of their
output model. This desire to obtain maximum accuracy, which in the
classification case often takes the form minimizing the 0-1 loss, does not
necessarily serve the maximal-utility objective that we defined in the
previous section.

Consider a supervised learning scenario in which a decision tree is
being used to solve a question of churn prediction. Let us consider two
possible splits: (a) according to client gender, and (b) according to the
client price plan. It might be the case (although typically this is not the
case) that splitting according to client gender results in more homogeneous
sub-populations of clients than splitting according to the client price plan.
Although contributing to the overall accuracy of the output decision tree,
splitting according to client gender provides no opportunity for evaluating
the consequences of actions, since the company cannot act to change that
gender. On the other hand, splitting according to the client price plan, even
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if inferior in terms of accuracy, allows us to evaluate the consequences of
an important action: changing a price plan.

Another alternative for a supervised learning algorithm is to design an
algorithm that will enable us to find better changes in the second phase,
that is, to design an algorithm that is sensitive to the utility function and
not to accuracy. Dahan Dahan et al. (2014) introduce a full implementation
of proactive data mining for decision trees. We refer the readers to [Dahan
et al. (2014)] for all the details.
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Chapter 13

Feature Selection

13.1 Overview

Dimensionality (i.e. the number of dataset attributes or groups of
attributes) constitutes a serious obstacle to the efficiency of most induction
algorithms, primarily because induction algorithms are computationally
intensive. Feature selection is an effective way to deal with dimensionality.

The objective of feature selection is to identify those features in
the dataset which are important, and discard others as irrelevant and
redundant. Since feature selection reduces the dimensionality of the data,
data mining algorithms can be operated faster and more effectively by using
feature selection. The reason for the improved performance is mainly due
to a more compact, easily interpreted representation of the target concept
[George and Foster (2000)]. We differentiate between three main strategies
for feature selection: filter, wrapper and embedded [Blum and Langley
(1997)].

13.2 The “Curse of Dimensionality”

High dimensionality of the input (that is, the number of attributes)
increases the size of the search space in an exponential manner and thus
increases the chance that the inducer will find spurious classifiers that
are not valid in general. It is well known that the required number of
labeled samples for supervised classification increases as a function of
dimensionality [Jimenez and Landgrebe (1998)]. Fukunaga (1990) showed
that the required number of training samples is linearly related to the
dimensionality for a linear classifier and to the square of the dimensionality
for a quadratic classifier. In terms of non-parametric classifiers like decision
trees, the situation is even more severe. It has been estimated that as
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the number of dimensions increases, the sample size needs to increase
exponentially in order to have an effective estimate of multivariate densities
[Hwang et al. (1994)].

This phenomenon is usually referred to as the “curse of dimensionality” .
Bellman (1961) was the first to coin this term, while working on complicated
signal processing issues. Techniques like decision trees inducers that are
efficient in low dimensions fail to provide meaningful results when the
number of dimensions increases beyond a “modest” size. Furthermore,
smaller classifiers, involving fewer features (probably less than 10), are
much more understandable by humans. Smaller classifiers are also more
appropriate for user-driven data mining techniques such as visualization.

Most methods for dealing with high dimensionality focus on Feature
Selection techniques, i.e. selecting a single subset of features upon which
the inducer (induction algorithm) will run, while ignoring the rest. The
selection of the subset can be done manually by using prior knowledge to
identify irrelevant variables or by using proper algorithms.

In the last decade, many researchers have become increasingly inter-
ested in feature selection. Consequently, many feature selection algorithms
have been proposed, some of which have been reported as displaying
remarkable improvements in accuracy. Since the subject is too broad to
survey here, readers seeking further information about recent developments
should see: ([Langley (1994)]; [Liu and Motoda (1998)]).

A number of linear dimension reducers have been developed over the
years. The linear methods of dimensionality reduction include projection
pursuit [Friedman and Tukey (1973)]; factor analysis [Kim and Mueller
(1978)]; and principal components analysis [Dunteman (1989)]. These
methods are not aimed directly at eliminating irrelevant and redundant
features, but are rather concerned with transforming the observed variables
into a small number of “projections” or “dimensions”. The underlying
assumptions are that the variables are numeric and the dimensions can
be expressed as linear combinations of the observed variables (and vice
versa). Each discovered dimension is assumed to represent an unobserved
factor and thus provide a new way of understanding the data (similar to
the curve equation in the regression models).

The linear dimension reducers have been enhanced by constructive
induction systems that use a set of existing features and a set of predefined
constructive operators to derive new features [Pfahringer (1994)]; [Ragavan
and Rendell (1993)]. These methods are effective for high dimensionality
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applications only if the original domain size of the input feature can be
decreased dramatically.

On the one hand, feature selection can be used as a preprocessing step
before building a decision tree. On the other hand, the decision tree can be
used as a feature selector for other induction methods.

At first glance, it seems redundant to use feature selection as a
preprocess phase for the training phase. Decision trees inducers, as opposed
to other induction methods, incorporate in their training phase a built-in
feature selection mechanism. Indeed, all criteria described in Section 5.1
are criteria for feature selection.

Still, it is well known that correlated and irrelevant features may
degrade the performance of decision trees inducers. This phenomenon
can be explained by the fact that feature selection in decision trees is
performed on one attribute at a time and only at the root node over
the entire decision space. In subsequent nodes, the training set is divided
into several sub-sets and the features are selected according to their
local predictive power [Perner (2001)]. Geometrically, it means that the
selection of features is done in orthogonal decision sub-spaces, which do
not necessarily represent the distribution of the entire instance space. It
has been shown that the predictive performance of decision trees could be
improved with an appropriate feature pre-selection phase. Moreover, using
feature selection can reduce the number of nodes in the tree making it more
compact.

Formally, the problem of feature subset selection can be defined as
follows [Jain et al. (1997)]: Let A be the original set of features, with
cardinality n. Let d represent the desired number of features in the selected
subset B, B C A. Let the feature selection criterion function for the set B
be represented by J(B). Without any loss of generality, a lower value of J
is considered to be a better feature subset (for instance, if J represents the
generalization error). The problem of feature selection is to find an optimal
subset B that solves the following optimization problem:

min J(Z)
s.t.
ZCA
|Z] = d.

(13.1)

An exhaustive search would require examining all ﬁ!ﬂl)! possible

d-subsets of the feature set A. .
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13.3 Techniques for Feature Selection

Feature selection techniques can be used in many applications — from
choosing the most important socio-economic parameters for determining
what a person can return on a bank loan to selecting the best set of
ingredients relating to a chemical process.

The filter approach operates independently of the data mining method
employed subsequently — undesirable features are filtered out of the
data before the learning of a filtering threshold begins. These fileterning
algorithms use heuristics based on general characteristics of the data to
evaluate the merit of feature subsets. A sub-category of filter methods,
referred to as rankers, includes methods that employ some criterion to
score each feature and provide a ranking. From this ordering, several feature
subsets can be chosen manually.

The wrapper approach [Kohavi and John (2003)] uses a learning
algorithm as a black box along with a statistical re-sampling technique
such as cross-validation to select the best feature subset according to some
predictive measure.

The embedded approach [Guyon and Elisseeff (2003)] is similar to the
wrapper approach in the sense that the features are specifically selected
for a certain learning algorithm. However, in the embedded approach the
features are selected in the process of learning.

While most of the feature selection methods have been applied to super-
vised methods (such as classification and regression) there are important
works that deals with unsupervised methods [Wolf and Shashua (2005)].

Feature selection algorithms search through the space of feature subsets
in order to find the best subset. This subset search has four major properties
[Langley (1994)]:

e Starting Point — Selecting a point in the feature subset space from which
to begin the search can affect the direction of the search.

e Search Organization — A comprehensive search of the feature sub-space
is prohibitive for all but a small initial number of features.

e Evaluation Strategy — How feature subsets are evaluated (filter, wrapper
and ensemble).

e Stopping Criterion — A feature selector must decide when to stop
searching through the space of feature subsets.

The next sections provide detailed description of feature selection
techniques for each property described above.
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13.3.1 Feature Filters

Filter methods, the earliest approaches for feature selection, use general
properties of the data in order to evaluate the merit of feature subsets.
As a result, filter methods are generally much faster and practical than
wrapper methods, especially for use on data of high dimensionality.

13.3.1.1 FOCUS

The FOCUS algorithm is originally designed for attributes with Boolean
domains [Almuallim and Dietterich (1994)]. FOCUS exhaustively searches
the space of feature subsets until every combination of feature values is
associated with one value of the class. After selecting the subset, it is passed
to the I D3 algorithm which constructs a decision tree.

13.3.1.2 LVF

The LVF algorithm [Liu and Setiono (1996)] is consistency-driven and can
handle noisy domains if the approximate noise level is known a priori.
During every round of implementation, LVF generates a random subset
from the feature subset space. If the chosen subset is smaller than the
current best subset, the inconsistency rate of the dimensionally reduced
data described by the subset is compared with the inconsistency rate of the
best subset. If the subset is at least as consistent as the best subset, the
subset replaces the best subset.

13.3.1.3 Using a Learning Algorithm as a Filter

Some works have explored the possibility of using a learning algorithm as a
pre-processor to discover useful feature subsets for a primary learning algo-
rithm. Cardie (1995) describes the application of decision tree algorithms for
selecting feature subsets for use by instance-based learners. In [Provan and
Singh (1996)], a greedy oblivious decision tree algorithm is used to select
features to construct a Bayesian network. Holmes and Nevill- Manning
(1995) apply Holte’s (1993) 1R system in order to estimate the predictive
accuracy of individual features. A program for inducing decision table
majority classifiers used for selecting features is presented in [Pfahringer
(1995)].

Decision table majority (DTM) classifiers are restricted to returning
stored instances that are exact matches with the instance to be classified.
When no instances are returned, the most prevalent class in the training
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data is used as the predicted class; otherwise, the majority class of all
matching instances is used. In such cases, the minimum description length
(MDL) principle guides the search by estimating the cost of encoding a
decision table and the training examples it misclassifies with respect to a
given feature subset. The features in the final decision table are then used
with other learning algorithms.

13.3.1.4 An Information Theoretic Feature Filter

There are many filters techniques that are based on information theory and
probabilistic reasoning [Koller and Sahami (1996)]. The rationale behind
this approach is that, since the goal of an induction algorithm is to estimate
the probability distributions over the class values, given the original feature
set, feature subset selection should attempt to remain as close to these
original distributions as possible.

13.3.1.5 RELIEF Algorithm

RELIEF [Kira and Rendell (1992)] uses instance-based learning to assign
a relevance weight to each feature. The weight for each feature reflects its
ability to single out the class values. The features are ranked by its weights
and chosen by using a user-specified threshold. RELIEF randomly chooses
instances from the training data. For every instance, RELIEF samples the
nearest instance of the same class (nearest hit) and finds the opposite class
(nearest miss). The weight for each feature is updated according to how
well its values differentiate the sampled instance from its nearest hit and
nearest miss. A feature will gain a high weight if it differentiates between
instances from different classes and has the same value for instances of the
same class.

13.3.1.6  Simba and G-flip

The SIMBA (iterative search margin-based algorithm) technique introduces
the idea of measuring the quality of a set of features by the margin it
induces. To overcome the drawback of iterative search, a greedy feature
flip algorithm G-flip is used [Gilad-Bachrach et al. (2004)] for maximizing
the margin function of a subset. The algorithm constantly iterates over the
feature set and updates the set of chosen features. During each iteration,
G-flip decides to eliminate or include the current feature to the selected
subset by evaluating the margin with and without this feature.
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13.3.1.7 Contextual Merit (CM) Algorithm

The CM algorithm [Hong (1997)] uses a merit function based upon weighted
distances between examples which takes into account complete feature
correlation’s to the instance class. This approach assumes that features
should be weighted according to their discrimination power regarding
instances that are close to each other (based on the Euclidean distance)
but which are associated with different classes. The CM approach has been
used to select features for decision trees and an experimental study shows
that feature subset selection can help to improve the prediction accuracy
of the induced classifier [Perner (2001)].

The notation di,s represents the distance between the value of feature
i in the instances r and s (i.e. the distance between z,; and ;). For
friTet) where t; is usually 0.5
of the value range of the attribute 7. For nominal attributes, the distance

numerical attributes, the distance is min(1,

is 0 if #,; = w54, and 1 otherwise. The contextual merit for attribute
i is calculated as M; = Y701 > se{(ay)eSlyi£y, } s o i . where m is the

training set size, {(x,y) € S|y; # yr } is the set of instances associated with

a different class than the instance r, and wj. , is a weighting factor.

13.3.2 Using Traditional Statistics for Filtering
13.3.2.1  Mallows Cp
This method minimizes the mean square error of prediction [Mallows

(1973)]:

RSS RSS
Cp = =3 7 + 2(]7 - ncp - Az—’y + 211«/ —-n, (132)
OFULL OrULL

where, RSS,, is the residual sum of squares for the 4" model and 0%, ;.
is the usual unbiased estimate of o2 based on the full model.
The goal is to find the subset which has minimum Cp.

13.3.2.2 AIC, BIC and F-ratio

Akaike Information Criterion (AIC) and Bayesian Information Criterion
(BIC) are criteria for choosing a subset of features. Letting [, denote the
maximum log likelihood of the «yth model, AIC selects the model which

maximizes (I, — gy) whereas BIC selects the model which maximizes (I, —
(log n)g,2).
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For the linear model, many of the popular selection criteria are a
penalized sum of squares criterion that can provide a unified framework
for comparisons. This criterion selects the subset model that minimizes:

RSS., /6% + Fq,, (13.3)

where F is a preset “dimensionality penalty”. The above penalizes
RSSvy/o 2 by F times ¢y, the dimension of the yth model. AIC and
minimum Cp are equivalent, corresponding to F' = 2, and BIC is obtained
by F' = logn. Using a smaller penalty, AIC and minimum Cp will select
larger models than BIC (unless n is very small).

13.3.2.3  Principal Component Analysis (PCA)

PCA is linear dimension reduction technique [Jackson (1991)]. PCA based
on the covariance matrix of the variables, is a second-order method. PCA
seeks to reduce the dimension of the data by finding a few orthogonal
linear combinations (the PCs) of the original features with the largest
variance. The first PC, s, is the linear combination with the largest
variance. We have s; = z7w;, where the p-dimensional coefficient vector
wy = (wi,1,...,wy,p)T solves:

wy = arg HmaXH Var{zTw}. (13.4)
w=1

The second PC is the linear combination with the second largest
variance and orthogonal to the first PC, and so on. There are as many
PCs as the number of original features. For many datasets, the first several
PCs explain most of the variance, so that the rest can be ignored with
minimal loss of information.

