


ECONOMETRIC ANALYSIS

OF FINANCIAL AND ECONOMIC

TIME SERIES

i



ADVANCES IN ECONOMETRICS

Series Editors: Thomas B. Fomby and R. Carter Hill

Recent Volumes:

Volume 15: Nonstationary Panels, Panel Cointegration, and

Dynamic Panels, Edited by Badi Baltagi

Volume 16: Econometric Models in Marketing, Edited by

P. H. Franses and A. L. Montgomery

Volume 17: Maximum Likelihood of Misspecified Models:

Twenty Years Later, Edited by

Thomas B. Fomby and R. Carter Hill

Volume 18: Spatial and Spatiotemporal Econometrics,

Edited by J. P. LeSage and R. Kelley Pace

Volume 19: Applications of Artificial Intelligence in Finance

and Economics, Edited by

J. M. Binner, G. Kendall and S. H. Chen

ii



ADVANCES IN ECONOMETRICS VOLUME 20, PART A

ECONOMETRIC ANALYSIS
OF FINANCIAL AND

ECONOMIC TIME SERIES

EDITED BY

DEK TERRELL
Department of Economics, Louisiana State University,

Baton Rouge, LA 70803

THOMAS B. FOMBY
Department of Economics, Southern Methodist University,

Dallas, TX 75275

Amsterdam – Boston – Heidelberg – London – New York – Oxford

Paris – San Diego – San Francisco – Singapore – Sydney – Tokyo

iii



r 2006 Elsevier Ltd. All rights reserved.

This work is protected under copyright by Elsevier Ltd, and the following terms and conditions apply to its use:

Photocopying
Single photocopies of single chapters may be made for personal use as allowed by national copyright laws. Permission
of the Publisher and payment of a fee is required for all other photocopying, including multiple or systematic copying,
copying for advertising or promotional purposes, resale, and all forms of document delivery. Special rates are
available for educational institutions that wish to make photocopies for non-profit educational classroom use.

Permissions may be sought directly from Elsevier’s Rights Department in Oxford, UK: phone (+44) 1865 843830, fax
(+44) 1865 853333, e-mail: permissions@elsevier.com. Requests may also be completed on-line via the Elsevier
homepage (http://www.elsevier.com/locate/permissions).

In the USA, users may clear permissions and make payments through the Copyright Clearance Center, Inc., 222
Rosewood Drive, Danvers, MA 01923, USA; phone: (+1) (978) 7508400, fax: (+1) (978) 7504744, and in the UK
through the Copyright Licensing Agency Rapid Clearance Service (CLARCS), 90 Tottenham Court Road, London
W1P 0LP, UK; phone: (+44) 20 7631 5555; fax: (+44) 20 7631 5500. Other countries may have a local reprographic
rights agency for payments.

Derivative Works
Tables of contents may be reproduced for internal circulation, but permission of the Publisher is required for external
resale or distribution of such material. Permission of the Publisher is required for all other derivative works, including
compilations and translations.

Electronic Storage or Usage
Permission of the Publisher is required to store or use electronically any material contained in this work, including any
chapter or part of a chapter.

Except as outlined above, no part of this work may be reproduced, stored in a retrieval system or transmitted in any
form or by any means, electronic, mechanical, photocopying, recording or otherwise, without prior written permission
of the Publisher.

Address permissions requests to: Elsevier’s Rights Department, at the fax and e-mail addresses noted above.

Notice
No responsibility is assumed by the Publisher for any injury and/or damage to persons or property as a matter of
products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or
ideas contained in the material herein. Because of rapid advances in the medical sciences, in particular, independent
verification of diagnoses and drug dosages should be made.

First edition 2006

British Library Cataloguing in Publication Data
A catalogue record is available from the British Library.

ISBN-10: 0-7623-1274-2
ISBN-13: 978-0-7623-1274-0
ISSN: 0731-9053 (Series)

8 The paper used in this publication meets the requirements of ANSI/NISO Z39.48-1992 (Permanence of Paper).
Printed in The Netherlands.

ELSEVIER B.V.

Radarweg 29

P.O. Box 211

1000 AE Amsterdam,

The Netherlands

ELSEVIER Ltd

84 Theobalds Road

London

WC1X 8RR

UK

ELSEVIER Ltd

The Boulevard, Langford

Lane, Kidlington

Oxford OX5 1GB

UK

ELSEVIER Inc.

525 B Street, Suite 1900

San Diego

CA 92101-4495

USA

Working together to grow
libraries in developing countries

www.elsevier.com | www.bookaid.org | www.sabre.org

iv



CONTENTS

DEDICATION ix

LIST OF CONTRIBUTORS xi

INTRODUCTION
Dek Terrell and Thomas B. Fomby xiii

REMARKS BY ROBERT F. ENGLE III AND
SIR CLIVE W. J. GRANGER, KB

Given During Third Annual Advances in Econometrics
Conference at Louisiana State University, Baton
Rouge, November 5–7, 2004

GOOD IDEAS
Robert F. Engle III xix

THE CREATIVITY PROCESS
Sir Clive W. J. Granger, KB xxiii

PART I: MULTIVARIATE VOLATILITY MODELS

A FLEXIBLE DYNAMIC CORRELATION MODEL
Dirk Baur 3

A MULTIVARIATE SKEW-GARCH MODEL
Giovanni De Luca, Marc G. Genton and Nicola
Loperfido

33

v



SEMI-PARAMETRIC MODELING OF CORRELATION
DYNAMICS

Christian M. Hafner, Dick van Dijk and Philip Hans
Franses

59

A MULTIVARIATE HEAVY-TAILED DISTRIBUTION
FOR ARCH/GARCH RESIDUALS

Dimitris N. Politis 105

A PORTMANTEAU TEST FOR MULTIVARIATE
GARCH WHEN THE CONDITIONAL MEAN IS AN
ECM: THEORY AND EMPIRICAL APPLICATIONS

Chor-yiu Sin 125

PART II: HIGH FREQUENCY VOLATILITY MODELS

SAMPLING FREQUENCY AND WINDOW LENGTH
TRADE-OFFS IN DATA-DRIVEN VOLATILITY
ESTIMATION: APPRAISING THE ACCURACY OF
ASYMPTOTIC APPROXIMATIONS

Elena Andreou and Eric Ghysels 155

MODEL-BASED MEASUREMENT OF ACTUAL
VOLATILITY IN HIGH-FREQUENCY DATA

Borus Jungbacker and Siem Jan Koopman 183

NOISE REDUCED REALIZED VOLATILITY: A
KALMAN FILTER APPROACH

John P. Owens and Douglas G. Steigerwald 211

PART III: UNIVARIATE VOLATILITY MODELS

MODELING THE ASYMMETRY OF STOCK
MOVEMENTS USING PRICE RANGES

Ray Y. Chou 231

CONTENTSvi



ON A SIMPLE TWO-STAGE CLOSED-FORM
ESTIMATOR FOR A STOCHASTIC VOLATILITY IN A
GENERAL LINEAR REGRESSION

Jean-Marie Dufour and Pascale Valéry 259
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DEDICATION

Volume 20 of Advances in Econometrics is dedicated to Rob Engle and Sir

Clive Granger, winners of the 2003 Nobel Prize in Economics, for their

many valuable contributions to the econometrics profession. The Royal

Swedish Academy of Sciences cited Rob ‘‘for methods of analyzing eco-

nomic time series with time-varying volatility (ARCH),’’ while Clive was

cited ‘‘for methods of analyzing economic time series with common trends

(cointegration).’’ Of course, these citations are meant for public consump-

tion but we specialists in time-series analysis know their contributions go far

beyond these brief citations. Consider some of Rob’s other contributions to

our literature: Aggregation of Time Series, Band Spectrum Regression,

Dynamic Factor Models, Exogeneity, Forecasting in the Presence of Co-

integration, Seasonal Cointegration, Common Features, ARCH-M, Mul-

tivariate GARCH, Analysis of High Frequency Data, and CAViaR. Some

of Sir Clive’s additional contributions include Spectral Analysis of Eco-

nomic Time Series, Bilinear Time Series Models, Combination Forecasting,

Spurious Regression, Forecasting Transformed Time Series, Causality, Ag-

gregation of Time Series, Long Memory, Extreme Bounds, Multi-Cointe-

gration, and Non-linear Cointegration. No doubt, their Nobel Prizes are

richly deserved. And the 48 authors of the two parts of this volume think

likewise. They have authored some very fine papers that contribute nicely to

the same literature that Rob’s and Clive’s research helped build.

For more information on Rob’s and Clive’s Nobel prizes you can go to

the Nobel Prize website http://nobelprize.org/economics/laureates/2003/

index.html. In addition to the papers that are contributed here we are pub-

lishing remarks by Rob and Clive on the nature of innovation in econo-

metric research that were given during the Third Annual Advances in

Econometrics Conference at Louisiana State University in Baton Rouge,

November 5–7, 2004. We think you will enjoy reading their remarks. You

come away with the distinct impression that, although they may claim

they were ‘‘lucky’’ or ‘‘things just happened to fall in place,’’ having the

orientation of building models that solve practical problems has been an

orientation that has served them and our profession very well.
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We hope the readers of this two-part volume enjoy its contents. We feel

fortunate to have had the opportunity of working with these fine authors

and putting this volume together.

Thomas B. Fomby

Department of Economics

Southern Methodist University

Dallas, Texas 75275

Robert F. Engle III Sir Clive W. J. Granger, Knight’s designation (KB)

2003 Nobel Prize Winner

in Economics

2003 Nobel Prize Winner

in Economics

Dek Terrell

Department of Economics

Louisiana State University

Baton Rouge, Louisiana 70803
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INTRODUCTION

Dek Terrell and Thomas B. Fomby

The editors are pleased to offer the following papers to the reader in rec-

ognition and appreciation of the contributions to our literature made by

Robert Engle and Sir Clive Granger, winners of the 2003 Nobel Prize in

Economics. Please see the previous dedication page of this volume. This part

of Volume 20 of Advances in Econometric focuses on volatility models. The

contributions cover a variety of topics and are organized into three broad

categories to aid the reader. The first five papers focus broadly on multivari-

ate Generalised auto-regressive conditional heteroskedasticity (GARCH)

models. The first four papers propose new models that enhance existing

models, while the final paper proposes a test for multivariate GARCH in

the models with non-stationary variables. The next three papers examine

topics related to high frequency-data. The first of these papers compares

asymptotically mean square error (MSE)-equivalent sampling frequencies and

window lengths, while the other two papers in this group consider the prob-

lem of estimating volatility in the presence of microstructure noise. The last

five papers are contributions relevant primarily to univariate volatility mod-

els. Of course, we are also pleased to include Rob’s and Clive’s remarks on

their careers and their views on innovation in econometric theory and practice

that were given at the third annual Advances in Econometrics Conference

held at Louisiana State University, Baton Rouge, on November 5–7, 2004.

Let us briefly review the specifics of the papers presented here. Dirk

Baur’s ‘‘A Flexible Dynamic Correlation Model’’ proposes a new model

that parameterizes the conditional correlation matrix directly to ensure a

positive-definite covariance matrix. In the Flexible Dynamic Correlation

(FDC) model, the number of exogenous variables can be increased without

any risk of an indefinite covariance matrix and an extension, which allows

for asymmetric effects of shocks on the time-varying correlation. Simula-

tions are used to compare the performance of FDC to other models and an

empirical application uses FDC to model daily and monthly stock market

returns for Germany, Japan, the United Kingdom, and the United States.

xiii



Results reveal that correlations exhibit less persistence than variances in

returns to shocks. Correlations rise in response to jointly positive or neg-

ative shocks. However, jointly negative shocks do not appear to increase

correlations any more than jointly positive shocks.

In their paper ‘‘A Multivariate Skew-GARCH Model,’’ Giovanni De

Luca, Marc G. Genton, and Nicola Loperfido introduce a new GARCH

model based on the skew-normal distribution. The paper begins by de-

scribing the properties of the skew-normal distribution and integrating it

into the GARCH model. The paper then turns to an application using

returns computed from close to close prices for Dutch, Swiss, Italian, and

US markets. The authors note that the US return serves as a proxy for the

world news for the period between the closing and opening of the European

markets. Results suggest that the US return influences the mean, variance,

and higher moments of the European market returns.

Christian M. Hafner, Dick van Dijk, and Philip Hans Franses propose a

new semi-parametric model for conditional correlations in the paper ‘‘Semi-

parametric Modelling of Correlation Dynamics.’’ The number of parameters

expands very rapidly in many multivariate GARCH models with the number

of assets, which can make estimation intractable for large portfolios. One of

the greatest challenges for multivariate GARCH models is to create a flexible

formulation for correlations across assets that are tractable even for a large

number of assets. This paper attacks this problem by combining univariate

GARCH specifications for individual asset volatilities with nonparametric

kernel specifications for conditional correlations. The conditional correla-

tions are allowed to depend on exogenous factors, and nonparametric kernel

regressions are applied to each conditional correlation individually. An em-

pirical application to the 30 Dow Jones stocks provides an interesting test for

the model. Results reveal that the model performs well compared to par-

ametric Dynamic Conditional Correlation (DCC) models in constructing

minimum variance portfolios. Interestingly, this semi-parametric model re-

quired less time to estimate than simple DCC models with two parameters.

Dimitris Politis’ ‘‘A Multivariate Heavy-Tailed Distribution for ARCH/

GARCH Residuals’’ extends his earlier univariate work to propose a new

distribution for residuals in the multivariate GARCH setting. After review-

ing the properties of his proposed heavy-tailed distribution in the multi-

variate GARCH model, the paper suggests a procedure for maximum

likelihood estimation of the parameters. An empirical example using the

daily stock returns of IBM and Hewlett–Packard demonstrates the model

and finds that the bivariate results are substantially different from those

obtained from univariate models.

DEK TERRELL AND THOMAS B. FOMBYxiv



Chor-yiu Sin’s ‘‘A Portmanteau Test for Multivariate GARCH when the

Conditional Mean is ECM: Theory and Empirical Applications’’ addresses

the issue of testing for multivariate GARCH when the model includes non-

stationary variables. The paper first establishes that the Pormanteau test of

squared residuals is distributed asymptotically normal, even when the con-

ditional mean is an error correction model. Simulations are then used to

assess the performance of the test in samples of size 200, 400, and 800. The

test is then used to test for GARCH effects in both the yearly and quarterly

Nelson–Plosser datasets and for the intra-daily Hang Seng Index and its

derivatives. The results find substantial evidence of GARCH effects in most

of the data and suggest that other findings from these error correction

models may be sensitive to the omission of GARCH terms.

Empirical volatility estimates depend on the weighting scheme, sampling

frequency, and the window length. In their paper, ‘‘Sampling Frequency and

Window Length Trade-Offs in Data-Driven Volatility Estimation: Apprais-

ing the Accuracy of Asymptotic Approximations,’’ Elena Andreou and Eric

Ghysels focus on comparisons across different sampling frequencies and

window lengths. They focus on volatility filters using monthly, daily, and

intra-day observations in the context of a continuous time stochastic vol-

atility model. The paper first presents asymptotically MSE-equivalent one-

sided volatility filters for different sampling frequencies for both daily and

monthly benchmarks. Monte Carlo simulations are then used to assess the

accuracy of these asymptotic results for sample sizes and filters typically

used in empirical studies.

Borus Jungacker and Siem Jan Koopman’s ‘‘Model-Based Measurement

of Actual Volatility in High Frequency Data,’’ focuses on the problem of

measuring actual volatility in the presence of microstructure noise. The

paper first augments a basic stochastic volatility model to account for

microstructure noise and intra-daily volatility patterns. The paper then

turns to the problem of estimation, which is complicated due to the fact that

no closed form for the likelihood function exists. An importance sampling

approach is proposed to address these challenges and an application of the

model using three months of tick-by-tick data for IBM obtained from the

Trades and Quotes database is included to demonstrate the model. Results

indicate that models with microstructure noise lead to slightly lower vol-

atility estimates than those without microstructure noise.

John Owens and Douglas Steigerwald also focus on the problem of

microstructure noise in ‘‘Noise Reduced Realized Volatility: A Kalman

Filter Approach.’’ They propose using a Kalman filter to extract the latent

squared returns. The optimal smoother is infeasible because it requires
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knowledge of a latent stochastic volatility state variable. However, the paper

uses a rolling regression proxy for high-frequency volatility to create a fea-

sible Kalman smoothing algorithm. Simulation results reveal that the fea-

sible algorithm reduces the mean squared error of volatility, even in the

presence of time-varying volatility.

In his paper, ‘‘Modeling the Asymmetry of Stock Movements Using Price

Ranges,’’ Ray Chou introduces the Asymmetric Conditional Autoregressive

Range (ACARR) model. This model extends his earlier work modeling price

ranges to model the upward and downward range separately. Interestingly,

traditional GARCH software can easily be used to estimate the ACARR

model. The paper suggests several potential modifications to reduce sensi-

tivity to outliers and then turns to an empirical example using S&P 500 data

for 1962–2000. Focusing on the daily high/low range, daily return squared,

and absolute value of daily returns, the results show that the forecasted

volatility of ACARR dominates that of Conditional Autoregressive Range

(CARR). The paper closes with several potentially promising suggestions

for future research.

Although theoretically appealing, the number of empirical applications

using stochastic volatility models has been limited by the complexity of

estimation procedures required. In the paper ‘‘On a Simple Two-Stage

Closed-Form Estimator for a Stochastic Volatility in a General Linear Re-

gression,’’ Jean-Marie Dufour and Pascale Valéry propose a computation-

ally inexpensive estimator for the stochastic volatility model. After

estimating the conditional mean using ordinary least squares, the param-

eters of the stochastic volatility model are estimated using a method-of-

moments estimator based on three moments. This two-stage three moment

(2S–3M) estimator takes less than a second to compute, compared to the

several hours it often takes for generalized method of moments estimators to

converge. Under general regularity conditions, the 2S–3M estimator is as-

ymptotically normal and simulation results from the paper suggest that the

estimator performs well in small samples. The paper concludes with an

application of the estimator using daily data for the Standard and Poors

Composite Price Index.

In their paper, ‘‘The Student’s t Dynamic Linear Regression: Re-exam-

ining Volatility Modeling,’’ Maria S. Heracleous and Aris Spanos propose

an alternative volatility model. The paper begins by using the Probabilistic

Reduction approach to derive the Student’s t Dynamic Linear Regression

(St-DLR). The paper then compares the properties of the St-DLR to those

of typical GARCH models and discusses how the St-DLR addresses key

issues in the literature. After discussing estimation of the St-DLR model, the

DEK TERRELL AND THOMAS B. FOMBYxvi



paper turns to an example of modeling daily Dow Jones returns in the

St-DLR model with the three-month Treasury Bill rate included as an

exogenous variable. The empirical results and specification test favor the

St-DLR over GARCH models estimated for comparison.

In the paper, ‘‘ARCH Models for Multi-period Forecast Uncertainty – A

Reality Check Using a Panel of Density Forecasts,’’ Kajal Lahiri and

Fushang Liu compare forecast uncertainty of the Survey of Professional

Forecasters (SPF) to that predicted by time series models. The paper first

focuses on the problem of accurately measuring the uncertainty of survey

forecasts by building a model that addresses both the average forecast error

variance and the disagreement across forecasters. The paper then compares

the survey measures of forecast uncertainty to those from variants of the

GARCH and VAR-GARCH models. Results indicate that the survey un-

certainty is similar to that of GARCH models during periods of stable

inflation, but tend to diverge during periods of structural change.

Peter A. Zadrozny’s ‘‘Necessary and Sufficient Restrictions for Existence

of a Unique Fourth Moment of a Univariate GARCH(p,q) Process’’ ad-

dresses an interesting question that has received substantial attention over

the years. His paper proves that an eigenvalue restriction is a necessary and

sufficient condition for the existence of a unique 4th moment of the un-

derlying variable of a univariate GARCH process. The approach leads to an

inequality restriction that is easy to compute for low-dimensional GARCH

processes. The final section of the paper illustrates the approach by com-

puting the restrictions for several models in the literature.

Introduction xvii
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GOOD IDEAS

Robert F. Engle III

The Nobel Prize is given for good ideas–very good ideas. These ideas often

shape the direction of research for an academic discipline. These ideas are

often accompanied by a great deal of work by many researchers.

Most good ideas don’t get prizes but they are the centerpieces of our

research and our conferences. At this interesting Advances in Econometrics

conference hosted by LSU, we’ve seen lots of new ideas, and in our careers

we have all had many good ideas. I would like to explore where they come

from and what they look like.

When I was growing up in suburban Philadelphia, my mother would

sometimes take me over to Swarthmore College to the Physics library. It was

a small dusty room with windows out over a big lawn with trees. The books

cracked when I opened them; they smelled old and had faded gold letters on

the spine. This little room was exhilarating. I opened books by the famous

names in physics and read about quantum mechanics, elementary particles

and the history of the universe. I didn’t understand too much but kept piecing

together my limited ideas. I kept wondering whether I would understand these

things when I was older and had studied in college or graduate school.

I developed a love of science and the scientific method. I think this is why I

studied econometrics; it is the place where theory meets reality. It is the place

where data on the economy tests the validity of economic theory.

Fundamentally I think good ideas are simple. In Economics, most ideas

can be simplified until they can be explained to non-specialists in plain

language. The process of simplifying ideas and explaining them is extremely

important. Often the power of the idea comes from simplification of a col-

lection of complicated and conflicting research. The process of distilling out

the simple novel ingredient is not easy at all and often takes lots of fresh

starts and numerical examples. Discouragingly, good ideas boiled down to

their essence may seem trivial. I think this is true of ARCH and Cointe-

gration and many other Nobel citations. But, I think we should not be
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offended by this simplicity, but rather we should embrace it. Of course it is

easy to do this after 20 years have gone by; but the trick is to recognize good

ideas early. Look for them at seminars or when reading or refereeing or

editing.

Good ideas generalize. A good idea, when applied to a new situation,

often gives interesting insights. In fact, the implications of a good idea may

be initially surprising. Upon reflection, the implications may be of growing

importance. If ideas translated into other fields give novel interpretations to

existing problems, this is a measure of their power.

Often good ideas come from examining one problem from the point of

view of another. In fact, the ARCH model came from such an analysis. It

was a marriage of theory, time series and empirical evidence. The role of

uncertainty in rational expectations macroeconomics was not well devel-

oped, yet there were theoretical reasons why changing uncertainty could

have real effects. From a time series point of view a natural solution to

modeling uncertainty was to build conditional models of variance rather

than the more familiar unconditional models. I knew that Clive’s test for

bilinearity based on the autocorrelation of squared residuals was often sig-

nificant in macroeconomic data, although I suspected that the test was also

sensitive to other effects such as changing variances. The idea for the ARCH

model came from combining these three observations to get an autoregres-

sive model of conditional heteroskedasticity.

Sometimes a good idea can come from attempts to disprove proposals of

others. Clive traces the origin of cointegration to his attempt to disprove a

David Hendry conjecture that a linear combination of the two integrated

series could be stationary. From trying to show that this was impossible,

Clive proved the Granger Representation theorem that provides the fun-

damental rationale for error correction models in cointegrated systems.

My first meeting in Economics was the 1970 World Congress of the

Econometric Society in Cambridge England. I heard many of the famous

economists of that generation explain their ideas. I certainly did not un-

derstand everything but I wanted to learn it all. I gave a paper at this

meeting at a session organized by Clive that included Chris Sims and

Phoebus Dhrymes. What a thrill. I have enjoyed European meetings of the

Econometric Society ever since.

My first job was at MIT. I had a lot of chances to see good ideas; par-

ticularly good ideas in finance. Myron Scholes and Fischer Black were

working on options theory and Bob Merton was developing continuous

time finance. I joined Franco Modigliani and Myron on Michael Brennan’s

dissertation committee where he was testing the CAPM. Somehow I missed

ROBERT F. ENGLE IIIxx



the opportunity to capitalize on these powerful ideas and it was only many

years later that I moved my research in this direction.

I moved to UCSD in 1976 to join Clive Granger. We studied many fas-

cinating time series problems. Mark Watson was my first PhD student at

UCSD. The ARCH model was developed on sabbatical at LSE, and when I

returned, a group of graduate students contributed greatly to the develop-

ment of this research. Tim Bollerslev and Dennis Kraft were among the first,

Russ Robins and Jeff Wooldridge and my colleague David Lilien were

instrumental in helping me think about the finance applications. The next 20

years at UCSD were fantastic in retrospect. I don’t think we knew at the

time how we were moving the frontiers in econometrics. We had great

visitors and faculty and students and every day there were new ideas.

These ideas came from casual conversations and a relaxed mind. They

came from brainstorming on the blackboard with a student who was look-

ing for a dissertation topic. They came from ‘‘Econometrics Lunch’’ when

we weren’t talking about gossip in the profession. Universities are incuba-

tors of good ideas. Our students come with good ideas but they have to be

shaped and interpreted. Our faculties have good ideas, which they publish

and lecture on around the world. Our departments and universities thrive on

good ideas that make them famous places for study and innovation. They

also contribute to spin-offs in the private sector and consulting projects.

Good ideas make the whole system work and it is so important to recognize

them in all their various forms and reward them.

As a profession we are very protective of our ideas. Often the origin of the

idea is disputable. New ideas may have only a part of the story that eventually

develops; who gets the credit? While such disputes are natural, it is often

better in my opinion to recognize previous contributions and stand on their

shoulders thereby making your own ideas even more important. I give similar

advice for academics who are changing specialties; stand with one foot in the

old discipline and one in the new. Look for research that takes your successful

ideas from one field into an important place in a new discipline.

Here are three quotations that I think succinctly reflect these thoughts.

� ‘‘The universe is full of magical things, patiently waiting for our wits to grow

sharper’’

Eden Philpotts
� ‘‘To see what is in front of one’s nose requires a constant struggle.’’

George Orwell
� ‘‘To select well among old things is almost equal to inventing new ones’’

Nicolas Charles Trublet
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There is nothing in our chosen career that is as exhilarating as having a

good idea. But a very close second is seeing someone develop a wonderful

new application from your idea. The award of the Nobel Prize to Clive and

me for our work in time series is an honor to all of the authors who con-

tributed to the conference and to this volume. I think the prize is really given

to a field and we all received it. This gives me so much joy. And I hope that

someone in this volume will move forward to open more doors with pow-

erful new ideas, and receive her own Nobel Prize.

Robert F. Engle III

Remarks Given at Third Annual Advances in Econometrics Conference

Louisiana State University

Baton Rouge, Louisiana

November 5–7, 2004
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THE CREATIVITY PROCESS

Sir Clive W. J. Granger, KB

In 1956, I was searching for a Ph.D. topic and I selected time series analysis

as being an area that was not very developed and was potentially interesting.

I have never regretted that choice. Occasionally, I have tried to develop

other interests but after a couple of years away I would always return to

time series topics where I am more comfortable.

I have never had a long-term research topic. What I try to do is to develop

new ideas, topics, and models, do some initial development, and leave the

really hard, rigorous stuff to other people. Some new topics catch on quickly

and develop a lot of citations (such as cointegration), others are initially

ignored but eventually become much discussed and applied (causality, as I

call it), some develop interest slowly but eventually deeply (fractionally in-

tegrated processes), some have long term, steady life (combination of fore-

casts), whereas others generate interest but eventually vanish (bilinear

models, spectral analysis).

The ideas come from many sources, by reading literature in other fields,

from discussions with other workers, from attending conferences (time dis-

tance measure for forecasts), and from general reading. I will often attempt

to take a known model and generalize and expand it in various ways. Quite

frequently these generalizations turn out not to be interesting; I have several

examples of general I(d) processes where d is not real or not finite. The

models that do survive may be technically interesting but they may not

prove useful with economic data, providing an example of a so-called

‘‘empty box,’’ bilinear models, and I(d), d non-integer could be examples.

In developing these models one is playing a game. One can never claim

that a new model will be relevant, only that it might be. Of course, when

using the model to generate forecasts, one has to assume that the model is

correct, but one must not forget this assumption. If the model is correct,

the data will have certain properties that can be proved, but it should always
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be remembered that other models may generate the same properties,

for example I(d), d a fraction, and break processes can give similar ‘‘long

memory’’ autocorrelations. Finding properties of data and then suggesting

that a particular model will have generated the data is a dangerous game.

Of course, once the research has been done one faces the problem of

publication. The refereeing process is always a hassle. I am not convinced

that delaying an interesting paper (I am not thinking of any of my own here)

by a year or more to fix a few minor difficulties is actually helping the

development of our field. Rob and I had initial rejections of some of our best

joint papers, including the one on cointegration. My paper on the typical

spectral shape took over three and a half years between submission and

publication, and it is a very short paper.

My favorite editor’s comment was that ‘‘my paper was not very good

(correct) but is was very short,’’ and as they just had that space to fill they

would accept. My least favorite comment was a rejection of a paper with

Paul Newbold because ‘‘it has all been done before.’’ As we were surprised

at this we politely asked for citations. The referee had no citations, he just

thought that must have been done before. The paper was published else-

where.

For most of its history time series theory considered conditional means,

but later conditional variances. The next natural development would be

conditional quantiles, but this area is receiving less attention than I expect-

ed. The last stages are initially conditional marginal distributions, and fi-

nally conditional multivariate distributions. Some interesting theory is

starting in these areas but there is an enormous amount to be done.

The practical aspects of time series analysis are rapidly changing with

improvements in computer performance. Now many, fairly long series can

be analyzed jointly. For example, Stock and Watson (1999) consider over

200 macro series. However, the dependent series are usually considered in-

dividually, whereas what we are really dealing with is a sample from a 200-

dimensional multivariate distribution, assuming the processes are jointly

stationary. How to even describe the essential features of such a distribu-

tion, which is almost certainly non-Gaussian, in a way that is useful to

economists and decision makers is a substantial problem in itself.

My younger colleagues sometimes complain that we old guys solved all

the interesting easy questions. I do not think that was ever true and is not

true now. The higher we stand the wider our perspective; I hope that Rob

and I have provided, with many others, a suitable starting point for the

future study in this area.

SIR CLIVE W. J. GRANGER, KBxxiv
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A FLEXIBLE DYNAMIC

CORRELATION MODEL

Dirk Baur

ABSTRACT

Existing multivariate generalized autoregressive conditional heteroske-

dasticity (GARCH) models either impose strong restrictions on the

parameters or do not guarantee a well-defined (positive-definite)

covariance matrix. I discuss the main multivariate GARCH models and

focus on the BEKK model for which it is shown that the covariance and

correlation is not adequately specified under certain conditions. This

implies that any analysis of the persistence and the asymmetry of the

correlation is potentially inaccurate. I therefore propose a new Flexible

Dynamic Correlation (FDC) model that parameterizes the conditional

correlation directly and eliminates various shortcomings. Most impor-

tantly, the number of exogenous variables in the correlation equation can

be flexibly augmented without risking an indefinite covariance matrix.

Empirical results of daily and monthly returns of four international stock

market indices reveal that correlations exhibit different degrees of

persistence and different asymmetric reactions to shocks than variances.

In addition, I find that correlations do not always increase with jointly

negative shocks implying a justification for international portfolio

diversification.
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1. INTRODUCTION

The knowledge of the time-varying behavior of correlations and covariances

between asset returns is an essential part in asset pricing, portfolio selection

and risk management. Whereas unconditional correlations can easily be

estimated, this is not true for time-varying correlations. One approach to

estimate conditional covariances and correlations is within a multivariate

GARCH model. Other approaches as a moving average specification for the

covariances and the variances provide estimates for time-varying correla-

tions but do not parameterize the conditional correlations directly.

Interestingly, studies comparing the existing multivariate GARCH models

are rare in relation to the existing studies that compare univariate time-

varying volatility models (see Engle & Ng, 1993, Pagan & Schwert, 1990

among others). For multivariate GARCH models, there are studies of

Bauwens, Laurent, and Rombouts (2005), Engle (2002); Engle and

Sheppard (2001) and Kroner and Ng (1998). While Kroner and Ng (1998)

compare the main existing models within an empirical analysis, Engle (2002)

and Engle and Sheppard (2001) use Monte-Carlo simulations to analyze

different models with a focus on the Dynamic Conditional Correlation

(DCC) estimator. The study of Bauwens et al. (2005) is the only real survey

and includes almost all existing multivariate GARCH models.

The first multivariate GARCH model is proposed by Bollerslev, Engle,

and Wooldridge (1988). This model uses the VECH operator and is thus

referred to as the VECH model. It does not guarantee a positive-definite

covariance matrix and the number of parameters is relatively large. Baba,

Engle, Kroner, and Kraft (1991) proposed a multivariate GARCH model,

called BEKK (named after the authors), that guarantees the positive

definiteness of the covariance matrix.1 Interestingly, it seems that even

restricted versions of the BEKK model have too many parameters since

commonly only bivariate models are estimated (see Bekaert & Wu, 2000;

Engle, 2002; Karolyi & Stulz, 1996; Kroner & Ng, 1998; Longin & Solnik,

1995; Ng, 2000). In addition, I am not aware of any multivariate GARCH

model that is estimated with a higher lag order than GARCH(1,1).

The Constant Correlation Model (CCM) of Bollerslev (1990) does also

circumvent the problem of possible non-positive definiteness of the

covariance matrix but is restricted since it does not allow correlations to

be time varying.

Asymmetric extensions of the existing models are introduced by Kroner

and Ng (1998) who proposed the general asymmetric dynamic covariance

(ADC) model that nests the VECH, the Factor GARCH, the BEKK model
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and the CCM.2 An asymmetric version of the DCC model is proposed by

Cappiello, Engle, and Sheppard (2002).

Tse and Tsui (2002) proposed a new multivariate GARCH model that

parameterizes the conditional correlation directly by using the empirical

correlation matrix and Engle (2002) suggested a time-varying correlation

model, called DCC that also parameterizes the conditional correlation

directly and enables a two-stage estimation strategy. The Flexible Dynamic

Correlations (FDC) estimator suggested in this paper also specifies the

conditional correlation directly, but is only a bivariate model. However, in

its bivariate form, it is shown to be the most flexible.

The remainder of this paper is as follows: Section 2 discusses the main

multivariate GARCH models and focusses on the full and restricted BEKK

model and its asymmetric extensions. I also discuss the CCM of Bollerslev

(1990) and use this model as a benchmark to analyze the effect of the

estimation of time-varying correlations on volatility estimates. The

discussion of existing multivariate GARCH models is less complete as in

Bauwens et al. (2005) and focusses on additional aspects such as the

interpretation of the parameters and potential bias of these parameters due

to opposed restrictions in order to guarantee a positive-definite covariance

matrix. Section 2.6 introduces the FDC Model. Section 3 presents results of

Monte-Carlo simulations for a selection of the discussed models. Section 4

shows the estimation results of the FDC model and the diagonal BEKK

model for daily and monthly data and focusses on the persistence and the

asymmetry of time-varying correlations. Finally, Section 5 concludes.

2. EXISTING MULTIVARIATE GARCH MODELS

Extending the univariate GARCH model to a n-dimensional multivariate

model requires the estimation of n different mean and corresponding

variance equations and ðn2 � nÞ
�

2 covariance equations. I use a simple

specification for the mean equation since our interest is the time-varying

covariance matrix. Thus, returns are modelled as follows:

rt ¼ mþ �t; �t j Ot�1 � N 0;H tð Þ (1)

where rt is a vector of appropriately defined returns and m a (N� 1) vector of

parameters that estimates the mean of the return series. The residual vector

is �t with the corresponding conditional covariance matrix Ht given the

available information set Ot�1.
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2.1. The VECH Model

The equivalent to a univariate GARCH(1,1) model is given as follows:3

vech H tð Þ ¼ Oþ Avech �t�1�
0
t�1

� �

þ Bvech H t�1ð Þ (2)

where H t is the time-varying (N�N) covariance matrix, O denotes an

(N�N)ðNðN þ 1Þ=2� 1Þ vector and A and B are ðNðN þ 1Þ=2�NðN þ
1Þ=2Þ matrices. The VECH operator stacks the lower portion of an ðN �NÞ
symmetric matrix as an ðNðN þ 1Þ=2� 1Þ vector which can be done since the

covariance matrix is symmetric by definition. In the bivariate VECH model,

the matrices are all ð3� 3Þ matrices thus leading to 27 parameters to be

estimated.

h11;t

h12;t

h22;t

0

B

B

@

1

C

C

A

¼ Oþ

a11 a12 a13

a21 a22 a23

a31 a32 a33

0

B

B

@

1

C

C

A

�21;t�1

�t�1�2;t�1

�22;t�1

0

B

B

@

1

C

C

A

þ

b11 b12 b13

b21 b22 b23

b31 b32 b33

0

B

B

@

1

C

C

A

h11;t�1

h12;t�1

h22;t�1

0

B

B

@

1

C

C

A

ð3Þ

The diagonal VECH model reduces the number of parameters by

using diagonal matrices A and B: However, even for this special case a

positive-definite covariance matrix is not guaranteed.4 Hence, I do not

present this model in its asymmetric extension and dispense with a

discussion.

2.2. The BEKK Model

The BEKK model was introduced by Baba et al. (1991) and can be seen as

an improvement to the VECH model (introduced by Bollerslev et al., 1988).

First, the number of parameters is reduced and second, the positive

definiteness of the covariance matrix is guaranteed.

I initially present the full (unrestricted) BEKK model and its asymmetric

extension and then restrict this model to the diagonal BEKK.5

The covariance matrix of the unrestricted BEKK model is

H t ¼ A0Aþ B0�t�1�
0
t�1Bþ C0H t�1C (4)
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A, B and C are matrices of parameters with appropriate dimensions. It is

obvious from the equation above that the covariance matrix is guaranteed

to be positive definite as long as A0A is positive definite. Furthermore, the

parameters are squared or cross-products of themselves leading to variance

and covariance equations without a univariate GARCH counterpart (see

also Eq. (7)). Note that this is not true for the diagonal VECH model which

is a simple extension of univariate GARCH models to a multivariate form.

The asymmetric extension of this model introduced by Kroner and Ng

(1998) bases on the univariate asymmetric GARCH model proposed by

Glosten, Jagannathan, and Runkle (1993). Here, the covariance matrix is

given as follows:

H t ¼ A0Aþ B0�t�1�
0
t�1Bþ C0H t�1C þD0Zt�1Z

0
t�1D (5)

where Zi;t ¼ minf�i;t; 0g and Zt ¼ ðZ1;t; Z2;t; ::: Þ0: Thus, this extension can

capture asymmetric effects of shocks by additionally including negative

shocks and still guarantees the positive definiteness of the covariance matrix.

To clarify the difficulties in interpreting the parameters of the covariance

matrix, I consider the general BEKK model in bivariate form. h11;t and h22;t
denote the conditional variances of the underlying return series and h12;t is

their covariance:

h11;t h12;t

h21;t h22;t

 !

¼ A0Aþ
b11 b21

b12 b22

 !

�21;t�1 �t�1�2;t�1

�1;t�1�2;t�1 �22;t�1

0

@

1

A

b11 b12

b21 b22

 !

þ
c11 c21

c12 c22

 !

h11;t�1 h12t�1

h12;t�1 h22;t�1

 !

c11 c12

c21 c22

 !

ð6Þ

Without using matrices (see Eq. (6) above), I get the following form:

h11;t ¼ a211 þ b211�
2
1;t�1 þ 2b11b21�1;t�1�2;t�1 þ b221�

2
2;t�1 þ c211h11;t�1

þ 2c11c21h12;t�1 þ c221h22;t�1

h12;t ¼ a12a11 þ b11b12�
2
1;t�1 þ ðb12b21 þ b11b22Þ�1;t�1�2;t�1 þ b21b22�

2
2;t�1

þ c11c12h11;t�1 þ ðc12c21 þ c11c22Þh12;t�1 þ c21c22h22;t�1 ¼ h21;t

h22;t ¼ a212 þ a222 þ b212�
2
2;t�1 þ 2b12b22�1;t�1�2;t�1 þ b222�

2
2;t�1 þ c212h11;t�1

þ 2c12c22h12;t�1 þ c222h22;t�1 ð7Þ

The latter formulation clarifies that even for the bivariate model the

interpretation of the parameters may be misleading since there is no

equation that does exclusively possess its own parameters, i.e. parameters
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that exclusively govern an equation. Hence, it is possible that a parameter

estimate is biased by the fact that it influences two equations simultaneously

or by the sole number of regressors (see also Tse, 2000). For example, the

regressors �22;t�1 and the regressor h22;t�1 in the first variance equation (h11;t)

could both be viewed as a volatility spillover from the second return. In

addition, the statistical significance of the parameters is also unclear due to

the combinations of different parameters serving as new coefficients for

particular regressors.

These critics do not all apply to the diagonal BEKK model where both

parameter matrices are diagonal. Thus, the off-diagonal elements are all

equal to zero (apart from the constant term A0A). The number of parameters

to be estimated is significantly lower while maintaining the main advantage

of this specification, the positive definiteness of the conditional covariance

matrix. The diagonal BEKK model is given by the following equations:

h11;t ¼ a211 þ b211�
2
1;t�1 þ c211h11;t�1

h22;t ¼ a211 þ a222 þ b222�
2
2;t�1 þ c222h22;t�1

h12;t ¼ h21;t ¼ a11a22 þ b11b22�1;t�1�2;t�1 þ c11c22h12;t�1

h21;t ¼ h12;t ð8Þ

This model exhibits essentially the same problems as the Full BEKK

model since there is no parameter in any equation that exclusively governs a

particular covariance equation. Hence, it is not clear whether the parameters

for h12 are just the result of the parameter estimates for h11 and h22 or if the

covariance equation alters the parameter estimates of the variance

equations. In addition, the model is not very flexible and can therefore be

misspecified. For example, assuming that the persistence of the volatility is

relatively high for both return series, say b2ii þ c2ii ¼ 0:05þ 0:90 ¼ 0:95 for

i ¼ 1; 2; then the persistence of the covariance must be equally high, biibjj þ
ciicjj ¼ 0:05þ 0:9 ¼ 0:95 for i ¼ 1 and j ¼ 2: However, if the covariance

exhibits a different degree of persistence than the volatilities, it is clear that

either the volatility or the covariance process is misspecified.

2.3. Dynamic Correlation Models

While the previously discussed models parameterize the covariance directly,

we now briefly discuss the existing models that parameterize the correlation

process directly. Tse and Tsui (2002)6 assume that the time-varying
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conditional correlation matrix Gt is given as follows:

Gt ¼ ð1� y1 � y2ÞGþ y1Gt�1 þ y2Ct�1 (9)

where G is an unconditional K � K correlation matrix and Ct�1 is a K � K

matrix that contains lagged cross-sectional observations of the underlying

returns rt.

The parameters y1 and y2 are assumed to be non-negative and must also

satisfy y1 þ y2 � 1: Since Gt is a weighted average of G; Gt�1 and Ct�1; it is
positive definite if its elements are positive definite. Of course, the model

performance also depends on the specification of Ct�1: In addition, it has to

be noted that y1 and y2 have to be restricted in the optimization process and

that the evolution of small and large correlation matrices only depends on

two parameters.

Engle (2002) makes essentially use of the same model but specifies Ct�1 as

zt�1z
0
t�1 where zt are standardized residuals of the underlying returns. Engle

(2002) additionally shows that a two-step estimation strategy is feasible. In

the first step, the variances are estimated univariate and in the second step,

the correlation processes are estimated. Again, even large correlation

matrices do only depend on two parameters.

2.4. Constant Correlation Model and Zero Correlation Model

In order to test whether the estimates of the parameters in the conditional-

variance matrix are robust with respect to the correlation assumption (see

Tse, 2000) I also analyze the CCM of Bollerslev (1990) and a restricted

version with a correlation coefficient of zero, i.e. Zero Correlation Model

(ZCM).

The bivariate CCM is given by

h11;t ¼ a11 þ b11�
2
1;t�1 þ c11h11;t�1

h22;t ¼ a22 þ b22�
2
2;t�1 þ c22h22;t�1

h12;t ¼ r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h11;th22;t
p

h21;t ¼ h12;t ð10Þ

where r is a parameter that can be estimated almost freely (r must be in the

range ½�1; 1�) and is equal to the empirical correlation coefficient (see

Bollerslev, 1990). In contrast to the BEKK model there is one parameter (r)

in the CCM that exclusively governs the covariance equation. Note that the

CCM exhibits time-varying covariances but only constant correlations.7
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Setting r to zero implies a model that is called the ZCM. I will use both the

CCM and the ZCM to analyze how the modelling of the covariances affects

the variance estimates.

2.5. Asymmetric Extensions

While it is straightforward in the diagonal BEKKModel to analyze whether

the covariance exhibits the same degree of persistence as the variances, the

relevant parameter estimates measuring the persistence of shocks are

potentially influenced by each other leading to biased parameter estimates.

This is also true for the full BEKK Model and possibly more severe due to

the larger number of parameters. The same problem arises for

the asymmetric extensions of the models. To illustrate this, I analyze the

asymmetric extensions proposed by Kroner and Ng (1998) and focus on the

diagonal BEKK model.

The following asymmetric covariance equations for the bivariate case

within the full BEKK model are:

h11;t ¼ . . .þ d2
11Z

2
1;t�1 þ 2d11d21Z1;t�1Z2;t�1 þ d2

21Z
2
2;t�1

h22;t ¼ . . .þ d2
12Z

2
1;t�1 þ 2d12d22Z1;t�1Z2;t�1 þ d2

22Z
2
2;t�1

h12;t ¼ . . .þ d11d12Z
2
1;t�1 þ ðd12d21 þ d11d22ÞZ1;t�1Z2;t�1 þ d21d22Z

2
2;t�1 ð11Þ

where Zi;t ¼ minf�i;t; 0g and Zt ¼ ðZ1;t; Z2;t; . . . Þ0: Eq. (11) shows that the

number of parameters and its combinations render an interpretation of any

asymmetry of the impact of shocks on the conditional (co-)variance difficult.

For the diagonal BEKK model (see Eq. (8)) the asymmetric extension is

h11;t ¼ . . .þ d2
11Z

2
1;t�1

h22;t ¼ . . .þ d2
22Z

2
2;t�1

h12;t ¼ . . .þ d11d22Z1;t�1Z2;t�1 ð12Þ

where Zi;t ¼ minf�i;t; 0g and Zt ¼ ðZ1;t; Z2;t; . . . Þ0:
Here, the covariance reacts to negative shocks Zi;t as determined by the

asymmetry implied by the variance equations or vice versa. For example,

assuming that variance h11 does not react asymmetrically to positive and

negative shocks (d11 ¼ 0) and variance h22 does (d22 ¼ 0:2), the asymmetric

effect for the covariance would be zero (d11d22 ¼ 0). Consequently, if there

is an asymmetric effect of the covariance, either the variance equation or the

covariance equation will be misspecified. Another example is the case where
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the asymmetry of the covariance is equal to 0.2. Then, the parameters d11 or

d22 would have to be very large to capture this covariance asymmetry (e.g.

d11 ¼ d22 ¼
ffiffiffiffiffiffiffi

0:2
p

).8 This problem is potentially more severe in the full

BEKK model.

The asymmetric extension of the CCM (see Eq. (10)) introduced by

Kroner and Ng (1998) has the variance equations of the diagonal BEKK

model and the covariance equation as given in the original model. Again,

this model could be used as a benchmark to analyze how variance estimates

change when correlations are modelled time varying. This question is

further examined in the simulation study in Section 3. Cappiello et al. (2002)

develop an asymmetric version of the DCC model of Engle (2002).

The next section introduces a new bivariate model that reduces the

number of parameters compared to the full BEKK model and extends the

flexibility compared to the other multivariate GARCH models.

2.6. Flexible Dynamic Correlations (FDC)

I propose a new bivariate model that is more flexible than the models

discussed and also parameterizes the conditional correlations directly.9

I write the covariance matrix H t in the following form:

H t ¼ DtRtDt (13)

where Dt is a diagonal matrix with the roots of the variances on the main

diagonal and Rt is a correlation matrix. In the bivariate case, the correlation

matrix Rt is

Rt ¼
1 rt

rt 1

 !

(14)

with rt denoting the correlation between two series. H t is positive definite if

Rt is positive definite. This is guaranteed as long as jrtjo1: Thus I restrict
jrtj to be smaller than 1 by using the following transformation:

r%

t ¼ rt
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ r2t
p (15)

where r%

t is the correlation restricted to lie in the interval ð�1; 1Þ: This
restriction allows the use of own parameters for the correlation (covariance)

equation and to include additional regressors without risking semi-definite

or indefinite covariance matrices.
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Tsay (2002) uses the same idea but restricts rt by a Fisher transformation

as follows:

r%

t ¼ expðrtÞ � 1

expðrtÞ þ 1
(16)

However, Tsay does not evaluate the performance of this estimator as is

done in Section 3. Furthermore, I also present evidence that the Fisher

transformation is more restrictive and thus less adequate than the

transformation proposed in Eq. (15).

The FDC model is specified by the following equations:10

h11;t ¼ a11 þ b11�
2
1;t�1 þ c11h11;t�1

h22;t ¼ a22 þ b22�
2
2;t�1 þ c22h22;t�1

rt ¼ a12 þ b12�1;t�1�2;t�1 þ c12rt�1

r%

t ¼ rt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðrtÞ2
q

h12;t ¼ r%

t �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h11;th22;t
p

ð17Þ

The FDC model is a dynamic correlation model since r%

t is a time-varying

process. The covariance does possess its own parameters and the covariance

matrix is always guaranteed to be positive definite. The model allows to

assess the degree of persistence and to compare this persistence with the

volatility persistence.

Apart from using the cross product �1;t�1�2;t�1 to model the correlation

equation (see Eq. (17)), I additionally use the cross product of the

standardized residuals z1;t�1 and z2;t�1 in order to analyze the different

behavior of the correlation process.11 Tse (2000) points out that there is no

a priori reason to expect the standardized residuals to be a better

specification. However, it can be argued that the use of zt is a more natural

specification for the conditional correlations (e.g. see Engle, 2002; Tse,

2000). I refer to the model using the raw residuals �t as FDC� (see Eq. (17))

and to the model using the standardized residuals zt as FDCz: The

correlation equation for the FDCz model is given by

rt ¼ a12 þ b12z1;t�1z2;t�1 þ c12rt�1 (18)

The next subsection demonstrates the potential extensions of the FDC

model including asymmetries.
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2.7. Extensions of the FDC Model

An extension of the presented FDC models can also capture asymmetric

effects of the time-varying correlation. Thus, h11 and h22 and r are specified

as follows:

h11;t ¼ a11 þ b11�
2
1;t�1 þ c11h11;t�1 þ d11Z

2
1;t�1

h22;t ¼ a22 þ b22�
2
2;t�1 þ c22h22;t�1 þ d22Z

2
2;t�1

rt ¼ a12 þ b12�1;t�1�2;t�1 þ c12rt�1 þ d12Z1;t�1Z2;t�1 ð19Þ

Again, Zi;t ¼ minf�i;t; 0g with Zt containing only the negative shocks of the

returns at t: One important feature of the FDC model is that it does not

require similar variance and correlation equations as this is necessary for

many other multivariate GARCH models. For example, the FDC model is

well defined (does not risk an indefinite covariance matrix) even if the

variance equations are specified without any asymmetric regressors and the

asymmetry is only modelled in the correlation equation. This feature can

also be used to include additional regressors (e.g. thresholds or spillover

effects) in the correlation equation without risking an indefinite covariance

matrix. For example, the conditional correlation equation could also be

specified as follows (independently of the variance equations):

rt ¼ a12 þ b12�1;t�1�2;t�1 þ c12rt�1 þ d12Z1;t�1Z2;t�1 þ d%

12X (20)

where d%

12 is a vector capturing the effect of the matrix X of exogenous

variables.

It should also be noted that the parameter b12 in Eq. (20) captures all

possible combinations of shocks: two positive shocks, two negative shocks

and shocks of opposite signs. Hence, this parameter contains more

information than the ARCH parameter in an original univariate GARCH

model. However, the FDC model would offer the possibility to estimate the

different impact of shocks on their joint conditional correlation.

Essentially, the FDC model is different from the other models since the

correlation matrix need not be a weighted average of positive-definite

matrices. Thus, the model is more flexible.

2.8. Estimation

The estimation of the models based on a sample of T observations of the

return vector rt is done through numerical maximization of a likelihood
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function by using the BHHH algorithm of Berndt, Hall, Hall, and Hausman

(1974) and by assuming normally distributed returns:

logLðy; r1; . . . ; rT Þ ¼ �T=2 log ð2pÞ � 1=2 log ðjH tjÞ � 1=2�0tH
�1
t �t (21)

By using H t ¼ DtRtDt; I can write the above likelihood function also as

log Lð:Þ ¼ �1=2
X

t

n log 2pð Þ þ 2 log jDtj þ log jRtj þ z0tR
�1
t zt

� �

(22)

This separation shows that a two-step estimation procedure is feasible and

that variances and correlations can be estimated separately (see Engle,

2002). The two-stage approach has mainly the advantage that the

dimensionality of the maximization problem is reduced which accelerates

the maximization process. Note that the standard errors are corrected for

the two stages in the estimation as in Engle and Sheppard (2001).

Furthermore, the standard errors of the estimates in each stage are

calculated using the quasi-maximum likelihood methods of Bollerslev and

Wooldridge (1992), i.e. the standard errors are robust to the density function

underlying the residuals.

3. SIMULATIONS

In this section, I compare the covariance estimates of the diagonal BEKK,

the FDC� model, the FDCz model, the CCM and the ZCM. I use the CCM

and the ZCM to compare the variance estimates and to analyze the impact

of the covariance specification on the variance estimates (Tse, 2000

suggested such an analysis12). The simulations and tests are partially similar

to the ones undertaken by Engle (2002).13 I simulate different bivariate

GARCH models 200 times with 1,000 observations. The data-generating

process consists of T ¼ 1; 000 Gaussian random numbers �i for i ¼ 1; 2 with

mean zero and variance one transformed to a bivariate GARCH model with

a time-varying covariance matrix H t with a given (time-varying) correlation

(see below) and the following variance equations:

h11;t ¼ 0:01þ 0:04�21;t�1 þ 0:95h11;t�1

h22;t ¼ 0:01þ 0:20�22;t�1 þ 0:50h22;t�1 ð23Þ

The variance given by h11 is highly persistent and the variance h22 is less

persistent. Given these variances I use different correlation processes in the
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simulations:

(i) constant correlations: r%

t ¼ 0:5 and (ii) highly persistent time-varying

correlations r%

t ¼ aþ b sin ðt=ð50f ÞÞ with a fast sine function given by a ¼
0; b ¼ 0:5 and f ¼ 1 and a slow sine given by a ¼ 0; b ¼ 0:9 and f ¼ 5:

The different correlation processes are plotted in Fig. 1 and additionally

show how the transformations of the FDC model and the Tsay (2002) model

change the true correlation processes. It can be seen that the Fisher

transformation changes the underlying correlation process considerably

more than the transformation used by the FDC model. For example, in the

middle panel of Fig. 1 it is evident that the Fisher transformation (dotted

line) lowers the amplitude of the sinus function significantly more than the

FDC transformation (dashed line) which reduces the true amplitude only

slightly.

For the asymmetric extensions of the models I use the following variance

equations:

h11;t ¼ 0:01þ 0:04�21;t�1 þ 0:85h11;t�1 þ 0:1Z21;t�1

h22;t ¼ 0:01þ 0:10�22;t�1 þ 0:50h22;t�1 þ 0:2Z22;t�1 ð24Þ

The correlation processes are the same as for the non-asymmetric models.

I compare the estimates for h11;t; h22;t and r%

t with the true variance and

covariance series by (i) the mean absolute deviation (MAD) and (ii) the

means of the correlations of the true covariance series (hij;t for i; j ¼ 1; 2)
with the estimated covariance series. The means of the correlations are also

computed since they provide a measure of the fit of the estimated model

compared to the simulated one.

3.1. Simulation Results

Table 1 presents the results for the simulated models (diagonal BEKK,

FDC�; FDCz; CCM and ZCM) in a non-asymmetric specification. The table

contains the results for the mean absolute deviation (MAD) and the mean of

the correlation of the estimated process (variances and correlations) with the

true simulated series. The values denoted with a star indicate the minimum

MAD or maximum (mean of correlation) value among the estimated models

and among the different correlation processes (constant correlations, fast

sine function and sine function).

Constant correlations are best estimated by the CCM and time-varying

correlations are best estimated by the FDCz model and the diagonal BEKK

model. The diagonal BEKK model performs best for the fast sine function.
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However, the difference in the FDCz model is small. The good performance

of the diagonal BEKK model can be explained with the similar

characteristics of the correlation and the variance processes. In this case,

the diagonal BEKK model can be assumed to be least biased.14 Moreover, it

is important to emphasize that the FDC model performs clearly better for

constant correlations compared to the diagonal BEKK model. This can be

attributed to the greater flexibility of the FDC model.

The results for the variances show that the CCM, the ZCM and the FDCz

model perform best. The higher correlation of the estimates of the variances

Table 1. Simulation Results – Multivariate GARCH Models.

D.BEKK FDCe FDCz CCM ZCM

MAD

Correlations

Constant 0.2011 0.0303 0.0295 0.0169a 0.4995

Fast sine 0.1619a 0.2172 0.1859 0.5662 0.5670

Sine 0.1734 0.1244 0.1202a 0.2199 0.2935

Variance 1

Constant 0.1045 0.0617 0.0562a 0.0585 0.0636

Fast sine 0.1668 0.0744 0.0997 0.0660a 0.0667

Sine 0.0631 0.0601 0.0586a 0.0600 0.0587

Variance 2

Constant 0.0041 0.0024 0.0023 0.0022a 0.0024

Fast sine 0.0134 0.0041 0.0045 0.0026 0.0023a

Sine 0.0038 0.0026 0.0029 0.0024 0.0023a

Mean of correlations

Correlations

Constant 0.0761 0.4667 0.4751 1.0000b

Fast sine 0.9456b 0.9056 0.9267 0.0008

Sine 0.6188 0.7790 0.7795b 0.0252

Variance 1

Constant 0.9832 0.9881 0.9887b 0.9868 0.9795

Fast sine 0.9620 0.9840b 0.9661 0.9796 0.9801

Sine 0.9937b 0.9851 0.9876 0.9856 0.9801

Variance 2

Constant 0.9543 0.9892 0.9917 0.9925 0.9926b

Fast sine 0.8156 0.9809 0.9878 0.9887 0.9920b

Sine 0.9467 0.9891 0.9904 0.9924b 0.9890

Note: T ¼ 1,000, 200 iterations.
aDenotes the best model (minimum value in row).
bDenotes the best model (maximum value in row).
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with the true variances for the ZCM are an indication that the correlation

process is not relevant for the variance estimates.15 Estimating time-varying

correlations (instead of assuming a zero or constant correlation) does even

seem to influence variance estimates negatively.

For the asymmetric models, results do not change considerably.

Consequently, I do not report these results. However, I further analyze

the behavior of the asymmetric FDCz model when a two-step procedure is

used (see Engle, 2002). This model is estimated for the previous correlation

processes with an asymmetric effect. Additionally, the simulations are

performed for T ¼ 1,000 and 2,000. Results in Table 2 show that the two-

step estimation leads to similar results as the one-step estimation strategy

according to the mean of the correlation coefficient (of the true correlation

process and its estimate).

The constant correlation process is an exception since the values

are considerably higher compared to Table 1. This can be explained

with the fact that the addition of an asymmetric term introduces a time-

varying component into the correlation process. Furthermore, the

performance increased for all correlation processes with a larger sample

size of T ¼ 2,000.

I conclude from the simulation results that correlation estimates

are the closest to the true values in the FDC model for time-varying

correlations and constant correlations among the time-varying correlation

models. However, constant correlations are best estimated by a CCM. In

addition, the FDCz model performs better than the FDC� model which

I attribute to the variance correction of the shocks that potentially leads to

less noise in the correlation process. Evidently, the true advantages of the

FDC model are not fully demonstrated by this simulation study since

no exogenous regressors or thresholds in the correlation process are

analyzed.

Table 2. Simulations Results – FDCz Model (Two-Step Procedure).

Asymmetric FDCz Model Mean of Correlation

T ¼ 1,000 T ¼ 2,000

Constant+asymmetry 0.8397 0.9237

Fast sine+asymmetry 0.9044 0.9054

Slow sine+asymmetry 0.7470 0.9289

Note: 200 iterations, variances are assumed to be perfectly estimated.

Data-generating process for asymmetric correlation is: r%

t ¼ � � � þ 0:1Z;t�1 Z2;t�1(r
%

t is restricted

as in the FDCz model to guarantee positive-definite covariance matrices).
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4. EMPIRICAL RESULTS

I estimate the asymmetric versions of the FDCz and the diagonal BEKK

model and use daily (close-to-close) continuously compounded returns of

the following MSCI stock indices: Germany, Japan, the United Kingdom

and the United States of America. The indices span a time period of

approximately 5 years from April 30, 1997 until December 30, 2001 with

T ¼ 1,176 observations for each stock index. Non-trading days in a market

are included to synchronize the data.16 This implies that conditional

correlations decrease on non-trading days. I am aware of the fact that

estimates for close-to-close daily data can be biased if trading hours differ

(e.g. Japan and the US).17 Owing to these potential problems, I also use

monthly data spanning from December 1969 until April 2002 with T ¼ 389

observations for each index. I additionally use this type of data to analyze

any differences in the characteristics of time-varying correlations between

daily and monthly data.

Table 3 contains the descriptive statistics for the daily and monthly

returns and Table 4 reports the unconditional empirical correlation

coefficient for these return series, respectively.

Interestingly, whereas the unconditional correlations are higher for

monthly data than for daily data, the correlation of Germany and the

Table 3. Descriptive Statistics.

Mean Variance Skewness Kurtosis

Daily Data

Germany 0.000 2.441 �0.860 27.959

Japan �0.026 2.729 2.137 48.669

UK 0.002 1.351 �0.184 7.327

US 0.023 1.603 �0.517 14.943

Monthly Data

Germany 0.606 35.513 �85.396 5167.311

Japan 0.772 42.308 0.439 6131.782

UK 0.573 42.634 129.330 15664.007

US 0.591 20.136 �50.565 2235.682

Note: number of observations for daily data: 1,175, number of observations for monthly data:

389.

rt ¼ 100 log pt
� �

� log pt�1

� �
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UK is an exception. In this case, monthly returns exhibit a lower correlation

than daily data. This counterintuitive finding could be a result of the use of

close-to-close returns because the trading hours of both markets are not

synchronous. Figs. 2 and 3 show the evolution of the returns of these series.

Tables 5 and 6 present the results for the correlation estimates for the

FDCz model in its asymmetric specification for daily and monthly data,

respectively. Comparing the values b12 þ c12 among the index pairs for daily

data show that the persistence of shocks varies considerably among the

estimated time-varying correlations. The correlations between Germany and

the UK and Japan and the UK have the highest persistence with respect to

shocks while the persistence of Germany and the US is very low. For

monthly data, the correlations are mainly constant or also have a very low

persistence.

In general, there is a very weak evidence of a considerable correlation

persistence. In most cases, the persistence of shocks of the correlation

processes is much lower than the persistence of shocks to variances. An

exception is the daily correlation of Germany and the UK that exhibits a

degree of persistence which is comparable with a typical volatility

persistence.

Figs. 4–6 show the correlation estimates for the FDCz model for daily and

monthly data, respectively. Note that the finding of constant and non-

persistent conditional correlations observed in two cases for daily returns

and in five cases for monthly returns estimated with the FDC Model is a

new result and can be attributed to the fact that the often used BEKK

models cannot reveal such a result due to the structure of the models as

explained above.

Table 7 presents results for the asymmetric diagonal BEKK model.

Comparing the parameter estimates for the variance equations (aii; bii; cii;
d ii) among the different index pairs shows that the parameter estimates vary

substantially for the same return series. For example, the parameter

Table 4. Unconditional Correlation.

Daily correlation (monthly correlation)

Germany Japan UK US

Germany 1.000 (1.000) 0.182 (0.373) 0.655 (0.454) 0.377 (0.427)

Japan 1.000 (1.000) 0.189 (0.376) 0.069 (0.307)

UK 1.000 (1.000) 0.366 (0.525)

US 1.000 (1.000)

Note: number of observations: 1,175 (389), monthly estimates in parentheses.
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estimates of the UK when estimated with Japan are given by the vector

ð0:092;�0:046; 0:883; 0:418Þ and by ð0:401;�0:287; 0:888;�0:098Þ when

estimated with the US. These differences are clear evidence that the variance

estimates are influenced by the second return series and by the estimated

covariance. Thus, parameter estimates are biased. Since the BEKK model

does not estimate the correlation process directly but by the ratio of the

covariance and the squared root of the product of the variances, I can only

analyze the persistence and asymmetry of the variances and the covariance

which makes a direct comparison of the estimates between the FDCz model

and the diagonal BEKK model infeasible. For this reason, estimation results

of the diagonal BEKK model for the monthly data are not reported.

4.1. The Asymmetry of Correlations

Asymmetric effects of volatilities to positive and negative shocks are well

documented in the literature and explained with the leverage effect (Black,

01/04/1997 12/30/2001
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Fig. 2. Daily Returns (Germany Japan, UK, US).
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1976; Christie, 1982) and the volatility feedback effect (Campbell &

Hentschel, 1992). However, little is known about the temporal behavior

of stock return correlations (see Andersen, Bollerslev, Diebold, & Ebens,

2001; Andersen, Bollerslev, Diebold, & Labys, 2003) and even less of the

potential asymmetric effects of positive and negative shocks. Theories

explaining asymmetric effects of correlations are in development (e.g. see

Connolly & Wang, 2001; Karolyi & Stulz, 2001) but are still rare compared

to the studies investigating such effects for volatilities.

The estimation results of the asymmetric FDCz model show that there is

an asymmetric effect of correlations and that this asymmetry is not similar

to the one observed for volatilities. This result differs from the findings in

the literature where similar asymmetric effects of the conditional covariance

are reported (e.g. see Kroner & Ng, 1998). The difference can be explained

by the fact that the FDC model analyzes the correlation directly whereas

commonly the covariance is examined. Differences in other empirical results

such as for the asymmetric DCC model as reported in Cappiello et al. (2002)

can also be attributed to the different structure of the FDC model. For
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Fig. 3. Monthly Returns (Germany Japan, UK, US).
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example, an individual asymmetric effect in the DCC model is estimated as

the product of two parameter estimates.18

To interpret the asymmetric effect, I focus on the parameter estimates for

b12 and d12 in Tables 5 and 6. Results reveal that correlations increase with

joint positive shocks (and decrease with shocks of unequal signs) for all

country pairs. Whether correlations react differently to joint negative shocks

can be assessed by the estimate for d12: Correlations increase more with

jointly negative shocks than with jointly positive shocks for Germany and

Japan for daily and monthly data and for Germany and the UK, Germany

and the US and for Japan and the UK for monthly data. In many cases (five

out of six for daily correlations and two out of six for monthly correlations),

the correlation does not increase more by joint negative shocks than by joint

positive shocks.

The asymmetry of correlations is closely related to the empirical finding

that correlations increase in bear markets calling into question the

Table 5. Estimation Results of Asymmetric FDC Model (Daily Data).

GER/JAP GER/UK GER/US JAP/UK JAP/US UK/US

Variance estimates

a11 0.0776 0.0776 0.0776 0.0913� 0.0913� 0.0700�

b11 0.0859��� 0.0859��� 0.0859��� 0.0770��� 0.0770��� 0.0784���

c11 0.8725��� 0.8725��� 0.8725��� 0.8812��� 0.8812��� 0.8297���

d11 0.0416 0.0416 0.0416 0.0418 0.0418�� 0.0920�

a22 0.0913� 0.0700� 0.0946� 0.0700� 0.0946� 0.0946�

b22 0.0770��� 0.0784��� 0.0782��� 0.0784��� 0.0782��� 0.0782���

c22 0.8812��� 0.8297��� 0.8327��� 0.8297��� 0.8327��� 0.8327���

d22 0.0418 0.0920� 0.0891 0.0920� 0.0891 0.0891

Correlation estimates

a12 0.1877��� 0.0394� 0.3609��� 0.0684 0.0662��� 0.3768���

b12 0.0000 0.0403 0.0000 0.0310 0.0000 0.0000

c12 0.0000 0.9187��� 0.0522 0.6297 0.0316 0.0544

d12 0.0306 0.0000 0.0000 0.0000 0.0000 0.0000

Model:

h11;t ¼ a11 þ b11�
2
1;t�1 þ c11h11;t�1 þ d11Z

2
1;t�1

h22;t ¼ a22 þ b22�
2
2;t�1 þ c22h22;t�1 þ d22Z

2
2;t�1

rt ¼ a12 þ b12�1;t�1�2;t�1 þ c12rt�1 þ d12Z1;t�1 Z2;t�1

�significant at 10% level.
��significant at 5% level.
���significant at 1% level.
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desirability of international portfolio diversification (see De Santis &

Gerard, 1997; Longin & Solnik, 1995; Longin & Solnik, 2001; Ng, 2000;

Ramchand & Susmel, 1998; Engle & Susmel, 1993). Focussing on negative

shocks, we can answer this question by analyzing the parameter estimates

for b12 and d12: The daily correlations between Germany and the UK and

Japan and the UK and all monthly correlations except for Japan and the US

replicate the findings in the literature, i.e. international portfolio diversifica-

tion is not effective when it is needed most since the correlation increases

with joint negative shocks. However, the constancy of the daily correlations

estimates for Germany and the US, Japan and the US (also monthly) and

the UK and the US do not confirm this finding. On the contrary, these

results do encourage international portfolio diversification since correlations

do not change.

Table 6. Estimation Results of Asymmetric FDC Model (Monthly

Data).

