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Preface to the Third Edition

The goals of this book are to develop an appreciation for the richness and
versatility of modern time series analysis as a tool for analyzing data, and still
maintain a commitment to theoretical integrity, as exemplified by the seminal
works of Brillinger (1975) and Hannan (1970) and the texts by Brockwell and
Davis (1991) and Fuller (1995). The advent of inexpensive powerful computing
has provided both real data and new software that can take one considerably
beyond the fitting of simple time domain models, such as have been elegantly
described in the landmark work of Box and Jenkins (1970). This book is
designed to be useful as a text for courses in time series on several different
levels and as a reference work for practitioners facing the analysis of time-
correlated data in the physical, biological, and social sciences.

We have used earlier versions of the text at both the undergraduate and
graduate levels over the past decade. Our experience is that an undergraduate
course can be accessible to students with a background in regression analysis
and may include §1.1-§1.6, §2.1-§2.3, the results and numerical parts of §3.1—
§3.9, and briefly the results and numerical parts of §4.1-§4.6. At the advanced
undergraduate or master’s level, where the students have some mathematical
statistics background, more detailed coverage of the same sections, with the
inclusion of §2.4 and extra topics from Chapter 5 or Chapter 6 can be used as
a one-semester course. Often, the extra topics are chosen by the students ac-
cording to their interests. Finally, a two-semester upper-level graduate course
for mathematics, statistics, and engineering graduate students can be crafted
by adding selected theoretical appendices. For the upper-level graduate course,
we should mention that we are striving for a broader but less rigorous level
of coverage than that which is attained by Brockwell and Davis (1991), the
classic entry at this level.

The major difference between this third edition of the text and the second
edition is that we provide R code for almost all of the numerical examples. In
addition, we provide an R supplement for the text that contains the data and
scripts in a compressed file called tsa3.rda; the supplement is available on the
website for the third edition, http://www.stat.pitt.edu/stoffer/tsa3/,
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or one of its mirrors. On the website, we also provide the code used in each
example so that the reader may simply copy-and-paste code directly into R.
Specific details are given in Appendix R and on the website for the text.
Appendix R is new to this edition, and it includes a small R tutorial as well
as providing a reference for the data sets and scripts included in tsa3.rda. So
there is no misunderstanding, we emphasize the fact that this text is about
time series analysis, not about R. R code is provided simply to enhance the
exposition by making the numerical examples reproducible.

We have tried, where possible, to keep the problem sets in order so that an
instructor may have an easy time moving from the second edition to the third
edition. However, some of the old problems have been revised and there are
some new problems. Also, some of the data sets have been updated. We added
one section in Chapter 5 on unit roots and enhanced some of the presenta-
tions throughout the text. The exposition on state-space modeling, ARMAX
models, and (multivariate) regression with autocorrelated errors in Chapter 6
have been expanded. In this edition, we use standard R functions as much as
possible, but we use our own scripts (included in tsa3.rda) when we feel it
is necessary to avoid problems with a particular R function; these problems
are discussed in detail on the website for the text under R Issues.

We thank John Kimmel, Executive Editor, Springer Statistics, for his guid-
ance in the preparation and production of this edition of the text. We are
grateful to Don Percival, University of Washington, for numerous suggestions
that led to substantial improvement to the presentation in the second edition,
and consequently in this edition. We thank Doug Wiens, University of Alberta,
for help with some of the R code in Chapters 4 and 7, and for his many sug-
gestions for improvement of the exposition. We are grateful for the continued
help and advice of Pierre Duchesne, University of Montreal, and Alexander
Aue, University of California, Davis. We also thank the many students and
other readers who took the time to mention typographical errors and other
corrections to the first and second editions. Finally, work on the this edition
was supported by the National Science Foundation while one of us (D.S.S.)
was working at the Foundation under the Intergovernmental Personnel Act.

Davis, CA Robert H. Shumway
Pittsburgh, PA David S. Stoffer
September 2010
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1

Characteristics of Time Series

1.1 Introduction

The analysis of experimental data that have been observed at different points
in time leads to new and unique problems in statistical modeling and infer-
ence. The obvious correlation introduced by the sampling of adjacent points
in time can severely restrict the applicability of the many conventional statis-
tical methods traditionally dependent on the assumption that these adjacent
observations are independent and identically distributed. The systematic ap-
proach by which one goes about answering the mathematical and statistical
questions posed by these time correlations is commonly referred to as time
series analysis.

The impact of time series analysis on scientific applications can be par-
tially documented by producing an abbreviated listing of the diverse fields
in which important time series problems may arise. For example, many fa-
miliar time series occur in the field of economics, where we are continually
exposed to daily stock market quotations or monthly unemployment figures.
Social scientists follow population series, such as birthrates or school enroll-
ments. An epidemiologist might be interested in the number of influenza cases
observed over some time period. In medicine, blood pressure measurements
traced over time could be useful for evaluating drugs used in treating hy-
pertension. Functional magnetic resonance imaging of brain-wave time series
patterns might be used to study how the brain reacts to certain stimuli under
various experimental conditions.

Many of the most intensive and sophisticated applications of time series
methods have been to problems in the physical and environmental sciences.
This fact accounts for the basic engineering flavor permeating the language of
time series analysis. One of the earliest recorded series is the monthly sunspot
numbers studied by Schuster (1906). More modern investigations may cen-
ter on whether a warming is present in global temperature measurements

R.H. Shumway and D.S. Stoffer, Time Series Analysis and Its Applications: With R Examples, 1
Springer Texts in Statistics, DOI 10.1007/978-1-4419-7865-3 1,
© Springer Science+Business Media, LLC 2011



2 1 Characteristics of Time Series

or whether levels of pollution may influence daily mortality in Los Angeles.
The modeling of speech series is an important problem related to the efficient
transmission of voice recordings. Common features in a time series character-
istic known as the power spectrum are used to help computers recognize and
translate speech. Geophysical time series such as those produced by yearly de-
positions of various kinds can provide long-range proxies for temperature and
rainfall. Seismic recordings can aid in mapping fault lines or in distinguishing
between earthquakes and nuclear explosions.

The above series are only examples of experimental databases that can
be used to illustrate the process by which classical statistical methodology
can be applied in the correlated time series framework. In our view, the first
step in any time series investigation always involves careful scrutiny of the
recorded data plotted over time. This scrutiny often suggests the method of
analysis as well as statistics that will be of use in summarizing the information
in the data. Before looking more closely at the particular statistical methods,
it is appropriate to mention that two separate, but not necessarily mutually
exclusive, approaches to time series analysis exist, commonly identified as the
time domain approach and the frequency domain approach.

The time domain approach is generally motivated by the presumption
that correlation between adjacent points in time is best explained in terms
of a dependence of the current value on past values. The time domain ap-
proach focuses on modeling some future value of a time series as a parametric
function of the current and past values. In this scenario, we begin with linear
regressions of the present value of a time series on its own past values and
on the past values of other series. This modeling leads one to use the results
of the time domain approach as a forecasting tool and is particularly popular
with economists for this reason.

One approach, advocated in the landmark work of Box and Jenkins (1970;
see also Box et al., 1994), develops a systematic class of models called au-
toregressive integrated moving average (ARIMA) models to handle time-
correlated modeling and forecasting. The approach includes a provision for
treating more than one input series through multivariate ARIMA or through
transfer function modeling. The defining feature of these models is that they
are multiplicative models, meaning that the observed data are assumed to
result from products of factors involving differential or difference equation
operators responding to a white noise input.

A more recent approach to the same problem uses additive models more
familiar to statisticians. In this approach, the observed data are assumed to
result from sums of series, each with a specified time series structure; for exam-
ple, in economics, assume a series is generated as the sum of trend, a seasonal
effect, and error. The state-space model that results is then treated by making
judicious use of the celebrated Kalman filters and smoothers, developed origi-
nally for estimation and control in space applications. Two relatively complete
presentations from this point of view are in Harvey (1991) and Kitagawa and
Gersch (1996). Time series regression is introduced in Chapter 2, and ARIMA
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and related time domain models are studied in Chapter 3, with the empha-
sis on classical, statistical, univariate linear regression. Special topics on time
domain analysis are covered in Chapter 5; these topics include modern treat-
ments of, for example, time series with long memory and GARCH models
for the analysis of volatility. The state-space model, Kalman filtering and
smoothing, and related topics are developed in Chapter 6.

Conversely, the frequency domain approach assumes the primary charac-
teristics of interest in time series analyses relate to periodic or systematic
sinusoidal variations found naturally in most data. These periodic variations
are often caused by biological, physical, or environmental phenomena of inter-
est. A series of periodic shocks may influence certain areas of the brain; wind
may affect vibrations on an airplane wing; sea surface temperatures caused
by El Nino oscillations may affect the number of fish in the ocean. The study
of periodicity extends to economics and social sciences, where one may be
interested in yearly periodicities in such series as monthly unemployment or
monthly birth rates.

In spectral analysis, the partition of the various kinds of periodic variation
in a time series is accomplished by evaluating separately the variance associ-
ated with each periodicity of interest. This variance profile over frequency is
called the power spectrum. In our view, no schism divides time domain and
frequency domain methodology, although cliques are often formed that advo-
cate primarily one or the other of the approaches to analyzing data. In many
cases, the two approaches may produce similar answers for long series, but
the comparative performance over short samples is better done in the time
domain. In some cases, the frequency domain formulation simply provides a
convenient means for carrying out what is conceptually a time domain calcu-
lation. Hopefully, this book will demonstrate that the best path to analyzing
many data sets is to use the two approaches in a complementary fashion. Ex-
positions emphasizing primarily the frequency domain approach can be found
in Bloomfield (1976, 2000), Priestley (1981), or Jenkins and Watts (1968).
On a more advanced level, Hannan (1970), Brillinger (1981, 2001), Brockwell
and Davis (1991), and Fuller (1996) are available as theoretical sources. Our
coverage of the frequency domain is given in Chapters 4 and 7.

The objective of this book is to provide a unified and reasonably complete
exposition of statistical methods used in time series analysis, giving serious
consideration to both the time and frequency domain approaches. Because a
myriad of possible methods for analyzing any particular experimental series
can exist, we have integrated real data from a number of subject fields into
the exposition and have suggested methods for analyzing these data.

1.2 The Nature of Time Series Data

Some of the problems and questions of interest to the prospective time se-
ries analyst can best be exposed by considering real experimental data taken
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Fig. 1.1. Johnson & Johnson quarterly earnings per share, 84 quarters, 1960-1 to
1980-1V.

from different subject areas. The following cases illustrate some of the com-
mon kinds of experimental time series data as well as some of the statistical
questions that might be asked about such data.

Example 1.1 Johnson & Johnson Quarterly Earnings
Figure 1.1 shows quarterly earnings per share for the U.S. company Johnson
& Johnson, furnished by Professor Paul Griffin (personal communication) of
the Graduate School of Management, University of California, Davis. There
are 84 quarters (21 years) measured from the first quarter of 1960 to the
last quarter of 1980. Modeling such series begins by observing the primary
patterns in the time history. In this case, note the gradually increasing un-
derlying trend and the rather regular variation superimposed on the trend
that seems to repeat over quarters. Methods for analyzing data such as these
are explored in Chapter 2 (see Problem 2.1) using regression techniques and
in Chapter 6, §6.5, using structural equation modeling.

To plot the data using the R statistical package, type the following:!
1 load("tsa3.rda") # SEE THE FOOTNOTE
2 plot(jj, type="o", ylab="Quarterly Earnings per Share")

Example 1.2 Global Warming
Consider the global temperature series record shown in Figure 1.2. The data
are the global mean land—ocean temperature index from 1880 to 2009, with

! We assume that tsa3.rda has been downloaded to a convenient directory. See
Appendix R for further details.
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Fig. 1.2. Yearly average global temperature deviations (1880-2009) in degrees centi-
grade.

the base period 1951-1980. In particular, the data are deviations, measured
in degrees centigrade, from the 1951-1980 average, and are an update of
Hansen et al. (2006). We note an apparent upward trend in the series during
the latter part of the twentieth century that has been used as an argument
for the global warming hypothesis. Note also the leveling off at about 1935
and then another rather sharp upward trend at about 1970. The question of
interest for global warming proponents and opponents is whether the overall
trend is natural or whether it is caused by some human-induced interface.
Problem 2.8 examines 634 years of glacial sediment data that might be taken
as a long-term temperature proxy. Such percentage changes in temperature
do not seem to be unusual over a time period of 100 years. Again, the
question of trend is of more interest than particular periodicities.
The R code for this example is similar to the code in Example 1.1:
1 plot(gtemp, type="o", ylab="Global Temperature Deviations")

Example 1.3 Speech Data
More involved questions develop in applications to the physical sciences.
Figure 1.3 shows a small .1 second (1000 point) sample of recorded speech
for the phrase aaa - -- hhh, and we note the repetitive nature of the signal
and the rather regular periodicities. One current problem of great inter-
est is computer recognition of speech, which would require converting this
particular signal into the recorded phrase aaa - - - hhh. Spectral analysis can
be used in this context to produce a signature of this phrase that can be
compared with signatures of various library syllables to look for a match.
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Fig. 1.3. Speech recording of the syllable aaa - - - hhh sampled at 10,000 points per
second with n = 1020 points.

One can immediately notice the rather regular repetition of small wavelets.
The separation between the packets is known as the pitch period and rep-
resents the response of the vocal tract filter to a periodic sequence of pulses
stimulated by the opening and closing of the glottis.
In R, you can reproduce Figure 1.3 as follows:
1 plot(speech)

Example 1.4 New York Stock Exchange
As an example of financial time series data, Figure 1.4 shows the daily
returns (or percent change) of the New York Stock Exchange (NYSE) from
February 2, 1984 to December 31, 1991. It is easy to spot the crash of
October 19, 1987 in the figure. The data shown in Figure 1.4 are typical of
return data. The mean of the series appears to be stable with an average
return of approximately zero, however, the volatility (or variability) of data
changes over time. In fact, the data show volatility clustering; that is, highly
volatile periods tend to be clustered together. A problem in the analysis of
these type of financial data is to forecast the volatility of future returns.
Models such as ARCH and GARCH models (Engle, 1982; Bollerslev, 1986)
and stochastic volatility models (Harvey, Ruiz and Shephard, 1994) have
been developed to handle these problems. We will discuss these models and
the analysis of financial data in Chapters 5 and 6. The R code for this
example is similar to the previous examples:

1 plot(nyse, ylab="NYSE Returns")
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Fig. 1.4. Returns of the NYSE. The data are daily value weighted market returns
from February 2, 1984 to December 31, 1991 (2000 trading days). The crash of
October 19, 1987 occurs at t = 938.

Example 1.5 El Nino and Fish Population
We may also be interested in analyzing several time series at once. Fig-
ure 1.5 shows monthly values of an environmental series called the Southern
Oscillation Index (SOI) and associated Recruitment (number of new fish)
furnished by Dr. Roy Mendelssohn of the Pacific Environmental Fisheries
Group (personal communication). Both series are for a period of 453 months
ranging over the years 1950-1987. The SOI measures changes in air pressure,
related to sea surface temperatures in the central Pacific Ocean. The central
Pacific warms every three to seven years due to the El Nino effect, which has
been blamed, in particular, for the 1997 floods in the midwestern portions
of the United States. Both series in Figure 1.5 tend to exhibit repetitive
behavior, with regularly repeating cycles that are easily visible. This peri-
odic behavior is of interest because underlying processes of interest may be
regular and the rate or frequency of oscillation characterizing the behavior
of the underlying series would help to identify them. One can also remark
that the cycles of the SOI are repeating at a faster rate than those of the
Recruitment series. The Recruitment series also shows several kinds of oscil-
lations, a faster frequency that seems to repeat about every 12 months and a
slower frequency that seems to repeat about every 50 months. The study of
the kinds of cycles and their strengths is the subject of Chapter 4. The two
series also tend to be somewhat related; it is easy to imagine that somehow
the fish population is dependent on the SOI. Perhaps even a lagged relation
exists, with the SOI signaling changes in the fish population. This possibility
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Fig. 1.5. Monthly SOI and Recruitment (estimated new fish), 1950-1987.

suggests trying some version of regression analysis as a procedure for relat-
ing the two series. Transfer function modeling, as considered in Chapter 5,
can be applied in this case to obtain a model relating Recruitment to its
own past and the past values of the SOI.
The following R code will reproduce Figure 1.5:

1 par(mfrow = c(2,1)) # set up the graphics

2 plot(soi, ylab="", xlab="", main="Southern Oscillation Index")

3 plot(rec, ylab="", xlab="", main="Recruitment")

Example 1.6 fMRI Imaging
A fundamental problem in classical statistics occurs when we are given a
collection of independent series or vectors of series, generated under varying
experimental conditions or treatment configurations. Such a set of series is
shown in Figure 1.6, where we observe data collected from various locations
in the brain via functional magnetic resonance imaging (fMRI). In this ex-
ample, five subjects were given periodic brushing on the hand. The stimulus
was applied for 32 seconds and then stopped for 32 seconds; thus, the signal
period is 64 seconds. The sampling rate was one observation every 2 seconds
for 256 seconds (n = 128). For this example, we averaged the results over
subjects (these were evoked responses, and all subjects were in phase). The
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Fig. 1.6. fMRI data from various locations in the cortex, thalamus, and cerebellum;
n = 128 points, one observation taken every 2 seconds.

series shown in Figure 1.6 are consecutive measures of blood oxygenation-
level dependent (BOLD) signal intensity, which measures areas of activation
in the brain. Notice that the periodicities appear strongly in the motor cor-
tex series and less strongly in the thalamus and cerebellum. The fact that
one has series from different areas of the brain suggests testing whether the
areas are responding differently to the brush stimulus. Analysis of variance
techniques accomplish this in classical statistics, and we show in Chapter 7
how these classical techniques extend to the time series case, leading to a
spectral analysis of variance.
The following R commands were used to plot the data:
1 par (mfrow=c(2,1), mar=c(3,2,1,0)+.5, mgp=c(1.6,.6,0))
2 ts.plot(fmril[,2:5], 1lty=c(1,2,4,5), ylab="BOLD", xlab="",
main="Cortex")
3 ts.plot(fmril[,6:9], 1ty=c(1,2,4,5), ylab="BOLD", xlab="",
main="Thalamus & Cerebellum")
4+ mtext("Time (1 pt = 2 sec)", side=1, line=2)

Example 1.7 Earthquakes and Explosions

As a final example, the series in Figure 1.7 represent two phases or arrivals
along the surface, denoted by P (¢t = 1,...,1024) and S (¢ = 1025, .. .,2048),
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Fig. 1.7. Arrival phases from an earthquake (top) and explosion (bottom) at 40
points per second.

at a seismic recording station. The recording instruments in Scandinavia are
observing earthquakes and mining explosions with one of each shown in Fig-
ure 1.7. The general problem of interest is in distinguishing or discriminating
between waveforms generated by earthquakes and those generated by explo-
sions. Features that may be important are the rough amplitude ratios of the
first phase P to the second phase S, which tend to be smaller for earth-
quakes than for explosions. In the case of the two events in Figure 1.7, the
ratio of maximum amplitudes appears to be somewhat less than .5 for the
earthquake and about 1 for the explosion. Otherwise, note a subtle differ-
ence exists in the periodic nature of the S phase for the earthquake. We can
again think about spectral analysis of variance for testing the equality of the
periodic components of earthquakes and explosions. We would also like to be
able to classify future P and S components from events of unknown origin,
leading to the time series discriminant analysis developed in Chapter 7.
To plot the data as in this example, use the following commands in R:

1 par (mfrow=c(2,1))

2 plot(EQ5, main="Earthquake")

3 plot (EXP6, main="Explosion")
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1.3 Time Series Statistical Models

The primary objective of time series analysis is to develop mathematical mod-
els that provide plausible descriptions for sample data, like that encountered
in the previous section. In order to provide a statistical setting for describing
the character of data that seemingly fluctuate in a random fashion over time,
we assume a time series can be defined as a collection of random variables in-
dexed according to the order they are obtained in time. For example, we may
consider a time series as a sequence of random variables, x1, x2, x3, ..., where
the random variable x; denotes the value taken by the series at the first time
point, the variable x5 denotes the value for the second time period, 3 denotes
the value for the third time period, and so on. In general, a collection of ran-
dom variables, {z;}, indexed by ¢ is referred to as a stochastic process. In this
text, ¢t will typically be discrete and vary over the integers ¢t = 0,+1,£2, ...,
or some subset of the integers. The observed values of a stochastic process are
referred to as a realization of the stochastic process. Because it will be clear
from the context of our discussions, we use the term time series whether we
are referring generically to the process or to a particular realization and make
no notational distinction between the two concepts.

It is conventional to display a sample time series graphically by plotting
the values of the random variables on the vertical axis, or ordinate, with
the time scale as the abscissa. It is usually convenient to connect the values
at adjacent time periods to reconstruct visually some original hypothetical
continuous time series that might have produced these values as a discrete
sample. Many of the series discussed in the previous section, for example,
could have been observed at any continuous point in time and are conceptually
more properly treated as continuous time series. The approximation of these
series by discrete time parameter series sampled at equally spaced points
in time is simply an acknowledgment that sampled data will, for the most
part, be discrete because of restrictions inherent in the method of collection.
Furthermore, the analysis techniques are then feasible using computers, which
are limited to digital computations. Theoretical developments also rest on the
idea that a continuous parameter time series should be specified in terms of
finite-dimensional distribution functions defined over a finite number of points
in time. This is not to say that the selection of the sampling interval or rate
is not an extremely important consideration. The appearance of data can be
changed completely by adopting an insufficient sampling rate. We have all
seen wagon wheels in movies appear to be turning backwards because of the
insufficient number of frames sampled by the camera. This phenomenon leads
to a distortion called aliasing (see §4.2).

The fundamental visual characteristic distinguishing the different series
shown in Examples 1.1-1.7 is their differing degrees of smoothness. One pos-
sible explanation for this smoothness is that it is being induced by the suppo-
sition that adjacent points in time are correlated, so the value of the series at
time ¢, say, x;, depends in some way on the past values x;_1,2;_s,.... This
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model expresses a fundamental way in which we might think about gener-
ating realistic-looking time series. To begin to develop an approach to using
collections of random variables to model time series, consider Example 1.8.

Example 1.8 White Noise

A simple kind of generated series might be a collection of uncorrelated ran-
dom variables, w;, with mean 0 and finite variance 2. The time series
generated from uncorrelated variables is used as a model for noise in en-
gineering applications, where it is called white noise; we shall sometimes
denote this process as w; ~ wn(0,02). The designation white originates
from the analogy with white light and indicates that all possible periodic
oscillations are present with equal strength.

We will, at times, also require the noise to be independent and identically
distributed (iid) random variables with mean 0 and variance o2. We shall
distinguish this case by saying white independent noise, or by writing w; ~
iid(0,02). A particularly useful white noise series is Gaussian white noise,
wherein the w; are independent normal random variables, with mean 0 and
variance o2 ; or more succinctly, w; ~ iid N(0,02). Figure 1.8 shows in the
upper panel a collection of 500 such random variables, with o2 = 1, plotted
in the order in which they were drawn. The resulting series bears a slight
resemblance to the explosion in Figure 1.7 but is not smooth enough to
serve as a plausible model for any of the other experimental series. The plot
tends to show visually a mixture of many different kinds of oscillations in
the white noise series.

If the stochastic behavior of all time series could be explained in terms of
the white noise model, classical statistical methods would suffice. Two ways
of introducing serial correlation and more smoothness into time series models
are given in Examples 1.9 and 1.10.

Example 1.9 Moving Averages
We might replace the white noise series w; by a moving average that smooths
the series. For example, consider replacing w; in Example 1.8 by an average
of its current value and its immediate neighbors in the past and future. That
is, let
vy = 3 (wim1 + wy + wep1), (1.1)

which leads to the series shown in the lower panel of Figure 1.8. Inspecting
the series shows a smoother version of the first series, reflecting the fact that
the slower oscillations are more apparent and some of the faster oscillations
are taken out. We begin to notice a similarity to the SOI in Figure 1.5, or
perhaps, to some of the fMRI series in Figure 1.6.

To reproduce Figure 1.8 in R use the following commands. A linear com-
bination of values in a time series such as in (1.1) is referred to, generically,
as a filtered series; hence the command filter.
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Fig. 1.8. Gaussian white noise series (top) and three-point moving average of the
Gaussian white noise series (bottom).

1 w = rnorm(500,0,1) # 500 N(0,1) wariates
2 v = filter(w, sides=2, rep(1/3,3)) # moving average

3 par(mfrow=c(2,1))

4 plot.ts(w, main="white noise")

5 plot.ts(v, main="moving average")

The speech series in Figure 1.3 and the Recruitment series in Figure 1.5,
as well as some of the MRI series in Figure 1.6, differ from the moving average
series because one particular kind of oscillatory behavior seems to predom-
inate, producing a sinusoidal type of behavior. A number of methods exist
for generating series with this quasi-periodic behavior; we illustrate a popular
one based on the autoregressive model considered in Chapter 3.

Example 1.10 Autoregressions
Suppose we consider the white noise series w; of Example 1.8 as input and
calculate the output using the second-order equation

Ty = Tt—1 — .91’15,2 + wy (12)

successively for ¢ = 1,2,...,500. Equation (1.2) represents a regression or
prediction of the current value x; of a time series as a function of the past
two values of the series, and, hence, the term autoregression is suggested
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Fig. 1.9. Autoregressive series generated from model (1.2).

for this model. A problem with startup values exists here because (1.2) also
depends on the initial conditions zo and x_1, but, for now, we assume that
we are given these values and generate the succeeding values by substituting
into (1.2). The resulting output series is shown in Figure 1.9, and we note
the periodic behavior of the series, which is similar to that displayed by
the speech series in Figure 1.3. The autoregressive model above and its
generalizations can be used as an underlying model for many observed series
and will be studied in detail in Chapter 3.
One way to simulate and plot data from the model (1.2) in R is to use

the following commands (another way is to use arima.sim).

1 w = rnorm(550,0,1) # 50 extra to avoid startup problems

2 x = filter(w, filter=c(1,-.9), method="recursive") [-(1:50)]

3 plot.ts(x, main="autoregression")

Example 1.11 Random Walk with Drift
A model for analyzing trend such as seen in the global temperature data in
Figure 1.2, is the random walk with drift model given by

T = o+ Ti—1 + wy (13)

for t = 1,2,..., with initial condition x¢y = 0, and where w; is white noise.
The constant ¢ is called the drift, and when 6 = 0, (1.3) is called simply a
random walk. The term random walk comes from the fact that, when § = 0,
the value of the time series at time t is the value of the series at time ¢t — 1
plus a completely random movement determined by w;. Note that we may
rewrite (1.3) as a cumulative sum of white noise variates. That is,

¢
xt:5t+2wj (1.4)
j=1
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Fig. 1.10. Random walk, o, = 1, with drift § = .2 (upper jagged line), without
drift, 6 = 0 (lower jagged line), and a straight line with slope .2 (dashed line).

for t = 1,2,...; either use induction, or plug (1.4) into (1.3) to verify this
statement. Figure 1.10 shows 200 observations generated from the model
with § = 0 and .2, and with o, = 1. For comparison, we also superimposed
the straight line .2¢ on the graph.

To reproduce Figure 1.10 in R use the following code (notice the use of
multiple commands per line using a semicolon).

1 set.seed(154) # so you can reproduce the results
2 w = rnorm(200,0,1); x = cumsum(w) # two commands im ome linme
swd = w +.2; xd = cumsum(wd)

4 plot.ts(xd, ylim=c(-5,55), main="random walk")

5 lines(x); lines(.2%(1:200), lty="dashed")

Example 1.12 Signal in Noise
Many realistic models for generating time series assume an underlying signal
with some consistent periodic variation, contaminated by adding a random
noise. For example, it is easy to detect the regular cycle fMRI series displayed
on the top of Figure 1.6. Consider the model

xy = 2cos(2mt/50 + .67) + wy (1.5)

fort =1,2,...,500, where the first term is regarded as the signal, shown in
the upper panel of Figure 1.11. We note that a sinusoidal waveform can be
written as

A cos(2rwt + ¢), (1.6)

where A is the amplitude, w is the frequency of oscillation, and ¢ is a phase
shift. In (1.5), A = 2, w = 1/50 (one cycle every 50 time points), and
¢ = .6m.
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2cos(2nt/50 + 0.6m)
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2cos(2nt/50 + 0.6m) + N(0, 1)

T T T T T T
o 100 200 300 400 500

2cos(2nt/50 + 0.6m) + N(0, 25)

-5 0 5 10 15
|

-15

T T T T T T
o 100 200 300 400 500

Fig. 1.11. Cosine wave with period 50 points (top panel) compared with the cosine
wave contaminated with additive white Gaussian noise, o, = 1 (middle panel) and
ow = 5 (bottom panel); see (1.5).

An additive noise term was taken to be white noise with o, = 1 (mid-
dle panel) and o, = 5 (bottom panel), drawn from a normal distribution.
Adding the two together obscures the signal, as shown in the lower panels of
Figure 1.11. Of course, the degree to which the signal is obscured depends
on the amplitude of the signal and the size of o,,. The ratio of the amplitude
of the signal to o, (or some function of the ratio) is sometimes called the
signal-to-noise ratio (SNR); the larger the SNR, the easier it is to detect
the signal. Note that the signal is easily discernible in the middle panel of
Figure 1.11, whereas the signal is obscured in the bottom panel. Typically,
we will not observe the signal but the signal obscured by noise.

To reproduce Figure 1.11 in R, use the following commands:

1 cs = 2%cos(2%pi*1:500/50 + .6%pi)

2 w = rnorm(500,0,1)

3 par (mfrow=c(3,1), mar=c(3,2,2,1), cex.main=1.5)

1 plot.ts(cs, main=expression(2*cos(2*pi*t/50+.6%*pi)))

5 plot.ts(cs+w, main=expression(2*cos(2*pi*t/50+.6xpi) + N(0,1)))

6 plot.ts(cs+b*w, main=expression(2*cos(2*pixt/50+.6%pi) + N(0,25)))

In Chapter 4, we will study the use of spectral analysis as a possible
technique for detecting regular or periodic signals, such as the one described
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in Example 1.12. In general, we would emphasize the importance of simple
additive models such as given above in the form

Tt = S¢ 4+ V¢, (17)

where s; denotes some unknown signal and v; denotes a time series that may
be white or correlated over time. The problems of detecting a signal and then
in estimating or extracting the waveform of s; are of great interest in many
areas of engineering and the physical and biological sciences. In economics,
the underlying signal may be a trend or it may be a seasonal component of a
series. Models such as (1.7), where the signal has an autoregressive structure,
form the motivation for the state-space model of Chapter 6.

In the above examples, we have tried to motivate the use of various com-
binations of random variables emulating real time series data. Smoothness
characteristics of observed time series were introduced by combining the ran-
dom variables in various ways. Averaging independent random variables over
adjacent time points, as in Example 1.9, or looking at the output of differ-
ence equations that respond to white noise inputs, as in Example 1.10, are
common ways of generating correlated data. In the next section, we introduce
various theoretical measures used for describing how time series behave. As
is usual in statistics, the complete description involves the multivariate dis-
tribution function of the jointly sampled values z1,zo, ..., z,, whereas more
economical descriptions can be had in terms of the mean and autocorrelation
functions. Because correlation is an essential feature of time series analysis, the
most useful descriptive measures are those expressed in terms of covariance
and correlation functions.

1.4 Measures of Dependence: Autocorrelation and
Cross-Correlation

A complete description of a time series, observed as a collection of n random
variables at arbitrary integer time points t1, ts, ..., t,, for any positive integer
n, is provided by the joint distribution function, evaluated as the probability
that the values of the series are jointly less than the n constants, ¢, ca, ..., ¢y
ie.,

F(Cla C2y ey Cn) = P(xtl S C1, Ty, S C2y ..y Tty S Cn)' (18)

Unfortunately, the multidimensional distribution function cannot usually be
written easily unless the random variables are jointly normal, in which case
the joint density has the well-known form displayed in (1.31).

Although the joint distribution function describes the data completely, it
is an unwieldy tool for displaying and analyzing time series data. The dis-
tribution function (1.8) must be evaluated as a function of n arguments, so
any plotting of the corresponding multivariate density functions is virtually
impossible. The marginal distribution functions
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Fi(z) = P{z; <z}
or the corresponding marginal density functions

fulay = 202)

when they exist, are often informative for examining the marginal behavior
of a series.? Another informative marginal descriptive measure is the mean
function.

Definition 1.1 The mean function is defined as

pos = Ela) = | " 2fi(e) da, (1.9)

provided it exists, where E denotes the usual expected value operator. When
no confusion exists about which time series we are referring to, we will drop
a subscript and write pzr as fig.

Example 1.13 Mean Function of a Moving Average Series
If w; denotes a white noise series, then 1,y = E(w;) = 0 for all t. The top
series in Figure 1.8 reflects this, as the series clearly fluctuates around a
mean value of zero. Smoothing the series as in Example 1.9 does not change
the mean because we can write

por = B(vr) = §[E(wi—1) + E(w;) + E(we1)] = 0.

Example 1.14 Mean Function of a Random Walk with Drift

Consider the random walk with drift model given in (1.4),
t
xt:5t+2wj, t=1,2,....
j=1
Because E(w;) = 0 for all ¢, and 0 is a constant, we have

t
et = E(xy) :5t+ZE(wj) =4t

j=1
which is a straight line with slope 6. A realization of a random walk with

drift can be compared to its mean function in Figure 1.10.

2 If x; is Gaussian with mean p; and variance o7, abbreviated as x; ~ N(,ut,af),

1
the marginal density is given b )= ———ex {—i T — 2}.
g yis g v fi(r) oV P 507 (T = he)
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Example 1.15 Mean Function of Signal Plus Noise
A great many practical applications depend on assuming the observed data
have been generated by a fixed signal waveform superimposed on a zero-
mean noise process, leading to an additive signal model of the form (1.5). It
is clear, because the signal in (1.5) is a fixed function of time, we will have

ot = E(xy) = E[2cos(2mt/50 4 .67) + w;]
= 2cos(27mt/50 + .6m) + E(w;)
= 2cos(2nt/50 + .67),

and the mean function is just the cosine wave.

The lack of independence between two adjacent values x5 and x; can be
assessed numerically, as in classical statistics, using the notions of covariance
and correlation. Assuming the variance of x; is finite, we have the following
definition.

Definition 1.2 The autocovariance function is defined as the second mo-
ment product

Y (5,) = cov(aa, ar) = El(s — ) (@e — po)] (1.10)

for all s and t. When no possible confusion exists about which time series we
are referring to, we will drop the subscript and write v, (s,t) as y(s,t).

Note that v, (s,t) = v.(t, s) for all time points s and ¢. The autocovariance
measures the linear dependence between two points on the same series ob-
served at different times. Very smooth series exhibit autocovariance functions
that stay large even when the ¢ and s are far apart, whereas choppy series tend
to have autocovariance functions that are nearly zero for large separations.
The autocovariance (1.10) is the average cross-product relative to the joint
distribution F'(zs,x:). Recall from classical statistics that if v,(s,t) = 0, z
and x; are not linearly related, but there still may be some dependence struc-
ture between them. If, however, 25 and xz; are bivariate normal, v,(s,t) =0
ensures their independence. It is clear that, for s = ¢, the autocovariance
reduces to the (assumed finite) variance, because

Yo (t, ) = E[(x; — pe)?] = var(xy). (1.11)

Example 1.16 Autocovariance of White Noise
The white noise series w; has E(w;) = 0 and

2
o s=t
s,t) = cov(wg,w) =< * ’ 1.12
Tu(s,6) = cov(ws, we) {O oy (1.12)
A realization of white noise with 02 = 1 is shown in the top panel of

Figure 1.8.
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Example 1.17 Autocovariance of a Moving Average
Consider applying a three-point moving average to the white noise series w;
of the previous example as in Example 1.9. In this case,

'Yv(sat) = COV(”S, Ut) = cov {% (ws—l + ws + ws—i—l) ) % (wt—l + w + wt—i—l)} .
When s =t we have®

Yo(t,t) = éCOV{(wt—l +wi + wip1), (W1 + W + wep1)}

= %[cov(wt_l, wi—1) + cov(wy, wi) + cov(wiy1, Wei1)]

2
w*

©olw

ag

When s =t + 1,

Yt +1,t) = %cov{(wt +wip1 + Wwipa), (W1 + W + wep1)}

= é[cov(wt, we) + cov(wip1, wir1)]

_ 2.2
= 50w

using (1.12). Similar computations give v, (t — 1,t) = 202 /9, v, (t + 2,t) =
Yot —2,t) = 02 /9, and 0 when |t — s| > 2. We summarize the values for all
s and t as

gag, s =t,
2 2
son |s—t =1
s, 1) =49 ’ 1.13
Yo(s1) 12 st =2, (1.13)
0 |s —t| > 2.

Example 1.17 shows clearly that the smoothing operation introduces a
covariance function that decreases as the separation between the two time
points increases and disappears completely when the time points are separated
by three or more time points. This particular autocovariance is interesting
because it only depends on the time separation or lag and not on the absolute
location of the points along the series. We shall see later that this dependence
suggests a mathematical model for the concept of weak stationarity.

Example 1.18 Autocovariance of a Random Walk

For the random walk model, x; = E;Zl wj, we have

s t

Yz (8,t) = cov(zs, 1) = cov Z wj, Z wy, | = min{s,t}o?,
j=1 k=1

because the w, are uncorrelated random variables. Note that, as opposed
to the previous examples, the autocovariance function of a random walk

3 If the random variables U = >ty a;X; and Vo= Y70 bpY are linear com-
binations of random variables {X,} and {Y%}, respectively, then cov(U,V) =
D0ty ke @jbrcov(X;, Yy). Furthermore, var(U) = cov(U, U).
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depends on the particular time values s and ¢, and not on the time separation
or lag. Also, notice that the variance of the random walk, var(xz;) = v, (¢, t) =
t o2, increases without bound as time ¢ increases. The effect of this variance
increase can be seen in Figure 1.10 where the processes start to move away
from their mean functions d ¢ (note that § = 0 and .2 in that example).

As in classical statistics, it is more convenient to deal with a measure of
association between —1 and 1, and this leads to the following definition.

Definition 1.3 The autocorrelation function (ACF) is defined as

7(s:t)

Pt = D

The ACF measures the linear predictability of the series at time ¢, say xy,
using only the value 5. We can show easily that —1 < p(s,¢) < 1 using the
Cauchy-Schwarz inequality.* If we can predict x; perfectly from z, through
a linear relationship, x; = [y + [12s, then the correlation will be +1 when
B1 >0, and —1 when ;1 < 0. Hence, we have a rough measure of the ability
to forecast the series at time ¢t from the value at time s.

Often, we would like to measure the predictability of another series y; from
the series z5. Assuming both series have finite variances, we have the following
definition.

(1.14)

Definition 1.4 The cross-covariance function between two series, x; and
Yt 1S
Yy (8,1) = cov(zs, yi) = E[(vs — pas) (Y — tiyt)]- (1.15)

There is also a scaled version of the cross-covariance function.

Definition 1.5 The cross-correlation function (CCF) is given by

s _ 'ny(sa t)
A Y ey (119

We may easily extend the above ideas to the case of more than two series,
say, Ty, Ty2, - - ., Ty that is, multivariate time series with r components. For
example, the extension of (1.10) in this case is

’Y]k(sat) :E[(I‘;j 7”5‘])(1}]6 7Htk)] ],k: 1727"'7T' (117)

In the definitions above, the autocovariance and cross-covariance functions
may change as one moves along the series because the values depend on both s

* The Cauchy-Schwarz inequality implies |y(s, t)|*> < v(s, 8)7(t,t).
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and t, the locations of the points in time. In Example 1.17, the autocovariance
function depends on the separation of 25 and x4, say, h = |s — t|, and not on
where the points are located in time. As long as the points are separated by
h units, the location of the two points does not matter. This notion, called
weak stationarity, when the mean is constant, is fundamental in allowing us
to analyze sample time series data when only a single series is available.

1.5 Stationary Time Series

The preceding definitions of the mean and autocovariance functions are com-
pletely general. Although we have not made any special assumptions about
the behavior of the time series, many of the preceding examples have hinted
that a sort of regularity may exist over time in the behavior of a time series.
We introduce the notion of regularity using a concept called stationarity.

Definition 1.6 A strictly stationary time series is one for which the prob-
abilistic behavior of every collection of values

{.’L‘tl,.’Iltz,...,Itk}

18 identical to that of the time shifted set

{Tty+hs Ttobhy - o s Ttyth }-
That is,
Plzy, <epy..oyxp, <cpt=Plagon <cr,oo e n < k) (1.18)
for all k = 1,2, ..., all time points t1,ta, ..., tx, all numbers c1,co,...,ck, and

all time shifts h =0,£1,4+2, ... .

If a time series is strictly stationary, then all of the multivariate distri-
bution functions for subsets of variables must agree with their counterparts
in the shifted set for all values of the shift parameter h. For example, when
k=1, (1.18) implies that

P{zs, <c} = P{z; <c} (1.19)

for any time points s and ¢. This statement implies, for example, that the
probability that the value of a time series sampled hourly is negative at 1 AM
is the same as at 10 AM. In addition, if the mean function, p;, of the series z;
exists, (1.19) implies that us = p, for all s and ¢, and hence p; must be con-
stant. Note, for example, that a random walk process with drift is not strictly
stationary because its mean function changes with time; see Example 1.14 on
page 18.
When k = 2, we can write (1.18) as
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P{r, < ci,xp < o} = P{agqp < c1,0pqn < 2} (1.20)

for any time points s and t and shift h. Thus, if the variance function of the
process exists, (1.20) implies that the autocovariance function of the series x;
satisfies

v(s,t) =v(s+h,t+h)

for all s and ¢ and h. We may interpret this result by saying the autocovariance
function of the process depends only on the time difference between s and ¢,
and not on the actual times.

The version of stationarity in Definition 1.6 is too strong for most appli-
cations. Moreover, it is difficult to assess strict stationarity from a single data
set. Rather than imposing conditions on all possible distributions of a time
series, we will use a milder version that imposes conditions only on the first
two moments of the series. We now have the following definition.

Definition 1.7 A weakly stationary time series, x;, is a finite variance
process such that

(i) the mean value function, p, defined in (1.9) is constant and does not
depend on time t, and

(i) the autocovariance function, v(s,t), defined in (1.10) depends on s and
t only through their difference |s — t|.

Henceforth, we will use the term stationary to mean weakly stationary; if a
process is stationary in the strict sense, we will use the term strictly stationary.

It should be clear from the discussion of strict stationarity following Defini-
tion 1.6 that a strictly stationary, finite variance, time series is also stationary.
The converse is not true unless there are further conditions. One important
case where stationarity implies strict stationarity is if the time series is Gaus-
sian [meaning all finite distributions, (1.18), of the series are Gaussian|. We
will make this concept more precise at the end of this section.