13.3.2.4  Factor Analysis (FA)

FA, a linear method based on the second-order data summaries, assumes
that the measured features depend on some unknown factors. Typical
examples include features defined as various test scores of individuals that
might to be related to a common intelligence factor. The goal of FA is to
find out such relations, and thus it can be used to reduce the dimension of
datasets following the factor model.

13.3.2.5  Projection Pursuit (PP)

PP is a linear method which is more computationally intensive than
second-order methods. Given a projection index that defines the merit of a
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direction, the algorithm looks for the directions that optimize that index.
As the Gaussian distribution is the least interesting distribution, projection
indices usually measure some aspect of non-Gaussianity.

13.3.3 Wrappers

The wrapper strategy for feature selection uses an induction algorithm
to evaluate feature subsets. The motivation for this strategy is that the
induction method that will eventually use the feature subset should provide
a better predictor of accuracy than a separate measure that has an entirely
different inductive bias [Langley (1994)].

Feature wrappers are often better than filters since they are tuned
to the specific interaction between an induction algorithm and its training
data. Nevertheless, they tend to be much slower than feature filters because
they must repeatedly perform the induction algorithm.

13.3.3.1  Wrappers for Decision Tree Learners

The wrapper general framework for feature selection, has two degrees of
feature relevance definitions that are used by the wrapper to discover
relevant features [John et al. (1994)]. A feature X; is said to be strongly
relevant to the target concept(s) if the probability distribution of the
class values, given the full feature set, changes when X, is eliminated.
A feature X; is said to be weakly relevant if it is not strongly relevant
and the probability distribution of the class values, given some subset which
contains X;, changes when X; is removed. All features that are not strongly
or weakly relevant are irrelevant.

Vafaie and De Jong (1995) and Cherkauer and Shavlik (1996) have both
applied genetic search strategies in a wrapper framework in order to improve
the performance of decision tree learners. Vafaie and De Jong (1995) present
a system that has two genetic algorithm driven modules. The first performs
feature selection while the second module performs constructive induction,
which is the process of creating new attributes by applying logical and
mathematical operators to the original features.

13.4 Feature Selection as a means of Creating Ensembles

The main idea of ensemble methodology is to combine a set of models,
each of which solves the same original task, in order to obtain a better
composite global model, with more accurate and reliable estimates or
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decisions than can be obtained from using a single model. Some of the
drawbacks of wrappers and filters can be solved by using an ensemble.
As mentioned above, filters perform less than wrappers. Due to the voting
process, noisy results are filtered. Secondly, the drawback of wrappers which
“cost” computing time is solved by operating a group of filters. The idea of
building a predictive model by integrating multiple models has been under
investigation for a long time.

Ensemble feature selection methods [Opitz (1999)] extend traditional
feature selection methods by looking for a set of feature subsets that
will promote disagreement among the base classifiers. Simple random
selection of feature subsets may be an effective technique for ensemble
feature selection because the lack of accuracy in the ensemble members
is compensated for by their diversity [Ho (1998)]. Tsymbal and Puuronen
(2002) presented a technique for building ensembles of simple Bayes
classifiers in random feature subsets.

The hill-climbing ensemble feature selection strategy randomly con-
structs the initial ensemble [Cunningham and Carney (2000)]. Then, an
iterative refinement is performed based on hill-climbing search in order to
improve the accuracy and diversity of the base classifiers. For all the feature
subsets, an attempt is made to switch (include or delete) each feature. If the
resulting feature subset produces better performance on the validation set,
that change is kept. This process is continued until no further improvements
are obtained.

Genetic Ensemble Feature Selection (GEFS) [Opitz (1999)] uses genetic
search for ensemble feature selection. This strategy begins with creating
an initial population of classifiers where each classifier is generated by
randomly selecting a different subset of features. Then, new candidate
classifiers are continually produced by using the genetic operators of
crossover and mutation on the feature subsets. The final ensemble is
composed of the most fitted classifiers.

Another method for creating a set of feature selection solutions using
a genetic algorithm was proposed by Oliveira et al. (2003). They create a
Pareto-optimal front in relation to two different objectives: accuracy on a
validation set and number of features. Following that, they select the best
feature selection solution.

In the statistics literature, the most well-known feature-oriented ensem-
ble algorithm is the MARS algorithm [Friedman (1991)]. In this algorithm,
a multiple regression function is approximated using linear splines and their
tensor products.
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Tuv and Torkkola (2005) examined the idea of using ensemble of
classifiers such as decision trees in order to create a better feature ranker.
They showed that this ensemble can be very effective in variable ranking
for problems with up to a 100,000 input attributes. Note that this approach
uses inducers for obtaining the ensemble by concentrating on wrapper
feature selectors.

13.5 Ensemble Methodology for Improving
Feature Selection

The ensemble methodology can be employed as a filter feature selector.
More specifically, the selected subset is a weighted average of subsets
obtained from various filter methods [Rokach et al. (2007)].

The problem of feature selection ensemble is that of finding the best
feature subset by combining a given set of feature selectors such that if a
specific inducer is run on it, the generated classifier will have the highest
possible accuracy. Formally, the optimal feature subset with respect to a
particular inducer [Kohavi (1996)] is defined as:

Definition 13.1. Given an inducer I, a training set S with input feature
set A = {a1,a2,...,a,} and target feature y from a fized and unknown
distribution D over the labeled instance space, the subset B C A is
said to be optimal if the expected generalization error of the induced
classifier I(mpuyS) will be minimized over the distribution D, where wpyyS
represents the corresponding projection of S and I(mpuyS) represents a
classifier which was induced by activating the induction method I onto
dataset mpuyS.

Definition 13.2. Given an inducer I, a training set S with input feature
set A = {ai,az2,...,an} and target feature y from a fived and unknown
distribution D over the labeled instance space, and an optimal subset B, a
Feature Selector FS is said to be consistent if it selects an attribute a; € B
with probability p > 1/2 and it selects an attribute a; ¢ B with probability

q< 1.

Definition 13.3. Given a set of feature subsets By, ..., B, the majority
combination of features subsets is a single feature subset that contains any
attribute a; such that f.(a;, B1,...,B,) > % where fc(a;,Bi,...,B,) =

2
d . 1 a; € Bj
ngg(a“ B;) and glas, B;) = {O otherwise '
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The last definition refers to a simple majority voting, in which attribute
a; is included in the combined feature subset if it appears in at least half of
the base feature subsets By, ..., B,, where w is the number of base feature
subsets. Note that f.(a;, B1,...,B,) counts the number of base feature
subsets in which a; is included.

Lemma 13.1. A majority combination of feature subsets obtained from
a given a set of independent and consistent feature selectors FSy,...,FS,
(where w is the number of feature selectors) converges to the optimal feature
subset when w — co.

Proof. For ensuring that for attributes for which a; € B are actually
selected, we need to show that:

lim  p (fc(ai) > %) -1 (13.5)

w—o00,p>1/2

We denote by p;; > 1 the probability of F'S; to select a;. We denote
by p; = min(p;;). Note that p; > % Because the feature selectors are
independent, we can use approximation binomial distribution, i.e.:

w £ w k k
; (a: ) < i (1 —p) ™", .
Jmp (o) > 5) < Jm > (7)eta-m 12.6)

Due to the fact that w — oo we can use the central limit theorem in

which, u = wp;, 0 = /wp;(1 — p;):
1, _ ..
lim P (Z > 7\/(;( /2= Po)

w—r00,p;>1/2 pi(1—p;)

) =p(Z>-00) = 1. (13.7)

For ensuring that for attributes for which a; ¢ B are actually selected
we need to show that:

lim p (fc(ai) < f) —0. (13.8)

w—00 2

We denote by g;,; < 1/2 the probability of F'S; to select a;. We denote
by ¢; = max(g;;). Note that ¢; < % Because the feature selectors are
independent, we can use approximation binomial distribution, i.e.:

@
2

> (L;) gr(1—g) . (13.9)

k=0

w
tim p(fela) < 5) > 1
Jmpfelad <)z, I,
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Due to the fact that w — co we can use the central limit theorem again
this time: u = wqi, 0 = Jwaqi(1 — ¢;):

w

lim % (:) @ (l—g)* "= lim p (Z > ﬂ)

w—00,q;<1/2 k=0 wreoast/2 wqi(l - qi)
1,
w—>oo,qi<1/2 qz(]- - Qz)

O

13.5.1 Independent Algorithmic Framework

Roughly speaking, the feature selectors in the ensemble can be created
dependently or independently. In the dependent framework, the outcome
of a certain feature selector affects the creation of the next feature selector.
Alternatively, each feature selector is built independently; the resulted
features subsets are then combined in some fashion. Here, we concentrate on
an independent framework. Figure 13.1 presents the proposed algorithmic
framework. This simple framework receives as an input the following
arguments:

(1) A Training set (S) — A labeled dataset used for feature selectors.

(2) A set of feature selection algorithms {F'Si,...,FSe:} — A feature
selection algorithm is an algorithm that obtains a training set and
outputs a subset of relevant features. Recall that we employ non-
wrapper and non-ranker feature selectors.

(3) Ensemble Size (w).

(4) Ensemble generator (G) — This component is responsible for gen-
erating a set of w pairs of feature selection algorithms and their
corresponding training sets. We refer to G as a class that implements
a method called “genrateEnsemble”.

(5) Combiner (C') — The combiner is responsible for creating the subsets
and combining them into a single subset. We refer to C as a class that
implements the method “combine”.

The proposed algorithm simply uses the ensemble generator to create
a set of feature selection algorithm pairs and their corresponding training
sets. Then it calls the combine method in C to execute the feature selection
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Require: S, {FS1,...,FS:}, G, C

Ensure: A combined feature subset.
1 (S1,FS1),...,(Se, FS,) =G.genrateEnsemble(S, (F'S1,. .., FSe),w)
2: Return C.combine ({(S1, F'S1),...,(Sw, FSu)})

Fig. 13.1 Pseudo-code of independent algorithmic framework for feature selection.

algorithm on its corresponding dataset. The various feature subsets are then
combined into a single subset.

13.5.2 Combining Procedure

We begin by describing two implementations for the combiner component.
In the literature, there are two ways of combining the results of the
ensemble members: weighting methods and meta-learning methods. Here,
we concentrate on weighting methods. The weighting methods are best
suited for problems where the individual members have comparable success
or when we would like to avoid problems associated with added learning
(such as over-fitting or long training time).

13.5.2.1 Simple Weighted Voting

Figure 13.2 presents an algorithm for selecting a feature subset based on
the weighted voting of feature subsets. As this is an implementation of the
abstract combiner used in Figure 13.1, the input of the algorithm is a set of
pairs; every pair is built from one feature selector and a training set. After
executing the feature selector on its associated training set to obtain a
feature subset, the algorithm employs some weighting method and attaches
a weight to every subset. Finally, it uses a weighted voting to decide which
attribute should be included in the final subset. We considered the following
methods for weighting the subsets:

(1) Majority Voting — In this weighting method, the same weight is
attached to every subset such that the total weights is 1, i.e. if there
are w subsets then the weight is simply 1/w. Note that the inclusion
of a certain attribute in the final result requires that this attribute will
appear in at least w/2 subsets. This method should have a low false
positive rate, because selecting an irrelevant attribute will take place
only if at least w/2 feature selections methods will decide to select this
attribute.
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Require: {(S1,FS1),...,(S,,FS,)}
Ensure: A Combined feature subset
1: for all (S;, F'S;) € F do
B; = FS;.getSelectedFeatures(.S;)
end for
{wy,...,w,} = getWeight ({B, ..., B,})
B+
for all a; € A do
totalWeight=0
for i =1 tow do
if aj € B; then
totalWeight <« totalWeight+W ;
end if
end for
if totalWeight > 0.5 then
B« BU 7]
15:  end if
16: end for
17: Return B

e el el
L S A

Fig. 13.2 Pseudo-code of combining procedure.

“Take-It-All” — In this weighting method, all subsets obtain a weight
that is greater than 0.5. This leads to the situation in which any
attribute that has been in at least one of the subsets will be included
in the final result. This method should have a low false negative rate,
because losing a relevant attribute will take place only if all feature
selections methods will decide to filter out this attribute.

“Smaller is Heavier” — The weight for each selector is defined by
its bias to the smallest subset. Selectors that tend to provide small
subsets will gain more weight than selectors that tend to provide large
subsets. This approach is inspired by the fact that the precision rate
of selectors tend to decrease as the size of the subset increases. This
approach can be used to avoid noise caused by feature selectors that
tend to select most of the possible attributes. More specifically, the
weights are defined as:

. / B (13.11)
T e/ X %05
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13.5.2.2  Using Artificial Contrasts

Using the Bayesian approach, a certain attribute should be filtered out
if: P(ai ¢ B|Bl,...,Bw) > 0.5 or P(az ¢ B|Bl7...,Bw) > P(al €
B|Bs,...,B,) where B C A denote the set of relevant features. By using
the Bayes Theorem, we obtain:

P(Bl,,Bw|CLZ¢B)P(aZ¢B)

P(aigéBlBlw'wa): P(BlB)

(13.12)

However, since calculating the above probability might be difficult, we
use the naive Bayes combination. This is a well-known combining method
due to its simplicity and its relatively outstanding results. According to the
naive Bayes assumption, the results of the feature selectors are independent
given the fact that the attribute a; is not relevant. Thus, using this
assumption, we obtain:

PCLi B wPBj a; B
P(Bl,,Bw|al§éB)P(al¢B) _ ( ¢ )jl;II ( ‘ ¢ )

P(By,...,B.,) P(By,...,B.,)

(13.13)
Using Bayes theorem again:

Placg B) [1 P3¢ B)  Pla ¢ B) [T PERR2 P(B)

j=

P(Bi,...,B.) P(Bi,...,B.)
[ P(5)) 11 Plos ¢ B15;)
_ = j=
~ P(By,...,B,)-P*(a; ¢ B)’
(13.14)
Thus, a certain attribute should be filtered out if:
[P [ P ¢ BIB)  TP(B) [1 Pl € BIE))
Jj= Jj= J= =
P(Br....Bo) P ¢éB)  PBr....Bo) P e cB)
(13.15)

or after omitting the common term from both sides:

[1P@¢BIB) I P@cBB)

e g P B (13.16)
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Assuming that the a priori probability for a; to be relevant is equal to that
of not being relevant:

w

ﬁ P(a; ¢ B|B;) > [ P(a; € B|B;). (13.17)

j=1

Using the complete probability theorem:
w w
[[Peai ¢ BIB;) > ] (1 - Pla; ¢ B|B;)). (13.18)
j=1 j=1

Because we are using non-ranker feature selectors the above probability is
estimated using;:

(G¢B|CL€BJ') ifaiEBj
(a ¢ Bla¢ Bj) ifai¢B;

Note that P(a ¢ Bla € Bj) does not refer to a specific attribute, but to the
general bias of the feature selector j. In order to estimate the remaining
probabilities, we are adding to the dataset a set of ¢ contrast attributes
that are known to be truly irrelevant and analyzing the number of artificial
features ¢; included in the subset B; obtained by the feature selector j:

P(a; ¢ B|B;) ~ {1’; (13.19)

P(aij|a§éB):%; P(agZBﬂagéB):l—%. (13.20)
The artificial contrast variables are obtained by randomly permuting
the values of the original n attributes across m instances. Generating
just random attributes from some simple distribution, such as Normal
Distribution, is not sufficient, because the values of original attributes may
exhibit some special structure. Using Bayes theorem:

Pla¢ B)P(a€ Bjlad B)

P(a¢ Bla€ B;) =

P(CL S Bj)
_ P(a ¢ B) ¢,
“PlacB) ¢ (13.21)
Pla¢ Bla¢ Bj) = P(‘”éB])D];(lajij;aéB)
___P(a¢ B) ?;
T 1_PlaeB) (1 - 5) , (13.22)

where P(a € Bj) = Lﬁjl
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13.5.3 Feature Ensemble Generator

In order to make the ensemble more effective, there should be some sort of
diversity between the feature subsets. Diversity may be obtained through
different presentations of the input data or variations in feature selector
design. The following sections describe each one of the different approaches.