GER/JAP GER/UK GER/US JAP/UK JAP/US UK/US

Variance estimates

a11 0.0018��� 0.0018��� 0.0018��� 0.0014��� 0.0014��� 0.0001

b11 0.2064� 0.2064� 0.2064� 0.1040� 0.1040� 0.0849

c11 0.3016� 0.3016� 0.3016� 0.4837��� 0.4837��� 0.9049���

d11 0.0000 0.0000 0.0000 0.0009 0.0009 0.0000

a22 0.0014��� 0.0001 0.0014� 0.0001 0.0014� 0.0014�

b22 0.1040� 0.0849 0.0318 0.0849 0.0318 0.0318

c22 0.4837��� 0.9049��� 0.0000 0.9049��� 0.0000 0.0000

d22 0.0009 0.0000 0.0013�� 0.0000 0.0013�� 0.0013��

Correlation estimates

a12 0.3729��� 0.5145��� 0.4457��� 0.2774��� 0.2531 0.4036�

b12 0.0010 0.1525� 0.0744 0.0185 0.00100 0.0188

c12 0.0112 0.0000 0.0000 0.3315� 0.2607 0.3832

d12 0.1084� 0.0656 0.0153 0.0794 0.0000 0.0000

Model:

h11;t ¼ a11 þ b11�
2
1;t�1 þ c11h11;t�1 þ d11Z

2
1;t�1

h22;t ¼ a22 þ b22�
2
2;t�1 þ c22h22;t�1 þ d22Z

2
2;t�1

rt ¼ a12 þ b12�1;t�1�2;t�1 þ c12rt�1 þ d12Z1;t�1 Z2;t�1

�significant at 10% level.
��significant at 5% level.
���significant at 1% level.
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5. CONCLUSIONS

I have demonstrated how the restrictions in multivariate GARCH models to

guarantee positive-definite covariance matrices can affect the interpretability

of the parameters and the precision of the estimates. The FDC Model

introduced here performs clearly better in this regard. Consequently, the

empirical results are considerably different from the findings in the

literature. I estimated the FDC model for four international stock market

indices and found that correlations exhibit a different temporal behavior

compared to volatilities, i.e. correlations are more often constant and less

persistent than volatilities and the asymmetry of shocks on volatility is more

pronounced and more similar among volatilities themselves than the

asymmetric effects of jointly positive or negative shocks on correlations.

Future research could be done by studying the impact of the distributional

assumptions on the persistence and asymmetry of correlations. In addition,
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Fig. 6. Correlation Estimates (Monthly Data).
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although mentioned, further research is necessary to answer the question as

to how correlation estimates change with the specification of the volatility

equations and vice versa.

NOTES

1. Restricting the BEKK model to be diagonal reduces the number of pa-
rameters that must be estimated. The factor GARCH model (Engle, Ng, &
Rothschild, 1990) reduces the number of parameters and can be transformed to a
BEKK model.
2. Note that the nested ADC model requires further restrictions to guarantee a

positive-definite covariance matrix.
3. I subsequently assume a simple mean equation as given by Eq. (1) and do

exclusively focus on the covariance matrix.
4. A positive-definite covariance matrix would imply that the determinant of

Ht ¼
h11;t h12;t

h12;t h22;t

 !

Table 7. Daily Data – Asymmetric Diagonal BEKK Model.

Estimates GER/JAP GER/UK GER/US JAP/UK JAP/US UK/US

a11 0.457��� 0.321��� 0.381��� 0.408��� 0.427��� 0.401���

a22 0.106��� 0.228��� 0.160��� 0.092��� 0.041 0.304���

b11 0.266��� 0.000 0.172��� 0.245��� 0.297��� �0.287���

b22 �0.050 �0.097 �0.063� �0.046 �0.067 ��� �0.133�

c11 0.912��� 0.930��� 0.924��� 0.923��� 0.918��� 0.888���

c22 0.902��� 0.929��� 0.877��� 0.883��� 0.869��� 0.843���

d11 0.217� 0.332��� 0.330��� 0.248��� 0.105�� �0.098

d22 0.425��� 0.334��� 0.501��� 0.418��� 0.511��� 0.468���

Covariance equations:

h11;t ¼ a211 þ b211�
2
1;t�1 þ c211h11;t�1 þ d2

11Z
2
1;t�1

h22;t ¼ a222 þ b222�
2
2;t�1 þ c222h22;t�1 þ d2

22Z
2
2;t�1

h12;t ¼ h21;t ¼ a11a22 þ b11b22�1;t�1�2;t�1 þ c11c22h12;t�1 þ d11d22Z1;t�1 Z2;t�1

�significant at 10% level.
��significant at 5% level.
���significant at 1% level.
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is positive. That means that h11;t and h22;t4h212;t which is not guaranteed since the
parameters aij and bij are freely estimated for all i, j ¼ 1, 2.
5. The multivariate factor GARCH model will not be presented here since it can

be derived from a full BEKK model (see Kroner & Ng, 1998).
6. This model was first presented in 1998 and is therefore described before the

DCC model of Engle (2002).
7. To guarantee positive variances I use the variance equations of the diagonal

BEKK model for the variance equations of the CCM as suggested by Kroner and Ng
(1998).
8. Ang and Chen (2002) report misspecifications of the asymmetric effect

in an asymmetric GARCH-M model without being specific in pointing to this
problem.
9. In most multivariate GARCH models conditional correlations are derived from

the ratio of the covariance and the product of the roots of the conditional variances
(see Eqs. (6) and (8)).
10. The conditional variances are specified as a simple GARCH(1,1) model.

However, the FDC model can be estimated with any other specification of the
conditional variances, e.g. a EGARCH model.
11. The standardized residuals are given by zt ¼ �t=st:
12. In other words, are the estimates of the parameters in the conditional-

variance estimates robust with respect to the constant correlation assumption?
(p. 109).
13. Engle compares the DCC model with the scalar BEKK, the diagonal BEKK, a

moving average process, an exponential smoother and a principle components
GARCH.
14. See discussion of the diagonal BEKK model above. In this case, the high

persistence of the correlation process mainly contributes to this result.
15. Tse (2000) proposed an analysis whether or to which extent correlation

estimates improve or change variance estimates.
16. A non-trading day means that no information is processed in the market.

Consequently, returns are zero.
17. Existing methods to synchronize the data are only recently developed

(see Engle, Burns, & Mezrich, 1998; Forbes & Rigobon, 2002; Martens & Poon,
2001).
18. See Capiello et al. (2002, Eq. (5), p. 8). Of course, differences can also accrue

due to different data samples.
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A MULTIVARIATE SKEW-GARCH

MODEL
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ABSTRACT

Empirical research on European stock markets has shown that they

behave differently according to the performance of the leading financial

market identified as the US market. A positive sign is viewed as good news

in the international financial markets, a negative sign means, conversely,

bad news. As a result, we assume that European stock market returns are

affected by endogenous and exogenous shocks. The former raise in the

market itself, the latter come from the US market, because of its most

influential role in the world. Under standard assumptions, the distribution

of the European market index returns conditionally on the sign of the one-

day lagged US return is skew-normal. The resulting model is denoted

Skew-GARCH. We study the properties of this new model and illustrate

its application to time-series data from three European financial markets.

1. INTRODUCTION

The pioneering work of Engle (1982) has represented the starting point of a

tremendous scientific production with the aim of modeling and forecasting
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the volatility of financial time series. The AutoRegressive Conditional

Het-eroskedasticity (ARCH) model has been dealt with in depth. Many

variants have been proposed. Among them, we emphasize its most popular

generalizations, the Generalized ARCH model (Bollerslev, 1986) and the

Exponential GARCH model (Nelson, 1991) allowing for the inclusion of the

asymmetric effect of volatility. Moving from a univariate to a multivariate

perspective, the multivariate GARCH model is quite interesting because it

can shed light on the common movements of the volatilities across markets

(Bollerslev, Engle, & Wooldridge, 1988; Bollerslev, 1990; Engle, 2002).

When the analysis focuses on one or more markets, the possible relevance

of an external leading market is usually ignored. Nonetheless, it is an

important point which can help explaining some empirically detected

features. Actually, a wide literature has dealt with the issue of the

international transmission of stock markets movements. Eun and Shim

(1989) stressed the most influential role of the US stock market. Innovations

in the US market are transmitted to the other markets. Conversely, none of

the other markets can affect the US market movements. The time horizon of

the transmission is very short: the other stock exchanges’ responses rapidly

decrease after one day. The conclusion of Eun and Shim (1989) suggests to

consider the US market as the most important producer of information

affecting the world stock market. The contemporaneous and lead/lag

relationships among stock markets are also studied in Koch and Koch

(1991).

The analysis of univariate and multivariate GARCH models has

traditionally neglected this aspect, with few exceptions. For instance, Lin,

Engle, and Ito (1994) carried out an empirical investigation of the

relationship between returns and volatilities of Tokyo and New York

markets. The peculiarity of the study is the use of a decomposition of daily

return into two components: the daytime return and the overnight return.

The conclusion is the existence of cross-market interdependence in returns

and volatilities. Karolyi (1995) detected the interdependence between the US

and Canadian markets through a bivariate GARCH model.

Our analysis starts from the empirical detection of the different behavior

of three European markets, according to the performance of the leading

market identified as the US market. From a statistical perspective, we

assume that European stock market returns are affected by endogenous and

exogenous shocks. The former raise in the market itself, the latter come

from the US market, defined as the leading market because of its most

influential role in the world. Moreover, the flow of information from the US

market to the European markets is asymmetric in its direction as well as in
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its effects. We recognize a negative (positive) performance of the US

market as a proxy for bad (good) news for the world stock market.

European financial markets returns behave in a different way according to

bad or good news. Moreover, they are more reactive to bad news than to

good ones.

The European and the US markets are not synchronous. When European

markets open on day t, the US market is still closed; when European

markets close on the same day, the US market is about to open or has just

opened (depending on the European country). This implies a possible causal

relationship from the US market return at time t� 1 to the European

returns at time t.

The distribution of European returns changes according to the sign of the

one-day lagged performance of the US market. Average returns are negative

(positive) in presence of bad (good) news and they are very similar in

absolute value. Volatility is higher in presence of bad news. Skewness is

negative (positive) and more remarkable in presence of bad (good) news. In

both cases, a high degree of leptokurtosis is observed. Finally, bad news

involves a stronger correlation between present European returns and the

one-day lagged US return.

Allowing for a GARCH structure for taking into account the hetero-

skedastic nature of financial time series, under standard assumptions, the

distribution of the European returns conditionally on news (that is, on the

sign of the one-day lagged US return) and past information turns out to be

skew-normal (Azzalini, 1985). This is a generalization of the normal

distribution with an additional parameter to control skewness. The two

conditional distributions are characterized by different features according to

the type of news (bad or good). In particular, the skewness can be either

negative (bad news) or positive (good news). The resulting model is denoted

Skew-GARCH (henceforth SGARCH). The theoretical features of the

model perfectly match the empirical evidence.

The basic idea can be extended to a multivariate setting. The international

integration of financial markets is more remarkable in presence of a

geographical proximity. The European markets tend to show common

movements. Under standard assumptions, the joint distribution of

European stock market returns conditionally on the sign of the one-day

lagged US market return and past information is a multivariate skew-

normal distribution (Azzalini & Dalla Valle, 1996), whose density is indexed

by a location vector, a scale matrix and a shape vector. Finally,

unconditional (with respect to the performance of the US market) returns

have some features in concordance with empirical evidence.
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The paper is organized as follows. Section 2 describes the theory of

the skew-normal distribution. In Section 3, the multivariate SGARCH

model is presented. In Section 4, the conditional distribution and related

moments are obtained. Some special cases are described, including the

univariate model when the dimensionality reduces to one. Section 5 refers

to the unconditional distribution. Section 6 exhibits the estimates of

the univariate and multivariate models applied to three small financial

markets in Europe: Dutch, Swiss and Italian. The results show the relevance

of the performance of the leading market supporting the proposal of the

SGARCH model. Section 7 concludes. Some proofs are presented in the

appendix.

2. THE SKEW-NORMAL DISTRIBUTION

The distribution of a random vector z is multivariate skew-normal (SN,

henceforth) with location parameter z, scale parameter O and shape

parameter a, that is z � SNpðz;O; aÞ; if its probability density function

(pdf) is

f z; z;O; að Þ ¼ 2fp z� z;Oð ÞF aT z� zð Þ
� �

; z; z; a 2 R
p; O 2 R

p�p

where F( � ) is the cdf of a standardized normal variable and fpðz� z;OÞ is
the density function of a p-dimensional normal distribution with mean z and

variance O. For example, Z � SN1ðz;o; aÞ denotes a random variable whose

distribution is univariate SN with pdf

f z; z;o; að Þ ¼ 2ffiffiffiffi
o

p f
z� zffiffiffiffi

o
p

� �
F a z� zð Þ½ �

where f( � ) is the pdf of a standard normal variable.

Despite the presence of an additional parameter, the SN distribution

resembles the normal one in several ways, formalized through the following

properties:

Inclusion: The normal distribution is an SN distribution with shape

parameter equal to zero:

z � SNp z;O; 0ð Þ3z � Np z;Oð Þ

Greater norms of a imply greater differences between the density of the

multivariate SNpðz;O; aÞ and the density of the multivariate Npðz;OÞ:
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Linearity: The class of SN distributions is closed with respect to linear

transformations. If A is a k � p matrix and b 2 R
k; then

z � SNp z;O; að Þ ) Azþ b � SNk Azþ b;AOAT; ā
� �

ā ¼
AOAT
� ��1

AOaffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ aTO O�1 � AT AOAT

� ��1
A

� 	
Oa

r

It follows that the SN class is closed under marginalization: subvectors of

SN vectors are SN, too. In particular, each component of an SN random

vector is univariate SN.

Invariance: The matrix of squares and products ðz� zÞðz� zÞT has a

Wishart distribution:

z� zð Þ z� zð ÞT � W O; 1ð Þ

Notice that the distribution of ðz� zÞðz� zÞT does not depend on the shape

parameter. In the univariate case, it means that Z � SN1ðz;o; aÞ implies

ðZ � zÞ2=o � w21:
All moments of the SN distribution exist and are finite. They have a

simple analytical form. However, moments of the SN distribution differ

from the normal ones in several ways:

� Location and scale parameters equal mean and variance only if the shape

parameter vector a equals zero.
� Moments are more conveniently represented through the parameter d ¼
Oa=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ aTOa

p
:

� Tails of the SN distribution are always heavier than the normal ones,

when the shape parameter vector a differs from zero.

Table 1 reports the expectation, variance, skewness and kurtosis of the SN

distribution, in the multivariate and univariate cases.

Multivariate skewness and kurtosis are evaluated through Mardia’s

indices (Mardia, 1970). Notice that in the univariate case Mardia’s index of

kurtosis equals the fourth moment of the standardized random variable. On

the other hand, in the univariate case, Mardia’s index of skewness equals the

square of the third moment of the standardized random variable. In the

following sections, when dealing with skewness, we shall refer to Mardia’s

index in the multivariate case and to the third moment of the standardized

random variable in the univariate case.
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3. THE SGARCH MODEL

Let Yt be the leading (US) market return at time t. A simple GARCH(p,q)

model is assumed. Then we can write

Y t ¼ Zt�t

Z2t ¼ d0 þ
Pq

i¼1

diðZt�i�t�iÞ2 þ
Pqþp

j¼qþ1

djZ
2
tþq�j

(1)

where {et}�i.i.d. N(0,1). f�tg is the innovation (or shock) of the US market

and is hypothesized to be Gaussian. In order to ensure the positivity of Z2t ;d0
has to be positive and the remaining parameters in (1) non-negative. After

denoting Zt�1 ¼ ½zt�1; zt�2; . . .�; it turns out that

Y tjY t�1 � Nð0; Z2t Þ

Let xt be the p� 1 return vector of the European markets at time t. We

assume that returns at time t depend both on an endogenous (local) shock

and an exogenous (global) shock. The endogenous shocks do have

relationships with each other (common movements are usually observed

in neighboring markets). The p� 1 local shock vector is denoted zt. The

exogenous or global shock is an event that has an influence across more

markets. For the European markets we identify the global shock as the

innovation of the US market one-day before, that is �t�1: The lag is due to

the mentioned nonsynchronicity of the markets.

The function fð�t�1Þ; specified below, describes the relationship between

the return vector xt and �t�1:

Table 1. Expectation, Variance, Skewness and Kurtosis of the SN

Distribution.

z � SNpðz;O; aÞ Z � SN1ðz;o; aÞ

Expectation
zþ

ffiffiffi
2

p

r
d zþ

ffiffiffi
2

p

r
d

Variance
O� 2

p
ddT o� 2

p
d2

Skewness
2ð4� pÞ2 dTO�1d

p� 2dTO�1d

� �3 ffiffiffi
2

p
ð4� pÞ dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

po� 2d2
p
 !3

Kurtosis
8ðp� 3Þ dTO�1d

p� 2dTO�1d

� �2

8ðp� 3Þ d2

po� 2d2

� �2
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The local and the global shocks are assumed to be independent and to

have a joint ðpþ 1Þ� dimensional normal distribution,

�t�1

zt

 !
� Npþ1

0

0

� �
;

1 0T

0 C

 ! !
(2)

where c is a correlation matrix with generic off-diagonal entry rij. If the

hypothesis of Gaussianity is far from true for returns, it appears to be

consistent for shocks, even if some authors propose more general

distributions (e.g. Bollerslev, 1987). Moreover, we assume that the variances

have a multivariate GARCH structure. We can then write

xt ¼ Dt fð�t�1Þ þ zt½ � (3)

f �t�1ð Þ ¼
ffiffiffi
2

p

r
gþ b�t�1 � gj�t�1j (4)

where

Dt ¼

s1t 0 0

0 s2t
. .
. ..

.

..

. . .
. . .

.
0

0 0 spt

0
BBBBB@

1
CCCCCA

(5)

s2kt ¼ o0k þ
Xq

i¼1

oik sk;t�izk;t�i

� �2 þ
Xqþp

j¼qþ1

ojks
2
k;tþq�j þ oqþpþ1;kZ

2
t�1 (6)

The last term takes into account the possible volatility spillover from the US

to the European markets. If at time t� 1 the US stock exchange is closed,

then Z2t�1 ¼ Z2t�2 The positivity of s2kt is ensured by the usual constraints on

the parameters.

Assumptions (2–6) compound the SGARCH model. The function fð�t�1Þ
models the effect of the exogenous shock �t�1 on the vector xt and {zt} is a

sequence of serially independent random vectors. The parameter vectors b

and g are constrained to be non-negative. Moreover, b � g � 0: The former

describes the direct effect of the past US innovations on xt, the latter the

feedback effect. Volatility feedback theory (Campbell & Hentschel, 1992)

implies that news increases volatility, which in turn lowers returns. Hence

the direct effect of good (bad) news is mitigated (strengthened) by the
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feedback effect. A point in favor of the SGARCH model is the

formalization of the two effects.

The conditional distribution of the return vector is

xtjI t�1 � Np Dtf �t�1ð Þ;DtCDtð Þ

where I t�1 denotes the information at time t� 1:
The SGARCH model does not involve a conditional null mean vector.

Instead, the mean does depend on the volatility. Moreover, returns are more

reactive to bad news than good news. In fact,

@xt
@�t�1






�t�140

¼ Dt b� gð Þ

@xt
@�t�1






�t�1o0

¼ Dt bþ gð Þ

4. CONDITIONAL DISTRIBUTIONS AND RELATED

MOMENTS

We are interested in the p-variate distribution of xt conditional on Dt and on

news from the US market, that is on the sign of Y t�1:

Theorem 1. Under the SGARCH model’s assumptions, the following

distributions hold:

Good news

D�1
t xtjY t�140

� �
� SNp g

ffiffiffi
2

p

r
;Oþ; aþ

 !

where

Oþ ¼ Cþ dþd
T
þ; aþ ¼ C�1dþffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ dTþC
�1dþ

q and dþ ¼ b� g

Bad news

D�1
t xtjY t�1o0

� �
� SNp g

ffiffiffi
2

p

r
;O�; a�

 !
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where

O� ¼ Cþ d�d
T
�; a� ¼ �C�1d�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ dT�C
�1d�

q and d� ¼ bþ g

The proof is given in the appendix.

Applying the results of linear transformations of a multivariate SN

distribution, we can obtain the conditional distributions of returns

xtjDt;Y t�140ð Þ and xtjDt;Y t�1o0ð Þ: Their formal properties are found to

be consistent with empirical findings. In more detail:

Expectation: On average, good (bad) news determines positive (negative)

returns. The effect of both kinds of news is equal in absolute value.

Moreover, it is proportional to the direct effect (modeled by the parameter b)

mitigated or amplified by the volatility structure (modeled by the diagonal

matrix Dt),

E xtjDt;Y t�140ð Þ ¼
ffiffiffi
2

p

r
Dtb

E xtjDt;Y t�1o0ð Þ ¼ �
ffiffiffi
2

p

r
Dtb

This result could be interpreted as the presence of an arbitrage opportunity in

the market with implications regarding market efficiency. Actually, our

analysis is carried out using returns computed from two close prices (close-

to-close). During the time from the closing to the opening of a European

exchange, there is the closing of the US exchange and its effect is reflected

mainly in the open prices of the European exchanges. If we used open-

to-close returns, this apparent arbitrage opportunity would disappear.

Variance: Variance is higher (lower) in the presence of bad (good) news.

More precisely, the elements on the main diagonal of the covariance matrix

are greater (smaller) when previous day’s US market returns were negative

(positive)

V xtjDt;Y t�140ð Þ ¼ Dt Cþ p� 2

p
dþd

T
þ

� �
Dt

V xtjDt;Y t�1o0ð Þ ¼ Dt Cþ p� 2

p
d�d

T
�

� �
Dt

Skewness: Symmetry of conditional returns would imply that news from

the US are irrelevant. In this framework, univariate skewness is negative

(positive) in presence of bad (good) news and higher (smaller) in absolute
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value. On the other hand, multivariate skewness is always positive but its

level cannot be related to the kind of news. Skewness of xt when Y t�140 can

be either lower or higher than skewness of xt when Y t�1o0; depending on

the parameters. The two indices are

S xtjDt;Y t�140ð Þ ¼ 2 4� pð Þ2 dTþC
�1dþ

pþ p� 2ð ÞdTþC�1dþ

 !3

S xtjDt;Y t�1o0ð Þ ¼ 2 4� pð Þ2 dT�C
�1d�

pþ p� 2ð ÞdT�C�1d�

 !3

Kurtosis: In the SGARCH model, relevant news (good or bad) always

lead to leptokurtotic returns. Again, there is no relationship between the

kind of news (good or bad) and multivariate kurtosis (high or low).

However, SGARCH models imply that a higher kurtosis is related to a

higher skewness. The two indices are

K xtjDt;Y t�140ð Þ ¼ 8 p� 3ð Þ dTþC
�1dþ

pþ p� 2ð ÞdTþC�1dþ

 !2

K xtjDt;Y t�1o0ð Þ ¼ 8 p� 3ð Þ dT�C
�1d�

pþ p� 2ð ÞdT�C�1d�

 !2

Correlation: Let r+ (r�) be the p� 1 vector whose ith component ri+
(ri�) is the correlation coefficient between the ith European return Xit

and the previous day’s US return Y t�1 conditionally on good (bad) news,

that is Y t�140; ðY t�1o0Þ; and volatility Dt. The correlation of

X it;Y t�1jDt;Y t�140 (X it;Y tjDt;Y t�1o0) is the same under the multi-

variate and univariate SGARCH model (the former being a multivariate

generalization of the latter). Hence, we can recall a property of the

univariate SGARCH model (De Luca & Loperfido, 2004) and write

riþ ¼
bi � gi
� � ffiffiffiffiffiffiffiffiffiffiffi

p� 2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pþ p� 2ð Þ bi � gi

� �2q ; ri� ¼
bi þ gi
� � ffiffiffiffiffiffiffiffiffiffiffi

p� 2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pþ p� 2ð Þ bi þ gi

� �2q

for i ¼ 1; . . . ; p: Implications of the above results are twofold. In the first

place, r+ and r� are functions of dþ ¼ b� g and d� ¼ bþ g; respectively.
In the second place, a little algebra leads to the inequalities 0 � rþ � r� �
1p; where 1p is a p-dimensional vector of ones. It follows that bad news
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strengthen the association between European returns and previous day’s US

returns.

The two p-variate distributions in Theorem 1 have different character-

istics according to the news coming from the US market. As a result, the

conditioning appears to be relevant.

It is interesting to consider some special cases. Firstly, if the parameter

vector g is zero, then dþ ¼ d� ¼ b and Oþ ¼ O� ¼ O: The two conditional

distributions in Theorem 1 differ for the shape parameter which has the

same absolute value but a different sign, that is

D�1
t xtjY t�140

� �
� SNp 0;O; að Þ

where

O ¼ Cþ bbT; a ¼ C�1bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ bTC�1b

q

and

D�1
t xtjY t�1o0

� �
� SNp 0;O;�að Þ.

In this case, no feedback effect exists. However, it still makes sense to

condition on the type of news and to introduce SN distributions.

Secondly, if the parameter vector b is zero (implying that also g is zero),

there is no evidence of any (direct or feedback) effect of the US news on

European returns. The two markets are independent. The SN distributions

in Theorem 1 turn out to have a zero shape parameter which shrinks them to

the same normal distribution. As a result, the multivariate skewness and

kurtosis indices also shrink to zero.

Finally, if the dimensionality parameter p equals one, that is if we move

from a multivariate framework to a univariate perspective, the multivariate

SGARCH model equals the univariate SGARCH model (De Luca &

Loperfido, 2004). In this case, denoting by Xt a European return at time t,

we have

X t

st
¼

ffiffiffi
2

p

r
gþ b�t�1 � g �t�1j j þ zt

where b and g are now scalars and zt is a unidimensional random variable.

The main features of the model in a univariate context (parameters of the

distribution of X t=st given the sign of Y t�1 and moments of Xt given st and

the sign of Y t�1) are summarized in Table 2.
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Table 2. Features of the Univariate SGARCH Model.

Good News ðY t�140Þ Bad News ðY t�1o0Þ Overall

Location
ffiffiffi
2

p

r
g

ffiffiffi
2

p

r
g

––

Scale
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðb� gÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðbþ gÞ2

q
––

Shape b� gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðb� gÞ2

q �ðbþ gÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðbþ gÞ2

q ––

Expectation
ffiffiffi
2

p

r
bst �

ffiffiffi
2

p

r
bst

0

Variance
s2t 1þ p� 2

p
b� gð Þ2

� �
s2t 1þ p� 2

p
bþ gð Þ2

� �
s2t 1þ p� 2

p
g2 þ b2

� �

Skewness 4� p

2

2ðb� gÞ2

pþ ðp� 2Þðb� gÞ2
� �1:5

p� 4

2

2ðbþ gÞ2

pþ ðp� 2Þðbþ gÞ2
� �1:5 ffiffiffi

2
p

g 2pg2 � 3pb2 � 4g2
� �

pþ ðp� 2Þg2 þ pb2
� �1:5

Kurtosis
2 p� 3ð Þ 2 b� gð Þ2

pþ p� 2ð Þ b� gð Þ2
� �2

2 p� 3ð Þ 2 bþ gð Þ2

pþ p� 2ð Þ bþ gð Þ2
� �2

3þ 8g2 p� 3ð Þ
pþ p� 2ð Þg2 þ pb2
� �2

Correlation with Y t�1 b� gð Þ
ffiffiffiffiffiffiffiffiffiffiffi
p� 2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pþ p� 2ð Þ b� gð Þ2

q bþ gð Þ
ffiffiffiffiffiffiffiffiffiffiffi
p� 2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pþ p� 2ð Þ bþ gð Þ2

q
b
ffiffiffi
p

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pþ p� 2ð Þg2 þ pb2

q
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5. UNCONDITIONAL DISTRIBUTIONS

We refer to the expression ‘‘unconditional distribution’’ to indicate the

distribution of the vector xt unconditionally on Y t�1: However, it is still

conditional on its own past history.

Expectation: The expected value of the returns is the null vector,

consistently with empirical findings and economic theory,

E xtjDtð Þ ¼ 0

Variance: The variance of xt can be seen as decomposed into the sum of

two components, an endogenous component, determined by the market

internal structure, and an exogenous component, determined by news from

the US market. The latter can be further represented as the sum of a

component depending on the direct effect and another component

depending on the feedback effect:

V xtjDtð Þ ¼ Dt Cþ bbT þ p� 2

p
ggT

� �
Dt

Skewness: In the multivariate SGARCH model, the feedback effect

determines the asymmetric behavior of returns. More formally, multivariate

skewness, as measured by Mardia’s index, is zero if and only if the feedback

parameter is the zero vector:

g ¼ 0 ) S xtjDtð Þ ¼ 0; ga0 ) S xtjDtð Þ40

The proof of this result is in the appendix.

Kurtosis: In the univariate SGARCH model (p ¼ 1), we can show the

presence of kurtosis. The same result holds for a linear combination of

returns following the model. In the multivariate case we conjecture the

existence of multivariate kurtosis as measured by Mardia’s index.

Correlation: Let r be the p� 1 vector whose ith component ri is the

correlation coefficient between the ith European return Xit and the previous

day’s US return Y t�1; conditionally on volatility Dt. It easily follows from

the definition of xt as a function of the US shocks and ordinary properties of

covariance that

ri ¼
bi

ffiffiffi
p

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pþ p� 2ð Þg2i þ pb2i

q ; i ¼ 1; . . . ; p

as reported in the last row of Table 2. This result implies that 0 � r � 1p;
where 1p is a p-dimensional vector of ones. It also implies that ri is an
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increasing function of bi and a decreasing function of gi. It follows that

association between European returns and previous day’s US returns is

directly related to the vector of direct effects b and inversely related to the

vector of feedback effects g.

The same statistics are reported for the univariate case in the last column

of Table 2. The complete unconditional distribution could be obtained by

simulation.

6. ANALYSIS OF SOME FINANCIAL MARKETS

We focus on a univariate and multivariate analysis of three European

financial markets: the Dutch, the Swiss and the Italian market. They are

small capitalized markets compared to the US market. The differences in

sizes between the US market and the three European exchanges are evident.

The weight of the capitalization of the US market on the world

capitalization is over 40%, while the weights of each of the latter does not

exceed 3%.

The close-to-close log-returns of representative market indexes have been

observed in the period 18/01/1995–02/05/2003. The three markets (Dutch,

Swiss and Italian) are represented by the AEX, SMI and MIB indexes,

respectively. The returns of the US market are represented by the Standard

& Poor 500 (S&P), the most popular market index for the New York Stock

Exchange.

6.1. Univariate Analysis

The analysis proceeds by looking at the most important features of the

returns in absence and in presence of the conditioning on the performance of

the one-day lagged US market.

Table 3 reports the most salient statistics for the indexes when no

conditioning is taken into account. They describe the typical features of

financial returns. The average returns are very close to zero and a certain

degree of negative skewness is apparent. Fat tails in the distribution are

revealed by the kurtosis indices. Finally, the correlations with the one-day

lagged S&P returns are reported. A dynamic linkage from the US market to

the European markets does exist.

Then, we divide the entire samples into two subsamples, according to the

sign of the one-day lagged S&P return. In order to take into account the
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differences in closing days of the stock exchanges, some hypotheses have to

be made. We assume that if the European exchange is open at time t and the

US exchange is closed at time t� 1; then �t�1 is set to zero (there is no

information from the US market). If the European exchange is closed at

time t, the US exchange information at time t� 1 is useless; the next

European exchange return (at time tþ 1) is related to et. We compute the

same statistics as above in this setting, summarized in Table 4.

The resulting statistics are very interesting. They show a different

behavior of the European market indexes according to the sign of the last

trading day in the American stock exchange.

In the three markets the average return is positive (negative) when the

one-day lagged return of the S&P is positive (negative). The standard

deviation of the returns of the European market indexes is always greater in

presence of a negative sign coming from the US market. The skewness

coefficient is negative and stronger when the American stock exchange

return is negative; it is positive in the opposite case. Finally, the relationship

between present European returns and past US returns is clearly stronger

when the S&P return is negative. All these empirical findings match the

Table 4. Descriptive Statistics for the Three Stock Indexes According to

the Sign of One-Day Lagged S&P Returns.

Average Standard deviation Skewness Kurtosis Correlation

AEX

S&P40 0.384 1.498 0.346 8.020 0.178

S&Po0 �0.378 1.550 �0.412 5.071 0.275

SMI

S&P40 0.252 1.241 0.192 7.517 0.157

S&Po0 �0.219 1.366 �0.297 6.214 0.286

MIB

S&P40 0.259 1.502 0.028 5.098 0.084

S&Po0 �0.226 1.584 �0.038 4.494 0.210

Table 3. Descriptive Statistics for the Three Stock Indexes.

Average Standard deviation Skewness Kurtosis Correlation

AEX 0.019 1.575 �0.093 6.549 0.322

SMI 0.027 1.328 �0.134 6.689 0.276

MIB 0.022 1.564 �0.064 4.804 0.210
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theoretical features of the univariate SGARCH model (De Luca &

Loperfido, 2004). Only the observed kurtosis is always smaller in presence

of a negative US return, which contradicts the model.

The autocorrelation functions of the squared European returns steadily

decrease, hinting that p ¼ q ¼ 1 in the variance equation. Table 5 contains

the maximum likelihood estimates of the parameters of the three univariate

models. According to the ratios between estimate and standard error, all the

parameters are significant but the volatility spillover coefficients. This

involves the advantage of a model including the parameters b and g.

The highest value of the quantity b�g refers to the AEX returns involving

the major distance between the behaviors of the index conditionally on the

signals coming from the US market.

On the whole, the economic interpretation is straightforward: it is

relevant to distinguish between bad and good news from the US market.

The inclusion of the effect of exogenous news can significantly improve the

predictive performance.

In order to check the stability of the coefficients (particularly b and g) we

carried out recursive estimates. The first sample is composed of the

observations from 1 to 1000. For each subsequent sample we added an

observation. Fig. 1 shows the dynamics of the two parameters. The

differences between b and g are approximately constant for AEX and MIB.

For SMI, the distance tends to be slightly more variable.

In order to evaluate the performance of the model in out-of-sample

forecasting, we computed one-step-ahead forecasts of the volatility, s2tjt�1;
for t ¼ 1601; . . . ; using the SGARCH model. We compared them with

benchmark forecasts obtained from a standard GARCH(1,1) model.

Following Pagan and Schwert (1990), we ran a regression of log squared

returns versus log forecasted volatility, and then computed the F-test for the

Table 5. Maximum Likelihood Estimates (Standard Error) of the

Univariate SGARCH Models for the Three Indexes’ Returns.

ô0 ô1 ô2 ô3 b̂ ĝ

AEX 0.012 0.115 0.866 0.020 0.343 0.072

(0.006) (0.016) (0.019) (0.011) (0.022) (0.033)

SMI 0.035 0.133 0.840 0.006 0.267 0.121

(0.011) (0.019) (0.021) (0.009) (0.024) (0.034)

MIB 0.083 0.115 0.836 0.020 0.186 0.113

(0.022) (0.018) (0.025) (0.016) (0.021) (0.033)
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hypothesis of a null intercept and a unit slope. The F-statistics for SGARCH

and GARCH, respectively, are 53.14 and 69.24 (AEX), 59.25 and 69.24

(SMI), 70.00 and 72.65 (MIB) and thus favor the SGARCH model.

Moreover, we computed how many times the sign of the return had been

correctly predicted with the SGARCH model. The percentages of correct

negative signs are 64.37 (AEX), 58.98 (SMI) and 56.15 (MIB). For positive

sign, they are 56.78 (AEX), 51.33 (SMI) and 49.14 (MIB).

6.2. Multivariate Analysis

When a multivariate model is considered, the focus on daily data poses some

problems. In fact there are unavoidably some missing values, due to the

different holidays of each country. As an example, on the 1st of May, there

is the Labor Holiday in Italy and Switzerland and the stock exchanges do

not operate. But on the same day the stock exchange in the Netherlands is

open. Deleting the day implies missing a datum. In order to overcome this

drawback, we assumed that the Italian and Swiss variance in that

day, s21stMay; has the same value as on the last opening day of the stock

exchange (s230thApril if not Saturday or Sunday). The next day variance,

s22ndMay if not Saturday or Sunday, was computed according to a GARCH
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Fig. 1. Recursive Estimates of b (Top Curve) and g (Bottom Curve) for AEX (Left),

SMI (Middle) and MIB (Right).
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(1,1) model without considering the past holiday. In general, for the k-th

market index,

s2kt ¼
o0k þ o1k sk;t�1zk;t�1

� �2 þ o2ks
2
k;t�1 þ o3kZ

2
t�1; t� 1 ¼ open

o0k þ o1k sk;t�2zk;t�2

� �2 þ o2ks
2
k;t�1 þ o3kZ

2
t�1; t� 1 ¼ close

8
<
:

Maximum likelihood estimation has been performed using a Gauss code

written by the authors. The algorithm converged after a few iterations. The

parameters are again all significant, but the spillover parameters. Their

values, reported in Table 6, are not very far from the corresponding

estimates in the univariate context. In addition we obtain the estimates of

the correlation coefficients, indicated by rij.

Table 6. Maximum Likelihood Estimates and Standard Errors of the

Multivariate SGARCH Model. The Subscript Letters have the following

Meanings: A ¼ AEX; S ¼ SMI; M ¼ MIB.

Parameter Estimate Standard Error

o0A 0.042 0.008

o1A 0.085 0.010

o2A 0.865 0.019

o3A 0.021 0.010

o0S 0.075 0.012

o1S 0.100 0.013

o2S 0.826 0.021

o3S 0.008 0.006

o0M 0.148 0.027

o1M 0.087 0.013

o2M 0.852 0.023

o3M �0.017 0.011

rAM 0.665 0.012

rAS 0.705 0.011

rMS 0.605 0.014

bA 0.335 0.022

gA 0.106 0.035

bS 0.235 0.021

gS 0.148 0.032

bM 0.192 0.029

gM 0.168 0.041
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The diagnostic of the SGARCH model can be based on the squared

norms {St} of the residuals {rt}, defined as follows:

St ¼ rTt rt; rt ¼
Ô

�1=2

þ D̂
�1

t xt � ĝ

ffiffi
2
p

q� 	
; Y t�140

Ô
�1=2

� D̂
�1

t xt � ĝ

ffiffi
2
p

q� 	
; Y t�1o0

8
><
>:

If the model is correctly specified, the following results hold:

1. The squared norms {St} are i.i.d. and St � w2p:
2. If n is the number of observed returns, then

ffiffiffiffiffi
n

2p

r
1

n

Xn

t¼1

St � p

 !
�a N 0; 1ð Þ (7)

The proof of this result is given in the appendix. We computed the statistic

in (7). Its value is �0:031; such that the hypothesis of skew-normality of the

conditional distributions cannot be rejected.

7. CONCLUSIONS

The multivariate Skew-GARCH model is a generalization of the

GARCH model aimed at describing the behavior of a vector of dependent

financial returns when an exogenous shock coming from a leading financial

market is taken into account. We analyzed returns from three European

markets, while the leading market was identified as the US market. It turned

out to be significant to consider the effects of the exogenous shock.

The distributions of the European returns show different features according

to the type of news arriving from the leading market. When the above

assumptions are not consistent, the estimation step reveals the drawback.

In this case, some parameters of the model are zero and the multivariate

Skew-GARCH model shrinks to the simple multivariate GARCH model

with constant correlation coefficients. A future extension of our proposed

model would be to replace the multivariate skew-normal distribution

by a multivariate skew-elliptical distribution, see the book edited by

Genton (2004). For example, a multivariate skew-t distribution would

add further flexibility by introducing an explicit parameter controlling tail

behavior.
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APPENDIX

Proof of Theorem 1. We shall prove the theorem for Y t�140 only. The

proof for Y t�1o0 is similar. By assumption, the joint distribution of

random shocks is

�t�1

zt

 !
� Npþ1

0

0

� �
;

1 0T

0 C

 ! !

By definition, Oþ ¼ Cþ dþd
T
þ; so that

�t�1

g
ffiffiffiffiffiffiffiffi
2=p

p
þ dþ�t�1 þ zt

 !
� Npþ1

0

g
ffiffiffiffiffiffiffiffi
2=p

p
 !

;
1 dTþ
dþ Oþ

 ! !

The conditional distribution of g
ffiffiffiffiffiffiffiffi
2=p

p
þ dþ�t�1 þ zt given �t�140 is

multivariate SN (Dalla Valle, 2004):

g

ffiffiffi
2

p

r
þ dþ�t�1 þ ztj�t�140

 !
� SNp g

ffiffiffi
2

p

r
;Oþ;

O�1
þ dþffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� dTþO
�1
t dþ

q

0
B@

1
CA

By definition, dþ ¼ b� g; so that standard properties of absolute values

lead to

g

ffiffiffi
2

p

r
þ b�t�1 � gj�t�1j þ zt



�t�140

 !
� SNp g

ffiffiffi
2

p

r
;Oþ;

O�1
þ dþffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� dTþO
�1
þ dþ

q

0
B@

1
CA

By definition, US returns and European returns are Y t�1 ¼ Zt�1�t�1 and

xt ¼ Dtðg
ffiffiffiffiffiffiffiffi
2=p

p
þ b�t�1 � gj�t�1j þ ztÞ: Hence,

D�1
t xtjY t�140

� �
� SNp g

ffiffiffi
2

p

r
;Oþ;

O�1
þ dþffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� dTþO
�1
þ dþ

q

0
B@

1
CA
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Apply now the Sherman-Morrison formula to the matrix

Oþ ¼ Cþ dþd
T
þ:

O�1
þ ¼ C�1 �

C�1dþd
T
þC

�1

1þ dTþC
�1dþ

A little algebra leads to the following equations:

O�1
þ dþ ¼ C�1 �

C�1dþd
T
þC

�1

1þ dTþC
�1dþ

 !
dþ

¼ C�1dþ 1�
dTþC

�1dþ

1þ dTþC
�1dþ

 !

¼ C�1dþ

1þ dTþC
�1dþ

1� dTþO
�1
þ dþ ¼ 1�

dTþC
�1dþ

1þ dTþC
�1dþ

¼ 1

1þ dTþC
�1dþ

Recall now the definition of the vector a+:

O�1
þ dþffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� dTþO
�1
þ dþ

q ¼
C�1dþ= 1þ dTþC

�1dþ
� �

1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ dTþC

�1dþ

q

¼ C�1dþffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ dTþC

�1dþ

q ¼ aþ

We can then write

D�1
t xtjY t�140

� �
� SNp g

ffiffiffi
2

p

r
;Oþ; aþ

 !

and the proof is complete.&

Proof of the positivity of the unconditional skewness. We shall prove the

theorem for zt ¼ D�1
t xt only: the proof for xt is similar. When g ¼ 0 the

distribution of zt is multivariate normal, so that it suffices to show that

ga0 implies that SðztÞ40: Let the vectors wt, ut, g1, g2 and the matrix G
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be defined as follows:

V ztð Þ ¼ S; G ¼ S�1 	 S�1 	 S�1

wt � ðztjY t�140Þ; g1 ¼ E wt 	 wt 	 wtð Þ
ut � ðztjY t�1o0Þ; g2 ¼ E ut 	 ut 	 utð Þ

The distribution of zt is the mixture, with equal weights, of the

distributions of wt and ut. Ordinary properties of mixtures lead to

E zt 	 zt 	 ztð Þ ¼ 1

2
E wt 	 wt 	 wtð Þ þ 1

2
E ut 	 ut 	 utð Þ

¼ 1

2
g1 þ g2
� �

Hence the multivariate skewness of the vector zt can be represented as

follows:

S ztð Þ ¼ 1

4
g1 þ g2
� �T

G g1 þ g2
� �

The distribution of wt equals that of �ut only when g ¼ 0: By assumption

ga0; so that

g1 þ g2a0 ) S ztð Þ ¼ 1

4
g1 þ g2
� �T

G g1 þ g2
� �

40

The last inequality follows from S being positive definite and from

properties of the Kronecker product. The proof is then complete. &

Proof of the asymptotic distribution (7). Let the random variables S̄t
 �

and the random vectors r̄tf g be defined as follows:

S̄t ¼ r̄Tt r̄t; r̄t ¼

O
�1=2
þ D�1

t xt � g

ffiffiffi
2

p

r !
Y t�140

O�1=2
� D�1

t xt � g

ffiffiffi
2

p

r !
Y t�1o0

8
>>>>><
>>>>>:
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From Section 3 we know that the distributions of D�1
t xtjY t�1o0 and

D�1
t xtjY t�140 are skew-normal:

D�1
t xtjY t�140

� �
� SNp g

ffiffiffi
2

p

r
;Oþ; aþ

 !

D�1
t xtjY t�1o0

� �
� SNp g

ffiffiffi
2

p

r
;O�; a�

 !

Apply now linear properties of the SN distribution:

r̄tjY t�140ð Þ � SNp 0; Ip; lþ
� �

; lþ ¼ O
1=2
þ aþ

r̄tjY t�1o0ð Þ � SNp 0; Ip; l�
� �

; l� ¼ O1=2
� a�

First notice that the vectors fr̄tg are i.i.d. Moreover, the distribution of r̄t
is the mixture, with equal weights, of two p-dimensional SN distributions

with zero location parameter and the identity matrix for the scale

parameter, that is:

f r̄tð Þ ¼ 1

2pð Þp=2
exp � r̄Tt r̄t

2

� �
F lT�r̄t
� �

þ F lTþr̄t
� �� �

The above density can be represented as follows:

f r̄tð Þ ¼ 2fp r̄t; Ip
� �

o r̄tð Þ

where fpð�;SÞ denotes the density of Npð0;SÞ and wð�Þ is a function such

that 0 � wð�r̄tÞ ¼ 1� wðr̄tÞ � 1:Hence the distribution of r̄t is generalized

SN with the zero location parameter and the identity matrix for the scale

parameter (Loperfido, 2004; Genton & Loperfido, 2005). It follows that

the pdf of even functions gðr̄tÞ ¼ gð�r̄tÞ does not depend on wð�Þ: As an

immediate consequence, we have:

S̄t ¼ r̄Tt r̄t � w2p ) E S̄t

� �
¼ p; V S̄t

� �
¼ 2p

GIOVANNI DE LUCA ET AL.56



A standard application of the Central Limit Theorem leads to

ffiffiffiffiffi
n

2p

r
1

n

Xn

t¼1

S̄t � p

 !
�a N 0; 1ð Þ

When the sample size is large, the distribution of {rt} approximates the

distribution of fr̄tg: Hence the squared norms {St} are approximately

independent and identically distributed according to a w2p distribution.

Moreover,

ffiffiffiffiffi
n

2p

r
1

n

Xn

t¼1

St � p

 !
�a N 0; 1ð Þ

and this completes the proof.&
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ABSTRACT

In this paper we develop a new semi-parametric model for conditional

correlations, which combines parametric univariate Generalized Auto

Regressive Conditional Heteroskedasticity specifications for the individ-

ual conditional volatilities with nonparametric kernel regression for the

conditional correlations. This approach not only avoids the proliferation

of parameters as the number of assets becomes large, which typically

happens in conventional multivariate conditional volatility models, but

also the rigid structure imposed by more parsimonious models, such as the

dynamic conditional correlation model. An empirical application to the 30

Dow Jones stocks demonstrates that the model is able to capture inter-

esting asymmetries in correlations and that it is competitive with standard

parametric models in terms of constructing minimum variance portfolios

and minimum tracking error portfolios.
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1. INTRODUCTION

Estimating and forecasting the (conditional) covariance structure of finan-

cial asset returns plays a crucial role in important areas of finance such as

portfolio construction, asset pricing and risk management. It is therefore

not surprising that modelling the dynamics of conditional covariance ma-

trices has received ample attention. This research area was boosted by the

introduction of the (Generalized) AutoRegressive Conditional Het-

eroskedasticity ((G)ARCH) model by Engle (1982) and Bollerslev (1986).

Early-stage multivariate GARCH models, including the VEC-model of

Bollerslev, Engle, and Wooldridge (1988) and the BEKK-model of Engle

and Kroner (1995), describe the dynamics of all elements of the covariance

matrix in a flexible way, using many parameters. As such, they suffer from

the ‘‘curse of dimensionality’’, meaning to say that the number of param-

eters to be estimated in these models increases very rapidly as the number of

included assets increases.1 This basically prevented their successful applica-

tion in empirically relevant settings, where portfolios might consist of 10s or

even 100s of assets. More parsimonious models, such as the Constant Con-

ditional Correlation (CCC) model of Bollerslev (1990), are applied more

frequently in practice. These models limit the possible dynamic patterns of

the covariance matrix in important ways, however. In the CCC model, for

example, the covariance between two assets changes over time only because

of variation in their conditional volatilities, as their correlation is assumed

to be constant.

Recently, several extensions of the CCC model have been proposed that

allow for time-variation in the conditional correlations. On the one hand,

Engle (2002) and Tse and Tsui (2002) developed Dynamic Conditional

Correlation (DCC) models, where the conditional correlations evolve ac-

cording to a GARCH-type structure. The attractive feature of this approach

is that the number of parameters in the conditional correlation model can be

limited by using the idea of ‘‘correlation targeting’’, which means that the

unconditional correlations implied by the model are restricted to be equal to

the unconditional sample correlations. In that case, the basic DCC-model

of Engle (2002), for example, involves only two unknown parameters.

Cappiello, Engle, and Sheppard (2003) and Hafner and Franses (2003)

considered generalizations to allow for richer correlation dynamics, while

still keeping the number of parameters within reasonable bounds even for

large numbers of assets.2 On the other hand, Pelletier (2005) and

Silvennoinen and Teräsvirta (2005) proposed Regime-Switching Condition-

al Correlation models, where the correlations switch back and forth between
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a limited number of different values, according to an unobserved Markov-

Switching process or according to the value of observed exogenous

variables, respectively. The main disadvantage of these models is that cor-

relation targeting can no longer be applied in a straightforward manner,

such that the number of parameters to be estimated again grows rapidly

(that is, quadratically) with the number of assets.

In this paper, we put forward a new semi-parametric model for the con-

ditional covariance matrix that is flexible yet easy to estimate even in high

dimensions. The model is semi-parametric, in the sense that the conditional

variances are described parametrically, for example, using standard un-

ivariate GARCH-type models, while the conditional correlations are esti-

mated using nonparametric techniques. The conditional correlations are

assumed to depend on an observable exogenous (or pre-determined) var-

iable. The appropriate choice of this conditioning variable depends on the

particular application. For example, in Section 4 below, we model the cor-

relations between the 30 individual stocks included in the Dow Jones In-

dustrial Average (DJIA) index, and allow these to depend on the market

volatility and market return. These variables are motivated by both theo-

retical and empirical considerations. First, as shown by Andersen,

Bollerslev, Diebold, and Ebens (2001), in case asset returns exhibit a fac-

tor structure, the correlations are affected by the conditional volatility of the

latent factor. In particular, under quite realistic assumptions concerning the

factor loadings, high factor volatility induces high correlations between in-

dividual asset returns. In the context of the DJIA stocks, a factor structure is

a sensible possibility and, furthermore, the market portfolio is a natural

candidate to use as a proxy for the latent common factor. Additional em-

pirical evidence supporting the hypothesis that correlations increase in high

volatility states can be found in Longin and Solnik (1995, 2001), and

Ramchand and Susmel (1998), but see Loretan and English (2000), and

Forbes and Rigobon (2002) for critical discussion. Second, modelling the

correlations as a function of the lagged index return is motivated by the

literature on ‘‘correlation breakdown’’, which has documented that typically

asset correlations increase in bear markets, but are not affected (or to a

much lesser extent) in bull markets, see Longin and Solnik (2001), Ang and

Chen (2002), Butler and Joaquin (2002), and Campbell, Koedijk, and

Kofman (2002), among others.

The idea of allowing the conditional correlations to depend on exogenous

factors resembles the regime-switching model of Silvennoinen and Teräsvirta

(2005). However, instead of a priori imposing a certain parametric specifi-

cation for the correlation functions, we suggest a nonparametric estimator.
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Basically, a Nadaraya–Watson kernel regression is applied to each condi-

tional correlation individually, using the same bandwidth to guarantee that

the resulting estimator of the correlation matrix is positive definite. In order

to obtain a genuine correlation matrix in finite samples, we apply the same

transformation as in the DCC model of Engle (2002). Our nonparametric

estimator only requires the assumption that correlations are smooth func-

tions of the conditioning variable, while the data completely determines the

appropriate shape of the functional relationship. An additional advantage is

that the individual correlation functions are allowed to exhibit quite different

shapes, which is problematic in currently available parametric specifications,

as will become clear below.

The paper proceeds as follows: In Section 2, we briefly review the various

conditional correlation models that have recently been proposed. We de-

scribe our new semi-parametric model in Section 3, including a detailed

discussion of the issues involved in the nonparametric part of the estimation

procedure. In Section 4, we consider daily returns of the 30 stocks included

in the Dow Jones Industrial Average Index over the period 1989–2003, and

apply several models to describe the dynamics in the conditional covariance

matrix of these stocks. We find that our new semi-parametric model is

competitive with rival specifications, in particular, in terms of tracking error

minimization. We conclude in Section 5, also pointing out interesting di-

rections for future research. The appendix contains a proof of the consist-

ency and asymptotic normality of the semi-parametric estimator developed

in Section 3.

2. DYNAMIC CONDITIONAL CORRELATION

MODELS

In this section, we review existing models for describing the dynamics in

conditional correlations of asset returns. These models are a specific sub-

group within the general class of multivariate GARCH models. We refer to

Bauwens, Laurent, and Rombouts (2005) for elaborate discussion of other

models in this class.

Let rt denote an N-dimensional vector time series, such as daily returns on

the stocks in the Dow Jones index. Suppose for simplicity (but without loss

of generality) that the conditional mean of rt is constant and equal to zero,

but that its conditional covariance matrix is time-varying. That is, we have
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the generic model

E rtjF t�1½ � ¼ 0 (1)

V rtjF t�1ð Þ ¼ E rtr
0
tjF t�1

� �
¼ H t (2)

where F t is the information set that includes all information up to and

including time t: The conditional covariance matrix H t can be decomposed

as

H t ¼ DtðyÞRtDtðyÞ (3)

with DtðyÞ ¼ diag
ffiffiffiffiffiffi
h1t

p
; . . . ;

ffiffiffiffiffiffiffi
hNt

p� �
a diagonal matrix with the square root

of the conditional variances hit, parameterized by the vector y, on the di-

agonal. For example, hit can be described by the univariate GARCH-model

of Bollerslev (1986) or nonlinear extensions such as the GJR-GARCH

model of Glosten, Jagannathan and Runkle (1993). The matrix Rt, with the

(i,j)-th element denoted as rijt, is the possibly time-varying conditional cor-

relation matrix. As noted by Engle (2002), Rt also is the conditional co-

variance matrix of the standardized disturbances �t ¼ D�1
t ðyÞrt; that is

E �t�
0
tjF t�1

� �
¼ Rt (4)

Different specifications of Rt give rise to different models. First, the CCC

model of Bollerslev (1990) assumes that Rt ¼ R is constant. In that case,

estimation is straightforward and can be performed in two steps. First, one

estimates univariate GARCH models for the individual series rit; i ¼
1; . . . ; N; using (quasi) maximum likelihood to obtain estimates of the

conditional variances hit: Second, R can be consistently estimated by the

sample covariance matrix of the standardized residuals �̂t ¼ bD�1

t rt; that is
bR ¼ T�1ST

t¼1 �̂t �̂
0
t with T denoting the sample size.

Second, Engle (2002) and Tse and Tsui (2002) introduced the class of

DCC models, where Rt is allowed to vary according to a GARCH-type

process, such as

Qt ¼ ð1� a� bÞQ̄þ a�t�1�
0
t�1 þ bQt�1 (5)

Rt ¼ Qn �1
t QtQ

n �1
t (6)

where Q̄ ¼ E½�t�0t� is the unconditional covariance matrix of standardized

returns, Qn

t is a diagonal matrix containing the square roots of the diagonal

elements of Qt, and a and b are scalars. The attractive feature of the DCC

model is not only that two-step estimation is still feasible, but also that
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‘‘correlation targeting’’ can be used in the second step. That is, after esti-

mating univariate GARCH models for the conditional volatilities hit in the

first step, Q̄ can be replaced by the sample covariance matrix of the stand-

ardized residuals �̂t: This imposes the restriction that the unconditional

correlations as implied by the model are equal to the unconditional sample

correlations, and reduces the number of parameters to be estimated in the

second step to two, namely, a and b. Engle and Sheppard (2001) prove

consistency and asymptotic normality of this two-step estimator. Note that

correlation targeting is the multivariate analogue of variance targeting in the

univariate GARCH framework as introduced by Engle and Mezrich (1996).

The DCC model in (5) has two particular features that may render it too

restrictive in practice. First, the model imposes all correlations to have the

same dynamic pattern as governed by the parameters a and b. It is not

difficult to come up with examples of situations where this restriction may

be violated. For example, correlations between stocks from the same in-

dustry may behave rather differently from correlations between stocks from

different industries. Second, the model implies symmetry, in the sense that a

pair of positive standardized returns eit and ejt has the same effect on the

conditional correlation as a pair of negative returns of the same magnitude.

Recent empirical evidence in Ang and Chen (2002), among others, indicates

the presence of asymmetries in correlations, suggesting for example, that

correlations increase for large downward stock price movements but not, or

less, for large upward movements.

Several extensions of the basic model in (5) have been developed that

alleviate these shortcomings. Hafner and Franses (2003) suggested the semi-

generalized DCC (SGDCC) model that allows for asset-specific news impact

parameters by replacing (5) with

Qt ¼ 1� ā2 � b
� �

Q̄þ aa0 � �t�1�
0
t�1 þ bQt�1 (7)

where � denotes the Hadamard product and a now is an (N� 1) vector,

a ¼ ða1; a2; . . . ; aNÞ0; and ā ¼ N�1
PN

i¼1 ai is the average news impact pa-

rameter. The memory parameter b can be made asset-specific in identical

fashion. Note that the number of parameters in (7) increases linearly with

the number of assets N. Cappiello et al. (2003) allowed for nonlinear impact

of shocks on the conditional correlations, in particular of simultaneous

negative shocks in assets i and j, by considering the asymmetric DCC

(ADCC) model

Qt ¼ ð1� a� bÞQ̄� gN̄ þ a�t�1�
0
t�1 þ bQt�1 þ gnt�1n

0
t�1 (8)

CHRISTIAN M. HAFNER ET AL.64



where nt ¼ I½�to0� � �t; with I[A] being the indicator function for the event

A, and N̄ ¼ E½ntn0t�: In estimation of the ADCC model, N̄ can be replaced by

its sample analogue T�1ST
t¼1n̂tn̂

0
t; such that the number of parameters is

equal to three independent of the number of assets included. Combining the

ideas in (7) and (8) is also possible, see Cappiello et al. (2003).

Third, Pelletier (2005) developed a Markov-Switching conditional corre-

lation model that allows the conditional correlations to switch between k

distinct values, by specifying the conditional correlation matrix in (3) as

Rt ¼ Rst (9)

where st is an unobserved first-order Markov process with k states, with

transition probabilities P st ¼ jjst�1 ¼ i½ � ¼ pij ; for i; j ¼ 1; . . . ; k: Note that

in contrast to the DCC-type models discussed above, this model does not

necessarily imply any direct dynamic dependence in the conditional corre-

lation matrix, although there is indirect dependence through the Markov-

character of st. Estimation of the parameters in this model can again be done

using a two-step approach, where in the second step, the EM-algorithm can

be employed, see Pelletier (2005) for details. Note however that correlation

targeting is not possible here. Hence, the elements in the Rst ; st ¼ 1; . . . ; k
matrices have to be treated as unknown parameters such that the number

of parameters to be estimated in the second step equals kðNðN � 1Þ=2þ
ðk � 1ÞÞ:

Fourth, Silvennoinen and Teräsvirta (2005) consider a smooth transition

conditional correlation (STCC) model that allows the conditional correla-

tions to vary continuously between two extremes, according to the value of

an observed variable xt,

Rt ¼ R1ð1� Gðxt; g; cÞÞ þ R2Gðxt; g; cÞ (10)

where the function G(xt; g,c) is continuous and bounded between 0 and 1.

For example, G(xt; g,c) can be the logistic function

Gðxt; g; cÞ ¼
1

1þ expð�gðxt � cÞÞ (11)

which tends to 0 (1) for very small (large) values of the transition variable xt;
relative to the threshold parameter c. The parameter g determines the

smoothness of the change from 0 to 1 as xt increases. The transition variable

xt should of course be included in the information set F t�1 to make the

model operational and useful for forecasting purposes. Although the pa-

rameters in this model can again be estimated using a two-step approach,

correlation targeting is not possible, such that the number of parameters to
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be estimated in the second step equals 2N(N�1)/2+2. An interesting special

case of the STCC model (10) with (11) arises when the parameter g ! 1;
such that the change of the correlation matrix from R1 and R2 occurs in-

stantaneously at xt ¼ c: In that case, estimation of the parameters is sim-

plified considerably, in the sense that correlation targeting becomes possible

again. Note that, if g ¼ 1 such that Gðxt; g; cÞ ¼ I½xt � c�; R1 ¼ E½n1tn01t�
with n1t ¼ I½xtoc� � �t and R2 can be similarly defined as R2 ¼ E½n2tn02t�
with n2t ¼ I½xt � c� � �t: For a fixed value of c; R1 and R2 can then be

replaced by their sample analogues ST
t¼1 I xtoc½ �

� ��1
ST
t¼1 n̂1t n̂

0
1t and

ST
t¼1 I xt � c½ �

� ��1
ST
t¼1 n̂2t n̂

0
2t; respectively. This leaves only c to be estimat-

ed, which can be achieved by means of grid search.

A crucial ingredient of the STCC model is of course the transition var-

iable xt. Berben and Jansen (2005) take xt ¼ t in an application to industry

stock returns, effectively modelling a gradual structural change in correla-

tions. Alternatively, xt could be taken to be a lagged market return or

volatility, motivated by the correlation breakdown effect and by the pres-

ence of a factor structure, respectively, as discussed in Section 1. Si-

lvennoinen and Teräsvirta (2005) develop an LM-type test for the constancy

of the correlation matrix against the STCC-alternative, which also can be

used as a guiding tool in the choice of the appropriate transition variable xt.

3. A SEMI-PARAMETRIC CONDITIONAL

CORRELATION MODEL

In this section, we put forward our semi-parametric conditional correlation

model. The model can be considered a generalization of the STCC model of

Silvennoinen and Teräsvirta (2005) given in (10) and (11). We are sympa-

thetic to the idea that the conditional correlations depend on exogenous

factors such as the market return or volatility. However, the STCC model is

restrictive, in the sense that it imposes that all correlations depend on xt in

the same way, as determined by the transition function G(xt; g,c). This as-

sumption may be unrealistic in practice, as one can easily imagine that dif-

ferent correlations respond differently to changes in xt; see the factor model

in Andersen et al. (2001) and the empirical application in Silvennoinen and

Teräsvirta (2005) for examples. It might be possible to generalize the STCC

model to allow for asset-specific smooth transition in correlations, similar to

the SGDCC model of Hafner and Franses (2003) in (7). In that case, how-

ever, it would be difficult, if not impossible, to guarantee positive definite-

ness of the correlation matrix for all values of xt. In addition, even if it is
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reasonable to assume that all correlations have the same functional rela-

tionship to xt, the specific form of this dependence, such as the logistic

function in (11), is not likely to be known a priori. Hence, we suggest to

model the conditional correlation matrix in a nonparametric way.

In sum, we propose the following semi-parametric model:

rt ¼ DtðyÞ�t (12)

with DtðyÞ as defined before, E½�tjF t�1� ¼ 0 and

E½�t�0tjF t�1;xt ¼ x� ¼ RðxÞ (13)

where xt is an observed variable, for example, the market return or volatility

at time t� 1: Assuming that we have a
ffiffiffiffi
T

p
-consistent estimator of y, which

we denote by ŷ; the standardized residuals are then defined by �̂t ¼ DtðŷÞ�1rt:
These are used in the second stage to estimate R(x) nonparametrically, as

bRðxÞ ¼ bQ
n

ðxÞ�1 bQðxÞ bQ
n

ðxÞ�1 (14)

where

bQðxÞ ¼

PT

t¼1

�̂t�̂
0
tKhðxt � xÞ

PT

t¼1

Khðxt � xÞ
(15)

where Khð�Þ ¼ ð1=hÞKð�=hÞ; K is a kernel function and h a bandwidth pa-

rameter. As before, bQ
n

ðxÞ is a diagonal matrix with the square roots of the

diagonal elements of bQðxÞ on its diagonal. Hence the (i, j)-th element of bRðxÞ
in (14) can be written as

brijðxÞ ¼
q̂ijðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q̂iiðxÞq̂jjðxÞ
p

The estimator bRðxÞ in (14) is essentially a transformed Nadaraya–Watson

estimator applied to the elements of the matrix �̂t �̂
0
t: Of course, other non-

parametric estimators such as local polynomials could be used as well, see

for example, Fan and Gijbels (1996), Härdle, Lütkepohl, and Chen (1997)

and Pagan and Ullah (1999) for reviews, and Fan and Yao (1998) and

Ziegelmann (2002) for applications to volatility modelling. Recall that the

conditional covariance matrix of rt can be written as

H t ¼ VðrtjF t�1;xt ¼ xÞ ¼ DtðyÞRðxÞDtðyÞ

where the semi-parametric character of the model for H t now becomes

obvious: DtðyÞ is modelled parametrically using standard univariate
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GARCH-type models, for example, while the correlation matrix R(x) is

treated in a nonparametric fashion.

Note that (15) essentially boils down to univariate kernel regression.

Hence, unlike many of the early-stage multivariate GARCH models and

unlike many estimation problems in nonparametric analysis, our semi-par-

ametric model does not suffer from the curse of dimensionality. It is

straightforward to see that (14) generalizes the STCC model in (10), as we

do not impose that all correlations are related in the same way to xt, nor do

we assume any particular parametric form for this dependence. Also recall

that one is likely to encounter difficulties in estimation when applying the

STCC model to large systems given that correlation targeting is not possible.

Using the non-parametric estimator in (14) and (15) this problem obviously

is avoided. Note that this also suggests that our semi-parametric model

might be used in exploratory data analysis to examine the shape of the

dependence of rijt on xt.

Apart from the choice of xt, the crucial decision to be made when im-

plementing the non-parametric estimator of the conditional correlation

concerns the bandwidth h: One option would be to use a constant band-

width, which could be selected using cross-validation or the plug-in method,

see for example, Pagan and Ullah (1999). This has the drawback that the

variance of R(x) becomes very large near the boundaries of the support of xt
or more generally in areas of the support of xt where the data is sparse. To

alleviate the problem of data sparsity, we suggest to use local bandwidths. In

particular, we allow h to depend on the design density f(x) such that hðxÞ ¼
bf ðxÞ�a; where b is a positive constant and 0 � a � 1: For positive values of
a, this implies that the bandwidth becomes larger when relatively few ob-

servations around the point xt ¼ x are available such that f(x) is small, while

h(x) becomes smaller in high-density regions. For a ¼ 0; one has the stand-
ard kernel smoother with constant bandwidth h(x) ¼ b. Jennen-Steinmetz

and Gasser (1988) showed that a ¼ 1/4 corresponds roughly to spline

smoothing and a ¼ 1 to generalized nearest-neighbour smoothing. In the

empirical application in the next section, we will illustrate the sensitivity of

the estimates of R(x) to different values of a.

In Theorem 1, we state the asymptotic properties of the nonparametric

estimator of the conditional correlation matrix as given in (14) and (15).

Using the notation Zt ¼ vechð�t �0tÞ and rðxÞ ¼ vechðRðxÞÞ; we have

rðxÞ ¼ E½Ztjxt ¼ x� (16)

VðZtjxt ¼ xÞ ¼ E½ðZt � rðxÞÞðZt � rðxÞÞ0jxt ¼ x� (17)
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Also, denote by f̂ ðxÞ an estimator of f(x), the density of xt. Under the

assumptions stated in the appendix, the nonparametric estimator of R(x) is

consistent and asymptotically normal, as detailed in the following theorem.

Theorem 1. Under Assumptions (A1) to (A6), and b ! 0 as T increases

such that Tb5 ! 0 and Tb-N it holds that

1. The diagonal elements of the matrix bQ in (15) converge in probability

to 1:

bqiiðxÞ �!
p

1; i ¼ 1; . . . ;N

2. The estimator bRðxÞ in (14) is consistent and asymptotically normal:

ffiffiffiffiffiffi
Tb

p
ðbrðxÞ � rðxÞÞ �!L Nð0;SðxÞÞ

where

SðxÞ ¼
R
K2ðuÞ du
f ðxÞ1�a

VðZtjxt ¼ xÞ

The proof of the theorem is given in the appendix. Also, an explicit

expression for VðZtjxt ¼ xÞ is given there, which depends on R(x) and on

the fourth moment characteristics of the innovations �t: If these are

assumed to be normally distributed, then a consistent estimator of

VðZtjxt ¼ xÞ is easily constructed by replacing R(x) by R̂ðxÞ: If the dis-

tribution is unknown, then fourth moments of �t can be estimated

using corresponding moments of the standardized residuals �̂t; but for

consistency we would need the assumption of finite eighth moments.

4. EMPIRICAL APPLICATION

In this section, we explore the potential of our semi-parametric correlation

model to describe and forecast the conditional covariance matrix of asset

returns. We are mainly interested in empirically relevant situations, where

the number of assets N is fairly large, in which it is difficult to apply early-

stage multivariate GARCH models and the regime-switching correlation

models (9) and (10). We use daily returns of the 30 stocks that constituted

the DJIA index between November 1999 and April 2004. Several condi-

tional correlations models are estimated for these stock returns. We evaluate

and compare the models not only by means of statistical criteria, but mainly

by applying the models for constructing minimum variance portfolios

(MVPs) and minimum tracking error volatility portfolios.
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4.1. Data

The sample period covers 15 years, running from January 1, 1989 until

December 31, 2003. Days on which the stock exchange was closed were

removed from the sample, leaving a sample size of T ¼ 3,784 observations.

We use the first decade 1989–1998 (2,528 observations) for in-sample es-

timation and analysis of competing models, and set aside the final five years

1999–2003 (1,256 observations) for out-of-sample forecasting.

Part of the challenge in this application stems from the fact that the

general trend in the stock market was quite different during the initial es-

timation period and the forecasting period. The 1990s were characterized by

a prolonged bull market, which ended with the burst of the internet bubble

and was followed by a bearish market around the turn of the millennium.

Tables 1 and 2 show annualized means and standard deviations of the daily

stock returns, which obviously reflect the overall market sentiment. All 30

stocks had large positive average returns during the first decade of our

sample period, while the average return turned negative for 18 stocks during

the final five years. Only the stocks of Alcoa Inc. (AA) and 3M Company

(MMM) had higher returns during the period 1999–2003 than during the

preceding 10 years. It is also seen that the volatility of stock returns was

considerably higher during the last five years of the sample period. For most

stocks the standard deviation increased by about 50%. Tables 1 and 2 also

contain estimation results from the three-factor regression model developed

by Fama and French (1993, 1996), given by

rit � rf ;t ¼ aþ bi;MðrM;t � rf ;tÞ þ bi;SMBrSMB;t þ bi;HMLrHML;t þ �t (18)

where rit is the daily return for stock i, rf,t is the risk-free rate, rM,t is the

market portfolio return, rSMB,t (Small-Minus-Big) and rHML,t (High-Minus-

Low) are size and book-to-market factor portfolio returns. The size factor

return rSMB,t is computed as the difference between the returns on portfolios

of stocks with small and large market capitalization, while rHML,t is ob-

tained similarly using portfolios of stocks with high and low book-to-market

values. We employ the daily market and factor returns available on the

website of Kenneth French.3 Most of the DJIA stocks move one-to-one with

the market, given that the estimates of bi,M are fairly close to 1. Exceptions

include Johnson and Johnson (JNJ) and JP Morgan (JPM), for which we

find very low and high market betas, respectively. In general, the difference

in bi,M during the two sub-periods is not very large. The negative estimates

of bi,SMB are not surprising of course, given the size of the DJIA stocks. For

the majority of stocks we find that bi,HML was substantially higher during
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the period 1999–2003 than during the years 1989–1998. We return to these

estimates below.