Because the mean function, E(xz;) = u, of a stationary time series is
independent of time ¢, we will write

e (L.21)

Also, because the autocovariance function, v(s,t), of a stationary time series,
x¢, depends on s and ¢ only through their difference |s — t|, we may simplify
the notation. Let s =t + h, where h represents the time shift or lag. Then

vt + h,t) = cov(xirpn, xt) = cov(zy, z0) = v(h,0)

because the time difference between times ¢t + h and t is the same as the
time difference between times h and 0. Thus, the autocovariance function of
a stationary time series does not depend on the time argument ¢. Henceforth,
for convenience, we will drop the second argument of ~(h, 0).
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Fig. 1.12. Autocovariance function of a three-point moving average.

Definition 1.8 The autocovariance function of a stationary time se-
ries will be written as

V(h) = cov(@iin, 21) = El(@epn — p) (e — p)]- (1.22)

Definition 1.9 The autocorrelation function (ACF) of a stationary
time series will be written using (1.14) as

_ Yt +h,t) _ ()
plh) = A+ ht+h)y(t)  2(0) (1.23)

The Cauchy—Schwarz inequality shows again that —1 < p(h) < 1 for all
h, enabling one to assess the relative importance of a given autocorrelation
value by comparing with the extreme values —1 and 1.

Example 1.19 Stationarity of White Noise
The mean and autocovariance functions of the white noise series discussed
in Examples 1.8 and 1.16 are easily evaluated as pu,; = 0 and

o2 h=0,

h) = cov(wipp,wy) =< °

Y (h) (Wi n, we) {0 h 0.

Thus, white noise satisfies the conditions of Definition 1.7 and is weakly
stationary or stationary. If the white noise variates are also normally dis-
tributed or Gaussian, the series is also strictly stationary, as can be seen by
evaluating (1.18) using the fact that the noise would also be iid.

Example 1.20 Stationarity of a Moving Average
The three-point moving average process of Example 1.9 is stationary be-
cause, from Examples 1.13 and 1.17, the mean and autocovariance functions
ot = 0, and
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%U?u h =0,
252 h=+1
. h — 97w )
7 (h) 162 h=42,
0 || > 2

are independent of time ¢, satisfying the conditions of Definition 1.7. Fig-
ure 1.12 shows a plot of the autocovariance as a function of lag h with
02 = 1. Interestingly, the autocovariance function is symmetric about lag
zero and decays as a function of lag.

The autocovariance function of a stationary process has several useful
properties (also, see Problem 1.25). First, the value at h = 0, namely

(0) = El(wt — p)?] (1.24)

is the variance of the time series; note that the Cauchy—Schwarz inequality
implies

[y (h)| < 7(0).
A final useful property, noted in the previous example, is that the autoco-
variance function of a stationary series is symmetric around the origin; that
is,

v(h) =~(=h) (1.25)
for all h. This property follows because shifting the series by h means that

v(h) =yt +h—1)
= El(wt1n — p)(wr — )]
= Bl(z¢ — p)(@t4n — p)]
=q(t—(t+h)
= ’Y(_h)a

which shows how to use the notation as well as proving the result.
When several series are available, a notion of stationarity still applies with
additional conditions.

Definition 1.10 Two time series, say, x; and y;, are said to be jointly sta-
tionary if they are each stationary, and the cross-covariance function

’Yacy(h) = coV(Tith, Yi) = E[(@ern — pa) (e — Ny)] (1.26)
s a function only of lag h.

Definition 1.11 The cross-correlation function (CCF) of jointly station-
ary time series xy and y; is defined as

_ ) (1.27)

P = @)
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Again, we have the result —1 < p,(h) < 1 which enables comparison with
the extreme values —1 and 1 when looking at the relation between x,,; and
y+. The cross-correlation function is not generally symmetric about zero [i.e.,
typically pgy(h) # psy(—h)]; however, it is the case that

Pay(h) = pyz(—h), (1.28)
which can be shown by manipulations similar to those used to show (1.25).

Example 1.21 Joint Stationarity
Consider the two series, z; and y;, formed from the sum and difference of
two successive values of a white noise process, say,

Ty = Wy + We—1

and
Yt = Wt — W1,

where w; are independent random variables with zero means and variance
o2. It is easy to show that 7,(0) = 7,(0) = 202 and v,(1) = v,(-1) =
02, 7,(1) = v, (—1) = —c2. Also,

Yoy (1) = cov(ziy1, yi) = cov(wipr + wy, wy — wy—1) = 03}

because only one term is nonzero (recall footnote 3 on page 20). Similarly,
Yoy (0) = 0,72y (—1) = —02. We obtain, using (1.27),

0 h=0,

1/2 h=1,
sz(h) = _1/2 h=—1

0 |h|>2

Clearly, the autocovariance and cross-covariance functions depend only on
the lag separation, h, so the series are jointly stationary.

Example 1.22 Prediction Using Cross-Correlation
As a simple example of cross-correlation, consider the problem of determin-
ing possible leading or lagging relations between two series z; and y;. If the
model
Y = Axyp +wy

holds, the series z; is said to lead y; for £ > 0 and is said to lag y; for ¢ < 0.
Hence, the analysis of leading and lagging relations might be important in
predicting the value of y; from x;. Assuming, for convenience, that z; and
y have zero means, and the noise w; is uncorrelated with the x; series, the
cross-covariance function can be computed as
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’sz(h) = coV(Yith, ) = cOV(ATiyn_g + Wign, T¢)
= cov(Axiip_yg,xt) = Ay (h —0).

The cross-covariance function will look like the autocovariance of the input
series x, with a peak on the positive side if x; leads y; and a peak on the
negative side if x; lags y;.

The concept of weak stationarity forms the basis for much of the analy-
sis performed with time series. The fundamental properties of the mean and
autocovariance functions (1.21) and (1.22) are satisfied by many theoretical
models that appear to generate plausible sample realizations. In Examples 1.9
and 1.10, two series were generated that produced stationary looking realiza-
tions, and in Example 1.20, we showed that the series in Example 1.9 was, in
fact, weakly stationary. Both examples are special cases of the so-called linear
process.

Definition 1.12 A linear process, xy, is defined to be a linear combination
of white noise variates wy, and is given by

o0

Ty = QU+ Z ijt_j, Z |’¢]| < 0. (129)

j=—00 j=—o00

For the linear process (see Problem 1.11), we may show that the autoco-
variance function is given by

v(h) = o3, Z Yi+nt; (1.30)

j=—00

for h > 0; recall that v(—h) = ~(h). This method exhibits the autocovariance
function of the process in terms of the lagged products of the coefficients. Note
that, for Example 1.9, we have ¥y = ¥_1 = 9y = 1/3 and the result in Ex-
ample 1.20 comes out immediately. The autoregressive series in Example 1.10
can also be put in this form, as can the general autoregressive moving average
processes considered in Chapter 3.

Finally, as previously mentioned, an important case in which a weakly
stationary series is also strictly stationary is the normal or Gaussian series.

Definition 1.13 A process, {x:}, is said to be a Gaussian process if the

n-dimensional vectors € = (x4,,Tey,...,2r,) , for every collection of time
points tq,ta, ..., t,, and every positive integer n, have a multivariate normal
distribution.

Defining the n x 1 mean vector E(x) = p = (fty, ftns - - - > ft,)" and the
n X n covariance matrix as var(z) = I' = {v(t;,t;); ¢, = 1,...,n}, which is
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assumed to be positive definite, the multivariate normal density function can
be written as

@) = n) A e { e - w T e W) 8

where || denotes the determinant. This distribution forms the basis for solving
problems involving statistical inference for time series. If a Gaussian time
series, {x;}, is weakly stationary, then p; = p and ~v(t;,t;) = v(|t; — t;]),
so that the vector p and the matrix I' are independent of time. These facts
imply that all the finite distributions, (1.31), of the series {x;} depend only
on time lag and not on the actual times, and hence the series must be strictly
stationary.

1.6 Estimation of Correlation

Although the theoretical autocorrelation and cross-correlation functions are
useful for describing the properties of certain hypothesized models, most of
the analyses must be performed using sampled data. This limitation means
the sampled points x1, xs,...,x, only are available for estimating the mean,
autocovariance, and autocorrelation functions. From the point of view of clas-
sical statistics, this poses a problem because we will typically not have iid
copies of x; that are available for estimating the covariance and correlation
functions. In the usual situation with only one realization, however, the as-
sumption of stationarity becomes critical. Somehow, we must use averages
over this single realization to estimate the population means and covariance
functions.

Accordingly, if a time series is stationary, the mean function (1.21) u; = p
is constant so that we can estimate it by the sample mean,

1 n
T==)m (1.32)
n
t=1

The standard error of the estimate is the square root of var(Z), which can be
computed using first principles (recall footnote 3 on page 20), and is given by

n

var(Z) = var (Tll th> = %COV (2”: Ty, i:xs>
t=1 s=1

- %(n%(o) +(n = Dve(1) + (n —2)7(2) + -+ + 7z (n — 1)

(0 = (1) + (0 = 2)7(=2) + -+ (1 = )

1y ( —%)%(h). (1.33)
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If the process is white noise, (1.33) reduces to the familiar o2 /n recalling that
7:(0) = 2. Note that, in the case of dependence, the standard error of z may
be smaller or larger than the white noise case depending on the nature of the
correlation structure (see Problem 1.19)

The theoretical autocovariance function, (1.22), is estimated by the sample
autocovariance function defined as follows.

Definition 1.14 The sample autocovariance function is defined as

n—h

() =n" S (wen — &) — 2), (1.34)

t=1
with ¥(=h) =F(h) for h=0,1,...,n — 1.

The sum in (1.34) runs over a restricted range because x4y, is not available
for t + h > n. The estimator in (1.34) is preferred to the one that would be
obtained by dividing by n—h because (1.34) is a non-negative definite function.
The autocovariance function, (h), of a stationary process is non-negative
definite (see Problem 1.25) ensuring that variances of linear combinations of
the variates z; will never be negative. And, because var(ajzs, + -+ + an2y,)
is never negative, the estimate of that variance should also be non-negative.
The estimator in (1.34) guarantees this result, but no such guarantee exists if
we divide by n — h; this is explored further in Problem 1.25. Note that neither
dividing by n nor n — h in (1.34) yields an unbiased estimator of v(h).

Definition 1.15 The sample autocorrelation function is defined, analo-
gously to (1.23), as
y(h)

p(h) = —=. (1.35)
7(0)
The sample autocorrelation function has a sampling distribution that al-
lows us to assess whether the data comes from a completely random or white
series or whether correlations are statistically significant at some lags.

Property 1.1 Large-Sample Distribution of the ACF

Under general conditions,® if z; is white noise, then for n large, the sample
ACF, py(h), for h =1,2,..., H, where H is fized but arbitrary, is approxi-
mately normally distributed with zero mean and standard deviation given by

1

5 The general conditions are that x; is iid with finite fourth moment. A sufficient
condition for this to hold is that x; is white Gaussian noise. Precise details are
given in Theorem A.7 in Appendix A.
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Based on the previous result, we obtain a rough method of assessing
whether peaks in p(h) are significant by determining whether the observed
peak is outside the interval +2/y/n (or plus/minus two standard errors); for
a white noise sequence, approximately 95% of the sample ACFs should be
within these limits. The applications of this property develop because many
statistical modeling procedures depend on reducing a time series to a white
noise series using various kinds of transformations. After such a procedure is
applied, the plotted ACFs of the residuals should then lie roughly within the
limits given above.

Definition 1.16 The estimators for the cross-covariance function, v, (h), as
given in (1.26) and the cross-correlation, pyy,(h), in (1.27) are given, respec-
tively, by the sample cross-covariance function

n—h

Fey(h) =01 D (@ern — ) (g — 1), (1.37)
t=1

where py(—h) = Fyz(h) determines the function for negative lags, and the
sample cross-correlation function

N _ Aay(h)
Pay(h) = OO (1.38)

The sample cross-correlation function can be examined graphically as a
function of lag h to search for leading or lagging relations in the data using
the property mentioned in Example 1.22 for the theoretical cross-covariance
function. Because —1 < p,,(h) < 1, the practical importance of peaks can
be assessed by comparing their magnitudes with their theoretical maximum
values. Furthermore, for x; and ¥, independent linear processes of the form
(1.29), we have the following property.

Property 1.2 Large-Sample Distribution of Cross-Correlation
Under Independence
The large sample distribution of pyy(h) is normal with mean zero and

1
Opay = %

if at least one of the processes is independent white noise (see Theorem A.8
in Appendiz A).

(1.39)

Example 1.23 A Simulated Time Series
To give an example of the procedure for calculating numerically the auto-
covariance and cross-covariance functions, consider a contrived set of data
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Table 1.1. Sample Realization of the Contrived Series y:

t 1 2 3 4 5 6 7 8 9 10
Coin H H T H T T T H T H
Tt 1 1 -1 1 -1 -1 -1 1 -1 1

Yt 6.7 5.3 3.3 6.7 3.3 47 47 6.7 3.3 6.7
yy—Yy 156 .16 —1.84 1.56 —-1.84 —44 —44 156 —1.84 1.56

generated by tossing a fair coin, letting x; = 1 when a head is obtained and
x; = —1 when a tail is obtained. Construct y; as

Yy =5+x — .Tr_ 1. (1.40)

Table 1.1 shows sample realizations of the appropriate processes with zg =
—1 and n = 10.

The sample autocorrelation for the series y;, can be calculated using (1.34)
and (1.35) for h = 0,1,2,.... It is not necessary to calculate for negative
values because of the symmetry. For example, for h = 3, the autocorrelation
becomes the ratio of

7
7(3) = 15 D Wers — 9y — )
1

:%[ )(1.56) + (—1.84)(.16) + (—.44)(—1.84) + (—.44)(1.56)
+

(1.56)(—1.84) 4 (—1.84)(—.44) + (1.56)(—.44)| = —.048
to
Fy(0) = 7=[(1.56)* + (.16)* + - - - + (1.56)] = 2.030
so that 048
py(3) = m = —.024.

The theoretical ACF can be obtained from the model (1.40) using the fact
that the mean of z; is zero and the variance of z; is one. It can be shown

that
.7

py(1) = 14__—72 = —47

and py(h) = 0 for |h| > 1 (Problem 1.24). Table 1.2 compares the theo-
retical ACF with sample ACFs for a realization where n = 10 and another
realization where n = 100; we note the increased variability in the smaller
size sample.
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Table 1.2. Theoretical and Sample ACFs
for n = 10 and n = 100

n =10 n =100
h py(h)  py(h)  py(h)
0 1.00 1.00 1.00

+1 —.47 —.55 —.45
+2 .00 A7 —.12
£3 .00 —-.02 .14
+4 .00 .15 .01
+5 .00 —.46 —.01

Example 1.24 ACF of a Speech Signal
Computing the sample ACF as in the previous example can be thought of
as matching the time series h units in the future, say, xy;p against itself, z.
Figure 1.13 shows the ACF of the speech series of Figure 1.3. The original
series appears to contain a sequence of repeating short signals. The ACF
confirms this behavior, showing repeating peaks spaced at about 106-109
points. Autocorrelation functions of the short signals appear, spaced at the
intervals mentioned above. The distance between the repeating signals is
known as the pitch period and is a fundamental parameter of interest in
systems that encode and decipher speech. Because the series is sampled at
10,000 points per second, the pitch period appears to be between .0106 and
.0109 seconds.

To put the data into speech as a time series object (if it is not there

already from Example 1.3) and compute the sample ACF in R, use

1 acf (speech, 250)

Example 1.25 SOI and Recruitment Correlation Analysis
The autocorrelation and cross-correlation functions are also useful for an-
alyzing the joint behavior of two stationary series whose behavior may be
related in some unspecified way. In Example 1.5 (see Figure 1.5), we have
considered simultaneous monthly readings of the SOI and the number of
new fish (Recruitment) computed from a model. Figure 1.14 shows the au-
tocorrelation and cross-correlation functions (ACFs and CCF) for these two
series. Both of the ACFs exhibit periodicities corresponding to the correla-
tion between values separated by 12 units. Observations 12 months or one
year apart are strongly positively correlated, as are observations at multiples
such as 24, 36,48, ... Observations separated by six months are negatively
correlated, showing that positive excursions tend to be associated with nega-
tive excursions six months removed. This appearance is rather characteristic
of the pattern that would be produced by a sinusoidal component with a pe-
riod of 12 months. The cross-correlation function peaks at h = —6, showing
that the SOI measured at time ¢ — 6 months is associated with the Recruit-
ment series at time t. We could say the SOI leads the Recruitment series by
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Fig. 1.13. ACF of the speech series.

six months. The sign of the ACF is negative, leading to the conclusion that
the two series move in different directions; that is, increases in SOI lead to
decreases in Recruitment and vice versa. Again, note the periodicity of 12
months in the CCF. The flat lines shown on the plots indicate 2//453,
so that upper values would be exceeded about 2.5% of the time if the noise
were white [see (1.36) and (1.39)].

To reproduce Figure 1.14 in R, use the following commands:
par (mfrow=c(3,1))
acf(soi, 48, main="Southern Oscillation Index")
acf(rec, 48, main="Recruitment")
ccf(soi, rec, 48, main="S0I vs Recruitment", ylab="CCF")

S

1.7 Vector-Valued and Multidimensional Series

We frequently encounter situations in which the relationships between a num-
ber of jointly measured time series are of interest. For example, in the previous
sections, we considered discovering the relationships between the SOI and Re-
cruitment series. Hence, it will be useful to consider the notion of a vector time
series &y = (X1, Ty2, . - . 7ﬂctp)’, which contains as its components p univariate
time series. We denote the p x 1 column vector of the observed series as z;.
The row vector z; is its transpose. For the stationary case, the p x 1 mean
vector

n=FE(x) (1.41)

of the form p = (w1, fe2, - - -, pep)’ and the p x p autocovariance matrix
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Fig. 1.14. Sample ACFs of the SOI series (top) and of the Recruitment series
(middle), and the sample CCF of the two series (bottom); negative lags indicate
SOI leads Recruitment. The lag axes are in terms of seasons (12 months).

I'(h) = E[(@4n — p) (@ — p)'] (1.42)

can be defined, where the elements of the matrix I"(h) are the cross-covariance
functions

Vij(h) = El(esni — pi) (2 — p15)] (1.43)
fori,j =1,...,p. Because 7;;(h) = ~v;;(—h), it follows that
I'(=h) =T1"(h). (1.44)
Now, the sample autocovariance matrix of the vector series z; is the p x p
matrix of sample cross-covariances, defined as

n—h

L(h)=n"1 (Tesn —2)(z — 1), (1.45)

t=1
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Fig. 1.15. Two-dimensional time series of temperature measurements taken on a
rectangular field (64 x 36 with 17-foot spacing). Data are from Bazza et al. (1988).

where .
z=n"'> z (1.46)
t=1

denotes the p x 1 sample mean vector. The symmetry property of the theoret-
ical autocovariance (1.44) extends to the sample autocovariance (1.45), which
is defined for negative values by taking

I'(=h) = T'(h). (1.47)

In many applied problems, an observed series may be indexed by more
than time alone. For example, the position in space of an experimental unit
might be described by two coordinates, say, s; and s3. We may proceed in
these cases by defining a multidimensional process xg as a function of the rx 1
vector s = (81, 82, ..., 8,)", where s; denotes the coordinate of the ith index.

Example 1.26 Soil Surface Temperatures
As an example, the two-dimensional (r = 2) temperature series zg, s, in
Figure 1.15 is indexed by a row number s; and a column number sy that
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represent positions on a 64 x 36 spatial grid set out on an agricultural field.
The value of the temperature measured at row s; and column ss, is denoted
by s = 241, s2. We can note from the two-dimensional plot that a distinct
change occurs in the character of the two-dimensional surface starting at
about row 40, where the oscillations along the row axis become fairly stable
and periodic. For example, averaging over the 36 columns, we may compute
an average value for each s; as in Figure 1.16. It is clear that the noise
present in the first part of the two-dimensional series is nicely averaged out,
and we see a clear and consistent temperature signal.
To generate Figures 1.15 and 1.16 in R, use the following commands:
1 persp(1:64, 1:36, soiltemp, phi=30, theta=30, scale=FALSE, expand=4,
ticktype="detailed", xlab="rows", ylab="cols",
zlab="temperature")
2 plot.ts(rowMeans(soiltemp), xlab="row", ylab="Average Temperature")

The autocovariance function of a stationary multidimensional process, xg,
can be defined as a function of the multidimensional lag vector, say, h =
(hl, hg, ey hr)/, as

V(h) = El(zg,p — 1)(2s — p)l; (1.48)

where
n=E(zs) (1.49)

does not depend on the spatial coordinate s. For the two dimensional tem-
perature process, (1.48) becomes

’Y(hlv h2) = E[($81+h1,82+h2 - M)(‘r81782 - /1‘)}’ (150)

which is a function of lag, both in the row (hq) and column (h2) directions.
The multidimensional sample autocovariance function is defined as

F(h) = (S182-+-8,) YD "> (g, — E) (s — T, (1.51)

s1  So Sy
where s = (s1, $2,...,8,) and the range of summation for each argument is
1<s; <S;—hy, fori=1,...,r. The mean is computed over the r-dimensional

array, that is,

Z=(58S) "D Y ) w s (1.52)

S1 S92 Sr

where the arguments s; are summed over 1 < s; < S;. The multidimensional
sample autocorrelation function follows, as usual, by taking the scaled ratio

oy = 1), (1.53)
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Fig. 1.16. Row averages of the two-dimensional soil temperature profile. z,, =
252 Tsy,s2/36.

Example 1.27 Sample ACF of the Soil Temperature Series
The autocorrelation function of the two-dimensional (2d) temperature pro-
cess can be written in the form

y(hy, ha)

p(hi,ha) =
Ainte) = 50,0

where

a(hh h2) = (5152)_1 ZZ($31+’11,52+’12 - j)(‘T&91,52 - "f)

S1 S92

Figure 1.17 shows the autocorrelation function for the temperature data,
and we note the systematic periodic variation that appears along the rows.
The autocovariance over columns seems to be strongest for h; = 0, implying
columns may form replicates of some underlying process that has a period-
icity over the rows. This idea can be investigated by examining the mean
series over columns as shown in Figure 1.16.

The easiest way (that we know of) to calculate a 2d ACF in R is by
using the fast Fourier transform (FFT) as shown below. Unfortunately, the
material needed to understand this approach is given in Chapter 4, §4.4. The
2d autocovariance function is obtained in two steps and is contained in cs
below; 7(0,0) is the (1,1) element so that p(h1, hs) is obtained by dividing
each element by that value. The 2d ACF is contained in rs below, and the
rest of the code is simply to arrange the results to yield a nice display.
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Fig. 1.17. Two-dimensional autocorrelation function for the soil temperature data.

1 fs = abs(fft(soiltemp-mean(soiltemp))) "2/ (64%36)

2 cs = Re(fft(fs, inverse=TRUE)/sqrt(64*36)) # ACovF
3 rs = cs/cs[1,1] # ACF

4 rs2 = cbind(rs[1:41,21:2], rs[1:41,1:21])

5 rs3 = rbind(rs2[41:2,], rs2)

o

par(mar = c(1,2.5,0,0)+.1)

7 persp(-40:40, -20:20, rs3, phi=30, theta=30, expand=30,
scale="FALSE", ticktype="detailed", xlab="row lags",
ylab="column lags", zlab="ACF")

The sampling requirements for multidimensional processes are rather se-
vere because values must be available over some uniform grid in order to
compute the ACF. In some areas of application, such as in soil science, we
may prefer to sample a limited number of rows or transects and hope these
are essentially replicates of the basic underlying phenomenon of interest. One-
dimensional methods can then be applied. When observations are irregular in
time space, modifications to the estimators need to be made. Systematic ap-
proaches to the problems introduced by irregularly spaced observations have
been developed by Journel and Huijbregts (1978) or Cressie (1993). We shall
not pursue such methods in detail here, but it is worth noting that the intro-
duction of the variogram
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2V, (h) = var{zg p — zs} (1.54)
and its sample estimator
~ - 1 9
2V, (h) = N Zs:($s+h — ) (1.55)

play key roles, where N (h) denotes both the number of points located within
h, and the sum runs over the points in the neighborhood. Clearly, substantial
indexing difficulties will develop from estimators of the kind, and often it
will be difficult to find non-negative definite estimators for the covariance
function. Problem 1.27 investigates the relation between the variogram and
the autocovariance function in the stationary case.

Problems

Section 1.2

1.1 To compare the earthquake and explosion signals, plot the data displayed
in Figure 1.7 on the same graph using different colors or different line types
and comment on the results. (The R code in Example 1.11 may be of help on
how to add lines to existing plots.)

1.2 Consider a signal-plus-noise model of the general form xz; = s; + wy,
where w; is Gaussian white noise with 02 = 1. Simulate and plot n = 200
observations from each of the following two models (Save the data or your
code for use in Problem 1.22 ):

(a) x; = s¢ + wy, for t = 1,...,200, where

(o, t=1,...,100
L 108Xp{—%}c08(277t/4), t=101,...,200.

Hint:
18 = c(rep(0,100), 10*exp(-(1:100)/20)*cos(2*pi*1:100/4))
2 x = ts(s + rnorm(200, 0, 1))
3 plot(x)
(b)xy = s¢ +wy, for t =1,...,200, where

o, t=1,...,100
L 10exp{—%%m}cos(2ﬂt/4), t =101,...,200.

(¢) Compare the general appearance of the series (a) and (b) with the earth-
quake series and the explosion series shown in Figure 1.7. In addition, plot
(or sketch) and compare the signal modulators (a) exp{—t/20} and (b)
exp{—t/200}, for t = 1,2,...,100.
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Section 1.3

1.3 (a) Generate n = 100 observations from the autoregression
Ty = =929 + wy

with o,, = 1, using the method described in Example 1.10, page 13. Next,
apply the moving average filter

v = (2 + X1 + 242 + 34-3) /4

to x;, the data you generated. Now plot z; as a line and superimpose v
as a dashed line. Comment on the behavior of x; and how applying the
moving average filter changes that behavior. [Hints: Use v = filter(x,
rep(1/4, 4), sides = 1) for the filter and note that the R code in Ex-
ample 1.11 may be of help on how to add lines to existing plots.]
(b) Repeat (a) but with
xy = cos(2nmt/4).

(c) Repeat (b) but with added N(0, 1) noise,
xy = cos(27t/4) + wy.
(d) Compare and contrast (a)—(c).
Section 1.4
1.4 Show that the autocovariance function can be written as
V(s,t) = El(s — ps) (@t — pe)] = E(zs28) — pspie,
where E[z;] = .
1.5 For the two series, 2y, in Problem 1.2 (a) and (b):
(a) Compute and plot the mean functions p,(t), for t = 1,...,200.
(b) Calculate the autocovariance functions, v, (s,t), for s,t =1,...,200.
Section 1.5
1.6 Consider the time series
xy = P1 + Pat + wy,

where (37 and (5 are known constants and w; is a white noise process with
variance o2.

(a) Determine whether x; is stationary.
(b) Show that the process y; = x; — x;—1 is stationary.
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(¢) Show that the mean of the moving average

1 q
" T 2T

=—q
is B1+ Bat, and give a simplified expression for the autocovariance function.

1.7 For a moving average process of the form
Ty = wi—1 + 2wy + Wiy,

where w; are independent with zero means and variance o2, determine the
autocovariance and autocorrelation functions as a function of lag h = s — ¢t
and plot the ACF as a function of h.

1.8 Consider the random walk with drift model

Ty =0+ T4 + wy,

2

w*

fort =1,2,..., with p = 0, where w; is white noise with variance o

(a) Show that the model can be written as z; = 6t + 22:1 W

(b) Find the mean function and the autocovariance function of z;.

(¢) Argue that x; is not stationary.

(d) Show p,(t —1,t) = /52 — 1 as t — co. What is the implication of this
result?

(e) Suggest a transformation to make the series stationary, and prove that the
transformed series is stationary. (Hint: See Problem 1.6b.)

1.9 A time series with a periodic component can be constructed from
x¢ = Uy sin(2mwot) + Uz cos(2mwot),

where U; and U are independent random variables with zero means and
E(U?) = E(U3) = o2 The constant wy determines the period or time it
takes the process to make one complete cycle. Show that this series is weakly
stationary with autocovariance function

v(h) = 0* cos(2mwoh).

1.10 Suppose we would like to predict a single stationary series x; with zero
mean and autocorrelation function v(h) at some time in the future, say, ¢ + ¢,
for ¢ > 0.

(a) If we predict using only x; and some scale multiplier A, show that the
mean-square prediction error

MSE(A) = E[(z140 — Axy)?]

is minimized by the value

A = p(0).
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(b) Show that the minimum mean-square prediction error is
MSE(A) = 1(0)[1 - p2(0)].
(c) Show that if x4y = Axy, then p(¢) =1if A >0, and p(¢) = —1if A < 0.
1.11 Consider the linear process defined in (1.29).

(a) Verify that the autocovariance function of the process is given by (1.30).
Use the result to verify your answer to Problem 1.7.
(b) Show that x; exists as a limit in mean square (see Appendix A).

1.12 For two weakly stationary series x; and y;, verify (1.28).

1.13 Consider the two series
Ty = Wt

Yo = wy — Owy_1 + uy,

where w; and u; are independent white noise series with variances o2 and o2,
respectively, and @ is an unspecified constant.

(a) Express the ACF, p,(h), for h = 0,%1,£2, ... of the series y, as a function
of 02,02, and 6.

(b) Determine the CCF, p,, (h) relating z; and y,.

(¢) Show that z; and y; are jointly stationary.

1.14 Let x; be a stationary normal process with mean p, and autocovariance
function «y(h). Define the nonlinear time series

yr = exp{axs}.

(a) Express the mean function E(y;) in terms of p; and v(0). The moment
generating function of a normal random variable x with mean p and vari-
ance o2 is

M, (\) = Elexp{\z}] = exp{uA + ;02)\2}.

(b) Determine the autocovariance function of y;. The sum of the two normal
random variables x4y + 2 is still a normal random variable.

1.15 Let wy, for t = 0,4+1,42,... be a normal white noise process, and con-
sider the series
Tt = WWt—1.

Determine the mean and autocovariance function of x;, and state whether it
is stationary.
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1.16 Consider the series
x¢ = sin(27U¢),

t=1,2,..., where U has a uniform distribution on the interval (0, 1).

(a) Prove x; is weakly stationary.

(b) Prove x; is not strictly stationary. [Hint: consider the joint bivariate cdf
(1.18) at the points t = 1,s = 2 with h = 1, and find values of ¢;, ¢; where
strict stationarity does not hold.]

1.17 Suppose we have the linear process x; generated by
= wy — Owy_q,

t =0,1,2,..., where {w;} is independent and identically distributed with
characteristic function ¢, (), and € is a fixed constant. [Replace “characteristic
function” with “moment generating function” if instructed to do so.]

(a) Express the joint characteristic function of x1,za, ..., x,, say,

¢$1,3€2>~~,£L’n ()‘1» /\27 ey )\n)a

in terms of ¢y, (+).
(b) Deduce from (a) that x; is strictly stationary.

1.18 Suppose that z; is a linear process of the form (1.29). Prove

(o)
> k)] < oo
h=—o00
Section 1.6
1.19 Suppose z1, ..., z, is a sample from the process x; = p + wy — .8wy_1,

where w; ~ wn(0,02).

(a) Show that mean function is E(x:) = p.

(b) Use (1.33) to calculate the standard error of Z for estimating p.

(¢) Compare (b) to the case where x; is white noise and show that (b) is
smaller. Explain the result.

1.20 (a) Simulate a series of n = 500 Gaussian white noise observations as in
Example 1.8 and compute the sample ACF, p(h), to lag 20. Compare the
sample ACF you obtain to the actual ACF, p(h). [Recall Example 1.19.]

(b) Repeat part (a) using only n = 50. How does changing n affect the results?

1.21 (a) Simulate a series of n = 500 moving average observations as in Ex-
ample 1.9 and compute the sample ACF, p(h), to lag 20. Compare the
sample ACF you obtain to the actual ACF, p(h). [Recall Example 1.20.]

(b) Repeat part (a) using only n = 50. How does changing n affect the results?
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1.22 Although the model in Problem 1.2(a) is not stationary (Why?), the
sample ACF can be informative. For the data you generated in that problem,
calculate and plot the sample ACF, and then comment.

1.23 Simulate a series of n = 500 observations from the signal-plus-noise
model presented in Example 1.12 with 02 = 1. Compute the sample ACF to
lag 100 of the data you generated and comment.

1.24 For the time series y; described in Example 1.23, verify the stated result
that p, (1) = —.47 and p,(h) = 0 for h > 1.

1.25 A real-valued function g(t), defined on the integers, is non-negative def-

inite if and only if
DO aiglti —t)a; >0

i=1 j=1

for all positive integers n and for all vectors a = (aj,as,...,a,) and t =
(t1,t2,...,ty) . For the matrix G = {g(t; —t;); ¢,j = 1,2,...,n}, this implies
that a’Ga > 0 for all vectors a. It is called positive definite if we can replace
‘>’ with ‘>’ for all a # 0, the zero vector.

(a) Prove that y(h), the autocovariance function of a stationary process, is a
non-negative definite function.
(b) Verify that the sample autocovariance y(h) is a non-negative definite func-

tion.
Section 1.7
1.26 Consider a collection of time series xi¢, o, - .., TN+ that are observing
some common signal p; observed in noise processes ei¢, €st,...,enNt, With a

model for the j-th observed series given by
Tjt = Mt + €jt.

Suppose the noise series have zero means and are uncorrelated for different
J. The common autocovariance functions of all series are given by ~.(s,t).

Define the sample mean
| N
i‘t = N ]Z_; l‘jt.

(a) Show that E[Z;] = .
(b) Show that E[(Z; — 1)?)] = N~ 1. (t,t).
(¢) How can we use the results in estimating the common signal?
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1.27 A concept used in geostatistics, see Journel and Huijbregts (1978) or
Cressie (1993), is that of the variogram, defined for a spatial process s,
s = (81, 82), for 51,80 =0,%1,42, ..., as

Valh) = 3Fl(rg, 1~ 25,

where h = (hy,hg), for hy,he = 0,£1,+2,... Show that, for a stationary
process, the variogram and autocovariance functions can be related through

Vz(h) = 7(0) —~(h),

where 7(h) is the usual lag h covariance function and 0 = (0, 0). Note the easy
extension to any spatial dimension.

The following problems require the material given in Appendixz A

1.28 Suppose x; = By + S1t, where 5y and 8, are constants. Prove as n — oo,
pxz(h) — 1 for fixed h, where p,(h) is the ACF (1.35).

1.29 (a) Suppose z; is a weakly stationary time series with mean zero and
with absolutely summable autocovariance function, v(h), such that

o0

> q(h) =o0.

h=—o00

Prove that \/n & 2 0, where Z is the sample mean (1.32).
(b) Give an example of a process that satisfies the conditions of part (a). What
is special about this process?

1.30 Let z; be a linear process of the form (A.43)—(A.44). If we define

n
—1
Z Tiyh — ,Ufac ,u:c)a
t=1

show that
n'2(3(h) = A(h)) = 0p(1).
Hint: The Markov Inequality

P{lz] > ¢} < E"T'

can be helpful for the cross-product terms.

1.31 For a linear process of the form

o0

Ty = Z¢Jwt—j7

Jj=0
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where {w;} satisfies the conditions of Theorem A.7 and |¢| < 1, show that

P (1) — p(1
1—pi(1)
and construct a 95% confidence interval for ¢ when p, (1) = .64 and n = 100.
1.32 Let {zy; t = 0,+1,42,...} be iid(0, o2).

(a) For h > 1 and k > 1, show that z;x¢4, and xsx.4k are uncorrelated for
all s # t.

(b) For fixed h > 1, show that the h x 1 vector

n

—2 -1/2 1 d /
o2V E (TeTrg1y ey Zipn) — (21,0, 28)
t=1
where z1,..., 2, are iid N(0,1) random variables. [Note: the sequence

{z4wiin; t = 1,2,...} is h-dependent and white noise (0,0%). Also, re-
call the Cramér-Wold device.]

(¢c) Show, for each h > 1,

n n—h
n=1/? thxHh — Z(xt —IZ)(Tipn — T) ) as n — oo
t=1 t=1

where z =n"1 31 2y.
(d) Noting that n=1 31" | 27 % 2, conclude that

n2[p(1), .. PR S (21, z)

where p(h) is the sample ACF of the data z1,...,z,.
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Time Series Regression and Exploratory
Data Analysis

2.1 Introduction

The linear model and its applications are at least as dominant in the time
series context as in classical statistics. Regression models are important for
time domain models discussed in Chapters 3, 5, and 6, and in the frequency
domain models considered in Chapters 4 and 7. The primary ideas depend
on being able to express a response series, say x;, as a linear combination
of inputs, say 21, 2t2, . . ., 2tq- Estimating the coeflicients 31, 2, ..., 84 in the
linear combinations by least squares provides a method for modeling z; in
terms of the inputs.

In the time domain applications of Chapter 3, for example, we will express
x¢ as a linear combination of previous values xy_1,Z¢—2,...,%¢—p, of the cur-
rently observed series. The outputs x; may also depend on lagged values of
another series, say y¢—1,¥t—2,...,Yi—q, that have influence. It is easy to see
that forecasting becomes an option when prediction models can be formulated
in this form. Time series smoothing and filtering can be expressed in terms
of local regression models. Polynomials and regression splines also provide
important techniques for smoothing.

If one admits sines and cosines as inputs, the frequency domain ideas that
lead to the periodogram and spectrum of Chapter 4 follow from a regression
model. Extensions to filters of infinite extent can be handled using regression
in the frequency domain. In particular, many regression problems in the fre-
quency domain can be carried out as a function of the periodic components
of the input and output series, providing useful scientific intuition into fields
like acoustics, oceanographics, engineering, biomedicine, and geophysics.

The above considerations motivate us to include a separate chapter on
regression and some of its applications that is written on an elementary level
and is formulated in terms of time series. The assumption of linearity, sta-
tionarity, and homogeneity of variances over time is critical in the regression

R.H. Shumway and D.S. Stoffer, Time Series Analysis and Its Applications: With R Examples, 47
Springer Texts in Statistics, DOI 10.1007/978-1-4419-7865-3 2,
© Springer Science+Business Media, LLC 2011
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context, and therefore we include some material on transformations and other
techniques useful in exploratory data analysis.

2.2 Classical Regression in the Time Series Context

We begin our discussion of linear regression in the time series context by
assuming some output or dependent time series, say, x;, for t = 1,...,n,
is being influenced by a collection of possible inputs or independent series,
SaY, Zt1,%¢2, - -, %tq, Where we first regard the inputs as fixed and known.
This assumption, necessary for applying conventional linear regression, will
be relaxed later on. We express this relation through the linear regression
model

xp = Brzp1 + Pazeo + -+ Pyziq + Wy, (2.1)

where (1, 52,...,0, are unknown fixed regression coefficients, and {w;} is
a random error or noise process consisting of independent and identically
distributed (iid) normal variables with mean zero and variance o2; we will
relax the iid assumption later. A more general setting within which to embed
mean square estimation and linear regression is given in Appendix B, where

we introduce Hilbert spaces and the Projection Theorem.

Example 2.1 Estimating a Linear Trend

Consider the global temperature data, say x;, shown in Figures 1.2 and 2.1.
As discussed in Example 1.2, there is an apparent upward trend in the series
that has been used to argue the global warming hypothesis. We might use
simple linear regression to estimate that trend by fitting the model

¢ = 1+ Pot +wy, t=1880,1857,...,2009.

This is in the form of the regression model (2.1) when we make the identifi-
cation ¢ = 2, z;1 = 1 and 242 = t. Note that we are making the assumption
that the errors, wy, are an iid normal sequence, which may not be true.
We will address this problem further in §2.3; the problem of autocorrelated
errors is discussed in detail in §5.5. Also note that we could have used, for
example, ¢ = 1,...,130, without affecting the interpretation of the slope
coeflicient, f; only the intercept, 51, would be affected. R

Using simple linear regression, we obtained the estimated coefficients 31 =
—11.2, and B2 = .006 (with a standard error of .0003) yielding a highly
significant estimated increase of .6 degrees centigrade per 100 years. We
discuss the precise way in which the solution was accomplished after the
example. Finally, Figure 2.1 shows the global temperature data, say x;, with
the estimated trend, say 7, = —11.2 + .006¢, superimposed. It is apparent
that the estimated trend line obtained via simple linear regression does not
quite capture the trend of the data and better models will be needed.

To perform this analysis in R, use the following commands:
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Global Temperature Deviation

1880 1900 1920 1940 1960 1980 2000

Time
Fig. 2.1. Global temperature deviations shown in Figure 1.2 with fitted linear trend
line.

1 summary(fit <- Ilm(gtemp~time(gtemp))) # regress gtemp on time
2 plot(gtemp, type="o", ylab="Global Temperature Deviation")
3 abline(fit) # add regression line to the plot

The linear model described by (2.1) above can be conveniently written in

a more general notation by defining the column vectors z; = (21, 212, - - -, Z1q)’

and B = (1, 52,...,084), where ’ denotes transpose, so (2.1) can be written
in the alternate form

Ty = IBIZt -+ wWy. (22)

where w; ~ iid N(0,02). It is natural to consider estimating the unknown
coeflicient vector 8 by minimizing the error sum of squares
n n
Q= ng = Z(wt —B'z)?, (2.3)
t=1 t=1
with respect to 31, 82, ..., 8. Minimizing @) yields the ordinary least squares
estimator of 8. This minimization can be accomplished by differentiating (2.3)
with respect to the vector 8 or by using the properties of projections. In the
notation above, this procedure gives the normal equations

(Z z,,zi) B = Z 212t (2.4)
t=1 t=1

The notation can be simplified by defining Z = [z1|22] - |2z,] as the
n X g matrix composed of the n samples of the input variables, the ob-
served n x 1 vector & = (x1,22,...,2,) and the n x 1 vector of errors
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w = (w1, ws, ..., w,)". In this case, model (2.2) may be written as
T =2ZB+w. (2.5)
The normal equations, (2.4), can now be written as
(Z'2)B=Z'z (2.6)
and the solution R
B=(2'2)""Zx (2.7)

when the matrix Z’Z is nonsingular. The minimized error sum of squares
(2.3), denoted SSE, can be written as

SSE = i(.’llt — 3,275)2

t=1

— (&~ ZB)(z — ZP) (2.8)

~/

=z'x—-B 7'z

R L IAVAVA YA
to give some useful versions for later reference. The ordinary least squares
estimators are unbiased, i.e. E(,H) B, and have the smallest variance within
the class of linear unbiased estimators.