13.5.3.1 Multiple Feature Selectors

In this approach, we simply use a set of different feature selection
algorithms. The basic assumption is that since different algorithms have
different inductive biases, they will create different feature subsets.

The proposed method can be employed with the correlation-based
feature subset selection (CFS) as a subset evaluator [Hall (1999)]. CFS
evaluates the worth of a subset of attributes by considering the individual
predictive ability of each feature along with the degree of redundancy
between them. Subsets of features that are highly correlated with the class
while having low inter-correlation are preferred.

At the heart of the CFS algorithm is a heuristic for evaluating the
worth or merit of a subset of features. This heuristic takes into account
the usefulness of individual features for predicting the class label along
with the level of inter-correlation among them. The heuristic is based on
the following hypothesis: a good features subset contains features that are
highly correlated with the class, but which are uncorrelated with each other.

Equation (13.23) formalizes the feature selection heuristics:

kT,
MB = = )
Kk + /ﬂ(/ﬂ — l)Tff

where Mp is the heuristic “merit” of a feature subset B containing k
features; 7c; is the average feature-class correlation; and 77 is the average

(13.23)

feature-feature correlation.

In order to apply Equation (13.23) to estimate the merit of a feature
subset, it is necessary to compute the correlation (dependence) between
attributes. For discrete class problems, CFS first discretises numeric
features then uses symmetrical uncertainty (a modified information gain
measure) to calculates feature—class and feature—feature correlations:

InformationGain(a;, a;, S)

SU = Entropy(a;, S) + Entropy(a;,S)’

(13.24)
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Recall from Section 5.1.3:

a;=v; S
InformationGain(a“ ajy S) = Entropy(aj, S) — Z %
v;, kEdom(a;)
’ Ent?ﬂopy(a’j’ O-U«i:’vi‘ks)a (1325)
Ogimv; .S e S
Entropy(a;, S) = Z 7| az|SUz,k | log, o Z|Svk |

v; k Edom(as)

(13.26)

Symmetrical uncertainty is used (rather than simple gain ratio) because
it is a symmetric measure and can therefore be used to measure feature—
feature correlations where there is no notion of one attribute being the
“class” as such.

As for the search organization the following methods can be used:
Best First Search; Forward Selection Search; Gain Ratio; Chi-Square; OneR
classifier; and Information Gain.

Beside the CFS, other evaluation methods can be considered including,
consistency subset evaluator and the wrapper subset evaluator with simple
classifiers (K-nearest neighbors, logistic regression and naive bayes).

13.5.3.2 Bagging

The most well-known independent method is bagging (bootstrap aggregat-
ing). In this case, each feature selector is executed on a sample of instances
taken with replacement from the training set. Usually, each sample size
is equal to the size of the original training set. Note that since sampling
with a replacement is used, some of the instances may appear more than
once in the same sample and some may not be included at all. Although
the training samples are different from each other, they are certainly not
independent from a statistical point of view.

13.6 Using Decision Trees for Feature Selection

Using decision trees for feature selection has one important advantage
known as “anytime”. However, for highly dimensional datasets, the feature
selection process becomes computationally intensive.

Decision trees can be used to implement a trade-off between the
performance of the selected features and the computation time which
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is required to find a subset. Top-down inducers of decision trees can
be considered as anytime algorithms for feature selection, because they
gradually improve the performance and can be stopped at any time and
provide sub-optimal feature subsets.

Decision trees have been used as an evaluation means for directing the
feature selection search. For instance, a hybrid learning methodology that
integrates genetic algorithms (GAs) and decision tree inducers in order to
find the best feature subset was proposed in [Bala et al. (1995)]. A GA is
used to search the space of all possible subsets of a large set of candidate
discrimination features. In order to evaluate a certain feature subset, a
decision tree is trained and its accuracy is used as a measure of fitness for
the given feature set, which, in turn, is used by the GA to evolve better
feature sets.

13.7 Limitation of Feature Selection Methods

Despite its popularity, the usage of feature selection methodologies for
overcoming the obstacles of high dimensionality has several drawbacks:

e The assumption that a large set of input features can be reduced to a
small subset of relevant features is not always true; in some cases the
target feature is actually affected by most of the input features, and
removing features will cause a significant loss of important information.

e The outcome (i.e. the subset) of many algorithms for feature selection (for
example, almost any of the algorithms that are based upon the wrapper
methodology) is strongly dependent on the training set size. That is, if
the training set is small, then the size of the reduced subset will also
be small. Consequently, relevant features might be lost. Accordingly, the
induced classifiers might achieve lower accuracy compared to classifiers
that have access to all relevant features.

e In some cases, even after eliminating a set of irrelevant features, the
researcher is left with relatively large numbers of relevant features.

e The backward elimination strategy, used by some methods, is extremely
inefficient for working with large-scale databases, where the number of
original features is more than 100.

One way to deal with the above-mentioned disadvantages is to use a
very large training set (which should increase in an exponential manner
as the number of input features increases). However, the researcher rarely
enjoys this privilege, and even if it does happen, the researcher will probably
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encounter the aforementioned difficulties derived from a high number of
instances.

Practically, most of the training sets are still considered “small” not
because of their absolute size but rather due to the fact that they contain
too few instances given the nature of the investigated problem, namely
the instance space size, the space distribution and the intrinsic noise.
Furthermore, even if a sufficient dataset is available, the researcher will
probably encounter the aforementioned difficulties derived from a high
number of records.
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Chapter 14

Fuzzy Decision Trees

14.1 Overview

There are two main types of uncertainty in supervised learning: statistical
and cognitive. Statistical uncertainty deals with the random behavior of
nature and all techniques described in previous chapters can handle the
uncertainty that arises (or is assumed to arise) in the natural world
from statistical variations or randomness. While these techniques may be
appropriate for measuring the likelihood of a hypothesis, they say nothing
about the meaning of the hypothesis.

Cognitive uncertainty, on the other hand, deals with human cognition.
Cognitive uncertainty can be further divided into two sub-types: vagueness
and ambiguity. Ambiguity arises in situations with two or more alternatives
such that the choice between them is left unspecified. Vagueness arises when
there is a difficulty in making a precise distinction in the world.

Fuzzy set theory, first introduced by Zadeh in 1965, deals with cognitive
uncertainty and seeks to overcome many of the problems found in classical
set theory. For example, a major problem in the early days of control theory
is that a small change in input results in a major change in output. This
throws the whole control system into an unstable state. In addition, there
was also the problem that the representation of subjective knowledge was
artificial and inaccurate.

Fuzzy set theory is an attempt to confront these difficulties and in this
chapter we present some of its basic concepts. The main focus, however, is
on those concepts used in the induction process when dealing with fuzzy
decision trees. Since fuzzy set theory and fuzzy logic are much broader than
the narrow perspective presented here, the interested reader is encouraged
to read [Zimmermann (2005)].

225
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14.2 Membership Function

In classical set theory, a certain element either belongs or does not belong to
a set. Fuzzy set theory, on the other hand, permits the gradual assessment
of the membership of elements in relation to a set.

Definition 14.1. Let U be a universe of discourse, representing a col-
lection of objects denoted generically by u. A fuzzy set A in a universe
of discourse U is characterized by a membership function p4 which takes
values in the interval [0, 1], where p14(u) = 0 means that u is definitely not
a member of A and p4(u) = 1 means that u is definitely a member of A.

The above definition can be illustrated on a vague set, that we will label
as young. In this case, the set U is the set of people. To each person in U, we
define the degree of membership to the fuzzy set young. The membership
function answers the question: “To what degree is person u young?”. The
easiest way to do this is with a membership function based on the person’s
age. For example, Figure 14.1 presents the following membership function:

0 age(u) > 32
1y oung (1) = ;2 age(u) < 16 - (14.1)
%e(u) otherwise

Given this definition, John, who is 18 years old, has degree of youth of
0.875. Philip, 20 years old, has degree of youth of 0.75. Unlike probability
theory, degrees of membership do not have to add up to 1 across all

'1 —
0.9
0.8 ~
0.7
0.6 -
0.5 A
0.4
0.3 4
0.2 1
0.1 A

Young Membership

10 15 20 25 30 35
Age

Fig. 14.1 Membership function for the young set.
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Fig. 14.2 Membership function for the crisp young set.

objects and therefore either many or few objects in the set may have high
membership. However, an objects membership in a set (such as “young”)
and the sets complement (“not young”) must still sum to 1.

The main difference between classical set theory and fuzzy set theory
is that the latter admits to partial set membership. A classical or crisp
set, then, is a fuzzy set that restricts its membership values to {0,1},
the endpoints of the unit interval. Membership functions can be used to
represent a crisp set. For example, Figure 14.2 presents a crisp membership
function defined as:

0 age(u) > 22
,UfCrispYoung(U) = {1 ageEu; <99" (142)

14.3 Fuzzy Classification Problems

All classification problems we have discussed so far in this chapter assume
that each instance takes one value for each attribute and that each instance
is classified into only one of the mutually exclusive classes [Yuan and Shaw
(1995)].

To illustrate the idea, we introduce the problem of modeling the
preferences of TV viewers. In this problem, there are three input attributes:

A = {Time of Day, Age Group, Mood}
and each attribute has the following values:

e dom(Time of Day) = {Morning, Noon, Evening, Night}
e dom(Age Group) = {Young, Adult}
e dom(Mood) = {Happy, Indifferent, Sad, Sour, Grumpy}
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The classification can be the movie genre that the viewer would like to
watch, such as C = {Action, Comedy, Drama}.

All the attributes are vague by definition. For example, people’s feelings
of happiness, indifference, sadness, sourness and grumpiness are vague
without any crisp boundaries between them. Although the vagueness of
“Age Group” or “Time of Day” can be avoided by indicating the exact age
or exact time, a rule induced with a crisp decision tree may then have an
artificial crisp boundary, such as “IF Age < 16 THEN action movie”. But
how about someone who is 17 years of age? Should this viewer definitely
not watch an action movie? The viewer preferred genre may still be vague.
For example, the viewer may be in a mood for both comedy and drama
movies. Moreover, the association of movies into genres may also be vague.
For instance, the movie “Lethal Weapon” (starring Mel Gibson and Danny
Glover) is considered to be both comedy and action movie.

Fuzzy concept can be introduced into a classical problem if at least
one of the input attributes is fuzzy or if the target attribute is fuzzy. In
the example described above, both input and target attributes are fuzzy.
Formally, the problem is defined as following [Yuan and Shaw (1995)]:

Each class c¢; is defined as a fuzzy set on the universe of objects U.
The membership function p.,(u) indicates the degree to which object u
belongs to class c;. Each attribute a; is defined as a linguistic attribute
which takes linguistic values from dom(a;) = {vi1,vi2,- -,V |dom(a:)|}-
Each linguistic value v; j is also a fuzzy set defined on U. The membership
Mo, . (u) specifies the degree to which object u’s attribute a; is v;x. Recall
that the membership of a linguistic value can be subjectively assigned or
transferred from numerical values by a membership function defined on the
range of the numerical value.

14.4 Fuzzy Set Operations

Like classical set theory, fuzzy set theory includes such operations as union,
intersection, complement, and inclusion, but also includes operations that
have no classical counterpart, such as the modifiers concentration and
dilation, and the connective fuzzy aggregation. Definitions of fuzzy set
operations are provided in this section.

Definition 14.2. The membership function of the union of two fuzzy sets
A and B with membership functions g4 and pp respectively is defined
as the maximum of the two individual membership functions paup(u) =

max{pa(u), up(u)}.
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Definition 14.3. The membership function of the intersection of two
fuzzy sets A and B with membership functions g4 and pp respectively
is defined as the minimum of the two individual membership functions

pans (u) = min{pua(w), pp(w)}.

Definition 14.4. The membership function of the complement of a fuzzy
set A with membership function g4 is defined as the negation of the
specified membership function pz(u) =1 — pa(u).

To illustrate these fuzzy operations, we elaborate on the previous
example. Recall that John has a degree of youth of 0.875. Additionally,
John’s happiness degree is 0.254. Thus, the membership of John in the set
Young U Happy would be max(0.875,0.254) = 0.875, and its membership
in Young N Happy would be min(0.875,0.254) = 0.254.

It is possible to chain operators together, thereby constructing quite
complicated sets. It is also possible to derive many interesting sets from
chains of rules built up from simple operators. For example, John’s
membership in the set Young U Happy would be max(1 — 0.875,0.254) =
0.254.

The usage of the max and min operators for defining fuzzy union and
fuzzy intersection, respectively is very common. However, it is important to
note that these are not the only definitions of union and intersection suited
to fuzzy set theory.