The increase in volatility mentioned above is also evident from Table 3,

which shows summary statistics of the distribution of daily stock return

variances, covariances and correlations. It is seen that the average daily

stock return variance doubled during the last five years of the sample period,

Table 1. Characteristics of Daily Returns on DJIA Stocks – 1989–1998.

Mean S.D. bi,M bi,SMB bi,HML

AA 9.834 26.273 1.248(0.072) 0.157(0.082) 0.739(0.116)

AXP 14.803 31.448 1.566(0.070) �0.232(0.090) 0.419(0.111)

BA 9.023 28.416 1.191(0.077) 0.108(0.094) 0.022(0.119)

C 26.579 34.322 1.840(0.077) �0.168(0.112) 0.489(0.137)

CAT 10.611 28.838 1.292(0.068) 0.030(0.091) 0.597(0.122)

DD 13.064 25.196 1.115(0.065) �0.419(0.082) 0.425(0.097)

DIS 17.021 26.772 1.101(0.062) �0.067(0.080) �0.102(0.105)

EK 7.139 27.269 0.881(0.058) �0.065(0.086) 0.061(0.107)

GE 22.288 21.788 1.058(0.040) �0.593(0.060) �0.180(0.070)

GM 6.112 28.822 1.637(0.066) �0.116(0.083) 1.498(0.119)

HD 36.930 30.892 1.317(0.061) �0.095(0.085) �0.603(0.107)

HON 16.721 27.152 1.240(0.085) �0.060(0.109) 0.524(0.120)

HPQ 16.566 35.701 1.058(0.080) �0.293(0.112) �0.856(0.151)

IBM 11.084 27.831 0.826(0.057) �0.336(0.078) �0.592(0.111)

INTC 36.946 38.068 1.076(0.094) �0.343(0.106) �1.297(0.173)

IP 6.569 25.008 1.261(0.063) 0.042(0.074) 0.847(0.099)

JNJ 20.843 24.487 0.593(0.052) �0.840(0.073) �0.958(0.099)

JPM 15.317 33.808 1.999(0.094) 0.018(0.108) 1.383(0.137)

KO 25.139 24.056 0.763(0.056) �0.964(0.070) �0.619(0.086)

MCD 18.858 24.841 0.801(0.062) �0.436(0.079) �0.289(0.097)

MMM 8.797 20.664 0.799(0.047) �0.360(0.063) 0.139(0.080)

MO 18.525 27.321 0.719(0.065) �0.593(0.074) �0.545(0.107)

MRK 20.475 25.262 0.620(0.055) �0.790(0.065) �0.992(0.092)

MSFT 45.455 35.043 0.889(0.070) �0.430(0.087) �1.603(0.129)

PG 21.597 23.243 0.765(0.051) �0.723(0.069) �0.413(0.082)

SBC 16.977 23.078 0.840(0.049) �0.669(0.073) 0.410(0.098)

T 13.573 24.522 0.842(0.061) �0.466(0.079) �0.162(0.097)

UTX 16.922 23.731 1.190(0.054) 0.092(0.073) 0.447(0.095)

WMT 23.745 28.419 1.033(0.059) �0.686(0.082) �0.496(0.101)

XOM 12.199 19.795 0.589(0.054) �0.695(0.069) 0.132(0.081)

Note: The table reports the mean and standard deviation (in annualized percentage points) of

daily DJIA stock returns over the period January 1, 1989–December 31, 1998, together with

coefficient estimates and heteroskedasticity-consistent standard errors from the TF model given

in (18).

Semi-Parametric Modelling of Correlation Dynamics 71



from just over 3% to more than 6%. The same holds for the average co-

variance between the 30 DJIA stocks, which increased from 0.83 to 1.69.

Interestingly, the standard deviation of the variances also doubled, while the

standard deviation of the covariances even tripled. This leads to the con-

clusion that probably the average correlation did not change much, but the

spread in the correlations increased considerably. Indeed, as shown in the

Table 2. Characteristics of Daily Returns on DJIA Stocks – 1999–2003.

Mean S.D. bi,M bi,SMB bi,HML

AA 10.981 42.868 1.513(0.072) 0.073(0.113) 1.426(0.147)

AXP 6.821 41.112 1.424(0.072) �0.635(0.100) 0.343(0.123)

BA 3.245 38.566 1.183(0.110) 0.107(0.123) 0.967(0.176)

C 14.649 39.029 1.477(0.086) �0.571(0.100) 0.401(0.146)

CAT 9.088 37.245 1.169(0.068) �0.243(0.114) 0.870(0.130)

DD �6.524 34.531 1.112(0.070) �0.362(0.105) 1.036(0.116)

DIS �5.558 42.299 1.290(0.112) 0.158(0.122) 0.564(0.175)

EK �22.289 38.188 0.964(0.088) 0.078(0.145) 0.624(0.155)

GE �3.011 35.971 1.212(0.066) �0.556(0.078) 0.069(0.108)

GM �6.686 38.084 1.471(0.081) �0.041(0.097) 1.147(0.139)

HD �1.170 45.755 1.269(0.082) �0.425(0.125) 0.271(0.154)

HON �7.353 46.291 1.456(0.103) �0.232(0.123) 0.815(0.169)

HPQ �3.961 54.846 1.340(0.088) 0.362(0.130) �0.509(0.159)

IBM �0.465 40.505 0.896(0.062) �0.330(0.099) �0.496(0.112)

INTC 1.816 58.322 1.419(0.092) �0.240(0.137) �0.888(0.165)

IP �1.423 37.741 1.204(0.069) �0.167(0.107) 1.211(0.124)

JNJ 4.101 28.501 0.458(0.071) �0.629(0.088) 0.132(0.119)

JPM �6.019 44.804 1.678(0.102) �0.407(0.121) 0.550(0.180)

KO �7.716 30.837 0.404(0.062) �0.685(0.104) 0.244(0.107)

MCD �8.982 33.925 0.575(0.068) �0.404(0.099) 0.303(0.113)

MMM 15.600 29.008 0.854(0.058) �0.365(0.082) 0.620(0.115)

MO �2.553 39.104 0.512(0.089) �0.355(0.132) 0.603(0.166)

MRK �9.816 32.048 0.584(0.064) �0.722(0.095) 0.161(0.121)

MSFT �6.231 43.732 1.108(0.068) �0.067(0.136) �0.584(0.128)

PG 1.997 33.769 0.320(0.077) �0.647(0.100) 0.120(0.113)

SBC �16.382 39.224 0.935(0.085) �0.504(0.115) 0.487(0.139)

T �28.409 47.886 1.192(0.093) �0.189(0.142) 0.537(0.171)

UTX 9.378 38.708 1.389(0.174) �0.083(0.147) 1.087(0.258)

WMT 7.921 37.369 0.811(0.062) �0.813(0.111) �0.102(0.120)

XOM 0.154 27.661 0.776(0.059) �0.304(0.091) 0.757(0.108)

Note: The table reports the mean and standard deviation (in annualized percentage points) of

daily DJIA stock returns over the period January 1, 1999–December 31, 2003, together with

coefficient estimates and heteroskedasticity-consistent standard errors from the TF model given

in (18).
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final column of Table 3, the average correlation in both subperiods was

equal to 0.28, but the standard deviation of the correlations jumped from

0.066 to 0.12.

4.2. Models

For the implementation of all conditional correlation models considered

(except RiskMetrics (RM) as discussed below), we use the asymmetric GJR-

GARCH model of Glosten et al. (1993) to describe the conditional vol-

atilities of the individual daily stock returns. In this model, the conditional

volatility of rit evolves according to

hit ¼ oi þ air
2
i;t�1 þ gir

2
i;t�1I½ri;t�1o0� þ bihi;t�1 (19)

allowing positive and negative lagged returns to have a different impact

on current volatility. Typically, gi40 for stock returns, such that negative

returns have a larger effect on volatility than positive returns of the

same magnitude. Results obtained with symmetric GARCH(1,1) and with

Table 3. Distributions of Variances, Covariances and Correlations of

Daily Returns on DJIA Stocks.

Variances Covariances Correlations

Panel A: 1989–1998

Mean 3.045 0.834 0.282

S.D. 1.041 0.279 0.066

Minimum 1.549 0.353 0.157

10th percentile 1.876 0.547 0.209

25th percentile 2.370 0.646 0.235

Median 2.833 0.806 0.271

75th percentile 3.287 0.959 0.316

90th percentile 4.656 1.145 0.369

Maximum 5.728 2.610 0.569

Panel B: 1999–2003

Mean 6.127 1.686 0.280

S..D. 2.271 0.908 0.119

Minimum 2.947 0.230 0.032

10th percentile 3.247 0.729 0.139

25th percentile 4.591 0.971 0.191

Median 5.744 1.512 0.268

75th percentile 7.139 2.247 0.353

90th percentile 8.260 2.879 0.436

Maximum 13.111 6.228 0.751
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asymmetric power GARCH (APGARCH) volatility models are qualita-

tively similar to the ones reported below, and are available upon request.

We examine two choices for the conditioning variable in the nonpara-

metric correlation estimator (15): the logarithm of the contemporaneous

daily market volatility and the one-day lagged weekly market return, de-

noted as log(hM,t) and rM,w,t-1, respectively. As explained in Section 1, these

variables are motivated by the empirical observations that correlations in-

crease when market volatility is high and returns are low. Market returns are

measured by the returns on a value-weighted portfolio (VWP) of all NYSE,

AMEX and NASDAQ stocks, again taken from Kenneth French’s website.

We are able to employ the logged contemporaneous market volatility

logðhM;tÞ; as conditioning variable xt and still use the model for forecasting

purposes by estimating a GJR-GARCH model (19) for daily market returns

and obtaining the fitted value ĥM;t: Note that this can be constructed using

only information dated t� 1 and earlier.

We estimate our semi-parametric correlation model for different choices

of the tuning parameter a, to examine the sensitivity of the correlation

estimates with respect to the use of local bandwidths, as discussed in Section 3.

To make the nonparametric estimates comparable for different values of a,

we set the constant b equal to 1.50 for a ¼ 0, and determine the value of b

for other values of a such that the average bandwidth T�1ST
t¼1 hðxtÞ is the

same for all values of a. Throughout we use the quartic kernel function

KðuÞ ¼ 15
16
ð1� u2Þ2Iðjuj � 1Þ and a standard kernel density estimator with

plug-in bandwidth for the density of xt.

For comparison, we also estimate the CCC model with Rt ¼ R, the

standard DCC model (5) and (6), the asymmetric DCC model (8), and the

STCC model (10) also using the logged contemporaneous daily market

volatility and one-day lagged weekly market return as transition variable xt
in the logistic function (11). We also consider the RM model, which specifies

the conditional covariance matrix as

H t ¼ ð1� lÞrt�1r
0
t�1 þ lH t�1

with l ¼ 0:94: Finally, following Chan, Karceski, and Lakonishok (1999)

we implement single-factor (SF) and three-factor (TF) models. The TF

model uses the excess return on the value-weighted market portfolio and the

size and book-to-market factor returns, and effectively boils down to im-

plementing (18) with the raw stock return rit as the dependent variable. The

conditional covariance matrix of the stock returns is then given by

H t ¼ BOtB
0 þ St (20)
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where B is the matrix of factor loadings of the stocks, Ot is the conditional

covariance matrix of the factors, and St is a diagonal matrix containing the

idiosyncratic conditional variances. For convenience, we assume that the

factors are uncorrelated, such that Ot also is diagonal, and that the con-

ditional variance of each factor can be adequately described by means of a

GJR-GARCH model (19). The same model is also used for the idiosyncratic

variances in St. The SF model only includes the excess market return, that is

bSMB and bHML in (18) are set equal to 0.

4.3. Estimation Results

Figs. 1 and 2 plot the average correlation between the DJIA stocks together

with the 10th and 90th percentiles obtained from the for the semi-parametric

models with the contemporaneous log-volatility logðhM;tÞ of the value-

weighted market portfolio and with the lagged weekly market return

rM;w;t�1; respectively, estimated with daily returns over the period 1989–

1998. From Fig. 1, it is seen that for all values of a considered, the average

correlation behaves similarly and increases with lagged volatility from 0.25

to 0.50, consistent with the SF model as discussed before. The increase in

correlations for high volatility is more pronounced for small values of a.

Turning to Fig. 2, we observe that the average correlation appears to in-

crease for negative-lagged market returns, while it remains fairly constant

for positive values of rM;w;t�1; in particular for ar0.50. This corresponds

quite well with the patterns documented in Longin and Solnik (2001) and

Ang and Chen (2002). For a ¼ 0.75, the correlations increase for large pos-

itive index returns as well, albeit the effect of negative index returns is

stronger.

Panels (a) and (b) of Fig. 3 display the average correlation and the 10th

and 90th percentiles over time for the semi-parametric models with the two

choices of xt and a ¼ 0.50 in both cases. It appears that using market vol-

atility as conditioning variable leads to more sizable changes in the con-

ditional correlations than using the market return. At the same time

however, the average conditional correlation based on the model with xt ¼
logðhM;tÞ evolves more smoothly, with the average correlation based on the

model with xt ¼ rM;w;t�1 showing more erratic short-run behaviour.

Panels (c) and (d) of Fig. 3 show the average correlation and the 10th and

90th percentiles based on the DCC model and the SF model, respectively.

For the DCC model, the average correlation varies very little over time.

In contrast, the conditional correlations implied by the SF model vary
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considerably. This is a direct consequence of the SF structure together with

the use of a GJR-GARCH model for the conditional variance of the factor.

In the SF model with the excess market return as the single factor, B in (20)

reduces to a vector consisting of the stocks’ betas bj,M, while Ot ¼ hM;t is a

(a) (b)

(c) (d)

Fig. 1. Average Correlation Between Dow Jones Stocks (solid line), and 10th and

90th Percentiles (Dashed Lines) Obtained from the Nonparametric Estimator (14)

with xt being the Contemporaneous Daily Log-Volatility on the Value-Weighted

Market Portfolio log(hM,t), and Bandwidth hðxÞ ¼ bf ðxÞ�a; Estimated Using Daily

Returns over the Period January 1, 1989–December 31, 1998, Plotted as a Function

of log(hM,t). (a) a ¼ 0; (b) a ¼ 0.25; (c) a ¼ 0.50; (d) a ¼ 0.75.
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scalar. The conditional correlation between stocks i and j then is equal to

rijt ¼
bi;Mbj;MhM;tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2i;MhM;t þ s2it

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2j;MhM;t þ s2jt

q

(a) (b)

(c) (d)

Fig. 2. Average Correlation Between Dow Jones Stocks (Solid Line), and 10th and

90th Percentiles (Dashed Lines) Obtained from the Nonparametric Estimator (14)

with xt being the One-Day Lagged Weekly Return on the Value-Weighted Market

Portfolio rM,w,t–1 and Bandwidth hðxÞ ¼ bf ðxÞ�a; Estimated Using Daily Returns

over the Period January 1, 1989–December 31, 1998, Plotted as a Function of

rM,w,t–1. (a) a ¼ 0; (b) a ¼ 0.25; (c) a ¼ 0.50; (d) a ¼ 0.75.
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where s2it is the idiosyncratic conditional variance of stock i. As shown by

Andersen et al. (2001), it follows that @rijt=@hM;t40 if bi;M; bj;M; hM;t40:
Hence, as long as the market betas of two stocks are both positive, an

increase in market volatility will lead to an increase in their conditional

correlation. Given that all betas for the DJIA stocks are positive and not too

different from each other, see Table 1, all pairwise conditional correlations

increase when hM;t becomes higher. Additionally, the GJR-GARCH model

for the market portfolio returns implies considerable variation in hM;t; lead-
ing to the substantial changes in the conditional correlations as seen in

Fig. 3.

Panel (b) of Fig. 4 explicitly shows how the conditional correlations are

related to the (logged) market volatility. Note that the increase in the av-

erage correlation is much more pronounced than in the corresponding semi-

parametric model, compare Fig. 1. Panel (a) of Fig. 4 shows that the average

correlation from the DCC model is not related to the market volatility at all.

Similarly, in panel (c) of this figure a rather weak quadratic relation between

the average correlation from the DCC model and the lagged weekly market

return is visible, but much less pronounced than in the semi-parametric

model. For the SF model, we do find a strong relationship between the

conditional correlations and the lagged weekly market return, of the same

form as found for the semi-parametric model in Fig. 2 and supporting the

‘‘correlation breakdown’’ effect with a much larger increase in correlation

for large negative market returns than for large positive ones. At first sight

this may seem surprising, but in fact it is a direct consequence of the use of a

GJR-GARCH model for the market volatility. In that model, large past

returns lead to high current volatility, while the parameter estimates are

such that negative returns increase volatility more than positive returns of

the same magnitude. The higher volatility in turn increases the correlations

between the stocks.

Finally, Figs. 5 and 6 summarize the estimation results for the STCC

model with xt ¼ logðhM;tÞ and rM;w;t�1; respectively. The STCC models also

Fig. 3. Average Correlation Between Dow Jones Stocks (Solid Line), and 10th and

90th Percentiles (Dashed Lines) Obtained from the Nonparametric Estimator (14)

with xt being the Contemporaneous Daily log-Volatility on the Value-Weighted

Market Portfolio log(hM,t) and the One-Day Lagged Weekly Return on the Value-

Weighted Market Portfolio rM,w,t–1, from the DCC Model (5), and from the SF

Model, Estimated Using Daily Returns over the Period January 1, 1989–December

31, 1998. (a) SEMI-log(hM,t); (b) SEMI-rM,w,t�1; (c) DCC; (d) SF.
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(a) (b)

(c) (d)

Fig. 4. (Smoothed) Average Correlation Between Dow Jones Stocks (Solid Line),

and 10th and 90th Percentiles (Dashed Lines) Obtained from the DCC Model (5)

and the SF Model, Estimated Using Daily Returns over the Period January 1, 1989–

December 31, 1998, Plotted as a Function of the Contemporaneous Daily Log-

Volatility on the Value-Weighted Market Portfolio log(hM,t) and the One-Day

Lagged Weekly Return on the Value-Weighted Market Portfolio rM,w,t–1. (a) DCC-

log(hM,t); (b) SF-log(hM,t); (c) DCC-rM,w,t�1; (d) SF-rM,w,t�1.
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(a) (b)

(c)

(d)

Fig. 5. Logistic Transition Function G(xt; g, c) as in (11), and Average Correlation

Between Dow Jones Stocks (Solid Line), and 10th and 90th Percentiles (Dashed

Lines) Obtained from the STCC Model (10) with xt being the Contemporaneous

Daily Log Volatility on the Value-Weighted Market Portfolio log(hM,t), Estimated

Using Daily Returns over the Period January 1, 1989–December 31, 1998. (a) Tran-

sition function against xt; (b) Correlation quantiles against xt; (c) Transition function

over time; (d) Correlation quantiles over time.
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(a) (b)

(c)

(d)

Fig. 6. Logistic Transition Function G(xt; g, c) as in (11), and Average Correlation

Between Dow Jones Stocks (Solid Line), and 10th and 90th Percentiles (Dashed

Lines) Obtained from the STCC Model (10) with xt being the One-Day Lagged

Weekly Return on the Value-Weighted Market Portfolio rM,w,t–1, Estimated Using

Daily Returns over the Period January 1, 1989–December 31, 1998. (a) Transition

function against xt; (b) Correlation quantiles against xt; (c) Transition function over

time; (d) Correlation quantiles over time.
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imply that conditional correlations are higher in case of high market vol-

atility and in case of low market returns. However, note that by construc-

tion, the model implies that the conditional correlations only change

monotonically from one level to another as the logistic transition function

(11) changes from 0 to 1. Panel (c) of these figures plot the value of the

transition functions, suggesting that the correlations spend most of the time

in the low-volatility and positive market return regimes, where the condi-

tional correlations are at their lower level.

4.4. Minimizing Portfolio Variance Using Correlation Forecasts

We follow the recommendation of Engle and Sheppard (2001) to judge the

adequacy of the dynamic correlation models by examining certain charac-

teristics of stock portfolios that are constructed based on covariance matrix

forecasts from the models. In particular, we consider the global MVP, which

is often used for judging the goodness of fit of multivariate volatility models,

see for example, Chan et al. (1999). The MVP weights are given by wt ¼
Ĥ

�1

t i=ði0Ĥ�1

t iÞ; where Ĥ t is the one-step ahead forecast of the conditional

covariance matrix constructed at time t�1, and i is a (N� 1) vector of ones.

Note that the MVP weights only depend on forecasts of the conditional

covariance, such that forecasting expected returns, which is known to be

notoriously difficult, is avoided. For each MVP based on the different co-

variance models we consider the average return, standard deviation, Sharpe

ratio and tracking error relative to the S&P 500 index. The latter is defined

as the square root of the mean squared difference between the portfolio’s

return and the S&P 500 return. For comparison purposes, we also construct

equally weighted and value-weighted portfolios and the MVP. For

the equally weighted portfolio (EWP), the portfolio weights are constant

and equal to wt ¼ N�1i; where, the time-varying weights for the VWP are

obtained as wt ¼ wt�1ð1þ rt�1Þ=ð1þ rtÞ0i; starting with an EWP at t ¼ 0, cf.

Engle and Sheppard (2001).

The EWP and VWP provide reasonable benchmarks to assess the extent

to which optimization actually helps in reducing portfolio variance. In ad-

dition, together with the MVP they can be used to further evaluate the

covariance models by considering additional portfolio characteristics. First,

we compute the variance of the standardized portfolio returns rp;t ¼
w0
trt=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w0
t
bH twt

q
: If the multivariate conditional covariance model is correctly

specified, the variance of rp,t should be equal to 1, for any choice of weights
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wt. Second, we compute one-day Value-at-Risk (VaR) forecasts as ŝpzq;
where ŝp is the one-step ahead forecast of the portfolio standard deviation,

ŝp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w0
t
bH twt

q
: In contrast to Engle and Sheppard (2001), for example, we

do not use the q-th quantile of the standard normal distribution for zq.

Rather, we employ the quantiles of the standardized in-sample portfolio

returns obtained using the relevant weights wt. We consider one-day VaR

forecasts at 100� q ¼ 1%, 5% and 10%. The accuracy of the VaR forecasts

is assessed by means of the Dynamic Quantile test of Engle and Manganelli

(2004). For that purpose, define the binary variable HIT t such that HIT t ¼
1 if the portfolio return is below the VaR forecast and 0 otherwise. Under

the null hypothesis of a correctly specified model for the conditional co-

variance matrix and hence for the VaR forecasts, the HIT t variable should

have mean q and should be independent from all information available at

t�1, including lagged HITt’s and the VaR forecast for time t. This can be

tested by constructing an F-statistic for the null hypothesis d0 ¼ � � � ¼
dlþ1 ¼ 0 in the auxiliary regression

HIT t � q ¼ d0 þ d1HIT t�1 þ � � � þ dlHIT t�l þ dlþ1VaRt þ et

where we set l ¼ 5.

Table 4 summarizes the in-sample MVP results over the period January 1,

1989–December 31, 1998, which suggest several conclusions. First, com-

pared to the EWP and VWP, all models except Riskmetrics achieve in

producing an MVP with lower standard deviation, although the reduction in

volatility is quite modest. The best performing model is our semi-parametric

model using the lagged weekly market return as conditioning variable, with

an annualized standard deviation of 12.54% compared with 15.16% for the

EWP. Second, minimizing portfolio variance comes at the cost of a sharp

reduction in the portfolio’s average return, such that the Sharpe ratios of the

MVPs is considerably lower than the Sharpe ratios of the EWP and VWP.

Third, the conditional correlation models outperform the SF and TF mod-

els. Hence, it seems worthwhile to model the dynamics in the covariance

structure of the individual stocks explicitly, rather than indirectly by means

of a factor approach. Fourth, the performance of the different conditional

correlation models is very similar, with the largest difference in standard

deviation of the MVP returns being less than 0.3%.

The conclusion that it is difficult to distinguish between the competing

models based on in-sample measures of fit also emerges from Table 5. The

variance of the standardized portfolio returns shows that actually all models

perform quite badly in terms of the volatility of the MVP returns, which is
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consistently underestimated. In contrast, the variances of the standardized

EWP and VWP returns are quite close to the theoretical value of one for all

models except perhaps RM. In terms of VaR forecasts, results also are

similar across models (and by construction, violation frequencies are iden-

tical for the EWP). The VaR(q) forecasts are violated too frequently for the

MVP for all three levels of q, which aligns with the underestimation of the

MVP volatility. The VaR violation frequencies are approximately correct

for the EWP and VWP portfolios. The results of the Dynamic Quantile test

confirm these observations, except that the small p-values for the test ap-

plied to the 10% VaR forecasts for the EWP are perhaps surprising, given

that the violation frequency is close to perfect.

Next, we examine the out-of-sample forecasting performance of the mod-

els over the period January 1, 1999–December 31, 2003. For this purpose,

we re-estimate all models after every 20 observations using a 10-year moving

window. We examine the same portfolio characteristics as before, except

that now we employ genuine out-of-sample forecasts of the conditional

covariance matrix.

Table 4. In-Sample Performance and Characteristics of Minimum

Variance Portfolios Based on Forecasting Models – 1989–1998.

Mean S. D. Sharpe Ratio Tracking Error bM bSMB bHML

SF 9.24 13.42 0.306 10.89 0.675(0.037) �0.420(0.051) 0.287(0.057)

TF 8.51 13.80 0.245 11.20 0.806(0.041) �0.155(0.057) 0.374(0.059)

RM 13.81 17.82 0.487 15.53 0.806(0.044) �0.155(0.069) 0.256(0.077)

CCC 11.78 12.82 0.519 8.17 0.791(0.023) �0.308(0.028) 0.170(0.037)

DCC 11.57 12.73 0.506 8.18 0.786(0.023) �0.301(0.029) 0.172(0.037)

ADCC 11.19 12.72 0.476 8.25 0.785(0.023) �0.299(0.029) 0.176(0.037)

STCC(h) 11.40 12.71 0.492 8.42 0.780(0.024) �0.305(0.030) 0.195(0.039)

STCC(r) 10.19 12.69 0.398 8.39 0.775(0.023) �0.310(0.030) 0.187(0.039)

SEMI(h) 10.53 12.63 0.427 8.71 0.765(0.024) �0.300(0.030) 0.212(0.039)

SEMI(r) 10.11 12.54 0.397 8.57 0.761(0.025) �0.310(0.030) 0.206(0.038)

EWP 17.99 15.16 0.848 4.16 1.072(0.013) �0.333(0.017) �0.053(0.021)

VWP 21.52 17.95 0.913 6.83 1.114(0.017) �0.410(0.021) �0.458(0.027)

Note: The table reports in-sample (January 1, 1989–December 31, 1998) summary statistics for

the minimum variance portfolios based on the SF , TF , RM, CCC, DCC, ADCC, STCC model

with xt equal to the daily log-volatility for the market return (h) or the one-day lagged weekly

index return (r), and the SEMI model with the same choices of xt. In addition, summary

statistics are reported for the EWPs and VWPs. For each MVP, the table shows the mean and

standard deviation (in annualized percentage points) of the portfolio return, the annualized

Sharpe ratio, the annualized tracking error relative to the S&P 500 index, and coefficient

estimates and standard errors from the Fama–French TF model (18).
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Table 5. Correlation Models for Dow Jones Stocks: In-Sample Results.

SF TF RM CCC DCC ADCC Semi-Parametric Model

STCC, xt ¼ xt ¼ log(hM,t) xt ¼ rM,w,t-l

log(hM,t) rM,w,t�l a ¼ 0 0.25 0.50 0.75 0 0.25 0.50 0.75

Portfolio standard deviations

MVP 1.142 1.078 2.678 1.097 1.086 1.089 1.096 1.097 1.096 1.091 1.086 1.081 1.087 1.091 1.086 1.073

EWP 1.017 0.938 1.073 0.993 0.989 0.988 0.990 0.992 1.000 0.991 0.970 0.952 1.003 0.999 0.982 0.956

VWP 1.024 0.905 1.070 1.007 1.001 1.001 1.005 1.005 1.014 1.005 0.985 0.968 1.017 1.012 0.994 0.968

MVP – VaR violations

1% 1.19 1.15 12.78 1.27 1.23 1.31 1.35 1.43 1.35 1.31 1.35 1.42 1.54 1.58 1.54 1.62

5% 5.22 5.26 22.71 5.86 5.82 5.94 6.02 5.82 5.94 5.86 6.13 6.02 5.78 5.86 6.21 6.41

10% 10.29 10.25 27.58 11.24 11.28 11.32 11.36 11.40 11.59 11.59 11.36 11.32 11.52 11.52 11.52 11.32

MVP: p-value of dynamic quantile statistic

1% 0.267 0.037 0.000 0.041 0.034 0.046 0.037 0.018 0.035 0.044 0.044 0.043 0.048 0.045 0.045 0.019

5% 0.759 0.410 0.000 0.038 0.054 0.061 0.059 0.137 0.084 0.089 0.050 0.047 0.056 0.065 0.041 0.037

10% 0.676 0.878 0.000 0.030 0.048 0.029 0.068 0.038 0.045 0.045 0.065 0.046 0.030 0.039 0.033 0.055

EWP – VaR violations

1% 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95

5% 4.94 4.94 4.94 4.94 4.94 4.94 4.94 4.94 4.94 4.94 4.94 4.94 4.94 4.94 4.94 4.94

10% 9.97 9.97 9.97 9.97 9.97 9.97 9.97 9.97 9.97 9.97 9.97 9.97 9.97 9.97 9.97 9.97
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EWP: p-value of dynamic quantile statistic

1% 0.918 0.918 0.085 0.795 0.7999 0.7999 0.708 0.418 0.769 0.7999 0.735 0.758 0.461 0.494 0.484 0.379

5% 0.585 0.585 0.153 0.073 0.072 0.076 0.309 0.098 0.291 0.735 0.601 0.640 0.096 0.131 0.186 0.148

10% 0.672 0.803 0.109 0.024 0.027 0.035 0.069 0.027 0.040 0.053 0.093 0.098 0.020 0.030 0.040 0.046

VWP – VaR violations

1% 0.87 0.87 1.03 1.19 1.07 1.07 0.99 0.95 0.99 0.95 0.95 0.95 0.87 0.91 0.91 0.91

5% 4.59 4.67 5.14 5.03 5.03 4.9 4.95 5.03 4.91 4.79 4.87 4.83 5.07 5.07 5.10 5.07

10% 10.57 10.61 10.09 10.21 10.37 10.37 10.53 10.41 10.45 10.49 10.37 10.37 10.33 10.37 10.33 10.41

VWP: p-value of dynamic quantile statistic

1% 0.093 0.089 0.136 0.162 0.766 0.774 0.819 0.658 0.927 0.885 0.660 0.689 0.721 0.844 0.501 0.743

5% 0.528 0.715 0.319 0.241 0.122 0.171 0.500 0.177 0.368 0.459 0.516 0.570 0.176 0.137 0.149 0.123

10% 0.478 0.421 0.146 0.103 0.122 0.122 0.154 0.190 0.196 0.183 0.206 0.211 0.186 0.244 0.192 0.190

Note: The table reports in-sample results for DCC models for Dow Jones stocks, estimated using daily returns over the period January 1,

1989–December 31, 1998. Results are based on the SF, TF, RM, CCC,DCC, ADCC, STCC model with xt equal to the logged contem-

poraneous market volatility (log(hM,t)) or the one-day lagged weekly market portfolio return (rM,w,t�1), and the semi-parametric conditional

correlation SEMI model with the same choices of xt. MVP denotes minimum variance portfolio, EWP and VWP indicate equally weighted

and value-weighted portfolios, respectively. Portfolio standard deviations refer to the in-sample standard deviation of standardized portfolio

returns. VaR violation percentages and Dynamic Quantile statistics for the corresponding HIT-sequences concern one-day ahead in-sample

forecasts.
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The MVP results in Table 6 resemble the results in Table 4, in the sense

that most conclusions drawn for the in-sample MVP results continue to hold

out-of-sample. The only exception is that, in terms of the standard deviation

of MVP returns, the DCC-type models now perform slightly better than the

STCC and semi-parametric models. In addition, we note that the variance of

the MVP during the out-of-sample period is almost double the variance

during the in-sample period. From Table 7, we observe that all models

continue to underestimate the MVP variance in the out-of-sample period,

while the corresponding VaR forecasts are (thus) violated much too fre-

quently. The conditional correlation models perform much better for the

EWP and MVP, although the 5% and 10% VaR forecasts for these port-

folios are violated too frequently as well.

The most conspicuous finding in the MVP analysis presented above is the

similarity in performance of all covariance models for the portfolio’s var-

iance. The characteristics of the different MVPs are examined further by

estimating the Fama–French TF model as given in (18) using the portfolio’s

excess return as dependent variable. The resulting estimates, shown in

Tables 4 and 6, confirm that the portfolios are comparable in terms of

sensitivities to the market return, size and book-to-market factors. In ad-

dition, all MVPs (except the ones based on the SF and RM models) must

select stocks with low market betas, given that their market betas are close

to 0.8 and 0.7 for the in-sample and out-of-sample periods, respectively,

compared with market betas close to 1 for the EWP and VWP. The em-

phasis on stocks with low market betas is also seen in Table 8, which shows

the mean and standard deviation of the weights in the MVP based on the

semi-parametric conditional correlation model with xt equal to the daily

log-volatility for the market return. During the in-sample period, the MVP

is dominated by Exxon Mobil (XOM) with a mean portfolio weight close to

20%. The estimates of bi;M in Table 1 show that indeed this stock had the

lowest market beta during this period. Also, note that the stocks of 3M

(MMM) and SBC Communications (SBC) have large mean portfolio

weights during the in-sample period although their betas are not particularly

low compared to the other stocks. The opposite is observed for the stock of

Merck & Co (MRK), which has the second-lowest market beta but only an

average mean portfolio weight. This illustrates the fact that the portfolio

variance cannot only be reduced by putting much weight on low beta stocks,

but also by tilting the portfolio towards stocks with low return volatilities.

3M and SBC are typical examples of the latter. Finally, we remark that the

regression results of the TF model also shed light on the reason why the

MVP variance is so much higher during the out-of-sample period compared
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Table 6. Out-of-Sample Performance and Characteristics of Minimum Variance Portfolios Based on

Forecasting Models – 1999–2003.

Mean S.D. Sharpe Ratio Tracking Error bM bSMB bHML

SF �8.78 19.46 �0.628 23.50 0.509(0.061) �0.329(0.074) 0.671(0.108)

TF �12.42 20.46 �0.775 21.75 0.632(0.081) �0.129(0.086) 0.572(0.137)

RM �16.39 22.52 �0.881 24.13 0.450(0.056) �0.243(0.067) 0.170(0.088)

CCC �7.48 17.51 �0.624 15.97 0.705(0.035) �0.269(0.048) 0.507(0.064)

DCC �8.66 17.20 �0.704 15.97 0.677(0.036) �0.261(0.047) 0.459(0.064)

ADCC �9.26 17.20 �0.739 16.05 0.674(0.037) �0.262(0.047) 0.459(0.064)

STCC(h) �8.29 17.69 �0.664 17.09 0.675(0.038) �60.260(0.049) 0.518(0.067)

STCC(r) �8.87 18.23 �0.712 17.43 0.676(0.037) �0.261(0.048) 0.487(0.066)

SEMI(h) �8.26 18.11 �0.646 17.38 0.678(0.040) �60.260(0.051) 0.511(0.070)

SEMI(r) �8.63 18.54 �0.671 16.97 0.677(0.036) �60.260(0.050) 0.506(0.069)

EWP �1.98 21.82 �0.249 7.98 1.066(0.024) �30.307(0.034) 0.425(0.039)

VWP �4.42 19.67 �0.400 7.53 0.938(0.023) �0.298(0.029) 0.313(0.037)

Note: The table reports out-of-sample (January 1, 1999–December 31, 2003) summary statistics for the minimum variance portfolios based on

various forecasting models. See Table 4 for models definitions and description of the summary statistics shown.
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Table 7. Correlation Models for Dow Jones Stocks: Out-of-Sample Results.

SF TF RM CCC DCC ADCC Semi-Parametric Model

STCC, xt ¼ xt ¼ log(hM,t) xt ¼ rM,,w,t — 1

log(hM,t) rM,w,t�l a ¼ 0 0.25 0.50 0.75 0 0.25 0.50 0.75

Portfolio standard deviations

MVP 1.381 1.195 2.645 1.240 1.208 1.208 1.238 1.554 1.254 1.252 1.252 1.253 1.323 1.308 1.266 1.248

EWP 1.054 0.944 1.034 1.124 1.097 1.095 1.065 1.092 1.060 1.052 1.043 1.037 1.132 1.123 1.107 1.101

VWP 1.054 0.932 1.038 1.135 1.106 1.103 1.072 1.097 1.067 1.059 1.050 1.043 1.107 1.101 1.088 1.081

MVP – VaR violations

1% 1.32 0.74 14.32 2.06 2.14 2.06 2.392 2.47 2.39 2.47 2.39 2.39 2.63 2.47 2.31 2.55

5% 6.42 6.58 25.27 9.55 9.63 9.71 9.79 9.79 10.29 10.45 10.45 10.70 9.49 9.79 9.79 10.19

10% 12.10 13.74 30.95 16.71 17.28 17.37 16.95 17.28 17.28 17.04 17.20 17.45 17.28 17.27 17.04 17.68

MVP: p-value of dynamic quantile statistic

1% 0.517 0.151 0.001 0.015 0.009 0.007 0.018 0.047 0.028 0.049 0.046 0.046 0.014 0.022 0.055 0.067

5% 0.111 0.071 0.000 0.005 0.002 0.002 0.004 0.014 0.004 0.003 0.002 0.002 0.020 0.012 0.013 0.008

10% 0.061 0.053 0.000 0.006 0.004 0.004 0.005 0.009 0.005 0.006 0.006 0.005 0.006 0.005 0.005 0.004

EWP – VaR violations

1% 0.82 0.82 0.74 1.15 0.99 0.99 0.99 1.19 0.91 0.91 0.91 0.91 1.04 1.04 1.11 1.11

5% 4.61 4.61 5.60 7.57 7.49 7.49 7.16 5.81 7.08 6.91 6.75 6.83 5.89 5.97 5.81 5.57

10% 12.35 12.35 11.36 14.98 14.73 14.81 13.91 12.26 14.07 13.99 13.91 14.07 12.58 12.58 12.58 12.42
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EWP: p-value of dynamic quantile statistic

1% 0.560 0.546 0.398 0.272 0.498 0.497 0.568 0.565 0.390 0.398 0.408 0.407 0.546 0.573 0.584 0.488

5% 0.375 0.466 0.109 0.111 0.135 0.135 0.193 0.785 0.320 0.332 0.334 0.337 0.518 0.518 0.582 0.676

10% 0.173 0.122 0.107 0.021 0.033 0.026 0.051 0.319 0.039 0.045 0.047 0.041 0.164 0.190 0.208 0.281

VWP – VaR violations

1% 0.91 0.82 0.58 1.32 1.15 1.19 0.99 0.99 0.99 0.99 0.99 0.99 1.11 1.11 1.11 1.19

5% 5.10 4.86 5.76 7.90 7.41 7.49 7.49 6.05 7.16 7.00 6.83 7.00 6.237 6.29 6.13 5.97

10% 12.51 11.93 11.60 15.47 14.90 14.98 14.07 12.66 14.07 13.99 14.16 14.16 12.66 12.74 12.81 12.50

VWP: p-value of dynamic quantile statistic

1% 0.809 0.657 0.258 0.316 0.173 0.145 0.540 0.772 0.568 0.567 0.563 0.561 0.703 0.713 0.741 0.810

5% 0.266 0.167 0.046 0.051 0.184 0.183 0.232 0.807 0.232 0.249 0.307 0.212 0.559 0.461 0.585 0.680

10% 0.075 0.073 0.087 0.014 0.026 0.028 0.031 0.123 0.043 0.044 0.036 0.036 0.081 0.110 0.116 0.162

Note: The table reports out-of-sample results for dynamic correlation models for Dow Jones stocks over the period January 1, 1999–

December 31, 2003. Results are based on the SF, TF, RM, CCC, DCC, ADCC, STCC model with xt equal to the logged contemporaneous

market volatility (log(hM,t)) or the one-day lagged weekly market portfolio return (rM,w,t-1), and the SEMI model with the same choices of xt.

All models are re-estimated every 20 observations using a 10-year moving window of daily return observations. MVP denotes minimum

variance portfolio, EWP and VWP indicate equally weighted and value-weighted portfolios, respectively. Portfolio standard deviations are the

standard deviation of standardized portfolio return forecasts. VaR violation percentages and Dynamic Quantile statistics for the corre-

sponding HIT-sequences concern one-day ahead out-of-sample forecasts.
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to the in-sample period. This appears largely due to the portfolio’s sensi-

tivity to the HML factor, which is close to zero during the 1989–1998 period

but substantially different from zero during 1999–2003.

In the context of factor models, Chan et al. (1999) attribute the similarity

in performance of different covariance models in terms of MVP construc-

tion to the presence of a dominant factor, the market, which is more

Table 8. Summary Statistics for Portfolio Weights.

Minimum Variance Minimum Tracking Error

1989–1998 1999–2003 1989–1998 1999–2003

AA 4.28(3.57) 0.34(3.67) 2.43(0.79) 1.31(0.74)

AXP �0.98(3.17) �1.74(3.83) 1.84(0.69) 2.64(1.20)

BA 3.95(4.43) 3.91(3.94) 2.31(0.63) 1.92(0.70)

CAT 2.94(3.40) 0.51(2.69) 1.96(0.62) 0.86(0.87)

C �5.15(1.71) �1.04(4.45) 2.26(0.46) 4.55(1.43)

DD �0.59(3.82) �1.12(3.38) 3.01(0.79) 0.93(1.32)

DIS 3.08(3.23) 0.55(3.04) 2.23(0.58) 1.91(0.76)

EK 6.06(3.72) 11.88(8.38) 2.30(0.49) 2.37(1.54)

GE 0.42(8.34) �6.03(6.29) 6.08(1.61) 5.81(1.74)

GM 1.38(3.05) 4.62(4.64) 2.90(0.77) 3.34(1.44)

HD �0.03(3.38) �0.31(4.75) 2.72(0.71) 2.12(1.50)

HON 3.88(4.29) 1.18(5.52) 2.39(0.84) 3.08(2.02)

HPQ �0.42(1.89) 0.35(2.32) 1.68(0.33) 2.69(0.94)

IBM 7.26(5.77) 6.22(5.24) 4.15(1.56) 4.92(1.41)

INTC �1.56(1.67) �2.26(2.06) 2.15(0.37) 4.57(1.38)

IP 4.33(4.26) 4.36(4.97) 2.35(0.66) 2.49(1.39)

JNJ 1.95(4.96) 11.84(8.41) 3.22(1.03) 5.00(1.87)

JPM 2.03(3.93) �0.28(3.21) 3.91(1.35) 4.57(1.28)

KO �1.60(4.34) 4.52(6.77) 3.46(1.19) 1.83(1.54)

MCD 5.67(4.37) 5.83(5.04) 2.33(0.82) 1.85(0.96)

MMM 12.46(7.59) 6.30(4.76) 3.94(1.16) 2.65(1.46)

MO 3.12(3.51) 3.97(4.52) 2.94(1.13) 1.69(0.71)

MRK 3.73(4.17) 1.31(5.11) 4.75(1.14) 4.03(1.49)

MSFT 0.09(2.49) 3.31(4.20) 1.88(0.58) 5.36(1.96)

PG 4.19(5.00) 12.45(10.56) 4.07(0.94) 3.68(1.93)

SBC 8.38(6.77) 3.58(5.38) 5.91(1.34) 4.42(1.29)

T 6.41(5.42) 1.85(3.08) 4.58(1.22) 3.46(0.88)

UTX 6.69(4.80) 4.85(7.47) 3.51(0.97) 2.59(1.92)

WMT �1.48(3.17) 2.11(5.83) 2.80(0.82) 4.90(1.60)

XOM 19.50(6.93) 16.97(7.96) 9.95(1.81) 8.46(2.44)

Note: The table contains means and standard deviations of in-sample (1989–1998) and out-of-

sample (1999–2003) portfolio weights in the MVP and minimum tracking error portfolio based

on the SEMI model with xt equal to the daily log-volatility for the market return.
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Table 9. In-Sample Performance and Characteristics of Minimum Tracking Error Portfolios Based on

Forecasting Models – 1989–1998.

Mean S. D. Sharpe Ratio Tracking Error bM bSMB bHML

SF 17.39 14.36 0.853 3.64 0.998(0.012) �0.387(0.015) �0.030(0.017)

TF 16.82 14.39 0.812 3.75 1.020(0.012) �0.346(0.015) �0.010(0.018)

RM 17.52 14.86 0.832 4.61 1.010(0.015) �0.397(0.018) �0.064(0.023)

CCC 17.57 14.40 0.864 3.37 0.997(0.011) �0.403(0.014) �0.045(0.016)

DCC 17.53 14.40 0.861 3.35 1.000(0.011) �0.402(0.014) �0.047(0.016)

ADCC 17.49 14.37 0.862 3.32 1.007(0.011) �0.401(0.014) �0.046(0.016)

STCC(hM) 17.55 14.39 0.863 3.34 1.000(0.011) �0.398(0.014) �0.042(0.016)

STCC(hSMB) 17.48 14.39 0.857 3.35 0.996(0.011) �0.403(0.014) �0.049(0.016)

STCC(hHML) 17.58 14.39 0.865 3.32 0.998(0.010) �0.402(0.014) �0.046(0.016)

SEMI(hM) 17.34 14.37 0.849 3.28 1.004(0.010) �0.390(0.013) �0.035(0.015)

SEMI(hSMB) 17.37 14.44 0.848 3.28 1.006(0.010) �0.395(0.014) �0.044(0.016)

SEMI(hHML) 17.65 14.36 0.871 3.26 0.998(0.010) �0.398(0.014) �0.044(0.015)

EWP 17.99 15.16 0.848 4.16 1.072(0.013) �0.333(0.017) �0.053(0.021)

VWP 21.52 17.95 0.913 6.83 1.114(0.017) �0.410(0.021) �0.458(0.027)

Note: The table reports in-sample (January 1, 1989–December 31, 1998) summary statistics for the minimum tracking error portfolios based

on various forecasting models. hM, hSMB and hHML indicate that the variable xt in the STCC and semi-parametric models is taken to be the

(contemporaneous) daily log-volatility for the market, SMB and HML factor returns, respectively. See Table 4 for definitions of the other

models and description of the summary statistics shown.
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Table 10. In-Sample Performance and Characteristics of Minimum Tracking Error Portfolios Based on

Forecasting Models – 1999–2003.

Mean S. D. Sharpe Ratio Tracking Error bM bSMB bHML

SF �3.16 21.96 �0.301 7.91 1.062(0.025) �0.330(0.034) 0.406(0.040)

TF �4.80 22.42 �0.368 7.70 1.070(0.030) �0.293(0.036) 0.344(0.047)

RM �5.25 23.25 �0.374 7.88 1.019(0.018) �0.296(0.028) 0.098(0.035)

CCC �3.14 21.61 �0.305 6.91 1.032(0.020) �0.346(0.030) 0.332(0.034)

DCC �3.69 21.70 �0.329 6.52 1.025(0.020) �0.342(0.029) 0.284(0.033)

ADCC �3.87 21.76 �0.339 6.78 1.029(0.020) �0.344(0.030) 0.315(0.034)

STCC(hM) �3.18 22.03 �0.301 6.60 1.036(0.020) �0.343(0.029) 0.275(0.035)

STCC(hSMB) �3.23 22.16 �0.316 6.56 1.041(0.020) �0.314(0.026) 0.285(0.032)

STCC(hHML) �3.31 21.90 �0.321 6.61 1.037(0.020) �0.341(0.030) 0.223(0.031)

SEMI(hM) �2.40 22.31 �0.262 6.65 1.045(0.020) �0.343(0.030) 0.265(0.034)

SEMI(hSMB) �3.30 22.06 �0.306 6.50 1.051(0.019) �0.304(0.026) 0.288(0.032)

SEMI(hHML) �3.47 22.30 �0.310 6.36 1.032(0.019) �0.347(0.30) 0.219(0.033)

EWP �1.98 21.82 �0.249 7.98 1.066(0.024) �0.307(0.034) 0.425(0.039)

VWP �4.42 19.67 �0.400 7.53 0.938(0.023) �0.298(0.029) 0.313(0.037)

Note: The table reports out-of-sample (January 1, 1999–December 31, 2003) summary statistics for the minimum tracking error portfolios

based on various forecasting models. See Table 9 for models definitions and description of the summary statistics shown.
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important than the other influences on returns. Constructing the MVP then

effectively boils down to minimizing the portfolio’s sensitivity to the market.

This is achieved by tilting the portfolio towards stocks with low market

betas and explains why all covariance models yield such similar results.

Chan et al. (1999) suggest that any differences between the different covar-

iance models may be brought to light more clearly when the dominant factor

is removed. This turns out to be equivalent to tracking a benchmark port-

folio that resembles the dominant factor, and the relevant portfolio to con-

sider becomes the portfolio that minimizes the tracking error.

4.5. Minimizing Tracking Error Using Correlation Forecasts

As the benchmark portfolio for the tracking error optimization problem, we

choose the S&P 500 index. The minimum tracking error portfolio (MTEP) is

equivalent to the MVP for the stock returns in excess of the return on the

benchmark portfolio. Hence, we apply the various models to obtain fore-

casts of the conditional covariance matrix of the excess DJIA stock returns

relative to the S&P 500 return, denoted bHe

t ; and compute the MTEP weights

as wt ¼ bHe�1

t i=ði0 bHe�1

t iÞ: In this case, we also apply the STCC and semi-

parametric models with conditioning variable xt being the contemporaneous

log-volatility of the size and book-to-market factor returns. This is moti-

vated by the fact that these factors might be of considerable importance for

the covariance structure of the excess returns as the dominant market factor

is removed. Tables 9 and 10 display the characteristics of the resulting

portfolios for the in-sample period 1989–1998 and out-of-sample period

1999–2003, respectively. We find that the semi-parametric model with xt ¼
log hHML;t renders the smallest tracking error, both in-sample and out-of-

sample, although the differences with other conditional correlation models

are not large. Note that the SF and TF models perform quite disappointing

for the out-of-sample period, with tracking errors that are comparable to the

tracking errors of the EWP and VWP. Finally, we observe that the out-of-

sample tracking error is twice as large as the in-sample tracking error. This

again is due to the increased sensitivity to the book-to-market factor.

5. CONCLUDING REMARKS

We have developed a new semi-parametric model for conditional correla-

tions, which combines parametric univariate GARCH-type specifications
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for the individual conditional volatilities with nonparametric kernel regres-

sion for the conditional correlations. This approach not only avoids the

proliferation of parameters as the number of assets becomes large, which

typically happens in conventional multivariate conditional volatility models,

but also the rigid structure imposed by more parsimonious models, such as

the DCC model. Hence, our model is applicable in empirically relevant

settings, where portfolios might consist of 10s or even 100s of assets.

The application to the DJIA stocks illustrates the potential of the semi-

parametric model. The estimation results suggest that correlation functions

are asymmetric when the conditioning variable is the lagged weekly market

return. That is, correlations increase stronger in bear markets than they do

in bull markets, in agreement with the ‘‘correlation breakdown’’ effect. We

also find support for the idea that correlations increase with market vol-

atility, as would be implied by a factor structure for the stock returns. The

semi-parametric model performs quite well when compared with standard

parametric DCC-type models in terms of constructing MVPs and minimum

tracking error portfolios.

A point to note, finally, is that the time required to estimate the semi-

parametric model turned out to be far below that of even the simple DCC

models with two parameters. The reason is that no ill-conditioned likelihood

needs to be maximized, but rather a simple data smoother is used. Future

research should develop more guidance with respect to bandwidth selection,

and find ways to avoid the curse of dimensionality when more than one

conditioning variable is considered.

NOTES

1. The number of parameters in an unrestricted VEC-model for N assets equals
ðNðN þ 1Þ=2Þ � ð1þ 2NðN þ 1Þ=2: The BEKK-model contains 2N2 þNðN þ 1Þ=2
parameters.
2. As discussed in Section 2 below, the number of parameters in these models

grows linearly with the number of assets.
3. http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data–library.html.
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APPENDIX: ASSUMPTIONS AND PROOF OF

THEOREM 1

We use the following notation. First and second derivatives of a function

f : R ! R are denoted by f 0ð�Þ and f 00ð�Þ; respectively. Let x be an N-vector

and X an N�N symmetric matrix. The Euclidean norm of x is denoted as

jxj: The operator diag builds a diagonal matrix from a vector argument, i.e.,

diagðxÞ ¼

x1 0 � � � 0

0 x2
..
.

..

. . .
.

0 � � � xN

0
BBBBB@

1
CCCCCA

The operator dg stacks the diagonal of a matrix into a vector, i.e., dgðX Þ ¼
ðX 11;X 22 ; . . . ; XNN Þ0: The operator vec stacks the columns of a matrix into

a column vector, and vech stacks only the lower triangular part including

the diagonal into a vector. Denote by DN the N2 � ðNðN þ 1Þ=2 duplication

matrix and by Dþ
N its generalized inverse, of size ðNðN þ 1Þ=2�N2; with the

properties vechðX Þ ¼ Dþ
NvecðX Þ and vecðX Þ ¼ DNvechðX Þ: Further, denote

by LN the N�N2 matrix with the property LNvecðX Þ ¼ dgðX Þ:
We work under the following assumptions:

Assumption 1.

(A1) The true parameter vector y0 governing the conditional variance ma-

trix Dt exists uniquely and lies in the interior of a compact set.

(A2) The first-stage estimator of y is
ffiffiffiffi
T

p
-consistent and asymptotically

normal.

(A3) The process frtg is strictly stationary.

(A4) The second-stage kernel function satisfies
R
uKðuÞ du ¼ 0;

R
K2ðuÞ du ¼

jjK jj22o1; m2ðKÞ ¼
R
u2KðuÞ duo1;

R
KðuÞ du ¼ 1; supjKðuÞj ¼

Bo1; and jujjKðuÞj ! 0 as juj ! 1:
(A5) The off-diagonal elements of R(x) are strictly between �1 and 1, uni-

formly in x, and are at least twice continuously differentiable on the

support of xt.

(A6) The process xt ¼ R�1=2ðxtÞ�t is i.i.d. The density pðÞ of x1 exists and is

positive on any compact subset of R
N : Furthermore, E½x1� ¼ 0;

E½x1x01� ¼ IN ; and there exist constants d;B40 such that E½x4þd
it � �

Bo1; i ¼ 1 . . . ; N:
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Note that (A6) implies that fourth moments of �t are finite, because R() is
bounded. For notational convenience, define ~xt ¼ vecðxtx0t � INÞ; which by

(A6) is i.i.d. with mean zero and E½~xt ~x
0
t� ¼ M4; say.

In the proof of Theorem 1, we make use of the following lemmata:

Lemma 1. Let

eRðxÞ ¼ eQnðxÞ�1 eQðxÞ eQnðxÞ�1

where

eQðxÞ ¼

PT

t¼1

~�t~�
0
tKhðxt � xÞ

PT

t¼1

Khðxt � xÞ

eQnðxÞ is a diagonal matrix with the square roots of the diagonal elements

of eQðxÞ on its diagonal, and ~�t ¼ Dtðy0Þ�1rt: Then, under assumptions

(A1) to (A6)

~rðxÞ � r̂ðxÞ ¼ Op

1

Tb

� �

uniformly in x, where ~rðxÞ ¼ vechð eRðxÞÞ:
Proof. Very similar to the proof of Lemma A.2 of Rodriguez-Poo and

Linton (2001). &

Lemma 2. Assume that the diagonal elements of D2
t are specified as

hit ¼ oi þ air
2
i;t�1 þ bihi;t�1

with ai þ bio1; i ¼ 1 ; . . . ; N: Under Assumptions (A1) to (A6) and

Rt ¼ Rðrt�1Þ; the process ðrtÞ1t¼0 is geometrically ergodic. Furthermore, if

r0 is drawn from the stationary distribution, then ðrtÞ1t¼0 is geometrically

a-mixing.

Proof. Let o ¼ ðo1 ; . . . ; oNÞ0; a ¼ ða1 ; . . . ; aN Þ0; and b ¼
ðb1 ; . . . ; bN Þ0: Define the processes Vt ¼ ðV1t ; . . . ; VNtÞ0 with V it ¼P1

j¼0 b
j
ir
2
i;t�j ; and the 2N-vector process Zt ¼ r0t;V

0
t

� �0
: By construction, Zt

is a Markov process which can be represented as Zt ¼ mðZt�1Þ þ
gðZt�1Þzt with zt ¼ ðx0t; ~x0tL0

N Þ0 and where m : R2N ! R
2N and g : R2N !

R
2N � R

2N ; given by

m Zt�1ð Þ ¼
0N�1

diagðbÞV t�1 þ diag ~V t�1

� �
Rt

 !
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and with ~V t ¼ ðIN � diagðbÞÞ�1oþ diagðaÞV t;

g Zt�1ð Þ ¼
diag ~V t�1

� �1=2
R

1=2
t 0N�N

0N�N diag ~V t�1

� �
LN R

1=2
t � R

1=2
t

� 	

0
B@

1
CA

Using assumption (A6), E½ztz0t� is finite and given by W, say. The con-

dition of Doukhan (1994),

lim
jzj!1

sup
jmðzÞj2 þ TrðWg0ðzÞgðzÞÞ

jzj2
o1

is easily checked, as Rð�Þ is bounded. By proposition 6 of Doukhan (1994,

p. 107), geometric ergodicity of (Zt) follows. Finally, by Davydov (1973),

a geometrically ergodic Markov chain with initial value drawn from the

stationary distribution is geometrically a-mixing. This proves the lemma.

&

Proof of Theorem 1. Let us only consider the case of constant band-

widths, a ¼ 0; so that h ¼ b: The proof for the general case a4 0 is

analogous to Jennen-Steinmetz and Gasser (1988). Also, we only sketch

the proof for the factor xt ¼ w0rt�1; where w is a fixed N-vector. First, by

definition riiðxÞ ¼ E½�2itjxt�1 ¼ x� ¼ 1; i ¼ 1 ; . . . ; N: The geometric mix-

ing property of ðxtÞ1t¼0 as implied by Lemma 2 ensures consistency and

asymptotic normality of the standard kernel smoother as shown by Rob-

inson (1983) under weaker conditions. Thus, bQðxÞ is a consistent estima-

tor for R(x). Because bQ
n

ðxÞ �!
p

IN and using Slutsky’s Theorem, bRðxÞ is
also a consistent estimator for R(x) (it has the additional advantage of

being a correlation matrix for finite samples).

Turning to the asymptotic distribution, note that

ffiffiffiffiffiffi
Th

p
ðr̂ðxÞ � rðxÞÞ ¼

ffiffiffiffiffiffi
Th

p
ðr̂ðxÞ � ~rðxÞÞ þ

ffiffiffiffiffiffi
Th

p
ð~rðxÞ � rðxÞÞ (A.1)

where the first term on the right-hand side of (A.1) is OpððThÞ�1=2Þ using
Lemma 1, and therefore converges to zero in probability under the as-

sumption, Th ! 1: Thus, the asymptotic distribution of the left-hand

side of (A.1) is the same as that of the second term on the right-hand side

of (A.1). This term however has the same asymptotic distribution as
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ffiffiffiffiffiffi
Th

p
ð ~qðxÞ � rðxÞÞ; where ~qðxÞ ¼ vechð ~QðxÞÞ: We can write

ffiffiffiffiffiffi
Th

p
ð ~qðxÞ � rðxÞÞ ¼ 1

f̂ ðxÞ
ðThÞ�1=2

XT

t¼1

Kðxt � x

h
ÞfZt � rðxÞg (A.2)

where f̂ ðxÞ ¼ ðThÞ�1ST
t¼1 Kðxt�x

h
Þ is the kernel estimator of f(x), the density

of xt, and Zt ¼ vechð�t�0tÞ: As f̂ converges to f in probability, the asymp-

totic distribution is determined by that of ðThÞ�1=2ST
t¼1 Kðxt�x

h
ÞfZt � rðxÞg;

which we can decompose as

ðThÞ�1=2
XT

t¼1

K
xt � x

h

� 	
Zt � r xð Þ

 �

¼ I1 þ I2

where, denoting ut ¼ Zt � rðxtÞ;

I1 ¼ ðThÞ�1=2
XT

t¼1

K
xt � x

h

� 	
ut

and

I2 ¼ ðThÞ�1=2
XT

t¼1

K
xt � x

h

� 	
frðxtÞ � rðxÞg

Since rðxtÞ ¼ E½Ztjxt�; ut is a martingale difference sequence. By Lemma 2

it is a function of geometrically a-mixing processes and thus itself geo-

metrically a-mixing. Note that it can be written as ut ¼ Dþ
NðR

1=2
t � R

1=2
t Þ~xt

with Rt ¼ RðxtÞ and

VðutjxtÞ ¼ Dþ
NðR

1=2
t � R

1=2
t ÞM4ðR1=2

t � R
1=2
t ÞDNo1

by (A6). Using the Cramér-Wold device, I1 �!
L

Nð0; f ðxÞ2 SðxÞÞ3
c0I1 �!

L

Nð0; f ðxÞ2c0SðxÞcÞ for any fixed vector c of length NðN þ 1Þ=2:
Thus, it suffices to show that a central limit theorem holds for c0I1 with

the required asymptotic variance. Using Lemma 5.2 of Härdle, Tsybakov,

and Yang (1998), one obtains Vðc0I1Þ ¼ f ðxÞ2c0SðxÞcþ oð1Þ with SðxÞ ¼
jjK jj22Vðutjxt ¼ xÞ=f ðxÞ: This shows that the asymptotic variance of

f̂ ðxÞ�1I1 is given by SðxÞ: To prove that the asymptotic distribution is

normal, the conditions of the central limit theorem for square integrable

martingale differences of Liptser and Shirjaev (1980, Corollary 6) can be

shown to hold along the lines of Härdle et al. (1998).
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For the second term, note first that

E½I2� ¼ ðThÞ�1=2
XT

t¼1

E Kðxt � x

h
ÞfrðxtÞ � rðxÞg

h i

¼ ðThÞ1=2
Z

KðcÞfrðxþ hcÞ � rðxÞgf ðxþ hcÞ dc

¼ ðThÞ1=2 h2m2ðKÞ f ðxÞr00ðxÞ
2

þ f 0ðxÞr0ðxÞ
� �

þ oðh2Þ
� 

¼ ðThÞ1=2 Oðh2Þ þ oðh2Þ

 �

¼ O ðThÞ1=2h2
n o

which converges to zero under the assumption h ¼ oðT�1=5Þ: Now Y t ¼
KðcÞfrðxtÞ � rðxÞg; c ¼ ðxt � xÞ=h; is a mixing process as it is a measur-

able function of a mixing process. Hence, by Theorem 6.3 of Pötscher and

Prucha (1997), a weak law of large numbers holds for Y t if

supTT
�1ST

t E jY tj1þ�
� �

o1 for some �40: Using (A5), jrðxtÞ � rðxÞj �
2jrðxtÞj � 2 a.s. Furthermore, Kð�Þ is bounded by (A4). Thus, E½jY tj1þ�� �
E½jKðcÞj2ð1þ�Þ�1=2E½jrðxtÞ � rðxÞj2ð1þ�Þ�1=2 � j2Bj1þ�

o1: Thus, I2 ¼ opð1Þ;
which completes the proof. &
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A MULTIVARIATE HEAVY-TAILED

DISTRIBUTION FOR ARCH/GARCH

RESIDUALS$

Dimitris N. Politis

ABSTRACT

A new multivariate heavy-tailed distribution is proposed as an extension

of the univariate distribution of Politis (2004). The properties of the new

distribution are discussed, as well as its effectiveness in modeling ARCH/

GARCH residuals. A practical procedure for multi-parameter numerical

maximum likelihood is also given, and a real data example is worked out.

1. INTRODUCTION

Consider univariate data X1,y,Xn arising as an observed stretch from a

financial returns time series {Xt, t ¼ 0,71,72,y} such as the percentage

returns of a stock price, stock index or foreign exchange rate. The returns

series {Xt} are assumed strictly stationary with mean zero which – from a

practical point of view – implies that trends and other nonstationarities have
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been successfully removed. Furthermore, for simplicity the returns series

{Xt} will be assumed to have a symmetric1 distribution around zero.

The celebrated ARCH models of Engle (1982) were designed to capture

the phenomenon of volatility clustering in the returns series. An ARCH(p)

model can be described by the following equation:

X t ¼ Zt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aþ
Xp

i¼1

aiX
2
t�i

vuut (1)

where a, a1, y, ap are nonnegative parameters. Since the residuals from a

fitted ARCH(p) model do not appear to be normally distributed, practi-

tioners have typically been employing ARCH models with heavy-tailed

errors. A popular assumption for the distribution of the numbers of Zt is the

t-distribution with degrees of freedom empirically chosen to match the ap-

parent degree of heavy tails as measured by higher-order moments such as

the kurtosis; see e.g., Bollerslev, Chou, and Kroner (1992) or Shephard

(1996) and the references therein.

Nevertheless, the choice of a t-distribution is quite arbitrary, and the same

is true for other popular heavy-tailed distributions, e.g., the double expo-

nential. For this reason, Politis (2004) developed an implicit ARCH model

that helps suggest a more natural heavy-tailed distribution for ARCH and/

or GARCH residuals; see Bollerslev (1986) for the definition of GARCH

models. The motivation for this new distribution is given in Section 2, to-

gether with a review of some of its properties. In Section 3, the issue of

multivariate data is brought up, and a multivariate version of the new

heavy-tailed distribution is proposed. A practical algorithm for multi-

parameter numerical maximum likelihood is given in Section 4 based on an

approximate steepest-ascent idea. Section 5 deals in detail with the bivariate

paradigm. Finally, a real data example is worked out in Section 6.

2. THE IMPLICIT ARCH MODEL IN THE

UNIVARIATE CASE: A BRIEF REVIEW

Engle’s (1982) original assumption was that the errors Zt in model (1) are

i.i.d. N(0,1). Under that assumption, the residuals

Ẑt ¼
X tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

âþ
Pp

i¼1

âiX
2
t�i

s (2)
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ought to appear normally distributed; here, â; â1; â2;y are estimates of the

nonnegative parameters a, a1, a2, y . Nevertheless, as previously men-

tioned, the residuals typically exhibit a degree of heavy tails. In other words,

typically there is not a specification for â; â1; â2;y that will render the

residuals Ẑt normal-looking.

A way to achieve ARCH residuals that appear normal was given in the

implicit ARCH model of Politis (2004) that is defined as

X t ¼ W t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aþ a0X
2
t þ

Xp

i¼1

aiX
2
t�i

vuut (3)

When the implicit ARCH model (3) is fitted to the data, the following

residuals ensue:

Ŵ t ¼
X tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

âþ â0X
2
t þ

Pp

i¼1

âiX
2
t�i

s (4)

As argued in Politis (2004), by contrast to the standard ARCH model (1),

there typically always exists here a specification for â; â0; â1;y that will

render the residuals Ŵ t normal-looking.2 Hence, it is not unreasonable to

assume that the Wt errors in model (3) are i.i.d.Nð0; 1).
Technically speaking, however, this is not entirely correct since it is easy

to see that the Wts are actually bounded (in absolute value) by 1=
ffiffiffiffiffi
a0

p
: A

natural way to model the situation where the Wts are thought to be close to

N(0,1) but happen to be bounded is to use a truncated standard normal

distribution, i.e., to assume that the Wts are i.i.d. with probability density

given by

fðxÞ1fjxj � C0gRC0

�C0
fðyÞ dy

for all x 2 R (5)

where f denotes the standard normal density, 1{S} the indicator of set S,

and C0 ¼ 1=
ffiffiffiffiffi
a0

p
: If/when a0 is small enough, the boundedness of Wt is

effectively not noticeable.

Note that the only difference between the implicit ARCH model (3) and

the standard ARCH model (1) is the introduction of the term Xt paired with

a nonzero coefficient a0 in the right-hand side of Eq. (3). It is precisely this

Xt term appearing in both sides of (3) that gives the characterization ‘im-

plicit’ to model (3).
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Nevertheless, we can solve Eq. (3) for Xt, to obtain

X t ¼ U t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aþ
Xp

i¼1

aiX
2
t�i

vuut (6)

where

U t ¼
W tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� a0W
2
t

q (7)

Thus, the implicit ARCH model (3) is seen to be tantamount to the regular

ARCH(p) model (6) associated with the new innovation term Ut.

However, if Wt is assumed to follow the truncated standard normal

distribution (5), then the change of variable (7) implies that the innovation

term Ut appearing in the ARCH model (6) has the density f(u; a0, 1) defined

as

f ðu; a0; 1Þ ¼
ð1þ a0u

2Þ�3=2exp � u2

2ð1þa0u2Þ

� �

ffiffiffiffiffiffi
2p

p
Fð1= ffiffiffiffiffi

a0
p Þ � Fð�1=

ffiffiffiffiffi
a0

p Þ
� � for all u 2 R (8)

where F denotes the standard normal distribution function. Eq. (8) gives the

univariate heavy-tailed density for ARCH residuals proposed in Politis

(2004).

Note that the density f(u; a0, 1) can be scaled to create a two-parameter

family of densities with a typical member given by

f ðx; a0; cÞ ¼
1

c

� �
f

x

c

� �
; a0; 1

� �
for all x 2 R (9)

The nonnegative parameter a0 is a shape parameter having to do with the

degree of heavy tails, while the positive parameter c represents scale; note

that f (u; a0, 1)-f(u) as a0-0.