If the errors w; are normally distributed, ,B is also the maximum likelihood
estimator for B8 and is normally distributed with

cov(B (Z ztzt) =02(Z2'2)"' = o2, (2.9)

where
C=(z2z)" (2.10)

is a convenient notation for later equations. An unbiased estimator for the

variance o2 is

s2 = MSE = (2.11)

n—q
where MSFE denotes the mean Squared error, which is contrasted with the
max1mum likelihood estimator 62 = SSE/n. Under the normal assumption,

s2 is distributed proportionally to a chi-squared random variable with n — ¢
degrees of freedom, denoted by X?Q‘qu) and independently of B It follows that

. (B8
T su/Cin

has the t-distribution with n — ¢ degrees of freedom; c¢;; denotes the i-th
diagonal element of C, as defined in (2.10).

(2.12)
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Table 2.1. Analysis of Variance for Regression

Source df Sum of Squares Mean Square
Ztgr4ls---s2t,g q—1 SSR=SSE.—SSE MSR=SSR/(q—T)
Error n—q SSE MSE = SSE/(n—q)
Total n—r SSE,

Various competing models are of interest to isolate or select the best subset
of independent variables. Suppose a proposed model specifies that only a
subset 7 < ¢ independent variables, say, 2., = (21, 242, - - -, 2-) 18 influencing
the dependent variable z;. The reduced model is

=20 +w (2.13)
where 8, = (81, B2, ..., Br)’ is a subset of coefficients of the original ¢ variables
and Z, = [z1.| -+ | Znwr]’ is the n x r matrix of inputs. The null hypothesis
in this case is Ho: fr41 = --- = B4 = 0. We can test the reduced model (2.13)

against the full model (2.2) by comparing the error sums of squares under the

two models using the F-statistic

(SSE, —SSE)/(q—7)
SSE/in—a)

(2.14)

Forin—q=

which has the central F-distribution with ¢ — r and n — ¢ degrees of freedom
when (2.13) is the correct model. Note that SSE, is the error sum of squares
under the reduced model (2.13) and it can be computed by replacing Z with
Z, in (2.8). The statistic, which follows from applying the likelihood ratio
criterion, has the improvement per number of parameters added in the nu-
merator compared with the error sum of squares under the full model in the
denominator. The information involved in the test procedure is often summa-
rized in an Analysis of Variance (ANOVA) table as given in Table 2.1 for this
particular case. The difference in the numerator is often called the regression
sum of squares

In terms of Table 2.1, it is conventional to write the F-statistic (2.14) as
the ratio of the two mean squares, obtaining

MSR

M—M7 (2.15)

Forn—q=

where MSR, the mean squared regression, is the numerator of (2.14). A special
case of interest is 7 = 1 and z;; = 1, when the model in (2.13) becomes

Ty = B+ wy,

and we may measure the proportion of variation accounted for by the other
variables using
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SSE; — SSE
R*=—"_— """ 2.16
SSE; ( )
where the residual sum of squares under the reduced model
n
SSEy =Y (- 1), (2.17)

t=1

in this case is just the sum of squared deviations from the mean Z. The mea-
sure R? is also the squared multiple correlation between x; and the variables
Zt2, 213y - - -5 Rlq-

The techniques discussed in the previous paragraph can be used to test
various models against one another using the F' test given in (2.14), (2.15),
and the ANOVA table. These tests have been used in the past in a stepwise
manner, where variables are added or deleted when the values from the F-
test either exceed or fail to exceed some predetermined levels. The procedure,
called stepwise multiple regression, is useful in arriving at a set of useful
variables. An alternative is to focus on a procedure for model selection that
does not proceed sequentially, but simply evaluates each model on its own
merits. Suppose we consider a normal regression model with k coefficients
and denote the maximum likelihood estimator for the variance as

SSEy,

o = — (2.18)

where SSE) denotes the residual sum of squares under the model with k
regression coefficients. Then, Akaike (1969, 1973, 1974) suggested measuring
the goodness of fit for this particular model by balancing the error of the fit
against the number of parameters in the model; we define the following.

Definition 2.1 Akaike’s Information Criterion (AIC)

2%
AIC = log 52 + ntl : (2.19)

where 53 is given by (2.18) and k is the number of parameters in the model.

The value of k yielding the minimum AIC specifies the best model. The
idea is roughly that minimizing 7 would be a reasonable objective, except
that it decreases monotonically as k increases. Therefore, we ought to penalize
the error variance by a term proportional to the number of parameters. The
choice for the penalty term given by (2.19) is not the only one, and a consid-
erable literature is available advocating different penalty terms. A corrected

! Formally, AIC is defined as —2log Ly + 2k where Ly is the maximized log-
likelihood and k is the number of parameters in the model. For the normal regres-
sion problem, AIC can be reduced to the form given by (2.19). AIC is an estimate
of the Kullback-Leibler discrepency between a true model and a candidate model;
see Problems 2.4 and 2.5 for further details.
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form, suggested by Sugiura (1978), and expanded by Hurvich and Tsai (1989),
can be based on small-sample distributional results for the linear regression
model (details are provided in Problems 2.4 and 2.5). The corrected form is
defined as follows.

Definition 2.2 AIC, Bias Corrected (AICc)

n+k

AICC = log 6\']% + ﬁ,
n—k—

(2.20)

where 03 is given by (2.18), k is the number of parameters in the model, and
n is the sample size.

We may also derive a correction term based on Bayesian arguments, as in
Schwarz (1978), which leads to the following.

Definition 2.3 Bayesian Information Criterion (BIC)

1
BIC — log 52 4 ¥ (:Lg”, (2.21)

using the same notation as in Definition 2.2.

BIC is also called the Schwarz Information Criterion (SIC); see also Ris-
sanen (1978) for an approach yielding the same statistic based on a minimum
description length argument. Various simulation studies have tended to ver-
ify that BIC does well at getting the correct order in large samples, whereas
AICc tends to be superior in smaller samples where the relative number of
parameters is large; see McQuarrie and Tsai (1998) for detailed comparisons.
In fitting regression models, two measures that have been used in the past are
adjusted R-squared, which is essentially s2, and Mallows C,, Mallows (1973),
which we do not consider in this context.

Example 2.2 Pollution, Temperature and Mortality

The data shown in Figure 2.2 are extracted series from a study by Shumway
et al. (1988) of the possible effects of temperature and pollution on weekly
mortality in Los Angeles County. Note the strong seasonal components in all
of the series, corresponding to winter-summer variations and the downward
trend in the cardiovascular mortality over the 10-year period.

A scatterplot matrix, shown in Figure 2.3, indicates a possible linear rela-
tion between mortality and the pollutant particulates and a possible relation
to temperature. Note the curvilinear shape of the temperature mortality
curve, indicating that higher temperatures as well as lower temperatures
are associated with increases in cardiovascular mortality.

Based on the scatterplot matrix, we entertain, tentatively, four models
where M; denotes cardiovascular mortality, 7} denotes temperature and P;
denotes the particulate levels. They are
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Fig. 2.2. Average weekly cardiovascular mortality (top), temperature (middle)
and particulate pollution (bottom) in Los Angeles County. There are 508 six-day
smoothed averages obtained by filtering daily values over the 10 year period 1970-
1979.

My = B1 + Bt + wy

My = By + Pot + B3(T; — T) +wy

My = By + Bot + B3(Ty = T) + Ba(Ty = T)? + wy

My = By + Bot + B3(Ty — T.) + Ba(Ty — T.)* + Bs P + wy

where we adjust temperature for its mean, T° = 74.6, to avoid scaling prob-
lems. It is clear that (2.22) is a trend only model, (2.23) is linear temperature,
(2.24) is curvilinear temperature and (2.25) is curvilinear temperature and
pollution. We summarize some of the statistics given for this particular case
in Table 2.2. The values of R? were computed by noting that SSE; = 50,687
using (2.17).

We note that each model does substantially better than the one before
it and that the model including temperature, temperature squared, and
particulates does the best, accounting for some 60% of the variability and
with the best value for AIC and BIC (because of the large sample size, AIC
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Fig. 2.3. Scatterplot matrix showing plausible relations between mortality, temper-

ature, and pollution.

Table 2.2. Summary Statistics for Mortality Models

Model k  SSE df MSE R® AIC BIC
(2.22) 2 40,020 506 79.0 .21 5.38 5.40
(2.23) 3 31413 505 62.2 .38 514 5.17
(2.24) 4 27,985 504 555 .45 5.03 5.07
(2.25) 5 20,508 503 40.8 .60 4.72 4.77

and AICc are nearly the same). Note that one can compare any two models
using the residual sums of squares and (2.14). Hence, a model with only

trend could be compared to the full model using g = 5,7 = 2,n = 508, so

F3 503 =

(40,020 — 20, 508)/3

20, 508/503

= 160,
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which exceeds F3 503(.001) = 5.51. We obtain the best prediction model,

M, = 81.59 — 027 gg2yt — AT3(o32)(Ty — 74.6)
+.023(.003) (T} — 74.6) + .255( 019y P,

for mortality, where the standard errors, computed from (2.9)-(2.11), are
given in parentheses. As expected, a negative trend is present in time as
well as a negative coefficient for adjusted temperature. The quadratic effect
of temperature can clearly be seen in the scatterplots of Figure 2.3. Pollution
weights positively and can be interpreted as the incremental contribution to
daily deaths per unit of particulate pollution. It would still be essential to
check the residuals wy = M; — M, for autocorrelation (of which there is a
substantial amount), but we defer this question to to §5.6 when we discuss
regression with correlated errors.

Below is the R code to plot the series, display the scatterplot matrix, fit
the final regression model (2.25), and compute the corresponding values of
AIC, AICc and BIC.? Finally, the use of na.action in Im() is to retain the
time series attributes for the residuals and fitted values.

1 par (mfrow=c(3,1))

2 plot(cmort, main="Cardiovascular Mortality", xlab="", ylab="")
3 plot(tempr, main="Temperature", xlab="", ylab="")
4 plot(part, main="Particulates", xlab="", ylab="")

5 dev.new() # open a new graphtic device for the scatterplot matriz

; pairs(cbind (Mortality=cmort, Temperature=tempr, Particulates=part))
temp = tempr-mean(tempr) # center temperature

temp2 = temp~2

trend = time(cmort) # time

10 it = 1m(cmort™ trend + temp + temp2 + part, na.action=NULL)

11 summary (fit) # regression results

12 summary(aov(fit)) # ANOVA table  (compare to nexzt line)

13 summary (aov(lm(cmort~cbind(trend, temp, temp2, part)))) # Table 2.1
14 num = length(cmort) # sample size

15 AIC(fit) /num - log(2*pi) # AIC

16 AIC(fit, k=log(num))/num - log(2*pi) # BIC

17 (AICc = log(sum(resid(fit)~2)/num) + (num+5)/(num-5-2)) # AICc

6
e
8
9

As previously mentioned, it is possible to include lagged variables in time
series regression models and we will continue to discuss this type of problem
throughout the text. This concept is explored further in Problems 2.2 and
2.11. The following is a simple example of lagged regression.

2 The easiest way to extract AIC and BIC from an 1m() run in R is to use the
command AIC(). Our definitions differ from R by terms that do not change from
model to model. In the example, we show how to obtain (2.19) and (2.21) from
the R output. It is more difficult to obtain AICc.
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Example 2.3 Regression With Lagged Variables

In Example 1.25, we discovered that the Southern Oscillation Index (SOI)
measured at time ¢ — 6 months is associated with the Recruitment series at
time ¢, indicating that the SOI leads the Recruitment series by six months.
Although there is evidence that the relationship is not linear (this is dis-
cussed further in Example 2.7), we may consider the following regression,

R, = b1+ B2Si—¢ + wy, (2.26)

where R; denotes Recruitment for month ¢ and S;_¢g denotes SOI six months
prior. Assuming the w; sequence is white, the fitted model is

Ry = 65.79 — 44.285.78) S 6 (2.27)

with 7, = 22.5 on 445 degrees of freedom. This result indicates the strong
predictive ability of SOI for Recruitment six months in advance. Of course,
it is still essential to check the the model assumptions, but again we defer
this until later.

Performing lagged regression in R is a little difficult because the series
must be aligned prior to running the regression. The easiest way to do this
is to create a data frame that we call fish using ts.intersect, which aligns
the lagged series.

1 fish = ts.intersect(rec, soil6=lag(soi,-6), dframe=TRUE)
2 summary (lm(rec”soil6, data=fish, na.action=NULL))

2.3 Exploratory Data Analysis

In general, it is necessary for time series data to be stationary, so averag-
ing lagged products over time, as in the previous section, will be a sensible
thing to do. With time series data, it is the dependence between the values
of the series that is important to measure; we must, at least, be able to es-
timate autocorrelations with precision. It would be difficult to measure that
dependence if the dependence structure is not regular or is changing at every
time point. Hence, to achieve any meaningful statistical analysis of time series
data, it will be crucial that, if nothing else, the mean and the autocovariance
functions satisfy the conditions of stationarity (for at least some reasonable
stretch of time) stated in Definition 1.7. Often, this is not the case, and we
will mention some methods in this section for playing down the effects of
nonstationarity so the stationary properties of the series may be studied.

A number of our examples came from clearly nonstationary series. The
Johnson & Johnson series in Figure 1.1 has a mean that increases exponen-
tially over time, and the increase in the magnitude of the fluctuations around
this trend causes changes in the covariance function; the variance of the pro-
cess, for example, clearly increases as one progresses over the length of the
series. Also, the global temperature series shown in Figure 1.2 contains some
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evidence of a trend over time; human-induced global warming advocates seize
on this as empirical evidence to advance their hypothesis that temperatures
are increasing.

Perhaps the easiest form of nonstationarity to work with is the trend sta-
tionary model wherein the process has stationary behavior around a trend.
We may write this type of model as

Ty = Mt + Yt (2.28)

where x; are the observations, u; denotes the trend, and y; is a stationary
process. Quite often, strong trend, u, will obscure the behavior of the sta-
tionary process, v, as we shall see in numerous examples. Hence, there is some
advantage to removing the trend as a first step in an exploratory analysis of
such time series. The steps involved are to obtain a reasonable estimate of the
trend component, say fi;, and then work with the residuals

/y\t =Tt — ﬁt- (229)
Consider the following example.

Example 2.4 Detrending Global Temperature
Here we suppose the model is of the form of (2.28),

Ty = [t + Yt,

where, as we suggested in the analysis of the global temperature data pre-
sented in Example 2.1, a straight line might be a reasonable model for the
trend, i.e.,

pe = B1+ Bat.

In that example, we estimated the trend using ordinary least squares® and
found
i = —11.2 + .006 t.

Figure 2.1 shows the data with the estimated trend line superimposed. To
obtain the detrended series we simply subtract fi; from the observations, z,
to obtain the detrended series

Uy = 2 + 11.2 — 006 .

The top graph of Figure 2.4 shows the detrended series. Figure 2.5 shows
the ACF of the original data (top panel) as well as the ACF of the detrended
data (middle panel).

3 Because the error term, y;, is not assumed to be iid, the reader may feel that
weighted least squares is called for in this case. The problem is, we do not know
the behavior of y; and that is precisely what we are trying to assess at this stage.
A notable result by Grenander and Rosenblatt (1957, Ch 7), however, is that
under mild conditions on ¥, for polynomial regression or periodic regression,
asymptotically, ordinary least squares is equivalent to weighted least squares.
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Fig. 2.4. Detrended (top) and differenced (bottom) global temperature series. The
original data are shown in Figures 1.2 and 2.1.

To detrend in the series in R, use the following commands. We also show
how to difference and plot the differenced data; we discuss differencing af-
ter this example. In addition, we show how to generate the sample ACFs
displayed in Figure 2.5.
fit = lm(gtemp~time(gtemp), na.action=NULL) # regress gtemp on time
par (mfrow=c(2,1))
plot(resid(fit), type="o", main="detrended")
plot(diff (gtemp), type="o", main="first difference")
par (mfrow=c(3,1)) # plot ACFs
acf(gtemp, 48, main="gtemp")
acf(resid(fit), 48, main="detrended")
acf(diff (gtemp), 48, main="first difference")
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In Example 1.11 and the corresponding Figure 1.10 we saw that a random
walk might also be a good model for trend. That is, rather than modeling
trend as fixed (as in Example 2.4), we might model trend as a stochastic
component using the random walk with drift model,

pr = o+ He—1 + we, (2.30)
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Fig. 2.5. Sample ACFs of the global temperature (top), and of the detrended
(middle) and the differenced (bottom) series.

where w; is white noise and is independent of y;. If the appropriate model is
(2.28), then differencing the data, z, yields a stationary process; that is,

T — Te—1 = (e + ) — (e—1 + Ye—1) (2.31)
=04+ w +yr — Ye—1.

It is easy to show z; = y; — y;_1 is stationary using footnote 3 of Chapter 1
on page 20. That is, because y; is stationary,

%(h) = Cov(zt+h7 Zt) = coV(Ytth — Yith—1,Yt — yt71)
= 2’7y(h) - ’Yy(h + 1) - 'Yy(h - 1)

is independent of time; we leave it as an exercise (Problem 2.7) to show that
xy — x4 in (2.31) is stationary.
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One advantage of differencing over detrending to remove trend is that
no parameters are estimated in the differencing operation. One disadvantage,
however, is that differencing does not yield an estimate of the stationary
process y; as can be seen in (2.31). If an estimate of y; is essential, then
detrending may be more appropriate. If the goal is to coerce the data to
stationarity, then differencing may be more appropriate. Differencing is also
a viable tool if the trend is fixed, as in Example 2.4. That is, e.g., if pu; =
B1 + P2t in the model (2.28), differencing the data produces stationarity (see
Problem 2.6):

ry — w1 = (e +ye) — (-1 + Y1) = B+ yr — Ye—1.

Because differencing plays a central role in time series analysis, it receives
its own notation. The first difference is denoted as

VI’t =Tt — Tt_1. (232)

As we have seen, the first difference eliminates a linear trend. A second differ-
ence, that is, the difference of (2.32), can eliminate a quadratic trend, and so
on. In order to define higher differences, we need a variation in notation that
we will use often in our discussion of ARIMA models in Chapter 3.

Definition 2.4 We define the backshift operator by
Bry = x4
and extend it to powers B?x; = B(Bxy) = Bxy_1 = 1o, and so on. Thus,

Brz, =2 4. (2.33)

It is clear that we may then rewrite (2.32) as
Vay = (1 — B)xy, (2.34)

and we may extend the notion further. For example, the second difference
becomes

Vir, = (1 - B)*r; = (1 - 2B+ B?)x,
=Ty — 2w 1+ 12

by the linearity of the operator. To check, just take the difference of the first
difference V(Vay) = V(zy — x4-1) = (24 — @4—1) — (X1 — T—2).

Definition 2.5 Differences of order d are defined as
v?=(1-B), (2.35)

where we may expand the operator (1— B)? algebraically to evaluate for higher
integer values of d. When d = 1, we drop it from the notation.
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The first difference (2.32) is an example of a linear filter applied to elim-
inate a trend. Other filters, formed by averaging values near z;, can pro-
duce adjusted series that eliminate other kinds of unwanted fluctuations, as
in Chapter 3. The differencing technique is an important component of the
ARIMA model of Box and Jenkins (1970) (see also Box et al., 1994), to be
discussed in Chapter 3.

Example 2.5 Differencing Global Temperature

The first difference of the global temperature series, also shown in Figure 2.4,
produces different results than removing trend by detrending via regression.
For example, the differenced series does not contain the long middle cycle
we observe in the detrended series. The ACF of this series is also shown in
Figure 2.5. In this case it appears that the differenced process shows minimal
autocorrelation, which may imply the global temperature series is nearly a
random walk with drift. It is interesting to note that if the series is a random
walk with drift, the mean of the differenced series, which is an estimate of
the drift, is about .0066 (but with a large standard error):
mean(diff(gtemp)) # = 0.00659 (drift)

sd(diff (gtemp))/sqrt (length(diff (gtemp))) # = 0.00966 (SE)

-

¥

An alternative to differencing is a less-severe operation that still assumes
stationarity of the underlying time series. This alternative, called fractional
differencing, extends the notion of the difference operator (2.35) to fractional
powers —.5 < d < .5, which still define stationary processes. Granger and
Joyeux (1980) and Hosking (1981) introduced long memory time series, which
corresponds to the case when 0 < d < .5. This model is often used for en-
vironmental time series arising in hydrology. We will discuss long memory
processes in more detail in §5.2.

Often, obvious aberrations are present that can contribute nonstationary
as well as nonlinear behavior in observed time series. In such cases, transfor-
mations may be useful to equalize the variability over the length of a single
series. A particularly useful transformation is

Yyt = log (2.36)

which tends to suppress larger fluctuations that occur over portions of the
series where the underlying values are larger. Other possibilities are power
transformations in the Box—Cox family of the form

A
o {(xt ~1)/A A#0, (2.37)
log x4 A=0.
Methods for choosing the power A are available (see Johnson and Wichern,
1992, §4.7) but we do not pursue them here. Often, transformations are also
used to improve the approximation to normality or to improve linearity in
predicting the value of one series from another.
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Fig. 2.6. Glacial varve thicknesses (top) from Massachusetts for n = 634 years
compared with log transformed thicknesses (bottom).

Example 2.6 Paleoclimatic Glacial Varves
Melting glaciers deposit yearly layers of sand and silt during the spring
melting seasons, which can be reconstructed yearly over a period ranging
from the time deglaciation began in New England (about 12,600 years ago)
to the time it ended (about 6,000 years ago). Such sedimentary deposits,
called varves, can be used as proxies for paleoclimatic parameters, such as
temperature, because, in a warm year, more sand and silt are deposited
from the receding glacier. Figure 2.6 shows the thicknesses of the yearly
varves collected from one location in Massachusetts for 634 years, beginning
11,834 years ago. For further information, see Shumway and Verosub (1992).
Because the variation in thicknesses increases in proportion to the amount
deposited, a logarithmic transformation could remove the nonstationarity
observable in the variance as a function of time. Figure 2.6 shows the original
and transformed varves, and it is clear that this improvement has occurred.
We may also plot the histogram of the original and transformed data, as
in Problem 2.8, to argue that the approximation to normality is improved.
The ordinary first differences (2.34) are also computed in Problem 2.8, and
we note that the first differences have a significant negative correlation at
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lag h = 1. Later, in Chapter 5, we will show that perhaps the varve series
has long memory and will propose using fractional differencing.
Figure 2.6 was generated in R as follows:
1 par (mfrow=c(2,1))
2 plot(varve, main="varve", ylab="")
3 plot(log(varve), main="log(varve)", ylab="" )

Next, we consider another preliminary data processing technique that is
used for the purpose of visualizing the relations between series at different lags,
namely, scatterplot matrices. In the definition of the ACF, we are essentially
interested in relations between x; and x;_p; the autocorrelation function tells
us whether a substantial linear relation exists between the series and its own
lagged values. The ACF gives a profile of the linear correlation at all possible
lags and shows which values of h lead to the best predictability. The restriction
of this idea to linear predictability, however, may mask a possible nonlinear
relation between current values, z;, and past values, z;_j. This idea extends
to two series where one may be interested in examining scatterplots of y,
versus Ty_j,

Example 2.7 Scatterplot Matrices, SOI and Recruitment

To check for nonlinear relations of this form, it is convenient to display a
lagged scatterplot matrix, as in Figure 2.7, that displays values of the SOI,
St, on the vertical axis plotted against S;_; on the horizontal axis. The
sample autocorrelations are displayed in the upper right-hand corner and
superimposed on the scatterplots are locally weighted scatterplot smoothing
(lowess) lines that can be used to help discover any nonlinearities. We discuss
smoothing in the next section, but for now, think of lowess as a robust
method for fitting nonlinear regression.

In Figure 2.7, we notice that the lowess fits are approximately linear,
so that the sample autocorrelations are meaningful. Also, we see strong
positive linear relations at lags h = 1,2,11,12, that is, between S; and
Si_1,St—2,5t-11,St—12, and a negative linear relation at lags h = 6, 7. These
results match up well with peaks noticed in the ACF in Figure 1.14.

Similarly, we might want to look at values of one series, say Recruitment,
denoted R; plotted against another series at various lags, say the SOI, S;_p,
to look for possible nonlinear relations between the two series. Because,
for example, we might wish to predict the Recruitment series, Ry, from
current or past values of the SOI series, S;_j, for h =0, 1,2, ... it would be
worthwhile to examine the scatterplot matrix. Figure 2.8 shows the lagged
scatterplot of the Recruitment series R; on the vertical axis plotted against
the SOI index S;_;, on the horizontal axis. In addition, the figure exhibits
the sample cross-correlations as well as lowess fits.

Figure 2.8 shows a fairly strong nonlinear relationship between Recruit-
ment, R;, and the SOI series at S;_s5,S:_¢, St—7, St—s, indicating the SOI
series tends to lead the Recruitment series and the coefficients are negative,
implying that increases in the SOI lead to decreases in the Recruitment. The
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Fig. 2.7. Scatterplot matrix relating current SOI values, S:, to past SOI values,
Si—n, at lags h = 1,2, ...,12. The values in the upper right corner are the sample
autocorrelations and the lines are a lowess fit.

nonlinearity observed in the scatterplots (with the help of the superimposed
lowess fits) indicate that the behavior between Recruitment and the SOI is
different for positive values of SOI than for negative values of SOI.

Simple scatterplot matrices for one series can be obtained in R using
the lag.plot command. Figures 2.7 and 2.8 may be reproduced using the
following scripts provided with the text (see Appendix R for detials):

1 lag.ploti(soi, 12) # Fig 2.7
2 lag.plot2(soi, rec, 8) # Fig 2.8

As a final exploratory tool, we discuss assessing periodic behavior in time
series data using regression analysis and the periodogram; this material may
be thought of as an introduction to spectral analysis, which we discuss in
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Fig. 2.8. Scatterplot matrix of the Recruitment series, R:, on the vertical axis
plotted against the SOI series, S;_j, on the horizontal axis at lags h = 0,1,...,8.
The values in the upper right corner are the sample cross-correlations and the lines
are a lowess fit.

detail in Chapter 4. In Example 1.12, we briefly discussed the problem of
identifying cyclic or periodic signals in time series. A number of the time
series we have seen so far exhibit periodic behavior. For example, the data
from the pollution study example shown in Figure 2.2 exhibit strong yearly
cycles. Also, the Johnson & Johnson data shown in Figure 1.1 make one cycle
every year (four quarters) on top of an increasing trend and the speech data
in Figure 1.2 is highly repetitive. The monthly SOI and Recruitment series in
Figure 1.6 show strong yearly cycles, but hidden in the series are clues to the
El Nino cycle.



2.3 Exploratory Data Analysis 67

Example 2.8 Using Regression to Discover a Signal in Noise
In Example 1.12, we generated n = 500 observations from the model

xy = Acos(2rwt + @) + wy, (2.38)

where w = 1/50, A = 2, ¢ = .6m, and o, = 5; the data are shown on
the bottom panel of Figure 1.11 on page 16. At this point we assume the
frequency of oscillation w = 1/50 is known, but A and ¢ are unknown
parameters. In this case the parameters appear in (2.38) in a nonlinear way,
so we use a trigonometric identity? and write

Acos(2rwt + ¢) = f1 cos(2nwt) + Pa sin(2nwt),

where 1 = Acos(¢) and B2 = —Asin(¢p). Now the model (2.38) can be
written in the usual linear regression form given by (no intercept term is
needed here)

xy = [ cos(2mt/50) + B2 sin(27t/50) + wy. (2.39)

Using linear regression on the generated data, the fitted model is

Ty = —.T1(30) cos(27t/50) — 2.55( 30y sin(27t/50) (2.40)
with o, = 4.68, where the values in parentheses are the standard er-
rors. We note the actual values of the coefficients for this example are
f1 = 2cos(.6m) = —.62 and P2 = —2sin(.6mr) = —1.90. Because the pa-

rameter estimates are significant and close to the actual values, it is clear
that we are able to detect the signal in the noise using regression, even
though the signal appears to be obscured by the noise in the bottom panel
of Figure 1.11. Figure 2.9 shows data generated by (2.38) with the fitted
line, (2.40), superimposed.
To reproduce the analysis and Figure 2.9 in R, use the following com-

mands:

1 set.seed(1000) # so you can reproduce these results

2 x = 2%cos(2*pi*1:500/50 + .6*pi) + rnorm(500,0,5)

3 z1 = cos(2xpi*1:500/50); 22 = sin(2*pi*1:500/50)

4 summary(fit <- Im(x~0+z1+z2)) # zero to exclude the intercept

5 plot.ts(x, lty="dashed")

6 lines(fitted(fit), 1lwd=2)

Example 2.9 Using the Periodogram to Discover a Signal in Noise
The analysis in Example 2.8 may seem like cheating because we assumed we
knew the value of the frequency parameter w. If we do not know w, we could
try to fit the model (2.38) using nonlinear regression with w as a parameter.
Another method is to try various values of w in a systematic way. Using the

1 cos(a £ B) = cos(a) cos(B) F sin(a) sin(f).
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Fig. 2.9. Data generated by (2.38) [dashed line] with the fitted [solid] line, (2.40),
superimposed.

regression results of §2.2, we can show the estimated regression coefficients
in Example 2.8 take on the special form given by

S r mpcos(2mt/50) 2 O
B T = 27t /50); 2.41
g Z?:l cos?(27t/50) n ;wt cos(2mt/50); ( )
~ S aysin(27t/50) 2 O '
5 = 27t /50). 2.42
B2 Z?:l Sin2(27rt/50) o ;l’t Sln( T / ) ( )

This suggests looking at all possible regression parameter estimates,” say

Bi(i/n) = % Z x cos(2mt j/n); (2.43)
t=1

Balifm) = 23 wesin(2rt j/n), (2.44)
t=1

where, n = 500 and j = 1,...,5 — 1, and inspecting the results for large
values. For the endpoints, j = 0 and j = n/2, we have 3;(0) = n~! PO
and B (1) =n ' 1 (—1)'ay, and Ba(0) = Ba(3) = 0.

For this particular example, the values calculated in (2.41) and (2.42) are
31(10/500) and 32(10/500). By doing this, we have regressed a series, z;, of
5 In the notation of §2.2, the estimates are of the form S mez / > 22 where

z¢ = cos(2mtj/n) or z; = sin(27wtj/n). In this setup, unless j =0 or j =n/2ifn
is even, .7 | 27 = n/2; see Problem 2.10.
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Fig. 2.10. The scaled periodogram, (2.45), of the 500 observations generated by
(2.38); the data are displayed in Figures 1.11 and 2.9.

length n using n regression parameters, so that we will have a perfect fit.
The point, however, is that if the data contain any cyclic behavior we are
likely to catch it by performing these saturated regressions.

Next, note that the regression coefficients f1(j/n) and S2(j/n), for each
j, are essentially measuring the correlation of the data with a sinusoid os-
cillating at j cycles in n time points.® Hence, an appropriate measure of the
presence of a frequency of oscillation of j cycles in n time points in the data
would be R R

P(j/n) = B2(i/n) + B (/n), (2.45)
which is basically a measure of squared correlation. The quantity (2.45)
is sometimes called the periodogram, but we will call P(j/n) the scaled
periodogram and we will investigate its properties in Chapter 4. Figure 2.10
shows the scaled periodogram for the data generated by (2.38), and it easily
discovers the periodic component with frequency w = .02 = 10/500 even
though it is difficult to visually notice that component in Figure 1.11 due
to the noise.

Finally, we mention that it is not necessary to run a large regression

n/2
z =Y Bui(j/n)cos(2mtj/n) + B2(j/n) sin(2wtj/n) (2.46)

j=0
to obtain the values of 81(j/n) and Ba2(j/n) [with B2(0) = B2(1/2) = 0]
because they can be computed quickly if n (assumed even here) is a highly

% Sample correlations are of the form 3, z12:/ (32, 27 3, 23)1/2 .
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composite integer. There is no error in (2.46) because there are n obser-
vations and n parameters; the regression fit will be perfect. The discrete
Fourier transform (DFT) is a complex-valued weighted average of the data
given by

d(j/n) =n"1/? Z xyexp(—2mitj/n)

t=1

=n"1/2 <Z xy cos(2mtj/n) — ’LZ Ty sin(27rtj/n)>

t=1 t=1

(2.47)

where the frequencies j/n are called the Fourier or fundamental frequencies.
Because of a large number of redundancies in the calculation, (2.47) may be
computed quickly using the fast Fourier transform (FFT)7, which is available
in many computing packages such as Matlab@, S-PLUS® and R. Note that®

2

2
1 n 1 n
ld(j/n)|* = = ( g Xy COS(Zﬂ'tj/n)) + = ( g Ty sin(27rtj/n)> (2.48)
n n
t=1 t=1
and it is this quantity that is called the periodogram; we will write

I(j/n) = |d(j/n)|*.

We may calculate the scaled periodogram, (2.45), using the periodogram as

P(ifn) = ~1(i/n). (2.49)

We will discuss this approach in more detail and provide examples with data
in Chapter 4.

Figure 2.10 can be created in R using the following commands (and the
data already generated in x):

1 I = abs(£f£ft(x))"2/500 # the periodogram

2 P = (4/500)*I[1:250] # the scaled periodogram

3 £ = 0:249/500 # frequencies

4 plot(f, P, type="1", xlab="Frequency", ylab="Scaled Periodogram")

2.4 Smoothing in the Time Series Context

In §1.4, we introduced the concept of smoothing a time series, and in Ex-
ample 1.9, we discussed using a moving average to smooth white noise. This
method is useful in discovering certain traits in a time series, such as long-term

7 Different packages scale the FFT differently; consult the documentation. R cal-
culates (2.47) without scaling by n~1/2,
8 If 2 = a — ib is complex, then |z|? = 2Z = (a — ib)(a + ib) = a® + b*.
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Fig. 2.11. The weekly cardiovascular mortality series discussed in Example 2.2
smoothed using a five-week moving average and a 53-week moving average.

trend and seasonal components. In particular, if z; represents the observations,
then

k
me= Y a;ri, (2.50)
j=—k

where a; = a_; > 0 and Z;?:_k a; = 1 is a symmetric moving average of the
data.

Example 2.10 Moving Average Smoother
For example, Figure 2.11 shows the weekly mortality series discussed in
Example 2.2, a five-point moving average (which is essentially a monthly
average with k = 2) that helps bring out the seasonal component and a
53-point moving average (which is essentially a yearly average with k = 26)
that helps bring out the (negative) trend in cardiovascular mortality. In both
cases, the weights, a_g,...,aq,...,ar, we used were all the same, and equal
to 1/(2k +1).%

To reproduce Figure 2.11 in R:
mab = filter(cmort, sides=2, rep(1,5)/5)
mab3 = filter(cmort, sides=2, rep(1,53)/53)
plot(cmort, type="p", ylab="mortality")
lines(ma5); lines(ma53)

-

S

w

'y

9 Sometimes, the end weights, a_; and aj are set equal to half the value of the
other weights.
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Fig. 2.12. The weekly cardiovascular mortality series with a cubic trend and cubic
trend plus periodic regression.

Many other techniques are available for smoothing time series data based
on methods from scatterplot smoothers. The general setup for a time plot is

Ty = fi + i, (2.51)

where f; is some smooth function of time, and y,; is a stationary process. We
may think of the moving average smoother my, given in (2.50), as an estimator
of fi. An obvious choice for f; in (2.51) is polynomial regression

fe = Bo+ Pt + -+ Bptl. (2.52)

We have seen the results of a linear fit on the global temperature data in
Example 2.1. For periodic data, one might employ periodic regression

ft = ap + aq cos(2mwit) + By sin(2mws t)
+ - 4 ay cos(2mwpt) + By sin(2rwyt), (2.53)
where wy,...,w, are distinct, specified frequencies. In addition, one might

consider combining (2.52) and (2.53). These smoothers can be applied using
classical linear regression.

Example 2.11 Polynomial and Periodic Regression Smoothers
Figure 2.12 shows the weekly mortality series with an estimated (via ordi-
nary least squares) cubic smoother

ft = Bo + Bit + Pot?® + Bst®
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superimposed to emphasize the trend, and an estimated (via ordinary least
squares) cubic smoother plus a periodic regression

o= Bo + But + Bat® + Bst® + Gy cos(2mt/52) + Gz sin(27t/52)

superimposed to emphasize trend and seasonality.
The R commands for this example are as follows (we note that the sam-
pling rate is 1/52, so that wk below is essentially ¢/52).
wk = time(cmort) - mean(time(cmort))
wk2 = wk™2; wk3 = wk~3
cs = cos(2*pix*wk); sn = sin(2*pixwk)
regl = Im(cmort~wk + wk2 + wk3, na.action=NULL)
reg2 = 1m(cmort~wk + wk2 + wk3 + cs + sn, na.action=NULL)
plot(cmort, type="p", ylab="mortality")
lines(fitted(regl)); lines(fitted(reg2))

N o oA W N e

Modern regression techniques can be used to fit general smoothers to the
pairs of points (¢, ;) where the estimate of f; is smooth. Many of the tech-
niques can easily be applied to time series data using the R or S-PLUS sta-
tistical packages; see Venables and Ripley (1994, Chapter 10) for details on
applying these methods in S-PLUS (R is similar). A problem with the tech-
niques used in Example 2.11 is that they assume f; is the same function over
the range of time, t; we might say that the technique is global. The moving
average smoothers in Example 2.10 fit the data better because the technique
is local; that is, moving average smoothers allow for the possibility that f; is
a different function over time. We describe some other local methods in the
following examples.

Example 2.12 Kernel Smoothing
Kernel smoothing is a moving average smoother that uses a weight function,
or kernel, to average the observations. Figure 2.13 shows kernel smoothing
of the mortality series, where f; in (2.51) is estimated by

fo =3 wiltyz, (2.54)

where

wi(t) = K (52) ZK (52). (2.55)

are the weights and K (-) is a kernel function. This estimator, which was
originally explored by Parzen (1962) and Rosenblatt (1956b), is often called
the Nadaraya—Watson estimator (Watson, 1966); typically, the normal ker-
nel, K(z) = \/%exp(fzz/Q), is used. To implement this in R, use the
ksmooth function. The wider the bandwidth, b, the smoother the result.
In Figure 2.13, the values of b for this example were b = 5/52 (roughly
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Fig. 2.13. Kernel smoothers of the mortality data.

weighted two to three week averages because b/2 is the inner quartile range
of the kernel) for the seasonal component, and b = 104/52 = 2 (roughly
weighted yearly averages) for the trend component.
Figure 2.13 can be reproduced in R (or S-PLUS) as follows.
1 plot(cmort, type="p", ylab="mortality")
2 lines(ksmooth(time (cmort), cmort, "normal", bandwidth=5/52))
3 lines (ksmooth(time(cmort), cmort, "normal", bandwidth=2))

Example 2.13 Lowess and Nearest Neighbor Regression

Another approach to smoothing a time plot is nearest neighbor regression.
The technique is based on k-nearest neighbors linear regression, wherein one
uses the data {z;_j/2,...,%¢,...,Teqp/2} to predict x; using linear regres-
sion; the result is ﬁ For example, Figure 2.14 shows cardiovascular mor-
tality and the nearest neighbor method using the R (or S-PLUS) smoother
supsmu. We used k = n/2 to estimate the trend and k& = n/100 to esti-
mate the seasonal component. In general, supsmu uses a variable window
for smoothing (see Friedman, 1984), but it can be used for correlated data
by fixing the smoothing window, as was done here.

Lowess is a method of smoothing that is rather complex, but the basic idea
is close to nearest neighbor regression. Figure 2.14 shows smoothing of mor-
tality using the R or S-PLUS function lowess (see Cleveland, 1979). First,
a certain proportion of nearest neighbors to x; are included in a weighting
scheme; values closer to x; in time get more weight. Then, a robust weighted
regression is used to predict x; and obtain the smoothed estimate of f;. The
larger the fraction of nearest neighbors included, the smoother the estimate
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Fig. 2.14. Nearest neighbor (supsmu) and locally weighted regression (lowess)
smoothers of the mortality data.

f+ will be. In Figure 2.14, the smoother uses about two-thirds of the data
to obtain an estimate of the trend component, and the seasonal component
uses 2% of the data.
Figure 2.14 can be reproduced in R or S-PLUS as follows.

1 par (mfrow=c(2,1))

2 plot(cmort, type="p", ylab="mortality", main="nearest neighbor")

3 lines (supsmu(time(cmort), cmort, span=.5))

4 lines(supsmu(time(cmort), cmort, span=.01))

5 plot(cmort, type="p", ylab="mortality", main="lowess")

6 lines(lowess(cmort, f=.02)); lines(lowess(cmort, f=2/3))

Example 2.14 Smoothing Splines
An extension of polynomial regression is to first divide time ¢t = 1,...,n,
into k intervals, [to = 1,t1], [t1 + 1,¢2] ,..., [tk—1 + 1,tx = n]. The values
to,t1,...,t, are called knots. Then, in each interval, one fits a regression of
the form (2.52); typically, p = 3, and this is called cubic splines.
A related method is smoothing splines, which minimizes a compromise
between the fit and the degree of smoothness given by
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Fig. 2.15. Smoothing splines fit to the mortality data.

zn: [z — fi]” + A/ (ft”)2 dt, (2.56)

t=1

where f; is a cubic spline with a knot at each t. The degree of smoothness is
controlled by A > 0. There is a relationship between smoothing splines and
state space models, which is investigated in Problem 6.7.

In R, the smoothing parameter is called spar and it is monotonically
related to A; type ?smooth.spline to view the help file for details. Fig-
ure 2.15 shows smoothing spline fits on the mortality data using generalized
cross-validation, which uses the data to “optimally” assess the smoothing
parameter, for the seasonal component, and spar=1 for the trend. The figure
can be reproduced in R as follows.

1 plot(cmort, type="p", ylab="mortality")
2 lines(smooth.spline(time(cmort), cmort))
3 lines(smooth.spline(time(cmort), cmort, spar=1))

Example 2.15 Smoothing One Series as a Function of Another
In addition to smoothing time plots, smoothing techniques can be applied
to smoothing a time series as a function of another time series. In this ex-
ample, we smooth the scatterplot of two contemporaneously measured time
series, mortality as a function of temperature. In Example 2.2, we discov-
ered a nonlinear relationship between mortality and temperature. Continu-
ing along these lines, Figure 2.16 shows scatterplots of mortality, M;, and
temperature, T3, along with M; smoothed as a function of T} using lowess
and using smoothing splines. In both cases, mortality increases at extreme
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Fig. 2.16. Smoothers of mortality as a function of temperature using lowess and
smoothing splines.

temperatures, but in an asymmetric way; mortality is higher at colder tem-
peratures than at hotter temperatures. The minimum mortality rate seems
to occur at approximately 80° F.
Figure 2.16 can be reproduced in R as follows.
1 par (mfrow=c(2,1), mar=c(3,2,1,0)+.5, mgp=c(1.6,.6,0))
2 plot(tempr, cmort, main="lowess", xlab="Temperature",
ylab="Mortality")
3 lines(lowess (tempr,cmort))
4 plot(tempr, cmort, main="smoothing splines", xlab="Temperature",
ylab="Mortality")
5 lines(smooth.spline(tempr, cmort))

As a final word of caution, the methods mentioned in this section may not
take into account the fact that the data are serially correlated, and most of
the techniques have been designed for independent observations. That is, for
example, the smoothers shown in Figure 2.16 are calculated under the false
assumption that the pairs (M, Ty), are iid pairs of observations. In addition,
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the degree of smoothness used in the previous examples were chosen arbitrarily
to bring out what might be considered obvious features in the data set.