14.5 Fuzzy Classification Rules

Definition 14.5. The fuzzy subsethood S(A, B) measures the degree to
which A is a subset of B.

M(AN B)

S(A,B) = M)

(14.3)

where M (A) is the cardinality measure of a fuzzy set A and is defined as

M(A) =" wevpalu). (14.4)

The subsethood can be used to measure the truth level of the rule
of classification rules. For example, given a classification rule such as “IF
Age is Young AND Mood is Happy THEN Comedy” we have to calculate
S(Hot N Sunny, Swimming) in order to measure the truth level of the
classification rule.
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14.6 Creating Fuzzy Decision Tree

There are several algorithms for induction of decision trees. In this section,
we will focus on the algorithm proposed by Yuan and Shaw (1995). This
algorithm can handle the classification problems with both fuzzy attributes
and fuzzy classes represented in linguistic fuzzy terms. It can also handle
other situations in a uniform way where numerical values can be fuzzified
to fuzzy terms and crisp categories can be treated as a special case of fuzzy
terms with zero fuzziness. The algorithm uses classification ambiguity as
fuzzy entropy. The classification ambiguity, which directly measures the
quality of classification rules at the decision node, can be calculated under
fuzzy partitioning and multiple fuzzy classes.
The fuzzy decision tree induction consists of the following steps:

Fuzzifying numeric attributes in the training set.
Inducing a fuzzy decision tree.
Simplifying the decision tree.

Applying fuzzy rules for classification.

14.6.1 Fuzzifying Numeric Attributes

When a certain attribute is numerical, it needs to be fuzzified into linguistic
terms before it can be used in the algorithm. The fuzzification process can
be performed manually by experts or can be derived automatically using
some sort of clustering algorithm. Clustering groups the data instances
into subsets in such a manner that similar instances are grouped together;
different instances belong to different groups. The instances are thereby
organized into an efficient representation that characterizes the population
being sampled.

Yuan and Shaw (1995) suggest a simple algorithm to generate a set
of membership functions on numerical data. Assume attribute a; has
numerical value z from the domain X. We can cluster X to k linguistic
terms v; ;,7 = 1,...,k. The size of k is manually predefined. For the first
linguistic term v; 1, the following membership function is used:

1 z<mq

fo, (@)= 2272 <z <my (14.5)
mo — M1
0 T > Mo
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For each v; ; when j = 2,..., k—1 has a triangular membership function
as follows:

0 xX S mij—1

T —mj—1
—— M1 <zx< m;
m; —mji—1
Ho; (l‘) = . (146)

mj41 — T
—— my <z < mijt1
Mj+1 = My

0 €T Z mij+1
Finally, the membership function of the last linguistic term v; y, is:

0 r<mp_1

T — Mg—-1
fo, 5, () = P Mp—1 < T <My . (14.7)

1 T > my

Figure 14.3 illustrates the creation of four groups defined on the age
attribute: “young”, “early adulthood”, “middle-aged” and “old age”. Note
that the first set (“young”) and the last set (“old age”) have a trapezoidal
form which can be uniquely described by the four corners. For example,
the “young” set could be represented as (0,0, 16,32). In between, all other
sets (“early adulthood” and “middle-aged”) have a triangular form which
can be uniquely described by the three corners. For example, the set “early
adulthood” is represented as (16,32, 48).
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0.8 -
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0.5 -
0.4
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L — Young

Vi --- Early adulthood
P e Middle-aged
o - Old Age

Membership

Fig. 14.3 Membership function for various groups in the age attribute.
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Require: X — a set of values, 7(t) — some monotonic decreasing scalar
function representing the learning rate.
Ensure: M = {mq,...,ms}
1: Initially set m; to be evenly distributed on the range of X.
2t 1

3: repeat

4:  Randomly draw one sample = from X
5. Find the closest center m, to x.

6: M me+1(t) - (x—me)

7 t+—t+1

8:

D(X, M)+ Y min; ||z —my|
rzeX

9: until D(X, M) converges

Fig. 14.4 Algorithm for fuzzifying numeric attributes.

The only parameters that need to be determined are the set of k centers
M ={mg,...,my}. The centers can be found using the algorithm presented
in Figure 14.4. Note that in order to use the algorithm, a monotonic
decreasing learning rate function should be provided.

14.6.2 Inducing of Fuzzy Decision Tree

The induction algorithm of fuzzy decision tree is presented in Figure 14.5.
The algorithm measures the classification ambiguity associated with each
attribute and splits the data using the attribute with the smallest classifica-
tion ambiguity. The classification ambiguity of attribute a; with linguistic
terms v; j,j = 1,...,k on fuzzy evidence S, denoted as G(a;|S), is the
weighted average of classification ambiguity calculated as:

k
G(ai|S) =Y w(vi;]8) - G(viy]9), (14.8)

¢

j="1

where w(v; ;]5) is the weight which represents the relative size of v; ; and
is defined as:

ey M(wislS)
w(v; ;|5) = zk:M(Ui,MS)' (14.9)

The classification ambiguity of v;; is defined as G(v;;|S) =
g(p(Clv;,5)), which is measured based on the possibility distribution vector

P(Clui ;) = (perlvig), - - pley lvig))-
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Require: S — Training Set A — Input Feature Set y — Target Feature

Ensure: Fuzzy Decision Tree

1: Create a new fuzzy tree F'T with a single root node.

2: if S is empty OR Truth level of one of the classes > 3 then

3:  Mark FT as a leaf with the most common value of y in S as a label.

4 Return FT.

5: end if

6: Va; € A find a with the smallest classification ambiguity.

7. for each outcome v; of a do

8 Recursively call procedure with corresponding partition v;.

9:  Connect the root node to the returned subtree with an edge that is
labeled as v;.

10: end for

11: Return FT

Fig. 14.5 Fuzzy decision tree induction.

Given v; ;, the possibility of classifying an object to class ¢; can be
defined as:

S(’Ui’j,cl)

= — 0 7 14.10
mkaxS(vl-,j,ck)’ ( )

p(clvij)

where S(A, B) is the fuzzy subsethood that was defined in Definition 14.5.
The function g(p) is the possibilistic measure of ambiguity or non-specificity
and is defined as:

|71

915 = 3 7 = pia) 0G0, (14.11)

where p* = (p7,..., p‘*m) is the permutation of the possibility distribution
p sorted such that p; > p7, .

All the above calculations are carried out at a predefined significant
level a. An instance will take into consideration of a certain branch v; ;
only if its corresponding membership is greater than «. This parameter is
used to filter out insignificant branches.

After partitioning the data using the attribute with the smallest
classification ambiguity, the algorithm looks for non-empty branches.
For each non-empty branch, the algorithm calculates the truth level of
classifying all instances within the branch into each class. The truth level
is calculated using the fuzzy subsethood measure S(A, B).
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If the truth level of one of the classes is above a predefined threshold
(G then no additional partitioning is needed and the node become a leaf in
which all instance will be labeled to the class with the highest truth level.
Otherwise the procedure continues in a recursive manner. Note that small
values of # will lead to smaller trees with the risk of underfitting. A higher
(0 may lead to a larger tree with higher classification accuracy. However, at
a certain point, higher values 3 may lead to overfitting.

14.7 Simplifying the Decision Tree

Each path of branches from root to leaf can be converted into a rule with
the condition part representing the attributes on the passing branches from
the root to the leaf and the conclusion part representing the class at the leaf
with the highest truth level classification. The corresponding classification
rules can be further simplified by removing one input attribute term at a
time for each rule we try to simplify. Select the term to remove with the
highest truth level of the simplified rule. If the truth level of this new rule
is not lower than the threshold 3 or the truth level of the original rule,
the simplification is successful. The process will continue until no further
simplification is possible for all the rules.

14.8 Classification of New Instances

In a regular decision tree, only one path (rule) can be applied for every
instance. In a fuzzy decision tree, several paths (rules) can be applied for
one instance. In order to classify an unlabeled instance, the following steps
should be performed [Yuan and Shaw (1995)]:

e Step 1: Calculate the membership of the instance for the condition part
of each path (rule). This membership will be associated with the label
(class) of the path.

e Step 2: For each class, calculate the maximum membership obtained from
all applied rules.

e Step 3: An instance may be classified into several classes with different
degrees based on the membership calculated in Step 2.

14.9 Other Fuzzy Decision Tree Inducers

There have been several fuzzy extensions to the ID3 algorithm. The UR-
ID3 algorithm [Maher and Clair (1993)] starts by building a strict decision
tree, and subsequently fuzzifies the conditions of the tree. Tani and Sakoda
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(1992) use the ID3 algorithm to select effective numerical attributes. The
obtained splitting intervals are used as fuzzy boundaries. Regression is then
used in each sub-space to form fuzzy rules. Cios and Sztandera (1992) use
the ID3 algorithm to convert a decision tree into a layer of a feedforward
neural network. Each neuron is represented as a hyperplane with a fuzzy
boundary. The nodes within the hidden layer are generated until some fuzzy
entropy is reduced to zero. New hidden layers are generated until there is
only one node at the output layer.

Fuzzy-CART [Jang (1994)] is a method which uses the CART algorithm
to build a tree. However, the tree, which is the first step, is only used
to propose fuzzy sets of the continuous domains (using the generated
thresholds). Then, a layered network algorithm is employed to learn fuzzy
rules. This produces more comprehensible fuzzy rules and improves the
CART’s initial results.

Another complete framework for building a fuzzy tree including several
inference procedures based on conflict resolution in rule-based systems and
efficient approximate reasoning methods was presented in [Janikow, 1998].

Olaru and Wehenkel (2003) presented a new type of fuzzy decision
trees called soft decision trees (SDT). This approach combines tree-growing
and pruning, to determine the structure of the soft decision tree. Refitting
and backfitting are ised to improve its generalization capabilities. The
researchers empirically showed that soft decision trees are significantly more
accurate than standard decision trees. Moreover, a global model variance
study shows a much lower variance for soft decision trees than for standard
trees as a direct cause of the improved accuracy.

Peng (2004) has used FDT to improve the performance of the classical
inductive learning approach in manufacturing processes. Peng proposed
using soft discretization of continuous-valued attributes. It has been shown
that FDT can deal with the noise or uncertainties existing in the data
collected in industrial systems.
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Chapter 15

Hybridization of Decision Trees
with other Techniques

15.1 Introduction

Hybridization in artificial intelligence (AI) involves simultaneously using
two or more intelligent techniques in order to handle real world complex
problems, involving imprecision, uncertainty and vagueness. Hybridization
is frequently practiced in machine learning, to make more powerful and
reliable classifiers.

The combination or integration of additional methodologies can be
done in any form: by modularly integrating two or more intelligent
methodologies, which maintains the identity of each methodology; by
fusing one methodology into another; or by transforming the knowledge
representation in one methodology into another form of representation
characteristic to another methodology.

Hybridization of decision trees with other Al techniques can be
performed by using either a decision tree to partition the instance space
for other induction techniques or other AI techniques for obtaining a better
decision tree.

15.2 A Framework for Instance-Space Decomposition

In the first approach, termed instance-space decomposition (ISD) and
involving hybrid decision tree with other inducers, the instance space of
the original problem is partitioned into several sub-spaces using a decision
tree with a distinct classifier assigned to each sub-space. Subsequently,
an unlabeled, previously unseen instance is classified by employing the
classifier that was assigned to the sub-space to which the instance belongs.

237
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In an approach, which Cohen et al. (2007) term decision tree ISD,
the partition of the instance-space is attained by a decision tree. Along
with the decision tree, the ISD method employs another classification
method, which classifies the tree’s leaves (the tree’s leaves represent the
different sub-spaces). Namely, decision tree ISD methods produce decision
tree s, in which the leaves are assigned classifiers rather than simple class
labels. When a non-decision tree method produces the leaves’ classifiers, the
composite classifier is sometimes termed a decision tree hybrid classifier.

The term “decision tree hybrid classifier”, however, is also used in a
broader context, such as in cases where a sub-classification method decides
about the growth of the tree and its pruning [Sakar and Mammone (1993)].

There are two basic techniques for implementing decision tree ISD.
The first technique is to use some decision tree method to create the
tree and then, in a post-growing phase, to attach classifiers to the tree’s
leaves. The second technique is to consider the classifiers as part of the
tree-growing procedure. Potentially, the latter technique can achieve more
accurate composite classifiers. On the other hand, it usually requires more
computationally intensive procedures.

Carvalho and Freitas. (2004) proposed a hybrid decision tree genetic-
algorithm GA classifier, which grows a decision tree and assigns some of
the leaves with class labels and the others with GA classifiers. The leaves
with the classifiers are those that have a small number of corresponding
instances. A previously unseen instance is subsequently either directly
assigned with a class label or is sub-classified by a GA classifier (depending
on the leaf to which the instance is sorted). Zhou and Chen (2002)
suggested a method, called hybrid decision tree (HDT). HDT uses the
binary information gain ratio criterion to grow a binary decision tree in
an instance-space that is defined by the nominal explaining-attributes only.
A feed-forward neural network, subsequently classifies the leaves, whose
diversity exceeds a pre-defined threshold. The network only uses the ordinal
explaining-attributes.

In this chapter, we focus on the second decision tree ISD technique,
which considers the classifiers as part of the decision tree’s growth. NBTree
is a method which produces a decision tree naive-Bayes hybrid classifier
[Kohavi (1996)]. In order to decide when to stop the recursive partition
of the instance-space (i.e. stop growing the tree), NBTree compares
two alternatives: partitioning the instance-space further on (i.e. continue
splitting the tree) versus stopping the partition and producing a single naive
Bayes classifier. The two alternatives are compared in terms of their error
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estimations, which are calculated by a cross-validation procedure. Naive
Bayes classification, by itself, is very efficient in terms of its processing
time. However, using cross-validation significantly increases the overall com-
putational complexity. Although Kohavi has used naive Bayes, to produce
the classifiers, other classification methods are also applicable. However,
due to the cross-validation estimations, NBTree becomes computationally
expensive for methods that are more time-consuming than naive Bayes (e.g.
neural networks).

We describe a simple framework for decision tree ISD, termed decision
tree framework for instance space decomposition (DFID). The framework
hierarchically partitions the instance space using a top-down (pruning-
free) decision tree procedure. Although various DFID implementations use
different stopping rules, split-validation examinations and splitting rules,
in this chapter we concentrate on a specific DFID method — contrasted
populations miner (CPOM). The splitting rule that this method uses —
grouped gain ratio — combines the well-accepted gain ratio criterion with
a heuristic grouping procedure. CPOM can reduce the processing time while
keeping the composite classifier accurate.