It is apparent that f (u; a0, c) has heavy tails. Except for the extreme case

when a0 ¼ 0 and all moments are finite, in general moments are finite only

up to (almost) order two. In other words, if a random variable U follows the

density f ðu; a0; cÞ with a0; c40; then it is easy to see that

EjU jdo1 for all d 2 ½0; 2Þ but EjU jd ¼ 1 for all d 2 ½2;1Þ
Thus, working with the heavy-tailed density f ðu; a0; cÞ is associated with

the conviction that financial returns have higher-order moments that are

infinite; Politis (2003, 2004) gives some empirical evidence pointing to

that fact.3
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3. A MULTIVARIATE HEAVY-TAILED

DISTRIBUTION FOR ARCH/GARCH

Here, and throughout the remainder of the paper, we will consider the case

where the data X1,y , Xn are an observed stretch from a multivariate,

strictly stationary and zero mean, series of returns {Xt, t ¼ 0,71,72,y},

where Xt ¼ ðX ð1Þ
t ;X ð2Þ

t ; . . . ;X ðmÞ
t Þ0:

By the intuitive arguments of Section 2, each of the coordinates of Xt may

be thought to satisfy an implicit ARCH model such as (3) with residuals

following the truncated standard normal distribution (5). Nevertheless, it is

possible in general that the coordinates of the vector Xt are dependent, and

this can be due to their respective residuals being correlated.

Focusing on the jth coordinate, we can write the implicit ARCH model

X
ðjÞ
t ¼ W

ðjÞ
t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aðjÞ þ
Xp

i¼0

a
ðjÞ
i ðX ðjÞ

t�iÞ2
vuut for j ¼ 1; . . . ;m (10)

and the corresponding regular ARCH model

X
ðjÞ
t ¼ U

ðjÞ
t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aðjÞ þ
Xp

i¼1

a
ðjÞ
i ðX ðjÞ

t�iÞ2
vuut for j ¼ 1; . . . ;m (11)

with residuals given by

U
ðjÞ
t ¼ W

ðjÞ
tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� a
ðjÞ
0 ðW ðjÞ

t Þ2
q for j ¼ 1; . . . ;m (12)

As usual, we may define the jth volatility by

s
ðjÞ
t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aðjÞ þ
Xp

i¼1

a
ðjÞ
i ðX ðjÞ

t�iÞ2
vuut

With sufficiently large p, an ARCH model such as (11) can approximate an

arbitrary stationary univariate GARCH model; see Bollerslev (1986) or

Gouriéroux (1997). For example, consider the multivariate GARCH (1,1)

model given by the equation

X
ðjÞ
t ¼ s

ðjÞ
t U

ðjÞ
t (13)

with s
ðjÞ
t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CðjÞ þ AðjÞðX ðjÞ

t�1Þ
2 þ BðjÞðsðjÞt�1Þ

2
q

for j ¼ 1; . . . ;m:
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It is easy to see that the multivariate GARCH model (13) is tantamount

to the multivariate ARCH model (11) with p ¼ 1 and the following iden-

tifications:

aðjÞ ¼ CðjÞ

1� BðjÞ and a
ðjÞ
k ¼ AðjÞðBðjÞÞk�1 for k ¼ 1; 2; . . . (14)

The above multivariate ARCH/GARCH models (11) and (13) are in the

spirit of the constant (with respect to time) conditional correlation multi-

variate models of Bollerslev (1990). For instance, note that the volatility

equation for coordinate j involves past values and volatilities from the same

jth coordinate only. More general ARCH/GARCH models could also be

entertained where st
(j) is allowed to depend on past values and volatilities of

other coordinates as well; see e.g., Vrontos, Dellaportas, and Politis (2003)

and the references therein. For reasons of concreteness and parsimony,

however, we focus here on the simple models (11) and (13).

To complete the specification of either the multivariate ARCH model (11)

or the multivariate GARCH model (13), we need to specify a distribution

for the vector residuals ðU ð1Þ
t ;U ð2Þ

t ; . . . ;U ðmÞ
t Þ0: For fixed t, those residuals are

expected to be heavy-tailed and generally dependent; this assumption will

lead to a constant (with respect to time) conditional dependence model since

correlation alone cannot capture the dependence in nonnormal situations.

As before, each Wt
(j) can be assumed (quasi)normal but bounded in ab-

solute value by

C
ðjÞ
0 ¼ 1=

ffiffiffiffiffiffi
a
ðjÞ
0

q

So, the vector ðW ð1Þ
t ;W ð2Þ

t ; . . . ;W ðmÞ
t Þ0 may be thought to follow a truncated

version of the m-variate normal distribution Nm (0, P), where P is a positive

definite correlation matrix, i.e., its diagonal elements are unities. As well

known, the distribution Nm (0, P) has density

fPðyÞ ¼ ð2pÞ�m=2jPj�1=2expð�y0P�1y=2Þ for all y 2 Rm (15)

Thus, the vector (Wt
(1),Wt

(2),y ,Wt
(m))0 would follow the truncated density

fPðwÞ1fw 2 E0gR
E0

fPðyÞ dy
for all w 2 Rm (16)

where E0 is the rectangle ½�C
ð1Þ
0 ;Cð1Þ

0 � � ½�C
ð2Þ
0 ;Cð2Þ

0 � � . . .� ½�C
ðmÞ
0 ;CðmÞ

0 �:
Consequently, by the change of variables (12) it is implied that the vector

innovation term ðU ð1Þ
t ;U ð2Þ

t ; . . . ;U ðmÞ
t Þ0 appearing in the multivariate ARCH

model (11) or the GARCHmodel (13) has the multivariate density fp(u; a0, 1)
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defined as

f Pðu; a0; 1Þ ¼
fPðgðuÞÞ

Qm
j¼1 ð1þ a

ðjÞ
0 u2j Þ�3=2

R
E0

fPðyÞ dy
for all u 2 Rm (17)

where u ¼ ðu1; . . . ; umÞ0; a0 ¼ ðað1Þ0 ; . . . ; aðmÞ
0 Þ0; and gðuÞ ¼ ðg1ðuÞ; . . . ; gmðuÞÞ0

with

gjðuÞ ¼ uj=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a

ðjÞ
0 u2j

q
for j ¼ 1; . . . ;m

note that, by construction, gðuÞ is in E0 for all u 2 Rm:
Therefore, our constant (with respect to time) conditional dependence

ARCH/GARCHmodel is given by (11) or (13) respectively, together with the

assumption that the vector residuals ðU ð1Þ
t ;U ð2Þ

t ; . . . ;U ðmÞ
t Þ0 follow the heavy-

tailed multivariate density fp(u; a0, 1) defined in (17). Because the dependence

in the new density fp(u; a0, 1) is driven by the underlying (truncated) normal

distribution (16), the number of parameters involved in fp(u; a0, 1) is mþ
mðm� 1Þ=2; i.e., the length of the a0 vector plus the size of the lower

triangular part of P; this number is comparable to the number of parameters

found in Bollerslev’s (1990) constant conditional correlation models.

The vector a0 is a shape parameter capturing the degree of heavy tails in

each direction, while the entries of correlation matrix P capture the mul-

tivariate dependence. Again note that the density fp(u; a0, 1) can be scaled to

create a more general family of densities with typical a member given by

f Pðu; a0; cÞ ¼
1Qm
j¼1 cj

f P
u1

c1
; . . . ;

um

cm

� �0
; a0; 1

� �
for all u 2 Rm (18)

where c ¼ (c1,y,cm)
0 is the scaling vector.

4. NUMERICAL MAXIMUM LIKELIHOOD

The general density fp(u; a0, c) will be useful for the purpose of Maximum

Likelihood Estimation (MLE) of the unknown parameters. Recall that the

(pseudo)likelihood, i.e., conditional likelihood, in the case of the multivari-

ate ARCH model (11) with residuals following the density fp(u; a0, 1) is

given by the expression

L ¼
Yn

t¼pþ1

f PðXt; a0; stÞ (19)

where St ¼ (st
(1),y,st

(m))
0
is the vector of volatilities. The (pseudo)likelihood

in the GARCH model (13) can be approximated by that of an ARCH model
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with order p that is sufficiently large; see also Politis (2004) for more details.

As Hall and Yao (2003) recently showed, maximum (pseudo)likelihood es-

timation will be consistent even in the presence of heavy-tailed errors albeit

possibly at a slower rate.

As usual, to find the MLEs one has to resort to numerical optimization.4

Note that in the case of fitting the GARCH(1,1) model (13), one has to

optimize over 4mþmðm� 1Þ=2 free parameters; the 4m factor comes

from the parameters AðjÞ;BðjÞ;CðjÞ; and a
ðjÞ
0 for j ¼ 1; . . . ;m; while the mþ

mðm� 1Þ=2 factor is the number of parameters in P. As in all numerical

search procedures, it is crucial to get good starting values.5 In this case, it is

recommended to get starting values for AðjÞ;BðjÞ;CðjÞ; and a0
( j) by fitting a

univariate GARCH(1,1) model to the jth coordinate (see Politis (2004) for

details). A reasonable starting value for the correlation matrix P is the

identity matrix. An alternative – and more informative – starting value for

the j, k element of matrix P is the value of the cross-correlation at lag 0 of

series {Xt
(j)} to series {Xt

(k)}.

Nevertheless, even for m as low as 2, the number of parameters is high

enough to make a straightforward numerical search slow and impractical.

Furthermore, the gradient (and Hessian) of logL is very cumbersome to

compute, inhibiting the implementation of a ‘steepest-ascent’ algorithm.

For this reason, we now propose a numerical MLE algorithm based on an

approximate ‘steepest ascent’ together with a ‘divide-and-conquer’ idea. To

easily describe it, let

yðjÞ ¼ ðAðjÞ;BðjÞ;CðjÞ; aðjÞ0 Þ0 for j ¼ 1; . . . ;m

In addition, divide the parameters in the (lower triangular part of) matrix

P in M groups labeled yðmþ1Þ; yðmþ2Þ; . . . yðmþMÞ; where M is such that each of

the above groups does not contain more than (say) three or four parameters;

for example, as long as mr3, M can be taken to equal 1.

Our basic assumption is that we have at our disposal a numerical op-

timization routine that will maximize log L over yðjÞ; for every j, when all

other yðiÞ with iaj are held fixed. The proposed DC–profile MLE algorithm

is outlined below.6

4.1. DC–Profile MLE Algorithm

Step 0. Let y
ðjÞ
0 for j ¼ 1; . . . ;mþM denote starting values for yðjÞ:

Step k+1. At this step, we assume we have at our disposal the kth ap-

proximate MLE solution y
ðjÞ
k for j ¼ 1; . . . ;mþM; and want to update it
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to obtain the (k+1)th approximation y
ðjÞ
kþ1: To do this, maximize logL

over yðjÞ; for every j, when all other yðiÞ with iaj are held fixed at y
ðiÞ
k ;

denoted by ~y
ðjÞ
k for j ¼ 1; . . . ;mþM the results of the mþM ‘profile’

maximizations. We then define the updated value y
ðjÞ
kþ1 for j ¼ 1; . . . ;mþ

M as a ‘move in the right direction’, i.e.,

y
ðjÞ
kþ1 ¼ l~y

ðjÞ
k þ ð1� lÞyðjÞk (20)

i.e., a convex combination of ~y
ðjÞ
k and y

ðjÞ
k : The parameter l 2 ð0; 1Þ is

chosen by the practitioner; it controls the speed of convergence – as well

as the risk of nonconvergence – of the algorithm. A value l close to one

intuitively corresponds to maximum potential speed of convergence but

also maximum risk of nonconvergence.

Stop. The algorithm stops when relative convergence has been achieved,

i.e., when jjykþ1 � ykjj=jjykjj is smaller than some prespecified small

number; here jj � jj can be the Euclidean or other norm.

The aforementioned maximizations involve numerical searches over a

given range of parameter values; those ranges must also be carefully

chosen. A concrete recommendation that has been found to speed up

convergence of the profile MLE algorithm is to let the range in searching

for y
ðJÞ
kþ1 be centered around the previous value y

ðJÞ
k ; i.e., to be of the type

½yðJÞk � bk; y
ðJÞ
k þ Bk� for two positive sequences bk, Bk that tend to zero for

large k reflecting the ‘narrowing-down’ of the searches. For positive pa-

rameters, e.g., for y
ðJÞ
k with Jrm in our context, the range can be taken as

½dk y
ðJÞ
k ;Dk y

ðJÞ
k � for two sequences dk, Dk. The equence dk is increasing,

tending to 1 from below, while Dk is a decreasing sequence tending to 1

from above; the values d1 ¼ 0.7, D1 ¼ 1.5 are reasonable starting points.

Remark. The DC–profile optimization algorithm may be applicable to

general multiparameter optimization problems characterized by a diffi-

culty in computing the gradient and Hessian of a general objective func-

tion L. The idea is to ‘divide’ the arguments of L into (say) the m groups

yðjÞ for j ¼ 1,y,m. The number of parameters within each group must be

small enough such that a direct numerical search can be performed to

accomplish (‘conquer’) the optimization of L over yðjÞ; for every j, when all

other yðiÞ with i 6¼j are held fixed. The m individual (‘profile’) optimizations

are then combined as in Eq.(20) to point to a direction of steep (if not

steepest) ascent.
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5. THE BIVARIATE PARADIGM

For illustration, we now focus on a random vector U ¼ (U(1), U(2)) that is

distributed according to the density f Pðu; a0; 1Þ in the bivariate case m ¼ 2.

In this case, the correlation matrix

P ¼
1 r

r 1

 !

where r is a correlation coefficient. Interestingly, as in the case of normal

data, the strength of dependence between U(1) and U(2) is measured by this

single number r: In particular, U(1) and U(2) are independent if and only if

r ¼ 0:
As mentioned before, if a0-0, then fP(u; a0, 1-fp(u) In addition, fp(u;

a0, 1) is unimodal, and has even symmetry around the origin. Nevertheless,

when a0 6¼0, the density fp(u; a0, 1) is heavy-tailed and nonnormal. To see

this, note that the contours of the density fP(u; a0, 1) with a0 ¼ (0.1, 0.1)0 and
r ¼ 0 are not circular as in the normal, uncorrelated case; see Fig. 1(i).

Parts (ii), (iii), and (iv) of Fig. 1 deal with the case r ¼ 0:5; and investigate

the effect of the shape/tail parameter a0. Fig. 1 (iv) where a0 ¼ (0,0)0 is the
normal case with elliptical contours; in Fig. 1 (ii) we have a0 ¼ (0.1,0.1)0,
and the contours are ‘boxy’-looking, and far from elliptical. The case of

Fig. 1 (iii) is somewhere in-between since a
ð1Þ
0 ¼ 0 but a

ð2Þ
0 a0: By comparing

the contours of fP(u; a0, 1) to that of the normal fPðuÞ; we come to an

interesting conclusion: the density fP(u; a0, 1) looks very much like the fPðuÞ
for small values of the argument u. As expected, the similarity breaks down

in the tails; in some sense, fP(u; a0, 1) is like a normal density deformed in a

way that its tails are drawn out.

Fig. 2 further investigates the role of the parameters a0 and r: Increasing
the degree of heavy tails by increasing the value of a0 leads to some inter-

esting contour plots, and this is especially true out in the tails.7 Similarly,

increasing the degree of dependence by increasing the value of r leads to

unusual contour plots especially in the tails. As mentioned before, the con-

tours of fP(u; a0, 1) are close to elliptical for small values of u, but acquire

unusual shapes in the tails.

Finally, Fig. 2(iii) shows an interesting interplay between the values of a0
and the correlation coefficient r: To interpret it, imagine one has n i.i.d.

samples from density fP(u; a0, 1). If n is small, in which case the heavy tails

of U(2) have not had a chance to fully manifest themselves in the sample, a

fitted regression line of U(2) on U(1) will have a small slope dictated by the
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elliptical contours around the origin. By contrast, when n is large, the slope

of the fitted line will be much larger due to the influence of the tails of fP(u;

a0, 1) in the direction of U(2).

6. A REAL DATA EXAMPLE

We now focus on a real data example. The data consist of daily returns

of the IBM and Hewlett-Packard stock prices from February 1, 1984 to
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Fig. 1. Contour (Level) Plots of the Bivariate Density fP(u; a0,1): (i) a0 ¼ ð0:1; 0:1Þ0;
r ¼ 0; (ii) a0 ¼ ð0:1; 0:1Þ0; r ¼ 0:5; (iii) a0 ¼ ð0; 0:1Þ0; r ¼ 0:5; (iv) a0 ¼ ð0; 0Þ0; r ¼ 0:5:
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December 31, 1991; the sample size is n ¼ 2000: This bivariate dataset is

available as part of the garch module of the statistical language S+.

A full plot of the two time series is given in Fig. 3; the crash of October

1987 is prominent around the middle of those plots. Fig. 4 focuses on the

behavior of the two time series over a narrow time window spanning two

months before to two months after the crash of 1987. In particular, Fig. 4

gives some visual evidence that the two time series are not independent;

indeed, they seem to be positively dependent, i.e., to have a tendency to ‘move

together’. This fact is confirmed by the autocorrelation/cross-correlation plot
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Fig. 2. Contour (Level) Plots of the Bivariate Density fP(u; a0,1): (i) a0 ¼ ð0:5; 0:5Þ0;
r ¼ 0; (ii) a0 ¼ ð0:5; 0:5Þ0; r ¼ 0:9; (iii) a0 ¼ ð0; 0:5Þ0; r ¼ 0:9; (iv) a0 ¼ ð0; 0Þ0; r ¼ 0:9:
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given in Fig. 5; note that the cross-correlation of the two series at lag zero is

large and positive (equal to 0.56).

Table 1 shows the MLEs of parameters in univariate GARCH(1,1)

modeling of each returns series, while Table 2 contains the approximate

MLEs of parameters in bivariate GARCH(1,1) modeling, i.e., entries of

Table 2 were calculated using the DC-profile MLE algorithm of Section 4.

Although more work on the numerical computability of multivariate MLEs

in our context is in order – including gauging convergence and accuracy – it

is interesting to note that the entries of Table 2 are markedly different from

those of Table 1 indicating that the bivariate modeling is informative. For

example, while the sum Âþ B̂ was found less than one for both series in the

univariate modeling of Table 1, the same sum was estimated to be slightly

over one for the IBM series and significantly over one for the H-P series in

Table 2; this finding reinforces the viewpoint that financial returns may be

lacking a finite second moment – see the discussion in Section 2 and Politis

(2004). In addition, the high value of r̂ in Table 2 confirms the intuition that

the two series are strongly (and positively) dependent.

Table 1 shows the MLEs of parameters in univariate GARCH(1,1)

modeling of each returns series, while Table 2 contains the approximate

MLEs of parameters in bivariate GARCH(1,1) modeling, i.e., entries of

Table 2 were calculated using the DC-profile MLE algorithm of Section 4.

Although more work on the numerical computability of estimators in this

multivariate context is in order – including gauging convergence and ac-

curacy – it is interesting to note that the entries of Table 2 are markedly

different from those of Table 1 indicating that the bivariate modeling is

informative. For example, while the sum Âþ B̂ was found less than one for

both series in the univariate modeling of Table 1, the same sum was es-

timated to be slightly over one for the IBM series and significantly over one

for the H-P series in Table 2; this finding reinforces the viewpoint that

financial returns may be lacking a finite second moment – see the discussion

in Section 2 and Politis (2004). In addition, the high value of r̂ in Table 2

confirms the intuition that the two series are strongly (and positively)

dependent.

Fig. 6 shows diagnostic plots associated with the DC-profile MLE algo-

rithm. The first nine plots show the evolution of the nine parameter esti-

mates over iterations; the nine parameters are: a0;A;B;C for the IBM series;

a0;A;B;C for the H-P series, and r: Those nine plots show convergence of

the DC–profile MLE procedure; this is confirmed by the 10th plot that

shows the evolution of the value of the Log-Likelihood corresponding to

those nine parameters. As expected, the 10th plot shows an increasing graph
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that tapers off toward the right end, showing the maximization is working;

only about 30–40 iteration steps were required for the convergence of the

algorithm.

Finally, note that few people would doubt that a r̂ value of 0.53, arising

from a dataset with sample size 2000, might not be significantly different

from zero; nonetheless, it is important to have a hypothesis testing proce-

dure for use in other, less clear, cases. A natural way to address this is via the

subsampling methodology – see Politis, Romano, and Wolf (1999) for de-

tails. There are two complications, however:

(i) Getting r̂ is already quite computer-intensive, involving a numerical

optimization algorithm; subsampling entails re-calculating r̂ over sub-

sets (subseries) of the data, and can thus be too computationally ex-

pensive.

(ii) The estimators figuring in Tables 1 and 2 are not
ffiffiffi
n

p
–consistent as

shown in Hall and Yao (2003); subsampling with estimated rate of

convergence could then be employed as in Chapter 8 of Politis et al.

(1999).

Future work may focus on the above two important issues as well as on

the possibility of deriving likelihood-based standard errors and confidence

intervals in this nonstandard setting.

Table 1. MLEs of Parameters in Univariate GARCH(1,1) Modeling of

Each Returns Series.

â0 Â B̂ Ĉ

IBM 0.066 0.029 0.912 6.32e-06

H-P 0.059 0.052 0.867 2.54e-05

Table 2. MLEs of Parameters in Bivariate GARCH(1,1) Modeling of

the Two Series; Entries of Table 2 Were Calculated Using the DC-Profile

MLE Algorithm of Section 4.

â0 Â B̂ Ĉ r̂

IBM 0.105 0.055 0.993 7.20e-05 0.53

H-P 0.062 0.258 0.975 3.85e-04
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NOTES

1. Some authors have raised the question of the existence of skewness in financial
returns; see e.g. Patton (2002) and the references therein. Nevertheless, at least as a
first approximation, the assumption of symmetry is very useful for model building.
2. To see why, note that the specification â ¼ 0; â0 ¼ 1; and âi ¼ 0 for i40;

corresponds to Ŵ t ¼ signðX tÞ that has kurtosis equal to one. As previously men-
tioned, specifications with â0 ¼ 0 typically yield residuals Ŵ t with heavier tails than
the normal, i.e., kurtosis bigger than three. Thus, by the intermediate value theorem,
a specification for â; â0; â1; . . . should exist that would render the kurtosis of Ŵ t

attaining the intermediate value of three.
3. Although strictly speaking the second moment is also infinite, since the moment

of order 2-� is finite for any �40; one can proceed in practical work as if the second
moment were indeed finite; for example, no finite-sample test can ever reject the
hypothesis that data following the density f ðu; a0; 1Þ with a040 have a finite second
moment.
4. An alternative avenue was recently suggested by Bose and Mukherjee (2003)

but it is unclear if/how their method applies to a multivariate ARCH model without
finite fourth moments.
5. As with all numerical optimization procedures, the algorithm must run with a

few different starting values to avoid getting stuck at a local – but not global –
optimum.
6. The initials DC stand for divide-and-conquer; some simple S+ functions for

GARCH(1,1) numerical MLE in the univariate case m ¼ 1 and the bivariate case
m ¼ 2 are available at: www.math.ucsd.edu/�politis.
7. In both Fig. 1 and 2 the same level values were used corresponding to the

density taking the values 0.001, 0.005, 0.010, 0.020, 0.040, 0.060, 0.080, 0.100, 0.120,
0.140, 0.160, 0.180, and 0.200.

REFERENCES

Bollerslev, T. (1986). Generalized autoregressive conditional heteroscedasticity. Journal of

Econometrics, 31, 307–327.

Bollerslev, T. (1990). Modelling the coherence in short-run nominal exchange rates: A mul-

tivariate generalized ARCH model. Review of Economics and Statistics, 72, 498–505.

Bollerslev, T., Chou, R., & Kroner, K. (1992). ARCH modelling in finance: a review of theory

and empirical evidence. Journal of Econometrics, 52, 5–60.

Bose, A., & Mukherjee, K. (2003). Estimating the ARCH parameters by solving linear equa-

tions. Journal of Time Series Analls, 24(2), 127–136.

Engle, R. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of

UK inflation. Econometrica, 50, 987–1008.

Gouriéroux, C. (1997). ARCH models and financial applications. New York: Springer.

Hall, P., & Yao, Q. (2003). Inference in ARCH and GARCH models with heavy-tailed errors.

Econometrica, 71, 285–317.

Patton, A. J. (2002). Skewness, asymmetric dependence and portfolios. Preprint (can be down-

loaded from: http://fmg.lse.ac.uk/�patton).

A Multivariate Heavy-Tailed Distribution for ARCH/GARCH Residuals 123



Politis, D. N. (2003). Model-free volatility prediction. Discussion Paper 2003-16, Department of

Economics, UCSD.

Politis, D. N. (2004). A heavy-tailed distribution for ARCH residuals with application to

volatility prediction. Annals of Economics and Finance, 5, 283–298.

Politis, D. N., Romano, J. P., & Wolf, M. (1999). Subsampling. New York: Springer.

Shephard, N. (1996). Statistical aspects of ARCH and stochastic volatility. In: D. R. Cox, D. V.

Hinkley & O. E. Barndorff-Nielsen (Eds), Time series models in econometrics, finance and

other fields (pp. 1–67). London: Chapman & Hall.

Vrontos, I. D., Dellaportas, P., & Politis, D. N. (2003). A full-factor multivariate GARCH

model. Econometrics Journal, 6, 312–334.

DIMITRIS N. POLITIS124



A PORTMANTEAU TEST FOR

MULTIVARIATE GARCH WHEN

THE CONDITIONAL MEAN IS AN

ECM: THEORY AND EMPIRICAL

APPLICATIONS

Chor-yiu Sin

ABSTRACT

Macroeconomic or financial data are often modelled with cointegration

and GARCH (Generalized Auto-Regressive Conditional Heteroskedas-

ticity). Noticeable examples include those studies of price discovery in

which stock prices of the same underlying asset are cointegrated and they

exhibit multivariate GARCH. It was not until recently that Li, Ling, and

Wong’s (2001) Biometrika, 88, 1135–1152, paper formally derived the

asymptotic distribution of the estimators for the error-correction model

(ECM) parameters, in the presence of conditional heteroskedasticity. As

far as ECM parameters are concerned, the efficiency gain may be huge

even when the deflated error is symmetrically distributed. Taking into

consideration the different rates of convergence, this paper first shows

that the standard distribution applies to a portmanteau test, even when the

conditional mean is an ECM. Assuming the usual null of no multivariate

GARCH, the performance of this test in finite samples is examined
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through Monte Carlo experiments. We then apply the test for GARCH to

the yearly or quarterly (extended) Nelson–Plosser data, embedded with

some prototype multivariate models. We also apply the test to the intra-

daily HSI (Hang Seng Index) and its derivatives, with the spread as the

ECT (error-correction term). The empirical results throw doubt on the

efficiency of the usual estimation of the ECM parameters, and more

importantly, on the validity of the significance tests of an ECM.

1. INTRODUCTION

Throughout this paper, we consider an m-dimensional autoregressive (AR)

process of {Yt}, which is generated by

Y t ¼ F1Y t�1 þ � � � þ FsY t�s þ �t (1.1)

�t ¼ V
1=2
t�1Zt (1.2)

where fj’s are constant matrices, Zt ¼ ðZ1t; . . . ; ZmtÞ0 is a sequence of inde-

pendently and identically distributed (i.i.d.) random m� 1-vectors with zero

mean and identity covariance matrix, Vt�1 is measurable Ft�1, where F t ¼
sfZs; s ¼ t; t� 1; . . . g: As a result, Eð�tjF t�1Þ ¼ 0 and Eð�t�0tjF t�1Þ ¼ V t�1:

Assuming the et’s are i.i.d., under further conditions on Fj’s (see

Assumptions 2.1 and 2.2), Ahn and Reinsel (1990) (see also Johansen,

1996) show that, although some component series of {Yt} exhibit

nonstationary behaviour, there are r linear combinations of {Yt} that are

stationary. This phenomenon, which is called cointegration in the literature

of economics, was first investigated in Granger (1983) (see also Engle &

Granger, 1987). There are numerous economics models such as consump-

tion function, purchasing-power parity, money-demand function, hedging

ratio of spot and future exchange rates and yield curves of different terms of

maturities. The partially nonstationary multivariate AR model or coin-

tegrating time series models assuming constant Vt�1 have been extensively

discussed over the past 20 years. Other noticeable examples include Phillips

and Durlauf (1986) and Stock and Watson (1993). An equivalent

representation is called an error-correction model (ECM). See (2.3).

In this paper, we adopt the constant-correlation multivariate GARCH

first suggested by Bollerslev (1990). More precisely, we assume that V t�1 ¼
Dt�1GDt�1; where G is a symmetric square matrix of constant correlations

and Dt�1 ¼ diagð
ffiffiffiffiffiffiffiffiffiffi
h1t�1

p
; . . . ;

ffiffiffiffiffiffiffiffiffiffiffi
hmt�1

p
Þ is a diagonal matrix of conditional
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standard deviations, where:

hit�1 ¼ ai0 þ
Xq

j¼1

aij�
2
it�j þ

Xp

k¼1

bikhit�1�k; i ¼ 1; . . . ;m (1.3)

Despite the fact that many papers, such as Engle and Patton (2004) and

Hasbrouck (2003), consider a model of this kind, few if not none of them

estimate model (1.1) with the consideration of GARCH. As suggested by Li,

Ling, and Wong (2001), the efficiency gain in estimating the ECM parameters

may be huge, even when the deflated error (Zt) is symmetrically distributed.

Using the probability theories developed in Chan and Wei (1988) and Ling

and Li (1998), we extend Li, Ling and Wong’s (2001) results to testing for

multivariate GARCH. The null can be no multivariate GARCH, or it can be

a specific multivariate GARCH. This paper differs from others on testing for

multivariate time-varying covariance such as Li and McLeod (1981); Ling

and Li (1997); Tse (2002) in a number of ways. First, we do not restrict Yt to

be stationary. As one can see in Section 3, that prohibits us from using the

usual delta method in deriving the asymptotic distribution of the test statistic.

Second, as we are not using the Taylor’s expansion, we only assume finite

fourth-order moments. Nevertheless, we maintain the assumption that Zt is

symmetrically distributed. We leave the asymmetric case to further research.

This paper proceeds along the lines in Ling and Li (1997). Section 2

discusses the structure of models (1.1)–(1.3). An introduction on the test

statistic for multivariate GARCH is also found there. Section 3 is the main

focus of the paper, which contains a rigorous derivation of the asymptotic

distribution of the test statistics. We report the Monte Carlo experiments

and the empirical examples of yearly, quarterly as well as intra-daily data in

Sections 4 and 5, respectively. Conclusions can be found in Section 6.

Throughout, !L denotes convergence in distribution, Op(1) denotes a

series of random numbers that are bounded in probability and op(1) denotes

a series of random numbers converging to zero in probability.

2. BASIC PROPERTIES OF THE MODELS AND THE

TEST STATISTIC

Denote L as the lag operator. Refer to (1.1) and define FðLÞ ¼ Im �
Ss
j¼1FjL

j : We first make the following assumption:

Assumption 2.1. fðzÞ
�� �� ¼ 0 implies that either jzj41 or z ¼ 1:
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Define W t ¼ Y t � Y t�1; Fn

j ¼ �Ss
k¼jþ1Fk and C ¼ �Fð1Þ ¼ �ðIm �

Ss
j¼1 FjÞ: By Taylor’s formula, FðLÞ can be decomposed as:

F zð Þ ¼ 1� zð ÞIm � Cz�
Xs�1

j¼1

F�
j 1� zð Þzj (2.1)

Thus, we can re-parameterize process (1.1) as the following full-rank form:

W t ¼ CY t�1 þ
Xs�1

j¼1

F�
j W t�j þ �t (2.2)

Following Ahn and Reinsel (1990) and Johansen (1996), we can

decompose C ¼ AB, where A and B are m� r, and r�m matrices of rank

r respectively. Thus (2.2) can be written as the following reduced-rank form:

W t ¼ ABY t�1 þ
Xs�1

j¼1

Fn

j W t�j þ �t (2.3)

Define d ¼ m�r. Denote B? as a d�m matrix of full rank such that

BB0
? ¼ 0r�d ; B̄ ¼ ðBB0Þ�1B and B̄? ¼ ðB?B

0
?Þ

�1B?; and A? as an m� d

matrix of full rank such that A0A? ¼ 0r�d ; Ā ¼ AðA0AÞ�1 and Ā? ¼
A?ðA0

?A?Þ�1: We impose the following conditions:

Assumption 2.2. jA0
?ðIm � Ss�1

j¼1F
�
j ÞB0

?ja0:

Assumption 2.3. For i ¼ 1; . . . ;m; ai040; ai1; . . . ; aiq; bi1; . . . ; bip � 0

and S
q
j¼1aij þ S

p
k¼1biko1:

Assumption 2.4. For i ¼ 1; . . . ;m; all eigenvalues of EðAit�AitÞ lie inside
the unit circle, where � denotes the Kronecker product and

Ait ¼

ai1Z
2
it . . . aiqZ

2
it bi1Z

2
it . . . bipZ

2
it

Iq�1 0ðq�1Þ�1 0ðq�1Þ�p

ai1 . . . aiq bi1 . . . bip

0ðp�1Þ�q Ip�1 0ðp�1Þ�1

0

BBBB@

1

CCCCA

Assumption 2.5. Zt is symmetrically distributed.

Assumption 2.6. For iaj; E½ZkitZljt� ¼ E½Zkit�E½Zljt�; k; l ¼ 1; 2; 3:

Assumptions 2.3–2.4 are the necessary and sufficient conditions for

Eðvec½�t�0t�vec½�t�0t�0Þo1: Assumption 2.5 allows the parameters in (1.1) and

those in (1.2)–(1.3) to be estimated separately without altering the asymptotic
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distributions. As a result, the asymptotic distribution of the estimator in

(1.2)–(1.3) is unaltered, no matter we consider the full-rank estimation

(estimating the parameters in (2.2)) or the reduced-rank estimation

(estimating the parameters in (2.3)). In the balance of this paper, without

loss of generality, we confine our attention to the full-rank estimation. On the

other hand, as one can see in Lemmas 3.1 and 3.2, Assumption 2.6 simplifies

the asymptotic distribution of our portmanteau test.

Refer to Processes (2.2) and (1.2)–(1.3). Consider the full-rank estimators for

j � vec½C;Fn

1 ; . . . ;F
n

s�1� and d � ½d01; d
0
2�0: d1 � ½a00; a01; . . . ; a0q; b01; . . . ; b

0
p�0;

aj � ½a1j ; . . . ; amj �0; bk � ½b1k; . . . ; bmk�0; j ¼ 0; 1; . . . ; q; k ¼ 1; . . . ; p and

d2 � ~nðGÞ; which is obtained from vec(G) by eliminating the supradiagonal

and the diagonal elements of G (see Magnus, 1988, p. 27). Given fY t : t ¼
1; . . . ; ng; conditional on the initial values Ys ¼ 0 for sr0, the log-likelihood

function, as a function of the true parameter, can be written as:

l j; dð Þ ¼
Xn

t¼1

lt and lt ¼ � 1

2
�0tV

�1
t�1�t �

1

2
ln V t�1j j (2.4)

where V t�1 ¼ Dt�1GDt�1; Dt�1 ¼ diagð
ffiffiffiffiffiffiffiffiffiffi
h1t�1

p
; . . . ;

ffiffiffiffiffiffiffiffiffiffiffi
hmt�1

p
Þ: Further denote

ht�1 ¼ ðh1t�1; . . . ; hmt�1Þ0 and H t�1 ¼ ðh�1
1t�1; . . . ; h

�1
mt�1Þ

0:
As proved in Theorem 3.1(c) of Sin and Ling (2004), the asymptotic

distribution of d̂; which is the QMLE (quasi-maximum likelihood estimator)

or the one-step-iteration estimator for d, is independent of that of ĵ; the
QMLE or the one-step iteration estimator for j: More precisely:

ffiffiffi
n

p
d̂� d
� �

¼ n�1
Xn

t¼1

St

 !�1

n�1=2
Xn

t¼1

rdlt

 !

þ opð1Þ!LN 0;O�1
d On

dO
�1
d

� �
(2.5)

where On

d ¼ Eðrdltr0
dltÞ; Od ¼ �EðStÞ; St ¼ ðSijtÞ2�2;

rdlt ¼
� 1

2
rd1ht�1 i� w �t�

0
tV

�1
t�1

� �� �
�H t�1

�~n G�1 � G�1D�1
t�1�t�

0
tD

�1
t�1G

�1
� �

 !

(2.6)

S11t ¼ � rd1ht�1

� �
D�2

t�1 G�1 � Gþ Im
� �

D�2
t�1 r0

d1
ht�1

� �
=4 (2.7)

S12t ¼ � rd1ht�1

� �
D�2

t�1Cm Im�G�1
� �

Nm
~L
0
m (2.8)

S22t ¼ �2 ~LmNm G�1�G�1
� �

Nm
~L
0
m (2.9)
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i ¼ (1,1, y ,1)0 and w(w) is a vector containing the diagonal elements of the

square matrix w. Cm, Nm and ~Lm are constant matrices (see Magnus, 1988,

pp. 109, 48 & 96).

Let �̂t be the residual when the true parameter (j,d) is replaced by the

QMLE or the one-step-iteration estimator ðĵ; d̂Þ: Similarly, define V̂ t�1: The
lag l sum of squared (standardized) residual autocorrelation is thus defined as:

R̂l ¼ n�1=2
Xn

t¼lþ1

�̂0tV̂
�1

t�1�̂t �m
� �

�̂0t�lV̂
�1

t�1�l �̂t�l �m
� �

=n�1
Xn

t¼lþ1

�̂0tV̂
�1

t�1�̂t �m
� �2

(2.10)

In the next section, we will consider the asymptotic distribution of the test

statistic R̂; defined as ðR̂1; R̂2; . . . ; R̂LÞ0; where L is a fixed integer.

3. DISTRIBUTION OF THE SUM OF SQUARED

RESIDUAL AUTOCORRELATIONS

We first note that for l ¼ 1, y ,L:

P̂l � n�1=2
Xn

t¼1

ð�̂0tV̂
�1

t�1�̂t �mÞð�̂0t�lV̂
�1

t�1�l �̂t�l �mÞ

¼ n�1=2
Xn

t¼1

ð�0tV�1
t�1�t �mÞð�0t�lV

�1
t�1�l�t�l �mÞ

þ n�1=2
Xn

t¼1

ð�̂0tV̂
�1

t�1�̂t � �0tV
�1
t�1�tÞð�0t�lV

�1
t�1�l�t�l �mÞ

þ n�1=2
Xn

t¼1

ð�0tV�1
t�1�t �mÞð�̂0t�lV̂

�1

t�1�l �̂t�l � �0t�lV
�1
t�1�l�t�lÞ

þ n�1=2
Xn

t¼1

ð�̂0tV̂
�1

t�1�̂t � �0tV
�1
t�1�tÞð�̂

0
t�lV̂

�1

t�1�l �̂t�l � �0t�lV
�1
t�1�l�t�lÞ

� Pl þ I1 þ I2 þ I3 ð3:1Þ

Consider I1. Observe that:

�̂0tV̂
�1

t�1�̂t � �0tV
�1
t�1�t ¼ �0t V̂

�1

t�1 � V�1
t�1

� �
�t þ �̂t � �tð Þ0V̂�1

t�1�̂t þ �0tV̂
�1

t�1 �̂t � �tð Þ.

In view of the fact that V̂
�1

t�1 ¼ Oð1Þ and �̂t � �t ¼ Opð 1ffiffi
n

p Þ �Opð 1ffiffi
n

p ÞU t�1;
where U t�1 ¼ ½ðBY t�1Þ0;W 0

t�1; . . . ;W
0
t�sþ1�0 (see (A.1) in the appendix).
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Further, E[et|Ft�1] ¼ 0. It is not difficult to see that:

n�1=2
Xn

t¼1

�̂t � �tð Þ0V̂�1

t�1�̂t þ �0tV̂
�1

t�1 �̂t � �tð Þ
h i

�0t�lV
�1
t�1�l�t�l �m

� �
¼ opð1Þ

In other words,

I1 ¼ n�1=2
Xn

t¼1

�0t V̂
�1

t�1 � V�1
t�1

� �
�t

� �
�0t�lV

�1
t�1�l�t�l �m

� �
þ opð1Þ (3.2)

Next, note that:

V̂
�1

t�1 � V�1
t�1 ¼ � V�1

t�1 V̂ t�1 � V t�1

� �
V�1

t�1

þ V�1
t�1 V̂ t�1 � V t�1

� �
V�1

t�1 V̂ t�1 � V t�1

� �
V̂

�1

t�1 ð3:3Þ

In view of the fact that V̂
�1

t�1 ¼ Oð1Þ; V�1
t�1 ¼ Oð1Þ and ðV̂ t�1 � V t�1Þ ¼

Opðn�1=2Þ þOpðrtÞ (see Lemma A.3 in the Appendix), it is not difficult to see

that:

n�1=2
Xn

t¼1

�0tV
�1
t�1 V̂ t�1 � V t�1

� �
V�1

t�1 V̂ t�1 � V t�1

� �

�V̂
�1

t�1�t �0t�lV
�1
t�1�l�t�l �m

� �
¼ opð1Þ ð3:4Þ

Now we consider the first term on the right hand side of (3.3):

V̂ t�1 � V t�1 ¼ D̂t�1 �Dt�1

� �
GDt�1 þDt�1G D̂t�1 �Dt�1

� �

þDt�1 Ĝ� G
� �

Dt�1 þ I1t

where

I1t � D̂t�1 �Dt�1

� �
Ĝ� G
� �

Dt�1 þ D̂t�1 �Dt�1

� �
G D̂t�1 �Dt�1

� �

þ D̂t�1 Ĝ� G
� �

D̂t�1 �Dt�1

� �

As Ĝ� G ¼ Opðn�1=2Þ and D̂t�1 �Dt�1 ¼ Opðn�1=2Þ þOpðrtÞ (see Lemma

A.2 in the Appendix), it is not difficult to see that:

n�1=2
Xn

t¼1

�0tV
�1
t�1I1tV

�1
t�1�t �0t�lV

�1
t�1�l�t�l �m

� �
¼ opð1Þ (3.5)

On the other hand, D̂t�1 �Dt�1 ¼ 1
2
D�1

t�1½ðD̂
2

t�1 �D2
t�1Þ � ðD̂t�1 �Dt�1Þ2�:

Since D�1
t�1 ¼ Oð1Þ and D̂t�1 �Dt�1 ¼ Opðn�1=2Þ þOpðrtÞ; similar to (3.5), it
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is not difficult to see that:

n�1=2
Xn

t¼1

�0tV
�1
t�1D

�1
t�1 D̂t�1 �Dt�1

� �2
V�1

t�1�t �0t�lV
�1
t�1�l�t�l �m

� �
¼ opð1Þ

(3.6)

All in all, by (3.2), (3.4), (3.5) and (3.6),

I1 ¼ I11 þ I12 þ I13 þ opð1Þ (3.7)

where

I11 � � n�1=2
Xn

t¼1

1

2
tr �0tV

�1
t�1D

�1
t�1 D̂

2

t�1 �D2
t�1

� �
GDt�1V

�1
t�1�t

h i

� �0t�lV
�1
t�1�l�t�l �m

� �
;

I12 � � n�1=2
Xn

t¼1

1

2
tr �0tV

�1
t�1Dt�1GD

�1
t�1 D̂

2

t�1 �D2
t�1

� �
V�1

t�1�t

h i

� �0t�lV
�1
t�1�l�t�l �m

� �
; and

I13 � � n�1=2
Xn

t¼1

1

2
tr �0tV

�1
t�1Dt�1 Ĝ� G

� �
Dt�1V

�1
t�1�t

h i

� �0t�lV
�1
t�1�l�t�l �m

� �
.

We first consider I11. For two matrices of the same order M1 and

M2, (vecM1)
0vecM2 ¼ trM1

0M2 (see Magnus & Neudecker, 1988, p. 30).

For a diagonal m�mmatrix w, vecðwÞ ¼ C0
moðwÞ (see Magnus, 1988, p. 109).

Given Lemma A.1,

tr �0tV
�1
t�1D

�1
t�1 D̂

2

t�1 �D2
t�1

� �
GDt�1V

�1
t�1�t

h i

¼ tr Z0tG
1=2Dt�1D

�1
t�1G

�1D�1
t�1D

�1
t�1 D̂

2

t�1 �D2
t�1

� �h

�GDt�1D
�1
t�1G

�1D�1
t�1Dt�1G

1=2Zt

i

¼ tr G1=2ZtZ
0
tG

�1=2D�2
t�1 D̂

2

t�1 �D2
t�1

� �h i

¼ vecD�2
t�1G

�1=2ZtZ
0
tG

1=2
� �0

vec D̂
2

t�1 �D2
t�1

� �

¼ vecD�2
t�1G

�1=2ZtZ
0
tG

1=2
� �0

C0
m ĥt�1 � ht�1

� �

¼ CmvecD
�2
t�1G

�1=2ZtZ
0
tG

1=2
h i0

r0
d1
ht�1 d̂1 � d1

� �
þOp rt

� �
þ A1t�1

h i
ð3:8Þ
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Recall that Cmvecð�Þ ¼ wð�Þ (see Magnus, 1988, p. 110). From Section 2

(see around (2.4)), H t�1 ¼ ðh�1
1t�1; . . . ; h

�1
mt�1Þ0: Taking the conditional

expectation of the first term on the right hand side of (3.8):

CmvecD
�2
t�1G

�1=2E ZtZ
0
tjF t�1

� �
G1=2 ¼ CmvecD

�2
t�1 ¼ H t�1 (3.9)

Applying an ergodic theorem to fð�0t�lV
�1
t�1�l�t�l �mÞðCmvec

D�2
t�1G

�1=2ZtZ
0
tG

1=2Þ0r0
d1
ht�1g; by (3.8), (3.9) and Lemma A.1,

I11 ¼ � 1

2
E �0t�lV

�1
t�1�l�t�l �m

� �
rd1ht�1H t�1

� �0� � ffiffiffi
n

p
d̂1 � d1

� �
þ op 1ð Þ

(3.10)
Next we turn to I12. Refer to a term in I12:

tr �0tV
�1
t�1Dt�1GD

�1
t�1 D̂

2

t�1 �D2
t�1

� �
V�1

t�1�t

h i

¼ tr D�1
t�1G

�1D�1
t�1Dt�1G

1=2ZtZ
0
tG

1=2Dt�1D
�1
t�1G

�1D�1
t�1Dt�1GD

�1
t�1

h

� D̂
2

t�1 �D2
t�1

� �i

¼ tr D�2
t�1G

�1=2ZtZ
0
tG

1=2 D̂
2

t�1 �D2
t�1

� �h i

In a similar token, it can be shown that:

I12 ¼ � 1

2
E �0t�lV

�1
t�1�l�t�l �m

� �
rd1ht�1H t�1

� �0� � ffiffiffi
n

p
d̂1 � d1

� �

þ op 1ð Þ ¼ I11 þ op 1ð Þ ð3:11Þ

Next we turn to I13. Note that vecðĜ� GÞ ¼ 2Nm
~L
0
mðd̂2 � d2Þ (see

Magnus, 1988, pp. 48, 96). Consider a term in I13:

tr �0tV
�1
t�1Dt�1 Ĝ� G

� �
Dt�1V

�1
t�1�t

h i

¼ tr Dt�1V
�1
t�1�t�

0
tV

�1
t�1Dt�1 Ĝ� G

� �h i

¼ tr Dt�1D
�1
t�1G

�1D�1
t�1Dt�1G

1=2ZtZ
0
tG

1=2Dt�1D
�1
t�1G

�1D�1
t�1Dt�1 Ĝ� G

� �h i

¼ tr G�1=2ZtZ
0
tG

�1=2 Ĝ� G
� �h i

¼ vecG�1=2ZtZ
0
tG

�1=2
� �0

vec Ĝ� G
� �

¼ 2 vecG�1=2ZtZ
0
tG

�1=2
� �0

Nm
~L
0
m d̂2 � d2

� �

¼ 2 ~LmNmvecG
�1=2ZtZ

0
tG

�1=2
� �0

d̂2 � d2

� �
ð3:12Þ
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Consider a term on the right hand side of (3.12):

E ZtZ
0
tjF t�1

� �
¼ Im (3.13)

Applying an ergodic theorem to fð�0t�lV
�1
t�1�l�t�l �mÞ

ð ~LmNmvecG
�1=2ZtZ

0
tG

�1=2Þ0g; by (3.12) and (3.13) and the fact that

E½�0t�lV
�1
t�1�l�t�l �m� ¼ 0;

I13 ¼ � 2E �0t�lV
�1
t�1�l�t�l �m

� �
~LmNmvecG

�1
� �0h i ffiffiffi

n
p

d̂2 � d2

� �

þ op 1ð Þ ¼ op 1ð Þ ð3:14Þ

Therefore, by (3.7), (3.10), (3.11) and (3.14),

I1 ¼ � E �0t�lV
�1
t�1�l�t�l �m

� �
rd1ht�1H t�1

� �0
; 01xm m�1ð Þ=2

� �� � ffiffiffi
n

p
d̂� d
� �

þ op 1ð Þ ð3:15Þ

Similarly, repeating the same steps for I2; we would be able to show that:

I2 ¼ � E ð�0tV�1
t�1�t �mÞ rd1ht�1�lH t�1�l

� �0
; 01xm m�1ð Þ=2

� �� � ffiffiffi
n

p
d̂� d
� �

þ opð1Þ ¼ opð1Þ ð3:16Þ

since E½ð�0tV�1
t�1�t �mÞjF t�1� ¼ 0: Lastly, it can be shown in a similar way that:

I3 ¼ op 1ð Þ (3.17)

Define X 0
l � E½ð�0t�lV

�1
t�1�l�t�l �mÞððrd1ht�1H t�1Þ0; 01xmðm�1Þ=2Þ�: By (3.1),

(3.15), (3.16) and (3.17),

P̂l ¼ Pl � X 0
l

ffiffiffi
n

p
d̂� d
� �

þ op 1ð Þ (3.18)

In the balance of this paper, we let P̂ ¼ ðP̂1; P̂2; . . . ; P̂LÞ0; P ¼
ðP1;P2; . . . ;PLÞ0 and X ¼ ðX 1;X 2; . . . ;XLÞ0: By (3.18),

P̂ ¼ P� X
ffiffiffi
n

p
d̂� d
� �

þ op 1ð Þ (3.19)

On the other hand, it is not difficult to show that:

n�1
Xn

t¼1

�̂
0

tV̂
�1

t�1�̂t �m
� �2

¼ n�1
Xn

t¼1

�
0

tV
�1
t�1�t �m

� �2 þ opð1Þ

CHOR-YIU SIN134



Apply an ergodic theorem to fð�tV�1
t�1�t �mÞ2g: By the arguments in Ling

and Li (1997, pp. 450–451),

n�1
Xn

t¼1

�̂
0

tV̂
�1

t�1�̂t �m
� �2

¼ E �
0

tV
�1
t�1�t �m

� �2h i
þ op 1ð Þ ¼ cmþ op 1ð Þ

(3.20)

where c ¼ E½Z4it� � 1:
The following lemma resembles Lemma 3.1 of Ling and Li (1997), which

proof is straightforward and is omitted.

Lemma 3.1. For any constant vector Z ¼ ðZ1;Z2; . . . ;ZLÞ0

Z0P ¼ n�1=2
Xn

t¼Lþ1

xt þ op 1ð Þ (3.21)

where xt ¼
XL

l¼1

Zl �0tV
�1
t�1�t �m

� �
�0t�lV

�1
t�1�l�t�l �m

� �

and Ex2t ¼ cmð Þ2Z0Zo1:& ð3:22Þ

Lemma 3.2. E½rdltxt� ¼ cX 0Z=2; xt is given in (3.22).

Proof. From (2.6) above and in view of the fact that �t ¼ Dt�1G
1=2Zt;

rdltxt ¼ � 1
2
rd1ht�1 i� w G1=2ZtZ

0
tG

�1=2
� �� �

�H t�1

� �0
;

h

� ~n G�1 � G�1=2ZtZ
0
tG

�1=2
� �� �0i

XL

l¼1

Zl Z0tZt �m
� �

Z0t�lZt�l �m
� �

" #

Firstly, we note that E½ðZ0tZt �mÞjF t�1� ¼ 0: Thus, as far as expecta-

tion is concerned, we can ignore the term i in ði� wðG1=2ZtZ
0
tG

�1=2ÞÞ and
the term G�1 in ðG�1 � G�1=2ZtZ

0
tG

�1=2Þ: Secondly, by Assumption 2.6,
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for iaj;

E ZitZjt Z0tZt �m
� �

jF t�1

h i

¼ E ZitZjt Z0tZt �m
� �h i

¼ E Z3itZjt

h i
þ E ZitZ

3
jt

h i
þ E ZitZjt

Xm

k¼1;kai;kaj

Z2kt

" #

�mE ZitZjt

h i

¼ E Z3it
� �

E Zjt

h i
þ E Zit

� �
E Z3jt

h i
þ E Zit

� �
E Zjt

h i Xm

k¼1;kai;kaj

E Z2kt
� �

�mE Zit
� �

E Zjt

h i

¼ 0

Consequently, following the lines around (3.8) of Ling and Li (1997),

we are able to show that:

E½ZtZ0tðZ0tZt �mÞjF t�1� ¼ cIm

Therefore, as E �0t�lV
�1
t�1�l�t�l �m

� �
¼ 0;

E rdltxt½ � ¼ E 1
2
rd1ht�1 wðcG1=2G�1=2

� �� �
�H t�1Þ0; ~n cG�1=2G�1=2

� �� �0h in

XL

l¼1

Zl �0t�lV
�1
t�1�l�t�l �m

� �
" #)

¼ c

2

XL

l¼1

ZlE �0t�lV
�1
t�1�l�t�l �m

� �
rd1ht�1H t�1

� �0
; 01xmðm�1Þ=2

� �� �

¼ c

2

XL

l¼1

ZlX
0
l

¼ c

2
X 0Z &

Lemma 3.3. The asymptotic joint distribution of P and
ffiffiffi
n

p
ðd̂� dÞ is

normal with mean zero and covariance:

ðcmÞ2IL cXO�1
d =2

cO�1
d X 0=2 O�1

d On

dO
�1
d

 !

&

Proof. Given (2.5), Lemma 3.1 and Lemma 3.2, the proof is exactly the

same as that of Lemma 3.3 in Ling and Li (1997). &
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The asymptotic distribution of R̂ defined around (2.10) is summarized in

the following theorem.

Theorem 3.1. Define O � IL � X ðcO�1
d � O�1

d On

dO
�1
d ÞX 0=ðcmÞ2:

P̂!LNð0; ðcmÞ2OÞ

R̂!LNð0;OÞ &

Proof. This follows from (3.19), (3.20) and Lemma 3.3. &

The asymptotic distribution of R̂ in Theorem 3.1 is exactly the same as

that in Theorem of Ling and Li (1997). On the one hand, we show that their

general distribution applies to the case that the conditional mean is an ECM.

On the other hand, we work out the specific distribution when the

heteroskedasticity is the constant-correlation multivariate GARCH first

suggested by Bollerslev (1990). Under the null of no multivariate GARCH,

which is the usual null in practice, as rd1ht�1H t�1 ¼ 0 (see (3.15)), O ¼ IL
and the computation is much simplified. This is the case considered in the

balance of the paper.

4. MONTE CARLO EXPERIMENTS

This section examines the performance of the portmanteau test statistic R̂ in

finite samples through Monte Carlo experiments. Throughout, we consider

a bivariate series Y t; which first-difference, similar to Section 2, is denoted as

W t:
The benchmark DGP (data generation process) is an ECM with

homoskedasticity, denoted as ECM-HOMO. More precisely, the ECM-

HOMO series is generated as:

W 1t

W 2t

 !

¼
�0:4

0:12

	 

1;�2:5ð Þ

Y 1t�1

Y 2t�1

 !

þ
�1t

�2t

 !

(4.1)

where

�1t

�2t

 !

	 i:i:d: N 0;Vnð Þ; Vn ¼
25:0 5:4

5:4 9:0

	 

(4.2)

For comparison with the usual stationary case, we also consider a

stationary Y t with homoskedasticity, denoted as STAT-HOMO, which is
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generated as:

W 1t

W 2t

 !

¼
�0:7 0:3

0:3 �0:7

	 

Y 1t�1

Y 2t�1

 !

þ
�1t

�2t

 !

(4.3)

where ð�1t; �2tÞ0 is distributed as in (4.2).

To investigate the power of the portmanteau test, we consider an ECM

with heteroskedasticity, denoted as ECM-HETE, the mean of ECM-HETE

is represented by (4.1) but �t ¼ Dt�1G
1=2Zt (see Section 1), where Zt 	

i:i:d: Nð0; I2Þ; Dt�1 ¼ diagð
ffiffiffiffiffiffiffiffiffiffi
h1t�1

p
;
ffiffiffiffiffiffiffiffiffiffi
h2t�1

p
Þ;

G ¼
1 0:36

0:36 1

	 

(4.4)

h1t ¼ 2:5þ 0:05�21t�1 þ 0:85h1t�1 (4.5)

h2t ¼ 0:9þ 0:05�22t�1 þ 0:85h2t�1 (4.6)

Similarly, we consider a stationary series with heteroskedasticity, denoted

as STAT-HETE, the mean of which is represented by (4.3) but similar to

ECM-HETE, the corresponding et is generated by (4.4)–(4.6).

In order to investigate the importance of normality, we consider two other

models ECM-HOMO-t, ECM-HOMO-w2, which are essentially generated

as ECM-HOMO, but et is generated from a t5 distribution and from a de-

meaned w21 distribution, respectively.

Similarly, we also consider the models ECM-HETE-t, ECM-HETE-w2,

which are essentially generated as ECM-HETE, but Zt is generated from a t5
distribution, and from a de-meaned w21 distribution, respectively.

For each of the 8 DGPs, we generate 50,000 replications of data with the

sample size n ¼ 200, 400, 800. The residuals from the estimations using

Johansen’s (1996) method are used to compute the R̂ test statistic, where

full-rank estimation (r ¼ 2), reduced-rank estimation (r ¼ 1) and zero-rank

estimation (r ¼ 0) are considered. The number of lags in each test statistic,

L, ranges from 1 to 6. The rejection percentage, based on the 5%

significance level, are reported in Tables 1 to 8.

Comparing Table 1 with Table 2, one can see that under the null of

homoskedasticity and the correct specification of rank, the portmanteau test

renders an appropriate size, though a bit under-rejects. Somewhat

surprisingly, the under-rejection is more or less the same, no matter the

DGP is an ECM, or is a stationary model, despite the fact that arguments

for asymptotic approximation to normality are different. Both Tables 1, 2
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show that our portmanteau test has power against insufficient rank. Thus,

to be conservative, one may want to estimate a full-rank model before

testing for multivariate GARCH.

Next we consider Table 3 and Table 4. For r ¼ 2, the power when the

DGP is ECM-HETE is close to that when the DGP is STAT-HETE.

Surprisingly, when r ¼ 1, the power for ECM-HETE is slightly higher than

that for STAT-HETE, although the latter is supposed to have power against

insufficient rank. Further, it should be noted that there is not much

variation in power across different L.

Table 1. Rejection Percentage of an ECM-HOMO.

r n L

1 2 3 4 5 6

2 200 4.5960 4.3220 4.2820 4.2920 4.4640 4.4840

400 4.6980 4.6320 4.5900 4.6580 4.7220 4.6620

800 4.7880 4.8640 4.8960 4.9240 4.8860 4.7900

1 200 4.5600 4.2840 4.2920 4.2680 4.4800 4.4480

400 4.6960 4.6420 4.6360 4.6640 4.7080 4.6840

800 4.7740 4.8740 4.9100 4.8960 4.8980 4.8200

0 200 20.4320 16.1740 14.0320 12.7440 11.9060 11.1960

400 37.0600 29.7980 25.5120 22.9900 21.1160 19.5520

800 63.9720 54.6100 48.3660 44.1360 40.9620 38.1900

Number of replications ¼ 50,000

Table 2. Rejection Percentage of a STAT-HOMO.

r n L

1 2 3 4 5 6

2 200 4.5500 4.3600 4.3660 4.3880 4.4660 4.4680

400 4.6920 4.5780 4.5760 4.6680 4.6880 4.7360

800 4.7600 4.7960 4.8800 4.8640 4.9120 4.7960

1 200 5.1280 5.2140 5.0700 5.0980 4.9780 4.9280

400 6.0480 6.0520 5.8380 5.6460 5.4960 5.3980

800 7.5600 7.3640 6.9080 6.8620 6.5520 6.3740

0 200 55.0140 45.0960 39.4660 35.7420 32.8580 30.5800

400 85.5140 78.1440 72.6000 68.0940 64.4000 61.2220

800 99.0780 97.8200 96.7260 95.2820 94.0180 92.7040

Number of replications ¼ 50,000.
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Next we consider Tables 5 and 6. Consider r ¼ 2 and r ¼ 1 first. In spite

that t5 is a symmetric distribution while the de-meaned w21 is not, the slight

over-rejection is more or less the same. In fact, when n ¼ 200, the rejection

percentage for ECM-HOMO-t is higher, though it is not the case when

n ¼ 800. When r ¼ 0 with insufficient rank, our test has higher power

against ECM-HOMO-w2.

Lastly, we consider Tables 7 and 8. We first consider r ¼ 2 and r ¼ 1.

Unsurprisingly, there is not much variation in power across different r.

Moreover, our test has higher power against ECM-HETE-t, the case with

Table 3. Rejection Percentage of an ECM-HETE.

r n L

1 2 3 4 5 6

2 200 11.5460 14.1820 15.4020 16.2580 16.6720 16.7020

400 20.6720 25.9420 28.7920 30.5160 31.2880 31.9160

800 36.6200 46.8640 52.3960 55.4160 56.7440 57.7340

1 200 13.8620 16.4380 17.3380 17.9740 18.2500 18.1480

400 25.5360 31.1600 33.6040 34.6480 34.8480 34.9540

800 46.5840 56.4080 60.7780 62.2380 63.0320 63.2560

0 200 38.6980 35.9380 34.4340 33.1380 32.0920 31.3960

400 66.9780 64.5820 62.9160 61.5300 60.0580 58.7940

800 92.3920 91.7440 90.8700 90.1020 89.4520 88.6960

Number of replications ¼ 50,000

Table 4. Rejection Percentage of a STAT-HETE.

r n L

1 2 3 4 5 6

2 200 10.6560 13.4260 14.8160 15.6180 16.1760 16.2580

400 19.5860 25.1500 27.9820 29.7360 30.6420 31.0660

800 35.7680 46.0260 51.5840 54.6000 56.0720 56.9620

1 200 11.5800 14.3740 15.6420 16.5060 16.9460 16.9400

400 20.7460 26.0940 28.8800 30.6340 31.4580 31.9940

800 36.7160 47.0180 52.4280 55.5200 56.8660 57.7060

0 200 66.9580 59.6700 55.7380 52.8500 50.4040 48.5240

400 93.3040 90.1220 87.8480 85.8320 84.1380 82.3780

800 99.8360 99.7100 99.5620 99.3980 99.2260 99.0440

Number of replications ¼ 50,000.
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both heteroskedasticity and heavy tail. When r ¼ 0 with insufficient rank,

our test has higher power against ECM-HOMO-w2.

5. EMPIRICAL EXAMPLES

In this section, we apply our portmanteau test to three data sets, which are

often estimated with an ECM, without the consideration of multivariate

GARCH. The first data set is the yearly Nelson–Plosser data (see Nelson &

Plosser, 1982). The second data set is the quarterly extended Nelson–Plosser

Table 5. Rejection Percentage of an ECM-HOMO-t.

r n L

1 2 3 4 5 6

2 200 5.2940 6.5980 7.0880 7.5200 7.7900 7.9920

400 4.5020 5.5460 6.0500 6.4940 6.8780 7.0140

800 4.2740 5.2140 5.6580 6.1700 6.3940 6.5100

1 200 5.2840 6.6080 7.1240 7.5700 7.8420 7.9760

400 4.5040 5.5800 6.0740 6.4680 6.9140 7.0340

800 4.2720 5.2100 5.6600 6.1820 6.4140 6.5540

0 200 65.8920 58.1160 52.5940 48.6480 45.3660 42.8420

400 86.4420 80.2620 75.1720 71.2960 68.1200 65.2180

800 98.2520 96.5080 94.6800 93.0180 91.4140 89.9280

Number of replications ¼ 50,000.

Table 6. Rejection Percentage of an ECM-HOMO-w2.

r n L

1 2 3 4 5 6

2 200 3.6900 5.1420 5.9180 6.4180 6.8640 7.0440

400 3.5380 4.8520 5.8100 6.4120 6.9860 7.2580

800 3.7420 4.9060 5.8820 6.4860 6.9680 7.3940

1 200 3.6200 5.0700 5.8800 6.3300 6.7980 6.9840

400 3.5060 4.8240 5.8120 6.3720 6.9940 7.2880

800 3.7180 4.9180 5.9160 6.5020 6.9580 7.3920

0 200 78.3560 68.5380 62.0940 57.2480 53.4800 50.3060

400 96.6360 93.0680 89.6980 86.5640 83.5600 81.0420

800 99.9320 99.7260 99.4640 99.0400 98.7300 98.2700

Number of replications ¼ 50,000.
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data (see Schotman & van Dijk, 1991). The third data set is the 30-min intra-

daily HSI (Hang Seng Index), HSIF (HSI Futures) and TraHK (Tracker

Fund of Hong Kong), an ETF (exchange traded fund) for HSI, which are

provided by the Hong Kong Stock Exchange and Clearing Limited. For each

model, the residuals from the rank estimation using Johansen’s (1996)

method are used to compute the R̂ test statistic, where full-rank estimation

(r ¼ m, where m is the number of variables in the model), reduced-rank

estimation (rom,r ¼ m�1, y ,1) and zero-rank estimation (r ¼ 0) are

considered, all of which with VAR order ranging from 1 to 6. The number

of lags in each test statistic, L, also ranges from 1 to 6.

Table 7. Rejection Percentage of an ECM-HETE-t.

r n L

1 2 3 4 5 6

2 200 26.3960 34.9780 39.9920 42.8700 44.4020 45.3320

400 42.2580 54.7840 61.6880 65.3880 67.5860 68.6660

800 65.6700 79.6660 85.5620 88.4300 89.9900 90.9080

1 200 26.5300 35.1460 40.1600 43.0800 44.6240 45.5260

400 42.2700 54.8880 61.7880 65.5860 67.6260 68.7520

800 65.6880 79.6760 85.5240 88.4580 90.0160 90.9460

0 200 84.8420 84.7160 83.8580 83.1000 82.2040 81.3340

400 97.6380 97.8660 97.5560 97.3420 97.1460 96.8680

800 99.9100 99.9440 99.9640 99.9620 99.9500 99.9380

Number of replications ¼ 50,000.

Table 8. Rejection Percentage of an ECM-HETE-w2.

r n L

1 2 3 4 5 6

2 200 15.8220 21.8860 25.7100 28.1700 29.9800 30.8400

400 29.0340 40.5600 47.4020 51.6440 54.8200 56.5240

800 51.7240 67.8700 76.0020 80.5460 83.1420 84.7520

1 200 15.9940 22.1140 25.8900 28.3520 30.1300 30.9900

400 29.3840 41.0320 47.8700 52.1520 55.2120 56.9980

800 52.1300 68.2660 76.4260 80.9080 83.5760 85.0640

0 200 94.8800 92.9540 90.8140 88.9260 87.4240 86.2360

400 99.7920 99.7460 99.6100 99.5020 99.3780 99.2080

800 99.9980 99.9960 99.9980 100.0000 100.0000 99.9980

Number of replications ¼ 50,000.
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For the yearly Nelson–Plosser data or the quarterly extended Nelson–

Plosser data, we consider the following models:

Model (1a)/(2a): Y ¼ (Unemployment Rate, CPI, Nominal Wage), all are

in logs.

Model (1b)/(2b): Y ¼ (Money Stock, GNP Deflator, Real GNP, Interest

Rate), all except Interest Rate are in logs.

Model (1c)/(2c): Y ¼ (Stock Price, Interest Rate), Stock Price is in logs.

Model (1d)/(2d): Y ¼ (Industrial Production, Employment), all are in logs.

The yearly data go from 1909 to 1970, which amounts to 62 observations,

while the quarterly data go from 1969Q1 to 1988Q4, which amounts to 80

observations.

For the intra-daily HSI data, we consider the following models:

Model (3a): Y ¼ (HSI, HSIF), 9/24/99–11/11/99, before the listing of

TRaHK.

Model (3b): Y ¼ (HSI, HSIF), 11/12/99–12/29/99, after the listing of

TRaHK.

Model (3c): Y ¼ (HSI, HSIF, TraHK), 11/12/99–12/29/99, after the listing

of TRaHK.

There are altogether 263 30-min data points before the listing and 261 30-

min data points after the listing.

Tables 9–11 depict the portmanteau test statistics for different models.

For each model, we report the statistic from full-rank estimation and the

Table 9. Test Statistics (Nelson and Plosser Yearly Data).

r Order L

1 2 3 4 5 6

Model (1a) 3 6 12.8599 18.1148 24.0637 24.6242 24.9089 25.1327

3 6 12.8599 18.1148 24.0637 24.6242 24.9089 25.1327

Model (1b) 4 6 8.1409 9.7717 9.9800 10.5655 12.4148 18.1311

4 2 10.6578 14.1278 15.0724 16.0449 21.7625 27.9040

Model (1c) 2 6 2.9099 3.2514 3.2929 3.3235 3.3635 4.0028

2 1 5.3201 6.4464 6.4745 6.7619 6.8520 6.8754

Model (1d) 2 6 12.8884 18.3267 18.3604 19.0747 20.9822 26.0623

2 1 12.4447 18.2687 18.3154 18.3177 19.7787 21.0559

Number of observations ¼ 62.
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maximum VAR-order of 6, as well as the combination of cointegrating rand

and VAR-order that renders the lowest Akaike Information Criterion (AIC)

value. The former minimizes the possibility of under-parameterization that

will affect the size under the null of homoskedasticity, while the later

minimizes the possibility of over-parameterization that will affect the power

under the alternative of heteroskedasticity. All in all, our empirical results

throw doubt on the efficiency of usual estimation of the ECM parameters,

and more importantly, on the validity of the significance tests of an ECM.

From Tables 9–11, first we note that AIC often chooses r ¼ m, that is the

data are stationary. We should not take this seriously as, on the one hand this

is not a formal test for stationarity or for cointegration. On the other, the AICs

for some of reduced-rank models are close to minimum. Finally, one may

conclude that there is multivariate GARCH in all the data, except somewhat

surprisingly, possibly the quarterly Stock Price (in logs) and Interest Rate.