Problems

Section 2.2

2.1 For the Johnson & Johnson data, say w;, shown in Figure 1.1, let x; =
log(y¢)-

(a) Fit the regression model

ry = Bt + a1Q1(t) + aQ2(t) + asQ3(t) + s Qua(t) + wy

where Q;(t) = 1 if time ¢ corresponds to quarter i = 1,2,3,4, and zero
otherwise. The Q;(t)’s are called indicator variables. We will assume for
now that w; is a Gaussian white noise sequence. What is the interpreta-
tion of the parameters 8, a1, as, ag, and a4? (Detailed code is given in
Appendix R on page 574.)

(b) What happens if you include an intercept term in the model in (a)?

(c¢) Graph the data, x;, and superimpose the fitted values, say z;, on the
graph. Examine the residuals, 2; — Z;, and state your conclusions. Does it
appear that the model fits the data well (do the residuals look white)?

2.2 For the mortality data examined in Example 2.2:

(a) Add another component to the regression in (2.25) that accounts for the
particulate count four weeks prior; that is, add P;_4 to the regression in
(2.25). State your conclusion.

(b) Draw a scatterplot matrix of M, Ty, P, and P;_4 and then calculate the
pairwise correlations between the series. Compare the relationship between
M; and P, versus M; and P;_4.

2.3 Repeat the following exercise six times and then discuss the results. Gen-
erate a random walk with drift, (1.4), of length n = 100 with 6 = .01 and
ow = 1. Call the data x; for t = 1,...,100. Fit the regression x; = Bt + w;
using least squares. Plot the data, the mean function (i.e., u; = .01¢) and the
fitted line, z, = BL on the same graph. Discuss your results.

The following R code may be useful:

1 par(mfcol = c(3,2)) # set up graphics

2 for (i in 1:6){

3 x = ts(cumsum(rnorm(100,.01,1))) # the data

4 reg = Im(x"O+time(x), na.action=NULL) # the regression
5 plot(x) # plot data

6 lines(.01*time(x), col="red", lty="dashed") # plot mean
7 abline(reg, col="blue") } # plot regression line
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2.4 Kullback-Leibler Information. Given the random vector y, we define the
information for discriminating between two densities in the same family, in-
dexed by a parameter 0, say f(y;01) and f(y;02), as

1 f(y;01)
I 01;02 = *El log s 257)

( ) n f(y;02) (
where E denotes expectation with respect to the density determined by 6.
For the Gaussian regression model, the parameters are 8 = (8',02)". Show
that we obtain

2 2 _ 4 _
H%M:KE_%%_Q+y%ﬂ%%wlm> (258

in that case.

2.5 Model Selection. Both selection criteria (2.19) and (2.20) are derived from
information theoretic arguments, based on the well-known Kullback-Leibler
discrimination information numbers (see Kullback and Leibler, 1951, Kull-
back, 1958). We give an argument due to Hurvich and Tsai (1989). We think
of the measure (2.58) as measuring the discrepancy between the two densities,
characterized by the parameter values @] = (8,0%) and 0, = (B85, 3)". Now,
if the true value of the parameter vector is 6, we argue that the best model
would be one that minimizes the discrepancy between the theoretical value
and the sample, say I(61;8). Because ; will not be known, Hurvich and Tsai
(1989) considered finding an unbiased estimator for E;[I(8;,07; ,[9762)], where
1 (U% 1 ai 1) + 1 (B4 _B)/Z/Z(,B1 _B)
2

18101857 = 5\ 5r ~los g - 5

and B is a k x 1 regression vector. Show that

n+k

- 1 _
Bxl1(61.0%:5.0%)] = 5 (~logo? + Buloga® + K

1>, (2.59)
using the distributional properties of the regression coeflicients and error vari-
ance. An unbiased estimator for E;logo? is logo?. Hence, we have shown
that the expectation of the above discrimination information is as claimed.
As models with differing dimensions k are considered, only the second and
third terms in (2.59) will vary and we only need unbiased estimators for those
two terms. This gives the form of AICc quoted in (2.20) in the chapter. You
will need the two distributional results

G’ B—B)Z'Z(B B
" 2., and ( 1) : ( ) N
o1 01

The two quantities are distributed independently as chi-squared distributions
with the indicated degrees of freedom. If x ~ x2, E(1/x) = 1/(n — 2).
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Section 2.3

2.6 Consider a process consisting of a linear trend with an additive noise term
consisting of independent random variables w; with zero means and variances
o2, that is,

x¢ = Bo + it + wy,

where fy, f1 are fixed constants.

(a) Prove x; is nonstationary.

(b) Prove that the first difference series Va; = x; — 41 is stationary by
finding its mean and autocovariance function.

(c) Repeat part (b) if w; is replaced by a general stationary process, say vy,
with mean function p, and autocovariance function v, (h).

2.7 Show (2.31) is stationary.

2.8 The glacial varve record plotted in Figure 2.6 exhibits some nonstationar-
ity that can be improved by transforming to logarithms and some additional
nonstationarity that can be corrected by differencing the logarithms.

(a) Argue that the glacial varves series, say x, exhibits heteroscedasticity by
computing the sample variance over the first half and the second half of
the data. Argue that the transformation y; = logx; stabilizes the vari-
ance over the series. Plot the histograms of x; and y; to see whether the
approximation to normality is improved by transforming the data.

(b) Plot the series y;. Do any time intervals, of the order 100 years, exist
where one can observe behavior comparable to that observed in the global
temperature records in Figure 1.27

(¢) Examine the sample ACF of y; and comment.

(d) Compute the difference u; = y; — y4—1, examine its time plot and sample
ACF, and argue that differencing the logged varve data produces a rea-
sonably stationary series. Can you think of a practical interpretation for
uy? Hint: For |p| close to zero, log(1 + p) ~ p; let p = (ys — ye—1)/yi—1-

(e) Based on the sample ACF of the differenced transformed series computed
in (c), argue that a generalization of the model given by Example 1.23
might be reasonable. Assume

Uy = ILL+’lUt — th_l

is stationary when the inputs w; are assumed independent with mean 0
and variance o2 . Show that

o2 (1+62) ifh=0,
Yu(h) = —0 02, if h =41,
0 if |n| > 1.
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(f) Based on part (e), use p,(1) and the estimate of the variance of uy, 7,,(0),
to derive estimates of § and o2 . This is an application of the method of
moments from classical statistics, where estimators of the parameters are
derived by equating sample moments to theoretical moments.

2.9 In this problem, we will explore the periodic nature of S, the SOI series

displayed in Figure 1.5.

(a) Detrend the series by fitting a regression of S; on time ¢. Is there a signif-
icant trend in the sea surface temperature? Comment.

(b) Calculate the periodogram for the detrended series obtained in part (a).
Identify the frequencies of the two main peaks (with an obvious one at the
frequency of one cycle every 12 months). What is the probable El Nifio
cycle indicated by the minor peak?

2.10 Consider the model (2.46) used in Example 2.9,

n

Ty = Zﬁl(j/n) cos(2ntj/n) + B2(j/n)sin(2xtj/n).

Jj=0

(a) Display the model design matrix Z [see (2.5)] for n = 4.

(b) Show numerically that the columns of Z in part (a) satisfy part (d) and
then display (Z’Z)~? for this case.

(¢) If 21, 9, x3, x4 are four observations, write the estimates of the four betas,
£1(0), 81(1/4), B2(1/4), $1(1/2), in terms of the observations.

(d) Verify that for any positive integer n and j,k = 0,1,...,[n/2], where [-]
denotes the greatest integer function:!?

(i) Except for j =0 or j = n/2,

20052(27#]'/71) = Zsin2(2ﬂtj/n) =n/2
t=1 t=1
(i) When j = 0 or j = n/2,

ZCOSQ(Qﬂtj/’I’L) =n but Zsin2(27rtj/n) =0.

t=1 t=1

(iii) For j # k,

Z cos(27tj/n) cos(2ntk/n) = Z sin(2wtj/n)sin(2ntk/n) = 0.

t=1 t=1

Also, for any j and k,

Z cos(2mtj/n)sin(2ntk/n) = 0.

t=1

19 Some useful facts: 2cos(ar) = €' + 7', 2isin(a) = '* —e ", and > 1 2" =

2(1—=2")/(1 = z) for z # 1.
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2.11 Consider the two weekly time series 0oil and gas. The oil series is in
dollars per barrel, while the gas series is in cents per gallon; see Appendix R
for details.

(a) Plot the data on the same graph. Which of the simulated series displayed in
61.3 do these series most resemble? Do you believe the series are stationary
(explain your answer)?

(b) In economics, it is often the percentage change in price (termed growth rate
or return), rather than the absolute price change, that is important. Argue
that a transformation of the form y, = Vloga; might be applied to the
data, where x; is the oil or gas price series [see the hint in Problem 2.8(d)].

(c) Transform the data as described in part (b), plot the data on the same
graph, look at the sample ACF's of the transformed data, and comment.
[Hint: poil = diff(log(oil)) and pgas = diff (log(gas)).|

(d) Plot the CCF of the transformed data and comment The small, but signif-
icant values when gas leads 0il might be considered as feedback. [Hint:
ccf(poil, pgas) will have poil leading for negative lag values.]

(e) Exhibit scatterplots of the oil and gas growth rate series for up to three
weeks of lead time of oil prices; include a nonparametric smoother in each
plot and comment on the results (e.g., Are there outliers? Are the rela-
tionships linear?). [Hint: lag.plot2(poil, pgas, 3).]

(f) There have been a number of studies questioning whether gasoline prices
respond more quickly when oil prices are rising than when oil prices are
falling (“asymmetry”). We will attempt to explore this question here with
simple lagged regression; we will ignore some obvious problems such as
outliers and autocorrelated errors, so this will not be a definitive analysis.
Let Gy and O; denote the gas and oil growth rates.

(i) Fit the regression (and comment on the results)
G = an + azly + P10y + B20r—1 + wy,

where I; = 1 if O; > 0 and 0 otherwise (I; is the indicator of no
growth or positive growth in oil price). Hint:

1 indi = ifelse(poil < 0, 0, 1)

2 mess = ts.intersect(pgas, poil, poill = lag(poil,-1), indi)

3 summary (fit <- lm(pgas™ poil + poillL + indi, data=mess))

(ii) What is the fitted model when there is negative growth in oil price at
time ¢? What is the fitted model when there is no or positive growth
in oil price? Do these results support the asymmetry hypothesis?

(iii) Analyze the residuals from the fit and comment.

2.12 Use two different smoothing techniques described in §2.4 to estimate the
trend in the global temperature series displayed in Figure 1.2. Comment.
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ARIMA Models

3.1 Introduction

In Chapters 1 and 2, we introduced autocorrelation and cross-correlation func-
tions (ACFs and CCFs) as tools for clarifying relations that may occur within
and between time series at various lags. In addition, we explained how to
build linear models based on classical regression theory for exploiting the as-
sociations indicated by large values of the ACF or CCF. The time domain, or
regression, methods of this chapter are appropriate when we are dealing with
possibly nonstationary, shorter time series; these series are the rule rather
than the exception in many applications. In addition, if the emphasis is on
forecasting future values, then the problem is easily treated as a regression
problem. This chapter develops a number of regression techniques for time se-
ries that are all related to classical ordinary and weighted or correlated least
squares.

Classical regression is often insufficient for explaining all of the interesting
dynamics of a time series. For example, the ACF of the residuals of the sim-
ple linear regression fit to the global temperature data (see Example 2.4 of
Chapter 2) reveals additional structure in the data that the regression did not
capture. Instead, the introduction of correlation as a phenomenon that may
be generated through lagged linear relations leads to proposing the autore-
gressive (AR) and autoregressive moving average (ARMA) models. Adding
nonstationary models to the mix leads to the autoregressive integrated mov-
ing average (ARIMA) model popularized in the landmark work by Box and
Jenkins (1970). The Box—Jenkins method for identifying a plausible ARIMA
model is given in this chapter along with techniques for parameter estimation
and forecasting for these models. A partial theoretical justification of the use
of ARMA models is discussed in Appendix B, §B.4.

R.H. Shumway and D.S. Stoffer, Time Series Analysis and Its Applications: With R Examples, 83
Springer Texts in Statistics, DOI 10.1007/978-1-4419-7865-3 3,
© Springer Science+Business Media, LLC 2011
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3.2 Autoregressive Moving Average Models

The classical regression model of Chapter 2 was developed for the static case,
namely, we only allow the dependent variable to be influenced by current
values of the independent variables. In the time series case, it is desirable
to allow the dependent variable to be influenced by the past values of the
independent variables and possibly by its own past values. If the present can
be plausibly modeled in terms of only the past values of the independent
inputs, we have the enticing prospect that forecasting will be possible.

INTRODUCTION TO AUTOREGRESSIVE MODELS

Autoregressive models are based on the idea that the current value of the
series, 7, can be explained as a function of p past values, x¢—1,Ti—2,...,2¢_p,
where p determines the number of steps into the past needed to forecast
the current value. As a typical case, recall Example 1.10 in which data were
generated using the model

Ty = 21 — 9022 + wy,

where w; is white Gaussian noise with 02 = 1. We have now assumed the
current value is a particular linear function of past values. The regularity that
persists in Figure 1.9 gives an indication that forecasting for such a model
might be a distinct possibility, say, through some version such as

n
Tpi1 = Tn — 902, 1,

where the quantity on the left-hand side denotes the forecast at the next
period n + 1 based on the observed data, z1,xs,...,x,. We will make this
notion more precise in our discussion of forecasting (§3.5).

The extent to which it might be possible to forecast a real data series from
its own past values can be assessed by looking at the autocorrelation function
and the lagged scatterplot matrices discussed in Chapter 2. For example, the
lagged scatterplot matrix for the Southern Oscillation Index (SOI), shown
in Figure 2.7, gives a distinct indication that lags 1 and 2, for example, are
linearly associated with the current value. The ACF shown in Figure 1.14
shows relatively large positive values at lags 1, 2, 12, 24, and 36 and large
negative values at 18, 30, and 42. We note also the possible relation between
the SOI and Recruitment series indicated in the scatterplot matrix shown in
Figure 2.8. We will indicate in later sections on transfer function and vector
AR modeling how to handle the dependence on values taken by other series.

The preceding discussion motivates the following definition.

Definition 3.1 An autoregressive model of order p, abbreviated AR(p),
s of the form

T = Q1041 + Qoo + -+ PpTp_p + Wy, (3.1)



3.2 Autoregressive Moving Average Models 85

where x; is stationary, and ¢1, ¢2, ..., ¢, are constants (¢, # 0). Although it
is not necessary yet, we assume that wy is a Gaussian white noise series with
mean zero and variance o2, unless otherwise stated. The mean of x; in (5.1)

w?

is zero. If the mean, p, of x¢ is not zero, replace x4 by xy — p in (3.1),

Ty — =11 — ) + Ga(Ti—2 — p) + -+ Gp(Te—p — p) + wi,
or write
Ty =+ Q111 + Qoo + -+ PpTy—p + Wy, (3.2)
where o = (1 — 1 — -+ — ).

We note that (3.2) is similar to the regression model of §2.2, and hence
the term auto (or self) regression. Some technical difficulties, however, develop
from applying that model because the regressors, x¢_1,...,Z¢_p, are random
components, whereas z; was assumed to be fixed. A useful form follows by
using the backshift operator (2.33) to write the AR(p) model, (3.1), as

(1= ¢1B = ¢2B* — -+ — ¢, B")x; = wy, (3.3)

Oor even more COHCiSGly as

The properties of ¢(B) are important in solving (3.4) for z;. This leads to the
following definition.

Definition 3.2 The autoregressive operator is defined to be
#(B)=1—¢B— ¢3B* —--- — ¢,BP. (3.5)

We initiate the investigation of AR models by considering the first-order
model, AR(1), given by x; = ¢x;_1 +w;. Iterating backwards k times, we get

Ty = Qx—1 + we = (Pxp—2 + Wwi1) + Wy
= ¢*Ty_o + pw_1 + wy

) k-1
=¢Fm g+ w .

Jj=0

This method suggests that, by continuing to iterate backward, and provided
that |¢| < 1 and x; is stationary, we can represent an AR(1) model as a linear
process given by'

2= Pwj. (3.6)
j=0

. 2
! Note that limg_s o0 E (wt — z;;g ¢Jwt,j) = limj o0 ¢**E (27_4) = 0, so (3.6)

exists in the mean square sense (see Appendix A for a definition).
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The AR(1) process defined by (3.6) is stationary with mean
E(x) = ¢ E(w_;) =0,
7=0

and autocovariance function,

V(h) = cov(@isn,ve) = E (Z ¢jwt+hj> <Z ¢kwtk>

7=0 k=0

= E [(wt+h + AR ¢hWt + ¢h+1’LUt71 =+ - ) (’LUt + (i)wt,1 + .. )] (37)

e o > o2 ol
:Jiz¢h+a¢1 :Ji(ﬁhz(ﬁm = g h>0.
j=0 j=0

Recall that y(h) = v(—h), so we will only exhibit the autocovariance function
for h > 0. From (3.7), the ACF of an AR(1) is

p(h) = y(n) _ &, h>0, (3.8)

7(0)

and p(h) satisfies the recursion
p(hy=¢ph—1), h=1,2,.... (3.9)
We will discuss the ACF of a general AR(p) model in §3.4.

Example 3.1 The Sample Path of an AR(1) Process
Figure 3.1 shows a time plot of two AR(1) processes, one with ¢ = .9 and
one with ¢ = —.9; in both cases, 02, = 1. In the first case, p(h) = .9", for
h > 0, so observations close together in time are positively correlated with
each other. This result means that observations at contiguous time points
will tend to be close in value to each other; this fact shows up in the top
of Figure 3.1 as a very smooth sample path for z;. Now, contrast this with
the case in which ¢ = —.9, so that p(h) = (—.9)", for h > 0. This result
means that observations at contiguous time points are negatively correlated
but observations two time points apart are positively correlated. This fact
shows up in the bottom of Figure 3.1, where, for example, if an observation,
xy, is positive, the next observation, x4 1, is typically negative, and the next
observation, x;y9, is typically positive. Thus, in this case, the sample path
is very choppy.

The following R code can be used to obtain a figure similar to Figure 3.1:
1 par (mfrow=c(2,1))
2 plot(arima.sim(list (order=c(1,0,0), ar=.9), n=100), ylab="x",
main=(expression(AR(1)~~~phi==+.9)))
3 plot(arima.sim(list(order=c(1,0,0), ar=-.9), n=100), ylab="x",
main=(expression(AR(1)~"~“phi==-.9)))
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AR(1) ¢ = +.9
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AR(1) ¢ =-.9
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Fig. 3.1. Simulated AR(1) models: ¢ = .9 (top); ¢ = —.9 (bottom).

Example 3.2 Explosive AR Models and Causality

In Example 1.18, it was discovered that the random walk x; = x;_1 + wy
is not stationary. We might wonder whether there is a stationary AR(1)
process with |¢| > 1. Such processes are called explosive because the values
of the time series quickly become large in magnitude. Clearly, because |¢|’
increases without bound as 7 — oo, Zf;é A wy— ; will not converge (in mean
square) as k — 00, so the intuition used to get (3.6) will not work directly.
We can, however, modify that argument to obtain a stationary model as
follows. Write z11 = ¢z + wy41, in which case,

zp=¢ ' — ¢ wir = 07 (0T @ise — O wise) — 07w

k—1

= ¢ Fwpyn — Z ¢ Wiy, (3.10)

j=1

by iterating forward k steps. Because |¢|~' < 1, this result suggests the
stationary future dependent AR(1) model
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oo

Ty = quS*jwt_,_j. (311)

Jj=1

The reader can verify that this is stationary and of the AR(1) form z;, =
¢xi—1 + wy. Unfortunately, this model is useless because it requires us to
know the future to be able to predict the future. When a process does not
depend on the future, such as the AR (1) when |¢| < 1, we will say the process
is causal. In the explosive case of this example, the process is stationary, but
it is also future dependent, and not causal.

Example 3.3 Every Explosion Has a Cause
Excluding explosive models from consideration is not a problem because the
models have causal counterparts. For example, if

Ty = Qri_1 + Wy with |¢‘ > 1

and w; ~ iid N(0,02), then using (3.11), {2;} is a non-causal stationary
Gaussian process with E(z) = 0 and

oo

oo
Y (h) = cov(@iin, 2t) = cov | — Z ¢ Wit — Z T

=ond 2 ¢ /(1—¢7%),
Thus, using (3.7), the causal process defined by

Y =0 "Y1+ v

where v; ~ iid N(0,02¢2) is stochastically equal to the x; process (i.e.,
all finite distributions of the processes are the same). For example, if ax; =
2241 +w; with 02 = 1, then y; = %yt_1 +v; with 02 = 1/4 is an equivalent
causal process (see Problem 3.3). This concept generalizes to higher orders,
but it is easier to show using Chapter 4 techniques; see Example 4.7.

The technique of iterating backward to get an idea of the stationary so-
lution of AR models works well when p = 1, but not for larger orders. A
general technique is that of matching coefficients. Consider the AR(1) model
in operator form

¢(B)£Iit = W¢, (312)

where ¢(B) = 1 — ¢B, and |¢| < 1. Also, write the model in equation (3.6)
using operator form as

Ty = Z%‘wt—j = ¢(B)wt7 (3-13)
=0
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where 1/)(B) = Z;’O:O ¢;B7 and 1; = ¢’. Suppose we did not know that
1 = ¢’. We could substitute ¢ (B)w, from (3.13) for x; in (3.12) to obtain

(B)Y(B)wr = wy. (3.14)

The coefficients of B on the left-hand side of (3.14) must be equal to those on
right-hand side of (3.14), which means

(1—¢B)1+ 1B+ B>+ -+ ;BT +...) = 1. (3.15)

Reorganizing the coefficients in (3.15),

L+ (1 = @)B + (2 = 19) B + -+ (¢ — j19) B +--- = 1,

we see that for each j = 1,2,.. ., the coefficient of B’ on the left must be zero
because it is zero on the right. The coefficient of B on the left is (¢ — ¢), and
equating this to zero, ¥1 — ¢ = 0, leads to ¥; = ¢. Continuing, the coefficient
of B? is (Y2 — 116), 0 1o = ¢2. In general,

Y =19,

with 99 = 1, which leads to the solution 1; = ¢7.

Another way to think about the operations we just performed is to consider
the AR(1) model in operator form, ¢(B)z; = w;. Now multiply both sides by
¢~1(B) (assuming the inverse operator exists) to get

¢~ (B)¢(B)x; = ¢~ (B)wy,
or
Tt = qb_l(B)wt.
We know already that

¢ (B)=1+¢B+ "B+ + ¢/ B+,

that is, »~1(B) is ¢(B) in (3.13). Thus, we notice that working with operators
is like working with polynomials. That is, consider the polynomial ¢(z) =
1 — ¢z, where z is a complex number and |¢| < 1. Then,

b
(1—92)

and the coefficients of B7 in ¢~!(B) are the same as the coefficients of 27 in
¢~ 1(2). In other words, we may treat the backshift operator, B, as a com-
plex number, z. These results will be generalized in our discussion of ARMA
models. We will find the polynomials corresponding to the operators useful in
exploring the general properties of ARMA models.

¢~ (2) = =1+¢z+ 0?2+ + ¢+, |2 <1,
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INTRODUCTION TO MOVING AVERAGE MODELS

As an alternative to the autoregressive representation in which the z; on the
left-hand side of the equation are assumed to be combined linearly, the moving
average model of order ¢, abbreviated as MA(q), assumes the white noise w;
on the right-hand side of the defining equation are combined linearly to form
the observed data.

Definition 3.3 The moving average model of order q, or MIA(q) model,
1s defined to be

Ty = Wy + Orwi_1 + Owp_o + -+ + qut_q, (316)

where there are q lags in the moving average and 01,602, ...,0, (0, # 0) are
parameters.? Although it is not necessary yet, we assume that wy is a Gaussian
white noise series with mean zero and variance o2, unless otherwise stated.

w?

The system is the same as the infinite moving average defined as the linear
process (3.13), where ¢g = 1, ¢; = 0;, for j = 1,...,¢, and 1; = 0 for other
values. We may also write the MA(q) process in the equivalent form

xy = 0(B)wy, (3.17)
using the following definition.
Definition 3.4 The moving average operator is
0(B)=1+0,B+0,B%+--- +6,B% (3.18)

Unlike the autoregressive process, the moving average process is stationary
for any values of the parameters 6, ..., 6,; details of this result are provided
in §3.4.

Example 3.4 The MA(1) Process
Consider the MA(1) model z; = w; + 6w;_1. Then, E(z;) =0,

(1+6%)02 h=0,

y(h) = 002 h=1,
0 h>1,
and the ACF is
0 _
p(h) = { (1+62) '
0 h>1.

Note |p(1)| < 1/2 for all values of ¢ (Problem 3.1). Also, x; is correlated with
Z¢—1, but not with x;_o,x;_3,... . Contrast this with the case of the AR(1)

2 Some texts and software packages write the MA model with negative coefficients;
that is, 2 = wy — Ohwi—1 — Oawi—o — - -+ — Oqwi—q.
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MA(1) 6 = +.5
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Fig. 3.2. Simulated MA(1) models: § = .5 (top); 6 = —.5 (bottom).

model in which the correlation between z; and z;_j is never zero. When
0 = .5, for example, z; and x;_; are positively correlated, and p(1) = .4.
When 6 = —.5, z; and 2;_1 are negatively correlated, p(1) = —.4. Figure 3.2
shows a time plot of these two processes with o2, = 1. The series in Figure 3.2
where 6 = .5 is smoother than the series in Figure 3.2, where § = —.5.
A figure similar to Figure 3.2 can be created in R as follows:
1 par(mfrow = c(2,1))
2 plot(arima.sim(list (order=c(0,0,1), ma=.5), n=100), ylab="x",
main=(expression(MA(1)~"“theta==+.5)))
3 plot(arima.sim(list (order=c(0,0,1), ma=-.5), n=100), ylab="x",
main=(expression(MA(1)~~“theta==-.5)))

Example 3.5 Non-uniqueness of MA Models and Invertibility
Using Example 3.4, we note that for an MA(1) model, p(h) is the same for
0 and %; try 5 and %, for example. In addition, the pair 02 =1 and 6 = 5
yield the same autocovariance function as the pair o2 = 25 and § = 1/5,
namely,
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26 h=0,
vy(h)=<5 h=1,
0 h>1.

Thus, the MA(1) processes
Ty =wy + twi—1, wy ~iid N(0,25)

and
ye = v +bvi_1, v ~1iid N(0,1)

are the same because of normality (i.e., all finite distributions are the same).
We can only observe the time series, x; or y;, and not the noise, w; or vy,
so we cannot distinguish between the models. Hence, we will have to choose
only one of them. For convenience, by mimicking the criterion of causality
for AR models, we will choose the model with an infinite AR representation.
Such a process is called an invertible process.

To discover which model is the invertible model, we can reverse the roles
of x; and w; (because we are mimicking the AR case) and write the MA(1)
model as wy = —Ow;_1 + x¢. Following the steps that led to (3.6), if |0] < 1,
then wy = Z;’;O(fﬂ)j 2¢—;, which is the desired infinite AR representation
of the model. Hence, given a choice, we will choose the model with 02 = 25
and 6 = 1/5 because it is invertible.

As in the AR case, the polynomial, 6(z), corresponding to the moving
average operators, 0(B), will be useful in exploring general properties of MA
processes. For example, following the steps of equations (3.12)—(3.15), we can
write the MA(1) model as z; = 0(B)w;, where §(B) = 14+ 6B. If 0] < 1,
then we can write the model as 7(B)x; = w;, where 7(B) = 0~ (B). Let
0(z) =1+ 0z, for |z| <1, then 7(2) = 071 (2) = 1/(1 + 6z2) = Z;’;O(—Q)jzj,
and we determine that m(B) = > 72 ((—0)’ B.

AUTOREGRESSIVE MOVING AVERAGE MODELS

We now proceed with the general development of autoregressive, moving aver-
age, and mixed autoregressive moving average (ARMA), models for stationary
time series.

Definition 3.5 A time series {xy; t =0,+1,+2,...} is ARMA(p, q) if it is
stationary and

Ty =121+ F GpXi_p +wy + 0w + -+ Ogwi_g, (3.19)

with ¢, # 0, 0, # 0, and o2, > 0. The parameters p and q are called the
autoregressive and the moving average orders, respectively. If x; has a nonzero
mean f, we set « = u(l —¢1 — -+ — ¢p,) and write the model as

Ty = o+ ¢lxt—l + -+ (Zspiﬂt_p —+ wy + let_l + -+ qut_q. (320)
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Although it is not necessary yet, we assume that w; is a Gaussian white noise
series with mean zero and variance o2,, unless otherwise stated.

w’

As previously noted, when ¢ = 0, the model is called an autoregressive
model of order p, AR(p), and when p = 0, the model is called a moving average
model of order ¢, MA(q). To aid in the investigation of ARMA models, it will
be useful to write them using the AR operator, (3.5), and the MA operator,
(3.18). In particular, the ARMA(p, ¢) model in (3.19) can then be written in
concise form as

o(B)xy = 0(B)wy. (3.21)

Before we discuss the conditions under which (3.19) is causal and invertible,
we point out a potential problem with the ARMA model.

Example 3.6 Parameter Redundancy
Consider a white noise process z; = w;. Equivalently, we can write this as
bxy—1 = .bw,—q by shifting back one unit of time and multiplying by .5.
Now, subtract the two representations to obtain

Ty — .5.’Et,1 = Wt — .5’LUt717

or
Tt = .5$t_1 - .5wt_1 + wy, (322)

which looks like an ARMA(1, 1) model. Of course, x; is still white noise;
nothing has changed in this regard [i.e., z; = wy is the solution to (3.22)],
but we have hidden the fact that x; is white noise because of the parameter
redundancy or over-parameterization. Write the parameter redundant model
in operator form as ¢(B)xz; = 6(B)wy, or

Apply the operator ¢(B)~! = (1 — .5B)~! to both sides to obtain

zy=(1-.5B)" (1 - .5B)z; = (1 —.5B)""(1 — 5B)w, = wy,

which is the original model. We can easily detect the problem of over-
parameterization with the use of the operators or their associated polynomi-
als. That is, write the AR polynomial ¢(z) = (1 — .5z), the MA polynomial
0(z) = (1 — .5z), and note that both polynomials have a common factor,
namely (1 — .5z). This common factor immediately identifies the parame-
ter redundancy. Discarding the common factor in each leaves ¢(z) = 1 and
0(z) = 1, from which we conclude ¢(B) = 1 and 6(B) = 1, and we de-
duce that the model is actually white noise. The consideration of parameter
redundancy will be crucial when we discuss estimation for general ARMA
models. As this example points out, we might fit an ARMA(1, 1) model to
white noise data and find that the parameter estimates are significant. If
we were unaware of parameter redundancy, we might claim the data are
correlated when in fact they are not (Problem 3.20).
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Examples 3.2, 3.5, and 3.6 point to a number of problems with the general
definition of ARMA(p, ¢) models, as given by (3.19), or, equivalently, by (3.21).
To summarize, we have seen the following problems:

(i) parameter redundant models,
(ii) stationary AR models that depend on the future, and
(iii) MA models that are not unique.

To overcome these problems, we will require some additional restrictions
on the model parameters. First, we make the following definitions.

Definition 3.6 The AR and MA polynomials are defined as
(;5(2) =1-¢rz2—-— ¢pzpv ¢p 7& 0, (3'23)

and
0(z) =140124---+0,29, 0,#0, (3.24)

respectively, where z is a complex number.

To address the first problem, we will henceforth refer to an ARMA(p, q)
model to mean that it is in its simplest form. That is, in addition to the
original definition given in equation (3.19), we will also require that ¢(z)
and 6(z) have no common factors. So, the process, ; = .5bxy—1 — .bwi_1 + wy,
discussed in Example 3.6 is not referred to as an ARMA(1, 1) process because,
in its reduced form, z; is white noise.

To address the problem of future-dependent models, we formally introduce
the concept of causality.

Definition 3.7 An ARMA (p,q) model is said to be causal, if the time series
{z; t=0,£1,%2,...} can be written as a one-sided linear process:

ze= Y jw_; = (B, (3.25)
j=0

where Y(B) = 32721 B, and Y777 1| < oo; we set g = 1.

In Example 3.2, the AR(1) process, x; = ¢xi_1 + wy, is causal only when
|¢| < 1. Equivalently, the process is causal only when the root of ¢(z) = 1—¢z
is bigger than one in absolute value. That is, the root, say, zg, of ¢(z) is
zo = 1/¢ (because ¢(z9) = 0) and |z9| > 1 because |¢| < 1. In general, we
have the following property.

Property 3.1 Causality of an ARMA(p, q) Process
An ARMA (p,q) model is causal if and only if ¢(z) # 0 for |z| < 1. The

coefficients of the linear process given in (3.25) can be determined by solving

|| < 1.

3

v = Y = 23
j=0

¢
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Another way to phrase Property 3.1 is that an ARMA process is causal
only when the roots of ¢(z) lie outside the unit circle; that is, ¢(z) = 0
only when |z| > 1. Finally, to address the problem of uniqueness discussed
in Example 3.5, we choose the model that allows an infinite autoregressive
representation.

Definition 3.8 An ARMA (p,q) model is said to be invertible, if the time
series {xy; t =0,£1,42,...} can be written as

m(B)xy = Zﬂ'jxt,j = wy, (3.26)
3=0

where w(B) = Zj‘io m;B7, and Z?io |7j] < oco; we set my = 1.
Analogous to Property 3.1, we have the following property.

Property 3.2 Invertibility of an ARMA(p,q) Process
An ARMA (p, q) model is invertible if and only if 0(z) # 0 for |z| < 1. The
coefficients m; of w(B) given in (3.26) can be determined by solving

S (O
w(zwjz:jo] ECESt

Another way to phrase Property 3.2 is that an ARMA process is invertible
only when the roots of 6(z) lie outside the unit circle; that is, 8(z) = 0 only
when |z| > 1. The proof of Property 3.1 is given in Appendix B (the proof of
Property 3.2 is similar and, hence, is not provided). The following examples
illustrate these concepts.

Example 3.7 Parameter Redundancy, Causality, Invertibility
Consider the process

xy = 4w 1+ .45 o + wy + wi_q1 + 2Dwi_o,
or, in operator form,
(1—.4B — 45B%)z; = (1 + B + .25B%)w;.

At first, x; appears to be an ARMA(2,2) process. But, the associated
polynomials

P(z) =1 — .4z — 452% = (14 .52)(1 — .92)

0(z) = (1+ 2+ .252%) = (1 + .52)?

have a common factor that can be canceled. After cancellation, the poly-
nomials become ¢(z) = (1 — .92) and (z) = (1 + .5z), so the model is an
ARMA(1,1) model, (1 —.9B)x; = (1 + .5B)wy, or
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Ty — .91’,571 + .511.))571 -+ wy. (327)

The model is causal because ¢(z) = (1 —.9z) = 0 when z = 10/9, which
is outside the unit circle. The model is also invertible because the root of
0(z) = (14 .5z) is z = —2, which is outside the unit circle.

To write the model as a linear process, we can obtain the 1-weights using
Property 3.1, ¢(2)(z) = 0(z), or

(1—.92) (o + 12 + 22?4+ -+ ) = (1 + .52).

Matching coeflicients we get ¢ = 1, 1 = .54+ .9 = 1.4, and ¢; = .99,
for j > 1. Thus, 1; = 1.4(.9)7~! for j > 1 and (3.27) can be written as

[eS)
Ty = Wy + 142 .9j_1wt_j.
j=1

Similarly, the invertible representation using Property 3.2 is

Ty = 1.4 Z(*.5)j71$t_j + wy.
j=1

Example 3.8 Causal Conditions for an AR(2) Process

For an AR(1) model, (1—¢B)xz; = wy, to be causal, the root of ¢(z) = 1— ¢z
must lie outside of the unit circle. In this case, the root (or zero) occurs at
20 =1/¢ [i.e., @(29) = 0], so it is easy to go from the causal requirement on
the root, |1/¢| > 1, to a requirement on the parameter, |¢| < 1. It is not so
easy to establish this relationship for higher order models.

For example, the AR(2) model, (1 — ¢1B — ¢oB?)x; = wy, is causal when
the two roots of ¢(z) = 1 — ¢12 — ¢22? lie outside of the unit circle. Using
the quadratic formula, this requirement can be written as

1+ /9% + 4o

> 1.
—2¢2

The roots of ¢(z) may be real and distinct, real and equal, or a complex
conjugate pair. If we denote those roots by z; and zo, we can write ¢(z) =
(1—2'2)(1—25'2); note that ¢(z1) = ¢(22) = 0. The model can be written
in operator form as (1 —z; ' B)(1 — 2z, ' B)x; = w;. From this representation,
it follows that ¢, = (zl_l + 22_1) and ¢ = —(z129) L. This relationship and
the fact that |z1| > 1 and |z3| > 1 can be used to establish the following
equivalent condition for causality:

01+ o<1, ¢a—¢1 <1, and |¢52| < 1. (328)

This causality condition specifies a triangular region in the parameter space.
We leave the details of the equivalence to the reader (Problem 3.5).
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3.3 Difference Equations

The study of the behavior of ARMA processes and their ACFs is greatly
enhanced by a basic knowledge of difference equations, simply because they
are difference equations. This topic is also useful in the study of time domain
models and stochastic processes in general. We will give a brief and heuristic
account of the topic along with some examples of the usefulness of the theory.
For details, the reader is referred to Mickens (1990).

Suppose we have a sequence of numbers ug, u1, uo, ... such that

Up — U, 1 =0, a0, n=1,2,.... (3.29)

For example, recall (3.9) in which we showed that the ACF of an AR(1)
process is a sequence, p(h), satisfying

p(h) —¢p(h—1)=0, h=1,2,....

Equation (3.29) represents a homogeneous difference equation of order 1. To
solve the equation, we write:

U = Qug

Uy = QU = 042U0

Up = QlUy_1 = " Ug.

Given an initial condition ug = ¢, we may solve (3.29), namely, u,, = a™c.

In operator notation, (3.29) can be written as (1 — aB)u, = 0. The poly-
nomial associated with (3.29) is a(z) = 1 — az, and the root, say, 2o, of this
polynomial is zg = 1/«; that is a(zg) = 0. We know a solution (in fact, the
solution) to (3.29), with initial condition ug = ¢, is

u, = a"c= (zal)n c. (3.30)

That is, the solution to the difference equation (3.29) depends only on the
initial condition and the inverse of the root to the associated polynomial a(z).
Now suppose that the sequence satisfies

Uy — QA lUp_1 — QUp_2 =0, ay#0, n=273,... (3.31)

This equation is a homogeneous difference equation of order 2. The corre-
sponding polynomial is

az) =1— a1z — axz?,

which has two roots, say, z; and zo; that is, a(z1) = a(z2) = 0. We will
consider two cases. First suppose z; # z9. Then the general solution to (3.31)
is
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Up = C127 " + €225 ", (3.32)
where ¢; and ¢o depend on the initial conditions. The claim that is a solution
can be verified by direct substitution of (3.32) into (3.31):

(c127™ + 225 ™) — o (clzf(n_l) + czz;("_l)) — Qg (clzl_(n_2) + czzz_(n_2))
=1z " (1 — 2] — agz%) +oeazy " (1 — 2y — an§)
=121 "a(z1) + c2zg "a(z2) = 0.

Given two initial conditions ug and w1, we may solve for ¢; and co:

up=c1 +co and wu; = clzfl +czz;1,

where z; and z5 can be solved for in terms of oy and as using the quadratic
formula, for example.
When the roots are equal, z1 = z5 (= zp), a general solution to (3.31) is

up, = 25 "(c1 + can). (3.33)
This claim can also be verified by direct substitution of (3.33) into (3.31):

(n—1)

[c1 + co(n —1)]) — (za("%) [c1 + ca(n —2)])
+1(

zp (1 +ean) — an (z(;

=z, "(c1 + c2n) (1 —ayzp — agzg) +e2zg " (1 + 20020)

= 02z5”+1 (a1 + 2a220) -

To show that (a; + 2a229) = 0, write 1 — a;2 — agz? = (1 — 25 '2)?, and
take derivatives with respect to z on both sides of the equation to obtain
(a1 + 2092) = 2251 (1 — 25" 2). Thus, (a1 + 2a920) = 225 (1 — 25 20) = 0,
as was to be shown. Finally, given two initial conditions, ug and uy, we can
solve for ¢; and cs:

up=c; and wu; = (¢ +02)zo_1.

It can also be shown that these solutions are unique.

To summarize these results, in the case of distinct roots, the solution to
the homogeneous difference equation of degree two was

Up = 2, * X (a polynomial in n of degree my; — 1) (3.34)
+ 23" x (a polynomial in n of degree msy — 1), -

where m is the multiplicity of the root z; and ms is the multiplicity of the root
zo. In this example, of course, m; = my = 1, and we called the polynomials
of degree zero ¢; and co, respectively. In the case of the repeated root, the
solution was

up = 2, " X (a polynomial in n of degree mo — 1), (3.35)

where mg is the multiplicity of the root zy; that is, mg = 2. In this case, we
wrote the polynomial of degree one as ¢; + con. In both cases, we solved for
c1 and ¢y given two initial conditions, ug and uy.
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Example 3.9 The ACF of an AR(2) Process
Suppose x; = @111 + P2x4—o +wy is a causal AR(2) process. Multiply each
side of the model by x;_j for h > 0, and take expectation:

E(zizi-n) = 01 E(xi-170-1) + Q2 EB(v1—271-n) + E(wimi—p).
The result is
Y(h) =d1y(h—1) + ¢2y(h —2), h=12,.... (3.36)
In (3.36), we used the fact that E(z;) =0 and for h > 0,

E(wixy—p) = E(wt ijwt,h,j) =0.
j=0

Divide (3.36) through by ~(0) to obtain the difference equation for the ACF
of the process:

p(h) —p1p(h —1) — pap(h —2) =0, h=1,2,.... (3.37)

The initial conditions are p(0) = 1 and p(—1) = ¢1/(1 — ¢2), which is

obtained by evaluating (3.37) for h = 1 and noting that p(1) = p(—1).
Using the results for the homogeneous difference equation of order two, let

21 and 23 be the roots of the associated polynomial, ¢(z) = 1 — ¢z — pa2°.