Implementations of DFID consist of a decision-tree (as a wrapper) and
another embedded classification method (this method can, in principle,
also be a decision tree). The embedded classification method generates the
multiple classifiers for the tree’s leaves. The DFID sequence is illustrated
by the pseudo code in Figure 14.1. DFID inputs are: training instances; a
list of attributes (which will be examined as candidates for splitting the
decision tree); a classification method; and, optionally (depending on the
specific implementation), some additional parameters.

The procedure begins by creating the decision tree’s root node. The
root represents the entire instance space X. When constructed, each node
is attached with a rule which defines the sub-space of X that the node
represents. The DFID framework considers rules that can be expressed
in a conjunctive normal form. A rule may be, for example: “(4; = 3V
A1 = 4) AN Ay = 17. DFID then checks whether there should be a split
from the root node (i.e. whether X should be partitioned). This check,
which uses some stopping rules, is represented, in Figure 14.1 by the general
function StoppingCriterion. The function receives some inputs (depending
on the specific implementation) and returns a Boolean value that indicates
whether the stopping rules are met. If the stopping rules are met, then I
is trained using all of the training instances. The classifier that results is
attached to the root node and the procedure terminates. If, however, the
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stopping-rules are not met, then DFID searches for a split, according to
some splitting rule, represented in Figure 14.1 by the general function split.

Splits in DFID are based on the values of a certain candidate attribute.
We assume that there exists at least a single attribute that can create a split
(or otherwise the stopping-rules would have indicated that there should be
no more splits).

The function split receives a training set, a set of candidate attributes
and optionally some additional inputs. It then returns the attribute upon
whose values the split is based and a set of descendents nodes. Recall that
upon its creation, each node is attached with a rule, which defines the
sub-space of X that the node represents. The rules for the descendent
nodes are conjunctions of the root’s rule and restrictions on the values
of the selected attribute. The split that was found may be then subjected
to a validation examination, represented, in Figure 14.1 by the general
function validate. If a split is found to be invalid, then DFID will search for
another split (another attribute). If there are no more candidate attributes,
I will be trained using all the training instances and the classifier that
results will be attached to the root node. As soon as a valid split is
found, the descendent nodes that were created by the split are recursively
considered for further splits. Further splits are achieved by the recurrence of
DFID. In the recurrence, only a subset of the training instances is relevant
(the instances that are actually sorted to the certain descendent node).
In addition, the attribute, which defined the current split, is removed
from the list of candidate attributes. The descendents are finally linked
to their parent (the root). Different DFID implementations may differ in
all or some of the procedures that implement the three main framework
components — stopping-rules (the function StoppingCriterion), splitting
rules (the function split) and split validation examinations (the function
validate).

15.2.1 Stopping Rules

Stopping rules are checked by the general function StoppingCriterion
(Figure 14.1). However, it should be noticed that a negative answer by
this function is not the only condition that stops the DFID recurrence;
another, and even more natural, condition, is the lack of any valid split.
According to the simple stopping rule that NBTree uses, no splits
are considered when there are 30 instances or less in the examined
node. Splitting a node with only a few training instances will hardly
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affect the final accuracy and will lead, on the other hand, to a complex
and less comprehensible decision tree (and hence a complex and less
comprehensible composite classifier). Moreover, since the classifiers are
required to generalize from the instances in their sub-spaces, they must
be trained on samples of sufficient size.

Kohavi’s stopping-rule can be revised into a rule that never considers
further splits in nodes that correspond to [|S| instances or less, where
0 < 8 < 1is a proportion and |S| is the number of instances in original
training set, S. When using this stopping rule (either in Kohavi’s way or
in the revised version), a threshold parameter must be provided to DFID
as well as to the function StoppingCriterion. Another heuristic stopping
rule is never to consider splitting a node, if a single classifier can accurately
describe the node’s sub-space (i.e. if a single classifier which was trained by
all of the training instances, and using the classification method appear to
be accurate). Practically, this rule can be checked by comparing an accuracy
estimation of the classifier to a predefined threshold (thus, using this rule
requires an additional parameter). The motivation for this stopping rule is
that if a single classifier is good enough, why replace it with a more complex
tree that also has less generalization capabilities? Finally, as mentioned
above, another (inherent) stopping-rule of DFID is the lack of even a single
candidate attribute.

15.2.2 Splitting Rules

The core question of DFID is how to split nodes. The answer to this question
lies in the general function split (Figure 14.1). It should be noted that any
splitting rule that is used to grow a pure decision tree, is also suitable in
DFID.

Kohavi (1996) has suggested a new splitting rule, which selects the
attribute with the highest value of a measure, which he refers to as the
“utility” . Kohavi defines the utility as the fivefold cross-validation accuracy
estimation of using a naive-Bayes method for classifying the sub-spaces
which will be generated by the considered split.

15.2.3 Split Validation Examinations

Since splitting rules, are heuristic, it may be beneficial to regard the splits
they produce as recommendations that should be validated. Kohavi (1996)
validated a split by estimating the reduction in error, which is gained by the
split and comparing it to a predefined threshold of 5% (i.e. if it is estimated
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that the split will reduce the overall error rate by only 5% or less, the split
is regarded as invalid). In an NBTree, it is enough to examine only the
first proposed split in order to conclude that there are no valid splits, if
the one examined is invalid. This follows since in an NBTree, the attribute
according to which the split is done is the one that maximizes the utility
measure, which is strictly increasing with the reduction in error. If a split,
in accordance with the selected attribute cannot reduce the accuracy by
more than 5%, then no other split can.

We suggest a new split validation procedure. In very general terms, a
split according to the values of a certain attribute is regarded as invalid if
the sub-spaces that result from this split are similar enough to be grouped
together.

15.3 The Contrasted Population Miner (CPOM)
Algorithm

This section presents the CPOM, which splits nodes according to a novel
splitting rule, termed grouped gain ratio. Generally speaking, this splitting
rule is based on the gain ratio criterion [Quinlan (1993)], followed by a
grouping heuristic. The gain ratio criterion selects a single attribute from
the set of candidate attributes, and the grouping heuristic thereafter groups
together sub-spaces which correspond to different values of the selected
attribute.

15.3.1 CPOM Ouwutline

CPOM uses two stopping rules. First, the algorithm compares the number
of training instances to a predefined ratio of the number of instances in the
original training set. If the subset is too small, CPOM stops (since it is
undesirable to learn from too small a training subset). Secondly, CPOM
compares the accuracy estimation of a single classifier to a pre-defined
threshold. It stops if the accuracy estimation exceeds the threshold (if a
single classifier is accurate enough, there is no point in splitting further
on). Therefore, in addition to the inputs in Figure 15.1, CPOM must receive
two parameters: (3, the minimal ratio of the training instances and acc, the
maximal accuracy estimation that will still result in split considerations.
CPOM’s split validation procedure is directly based on grouped gain
ratio. The novel rule is described in detail, in the following subsection;
however, in general terms, the rule returns the splitting attribute and a set
of descendent nodes. The nodes represent sub-spaces of X that are believed
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DFID (S,A,D)

Where:

S - Training Set

A - Input Feature Set

I - Inducer

Create a tree with a root node;
IF StoppingCriterion(S, A,I) THEN
Attach the classifier I(S,A) to the root;
ELSE
Ax +— A;
valid < FALSE;
WHILE Ax # () and NOT (valid)
(Split Att, nodes) < split(S, Ax);
IF walidate(nodes, SplitAtt,S) THEN
valid < TRUE;
A+ A — SplitAtt;
FOR each node € nodes
Generate classifier DFID(Nodelnstances,A,I);
Attach the classifier to node;
Link the node to root;
END FOR
ELSE
Ax < A x —Split Att;
END WHILE
IF NOT (valid) THEN
Attach the classifier I(S,A) to the root;
END TF
END TIF
RETURN tree;

Fig. 15.1 DFID outline: A DFID implementation recursively partitions the instance
space of the training set, according to the values of the candidate attributes. As the
recursive partition ends, classifiers are attached to the leaves by employing the embedded
classification method.
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to be different. If the procedure returns just a single descendent node, the
split it has generated is regarded as invalid.

15.3.2 The Grouped Gain Ratio Splitting Rule

Grouped gain ratio is based on the gain ratio criterion followed by a
grouping heuristic. The gain ratio criterion selects a single attribute from
a set of candidate attributes. The instance sub-space, whose partition we
are now considering, may, in principle, be partitioned so that each new
sub-subspace will correspond to a unique value of the selected attribute.
Group gain ratio avoids this alternative, through heuristically grouping
sub-subspaces together. By grouping sub-subspaces together, grouped gain
ratio increases the generalization capabilities, since there are more instances
in a group of sub-subspaces than there are in the individual sub-subspaces.

Clearly, if we separately train I on each subset and obtain the same
exact classifier from each subset, then there is no point in the split, since
using this single classifier for the entire instance space is as accurate as using
the multiple classifiers; it is also much simpler and understandable, and it
can generalize better. The other direction of this argument is slightly less
straightforward. If the classifiers that were trained over the training subsets
are very different from one another, then none of them can classify X as one,
and we can believe that the split is beneficial. Based on this observation,
the grouped gain ratio splitting rule groups together sub-spaces that have
similar classifiers.

The intuition regarding the classifier comparisons raises questions of
what is similar, what is different and how to compare classifiers? Although
there may be multiple classifiers, all of which must be simultaneously
compared to each other, we begin answering these questions with the
simpler case of exactly two classifiers, using a comparison heuristic, which
we refer to as cross-inspection (see Figure 15.2).

Cross-inspection is based on two mutually-exclusive training subsets
and a classification method as inputs. The comparison begins by randomly
partitioning each subset into a training sub-subset and a test sub-subset.
Then, two classifiers are produced, by training the input method, once
over each training sub-subset. After producing the two classifiers, the cross-
inspection heuristic calculates the error rates of each classifier over each of
the test sub-subsets. If the error rate of the first classifier over the first test
sub-subset is significantly (with confidence level alpha) different from the
error of the first classifier over the second test sub-subset, or vice versa,
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then the two classifiers are regarded as different. The errors are compared
by testing the hypothesis that the errors are generated by the same binomial
random variable [Dietterich (1998)].

The cross-inspection heuristic compares only two distinct classifiers.
However, in the DFID framework, more than two classifiers must be
compared at a time (if the attribute, which was selected by the gain
ratio criterion, has more than two possible values). For example, if it is
believed that graduate students from different schools behave differently,
one may consider splitting according to the school’s name. The attribute
school can receive multiple values, all of which will have to be compared
simultaneously. A successful split will group similar schools together, while
different schools will be in different groups. Since an exhaustive search, over
all the possible groupings, is unacceptable in terms of complexity, grouped
gain ratio (see Figure 15.4) uses a greedy grouping heuristic, which is based
on cross-inspection.

The procedure begins by using cross-inspection, to compare all the
distinct pairs of classifiers (if there are ¢ classifiers, there are ¢(g-1)/2
comparisons). For each instance sub-space, the procedure computes the
number of instances that belong to sub-spaces that are similar to it
(by definition the similarity by cross-inspection is defined with regard to
classifiers rather than sub-spaces; each sub-space, however, is described
by a classifier). The classifier that represents the sub-space with the
largest such number is regarded as the classifier that covers the maximal
number of instances. The sub-spaces of all the instances which are covered
by this classifier are grouped together, and the procedure iterates. The
heuristic does not explicitly guarantee that any two classifiers in a group
are equivalent, but equivalence is assumed to be a transitive relation.
The greedy grouping procedure is a simple clustering method and other
clustering methods, like graph coloring [Zupan et al. (1998)] may also be
suitable here. Alternatively one could use the Warshall algorithm [Warshall
(1962)] for finding the transitive closure of the comparison matrix, which
can be used for calculating sup;. However, this form of calculation will not
be convenient in this case because it will tend to group too much as the
following example illustrates.

Cohen et al. (2007) demonstrated that CPOM improved the obtained
accuracy compared to the examined embedded methods (naive Bayes,
backpropagation and C4.5). Not only was CPOM more accurate than other
decision tree ISD methods, the grouping heuristic significantly improved
the accuracy results, compared to a CPOM variation which does not
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CrossInspection (S51,S5%,1,a)
Where:

S1,S9 - Mutually-exclusive training sets

I - Inducer

a - Confidence level

S11 < a random sample from Si;

S12 + 51— Si1;

S21 < a random sample from Ss;

S92 < S — Sa1;

Hy « I(S11);

Hy + I(S21);

FOR 4,5 €{1,2} DO
€i,j < accuracy estimation of H; over Sj,g;

END FOR

IF €12 is different from £;; with a confidence level « OR
€91 is different from €92 with a confidence level a THEN
return FALSE;

ELSE
return TRUE;

Fig. 15.2 The cross-inspection procedure outline: Searching for statistical significance,
the procedure compares the accuracy estimations of two distinct classifiers.

group. Finally, using three synthetic datasets, CPOM distinguished between
different populations in an underlined dataset.

15.4 Induction of Decision Trees by an Evolutionary
Algorithm (EA)

EAs are stochastic search algorithms inspired by the concept of Darwinian
evolution. The motivation for applying EAs to data mining tasks is that
they are robust, adaptive search techniques that perform a global search in
the solution space [Freitas (2005)]. Since a well-designed EA continually
considers new solutions, it can be viewed as an “anytime” learning
algorithm capable of quite quickly producing a good-enough solution. It
then continues to search the solution space, reporting the new “best”
solution whenever one is found.
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GroupedGainRatio (S, A, I, root, o)
Where:

S - Training Set

A - Input Feature Set

I - Inducer
root - the node from which the split is considered
o - confidence level

A; < the attribute from A with the maximal gain ratio;

S1,52,...,8(i) + a partition of S, according to values of A;;
FOR all j,ke {1,2,... ,d(i)} so that j <k
Ej 1 + CrossInspection(S;, Sk, I, )
Eyj < Ejk;
END FOR
FOR all j€ {1,2,... ,d(i)}

sup; <— the number of instances in the
subsets S; for which Ej;;=TRUE;
END FOR
L < a list of the subsets indices sorted descending by sup;;
nodes <— an empty set of nodes
WHILE L is not empty DO
Create a new node;
Attach the rule which is a conjecture of the root’s rule
and a disjoint of the values that correspond to
S; the first member of L and the members
Sk for which Ej;,=TRUE;
Remove from L any member that is described by the new
node;
Add node to nodes;
END WHILE
RETURN (A;, nodes)

Fig. 15.3 The grouped gain ratio procedure outline. The procedure groups together
similar values of a candidate attribute. Similarity is based on the cross-inspection
heuristic.