Table 10. Test Statistics (Extended Nelson and Plosser Quarterly Data).

r Order L

1 2 3 4 5 6

Model (2a) 3 6 22.8602 38.6512 61.7940 73.9797 79.7754 84.2333

3 2 29.8081 51.6621 86.0356 108.2400 126.5856 141.4628

Model (2b) 4 6 9.1575 12.5316 13.4587 14.0846 16.2893 22.9415

1 2 10.2212 12.7757 15.9917 15.9941 17.5293 20.6749

Model (2c) 2 6 9.9412 10.0168 11.6834 11.6905 11.6917 12.1481

2 1 8.9845 9.2218 9.9830 9.9831 11.2145 14.5033

Model (2d) 2 6 7.9039 10.7708 10.8277 12.6325 13.9533 13.9535

2 1 10.2604 13.9844 13.9846 14.3856 14.4552 14.4996

Number of observations ¼ 80.

Table 11. Test statistics (HSI and Its Derivatives, Intradaily Data).

r Order L

1 2 3 4 5 6

Model (3a) 2 6 28.4225 43.7126 60.1957 70.6273 78.2277 89.7487

2 3 27.3509 42.1721 58.7319 67.8527 73.8960 84.3190

Model (3b) 2 6 30.5071 66.6060 80.3720 95.5618 106.4083 115.6762

2 3 24.8093 61.2617 72.5741 84.4421 90.5341 98.3391

Model (3c) 3 6 18.7755 43.8952 51.5977 58.9116 62.4958 64.9495

3 6 18.7755 43.8952 51.5977 58.9116 62.4958 64.9495
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6. CONCLUSIONS

Macroeconomic or financial data are often modelled with cointegration and

GARCH. Noticeable examples include those studies of price discovery, in

which stock prices of the same underlying asset are cointegrated and they

exhibit multivariate GARCH. It was not until recently that Li, et al.’s (2001)

Biometrika paper formally derived the asymptotic distribution of the

estimators for the ECM parameters, in the presence of conditional

heteroskedasticity. As far as ECM parameters are concerned, the efficiency

gain may be huge even when the deflated error is symmetrically distributed.

Taking into consideration the different rates of convergence, this paper first

shows that the standard distribution applies to a portmanteau test, even

when the conditional mean is an ECM. Assuming the usual null of no

multivariate GARCH, the performance of this test in finite samples is

examined through Monte Carlo experiments. We then apply the test for

GARCH to the yearly or quarterly (extended) Nelson–Plosser data,

embedded with some prototype multivariate models. We also apply the

test to the intra-daily HSI and its derivatives, with the spread as the ECT.

The empirical results throw doubt on the efficiency of usual estimation of

the ECM parameters, and more importantly, on the validity of the

significance tests of an ECM.
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APPENDIX: LEMMAS

Given Assumptions 2.1–2.5, by Theorem 3.1 of Sin and Ling (2004),
ffiffiffi
n

p
ðd̂�

dÞ ¼ Opð1Þ: Denote �̂t ¼ �tðĵÞ and �t ¼ �tðjÞ: As max1
t
njjn�1=2Z1t�1jj ¼
Opð1Þ;
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�̂t ¼ �t � ½nðĈ � CÞP1�
1

n
Z1t�1

� �
�

ffiffiffi
n

p
ðĈ � CÞP2

h i 1ffiffiffi
n

p Z2t�1

� �

�
Xs�1

j¼1

ffiffiffi
n

p
ðF̂n

j � Fn

j Þ
h i 1ffiffiffi

n
p W t�j

� �

¼ �t �Op

1ffiffiffi
n

p
	 


�Op

1ffiffiffi
n

p
	 


U t�1 ðA:1Þ

where we recall that U t�1 ¼ ½ðBY t�1Þ0;W 0
t�1; . . . ;W

0
t�sþ1�0: All the Opð�Þ

and opð�Þ; here and henceforth, hold uniformly in t and uniformly in ðĵ; d̂Þ:
Let B stand for the series f�s ¼ �sðjÞgns¼�1 and B̂ stand for the series f�̂s ¼
�sðĵÞgns¼1: Implicitly define ĝik such that:

ð1�
Xp

j¼1

b̂ijL
jÞ�1 ¼

X1

k¼0

ĝikL
k (A.2)

gik is defined similarly. Rewrite:

hit�1ðB̂; d̂1Þ ¼
Pt�1

k¼0

ĝik âi0 þ
Pq

j¼1

âij �̂
2
it�k�j

 !" #

hit�1ðB; d̂1Þ ¼
Pt�1

k¼0

ĝik âi0 þ
Pq

j¼1

âij�
2
it�k�j

 !" #

h1it�1ðB; d̂1Þ ¼
P1

k¼0

ĝik âi0 þ
Pq

j¼1

âij�
2
it�k�j

 !" #

h1it�1ðB; d1Þ ¼
P1

k¼0

gik ai0 þ
Pq

j¼1

aij�
2
it�k�j

 !" #

(A.3)

where �̂it is the ith element of �̂t; and �it is the ith element of �t:
In the rest of this appendix, when no ambiguity arises, denote ĥit�1 ¼

hit�1ðB̂; d̂1Þ and hit�1 ¼ h1it�1ðB; d1Þ: Similarly, denote D̂t�1 ¼ Dt�1ðB̂; d̂1Þ;
Dt�1 ¼ D1

t�1ðB; d1Þ; V̂ t�1 ¼ V t�1ðB̂; d̂1Þ and V t�1 ¼ V1
t�1ðB; d1Þ:

Lemma A.1. ĥt�1 � ht�1 ¼ r0
d1
ht�1ðd̂1 � d1Þ þOpðrtÞ þ A1t�1 þ opðn�1=2Þ

¼ Opðn�1=2Þ þOpðrtÞ; where E½ð�0t�lV
�1
t�1�t�l �mÞH 0

t�1A1t�1� ¼ 0; l ¼ 0,1,

y ,L.&
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Proof. For an arbitrary i, define

hit�1ðB̂; d̂1Þ � h1it�1ðB; d1Þ ¼ ðhit�1ðB̂; d̂1Þ � hit�1ðB; d̂1ÞÞ
þ ðh1it�1ðB; d1Þ � hit�1ðB; d̂1ÞÞ
þ ðh1it�1ðB; d1Þ � h1it�1ðB; d1ÞÞ

� Ai1t�1 þ Ai2t�1 þ Ai3t�1

Ai1t�1 ¼ hit�1ðB̂; d̂1Þ � hit�1ðB; d̂1Þ ¼
Xt�1

k¼0

ĝik âi0 þ
Xq

j¼1

âij �̂2it�k�j � �2it�k�j

� �" #

(A.4)

From (A.1) above,

�̂2it � �2it ¼ �itOp

1ffiffiffi
n

p
	 


þ �itOp

1ffiffiffi
n

p
	 


U t�1

þOp

1

n

	 

þOp

1

n

	 

U t�1Opð1Þ þOp

1

n

	 

U t�1U

0
t�1Opð1Þ ðA:5Þ

Put (A.5) into (A.4), correspondingly the first term in Ai1t�1 is

equal to

Op

1ffiffiffi
n

p
	 
Xt�1

k¼0

ĝik½âi0 þ ð
Xq

j¼1

âij�it�k�j� ¼ Op

1ffiffiffi
n

p
	 


(A.6)

as St�1
k¼0 ĝik½âi0 þ ðSq

j¼1 âijEj�it�k�jjÞ�o1: Similarly, we can show that all

other terms in Ai1t�1 are Opð 1ffiffi
n

p Þ and thus so is Ai1t�1. Moreover, due to the

symmetric distribution of Zt and the functional form of ht�1, for l ¼ 0,1,

y ,L,

E½ð�0t�lV
�1
t�1�t�l �mÞH 0

t�1Ai1t�1� ¼ 01�m (A.7)

Next we turn to Ai2t�1:

Ai2t�1 ¼ h1it�1ðB; d1Þ � hit�1ðB; d̂1Þ

¼
X1

l¼1

ĝilþðt�1Þ½âi0 þ ð
Xq

j¼1

âij�
2
i1�l�jÞ�

¼ OpðrtÞ ðA:8Þ
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Finally, we turn to Ai3t�1: Denote ĥ
1
it�1 ¼ h1it�1ðB; d̂1Þ:

Ai3t�1 ¼ ĥ
1
it�1 � hit�1

¼ ðâi0 � ai0Þ þ
Xq

j¼1

ðâij � aijÞ�2it�j

þ
Xp

k¼1

ðb̂ik � bikÞhit�1�k þ
Xp

k¼1

b̂ikðĥ
1
it�1�k � hit�1�kÞ

¼ Opð 1ffiffi
n

p Þrt�1 þ
Xp

k¼1

b̂ik ð̂h1it�1�k � hit�1�kÞ

where rt�1 ¼ 1þ S
q
j¼1 �

2
it�j þ S

p
k¼1 hit�1�k: Therefore, as

S1
k¼1 ĝikEðrt�1�kÞo1;

Ai3t�1 ¼ Opð
1ffiffiffi
n

p Þ
X1

k¼1

ĝikrt�1�k ¼ Opð
1ffiffiffi
n

p Þ (A.9)

On the other hand, as Ai3t�1�k ¼ ðĥ1it�1�k � hit�1�kÞ ¼ Opðn�1=2Þ;

Xp

k¼1

b̂ikðĥ
1
it�1�k � hit�1�kÞ ¼

Xp

k¼1

bikðĥ
1
it�1�k � hit�1�kÞ

þ
Xp

k¼1

ðb̂ik � bikÞðĥ
1
it�1�k � hit�1�kÞ

¼
Xp
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bikðĥ
1
it�1�k � hit�1�kÞ þOpð1=nÞ

As a result,

Ai3t�1 ¼ ðâi0 � ai0Þ þ
Xq

j¼1

ðâij � aijÞ�2it�j þ
Xp

k¼1

ðb̂ik � bikÞhit�1�k

þ
Xp

k¼1

bikai3t�1�k þ opð
1ffiffiffi
n

p Þ ðA:10Þ

Let~�t ¼ ð�21t; . . . ; �2mtÞ
0 and gl ¼ ðg1l ; . . . ; gmlÞ0; where gil is as defined in

(A.2). Tedious algebra shows that:

rd1ht�1 � ðr0
a0
ht�1;r0

a1
ht�1; . . . ;r0

aq
ht�1;r0

b1
ht�1; . . . ;r0

bp
ht�1Þ0
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where

ra0ht�1 ¼ Im þ
Xp

l¼1

ðra0ht�1�lÞdiagðblÞ ¼
Xt�1

l¼1

diagðglÞ;

rajht�1 ¼ diagð~�t�jÞ þ
Xp

l¼1

ðrajht�1�lÞdiagðblÞ

¼
Xt�j�1

l¼1

diagðgl �~�t�l�jÞ; j ¼ 1; . . . ; q; and

rbkht�1 ¼ diagðht�1�kÞ þ
Xp

l¼1

ðrbkht�1�lÞdiagðblÞ

¼
Xt�k�1

l¼1

diagðgl � ht�1�l�kÞ; k ¼ 1; . . . ; p. ðA:11Þ

That is, by (A.10) and (A.11),

Ai3t�1 ¼ r0

d1ht�1ðd̂1 � d1Þ þOpðn�1=2Þ (A.12)

All in all, define A1t�1 � ðA11t�1;A21t�1; . . . ;Am1t�1Þ0: By (A.4), (A.6),

(A.7), (A.8), and (A.12), we complete the proof.&

Lemma A.2. D̂t�1 �Dt�1 ¼ Opðn�1=2Þ þOpðrtÞ:&

Proof. It suffices to show that for an arbitrary i,

ffiffiffiffiffiffiffiffiffi
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hit�1
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ĥit�1

q

0

B@

1

CA
1

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hit�1

.
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where the last equality follows by Lemma A.1. &
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Lemma A.3. V̂ t�1 � V t�1 ¼ Opðn�1=2Þ þOpðrtÞ:&

Proof.

V̂ t�1 � V t�1 ¼ D̂t�1ĜD̂t�1 �Dt�1GDt�1

¼ ðD̂t�1GD̂t�1 �Dt�1GDt�1Þ þ ðD̂t�1ĜD̂t�1 � D̂t�1GD̂t�1Þ
¼ Dt�1GðD̂t�1 �Dt�1Þ þ ðD̂t�1 �Dt�1ÞGDt�1

þ ðD̂t�1 �Dt�1ÞGðD̂t�1 �Dt�1Þ
þDt�1ðĜ� GÞDt�1 þ ðD̂t�1 �Dt�1ÞðĜ� GÞDt�1

þDt�1ðĜ� GÞðD̂t�1 �Dt�1Þ
þ ðD̂t�1 �Dt�1ÞðĜ� GÞðD̂t�1 �Dt�1Þ

¼ Opðn�1=2Þ þOpðrtÞ
by Lemma A.2. &
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ABSTRACT

Despite the difference in information sets, we are able to compare the

asymptotic distribution of volatility estimators involving data sampled at

different frequencies. To do so, we propose extensions of the continuous

record asymptotic analysis for rolling sample variance estimators devel-

oped by Foster and Nelson (1996, Econometrica, 64, 139–174). We focus

on traditional historical volatility filters involving monthly, daily and in-

tradaily observations. Theoretical results are complemented with Monte

Carlo simulations in order to assess the validity of the asymptotics for

sample sizes and filters encountered in empirical studies.
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INTRODUCTION

There are many strategies for estimating time-varying conditional variances

and covariances of financial market data. Some involve parametric models,

the most popular belong either to the ARCH or the SV class of models,

while others are purely data-driven. We focus exclusively on the latter type

of estimation strategies which typically involve a rolling or block sample

approach.

Data-driven volatility estimates can be distinguished by (1) the sampling

frequency, (2) the data window length, and (3) the weighting scheme. There

are indeed various schemes, some consist of slicing the returns data into

non-overlapping blocks (of equal size) while others rely on a moving win-

dow. The block-sampling approach estimates a time series process of con-

ditional variances or covariances using exclusively data from a single block.

This approach has its roots in various academic papers, such as Merton

(1980); Poterba and Summers (1986); French, Schwert, and Stambaugh

(1987); Schwert (1989, 1990a,b) and Schwert and Seguin (1990). Another

commonly used strategy involves sliding spans of data resulting in rolling

regressions. Early contributions include Fama and MacBeth (1973); Officer

(1973) and Merton (1980). Asset-pricing applications often involve sampling

at a monthly frequency with rolling windows between 5 and 10 years.

Recent examples include Campbell, Lettau, Malkiel, and Xu (2001); Chan,

Karceski, and Lakonishok (1999) and Fleming, Kirby, and Ostdiek (2001)

among others. Practitioners compute daily volatilities using the same

schemes applied to a daily and monthly sampling frequency, a prominent

example is the RiskMetrics volatility measures.

There are no clear rules regarding the choice of data sampling frequency

nor the number of lags to include. Some authors use monthly data and take a

60-month filter, following Fama and MacBeth (1973). Others have used daily

data and take monthly sums and cross products of (squared) returns, fol-

lowing French et al. (1987). Some authors report estimators involving dif-

ferent data frequencies to check for robustness or emphasize different

features. For instance, Schwert (1990b) considers volatility estimates based

on yearly averages of monthly squared returns, daily returns squared and

averaged across a month and finally 15-min squared returns across a trading

day. Likewise, Campbell et al. (2001) consider a 12-month span rolling sam-

ple estimator of volatility, daily averages across a month as well as a quarter.

How do various data-driven volatility estimation schemes involving

different sampling frequencies and window lengths compare? The main

purpose of this paper is to provide some answers to this question. The
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theoretical work of Foster and Nelson (1996) formally establishes that with

sufficiently high-frequency data, one can estimate instantaneous volatility,

denoted by st and sometimes also called spot volatility, using rolling and

block sampling filters. They provide some powerful results about the esti-

mation of spot volatility and establish the efficiency of different weighting

schemes. They also show that for a large class of continuous path stochastic

volatility models, the optimal weighting scheme is exponentially declining

and provide formulas for the optimal lag (lead) length of various estimation

procedures.

We propose extensions of the continuous record asymptotic analysis of

Foster and Nelson for data-driven variance estimators. In particular, despite

the difference in information sets we are able to compare the asymptotic

distribution of estimators involving data sampled at different frequencies.

A priori it may seem impossible to compare rolling sample estimators in-

volving data sampled at different frequencies. However, Foster and Nelson

impose certain regularity conditions, which enable us to maintain the same

asymptotic distributional properties of the mean squared errors of volatility

filters involving data sampled at different frequencies. This insight is the key

to the results presented in this paper.

It obviously takes Monte Carlo simulations to back up the accuracy of

any asymptotic distribution theory in sample sizes encountered in practice.

For our comparison of sampling frequencies, this wisdom certainly applies

even more so than is usually the case. The continuous record asymptotic

arguments provide only an approximation to what we encounter in practice.

To validate our asymptotic reasoning, we report an extensive Monte Carlo

study.

The paper is organized as follows: In the first section we briefly review the

relevant theoretical results from Foster and Nelson, which support the

comparison of rolling sample estimators with various sampling frequencies.

The second section provides examples of asymptotically equivalent filters.

The simulation results are described in the third section. The final section

concludes the paper.

1. THEORETICAL COMPARISON OF ESTIMATORS

WITH DIFFERENT SAMPLING FREQUENCIES

We consider data-driven estimators for volatility which figure prominently

in many asset-pricing applications. For convenience we assume a continuous
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time process and model the instantaneous returns rt � dpt; where pt is the

log price, as a stochastic volatility process.1 In particular, let

dpt ¼ m pt;st
� �

dtþ stdW 1t

ds2t ¼ z pt; st
� �

dtþ d pt;st
� �

dW 2t (1.1)

where W 1t and W 2t are standard Brownian motions (possibly correlated),

and the functions mð�; �Þ; zð�; �Þ are continuous, and dð�; �Þ strictly positive.

We propose extensions of the continuous record asymptotic analysis for

rolling sample variance estimators of Foster and Nelson (1996) which enable

us to compare the asymptotic distribution of estimators for st involving data

sampled at different frequencies. The powerful results in Foster and Nelson

are driven by a continuous record asymptotic theory, which assumes that a

fixed span of data is sampled at ever finer intervals. The basic intuition

driving the results is that normalized returns, rt=st; over short intervals

appear like approximately independent and identically distributed (i.i.d.)

with zero conditional mean and finite conditional variance and have regular

tail behavior which make the application of Central Limit Theorems

possible.

Foster and Nelson impose several regularity conditions for the diffusion

process appearing in (1.1). These can be considered standard assumptions,

and in order to avoid introducing new notation as well as repeating Foster

and Nelson, we outline the conditions and the implications which involve

the following: (i) The higher order conditional moments are bounded with

small changes over small invervals as h ! 0; which essentially allows us to

apply the central limit theorem locally. This corresponds to Assumption

A in Foster and Nelson. (ii) These conditional moments change slowly over

time, which implies these hyper-parameters are regular and with uniform

convergence, so that they can be estimated and that nondegenerate asymp-

totic distributions at the natural rate of convergence can be obtained. These

correspond to Assumptions B, C, E and F of Foster and Nelson. (iii) The

total number of lags and leads used in the rolling regression go to infinity at

rate hð�1/2Þ; though the time interval over which the weights are nonzero is

shrinking to 0 at rate hð�1/2Þ: Also it is required that the number of residuals

assigned nonzero weights be bounded for each h. This accommodates the

ARCH(p) process with p growing at rate hð�1/2Þ as h ! 0 and corresponds to

Assumption D in Foster and Nelson. It is important to note, however, that

the regularity conditions of the Foster and Nelson framework exclude

processes with jumps. The significance and role of certain of these assump-

tions which are critical in our analysis are further discussed below.
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We will adopt a notation slightly different from Foster and Nelson, but

similar to that used by Drost and Nijman (1993); Drost and Werker (1996)

and Andersen and Bollerslev (1998). Namely, let rðmÞ; t � pt � pt�1=m be the

discretely observed time series of continuously compounded returns with m

observations per day, per month or whichever benchmark applies. Hence-

forth, we will call m ¼ 1 the benchmark frequency, which in the context of

our paper will be either daily or monthly. Hence, the unit interval rð1Þ; t is
assumed to yield the daily or monthly return.2

The rðmÞ; t process is a discrete step function with the 1=m horizon returns

determining the step size. Therefore, when calculating monthly volatility

estimates, one can either rely on daily data, i.e. use rð22Þ; t with approximately

22 trading days per month, such as Merton (1980), French et al. (1987),

Schwert (1990a), among others, or else use sliding spans of squared monthly

returns rð1Þ; t such as in Officer (1973), Merton (1980), Schwert (1989),

among others. Similarly, to obtain daily volatility estimates, one can rely on

high-frequency financial data, e.g. 5 min data (with m ¼ 288 for FX data, as

for instance in Andersen and Bollerslev (1998) and Andersen, Bollerslev,

and Lange (1999) or m ¼ 78 for equity markets as in Chin, Chan, and

Karolyi (1991)).

In general, with ever finer sampling intervals, i.e. m ! 1; we approach

the continuously compounded returns, or equivalently r 1ð Þ; t � rt:
The process r mð Þ; t

� �

is adapted to the filtration r mð Þ; t
� �

; and conditional

expectations and variances will be denoted as E mð Þ; tð�Þ and Var mð Þ; tð�Þ;
respectively, whereas unconditional moments follow a similar notation,

E mð Þð�Þ and Var mð Þð�Þ: From (1.1) we obtain the discrete time dynamics:

r mð Þ; t ¼ m mð Þ; tm
�1 þM mð Þ; t �M mð Þ; t�1=m � m mð Þ; tm

�1 þ D mð ÞM mð Þ; t

which is the so-called Doob–Meyer decomposition of the 1=m horizon re-

turns into a predictable component m mð Þ; t and a local martingale difference

sequence. Consequently,

Var mð Þ; t r mð Þ; t
� �

� E D mð ÞM mð Þ; t � m mð Þ; t
� �2jF mð Þ; t

h i

¼ s2mð Þ; tm
�1

where s2ðmÞ; t measures the conditional variance per unit of time. Various

data-driven estimators for s2ðmÞ; t can generically be written as:

ŝ2mð Þ; t ¼
X

t

w t�tð Þ r mð Þ; t � m̂ mð Þ; t
� �2

(1.2)

where w t�tð Þ is a weighting scheme and m̂ mð Þ; t a (rolling sample) estimate

of the drift. To facilitate the discussion, we restrict our analysis to flat
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weighting schemes involving nLm
�1=2 lags and nRm

�1=2 leads. When nR ¼ 0;
the filter is one-sided and backward-looking, a case of most practical in-

terest. Note also that m ¼ 1 implies that nL is simply the number of days, or

months, of squared returns used to compute the conditional volatility (again

assuming nR ¼ 0).3

These schemes include the most commonly used volatility estimators

involving equally weighting observations throughout the day, across all

days of a month, or a sliding span of daily or monthly returns. The as-

ymptotic efficiency of ŝ2mð Þ; t only depends on the process characteristics once

the filter weights are fixed, in this particular case once nL and nR are de-

termined.4

Theorem 2 of Foster and Nelson establishes that m1=4 ŝ2mð Þ; t � s2t

� �

!
N 0;CðmÞ; t
� �

as m ! 1; where the continuous record asymptotic variance

for a flat weighting scheme equals

CF
mð Þ; t �

y mð Þ; t
nR þ nL

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y mð Þ; tL mð Þ;t
p

r mð Þ; t
nR � nL

nR þ nL
þ L mð Þ; t

n3R þ n3L

3ðnR þ nLÞ2
(1.3)

The superscript F in (1.3) refers to the flat weighting scheme. Besides the

window length parameters nL and nR, three other elements determine the

asymptotic efficiency of the filter ŝ2mð Þ; t They are L mð Þ; t; y mð Þ; t and r mð Þ; t;
each depending on the sampling frequency m and the characteristics of the

underlying process (1.1). The process L mð Þ; t represents the ‘‘variance of the

variance,’’ and therefore any increase of its value will increase CF
mð Þ; t and

deteriorate the asymptotic efficiency of filtering. The process y mð Þ; t repre-
sents the conditional fourth moment. When the data span increases, namely

when nR þ nL increases, then the first term on the right-hand side of

Eq. (1.3) decreases, as the usual asymptotics would predict. Note, however,

that the third term in the same equation increases with wider data spans, a

result driven by the fact that only local cuts of the data exhibit a relatively

stable variance. Finally, the process r mð Þ; t measures the correlation between

the empirical second moment and the conditional variance. As Foster and

Nelson observe, the correlation is unity for ARCH-type processes and zero

for continuous path diffusions. To streamline the discussion, we do not

provide explicit characterizations of the three processes since details appear

in Foster and Nelson.

We are interested in comparing CF
1ð Þ; t; which is based on the benchmark

sampling frequency, with CF
mð Þ; t for ma1; or equivalently compare the

asymptotic efficiency of volatility estimators involving data sampled at dif-

ferent frequencies. The comparison can be demonstrated by the following
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illustrative example: Suppose one starts with a 30-day historical volatility

estimate and instead of sampling daily one considers half-daily returns and

therefore has twice as many returns. Now we ask the following hypothetical

question: How many lags of half-daily returns does it take to attain the same

efficiency as the historical 30-day filter? Please note that we do not change

the weighting scheme. We only sample twice more often and try to find out

how many lags of half-daily returns attain the same efficiency as a 30-day

filter using daily returns. The answer is not 15 days worth of lagged returns

sampled twice daily, i.e. the same number (i.e. 30) of observations. Indeed,

to maintain the same (asymptotic) efficiency we obviously do not have a

simple linear trade-off between sampling frequency and number of obser-

vations. It takes in fact more than 15 days of data to maintain the same

efficiency. Hence, we need more and more lags as the sampling becomes

finer to maintain a particular level of efficiency. It is important to note here

that we only try to maintain a certain level of efficiency, and therefore

sidestep the issue whether the efficiency one attains is adequate. The result in

(1.3) clearly shows, one may have a very large or small asymptotic Mean

Square Error (MSE) depending on the magnitude of the conditional higher

moment terms.

The asymptotic efficiency of ŝ2mð Þ; t only depends on the process charac-

teristics once the filter weights are fixed, in this particular case once nL and

nR are determined. Therefore, to compare CF
1ð Þ; t with CF

mð Þ; t we must be able

to appraise the difference between y mð Þ; t and y 1ð Þ; t; and also compare

L 1ð Þ; t; r 1ð Þ; t with L mð Þ; t and r mð Þ; t:
We expect L mð Þ; t and y mð Þ; t not only to vary through time, but also to

exhibit different (dynamic) properties across sampling frequencies m.5 In

general, it is difficult to obtain an explicit formula for L mð Þ; t and y mð Þ; t; for a
given m. Therefore, since it is difficult to characterize the dynamics of the

conditional kurtosis and the variance of variance, it is certainly also difficult

to compare the processes across various sampling frequencies m. There are

some results available, but they do not really help us. For example, Drost

and Nijman (1993), Drost and Werker (1996) and Meddahi and Renault

(2004) provide aggregation formulas for the unconditional kurtosis of

GARCH(1,1) and GARCH diffusion processes. Unfortunately, we need to

know the conditional kurtosis and variance of variance. Meddahi (2002)

derives formulas for the first four conditional moments using general class

of eigenfunction stochastic volatility models (which includes the GARCH

diffusion). The conditional moments involve information sets of past con-

tinuous time observations. Computing conditional moments involving the

continuous record of past observations is not so appealing, as it would
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amount to comparing conditional moments with the same past information,

defying the purpose of computing L mð Þ; t and y mð Þ; t across various m.

Since computing L mð Þ; t and y mð Þ; t across m is impractical, we will rely on a

critical assumption in Foster and Nelson, namely their Assumption B, which

states that

Suptptptþ1=
ffiffiffi

m
p y mð Þ;t � y mð Þ;t
�

�

�

� ¼ op 1ð Þ
Suptptptþ1=

ffiffiffi

m
p L mð Þ;t � L mð Þ;t
�

�

�

� ¼ op 1ð Þ
Suptptptþ1=

ffiffiffi

m
p r mð Þ;t � r mð Þ;t
�

�

�

� ¼ op 1ð Þ

This assumption implies that the conditional fourth moments, variance of

variance and correlation roughly stay constant over small intervals, where

small is interpreted as an interval of size 1=
ffiffiffiffi

m
p

: This assumption guarantees

that the process (1.1) is regular enough with higher moments changing

slowly over time. We will replace Assumption B of Foster and Nelson with a

slightly different condition, namely:

Suptptptþ1=
ffiffiffi

m
p y mð Þ;t � y 1ð Þ;t
�

�

�

� ¼ op 1ð Þ
Suptptptþ1=

ffiffiffi

m
p L mð Þ;t � L 1ð Þ;t
�

�

�

� ¼ op 1ð Þ
Suptptptþ1=

ffiffiffi

m
p r mð Þ;t � r 1ð Þ;t
�

�

�

� ¼ op 1ð Þ

This assumption is in the same vein as Assumption B of Foster and Nelson,

the main difference is that the filtration is no longer kept constant at

F mð Þ; t
� �

; We require the stronger condition that relative to the benchmark

filtration F 1ð Þ; t
� �

; we have local stability of the conditional higher moments

at other sampling frequencies m as well. In particular, we can write

Supt�t�tþ1=
ffiffiffi

m
p jy mð Þ; t � y 1ð Þ; tj

� jy mð Þ; t � y 1ð Þ; tj þ Supt�t�tþ1=
ffiffiffi

m
p jy mð Þ; t � y mð Þ; tj

Hence, Assumption B of Foster and Nelson implies our condition, provided

jy mð Þ; t � y 1ð Þ; tj is opð1Þ: One can interpret this condition as saying that at the

daily (monthly) level (and beyond) we have reached stability of all relevant

conditional higher moments. To a certain degree this is what underlies the

empirical application in Foster and Nelson who consider optimal filtering of

daily volatility for the Standard and Poors 500 (S&P 500) index.

Though the regularity condition is fairly mild, it is of course not innoc-

uous, and warrants some further discussion. A first observation worth not-

ing is that the unconditional kurtosis can vary dramatically as one changes

the sampling frequency (see Bai, Russell, and Tiao (1999) for recent
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empirical evidence). However, as noted before, our assumption pertains to

conditional higher moments after the volatility dynamics are taken into ac-

count. Furthermore, for rðmÞ; t the above assumption is often trivially sat-

isfied when ARCH or SV-type processes are considered, since rðmÞ; t is

constant across m and t.

Foster and Nelson propose estimators for yðmÞ; t and LðmÞ; t (see formulae

(10) and (11) in their paper). Hence, one can inspect the time series of point

estimates of conditional higher moments, say yð1Þ; t and yðmÞ; t for m � 1

where t is for instance at the daily frequency. Moreover, there are several

papers which document the behavior of conditional higher moments, par-

ticularly the kurtosis, as sampling frequencies increase. We consider empir-

ical evidence from both the FX and equity markets. For instance, Baillie and

Bollerslev (1989) find that GARCH parameter estimates and tail charac-

teristics for FX daily data carry over to weekly, fortnightly, whereas the

degree of leptokurtosis and time-dependent heteroskedasticity is reduced as

the length of the sampling interval increases to monthly data. Engle, Ito, and

Lin (1990) also examine 4-hourly FX data series and find that although all

have excess kurtosis, these do not, however, deviate dramatically from the

daily kurtosis levels encountered in the literature. More recently, Bollerslev

and Domowitz (1993) and Andersen and Bollerslev (1998) also report FX

intradaily results, which confirm the stability of the conditional kurtosis at

high sampling frequencies.

Hsieh (1991) presents results pertaining to equity markets, namely he

examines 15-minute and daily S&P 500 returns and finds comparable re-

sults. Chin, Chan, and Karolyi (1991) also examine S&P 500 returns at

5-minute sampling frequency and report sample kurtosis which do not sub-

stantially deviate from the daily sample kurtosis levels. This evidence

suggests that at least for daily benchmark frequencies our assumption ap-

pears to be reasonable. For data sampled at the monthly frequency, it is well

known that the conditional kurtosis increases when one moves from month-

ly to weekly and daily sampling frequencies. Therefore, when the monthly

frequency is the benchmark frequency and we compare filters involving, say

daily data, with monthly data filters our comparison may not be very ac-

curate, even on asymptotic grounds, since we ignore the variation of higher

moments. It should also be noted that for some models, such as the

GARCH diffusion which we will use in the Monte Carlo simulations, we

can compute for each m the entries to (1.3).

The advantage of our assumption (and the empirical results that lend

support to it) is that we can simply drop all the subscripts in (1.3) and write

the expression as:
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CF
mð Þ; t �

y

nR þ nL
þ

ffiffiffiffiffiffiffiffiffi

yLr
p nR � nL

nR þ nL
þ L

n3R þ n3L

3 nR þ nLð Þ2
(1.4)

for ma1: It is worth noting that to facilitate their discussion, Foster and

Nelson also simply drop all the subscripts in (1.3), see in particular their

Eq. (9). This representation allows us to make relatively simple comparisons

of asymptotically equivalent sampling schemes involving sampling at dif-

ferent frequencies m.

We are specifically interested in one-sided filters. Consider nR, nL, y, L

and r, fixed, and a one-sided window of length nL: Furthermore, let there be

two sampling schemes m1 and m2; with m2om1 (we will set m2 ¼ 1 later as

the benchmark frequency). According to the results in Foster and Nelson

(see in particular Theorem 4 in Foster and Nelson) the same asymptotic

efficiency is achieved with one-sided window of length respectively nLm
�1=2
1

and nLm
�1=2
2 : Since nL

ffiffiffiffiffiffiffiffiffiffiffi

1=m2

p

¼ nL
ffiffiffiffiffiffiffiffiffiffiffi

1=m1

p ffiffiffiffiffiffiffiffiffiffiffi

1=m2

p
	

ffiffiffiffiffiffiffiffiffiffiffi

1=m1

p

 �

we need to re-

scale the interval by
ffiffiffiffiffiffiffiffiffiffiffi

1=m2

p 	 ffiffiffiffiffiffiffiffiffiffiffi

1=m1

p
 �

to obtain the same asymptotic ef-

ficiency. For the benchmark frequency we assumed m2 ¼ 1; the rescaling has

to be 1
	 ffiffiffiffiffiffiffiffiffiffiffi

1=m1

p
 �

or
ffiffiffiffiffiffi

m1
p

: Hence, a relatively simple formula emerges from

the Foster and Nelson asymptotics. In the next section, we provide some

examples of numerical calculations while in the remainder of the paper we

examine how well this asymptotic approximation holds up in simulated

experiments.

2. SOME EXAMPLES OF ASYMPTOTICALLY

EQUIVALENT FILTERS

We present asymptotically MSE-equivalent one-sided volatility filters for

different sampling frequencies. First, we consider the case where the bench-

mark frequency is daily data. Panels A–C of Table 1 report numerical

comparisons for both the 24-h foreign exchange and 6.5 hour trading equity

markets. The Panel A pertains to 22-day historical volatility filters, Panel B

covers the 26-day filter, and Panel C pertains to 52-day filters. These three

cases of nL correspond roughly to the range of lags often encountered in

practice. We examine filters which yield the same asymptotic CF
mð Þ; t for

intraday sample frequencies such as m ¼ 2; 24; 13; 78 and 288: These sam-

pling frequencies correspond, respectively, to half-daily sampling, hourly

FX, half-hourly equity, 5-min equity and finally 5-min FX markets. We

report the number of lags nLm
1=2 for nL ¼ 22; 26; and 52 days and all values

of m and translate these lags in number of days of FX and equity market
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high-frequency observations. We note from Table 1 that for a 22-day filter

we need 374 lags of 5-min observations in FX markets and 195 lags in equity

markets to maintain the same asymptotic MSE. This amounts to 1.3 days

FX data and 2.5 days stock data. When four daily observations are added,

i.e. nL equals 26, the trade-off gets obviously worse, with, respectively, 442

(FX) and 230 (equity) 5-min lags (or 1.5 and 2.9 days, respectively).

The remaining two panels in Table 1 cover two monthly benchmark fre-

quency cases. These are the 12-, 24- and 60-month filters, again three cases

commonly found in the literature. From Panel D we note that a 60-month

filter and a 282-lag filter of daily returns are asymptotically equivalent, i.e. it

takes 13 months of daily data to attain the same efficiency as a filter with 60

monthly observations. Half-daily sampling yields a 4 month gain, namely

398 lags or 9 months of data are necessary to maintain the same efficiency.

Table 1. Asymptotically Equivalent One-Sided Equal Weighting

Schemes.

Frequency m Lags Days FX Days Eq. Frequency m Lags Months

Panel A: Equivalence to 22-day filter Panel D: Equivalence to 60-month filter

Half-daily 2 32 16 16 Daily 22 282 13

Hourly FX 24 108 4.5 — Half-daily 44 398 9

Half-hourly equity 13 80 — 6.1 Hourly FX 528 1379 2.6

Five-min FX 288 374 1.3 — Half-hourly equity 286 1015 3.5

Five-min equity 78 195 — 2.5

Panel B: Equivalence to 26-day filter Panel E: Equivalence to 12-month filter

Half-daily 2 37 18.5 18.5 Daily 22 57 2.6

Hourly FX 24 128 5.3 — Half-daily 44 80 1.8

Half-hourly equity 13 94 — 7.2 Hourly FX 528 276 0.5

Five-min FX 288 442 1.5 — Half-hourly equity 286 203 0.7

Five-min equity 78 230 — 2.9

Panel C: Equivalence to 52-day filter Panel F: Equivalence to 24-month filter

Half-daily 2 74 37 37 Daily 22 34 1.5

Hourly FX 24 255 11 — Half-daily 44 118 2.7

Half-hourly equity 13 187 — 14 Hourly FX 528 87 0.2

Five-min FX 288 882 3 — Half-hourly equity 286 407 1.4

Five-min equity 78 459 — 6

Note: The entries to the table report numerical calculations based on Eq. (1.4) using CF
ð1Þ;t

evaluated at nR ¼ 0 and nL ¼ 22; nL ¼ 26 and nL ¼ 52 days for the daily filters, and nL ¼ 12; 24

and 60 months for the monthly , as fixed. All asymptotically equivalent CF
ðmÞ;t filters require

nLm
1/2 lags, e.g. 22 m1/2.
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Taking hourly data reduces this further to slightly less than a quarter of

observations (i.e. 2.6 months). The final panel shows a similar trade-off. The

commonly used annual lag length of monthly returns is equivalent to about

the same quarter length of daily data. This is in fact an interesting com-

parison. For instance, Campbell et al. (2001) use the annual filter with

monthly data to extract volatility and decompose it into a market, industry-

and firm-specific component and also use a quarterly block sampling

scheme to compare the three volatility components with GNP growth rates.

The results in Panel E of Table 1 show that these two schemes are roughly

asymptotically equivalent (at the monthly and hence also quarterly

frequency).

The arguments presented so far can be reversed as well. In Table 2 we

report asymptotically equivalent historical window of 1-day and 1-month

lengths for spot volatility filters. The entries to Table 2 report numerical

calculations based on Eq. (1.4) using nL ¼
ffiffiffiffi

m
p

as the number of daily or

monthly observations in a one-sided historical volatility filter which is as-

ymptotically equivalent to a one-day or one-month filter with sampling

frequency 1=m: Panel A covers the daily benchmark frequency whereas

Panel B covers the monthly benchmark frequency. From Table 2 we learn

that an hourly FX filter (i.e. m ¼ 24) is equivalent to a 5-day historical

volatility filter, while half-hourly equity market data filter with m ¼ 13 is

Table 2. Equivalent Historical and Benchmark Frequency Volatility

Filters.

Panel A: Daily Benchmark Frequency Panel B: Monthly Benchmark Frequency

Frequency m Equivalent

number of days

Frequency m Equivalent

number of months

Hourly FX 24 5 Daily 22 5

Half-hourly

equity

13 4 Hourly FX 528 23

Five-min FX 288 17 Half-hourly

equity

268 17

Five-min equity 78 9 Five-min equity 1716 41

One-min FX 1440 38 Five-min FX 6336 80

One-min equity 390 20

Note: The entries to the table report numerical calculation based on Eq. (1.4) using nL ¼
ffiffiffiffi

m
p

as

the number of daily observations in a one-sided historical volatility filter which is asymptotically

equivalent to a 1-day (Panel A) or 1-month (Panel B) volatility filter with sampling frequency

1=m: All results are rounded off to the next integer.
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worth one day less. The more interesting case of a 5-min FX market filter

(i.e. m ¼ 288) is asymptotically equivalent to a 17-day historical volatility

filter. The equity market filter with the same frequency, is as efficient as a

9-day filter. We know from the figures reported in Table 1 that we only gain

the efficiency of the usual historical volatility once we sample at 1-min

interval. Indeed, as the results in Table 2 indicate a 1-min FX filter with

m ¼ 1440 is as efficient as a 38-day historical volatility estimate and a 1-min

stock market filter is equal to a 20-day one.

Panel B of Table 2 deals with one month worth of data and reports

comparable monthly frequency historical filters. For example, the first entry

in Panel B shows that a 22-day historical volatility filter is equivalent to a

5-month filter. One month of hourly FX data corresponds to a filter of

monthly data almost two years long. The most extreme case reported is that

of 5-min FX data when sampled for an entire month correspond to an

80-month historical volatility filter.

Obviously, at this point we do not know whether the theoretical asymp-

totic trade-offs described in Tables 1 and 2 are a good approximation of

what we encounter in practice, hence the need to conduct a thorough Monte

Carlo investigation to which we return in Section 3. Before turning our

attention to simulations, it is worth noting that the arguments presented in

this section easily extend to weighting schemes other than the flat scheme

discussed so far. For instance, Theorem 6 of Foster and Nelson covers the

so-called dominating flat weights, which have the same sliding span of data

as the flat scheme but where the actual weights are reshaped (see Formula

(17) in Foster and Nelson). The resulting CD
mð Þ; t; where D stands for the

dominating flat scheme, is again a function of r mð Þ; t; y mð Þ; t and L mð Þ; t:
Hence, under the same regularity conditions we can compare dominating

flat weighting schemes for different m on the basis of nL and nR. The optimal

exponentially declining weighting scheme considered in Theorem 5 of Foster

and Nelson is slightly more complicated as it involves, at least in principle

infinite weighting schemes. It is noted though that in practice such weights

need to be truncated (otherwise they would also violate Assumption D of

Foster and Nelson).

3. MONTE CARLO STUDY

The objective of the Monte Carlo study is to examine whether the predic-

tions of the continuous record asymptotic theory describe adequately the

sampling behavior of filters when applied to actual data. Therefore, we aim
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for a design tailored to (1) applications routinely found, and (2) predictions

derived from continuous record asymptotics.

3.1. Monte Carlo Design

In this section, we provide the details about filters and sample sizes used in

the Monte Carlo design. The models used for the simulation study are

representative of the FX and equity financial markets, popular candidates of

which are taken to be returns on the YN/US$ exchange rate and S&P 500

stock index. We consider the following continuous time stochastic volatility

model which is based on the results of Drost and Nijman (1993) and Drost

and Werker (1996):

dlnY t ¼ stdW pt

ds2t ¼ y w� stð Þdtþ 2lyð Þ1=2dWst. ð3:1Þ

The so-called GARCH diffusion yields exact GARCH(1,1) discretizations

which are represented by the following equations:

lnY t � lnY t�1=m ¼ r mð Þ;t ¼ s mð Þz mð Þ;t

s2mð Þ;t ¼ f mð Þ þ a mð Þr
2
mð Þ;t�1=m þ b mð Þs

2
mð Þ;t�1=m

(3.2)

where r mð Þ; t is the returns process sampled at frequency 1=m: The diffusion

parameters of (3.1) and the GARCH parameters of (3.2) are related via

formulas appearing in Drost and Werker (1996, Corollary 3.2). Likewise,

Drost and Nijman (1993) derive the mappings between GARCH parameters

corresponding to processes with r mð Þ; t sampled with different values of m.

This allows us to estimate a GARCH process using, say daily data

with m ¼ 1; and computing the GARCH parameters a mð Þ; b mð Þ; f mð Þ; for any
other frequency m as well as the diffusion parameters y; o and l: We

consider GARCH processes driven by an error term z mð Þ; t that is Nor-

mally distributed or exhibits leptokurtosis specified by a Student’s t

distribution.

The GARCH model parameters are, f mð Þ; a mð Þ and b mð Þ; as defined in

(3.2). The kurtosis parameter is k mð Þ: The unconditional variance is vðmÞ ¼
f mð Þ

.
ð1� aðmÞ � bðmÞÞ: The parameters used in the simulation experiments

appear in Table 3. The daily FX parameter estimates are taken from And-

ersen and Bollerslev (1998). For the period 01/10/87–30/09/92, the YN/US$

estimates are y ¼ 0:054; o ¼ 0:476 and l ¼ 0:480: Based on these, the im-

plied GARCH(1,1) parameters a mð Þ; b mð Þ and f mð Þ are disaggregated for the
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5-min frequency and reported in Table 3. Following the same paradigm we

consider an analogous example for the equity market with only 6.5 h of

trading as opposed to the 24-h trading in FX markets. The S&P 500

GARCH(1,1) parameters estimates cover the daily samples 04/01/86–29/08/

97 (T ¼ 2884 observations). We consider the equivalent intraday frequen-

cies for m ¼ 78 to denote the 5-min frequency. The results in the top panel

Table 3. GARCH(1,1) Models Used in Simulation Design.

Daily frequency

YN/US$ m ¼ 1 S&P 500 m ¼ 1

Parameters

f(m) 0.026 0.033

a(m) 0.104 0.029

b(m) 0.844 0.967

k(m) 3 3

v(m) 0.500 0.750

5-min frequency

m ¼ 288 m ¼ 78

Parameters

f(m) 3� 10�7 6� 10�6

a(m) 0.023 0.004

b(m) 0.973 0.996

k(m) 2.494 2.857

v(m) 7� 10�5 0.006

Monthly frequency

n ¼ 22 days n ¼ 22 days

Parameters

f(m) 7.602 15.358

a(m) 0.059 0.077

b(m) 0.293 0.836

k(m) 3.773 3.416

v(m) 11.73 176.6

Note: Entries to the table provide the parameters of the models used in the Monte Carlo

simulations. The GARCH model parameters are, f(m), a(m) and b(m), as defined in (3.2). The

kurtosis parameter is k(m). The unconditional variance is nðmÞ ¼ jðmÞ=ð1� aðmÞ � bðmÞ). The
daily parameters (on the top panel) for the YN/US$ were obtained from Andersen and

Bollerslev (1998) and cover the period 01/10/87–30/09/92. The S&P 500 estimated parameters

cover the daily samples 04/01/86–29/08/97 (T ¼ 2884 obs.). The disaggregated daily GARCH

parameters based on Drost and Nijman (1993) for the 5-minute frequency and aggregated

parameters for the monthly frequency are reported.
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of Table 3 refer to the daily frequency Normal-GARCH(1,1) estimated

parameters for the S&P 500 and the disaggregated models are also reported

in the panel below that. In light of the most widely early as well as recent

empirical applications of data-driven volatility filters (outlined in the In-

troduction), we carry this analysis to the monthly frequency. We now ag-

gregate the daily GARCH parameters for the monthly frequency using the

approximation of 22 trading days per month (see for instance, French et al.,

1987; Schwert, 1989) to obtain the monthly GARCH parameters.

Certain adjustments are required in order to translate some of the con-

tinuous record asymptotic results into a meaningful simulation design.

There are two issues we need to highlight.

First, it should be noted that when Foster and Nelson discuss spot vol-

atility, they consider a measure of volatility normalized by the sampling

interval, i.e. a measure of volatility per unit of time. Second, we need to

incorporate this into our simulation design in order to make, for instance,

comparisons across sampling frequencies. We have tailored our discussion

around a benchmark, or reference, frequency, i.e. m ¼ 1: which refers to the

daily and monthly frequencies. We will use the reference frequency as a

benchmark to measure volatility. This implies that if we sample at, say

5-min intervals and the benchmark frequency is daily we will actually rescale

the 5-min volatility estimates by the sampling frequency m, so that they have

a daily volatility interpretation. Schwert (1990b) is a practical example of a

comparison of daily volatility computed from rescaled intradaily returns

(see Schwert, 1990b, Figure D).

3.2. Data-Driven Volatility Filters

In light of the asymptotic properties of various types of data-driven SV

measures discussed in Section 1, we will consider the following two families

of spot volatility filters. The first family refers to the RV estimators with a

given window of 22, 26 and 52 days. To examine the asymptotic MSE

approximation of Foster and Nelson adapted here to higher sampling fre-

quencies, we compare the above windows of daily observations with the

asymptotically equivalent window of intra-day information. Hence we

examine a second family of spot volatility filters starting with the daily

benchmark frequency,

(I) One-day Spot Volatility ŝSV1
t as the intradaily (rescaled) mean of the

log of squared returns r mð Þ;t for different values of m, to produce the end-day
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spot volatility measure:

ŝSV1
t ¼

Xm

j¼1
r2ðmÞ; tþ1�j=m t ¼ 1; . . . ; ndays. (3.3)

where for the 5-min sampling frequency the lag length take values, m ¼ 288

for financial markets open 24-h per day (e.g. FX markets) and m ¼ 78 for a

stock market open 6.5 hours per day. The filter will be denoted SV1 and it is

rescaled to yield daily volatility estimates and therefore resembles an inte-

grated volatility measure.

(II) k-day Spot Volatility, ŝSVkt ; is a one-sided moving k-day average of

ŝSV1
t : The purpose of selecting k is to make window length comparisons on

MSE ground with the daily rolling volatility filters. In our analysis we will

set k ¼ 2 and 3 days. These windows are specified according to most

empirical volatility estimators (see the Introduction) and to examine the

theoretical equivalence results in Table 1.

Finally we also consider:

(III) One-sided Rolling daily window Volatility, ŝRVt ; defined as:

sRVt ¼
PnL

j¼1

wj r 1ð Þ;tþ1�j

� �2
t ¼ 1; . . . ; ndays: (3.4)

where nL is the lag length of the rolling window in days. When the weights wj

are equal to n�1
L then one considers flat weights. Since the asymptotic ap-

proximations we propose depend on flat weights we focus on these and

consider the three windows of 22, 26 and 52 days.6

The above filters are also defined for the monthly benchmark frequency:

In the one-month spot volatility, we have 22 trading days, which we extend

to 2 and 3 months (or approximately 44 and 66 days). In the rolling monthly

volatilities we define windows, nL, of 12, 24 and 60 months (e.g. Officer,

1973; Merton, 1980; Campbell et al., 2001; Chan et al., 1999).

3.3. Measures of Appraisal

In the Monte Carlo design, we consider the sample sizes n that are repre-

sentative of the empirical results of 5-year samples for the YN/US$ and S&P

500 (Section 3.1). For the daily volatility simulation design we consider a

sample size of six years.7 We assume that one year has 250 trading days. The

intradaily sample of 5minutes for the GARCH processes defined in Table 3

yield sample sizes of n equal to 432,000 and 117,000 observations for the FX

and equity examples, respectively. The monthly simulation analysis is based
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on a sample size of 50 years, often encountered in practice.8 Each exper-

iment is performed with 1,000 replications.

For the daily benchmark frequency case we simulate rðmÞ; t for the 5-min

frequency, m ¼ 288 and m ¼ 78; based on the FX and equity GARCH(1,1)

models in Table 3, respectively. Hence, we obtain the highest intraday

sampling frequency which we consider to be the true generating process.

Next, we apply the GARCH dynamics to obtain the spot volatility, s mð Þ; t;
which for m ¼ 1 refers to the daily spot volatility. The extraction error is the

difference between the simulated volatility, which is model based, and the

modelfree data-driven spot volatility filters:

�it ¼ s mð Þ;t � ŝit (3.5)

for i ¼ SV1; SV2; SV3; RV22; RV26 and RV52 for daily frequency. Ob-

viously, for the rolling window schemes we have different lag lengths.

Moreover, for the SV schemes we will consider the 24-h market cases as

well as the shorter equity trading opening hours. To avoid further

complicating the notation we will denote the monthly spot volatility filters

by SV1; SV2; SV3; RV12; RV24 and RV60: It will always be clear

from the context that we refer to the monthly filters when SVk will be

discussed.

The behavior of the extraction error, �it; is examined according to the

following two dimensions:

1. We examine the efficiency of filters using the MSE which we compare

across different filters and sample sizes. Note that we also obtain the

Mean Absolute Error (MAE) since Andersen et al.(1999) argue that this

criterion is more robust than the RMSE which is susceptible to outliers.9

The relative efficiency of one filter vis-à-vis another is studied by com-

puting ratios of MSEs. To facilitate comparison, the MSE of all spot

volatility filters will be benchmarked against the MSE of the 1-day spot

filter. We therefore obtain the following ratios:

MSEi
	

MSESV1 or MAEi
	

MAESV1 (3.6)

where i refers to the MSEs obtained from ŝit for different windows and

weights, i.e. for the daily case i ¼ SVk; RV22; RV26 and RV52: This
analysis extends to the monthly frequency.

2. We study the out-of-sample forecast performance analogous to Andersen,

Bollerslev, and Lange (1999). Following Baillie and Bollerslev (1992)

the h-period linear projection from the weak GARCH(1,1) model with
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returns that span 1/m day(s) is expressed as:

P mð Þ;t r2
1=hð Þ;tþh

� �

¼ m � h � s2mð Þ þ a mð Þ þ b mð Þ
� �

�

1� a mð Þ þ b mð Þ
� �m�h

h i

�

1� a mð Þ � b mð Þ

 ��1 � s2mð Þ;t � s2mð Þ

� �

ð3:7Þ

where s2ðmÞ � fðmÞ � ð1� aðmÞ � bðmÞÞ�1 and s2ðmÞ; t would be the alternative

volatility filters analyzed above. We shall consider h ¼ 20 days as in

Andersen, et al. (1999) and obtain the MSE and MAE for each 20-day (or

long-run) out-of-sample volatility filter forecast. For the monthly exper-

iment we consider h ¼ 12 months. We also consider short horizon fore-

casts with h ¼ 1 day or month for the two benchmark frequencies. It is

interesting to note that if we ignore parameter uncertainty, which is the

case for our Monte Carlo simulations, we can view (3.7) as a functional

transformation of s2mð Þ; t; and therefore the asymptotic distribution of the

forecast MSE is easily obtained from the asymptotic distribution of the

volatility estimator using the usual delta method. This is quite useful as

we can easily compare MSEs of forecasts in empirical applications,

whereas MSEs of filters can only be computed in a simulation context

where the true data generating process is observed. We therefore consider

the forecast of MSEs as a bridge between the simulation-based results and

empirical studies.

3.4. Simulation Results

We examine whether the simulation results provide supportive evidence for

the asymptotics with respect to the MSE equivalence of volatility filters with

windows or lag lengths based on different sampling frequencies.

Table 4 reports the Monte Carlo simulation results of the contempora-

neous MSE (and MAE) ratios defined in (3.6). For the daily and monthly

volatilities the MSE (and MAE) ratios are based on the benchmark of the

1-day and 1-month Spot Volatility (SV1), respectively. The theoretical

results are based on MSE efficiency and hence we focus our discussion on

this criterion, though it should be noted that the MAE results are expected

to provide a more robust measure of efficiency comparisons for volatility.

We focus on the three high-frequency volatility filters used in practice,

SV1; SV2 and SV3 which refer to intraday information for daily volatilities

and daily information for monthly volatilities. The window length of these
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filters is compared on MSE grounds with the rolling volatility estimators

RVk where for daily data we focus on k ¼ 22; 26 and 52 days and for

monthly data we consider k ¼ 22; 44 and 66: The choice of these windows is
driven from empirical applications and the objective is to report the sim-

ulation comparisons in a concise manner.

The theoretical results summarized in Table 1 suggest that the following

volatility estimates are MSE asymptotically equivalent:

(i) Consider first the daily frequency. For the equity market, the daily

rolling volatilities RV26 and RV22 are MSE asymptotically equivalent

Table 4. Monte Carlo Simulated MSE and MAE Ratios.

Daily Frequency, Benchmark: SV1

SV2 SV3 RV22 RV26 RV52

S&P 500

MSE 0.817 0.747 0.627 0.467 0.177

MAE 0.907 0.869 0.782 0.678 0.422

YN/US$

MSE 0.893 0.812 0.439 0.386 0.735

MAE 0.949 0.908 0.667 0.698 0.853

Monthly Frequency, Benchmark: SV1

SV2 SV3 RV12 RV24 RV60

S&P 500

MSE 0.752 0.644 0.502 0.370 0.367

MAE 0.870 0.807 0.708 0.617 0.621

YN/US$

MSE 0.645 0.483 0.556 0.294 0.134

MAE 0.816 0.718 0.818 0.615 0.423

Note: The MSE and MAE are the mean square error and mean absolute error ratios, respec-

tively, defined in (3.6), and obtained from the extraction error (3.5). The daily spot volatilities

SV1, SV2 and SV3 are the 1-, 2- and 3-day spot volatilities, respectively. RV22, RV26 and RV52

are the 22-, 26- and 52-day one-sided rolling volatilities, respectively. The monthly spot vol-

atilities SV1, SV2 and SV3 are the 1-, 2- and 3-month spot volatilities, respectively. RV12, RV24

and RV60 are the 12-, 24- and 60-month rolling volatilities, respectively. The daily simulation

results refer to the 5-year sample of 5-min intradaily GARCH models and the monthly results

refer to a 50-year sample size of daily GARCH processes as reported in Section 3.4.
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to approximately SV3 and SV2:5 based on three and two and half days

of 5-minute window, respectively (shown in Panels A and B, Table 1).

In contrast for the FX market SV3 has the same MSE asymptotic ef-

ficiency as RV52 whereas SV1.5 is MSE equivalent to RV26 and

approximately equivalent to RV22 (as shown in Panels A–C, Table 1).

For the equity market it is expected that RV52 would have the lowest

MSE compared with any of the daily SVk filters where k ranges from

1 to 3 days of intraday data (shown in Panel C, Table 1).

(ii) For the monthly benchmark frequency we find that the monthly spot

volatility based on a two and a half day window SV2.5 is approximately

MSE asymptotically equivalent to RV12, whereas RV24 is MSE equiv-

alent to SV1.5 (shown in Panels E and F, Table 1). It is expected that the

monthly rolling volatility with longer window length RV60 would be less

efficient than any of the monthly SVk filters where k ranges from 1 to 3

months of daily data (shown in Panel D, Table 1).

Following the simulation design discussed in Sections 3.1–3.3 for a Normal

GARCH process, we obtain three types of MSE and MAE ratios where the

benchmark filter is SV1: (a) contemporaneous, presented in Table 4 (b)

1-step ahead forecast, presented in Table 5, and (c) h-step ahead forecasts

based on longer horizons, h ¼ 20 days and 12 months for daily and monthly

filters, respectively, shown in Table 6. Moreover, we extend the above results

to the case of Student’s t GARCH model for generating returns, and the

MSEs and MAEs ratios are reported in Table 7. For each case we evaluate

the results for both the equity and foreign exchange markets reported by the

S&P 500 and YN/US$ simulated series.

A synthesis of the simulation results reported in all of the above Tables

yields the following three broad conclusions:

(1) For the equity market represented by the S&P 500 index simulated

process given in Table 3 with 6.5 h of trading, the 5-min intraday vol-

atility filter SV3 that involves a window length of three days is MSE

asymptotically equivalent to a rolling volatility that involves interdaily

data with a window of 22 days instead of 26 days. Hence, although the

theoretical evaluations in Table 1 (Panels A and B) suggest that RV26

and RV22 are approximately equivalent to a window of 3 and 2.5 days

of 5-min data for the equity market, respectively, the simulation evi-

dence suggests that only RV22 attains this MSE equivalence with SV3.

This conclusion holds whether we compare MSEs from the contempo-

raneous extraction error or whether that is based in 1-day ahead forecast

error (compare for instance the results in Tables 4 and 5). This result
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also extends to situations whether the driving error process has a Stu-

dent’s t distribution with four degrees of freedom as shown in Table 6.

However, for longer horizon forecasts of h ¼ 20 we find that the MSE

efficiency equivalence does not hold since for such horizons the window

does not seem to play any role. All filters for the S&P 500 appear to have

the same MSE and MAE. Moreover, as expected from the theory, the

simulation results show that for the equity market the RV52 yields the

lowest MSE compared to the two- and three-day window SVk, k ¼ 2; 3:

Table 5. Monte Carlo Simulated of 1-day and 1-month ahead MSE and

MAE Ratios.

h ¼ 1-day ahead, Daily Frequency, Benchmark: SV1

SV2 SV3 RV22 RV26 RV52

S&P 500

MSE 0.816 0.746 0.627 0.474 0.180

MAE 0.908 0.870 0.782 0.680 0.420

YN/US$

MSE 0.901 0.829 0.507 0.573 0.905

MAE 0.953 0.916 0.708 0.756 0.938

h ¼ 1-month ahead, Monthly Frequency, Benchmark: SV1

SV2 SV3 RV12 RV24 RV60

S&P 500

MSE 0.749 0.639 0.499 0.353 0.389

MAE 0.868 0.804 0.669 0.602 0.637

YN/US$

MSE 0.602 0.466 0.509 0.376 0.293

MAE 0.793 0.702 0.777 0.659 0.548

Note: The h-period ahead forecast MSE and MAE are the mean square error and mean ab-

solute error ratios, respectively, defined in (3.6), and obtained from the extraction error in (3.5),

using the h-period linear projection GARCH(1,1) equation in (3.7). The daily spot volatilities

SV1, SV2 and SV3 are the 1, 2- and 3-day spot volatilities, respectively. RV22, RV26 and RV52

are the 22-, 26- and 52-days one-sided rolling volatilities, respectively. The monthly spot vol-

atilities SV1, SV2 and SV3 are the 1-, 2- and 3-month spot volatilities, respectively. RV12, RV24

and RV60 are the 12-, 24- and 60-months rolling volatilities, respectively. These daily simulation

results refer to the 5-year sample and the 5-minute intraday frequency. Similar results apply to

the 10-year sample. The monthly simulation results refer to a 50-year sample size.
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As a final note we mention that the MAEs are often higher than the

MSEs and they provide additional support to the above results.

(2) For the FX market as generated by the YN/US$ defined in Table 3 we

find that the 5-min 24-h market yields a daily spot volatility filter SV3,

which is MSE equivalent to RV52 as the theoretical results suggest in

Table 1 (Panel C). This result is valid whether the extraction error is

defined contemporaneously or from a short-horizon prediction of 1-day

ahead. Moreover, it holds whether we generate a GARCH process with

Table 6. Monte Carlo Simulated 20-day and 12-month ahead MSE and

MAE Ratios.

h ¼ 20-day ahead, Daily Frequency, Benchmark: SV1

SV2 SV3 RV22 RV26 RV52

S&P 500

MSE 0.987 0.982 1.066 1.040 0.999

MAE 0.999 0.999 1.003 1.002 1.002

YN/US$

MSE 0.977 0.972 1.472 1.500 1.744

MAE 0.990 0.986 1.216 1.232 1.349

h ¼ 12-month ahead, Monthly Frequency, Benchmark: SV1

SV2 SV3 RV12 RV24 RV60

S&P 500

MSE 0.978 0.969 1.011 0.957 0.910

MAE 0.999 0.999 1.000 1.000 1.000

YN/US$

MSE 0.999 0.999 0.999 0.999 0.999

MAE 1.000 1.000 1.000 1.000 1.000

Note: The h-period ahead forecast MSE and MAE are the mean square error and mean ab-

solute error ratios, respectively, defined in (3.6), and obtained from the extraction error in (3.5),

using the h-period linear projection GARCH (1,1) equation in (3.7). The daily spot volatilities

SV1, SV2 and SV3 are the 1-, 2- and 3-day spot volatilities, respectively. RV26 and RV52 are

the 26- and 52-days one-sided rolling volatilities, respectively. The monthly spot volatilities

SV1, SV2 and SV3 are the 1-, 2- and 3-months spot volatilities, respectively. RV12, RV24 and

RV60 are the 12-, 24- and 60-months Rolling Volatilities, respectively. These daily simulation

results refer to a 5-year sample of 5-min intraday frequency. Similar results apply to the 10-year

sample. The monthly simulation results refer to a 50-year sample size.
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Table 7. Monte Carlo Simulated MSE and MAE Ratios under

Student’s t(n).

Daily Frequency, Intradaily GARCH with t(0,1; n ¼ 4) Benchmark: SV1

SV2 SV3 RV22 RV26 RV52 SV2 SV3 RV22 RV26 RV52

S&P 500 YN/US$

h ¼ 0

MSE 0.817 0.747 0.636 0.476 0.179 0.894 0.813 0.815 0.420 0.691

MAE 0.908 0.869 0.785 0.683 0.424 0.949 0.909 0.908 0.656 0.841

h ¼ 1

MSE 0.819 0.749 0.636 0.465 0.175 0.902 0.830 0.829 0.505 0.844

MAE 0.908 0.871 0.784 0.677 0.417 0.952 0.916 0.915 0.706 0.936

h ¼ 20

MSE 0.987 0.982 1.062 1.044 0.999 0.977 0.972 0.829 0.496 0.851

MAE 0.999 1.000 1.000 1.002 1.002 0.991 0.989 0.836 0.702 0.924

Monthly Frequency, Daily GARCH with t(0,1; n ¼ 6) Benchmark: SV1

SV2 SV3 RV12 RV24 RV60 SV2 SV3 RV12 RV24 RV60

S&P 500 YN/US$

h ¼ 0

MSE 0.752 0.644 0.502 0.370 0.367 0.645 0.483 0.553 0.292 0.133

MAE 0.870 0.807 0.709 0.617 0.622 0.816 0.718 0.817 0.614 0.423

h ¼ 1

MSE 0.749 0.639 0.448 0.353 0.391 0.603 0.467 0.507 0.374 0.292

MAE 0.869 0.804 0.669 0.602 0.638 0.793 0.702 0.778 0.659 0.548

h ¼ 12

MSE 0.978 0.969 1.010 0.957 0.910 0.999 0.999 1.000 0.999 0.990

MAE 0.999 1.000 0.999 0.999 0.999 1.000 1.000 1.000 1.000 1.000

Note: The MSE and MAE are the mean square error and mean absolute error ratios, respec-

tively, defined in (3.6), and obtained from the extraction error (3.5). The simulated process

refers to a GARCH(1,1) with conditional Student’s t distribution and degrees of freedom n,

where n is equal to 4 for the intradaily GARCH and 6 for the daily GARCH. The parameters of

the GARCH(1,1) model for the five-minute S&P 500 are defined in Table 3. The daily spot

volatilities SV1, SV2 and SV3 are the 1-, 2- and 3-day spot volatilities, respectively, as well as

RV26 and RV52 which are the 26 and 52-days one-sided rolling volatilities, respectively. The

monthly spot volatilities SV1, SV2 and SV3 are the 1-, 2- and 3-months spot volatilities,

respectively. RV12, RV24 and RV60 are the 12-, 24- and 60-months rolling volatilities, respec-

tively. The intradaily and daily samples are equal to 5 and 30 years, respectively.
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Student’s t innovations and for longer samples of 10 years of intradaily

data. It is also important to note that although the theoretical results

show that the rolling volatilities with shorter windows of 22- and

26- days are MSE equivalent to SV with 1.3 and 1.5 days, we find no

supportive simulation evidence if we compare them with SV2.

(3) The monthly volatility simulation results show support for the MSE

equivalence of the rolling volatility with 12 months, RV12, and the spot

volatility with 3 days, SV3 (Panel E). However, there is no supportive

simulation evidence that RV24 is MSE asymptotically efficient to either

SV1 or SV2. This result is valid for contemporaneous extraction errors

(Table 4) and short horizon forecasts of h ¼ 1 month (Table 5) as well as

Student’s t error driven GARCH processes. However, for longer hori-

zon forecasts of h ¼ 12; there seems to be no gain in efficiency or MSE

equivalence between volatility filters with different windows.

Overall the simple prediction in the paper that extends the Foster and

Nelson (1996) MSE efficiency results to the comparison of volatility filters

with flat weights for alternative window lengths of different sampling fre-

quencies gains simulation support within the boundaries of the design de-

scribed above for certain cases: For the contemporaneous and 1 step ahead

forecast error comparisons of the MSE equivalence of (a) the 3-day spot

volatility SV3 in the equity and FX markets with daily rolling volatilities,

RV22 and RV26, respectively (b) the 3-month spot volatility SV3 with the

12-month rolling volatility, RV12.

4. CONCLUSIONS

The paper extends one of the theoretical results in Foster and Nelson (1996),

namely equally efficient spot volatility estimators are derived for alternative

sampling frequencies based on the continuous record asymptotics. The the-

oretical results are examined by a Monte Carlo study that provides support

for comparing volatility filters with alternative window lengths and sam-

pling frequencies on MSE grounds. Our analysis can also be extended to

study optimal weighting schemes.

NOTES

1. As noted by Foster and Nelson, their analysis applies not only to SV diffusions
but also, with appropriate modifications, to discrete time SV, to ARCH models and
to certain types of random coefficient models. While we start with a continuous time
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SV framework, we will focus later on a particular case which yields a GARCH(1,1)
model using exact discretization methods (see also Drost & Werker, 1996, Meddahi
& Renault, 2004 and Andersen & Bollerslev, 1998).
2. The notion of a benchmark frequency will be used extensively, particularly

when simulating models. We use the daily and monthly examples as they are most
commonly encountered in applications. The benchmark frequency will also serve as a
reference frequency to normalize simulation results and make them comparable
across frequencies as will be discussed later.
3. This includes the zero lag, since we assume end-of-day, or end-of-month, vol-

atilities.
4. Foster and Nelson assume that the Suptft : wt�t40g � Inftft : wt�t40g ¼

Oðm�1=2Þ and hence shrinks as m increases and is bounded in probability by m�1/2

(see Foster and Nelson (1996, Assumption D)). For flat scheme involving nLm
�1/2

lags and nRm
�1/2 leads, the weights can be characterized as w mð Þ;t ¼ m�1=2ðnL þ

nRÞ�1Ift�½�nLm
�1=2; nRm

�1=2�g:
5. We focus here on L mð Þ;t and y mð Þ;t; since r mð Þ;t is unity for ARCH-type processes

and zero for continuous path diffusions. Therefore, r mð Þ;t is in many cases constant
across time and sampling frequencies.
6. Note that geometrically declining weights can also be adopted where wj ¼

expð�ajÞ with a ¼ 0:0665:However, the comparisons we have in Table 3 focus on flat
weights.
7. Note that for the one-sided rolling estimates the window length presupposes

trimming a percentage of the initial sample. The effective sample is normalized for all
filters for evaluation and comparison purposes.
8. With nyears ¼ 50 we have nmonths ¼ 600 and ndays ¼ 7; 500
9. Andersen et al. also consider analogous statistics which are adjusted for

heteroskedasticity and which are found to have significant improvements in the
volatility forecasting analysis.
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MODEL-BASED MEASUREMENT

OF ACTUAL VOLATILITY IN

HIGH-FREQUENCY DATA

Borus Jungbacker and Siem Jan Koopman

ABSTRACT

In this chapter, we aim to measure the actual volatility within a

model-based framework using high-frequency data. In the empirical fi-

nance literature, it is widely discussed that tick-by-tick prices are subject

to market micro-structure effects such as bid-ask bounces and trade in-

formation. These market micro-structure effects become more and more

apparent as prices or returns are sampled at smaller and smaller time

intervals. An increasingly popular measure for the variability of spot

prices on a particular day is realised volatility that is typically defined as

the sum of squared intra-daily log-returns. Recent theoretical results have

shown that realised volatility is a consistent estimator of actual volatility,

but when it is subject to micro-structure noise and the sampling frequency

increases, the estimator diverges. Parametric and nonparametric methods

can be adopted to account for the micro-structure bias. Here, we measure

actual volatility using a model that takes account of micro-structure noise

together with intra-daily volatility patterns and stochastic volatility. The

coefficients of this model are estimated by maximum likelihood methods

that are based on importance sampling techniques. It is shown that such

Monte Carlo techniques can be employed successfully for our purposes in
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a feasible way. As far as we know, this is a first attempt to model the basic

components of the mean and variance of high-frequency prices simulta-

neously. An illustration is given for three months of tick-by-tick trans-

action prices of the IBM stock traded at the New York Stock Exchange.