Because the model is causal, we know the roots are outside the unit circle:

|z1] > 1 and |22] > 1. Now, consider the solution for three cases:

(i) When z; and z5 are real and distinct, then

p(h) = crz " +eazy ",
so p(h) — 0 exponentially fast as h — oo.
(ii) When z; = 29 (= z0) are real and equal, then

p(h) = z5"(c1 + e2h),

so p(h) — 0 exponentially fast as h — co.

(iii) When z; = Z; are a complex conjugate pair, then co = & (because p(h)
is real), and

p(h) =crz7" + ez

Write ¢; and z; in polar coordinates, for example, z; = |zl|ei97 where 6
is the angle whose tangent is the ratio of the imaginary part and the real
part of z; (sometimes called arg(z1); the range of 0 is [—m,7]). Then,
using the fact that '@ + e~ = 2 cos(a), the solution has the form

p(h) = a|z|~" cos(hf + b),

where a and b are determined by the initial conditions. Again, p(h)
dampens to zero exponentially fast as h — oo, but it does so in a si-
nusoidal fashion. The implication of this result is shown in the next
example.
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Example 3.10 An AR(2) with Complex Roots
Figure 3.3 shows n = 144 observations from the AR(2) model

xy = 1.5z 1 — .THhas_o + wy,

with 02, = 1, and with complex roots chosen so the process exhibits pseudo-
cyclic behavior at the rate of one cycle every 12 time points. The autore-
gressive polynomial for this model is ¢(z) = 1 — 1.5z + .7522. The roots of
$(2) are 14i/+/3, and § = tan~'(1/+/3) = 27/12 radians per unit time. To
convert the angle to cycles per unit time, divide by 27 to get 1/12 cycles
per unit time. The ACF for this model is shown in §3.4, Figure 3.4.

To calculate the roots of the polynomial and solve for arg in R:

1z =c(1,-1.5,.75) # coefficients of the polynomial

2 (a = polyroot(z)[1]) # print one root: 1+0.57735% = 1 + i/sqrt(3)
3 arg = Arg(a)/(2xpi)  # arg in cycles/pt

4 1/arg # = 12, the pseudo period

To reproduce Figure 3.3:

set.seed(90210)

ar2 = arima.sim(list(order=c(2,0,0), ar=c(1.5,-.75)), n = 144)
plot(1:144/12, ar2, type="1", xlab="Time (one unit = 12 points)")
abline(v=0:12, lty="dotted", lwd=2)

To calculate and display the ACF for this model:

ACF = ARMAacf(ar=c(1.5,-.75), ma=0, 50)

plot (ACF, type="h", xlab="lag")

abline (h=0)

oW N e
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We now exhibit the solution for the general homogeneous difference equa-
tion of order p:

Up — QUp—1 — — Qplp—p =0, ap,#0, n=pp+1,.... (3.38)
The associated polynomial is
az)=1—ajz—- —apzP.
Suppose a(z) has r distinct roots, z; with multiplicity mq, zo with multiplicity

ma, ..., and z. with multiplicity m,., such that my +mso +--- 4+ m, = p. The
general solution to the difference equation (3.38) is

Up =21 "Pi(n) + 25 "Pa(n) + -+ 2, " Pr(n), (3.39)
where P;j(n), for j =1,2,...,r, is a polynomial in n, of degree m; — 1. Given
p initial conditions uo, ..., u,—1, we can solve for the P;(n) explicitly.

Example 3.11 The ¥-weights for an ARMA Model
For a causal ARMA (p, ¢) model, ¢(B)z, = 0(B)w;, where the zeros of ¢(z)
are outside the unit circle, recall that we may write
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0 2 4 6 8 10 12
Time (one unit = 12 points)

Fig. 3.3. Simulated AR(2) model, n = 144 with ¢ = 1.5 and ¢2 = —.75.

o0
Ty = E Yjwe_j,
=0

where the 1-weights are determined using Property 3.1.

For the pure MA(g) model, ¢o =1, ¢; =0;, for j=1,...,¢, and ¢); =0,
otherwise. For the general case of ARMA(p, ¢) models, the task of solving
for the -weights is much more complicated, as was demonstrated in Exam-
ple 3.7. The use of the theory of homogeneous difference equations can help
here. To solve for the i-weights in general, we must match the coefficients

in ¢(2)0(2) = 0(2):
(1— 1z — ¢22® — ) (o + 12 +ho2® + -+ ) = (1 + 012 + 0227 +--).

The first few values are

Po =1
1 — p1ipo = 01
o — G1eP1 — Pathg = O
Y3 — G11h2 — Path1 — P31pg = 03

where we would take ¢; = 0 for j > p, and 6; = 0 for j > ¢q. The 1)-weights
satisfy the homogeneous difference equation given by

p
¥j — Zﬁbkwjfk =0, j>max(p,q+1), (3.40)
k=1



102 3 ARIMA Models

with initial conditions

J
b= Y drtbik =0;, 0<j<max(p,q+1). (3.41)
k=1

The general solution depends on the roots of the AR polynomial ¢(z) =
1— 1z — -+ — ¢p2P, as seen from (3.40). The specific solution will, of
course, depend on the initial conditions.

Consider the ARMA process given in (3.27), ; = .9x;—1 + .bwi—1 + wy.
Because max(p, g+ 1) = 2, using (3.41), we have 9 =1 and 1 = .9+ .5 =
1.4. By (3.40), for j = 2,3, ..., the y-weights satisfy 1; — .91;_1 = 0. The
general solution is ¢; = ¢.97. To find the specific solution, use the initial
condition ¢; = 1.4, so 1.4 = .9c or ¢ = 1.4/.9. Finally, ¢; = 1.4(.9)7~1, for
7 > 1, as we saw in Example 3.7.

To view, for example, the first 50 ¥-weights in R, use:

1 ARMAtoMA (ar=.9, ma=.5, 50) # for a list
2 plot (ARMAtoMA (ar=.9, ma=.5, 50)) # for a graph

3.4 Autocorrelation and Partial Autocorrelation

We begin by exhibiting the ACF of an MA(q) process, x; = 6(B)w;, where
0(B) =14+6:B+---+0,B% Because z; is a finite linear combination of white
noise terms, the process is stationary with mean

q
E(.Z‘t) = ZﬂjE(wt_j) = O,
j=0
where we have written #y = 1, and with autocovariance function

q q
v(h) = cov (Tiqn, ) = cov(ZijHh_j, Zkat_k)

§j=0 k=0

_ {03022_39j9j+h, 0<h<gqg (3.42)

0 h>q.
Recall that v(h) = v(—h), so we will only display the values for h > 0. The

cutting off of y(h) after ¢ lags is the signature of the MA(q) model. Dividing
(3.42) by v(0) yields the ACF of an MA(q):

S0 0i0;4n
p(h) = q 1463+ +062
0 h > q.

l<hs<gq (3.43)

For a causal ARMA(p,q) model, ¢(B)z; = 0(B)w;, where the zeros of
¢(z) are outside the unit circle, write
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oo

Te= Y ;. (3.44)
§=0

It follows immediately that F(z;) = 0. Also, the autocovariance function of
¢ can be written as

oo

v(h) = cov(xiip, 2t) = 02 Zz/}jwj+h, h > 0. (3.45)
=0

We could then use (3.40) and (3.41) to solve for the -weights. In turn, we
could solve for v(h), and the ACF p(h) = v(h)/v(0). As in Example 3.9, it is
also possible to obtain a homogeneous difference equation directly in terms of
~(h). First, we write

p q
v(h) = cov(xiqn, xt) = COV(Z(ﬁijhﬁ- + Zijt+h,j7 xt>

Jj=1 Jj=0

P q
= Z%‘W’(h — )+, Zejwjfh, h >0,
=1

j=h

(3.46)

where we have used the fact that, for A > 0,

o0
COV(With—j, Tt) = COV<wt+h—j, Zwkwt—k) = wj—hai-
k=0

From (3.46), we can write a general homogeneous equation for the ACF of a
causal ARMA process:

y(h) = d1y(h—1) = = @py(h —p) =0, h>max(p,qg+1), (3.47)

with initial conditions

p q
Y(h) = ¢iy(h—j) = 02> 0, 0<h<max(pg+1). (348)
J=1 j=h

Dividing (3.47) and (3.48) through by ~(0) will allow us to solve for the ACF,
p(h) = ~(h)/+(0).

Example 3.12 The ACF of an AR(p)
In Example 3.9 we considered the case where p = 2. For the general case, it
follows immediately from (3.47) that

p(h) —¢r1p(h —1) =+ —dpp(h —p) =0, h=>p. (3.49)

Let 21,..., 2, denote the roots of ¢(z), each with multiplicity my,...,m,,
respectively, where my +- - -+m,. = p. Then, from (3.39), the general solution
is
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p(h) = 21 "Py(h) + 23" Py(h) + -+ + 2, "P(h), h>p, (3.50)

where P;(h) is a polynomial in h of degree m; — 1.

Recall that for a causal model, all of the roots are outside the unit cir-
cle, |z;] > 1, for ¢ = 1,...,r. If all the roots are real, then p(h) dampens
exponentially fast to zero as h — oo. If some of the roots are complex, then
they will be in conjugate pairs and p(h) will dampen, in a sinusoidal fash-
ion, exponentially fast to zero as h — oo. In the case of complex roots, the
time series will appear to be cyclic in nature. This, of course, is also true for
ARMA models in which the AR part has complex roots.

Example 3.13 The ACF of an ARMA(1,1)
Consider the ARMA(1, 1) process x; = ¢xy—1 + w1 + wy, where |¢] < 1.
Based on (3.47), the autocovariance function satisfies

v(h) —¢y(h—1)=0, h=2,3,...,
and it follows from (3.29)—(3.30) that the general solution is
y(h)=co", h=1,2,.... (3.51)
To obtain the initial conditions, we use (3.48):
7(0) = ¢y(1) + 0% [1 + 00+ 6°] and (1) = ¢y(0) + 03,6
Solving for v(0) and (1), we obtain:

0 02 0 0
~(0) = 0371 +127¢¢_2‘_ and (1) = U?H—(l +1¢)Ef2+ )

To solve for ¢, note that from (3.51), y(1) = c¢ or ¢ = (1)/¢. Hence, the
specific solution for A > 1 is

V1) b o (1406)(6+6)
I v

Finally, dividing through by ~(0) yields the ACF

(1+08)(¢+6)
1+ 206+ 62

y(h) = "l

p(h) = "t > (3.52)

Notice that the general pattern of p(h) in (3.52) is not different from that
of an AR(1) given in (3.8). Hence, it is unlikely that we will be able to
tell the difference between an ARMA(1,1) and an AR(1) based solely on an
ACF estimated from a sample. This consideration will lead us to the partial
autocorrelation function.
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THE PARTIAL AUTOCORRELATION FUNCTION (PACF)

We have seen in (3.43), for MA(q) models, the ACF will be zero for lags
greater than g. Moreover, because 0, # 0, the ACF will not be zero at lag
q. Thus, the ACF provides a considerable amount of information about the
order of the dependence when the process is a moving average process. If the
process, however, is ARMA or AR, the ACF alone tells us little about the
orders of dependence. Hence, it is worthwhile pursuing a function that will
behave like the ACF of MA models, but for AR models, namely, the partial
autocorrelation function (PACF).

To motivate the idea, consider a causal AR(1) model, z; = ¢xi—1 + w;.
Then,

V2 (2) = cov(xy, xp_o) = cov(Ppri_1 + we, T4_2)
= cov(¢®m o + dwi 1 + wi, T—2) = $*72(0).

This result follows from causality because x;_o involves {w;_o,wi_3,...},
which are all uncorrelated with w; and w;—;. The correlation between x;
and x;_s is not zero, as it would be for an MA(1), because z; is dependent on
x¢—o through x;_1. Suppose we break this chain of dependence by removing
(or partial out) the effect x¢_1. That is, we consider the correlation between
r; — ¢xy_1 and xy_o — ¢xy_1, because it is the correlation between z; and
;o with the linear dependence of each on x;_; removed. In this way, we
have broken the dependence chain between z; and x;_». In fact,

cov(zy — ¢rp—1, 49 — Px4_1) = cov(wy, Tp—o — pxp—1) = 0.

Hence, the tool we need is partial autocorrelation, which is the correlation
between x; and x; with the linear effect of everything “in the middle” removed.

To formally define the PACF for mean-zero stationary time series, let Z;p,
for h > 2, denote the regression® of x4, on {@41 41, T¢1h_2,-.., 2411}, which
we write as

Zipn = P1%ipn—1 + BoZiph—2 + - + Bro1Tiq1- (3.53)

No intercept term is needed in (3.53) because the mean of x; is zero (other-
wise, replace x; by x; — p, in this discussion). In addition, let Z; denote the

regression of z; on {xy1, T2, .., Teyn—1}, then
Ty = Pr1xep1 + Poxiqo + o+ Brao1Tipn—1- (3.54)
Because of stationarity, the coefficients, f1,...,8,—1 are the same in (3.53)

and (3.54); we will explain this result in the next section.

3 The term regression here refers to regression in the population sense. That is,
T4 is the linear combination of {ziyn—1,Ti+h—2,...,2¢+1} that minimizes the
d E(zern — Y52, ajaes;)’
mean squared error E(x;yp 1 Q%)
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Definition 3.9 The partial autocorrelation function (PACF) of a sta-

tionary process, xy, denoted ¢pp, for h=1,2,..., is

11 = corr(zep1,xe) = p(1) (3.55)
and

Gnh = cOrr (T p — Topn, T4 — T¢), h>2. (3.56)
Both (2t4p —Tt4n) and (z— ;) are uncorrelated with {z¢41,. .., Ttyn—1}.
The PACF, ¢pp, is the correlation between x;p, and x; with the linear depen-
dence of {¢41,...,2rp—1} on each, removed. If the process x; is Gaussian,
then ¢pnp = corr(Tiqn, Tt | Tig1y..., Tern—1); that is, ¢pp is the correlation

coefficient between x5 and x; in the bivariate distribution of (x4, z+) con-
ditional on {Z¢41,..., Tryn_1}-
Example 3.14 The PACF of an AR(1)

Consider the PACF of the AR(1) process given by z; = ¢x;—1 + wy, with
|¢| < 1. By definition, ¢1; = p(1) = ¢. To calculate ¢oz, consider the
regression of xy19 On X411, say, Tryo = Brir1. We choose 8 to minimize

E(ziq1o — {L'\t+2)2 = E(x42 — ﬁxt+1)2 =7(0) —28y(1) + 52'7(0)'

Taking derivatives with respect to § and setting the result equal to zero, we
have g = ~(1)/7(0) = p(1) = ¢. Next, consider the regression of z; on x411,
say Ty = Bxgr1. We choose 8 to minimize

E(r — 5t)2 = E(z; - 5l’t+1)2 =7(0) = 28~(1) + 527(0)~
This is the same equation as before, so 5 = ¢. Hence,
P22 = cOT(Ty12 — Try2, ¢ — Tp) = cOT(Tpy2 — PTey1, Tt — PT41)
= corr(wyyo, T — dxpy1) =0

by causality. Thus, ¢2o = 0. In the next example, we will see that in this
case, ¢opp, = 0 for all A > 1.

Example 3.15 The PACF of an AR(p)
The model implies ;1) = Z§=1 @jTi4n—j + Wiyn, where the roots of
¢(z) are outside the unit circle. When h > p, the regression of x4, on
{I‘t+1, s 7xt+h71}a is
P
Tipn = Z¢jxt+h7j~
j=1

We have not proved this obvious result yet, but we will prove it in the next
section. Thus, when h > p,

Onn = corr(Tyqp — Tpqn, Tr — Ty) = corr(Wigp, xp — o) = 0,
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Fig. 3.4. The ACF and PACF of an AR(2) model with ¢1 = 1.5 and ¢2 = —.75.

because, by causality, z; — ; depends only on {w;yp_1, W yp—2,...}; recall
equation (3.54). When h < p, ¢, is not zero, and ¢11, ..., ¢p—1,—1 are not
necessarily zero. We will see later that, in fact, ¢,, = ¢,. Figure 3.4 shows
the ACF and the PACF of the AR(2) model presented in Example 3.10.
To reproduce Figure 3.4 in R, use the following commands:

1 ACF = ARMAacf(ar=c(1.5,-.75), ma=0, 24)[-1]

2 PACF = ARMAacf(ar=c(1.5,-.75), ma=0, 24, pacf=TRUE)

3 par (mfrow=c(1,2))

1 plot (ACF, type="h", xlab="lag", ylim=c(-.8,1)); abline(h=0)

5 plot (PACF, type="h", xlab="lag", ylim=c(-.8,1)); abline(h=0)

Example 3.16 The PACF of an Invertible MA(q)
For an invertible MA(q), we can write x; = — Zj‘;l T +wy. Moreover,
no finite representation exists. From this result, it should be apparent that
the PACF will never cut off, as in the case of an AR(p).
For an MA(1), x; = w; + Ows—1, with |0] < 1, calculations similar to
Example 3.14 will yield ¢o2 = —602/(1 + 62 + 6*). For the MA(1) in general,
we can show that

(=0)"(1-6%)
Ghh = — TSI h>1.

In the next section, we will discuss methods of calculating the PACF. The
PACF for MA models behaves much like the ACF for AR models. Also, the
PACF for AR models behaves much like the ACF for MA models. Because
an invertible ARMA model has an infinite AR representation, the PACF will
not cut off. We may summarize these results in Table 3.1.
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Table 3.1. Behavior of the ACF and PACF for ARMA Models

AR(p) MA(q) ARMA(p, q)
ACF Tails off Cuts off Tails off
after lag ¢
PACF Cuts off Tails off Tails off
after lag p

Example 3.17 Preliminary Analysis of the Recruitment Series
We consider the problem of modeling the Recruitment series shown in Fig-
ure 1.5. There are 453 months of observed recruitment ranging over the
years 1950-1987. The ACF and the PACF given in Figure 3.5 are con-
sistent with the behavior of an AR(2). The ACF has cycles correspond-
ing roughly to a 12-month period, and the PACF has large values for
h = 1,2 and then is essentially zero for higher order lags. Based on Ta-
ble 3.1, these results suggest that a second-order (p = 2) autoregres-
sive model might provide a good fit. Although we will discuss estimation
in detail in §3.6, we ran a regression (see §2.2) using the data triplets
{(x;21,22) : (x3;522,21), (Tg; T3, 22), ..., (Ta53; Ta52, T451) } to fit & model of
the form
Ty = Qo + Q1041 + P22 + wy

for t = 3,4,...,453. The values of the estimates were $0 = 6.74(1.11),

ngﬁl = 1.35(.04); 252 = —.46( 04, and 72 = 89.72, where the estimated standard
errors are in parentheses.
The following R code can be used for this analysis. We use the script acf2
to print and plot the ACF and PACF; see Appendix R for details.
1 acf2(rec, 48) # will produce values and a graphic
2 (regr = ar.ols(rec, order=2, demean=FALSE, intercept=TRUE))
3 regr$asy.se.coef # standard errors of the estimates

3.5 Forecasting

In forecasting, the goal is to predict future values of a time series, @, 4, m =
1,2,..., based on the data collected to the present, £ = {2,, xp_1,...,21}.
Throughout this section, we will assume x; is stationary and the model pa-
rameters are known. The problem of forecasting when the model parameters
are unknown will be discussed in the next section; also, see Problem 3.26. The
minimum mean square error predictor of z, 4, is

n

Lntm = E($n+m | :L') (357)

because the conditional expectation minimizes the mean square error
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Fig. 3.5. ACF and PACF of the Recruitment series. Note that the lag axes are in
terms of season (12 months in this case).

2
E [tnim — (@), (3.58)
where g(z) is a function of the observations z; see Problem 3.14.
First, we will restrict attention to predictors that are linear functions of
the data, that is, predictors of the form

n
xz-‘rm = ag + Z AT, (359)
k=1
where ag,aq,...,q, are real numbers. Linear predictors of the form (3.59)

that minimize the mean square prediction error (3.58) are called best linear
predictors (BLPs). As we shall see, linear prediction depends only on the
second-order moments of the process, which are easy to estimate from the
data. Much of the material in this section is enhanced by the theoretical
material presented in Appendix B. For example, Theorem B.3 states that
if the process is Gaussian, minimum mean square error predictors and best
linear predictors are the same. The following property, which is based on the
Projection Theorem, Theorem B.1 of Appendix B, is a key result.

Property 3.3 Best Linear Prediction for Stationary Processes

Given data 1, ..., 2y, the best linear predictor, 7)., = ag+ ZZ:1 QpTr,
of Tptm, for m > 1, is found by solving
E[(znsm — ) ) xe] =0, k=0,1,...,n, (3.60)

where xg = 1, for ag,aq,...qy,.
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The equations specified in (3.60) are called the prediction equations, and
they are used to solve for the coefficients {ag, a1,...,a,}. If E(x;) = p, the
first equation (k = 0) of (3.60) implies

B(@} ) = E@nim) = b

Thus, taking expectation in (3.59), we have

,UZOZO‘FZO%M or aozu(l—Zak).
k=1

k=1

Hence, the form of the BLP is
Tim =1+ Y ax(wy — p).
k=1

Thus, until we discuss estimation, there is no loss of generality in considering
the case that © = 0, in which case, ag = 0.

First, consider one-step-ahead prediction. That is, given {xz1,...,2,}, we
wish to forecast the value of the time series at the next time point, z, 1. The
BLP of x,,41 is of the form

Tyt = Pn1Zn + Gnaln_1 + -+ Ppn1, (3.61)
where, for purposes that will become clear shortly, we have written aj in
(3.59), as ¢ nt1—k in (3.61), for k =1,...,n. Using Property 3.3, the coeffi-
cients {@n1, dna, ..., Pnn + satisty

n

E{<$n+1 _Zﬁbn]’xn—&-l—j)xnﬁ-l—k} =0, k=1,...,n,

j=1

or
n

> vk =) =~(k), k=1,...n (3.62)

j=1

The prediction equations (3.62) can be written in matrix notation as

Ind, =Yns (3.63)
where I}, = {y(k — j)}};—, is an n x n matrix, ¢,, = (Pn1y- -y Pnn) is an
n x 1 vector, and -y,, = (y(1),...,7(n)) is an n x 1 vector.

The matrix I}, is nonnegative definite. If I, is singular, there are many
solutions to (3.63), but, by the Projection Theorem (Theorem B.1), z7.; is
unique. If I, is nonsingular, the elements of ¢,, are unique, and are given by

b = I e (3.64)
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For ARMA models, the fact that o2, > 0 and y(h) — 0 as h — oo is enough to
ensure that I, is positive definite (Problem 3.12). It is sometimes convenient
to write the one-step-ahead forecast in vector notation

Tpy1 = OT, (3.65)
where z = (2, 2p—1,...,21)".
The mean square one-step-ahead prediction error is
Ppiy = E(rpn — a4)° =9(0) =71, . (3.66)

To verify (3.66) using (3.64) and (3.65),

E(zni1 — ¢,3)° = E(zny1 — 7,1, 'x)°
B} — 27;F;1wfvn+1 + 7,0, ez’ T y,)
Y(0) = 29, 0y + v 0y Ly

Y(0) =¥, I3 e

E(znt1 — x2+1)2 =

Example 3.18 Prediction for an AR(2)

Suppose we have a causal AR(2) process x; = ¢121—1 + P22+ 2+ wy, and one
observation z;. Then, using equation (3.64), the one-step-ahead prediction
of x5 based on z; is

SU% = ¢11£L’1 = %(El = p(l)l’l

Now, suppose we want the one step-ahead prediction of x3 based on two
observations z; and xa; i.e., 23 = ¢o1272 + Poaz1. We could use (3.62)

$217(0) + p22v(1) = (1)
B217(1) + P227(0) = 7(2)

to solve for ¢o1 and ¢, or use the matrix form in (3.64) and solve

-1
(¢21> _ (V(O) ’7(1)> (’Y(U)
b2z 7(1) 7(0) 7(2))°
but, it should be apparent from the model that 3 = ¢122 + ¢o21. Because
d129 + Py satisfies the prediction equations (3.60),

E{[xzs — (122 + dpox1)|21} = E(wszy) =0,

E{[zs — (122 + ¢p271)]22} = E(wsz2) =0,
it follows that, indeed, x% = ¢1x2 + ¢Pox1, and by the uniqueness of the
coefficients in this case, that ¢21 = ¢1 and ¢o5 = ¢o. Continuing in this way,
it is easy to verify that, for n > 2,
Ty = G1ZTn + P2Tn—1.

That iS> (rbnl - ¢1a¢n2 = ¢27 and ¢nj =0, for ] = 3743"'377'
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From Example 3.18, it should be clear (Problem 3.40) that, if the time
series is a causal AR(p) process, then, for n > p,

Tpy1 = G120 + P21+ + GpTn_pi1. (3.67)

For ARMA models in general, the prediction equations will not be as simple
as the pure AR case. In addition, for n large, the use of (3.64) is prohibitive
because it requires the inversion of a large matrix. There are, however, iterative
solutions that do not require any matrix inversion. In particular, we mention
the recursive solution due to Levinson (1947) and Durbin (1960).

Property 3.4 The Durbin—Levinson Algorithm
Equations (3.64) and (3.66) can be solved iteratively as follows:

doo =0, PP =~(0). (3.68)
Forn > 1,
p(n) — ZZ: Sn—1k pln — k)
1- Zz;l ¢n—1,k p(k)
where, for n > 2,
d)nk = ¢n—1,k - ¢nn¢n—1,n—k7 k= 17 27 e, — 1. (370)

The proof of Property 3.4 is left as an exercise; see Problem 3.13.

. Pro=Prl1-¢2,),  (3.69)

nn

¢nn =

Example 3.19 Using the Durbin—Levinson Algorithm
To use the algorithm, start with ¢go = 0, P = v(0). Then, for n = 1,

#11 = p(1), P21 =7(0)[1 - fb%]-

For n =2,
b2z = ’W, b2 = b1t — oy,
P32 = P21[1 - ¢§2] =7(0)[1 - ¢%1H1 - ¢%2}-
For n =3,

a3 = P(3) — ¢21 p(2) — P2 p(1)
L — o1 p(1) — ¢22 p(2) ’
G32 = P22 — P33021, P31 = P21 — P332,
P} = P{[1 = ¢35] = 7(0)[1 — ¢%1][1 — ¢3,][1 — 93],
and so on. Note that, in general, the standard error of the one-step-ahead
forecast is the square root of

n

Py =7(0) [T = 63,0 (3.71)

Jj=1
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An important consequence of the Durbin—Levinson algorithm is (see Prob-
lem 3.13) as follows.

Property 3.5 Iterative Solution for the PACF
The PACF of a stationary process x, can be obtained iteratively via (3.69)
as Gun, form=1,2,....

Using Property 3.5 and putting n = p in (3.61) and (3.67), it follows that
for an AR(p) model,

Tpp1 = p1 Tp + Pp2 Tp—1 + -+ + Ppp T1

(3.72)
=¢1Tp+P22p1 4+ + Pp 1.

Result (3.72) shows that for an AR(p) model, the partial autocorrelation coef-
ficient at lag p, ¢pp, is also the last coefficient in the model, ¢,,, as was claimed
in Example 3.15.

Example 3.20 The PACF of an AR(2)
We will use the results of Example 3.19 and Property 3.5 to calculate the
first three values, ¢11, @22, P33, of the PACF. Recall from Example 3.9 that
p(h) — ¢1p(h — 1) — ¢pap(h —2) = 0 for b > 1. When h = 1,2,3, we have
p(1) = ¢1/(1 = 2), p(2) = ¢1p(1) + @2, p(3) — ¢1p(2) — ¢2p(1) = 0. Thus,

¢11 = p(1) = 1 ih@
2
by — PR =P o () + o] - () _ "
1- p(1)2 _ 1 2
1= (%)

$21 = P(l)[l - ¢2] =¢1

¢%:M$—%M@—%MD:
1= 1p(1) — ¢2p(2)

Notice that, as shown in (3.72), ¢oo = ¢o for an AR(2) model.

So far, we have concentrated on one-step-ahead prediction, but Prop-
erty 3.3 allows us to calculate the BLP of x,,4,, for any m > 1. Given data,
{z1,...,2,}, the m-step-ahead predictor is

T ym = bt T+ Gy Tar o G, (3.73)
where {gbfﬁl), 5:3), .. (m)} satisfy the prediction equations,

Z (bq(;;L)E(xn-Q—l—jxn-&-l—k) = E(xn+mxn+l—k)a k= I,...,n,

or
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n

S0 k) =v(m+ k1), k=1,...,n. (3.74)
j=1
The prediction equations can again be written in matrix notation as

L™ =1, (3.75)
where 7™ = (v(m),...,v(m+n—1)), and ¢{™ = (¢£ZL), ce 53,’}))/ are

n x 1 vectors.
The mean square m-step-ahead prediction error is

n n 2 m 4 — m
Pn+m =K (mn-‘rm - xn+m) = '7(0) - ’Y’El ) Fn 1’7; ) (376>

Another useful algorithm for calculating forecasts was given by Brockwell
and Davis (1991, Chapter 5). This algorithm follows directly from applying
the projection theorem (Theorem B.1) to the innovations, x; — xiil, for t =
1,...,n, using the fact that the innovations x; — ;v?l and x4 — 2571 are
uncorrelated for s # ¢ (see Problem 3.41). We present the case in which z; is

a mean-zero stationary time series.

Property 3.6 The Innovations Algorithm
The one-step-ahead predictors, i, ,, and their mean-squared errors, Pl ;,
can be calculated iteratively as

x(l):07 PIOZ’V(O)

t

2y =Y Oy — ), t=12,... (3.77)
j=1
t—1
Pl =~(0)=> 67, Pl t=12..., (3.78)
j=0

where, for 7 =0,1,...,t —1,

J—1
B, = (fy(t—j) - Zaj,j,kat,t,kpgﬂ) /Pl (3.79)
k=0

Given data z1,...,x,, the innovations algorithm can be calculated suc-
cessively for t = 1, then ¢ = 2 and so on, in which case the calculation of 27 , |
and P, is made at the final step ¢ = n. The m-step-ahead predictor and
its mean-square error based on the innovations algorithm (Problem 3.41) are
given by

n+m—1
Iz-ﬁ-m = Z an—i—m—l,j(xn—i-m—j - IZiz:ﬁil), (380)
j=m
n+m-—1
Py =7(0) - Z 931+m—1,jp7?1—$f;_17 (3.81)
j=m

where the 60,,4,,—1; are obtained by continued iteration of (3.79).
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Example 3.21 Prediction for an MA(1)

The innovations algorithm lends itself well to prediction for moving average
processes. Consider an MA(1) model, x; = wy + Ow;_1. Recall that (0) =
(1+60%)02, (1) = 002, and y(h) = 0 for h > 1. Then, using Property 3.6,
we have

On1 = 0o2,/Pr!

Op; =0, j=2...n

P} = (1+06%0,

=1+ 02 — 00,1)02.
Finally, from (3.77), the one-step-ahead predictor is

Ty =10 (zn - xzfl) aﬁj/Pﬁfl.

FORECASTING ARMA PROCESSES

The general prediction equations (3.60) provide little insight into forecasting
for ARMA models in general. There are a number of different ways to express
these forecasts, and each aids in understanding the special structure of ARMA
prediction. Throughout, we assume z; is a causal and invertible ARMA(p, q)
process, ¢(B)z; = 0(B)w;, where w; ~ iid N(0,02). In the non-zero mean
case, F(x;) = p,, simply replace x; with x; — u, in the model. First, we
consider two types of forecasts. We write x;', = to mean the minimum mean
square error predictor of x,,, based on the data {z,,...,21}, that is,
$Z+m = E(xn+m | Ty wrl)'

For ARMA models, it is easier to calculate the predictor of x4, assuming
we have the complete history of the process {x,,zn—1,...,21,%0,T_1,...}.
We will denote the predictor of z, 1., based on the infinite past as

Tn+m = E(xn—&-m | Tny Tp—1y---5T1, L0, L—1, - - )

In general, 7!, . and Z,,, are not the same, but the idea here is that, for
large samples, 7,1, will provide a good approximation to z. ..

Now, write @, 4., in its causal and invertible forms:

Tn+m = Zd’jwn—&-m—j} 7;[}0 =1 (382)

j=0

oo

Wn4m = Zﬂjxn—FM—ja Ty = 1. (383)

=0
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Then, taking conditional expectations in (3.82), we have

%n+m = Z¢j@n+m—j = Z 1/}jwn+m—j7 (3'84)

Jj=0 Jj=m

because, by causality and invertibility,

0 t>n

wy = E(wt | 337L7zn—17-~-71'0ax—17"') =
wy t<n.

Similarly, taking conditional expectations in (3.83), we have

00
0= Tn+m T E TjTn+m—j,
j=1

or
m—1 00
%n—i-m = — Z Wjin—i-m—j — Z TiTn4+m—j, (385)
Jj=1 Jj=m
using the fact E(x; | Ty Ty« -« L0, L1, . ..) = Ty, for t < n. Prediction is
accomplished recursively using (3.85), starting with the one-step-ahead pre-

dictor, m = 1, and then continuing for m = 2,3,.... Using (3.84), we can
write

—1
Tn+m — Tn4+m = E ijn—i-m—_ﬁ
J=0

so the mean-square prediction error can be written as

m—1
P:LLer = E(anrm - En+m)2 — 0—121, Z '(/)]2 (386)

j=

Also, we note, for a fixed sample size, n, the prediction errors are correlated.
That is, for k > 1,

m—1

E{(zn+m = Tntm)(Tntmtk — Tntmtk)} = ‘7721) Z Vivjtk- (3.87)

j=

Example 3.22 Long-Range Forecasts
Consider forecasting an ARMA process with mean p,.. Replacing x,, 4., with
Tnam — e in (3.82), and taking conditional expectation as is in (3.84), we
deduce that the m-step-ahead forecast can be written as

Trpm = e + Y PjWnim—j. (3.88)

Jj=m
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Noting that the ¢-weights dampen to zero exponentially fast, it is clear that

T — [l (3.89)

exponentially fast (in the mean square sense) as m — oo. Moreover, by
(3.86), the mean square prediction error

n+m — 02 sz - g, (390)

exponentially fast as m — oo; recall (3.45).

It should be clear from (3.89) and (3.90) that ARMA forecasts quickly
settle to the mean with a constant prediction error as the forecast horizon,
m, grows. This effect can be seen in Figure 3.6 on page 119 where the
Recruitment series is forecast for 24 months; see Example 3.24.

When n is small, the general prediction equations (3.60) can be used easily.
When n is large, we would use (3.85) by truncating, because we do not observe
20, T_1,T_2,..., and only the data x1,xs,...,xz, are available. In this case,
we can truncate (3.85) by setting >3°7, , 7;%nim—j = 0. The truncated
predictor is then written as

n+m—1

Topm = ZWJ Tntm—j — Z TjTntm—j, (3.91)
j=m

which is also calculated recursively, m = 1,2, .... The mean square prediction
error, in this case, is approximated using (3.86).

For AR(p) models, and when n > p, equation (3.67) yields the exact
predictor, =] o of Tptm, and there is no need for approximations. That is,
forn > p, x n+m = Tntm = Tpim- Also in this case, the one-step-ahead
prediction error is E(zn41 — 2] 1)? = o2, For pure MA( ) or ARMA(p,q)
models, truncated prediction has a fairly nice form.

Property 3.7 Truncated Prediction for ARMA
For ARMA (p, q) models, the truncated predictors for m =1,2,..., are

Tptm = ¢1'%Z+m—1 +eee ¢pgﬁ+m—p + elag—i-m—l +--+0 wn+m q’ (392)

where T} = x4 for 1 <t <n and T} =0 for t < 0. The truncated prediction
errors are given by: wi =0 fort <0 ort >n, and

wi = ¢(B)T — hwiy — - — Oqwi,

for1 <t <n.
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Example 3.23 Forecasting an ARMA(1,1) Series
Given data x1,...,x,, for forecasting purposes, write the model as

Tpt1 = QTp + Wpt1 + Owy,.
Then, based on (3.92), the one-step-ahead truncated forecast is
Ty = ¢xy +0+ 0w,
For m > 2, we have

n+m - (rb n+m 1

which can be calculated recursively, m = 2,3,... .

To calculate w;y, which is needed to initialize the successive forecasts, the
model can be written as w;, = zy — ¢xy_1 — Owy_q for t = 1,...,n. For
truncated forecasting using (3.92), put wf = 0, zy = 0, and then iterate the
errors forward in time

~n ~n
wy =xy — pr— — 0w 4, t=1,...,n.

The approximate forecast variance is computed from (3.86) using the -
weights determined as in Example 3.11. In particular, the i-weights satisfy
;= (¢ +0)p? 1, for j > 1. This result gives

m—1 o (m—)
P =02 [1+ ¢+922¢2(] 1} :ai[1+(¢+9)(21(1_¢<225)2 V)

To assess the precision of the forecasts, prediction intervals are typically
calculated along with the forecasts. In general, (1 — «) prediction intervals are

of the form
m e/ P, (3.93)

where ¢, /3 is chosen to get the desired degree of confidence. For example,
if the process is Gaussian, then choosing c,/2 = 2 will yield an approxi-
mate 95% prediction interval for x, .. If we are interested in establishing
prediction intervals over more than one time period, then c, /3 should be ad-
justed appropriately, for example, by using Bonferroni’s inequality [see (4.55)
in Chapter 4 or Johnson and Wichern, 1992, Chapter 5].

Example 3.24 Forecasting the Recruitment Series
Using the parameter estimates as the actual parameter values, Figure 3.6
shows the result of forecasting the Recruitment series given in Example 3.17
over a 24-month horizon, m = 1,2,...,24. The actual forecasts are calcu-
lated as
Ty = 6.74 41352z, — 462, .,

for n = 453 and m = 1,2,...,12. Recall that 2} = 2; when ¢ < s. The
forecasts errors P, are calculated using (3.86). Recall that 52 = 89.72,

n+m
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Fig. 3.6. Twenty-four month forecasts for the Recruitment series. The actual data

shown are from about January 1980 to September 1987, and then the forecasts plus
and minus one standard error are displayed.

and using (3.40) from Example 3.11, we have ¢; = 1.35¢;_1 — .462);_ for
j > 2, where 19 = 1 and 91 = 1.35. Thus, for n = 453,

P = 89.72,
Pr o, =89.72(1 + 1.35%),
P o =89.72(1 + 1.35% + [1.35% — .46]?),

and so on.

Note how the forecast levels off quickly and the prediction intervals are
wide, even though in this case the forecast limits are only based on one
standard error; that is, )/, ,,, = /Py,

To reproduce the analysis and Figure 3.6, use the following commands:

1 regr = ar.ols(rec, order=2, demean=FALSE, intercept=TRUE)

2 fore = predict(regr, n.ahead=24)

3 ts.plot(rec, fore$pred, col=1:2, x1lim=c(1980,1990),
ylab="Recruitment")

4 lines(fore$pred, type="p", col=2)

5 lines(fore$pred+fore$se, lty="dashed", col=4)

6 lines(fore$pred-fore$se, lty="dashed", col=4)

We complete this section with a brief discussion of backcasting. In back-
casting, we want to predict xi_,,, for m = 1,2,..., based on the data
{z1,...,z,}. Write the backcast as
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xr_,, = Zajxj. (3.94)
j=1
Analogous to (3.74), the prediction equations (assuming u, = 0) are
Z a;E(zjeg) = E(xiomar), k=1,...,n, (3.95)
j=1
or .
Zajw(k—j)zv(m—i—k:—l), E=1,...,n. (3.96)
j=1

These equations are precisely the prediction equations for forward prediction.
That is, a; = ¢S?), for j = 1,...,n, where the (bf;?) are given by (3.75).

Finally, the backcasts are given by

2t =™ My m=1,2,.. .. (3.97)

Example 3.25 Backcasting an ARMA(1,1)

Consider an ARMA(1,1) process, 2 = ¢x_1 + w1 +wy; we will call this
the forward model. We have just seen that best linear prediction backward
in time is the same as best linear prediction forward in time for stationary
models. Because we are assuming ARMA models are Gaussian, we also have
that minimum mean square error prediction backward in time is the same
as forward in time for ARMA models.* Thus, the process can equivalently
be generated by the backward model,

Ty = ¢Ty1 + Ovigp1 + vy,

where {v;} is a Gaussian white noise process with variance 2. We may
write x; = Z;io Y;Vs4j, where 1y = 1; this means that z; is uncorrelated
with {v¢—1,v¢—9,...}, in analogy to the forward model.

Given data {x1,....,2,}, truncate v = E(v, |x1,....,2,) to zero and
then iterate backward. That is, put ;' = 0, as an initial approximation, and
then generate the errors backward

U =ap — ¢ — OO, t=(n—1),(n—2),...,1.

Then,
o = ¢x1 + 007 + vy = ¢z + 07,

because vy = 0 for £ < 0. Continuing, the general truncated backcasts are
given by
g, =0xy_.., m=23,....

4 In the stationary Gaussian case, (a) the distribution of {,41,@n,...,z1} is the
same as (b) the distribution of {zg,z1...,2z,}. In forecasting we use (a) to ob-
tain E(@n41|Tn,-..,z1); in backcasting we use (b) to obtain E(zo|x1,...,zn).
Because (a) and (b) are the same, the two problems are equivalent.
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3.6 Estimation

Throughout this section, we assume we have n observations, =1, ..., z,, from
a causal and invertible Gaussian ARMA (p, g) process in which, initially, the
order parameters, p and ¢, are known. Our goal is to estimate the parameters,
G1y-- 5 0p, O1,...,0,, and o2 . We will discuss the problem of determining p
and ¢ later in this section.

We begin with method of moments estimators. The idea behind these esti-
mators is that of equating population moments to sample moments and then
solving for the parameters in terms of the sample moments. We immediately
see that, if F(z;) = u, then the method of moments estimator of p is the
sample average, T. Thus, while discussing method of moments, we will as-
sume p = 0. Although the method of moments can produce good estimators,
they can sometimes lead to suboptimal estimators. We first consider the case
in which the method leads to optimal (efficient) estimators, that is, AR(p)
models.

When the process is AR(p),

Ty = Q1T4—1 + - -+ PpTy_p + Wy,
the first p 4+ 1 equations of (3.47) and (3.48) lead to the following:

Definition 3.10 The Yule-Walker equations are given by

o =7(0) = d1y(1) = - = b (p)- (3.99)
In matrix notation, the Yule-Walker equations are
Lip =7, 00 =7(00) = ¢, (3.100)

where I, = {’y(k;—j)}?kil is a px p matrix, ¢ = (¢1,...,¢p) is a px 1 vector,
and 7, = (y(1),... ,v(p)) is a p x 1 vector. Using the method of moments,
we replace y(h) in (3.100) by F(h) [see equation (1.34)] and solve

$=1,'3, &2=300)-3,0;'3, (3.101)

These estimators are typically called the Yule-Walker estimators. For calcula-
tion purposes, it is sometimes more convenient to work with the sample ACF.
By factoring 7(0) in (3.101), we can write the Yule-Walker estimates as

~ =1

~ ~ ~ Sl
6=R, 5, 2=30)[1-%R, 5, (3.102)

where ﬁp = {p(k — j)}} =1 is a p x p matrix and p, = (p(1),... ,p(p) is a
p x 1 vector.