GA, a popular type of EA, have been successfully used for feature
selection. Figure 14.5 presents a high level pseudo code of GA adapted
from [Freitas (2005)].
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GA Dbegin by randomly generating a population of L candidate
solutions. Given such a population, a GA generates a new candidate solution
(population element) by selecting two of the candidate solutions as the
parent solutions. This process is termed reproduction. Generally, parents
are selected randomly from the population with a bias toward the better
candidate solutions. Given two parents, one or more new solutions are
generated by taking some characteristics of the solution from the first
parent (the “father”) and some from the second parent (the “mother”).
This process is termed “crossover”. For example, in GA that use binary
encoding of n bits to represent each possible solution, we might randomly
select a crossover bit location denoted as o. Two descendant solutions could
then be generated. The first descendant would inherit the first o string
characteristics from the father and the remaining m — o characteristics
from the mother. The second descendant would inherit the first o string
characteristics from the mother and the remaining n — o characteristics
from the father. This type of crossover is the most common and it is
termed one-point crossover. Crossover is not necessarily applied to all pairs
of individuals selected for mating: a Pcyossover probability is used in order
to decide whether crossover will be applied. If crossover is not applied, the
offspring are simply duplications of the parents.

Finally, once descendant solutions are generated, GA allow characteris-
tics of the solutions to be changed randomly in a process known as mutation.
In the binary encoding representation, according to a certain probability
(Pput), each bit is changed from its current value to the opposite value.
Once a new population has been generated, it is decoded and evaluated.
The process continues until some termination criterion is satisfied. A GA
converges when most of the population is identical, or in other words, when
the diversity is minimal.

Based on the pseudo code, one should provide the following ingredients
when using a GA algorithm for decision trees: crossover operator, mutation
operator, fitness function, a method to create the initial population and a
stopping criterion.

Several GA-based systems, which learn decision trees in the top-down
manner have been proposed, such as BTGA [Chai et al. (1996)], OC1-ES
[Cantu-Paz and Kamath (2003)] and DDT-EA [Krtowski (2004)]. Generally,
they apply an evolutionary approach to the test search, especially in the
form of hyper-planes.

The GDT-EA algorithm [Krtowski and Grze (2005)] that we describe
here searches for the whole tree at once in contrast to greedy, top-down
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GA

Create initial population of individuals
(candidate solutions)
Compute the fitness of each individual
REPEAT
Select individuals based on fitness
Apply genetic operators to selected individuals,
creating new individuals
Compute fitness of each of the new individuals
Update the current population

(new individuals replace old individuals)

UNTIL (stopping criterion)

Fig. 15.4 A Pseudo code for GA.

approaches. The initial population is generated by applying a standard
top-down decision tree inducers but attributes are selected in a dipolar
way. Specifically, two instances from different classes are randomly chosen.
Then an attribute which differentiates between the two instances is
selected.

The Fitness function is composed of two terms: the classification
accuracy on the training set and the tree complexity. Specifically, the fitness
function, which must be maximized, has the following form:

Fitness = Acc — a- S, (15.1)

where Acc is the classification quality estimated on the learning set; S is the
size of the tree (number of nodes); and o« — is a parameter which indicate
the relative importance of the complexity term. The value of a should be
provided by the user by tuning it to the specific problem that is solved.

The algorithm terminates if the fitness of the best individual in the
population does not improve during the fixed number of generations.
This status indicates, that the algorithm has converged. Additionally, the
maximum number of generations is specified, which allows limiting the
computation time in case of a slow convergence.

Like many other GAs, the GDT-EA also has two operators: MutateNode
(for mutation) and CrossTrees (for crossover). The first operator MutateN-
ode, which is applied with the given probability to every node of the tree,
can modify the test or change the node structure. If a non-leaf node is
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concerned it can be pruned to a leaf or its test can be altered. Specifically,
there are four modification options in case of non-leaf node:

e A completely new test is applied with another randomly chosen attribute
and threshold.

e A new threshold is randomly chosen without changing the attribute used
in the test.

e The current sub-tree is replaced by a sub-tree of an adjacent node.

e The test can be exchanged with another test taken from randomly chosen
descendant-nodes.

If a leaf node is to be mutated, then there are two options:

e The leaf node is replaced with a non-leaf node with a new randomly
chosen test.

e The leaf node is replaced with a sub-tree generated using an appropriate
algorithm.

The CrossTrees operator is equivalent to the standard crossover
operator. It alters two solutions by exchanging certain parts of input trees.
There are three possible exchange types: two types of sub-tree exchanges
and an exchange of only tests. At the beginning, regardless of the type, one
node in each tree is randomly chosen. Then the type of exchange between
trees is decided.

In the first CrossTree variant, the tests that are associated with the
chosen nodes are substituted. This option is valid only when the chosen
nodes have the same number of outgoing branches. In the second CrossTree
variant, we substitute the sub-trees starting from the chosen nodes. The
third CrossTree variant actually combines the first two variants. Branches
which start from the chosen nodes are exchanged in random order.



Chapter 16

Decision Trees and
Recommender Systems

16.1 Introduction

Recommender Systems (RS) are considered to be a very popular research
area as they offer users useful and interesting items that increase both
the seller’s profit and the buyer’s satisfaction. They contribute to the
commercial success of many on-line ventures such as Amazon.com and
NetFlix. Examples of recommended items include movies, web pages, books,
news items and more. Often a RS attempts to predict the rating a user will
give to items based on his or her past ratings and the ratings of other
(similar) users.

RSs are primarily directed towards individuals who lack sufficient
personal experience or competence to evaluate the potentially overwhelming
number of alternative items that a Websitemay offer. A case in point is a
book recommender system that assists users to select a book to read. In
the popular Website, Amazon.com, the site employs an RS to personalize
the online store for each customer. Since recommendations are usually
personalized, different users or user groups receive dissimilar suggestions.
In addition, there are non-personalized recommendations. These are much
simpler to generate and are normally featured in magazines or newspapers.
Typical examples include the top ten selections of books, CDs etc. While
they may be useful and effective in certain situations, these types of non-
personalized recommendations are typically not the ones to be addressed
by RS research.

In their simplest form, personalized recommendations are offered as
ranked lists of items. RSs try to predict the most suitable products
or services based on the user’s preferences and constraints. In order
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to complete such a computational task, RSs collect from users their
preferences, which are either explicitly expressed, e.g. as products ratings,
or are inferred by interpreting the user’s actions. For instance, an RS may
consider the navigation to a particular product page as an implicit sign of
preference for the items shown on that page.

RSs’ development has its origins in a rather simple observation:
individuals often rely on recommendations provided by others in making
mundane decisions. For example, it is common to rely on what one’s
peers recommend when selecting a book to read; employers count on
recommendation letters in their recruiting decisions; and when selecting
a movie to watch, individuals tend to trust the movie reviews that a film
critic has written and which appear in the newspaper they read.

In seeking to mimic this behavior, the first RSs applied algorithms to
leverage recommendations produced by a community of users to deliver
recommendations to an active user, i.e. a user looking for suggestions.
The recommendations were for items that similar users (those with similar
tastes) had liked. This approach is termed collaborative-filtering (CF) and
its rationale is that if the active user agreed in the past with some users,
then the other recommendations coming from these similar users should be
relevant as well and of interest to the active user.

16.2 Using Decision Trees for Recommending Items

Decision Trees are used as a model-based approach for recommender sys-
tems. The use of decision trees for building recommendation models offers
several benefits, such as: efficiency, interpretability and flexibility in han-
dling a variety of input data types (ratings, demographic, contextual, etc.).

However, simply using existing decision tree induction algorithms for
recommendation tasks is not always straightforward. A major weakness in
using decision trees as a prediction model in RS is the need to build a
huge number of trees (either for each item or for each user). Moreover, the
model can only compute the expected rating of a single item at a time. To
provide recommendations to the user, we must traverse the tree(s) from
root to leaf once for each item in order to compute its predicted rating.
Only after computing the predicted rating of all items can the RS provide
the recommendations (highest predicted rating items). Thus, decision trees
in RS do not scale well with respect to the number of items.

Gershman et al. (2010) propose a modification to the decision tree
model, to make it of practical use for larger scale RS. Instead of predicting
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the rating of an item, the decision tree would return a weighted list
of recommended items. Thus, with just a single traverse of the tree,
recommendations can be constructed and provided to the user. This
variation of decision tree based RS is described in Section 16.2.1.
Gershman et al. (2010) also introduce a new heuristic criterion for
building the decision tree. Instead of picking the split attribute to be the
attribute which produces the largest information gain ratio, the proposed
heuristic looks at the number of shared items between the divided sets. The
split attribute which had the lowest probability of producing its number of
shared items, when compared to a random split, was picked as the split
attribute. This heuristic is described in further detail in Section 16.2.2.
A comparison study shows that the new criterion outperforms the well-
known information gain criterion in terms of predictive performance.

16.2.1 RS-Adapted Decision Tree

In recommender systems the input set for building the decision tree
is composed of Ratings. Ratings can be described as a relation <
ItemID, UserID, Rating > (in which < ItemID, UserID > is assumed to be
a primary key). The users can be described by means of various attributes,
such as the user’s age, gender, occupation, etc. Other attributes can describe
the various items, for example the weight, price, dimensions etc. Rating
is the target attribute. Based on the training set, the system attempts
to predict the Rating of items the user does not have a Rating for, and
recommends to the user the items with the highest predicted Rating.

The construction of a decision tree is performed by a recursive process.
The process starts at the root node with an input set (training set). At each
node an item attribute is picked as the split attribute. For each possible
value (or set of values) child-nodes are created and the parent’s set is split
between child-nodes so that each child-node receives all items that have the
appropriate value(s) that correspond to this child-node as input-set. Picking
the split-attribute is done heuristically since we cannot know which split
will produce the best tree (the tree that produces the best results for future
input), for example the popular C4.5 algorithm uses a heuristic that picks
the split that produces the largest information gain out of all possible splits.
One of the attributes is predefined as the target attribute. The recursive
process continues until all the items in the node’s set share the same target
attribute value or the number of items reaches a certain threshold. Each
leaf node is assigned a label (classifying its set of items); this label is the



254 Data Mining with Decision Trees

shared target attribute value or the most common value in case there is
more than one such value.

Decision trees can be used for different recommender systems
approaches:

e Collaborative Filtering (CF) — Decision trees can be used for building a
CF system. Each instance in the training set refers to a single customer.
The training set attributes refer to the feedback provided by the customer
for each item in the system. In this case, a dedicated decision tree is
built for each item. For this purpose, the feedback provided for the
targeted item (for instance like/dislike) is considered to be the decision
that is needed to be predicted, while the feedback provided for all
other items is used as the input attributes (decision nodes). Figure 16.1
illustrates an example of such tree, when the item under discussion is
a movie.

e Content-Based Approach — Content features can be used to build a
decision tree. A separate decision tree is built for each user and is used
as a user profile. The features of each item are used to build a model that
explains the user’s preferences. The information gain of every feature is
used as the splitting criteria. Figure 16.2 (right) illustrates Bob’s profile.

The
Godfather
Dislike Like
Pulp Star
Fiction Wars
Dislike Like Dislike Like
L D Fight The Sixth
Club Sense

Dislike Like Dislike Like
L D L D

Fig. 16.1 A CF decision tree for whether users like the movie “The Usual Suspects”
based on their preferences to other movies such as The Godfather, Pulp Fiction etc.
A leaf labeled with “L” or “D” correspondingly indicates that the user likes/dislikes the
movie “The Usual Suspects”.
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Genre is
Comedy
V Yes
Staring by George Published

Clooney

year

Yes No >2000 <=2000
L D L D

Fig. 16.2 A CB decision tree for Bob.

It should be noted that although this approach is interesting from a
theoretical perspective, the precision rate that was reported for this
system is not as accurate as that of recommending the average rating.

e Hybrid Approach — A hybrid decision tree can also be constructed.
Only a single tree is constructed in this approach. The tree is similar to
the collaborative approach in the way it treats the user’s attributes as
attributes to split by (such as her liking/disliking of a certain movie).
But the attributes the tree utilizes are merely general attributes that
represent the user’s preference for the general case and that are based
on the content of the items. The attributes are constructed based on the
user’s past ratings and the content of the items. For example, a user
that rated negatively all movies of the comedy genre is assigned a low
value in a “degree of liking comedy movies” attribute. Similarly to the
collaborative approach, the constructed tree is applicable to all users.
However, it is now also applicable to all items since the new attributes
represent the user’s preferences for all items and not only for a single
given item. Figure 16.3 illustrates such a hybrid tree.

Consider a general case with a dataset containing n users, m items,
and an average decision tree of height h. The collaborative filtering based
RS requires m trees to be constructed, one for each item. When a user
likes to receive a recommendation on what movie to watch, the system
traverses all trees, from root to leaf, until it finds an item the user would
like to view. The time complexity in this case is therefore O(h - m). This
might be too slow for a large system that needs to provide fast and
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User’s
Gender
Female Male
Pulp Star
Fiction Wars
Dislike Like Dislike Like
{ The Kid {1 Paths of Glory ! { Mononoke-hime || The Pianist |
| Safety Last! i1 Smultronstéllet Fight Club Oldboy
: The Gold Rush 1} Vertigo . ! The Matrix i Finding Nemo
{ The Big Parade ! Touch of Evil ! ! American Beauty ! Big Fish
The Gengral b Psycho ! Magnolia i1 Mystic River
i Metropolis i1 The Apartment ! Memento Forrest Gump
i City Lights i1 The Hustler : ! Gladiator Die Hard
; gU;k Soup H Léon i ! Amores perros Metropolis
| GIe en H Forrest Gump i Donnie Darko City Lights
tGlory iiDieHad 1 i Cidade de Deus 1! Fight Club

Fig. 16.3 An example CF-CB hybrid decision tree.

on-demand recommendations to users. The content based approach requires
n individual trees to be constructed: one for each user. When a user likes to
receive a recommendation, the system needs to traverse the user’s tree from
root to leaf once for each item, until it finds an item the user might like
watching. Therefore, the time complexity in this case is O(h-m). Similarly,
in the hybrid approach, the tree needs to be traversed once for each item,
and here too the time complexity is O(h - m).