1. INTRODUCTION

1.1. Some Background

The filtering of efficient prices and volatilities in financial markets using

high-frequency intra-day spot prices has gained much interest from both the

professional and academic communities. The Black–Scholes (BS) model is

still the dominating framework for the pricing of contingencies such as

options and financial derivatives while the generalised autoregressive con-

ditional heteroskedasticity (GARCH) models are widely used for the em-

pirical modelling of volatility in financial markets. Although the BS and

GARCH models are popular, they are somewhat limited and do not provide

a satisfactory description of all the dynamics in financial markets. In this

chapter, we focus on the measurement of daily volatility in financial markets

using high-frequency data. A model-based approach is taken that considers

both prices and volatilities.

Measuring the volatility in prices of financial assets is essentially not much

different than measuring any other unobserved variable in economics and

finance. For example, many contributions in the economic literature have

appeared on the measurement of the business cycle that can be defined as

the unobserved component for medium-term deviations from a long-term

trend in economic activity. Nonparametric methods (e.g. the Hodrick–

Prescott filter) as well as model-based methods (e.g. the Beveridge–Nelson

decomposition) have been proposed and developed for the measurement

of business cycles. In the case of measuring volatility using high-frequency

data, most, if not all, of the emphasis so far is on nonparametric methods.

The properties of nonparametric estimates of volatility are investigated in

detail and rely on advanced and novel asymptotic theory in stochastics

and econometrics (see Ait-Sahalia, Mykland, & Zhang, 2004; Barndorff-

Nielsen, Hansen, Lunde, & Shephard, 2004). In this chapter, we explore

model-based approaches for the measurement of volatility. By allowing for

intra-day effects and stochastic volatility (SV), efficient estimates of vola-

tility can be obtained. However, the modelling framework required for this
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purpose is non-standard and does easily move away from linearity and

Gaussianity.

1.2. Measuring Actual Volatility

The price of a financial asset is denoted by Pt. A common assumption in the

finance literature is that the log of Pt can be represented by a stochastic

differential equation (SDE) of the form

dlogPt ¼ mtðcÞ dtþ stðcÞ dBt; t40 (1)

where mtðcÞ is a drift function representing expected return, stðcÞ a

stochastic process representing the spot volatility, Bt a standard Brownian

motion and c is a vector of unknown parameters, see Campbell, Lo, and

MacKinlay (1997) for more background. For different purposes the finan-

cial economist is interested in measuring and predicting the variability of the

asset price. This variability is mainly determined by what is called integrated

volatility

sn2 0; tð Þ ¼
Z t

0

s2t ðcÞdt (2)

where the dependence of c is implied. The related concept of actual vol-

atility for the interval ½t1; t2� is defined as sn2ðt1; t2Þ where

sn2ðt1; t2Þ ¼ sn2ð0; t2Þ � sn2ð0; t1Þ (3)

It should be noted that integrated and actual variance would be the more

precise names for integrated and actual volatility, respectively. However, we

choose to follow the convention in much of the financial econometrics

literature and refer to these quantities as volatilities.

1.3. Realised Volatility

The realised price of an asset can be observed when a trade takes place.

Heavy trading takes place in international financial markets, on a contin-

uously basis. The Trades and Quotes (TAQ) database of the New York

Stock Exchange (NYSE) contains all equity transactions reported on the

so-called consolidated tape and it includes transactions from the well-known

NYSE, AMEX and NASDAQ markets but also from various other

important exchange markets. By collecting all prices in a certain period, a
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so-called high-frequency dataset is obtained. We refer to high-frequency data

when observations are sampled at very small time intervals. In the finance

literature, this usually means that observations are taken at the intra-daily

interval of 5 or 1minutes (calendar time sampling) or that observations are

recorded trade-by-trade (business time sampling). The trade-by-trade data

are regarded as the ultimate high-frequency collection of prices. In a time

scale of seconds, we may even have multiple trades within the same time

interval, although, this is unlikely. It is however more likely that many prices

will be missing since trades do not take place every second in most financial

markets with the possible exception of foreign exchange markets.

The observed log price at the discrete time point tn (in seconds) is denoted

by Y n ¼ logPtn for observation index n. The number of time points (sec-

onds) in one trading day is denoted by Nd. We therefore have potentially Nd

observations Y 1;Y 2; . . . ;YNd
of the log price of a trade on a particular day d.

The index t0 refers to the start of the period while in this chapter the distance

tn � tn�1 is assumed constant for n ¼ 1; . . . ;Nd : The value Yn will not be

available when no trade has taken place at time tn. Such values will be

treated as missing. The number of trades is denoted by N � Nd so that we

have Nd �N missing values in day d.

A natural estimator of actual volatility is given by the so-called realised

volatility and denoted by ~sn2ðt0; tNd
Þ: Realised volatility can be computed by

~sn2ðt0; tNd
Þ ¼

XNd=m

j¼2

ðYmj � Ymj�mÞ
2 (4)

where m is the sampling frequency (see Andersen, Bollerslev, Diebold, &

Labys, 2001). For example, when the sampling frequency is 5min, m equals

300 assuming that the index of Yn refers to the nth second. In the case a

transaction has not taken place at time n, so that Yn is missing in (4), it can

be approximated via an interpolation method using observed values in the

neighbourhood of Yn (see Malliavin & Mancino, 2002 and Hansen &

Lunde, 2004 for discussions of different filtering methods). Novel asymp-

totic theory is developed for the realised volatility estimator (4) as the

number of observations in the fixed interval [t0, tn] increases (or as m de-

creases, see Barndorff-Nielsen & Shephard, 2001). Specifically, it is shown

that ~sn2ðt0; tNd
Þ is a consistent estimator of actual volatility. This result

suggests that if we sample the log price process logPt more frequently within

a fixed time interval, by taking m small, the efficiency of the estimator

increases. Empirical work on this subject however indicates the complete

opposite (see, in particular, Andreou & Ghysels, 2001 and Bai, Russell, &
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Tiao, 2000). If the realised volatility is computed using more observations, the

estimate seems to diverge. A possible cause of this phenomenon is the fact

that the efficient price is not observed directly. Observed trading prices Yn are

contaminated by the so-called micro-structure noise that has various causes

such as bid-ask bounces, discrete price observations and irregular trading (see

Campbell et al., 1997 for a further discussion with references). Micro-

structure noise can generate significant dependence in first and higher-order

moments of spot prices. This dependence typically vanishes with aggregation.

It is therefore argued that the micro-structure noise ruins the reliability of

realised volatily as an estimator. Recently non-parametric methods have

been proposed by Barndorff-Nielsen et al. (2004) and Ait-Sahalia et al.

(2004) that produce consistent estimates of volatility even in the presence of

micro-structure noise.

1.4. Plan of this Chapter

In this chapter, we take a model-based approach to measure volatility using

high-frequency prices that are observed with micro-structure noise. Stand-

ard formulations for price and volatility from the finance literature will be

considered. Further, the model allows for an intra-daily volatility pattern

and SV. The details of the model are described in Section 2. In this way, the

salient features of high-frequency prices are described and efficient estimates

of actual volatility can be produced. However, the estimation of parameters

in this class of models is nonstandard and simulation-based methods need to

be employed. This also applies to methods for the measurement of volatility.

We propose importance sampling techniques in Section 3 and it is shown

that such methods can work effectively and efficiently for our purposes. This

is illustrated in Section 4 in which daily volatilities are measured from high-

frequency IBM prices recorded at the NYSE for a period of three months.

The detailed results show that the implemented methods work satisfactory

for estimation and measurement. A short discussion in Section 5 concludes

this chapter.

2. MODELS FOR HIGH-FREQUENCY PRICES

2.1. Model for Price with Micro-Structure Noise

Different specifications for the drift and diffusion components of model (1)

have been proposed in the finance literature. Throughout this chapter we
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assume that the drift term equals zero so that varðPtþtjPtÞ; for t40; only
depends on the diffusion term stðcÞ in (1) (see Andersen, Bollerslev, &

Diebold, 2002). For the volatility process stðcÞ we consider three different

specifications in this section. The first and most basic specification is where

the volatility is kept constant over time, that is stðcÞstðcÞ: These assump-

tions lead us to the following model for the efficient price process

dlogPt ¼ sðcÞdBt (5)

where Bt is standard Brownian motion. Other specifications for stðcÞ are
discussed in Sections 2.2 and 2.3.

It is assumed that the observed trade price Yn is a noisy observation of the

efficient price. In other words, the price is possibly contaminated by micro-

structure noise. We therefore have Y n ¼ logPt þUn for t ¼ tn where Un

represents microstructure noise that is assumed to have zero mean and

variance s2U : The noise process Un can be subject to serial correlation, al-

though initially we assume an independent sequence for Un, see also the

discussion in Section 3.1. The discrete time model then becomes

Y n ¼ pn þ sUUn; Un � IIDð0; 1Þ (6)

pnþ1 ¼ pn þ s��n; �n � NIDð0; 1Þ (7)

where pn ¼ logPt is the unobserved price (in logs) at time t ¼ tn for n ¼

1; . . . ;Nd : Here n refers to an index of seconds leading to equidistances

tn � tn�1

In this framework we have a simple expression for actual volatility

sn2ðtn; tnþ1Þ ¼ ðtnþ1 � tnÞs
2
�

The model implies that the observed return

Rn ¼ DY nþ1 ¼ Dpnþ1 þ sUDUnþ1 ¼ s��n þ sUUnþ1 � sUUn

follows a moving average (MA) process of order one, that is Rn � MAð1Þ

(see Harvey, 1989 for a further discussion of the local level model). The

direct consequence of this model is that the returns are not white noise. This

is not an indication that prices are realised at inefficient markets. The serial

correlation is caused by the high-frequency of the realisations and is due to

micro-structure bounces and related effects.

The initial assumption of constant volatility is too strong for a relatively

long period, even for, say, one day. However, this simple framework allows

us to obtain a preliminary estimate of daily volatility using high-frequency

data. The estimation of the local level model (7) is explored in detail by

Durbin and Koopman (2001, Chapter 1) and is based on the standard
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Kalman filter equations. The possibly many missing values in the series Yn

can be accounted for within the Kalman filter straightforwardly. When it is

assumed that micro-structure noise Un and price innovation en are Gaussian

distributed error terms, exact maximum likelihood (ML) estimates of s2U
and s2� are obtained by numerically maximising the Gaussian likelihood

function that can be evaluated via the Kalman filter. When the Gaussian

assumptions do not apply, these estimates can be referred to as quasi-

maximum likelihood (QML) estimates.

Ait-Sahalia et al. (2004) also consider the local level model framework to

describe the true process of the observed log prices and also observe that the

returns therefore follow an MA (1) process. In their theoretical analysis, it is

argued that distributional properties of Un do not matter asymptotically.

The main conclusions of their analysis are that (i) ‘‘modelling the noise

explicitly restores the first order statistical effect that sampling as often as

possible is optimal’’ and (ii) ‘‘this remains the case if one misspecifies the

assumed distribution of the noise term’’. We take these findings as an en-

dorsement of our modelling approach. They further discuss possible exten-

sions of the local level model by modelling Un as a stationary autoregressive

process and by allowing for contemporaneous correlation between Un and

en. In our modelling framework, the former extension can be incorporated

straightforwardly although the estimation of elaborate autoregressive mov-

ing average (ARMA) processes for financial data may be hard in practice.

The latter proposed extension is more difficult from an inference point of

view since the correlation coefficient between Un and en is not identified

when both variances are unrestricted (see the discussions in Harvey &

Koopman, 2000).

2.2. Intra-Daily Seasonal Patterns in Volatility

In empirical work, it is often found that estimates of actual volatility for

different intervals within the day show a strong seasonal pattern. At the

opening and closure of financial markets, price changes are more volatile

than at other times during the trading session. In 24-hour markets, such

different volatile periods within the day can be found too. Discussions of

this phenomenon and empirical evidence are given by, among many others,

Dacarogna, Miiller, Nagler, Olsen, and Pictet (1993) and Andersen and

Bollerslev (1997). To account for the intra-daily variation of integrated

volatility we replace the constant spot volatility s2 in (5) by an intra-daily
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seasonal specification in the volatility, that is

s2t ¼ s2 exp gðtÞ; or log s2t ¼ log s2 þ gðtÞ

where gðtÞ is a deterministic function that can represent a diurnal pattern

and starts at zero, that is gð0Þ ¼ 0: The function gðtÞ is typically very smooth

so that deviations from a diurnal pattern are not captured by gðtÞ: An

example of an appropriate specification for gðtÞ is given in Appendix A. The

integrated volatility becomes

sn2ð0; tÞ ¼
Z t

0

s2s ds ¼ s2
Z t

0

exp gðsÞ ds (8)

The actual volatility can be analytically derived from (8) or it can be

approximated by

sn2ðtn; tnþ1Þ � s2
Xtnþ1

s¼tn

exp gðsÞ

with s2 representing the constant variance part and where the index step

length can be chosen to be very small. As a result, s2� in (7) is replaced by

s2�;n ¼ sn2ðtn; tnþ1Þ: The function gðtÞ ¼ gðt;cÞ depends on parameters that are

collected in vector c, together with the variances s2� and s2U : This parameter

vector can be estimated by ML methods. As a result, model (7) is unchanged

except that the state variance has become dependent of a deterministic func-

tion of time. The Kalman filter can incorporate time-varying coefficients and

therefore the estimation methodology remains straightforward.

2.3. Stochastic Volatility Model

Various specifications for SV models have been proposed. To keep the

analysis and estimation simple, we will assume one of the most basic, non-

trivial specifications. The efficient price process (5) is extended as follows.

The constant volatility s is replaced by a stochastic time-varying process.

The price process can then be described by the system of SDE’s given by

d log Pt ¼ stdB
ð1Þ
t

log s2t ¼ log s
02
t þ x

d log s
02
t ¼ �l log s

02
t dtþ sZdB

ð2Þ
t

(9)
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where B
ð1Þ
t and B

ð2Þ
t are independent Brownian motions and where log s

02
t is

modelled by an Ornstein–Uhlenbeck process. The fixed mean of log

volatility is given by the constant x. The vector of unknown parameters is

c ¼ ðl; x;s2ZÞ0 Using the Euler–Maruyama method (see Kloeden and Platen,

1999 for details) we obtain an approximation to the solution of the system of

SDEs (9) as given by the discrete model representation

log Ptnþ1
¼ log Ptn þ sn�n; �n � NIDð0; 1Þ

log s2n ¼ log s
02
n þ x;

log s
02
nþ1 ¼ ð1� lÞlog s

02
n þ sZZn; Zn � NIDð0; 1Þ

(10)

for n ¼ 1; . . . ;Nd : Note that l ¼ sZ ¼ 0 implies constant volatility with

log s2n ¼ x: The set of equations (10) represents the standard discrete SV

model (see Ghysels, Harvey, & Renault, 1996 for an overview). It follows

that the actual volatility is approximated by

sn2ðtn; tnþ1Þ ¼

Z tnþ1

tn

s2s ds � ðtnþ1 � tnÞs
2
n

Finally, assuming that a particular day d consists of Nd intra-day inter-

vals, the actual volatility of day d is approximated by

sn2ðt0; tNd
Þ �

XNd�1

n¼0

ðtnþ1 � tnÞs
2
n

To analyse the stochastic log prices (mean) and the SV (variance)

simultaneously, it is more convenient to represent the model in terms

of returns logðPtnþ1
=Ptn Þ: It follows from the discussion in Section 2.1 that

when the model for log prices accounts for micro-structure noise, the ob-

served returns Rn follows an MA (1) process. By further allowing for SV, we

obtain

Rn ¼ sn�n þ sUW n (11)

where log s2n is modelled as in (10) and W n ¼ Unþ1 �Un such that W n �

MA ð1Þ: From an estimation point of view, it will be argued in the next

section that ML estimation of the model (11) with an MA (1) noise term or a

general ARMA term is intricate. We therefore leave this problem as for

future research and consider a white noise process for Wn in the empirical

part of this chapter.

The final model that we consider is the price model with SV that also

accounts for the intra-daily seasonal pattern. In the previous section, we

have introduced the flexible deterministic function g(t) for this purpose. The
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final model is therefore based on the system of SDEs

dlog Pt ¼ stdB
ð1Þ
t

log s2t ¼ log s
02
t þ gðtÞ þ x

dlog s
02
t ¼ �llog s

02
t dtþ sZdB

ð2Þ
t

The flexible function gðtÞ is incorporated in the SV specification (10) in the

same way as described in Section 2.2. In particular, log s2n in (10) is replaced

by

log s2n ¼ log s
02
n þ gðnÞ þ x

where tnþ1 � tn is assumed constant for all n.

3. ESTIMATION METHODS

3.1. The Problem of Estimation

It is already argued in Sections 2.1 and 2.2 that the model for prices with

constant or deterministic time-varying volatilities is relatively straight-

forward to estimate by using Kalman filter methods. However, estimating

the model with SV is known to be much more intricate. Various methods

have been developed for the estimation of the SV model without

micro-structure noise. Such methods have been based on QML, Bayesian

Markov chain Monte Carlo procedures, importance sampling techniques,

numerical integration, method of moments, etc. Presenting an overview of

all these methods is beyond the scope of this chapter but the interested

reader is referred to the collection of articles in Shephard (2005). None

of these methods have considered the existence of micro-structure noise in

the returns since most empirical applications have only been concerned

with returns data measured at lower frequencies such as months, weeks and

days. The issue of micro-structure noise is less or not relevant in such cases.

This section discusses feasible methods for the estimation of parameters in

models for returns with SV plus noise since this is relevant for high-

frequency data. We limit ourselves to approximate and ML methods.

Bayesian and (efficient and/or simulated) method of moments can be con-

sidered as well and in fact we believe that such methods are applicable too.

However, given our favourable experiences with ML estimation using

importance sampling techniques for standard SV models, we have been
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encouraged to generalise these methods for the models described in the

previous section.

To focus the discussion on estimation, the model for returns with SV,

intra-daily seasonality and micro-structure noise is represented as the

nonlinear state space model

Rn ¼ s��n þ sUW n (12)

s2n ¼ expfhn þ gðnÞ þ xg

hnþ1 ¼ fhn þ sZZn (13)

where hn ¼ log s
02
n andf ¼ 1� l The log-volatily hn follows an autoregres-

sive process of order one and the micro-structure noise Wn follows an MA

process of order one. These processes can be generalised to other stationary

time-series processes. The disturbances driving the time-series processes for

hn and Wn together with en are assumed Gaussian and independent of each

other, contemporaneously and at all time lags. These assumptions can be

relaxed, see the discussion in Section 3.3. The returns model (12) is nonlinear

and depends on a state vector with log variance log s
02
n modelled as a linear

autoregressive process together with constant x and with intra-daily vola-

tility pattern gðtÞ: The nonlinearity is caused by the term expð1=2hnÞ�n in (12)

since both hn and en are stochastic. Conditional on the unobservable hn,

model (12) can be viewed as a linear Gaussian ARMA model (for the micro-

structure noise sUW n) with additive heteroscedastic noise (for the returns

log Ptnþ1
� log Ptn ).

Different approximation methods for the estimation of the unknown

parameters in model (12) and (13) can be considered. For example, the

multiplicative term expðhn=2Þ�n can be linearised by a first-order Taylor

expansion in hn. The resulting linearised model can be considered by the

Kalman filter. This approach is referred to as the Extended Kalman filter.

The details will not be discussed here since we believe that this approach will

provide a poor approximation especially when the volatility is relatively

large or small, that is, when jhnj is large. Some improvements may be ob-

tained when the resulting estimate of hn is inserted in the model so that a

linear model is obtained which can be treated using standard methods. Such

a mix of approximate methods does not lead to a satisfactory estimation

strategy and therefore we aim to provide a ML estimation method in the

next section.
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3.2. Estimation Using Importance Sampling Techniques

The estimation of parameters in discretised SV models, that is models

(12) and (13) with sU ¼ 0; is not standard since a closed expression for the

likelihood function does not exist. Estimation can be based on approxima-

tions such as QML (see Harvey, Ruiz, & Shephard, 1994), numerical

integration methods for evaluating the likelihood (see Fridman & Harris,

1998), and Markov chain Monte Carlo (MCMC) methods (see Jacquier,

Polson, & Rossi, 1994 and Kim, Shephard, & Chib, 1998). In this chapter,

we focus on Monte Carlo methods of evaluating the likelihood function

of the SV model (see Danielsson, 1994 and Sandmann & Koopman,

1998 for some earlier contributions in this respect). The evaluation of the

likelihood function using Monte Carlo importance sampling techniques

has been considered for the models (12) and (13) with sU ¼ 0 by Shephard

and Pitt (1997) and Durbin and Koopman (1997). Further details

of this approach have been explored in Part II of the monograph of Dur-

bin and Koopman (2001). The basic ingredients of this approach are as

follows:

� The approximate linear Gaussian model

y ¼ yþ u; u � NIDðc;V Þ (14)

is considered with its conditional density denoted by gðyjyÞ where y is

the vector of observations and y the associated unobserved signal. In the

SV model without noise, we have y ¼ ðR1; . . . ;RNd
Þ0 and y ¼

ðh1; . . . ; hNd
Þ0 The approximate conditional Gaussian density gðyjyÞ de-

pends on mean vector c and diagonal variance matrix V which are chosen

such that

_gðyjyÞ ¼ _pðyjyÞ; €gðyjyÞ ¼ €pðyjyÞ

where _qð�Þ and €qð�Þ are the first and second derivatives, respectively, of the

density qð�Þ with respect to y. Further, pð�Þ refers to the density of models

(12) and (13), here with sU ¼ 0: To obtain the mean and variance of gðyjyÞ;
we require to estimate y from the approximate linear Gaussian model (14)

that also depends on y. Therefore an iterative method involving Kalman

filtering and smoothing needs to be carried out.

� Given the importance density associated with the approximate model (14),

simulations from density gðyjyÞ can be obtained using simulation smooth-

ing algorithms such as the recent ones of de Jong and Shephard (1995)
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and Durbin and Koopman (2002). The resulting simulated y’s are denoted

by yðiÞ � gðyjyÞ:

� The importance sampling estimator of the likelihood is based on

LðcÞ ¼ pðy;cÞ ¼

Z
pðy; yÞ dy ¼

Z
pðy; yÞ

gðyjyÞ
gðyjyÞ dy

¼ gðy;cÞ

Z
pðy; yÞ

gðy; yÞ
gðyjyÞ dy

and since pðyÞ ¼ gðyÞ, we obtain the convenient expression

LðcÞ ¼ LgðcÞ

Z
pðyjyÞ

gðyjyÞ
gðyjyÞ dy

where LgðcÞ ¼ gðy;cÞ is the likelihood function of the approximating

model. All densities pð�Þ and gð�Þ depend on parameter vector c even when

this is not made explicit. The importance sampling estimator of the like-

lihood function LðcÞ is therefore given by

bLðcÞ ¼ LgðcÞ
XM

i¼1

pðyjyðiÞÞ

gðyjyðiÞÞ

where yðiÞ � gðyjyÞ for i ¼ 1; :::;M : It is noted that the densities pðyjyÞ and

gðyjyÞ are relatively easy to evaluate. The likelihood function evaluated by

importance sampling is exact but subject to Monte Carlo error.

The last items are general and do not depend on the particular model

specification. Finding an approximate linear Gaussian model from which we

can generate simulation samples from gðyjyÞ; does obviously depend on the

model in question. The details of obtaining an approximate model for the

standard SV model for importance sampling can be found in Shephard and

Pitt (1997) and Durbin and Koopman (2001, p. 195). The values for cn and

Vn, the n-th element of c and the n-th diagonal element of V, respectively, in

this case are obtained by

Vn ¼ 2
expðhnÞ

R2
n

; cn ¼
1

2
V n þ Rn � hn � 1 (15)

For the case with micro-structure noise the values for c and V need to be

derived as hinted in the first item. The details of the derivations are given in
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Appendix B. For the case of IID noise, that is W n � IIDð0; 1Þ; the actual

values are given by

V�1
n ¼

1

2
ðbn � b2nÞ þ bn �

1

2

� �
bn

an
R2

n; cn ¼ Rn � hn �
1

2
Vnbn

R2
n

an
� 1

� �

(16)

where an ¼ expðhnÞ þ s2U and bn ¼ expðhnÞ=an: We note that an40 and

0obn � 1: A strictly positive variance V n40 for all n can not be guaranteed

in this case except when s2UoexpðhnÞ since this implies that bn4
1
2
: However,

in a recent development reported by Jungbacker and Koopman (2005), it is

shown how the ‘‘negative variance’’ problem can be resolved in a satisfac-

tory way.

3.3. Discussion of Estimation Methods

Details of importance sampling methods for estimating the general model

are presented in the previous section. It is assumed that Wn is IID while the

basic modelling framework for the prices in Section 2.1 insists that Wn

should be modelled by an MA (1) process or possibly an ARMA process.

The consideration of an ARMA disturbance term in the measurement

equation requires multivariate sampling devices which are intricate and need

to be developed in future work.

For estimation purposes the price model with SV is reformulated in terms

of returns. The ultimate aim, however, is to estimate models as specified in

(10). The estimation of parameters in such models is not an easy task and

various methods can be considered. In this chapter, we have considered

Kalman filter and importance sampling techniques. This leads to feasible

methods but it is not yet clear how they can be utilised more effectively to

treat models such as (10) directly.

Other estimation techniques can also be adopted with numerical integra-

tion, simulated method of moments and Bayesian methods as obvious ex-

amples. It should be noted that the number of transactions in one trading

day can be as big as 23,400 but is usually between 1,000 and 5,000 for a

liquid stock. As a consequence, the integral of the likelihood function is of a

very high dimension and therefore numerical integration is not feasible.

As far as we know, effective methods of moments and Bayesian methods

are not developed as yet for models such as (10). For example, the MCMC

method of Kim et al. (1998), in which candidate samples are generated by
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approximate densities based on mixture of normals, can not be used

straightforwardly for this class of models.

4. EMPIRICAL RESULTS FOR THREE MONTHS OF

IBM PRICES

4.1. Data

A small subset of the the TAQ database for the NYSE is analysed in the

empirical study below. We only consider the IBM equity transactions re-

ported on Consolidated Tape. The IBM stock is a heavily traded and liquid

stock. The NYSE market opens at 9:30 AM and closes at 4 PM. Prices of

transactions made outside these official trading hours have been deleted.

The resulting database consists of prices (measured in cents of US dollars)

and times (measured in seconds) of transactions realised in the three months

November 2002, December 2002 and January 2003. No further manipula-

tions have been carried out on this dataset. The prices for each trading day

are considered as a time series with the time index in seconds. This time

series have possibly many missing observations. For example, when no trade

has taken place in the last 2minutes, we have at least 120 consecutive

missing values in the series. The treatment of missing values is handled by

the Kalman filter and does not lead to computational or numerical in-

efficiencies.

4.2. Measuring Actual Volatility for One Day

As a first illustration, we consider tick-by-tick prices and returns of

IBM realised on the NYSE trading day of November 1, 2002. In Fig. 1 the

prices and returns are presented for the hourly intervals of the trading day.

The number of trades that has taken place on this day is 3,321. Given that

a trading day consists of 23,400 seconds, that is 6.5 trading hours

times 3,600 seconds in 1 hour, the average duration between trades is

7.05 seconds. In other words, on average, 511 trades in 1 hour and 8.5 trades

in 1minute has been realised. However, approximately, the first 300

trades took place before 10 am and the last 600 trades took place after 3 pm.

The time series of prices and returns presented in Fig. 1 are against an

index of seconds. This means that 23,400 observations can be displayed but
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only 3,321 transactions have been realised, resulting in 20,079 missing values

on this day. We note that no multiple trades occurred in the same second.

These facts aim to put the plots of Fig. 1 into some perspective. Due to the

lack of resolution in our graphs, the majority of missing values go almost

unnoticed.

In Fig. 2 we present prices, returns and squared log returns of the

IBM stock for November 1, 2002. Here the index is trade by trade. Nev-

ertheless, the series of prices in Figs. 1 and 2 appear to be very similar. This

is again due to the limited resolution that can be provided in these graphs. In

any case, both plots of returns show that volatility is substantially higher at

the beginning of the trading day and somewhat higher at the end of the

trade session. The small price variation in the middle of the trading day is

probably due to the fact that no relevant information has arrived in these

hours.

To analyse the trade prices on this day, we first consider the model

for prices (5) with constant volatility s and intra-daily pattern gðtÞ for

spot volatility. For the function of gðtÞ we adopt the cubic spline as

described in Appendix A with three knots fg1; g2; g3g of which two are

at either ends of the trading day and one is placed in the middle of the day.
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80.5 Price IBM Stock 11/1/2002

10:00 11:00 12:00 13:00 14:00 15:00 16:00

-0.25
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0.50 Log Returns IBM Stock 11/1/2002

10:00 11:00 12:00 13:00 14:00 15:00 16:00

Fig. 1. IBM Stock Prices and Returns for All Trades on November 1, 2002. The

tick-by-tick data is Presented Against Time in Seconds.
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The first knot coefficient g1 is restricted to be zero so that gðt0Þ ¼ 0: It is
argued in Section 2.1 that the standard Kalman filter can be used in

the estimation of coefficients for this model. The Kalman filter as imple-

mented in the SsfPack package of Koopman, Shephard, and Doornik (1999)

allows for missing values and deterministic time-varying variances. We have

implemented the calculations in the Ox package of Doornik (2001) using

the state space library of SsfPack, version 3. The estimation results are given

by

log bs ¼ �5:112; bg2 ¼ �1:747; bg3 ¼ �1:135

These reported values provide some initial indication of results that can

be obtained from a high-frequency analysis.

More interestingly from theoretical and empirical perspectives are the

results for the returns model with SV and intra-daily seasonality. In par-

ticular, we focus on the differences in estimation results for models with or

without micro-structure noise. The estimation method for the model with

0 250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000 3250
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Fig. 2. IBM Stock Prices, Returns and Squared Log Returns for All Trades on

November 1, 2002. The Data are Presented Against the Trade Index So that Every

Tick is One Trade.
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SV and noise requires importance sampling techniques as discussed in

Section 3.2. The necessary calculations are implemented in Ox with intensive

use of the SsfPack to obtain an approximating model and to simulate ran-

dom samples of log volatility conditional on returns.

The parameter estimates are as follows. For models (12) and (13) without

micro-structure noise sU ¼ 0; we have

bf ¼ 0:961; bs2Z ¼ 0:0619; log bs ¼ �7:977; bg2 ¼ �1:654; bg3 ¼ �1:135

For the SV model with micro-structure noise, we have

bs2U ¼ 0:00003985; bsU ¼ 0:00631; bf ¼ 0:955;

bs2Z ¼ 0:0821; logbs ¼ �8:033; bg2 ¼ �1:629; bg3 ¼ �1:065

In comparison with the earlier results for a model with a constant plus

spline volatility, the estimates ŝ are smaller since the stochastic part of log

volatility also accounts for part of the variance. The persistence of log vol-

atility is in the same order when the model is estimated with noise or without

noise. Although apparently the micro-structure noise seems low, it has a big

impact on the estimate ŝZ: In fact, this estimate ŝZ has increased after micro-

structure noise is included in the model. It can be concluded that more

variation is attributed to the stochastic part rather than the constant part of

volatility, especially when micro-noise is excluded from the observed

returns.

In Fig. 3, we present the estimated volatility components for this day. The

time-series length is 23,400 seconds for which 20,079 seconds have recorded

no price. During the model estimation process, these 20,079 non-available

prices are treated as missing observations. This approach does not lead to

computational or numerical inefficiencies. The estimated prices and returns

are obtained using the importance sampling methods for filtering and

smoothing, (see Durbin & Koopman, 2001, Chapter 11 and Appendix B for

further details). As a result, we obtained 23,400 estimates for which the vast

majority of values are the result of interpolations implied by the estimated

model. To provide a somewhat more detailed insight, we also present

estimates of log s0t for a smaller interval of 30minutes and four intervals of

5minutes in Figs. 4 and 5, respectively. It shows clearly that when returns

are sampled every 30minutes or every 5minutes, much of the variation in

the returns is unaccounted for.
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4.3. Measuring Actual Volatility for Three Months

The model-based methods for estimating coefficients and for measuring

volatility are implemented satisfactorily. Several limited simulation studies

have been carried out and they confirm the reliability of the implemented

procedures. Subsequently, we repeat the analysis for a large dataset of IBM

stock returns for 61 consecutive trading days in the months November 2002,

December 2002 and January 2003. We present in Fig. 6 the measures ob-

tained for standard realised volatility calculations, for a model with constant

volatility plus micro-structure noise, for a model with constant, spline and

SV, and for a model with constant, spline and SV plus micro-structure noise.

The patterns of the volatility measures are similar although the variation

among different days is different. The levels of realised volatility and of

estimates from a constant volatility plus noise model are comparable with

each other. However, the model-based measure is somewhat less noisy since

the micro-structure noise is separated from the underlying price changes.

The levels of volatility measures obtained from models with splines and SV

are higher compared to the earlier two basic measures. The difference is due

to the fact that variations between, say, 5minutes are not considered in the
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Fig. 3. Estimated Intra-Day Volatility: (i) Log-Volatility Component Log ŝ
0

n; (ii)

Intra-Daily Volatility Pattern ĝðnÞ; (iii) Integrated Volatility sn2ðtn�1; tnÞ:
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constant volatility measures. Fig. 5 nicely illustrates the amount of variation

that is missed when sampling takes place every 5minutes or even every

1minute. In the SV modelling framework, all variations within the day, at a

frequency as high as seconds, are taken into account. This clearly leads to a

higher scaling of volatility. In the case of the model with constant volatility,

the estimates are lower since they are close to a mean of squared log returns

which implies that excessive variations are averaged out. This does not apply

to the other SV models, where the variance is decomposed into different

effects such as intra-day diurnal effects and SV.

The difference between the models with micro-structure noise and without

noise seems relatively small. However, we note that the number of trades in

each day are between 2,000 and 5,000. It is clear that the volatility estimates

for models with SV and noise are somewhat lower compared to SV models

without noise, as the former model attributes part of the noise to micro-

structure effects.

Finally, we display the sample autocorrelation functions for the daily

volatility measures in Fig. 7. Although it is somewhat surprising that the
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Fig. 6. Volatility measures: (i) Realised Volatility; (ii) Estimates from a Constant

Volatility Model with Noise; (iii) Estimates from a Constant, Spline and SV Model;

(iv) Estimates from a Constant, Spline and SV Model with Noise. The Volatility

Estimates are for the 61 Trading Days of November 2002, December 2002 and

January 2003.
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correlogram for realised volatility is not significant at any lag despite the

widely accepted view that realised volatility is serially correlated and can be

effectively modelled as an autoregressive fractional integrated moving av-

erage (ARFIMA) process (see, for example, Andersen, Bollerslev, Diebold,

& Labys, 2003). However, for the realised volatility series analysed in Ko-

opman, Jungbacker, and Hol (2005), many instances are encountered where

the correlogram is also not significant when random subsamples of length

100 are considered. Note that for the full sample of approximately 1,500

daily realised volatilies, a significantly persistent correlogram is present. In

the analysis of this section, it appears that model-based measures of vol-

atility are persistent over days, especially when SV is modelled explicitly.

The daily time series of model-based volatility measures are relatively

smooth and clearly contain some level of persistency. These preliminary

results may have shown that the supposed long memory property of realised

volatility may not exist for a relatively small number of days whereas for

high-frequency measures the persistence of daily volatility estimates remain

to exist. In the latter case, daily volatilities can still be modelled as ARFIMA

processes even for small samples.
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Fig. 7. Sample Autocorrelation Functions of the Volatility Measures from Fig. 6.

The Autocorrelation Coefficients are Therefore Based on 61 Datapoints.
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5. DISCUSSION AND CONCLUSION

We have proposed to measure volatility from high-frequency prices using a

model-based framework. A standard basic model is considered that captures

the salient features of prices and volatilities in financial markets. In par-

ticular, it accounts for micro-structure noise, an intradaily volatility pattern

and SV. Feasible estimation methods have been implemented for this class

of models and the illustration shows that this approach can work effectively

in determining the volatility in financial markets using tick-by-tick data. As

a result, no information is lost as opposed to realised volatility for which

prices are sampled at a low frequency, say 5 or 10minutes. Therefore, a part

of the variation in prices is lost in realised volatility. When more detailed

comparisons are made between realised volatility and the high-frequency

measures, it is shown that the supposed long memory property of realised

volatility may not be identified from a relatively small number of days

whereas for high-frequency measures the persistence of daily volatility es-

timates remain. However, more empirical investigation is needed to obtain

further insights on this issue. Nonparametric methods have also been pro-

posed recently to tackle the problem of micro-structure noise. However, as

far as we know, this chapter presents a first attempt to analyse ultra high-

frequency prices using a model that simultaneously accounts for micro-

structure noise and SV.
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APPENDIX A. CUBIC SPLINE FOR INTRA-DAILY

VOLATILITY PATTERN

The intra-daily pattern of volatility is captured by a flexible function gðtÞ: In
this chapter, we take gðtÞ as a cubic spline function. We follow Poirier (1976)

in developing a cubic spline. Given a mesh of, say 3, x values (fx0; x1; x2g)
and a set of corresponding y values ðfy0; y1; y2g; respectively), the y values

for xj�1 � x � xj can be interpolated by

y ¼ gðxÞ ¼
ðxj � xÞ3

6ðxj � xj�1Þ
z1; j�1 þ

ðx� xj�1Þ
3

6ðxj � xj�1Þ
z1; j þ ðxj � xÞz2; j

þ ðx� xj�1Þz3; j þ z4; j ; j ¼ 1; 2

where zi,j is an unknown coefficient for i ¼ 1; 2; 3; 4 and j ¼ 1; 2: The co-

efficients zi,j are determined by restricting smoothness conditions on gðxÞ

such as continuity at xj (j ¼ 1; 2) of the spline itself and its first and second

derivatives. The resulting set of equations can be solved in zi,j via standard

matrix algebra. Given a solution for zi,j, the spline function can be expressed

as

gðxÞ ¼
X2

j¼0

wjyj ;
X2

j¼0

wj ¼ 1

where weights wj depend on x and the mesh fx0;x1;x2g:
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APPENDIX B. APPROXIMATING MODEL FOR SV

WITH NOISE

Consider a non-linear state-space model where the state equation is linear

Gaussian and the distribution of the observations Y ¼ ðY 1; . . . ;YNÞ con-
ditional on the states h ¼ ðh1; . . . ; hNÞ is determined by the probability

density pðY njhnÞ; n ¼ 1; . . . ;N : It is evident that the SV models considered

in the main text are special cases of this class of models, the interested reader

is referred to Durbin and Koopman (2001) for more examples. For the

importance sampling procedure a linear Gaussian approximating model is

chosen with the same state equation as the true model but with an obser-

vation equation given by

Y n ¼ cn þ hn þ un; un � NIDð0;V nÞ (B.1)

where the constants cn and Vn have to be chosen in a suitable manner. The

approach advocated in Durbin and Koopman (2001) consists of choosing cn
and Vn for n ¼ 1; . . . ;N such that the true smoothing density, pðhjY Þ; and
the smoothing density of the approximating model, gðhjY ;V ; cÞ; have the

same modes and equal curvatures around these modes. This means, denot-

ing V ¼ ðV 1; . . . ;VN Þ
0 and c ¼ ðc1; . . . ; cN Þ

0; that V and c are solutions to

the system of equations defined by

@pðY ; hÞ

@hn
¼

@gðY ; h; c;V Þ

@hn
¼ 0

and

@2pðY ; hÞ

@h2n
¼

@2gðY ; h; c;V Þ

@h2n

for n ¼ 1; . . . ;N : Solving these equations for c and V is as follows. First of

all, the mean and the mode have the same location for a Gaussian density.

This means that, conditional on c and V, the mode, ĥ ¼ ðĥ1; . . . ; ĥN Þ; can be

obtained by computing the mean of gðhjV ; cÞ; a problem that is routinely

handled by the Kalman filter and smoother. On the other hand, the fact that

the marginal distribution of h is equal for both the true and the approx-

imating models, combined with the monotonicity of the log transformation,

implies that the system of equations is equivalent to

@ log pðY jhÞ

@hn
¼

@ log gðY jh; c;V Þ

@hn
¼ 0
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and

@2 log pðY jhÞ
@h2n

¼ @2 log gðY jh; c;V Þ
@h2n

implying that conditional on the mode h a solution to this set of equations is

given by the vectors V and c satisfying

@ log pðY njhnÞ
@hn

����
hn¼ĥn

¼ @ log gðY njhn; c;V Þ
@hn

����
hn¼ĥn

and

@2 log pðY njhnÞ
@h2n

�����
hn¼ĥn

¼ @2 log gðY njhn; c;V Þ
@h2n

�����
hn¼ĥn

for n ¼ 1; . . . ;N : If we now use

@ log gðY njhn; c;V Þ
@hi

¼ Y n � hn � cn

Vn

and

@2 log gðY njhn; c;V Þ

@h2n
¼

1

V n

then these expressions imply

V n ¼
@2 log pðY njhnÞ

@h2n

 !�1

(B.2)

and

cn ¼ Y n � hn � V n

@ log pðY njhnÞ

@hn
(B.3)

These two observations suggest the following algorithm

1. Choose a starting value h1 for ĥ:
2. Adopt hi to obtain ci and Vi using (B.2) and (B.3) for i ¼ 1; 2; . . . : Create

a new proposal for ĥ that is hiþ1; by applying the Kalman smoother to

Y 1; . . . ;YN for the model defined by (B.1), with c ¼ ciand V ¼ V i

3. Keep repeating 2 until jjhiþ1 � hijjo�c; where �c is some small threshold

value.

To implement this algorithm for the SV models considered in this chapter,

the only thing that remains is the calculation of the derivatives in (B.2) and
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(B.3). For the SV model defined in (10) these derivatives are given by

@ log pðY njhnÞ
@hn

¼ 1

2

Y 2
n

exp hn
� 1

� �
;

@2 log pðY njhnÞ

@h2n
¼ �

Y 2
n

2exp hn

For the SV model with micro-structure noise defined in (11), we have

@ log pðY njhnÞ

@hn
¼

1

2
bn

Y 2
n

an
� 1

� �

@2 log pðY njhnÞ

@h2n
¼

1

2
� bn

� �
bnY

2
n

an
�

1

2
bn � b2n
� �

where an ¼ expðhnÞ þ s2U and bn ¼ expðhnÞ=an:
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NOISE REDUCED REALIZED

VOLATILITY: A KALMAN FILTER

APPROACH

John P. Owens and Douglas G. Steigerwald

ABSTRACT

Microstructure noise contaminates high-frequency estimates of asset price

volatility. Recent work has determined a preferred sampling frequency un-

der the assumption that the properties of noise are constant. Given the

sampling frequency, the high-frequency observations are given equal

weight. While convenient, constant weights are not necessarily efficient.

We use the Kalman filter to derive more efficient weights, for any given

sampling frequency. We demonstrate the efficacy of the procedure through

an extensive simulation exercise, showing that our filter compares favor-

ably to more traditional methods.

1. INTRODUCTION

Long-standing interest in asset price volatility, combined with recent devel-

opments in its estimation with high-frequency data, has provoked research

on the correct use of such data. In this paper we offer a framework for high-

frequency measurement of asset returns that provides a means of clarifying
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the impact of microstructure noise. Additionally, we provide Kalman filter-

based techniques for the efficient removal of such noise.

In a series of widely cited articles, Andersen, Bollerslev, Diebold, and

Ebens (2001) and Barndorff-Nielsen and Shephard (2002a,b) lay out a the-

ory of volatility estimation from high-frequency sample variances. Accord-

ing to the theory, realized volatility estimators can recover the volatility

defined by the quadratic variation of the semimartingale for prices. Realized

volatility estimators are constructed as the sums of squared returns, where

each return is measured over a short interval of time.1

Realized volatility differs markedly from model-based estimation of vol-

atility. The widely used class of volatility models derived from the ARCH

specification of Engle (1982), place constraints on the parameters that cor-

respond to the interval over which returns are measured. Empirical analyses

of these models rarely support the constraints. In contrast, realized volatility

estimators do not require a specified volatility model.

The asymptotic theory underpinning realized volatility estimators sug-

gests that the estimators should be constructed from the highest frequency

data available. One would then sum the squares of these high-frequency

returns, giving each squared return equal weight. In practice, however, very

high-frequency data is contaminated by noise arising from the microstruc-

ture of asset markets.

By now, it is widely accepted that market microstructure contamination

obscures high-frequency returns through several channels. For example,

transaction returns exhibit negative serial correlation due to what Roll

(1984) terms the bid-ask bounce. When prices are observed at only regular

intervals, or are treated as if this were the case, measured returns exhibit

nonsynchronous trading biases as described in Cohen, Maier, Schwartz, and

Whitcomb (1978, 1979), and Atchison, Butler, and Simonds (1987), and Lo

and MacKinlay (1988, 1990). Because transaction prices are discrete and

tend to cluster at certain fractional values, prices exhibit rounding distor-

tions as described in Gottlieb and Kalay (1985), Ball (1988), and Cho and

Frees (1988). Noise cannot be removed simply by working with the middle

of specialist quotes; while mid-quotes are less impacted by asynchronous

trade and the bid-ask bounce, mid-quotes are distorted by the inventory

needs of specialists and by the regulatory requirements that they face.2

Simulations by Andersen and Bollerslev (1998) and Andreou and Ghysels

(2002), among many others, illustrate the effects of finite sampling and

microstructure noise on volatility estimates under a variety of specifications.

Differences in model formulation and assumed frictions make drawing

robust conclusions about the effects of specific microstructure features
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difficult. Nevertheless, from the cited work, it is clear that microstructure

frictions, as a group, cannot be safely ignored.

Essentially, three strands of research exist that treat the problem of

microstructure noise in realized volatility estimation. The first attempts to

remove the noise with a simple moving-average filter as in Zhou (1996).

Andersen, Bollerslev, Diebold, and Ebens (2001) and Corsi, Zumbach,

Müller, and Dacorogna (2001) select a sample frequency of five minutes

based on a volatility signature plots, and then apply a moving-average filter.

In contrast, Russell and Bandi (2004) work with an explicit model of

microstructure noise. Rather than filtering the data to reduce the noise, they

determine an optimal sampling frequency in the presence of noise. To do so,

they construct a mean-squared error criterion that trades off the increase in

precision against the corresponding increase in noise that arises as the sam-

pling frequency increases. Although squared returns are given equal weight

for a given asset, the optimal sampling interval that arises can vary across

assets. Ait-Sahalia, Mykland, and Zhang (2003) and Oomen (2004) offer

similar treatments. Finally, Hansen and Lunde (2004) derive a Newey and

West (1987) type correction to account for spurious correlations in observed

returns.

Theory suggests that noise volatility remains relatively constant. How-

ever, it is known that return volatility varies markedly. Thus, the relative

contributions of noise and actual returns toward observed returns vary.

During periods of high-return volatility, return innovations tend to dom-

inate the noise in size. In consequence, we propose a somewhat different

estimator in which the weight given to each return varies. Observed returns

during periods of high volatility are given larger weight.

Our argument has three parts. First, we frame a precise definition of noise

in terms of market microstructure theory. Second, we show how the Kalman

filter can be used to remove the microstructure noise. We pay particular

attention to how the variability of the optimal return weights depends on

high-frequency volatility. Third, we demonstrate the efficacy of the filter in

removing the noise.

2. MODEL

To formalize, consider a sequence of fixed intervals (five-minute periods, for

example) indexed by t. The log of the observed price at t is ~pt ¼ pt þ Zt;
where pt denotes true price and Zt denotes microstructure noise. The

observed return is
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~rt ¼ rt þ �t (1)

where ~rt ¼ pt � pt�1 is the latent (true) return and �t ¼ Zt � Zt�1 is the return

noise.

We employ assumptions typical of the realized volatility literature. Our

first assumption concerns the latent (true) price process.

Assumption 1. (Latent price process). The log true price process is a con-

tinuous local martingale. Specifically,

pt ¼
Z t

0

vsdws

where ws is standard Brownian motion and the spot volatility process, vs is

a strictly positive cadlag process such that the quadratic variation (or

integrated volatility) process, V t; obeys

V t ¼
Z t

0

vsdso1

with probability one for all t.

Assumptions about noise dynamics must be selected with care. Close

study of microstructure noise reveals strong positive correlation at high

frequency.3 The correlation declines sharply with the sampling frequency,

due to intervening transactions. To understand these effects, we discuss

three prominent sources of noise.

The bid–ask bounce, discussed by Roll (1984), arises because transactions

cluster at quotes rather than the true price. Hasbrouck and Ho (1987) show

that this source of noise may be positively correlated as a result of clustered

trade at one quote (due to the break up of large block trades). However, the

positive noise correlation due to trade clustering nearly vanishes between

trades more than a few transactions apart. In a similar fashion, positive

noise correlation arising from the common rounding of adjacent transac-

tions, vanishes at lower sampling frequencies.

The nonsynchronous trading effect, discussed by Lo and MacKinlay

(1990), arises when transactions are relatively infrequent. If transactions are

infrequent relative to the measurement of prices at regular intervals, then

multiple price measurements refer to the same transaction, inducing positive

noise correlation. Again, the positive noise correlation vanishes as the sam-

pling frequency declines.

To determine the sampling frequency at which noise is uncorrelated,

Hasbrouck and Ho (1987) study a large sample of NYSE stocks. They find no

significant correlation for observations sampled more than 10 transactions
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apart. Hansen and Lunde (2004) find supporting evidence in their recent

study of Dow Jones Industrial Average stocks. In consequence, we assume

that the sampling interval contains at least 10 transactions to justify treating

microstructure noise as an i.i.d. sequence.

Assumption 2. (Microstructure noise). The microstructure noise forms an

i.i.d. sequence of random variables each with mean zero and variance

s2Zo1 and independent of the latent return process.

We do not make any distributional assumptions about microstructure

noise. However, as the noise is composed of a sum of several largely in-

dependent features, and because these features tend to be symmetric, the

assumption of normally distributed noise may be a plausible approximation.

Consequently, we consider normally distributed microstructure noise in

Section 3.

Under Assumption 2, it is clear that return noise forms an MA(1) process

with a unit root. To determine the covariance structure of observed returns,

we assume that latent returns form a weakly stationary martingale.

Lemma 1. If in addition to Assumption 1 and Assumption 2, rt forms a

weakly stationary process with unconditional mean zero and uncondi-

tional variance s2r ; then the autocovariance function of observed returns

obeys

Cov ~rt; ~rt�kð Þ ¼
s2r þ 2s2Z if k ¼ 0

�s2Z if k ¼ 1

0 if k41

8
><

>:

Moreover, the first-order autocorrelation is given by

r ¼ �
s2Z

s2r þ 2s2Z

For each day, which contains n intervals, define the following three volatility

measures.

1. The integrated volatility, V ¼ Sn
t¼1s

2
t :

2. An infeasible estimator, constructed from latent returns, V ¼ Sn
t¼1 r

2
t :

3. A feasible estimator, V̂ ¼ Sn
t¼1 r̂

2
t ; where r̂t ¼ ~rt in the absence of noise.

To motivate the form of the feasible estimator, decompose the estimation

error as
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V � V̂ ¼ V � V þ V � V̂ (2)

The behavior of V � V as a function of step length and the underlying

volatility process has been studied by Barndorff-Nielsen and Shephard

(2002a). If the step length is chosen (hence n is fixed), then this part of the

error is beyond the control of the researcher. Therefore, we focus on min-

imizing the mean squared error E V � V̂
� �2

; where ~r0 ¼ ~rt; � � � ; ~rTð Þ and

T ¼ n � J (J is the number of days in the sample). It is well known that the

mean squared error is minimized by choosing

V̂ ¼ E V j~r
� �

¼ E
X

n

t¼1

r2t

�����~r

 !

¼
Xn

t¼1

E r2t j~r
� �

Thus, in order to minimize the effects of microstructure noise, we must

extract expected squared latent returns from observed returns. The effec-

tiveness with which the extraction can be achieved depends on the correct

treatment of the microstructure noise.

2.1. Kalman Filter and Smoother

The Kalman filter provides a technique to separate (observed) contami-

nated returns into two components: the first corresponds to (latent) true

returns and the second to microstructure noise. To construct the filter, we

follow the notation in Hamilton (1994) (Harvey, 1989 also provides text-

book treatment). The state vector consists of latent variables, x0t ¼
rt; Zt; Zt�1

� �

: The observation equation relates the state vector to observed

returns

~rt ¼ H0xt (3)

where H 0 ¼ ð1; 1; �1Þ: The state equation describes the dynamic evolution

of the state vector

xtþ1 ¼ Fxt þ Rvtþ1 (4)

where v0t ¼ rt; Zt
� �

with covariance matrix

Qt ¼
s2t 0

0 s2Z

 !
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and the coefficient matrices are

F ¼
0 0 0

0 0 0

0 1 0

0

B@

1

CA and R ¼
1 0

0 1

0 0

0

B@

1

CA

The Kalman filter delivers the linear projection of the state vector xt;
given the sequence of observations ~r1; � � � ; ~rtf g: The Kalman smoother de-

livers the corresponding linear projection onto the extended sequence ~r:
While these linear projections make efficient use of information, they may

have larger MSE’s than nonlinear projections. As conditional expectations

need not be linear projections, we distinguish between linear projections

and conditional expectations. Let Êt represent linear projection onto F t ¼
f~rt; ~rt�1; . . . ; ~r1; 1g: Let x̂tjt ¼ Êt xtð Þ and let

Ptjt ¼ E xt � x̂tjt

� �

xt � x̂tjt

� �0h i

(5)

represent the mean squared error matrices of these projections. For ex-

ample, the one-step-ahead mean squared error matrix Ptjt�1 is a diagonal

matrix with the first diagonal element equal to s2t and the second equal to

s2Z: The third diagonal element we define as ct ¼ Var Ẑt�1jt�1

� �

: The ct are

determined though a recursion described below. Let ut denote the one-

step-ahead prediction error for the observed returns. Then it follows that

the variance of ut, which we denote by Mt, is given by M t ¼ H 0Ptjt�1H ¼
s2t þ s2Z þ ct:

The projections from the Kalman filter are given by the recursion

r̂tjt s2t
� �

¼ s2t
M t

~rt þ Ẑt�1jt�1

� �

(6)

Ẑtjt ¼
s2Z

M t

~rt þ Ẑt�1jt�1

� �

(7)

ctþ1 ¼
s2Z s2t þ ct
� �

M t

(8)
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The recursion and the boundary conditions Ẑtjt ¼ 0 and c1 ¼ s2Z determine

the sequence of filtered returns and filtered noise.

The projections from the Kalman smoother, which are the elements of

x̂tjT ¼ ÊT xtð Þ; are

r̂tjT s2t
� �

¼ r̂tjt s2t
� �

� s2t
s2t þ ct

ẐtjT � Ẑtjt
� �

(9)

Ẑt�1jT ¼ Ẑt�1jt þ
ct

s2t þ ct
ẐtjT � Ẑtjt
� �

(10)

Smoothed quantities exhibit smaller variances than their filtered counter-

parts. For example, if we let dtþ1 ¼ Var ẐtjT
� �

; then it can be shown that

d t ¼ ct
s2t þ s2Z

s2t þ s2Z þ ct

 !

� ct

s2t þ ct

� �2

ctþ1 � d tþ1ð Þ (11)

As is easily verified from their definitions, dTþ1 ¼ cTþ1: Consequently,

dTocT ; and, by an induction argument, it follows that d toct for t ¼
1; 2; . . . ;T ; establishing that Var ẐtjT

� �

oVar Ẑtjt
� �

for t ¼ 1; 2; . . . ;T � 1:
The smoother estimates the latent returns as weighted averages of con-

temporaneous, lagged, and future observed returns. If variance is constant,

so that s2t ¼ s2r for all t, then the weights are nearly the same for all

smoothed returns. To see the point clearly, consider a numerical example. If

s2r ¼ 10; s2Z ¼ 1; and T ¼ 7; then, ignoring weights less than 0.001, we have

that

~r4j7 ¼ 0:006~r2 þ 0:0709~r3 þ 0:8452~r4 þ 0:0709~r5 þ 0:006~r6

while

~r3j7 ¼ 0:0059~r1 þ 0:0709~r2 þ 0:8452~r3 þ 0:0709~r4 þ 0:006~r5.

Thus, an almost identical weighting scheme determines the third and fourth

optimally estimated latent returns. For large samples, the weights are even

more consistent. Except for a few returns at the beginning and end of the

sample, the assumption of constant volatility leads to estimates of latent

returns that are essentially a weighted average of the observed returns where

the weights, for all practical purposes, are constants.

If, as is almost certainly the case in practice, latent returns do not exhibit

constant volatility, then the optimal weights for estimating latent returns in

(6)–(8) and (9)–(10) are not constant. Instead, during periods of high vol-

atility, the optimal weights are larger for the currently observed return, and

lower for the other returns.
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2.2. Bias

With the estimated latent returns r̂tjT ¼ Ê rtj~rð Þ; it seems natural to estimate

realized volatility by Sn
t¼1 r̂

2
tjT (note, r̂2tjT stands for r̂tjT

� �2
). Yet, because

filtering is a linear transformation, while squaring is not, r̂2t is a downward

biased estimator of E r2t j~r
� �

: Fortunately, the size and direction of the bias is

determined in the normal course of constructing the Kalman smoother. For

the bias E r2t � r̂2tjT

� �

; the properties of projection mappings imply4

E rt � r̂2tjT

� �2
� 	

¼ E ÊT r2t � 2r̂tjT rt þ r̂2tjT

� �h i

¼ E r2t � r̂2tjT

h i

(12)

Thus, the bias equals the (1, 1) element of the mean squared error matrix for

r̂tjT :
We find that the bias is

bt s2t
� �

¼ bft s2t
� �

� s2t
s2t þ ct

� �2

ctþ1 � d tþ1ð Þ (13)

where bft s2t
� �

(the bias of the filtered return r̂tjt) is

bft s2t
� �

¼ s2t
s2Z þ ct

s2t þ s2Z þ ct�1

 !

(14)

Recall that ct is the element of the variance for the filtered prediction of Zt�1

and dt is the corresponding variance element for the smoothed prediction.

As shown in (11), for toT the smoothed estimator has lower variance than

the filtered estimator.5 As a result, the bias of the smoothed estimator is

smaller than the bias of the filtered estimator, and so we concentrate on the

smoothed estimator in what follows.

To determine the magnitude of the bias, consider the simple case in which

s2t ¼ s2r (constant volatility). The bias, bt; is well approximated by

s2r 1� 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4s2Z=s
2
r

q

0

B

@

1

C

A

In accord with intuition, the bias is a decreasing function of the return

variance and an increasing function of the noise variance. If s2Z=s
2
r ¼ :1; then

the bias is 15 percent of the return variance and 50 percent larger than the

expected squared noise term.6 If the noise variance dominates, so that

s2r=s
2
Z ’ 0; then the bias is approximately s2r : If the return variance dom-

inates, then the bias is near zero.
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3. MULTIVARIATE NORMAL APPROACH

To analyze the multivariate normal case, it is convenient to work in vector

form. Let r ¼ r1; r2; � � � ; rTð Þ0 and Z ¼ Z0; Z1; . . . ; ZT
� �0

so that

~r ¼ rþ BZ

Here B is a selection matrix with first row �1; �1; 0; � � � ; 0½ �: The covar-

iance matrix of r is L ¼ diag s2t
� �

: The Kalman smoother equations (in vec-

tor form) are

r̂ ¼ L Lþ s2ZBB
0

� ��1

~r and S ¼ s2ZB Iþ s2ZB
0L�1B

� ��1

B0 (15)

From Assumption 1, it follows that rtjs2t � N 0;s2t
� �

: If we extend the as-

sumption to

r

Z

 !

� NT 0;
L 0

0 s2ZI

 ! !

then it is simple to derive the conditional distribution of ~rjr: Specifically,

rj~r � NT r̂;Sð Þ (16)

where r̂ and S are identical to the quantites from the Kalman smoother (15).

Under the assumption of joint normality r̂ ¼ E rj~rð Þ; so, the smoothed

estimator is the conditional expectation rather than simply the optimal lin-

ear projection. Similarly, S ¼ Var rjr̂ð Þ rather than simply the MSE matrix of

the linear projection. This is especially useful for understanding the source

of the bias that arises from squaring filtered returns. Here

Var rtj~rð Þ ¼ E r2t j~r
� �

� E2 rtj~rð Þ (17)

The optimal estimator E r2t
�

�~r
� �

exceeds the square of the optimal estimator

for latent returns E2 rtj~rð Þ: The correction term Var rtj~rð Þ does more than

simply correct for the bias. Because the correction term corresponds to the

conditional covariance matrix of r given the observed returns, the correction

delivers the conditional expectation of squared returns. In consequence, we

are able to form an optimal nonlinear estimator from an optimal linear

estimator as

E r2t j~r
� �

¼ E2 rtj~rð Þ þ Var rtj~rð Þ
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4. IMPLEMENTATION

The above analysis, in which it is assumed that s2t
� �

and s2Z are known,

suggests the use of the bias-corrected estimator

V̂ s2t
� �

¼
X

n

t¼1

r̂2tjT s2t
� �

þ bt s2t
� �

h i

To implement the method, we need estimators of s2t
� �

and s2Z:
If the latent return variance is assumed constant, then s2t ¼ s2r and the

bias-corrected estimator V̂ s2r
� �

is a function only of s2r and s2Z: From Lem-

ma 1, the first two autocovariances of the observed returns series are suf-

ficient for determining the variance of the noise and the expected variance of

the true returns. (If one wishes to make further distributional assumptions,

then ML estimators may be used in place of the method of moments es-

timators.) Andersen et al. (2001) employ an MA(1) estimator that, while

similar to V̂ s2r
� �

; does not contain smoothed estimates and makes no bias

correction.

For the case in which the return variances are not constant, we begin with

r̂2tjT ŝ2r
� �

and bt ŝ2r
� �

: We then estimate the time-varying variance with a roll-

ing window.7

ŝ2tjT ¼ 1

25

X

tþ12

k¼t�12

r̂2kjT ŝ2r
� �

þ bk ŝ2r
� �

� �

(18)

The estimated time-varying variances from (18) together with ŝ2Z; yield

r̂2tjT ŝ2t
� �

from (9) and bt ŝ2t
� �

from (13).

For the case of constant variance, laws of large numbers ensure the con-

sistency of ŝ2r and ŝ2Z: Similar results are derived for ML estimators in Ait-

Sahalia et al. (2003). To establish consistency if the return variance is not

constant, it seems natural to specify a dynamic structure for s2t
� �

: Rather

than focus on this problem, we seek to recover latent realized volatility with

a general purpose filter that minimizes mean squared error.

5. PERFORMANCE

To test the performance of the suggested filter against realistic scenarios, we

use a model for the simulated latent returns that is consistent with the return

behavior of the S&P 500 stock index. A popular special case of Assump-

tion 1 is
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dpt ¼ stdwt

ds2t ¼ y o� stð Þdtþ 2lyð Þ1=2dwst ð19Þ

where wt and wst are independent Brownian motion. Drost and Werker

(1996, Corollary 3.2) provide the map between (19) and the (discrete)

GARCH(1,1),

pt � pt�1=m ¼ rðmÞ;t ¼ sðmÞ;t zðmÞ;t

s2ðmÞ;t ¼ fðmÞ þ aðmÞr
2
ðmÞ;t þ bðmÞs

2
ðmÞ;t�1=m ð20Þ

where z mð Þ;t is (for the purposes of simulation) i.i.d. N(0,1). Andreou and

Ghysels (2002) find that 5-minute returns from the S&P 500 index are well

approximated by the values

f mð Þ ¼ 0:0004; a mð Þ ¼ 0:0037; b mð Þ ¼ 0:9963. (21)

These parameters imply an unconditional return variance of s2r ¼ 7:9 basis

points over the 5-minute interval. While this unconditional variance is high

(daily estimates of return variance are roughly eight basis points), an ap-

propriate rescaling by multiplying by 1/78 results in such small parameter

values that simulation is difficult. As the relative mean squared error meas-

urements that we report are invariant to such scaling, we follow Andreou

and Ghysels and use the values in (21).

From (20) and (21) we simulate latent returns, rt: We construct observed

returns as ~rt ¼ rt þ Zt � Zt�1; where Zt is generated as an i.i.d. N 0;s2Z

� �

random variable. To determine the noise variance, we invert the formula for

r in Lemma 1 to obtain

s2Z ¼
�r

1þ 2r
s2r

Hasbrouck and Ho (1987) report estimates of r between �.4 and �.1, so we

allow r to take the values �:4;�:3;�:2;�:1½ �: As decreasing the value of r

increases s2Z; the resultant values of noise variance vary from s2Z ¼ 1 (for

r ¼ �:1) to s2Z ¼ 15:8 (for r ¼ �:4).
To mirror trading days on the NYSE, which are 6.5 hours long, each

simulated day contains 78 5-minute returns. We generate 10,000 trading

days, a span that roughly corresponds to 50 years. For each day, j, we

construct the latent realized volatility

V ¼
X

78j

t¼ j�1ð Þ78þ1

r2t ,
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the feasible bias-corrected realized volatility estimator

V̂ j ŝ2tjT

� �

¼
X

78j

t¼ j�1ð Þ78þ1

r̂2tjT ŝ2tjT

� �

þ bt ŝ2tjT

� �h i

and the infeasible bias-corrected estimator V̂ j s2t
� �

:
To compare this filter to methods that assume constant return variance,

such as the MA(1) filter mentioned above, we construct V̂ jðŝ2r Þ: To deter-

mine the gains from smoothing, we also construct the estimator based on

filtered (rather than smoothed) quantites

V̂
f

j ŝ2tjt

� �

¼
X

78j

t¼ j�1ð Þ78þ1

r̂2tjt ŝ2tjt

� �

þ bft ŝ2tjt

� �h i

where ŝ2tjt is obtained from (18) with r̂2kjt ŝ2r
� �

and b
f
k ŝ2r
� �

in place of r̂2kjT ŝ2r
� �

and bk ŝ2r
� �

; respectively. Finally, for completeness, we construct V̂
f

j ðŝ2r Þ:
To judge the quality of the realized volatility estimators, we measure the

mean squared error (MSE) of each estimator relative to the infeasible (op-

timal) estimator. For example, the relative MSE for V̂ ŝ2tjT

� �

is

MSE V̂ ŝ2tjT

� �h i

MSE V̂ s2t
� � � ¼

P

10000

j¼1

V j � V̂ j ŝ2tjT

� �� �2

P

10000

j¼1

V j � V̂ j s2t
� �� �2

In Table 1, we present the relative efficiency calculations. Regardless of

the degree of noise variance, or indeed of the decision to smooth, the gain

from estimating a time-varying return variance is substantial. For the case

with the smallest noise variance, the relative MSE for the smoothed esti-

mator is reduced by more than half (from 3.5 to 1.4). As one would expect,

Table 1. Relative Efficiency.

s2Z Constant Variance Time-Varying Variance

V̂ f ðŝ2r Þ V̂ ðŝ2r Þ V̂ f ðŝ2tjtÞ V̂ ðŝ2tjT Þ

15.8 8.4 6.7 5.7 4.7

5.9 7.6 6.0 3.9 3.4

2.6 6.1 5.1 2.4 2.2

1.0 3.9 3.5 1.5 1.4

Noise Reduced Realized Volatility: A Kalman Filter Approach 223



increasing the noise variance renders the estimation problem more difficult,

yet even for the highest noise variance the relative MSE for the smoothed

estimator is substantially reduced (from 6.7 to 4.7). Moreover, while

smoothing always leads to an efficiency gain, the magnitude of the efficiency

gain resulting from smoothing is dominated by efficiency gain from allowing

for time-varying volatility.

To determine the impact of diurnal patterns, we generate time-varying

volatility that mirrors the U-shape pattern often observed in empirical re-

turns. To do so, we construct a new sequence of return variances s2nmð Þ;t

n o
:

s2nmð Þ;t ¼ s2mð Þ;t 1þ 1=3cos
2p

78
t

� �� �

where s2mð Þ;t is obtained from (20). Note that with the cyclic component, the

expected variance doubles between the diurnal peak and trough. This proc-

ess mimics the U-shape pattern as the maximum of the cosine term to

corresponds to the beginning and ending of each day.

In Table 2, we find that the relative MSE measurements are surprisingly

robust to the presence of diurnal patterns. When noise variance is about an

order of magnitude smaller than the expected innovation variance (when

s2Z ¼ 1:0), the MSE of the realized volatility estimator is about 4 percent

larger when based on filtered returns. When noise variance is roughly twice

as large as the expected innovation variance (when s2Z ¼ 15:8), the filter-

based mean squared error is about 10 percent larger. Larger gains are

achieved by the estimator based on the rolling volatility proxy, especially

when noise volatility is relatively small. The mean squared errors based on

the naive estimators are between 40 and 160 percent larger than corre-

sponding mean squared errors based on the volatility proxy. The improve-

ments from smoothing, relative to filtering, are shown in the last column.