For AR(p) models, if the sample size is large, the Yule-Walker estimators
are approximately normally distributed, and 52, is close to the true value of
o2 . We state these results in Property 3.8; for details, see Appendix B, §B.3.
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Property 3.8 Large Sample Results for Yule-Walker Estimators
The asymptotic (n — o) behavior of the Yule—Walker estimators in the
case of causal AR(p) processes is as follows:

Jn (Eg* ¢) L N(0,021Y), 72 Dol (3.103)

The Durbin-Levinson algorithm, (3.68)-(3.70), can be used to calculate y
without inverting 7} » Or ﬁp, by replacing «v(h) by 7(h) in the algorithm. In
running the algorithm, we will iteratively calculate the h x 1 vector, ah =
($h17 .. '7$hh)la for h = 1,2,.... Thus, in addition to obtaining the desired
forecasts, the Durbin—Levinson algorithm yields g/b\hh, the sample PACF. Using
(3.103), we can show the following property.

Property 3.9 Large Sample Distribution of the PACF
For a causal AR (p) process, asymptotically (n — o0),

Vi dnn 5 N(0,1), for h>p. (3.104)

Example 3.26 Yule—Walker Estimation for an AR(2) Process
The data shown in Figure 3.3 were n = 144 simulated observations from the
AR(2) model
xy = 1.5x 1 — .THhas_o + wy,

where w; ~ iid N(0,1). For these data, 7(0) = 8.903, p(1) = .849, and
p(2) = .519. Thus,

~ (d) [ 1 .849] 7" [.849\  (1.463
¢= bs) 849 1 519) — \—.723

52 =8.903 {1 — (.849, .519) <1'463)} = 1.187.

and

—.723

By Property 3.8, the asymptotic variance—covariance matrix of ;5,

1 LI87T[ 1 849" [ .058% —.003
1448903 [ 849 1 | ~ | —.003 058"

can be used to get confidence regions for, or make inferences about $ and
its components. For example, an approximate 95% confidence interval for
¢2 is —.723 £+ 2(.058), or (—.838,—.608), which contains the true value of
Pg = —.75. R

For these data, the first three sample partial autocorrelations are ¢1; =
p(1) = .849, a2 = ¢ = —.721, and ¢33 = —.085. According to Property 3.9,
the asymptotic standard error of (533 is 1/4/144 = .083, and the observed
value, —.085, is about only one standard deviation from ¢33 = 0.
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Example 3.27 Yule-Walker Estimation of the Recruitment Series
In Example 3.17 we fit an AR(2) model to the recruitment series using
regression. Below are the results of fitting the same model using Yule-Walker
estimation in R, which are nearly identical to the values in Example 3.17.
rec.yw = ar.yw(rec, order=2)
rec.yw$x.mean # = 62.26 (mean estimate)
rec.yw$ar # 1.33, -.44 (parameter estimates)
sqrt(diag(rec.yw$asy.var.coef)) # = .04, .04 (standard errors)
rec.yw$var.pred # = 94.80 (error variance estimate)

To obtain the 24 month ahead predictions and their standard errors, and
then plot the results as in Example 3.24, use the R commands:
rec.pr = predict(rec.yw, n.ahead=24)
U = rec.pr$pred + rec.pr$se
L = rec.pr$pred - rec.pr$se
minx = min(rec,L); maxx = max(rec,U)
ts.plot(rec, rec.pr$pred, x1im=c(1980,1990), ylim=c(minx,maxx))
lines(rec.pr$pred, col="red", type="o")
lines (U, col="blue", lty="dashed")
lines(L, col="blue", lty="dashed")

LS N

L N = N S S OO

In the case of AR(p) models, the Yule-Walker estimators given in (3.102)
are optimal in the sense that the asymptotic distribution, (3.103), is the
best asymptotic normal distribution. This is because, given initial conditions,
AR(p) models are linear models, and the Yule-Walker estimators are essen-
tially least squares estimators. If we use method of moments for MA or ARMA
models, we will not get optimal estimators because such processes are nonlin-
ear in the parameters.

Example 3.28 Method of Moments Estimation for an MA (1)
Consider the time series
Ty = wi + Owp_1,
where |#] < 1. The model can then be written as
[ee)
T = Z(—G)ja}t_j + wy,

Jj=1

which is nonlinear in §. The first two population autocovariances are v(0) =
o2 (1+6%) and (1) = 020, so the estimate of 6 is found by solving:

A _ 6
V=50 "1T7%

Two solutions exist, so we would pick the invertible one. If [p(1)| < 1, the
solutions are real, otherwise, a real solution does not exist. Even though
|p(1)| < & for an invertible MA(1), it may happen that |p(1)| > 1 because
it is an estimator. For example, the following simulation in R produces a
value of p(1) = .507 when the true value is p(1) = .9/(1 + .9?) = .497.
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1 set.seed(2)
2 mal = arima.sim(list(order = ¢(0,0,1), ma = 0.9), n = 50)
3 acf(mal, plot=FALSE)[1] # = .507 (lag 1 sample ACF)

When [p(1)| < 3, the invertible estimate is

5 1= V1-4p(1)°

25(1)

It can be shown that®

)

R 2 4 p6 4 p8
9~AN<0, 146 +40%+6 +9>

n(l —62)2
AN is read asymptotically normal and is defined in Definition A.5, page 515,
of Appendix A. The maximum likelihood estimator (which we discuss next)
of 6, in this case, has an asymptotic variance of (1 — 62)/n. When 6 = .5,
for example, the ratio of the asymptotic variance of the method of moments
estimator to the maximum likelihood estimator of # is about 3.5. That is,

for large samples, the variance of the method of moments estimator is about
3.5 times larger than the variance of the MLE of 6 when 6 = .5.

MAXIMUM LIKELIHOOD AND LEAST SQUARES ESTIMATION

To fix ideas, we first focus on the causal AR(1) case. Let
X = p+ d(xe—1 — p) + wy (3.105)

where |¢| < 1 and w; ~ iid N(0,02). Given data z1,Ta,...,T,, we seek the
likelihood

L(M7¢50120) = f (LU],.I'27. oy T ‘ /’L7¢50-12u) .
In the case of an AR(1), we may write the likelihood as

L(:“ﬂ¢7 0-3;) = f(xl)f(x2 | 1’1) Tt f(xn | xn—l)a

where we have dropped the parameters in the densities, f(-), to ease the
notation. Because @y | 2;—1 ~ N (1 + ¢(z4-1 — ), 02), we have

floe | @) = fullee — p) — dlai1 — p),

where f,(+) is the density of wy, that is, the normal density with mean zero
and variance o2. We may then write the likelihood as

n

L(p, ¢,00) = f(x1) [] fullwe—p) = d(zia — ).

t=2

5 The result follows from Theorem A.7 given in Appendix A and the delta method.
See the proof of Theorem A.7 for details on the delta method.
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To find f(z1), we can use the causal representation
(o)
To=p+ ) Fuiy
j=0

to see that z; is normal, with mean p and variance 02 /(1 — ¢?). Finally, for
an AR(1), the likelihood is

L(s, 6,0%) = (2702) /(1 — ¢%) 2 exp [— S;’;g’)} L (3.06)
where
S(p, ) = (1= ") (w1 — ) + > _[(x —plam — ). (3.107)

t=2

Typically, S(u, ®) is called the unconditional sum of squares. We could have
also considered the estimation of p and ¢ using unconditional least squares,
that is, estimation by minimizing S(u, ¢).

Taking the partial derivative of the log of (3.106) with respect to o2 and
setting the result equal to zero, we see that for any given values of p and ¢
in the parameter space, 02, = n_ls ( , ) maximizes the likelihood. Thus, the
maximum likelihood estimate of o2, is

52 =n""S(fi, 9), (3.108)

where 1 and (Z are the MLEs of 1 and ¢, respectively. If we replace n in (3.108)
by n — 2, we would obtain the unconditional least squares estimate of o2 .

If, in (3.106), we take logs, replace o2, by 52, and ignore constants, {i and
$ are the values that minimize the criterion function

U, 6) = log [n™'S(u, )] —n™'log(1 — ¢%); (3.109)

that is, I(u, ¢) < —2log L(p, ¢,52).5 Because (3.107) and (3.109) are com-
plicated functions of the parameters the minimization of I(u, ¢) or S(u, @) is
accomplished numerically. In the case of AR models, we have the advantage
that, conditional on initial values, they are linear models. That is, we can
drop the term in the likelihood that causes the nonlinearity. Conditioning on
x1, the conditional likelihood becomes

L(/J'7¢ﬂ 0—1211 ‘ 1'1) = H fw [(mt - M) - (b(xtfl - :u)]
t=2
= (2770-12(})*(?171)/2 exp |:—S(.2(5;¢):| s (3110)

6 The criterion function is sometimes called the profile or concentrated likelihood.
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where the conditional sum of squares is

= Z (20 — 1) = (1 — )] (3.111)

t=2

The conditional MLE of o2, is

G2 = Se(fi, d)/(n = 1), (3.112)

and 1 and ngb are the values that minimize the conditional sum of squares,
Se(p, @). Letting o = p(1 — ¢), the conditional sum of squares can be written

as
n

Se(pt, #) =D [ — (0 + gy 1)) (3.113)
t=2
The problem is now the linear regression problem stated in §2.2. Following
the results from least squares estimation, we have @ = Z(9) — ¢Z(1), where
Zay=(n—1)"" S0 ey, and ) = (n — 1)~ 31, a4, and the conditional
estimates are then R
Z(2) — %()
1-¢
i@ = Z2)) (1 — 1))
Yo (@1 — 2))?

From (3.114) and (3.115), we sec that i ~ Z and ¢ ~ p(1). That is, the
Yule-Walker estimators and the conditional least squares estimators are ap-
proximately the same. The only difference is the inclusion or exclusion of
terms involving the endpoints, z; and x,,. We can also adjust the estimate of

o2 in (3.112) to be equivalent to the least squares estimator, that is, divide

Se(fi,d) by (n — 3) instead of (n — 1) in (3.112).

For general AR(p) models, maximum likelihood estimation, unconditional
least squares, and conditional least squares follow analogously to the AR(1)
example. For general ARMA models, it is difficult to write the likelihood as an
explicit function of the parameters. Instead, it is advantageous to write the
likelihood in terms of the innovations, or one-step-ahead prediction errors,
Ty — xt ~1. This will also be useful in Chapter 6 when we study state-space
models.

For a normal ARMA(p, ¢) model, let B = (u, ¢1,...,¢p, 01,...,04)" be the
(p+ ¢+ 1)-dimensional vector of the model parameters. The likelihood can be
written as

i = (3.114)

b=

(3.115)

n
ﬂ7 w fot|1‘t—17"'7xl)-
t=1

The conditional distribution of x; given x;_1,...,x; is Gaussian with mean
zi~" and variance P{~'. Recall from (3.71) that P/~' = v(0) H;;i(l - 63;).

For ARMA models, 7(0) = 02 Z;io 1/)?, in which case we may write
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[e%e] t—1

pt—1 _ 52 2 1 2 def o

= on | Dowd | | TTa -6 = el
=0 j=1

where r; is the term in the braces. Note that the r; terms are functions only
of the regression parameters and that they may be computed recursively as
re41 = (1 — ¢f,)ry with initial condition 7 = 377 9. The likelihood of the
data can now be written as

5(8)
20

L(B.0%) = (2502) "/ [r1(B)ra(B) - ru(B)] "/ * exp [‘ } - (3116)

2
w
where

S(B) = zn: [MW} (3.117)

Both a:i_l and r; are functions of 8 alone, and we make that fact explicit
in (3.116)-(3.117). Given values for B8 and o2, the likelihood may be evalu-
ated using the techniques of §3.5. Maximum likelihood estimation would now
proceed by maximizing (3.116) with respect to 8 and o2. As in the AR(1)
example, we have R

2 =n"19(8), (3.118)

where ,B is the value of B that minimizes the concentrated likelihood
1(B) =log [n'S(B)] +n"> logri(B). (3.119)
t=1

For the AR(1) model (3.105) discussed previously, recall that z{ = u and
27 =y gz — p), for t = 2,...,n. Also, using the fact that ¢1; = ¢
and ¢pp, = 0 for h > 1, we have 1, = >3, % = (1 —¢*)" 1, rg = (1 —
#?)"1(1—¢?) =1, and in general, r; = 1 for t = 2,...,n. Hence, the likelihood
presented in (3.106) is identical to the innovations form of the likelihood given
by (3.116). Moreover, the generic S(B8) in (3.117) is S(u, ¢) given in (3.107)
and the generic I[(8) in (3.119) is I(u, ¢) in (3.109).

Unconditional least squares would be performed by minimizing (3.117)
with respect to 8. Conditional least squares estimation would involve mini-
mizing (3.117) with respect to 8 but where, to ease the computational burden,
the predictions and their errors are obtained by conditioning on initial values
of the data. In general, numerical optimization routines are used to obtain the
actual estimates and their standard errors.

Example 3.29 The Newton—Raphson and Scoring Algorithms
Two common numerical optimization routines for accomplishing maximum
likelihood estimation are Newton—Raphson and scoring. We will give a brief
account of the mathematical ideas here. The actual implementation of these
algorithms is much more complicated than our discussion might imply. For
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details, the reader is referred to any of the Numerical Recipes books, for
example, Press et al. (1993).

Let I(B) be a criterion function of k parameters 8 = (/31,...,Sk) that we
wish to minimize with respect to B. For example, consider the likelihood
function given by (3.109) or by (3.119). Suppose I(8) is the extremum that
we are interested in finding, and B is found by solving 0l(8)/05; = 0, for
j=1,...,k Let I)(B) denote the k x 1 vector of partials

(e - (280, . azw)){

op1 7 OBk

Note, l(l)(ﬁ) =0, the k x 1 zero vector. Let 1(®)(B) denote the k x k matrix
of second-order partials

12(B) = {— O(B) }jj_l,

00;08;

and assume [(?) (B) is nonsingular. Let Byo)y be an initial estimator of 8. Then,
using a Taylor expansion, we have the following approximation:

0=1D(B) = 1M (B () — 1? (B (o)) [3 - 5<0>] :

Setting the right-hand side equal to zero and solving for B\ [call the solution
B1yls we get

—1
Bay =B + {l@) (ﬂ(o))} l(l)(ﬂ(o))~

The Newton—Raphson algorithm proceeds by iterating this result, replacing
,3(0) by ﬂ(l) to get ﬂ(2), and so on, until convergence. Under a set of appro-
priate conditions, the sequence of estimators, (1), B(a); - - -, Will converge to

B, the MLE of B.

For maximum likelihood estimation, the criterion function used is I(8)
given by (3.119); I(V)(B) is called the score vector, and 1(?)(8) is called the
Hessian. In the method of scoring, we replace 1) (B8) by E[I®®)(B)], the in-
formation matrix. Under appropriate conditions, the inverse of the informa-
tlon matrix is the asymptotic variance—covariance matrix of the estlmator
,B This is sometimes approximated by the inverse of the Hessian at ,B If
the derivatives are difficult to obtain, it is possible to use quasi-maximum
likelihood estimation where numerical techniques are used to approximate
the derivatives.

Example 3.30 MLE for the Recruitment Series
So far, we have fit an AR(2) model to the Recruitment series using ordinary
least squares (Example 3.17) and using Yule-Walker (Example 3.27). The
following is an R session used to fit an AR(2) model via maximum likelihood
estimation to the Recruitment series; these results can be compared to the
results in Examples 3.17 and 3.27.
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rec.mle = ar.mle(rec, order=2)
rec.mle$x.mean # 62.26

rec.mle$ar # 1.35, -.46
sqrt(diag(rec.mle$asy.var.coef)) # .04, .04
rec.mle$var.pred # 89.34

[

We now discuss least squares for ARMA(p, ¢) models via Gauss—Newton.
For general and complete details of the Gauss—Newton procedure, the reader
is referred to Fuller (1996). As before, write 8 = (¢1,...,¢p,01,...,0,), and
for the ease of discussion, we will put ¢ = 0. We write the model in terms of
the errors

wy(B) = xp — Z T Z Oxwi—k(B), (3.120)
j=1 k=1

emphasizing the dependence of the errors on the parameters.

For conditional least squares, we approximate the residual sum of squares
by conditioning on z1,...,x, (if p > 0) and wp, = wp—1 = Wp_g = -+ =
wi—q = 0 (if ¢ > 0), in which case, given B, we may evaluate (3.120) for
t=p+1,p+2,...,n. Using this conditioning argument, the conditional error

sum of squares is
n

Se(B) = Y wi(B). (3.121)

t=p+1

Minimizing S.(8) with respect to 8 yields the conditional least squares esti-
mates. If ¢ = 0, the problem is linear regression and no iterative technique is
needed to minimize S¢(¢1,...,¢p). If ¢ > 0, the problem becomes nonlinear
regression and we will have to rely on numerical optimization.

When n is large, conditioning on a few initial values will have little in-
fluence on the final parameter estimates. In the case of small to moderate
sample sizes, one may wish to rely on unconditional least squares. The uncon-
ditional least squares problem is to choose B to minimize the unconditional
sum of squares, which we have generically denoted by S(8) in this section.
The unconditional sum of squares can be written in various ways, and one
useful form in the case of ARMA(p, ¢) models is derived in Box et al. (1994,
Appendix A7.3). They showed (see Problem 3.19) the unconditional sum of
squares can be written as

n

S = > () (3.122)

t=—o00

where w,(8) = E(w|xy,...,2,). When ¢ < 0, the w;(8) are obtained
by backcasting. As a practical matter, we approximate S(B) by starting
the sum at t = —M + 1, where M is chosen large enough to guarantee
E;:A{OO w2(B) ~ 0. In the case of unconditional least squares estimation,
a numerical optimization technique is needed even when ¢ = 0.
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To employ Gauss—Newton, let B = (¢go), ceey ¢1(,0)7 950), ce 9((10))’ be an
initial estimate of 8. For example, we could obtain B4, by method of moments.
The first-order Taylor expansion of w;(8) is

wy(B) = wi(B (o)) — (,3 - ﬂ(o)>/zt(,3(o))7 (3.123)
where
a t ﬂ 8 t IB !
B = (-2p el - BPONY

The linear approximation of S.(8) is

n

Q(B) = Z [wt(ﬂ(o)) - (,3 - ﬂ(o))lzt(ﬁ(o))r (3.124)

t=p+1

and this is the quantity that we will minimize. For approximate unconditional
least squares, we would start the sum in (3.124) at t = —M + 1, for a large
value of M, and work with the backcasted values.

Using the results of ordinary least squares (§2.2), we know

(ﬂfﬂ\(o)) = (TF1 zn: Zt(ﬂ(o))zi(ﬂ(o)»_l(”il Zn: Zt(ﬂ(o))wt(ﬂ(o)))

t=p+1 t=p+1
(3.125)

minimizes Q(B). From (3.125), we write the one-step Gauss—Newton estimate
as

By = By + ABo)): (3.126)

where A(B(g)) denotes the right-hand side of (3.125). Gauss-Newton esti-
mation is accomplished by replacing By by B(;) in (3.126). This process is
repeated by calculating, at iteration j = 2,3, ...,

By = Bi—1) +ABG-1)

until convergence.

Example 3.31 Gauss—Newton for an MA(1)
Consider an invertible MA (1) process, x; = w; 4+ 0w;_1. Write the truncated
erTors as

we(0) = x¢ — Qw1 (0), t=1,...,n, (3.127)
where we condition on wg(#) = 0. Taking derivatives,
8wt (9) - 3wt,1(9) -
— 80 —wt71(9)+0T7 t—17...,n7 (3.128)

where dwy(0)/90 = 0. Using the notation of (3.123), we can also write
(3.128) as
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Fig. 3.7. ACF and PACF of transformed glacial varves.

2t(0) =wi—1(0) — 0z,_1(0), t=1,...,n, (3.129)

where 2¢(6) = 0.

Let 6(¢) be an initial estimate of #, for example, the estimate given in Ex-
ample 3.28. Then, the Gauss—Newton procedure for conditional least squares
is given by

21 21(0))wi (95))
Y #0g)
where the values in (3.130) are calculated recursively using (3.127) and

(3.129). The calculations are stopped when [0; 1) — 0(;], or |Q(0(;41)) —
Q(0(;))|, are smaller than some preset amount.

Example 3.32 Fitting the Glacial Varve Series
Consider the series of glacial varve thicknesses from Massachusetts for n =
634 years, as analyzed in Example 2.6 and in Problem 2.8, where it was
argued that a first-order moving average model might fit the logarithmically
transformed and differenced varve series, say,

Vlog(z;) = log(a) — log(w_1) :log( o )

Tt—1

which can be interpreted as being approximately the percentage change in
the thickness.
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Fig. 3.8. Conditional sum of squares versus values of the moving average parameter
for the glacial varve example, Example 3.32. Vertical lines indicate the values of the
parameter obtained via Gauss—Newton; see Table 3.2 for the actual values.

The sample ACF and PACF, shown in Figure 3.7, confirm the tendency
of Vlog(z:) to behave as a first-order moving average process as the ACF
has only a significant peak at lag one and the PACF decreases exponentially.
Using Table 3.1, this sample behavior fits that of the MA(1) very well.

The results of eleven iterations of the Gauss—Newton procedure, (3.130),
starting with 6y = —.10 are given in Table 3.2. The final estimate is

= 11y = —.773; interim values and the corresponding value of the condi-
tional sum of squares, S.(f) given in (3.121), are also displayed in the table.
The final estimate of the error variance is 52, = 148.98/632 = .236 with
632 degrees of freedom (one is lost in differencing). The value of the sum
of the squared derivatives at convergence is Y., | z7(6(11)) = 369.73, and

consequently, the estimated standard error of 9 is \/-236/369.73 = .025;7
this leads to a t-value of —.773/.025 = —30.92 with 632 degrees of freedom.

Figure 3.8 displays the conditional sum of squares, S.(f) as a function
of 0, as well as indicating the values of each step of the Gauss—Newton
algorithm. Note that the Gauss—Newton procedure takes large steps toward
the minimum initially, and then takes very small steps as it gets close to
the minimizing value. When there is only one parameter, as in this case, it
would be easy to evaluate S.(f) on a grid of points, and then choose the
appropriate value of 6 from the grid search. It would be difficult, however,
to perform grid searches when there are many parameters.

" To estimate the standard error, we are using the standard regression results from
(2.9) as an approximation
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Table 3.2. Gauss—Newton Results for Example 3.32

J 0) Se(b;)) Sz (0))
0 ~0.100 195.0010 183.3464
1 ~0.250 177.7614 163.3038
2 ~0.400 165.0027 161.6279
3 —0.550 155.6723 182.6432
4 —0.684 150.2896 247.4942
5 —0.736 149.2283 304.3125
6 —0.757 149.0272 337.9200
7 —0.766 148.9885 355.0465
8 —0.770 148.9812 363.2813
9 —0.771 148.9804 365.4045
10 —0.772 148.9799 367.5544
11 —0.773 148.9799 369.7314

In the general case of causal and invertible ARMA(p,¢q) models, maxi-
mum likelihood estimation and conditional and unconditional least squares
estimation (and Yule—Walker estimation in the case of AR models) all lead to
optimal estimators. The proof of this general result can be found in a num-
ber of texts on theoretical time series analysis (for example, Brockwell and
Davis, 1991, or Hannan, 1970, to mention a few). We will denote the ARMA
coefficient parameters by 8 = (¢1,...,¢p,01,...,0,)".

Property 3.10 Large Sample Distribution of the Estimators

Under appropriate conditions, for causal and invertible ARMA processes,
the maximum likelihood, the unconditional least squares, and the conditional
least squares estimators, each initialized by the method of moments estimator,
all provide optimal estimators of o2, and B, in the sense that G2, is consistent,
and the asymptotic distribution of/z}\ 18 the best asymptotic normal distribution.
In particular, as n — oo,

vn (g, ﬂ) 4 N(0,02 T, L) (3.131)

The asymptotic variance—covariance matrix of the estimator E is the inverse
of the information matriz. In particular, the (p+q) X (p+q) matriz I, 4, has

the form
Ly = (F¢¢ FW) : (3.132)

The p x p matriz Iy is given by (8.100), that is, the ij-th element of I'yy, for
i,7=1,...,p, 18 v:(i—7) from an AR(p) process, ¢(B)xs = w. Similarly, Tyy
is a q¢ X ¢ matriz with the ij-th element, fori,j =1,...,q, equal to v, (i — j)
from an AR(q) process, 0(B)y; = wy. The p x g matric I'gg = {Vay(i — j)},
fori=1,...,p; 7=1,...,q; that is, the ij-th element is the cross-covariance
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between the two AR processes given by ¢(B)x; = wy and 0(B)y, = wy. Finally,
Iys =T}y is g X p.

Further discussion of Property 3.10, including a proof for the case of least
squares estimators for AR(p) processes, can be found in Appendix B, §B.3.

Example 3.33 Some Specific Asymptotic Distributions

The following are some specific cases of Property 3.10.
AR(1): 1(0) = 02 /(1 - ¢?), s0 03I = (1 — ¢2). Thus,

¢ ~ AN [p,n (1 - ¢?)] . (3.133)

AR(2): The reader can verify that

B 1—¢2 0'721)
7(0) = (1+¢2> (1—¢2)? — ¢7

and v, (1) = ¢172(0) + @27, (1). From these facts, we can compute FQ_,Ol. In
particular, we have

AN 61\ 1 (1-63 —¢1(1+ )
(B[ () o

MA(1): In this case, write 0(B)y; = wy, or y;+0y;—1 = w;. Then, analogous
to the AR(1) case, 7,(0) = 02 /(1 — 6?), so Ufuf(ﬁl = (1 - 6?). Thus,

~ AN [0, (1 —6%)]. (3.135)

MA(2): Write y 4+ 601y:—1 + 6291 —2 = wy, so , analogous to the AR(2) case,

we have
51 01 1 (1 —0% 91(1+92)
<§2> ~ AN {(02> ,n ( sym 1— 62 . (3.136)

ARMA(1,1): To calculate I'yg, we must find 7,,,(0), where x,—¢xi—1 = w,
and y; + 0y,—1 = w,. We have

%y(o) = cov(xt,yt) = COV(¢9€t—1 +wy, —0y—1 + wt)
= —07,,(0) + Ufu.

Solving, we find, ., (0) = 02 /(1 + ¢0). Thus,

(g) AN (Z) - [(1 —Sydi)’l ((1141‘55’))_11}_1] . (3137)
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Example 3.34 Overfitting Caveat

The asymptotic behavior of the parameter estimators gives us an additional
insight into the problem of fitting ARMA models to data. For example,
suppose a time series follows an AR(1) process and we decide to fit an
AR(2) to the data. Do any problems occur in doing this? More generally,
why not simply fit large-order AR models to make sure that we capture
the dynamics of the process? After all, if the process is truly an AR(1), the
other autoregressive parameters will not be significant. The answer is that
if we overfit, we obtain less efficient, or less precise parameter estimates.
For example, if we fit an AR(1) to an AR(1) process, for large n, var(¢;) ~
n~1(1 — ¢?). But, if we fit an AR(2) to the AR(1) process, for large n,
var(¢y) ~n= (1 — ¢2) = n~! because ¢3 = 0. Thus, the variance of ¢; has
been inflated, making the estimator less precise.

We do want to mention, however, that overfitting can be used as a di-
agnostic tool. For example, if we fit an AR(2) model to the data and are
satisfied with that model, then adding one more parameter and fitting an
AR(3) should lead to approximately the same model as in the AR(2) fit. We
will discuss model diagnostics in more detail in §3.8.

The reader might wonder, for example, why the asymptotic distributions
of ¢ from an AR(1) and 0 from an MA(1) are of the same form; compare
(3.133) to (3.135). It is possible to explain this unexpected result heuristically
using the intuition of linear regression. That is, for the normal regression
model presented in §2.2 with no intercept term, z; = 8z; + w;, we know [ is
normally distributed with mean 8, and from (2.9),

var {\/ﬁ (E— ﬁ)} = no?, <§; zf) =02 (n_l izf) .

For the causal AR(1) model given by z; = ¢xy—1 + wy, the intuition of
regression tells us to expect that, for n large,

Vi (6-9)
is approximately normal with mean zero and with variance given by
" -1
2 [, -1 2
fop (n th_1> .
t=2
Now, n=! >°1" , 2? ;| is the sample variance (recall that the mean of z; is zero)

of the x4, so as n becomes large we would expect it to approach var(z;) =
7(0) = 02 /(1 — ¢?). Thus, the large sample variance of \/n (5— (;5) is

o0 =t (125) =)
w T w1-—¢2 ’
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that is, (3.133) holds.

In the case of an MA(1), we may use the discussion of Example 3.31 to
write an approximate regression model for the MA(1). That is, consider the
approximation (3.129) as the regression model

Zt(é\) = —92,5_1(0) + Wt—1,
where now, z;_1 (5) as defined in Example 3.31, plays the role of the regressor.
Continuing with the analogy, we would expect the asymptotic distribution of

vn (5 — 9) to be normal, with mean zero, and approximate variance

n —1
o2 (n_l szl(§)> .
t=2

As in the AR(1) case, n=t 37, 22 |(6) is the sample variance of the z(6)
so, for large n, this should be var{z;(#)} = 7.(0), say. But note, as seen from
(3.129), 2;(0) is approximately an AR(1) process with parameter —f. Thus,

o2 -t
PO =l (=) =),

which agrees with (3.135). Finally, the asymptotic distributions of the AR
parameter estimates and the MA parameter estimates are of the same form
because in the MA case, the “regressors” are the differential processes z; ()
that have AR structure, and it is this structure that determines the asymptotic
variance of the estimators. For a rigorous account of this approach for the
general case, see Fuller (1996, Theorem 5.5.4).

In Example 3.32, the estimated standard error of 0 was .025. In that ex-
ample, we used regression results to estimate the standard error as the square

root of
1~2 ( 1i 2(/\)>_1 .
n- Ew n- Zt 0 = %7
t=1 D1 27 (0)
where n = 632, 52 = .236, > |-, zf(é\) = 369.73 and § = —.773. Using (3.135),
we could have also calculated this value using the asymptotic approximation,
the square root of (1 — (—.773)?)/632, which is also .025.

If n is small, or if the parameters are close to the boundaries, the asymp-
totic approximations can be quite poor. The bootstrap can be helpful in this
case; for a broad treatment of the bootstrap, see Efron and Tibshirani (1994).
We discuss the case of an AR(1) here and leave the general discussion for
Chapter 6. For now, we give a simple example of the bootstrap for an AR(1)
process.
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Fig. 3.9. One hundred observations generated from the model in Example 3.35.

Example 3.35 Bootstrapping an AR(1)
We consider an AR(1) model with a regression coefficient near the bound-
ary of causality and an error process that is symmetric but not normal.
Specifically, consider the causal model

20 = p+ (wems — )+, (3.138)

where p = 50, ¢ = .95, and w; are iid double exponential with location zero,
and scale parameter 8 = 2. The density of wy is given by

flw) = %exp{—\uﬂ/ﬂ} —oo<w < 0.

In this example, E(w;) = 0 and var(w;) = 2% = 8. Figure 3.9 shows
n = 100 simulated observations from this process. This particular realization
is interesting; the data look like they were generated from a nonstationary
process with three different mean levels. In fact, the data were generated
from a well-behaved, albeit non-normal, stationary and causal model. To
show the advantages of the bootstrap, we will act as if we do not know the
actual error distribution and we will proceed as if it were normal; of course,
this means, for example, that the normal based MLE of ¢ will not be the
actual MLE because the data are not normal.

Using the data shown in Figure 3.9, we obtained the Yule-Walker esti-
mates i = 40.05, ¢ = .96, and s2, = 15.30, where s2 is the estimate of

var(w). Based on Property 3.10, we would say that ¢ is approximately
normal with mean ¢ (which we supposedly do not know) and variance
(1 — ¢?)/100, which we would approximate by (1 — .962)/100 = .032.
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Fig. 3.10. Finite sample density of the Yule-Walker estimate of ¢ in Example 3.35.

To assess the finite sample distribution of QAS when n = 100, we simulated
1000 realizations of this AR(1) process and estimated the parameters via
Yule-~Walker. The finite sampling density of the Yule—Walker estimate of ¢,
based on the 1000 repeated simulations, is shown in Figure 3.10. Clearly
the sampling distribution is not close to normality for this sample size.
The mean of the distribution shown in Figure 3.10 is .89, and the variance
of the distribution is .052%; these values are considerably different than the
asymptotic values. Some of the quantiles of the finite sample distribution
are .79 (5%), .86 (25%), .90 (50%), .93 (75%), and .95 (95%). The R code
to perform the simulation and plot the histogram is as follows:
set.seed(111)
phi.yw = rep(NA, 1000)
for (i in 1:1000){

e = rexp(150, rate=.5); u = runif(150,-1,1); de = e*sign(u)

x = 50 + arima.sim(n=100,list(ar=.95), innov=de, n.start=50)

phi.yw[i] = ar.yw(x, order=1)$ar }
hist(phi.yw, prob=TRUE, main="")
lines(density(phi.yw, bw=.015))

Before discussing the bootstrap, we first investigate the sample innovation
process, x; —x' !, with corresponding variances P{~'. For the AR(1) model
in this example,

o N e oA W N e

$§71 :M+¢(‘(L.t71 —/,L), t:2,...7100-

From this, it follows that
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P = Bz, — 2712 =02 t=2,...,100.

w?

When ¢t = 1, we have
o} =p and PP =0y,/(1-¢%).

Thus, the innovations have zero mean but different variances; in order that
all of the innovations have the same variance, 02, we will write them as

e1 = (z1 — p)V/(1 - ¢?)
e = (v — ) — p(xp—1 — p), for ¢t=2,...,100. (3.139)

From these equations, we can write the model in terms of the ¢; as

1= p+e/y/(1—¢?)

rp=p+d(w—1 —p)+¢ for t=2,...,100. (3.140)

Next, replace the parameters with their estimates in (3.139), that is,
i = 40.048 and :5 = .957, and denote the resulting sample innovations
as {€1,...,€100}. To obtain one bootstrap sample, first randomly sample,
with replacement, n = 100 values from the set of sample innovations; call
the sampled values {e7,..., €5y }. Now, generate a bootstrapped data set
sequentially by setting

wF = 40.048 4+ ¢ //(1 = .9572)

zF =40.048 + .957(xF_ | — 40.048) + €5, t=2,...,n. (3.141)

Next, estimate the parameters as if the data were zy. Call these esti-
mates [1(1), (5(1), and s2(1). Repeat this process a large number, B,
of times, generating a collection of bootstrapped parameter estimates,
{7i(b), 4(b), s2,(b),b=1,..., B}. We can then approximate the finite sample
distribution of an estimator from the bootstrapped parameter values. For
example, we can approximate the distribution of ¢ — ¢ by the empirical
distribution of ¢(b) — ¢, for b=1,..., B.

Figure 3.11 shows the bootstrap histogram of 200 bootstrapped estimates
of ¢ using the data shown in Figure 3.9. In addition, Figure 3.11 shows a
density estimate based on the bootstrap histogram, as well as the asymp-
totic normal density that would have been used based on Proposition 3.10.
Clearly, the bootstrap distribution of ¢ is closer to the distribution of ¢
shown in Figure 3.10 than to the asymptotic normal approximation. In par-
ticular, the mean of the distribution of ¢(b) is .92 with a variance of .052.
Some quantiles of this distribution are .83 (5%), .90 (25%), .93 (50%), .95
(75%), and .98 (95%).

To perform a similar bootstrap exercise in R, use the following commands.
We note that the R estimation procedure is conditional on the first obser-
vation, so the first residual is not returned. To get around this problem,
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Fig. 3.11. Bootstrap histogram of gg based on 200 bootstraps; a density estimate
based on the histogram (solid line) and the corresponding asymptotic normal density
(dashed line).

we simply fix the first observation and bootstrap the remaining data. The

simulated data are available in the file ariboot, but you can simulate your

own data as was done in the code that produced Figure 3.10.

x = arlboot

2m = mean(x) # estimate of mu

fit = ar.yw(x, order=1)

4+ phi = fit$ar # estimate of phi

nboot = 200 # number of bootstrap replicates

resids = fit$resid[-1] # the first resid is NA

7 X.star = x # initialize x*

s phi.star.yw = rep(NA, nboot)

o for (i in 1:nboot) {

10 resid.star = sample(resids, replace=TRUE)

11 for (t in 1:99){ x.star[t+1] = m + phi*(x.star[t]-m) +
resid.star[t] }

12 phi.star.yw[i] = ar.yw(x.star, order=1)$ar }

3 hist(phi.star.yw, 10, main="", prob=TRUE, ylim=c(0,14),
xlim=c(.75,1.05))

14 lines(density(phi.star.yw, bw=.02))

15 u = seq(.75, 1.05, by=.001)

16 lines(u, dnorm(u, mean=.96, sd=.03), lty="dashed", lwd=2)

-

w

o

o
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3.7 Integrated Models for Nonstationary Data

In Chapters 1 and 2, we saw that if z; is a random walk, x; = x;_1 + wy,
then by differencing x;, we find that Vz; = w; is stationary. In many situa-
tions, time series can be thought of as being composed of two components, a
nonstationary trend component and a zero-mean stationary component. For
example, in §2.2 we considered the model

Ty = Wt + Y, (3142)

where py = By + f1t and y; is stationary. Differencing such a process will lead
to a stationary process:

Vay =x4 —x4-1 = B1 +ys — ye—1 = B1 + V.

Another model that leads to first differencing is the case in which 4, in (3.142)
is stochastic and slowly varying according to a random walk. That is,

e = pe—1 + vy
where v; is stationary. In this case,
Vsct = v + Vyt,

is stationary. If p; in (3.142) is a k-th order polynomial, pu; = Z?:o Bt
then (Problem 3.27) the differenced series V¥y; is stationary. Stochastic trend
models can also lead to higher order differencing. For example, suppose

M = pe—1+v and vy =wvi1 + ey,
where e; is stationary. Then, Vz; = v + Vy; is not stationary, but
Vir, = e + szt

is stationary.
The integrated ARMA, or ARIMA, model is a broadening of the class of
ARMA models to include differencing.

Definition 3.11 A process x; is said to be ARIMA(p,d,q) if
Vi, = (1 - B)%a,
is ARMA(p,q). In general, we will write the model as
#(B)(1 — B)4z, = 0(B)w;. (3.143)
If BE(Viz,) = u, we write the model as
¢(B)(1 — B)'z; = 6 + 0(B)w,

where 6 = p(1 — 1 — -+ — @yp).



142 3 ARIMA Models

Because of the nonstationarity, care must be taken when deriving forecasts.
For the sake of completeness, we discuss this issue briefly here, but we stress
the fact that both the theoretical and computational aspects of the problem
are best handled via state-space models. We discuss the theoretical details in
Chapter 6. For information on the state-space based computational aspects
in R, see the ARIMA help files (7arima and ?predict.Arima); our scripts
sarima and sarima.for are basically front ends for these R scripts.

It should be clear that, since 7, = V%, is ARMA, we can use §3.5 methods
to obtain forecasts of y;, which in turn lead to forecasts for x;. For example, if
d = 1, given forecasts y,; ,,,, form =1,2,..., wehave y,,, =
so that

n —an
n—+m n+m—1»

xz+m = yz+m + $Z+m71
with initial condition x|, =y, 1 + 2, (noting z, = ).
It is a little more difficult to obtain the prediction errors P}, ., but for
large n, the approximation used in §3.5, equation (3.86), works well. That is,

the mean-squared prediction error can be approximated by

-1

P2 (3.144)

7

3

n _ 2
Pn+m_0w

<.
I
o

where % is the coefficient of 2/ in ¢*(2) = 0(2)/p(2)(1 — 2)*.
To better understand integrated models, we examine the properties of
some simple cases; Problem 3.29 covers the ARIMA(1,1,0) case.

Example 3.36 Random Walk with Drift

To fix ideas, we begin by considering the random walk with drift model first
presented in Example 1.11, that is,

Ty =0+ Ti—1 + wy,

for t = 1,2,..., and xg = 0. Technically, the model is not ARIMA, but we
could include it trivially as an ARIMA(0, 1,0) model. Given data x1, ..., z,,
the one-step-ahead forecast is given by

Ty = E(r,4 ‘ Tpyoooy 1) = B(0+ T + Wy ’xn,...,xl)zé—i—xn.

The two-step-ahead forecast is given by 7, o = § + :cn_H = 26 + 2y, and

consequently, the m-step-ahead forecast, for m =1,2,..., is
Ty = MO+ T, (3.145)

To obtain the forecast errors, it is convenient to recall equation (1.4), i.e.,
Ty =m0+ Z;‘L=1 wj, in which case we may write

n+m n+m
xn+m:(n+m)5+2w]—:m5+xn+ Z w;.
j=1 j=n+1
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From this it follows that the m-step-ahead prediction error is given by

n+m 2

P = E(Tnim — x2+m)2 = E( Z w]) =mo?. (3.146)
Jj=n+1

Hence, unlike the stationary case (see Example 3.22), as the forecast hori-
zon grows, the prediction errors, (3.146), increase without bound and the
forecasts follow a straight line with slope J emanating from z,,. We note
that (3.144) is exact in this case because ¢*(2) = 1/(1 — 2) = 3372 2/ for
|z| <1, so that ¢} =1 for all j.

The w; are Gaussian, so estimation is straightforward because the dif-
ferenced data, say y; = Vx,, are independent and identically distributed
normal variates with mean § and variance o2. Consequently, optimal esti-
mates of § and o2 are the sample mean and variance of the y;, respectively.