In systems that have multiple possible items to recommend and that
require fast computation of recommendations, all the above decision tree
based RS would be impractical. Therefore, it is required to revise the
decision tree to better fit RS, and provide recommendations faster to users.
The proposed algorithm is similar to the ID3 algorithm and uses the hybrid
approach. Because we employ the hybrid approach, only a single tree is
needed, whereas the attributes to split by are user’s descriptive attributes.
These qualities can be computed based on the user’s past ratings and
the content of the items, as shown in the example in Figure 16.3, but
these can also include user profile attributes aforementioned. The major
variation from the ID3 algorithm is in the tree’s leaf nodes; instead of
creating leaf nodes with a label that predicts the target attribute value
(such as rating), each leaf holds a recommendation list. When a user
wishes to receive recommendations, the tree is traversed based on the user’s
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attributes until the leaf node is reached. The node contains a pre-computed
recommendation list and this list is returned to the user. Thus, the time
complexity is reduced to O(h).

Building the recommendation list at the leaf node can be done in
various ways. We selected the following solution: to compute the weighted
average of the ratings in all tuples at the leaf’s Ratings set and to prefer
the items with the highest weighted average. Consider the rightmost leaf in
the example tree in Figure 16.3. For any tuple < i, u,r > in the Ratings set
(i,u,r denote an item, a user and a rating respectively). At this leaf node
we know that u has a degree of liking the comedy genre more than 0.5 and
a degree of liking movies with the actor George Clooney more than 0.7.
All the items rated by users such as u appear in this Ratings set alongside
the ratings each user submitted. This leaf therefore contains the ratings of
users similar to u. If we now pick the items that were rated the highest by
the users similar to u, these would form a good recommendation for this
user. Thus, we order all items based on a weighted average (since items
can appear more than once, when more than one user rated them) and set
this list as the recommendation list for this leaf node. The algorithm is
presented in detail in Figure 16.4.

16.2.2 Least Probable Intersections

Based on the model constructed with the training set, decision trees seek
to provide good results for new unseen cases. To accomplish this, the
construction algorithm strives for a small tree (in terms of the number of
nodes) that performs well on the training set. It is believed that a small tree
generalizes better, avoids over fitting, and forms a simpler representation
for users to understand. The C4.5 is a popular algorithm for constructing
such decision trees. It employs the criterion of normalized information gain
to pick the attribute which is used to split each node. The attribute with
the largest normalized information gain is picked, as it provides the largest
reduction in entropy. Since this is a heuristic, it does not guarantee the
smallest possible tree.

In RS the input set for building the decision tree is composed of Ratings.
Ratings can be described as a relation < ItemID, UserID, Rating > (in
which < ItemID, UserID > is assumed to be a primary key). The intuition
behind the heuristic proposed in this chapter is as follows. Consider a split
into two subsets, A and B. The less ItemIDs are shared between the sets A
and B, the better the split is since it forms a better distinction between
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1: Create Root Node

2: if Ratings.size < threshold then

3:  root.recommendations < recommendation;ist(Ratings)

4:  Return root

5: else

6: Let A be the user attribute that best classifies the input

7. for all value v of A do

8 Add a branch b below root, labeled (A = v)

9 Ratings, < subset of Ratings that have the value v for A.

10: Add RS-Adapted-Decision-Tree(Ratings,) below this new branch
b

11:  end for

12: end if

13: Return Root

Fig. 16.4 A modified decision tree for recommender systems.

the two groups. However, different splits may result in different group
sizes. Comparing the size of the intersection between splits of different
sub-relation sizes would not be sufficient since an even split for example
(half the tuples in group A and half in group B) would probably have a
larger intersection than a very uneven split (such as one tuple in group
A and all the rest in group B). Instead, we look at the probability of our
split’s item-intersection size compared to a random (uniform) split of similar
group sizes. A split which is very likely to occur even in a random split is
considered a bad split (less preferred) since it is similar to a random split
and probably does not distinguish the groups from each other. A split that
is the least probable to occur is assumed to be a better distinction of the
two subgroups and is the split selected by the heuristic.
More formally let us denote:

o items(S) = mrtemrn(S), where 7 is the projection operation in relational
algebra, the set of all [temIDs that appear in a set S.

e 0;(S) = |ortemrp=i(S)|, where o is the select operation in relation
algebra, is the number of occurrences of the ItemID i in the set S.

Let S, (g denotes the number of ratings) be a random binary partition
of the tuples in Ratings into two sub-relations A and B consisting of £ and
q — k tuples, respectively. We are interested in the probability distribution
of Sy = |(items(A) (items(B)|.
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First, let us find the probability of an item belonging to the intersection.
The probability of all o; occurrences of any item ¢ to be in the set A is (%)01
Similarly, the probability for all o; occurrences of an item 4 to be in the set
B is (ﬂ)‘”. In all other cases an item ¢ will appear in the intersection,
thus the probability P; that an item 4 belongs to items(A) [items(B) is:

P=1- (g) - <%) . (16.1)

Next, we can construct a random variable z; which takes the value
1 when an item ¢ belongs to the intersection of A and B, and otherwise
the value is 0. Using the above equation, the variable x; is distributed
according to a Bernoulli distribution with a success probability P;. Thus,
Sq is distributed as the sum of |items(Ratings)| non-identically distributed
Bernoulli random variables which can be approximated by a Poisson
distribution:

= — (16.2)

where

A= > P, (16.3)

i€items(Ratings)
The cumulative distribution function (CDF) is therefore given by:

Pr(Sy <j)= M7 (16.4)
[k ]!
where I'(z,y) is the incomplete gamma function and |k] is the floor
function.

To summarize, given a binary split of Ratings into two sub-relations A
and B, of sizes ¢ and g — k respectively. Our proposed heuristic initially
computes the size of the item-intersection, |(items(A)(items(B)| = j.
Next, we compute the probability of receiving such intersection size in
a similar-size random split using the probability Pr(S; < j). Out of
all possible splits of Ratings, our heuristic picks the one with the lowest
probability Pr(S, < j) to be the next split in the tree.

16.3 Using Decision Trees for Preferences Elicitation

Most RS methods, such as collaborative filtering, cannot provide personal-
ized recommendations until a user profile has been created. This is known as
the new user cold-start problem. Several systems try to learn the new users’
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profiles as part of the sign up process by asking them to provide feedback
regarding several items. In this section, we present an anytime preferences
elicitation method that uses the idea of pairwise comparison between items.
Our method uses a lazy decision tree, with pairwise comparisons at the
decision nodes. Based on the user’s response to a certain co mparison we
select on-the-fly what pairwise comparison should next be asked. A com-
parative field study shows that the proposed pairwise approach provides
more accurate recommendations than existing methods and requires less
effort when signing up newcomers [Rokach and Kisilevich (2012)].

Most recommendation techniques use some types of a user profile or
user model but these techniques cannot provide personalized recommenda-
tions until a user profile has been created. As the user interacts with the
system, the profile can be incrementally established to eventually provide
personalized recommendations. One way to address the challenge is to
ask newcomers to fill-in a simple questionnaire that will lead them to an
immediately beneficial recommendation.

Methods that ask the user to specify her preferences for item attributes
are also known as preference elicitation or preference-based search. Research
in the area has mainly focused on using a set of examples (e.g. the number
of movies the user likes) or through a form of specifying the user’s interests.
Such approaches have drawbacks. While rating observed items is a painless
process, using only a set of rated items can cause the system to later
recommend only items similar to the ones the user rated. Furthermore,
asking users to fill in lengthy forms is usually considered a boring chore
and users tend to either avoid it or answer questions arbitrarily (e.g. always
picking the first answer).

Decision trees can improve the initialization of the profile generation
by using a questionnaire. The questionnaire is created as an interactive,
easy-to-use process. At each stage the user is presented with two items and
is asked to select the preferred item. The items are presented as pictures to
make the answering process intuitive. The underlying process is “anytime”
in the sense that although the user may choose to abandon the questionnaire
at any stage, the system is still able to create a profile. The more answers
the user provides, the more specific her profile becomes. It is advisable to
perform a pairwise comparison because previous research shows that users
are more accurate when making relative indirect judgments than when they
directly rank items using a linear scale.

Pairwise comparison is a well-known method in decision making. But
there are only a few attempts to use it in RSs and none of them has been
used in the context of the collaborative filtering setting.
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While pairwise comparison is considered to be accurate, it is time
consuming and thus hardly used in real-time applications. Instead of
comparing items, we suggest clustering the items, for the purposes of
acceleration and simplification of the pairwise comparison. In this way we
can trade accuracy with time consumption.

When new users signup to a recommendation service, the system is
oblivious to their preferences. Therefore, the initial recommendations the
system provides are of relatively low quality. This phenomenon is known
as the user cold start problem. A common approach to solve the cold start
problem and to learn the user’s preferences is to ask her to rate a number
of items (known as training points). Preference elicitation is the initial
acquisition of this profile for a given user.

It would seem apparent that a user’s preferences could be elicited
by simply asking her to define her preferences on various aspects (such
as film genre in the movie domain). However, this simplistic approach
usually does not work, mainly because users have problems in expressing
their preferences and may not have the domain knowledge to answer the
questions correctly. Thus another approach is to ask the user to provide
feedback regarding several items presented to her. Roughly speaking there
are two types of item-based methods: static and dynamic methods. With
static methods, the system manages a seed set of items to be rated by the
newcomer. This set is preselected regardless of the feedback provided by the
current during the elicitation process. The methods are described as static
because they use the same items for all users. On the other hand, with
dynamic methods, the questions are adopted to feedback from the current
user.

This is the place to note that several researchers criticize the idea of
initial questionnaire. According to these researchers, users may lack the
motivation to answer initial elicitation questions prior to any discerned
and concrete benefits. Moreover, user preferences are context-dependent
and may be constructed gradually as a user develops self-awareness. If the
recommender system imposes a prolonged elicitation process just when the
user signs up, the preferences obtained in this way are likely to be uncertain
and erroneous.

16.3.1 Static Methods

Recently, published researches discuss the criteria for selecting the items
about which the user should be queried. Among the ideas that have
emerged are the use of controversial items that are also indicative of their
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tendencies. The contention of an item is frequently estimated using the
Entropy measure. However, selecting non-popular items may not be helpful
because the users might not be able to rate them. On the other hand,
selecting items that are too popular, may not provide us with sufficient
information regarding the user’s taste. Thus, in order to steer a clear course
between selecting non-popular items and ones that are too popular, the
appropriate way seems to be to query users about popular yet controversial
items.

Nevertheless, combining entropy and popularity is not always sufficient
for learning about the user’s general taste. The queried items should also
be indicative to other items.

The use of the three criteria above — popularity, controversiality and
predictability — is not sufficient for obtaining a good user profile because
of two main reasons. First, the interactions among the items are ignored.
Namely, two queried items with high criteria values can also be highly
dependent. Thus, querying the user regarding both items will usually
contribute relatively little information compared to asking the user about
only one item.

16.3.2 Dynamic Methods and Decision Trees

There have been very few attempts to dynamically implement the initial
profile process, i.e. adopt further queries to the current user feedback. Most
of the dynamic methods employ decision trees. Decision trees seem to be
more successful for initial profile generation.

The Information Gain through Clustered Neighbors (IGCN) algorithm
selects the next item by using the information gain criterion while taking
into account only the ratings data of those users who match best the target
newcomer’s profile so far.

While IGCN is based on a non-tree idea, the inventors of IGCN indicate
that the usage of a decision tree can be easily adopted. Users are considered
to have labels that correspond to the clusters they belong to and the role
of the most informative item is treated as helping the target user most in
reaching her representative cluster.

In the next section, we present one of the recent dynamic methods
that employ decision trees to guide the user through the elicitation process.
Moreover, in all cases each tree node is associated with a group of users.
This makes the elicitation process an anytime process. The essence of an
anytime process is that the user may answer as many questions as she likes.
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Whenever the user terminates the process, we can still formulate a valid
profile. The advantages of the anytime approach for preference elicitation
have been shown to be important in the past.

16.3.3 SVD-based CF Method

CF methods identify similarities between users based on items they have
rated and recommend new items that similar users have liked. CF stems
from the idea that people who look for recommendations often ask their
friends for advice. The main advantage of CF is that it is independent of
item specification and can therefore provide recommendations for complex
items which are very different but often used together. The major drawback
of this approach is the inability to create good recommendations for new
users who have not yet rated many items, and for new items that were not
rated by many users.

CF algorithms vary according to the method they employ in order
to identify similar users. Originally nearest-neighbor approaches, based
on the Pearson correlation to compute a similarity between users, were
implemented. Later on, matrix factorization techniques became the first
choice for implementing CF.

RSs rely on various types of input. Most important of all is the explicit
feedback, where users express their interest in items. We consider a set of
m users denoted as U and a set of n items denoted as I. We reserve special
indexing letters to distinguish users from items: u, v for users and i, j for
items. A rating r,; indicates the rating of user u to item i, where high values
indicate a stronger preference. For example, the ratings, usually presented
in terms of stars accorded the preference, can be integers ranging from 1
star indicating no interest to 5 (stars) indicating a strong interest. Usually
the vast majority of ratings are unknown. As the catalog of items may
contain millions of items, the user is capable of rating only small portion of
the items. This phenomenon is known as the sparse rating data problem.

We denote by p the overall average rating. The parameters b, and
b; indicate the observed deviations from the average of user v and item ¢,
respectively. For example, let us say that the average rating over all movies,
u, is 3 stars. Furthermore, Toy Story is better than an average movie, so
it tends to be rated 0.7 stars above the average. On the other hand, Alice
is a critical user, who tends to rate 0.2 stars lower than the average. Thus,
the baseline predictor for Toy Story’s rating by Alice would be 3.5 stars by
calculating 3 + 0.7 — 0.2.
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The SVD CF methods transform users and items into a joint latent
factor space, Rf where f indicate the number of latent factors. Both users
u and items i are represented by corresponding vectors p,,q; € Rf. The
cosine similarity

The final rating is created by adding baseline predictors that depend
only on the user or item. Thus, a rating is predicted by the rule:

Fui = p+ i + by + g} pu. (16.5)

We distinguish predicted ratings from known ones, by using the hat
notation for the predicted value. In order to estimate the model parameters
(bu, b, pu, and ¢;) one can solve the regularized least squares error problem
using a stochastic gradient descent procedure:

, mnin D (rui — = b = by — g} pu)” + Aa (0] + 02 + aill® + [Ipull®)-
RO

(16.6)

16.3.4 Pairwise Comparisons

A pairwise comparison is used for eliciting new user profiles. The main idea
is to present the user with two items and ask her which of them is preferred.
Usually, she has to choose the answer from among several discrete pairwise
choices.