Table 2. Relative Efficiency with a Diurnal Pattern.

s2Z Constant Variance Time-Varying Variance

V̂ f ðŝ2r Þ V̂ ðŝ2r Þ V̂ f ðŝ2tjtÞ V̂ ðŝ2tjT Þ

15.8 8.1 6.5 5.5 4.6

5.9 7.4 5.9 3.8 3.3

2.6 6.0 5.0 2.4 2.2

1.0 3.9 3.5 1.5 1.4
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Although currently used filters vary widely, we are aware of none that

exploit the gains available from either smoothing or from the used of a high-

frequency volatility proxy. Most filtering methods in uses are similar to the

filtered naı̈ve estimator. Notice that the mean squared errors of the filtered

naı̈ve estimators are more than double those of the smoothed estimators

based on our proposed smoothed estimator based on the volatility proxy.

6. CONCLUSIONS

This article applies market microstructure theory to the problem of remov-

ing noise from a popular volatility estimate. The theory suggests that a

Kalman smoother can optimally extract the latent squared returns, which

are required for determining realized volatility from their noisy observable

counterparts. However, the correct specification of the filter requires knowl-

edge of a latent stochastic volatility state variable, and is therefore infea-

sible. We show that a feasible Kalman smoothing algorithm based on a

simple rolling regression proxy for high-frequency volatility can improve

realized volatility estimates. In simulations, the algorithm substantially re-

duces the mean squared error of realized volatility estimators even in the

presence of strong diurnal patterns. The broad conclusion is that realized

volatility estimators can be improved in an obvious way, by smoothing

instead of merely filtering the data, and in a less obvious way, by bias

correcting and using a straightforward proxy of latent high-frequency

volatility.

NOTES

1. Andersen, Bollerslev, and Diebold (2005) provides a survey of both theory and
empirics for realized volatility.
2. Surveys by O’Hara (1995), Hasbrouck (1996), Campbell, Lo, & MacKinlay

(1997), and Madhavan (2000) document these and other microstructure frictions.
3. Noise outcomes of adjacent price measurements are almost perfectly correlated

when no transaction intervenes (they are not perfectly correlated because, although
measured price remains constant in the absence of new transactions, the latent true
price changes through time).
4. Brockwell and Davis (1987, Proposition 2.3.2).
5. If t ¼ T ; then the smoothed estimator is identical to the filtered estimator.
6. The bias of the filtered estimator is approximately �2rs2r (recall ro0).
7. The rolling window width of 24 corresponds to two hours, which balances bias

and variance in the presence of diurnal features.
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MODELING THE ASYMMETRY OF

STOCK MOVEMENTS USING PRICE

RANGES

Ray Y. Chou

ABSTRACT

It is shown in Chou (2005). Journal of Money, Credit and Banking, 37,

561–582that the range can be used as a measure of volatility and the

conditional autoregressive range (CARR) model performs better than

generalized auto regressive conditional heteroskedasticity (GARCH) in

forecasting volatilities of S&P 500 stock index. In this paper, we allow

separate dynamic structures for the upward and downward ranges of asset

prices to account for asymmetric behaviors in the financial market. The

types of asymmetry include the trending behavior, weekday seasonality,

interaction of the first two conditional moments via leverage effects, risk

premiums, and volatility feedbacks. The return of the open to the max of

the period is used as a measure of the upward and the downward range is

defined likewise. We use the quasi-maximum likelihood estimation

(QMLE) for parameter estimation. Empirical results using S&P 500

daily and weekly frequencies provide consistent evidences supporting the

asymmetry in the US stock market over the period 1962/01/01–2000/08/

25. The asymmetric range model also provides sharper volatility forecasts

than the symmetric range model.
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1. INTRODUCTION

It’s known for a long time in statistics that range is a viable measure of the

variability of random variables. In the recent two decades, applications to

finance issues discovered that ranges were useful to construct efficient vol-

atility estimators; e.g., see Parkinson (1980); Garman and Klass (1980);

Beckers (1983); Wiggins (1991); Rogers and Satchell(1991); Kunitomo

(1992); Rogers (1998); Gallant, Hsu, and Tauchen (1999); Yang and Zhang

(2000); and Alizadeh, Brandt, and Diebold (2002). In Chou (2005), we pro-

pose the conditional autoregressive range (CARR) model for range as an

alternative to the modeling of financial volatilities. It is shown both the-

oretically and empirically that CARR models are worthy candidates in

volatility modeling in comparison with the existing methodologies, say the

generalized auto regressive conditional heteroskedasticity (GARCH) mod-

els. Empirically, the CARR model performs very satisfactory in forecasting

volatilities of S&P 500 using daily and weekly observations. In all four cases

with different measures of the ‘‘observed volatility’’, CARR dominates

GARCH in the Mincer/Markovtz regression of forecasting evaluations. It’s

a puzzle (see Cox & Rubinstein, 1985) that despite the elegant theory and

the support of simulation results, the range estimator has performed poorly

in empirical studies. In Chou (2005), we argue that the failure of all the

range-based models in the literature is due to its ignorance of the temporal

movements of the range. Using a proper dynamic structure for the condi-

tional expectation of range, the CARR model successfully resolves this

puzzle and retains its superiority in empirical forecasting powers.

This paper focuses on an important feature in financial data: asymmetry.

Conventionally, symmetric distributions are usually assumed in asset pricing

models, e.g., normal distributions in CAPM and the Black/Sholes option

pricing formula. Furthermore, in calculating various measures of risk,

standard deviations (or equivalently, variances) are used frequently, which

implicitly assume a symmetric structure of the prices. However, there are

good reasons why the prices of speculative assets should behave asymmet-

rically. For investors, the more relevant risk is generated by the downward

price moves rather than the upward price moves; the latter is important in

generating the expected returns. For example, the consideration of the value-

at-risk only utilizes the lower tail of the return distribution. There are

also models of asset prices that utilize the third moment (an asymmetric

characteristic feature), for example, Levy and Markowitz (1979). Further-

more, asymmetry can arise in a dynamic setting in models considering time-

varying conditional moments. For example, the ARCH-M model of Engle,
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Lilien, and Robbins (1987) posits a linkage between the first sample moment

and past second sample moments. This model has a theoretical interpretation

in finance: the risk premium hypothesis (See Malkiel, 1978; Pindyck, 1984;

Poterba & Summers, 1986; Chou, 1988). The celebrated leverage effect of

Black (1976) and Christie (1982) is cast into a dynamic volatility model in the

form of the linkage between the second sample moment and past first sample

moments; See EGARCH of Nelson (1991) and NGARCH of Engle and Ng

(1993). Furthermore, the asymmetry can arise in other forms such as the

volatility feedback of Campbell (1997). Barberis and Huang (2000) give an

example of loss aversion and mental account that would predict an asymmetric

structure in the price movements. Tsay (2000) uses only observations of the

downward, extreme movements in stock prices to model the crash probability.

Chou (2005) incorporated one form of asymmetry, the leverage effect,

into the CARR model and it appeared to be more significant than reported

in the literature of GARCH or Stochastic Volatility models. The nature of

the CARR model is symmetric because range is used in modeling which

treats the maximum and minimum symmetrically. In this paper, a more

general form of asymmetry is considered by allowing the dynamic structure

of the upward price movements to be different from that of the downward

price movements. In other words, the maximum and the minimum of price

movements in fixed intervals are treated in separate forms. It may be rel-

evant to suspect that the information in the downward price movements are

as relevant as the upward price movements in predicting the upward price

movements in the future. Similarly, the opposite case is true. Hence it is

worthy to model the CARR model asymmetrically.

The paper is organized as following. It proposes and develops the Asym-

metric CARR (ACARR) model with theoretical discussions in section 2. In

addition, discussions are given about some immediate natural extensions of

the ACARR model. An empirical example is given in section 3 using the S&P

500 daily index. Section 4 concludes with considerations of future extensions.

2. MODEL SPECIFICATION, ESTIMATION, AND

PROPERTIES

2.1. The Model Specification, Stochastic Volatilities, and the Range

Let Pt be the logarithmic price of a speculative asset observed at time t,

t ¼ 1; 2; . . .T : Pt is a realization of a price process {Pt}, which is assumed to
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be a continuous processf.1We further assume that within each time interval, we

observe Pt at every fixed time interval dt. Let n denote the number of intervals

between each unit time, then dt ¼ 1=n: There are hence, n+1 observations

within each time interval between t�1 and t. Let Po
t ; P

c
t ; P

HIGH
t ; PLOW

t ; be the
opening, closing, high and low prices, in natural logarithm, between t�1 and t.

The closing price at time t will be identical to the opening price at time t+1 in

considerations of markets that are operated continuously, say, some of the

foreign exchange markets. Further, define UPRt, the upward range, and

DWNRt, the downward range as the differences between the daily highs, daily

lows, and the opening price respectively, at time t, in other words,

UPRt ¼ PHIGH
t � Po

t

DWNRt ¼ PLOW
t � Po

t ð2:1Þ

Note that these two variables, UPRt and DWNRt, represent the maximum and

the minimum returns respectively, over the unit time interval (t�1, t). This is

related to the range variable in Chou (2005) that Rt, defined to be

Rt ¼ PHIGH
t � PLOW

t (2.2)

It’s clear that the range is also the difference between the two variables, UPRt,

and DWNRt, in other words,

Rt ¼ UPRt �DWNRt (2.3)

In Chou (2005) we propose a dynamic model, the CARR model, for the range.

It’s a conjecture that the extreme value theory can be used to show that the

conditional range, or equivalently the disturbance term, has a limiting distri-

bution that is governed by a shifted Brownian bridge on the unit interval.2 In

this paper, we propose a model for the one-sided range, UPRt, and DWNRt, to

follow a similar dynamic structure. In particular,

UPRt ¼ lut �
u
t

DWNRt ¼ �ldt �
d
t

lut ¼ ou þ
Xp

i¼1

aui UPRt�i þ
Xq

j¼1

buj l
u
t�j

ldt ¼ od þ
Xp

i¼1

adi DWNRt�i þ
Xq

j¼1

bdj l
d
t�j

�ut � iid f u �ð Þ; �dt � iid f d �ð Þ ð2:4Þ
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Model (2.4) is called the asymmetric conditional autoregressive range

(Asymmetric CARR or ACARR, henceforth) model. In the following discus-

sions, we will disregard the super-scripts when there is no concern of confusion.

In (2.4), lt is the conditional mean of the one-sided range based on all in-

formation up to time t. The distribution of the disturbance terms et of the

normalized one-sided-range, or OSRtð¼ UPRt or DWNRt; Þ; �t ¼ OSRt=lt;
are assumed to be identically independent with density function fi( � ), where
i ¼ u or d. Given that both the one-sided ranges UPRt and �DWNRt, and

their expected values lt are both positive hence their disturbances et, the ratio

of the two, are also positively valued.

The asymmetric behavior between the market up and down movements

can be characterized by different values for the pairs of parameters,

ðou; odÞ; ðau; ad Þ; ðbu; bdÞ; and from the error distributions ðf u �ð Þ; f d �ð ÞÞ:
The equations specifying the dynamic structures for lt’s characterize the

persistence of shocks to the one-sided range of speculative prices or what is

usually known as the volatility clustering. The parameters o, ai, bj, char-

acterize respectively, the inherent uncertainty in range, the short-term im-

pact effect and the long-term effect of shocks to the range (or the volatility

of return). The sum of the parameters
Pp

i¼1ai þ
Pq

j¼1bj ; plays a role in

determining the persistence of range shocks. See Bollerslev (1986) for a

discussion of the parameters in the context of GARCH.

The model is called an asymmetric conditional autoregressive range

model of order (p,q), or ACARR(p,q). For the process to be stationary, we

require that the characteristic roots of the polynomial to be out side the unit

circle, or
Pp

i¼1ai þ
Pq

j¼1bjo1: The long-term range denoted o-bar, is cal-

culated as o=ð1� ð
Pp

i¼1ai þ
Pq

j¼1bjÞÞ: Further, all the parameters in the

second equation, are assumed positive, i.e., o; ai; bj40:
It is useful to compare this model with the CARR model of Chou (2005):

Rt ¼ lt�t

lt ¼ oþ
Xp

i¼1

aiRt�i þ
Xq

j¼1

bjlt�j

�t � iid f ð:Þ ð2:5Þ

Ignoring the distribution functions, the ACARR model reduces to the

CARR if all the parameters with superscript u and d are identical pair-wise.

Testing these various types of model asymmetry will be of interest because

asymmetry can arise in varieties, e.g., size of the range, i.e., level of the

volatility (o� bar ¼ o/ð1� a� bÞ), the speed of mean-reversion (a+b),

and the short-term (a) versus long-term (b) impact of shocks.
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Eq. (2.4) is a reduced form for the one-sided ranges. It is straight forward

to consider extending the model to include other explanatory variables,

Xt�1,l that are measurable with respect to the information set up to time t�1.

lt ¼ oþ
Xp

i¼1

aiRt�i þ
Xq

j¼1

bjlt�j þ
XL

l¼1

glX t�1;l (2.6)

This model is called the ACARR model with exogenous variables, or

ACARRX. Among others, some important exogenous variables are trading

volume (see Lamoureux & Lastrapes, 1990; Karpoff, 1987), the lagged re-

turns measuring the leverage effect of Christie (1982), Black (1976) and

Nelson (1990) and some seasonal factor to characterize the seasonal pattern

within the range interval.

Note that although we have not specified specifically, all the variables and

parameters in (2.4) are all dependent on the parameter n, the number of

intervals used in measuring the price within each range-measured interval. It

is clear that all the range estimates are downward biased if we assume the

true data-generating mechanism is continuous or if the sampling frequency

is lower than that of the data generating process if the price is discrete. The

bias of the size of the one-sided-range, whether upward range (UPRt) or

downward range (DWNRt), like the total range, will be a a non-increasing

function of n. Namely, the finer the sampling interval of the price path, the

more accurate the measured ranges will be.

It is possible that the highest frequency of the price data is non-constant

given the heterogeneity in the trading activities within each day and given

the nature of the transactions of speculative assets. See Engle and Russell

(1998) for a detailed analysis of the non-constancy of the trading intervals,

or the durations. Extensions to the analyses of the ranges of non-fixed

interval prices will be an interesting subject for future research.3 However,

some recent literature suggest that it is not desirable to work with the

transaction data in estimating the price volatility given the consideration of

microstructures such as the bid/ask bounces, the intra-daily seasonality,

among others. See Andersen, Bollerslev, Diebold, and Labys, (2000); Bai,

Russell, and Tiao (2000), and Chen, Russell, and Tsay (2000).

As is the case for the CARR model, the ACARR model mimics the ACD

model of Engle and Russell (1998) for durations between trades. Nonethe-

less, there are important distinctions between the two models. First, dura-

tion is measured at some random intervals but the range is measured at fixed

intervals, hence the natures of the variables of interest are different although

they share the common property that all observations are positively valued.
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Second, in the ACD model, the distribution of the disturbances is usually

chosen arbitrarily – a feature also shared by all GARCH models. The

ACARR model, on the contrary, has some natural choices from the results

of extreme value theories in statistics.4

2.2. Properties of ACARR: Estimation and Relationships with Other

Models

Given that the ACARR model has exactly the same form as the CARR

model, all the statistical results in CARR apply to ACARR. Furthermore,

the ACARR model has some unique properties of its own. We illustrate

some of the important properties in this subsection. Given that the upward

and the downward range evolutions are specified independently, the esti-

mation can hence be performed separately. Further, consistent estimation of

the parameters can be obtained by the quasi-maximum likelihood estima-

tion (QMLE) method. The consistency property follows from the ACD

model of Engle and Russell (1998) and Chou (2005). It indicates that the

exponential distribution can be used in constructing the likelihood to con-

sistently estimate the parameters in the conditional mean equation.

Specifically, given the exponential distribution for the error terms, we can

perform the QMLE. Using Rt, t ¼ 1; 2; . . . ;T as a general notation of UPRt

and DWNRt, the log-likelihood function for each of the one-sided range

series is

L ai; bj; R1; R2; . . . ; RT ;
� �

¼ �
X

T

t¼1

log ltð Þ þ Rt

lt

� �

.

The intuition of this property relies on the insight that the likelihood func-

tion in ACARR with an exponential density is identical to the GARCH

model with a normal density function with some simple adjustments on the

specification of the conditional mean. Furthermore, all asymptotic proper-

ties of GARCH apply to ACARR. Given that ACARR is a model for the

conditional mean, the regularity conditions (e.g., the moment condition) are

in fact, less stringent then in GARCH.

Note that although QMLE is consistent, it is not efficient. The efficiency

can be obtained if the conditional density function is known. This leads us

to the limiting distribution of the conditional density of range. The discus-

sion will require a far more complicated theoretic framework, which is

worthy of pursuing by an independent work. We hence do not pursue this
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route in this paper and follow the strategy of Chou (2005) in relying on the

QMLE.5 Again, it is an empirical question as to how substantial in efficiency

such methods can generate. Engle and Russell (1998) reported that devi-

ations from the exponential density function do not offer efficiency gain

sufficiently high in justifying the extra computation burdens.

It is important to note that the direct application of QMLE will not yield

consistent estimates for the covariance matrix of the parameters. The

standard errors of the parameters are consistently estimated by the robust

method of Bollerslev and Wooldridge (1992). The efficiency issue related to

these estimates is a subject for future investigation.

Another convenient property for ACARR (due to its connection with

ACD) is the ease of estimation. Specifically, the QMLE estimation of the

ACARR model can be obtained by estimating a GARCH model with a

particular specification: specifying a GARCH model for the square root of

range without a constant term in the mean equation.6 This property is

related to the above QMLE property by the observation of the equivalence

of the likelihood functions of the exponential distribution in ACARR and

ACD and of the normal density in GARCH. It indicates that it is almost

effortless to estimate the ACARR model if a GARCH software is available.

It will be interesting and important to investigate whether the ACARR

model will satisfy a closure property, namely, whether the ACARR process

is invariant to temporal and cross-sectional aggregations. This is important

given the fact that in financial economics, aggregates are frequently en-

countered, e.g., portfolios are cross-sectional aggregates and monthly,

weekly returns are temporal aggregates of daily returns. It is also a property

that is stressed in the literature of time series econometrics.7

Another interesting property of the CARR model is the encompassing

property. It is interesting that the square-root-GARCH model turns out to

be a special case of CARR, and in fact, the least efficient member of

the CARR model. This property does not apply to ACARR since there are

no analogies of the open to maximum (minimum) in the GARCH model

family.

2.3. Robust ACARR

It is suggested in statistics that range is sensitive to outliers. It is useful

hence, to consider extension of ACARR to address such considerations. We

consider robust measures of range to replace the standard range defined as

the difference between the max and the min. A simple naive method is to use
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the next-to-max for max and the next-to-min for min. By doing so, the

chance of using outliers created by typing errors will be greatly reduced. It

will also reduce the impact of some true outliers.

A second alternative is to use the quantile range, for example, a 90%

quantile range is defined as the difference between the 95% percentile and

the 5% percentile. A frequently adopted robust range is the interquartile

range (IQR) which is a 75% quantitle and it can be conveniently obtained

by taking the difference of the medians of the top and lower halves of the

sampling data. In measuring a robust maximum or minimum likewise, we

can use the 75% quantile in both the upward price distribution and the

downward price distribution.

Similarly other types of robust extreme values can be adopted like the

next-ith-to-max (min) and the average of the top 5% observations and the

bottom 5% observations, et.al. There are several important issues relevant

in considerations such as the efficiency loss, e.g., the IQR discards 50% of

the information while the next-to-max approach discards very little. An-

other issue is the statistical tractability of the new range measures. For

example, the quantile range will have a more complicated distribution than

the range and the statistical property for the next-ith-to-extreme approach is

less known than the quantile range. Another consideration is the data fea-

sibility. In most cases, none of the information other than the extreme

observations are available. For example, the standard data sources such as

CRSP, and the Wall Street Journal, the Financial Times only report the

daily highs and lows. As a result, the robust range estimators are infeasible

unless one uses the intra-daily data. Nonetheless, the robust range estima-

tors are feasible if the target volatility is measured at lower frequency than a

day. This is obvious since there are 20 some daily observations available in

each given month hence the monthly volatility can be measured by a robust

range if the outlier problem is of concern. Given the existence of intra-daily

data, daily robust range model is still an important topic for future research.

3. AN EMPIRICAL EXAMPLE USING THE S&P 500

DAILY INDEX, 1962/01/03–2000/08/25

3.1. The Data Set

The daily index data of the Standard and Poor 500 (S&P 500) are used for

empirical study in this paper to gauge the effectiveness of the ACARR
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model. The data set is downloaded from the finance subdirectory of the

website ‘‘Yahoo.com’’. The sample period covered in this paper is 1962/01/

03–2000/08/25. The models are estimated by using this daily data set, com-

parisons are made for various volatility models on the accuracy of the vol-

atility predictions.

Table 1 gives the summary statistics of RANGE, UPR, and DWNR for

the full sample and two sub-sample periods. Sub-samples are considered

because there is an apparent shift in the level of the daily ranges roughly on

the date 1982/04/20. As is shown in Table 1, the averaged range level was

reduced by almost a half since this particular date. Reductions in the level of

similar magnitude are seen for the max and min as well. It’s likely an in-

stitutional change occurred at the above-mentioned date. From a telephone

conversation with the Standard and Poor Incorporated, the source of this

structural change was revealed. Before this stated date, the index high and

index low were compiled by aggregating the highs and lows of individual

firm prices for each day. This amounts to assume that the highs and lows for

all 500 companies occur at the same time in each day. This is clearly an

incorrect assumption and amounts to an overestimate of the highs and an

underestimate of the lows. As a result, the ranges are over-estimated. The

compiling process was corrected after April 1982.8 The company computes

the index value at some fixed (unknown to me, say, 5min) intervals within

each day and than select the maximum and minimum price levels to be the

index highs and index lows.9

Figs. 1–4 give the plots of the daily max and min price movements. It is

interesting that the upward and downward range are roughly symmetric

from the closeness of summary statistics and the seemingly reflective nature

of Fig. 1. Another interesting observation (see Figs. 2–4) is that excluding

the outlier of the 1987 crash, the two measures have very similar uncon-

ditional distributions. Careful inspection of the Figures and Tables however,

reveals important differences in these two measures of market movements in

the two opposite directions. For example, although both one-sided ranges

(henceforth OSRs) have clustering behaviors but their extremely large val-

ues occur at different times and with different magnitudes. Further, as

Table 1 and Fig. 5 show, the magnitudes of the autocorrelation at some lags

for the UPR seem to be substantially different from that of the DWNR

indicating different level of persistence. This can be viewed as a primitive

indicator of the difference in the dynamic structure of the two processes. The

true comparison of the dynamic structures of the two range processes will be

made in the next section.
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Table 1. Summary Statistics of the Daily Range, Upward Range, and Downward Range of S&P 500 Index,

1/2/1962–8/25/2000.

Nobs Mean Median Max Min Std Dev r1 r2 r12 Q(12)

Full Sample

RANGE 1/2/62-8/25/00 9700 1.464 1.407 22.904 0.145 0.76 0.629 0.575 0.443 30874

UPR 1/2/62-8/25/00 9700 0.737 0.636 9.053 0 0.621 0.308 0.147 0.172 3631

DWNR 1/2/62-8/25/00 9700 �0.727 �0.598 0 �22.9 0.681 0.326 0.181 0.162 4320

Before structural shift

RANGE 1/2/62-4/20/82 5061 1.753 1.643 9.326 0.53 0.565 0.723 0.654 0.554 21802

UPR 1/2/62-4/20/82 5061 0.889 0.798 8.631 0 0.581 0.335 0.087 0.106 1199

DWNR 1/2/62-4/20/82 5061 �0.864 �0.748 0 �6.514 0.559 0.378 0.136 0.163 2427

After structural shift

RANGE 4/21/82-8/25/00 4639 1.15 0.962 22.904 0.146 0.818 0.476 0.414 0.229 11847

UPR 4/21/82-8/25/00 4639 0.572 0.404 9.053 0 0.622 0.189 0.089 0.125 651

DWNR 4/21/82-8/25/00 4639 �0.578 �0.388 0 �22.9 0.767 0.247 0.147 0.101 994

Note: Summary statistics for the three variables, RANGE, UPR and DWNR, defined to be the differences between the max and min, the max

and open, and the min and open of the daily index prices in logarithm are described. The structural shift refers to the day April 20, 1982, at

which the Standard and Poor Inc. changed the ways of constructing the daily max and daily min prices. r1; r2 and r12 are autocorrelation

coefficients for lags 1, 2, and 12 respectively, and Q(12) is the Ljung–Box statistics of lag 12.
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Fig. 1. Daily UPR and Daily DWNR, S&P 500, 1962/1–2000/8.
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Fig. 2. Daily UPR of S&P 500 index, 1962/1–2000/8.
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3.2. Estimating Results

We use QMLE to estimate the ACARR and ACARRX models with dif-

ferent dynamic specifications and exogenous variables. The exogenous var-

iables considered are lagged return, rt�1, for the leverage effect, a Tuesday

(TUE) and a Wednesday dummy (WED), for the weekly seasonal pattern, a

structural shift dummy (SD, 0 before 1982/4/20 and 1 otherwise) for cap-

turing the shift in the data compiling method. We also include the lagged

opposite range variable, i.e., DWNR in the UPR model and UPR in the

DWNR model. This is for the consideration of the volatility clustering

effect. Tables 2 and 3 give respectively, the model estimating results for UPR

and for DWNR.

It is interesting that for both OSRs, a ACARR(2,1) clearly dominates the

simpler alternative of ACARR(1,1) model, which is in contrast of the result

in Chou (2005) using CARR to estimate the range variable.10 This is shown

clearly by the difference in the values of the log-likelihood function (LLF)

reported for the two models, ACARR(1,1) vs. ACARR(2,1). The

ACARR(2,1) model is consistent with the specification of the Component

GARCH model of Engle and Kim (1999), in which the volatility dynamics is

decomposed into two parts, a permanent component and a temporary

component.
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Fig. 5. Correlograms of Daily UPR and DWNR.
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Table 2. QMLE Estimation of ACARR Using Daily Upward Range of S&P 500 Index 1/2/1962–8/25/2000.

ACARR(1,1) ACARR(2,1) ACARRX(2,1)-a ACARR(2,1)-b ACARR(2,1)-c

LLF �12035.20 �12011.86 �11955.78 �11949.64 �11950.32

Constant 0.002[3.216] 0.001[3.145] �0.002[�0.610] �0.003[�0.551] �0.004[�0.973]

UPR(t�l) 0.03[8.873] 0.145[10.837] 0.203[14.030] 0.179[11.856] 0.186[12.845]

UPR(t�2) �0.126[�9.198] �0.117[�9.448] �0.112[�8.879] �0.115[�9.245]

l(t�1) 0.968[267.993] 0.978[341.923] 0.903[69.643] 0.871[48.426] 0.877[52.942]

r(t�l) �0.057[�8.431] �0.018[�1.959] �0.023[�2.734]

TUE 0.058[3.423] 0.059[3.475] 0.059[3.481]

WED 0.02[1.271]

SD 0.0000[0.201] �0.003[�1.647]

DWNR(�l) 0.046[4.868] 0.042[4.803]

Q(12) 184.4[0.000] 22.346[0.034] 22.304[0.034] 20.282[0.062] 20.503[0.053]

UPRt ¼ lt�t

lut ¼ ou þ
P

p

i¼1

aui UPRt�i þ
P

q

j¼1

buj l
u
t�j þ

P

L

l¼1

glX
l
t�1

�t � iid f �ð Þ

Note: Estimation is carried out using the QMLE method hence it is equivalent to estimating an exponencial ACARR(X) (p,q) or and

EACARR(X) (p,q) model. Numbers in parentheses are t-ratios (p-values) with robust standard errors for the model coefficients (Q statistics).

LLF is the log-likelihood function.
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Table 3. QMLE Estimation of ACARR Using Daily Downward Range of S&P500 Index 1/2/1962–8/25/

2000.

ACARR(1,1) ACARR(2,1) ACARRX(2,1)-a ACARRX(2,1)-b ACARRX(2,1)-c

LLF �11929.39 �11889.61 �11873.54 �11868.55 �11870.14

Constant 0.014[5.905] 0.004[4.088] 0.017[4.373] 0.017 [3.235] 0.017[4.417]

DWNR(t-l) 0.084[l1.834] 0.229[16.277] 0.252[16.123] 0.233[14.770] 0.239[16.364]

DWNR(t-2) �0.195[�13.489] �0.189[�12.811] �0.185[�12.594] �0.186[�12.897]

l(t�1) 0.897[101.02] 0.961[199.02] 0.927[87.639] 0.906[61.212] 0.911[63.893]

r(t�1) 0.023[4.721] �0.009[�1.187]

TUE �0.008[0.503]

WED �0.051[�3.582] �0.053[�3.617] �0.052[�3.587]

SD �0.002[�2.124] 0.001[0.904]

UPR(�1) 0.037[4.164] 0.028[5.084]

Q(12) 192.8[0.000] 18.94[0.009] 22.227[0.035] 14.422[0.275] 14.774[0.254]

DWNRt ¼ lt�t

ldt ¼ od þ
P

p

i¼1

adi DWNRt�i þ
P

q

j¼1

bdj l
d
t�j þ

P

L

l¼1

glX
l
t�1

�t � iid f �ð Þ

Note: Estimation is carried out using the QMLE method hence it is equivalent to estimating an Exponential ACARR(X)(p,q) or and

EACARR(X)(p,q) model. Numbers in parentheses are t-ratios(p-values) with robust standard errors for the model coefficients (Q statistics).

LLF is the log-likelihood function.
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Another conjecture for the inadequacy of the (1,1) dynamic specification

is related to the volatility clustering effect. It is known that volatility clusters

over time and in the original words of Mandelbrot (1963), ‘‘large changes

tend to be followed by large changes and small by small, of either signy’’.

Given that range can be used as a measure of volatility, both UPR and

DWNR can be viewed as ‘‘signed’’ measure of volatility. It is hence not

surprising that a simple dynamic structure offered by the ACARR(1,1)

model is not sufficient to capture the clustering effect. This conjecture is

supported by the result of the model specification of ACARRX(2,1)-b where

the opposite OSR are included and the coefficients significantly different

from zero.

The dynamic structures for the UPR and DWNR variable are different as

is revealed in comparing the values of the coefficients. The coefficient of b1,

measuring the long-term persistence effect, is (0.927, 0.906, 0.911) respec-

tively, for the three different ACARRX specifications for DWNR in

Table 3. They are all higher than their corresponding elements (0.903, 0.871,

0.877) in the ACARRX models for UPR in Table 2. This suggests that

volatility shocks in the downside are more long-lived than in the upside.

Further the impact coefficient a1 is equal to (0.252, 0.233, 0.239) in the

DWNR models and is (0.203, 0.179, 0.186) in the UPR models. Volatility

shock effects in the short-run are also higher for the downside shocks than

for the upward surges. Both of these findings are new in the literature of

financial volatility models as all existing literatures do not distinguish the

shock asymmetry in this fashion.

Another interesting comparison between the two OSR models is on the

leverage effect. This coefficient is statistically negative (positive) for the

ACARRX(2,1)-a specifications for the UPR (DWNR). It is however, less

significant or insignificant in models ACARRX(2,1)-b and ACARRX(2,1)-c,

when the lagged opposite OSR is included. My conjecture is that the opposite

sided ranges are correlated with the returns and hence multicollinearity re-

duces some explanatory power of the leverage effect. It remains, however, to

be explained why such a phenomenon is more severe for the DWNR model

than the UPR models. We leave this issue for future studies.

A different weekly seasonality also emerges from the comparison of the

estimation result of the two OSRs. For reasons unknown to me, a positive

Tuesday effect is found for the upward range while a negative Wednesday

effect is present for the downward range. The dummy variable SD, meas-

uring the effect of the structuring change in the data compiling method, are

not significant for UPR models but are negatively significant for one of the

DWNR models. It is not clear why there should be such difference in the
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results. Again leave these as empirical puzzles to be explored in future

studies.

Model specification tests are carried out in two ways, the Ljung–Box-Q

statistics and the Q–Q plots. The Ljung–Box Q statistics measure the overall

significance of the autocorrelations in the residuals for the fitted models.11

The evidence shown in the two tables are consistent that a pure ACARR

model is not sufficient and exogenous variables are necessary to warrant the

model to pass the model misspecification tests. Using a 5% significance level

for the test, the model is satisfactory once the lagged returns, the weekly

dummies and the opposite-sided range are included in the specifications.

Figs. 6 and 7 provide the expected and observed daily UPR and DWNR

respectively. It is interesting to note that the ACARR model gives smoother

yet very adaptive estimates of the two one-sided ranges. Figs. 8–11 are

histograms and Q–Q plots of the estimated residuals in the two models. It

seems to indicate that the exponential distribution is more satisfactory for

the UPR than for the DWNR as the degree of fitness of fit can be measured

by the deviations of the Q–Q plot from the 45 degree lines. This fact further

indicates the difference in the characteristics of the two variables in addition

to the results reported above. Whether a different error distribution will be

more useful warrants more investigation. For example in Chou (2005) I

found that a more general error distribution such as Weibull might improve

the goodness of fit substantially in the CARR model.

The message from this section is clear: the market dynamics for the up-

ward swing and the downward plunge are different. They are different in

their dynamics of the volatility shocks, i.e., the short-term impact and long-

term persistence. They are also different in the forces that have effects on

them, the leverage effect, the weekly seasonal effect and the volatility clus-

tering effect. Finally, even the error structures of the two variables are

different.

3.3. Comparing ACARR and CARR in Forecasting Volatility

Although the above results shows important differences in the models for

the upward and the downward range, we further ask a question on the value

of the modeling of asymmetries. How much difference does this modeling

consideration make to improve the power of the model in forecasting vol-

atilities? In Chou (2005) we proposed the CARR model, where the upward

and downward movements of the stock price are treated symmetrically. We

showed that the CARR model provides a much sharper tool in forecasting
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volatility than the GARCH model. In this section, we further compare the

forecasting power for volatilities of the CARR model, which ignores the

asymmetry, and the ACARR model which give explicit considerations to

the asymmetric structures. Given our finding of the importance of modeling

asymmetry in the above section, we would expect the ACARR model to

provide more accurate volatility forecast comparing with the CARR model.

Since volatility is an unobservable variable, we employ three proxies as

measures of volatility (henceforth MVs). They are the daily high/low range

(RNG) as defined in (2.2), the daily return squared (RETSQ) as is com-

monly used in the literature of volatility forecast comparisons and the ab-

solute value of the daily returns (ARET) which is more robust to outliers

than the second measure. We then use the following regressions to gauge the

forecasting powers of the CARR and the ACARR models.

MVt ¼ aþ b FVtðCARRÞ þ ut (3.1)

MVt ¼ aþ b FVtðACARRÞ þ ut (3.2)

MVt ¼ aþ b FVtðCARRÞ þ c FVðACARRÞ þ ut (3.3)

FVt(CARR) is the forecasted volatility using the CARR model in (2.5).

FVt(ACARR) is computed as the sum of the forecasted UPR and forecasted

DWNR as is shown in (2.4). Proper transformations are made to adjust the

difference between a variance estimator and a standard deviation estimator.

Table 4 gives the estimation result.

The results are consistent for the three measures of volatility. In all cases,

the forecasted volatility using ACARR dominates the forecasted volatility

using CARR. In the three measures, the corresponding t-ratios for the two

models are (21.83, 0.46) using RNG, (7.61, �2,32) using RETSQ and (8.09,

�1.91) using ARET. Once the forecasted volatility using ACARR is in-

cluded, CARR provides no additional explanatory power. Another inter-

esting observation is that the results using range as the measured volatility

look particularly favorable for the ACARR model and the absolute results

are a bit weaker. In other words, the adjusted R2 of the regression using

these two measures are much smaller than that using RNG. This result is

consistent with the observation in Chou (2005) that both RETSQ and

ARET are based on close-to-close return data and are much more noisier

than RNG which is based on the extreme values of the price.

RAY Y. CHOU252



4. CONCLUSION

The ACARR model provides a simple, yet efficient and natural framework

to analyze the asymmetry of the price movement in financial markets. Ap-

plications can be used in computing the option prices where the upward

(downward) range (or the maximum (minimum) return) is more relevant for

computing the price of a call (put) option. Value-at-Risk is another impor-

tant area for applications using the downward range dynamic model. The

ACARR model is related to studies like the duration between a threshold

high or low price level. Further more, the ACARR model can be used to

forecast volatilities comparing with the symmetric model, CARR GARCH,

and SV models, or other asymmetric volatility models like EGARCH, GJR-

GARCH models. Further Monte Carlo analysis will be useful as well as

Table 4. ACARR versus CARR.

Measured Volatility Explanatory Variables Adj. R2 S.E.

Constant FV(CARR) FV(ACARR)

RNG �0.067[�0.366] 1.005[96.29] 0.489 0.543

RNG �0.006[�4.148] 1.047[101.02] 0.513 0.531

RNG �0.067[0.632] 0.021[0.46] 1.026[21.83] 0.513 0.531

RETSQ �1.203[�1.35] 0.397[14.25] 0.02 5.725

RETSQ �0.265[�2.94] 0.459[16.02] 0.026 5.709

RETSQ �0.249[�2.76] �0.191[�2.32] 0.644[7.61] 0.026 5.708

ARET 1.142[7.41] 0.334[27.07] 0.07 0.642

ARET 0.113[5.85] 0.354[28.28] 0.076 0.639

ARET 0.115[5.95] �0.106[�1.91] 0.458[8.09] 0.076 0.639

Note: In-sample Volatility Forecast Comparison Using Three Measured Volatilities as Bench-

marks. The three measures of volatility are RNG, RETSQ and ARET: respectively, daily

ranges, squared-daily-returns, and absoulte daily return. ACARR(1,1) model is fitted for the

range series and a ACARR models are fitted for the upward range and the downward range

series. FV(CARR) (FV(ACARR)) is the forecasted volatility using CARR (ACARR).

FV(ACARR) is the forecasted range using the sum of the forcasted upward range and down-

ward range. Proper transformations are made for adjusting the difference between a variance

estimator and a standard-deviation estimator. Numbers in parentheses are t-ratios.

MVt ¼ aþ b FVtðCARRÞ þ ut

MVt ¼ aþ c FVtðACARRÞ þ ut

MVt ¼ aþ b FVtðCARRÞ þ c FVtðACARRÞ þ ut
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applications to other financial markets such as foreign exchanges, bonds,

and commodities. Applications of the ACARR model to other frequency of

range interval, say every 30min, every hour, or every quarter, and other

frequencies, will provide further understanding of the usefulness/limitation

of the model. Other generalization of the ACARR model will be worthy

subjects of future research, for example, the generalization of the univariate

to a multivariate framework, models simultaneously treat the price return

and the range data, long memory ACARR models.12

The ACARR model in this paper can be seen as an example of an emerging

literature: applications of extreme value theory in finance. Embrecht, Kluppelb-

erg, and Mikosch (1999) and Smith (1999), among others, are strong advocates

of such an approach in studying many important issues in financial economics.

Noticeable examples are Embrechts, McNeil, and Straumann (2002) for cor-

relation of market extreme movements, McNeil and Frey (2000) for volatility

forecasts, and Tsay (2000) for modeling crashes. In fact, all the static range

literature (Parkinson, 1980) and the long-term dependence literature using re-

scaled range (Mandelbrot, 1972; Lo, 1991) can be viewed as earlier examples of

this more general broader approach to the study of empirical finance.

NOTES

1. A general data generating process for Pt can be written as

dPt ¼ mt þ stdW t

dst ¼ yt þ kdV t

where Wt and Vt are two independent standard Wiener processes, or Brownian
motions.
2. See Lo (1991) for a similar case and a proof.
3. It is not clear to me yet how the daily highs/lows of asset prices are compiled

reported on the public or private data sources such as the Wall Street Journal,
Financial Times, and in CRSP. They may be computed from a very high, fixed
frequency. Alternatively, they may be computed directly from the transaction data, a
sampling frequency with non-fixed intervals.
4. Although in this paper we follow the approach of Engle and Russell (1998) in

relying on the QMLE for estimation, it is important to recognize the fact that the
limiting distribution of CARR is known while it is not the case for ACD. This issue is
dealt within the later section.
5. It is of course a worthy topic for future research as to how much of efficiency

gain can be obtained by utilizing the FIML with the limiting distribution to estimate
the parameters. Alternatively, one can estimate the density function using non-
parametric methods.
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6. See Engle and Russell (1998) for a proof.
7. It is noteworthy that the closure property holds only for the weak-GARCH

processes. Namely, in general, the GARCH process is not closed under aggregation.
See Drost and Nijman (1993) for the discussion of the closure property of GARCH
process.
8. The exact date is unknown since this change in compiling process was not

documented by the company. However, from a detailed look at the data, the most
likely date is April 20, 1982.
9. Mathematically, these two compiling methods are respectively, index of the

highs (lows) and highs (lows) of the index. The Jensen inequality tells us that these
two operations are not interchangeable.
10. For the range variable, it is consistently found that a CARR(1,1) model is

sufficient to capture the dynamics for daily and weekly and for different sub-sample
periods.
11. In the GARCH literature a Q-statistics for the squared normalized residuals is

usually included as well to account for the remaining ARCH effect in the residual.
Here we do not include such a statistics because range is by itself a measure of
volatility and this statistics will be measuring the persistence of the volatility of
volatility. For formal tests of the distribution, some tests can be incorporated to
complement the Q–Q plots.
12. In the daily ACARR models, as is suggested by the Portmanteau statistics, the

memory in range (hence in the volatility) seems to be longer than can be accounted
for using the simple ACARR(1,1) or ACARR(2,1) models with short memories.
However, such a phenomenon disappears in the weekly model. Given our empirical
results, it is questionable whether such an attempt is useful in practice.
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ABSTRACT

In this paper, we consider the estimation of volatility parameters in the

context of a linear regression where the disturbances follow a stochastic

volatility (SV) model of order one with Gaussian log-volatility. The

linear regression represents the conditional mean of the process and may

have a fairly general form, including for example finite-order autoregres-

sions. We provide a computationally simple two-step estimator available

in closed form. Under general regularity conditions, we show that this

two-step estimator is asymptotically normal. We study its statistical

properties by simulation, compare it with alternative generalized method-

of-moments (GMM) estimators, and present an application to the S&P

composite index.
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1. INTRODUCTION

Modelling conditional heteroscedasticity is one of the central problems of

financial econometrics. The two main families of models for that purpose

consist of generalized auto-regressive conditional heteroskedasticity

(GARCH)-type processes, originally introduced by Engle (1982), and

stochastic volatility (SV) models proposed by Taylor (1986). Although the

latter may be more attractive – because they are directly connected to

diffusion processes used in theoretical finance – GARCH models are much

more popular because they are relatively easy to estimate; for reviews, see

Gouriéroux (1997) and Palm (1996). In particular, evaluating the likelihood

function of GARCH models is simple compared to SV models for which it is

very difficult to get a likelihood in closed form; see Shephard (1996), Mahieu

and Schotman (1998) and the review of Ghysels, Harvey, and Renault

(1996). Due to the high dimensionality of the integral defining the likelihood

function, this is a general feature of almost all nonlinear latent variable

models. As a result, maximum likelihood methods are prohibitively

expensive from a computational viewpoint, and alternative methods appear

to be required for applying such models.

Since the first discrete-time SV models were proposed by Taylor (1986) as

an alternative to ARCH models, much progress has been made regarding

the estimation of nonlinear latent variable models in general and SV models

in particular. The methods suggested include quasi maximum likelihood

estimation (see Nelson, 1988; Harvey, Ruiz, & Shephard, 1994; Ruiz, 1994),

generalized method-of-moments (GMM) procedures (Melino & Turnbull,

1990; Andersen & Sørensen, 1996), sampling simulation-based techniques–

such as simulated maximum likelihood (Danielsson & Richard, 1993;

Danielsson, 1994), indirect inference and the efficient method of moments

(Gallant, Hsieh, & Tauchen, 1997; Andersen, Chung, & Sørensen, 1999) –

and Bayesian approaches (Jacquier, Polson, & Rossi, 1994; Kim, Shephard,

& Chib, 1998; Wong, 2002a, SVb). Note also that the most widely studied

specification in this literature consists of an SV model of order one with

Gaussian log-volatility and zero (or constant) conditional mean. The most

notable exception can be found in Gallant et al. (1997) who allowed for an

autoregressive conditional mean and considered a general autoregressive

process on the log-volatility. It is remarkable that all these methods

are highly nonlinear and computer-intensive. Implementing them can be

quite complicated and get more so as the number of parameters increases

(e.g., with the orders of the autoregressive conditional mean and log-

volatility).
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In this paper, we consider the estimation of SV parameters in the context

of a linear regression where the disturbances follow an SV model of order

one with Gaussian log-volatility. The linear regression represents the

conditional mean of the process and may have a fairly general form, which

includes for example finite-order autoregressions. Our objective is to

develop a computationally inexpensive estimator that can be easily exploited

within simulation-based inference procedures, such as Monte Carlo and

bootstrap tests.1 So we study here a simple two-step estimation procedure

which can be described as follows: (1) the conditional mean model is first

estimated by a simple consistent procedure that takes into account the SV

structure; for example, the parameters of the conditional mean can be

estimated by ordinary least squares (although other estimation procedures

can be used); (2) using residuals from this preliminary regression, the

parameters of the SV model are then evaluated by a method-of-moment

estimator based on three moments (2S-3M) for which a simple closed-form

expression can be derived. Under general regularity conditions, we show the

two-stage estimator is asymptotically normally distributed. Following recent

results on the estimation of autoregressive models with SV (see, for example,

Gonc-alves & Kilian, 2004, Theorem 3.1), this entails that the result holds for

such models.

An interesting and potentially useful feature of the asymptotic distribu-

tion stems from the fact that its covariance matrix does not depend on the

distribution of the conditional mean estimator, i.e., the estimation

uncertainty on the parameters of the conditional mean does not affect the

distribution of the volatility parameter estimates (asymptotically). The

properties of the 2S-3M estimator are also studied in a small Monte Carlo

experiment and compared with GMM estimators proposed in this context.

We find that the 2S-3M estimator has quite reasonable accuracy with respect

to the GMM estimators: indeed, in several cases, the 2S-3M estimator has

the lowest root mean-square error. With respect to computational efficiency,

the 2S-3M estimator always requires less than a second while GMM

estimators may take several hours before convergence is obtained (if it

does). Finally, the proposed estimator is illustrated by applying it to the

estimation of an SV model on the Standard and Poor’s Composite Price

Index (1928–1987, daily data).

The paper is organized as follows. Section 3 sets the framework and the

main assumptions used. The closed-form estimator studied is described in

Section 3. The asymptotic distribution of the estimator is established

in Section 4. In Section 5, we report the results of a small simulation study

on the performance of the estimator. Section 6 presents the application to
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the Standard and Poor’s Composite Price Index return series. We conclude

in Section 7. All proofs are gathered in the Appendix.

2. FRAMEWORK

We consider here a regression model for a variable yt with disturbances that

follow an SV process, which is described below following a notation similar

to the one used by Gallant et al. (1997). N0 refers to the nonnegative

integers.

Assumption 2.1. Linear regression with stochastic volatility. The process

fyt : t 2 N0g follows an SV model of the type:

yt ¼ x0tbþ ut (2.1)

ut ¼ expðwt=2Þryzt ; wt ¼
X

Lw

j¼1

ajwt�j þ rwvt (2.2)

where xt is a k � 1 random vector independent of the variables

fxt�1; zt; vt; wt : t � tg; and b; ry; fajgLw

j¼1; rw are fixed parameters.

Typically yt denotes the first difference over a short time interval, a day

for instance, of the log-price of a financial asset traded on security markets.

The regression function x0tb represents the conditional mean of yt (given the

past) while the SV process determines a varying conditional variance.

A common specification here consists in assuming that x0tb has an

autoregressive form as in the following restricted version of the model

described in Assumption 2.1.

Assumption 2.2. Autoregressive model with stochastic volatility. The

process yt : t 2 N0

� �

follows an SV model of the type:

yt � my ¼
X

Ly

j¼1

cjðyt�j � myÞ þ ut (2.3)

ut ¼ expðwt=2Þryzt ; wt ¼
X

Lw

j¼1

ajwt�j þ rwvt (2.4)

where b; fcjgLy

j¼1; ry, fajg
Lw

j¼1 and rw are fixed parameters.
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We shall refer to the latter model as an AR-SV(Ly, Lw) model. The lag

lengths of the autoregressive specifications used in the literature are typically

short, e.g.: Ly ¼ 0 and Lw ¼ 1 (Andersen & Sørensen, 1996; Jacquier,

Polson & Rossi, 1994; Andersen et al., 1999), 0 � Ly � 2 and 0 � Lw � 2

(Gallant et al., 1997). In particular, we will devote special attention to the

AR-SV(1,1) model:

yt � my ¼ cðyt�1 � myÞ þ expðwt=2Þryzt ; jcjo1 (2.5)

wt ¼ awt�1 þ rwvt ; jajo1 (2.6)

so that

covðwt;wtþtÞ ¼ atg (2.7)

where g ¼ r2w=ð1� a2Þ : The basic assumptions described above will be

completed by a Gaussian distributional assumption and stationarity

condition.

Assumption 2.3. Gaussian noise. The vectors ðzt; vtÞ0; t 2 N0; are i.i.d.

according to a N[0, I2] distribution.

Assumption 2.4. Stationarity. The process st ¼ ðyt; wtÞ0 is strictly sta-

tionary.

The process defined above is Markovian of order Ls ¼ maxðLy; LwÞ:
Under these assumptions, the AR-SV (Ly, Lw) is a parametric model with

parameter vector

d ¼ ðmy; c1; . . . ; cLy
; ry; a1; . . . ; aLw

; rwÞ0. (2.8)

Due to the fact that the model involves a latent variable (wt), the joint

density of the vector of observations yðTÞ ¼ ðy1; . . . ; yT Þ is not available in
closed form because the latter would involve evaluating an integral with

dimension equal to the whole path of the latent volatilities.

3. CLOSED-FORM METHOD-OF-MOMENTS

ESTIMATOR

In order to estimate the parameters of the volatility model described in the

previous section, we shall consider the moments of the residual process in

(2.1), which can be estimated relatively easily from regression residuals.
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Specifically, we will focus on SV of order one (Lw ¼ 1). Set

y ¼ ða; ry; rwÞ0 (3.1)

vtðyÞ � exp
awt�1 þ rwvt

2

� �
ryzt ; 8t (3.2)

Models (2.1) and (2.2) may then be conveniently rewritten as the following

identity:

yt � x0tb ¼ vtðyÞ ; 8t . (3.3)

The estimator we will study is based on the moments of the process ut �
vtðyÞ: The required moments are given in the following lemma.2

Lemma 3.1. Moments and cross-moments of the volatility process. Under

the assumptions 2.1, 2.3 and 2.4 with Lw ¼ 1; the moments and cross-

moments of ut ¼ expðwt=2Þryzt are given by the following formulas: for k,

l and m 2 N0;

mkðyÞ � Eðukt Þ ¼ rky
k!

2ðk=2Þðk=2Þ!
exp

k2

8
r2w=ð1� a2Þ

� �

; if k is even

¼ 0 ; if k is odd ð3:4Þ

mk;lðmjyÞ � Eðukt ultþmÞ

¼ rkþl
y

k!

2ðk=2Þðk=2Þ!
l!

2ðl=2Þðl=2Þ!
exp½ r2w

8ð1� a2Þ ðk
2 þ l2 þ 2klamÞ� ð3:5Þ

if k and l are even, and mk;lðmjyÞ ¼ 0 if k or l is odd.

On considering k ¼ 2; k ¼ 4 or k ¼ l ¼ 2 and m ¼ 1; we get:

m2ðyÞ ¼ Eðu2t Þ ¼ r2yexp½r2w=2ð1� a2Þ� (3.6)

m4ðyÞ ¼ Eðu4t Þ ¼ 3r4yexp½2r2w=ð1� a2Þ� (3.7)

m2;2ð1jyÞ ¼ E½u2t u2t�1� ¼ r4y exp½r2w=ð1� aÞ� (3.8)

An important observation here comes from the fact that the above

equations can be explicitly solved for a,ry and rw. The solution is given in the

following lemma.
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Lemma 3.2. Moment equations solution. Under the assumptions of

Proposition 3.1, we have:

a ¼
log½m2;2ð1jyÞ� þ log½m4ðyÞ=ð3m2ðyÞ4Þ�

log½m4ðyÞ=ð3m2ðyÞ2Þ�

" #

� 1 (3.9)

ry ¼
31=4m2ðyÞ
m4ðyÞ1=4

(3.10)

rw ¼ ½ð1� a2Þlog½m4ðyÞ=ð3m2ðyÞ2Þ��1=2 (3.11)

From Lemmas 3.1 and 3.3, it is easy to derive higher-order

autocovariance functions. In particular, for later reference, we will find

useful to spell out the second and fourth-order autocovariance functions.

Lemma 3.3. Higher-order autocovariance functions. Under the assump-

tions of Proposition 3.1, let X t ¼ ðX 1t; X 2t; X 3tÞ0 with

X 1t ¼ u2t � m2ðyÞ; X 2t ¼ u4t � m4ðyÞ; X 3t ¼ u2t u
2
t�1 � m2;2ð1jyÞ . (3.12)

Then the covariances giðtÞ ¼ CovðX i;t; X i;tþtÞ; i ¼ 1; 2; 3; are given by:

g1ðtÞ ¼ m22ðyÞ½expðgatÞ � 1� (3.13)

g2ðtÞ ¼ m24ðyÞ½expð4gatÞ � 1� ; 8t � 1 (3.14)

g3ðtÞ ¼ m22;2ð1jyÞ½expðgð1þ aÞ2at�1Þ � 1� ; 8t � 2 (3.15)

where g ¼ r2w=ð1� a2Þ:
Suppose now we have a preliminary estimator b̂ of b. For example, for the

autoregressive models (2.3)–(2.4), estimation of Eq. (2.3) yields consistent

asymptotically normal estimators of b;see Gonc-alves and Kilian (2004,

Theorem 3.1) and Kuersteiner (2001). Of course, other estimators of the

regression coefficients may be considered. Given the residuals

ût ¼ yt � x0tb̂ ; t ¼ 0; 1; . . . ; T (3.16)

it is then natural to estimate m2(y), m4(y), and m2;2ð1jyÞ by the corresponding

empirical moments:

m̂2 ¼
1

T

X

T

t¼1

û2t ; m̂4 ¼
1

T

X

T

t¼1

û4t ; m̂2ð1Þ ¼
1

T

X

T

t¼1

û2t û
2
t�1
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This yields the following estimators of the SV coefficients:

â ¼ log½m̂2ð1Þ� þ log½m̂4=ð3m̂42Þ�
log½m̂4=ð3m̂22Þ�

" #

� 1 (3.17)

r̂y ¼
31=4m̂2

m̂
1=4
4

¼ 3m̂42
m̂4

� �1=4

(3.18)

r̂w ¼ ½ð1� â2Þlog½m̂4=ð3m̂22Þ��1=2 (3.19)

Clearly, it is straightforward to compute the latter estimates as soon as the

estimator b̂ used to compute the residuals ût ¼ yt � x0tb̂ is easy to obtain

(e.g., b̂ could be a least squares estimator).3

4. ASYMPTOTIC DISTRIBUTION

We will now study the asymptotic distribution of the moment estimator

defined in (3.17)–(3.19). For that purpose, it will be convenient to view the

latter as a special case of the general class of estimators obtained by

minimizing a quadratic form of the type:

MT ðyÞ ¼ ½ḡT ðÛT Þ � mðyÞ�0ÔT ½ḡT ðÛT Þ � mðyÞ� (4.1)

where m(y) is a vector of moments, ḡT ðÛT Þ the corresponding vector of

empirical moments based on the residual vector ÛT ¼ ðû1; . . . ; ûT Þ0; and
ÔT a positive-definite (possibly random) matrix. Of course, this estimator

belongs to the general family of moment estimators, for which a number of

general asymptotic results do exist; see Hansen (1982), Gouriéroux and

Monfort (1995b, Volume 1, Chapter 9) and Newey and McFadden (1994).

However, we need to account here for two specific features, namely: (1) the

disturbances in (2.1) follow an SV model, and the satisfaction of the relevant

regularity conditions must be checked; (2) the two-stage nature of the

procedure where the estimator of the parameter b of the conditional mean

equation is obtained separately and may not be based on the same objective

function as the one used to estimate y. In particular, it is important to know

whether the estimator of the conditional mean parameter b has an effect on

the asymptotic distribution of the estimator of y. It is worth noting at this

stage that Andersen and Sørensen (1996) did refer to the asymptotic

distribution of the usual GMM estimator as derived in Hansen (1982), but
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without checking the suitable regularity conditions for the SV model, which

we will do here.

To spell out the properties of the estimator ŷT ðÔT Þ obtained by

minimizing MT(y), we will consider first the following generic assumptions,

where y0 denotes the ‘‘true’’ value of the parameter vector y.

Assumption 4.1. Asymptotic normality of empirical moments.

ffiffiffiffi

T
p

½ḡT ðUT Þ � mðy0Þ�!
D
N½0; On� (4.2)

where UT � ðu1; . . . ; uT Þ0 and
On ¼ lim

T!1
EfT ½ḡT ðUT Þ � mðy0Þ�½ḡT ðUT Þ � mðy0Þ�0g (4.3)

Assumption 4.2. Asymptotic equivalence for empirical moments. The

random vector
ffiffiffiffi

T
p

½ḡT ðÛT Þ � mðy0Þ� is asymptotically equivalent to
ffiffiffiffi

T
p

½ḡT ðUT Þ � mðy0Þ�; i.e.

plim
T!1

f
ffiffiffiffi

T
p

½ḡT ðÛT Þ � mðy0Þ� �
ffiffiffiffi

T
p

½ḡT ðUT Þ � mðy0Þ�g ¼ 0 (4.4)

Assumption 4.3. Asymptotic nonsingularity of weight matrix. plim
T!1

ðÔT Þ ¼
O where detðOÞa0:

Assumption 4.4. Asymptotic nonsingularity of weight matrix. m(y0) is twice

continuously differentiable in an open neighborhood of y0 and the

Jacobian matrix P(y0) has full rank, where PðyÞ ¼ @m0

@y :

Given these assumptions, the asymptotic distribution of ŷT ðÔT Þ
is determined by a standard argument on method-of-moments estimation.

Proposition 4.1. Asymptotic distribution of method-of-moments estimator.

Under the assumptions 4.1 to 4.4,

ffiffiffiffi

T
p

½ŷT ðOÞ � y0�!
D
N½0; V ðy0jOÞ� (4.5)

where

V ðyjOÞ ¼ PðyÞOPðyÞ0

 ��1

PðyÞOO�OPðyÞ0 PðyÞOPðyÞ0

 ��1

(4.6)

PðyÞ ¼ @m0

@y : If, furthermore, (i) P(y) is a square matrix, or (ii) O� is

nonsingular and O ¼ O�1
n
; then

V ðyjOÞ ¼ PðyÞO�1
n
PðyÞ0


 ��1 � VnðyÞ (4.7)
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As usual, V�(y0) is the smallest possible asymptotic covariance matrix

for a method-of-moments estimator based on MT(y). The latter, in

particular, is reached when the dimensions of m and y are the same, in

which case the estimator is obtained by solving the equation

ḡT ðÛT Þ ¼ mðŷT Þ

Consistent estimators V ðy0jOÞ and V0(y0) can be obtained on replacing y0
and O� by consistent estimators.

A consistent estimator of O� can easily be obtained (see Newey & West,

1987) by a Bartlett kernel estimator, i.e.:

Ôn ¼ Ĝ0 þ
X

KðTÞ

k¼1

1� k

KðTÞ þ 1

� �

Ĝk þ Ĝ
0
k

� �
(4.8)

where

Ĝk ¼
1

T

XT

t¼kþ1

½gt�kðûÞ � mðyÞ�½gtðûÞ � mðyÞ�0 (4.9)

with y replaced by a consistent estimator ~yT of y. The truncation parameter

KðTÞ ¼ ~c T1=3 is allowed to grow with the sample size such that:

lim
T!1

KðTÞ
T1=2

¼ 0 (4.10)

see White and Domowitz (1984). A consistent estimator of V�ðy0Þ is then

given by

V̂n ¼ ½PðŷT ÞÔ
�1

� PðŷT Þ0��1. (4.11)

The main problem here consists in showing that the relevant regularity

conditions are satisfied for the estimator ŷ ¼ ðâ; r̂y; r̂wÞ0 given by (3.17)–

(3.19) for the parameters of an SV model of order one. In this case, we have

mðyÞ ¼ ½m2ðyÞ; m4ðyÞ; m2;2ð1jyÞ�0;

ḡT ðÛT Þ ¼
1

T

XT

t¼1

gtðÛT Þ ¼

1
T

PT

t¼1

û2t

1
T

PT

t¼1

û4t

1
T

PT

t¼1

û2t û
2
t�1

0

BBBBBBBB@

1

CCCCCCCCA

(4.12)
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ḡT ðUT Þ ¼
1

T

X

T

t¼1

gtðUT Þ ¼

1
T

P

T

t¼1

u2t

1
T

P

T

t¼1

u4t

1
T

P

T

t¼1

u2t u
2
t�1

0

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

A

(4.13)

where gtðÛT Þ ¼ ½û2t ; û
4
t ; û

2
t û

2
t�1�0; and gtðUT Þ ¼ ½u2t ; u4t ; u2t u2t�1�0:

Since the number of moments used is equal to the number of parameters

(three), the moment estimator can be obtained by taking ÔT equal to an

identity matrix so that Assumption 4.3 automatically holds. The main

problem then consists in showing that the assumptions 4.1 and 4.2 are

satisfied.

Assumption 4.5. Existence of moments.

plim
T!1

1

T

X

T

t¼1

xtx
0
t ¼ s2;xð0Þ (4.14)

plim
T!1

1

T

X

T

t¼1

xtu
2
tx

0
t ¼ s2;x;uð0; 0Þ (4.15)

plim
T!1

1

T

X

T

t¼1

xtu
2
t�1x

0
t ¼ s2;x;uð0; 1Þ (4.16)

plim
T!1

1

T

X

T

t¼1

xt�1u
2
tx

0
t�1 ¼ s2;x;uð1; 0Þ (4.17)

where the k � k matrices s2;xð0Þ; s2;x;uð0; 0Þ; s2;x;uð0; 1Þ and s2;x;uð1; 0Þ are
bounded.

Proposition 4.2. Asymptotic distribution for empirical moments. Under the

assumptions 2.1, 2.3 and 2.4 with Lw ¼ 1; we have:

ffiffiffiffi

T
p

½ḡT ðUT Þ � mðy0Þ�!
D
N½0; On� (4.18)

where ḡT ðUT Þ ¼ ST
t¼1 gt=T ; gt ¼ ½u2t ; u4t ; u2t u2t�1�0; and

On ¼ V ½gt� ¼ E½gtg0t� � mðy0Þmðy0Þ0. (4.19)
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Proposition 4.3. Asymptotic equivalence for empirical moments. Suppose

the assumptions 2.1, 2.3, 2.4 and 4.5 hold with Lw ¼ 1; let b̂ be an

estimator of b such that

ffiffiffiffi

T
p

ðb̂� bÞ is asymptotically bounded, (4.20)

and let ût ¼ yt � x0tb̂: Then
ffiffiffiffi

T
p

½ḡT ðÛT Þ � mðy0Þ� is asymptotically

equivalent to
ffiffiffiffi

T
p

½ḡT ðUT Þ � mðy0Þ�:

The fact that condition (4.20) is satisfied by the least squares estimator

can be easily seen from earlier published results on the estimation of

regression models with SV; see Gonc-alves and Kilian (2004, Theorem 3.1)

and Kuersteiner (2001). Concerning equation (4.14) it holds in particular for

the AR(p) case with xt ¼ Y t�1 ¼ ðyt�1 ; . . . ; yt�pÞ0; see the proofs of Gonc-

alves and Kilian (2004, Theorems 3.1).

On assuming that the matrices O� and P(y0) have full rank, the

asymptotic normality of ŷT follows as described in Proposition 4.1.

Concerning the latter, it is interesting and potentially useful to note that

this asymptotic distribution does not depend on the asymptotic distribution

of the first step estimator of the autoregressive coefficient ðb̂Þ in the

conditional mean equation.

5. SIMULATION STUDY

In this section, we study by simulation the properties of the 2S-3M estimator

in terms of bias, variance and root mean square error (RMSE). We consider

two different sets of parameters: one set with low serial dependence in the

autoregressive dynamics of both processes (c ¼ 0:3; a ¼ 0), while the other

one has high dependence (c ¼ 0:95 and a ¼ 0:95). For both sets, the scale

parameters are fixed at ry ¼ 0:5: and rw ¼ 0:5 Under these designs, the

2S-3M estimator is compared with the GMM estimators of Andersen and

Sørensen (1996) based on 5 and 24 moments. The number of replications

used is 1000. The results are presented in Tables 1–3.

Globally, there is no uniform ranking between the different estimators. In

several cases, the simple 3-moment estimator exhibits smaller bias and

RMSE than the computationally expensive GMM estimator based on 24

moments. The GMM estimator with 5 moments is also clearly dominated

by the 2S-3M estimator. In terms of variance, the GMM estimator with 24

moments performs better than the 2S-3M estimator, but its bias is higher.
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It is interesting to note that Andersen and Sørensen (1996) studied the

choice of the number of moments to include in the overidentified estimation

procedure and found that it depends critically on sample size. According to

these authors, one should exploit additional moment restrictions when the

sample size increases. However, this advice does not appear to be compelling

in view of the fact that the 2S-3M estimator can exhibit a better performance

even for large samples, such as T ¼ 1000; 2000, 5000. This may be related to

theoretical and simulation findings on IV-based inference suggesting that

large numbers of instruments may adversely affect estimator precision and

test power; see Buse (1992), Chao and Swanson (2000) and Dufour and

Taamouti (2003). In particular, overidentification increases the bias of IV

and GMM estimators in finite samples. When 24 moments are used, one

needs to estimate 24ð24þ 1Þ=2 separate entries in the weighting matrix along

Table 1. Moment Estimators: Bias.

c ¼ 0:3; a ¼ 0; ry ¼ 0:5; rw ¼ 0:5

T ¼ 100 T ¼ 200 T ¼ 500

3mm 5mm 24mm 3mm 5mm 24mm 3mm 5mm 24mm

a �0.2106 �0.0767 0.0780 �0.1554 �0.0522 0.0901 �0.0805 �0.0233 0.0717
ry 0.0047 �0.0117 �0.0152 0.0044 �0.0021 �0.0064 0.0023 0.0017 �0.0012
rw �0.2988 �0.4016 �0.3315 �0.2384 �0.3643 �0.3070 �0.1360 �0.3210 �0.2218

T ¼ 1; 000 T ¼ 2; 000 T ¼ 5; 000
3mm 5mm 24mm 3mm 5mm 24mm 3mm 5mm 24mm

a �0.0332 0.0052 0.0186 �0.0204 0.0149 0.0186 �0.0062 0.0191 0.0186
ry 0.0012 0.0026 0.0009 0.0006 0.0019 0.0009 0.0003 0.0012 0.0009
rw �0.0685 �0.3097 �0.0485 �0.0328 �0.3026 �0.0485 �0.0127 �0.2074 �0.0485

c ¼ 0:95; a ¼ 0:95; ry ¼ 0:5; rw ¼ 0:5

T ¼ 100 T ¼ 200 T ¼ 500

3mm 5mm 24mm 3mm 5mm 24mm 3mm 5mm 24mm

a �0.2490 �0.2904 �0.3400 �0.1576 �0.2652 �0.1327 �0.0921 �0.3209 �0.0257
ry 0.2063 0.0801 0.0178 0.1754 0.0422 0.0339 0.1379 0.0124 0.0284
rw �0.1240 �0.3307 �0.3024 �0.0817 �0.2240 �0.3146 �0.0687 �0.0843 �0.3215

T ¼ 1; 000 T ¼ 2; 000 T ¼ 5; 000
3mm 5mm 24mm 3mm 5mm 24mm 3mm 5mm 24mm

a �0.0610 �0.3391 �0.0156 �0.0480 �0.3593 0.0071 �0.0299 �0.3813 0.0256
ry 0.1149 0.0056 0.0253 0.0890 0.0061 0.0262 0.0639 0.0141 0.0305
rw �0.0746 �0.0104 �0.3105 �0.0583 0.0676 �0.2856 �0.0683 0.1988 �0.2461
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with the sample moments, and the GMM estimator becomes computation-

ally cumbersome. Furthermore, when the values of the autoregressive

parameters get close to the boundaries of the domain, this creates numerical

instability in estimating the weight matrix, and the situation gets worse in

small samples (T ¼ 100; 200). When the sample size is small (T ¼ 100; 200),
RMSE is critically high especially for the autoregressive parameter a; this

may be due to the poor behavior of sample moments in small samples.

6. APPLICATION TO STANDARD AND POOR’S

PRICE INDEX

In this section, we apply our moment estimator to the daily data

on Standard and Poor’s Composite Price Index (S&P), over the period

Table 2. Moment Estimators: Variance.

c ¼ 0:3; a ¼ 0; ry ¼ 0:5; rw ¼ 0:5

T ¼ 100 T ¼ 200 T ¼ 500

3mm 5mm 24mm 3mm 5mm 24mm 3mm 5mm 24mm

a 0.6482 0.3712 0.2914 0.5434 0.3819 0.2986 0.3346 0.3373 0.2947
ry 0.0019 0.0056 0.0024 0.0010 0.0018 0.0008 0.0005 0.0004 0.0003
rw 0.0572 0.0423 0.0360 0.0593 0.0557 0.0321 0.0436 0.0827 0.0233

T ¼ 1; 000 T ¼ 2; 000 T ¼ 5; 000
3mm 5mm 24mm 3mm 5mm 24mm 3mm 5mm 24mm

a 0.1686 0.2103 0.0354 0.0862 0.1027 0.0354 0.0276 0.0304 0.0354
ry 0.0002 0.0001 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000
rw 0.0200 0.1119 0.0030 0.0092 0.1432 0.0030 0.0029 0.1252 0.0030

c ¼ 0:95; a ¼ 0:95; ry ¼ 0:5; rw ¼ 0:5

T ¼ 100 T ¼ 200 T ¼ 500

3mm 5mm 24mm 3mm 5mm 24mm 3mm 5mm 24mm

a 0.1796 0.3538 0.3019 0.0751 0.3217 0.1634 0.0343 0.3339 0.0426
ry 0.1184 0.0815 0.0691 0.0647 0.0458 0.0497 0.0284 0.0177 0.0225
rw 0.1574 0.0607 0.0633 0.1679 0.0979 0.0481 0.1649 0.1254 0.0325

T ¼ 1; 000 T ¼ 2; 000 T ¼ 5; 000
3mm 5mm 24mm 3mm 5mm 24mm 3mm 5mm 24mm

a 0.0210 0.3336 0.0414 0.0143 0.3309 0.0172 0.0093 0.2911 0.0003
ry 0.0143 0.0089 0.0115 0.0073 0.0047 0.0056 0.0040 0.0020 0.0021
rw 0.1522 0.1484 0.0213 0.1432 0.1546 0.0189 0.1312 0.1709 0.0108
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1928–1987. This time series was used by Gallant et al. (1997) to estimate a

standard SV model with the efficient method of moments. The data

comprise 16,127 daily observations f ~ytg16;127t¼1 on adjusted movements of the

Standard and poor’s Composite Price Index, 1928–1987. The raw series is the

Standard and Poor’s Composite Price Index (SP), daily, 1928–1987. The raw

series is converted to a price movements series, 100½logðSPtÞ � logðSPt�1Þ�;
and then adjusted for systematic calendar effects, that is, systematic shifts in

location and scale due to different trading patterns across days of the week,

holidays, and year-end tax trading. This yields a variable we shall denote yt.