Example 3.37 IMA(1,1) and EWMA

The ARIMA(0,1,1), or IMA(1,1) model is of interest because many economic
time series can be successfully modeled this way. In addition, the model leads
to a frequently used, and abused, forecasting method called exponentially
weighted moving averages (EWMA). We will write the model as

Tt = Tp_1 + W — )\wt,h (3147)

with |A| < 1, for t = 1,2,..., and xy = 0, because this model formulation
is easier to work with here, and it leads to the standard representation for
EWMA. We could have included a drift term in (3.147), as was done in
the previous example, but for the sake of simplicity, we leave it out of the
discussion. If we write
Yt = wp — Awp_1,

we may write (3.147) as x; = x¢—1 +y:. Because || < 1, y; has an invertible
representation, y; = Zj‘;l )\jyt_j + wy, and substituting y; = xy — x4_1, we

may write
o0

ze= (L= MN "'z +w,. (3.148)
Jj=1
as an approximation for large ¢ (put z; = 0 for ¢ < 0). Verification of (3.148)
is left to the reader (Problem 3.28). Using the approximation (3.148), we
have that the approximate one-step-ahead predictor, using the notation of
§3.5, is
Fp1 =3 (L= AN 1z
j=1

=(1=Nan +A) (1= NN 2,
j=1
= (1= N2y + Ay (3.149)
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From (3.149), we see that the new forecast is a linear combination of the
old forecast and the new observation. Based on (3.149) and the fact that we
only observe x1, ..., x,, and consequently y1, ..., y, (because y; = x;—x¢_1;
29 = 0), the truncated forecasts are

in =1 —= Nz, + A5, n>1, (3.150)

with 29 = 2; as an initial value. The mean-square prediction error can be

approximated using (3.144) by noting that ¢*(z) = (1 — Az)/(1 — 2) =

1+(1=XN) Zjoil 27 for |z] < 1; consequently, for large n, (3.144) leads to
PTL

n+m

~ o2 [1+ (m—1)(1—N\)?.

In EWMA, the parameter 1 — X\ is often called the smoothing parameter
and is restricted to be between zero and one. Larger values of A lead to
smoother forecasts. This method of forecasting is popular because it is easy
to use; we need only retain the previous forecast value and the current
observation to forecast the next time period. Unfortunately, as previously
suggested, the method is often abused because some forecasters do not verify
that the observations follow an IMA(1, 1) process, and often arbitrarily pick
values of A. In the following, we show how to generate 100 observations from
an IMA(1,1) model with A = —f = .8 and then calculate and display the
fitted EWMA superimposed on the data. This is accomplished using the
Holt-Winters command in R (see the help file 7HoltWinters for details; no
output is shown):

1 set.seed(666)
2 x = arima.sim(list(order = c(0,1,1), ma = -0.8), n = 100)
3 (x.ima = HoltWinters(x, beta=FALSE, gamma=FALSE)) # « below is 1— A\

Smoothing parameter: alpha: 0.1663072

1 plot(x.ima)

3.8 Building ARIMA Models

There are a few basic steps to fitting ARIMA models to time series data.
These steps involve plotting the data, possibly transforming the data, identi-
fying the dependence orders of the model, parameter estimation, diagnostics,
and model choice. First, as with any data analysis, we should construct a
time plot of the data, and inspect the graph for any anomalies. If, for ex-
ample, the variability in the data grows with time, it will be necessary to
transform the data to stabilize the variance. In such cases, the Box—Cox class
of power transformations, equation (2.37), could be employed. Also, the par-
ticular application might suggest an appropriate transformation. For example,
suppose a process evolves as a fairly small and stable percent-change, such as
an investment. For example, we might have

= (14 pe)wi_a,
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where x; is the value of the investment at time ¢ and p; is the percentage-
change from period ¢t — 1 to ¢, which may be negative. Taking logs we have

log(x¢) = log(1 + p;) + log(z—1),

or
Vlog() = log(1 + p).

If the percent change p; stays relatively small in magnitude, then log(1+p;) ~
& and, thus,
Vlog(xy) =~ py,

will be a relatively stable process. Frequently, Vlog(z;) is called the return
or growth rate. This general idea was used in Example 3.32, and we will use
it again in Example 3.38.

After suitably transforming the data, the next step is to identify prelim-
inary values of the autoregressive order, p, the order of differencing, d, and
the moving average order, q. We have already addressed, in part, the problem
of selecting d. A time plot of the data will typically suggest whether any dif-
ferencing is needed. If differencing is called for, then difference the data once,
d =1, and inspect the time plot of Vx,. If additional differencing is necessary,
then try differencing again and inspect a time plot of V2z;. Be careful not
to overdifference because this may introduce dependence where none exists.
For example, x; = w; is serially uncorrelated, but Vay = wy —wy—q is MA(1).
In addition to time plots, the sample ACF can help in indicating whether
differencing is needed. Because the polynomial ¢(2)(1 — 2)¢ has a unit root,
the sample ACF, p(h), will not decay to zero fast as h increases. Thus, a slow
decay in p(h) is an indication that differencing may be needed.

When preliminary values of d have been settled, the next step is to look at
the sample ACF and PACF of V?x, for whatever values of d have been chosen.
Using Table 3.1 as a guide, preliminary values of p and ¢ are chosen. Recall
that, if p = 0 and ¢ > 0, the ACF cuts off after lag ¢, and the PACF tails off.
If ¢ = 0 and p > 0, the PACF cuts off after lag p, and the ACF tails off. If
p > 0and ¢ > 0, both the ACF and PACF will tail off. Because we are dealing
with estimates, it will not always be clear whether the sample ACF or PACF
is tailing off or cutting off. Also, two models that are seemingly different can
actually be very similar. With this in mind, we should not worry about being
so precise at this stage of the model fitting. At this stage, a few preliminary
values of p, d, and ¢ should be at hand, and we can start estimating the
parameters.

Example 3.38 Analysis of GNP Data
In this example, we consider the analysis of quarterly U.S. GNP from
1947(1) to 2002(3), n = 223 observations. The data are real U.S. gross

8 log(l+p) =p— % + % — - for =1 < p < 1. If p is a small percent-change, then
the higher-order terms in the expansion are negligible.
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Fig. 3.12. Quarterly U.S. GNP from 1947(1) to 2002(3).
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Fig. 3.13. Sample ACF of the GNP data. Lag is in terms of years.

national product in billions of chained 1996 dollars and have been season-
ally adjusted. The data were obtained from the Federal Reserve Bank of
St. Louis (http://research.stlouisfed.org/). Figure 3.12 shows a plot
of the data, say, y;. Because strong trend hides any other effect, it is not
clear from Figure 3.12 that the variance is increasing with time. For the
purpose of demonstration, the sample ACF of the data is displayed in Fig-
ure 3.13. Figure 3.14 shows the first difference of the data, Vy;, and now
that the trend has been removed we are able to notice that the variability in
the second half of the data is larger than in the first half of the data. Also,
it appears as though a trend is still present after differencing. The growth
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Fig. 3.14. First difference of the U.S. GNP data.
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Fig. 3.15. U.S. GNP quarterly growth rate.

rate, say, x; = Vlog(y:), is plotted in Figure 3.15, and, appears to be a sta-
ble process. Moreover, we may interpret the values of x; as the percentage
quarterly growth of U.S. GNP.

The sample ACF and PACF of the quarterly growth rate are plotted in
Figure 3.16. Inspecting the sample ACF and PACF, we might feel that the
ACF is cutting off at lag 2 and the PACF is tailing off. This would suggest
the GNP growth rate follows an MA(2) process, or log GNP follows an
ARIMA(0, 1,2) model. Rather than focus on one model, we will also suggest
that it appears that the ACF is tailing off and the PACF is cutting off at
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Fig. 3.16. Sample ACF and PACF of the GNP quarterly growth rate. Lag is in
terms of years.

lag 1. This suggests an AR(1) model for the growth rate, or ARIMA(1,1,0)
for log GNP. As a preliminary analysis, we will fit both models.

Using MLE to fit the MA(2) model for the growth rate, z;, the estimated
model is

Ty = .008(_001) + '303(.065)'&}}71 + '204(.064)'&315*2 + @t, (3151)

where 7, = .0094 is based on 219 degrees of freedom. The values in paren-
theses are the corresponding estimated standard errors. All of the regression
coeflicients are significant, including the constant. We make a special note of
this because, as a default, some computer packages do not fit a constant in
a differenced model. That is, these packages assume, by default, that there
is no drift. In this example, not including a constant leads to the wrong
conclusions about the nature of the U.S. economy. Not including a constant
assumes the average quarterly growth rate is zero, whereas the U.S. GNP
average quarterly growth rate is about 1% (which can be seen easily in Fig-
ure 3.15). We leave it to the reader to investigate what happens when the
constant is not included.
The estimated AR(1) model is

Tt = .008('001) (1 — 347) + '347(.063)5Et71 + ﬁ)ﬁ (3152)

where 7, = .0095 on 220 degrees of freedom; note that the constant in
(3.152) is .008 (1 — .347) = .005.

We will discuss diagnostics next, but assuming both of these models fit
well, how are we to reconcile the apparent differences of the estimated models
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(3.151) and (3.152)? In fact, the fitted models are nearly the same. To show
this, consider an AR(1) model of the form in (3.152) without a constant
term; that is,

Ty = 35741 + wy,

and write it in its causal form, z; = >27° ) 1hjw;—j, where we recall ¢; = .357.
Thus, o = 1,41 = 350, — 123,105 — 043, by = 015, 5 — 005, g —
.002,v7 = .001, g = 0,19 = 0,119 = 0, and so forth. Thus,

Ty A 35w + 12w _o + wy,

which is similar to the fitted MA(2) model in (3.152).
The analysis can be performed in R as follows.

plot (gnp)

acf2(gnp, 50)

gnpgr = diff(log(gnp)) # growth rate

plot(gnpgr)

acf2(gnpgr, 24)

sarima(gnpgr, 1, 0, 0) # AR(1)

sarima(gnpgr, 0, 0, 2) # MA(2)

ARMAtoMA (ar=.35, ma=0, 10) # prints psi-weights

0w N e oA W N e

The next step in model fitting is diagnostics. This investigation includes
the analysis of the residuals as well as model comparisons. Again, the first
step involves a time plot of the innovations (or residuals), z; — fc\ifl, or of the
standardized innovations

e = (x, — 27 ) VP, (3.153)
t—1

where Z; " is the one-step-ahead prediction of a; based on the fitted model and
IStt ~1 is the estimated one-step-ahead error variance. If the model fits well, the
standardized residuals should behave as an iid sequence with mean zero and
variance one. The time plot should be inspected for any obvious departures
from this assumption. Unless the time series is Gaussian, it is not enough that
the residuals are uncorrelated. For example, it is possible in the non-Gaussian
case to have an uncorrelated process for which values contiguous in time are
highly dependent. As an example, we mention the family of GARCH models
that are discussed in Chapter 5.

Investigation of marginal normality can be accomplished visually by look-
ing at a histogram of the residuals. In addition to this, a normal probability
plot or a Q-Q plot can help in identifying departures from normality. See
Johnson and Wichern (1992, Chapter 4) for details of this test as well as
additional tests for multivariate normality.

There are several tests of randomness, for example the runs test, that could
be applied to the residuals. We could also inspect the sample autocorrelations
of the residuals, say, p.(h), for any patterns or large values. Recall that, for a
white noise sequence, the sample autocorrelations are approximately indepen-
dently and normally distributed with zero means and variances 1/n. Hence, a
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good check on the correlation structure of the residuals is to plot p.(h) versus
h along with the error bounds of +2/y/n. The residuals from a model fit,
however, will not quite have the properties of a white noise sequence and the
variance of p.(h) can be much less than 1/n. Details can be found in Box and
Pierce (1970) and McLeod (1978). This part of the diagnostics can be viewed
as a visual inspection of p.(h) with the main concern being the detection of
obvious departures from the independence assumption.

In addition to plotting p.(h), we can perform a general test that takes into
consideration the magnitudes of p.(h) as a group. For example, it may be the
case that, individually, each p.(h) is small in magnitude, say, each one is just
slightly less that 2/4/n in magnitude, but, collectively, the values are large.
The Ljung—Box—Pierce Q-statistic given by

H  ~
pe(h)

Q—n(n+2)hZ:1 — (3.154)
can be used to perform such a test. The value H in (3.154) is chosen somewhat
arbitrarily, typically, H = 20. Under the null hypothesis of model adequacy,
asymptotically (n — o0), Q ~ X%prq. Thus, we would reject the null hy-
pothesis at level « if the value of @) exceeds the (1 — «)-quantile of the X%FIF q
distribution. Details can be found in Box and Pierce (1970), Ljung and Box
(1978), and Davies et al. (1977). The basic idea is that if w; is white noise,
then by Property 1.1, np2 (h), for h = 1,..., H, are asymptotically indepen-
dent x? random variables. This means that n 31—, 52 (h) is approximately a
X% random variable. Because the test involves the ACF of residuals from a
model fit, there is a loss of p+ ¢ degrees of freedom; the other values in (3.154)
are used to adjust the statistic to better match the asymptotic chi-squared
distribution.

Example 3.39 Diagnostics for GNP Growth Rate Example

We will focus on the MA(2) fit from Example 3.38; the analysis of the AR(1)
residuals is similar. Figure 3.17 displays a plot of the standardized residuals,
the ACF of the residuals, a boxplot of the standardized residuals, and the
p-values associated with the Q-statistic, (3.154), at lags H = 3 through
H = 20 (with corresponding degrees of freedom H — 2).

Inspection of the time plot of the standardized residuals in Figure 3.17
shows no obvious patterns. Notice that there are outliers, however, with
a few values exceeding 3 standard deviations in magnitude. The ACF of
the standardized residuals shows no apparent departure from the model
assumptions, and the Q-statistic is never significant at the lags shown. The
normal Q-Q plot of the residuals shows departure from normality at the
tails due to the outliers that occurred primarily in the 1950s and the early
1980s.

The model appears to fit well except for the fact that a distribution with
heavier tails than the normal distribution should be employed. We discuss
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Fig. 3.17. Diagnostics of the residuals from MA(2) fit on GNP growth rate.

some possibilities in Chapters 5 and 6. The diagnostics shown in Figure 3.17
are a by-product of the sarima command from the previous example.’

Example 3.40 Diagnostics for the Glacial Varve Series
In Example 3.32, we fit an ARIMA(0,1,1) model to the logarithms of the
glacial varve data and there appears to be a small amount of autocorrelation
left in the residuals and the Q-tests are all significant; see Figure 3.18.
To adjust for this problem, we fit an ARIMA(1,1,1) to the logged varve
data and obtained the estimates
¢ = .23(05), 0 = —.89.03), O

w

=.23.

Hence the AR term is significant. The Q-statistic p-values for this model are

also displayed in Figure 3.18, and it appears this model fits the data well.
As previously stated, the diagnostics are byproducts of the individual

sarima runs. We note that we did not fit a constant in either model because

9 The script tsdiag is available in R to run diagnostics for an ARIMA object,
however, the script has errors and we do not recommend using it.
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Fig. 3.18. Q-statistic p-values for the ARIMA(0,1,1) fit [top] and the
ARIMA(1,1,1) fit [bottom] to the logged varve data.

there is no apparent drift in the differenced, logged varve series. This fact
can be verified by noting the constant is not significant when the command
no.constant=TRUE is removed in the code:

sarima(log(varve), 0, 1, 1, no.constant=TRUE) # ARIMA(0,1,1)
sarima(log(varve), 1, 1, 1, no.constant=TRUE) # ARIMA(1,1,1)

-

M

In Example 3.38, we have two competing models, an AR(1) and an MA(2)
on the GNP growth rate, that each appear to fit the data well. In addition,
we might also consider that an AR(2) or an MA(3) might do better for fore-
casting. Perhaps combining both models, that is, fitting an ARMA(1,2) to
the GNP growth rate, would be the best. As previously mentioned, we have
to be concerned with overfitting the model; it is not always the case that
more is better. Overfitting leads to less-precise estimators, and adding more
parameters may fit the data better but may also lead to bad forecasts. This
result is illustrated in the following example.

Example 3.41 A Problem with Overfitting
Figure 3.19 shows the U.S. population by official census, every ten years
from 1910 to 1990, as points. If we use these nine observations to predict
the future population, we can use an eight-degree polynomial so the fit to
the nine observations is perfect. The model in this case is

zy = Bo + Pt + Bot® + -+ + Bst® + wy.

The fitted line, which is plotted in the figure, passes through the nine ob-
servations. The model predicts that the population of the United States will
be close to zero in the year 2000, and will cross zero sometime in the year
2002!
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Fig. 3.19. A perfect fit and a terrible forecast.

The final step of model fitting is model choice or model selection. That is,
we must decide which model we will retain for forecasting. The most popular
techniques, AIC, AICc, and BIC, were described in §2.2 in the context of
regression models.

Example 3.42 Model Choice for the U.S. GNP Series

Returning to the analysis of the U.S. GNP data presented in Examples 3.38
and 3.39, recall that two models, an AR(1) and an MA(2), fit the GNP
growth rate well. To choose the final model, we compare the AIC, the AICc,
and the BIC for both models. These values are a byproduct of the sarima
runs displayed at the end of Example 3.38, but for convenience, we display
them again here (recall the growth rate data are in gnpgr):
sarima(gnpgr, 1, 0, 0) # AR(1)

$AIC: -8.294403 $AICc: -8.284898 $BIC: -9.263748
sarima(gnpgr, 0, 0, 2) # MA(2)

$AIC: -8.297693 $AICc: -8.287854 $BIC: -9.251711

The AIC and AICc both prefer the MA(2) fit, whereas the BIC prefers the
simpler AR(1) model. It is often the case that the BIC will select a model
of smaller order than the AIC or AICc. It would not be unreasonable in this
case to retain the AR(1) because pure autoregressive models are easier to
work with.

[

¥
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3.9 Multiplicative Seasonal ARIMA Models

In this section, we introduce several modifications made to the ARIMA model
to account for seasonal and nonstationary behavior. Often, the dependence
on the past tends to occur most strongly at multiples of some underlying
seasonal lag s. For example, with monthly economic data, there is a strong
yearly component occurring at lags that are multiples of s = 12, because
of the strong connections of all activity to the calendar year. Data taken
quarterly will exhibit the yearly repetitive period at s = 4 quarters. Natural
phenomena such as temperature also have strong components corresponding
to seasons. Hence, the natural variability of many physical, biological, and
economic processes tends to match with seasonal fluctuations. Because of this,
it is appropriate to introduce autoregressive and moving average polynomials
that identify with the seasonal lags. The resulting pure seasonal autoregressive
moving average model, say, ARMA (P, Q)s, then takes the form

Dp(B%)x, = Og(B*)wy, (3.155)
with the following definition.
Definition 3.12 The operators
&p(B°)=1—&,B* —&,B* — ... — pBF* (3.156)
and
Oq(B*) =1+ 01B* + 6,B% + .- + OB (3.157)
are the seasonal autoregressive operator and the seasonal moving av-

erage operator of orders P and Q, respectively, with seasonal period s.

Analogous to the properties of nonseasonal ARMA models, the pure sea-
sonal ARMA(P, @) is causal only when the roots of @p(z°) lie outside the
unit circle, and it is invertible only when the roots of O¢(2*®) lie outside the
unit circle.

Example 3.43 A Seasonal ARMA Series
A first-order seasonal autoregressive moving average series that might run
over months could be written as

(1—®B)z; = (1+6O0B)w;

or
Ty = @l't—12 + wy + th_lg.

This model exhibits the series x; in terms of past lags at the multiple of the
yearly seasonal period s = 12 months. It is clear from the above form that
estimation and forecasting for such a process involves only straightforward
modifications of the unit lag case already treated. In particular, the causal
condition requires |@| < 1, and the invertible condition requires |©| < 1.
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Table 3.3. Behavior of the ACF and PACF for Pure SARMA Models

AR(P)s MA(Q)s ARMA(P,Q)s
ACF*  Tails off at lags ks,  Cuts off after Tails off at
k=1,2,..., lag Qs lags ks
PACF* Cuts off after ~ Tails off at lags ks Tails off at
lag Ps k=1,2,..., lags ks
*The values at nonseasonal lags h # ks, for k =1,2,..., are zero.

For the first-order seasonal (s = 12) MA model, x; = w; + Owi_12, it is
easy to verify that

(0) = (1 +6%)0”
v(£12) = B0
~v(h) =0, otherwise.

Thus, the only nonzero correlation, aside from lag zero, is
p(£12) = 0/(1+ 62).

For the first-order seasonal (s = 12) AR model, using the techniques of
the nonseasonal AR(1), we have

7(0) = 0*/(1 — &)
Y(£12k) = 2% /(1 - P*) k=1,2,...
~v(h) =0, otherwise.

In this case, the only non-zero correlations are
p(£12k) =d* k=0,1,2,... .

These results can be verified using the general result that v(h) = @v(h — 12),
for h > 1. For example, when h = 1, v(1) = &y(11), but when h = 11, we
have v(11) = &+(1), which implies that (1) = ~(11) = 0. In addition to
these results, the PACF have the analogous extensions from nonseasonal to
seasonal models.

As an initial diagnostic criterion, we can use the properties for the pure
seasonal autoregressive and moving average series listed in Table 3.3. These
properties may be considered as generalizations of the properties for nonsea-
sonal models that were presented in Table 3.1.

In general, we can combine the seasonal and nonseasonal operators into
a multiplicative seasonal autoregressive moving average model, denoted by
ARMA(p, q) x (P,Q)s, and write

p(B")$(B)r: = Og(B")0(B)wr (3.158)
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as the overall model. Although the diagnostic properties in Table 3.3 are
not strictly true for the overall mixed model, the behavior of the ACF and
PACF tends to show rough patterns of the indicated form. In fact, for mixed
models, we tend to see a mixture of the facts listed in Tables 3.1 and 3.3.
In fitting such models, focusing on the seasonal autoregressive and moving
average components first generally leads to more satisfactory results.

Example 3.44 A Mixed Seasonal Model
Consider an ARMA(0,1) x (1,0)12 model

Ty = Pxy_12 + wy + Owp_q,

where |@| < 1 and |f] < 1. Then, because z;_12, wy, and w;_1 are uncorre-
lated, and z; is stationary, y(0) = #?v(0) + o2, + 0202, or

1467

17

7(0) w
In addition, multiplying the model by z;_p, h > 0, and taking expectations,
we have (1) = &y(11) + 002, and y(h) = &y(h — 12), for h > 2. Thus, the
ACF for this model is

p(12R) =" h=1,2,...
0
120 —1) = p(12h 4+ 1) = ——d" h=0,1,2,...
p(h) =0, otherwise.

The ACF and PACF for this model, with @ = .8 and § = —.5, are shown in
Figure 3.20. These type of correlation relationships, although idealized here,
are typically seen with seasonal data.
To reproduce Figure 3.20 in R, use the following commands:
phi = c(rep(0,11),.8)
ACF = ARMAacf (ar=phi, ma=-.5, 50)[-1] # [-1] removes 0 lag
PACF = ARMAacf (ar=phi, ma=-.5, 50, pacf=TRUE)
par (mfrow=c(1,2))
plot (ACF, type="h", xlab="lag", ylim=c(-.4,.8)); abline(h=0)
plot (PACF, type="h", xlab="lag", ylim=c(-.4,.8)); abline(h=0)

[ N

Seasonal nonstationarity can occur, for example, when the process is nearly
periodic in the season. For example, with average monthly temperatures over
the years, each January would be approximately the same, each February
would be approximately the same, and so on. In this case, we might think of
average monthly temperature x; as being modeled as

Ty = Sy + wy,

where S; is a seasonal component that varies slowly from one year to the next,
according to a random walk,
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Fig. 3.20. ACF and PACF of the mixed seasonal ARMA model x; = .8x;_12 +
we — .5wt,1.

Sy = Si—12 + vy

In this model, w; and v; are uncorrelated white noise processes. The tendency
of data to follow this type of model will be exhibited in a sample ACF that is
large and decays very slowly at lags h = 12k, for k =1,2,... . If we subtract
the effect of successive years from each other, we find that

12
(1—-B)xy = a4 — Tp—12 = V¢ + W — Wi—12.

This model is a stationary MA(1);2, and its ACF will have a peak only at lag
12. In general, seasonal differencing can be indicated when the ACF decays
slowly at multiples of some season s, but is negligible between the periods.
Then, a seasonal difference of order D is defined as

VP =1 - B%)Pay, (3.159)

where D = 1,2,.. ., takes positive integer values. Typically, D = 1 is sufficient
to obtain seasonal stationarity. Incorporating these ideas into a general model
leads to the following definition.

Definition 3.13 The multiplicative seasonal autoregressive integrated
moving average model, or SARIMA model is given by

®p(B*)p(B)VPVIz, =5+ O (B*)0(B)w:, (3.160)

where w; 1s the usual Gaussian white noise process. The general model is
denoted as ARIMA (p,d,q) X (P,D,Q)s. The ordinary autoregressive and
moving average components are represented by polynomials ¢(B) and 6(B)
of orders p and q, respectively [see (3.5) and (3.18)], and the seasonal autore-
gressive and moving average components by @p(B*®) and Oq(B?®) [see (3.156)
and (3.157)] of orders P and Q and ordinary and seasonal difference compo-
nents by V¢ = (1 — B)? and VP = (1 — B*)P.
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Fig. 3.21. Values of the Monthly Federal Reserve Board Production Index and
Unemployment (1948-1978, n = 372 months).

Example 3.45 An SARIMA Model

Consider the following model, which often provides a reasonable representa-
tion for seasonal, nonstationary, economic time series. We exhibit the equa-
tions for the model, denoted by ARIMA(0,1,1) x (0,1, 1)12 in the notation
given above, where the seasonal fluctuations occur every 12 months. Then,
the model (3.160) becomes

(1-B")(1 - B)z, = (1+60B%)(1+0B)w;. (3.161)
Expanding both sides of (3.161) leads to the representation
(1-B—-B2+B%)2,=(1+0B+0B"2 +600B"%)w,
or in difference equation form
Ty = Tp_1 + Ti—12 — Ty—13 + wy + Owy_1 + Owi_19 + Ow;_13.

Note that the multiplicative nature of the model implies that the coefficient
of w;_13 is the product of the coefficients of w;_1 and w;_15 rather than a free
parameter. The multiplicative model assumption seems to work well with
many seasonal time series data sets while reducing the number of parameters
that must be estimated.

Selecting the appropriate model for a given set of data from all of those
represented by the general form (3.160) is a daunting task, and we usually
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Fig. 3.22. ACF and PACF of the production series.

think first in terms of finding difference operators that produce a roughly
stationary series and then in terms of finding a set of simple autoregressive
moving average or multiplicative seasonal ARMA to fit the resulting residual
series. Differencing operations are applied first, and then the residuals are
constructed from a series of reduced length. Next, the ACF and the PACF of
these residuals are evaluated. Peaks that appear in these functions can often
be eliminated by fitting an autoregressive or moving average component in
accordance with the general properties of Tables 3.1 and 3.2. In considering
whether the model is satisfactory, the diagnostic techniques discussed in §3.8
still apply.

Example 3.46 The Federal Reserve Board Production Index

A problem of great interest in economics involves first identifying a model
within the Box—Jenkins class for a given time series and then producing
forecasts based on the model. For example, we might consider applying
this methodology to the Federal Reserve Board Production Index shown in
Figure 3.21. For demonstration purposes only, the ACF and PACF for this
series are shown in Figure 3.22. We note that the trend in the data, the slow
decay in the ACF, and the fact that the PACF at the first lag is nearly 1,
all indicate nonstationary behavior.

Following the recommended procedure, a first difference was taken, and
the ACF and PACF of the first difference

Vl't = Xt — Tg—1
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Fig. 3.23. ACF and PACF of differenced production, (1 — B)x:.

are shown in Figure 3.23. Noting the peaks at seasonal lags, h = 1s, 2s, 3s, 4s
where s = 12 (i.e., h = 12,24, 36, 48) with relatively slow decay suggests a
seasonal difference. Figure 3.24 shows the ACF and PACF of the seasonal
difference of the differenced production, say,

Vqut = (1 — Bl2)(1 — B)(Et

First, concentrating on the seasonal (s = 12) lags, the characteristics of
the ACF and PACF of this series tend to show a strong peak at h = 1s in
the autocorrelation function, with smaller peaks appearing at h = 2s, 3s,
combined with peaks at h = 1s,2s,3s,4s in the partial autocorrelation
function. It appears that either

(i) the ACF is cutting off after lag 1s and the PACF is tailing off in the
seasonal lags,

(ii) the ACF is cutting off after lag 3s and the PACF is tailing off in the
seasonal lags, or

(iii) the ACF and PACF are both tailing off in the seasonal lags.

Using Table 3.3, this suggests either (i) an SMA of order @ = 1, (ii) an

SMA of order @ = 3, or (iii) an SARMA of orders P = 2 (because of the

two spikes in the PACF) and @ = 1.

Next, inspecting the ACF and the PACF at the within season lags, h =
1,...,11, it appears that either (a) both the ACF and PACF are tailing
off, or (b) that the PACF cuts off at lag 2. Based on Table 3.1, this result
indicates that we should either consider fitting a model (a) with both p > 0
and ¢ > 0 for the nonseasonal components, say p = 1,¢ = 1, or (b) p =
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Fig. 3.24. ACF and PACEF of first differenced and then seasonally differenced pro-
duction, (1 — B)(1 — B'?)ay.

2,q = 0. It turns out that there is little difference in the results for case (a)
and (b), but that (b) is slightly better, so we will concentrate on case (b).
Fitting the three models suggested by these observations we obtain:
(i) ARIMA(2,1,0) x (0,1,1)12:
AIC=1.372, AICc= 1.378, BIC= .404
(ii) ARIMA(2,1,0) x (0,1, 3)12:
AIC=1.299, AICc= 1.305, BIC= .351
(iii) ARIMA(2,1,0) x (2,1, 1)15:
AIC=1.326, AICc= 1.332, BIC= .379
The ARIMA(2,1,0) x (0,1, 3)12 is the preferred model, and the fitted model
in this case is

(1 —.30(.05)B — 11(05)B*) V12V,
= (1 - .74('05)312 — -14(.06)324 + .28('05)336>’L/U\t

with 62 = 1.312.

The diagnostics for the fit are displayed in Figure 3.25. We note the few
outliers in the series as exhibited in the plot of the standardized residuals
and their normal Q-Q plot, and a small amount of autocorrelation that still
remains (although not at the seasonal lags) but otherwise, the model fits
well. Finally, forecasts based on the fitted model for the next 12 months are
shown in Figure 3.26.
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Fig. 3.25. Diagnostics for the ARIMA(2,1,0) x (0,1,3)12 fit on the Production
Index.

The following R code can be used to perform the analysis.
acf2(prodn, 48)
acf2(diff (prodn), 48)
acf2(diff (diff (prodn), 12), 48)
sarima(prodn, 2, 1, 1, 0, 1, 3, 12) # fit model (i)
sarima.for(prodn, 12, 2, 1, 1, 0, 1, 3, 12) # forecast

[

N
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o

Problems

Section 3.2

3.1 For an MA(1), 2y = wy + Ow;_1, show that |p,(1)] < 1/2 for any number
6. For which values of € does p,(1) attain its maximum and minimum?

3.2 Let w; be white noise with variance o2 and let |¢| < 1 be a constant.
Consider the process x1 = wq, and

xt:¢$t_1+wt, t=2,3,



Problems 163
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Fig. 3.26. Forecasts and limits for production index. The vertical dotted line sep-
arates the data from the predictions.

(a) Find the mean and the variance of {z;, t = 1,2,...}. Is z; stationary?
(b) Show

var(xs_p) 1/2
corr(xs, Tp—p) = o {_L}

var(xy)
for h > 0.
(c) Argue that for large ¢,
() %
ar(xy) ~
V + 1 — ¢2

and
COI'I'(It713t_}L) ~ ¢h7 h > 07

so in a sense, x; is “asymptotically stationary.”
(d) Comment on how you could use these results to simulate n observations
of a stationary Gaussian AR(1) model from simulated iid N(0,1) values.

(e) Now suppose 21 = wy/+/1 — ¢?. Is this process stationary?

3.3 Verify the calculations made in Example 3.3:

(a) Let ¢, = ¢xy—1 +w; where |¢| > 1 and w; ~ iid N(0,02). Show E(x;) =0
and v, (h) = 05,072 ¢~ " /(1 — ¢72).

(b) Let y; = ¢~ typ—1 + v; where v, ~ iid N(0,02¢2) and ¢ and o, are
as in part (a). Argue that y; is causal with the same mean function and
autocovariance function as ;.
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3.4 Identify the following models as ARMA(p, ¢) models (watch out for pa-
rameter redundancy), and determine whether they are causal and/or invert-
ible:

(a) ¢ = 8021 — .15x1_2 + wp — .30ws_1.
(b) Ty = Tyi—1 — .09 + Wy — We_1q.

model given in (3.28). That is,

3.5 Verify the causal conditions for an AR(2)
(3.28) holds.

show that an AR(2) is causal if and only if

Section 3.3

3.6 For the AR(2) model given by z; = —.9x;_o + wy, find the roots of the
autoregressive polynomial, and then sketch the ACF, p(h).

3.7 For the AR(2) series shown below, use the results of Example 3.9 to
determine a set of difference equations that can be used to find the ACF
p(h), h =0,1,...; solve for the constants in the ACF using the initial condi-
tions. Then plot the ACF values to lag 10 (use ARMAacf as a check on your
answers).

(a) x¢ + 1.624—1 + 649 = wy.
(b) Tt — .40.%}_1 — .451‘75_2 = Wt.
(C) Tt — 1.256,5_1 + .853315_2 = Wt.

Section 3./

3.8 Verify the calculations for the autocorrelation function of an ARMA(1,1)
process given in Example 3.13. Compare the form with that of the ACF for
the ARMA(1,0) and the ARMA(0,1) series. Plot (or sketch) the ACFs of
the three series on the same graph for ¢ = .6, 8 = .9, and comment on the
diagnostic capabilities of the ACF in this case.

3.9 Generate n = 100 observations from each of the three models discussed in
Problem 3.8. Compute the sample ACF for each model and compare it to the
theoretical values. Compute the sample PACF for each of the generated series
and compare the sample ACFs and PACFs with the general results given in
Table 3.1.

Section 3.5

3.10 Let x; represent the cardiovascular mortality series (cmort) discussed in
Chapter 2, Example 2.2.

(a) Fit an AR(2) to z; using linear regression as in Example 3.17.

(b) Assuming the fitted model in (a) is the true model, find the forecasts over
a four-week horizon, x7. ., for m = 1,2,3,4, and the corresponding 95%
prediction intervals.
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3.11 Consider the MA(1) series

Ty = wy + w1,

2

w*

where w; is white noise with variance o

(a) Derive the minimum mean-square error one-step forecast based on the
infinite past, and determine the mean-square error of this forecast.
(b) Let 7, be the truncated one-step-ahead forecast as given in (3.92). Show
that
B [(@ni1 — #40)?2] = 02(1 +02720),

Compare the result with (a), and indicate how well the finite approxima-
tion works in this case.

3.12 In the context of equation (3.63), show that, if 4(0) > 0 and y(h) — 0
as h — oo, then I, is positive definite.

3.13 Suppose x; is stationary with zero mean and recall the definition of the
PACEF given by (3.55) and (3.56). That is, let

h—1
€t = Tt — E AiTt—g
i=1

and
h—1
Ot—n = Tp—p — Z bjxt,j
j=1
be the two residuals where {aj,...,ap—1} and {b1,...,bs_1} are chosen so

that they minimize the mean-squared errors
E[¢?] and E[6? ).

The PACF at lag h was defined as the cross-correlation between ¢; and §;_p;

that is,
E(Gtat_h)

Qshh I
E(ef)E(67_))

Let Ry be the h x h matrix with elements p(i — j),4,j = 1,..., h, and let
o = (p(1),p(2),...,p(h))" be the vector of lagged autocorrelations, p(h) =
corr(xyip, z¢). Let p, = (p(h),p(h —1),...,p(1))" be the reversed vector. In
addition, let " denote the BLP of z; given {x;_1,...,z¢ 1}

h
Ty = Qp1T¢—1 + -+ QppTi—p,

as described in Property 3.3. Prove
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o — P P B an

= — = = Qph-
1- p;l—thilphfl

In particular, this result proves Property 3.4.
Hint: Divide the prediction equations [see (3.63)] by v(0) and write the
matrix equation in the partitioned form as

() (2)- (3

Pr—1 p(0) ) \ann p(h) )’

where the h x 1 vector of coefficients a = (ap1,...,apy) is partitioned as

a=(ay,ann).

3.14 Suppose we wish to find a prediction function g(x) that minimizes
MSE = E[(y — g(x))?],

where = and y are jointly distributed random variables with density function

f(zy).
(a) Show that MSE is minimized by the choice
g9(x) = By | z).
Hint:
mse = [ | [- @) st fia)is
(b) Apply the above result to the model
Y= z? + Z,

where x and z are independent zero-mean normal variables with variance
one. Show that MSE = 1.
(¢) Suppose we restrict our choices for the function g(z) to linear functions of

the form
gx) =a+bx
and determine a and b to minimize M SE. Show that a = 1 and
_ Bzy)
E(2?)

and M SFE = 3. What do you interpret this to mean?

3.15 For an AR(1) model, determine the general form of the m-step-ahead
forecast xf,,, and show

1— ¢2m
E(@tgm — Tyn)’] = in-
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3.16 Consider the ARMA(1,1) model discussed in Example 3.7, equation
(3.27); that is, z; = .9z4—1 + Hw—1 + wy. Show that truncated prediction
as defined in (3.91) is equivalent to truncated prediction using the recursive
formula (3.92).

3.17 Verify statement (3.87), that for a fixed sample size, the ARMA predic-
tion errors are correlated.

Section 3.6

3.18 Fit an AR(2) model to the cardiovascular mortality series (cmort) dis-
cussed in Chapter 2, Example 2.2. using linear regression and using Yule—
Walker.

(a) Compare the parameter estimates obtained by the two methods.

(b) Compare the estimated standard errors of the coefficients obtained by
linear regression with their corresponding asymptotic approximations, as
given in Property 3.10.

3.19 Suppose 21, ..., T, are observations from an AR(1) process with u = 0.

(a) Show the backcasts can be written as 2 = ¢! ~txq, for t < 1.
(b) In turn, show, for ¢t < 1, the backcasted errors are

W(9) = 2} — iy = ¢' (1= ¢?)a1.

(c) Use the result of (b) to show S1____@2(¢) = (1 — ¢?)a3.

(d) Use the result of (c) to verify the unconditional sum of squares, S(¢), can
be written as > ;. 07 (¢).

(e) Find 2!~! and r, for 1 <t < n, and show that

S(¢) = Z(xt — xi_l)Q / T

t=1

3.20 Repeat the following numerical exercise three times. Generate n = 500
observations from the ARMA model given by

xy = 9r41 +wy — w1,

with w; ~ iid N(0, 1). Plot the simulated data, compute the sample ACF and
PACF of the simulated data, and fit an ARMA(1,1) model to the data. What
happened and how do you explain the results?

3.21 Generate 10 realizations of length n = 200 each of an ARMA(1,1) process
with ¢ = .9,0 = .5 and ¢? = 1. Find the MLEs of the three parameters in
each case and compare the estimators to the true values.



168 3 ARIMA Models

3.22 Generate n = 50 observations from a Gaussian AR(1) model with ¢ =
.99 and o, = 1. Using an estimation technique of your choice, compare the
approximate asymptotic distribution of your estimate (the one you would use
for inference) with the results of a bootstrap experiment (use B = 200).

3.23 Using Example 3.31 as your guide, find the Gauss—Newton proce-
dure for estimating the autoregressive parameter, ¢, from the AR(1) model,
Ty = ¢pxi_1 + wy, given data xq,...,z,. Does this procedure produce the un-
conditional or the conditional estimator? Hint: Write the model as w;(¢) =
¢ — ¢xy—1; your solution should work out to be a non-recursive procedure.

3.24 Consider the stationary series generated by
Ty =+ ¢ri1 + we + 0wy,

where E(xy) = u, |0] < 1,]¢] < 1 and the w; are iid random variables with
zero mean and variance o2

(a) Determine the mean as a function of « for the above model. Find the
autocovariance and ACF of the process z;, and show that the process is
weakly stationary. Is the process strictly stationary?

(b) Prove the limiting distribution as n — oo of the sample mean,

n
z=n"! g Ty,
t=1

is normal, and find its limiting mean and variance in terms of «, ¢, 6, and
o2. (Note: This part uses results from Appendix A.)

3.25 A problem of interest in the analysis of geophysical time series involves
a simple model for observed data containing a signal and a reflected version of
the signal with unknown amplification factor a and unknown time delay ¢§. For
example, the depth of an earthquake is proportional to the time delay  for
the P wave and its reflected form pP on a seismic record. Assume the signal,
say s, is white and Gaussian with variance o2, and consider the generating
model
Ty = St + aS¢—g.

(a) Prove the process x; is stationary. If |a| < 1, show that

oo

Sp = (—a)jxt_gj
=0

is a mean square convergent representation for the signal s, for ¢t =
141,42, ...

(b) If the time delay ¢ is assumed to be known, suggest an approximate com-
putational method for estimating the parameters a and o2 using maximum
likelihood and the Gauss—Newton method.
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(c) If the time delay ¢ is an unknown integer, specify how we could estimate
the parameters including 6. Generate a n = 500 point series with a = .9,
02 =1 and § = 5. Estimate the integer time delay § by searching over
6=3,4,...,17.

3.26 Forecasting with estimated parameters: Let x1, 2, ..., %, be a sample of
size n from a causal AR(1) process, x; = ¢x;_1+w;. Let ¢ be the Yule-Walker
estimator of ¢.

(a) Show ¢ — ¢ = O,(n~1/2). See Appendix A for the definition of O,(-).
(b) Let 7!, ; be the one-step-ahead forecast of 2,41 given the data x1,...,xy,
based on the known parameter, ¢, and let ZJ: , ; be the one-step-ahead fore-

cast when the parameter is replaced by é. Show ah, —2, = Oy(n~1/2).

Section 3.7
3.27 Suppose

ye = Bo+ Bit+ -+ Byt +xy, By #0,

where z; is stationary. First, show that V*x; is stationary for any k = 1,2, ...,
and then show that VF¥y, is not stationary for k < ¢, but is stationary for
k>q.

3.28 Verify that the IMA(1,1) model given in (3.147) can be inverted and
written as (3.148).
3.29 For the ARIMA(1,1,0) model with drift, (1 — ¢B)(1 — B)xy = § + wy,
let vy = (1 — B)zy = Vay.
(a) Noting that y; is AR(1), show that, for j > 1,

Uiy =014+ 4+ ¢+ yn.
(b) Use part (a) to show that, for m =1,2,...,

o(1 —¢™)

n ¢(1 B ¢m)
T =T+ ——|m— —— |+ (T —Tpy) —————.
+ —5" " T 1T T
Hint: From (a), T =T =0 }:f)j + ¢? (2, — x,,—1). Now sum both
sides over j from 1 to m.

(c) Use (3.144) to find P}, ,, by first showing that )5 = 1, YT = (14 ¢), and
Y — (L+ @i + ¢, = 0 for j > 2, in which case ¢§ = =2 for

j > 1. Note that, as in Example 3.36, equation (3.144) is exact here.