It has previously been shown in psychological studies that due to the
human capacity, the best number of discrete choices is 7 & 2, each of which
is a linguistic phrase such as “I much prefer item A to item B” or “I equally
like item A and item B”.

While we are using pairwise comparisons to generate the initial profile,
we still assume that the feedback from existing users is provided as a
rating of individual items (the rating matrix). As the preferences are
expressed in different ways, they are not directly comparable. Mapping
from one system to another poses a challenge. Satty explains how a rating
scale can be converted into a pairwise comparison and vice versa. We
illustrate the mapping process with the following example: we are given
four items A,B,C,D rated in the scale [1,5] as following r,a4 = 5, rup = 1,
ruc = 3, ryp = 2. The pairwise comparison value between two items is
set to:

Cuij = Tui/Tuj- (16.7)
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Table 16.1 Illustration of 4 x 4 judgment matrix
corresponding to ratings r4 = 5, rg = 1, rc = 3,
rp = 2 using Equation (16.7).

A B C D
A 1 5/1 5/3 5/2
B 1/5 1 1/3 1/2
C 3/5 3/1 1 3/2
D 2/5 2/1 2/3 1

Based on Equation (16.7) we can prepare a square judgment matrix,
where every element in the matrix refers to a single, pairwise comparison.
Table 16.1 presents the corresponding table.

Once the matrix is obtained, the original rating of the items can be
reconstructed by calculating the right principal eigenvector of the judgment
matrix. It follows from the fact that, for any completely consistent matrix,
any column is essentially (i.e. to within multiplication by a constant) the
dominant right eigenvector.

It should be noted that there are other methods for converting a
judgment matrix into an affinity vector, including, for example, the least
squares method, logarithmic least squares method, weighted least squares
method, logarithmic least absolute values method and singular value
decomposition. Each of these methods has advantages and weaknesses. In
this chapter, we use the eigenvector method due to its popularity. The
eigenvector can be approximated by using the geometric mean of each row.
That is, the elements in each row are multiplied with each other and then
the kth root is taken (where k is the number of items).

Recall that the user selects a linguistic phrase such as “I much prefer
item A to item B” or “I equally like item A and item B”. In order to map it
into a five stars rating scale, we first need to quantify the linguistic phrase
by using a scale. Such a scale is a one-to-one mapping between the set of
discrete linguistic choices and a discrete set of numbers representing the
importance or weight of the choice. Satty suggests matching the linguistic
phrases to the set of integers k = 1,...,9 values for representing the degree
to which item A is preferred over item B. Here, the value 1 indicates that
both of the items are equally preferred. The value 2 shows that item A is
slightly preferred over item B, etc.

The value 3 indicates that item A is preferred over item B. The value
4 signifies that item A is much more preferred over item B and so on.



266 Data Mining with Decision Trees

Table 16.2 Illustration of 4 x 4
judgment matrix corresponding to
ratings r4 = 5, rp = 1, rc = 3,
rp = 2 using Equation (16.8).

A B C D
A 1 9 2 4
B 1/9 1 1/5 1/3
C 1/2 5 1 2
D 1/4 3 1/2 1

Similarly, the inverse numbers (1/k) are used to represent the degree to
which item B is preferred over item A. In order to fit the five stars ratings
to Satty’s pairwise scores, we need to adjust Equation (16.7) to:

2T wi .
round < wo_ 1> if ryi > ryj
Tuj

Coii = o . (16.8)
1\round ( Yo 1) if 7y < Ty

Tui

This will generate the judgment matrix presented in Table 16.2. The
dominant right eigenvector of the matrix in Table 16.2 is (3.71;0.37;1.90; 1).
After rounding, we obtain the vector of (4,0,2,1). After scaling we
successfully restore the original ratings, i.e.: (5,1,3,2). The rounding of
the vector’s components is used to show that it is possible to restore the
original rating values of the user. However, for obtaining a prediction for a
rating, rounding is not required and therefore it is not used from here on.
Note that because we are working in a SVD setting, instead of using the
original rating provided by the user, we first subtract the baseline predictors
(i.e. i — p — b; — by,) and then scale it to the selected rating scale.

Our last example assumed that all pairwise comparisons should be
performed before the judgment matrix can be converted into the regular
rating scale. However, it is possible to approximate the rating using the
incomplete pairwise comparison (IPC) algorithm. In fact, if each item is
compared at least once, the approximation is quite good.

16.3.5 Profile Representation

Since we are working in a SVD setting, the profile of the newcomer should
be represented as a vector p, in the latent factor space, as is the case with
existing users. Nevertheless, we still need to fit the p,, of the newcomer to her
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answers to the pairwise comparisons. There are two options for achieving
this. The first option is to convert the pairwise answers into individual
ratings using the procedure described below. Once the individual ratings
are obtained, we can use an incremental SVD algorithm to update the
model and to generate the new user vector. While the resulting model is
not a perfect SVD model, the folding-in procedure still provides a fairly
good approximation of the new user vector. The second option is to match
the newcomer’s responses with existing users and to build the newcomer’s
profile based on the profiles of the corresponding users. We assume that
a user will get good recommendations if like-minded users are found.
First, we map the ratings of existing users into pairwise comparisons using
Equation (16.8). Next, using the Euclidian distance, we find among existing
users those who are most similar to the newcomer. Once these users have
been identified, the profile of the newcomer is defined as the mean of their
vectors.

16.3.6 Selecting the Next Pairwise Comparison

We take the greedy approach for selecting the next pairwise comparison, i.e.
given the responses of the newcomer to the previous pairwise comparisons,
we select the next best pairwise comparison. Figure 16.4 presents the
pseudo code of the greedy algorithm. We assume that the algorithm gets
N (v), as an input. N(v) represents the set of non-newcomer similar users
that was identified based on pairwise questions answered so far by the
newcomer v.

In lines 3-15, we iterate over all candidate pairs of items. For each pair,
we calculate its score based on its weighted generalized variance. For this
purpose, we go over (lines 5-10) all possible outcomes C' of the pairwise
question. In line 6, we find N(v,4,7,C) which is a subset of N(v) which
contains all users in N (v) that have rated items ¢ and j with ratio C, where

ur,
systjem we cannot assume that all users have rated both item ¢ and item j,
we treat these users as a separate subset and denote it by N(v,1,7,0).

In lines 7-9, we update the pair’s scores. We search for the pairwise
comparison that best refines the set of similar users. Thus, we estimate
the dispersion of the p, vectors by first calculating the covariance matrix
(line 7). The covariance matrix X is a f x f matrix where f is the number of
latent factors. The covariance matrix gathers all the information about the
individual latent factor variabilities. In line 8, we calculate the determinant

is calculated as in Equation (16.8). Since in a typical recommender
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of ¥ which corresponds the generalized variance of the users’ profiles. The
usefulness of GV as a measure of the overall spread of the distribution is
best explained by the geometrical fact that it measures the hypervolume
that the distribution of the random variables occupies in the space.

In conclusion, the greedy algorithm selects the next pairwise compari-
son as the pair of items minimizes the weighted generalized variance:

NextPair = arg?}i% > IN(v,i,5,C)| - GV (N(v,i,5,C)). (16.9)
2,3 C

Before the first interaction of the newcomer u with the system, we
initialize the similar users set as the whole set of existing users, i.e.:
N (v) < U. After selecting the best pair, we present the pairwise comparison
to the newcomer and wait for her response. Based on the response, we can
update the set of similar users to a corresponding subset. Specifically, if
the newcomer responded with C to the comparison between (i,7), then
N(v) < N(v,1,j,C). Consequently, the process can be recursively repeated
with the new set of similar users. If the newcomer is not familiar with one
of the items, we continue the process with N(v) <« N(v,1,7,0).

Require: v (the newcomer user), N(v) (set of existing users that so far
answered the same as v ), p, (the latent profiles of all users), I (set of
items).

1: BestPair < ()

2: BestPairScore < oo

3: for all pair of items (i,7) such that i,5 € [ and i #j do
4:  PairScore < 0

5. for all possible outcomes C of the pairwise (¢,5) do
6: N(v,i,5,C) < {u€ N()|C;;;; =C}

T: Get covariance matrix X from N (v, 1, j, C') profiles
8: GV + det(Z)

9: PairScore « PairScore + |N (v,4,j,C)| - GV
10  end for
11:  if PairScore < BestPairScore then
12: BestPairScore <+ PairScore; BestPair + (i,7)
13:  end if
14: end for
15: Return BestPair

Fig. 16.5 An algorithm for selecting the next pairwise comparison.
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16.3.7 Clustering the Items

Searching the space of all possible pairs is reasonable only for a small set
of items. We can try to reduce running time by various means. First, if the
newcomer user v has already commented on some item pairs, then these
pairs should be skipped during the search. Moreover, we can skip any item
that has not been rated by a sufficiently large number of users in the current
set of similar users. Their exclusion from the process can speed execution
time. Moreover, the searching can be easily parallelized because each pair
can be analyzed independently. Still, since typical RSs include thousands
of rated items, it is completely impractical or very expensive to go over all
remaining pairs.

A different problem arises due to the sparse rating data problem. In
many datasets only a few pairs can provide a sufficiently large set of similar
users to each possible comparison outcome. In the remaining pairs, the
empty bucket (i.e. C' = ) will populate most of the users in N (v).

One way to resolve these drawbacks is to cluster the items. The goal
of clustering is to group items so that intra-cluster similarities of the items
are maximized and inter-cluster similarities are minimized. We perform the
clustering in the latent factor space. Thus, the similarity between two items
can be calculated as the cosine similarity between vectors of the two items,
¢; and ¢;. By clustering the items, we define an abstract item that has
general properties similar to a set of actual items.

Instead of searching for the best pair of items, we should search now
for the best pair of clusters. We can still use Equation (16.9) for this
purpose. However, we need to handle the individual rating of the users
differently. Because the same user can rate multiple items in the same
cluster, her corresponding pairwise score as obtained from Equation (16.8)
is not unequivocal. There are many ways to aggregate all cluster-wise
ratings into a single score. Here, we implement a simple approach. We first
determine for each cluster [ its centroid vector in the factorized space ¢,
then the aggregated rating of user u to cluster [ is defined as ryy = ¢;” - pu.
Finally, the cluster pairwise score can be determined using Equation (16.9).

After finding the pair of clusters, we need to transform the selected pairs
into a simple visual question that the user can easily answer. Because the
user has no notion of the item clusters, we propose to represent the pairwise
comparison of the two clusters (s,t), by the posters of two popular items
that most differentiate between these two clusters. For this purpose, we first
sort the items in each cluster by their popularity (number of times it was
rated). Popular items are preferred to ensure that the user recognizes the
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items and can rate them. From the most rated items in each cluster (say
the top 10%), we select the item that maximizes the Euclidian distance
from the counter cluster. Finally, it should be noted that the same item
cannot be used twice (i.e. in two different pairwise comparisons). First, this
prevents monotonous visuals that might bore the user. More importantly,
we get hold of a better picture of user preferences by obtaining her response
from a variety of items from the same cluster. While the above selection of
items is ad-hoc, the reader should take into consideration that this is only
a secondary criterion that follows pairwise cluster selection. We focus on
finding good enough items in an almost instantaneous time.

16.3.8 Training a Lazy Decision Tree

We utilize decision trees to initiate a profile for a new user. In particular,
we use the top-down lazy decision tree (Lazy decision tree) as the base
algorithm. However, we use a different splitting criterion described in
Equation (16.9) as the splitting criterion. The pairwise comparisons are
located at the decision nodes. Each node in the tree is associated with a set
of corresponding users. This allows the user to quit the profile initialization
process anytime she wants. If the user does not wish to answer more
questions, we take the list of users that are associated with the current node
and calculate the mean of their factorized vectors. The more questions the
user answers, the more specific her vector becomes. But even with answering
only a few questions we can still provide the user a profile vector.

Figure 16.6 illustrates the root of the decision tree. Each inner node
represents a different pairwise comparison. Based on the response to the
first (root) question, the decision tree is used to select the next pairwise
comparison to be asked. Note that one possible outcome is “unknown”,
this option is selected when the user does not recognize the items. Every
path in the decision tree represents a certain set of comparisons with which

the user is presented. Assuming that there are k clusters, then the longest

k-(k—1)
2

Note that if there are s possible outcomes in each pairwise comparison
kx(k—1)/2

possible path contains inner nodes (comparisons).

and there are k clusters, then the complete decision tree will have s
leaves. Even for moderate values of k this becomes impractical. Thus,
instead of building the entire decision tree, we take the lazy approach. If
the current newcomer has reached a leaf and is willing to answer additional
questions, only then do we expand the current node using the suggested
splitting criterion. In this way, the tree expands gradually and on-demand.
Given a limited memory size, we keep only the most frequent visited nodes.
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Fig. 16.6 An illustration of the pairwise decision tree.

Since each tree node is associated with a set of users, we can create a new
user profile vector for each node by taking the mean of the vectors of the
corresponding users. When a user decides to terminate the profile initializa-
tion, we generate her profile vector p, based on the node she has reached
on the tree. Then Equation (16.5) can be used to predict ratings. Using
this vector we can generate a recommendation list by sorting the items
according to Equation (16.5). We could also use Equation (16.5) without
actually knowing the user bias b, because the user bias does not affect the
way the items are sorted. Sometime sorting the items is not sufficient and
one is interested in the actual rating, for example, when it is necessary to
calculate the RMSE evaluation measure. For predicting the user rating, we
have to take it into account. But for that we need to know the user bias. To
do this, we first reconstruct the user’s supposed individual ratings ry ;. We
distinguish supposed ratings from original ones by using the tilde notation.
Supposed ratings are pairwise responses that are converted to ratings using
the right dominant eigenvector mapping procedure presented above.

In order to estimate b,, we solve the least squares problem presented
in Equation (16.6) by replacing r, ; with r, ;. Note that in this case the
parameters p,, q;, b; and p are fixed. Thus, we need to minimize an
univariate function with respect to b, over the domain [—5,45] (when

ratings range from 1 to 5). Minimization is performed by the golden section
search.
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