3.30 For the logarithm of the glacial varve data, say, z;, presented in Example
3.32, use the first 100 observations and calculate the EWMA, Z{_ ,, given in
(3.150) for t = 1,...,100, using A\ = .25,.50, and .75, and plot the EWMAs
and the data superimposed on each other. Comment on the results.
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Section 3.8

3.31 In Example 3.39, we presented the diagnostics for the MA(2) fit to the
GNP growth rate series. Using that example as a guide, complete the diag-
nostics for the AR(1) fit.

3.32 Crude oil prices in dollars per barrel are in 0il; see Appendix R for
more details. Fit an ARIMA(p, d, ¢) model to the growth rate performing all
necessary diagnostics. Comment.

3.33 Fit an ARIMA(p, d, q) model to the global temperature data gtemp per-
forming all of the necessary diagnostics. After deciding on an appropriate
model, forecast (with limits) the next 10 years. Comment.

3.34 One of the series collected along with particulates, temperature, and
mortality described in Example 2.2 is the sulfur dioxide series, so2. Fit an
ARIMA (p, d, q) model to the data, performing all of the necessary diagnostics.
After deciding on an appropriate model, forecast the data into the future four
time periods ahead (about one month) and calculate 95% prediction intervals
for each of the four forecasts. Comment.

Section 3.9
3.35 Consider the ARIMA model

Ty = Wy + th_g.

(a) Identify the model using the notation ARIMA(p,d, q) x (P, D,Q)s.
(b) Show that the series is invertible for |©] < 1, and find the coefficients in

the representation
o0
Wy = E TLt—k-
k=0

(c) Develop equations for the m-step ahead forecast, Z,, 4, and its variance
based on the infinite past, x,, p_1,... .

3.36 Plot (or sketch) the ACF of the seasonal ARIMA(0,1) x (1,0);2 model
with @ = .8 and § = .5.

3.37 Fit a seasonal ARIMA model of your choice to the unemployment data
(unemp) displayed in Figure 3.21. Use the estimated model to forecast the
next 12 months.

3.38 Fit a seasonal ARIMA model of your choice to the U.S. Live Birth Series
(birth). Use the estimated model to forecast the next 12 months.

3.39 Fit an appropriate seasonal ARIMA model to the log-transformed John-
son and Johnson earnings series (jj) of Example 1.1. Use the estimated model
to forecast the next 4 quarters.
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The following problems require supplemental material given in Appendix B.

3.40 Suppose x; = 7| ¢z j + wy, where ¢, # 0 and w; is white noise
such that w; is uncorrelated with {zy;k < t}. Use the Projection Theorem to
show that, for n > p, the BLP of 2,41 on sp{zg, k < n} is

P
Tpt1 = E ¢j$n+1—j-
Jj=1

3.41 Use the Projection Theorem to derive the Innovations Algorithm, Prop-
erty 3.6, equations (3.77)-(3.79). Then, use Theorem B.2 to derive the m-step-
ahead forecast results given in (3.80) and (3.81).

3.42 Consider the series ; = w; —w;_1, where w; is a white noise process with
mean zero and variance o2. Suppose we consider the problem of predicting
ZTp+1, based on only x1,...,x,. Use the Projection Theorem to answer the
questions below.

(a) Show the best linear predictor is

1 n
n [ —
Ty = n—i—l;kxk'

(b) Prove the mean square error is

" n+2
E(rpi1 — »Tn+1)2 = m 0’121;~
3.43 Use Theorem B.2 and B.3 to verify (3.116).

3.44 Prove Theorem B.2.

3.45 Prove Property 3.2.



Appendix R
R Supplement

R.1 First Things First

If you do not already have R, point your browser to the Comprehensive R
Archive Network (CRAN), http://cran.r-project.org/ and download and
install it. The installation includes help files and some user manuals. You can
find helpful tutorials by following CRAN’s link to Contributed Documentation.
If you are new to R/S-PLUS, then R for Beginners by Emmanuel Paradis is
a great introduction. There is also a lot of advice out there in cyberspace, but
some of it will be outdated because R goes through many revisions.

Next, point your browser to http://www.stat.pitt.edu/stoffer/tsa3/,
the website for the text, or one of its mirrors, download tsa3.rda and put
it in a convenient place (e.g., the working directory of R).! This file contains
the data sets and scripts that are used in the text. Then, start R and issue
the command

1 load("tsa3.rda")

Once you have loaded tsa3.rda, all the files will stay in R as long as you
save the workspace when you close R (details in §R.2). If you don’t save the
workspace, you will have to reload it. To see what is included in tsa3.rda
type

2 1s() # to get a listing of your objects, and

3 tsa3.version # to check the wversion

Periodically check that your version matches the latest version number (year-
month-day) on the website. Please note that tsa3.rda is subject to change.

You are free to use the data or to alter the scripts in any way you see fit.
We only have two requests: reference the text if you use something from it,
and contact us if you find any errors or have suggestions for improvement of
the code.

! See §R.2, page 567, on how to get the current working directory and how to
change it, or page 569 on how to read files from other directories.
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R.1.1 Included Data Sets

The data sets included in tsa3.rda, listed by the chapter in which they are
first presented, are as follows.

CHAPTER 1
jj - Johnson & Johnson quarterly earnings per share, 84 quarters (21
years) measured from the first quarter of 1960 to the last quarter

of 1980.
EQ5 - Seismic trace of an earthquake [two phases or arrivals along the
surface, the primary wave (¢ = 1,...,1024) and the shear wave

(t =1025,...,2048)] recorded at a seismic station.
EXP6 - Seismic trace of an explosion (similar details as EQ5).
gtemp - Global mean land-ocean temperature deviations (from 1951-1980
average), measured in degrees centigrade, for the years 1880-2009;
data taken from http://data.giss.nasa.gov/gistemp/graphs/
fmril - A data frame that consists of fMRI BOLD signals at eight locations
(in columns 2-9, column 1 is time period), when a stimulus was
applied for 32 seconds and then stopped for 32 seconds. The signal
period is 64 seconds and the sampling rate was one observation
every 2 seconds for 256 seconds (n = 128).
soi - Southern Oscillation Index (SOT) for a period of 453 months ranging
over the years 1950-1987.
rec - Recruitment (number of new fish) associated with SOL.
speech - A small .1 second (1000 points) sample of recorded speech for the
phrase aaa - - - hhh.
nyse - Returns of the New York Stock Exchange (NYSE) from February
2, 1984 to December 31, 1991.
soiltemp - A 64 x 36 matrix of surface soil temperatures.

CHAPTER 2
oil - Crude oil, WTT spot price FOB (in dollars per barrel), weekly
data from 2000 to mid-2010. For definitions and more details, see
http://tonto.eia.doe.gov/dnav/pet/pet_pri_spt_sl_w.htm.
gas - New York Harbor conventional regular gasoline weekly spot price
FOB (in cents per gallon) over the same time period as oil.
varve - Sedimentary deposits from one location in Massachusetts for 634
years, beginning nearly 12,000 years ago.
cmort - Average weekly cardiovascular mortality in Los Angeles County;
508 six-day smoothed averages obtained by filtering daily values
over the 10 year period 1970-1979.
tempr - Temperature series corresponding to cmort.
part - Particulate series corresponding to cmort.
so2 - Sulfur dioxide series corresponding to cmort.

CHAPTER 3
prodn - Monthly Federal Reserve Board Production Index (1948-1978, n =
372 months).
unemp - Unemployment series corresponding to prodn.
arlboot - Data used in Example 3.35 on page 137.



gnp -
birth -

CHAPTER 4
sunspotz -

salt -

saltemp -

CHAPTER 5
arf -

flu -
sales -

lead -
econb -

CHAPTER 6
arlmiss -
gtemp2 -
qinfl -
qintr -
WBC -

PLT -
HCT -

CHAPTER 7
beamd -

bnrflebv -

bnrfihvs -
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Quarterly U.S. GNP from 1947(1) to 2002(3), n = 223 observations.
Monthly live births (adjusted) in thousands for the United States,
1948-1979.

Biannual smoothed (12-month moving average) number of sunspots
from June 1749 to December 1978; n = 459. The “z” on the end
is to distinguish this series from the one included with R (called
sunspots).

Salt profiles taken over a spatial grid set out on an agricultural
field, 64 rows at 17-ft spacing.

Temperature profiles corresponding to salt.

1000 simulated observations from an ARFIMA(1, 1, 0) model with
¢ =.75 and d = 4.

Monthly pneumonia and influenza deaths per 10,000 people in the
United States for 11 years, 1968 to 1978.

Sales (with lead, a leading indicator), 150 months; taken from Box
& Jenkins (1970).

See sales.

Data set containing quarterly U.S. unemployment, GNP, consump-
tion, and government and private investment, from 1948-111 to 1988-
II.

Data for Problem 6.14 on page 403.

Similar to gtemp but the data are based only on surface air tem-
perature data obtained from meteorological stations.

Quarterly inflation rate in the Consumer Price Index from 1953-1
to 1980-11, n = 110 observations; from Newbold and Bos (1985).
Quarterly interest rate recorded for Treasury bills over the same
period as qinfl.

Measurements made for 91 days on the three variables, log(white
blood count) [WBC], log(platelet) [PLT] and hematocrit [HCT]; taken
from Jones (1984).

See WBC.

See WBC.

Infrasonic signals from a nuclear explosion. This is a data frame
consisting of three columns (which are not time series objects) that
are data from different channels. The series names are sensorl,
sensor2, sensor3. See Example 7.2 on page 421 for more infor-
mation.

Nucleotide sequence of the BNRF'1 gene of the Epstein-Barr virus
(EBV): 1=A, 2=C, 3=G, 4=T. The data are used in §7.9.
Nucleotide sequence of the BNRF1 gene of the herpes virus saimiri
(HVS); same codes as for EBV.
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fmri - Data (as a vector list) from an fMRI experiment in pain, listed
by location and stimulus. The specfic locations of the brain where
the signal was measured were [1] Cortex 1: Primary Somatosensory,
Contralateral, [2] Cortex 2: Primary Somatosensory, Ipsilateral, [3]
Cortex 3: Secondary Somatosensory, Contralateral, [4] Cortex 4:
Secondary Somatosensory, Ipsilateral, [5] Caudate, [6] Thalamus 1:
Contralateral, [7] Thalamus 2: Ipsilateral, [8] Cerebellum 1: Con-
tralateral and [9] Cerebellum 2: Ipsilateral. The stimuli (and num-
ber of subjects in each condition) are [1] Awake-Brush (5 subjects),
[2] Awake-Heat (4 subjects), [3] Awake-Shock (5 subjects), [4] Low-
Brush (3 subjects), [5] Low-Heat (5 subjects), and [6] Low-Shock
(4 subjects). Issue the command summary (fmri) for further details.
As an example, fmri$L1T6 (location 1, treatment 6) will show the
data for the four subjects receiving the Low-Shock treatment at the
Cortex 1 location; note that fmri[[6]] will display the same data.
See Examples 7.7-7.9 for examples.

climhyd - Lake Shasta inflow data; see Example 7.1. This is a data frame with
column names: Temp, DewPt, CldCvr, WndSpd, Precip, Inflow.
eqexp - This is a data frame of the earthquake and explosion seismic series
used throughout the text. The matrix has 17 columns, the first
eight are earthquakes, the second eight are explosions, and the last
column is the Novaya Zemlya series. The column names are: EQ1,

EQ2,...,EQ8; EX1, EX2,...,EX8; NZ.

R.1.2 Included Scripts

The following scripts are included in tsa3.rda. At the end of the description
of each script, a text example that demonstrates the use of the script is given.

lag.plot2(seriesl, series2, max.lag=0, corr=TRUE, smooth=TRUE)

Produces a grid of scatterplots of one series versus another. If (z¢,y:) is a vector
time series, then lag.plot2(x,y,m) will generate a grid of scatterplots of x:_j
versus y; for h = 0,1,...,m, along with the cross-correlation values (corr=TRUE)
and a lowess fit (smooth=TRUE) assuming x; is in x and y; is in y. Note that the first
series, x¢, is the one that gets lagged. If you just want the scatterplots and nothing
else, then use lag.plot2(x,y,m,corr=FALSE, smooth=FALSE). See Example 2.7 on
page 64 for a demonstration.

lag.plotl(series, max.lag=1, corr=TRUE, smooth=TRUE)

Produces a grid of scatterplots of a series versus lagged values of the series. Sim-
ilar to lag.plot2, the call lag.plotl(x,m) will generate a grid of scatterplots of
x4—p, versus xy for h = 1,...,m, along with the autocorrelation values (corr=TRUE)
and a lowess fit (smooth=TRUE). The defaults are the same as lag.plot2; if you
don’t want either the correlation values or the lowess fit, you can either use
lag.plotl(x,m,corr=FALSE,smooth=FALSE) or R’s lag.plot. See Example 2.7
on page 64 for a demonstration.
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acf2(series, max.lag=NULL)

Produces a simultaneous plot (and a printout) of the sample ACF and PACF on
the same scale. If x contains n observations, acf2(x) will print and plot the ACF
and PACF of x to the default lag of \/n + 10 (unless n is smaller than 50). The
number of lags may be specified, e.g., acf2(x, 33). See Example 3.17 on page 108.

sarima(series, p, d, q, P=0, D=0, Q=0, S=-1, details=TRUE,
tol=sqrt(.Machine$double.eps), no.constant=FALSE)

Fits ARIMA models including diagnostics in a short command. If your time se-
ries is in x and you want to fit an ARIMA(p,d, ) model to the data, the ba-
sic call is sarima(x,p,d,q). The results are the parameter estimates, standard
errors, AIC, AICc, BIC (as defined in Chapter 2) and diagnostics. To fit a sea-
sonal ARIMA model, the basic call is sarima(x,p,d,q,P,D,Q,8). So, for exam-
ple, sarima(x,2,1,0) will fit an ARIMA(2,1,0) model to the series in x, and
sarima(x,2,1,0,0,1,1,12) will fit a seasonal ARIMA(2,1,0) x (0,1,1)12 model
to the series in x. If you want to look at the innovations (i.e., the residuals) from
the fit, they’re stored in innov.

There are three additional options that can be included in the call.

e details turns on/off the output from the nonlinear optimization routine,
which is optim. The default is TRUE, use details=FALSE to turn off the output;
e.g., sarima(x,2,1,0,details=FALSE).

e tol controls the relative tolerance (reltol) used to assess convergence in sarima
and sarima.for. The default is tol=sqrt(.Machine$double.eps), the R de-
fault. For details, see the help file for optim under the control arguments.
For example, sarima(rec,2,0,0,t0l=.0001) will speed up the convergence.
If there are many parameters to estimate (e.g., seasonal models), the analysis
may take a long time using the default.

e no.constant can control whether or not sarima includes a constant in the
model. In particular, with sarima, if there is no differencing (d = 0 and D = 0)
you get the mean estimate. If there’s differencing of order one (either d = 1 or
D =1, but not both), a constant term is included in the model; this may be
overridden by setting this to TRUE; e.g., sarima(x,1,1,0,n0.constant=TRUE).
In any other situation, no constant or mean term is included in the model. The
idea is that if you difference more than once (d + D > 1), any drift is likely to
be removed.

See Examples 3.38, 3.39, 3.40, 3.42, and 3.46 on pages 145-159 for demonstra-
tions.

sarima.for(series, n.ahead, p, d, q, P=0, D=0, Q=0, S=-1,
tol=sqrt(.Machine$double.eps), no.constant=FALSE)

Gives ARIMA forecasts. Similar to sarima, to forecast n.ahead time points from
an ARIMA fit to the data in x, the form is sarima.for(x, n.ahead, p, d, q)
or sarima.for(x, n.ahead, p, d, q, P, D, Q, S) for a seasonal model. For
example, sarima.for(x,5,1,0,1) will forecast five time points ahead for an
ARMA(1,1) fit to x. The output prints the forecasts and the standard errors
of the forecasts, and supplies a graphic of the forecast with £2 prediction error
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bounds. The options tol and no.constant are also available. See Example 3.46
on page 159.

spec.arma(ar=0, ma=0, var.noise=1, n.freq=500, ...)

Gives the ARMA spectrum (on a log scale), tests for causality, invertibility, and
common zeros. The basic call is spec.arma(ar, ma) where ar and ma are vectors
containing the model parameters. Use log="no" if you do not want the plot on
a log scale. If the model is not causal or invertible an error message is given. If
there are common zeros, a spectrum will be displayed and a warning will be given;
e.g., spec.armaar= .9, ma= -.9) will yield a warning and the plot will be the
spectrum of white noise. The variance of the noise can be changed with var.noise.
Finally, the frequencies and the spectral density ordinates are returned invisibly,
e.g., spec.arma(ar=.9)$freq and spec.arma(ar=.9)$spec, if you're interested in
the actual values. See Example 4.6 on page 184.

LagReg(input, output, L=c(3,3), M=20, threshold=0, inverse=FALSE)

Performs lagged regression as discussed in Chapter 4, §4.10. For a bivariate series,
input is the input series and output is the output series. The degree of smoothing
for the spectral estimate is given by L; see spans in the help file for spec.pgram.
The number of terms used in the lagged regression approximation is given by M,
which must be even. The threshold value is the cut-off used to set small (in abso-
lute value) regression coefficients equal to zero (it is easiest to run LagReg twice,
once with the default threshold of zero, and then again after inspecting the result-
ing coefficients and the corresponding values of the CCF). Setting inverse=TRUE
will fit a forward-lagged regression; the default is to run a backward-lagged regres-
sion. The script is based on code that was contributed by Professor Doug Wiens,
Department of Mathematical and Statistical Sciences, University of Alberta. See
Example 4.24 on page 244 for a demonstration.

SigExtract(series, L=c(3,3), M=50, max.freq=.05)

Performs signal extraction and optimal filtering as discussed in Chapter 4, §4.11.
The basic function of the script, and the default setting, is to remove frequencies
above 1/20 (and, in particular, the seasonal frequency of 1 cycle every 12 time
points). The time series to be filtered is series, and its sampling frequency is set
to unity (A =1). The values of L and M are the same as in LagReg and max.freq
denotes the truncation frequency, which must be larger than 1/M. The filtered
series is returned silently; e.g., f.x = SigExtract (x) will store the extracted signal
in f.x. The script is based on code that was contributed by Professor Doug Wiens,
Department of Mathematical and Statistical Sciences, University of Alberta. See
Example 4.25 on page 249 for a demonstration.

KfilterO(n, y, A, muO, SigmaO, Phi, cQ, cR)

Returns the filtered values in Property 6.1 on page 326 for the state-space model,
(6.1)—(6.2). In addition, the script returns the evaluation of the likelihood at the
given parameter values and the innovation sequence. The inputs are n: number of
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observations; y: data matrix; A: observation matrix (assumed constant); mu0: initial
state mean; SigmaO: initial state variance-covariance matrix; Phi: state transition
matrix; cQ: Cholesky decomposition of @ [cQ=chol(Q)]; cR: Cholesky decompo-
sition of R [cR=chol(R)]. Note: The script requires only that @ or R may be
reconstructed as t(cQ)%*%cQ or t(cR)%*%cR, which offers a little more flexibility
than requiring @ or R to be positive definite. For demonstrations, see Example 6.6
on page 336, Example 6.8 on page 342, and Example 6.10 on page 350.

KsmoothO(n, y, A, muO, SigmaO, Phi, cQ, cR)

Returns both the filtered values in Property 6.1 on page 326 and the smoothed
values in Property 6.2 on page 330 for the state-space model, (6.1)—(6.2). The
inputs are the same as Kfilter0O. For demonstrations, see Example 6.5 on page 331,
and Example 6.10 on page 350.

EMO(n, y, A, muO, SigmaO, Phi, cQ, cR, max.iter=50, tol=.01)

Estimation of the parameters in the model (6.1)—(6.2) via the EM algorithm. Most
of the inputs are the same as for KsmoothO and the script uses Ksmooth0. To control
the number of iterations, use max.iter (set to 50 by default) and to control the
relative tolerance for determining convergence, use tol (set to .01 by default). For
a demonstration, see Example 6.8 on page 342.

Kfilterl(n, y, A, muO, SigmaO, Phi, Ups, Gam, cQ, cR, input)

Returns the filtered values in Property 6.1 on page 326 for the state-space model,
(6.3)—(6.4). In addition, the script returns the evaluation of the likelihood at the
given parameter values and the innovation sequence. The inputs are n: number of
observations; y: data matrix; A: observation matrix, an array with dim=c(q,p,n);
muO: initial state mean; SigmaO: initial state variance-covariance matrix; Phi:
state transition matrix; Ups: state input matrix; Gam: observation input matrix;
cQ: Cholesky decomposition of Q; cR: Cholesky decomposition of R [the note in
KfilterO applies here|; input: matrix of inputs having the same row dimension
as y. Set Ups or Gam or input to 0 (zero) if they are not used. For demonstrations,
see Example 6.7 on page 338 and Example 6.9 on page 348.

Ksmoothl(n, y, A, muO, SigmaO, Phi, Ups, Gam, cQ, cR, input)

Returns both the filtered values in Property 6.1 on page 326 and the smoothed
values in Property 6.2 on page 330 for the state-space model, (6.3)—(6.4). The
inputs are the same as Kfilterl. See Example 6.7 on page 338 and Example 6.9
on page 348.

EM1(n, y, A, muO, SigmaO, Phi, Ups, Gam, cQ, cR, input, max.iter=50,
tol=.01)

Estimation of the parameters in the model (6.3)—(6.4) via the EM algorithm. Most
of the inputs are the same as for Ksmooth1 and the script uses Ksmooth1. To control
the number of iterations, use max.iter (set to 50 by default) and to control the
relative tolerance for determining convergence, use tol (set to .01 by default). For
a demonstration, see Example 6.12 on page 357.
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Kfilter2(n, y, A, muO, SigmaO, Phi, Ups, Gam, Theta, cQ, cR, S, input)

Returns the filtered values in Property 6.5 on page 354 for the state-space model,
(6.97)—(6.99). In addition, the script returns the evaluation of the likelihood at
the given parameter values and the innovation sequence. The inputs are similar
to Kfilterl, except that the noise covariance matrix, S must be included. For
demonstrations, see Example 6.11 on page 356 and Example 6.13 on page 361.

Ksmooth2(n, y, A, mu0O, SigmaO, Phi, Ups, Gam, Theta, cQ, cR, S, input)

This is the smoother companion to Kfilter2.

SVfilter(n, y, phiO, phil, sQ, alpha, sRO, mul, sR1)

Performs the special case switching filter for the stochastic volatility model,
(6.173), (6.175)—(6.176). The state parameters are phiO, phil, sQ [¢o, P1, 0w,
and alpha, sRO, mul, sR1 [a, 00, u1,01] are observation equation parameters as
presented in Section 6.9. See Example 6.18 page 380 and Example 6.19 page 383.

mvspec(x, spans = NULL, kernel = NULL, taper
demean = TRUE, detrend FALSE, plot
na.action = na.fail, ...)

0, pad = 0, fast = TRUE,
FALSE,

This is spec.pgram with a few changes in the defaults and written so you can
extract the estimate of the multivariate spectral matrix as fxx. For example, if x
contains a p-variate time series (i.e., the p columns of x are time series), and you
issue the command spec = mvspec(x, spans=3) say, then spec$fxx is an array
with dimensions dim=c(p,p,nfreq), where nfreq is the number of frequencies
used. If you print spec$fxx, you will see nfreq p X p spectral matrix estimates.
See Example 7.12 on page 461 for a demonstration.

FDR(pvals, qlevel=0.001)

Computes the basic false discovery rate given a vector of p-values; see Example 7.4
on page 427 for a demonstration.

stoch.reg(data, cols.full, cols.red, alpha, L, M, plot.which)

Performs frequency domain stochastic regression discussed in §7.3. Enter the entire
data matrix (data), and then the corresponding columns of input series in the full
model (cols.full) and in the reduced model (cols.red; use NULL if there are
no inputs under the reduced model). The response variable should be the last
column of the data matrix, and this need not be specified among the inputs.
Other arguments are alpha (test size), L (smoothing), M (number of points in the
discretization of the integral) and plot.which = coh or F.stat, to plot either the
squared-coherencies or the F'-statistics. The coefficients of the impulse response
function are returned and plotted. The script is based on code that was contributed
by Professor Doug Wiens, Department of Mathematical and Statistical Sciences,
University of Alberta. See Example 7.1 on page 417 for a demonstration.
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R.2 Getting Started

If you are experienced with R/S-PLUS you can skip this section, and perhaps
the rest of this appendix. Otherwise, it is essential to have R up and running
before you start this tutorial. The best way to use the rest of this appendix
is to start up R and enter the example code as it is presented. Also, you can
use the results and help files to get a better understanding of how R works
(or doesn’t work). The character # is used for comments.

The convention throughout the text is that R code is in typewriter font
with a small line number in the left margin. Get comfortable, then start her
up and try some simple tasks.

# addition

1

2 x5 + 2

'S

o

o

<

©

10

o

2+2

[1] 5

(11 27

5/5 -

exp(1)

sqrt(8)

# multiplication and addition

3  # division and subiraction
[1] -2
log(exp(pi)) # log, exponential, pt
[1] 3.141593
sin(pi/2) # sinusoids
(11 1

~(-2) # power
[1] 0.1353353

[1] 2.828427

1:5

(11 1
seq(1,
(11 1
rep(2,
[11 2

# square root

# sequences

2345
10, by=2)
3579

# sequences

3) # repeat 2 three times

22

Next, we’ll use assignment to make some objects:
+ 2 #put 1 + 2 in object z
+ 2 # same as above with fewer keystrokes

x <- 1
x =1
1+ 2
X
[1] 3
(y=9
(11 2

(z = rnorm(5,0,1))

[1]

-> x # same

# view object x

*3) # put 9 times 3 in y and view the result

7

0.96607946

# put 5 standard normals into z and print z
1.98135811 -0.06064527 0.31028473 0.02046853

To list your objects, remove objects, get help, find out which directory is
current (or to change it) or to quit, use the following commands:



568 Appendix R: R Supplement

1 1s() # list all objects
[1] Ildummyll Ilmydatall IIXII Ilyll llzll
2 1s(pattern = "my") # list every object that contains "my"

[1] "dummy" "mydata"
rm(dummy) # remove object "dummy"
help.start() # html help and documentation (use tt)
help(exp) # specific help (Pexp is the same)
getwd () # get working directory
setwd("/TimeSeries/") # change working directory to TimeSeries
s q0) # end the session (keep reading)

w

IS

o

=

<

When you quit, R will prompt you to save an image of your current workspace.
Answering “yes” will save all the work you have done so far, and load it up
when you next start R. Our suggestion is to answer “yes” even though you
will also be loading irrelevant past analyses every time you start R. Keep in
mind that you can remove items via rm(). If you do not save the workspace,
you will have to reload tsa3.rda as described in §R.1.
To create your own data set, you can make a data vector as follows:

1 mydata = ¢(1,2,3,2,1)
Now you have an object called mydata that contains five elements. R calls these
objects vectors even though they have no dimensions (no rows, no columns);
they do have order and length:

2 mydata # display the data

1112321
mydata[3] # the third element

(11 3
mydata[3:5] # elements three through five

11 321
mydata[-(1:2)] # everything exzcept the first two elements

[1] 321
length(mydata) # number of elements

w

IS

o

o

[11 5
7 dim(mydata) # no dimensions

NULL
s mydata = as.matrix(mydata) # make it a matriz
9 dim(mydata) # now it has dimensions

[11 51

It is worth pointing out R’s recycling rule for doing arithmetic. The rule is
extremely helpful for shortening code, but it can also lead to mistakes if you
are not careful. Here are some examples.
1x=c(1, 2, 3, 4); y=c(2, 4, 6, 8); =z =c(10, 20)

2 Xky  # it’s 1%2, 2%4, 3%6, 4*8

[11 2 8 18 32
3 x/z # it’s 1/10, 2/20, 3/10, 4/20

(1] 0.1 0.1 0.3 0.2
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4 X+z # guess
[1] 11 22 13 24

If you have an external data set, you can use scan or read.table to
input the data. For example, suppose you have an AsCII (text) data file called
dummy .dat in a directory called TimeSeries in your root directory, and the
file looks like this:

12321
90210

1 dummy = scan("dummy.dat") # if TimeSeries is the working directory
2 (dummy = scan("/TimeSeries/dummy.dat")) # <f not, do this
Read 10 items
111232190210
3 (dummy = read.table("/TimeSeries/dummy.dat"))
Vi V2 V3 V4 Vb5
1 2 3 2 1
9 0 2 1 O
There is a difference between scan and read.table. The former produced a
data vector of 10 items while the latter produced a data frame with names
V1 to V5 and two observations per variate. In this case, if you want to list (or
use) the second variate, V2, you would use
4 dummy$V2
[1] 20
and so on. You might want to look at the help files ?scan and ?read.table
now. Data frames (?data.frame) are “used as the fundamental data structure
by most of R’s modeling software.” Notice that R gave the columns of dummy
generic names, V1, ..., V5. You can provide your own names and then use
the names to access the data without the use of $ as in line 4 above.

5 colnames (dummy) = c("Dog", "Cat", "Rat", "Pig", "Man")
6 attach(dummy)
7 Cat

[1] 2 0
R is case sensitive, thus cat and Cat are different. Also, cat is a reserved
name (?cat) in R, so using "cat" instead of "Cat" may cause problems later.
You may also include a header in the data file to avoid using line 5 above;
type 7read.table for further information.

It can’t hurt to learn a little about programming in R because you will see
some of it along the way. Consider a simple program that we will call crazy
to produce a graph of a sequence of sample means of increasing sample sizes
from a Cauchy distribution with location parameter zero. The code is:

1 crazy <- function(num) {

2 x <- rep(NA, num)

3 for (n in 1:num) x[n] <- mean(rcauchy(n))

4 plot(x, type="1", xlab="sample size", ylab="sample mean")
5}
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Fig. R.1. Crazy example.

The first line creates the function crazy and gives it one argument, num, that
is the sample size that will end the sequence. Line 2 makes a vector, x, of
num missing values NA, that will be used to store the sample means. Line 3
generates n random Cauchy variates [rcauchy(n)], finds the mean of those
values, and puts the result into x[n], the n-th value of x. The process is
repeated in a “do loop” num times so that x[1] is the sample mean from a
sample of size one, x[2] is the sample mean from a sample of size two, and so
on, until finally, x [num] is the sample mean from a sample of size num. After
the do loop is complete, the fourth line generates a graphic (see Figure R.1).
The fifth line closes the function. To use crazy with a limit sample size of
100, for example, type
6 crazy(100)
and you will get a graphic that looks like Figure R.1

You may want to use one of the R packages. In this case you have to first
download the package and then install it. For example,

1 install.packages(c("wavethresh", "tseries"))

will download and install the packages wavethresh that we use in Chapter 4
and tseries that we use in Chapter 5; you will be asked to choose the closest
mirror to you. To use a package, you have to load it at each start up of R, for
example:

2 library(wavethresh) # load the wavethresh package

A good way to get help for a package is to use html help

3 help.start()

and follow the Packages link.

Finally, a word of caution: TRUE and FALSE are reserved words, whereas T
and F are initially set to these. Get in the habit of using the words rather than
the letters T or F because you may get into trouble if you do something like
F = qf (p=.01, df1=3, df2=9), so that F is no longer FALSE, but a quantile
of the specified F-distribution.
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R.3 Time Series Primer

In this section, we give a brief introduction on using R for time series. We
assume that tsa3.rda has been loaded. To create a time series object, use
the command ts. Related commands are as.ts to coerce an object to a time
series and is.ts to test whether an object is a time series.
First, make a small data set:
1 (mydata = ¢(1,2,3,2,1)) # make it and view it
[11 12321
Now make it a time series:
2 (mydata = as.ts(mydata))
Time Series:
Start = 1
End = 5
Frequency = 1
1112321
Make it an annual time series that starts in 1950:
3 (mydata = ts(mydata, start=1950))
Time Series:
Start = 1950
End = 1954
Frequency = 1
1112321
Now make it a quarterly time series that starts in 1950-I11:
4+ (mydata = ts(mydata, start=c(1950,3), frequency=4))
Qtrl Qtr2 Qtr3 Qtré
1950 1 2
1951 3 2 1
5 time(mydata) # view the sampled times
Qtril Qtr2 Qtr3 Qtrd
1950 1950.50 1950.75
1951 1951.00 1951.25 1951.50
To use part of a time series object, use window():
6 (x = window(mydata, start=c(1951,1), end=c(1951,3)))
Qtrl Qtr2 Qtr3
1951 3 2 1

Next, we’ll look at lagging and differencing. First make a simple series, x;:
1x = ts(1:5)
Now, column bind (cbind) lagged values of z; and you will notice that lag(x)
is forward lag, whereas lag(x, -1) is backward lag (we display the time series
attributes in a single row of the output to save space).
2 cbind(x, lag(x), lag(x,-1))
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Time Series: Start = 0 End = 6 Frequency =1
x lag(x) lag(x, -1)

0 NA 1 NA

1 1 2 NA

2 2 3 1

3 3 4 2 <- in this row, for example, x is 3,
4 4 5 3 lag(x) is ahead at 4, and

5 5 NA 4 lag(x,-1) is behind at 2

6 NA NA 5

Compare cbind and ts.intersect:
3 ts.intersect(x, lag(x,1), lag(x,-1))

Time Series: Start = 2 End = 4 Frequency = 1
x lag(x, 1) lag(x, -1)

2 2 3 1
3 3 4 2
4 4 5 3

To difference a series, Va; = x; — 141, use

1 diff (x)

but note that

> diff(x, 2)

is not second order differencing, it is z; — x4+_o. For second order differencing,
that is, V2, do this:

3 diff (diff(x))

and so on for higher order differencing.

For graphing time series, there a few standard plotting mechanisms that
we use repeatedly. If x is a time series, then plot (x) will produce a time plot.
If x is not a time series object, then plot.ts(x) will coerce it into a time plot
as will ts.plot(x). There are differences, which we explore in the following.
It would be a good idea to skim the graphical parameters help file (?par)
while you are here.? See Figure R.2 for the resulting graphic.
1x = -5:5 # x ©s NOT a time series object
2y = bxcos(x) # neither is y
3 op = par(mfrow=c(3,2)) # multifigure setup: 3 rows, 2 cols
4 plot(x, main="plot(x)")

5 plot(x, y, main="plot(x,y)")

6 plot.ts(x, main="plot.ts(x)")

7 plot.ts(x, y, main="plot.ts(x,y)")

s ts.plot(x, main="ts.plot(x)")

9 ts.plot(ts(x), ts(y), col=1:2, main="ts.plot(x,y)")

10 par(op) # reset the graphics parameters [see footnote]

2 In the plot example, the parameter set up uses op = par(...) and ends with
par(op); these lines are used to reset the graphic parameters to their previous
settings. Please make a note of this because we do not display these commands
ad nauseam in the text.
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Fig. R.2. Demonstration of different R graphic tools for plotting time series.

We will also make use of regression via lm(). First, suppose we want to fit
a simple linear regression, y = a+ Sz + €. In R, the formula is written as y~x:

se
X

y

t.seed(1999) # so you can reproduce the result
= rnorm(10,0,1)
= x + rnorm(10,0,1)

summary (fit <- lm(y~x))

Residuals:
Min 1Q Median 3Q Max
-0.8851 -0.3867 0.1325 0.3896 0.6561

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 0.2576 0.1892 1.362 0.2104
X 0.4577 0.2016 2.270 0.0529

Residual standard error: 0.58 on 8 degrees of freedom
Multiple R-squared: 0.3918, Adjusted R-squared: 0.3157
F-statistic: 5.153 on 1 and 8 DF, p-value: 0.05289

5 plot(x, y) # draw a scatterplot of the data (not shown)
6 abline(fit) # add the fitted line to the plot (not shown)
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All sorts of information can be extracted from the 1m object, which we called
fit. For example,

7 resid(fit) # will display the residuals (not shown)

s fitted(fit) # will display the fitted values (not shown)

o Im(y ~ 0 + x) # will exzclude the intercept (not shown)

You have to be careful if you use 1lm() for lagged values of a time se-
ries. If you use 1m(), then what you have to do is “tie” the series together
using ts.intersect. If you do not tie the series together, they will not be
aligned properly. Please read the warning Using time series in the 1m() help
file [help(1m)]. Here is an example regressing Chapter 2 data, weekly car-
diovascular mortality (cmort) on particulate pollution (part) at the present
value and lagged four weeks (part4). First, we create a data frame called ded
that consists of the three series:

1 ded = ts.intersect(cmort, part, parté4=lag(part,-4), dframe=TRUE)
Now the series are all aligned and the regression will work.
2 fit = lm(mort~part+part4, data=ded, na.action=NULL)
3 summary (£it)
Call: lm(formula=mort~part+part4,data=ded,na.action=NULL)
Residuals:
Min 1Q  Median 3Q Max
-22.7429 -5.3677 -0.4136 5.2694 37.8539

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 69.01020 1.37498 50.190 < 2e-16
part 0.15140 0.02898 5.225 2.56e-07
part4 0.26297 0.02899 9.071 < 2e-16

Residual standard error: 8.323 on 501 degrees of freedom

Multiple R-Squared: 0.3091, Adjusted R-squared: 0.3063

F-statistic: 112.1 on 2 and 501 DF, p-value: < 2.2e-16
There was no need to rename lag(part,-4) to part4, it’s just an example
of what you can do. There is a package called dynlm that makes it easy to fit
lagged regressions. The basic advantage of dynlm is that it avoids having to
make a data frame; that is, line 1 would be avoided.

In Problem 2.1, you are asked to fit a regression model

o = Pt + a1Q1(t) + a2Q2(t) + as3Qs(t) + cuQu(t) + wy

where z; is logged Johnson & Johnson quarterly earnings (n = 84), and Q;(¢)
is the indicator of quarter ¢ = 1,2,3,4. The indicators can be made using
factor.

1 trend = time(jj) - 1970 # helps to ‘center’ time

2 Q = factor(rep(1:4, 21)) # make (Q)uarter factors

3 reg = 1Im(log(jj)~0 + trend + Q, na.action=NULL) # no intercept

4 model .matrix(reg) # view the model matriz
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trend Q1 Q2 Q3 Q4
1 -10.00 1 0 O O
2 -9.75 0 1 0 O
3 -9.560 0 0 1 O
4 -9.26 0 0 O 1

83 10.50 0 0 1
84 10.75 0 0 O 1

5 summary(reg) # view the results (not shown)

The workhorse for ARIMA simulations is arima.sim. Here are some ex-
amples; no output is shown here so you're on your own.
1 x = arima.sim(list (order=c(1,0,0),ar=.9),n=100)+50 # AR(1) w/mean 50
arima.sim(list (order=c(2,0,0),ar=c(1,-.9)),n=100) # AR(2)
arima.sim(list (order=c(1,1,1),ar=.9,ma=-.5),n=200) # ARIMA(1,1,1)

2 X

3 X

Next, we'll discuss ARIMA estimation. This gets a bit tricky because R is
not useR friendly when it comes to fitting ARIMA models. Much of the story
is spelled out in the “R Issues” page of the website for the text. In Chapter
3, we use the scripts acf2, sarima, and sarima.for that are included with
tsa3.Rda. But we will also show you how to use the scripts included with R.

First, we’ll fit an ARMA(1,1) model to some simulated data (with diag-
nostics and forecasting):

set.seed(666)

1
2 x = 50 + arima.sim(list(order=c(1,0,1), ar=.9, ma=-.5), n=200)
3 acf(x); pacf(x) # display sample ACF and PACF ... or ...
4 acf2(x) # use our script (no output shown)
5 (x.fit = arima(x, order = c(1, 0, 1))) # fit the model
Call: arima(x = x, order = c(1, 0, 1))
Coefficients:
arl mal intercept
0.8340 -0.432 49.8960
s.e. 0.0645 0.111 0.2452

sigma”2 estimated as 1.070: log likelihood = -290.79, aic = 589.58

Note that the reported intercept estimate is an estimate of the mean and
not the constant. That is, the fitted model is

Ty — 49.896 = .834(z;_1 — 49.896) + @,

where 52, = 1.070. Diagnostics can be accomplished as follows,

4 tsdiag(x.fit, gof.lag=20) # ?tsdiag for details (don’t use this!!)
but the Ljung-Box-Pierce test is not correct because it does not take into
account the fact that the residuals are from a fitted model. If the analysis
is repeated using the sarima script, a partial output would look like the
following (sarima will also display the correct diagnostics as a graphic; e.g.,
see Figure 3.17 on page 151):
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1 sarima(x, 1, 0, 1)

Coefficients:
arl mal Xmean
0.8340 -0.432 49.8960
s.e. 0.0645 0.111  0.2452
sigma”2 estimated as 1.070: log likelihood = -290.79, aic = 589.58
$AIC [1] 1.097494  $AICc [1] 1.108519  $BIC [1] 0.1469684

Finally, to obtain and plot the forecasts, you can use the following R code:
1 x.fore = predict(x.fit, n.ahead=10)

2 U = x.fore$pred + 2*x.fore$se # x.fore$pred holds predicted values
3 L = x.fore$pred - 2*x.fore$se # z.fore$se holds stnd errors

4 miny = min(x,L); maxy = max(x,U)
5
6

ts.plot(x, x.fore$pred, col=1:2, ylim=c(miny, maxy))
lines(U, col="blue", lty="dashed")
7 lines(L, col="blue", lty="dashed")
Using the script sarima.for, you can accomplish the same task in one line.
1 sarima.for(x, 10, 1, 0, 1)
Example 3.46 on page 159 uses this script.

We close this appendix with a quick spectral analysis. This material is
covered in detail in Chapter 4, so we will not discuss this example in much
detail here. We will simulate an AR(2) and then estimate the spectrum via
nonparametric and parametric methods. No graphics are shown, but we have
confidence that you are proficient enough in R to display them yourself.

1 x = arima.sim(list (order=c(2,0,0), ar=c(1,-.9)), n=2"8) # some data
2 (u = polyroot(c(1,-1,.9))) # z ts AR(2) w/complex roots

[1] 0.5555556+0.89580641i 0.5555556-0.89580641
s Arg(ul1])/(2*pi) # dominant frequency around .16

[1] 0.1616497
4 par (mfcol=c(4,1))

5 plot.ts(x)

6 spec.pgram(x,spans=c(3,3),log="no") # nonparametric spectral estimate
7 spec.ar(x, log="no") # parametric spectral estimate

s spec.arma(ar=c(1,-.9), log="no") # true spectral density

The script spec.arma is included in tsa3.rda. Also, see spectrum as an
alternative to spec.pgram. Finally, note that R tapers and logs by default, so if
you simply want the periodogram of a series, the command is spec.pgram(x,
taper=0, fast=FALSE, detrend=FALSE, log="no"). If you just asked for
spec.pgram(x), you would not get the RAW periodogram because the data
are detrended, possibly padded, and tapered, even though the title of the
resulting graphic would say Raw Periodogram. An easier way to get a raw
periodogram is:

9 per = abs(fft(x))"2/length(x)

This final example points out the importance of knowing the defaults for the
R scripts you use.