The unrestricted estimated value of d from the data is:

d̂T ¼ ð0:129; 0:926; 0:829; 0:427Þ0

ŝT ¼ ½0:007; 8:10; 1:91; 8:13�0

Table 3. Moment Estimators: RMSE.

c ¼ 0:3; a ¼ 0; ry ¼ 0:5; rw ¼ 0:5

T ¼ 100 T ¼ 200 T ¼ 500

3mm 5mm 24mm 3mm 5mm 24mm 3mm 5mm 24mm

a 0.8318 0.6138 0.5459 0.7530 0.6205 0.5536 0.5837 0.5818 0.5475
ry 0.0439 0.0759 0.0513 0.0320 0.0434 0.0295 0.0226 0.0203 0.0199
rw 0.3827 0.4512 0.3822 0.3408 0.4335 0.3555 0.2491 0.4313 0.2694

T ¼ 1; 000 T ¼ 2; 000 T ¼ 5; 000
3mm 5mm 24mm 3mm 5mm 24mm 3mm 5mm 24mm

a 0.4118 0.4590 0.4759 0.2942 0.3211 0.3561 0.1662 0.1754 0.1891
ry 0.0155 0.0140 0.0137 0.0113 0.0101 0.0098 0.0078 0.0070 0.0068
rw 0.1571 0.4559 0.2000 0.1014 0.4852 0.1393 0.0556 0.4100 0.0732

c ¼ 0:95; a ¼ 0:95; ry ¼ 0:5; rw ¼ 0:5

T ¼ 100 T ¼ 200 T ¼ 500

3mm 5mm 24mm 3mm 5mm 24mm 3mm 5mm 24mm

a 0.4914 0.6617 0.6459 0.3159 0.6351 0.4252 0.2069 0.6607 0.2079
ry 0.4010 0.2964 0.2634 0.3089 0.2180 0.2255 0.2178 0.1338 0.1527
rw 0.4155 0.4123 0.3933 0.4176 0.3847 0.3835 0.4116 0.3638 0.3686

T ¼ 1; 000 T ¼ 2; 000 T ¼ 5; 000
3mm 5mm 24mm 3mm 5mm 24mm 3mm 5mm 24mm

a 0.1573 0.6696 0.2041 0.1291 0.6780 0.1314 0.1014 0.6605 0.0312
ry 0.1659 0.0944 0.1102 0.1234 0.0686 0.0797 0.0900 0.0460 0.0553
rw 0.3970 0.3852 0.3431 0.3828 0.3988 0.3170 0.3685 0.4586 0.2673
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where the method-of-moments estimated value of a corresponds to âT ¼
0:926: We may conjecture that there is some persistence in the data during

the period 1928–1987, which has been statistically checked by performing the

three standard tests in a companion paper (see Dufour and Valéry, 2005).

7. CONCLUSION

In this paper, we have provided a computationally simple moment estimator

available in closed form and derived its asymptotic distribution for the

parameters of an SV in a linear regression. Compared with the GMM

estimator of Andersen and Sørensen (1996), it demonstrates good statistical

properties in terms of bias and RMSE in many situations. Further, it casts

doubt on the advice that one should use a large number of moments. In this

respect, our just identified estimator underscores that one should not include

too many instruments increasing thereby the chance of including irrelevant

ones in the estimation procedure. This assertion is documented in the literature

on asymptotic theory; see for example, Buse (1992), Chao and Swanson

(2000). In particular, overidentification increases bias of IV and GMM

estimators in finite samples. Concurring evidence based on finite-sample

optimality results andMonte Carlo simulations is also available in Dufour and

Taamouti (2003). Further, our closed-form estimator is especially convenient

for use in the context of computationally costly inference techniques, such as

simulation-based inference methods when asymptotic approximations do not

provide reliable inference; see Dufour and Valéry (2005).

SUMMARY

In this paper, we consider the estimation of volatility parameters in the

context of a linear regression where the disturbances follow an SV model of

order one with Gaussian log-volatility. The linear regression represents the

conditional mean of the process and may have a fairly general form,

including for example, finite-order autoregressions. We provide a compu-

tationally simple two step estimator available in closed form which can be

described as follows: (1) the conditional mean model is first estimated by a

simple consistent procedure that does take into account the SV structure; (2)

using residuals from this preliminary regression, the volatility parameters

are then evaluated by a method-of-moment estimator based on three

moments for which a simple closed-form expression is derived. Under
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general regularity conditions, we show that this two-step estimator is

asymptotically normal with the covariance matrix that does not depend on

the distribution of the conditional mean estimator. We then study its

statistical properties by simulation and compare it with alternative GMM

estimators based on more moments. Finally, we provide an application to

Standard and Poor’s Composite Price Index (1928–1987).

NOTES

1. This feature is exploited in a companion paper (Dufour & Valéry, 2005) where
various simulation-based test procedures are developed and implemented.
2. Expressions for the autocorrelations and autocovariances of u2twere derived by

Taylor (1986, Section 3.5) and Jacquier et al. (1994). The latter authors also provide
the higher-order moments E½jumt j�; while general formulas for the higher-order cross-
moments of an SV process are reported (without proof) by Ghysels et al. (1996). For
completeness, we give a relatively simple proof in the Appendix.
3. Andersen and Sørensen (1996) did also consider a moment estimator based on a

different set of 3 moments, namely EðjutjÞ; Eðu2t Þ and Eðjutut�1jÞ: A closed-form
solution for this estimator was not provided.
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APPENDIX. PROOFS

Proof of Lemma 3.1. If U � Nð0; 1Þ; then EðU2pþ1Þ ¼ 0; 8p 2 N and

EðU2pÞ ¼ ð2pÞ!=½2pp!� 8 p 2 N; see Gouriéroux and Monfort (1995a,

Volume 2, p. 518). Under Assumption 2.1,

Eðukt Þ ¼ rkyEðzkt ÞE½expðkwt=2Þ�

¼ rky
k!

2ðk=2Þðk=2Þ!
exp

k2

4
r2w=2ð1� a2Þ

� �

¼ rky
k!

2ðk=2Þðk=2Þ!
exp

k2

8
r2w=ð1� a2Þ

� �

ðA:1Þ
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where the second equality uses the definition of the Gaussian Laplace

transform of wt � N½0; r2w=ð1� a2Þ� and of the moments of the N(0,1)

distribution. Let us now calculate the cross-product:

E½ukt ultþm� ¼ E rkþl
y zkt z

l
tþmexp k

wt

2
þ l

wtþm

2

� �h i

¼ rkþl
y Eðzkt ÞEðzltþmÞE exp k

wt

2
þ l

wtþm

2

� �h i

¼ rkþl
y

k!

2ðk=2Þðk=2Þ!
l!

2ðl=2Þðl=2Þ!
exp

r2w
8ð1� a2Þ ðk

2 þ l2 þ 2klamÞ
� �

ðA:2Þ

where EðwtÞ ¼ 0; VarðwtÞ ¼ r2w=ð1� a2Þ and

Var k
wt

2
þ l

wtþm

2

� �
¼ k2

4
VarðwtÞ þ

l2

4
VarðwtþmÞ þ 2

k

2

l

2
Covðwt; wtþmÞ

¼ r2w
4ð1� a2Þ ðk

2 þ l2 þ 2klamÞ ðA:3Þ

Proof of Lemma 3.2. By equations (3.6) and (3.7), we get:

Eðu4t Þ
½Eðu2t Þ�2

¼ 3 exp r2w
�

1� a2
 �
 �

(A.4)

hence

r2w=ð1� a2Þ ¼ log
Eðu4t Þ

3ðEðu2t ÞÞ2

 !

� Q (A.5)

Inserting Q � r2w=ð1� a2Þ in (3.6) yields

ry ¼
Eðu2t Þ

expðQ=2Þ

� �1=2

¼ 31=4Eðu2t Þ
Eðu4t Þ1=4

(A.6)

From equation (3.8), we have

exp
r2w

ð1� aÞ

� �

¼ E½u2t u2t�1�
r4y

(A.7)

which, after a few manipulations, yields

1þ a ¼ ½logðE½u2t u2t�1�Þ � 4logðryÞ�
Q

(A.8)
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and

a ¼ ½logðE½u2t u2t�1�Þ � logð3Þ � 4logðE½u2t �Þ þ logðE½u4t �Þ�
log

E½u4t �
3ðE½u2t �Þ2

� � � 1 (A.9)

Finally, from (A.5), we get:

rw ¼ ð1� a2Þlog E½u4t �
3ðE½u2t �Þ2

 !" #1=2
(A.10)

Proof of Lemma 3.3. Here we derive the covariances of the components

of

g1ðtÞ ¼ CovðX 1t; X 1;tþtÞ ¼ Ef½u2t � m2ðyÞ�½u2tþt � m2ðyÞ�g
¼ Eðu2t u2tþtÞ � m22ðyÞ ¼ r4yE½expðwt þ wtþtÞ� � m22ðyÞ

¼ r4yexp
r2w

1� a2
ð1þ atÞ

� �

� m22ðyÞ ¼ m22ðyÞ½expðgatÞ � 1� ðA:11Þ

where g ¼ r2w=ð1� a2Þ: Similarly,

g2ðtÞ ¼ CovðX 2t; X 2;tþtÞ ¼ Ef½u4t � m4ðyÞ�½u4tþt � m4ðyÞ�g
¼ Eðu4t u4tþtÞ � m24ðyÞ ¼ 9r8yEfexp½2ðwt þ wtþtÞ�g � m24ðyÞ

¼ 9r8yexp 4
r2w

1� a2
ð1þ atÞ � m24ðyÞ

� �

¼ m24ðyÞ½expð4gatÞ � 1� ðA:12Þ

Finally,

g3ðtÞ ¼ CovðX 3t; X 3;tþtÞ ¼ Ef½u2t u2t�1 � m2;2ð1jyÞ�½u2tþtu
2
tþt�1 � m2;2ð1jyÞ�g

¼ E½u2t u2t�1u
2
tþtu

2
tþt�1� � m22;2ð1jyÞ

¼ r8yEexpðwtþt þ wtþt�1 þ wt þ wt�1Þ � m22;2ð1jyÞ
¼ r8yexp½2ð1þ aÞg�exp½gðat�1 þ 2at þ atþ1Þ� � m22;2ð1jyÞ
¼ m22;2ð1jyÞfexp½gðat�1 þ 2at þ atþ1Þ� � 1g
¼ m22;2ð1jyÞfexp½gð1þ aÞ2at�1� � 1g ðA:13Þ

for all t � 2 :

Proof of Proposition 4.1. The method-of-moments estimator ŷT ðOÞ is

solution of the following optimization problem:

min
y

MT ðyÞ ¼ min
y

½mðyÞ � ḡT ðÛT Þ�0ÔT ½mðyÞ � ḡT ðÛT Þ� (A.14)
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The first order conditions (F.O.C) associated with this problem are:

@m0

@y
ðŷT ÞÔT ½mðŷT Þ � ḡT ðÛT Þ� ¼ 0 (A.15)

An expansion of the F.O.C above around the true value y yields

@m0

@y
ðŷT ÞÔT ½mðyÞ þ PðyÞ0ðŷT � yÞ � ḡT ðÛT Þ� ¼ OpðT�1Þ (A.16)

where, after rearranging the equation,

ffiffiffiffi

T
p

½ŷT ðOÞ � y� ¼ ½PðyÞOPðyÞ0��1PðyÞO
ffiffiffiffi

T
p

½ḡT ðÛT Þ � mðyÞ� þOpðT�1=2Þ
(A.17)

Using Assumptions 4.1 – 4.4, we get the asymptotic normality of ŷT ðOÞ with
asymptotic covariance matrix V(O) as specified in Proposition 4.1.

Proof of Proposition 4.2. In order to establish the asymptotic normality of
ffiffiffiffi

T
p

½ḡT ðUT Þ � mðyÞÞ�; we shall use a central limit theorem (C.L.T) for

dependent processes (see Davidson, 1994, Theorem 24.5, p. 385). For that

purpose, we first check the conditions under which this C.L.T holds.

Setting

X t �
u2t � m2ðyÞ
u4t � m4ðyÞ

u2t u
2
t�1 � m2;2ð1jyÞ

0

B

@

1

C

A
¼ gtðyÞ � mðyÞ (A.18)

ST ¼
X

T

t¼1

X t ¼
X

T

t¼1

½gtðyÞ � mðyÞ� (A.19)

and the subfields F t ¼ sðst; st�1; . . .Þ where st ¼ ðyt;wtÞ0; we need to check

three conditions:

(a) {Xt, Ft} is stationary and ergodic,

(b) {Xt, Ft} is a L1-mixingale of size �1,

(c) lim supT
T!1

�1=2EjST jo1 (A.20)

in order to get that T�1=2ST ¼
ffiffiffiffi

T
p

½ḡT ðUT Þ � mðyÞ�!D N½0; On�
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(a) By propositions 5 and 17 from Carrasco and Chen (2002), we can say

that:

(i) if {wt} is geometrically ergodic, then fðwt; lnjvtjÞg is Markov

geometrically ergodic with the same decay rate as the one of {wt};

(ii) if {wt} is stationary b-mixing with a certain decay rate, then flnjvtjg is
b-mixing with a decay rate at least as fast as the one of {wt}.

If the initial value v0 follows the stationary distribution, flnjvtjg is

strictly stationary b-mixing with an exponential decay rate. Since

this property is preserved by any continuous transformation, {vt}

and hence fvkt g and fvkt vkt�1g are strictly stationary and exponential

b-mixing. We can then deduce that xt is strictly stationary and exponential

b-mixing.

(b) A mixing zero-mean process is an adapted L1-mixingale with respect

to the subfields Ft provided it is bounded in the L1-norm (see Davidson,

1994, Theorem 14.2, p. 211). To see that {Xt} is bounded in the L1-norm, we

note that:

Ejv2t � m2ðyÞj � Eðjv2t j þ jm2ðyÞjÞ ¼ 2m2ðyÞo1 (A.21)

Ejv4t � m4ðyÞj � 2m4ðyÞo1 (A.22)

Ejv2t v2t�1 � m2;2ð1jyÞj � 2m2;2ð1jyÞo1 (A.23)

We now need to show that the L1-mixingale {Xt,Ft} is of size �1. Since Xt is

b-mixing, it has mixing coefficients of the type bn ¼ crn ; c40; 0oro1: In
order to show that {Xt} is of size�1, we need to show that its mixing

coefficients bn ¼ Oðn�fÞ; with f41: Indeed,

rn

n�f
¼ nfexpðnlogrÞ ¼ expðflognÞexpðnlogrÞ ¼ expðflognþ nlogrÞ (A.24)

It is known that limn!1flognþ nlogr ¼ �1 which yields

lim
n!1

expðflognþ nlogrÞ ¼ 0 (A.25)

This holds in particular for f41 (see Rudin 1976, Theorem 3.20(d), p. 57).
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(c) By the Cauchy–Schwarz inequality, we have:

EjT�1=2ST j � T�1=2jjST jj2 (A.26)

so that (A.20) can be proven by showing that lim supT!1 T�1EðSTS
0
T Þo1

We shall prove that:

lim sup
T!1

T�1EðSTS
0
T Þ ¼ lim sup

T!1
Var

1
ffiffiffiffi

T
p ST

� �

o1 (A.27)

(i) First and second components of ST. ST1 ¼ ST
t¼1 X 1;t where X 1;t �

u2t � m2ðyÞ: We compute:

Var
1
ffiffiffiffi

T
p ST1

� �

¼ 1
T

X

T

t¼1

VarðX 1;tÞ þ
X

T

t¼1
sat

CovðX 1;s; X 1;tÞ

2

6

4

3

7

5

¼ 1
T

Tg1ð0Þ þ 2
X

T

t¼1

ðT � tÞg1ðtÞ
" #

¼ g1ð0Þ þ 2
X

T

t¼1

1� t

T

� �
g1ðtÞ ðA:28Þ

where g � r2w=ð1� a2Þ: We must prove that ST
t¼1 ð1� t

T
Þg1ðtÞ converge

as T ! 1: By Lemma 3.1.5 in Fuller (1976, p. 112), it is sufficient to show

that S1
t¼1 g1ðtÞS1

t¼1 g1ðtÞ converge. Using Lemma 3.3. we have

g1ðtÞ ¼ m22ðyÞ½expðgatÞ � 1� ¼ m22ðyÞ 1þ
X1

k¼1

ðgatÞk

k!
� 1

" #

¼ m22ðyÞ gat
X1

k¼1

ðgatÞk�1

k!

" #

¼ m22ðyÞ gat
X1

k¼0

ðgatÞk

ðk þ 1Þ!

" #

� m22ðyÞgat
X1

k¼0

ðgatÞk

k!

¼ m22ðyÞgat expðgatÞ ðA:29Þ
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Therefore, the series

X

1

t¼1

g1ðtÞ � m22ðyÞg
X

1

t¼1

atexpðgatÞ � m22ðyÞgexpðgaÞ
X

1

t¼1

at

¼ m22ðyÞ
agexpðgaÞ
1� a

o1 ðA:30Þ

converges. We deduce by the Cauchy–Schwarz inequality that

lim sup
T!1

T�1=2E
X

T

t¼1

½u2t � m2ðyÞ�
�

�

�

�

�

�

�

�

�

�

o1 (A.31)

The proof is very similar for the second component of ST.

(ii) Third component of ST. Set ST3 ¼ ST
t¼1 X 3;t where X 3;t � u2t u

2
t�1 �

m2;2ð1jyÞ: Likewise, we just have to show that S1
t¼1 g3ðtÞo1 in order to

prove that

lim sup
T!1

T�1=2E
X

T

t¼1

½u2t u2t�1 � m2;2ð1jyÞ�
�

�

�

�

�

�

�

�

�

�

o1 (A.32)

By Lemma 3.3 we have for all tX2 :

g3ðtÞ ¼ m22;2ð1jyÞ½expðgð1þ aÞ2at�1Þ � 1�

¼ m22;2ð1jyÞ 1þ
X

1

k¼1

½gð1þ aÞ2at�1�k
k!

� 1

( )

¼ m22;2ð1jyÞ½gð1þ aÞ2at�1�
X

1

k¼1

½gð1þ aÞ2at�1�k�1

k!

¼ m22;2ð1jyÞ½gð1þ aÞ2at�1�
X

1

k¼0

½gð1þ aÞ2at�1�k
ðk þ 1Þ!

� m22;2ð1jyÞ½gð1þ aÞ2at�1�
X

1

k¼0

½gð1þ aÞ2at�1�k
k!

¼ m22;2ð1jyÞ½gð1þ aÞ2at�1�exp½gð1þ aÞ2at�1� ðA:33Þ
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hence,

X

1

t¼1

g3ðtÞ � g3ð1Þ þ m22;2ð1jyÞgð1þ aÞ2
X

1

t¼2

at�1exp½gð1þ aÞ2at�1�

� g3ð1Þ þ m22;2ð1jyÞgð1þ aÞ2exp½gð1þ aÞ2a�
X

1

t¼2

at�1

¼ g3ð1Þ þ m22;2ð1jyÞgð1þ aÞ2exp½gð1þ aÞ2a�
X

1

t¼1

at

¼ g3ð1Þ þ m22;2ð1jyÞgð1þ aÞ2exp½gð1þ aÞ2a� a

1� a
o1 ðA:34Þ

Since lim supT!1T�1=2EjST
t¼1X tjo1; we can therefore apply

Theorem 24.5 of Davidson (1994) to each component STi, i ¼ 1; 2; 3 of ST
to state that: T�1=2STi !

D
Nð0; liÞ and then by the the Cramér–Wold

theorem, establish the limiting result for the 3� 1-vector ST using the

stability property of the Gaussian distribution, i.e.,

T�1=2ST ¼ T�1=2
X

T

t¼1

X t ¼
ffiffiffiffi

T
p

½ḡT ðUT Þ � mðyÞ�!D N3ð0; OnÞ (A.35)

where

On ¼ lim
T!1

E½ðT�1=2ST Þ2� ¼ lim
T!1

EfT ½ḡT ðUT Þ � mðyÞ�½ḡT ðUT Þ � mðyÞ�0g

Proof of Proposition 4.3. The asymptotic equivalence of

ffiffiffiffi

T
p

½ḡT ðÛT Þ � mðyÞ� ¼

1
ffiffiffi

T
p
P

T

t¼1

½û2t � m2ðyÞ�

1
ffiffiffi

T
p
P

T

t¼1

½û4t � m4ðyÞ�

1
ffiffiffi

T
p
P

T

t¼1

½û2t û
2
t�1 � m2;2ð1jyÞ�

0

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

A

(A.36)

with
ffiffiffiffi

T
p

½ḡT ðUT Þ � mðyÞ� can be established by looking at each component.

1. Component 1
ffiffiffi

T
p ST

t¼1 ½û
2
t � m2ðyÞ� : We have:

û2t � u2t ¼ ðyt � x0tb̂Þ
2 � ðyt � x0tbÞ

2

¼ ðb̂� bÞ0xtx0tðb̂� bÞ � 2ðb̂� bÞ0xtut ðA:37Þ
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We deduce after aggregation:

1
ffiffiffiffi

T
p

X

T

t¼1

½û2t � m2ðyÞ� ¼
1
ffiffiffiffi

T
p

X

T

t¼1

½u2t � m2ðyÞ�

þ 1
ffiffiffiffi

T
p ½

ffiffiffiffi

T
p

ðb̂� bÞ�0 1

T

X

T

t¼1

xtx
0
t

" #

ffiffiffiffi

T
p

ðb̂� bÞ

� 2
ffiffiffiffi

T
p

ðb̂� bÞ0 1
T

X

T

t¼1

xtut ðA:38Þ

By (4.20), Assumption 4.5 and the Law of Large Numbers (LLN), we

have

1

T

X

T

t¼1

xtut ! EðxtutÞ ¼ EðxtÞEðutÞ ¼ 0 (A.39)

and equation (A.38) is equivalent to

1
ffiffiffiffi

T
p

X

T

t¼1

½û2t � m2ðyÞ� ¼
1
ffiffiffiffi

T
p

X

T

t¼1

½u2t � m2ðyÞ� þ opð1Þ (A.40)

asymptotically.

2. Component 1
ffiffiffi

T
p ST

t¼1 ½û
4
t � m4ðyÞ� : Noting that

û4t � u4t ¼ � 4ðb̂� bÞ0xtu3t þ 6ðb̂� bÞ0xtu2t x0tðb̂� bÞ
� 4ðb̂� bÞ0xtx0tðb̂� bÞðb̂� bÞ0xtut
þ ðb̂� bÞ0xtx0tðb̂� bÞðb̂� bÞ0xtx0tðb̂� bÞ ðA:41Þ

we get after aggregation:

1
ffiffiffiffi

T
p

X

T

t¼1

½û4t � m4ðyÞ� ¼
1
ffiffiffiffi

T
p

X

T

t¼1

½u4t � m4ðyÞ� þ RT (A.42)
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where
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Since
ffiffiffiffi

T
p

ðb̂� bÞ; 1
T
ST
t¼1xtu

2
tx

0
t and

1
T
ST
t¼1 xtx

0
t are asymptotically bounded,

while by the LLN, 1
T
ST
t¼1 xtu

3
t and 1

T
ST
t¼1 xtut converge to zero, we can

conclude that RT is an op(1) variable, which yields

1
ffiffiffiffi

T
p

X

T

t¼1

½û4t � m4ðyÞ� ¼
1
ffiffiffiffi

T
p

X

T

t¼1

½u4t � m4ðyÞ� þ opð1Þ

3. Component 1
ffiffiffi

T
p ST

t¼1 ½û
2
t û

2
t�1 � m2;2ð1jyÞ� : Since

û2t û
2
t�1 � u2t u

2
t�1 ¼ � 2ðb̂� bÞ0½xtutu2t�1 þ xt�1u

2
t ut�1� þ ðb̂� bÞ0xtu2t�1x

0
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2
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� 2ðb̂� bÞ0xtx0tðb̂� bÞðb̂� bÞ0xt�1ut�1

� 2ðb̂� bÞ0xt�1x
0
t�1ðb̂� bÞðb̂� bÞ0xtut
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0
t�1ðb̂� bÞ ðA:43Þ

we have:
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By (4.20), Assumption 4.5 and the LLN applied to 1
T
ST
t¼1 xt�1u

2
t ut�1; which

converges to

E½xt�1u
2
t ut�1� ¼ E½u2tEðut�1jF t�2ÞEðxt�1jF t�2Þ� ¼ 0 (A.45)

we deduce that RT is an op(1) variable. Therefore, we have the asymptotic

equivalence:
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Two-Stage Closed-Form Estimator for a Stochastic Volatility 287



Hence,
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and

ffiffiffiffi

T
p

½ḡT ðÛT Þ � mðyÞ� ¼
ffiffiffiffi

T
p

½ḡT ðUT Þ � mðyÞ� þ opð1Þ (A.47)

with ḡT ðUT Þ defined as in Eq. (4.13).
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THE STUDENT’S T DYNAMIC

LINEAR REGRESSION:

RE-EXAMINING VOLATILITY

MODELING

Maria S. Heracleous and Aris Spanos

ABSTRACT

This paper proposes the Student’s t Dynamic Linear Regression

(St-DLR) model as an alternative to the various extensions/modifica-

tions of the ARCH type volatility model. The St-DLR differs from the

latter models of volatility because it can incorporate exogenous variables

in the conditional variance in a natural way. Moreover, it also addresses

the following issues: (i) apparent long memory of the conditional

variance, (ii) distributional assumption of the error, (iii) existence of

higher moments, and (iv) coefficient positivity restrictions. The model is

illustrated using Dow Jones data and the three-month T-bill rate. The

empirical results seem promising, as the contemporaneous variable

appears to account for a large portion of the volatility.

1. INTRODUCTION

Modeling and forecasting dynamic volatility has been the subject of

extensive research among academics and practitioners since the introduction
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of the autoregressive conditional heteroskedasticity (ARCH) model by

Engle in 1982. Volatility plays a major role in risk management, derivative

pricing and hedging, portfolio selection, and the formation of monetary

policy. Engle (1982) was the first systematic attempt to capture the

phenomenon of volatility clustering, which had been documented in the

literature by numerous researchers.1 This seminal paper gave rise to a

tremendous body of research seeking to model volatility by modifying/

extending the ARCH model, the most important extension being the

Generalized ARCH (GARCH) model; see Li, Ling, and McAleer (2002) and

Bauwens, Laurent, and Rombouts (2003) for recent surveys of the literature.

The on-going research on volatility modeling gave rise to a number

of interesting issues and problems concerning the modeling of the

conditional variance: (i) the choice of an appropriate functional form,

(ii) the temporal dependence of the underlying observable process, (iii) the

distribution of the error, (iv) existence of moments, (v) extensions to the

multivariate framework, and (vi) the inclusion of relevant exog-

enous variables. Numerous papers have attempted to address these issues

and have led to some important contributions in the volatility literature (see

Pagan & Schwert, 1990; Bollerslev, 1986; Engle & Bollerslev, 1986;

Bollerslev, 1987).

In this paper we focus primarily on the issue of including relevant

‘exogenous’ variables in the conditional variance, by utilizing the

Probabilistic Reduction (PR) approach to specifying statistical models

(see Spanos, 1989, 1995). It turns out, however, that the resulting models

deal effectively with some of the issues raised above. The potential influence

of exogenous variables has been recognized in the literature as early as the

mid-1980s. Granger, Robins, and Engle (1984) use price series and not just

the past errors squared in the specification of the conditional variance. Also

Weiss (1986) suggests a more general form for the conditional variance than

the original ARCH, which includes lagged errors, lagged dependent

variables and exogenous variables. In recent years the issue of exogenous

variables has received new attention. Granger (2002) suggests that ‘‘volume

or perhaps daily trade would be interesting explanatory variables to include

in a model of volatility particularly as both of these variables appear to be

forecastable’’. Also Engle and Patton (2001) point out that financial asset

prices do not evolve independently of the market, and expect that other

variables may contain information pertaining to the volatility of the series.

Evidence in this direction can be found in papers by Engle, Ito, and

Lin (1990), Engle and Mezrich (1996), and Glosten, Jagannathan and

Runkle (1993).2 Thus, while the literature has recognized the importance of
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exogenous variables in explaining volatility, it largely remains an unexplored

issue. This is primarily because the ARCH-type models capture volatility

through the error term, making the inclusion of other contemporaneous

variables hard to justify.

The primary objective of this paper is to develop the Student’s t Dynamic

Linear Regression (St-DLR) model for univariate volatility, in direct

analogy to the Normal, DLR model (NDLR) (see Spanos, 1986). It is

shown that by viewing the specification of the St-DLR model in the context

of the PR approach the inclusion of current exogenous variables in the

conditional variance arises naturally. The overall advantage of the PR

approach is that it provides a systematic way of specifying volatility models

that can simultaneously address the issues (i)–(vi) raised in the financial

econometrics literature. The St-DLR is illustrated using daily returns of the

Dow Jones industrial price index and the three-month Treasury bill rate.

The remainder of the paper is organized as follows. In the next section, we

provide an overview of the PR methodology and highlight the advantages it

offers for volatility modeling. In Section 3 we develop the specification of

the St-DLR model and discuss its maximum likelihood estimation. To

illustrate the St-DLR we provide an empirical example using daily returns of

the Dow Jones industrial index and the T-bill rate in Section 4. The

estimated St-DLR model is compared to the traditional NDLR, and the

Normal GARCH-X (which allows for exogenous variables in the condi-

tional variance). We conclude in Section 5 by summarizing the main

theoretical points, the empirical results and their implications.

2. SPECIFICATION OF STATISTICAL MODELS

Statistical model specification is one of the most neglected areas of research

in empirical modeling (see Lehmann, 1990; Cox, 1990). As a result, new

models are usually specified by modifying the assumptions of the error term

of existing models, such as the linear regression model and its many

variants. The ARCH model can be viewed as an extension of the Normal,

Linear Regression/Autoregression models by modifying the conditional

variance to include lagged square errors. The main problem with such an

approach is that there is an infinite number of ad hoc modifications one can

think of, but no effective strategy to choose among these possible

alternatives. The voluminous literature on ARCH modifications/extensions

provides a testimony to the unlimited number of modifications one can

think of.3 Moreover, as the literature on common factor restrictions (see
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Hendry, 1995) testifies, the modeling of the error term often imposes

unappetizing (and gratuitous) restrictions on the probabilistic structure of

observable random variables involved.

How does one choose among the myriad of models thought up in this

way? The traditional way to justify ‘yet another ARCH model’ has been on

‘goodness-of-fit’ grounds. This is clearly unsatisfactory, however, because

showing that one statistical model fits better than another, when both are

statistically inadequate, provides very weak grounds for deducing that the

model adequately captures the statistical regularities in the data. The only

grounds one can empirically justify the adoption of a statistical model is in

terms of its statistical adequacy; thorough misspecification testing of the

probabilistic assumptions comprising the model reveal no departures.

Without statistical adequacy no reliable inference and thus, no learning

from data, can take place. Statistical adequacy, however, pre-supposes that

the modeler has a complete set of internally consistent probabilistic

assumptions comprising the model. The primary danger with ad hoc

modifications of existing models is that one often ends up with: (a) internally

inconsistent probabilistic assumptions, (b) hidden assumptions, and (c)

many implicit and explicit unappetizing parameter restrictions. For

instance, as shown in Spanos (1995), the Normal Autoregressive ARCH

model suffers from all three problems.

The PR approach to statistical model specification was designed to give

rise to new models which are by construction internally consistent, all

assumptions are explicitly stated and need no additional parameter

restrictions. In addition, the PR approach renders explicit the connection

between statistical model specification and the information conveyed by the

data plots of the data in order to aid the choice among different models.

This connection turns out to be particularly useful for misspecification

testing as well as respecification (choosing an alternative model) purposes.

The primary objective of the PR approach is to capture the systematic

features of the observable phenomenon of interest by modeling the

systematic (recurring) information in the observed data. Intuitively,

statistical information is any recurring chance regularity pattern (stylized

facts) which can be modeled via probabilistic concepts from the three broad

categories described below.

The starting point of the PR approach is the set P of all possible statistical

models that could have given rise to the observed data in question,

say Z :¼ ðZ1;Z2; � � � ;ZT Þ; where Zt is a m� 1 vector. Given that the

only complete description of the probabilistic structure of the vector

stochastic process fZt; t 2 Tg can be provided by the joint distribution
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DðZ1;Z2; � � � ;ZT ;/Þ (see Kolmogorov, 1933; Doob, 1953), one can

characterize all the elements of P in relation to this distribution. This

characterization comes in the form of imposing reduction assumptions on

DðZ1;Z2; � � � ;ZT ;/Þ of the process fZt; t 2 Tg; which give rise to the

statistical model in question. The reduction (probabilistic) assumptions

come from three broad categories:

ðDÞ Distribution ðMÞ Dependence ðHÞ Heterogeneity:

By combining different reduction assumptions one can generate a wealth of

statistical models that would have been impossible to ‘dream up’ otherwise.

In addition to ending up with models which are by definition internally

consistent and have no additional parameter restrictions, the PR reduction

amounts to imposing probabilistic assumptions which ‘reduce’ the space of

models by partitioning, (see Spanos, 2005).

The quintessential example is the Linear Regression model, which is

characterized by the reduction assumptions that the process fZt; t 2 Tg;Zt :

¼ ðyt;XtÞ is: (D) Normal, (M) Independent, (H) Identically Distributed;

Diagram 1 illustrates the partitioning whose overlap gives rise to the Linear

Regression model based on DðytjXt; hÞ:

DðZ1;Z2; . . . ;Zn;/Þ *

NIID
Pn

t¼1DðytjXt; hÞ (1)

see Spanos (1989) for the details.

The efficiency of partitioning P should be contrasted with the traditional

way of statistical model specification, which attempts to exhaust P using ad

hoc modifications of, say, the Linear Regression model, i.e. introducing some

arbitrary non-linearity and/or heteroskedasticity as well as ‘modeling’ the

error! The PR perspective has some distinct advantages over the traditional

Non-Normal

Dependent

Non-ID
Identically Distributed

P

Independent

Normal

Diagram 1. Model Specification by Partitioning.
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way of modifying particular components of existing models without

worrying if there exists a stochastic process fZt; t 2 Tg with a proper joint

distribution DðZ1;Z2; � � � ;ZT ;/Þ underlying such constructs.

The PR approach has been utilized to shed light on a number of issues in

econometric modeling, such as simultaneity (Spanos, 1990a), error-

autocorrelation (Spanos, 1987; McGuirk & Spanos, 2004), data mining

(Spanos, 2000), multicollinearity (Spanos & McGuirk, 2002), and unit root

testing (Andreou & Spanos, 2003).

As a prelude to the specification of the St-DLR model we first present the

Student’s t Autoregressive (St-AR) model developed by Spanos (1990b)

using the PR perspective; see also McGuirk, Robertson and Spanos (1993).

The main reason for presenting this model is to illustrate the PR approach in

a simpler case. It also provides us with the opportunity to compare it to the

traditional ARCH specification.

2.1. Student’s t Autoregressive Model with Dynamic Heteroskedasticity

Speculative price data, such as interest rates, stock returns, and exchange

rates often exhibit the well-documented features of: (a) thick tails, (b) non-

linear dependence, and (c) bell-shaped symmetry. These features suggest a

number of different ways such chance regularity patterns can be modeled,

but a most natural way seems to be to use a symmetric, leptokurtic

distribution that can accommodate non-linear dependence. The distribution

that suggests itself is the Student’s t distribution. Using the PR approach as

the backdrop we can proceed to impose additional probabilistic assump-

tions on a multivariate Student’s t distribution of the observables in an

attempt to give rise to statistical models appropriate for speculative price

data.

In view of the fact that the Normal AR(p) model is characterized by the

reduction assumptions that fyt; t 2 Tg is a (i) (D) Normal, (ii) (M)

Markov(p), and (iii) (H) Stationary process (see Spanos, 2001); the

reduction assumptions that suggest themselves are that fyt; t 2 Tg is a (a)

(D) Student’s t, (b) (M) Markov(p), and (c) (H) Stationary process. The St-

AR model with dynamic heteroskedasticity, St-ARðp; p; nÞ; can be specified

in terms of the first two conditional moments as follows:

yt ¼ b0 þ
X

p

i¼1

biyt�i þ ut; p40; t 2 N (2)
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where ut ¼ yt � EðytjFt�1Þ is distributed Stð0;o2
t ; nþ pÞ: The conditional

variance;o2
t is given by

o2
t ¼

vs2

vþ p� 2

� �

1þ
X

p

i¼1

X

p

j¼1

dij yt�i � m
� �

yt�j � m
h i

" #

(3)

where dij ¼ 0 for all ji � jj4p; dij ¼ dji�jj; and m ¼ EðytÞ: Note that n42 is

the degrees of freedom parameter and Ft�1 ¼ sðY 0
t�1Þ the conditioning

information set generated by the past history of yt; (see Spanos, 1990b, 1994
for details).

The reduction assumptions (a)–(c) imply the model assumptions [1]–[5] as

shown in Table 1. It is interesting to note that the autoregressive and

autoskedastic functions are: (a) explicitly viewed as based on the first two

conditional moments of the same distribution, (b) both are functions of the

same information set, Y 0
t�1; and (c) the coefficients b0;b1; . . . ;bp

� �

and

d0; d1; . . . ; dp�1

� �

are interrelated because they are functions of the same

variance–covariance matrix of y1; y2; . . . ; yT
� �

: These features can be

contrasted to the ARCH family of models.

In order to bring out the crucial differences between the St-AR model and

the ARCH model, let us compare the former with the simplest case of

AR(1)–ARCH(1):

yt ¼ b0 þ b1yt�1 þ ut; ðutjFt�1Þ � Nð0;s2t Þ

where

s2t ¼ a0 þ a1u
2
t�1

Assumptions [2], [4]-[5] have their almost identical counterparts in the

ARCH model, but there are crucial differences concerning Assumption [1]

and [3]. In Spanos (1995), it was shown that the conditional Normality in

Table 1. Reduction and Probability Model Assumption: Student’s t

AR.

Reduction Y t t 2 Tf g Model ðytjFt�1Þ; t 2 T
� �

Student’s t - ½1� DðytjFt�1;jÞ is student’s t

½2� EðytjFt�1;jÞ ¼ b0 þ S
p
i¼1biyt�1 is linear in yt�1

½3� CovðytjFt�1Þ ¼ o2
t is heteroskedastic

8

>

<

>

:

Markov - [4] ðutjFt�1Þ; t 2 T
� �

is a martingale difference process

Stationary - [5] The parameter ðfbig
p
i¼0; fdig

p�1
i¼0 ; s2Þ are t-invariant
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the ARCH model leads to internal inconsistencies.4 Moreover, although

both conditional variances are quadratic functions of lagged yt; the ARCH

formulation implicitly imposes some unappetizing restrictions. To see this,

let us substitute out the error term:

s2t ¼ a0 þ a1u
2
t�1 ¼ a0 þ a1ðyt�1 � b0 � b1yt�2Þ2

¼ a0 þ a1ððyt�1 � mÞ � b1ðyt�2 � mÞÞ2

¼ a0 þ a1ðyt�1 � mÞ2 þ a1b
2
1ðyt�2 � mÞ2 � 2a1b1ðyt�1 � mÞðyt�2 � mÞ

When the ARCH is compared with the St-AR(2,2;n) conditional variance,

we can see that, in addition to the positivity restrictions a040; a140; it also
imposes the implicit parameter restriction:

d11d22 ¼ �d212

This restriction is analogous to the common factor restrictions associated

with modeling the AR(1) error (see Hendry, 1995). It goes without saying

that for p41 the number of implicit parameter restrictions increases rapidly;

(see Spanos 1990b).

The St-AR model was applied by McGuirk et al. (1993) for modeling

exchange rates. The authors show that this model dominates the alternative

GARCH-type formulations on statistical adequacy grounds. These results

have provided the motivation for using the PR approach and the Student’s t

distribution to develop models that are more complex and more realistic

than the St-AR. The aim in this paper is to propose a model that can explain

volatility not only in terms of the past history of the series itself but also in

terms of other relevant contemporaneous variables, rendering the connec-

tion to economic theory much more fruitful. Next, we use the PR approach

to develop the St-DLR model.

3. STUDENT’S T DLR MODEL

The main objective of this section is twofold. First, to explicitly specify the

form and the probabilistic assumptions underlying the St-DLR model.

Second, to discuss the maximum likelihood estimation of this model. We

begin with the derivation of the St-DLR model.
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3.1. Specification

In the context of the PR approach, the operational St-DLR model is

specified by imposing certain reduction assumptions on the joint distribu-

tion of the vector stochastic process fZt; t 2 Tsg where Zt :¼ ðyt;X>
t Þ

>: Here

yt is the dependent variable and Xt is a k � 1ð Þ vector of exogenous

variables. The reduction assumptions are derived from the probabilistic

features of the underlying stochastic process and as before can be

summarized into three categories: Distributional assumption, Dependence,

and (time) Heterogeneity assumptions. For the St-DLR model the reduction

assumptions are given by: (1) (D): Student’s t, (2) (M): Markov of order p

(M(p)), and (3) (H): Second-order stationarity (SS). Using these assump-

tions the reduction can be performed in the following way:

DðZ1;:::ZT ;wÞ ¼ D1ðZ1;/1Þ
Q

T

t¼2

DðZtjZt�1;Zt�2; :::Z1;/ðtÞÞ

¼M pð ÞþSS
DðZ1

p;/1Þ
Q

T

t¼pþ1

DðZtjZt�p
t�1;/2Þ

¼ DðZ1
p;/1Þ

Q

T

t¼pþ1

DðytjZ
t�p
t�1;Xt; h1Þ �DðXtjZ

t�p
t�1; h2Þ;

(4)

where Z
t�p
t�1 :¼ Zt�1;Zt�2; . . . ;Zt�p

� �
denotes the past history of Zt and

Z1
p :¼ Z1; . . . ;Zp

� �
denotes the initial conditions. Also w; /1; and /2 denote

the parameters in the joint, marginal, and conditional distributions,

respectively. The first equality shows that the joint distribution can be

decomposed into a product of ðT � 1Þ conditional distributions and

one marginal distribution. The assumption of Markov(p) changes the

conditioning information set to Zt�1;Zt�2; . . . ;Zt�p

� �
: Also, under the

assumption of second-order stationarity, the statistical parameters /1 and

/2 are time invariant. Taken together these assumptions allow us to express

the St-DLR model in terms of the first two moments as shown below.

The Student’s t Dynamic Linear Regression Model

[A] The conditional mean takes the form

yt ¼ b>0 Xt þ
Xp

i¼1

aiyt�i þ
Xp

i¼1

b>i Xt�i þ ut; t 2 T (5)
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where ut ¼ yt � EðytjFt�1Þ is distributed Stð0; h2t ; nþmÞ;m ¼ kðpþ 1Þ þ
p; and Ft�1 ¼ sðY0

t�1;X
0
t Þ: Y0

t�1 :¼ ðyt�1; yt�2; . . . ; y1Þ; and X0
t :¼

ðXt;Xt�1; . . . ;X1Þ:
[B] The conditional variance h2t is given by

h2t :¼
ns2

nþm� 2

� �

1þ X�
t �M�

t

� �> X

�1

22

X�
t �M�

t

� �

" #

(6)

where Xn

t ¼ ðX>
t ; yt�1; . . . yt�p;X

>
t�1; . . . ;X

>
t�pÞ

>; Mn

t ¼ ðl>x ; my1t�p;
lx1t�pÞ>; are both ðm� 1Þ vectors when the number of conditioning

variables is m. S22 is the variance–covariance matrix of Xn

t and n the

degree of freedom parameter. The St-DLR can be fully specified in

terms of five testable assumptions as shown in Table 2.

Observe that the conditional mean is linear in the conditioning variables

as in the case of the NDLR model. The assumption of Student’s t however,

leads to a conditional variance function which is different from that of the N

DLR model. It accommodates both static and dynamic heteroskedasticity.

In particular static heteroskedasticity enters the conditional variance

specification through the presence of contemporaneous variables, and

dynamic heteroskedasticity enters through the lags of the conditioning

variables. It is also useful to provide the link between the five model

assumptions and the three reduction assumptions discussed earlier. This is

shown in Table 3. Note that the reduction assumptions are imposed on the

joint distribution and give rise to the model assumptions which relate to the

conditional distribution. The relationship between the two sets of

Table 2. The PR Approach: Student’s t DLR Specification.

The Student’s t Dynamic Linear Regression Model

yt ¼ bT0Xt þ
X

p

i¼1

aiyt�i þ
X

p

i¼1

bTi Xt�i þ ut; t4p

[1]Student’s t DðytjsðY0
t�1; X

0
t Þ; y

�Þ is Student’s t
[2]Linearity EðytjsðY0

t�1; X
0
t Þ; y�Þ ¼ b�X�

t is linear in X �
t

[3]Heteroskedasticity us2

uþm�2

h i

1þ X�
t �M�

t

� �T
S�1
22 X�

t �M�
t

� �

h i

is heteroskedastic

[4]Martingale utjsðY0
t�1; X

0
t Þ

� �

; t 2 T
� �

is a martingale difference process

[5] t-homogeneity y� :¼ a1; a2; ; . . . ; ap; b0; b1; . . . bp; s
2 ;S�1

22

� �

are not function of t 2 T
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assumptions is particularly important for misspecification testing and

respecification. We now discuss the estimation of this model.

3.2. Maximum Likelihood Estimation

To estimate the St-DLR model typically, one should substitute the

functional form of DðytjZ
t�p
t�1 Xt; y1Þ and DðX tjZt�p

t�1; y2Þ in Eq. (4) to obtain

the likelihood function of the St-DLR model. The logarithmic form of the

likelihood function can then be differentiated to obtain the first order

conditions. These can be solved to get the estimators of the parameters of

interest. However, instead of following this approach we use an easier

technique based on the reparametrization of the joint density. When Zt is

distributed multivariate Student’s t its density takes the form:

DðZt; yÞ ¼
G 1

2
nþmþ 1ð Þ

� �

ðdetSÞ�
1
2

pnð Þ
ðmþ1Þ

2 G 1
2
nð Þ

� �

1þ 1

n
Zt � lð Þ>S�1 Zt � lð Þ

� �

1
2
nþmþ1ð Þ

(7)

Using results from Searle (1982, pp. 258–260) the above equation can be

rewritten as

DðZt; hÞ ¼
G 1

2
nþmþ 1ð Þ

� �

pnð Þ
mþ1
2 G 1

2
nð Þ

� �

s2ðdetS22Þ�
1
2�

1þ 1

n
Xt�l2
� �>

R
�1
22 Xt�l2
� �

þ 1

ns2
yt�b>0 �b>Xt

� �

� �

1
2
nþmþ1ð Þ

ð8Þ

Table 3. Reduction and Probability Model Assumptions: Student’s t

DLR.

Reduction Zt t 2 Tf g Model ðytjsðY0
t�1Þ; X0

t ¼ x0t ; y
nÞ; t 2 T

� �

Student’s t - ðiÞ DðytjsðY0
t�1Þ; X0

t ¼ x0t ; y
nÞ is Student’s t

ðiiÞ EðytjsðY0
t�1Þ; X0

t ¼ x0t ; y
nÞ ¼ bnX n

t is linear in X �
t

ðiiiÞ Cov ðytjsðY0
t�1Þ; X0

t ¼ x0t ; y
nÞ ¼ h2t is heteroskedastic

8

>

>

<

>

>

:

Markov - ðutjsðY0
t�1Þ; X0

t ¼ x0t Þ; t 2 T
� �

is a martingale difference process

Stationary - yn :¼ ða1; a2; . . . ; ap; b0; b1; . . . bp; s2;
P �1

22 Þ are t-invariant
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The advantage of this formulation is that all the parameters of interest

appear explicitly. It also facilitates the St-DLR model in the case of Markov

variance. By applying Searle’s results we can now write the log-likelihood

function as:

lnLðy;Z1;Z2; . . . ;ZT Þ ¼ T lnG
1

2
ðnþmþ 1Þ

� �

� T lnðp nÞ

� TG
1

2
ðnÞ

� �

þ 1

2
T lnðdetðL>LÞÞ

� 1

2
T lnðs2Þ � 1

2
ðnþmþ 1Þ

X

T

t¼2

ln detðgtÞ ð9Þ

where

gt ¼ 1þ 1

n
ðXn

t �Mn

t Þ
>
R
�1
22 ðXn

t �Mn

t Þ þ
1

n s2
ðyt � c0 � b>0 xt � a>yt�p � b>Xt�p

� �

,

yt�p ¼ ðyt�1; . . . yt�pÞ>; Xt�p :¼ ðxt�1; . . . xt�pÞ> and L>L ¼ R
�1
22 .

The first-order conditions are given in the appendix, and as we can see, they

are non-linear, requiring the use of a numerical procedure. It is worth

pointing out at this stage that numerical algorithms are likely to encounter

problems with the positive definiteness of R
�1
22 and s2: To address these

problems we follow the approach used by Paczkowski (1997) for the St-AR

model. To obtain the derivative of s2 we take the derivative with respect to s

instead. This ensures that regardless of the value of s the value of s2 will

always be positive. We use the same technique for R
�1
22 : One can factorize

R
�1
22 as the product of two matrices, that is R

�1
22 ¼ L>L where L can be a

symmetric matrix or a Cholesky factorization. In this case, we assume that L

is a symmetric matrix. These simple modifications allow us to obtain an

operational model. The model is estimated using procedures written in

GAUSS, (Aptech, 2002).

Before we proceed further we have a few observations about the standard

errors of the estimates. Maximum likelihood estimation of this model yields

estimates of b0;b; a;my;lx; s; and L: Asymptotic standard errors for these

estimates are obtained from the inverse of the final Hessian. To obtain

estimates of R�1
22 and their standard errors we rely on the invariance property

of the maximum likelihood estimators. Note that R̂
�1

22 can be calculated using

the fact that R̂
�1

22 ¼ L̂
>
L̂: The standard errors of this matrix can be derived

using the d-method.5 The Eq. of the estimated variance–covariance
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matrix ðCovÞ for the distinct elements of R̂
�1

22 is given by:

CovðvechS�1
22 Þ ¼ H Im2 þ Km;m

� �
ðIm � L̂

>ÞG
h i

bD H Im2 þ Km;m

� �
ðIm � L̂

>ÞG
h i>

(10)

where D̂ is the estimated variance–covariance matrix of the distinct elements

of L and Km;m a commutation matrix.6

4. EMPIRICAL RESULTS

To illustrate the differences between the traditional ARCH–GARCH

formulations and the St-DLR developed in the previous section we now

present an empirical example. We begin by describing the data set followed

by the empirical results.

4.1. Data

The data used in this section come from a paper by Engle and Patton (2001),

consisting of daily closing price data for the Dow Jones Industrial Index

over the period August 23, 1988 to August 22, 2000; T ¼ 3; 131
observations. Log differences of the value of the index are used to compute

continuously compounded returns. This data set also includes the three-

month US Treasury bill rate over the same period. Following Engle and

Patton, the T-bill rate is in percentage form while the Dow Jones returns are

expressed in decimal form. Both variables are important for investment and

their interrelationship is of interest to policy makers as well as ordinary

investors. The Dow Jones returns and its volatility is of interest to a large

number of economic agents since it represents about a fifth of the total value

of the US stock market, while the T-bill rate is one of the most important

indicators of the investment environment in the US economy.

There is a fairly extensive literature in financial economics which

investigates the relationship between stock market excess returns and

interest rates. It essentially involves two main lines of research. The first one

suggests that short-term interest rates can be good proxies for expected

inflation, and thus they can be used to indirectly investigate the relationship

between inflation and stock market returns. The second one argues that

since short-term interest rates embody expectations about inflation, they can

be used to predict stock returns as well as volatility in stock returns (see
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Breen, Glosten, & Jagannathan, 1989; Giovannini & Jorion, 1989;

& Campbell, 1987, inter alia). Another reason for using the T-bill rate

in a volatility model is that it can potentially offer some structural or

economic explanation for the volatility. It is believed that the T-bill

rate is correlated with the cost of borrowing to firms, and may contain

information that is relevant to the volatility of the Dow Jones Industrial

Index. This idea was explored by Glosten et al. (1993) and Engle and Patton

(2001).

As mentioned in Section 2, data plots play a major role in the PR

approach. We argue that since t-plots and scatter plots convey information

about the marginal and joint distributions of the observables, they can

provide one with good insights about the nature of the conditional model

that might be appropriate. In order to explore the probabilistic features of

the data, we use graphical techniques to bring out the chance regularity

patterns exhibited by the data. Fig. 1 represents the standardized time series

plot for the Dow Jones returns, and as can be seen, this plot exhibits the

common features, which we expect to see in speculative price data. The

series seems to be stationary in that the mean over time seems to be constant

and the variation around the mean appears to be relatively constant as well.

We observe a slight deviation from bell-shaped symmetry. Also, compared

to the Normal distribution there seems to be a larger concentration of points

Fig. 1. Standardized t Plot (DJ).
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around the mean and more ‘outliers’. We also observe that there are clusters

of small changes followed by clusters of big changes which is symptomatic

of second-order temporal dependence.

To further investigate the departure from Normality we also utilize the

standardized P–P plots, (for more details on P–P plots see Spanos, 1999,

chap. 5). Fig. 2 represents the standardized Normal P–P plot for the Dow

Jones daily returns with Cauchy as the reference curve (inverted S). Given

the leptokurtic nature of our data we choose the Cauchy distribution as the

reference curve because it represents the Student’s t distribution with one

degree of freedom. Fig. 2 clearly indicates that Normality cannot describe

the data as shown by the departures in the direction of the Cauchy

distribution. The degree of leptokurtosis in the Student’s t distribution is

reflected in the degree of freedom parameter. The difficulty lies in choosing

the most appropriate degrees of freedom for the particular data set. One

way to approaching this problem is by using the standardized Student’s t

P–P plot (see Spanos, 1999, chap. 5).

Fig. 3 shows the P–P plot for the Student’s t distribution with

three degrees of freedom and the Cauchy distribution as the reference

curve. Increasing the degrees of freedom to four seems to provide a much

better fit as shown in Fig. 4. To check if this is the best fit we repeat the

same exercise for five degrees of freedom in Fig. 5. Through this visual

inspection of the data, an educated conjecture is that the Dow Jones returns

might be best described by a Student’s t distribution with four degrees of

freedom.

Table 4 reports certain descriptive statistics for the Dow Jones returns.

The results seem to strengthen the conjecture regarding non-Normality. In

particular, the kurtosis coefficient appears to be significantly greater than 3,

which indicates that the unconditional distribution has much thicker tails

than the Normal. The skewness coefficient also indicates some degree of

asymmetry. We also report some tests on temporal dependence. The w2

portmanteau autocorrelation test (Ljung & Box (LB), 1978); indicates the

presence of linear temporal dependence. To examine the presence of second-

order dependence we use the w2 portmanteau test (McLeod & Li (ML),

1983). The p-values of this test suggest that there is also considerable

second-order dependence in the Dow Jones returns data. In contrast, we

note that Engle and Patton (2001) use correlograms to investigate the nature

of dependence in the data. They conclude that there is substantial

dependence in the volatility of returns but not in the mean. Based on these

results they assume a constant conditional mean for their GARCH

specification.
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Fig. 3. Student’s t P–P plot with df ¼ 3.

Fig. 2. Normal P–P: Dow Jones Returns data.
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Fig. 5. Student’s t P–P plot with df ¼ 5.

Fig. 4. Student’s t P–P plot with df ¼ 4
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4.2. Empirical Specification and Results

We now provide estimation results based on the traditional ARCH,

NGARCH, St-GARCH as well as the St-AR model discussed above. These

specifications are representative of the type used in the literature on stock

returns and model volatility by using only information on the past history of

the series itself.

4.2.1. Volatility Models with no Exogenous Variables

[1] Conditional Normal ARCH (ARCH)

The ARCH conditional variance takes the form:

h2t ¼ a0 þ
X

m

i¼1

aiu
2
t�i; m � 1; ut=Ft�1

� �
� Nð0; h2t Þ (11)

where the parameter restrictions a040; ai � 0; are required for ensuring

that the conditional variance is always positive. Also Sm
i¼1 aio1 is

required for the convergence of the conditional variance. The maximum

likelihood estimates for the AR(3)–ARCH(5) model are presented in

Table 5. It is worth pointing out that an AR(3) – ARCH(9) model was

also estimated for the Dow Jones returns. The ARCH parameters in the

conditional variance were significant even at the 9th lag. This indicates

the problem of long lags commonly observed in the ARCH specification.

To overcome this problem the more parsimonious GARCH(p,q)

formulation is also estimated.

Table 4. Descriptive Statistics: Dow Jones (T ¼ 3130).

Dow Jones

Mean 0.05504

Std 0.01624

Skewness �0.52662

Kurtosis 9.04738

P-values for Sample Statistics

LB (16) (0.000)�

LB (26) (0.000)�

ML (16) (0.000)�

ML (26) (0.000)�

�Rejection of the null hypothesis at 5% level of significance.
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[2] Conditional Normal GARCH (NGARCH)

The GARCH conditional variance specification can be written as

h2t ¼ a0 þ
X

p

i¼1

aiu
2
t�i þ

X

q

j¼1

gjh
2
t�j ; p � 1; q � 1 (12)

where ut=Ft�1

� �
� Nð0; h2t Þ: Also a040; ai � 0; gj � 0; and S

p
i¼1 ai þ

S
q
j¼1 gjo1 are required for the positivity of the variance and its stability.

We also estimate the traditional GARCH(1,1) model under the

assumption that the error follows the Student’s t distribution (see

Bollerslev, 1987).

Table 5. Volatility Models with no Exogenous Variables.

Estimation Results

ARCH(5) NGARCH t-GARCH St- AR(3,3,4)

b̂0 0.068 0.059 0.076

(0.015)� (0.014)� (0.013)�

b̂1 0.055 0.030 0.010 b̂1 0.028

(0.020)� (0.019) (0.017) (0.023)

b̂2 0.037 0.0119 �0.027 b̂2 �0.022

(0.020) (0.020) (0.017) (0.034)

b̂3 �0.047 �0.042 �0.049 b̂3 �0.052

(0.020)� (0.019)� (0.017)� (0.020)�

â0 0.007 0.006

(0.003)� (0.002)�

â1 0.448 0.037 0.038 d11 0.249

(0.025)� (0.007)� (0.008)� (0.005)�

â2 0.101 d21 �0.007

(0.021)� (0.005)

â3 0.126 d31 0.004

(0.022)� (0.005)

â4 0.042

(0.019)�

â5 0.075

(0.022)�

ĝ1 0.954 0.956

(0.009)� (0.009)�

v 5.061

(0.474)

Note: The numbers in the brackets refer to standard errors.
�Rejection of the null hypothesis at 5% level of significance.
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[3] Conditional Student’s t GARCH (t-GARCH)

The conditional variance specification takes the same form as in Eq.

(12) shown above. Now however, we replace the conditional Normality

of the error term with that of the conditional Student’s t distribution.

According to Bollerslev (1987) the distribution of the error term for this

specification takes the following form:

f ðut=Y p
t�1Þ ¼

G 1
2
nþ 1ð Þ

� �

p
1
2G 1

2
n

� �

n� 2ð Þh2t
� ��1

2 1þ u2t

n� 2ð Þh2t

" #�1
2
ðnþ1Þ

(13)

[4] Student’s t AR Model (St-AR(p; p; n))
The St-AR model is specified as shown in Section 2. A St-AR(3,3,4)

was found to be statistically adequate for the Dow Jones returns. We

should point out that we have chosen an AR(3) representation for the

conditional mean so as to capture any weak form of linear dependence

that might be present in the Dow Jones returns data. The maximum

likelihood estimates for the AR(3)–ARCH(5), AR(3)–NGARCH, and

AR(3)-t-GARCH and the St-AR (3,3,4) are summarized in Table 5.

A battery of misspecification tests based on the scaled residuals,7 ût
ĥt
; are

also applied to investigate possible departures from the underlying model

assumptions and are reported in Table 6. The estimation results in Table 5

indicate that the third lag of the Dow Jones returns is significant in the

conditional mean specification for all models. These results suggest that the

simple random walk explanation for the stock returns is clearly inappropri-

ate for this data. Further, it calls into question the GARCH model with no

conditional mean effects discussed in Engle and Patton (2001). The ARCH

estimates for the conditional variance indicate the problem of long lags since

there are significant ARCH effects at the fifth lag and even at the ninth lag.

The Normal and St-GARCH(1,1) conditional variance estimates indicate

the presence of unit roots. This can be interpreted as long memory and in

general implies persistence of shocks in the conditional variance. Using the

St-AR we find that the first quadratic lag is significant in the conditional

variance specification.

It is also interesting to compare the ARCH-type models and the St-AR

model using misspecification tests. These tests indicate significant departures

from the Normality assumption as expected due primarily to excess kurtosis

in the data. This is shown by the p-values on the Bera-Jarque (BJ) and
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D’Agostino and Pearson (DAP) tests. The D’Agostino kurtosis (DK) and

skewness (DS) tests also indicate problems. In addition, the ARCH and the

t-GARCH models show departures from the assumptions of static

heteroskedasticity and linear dependence as shown by the Langrange

Multiplier (LM) test for autocorrelation and the White (W) test for

heteroskedasticity. Although, the NGARCH(1,1) seems to perform better

than the ARCH model, (shows no problems with linear dependence), it still

exhibits problems with Normality and static heteroskedasticity. In contrast,

misspecification testing on the St-ARmodel suggests no problems with static

heteroskedasticity or any of the other assumptions. Also note that none of

the models has problems with the assumption of dynamic heteroskedasticity

as indicated by the ARCH test.8

Until now we have considered models of univariate volatility involving

only the past history of the series itself to explain volatility. Economic

theory, however, suggests that other variables such as the T-bill rate may

contain information pertaining to the Dow Jones returns and its volatility.

We now consider models that can incorporate such information.

4.2.2. Volatility Models with Exogenous Variables

The exogenous variable in this case will be the T-bill rate. Before considering

the empirical specifications and the results we present the t-plot of the T-bill

rate in Fig. 6. Observe that there has been a big decrease in the T-bill rate

Table 6. Volatility Models with no Exogenous Variables.

P-Values for Misspecification Test Statistics

ARCH(5) NGARCH t-GARCH St-AR (3,3,4)

BJ (0.000)� (0.000)�

DAP (0.000)� (0.000)�

DS (0.000)� (0.000)� (0.000)� (0.021)�

DK (0.000)� (0.000)� (0.000)� (0.000)�

WHITE (0.000)� (0.000)� (0.000)� (0.944)

LM (2) (0.029)� (0.178) (0.124) (0.668)

LM (4) (0.039)� (0.105) (0.037)� (0.298)

LB (16) (0.053) (0.209) (0.046)� (0.710)

ARCH (2) (0.940) (0.120) (0.437) (0.302)

ARCH (4) (0.845) (0.307) (0.437) (0.286)

ML (26) (0.094) (0.909) (0.990) (0.292)

ML (38) (0.104) (0.990) (0.990) (0.757)

�Rejection of the null hypothesis at 5% level of significance.
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from about 6% in late 1980s to around 4% in early 2000. We also provide a

table with the descriptive statistics of the variables (Table 7). Following

Engle and Patton, the T-bill rate is in percentage form while the Dow Jones

returns (in percentage terms) are expressed in decimal form.

We now present the empirical specifications and report estimation results

based on the NDLR, the St-DLR and the NGARCH-X models. We begin

with the traditional homoskedastic NDLRmodel. For easier comparisons with

the univariate specification for the Dow Jones returns provided above we use

three lags and four degrees of freedom in the St-DLR specification. Recall that

we had found that a St-AR(3,3,4) was statistically adequate for the Dow Jones.

[5] Normal Dynamic Linear Regression Model (NDLR)

The NDLR model takes the form shown

yt ¼ b>0 xt þ
X

p

i¼1

aiyt�i þ
X

p

i¼1

b>i xt�i þ ut,

ut=Ft�1

� �
� Nð0;s2Þ; t4p ð14Þ

where Ft�1 ¼ fsðY0
t�1Þ;X

0
t ¼ x0t g forms the conditioning information

set which contains exogenous variables, the past history of those

variables as well as the past history of yt: The important difference

between the Normal and St-DLR model presented in Section 3 is in the

form of the conditional variance. Observe that in this case the

Fig. 6. Standardized t-plot (Three month T-bill rate).
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conditional variance, s2; is homoskedastic and thus cannot accom-

modate heteroskedasticity or non-linear dependence present in

financial data. Also graphical evidence in this section suggests that

the Student’s t distribution may be more suitable for capturing the

leptokurticity present in the Dow Jones returns data. For these reasons

we change the distribution assumption from Normal to Student’s t and

estimate the St-DLR model. The Student’s t specification allows for

both static and dynamic heteroskedasticity as well as second-order

dependence.

[6] Student’s t Dynamic Linear Regression Model (St-DLR)

The detailed specification of the St-DLR model can be found in

Section 3 (see Table 2). To better understand the interpretation of the

parameters in the conditional variance specification consider the case of

including one exogenous variable x and two lags in the empirical

specification. This implies that Xn

t ¼ ðxt; yt�1; yt�2; xt�1;xt�2Þ>: The

matrix on the left-hand side of Eq. (15) represents the cross-product

terms between the five conditioning variables which are present in the

conditional variance equation. The elements of the matrix on the right-

hand side represent the corresponding coefficient in front of the cross-

product terms. For instance l11 is the coefficient of x2t and l21 is the

coefficient of xtyt�1:

x2t

xtyt�1 y2t�1

xtyt�2 yt�1yt�2 y2t�2

xtxt�1 yt�1xt�1 yt�2xt�1 x2t�1

xtxt�2 yt�1xt�2 yt�2xt�2 xt�1xt�2 x2t�2

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

!

l11

l21 l22

l31 l32 l33

l41 l42 l43 l44

l51 l52 l53 l54 l55

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

(15)

Table 8 summarizes the results from the Normal DLR (NDLR) and

the St-DLR (St-DLR) using three lags and four degrees of freedom.

Note that we only report the significant coefficients for the conditional

Table 7. Descriptive Statistics: Dow Jones and T-bill Rate.

DJ T-bill

Mean 0.05504 5.38602
Std 0.01624 0.02801
Skewness �0.52662 0.50425
Kurtosis 9.04738 2.66239
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variance equation.9 We observe some important differences between

the two models. In the NDLR specification the contemporaneous

variable (T-bill rate) is not significant, whereas the third lag of the

T-bill rate is significant. Also, the first lag for the Dow Jones returns

appears to be significant in the conditional mean. The results are very

different for the St-DLR model. In this case, the contemporaneous

T-bill rate and the third lag of the Dow Jones returns become

significant in the conditional mean specification. Also, for the St-DLR

a lot of the estimated conditional variance parameters, which involve of

the cross-product terms of the Dow Jones (y) and the T-bill rate (x) as

well as their lags, are significant. For example x2t ðl11Þ; y2t�1ðl22Þ; and

Table 8. Normal DLR and Student’s t DLR: Dow Jones and T-bill

Rate.

Estimation Results

NDLR t-stat St-DLR t-stat

b̂0
0.2787 (1.084) �0.7690� (�2.381)

â1 �0.6544� (�1.976) 0.0316 (1.639)

â2 0.3368 (1.016) �0.0259 (�1.339)

â3 0.0414 (0.1612) �0.0545� (�2.841)

b̂1 0.0168 (0.9395) 0.6694 (1.506)

b̂2 �0.0185 �1.034 0.2224 (0.501)

b̂3 �0.0435� (�2.437) �0.1181 (�0.370)

my 0.0716 (10.439)

mx 5.0910 (182.459)

s 0.07065 (64.292)

l11 19.5916� (63.437)

l51 �12.5391� (�45.158)

l61 �4.2620� (�18.769)

l71 �3.1263� (�16.633)

l22 1.4148� (64.495)

l33 1.4155� (64.480)

l73 �0.0494� (�2.184)

l44 1.4058� (64.248)

l55 27.9140� (63.276)

l65 �11.5175� (�37.295)

l75 �4.2104� (�18.602)

l66 28.0014� (63.311)

l76 �12.5838� (�44.913)

l77 19.5633� (63.503)

Note: The numbers in the brackets refer to t-statistics.
�Rejection of the null hypothesis at 5% level of significance.
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yt�1xt�3ðl73Þ appear to be significant. This indicates that the conditional

variance captures a lot of the systematic information (non-linear

dependence and heteroskedasticity) present in the data.

It should be pointed out, however, that before making any inferences

and policy recommendations we need to ensure that the models are

statistically adequate. Misspecification tests such as those discussed

previously were applied on the above NDLR specification. They

indicate some problems with heteroskedasticity and non-linear

dependence as expected.

The St-DLR model is now compared to a conditional heteroske-

dastic model from the GARCH family, which allows for exogenous

variables in the conditional variance specification.

[7] Normal GARCH(1,1) with Exogenous Variables

We present the GARCH model with exogenous variables estimated

by Engle and Patton (2001) for comparison purposes. In particular,

Engle and Patton (2001) estimate the following specification:

yt ¼ c0 þ ut ðut=Ft�1Þ � Nð0; h2t Þ (16)

h2t ¼ oþ
X

p

i¼1

aiu
2
t�i þ

X

q

j¼1

gjh
2
t�j þ jX t�1 (17)

where X t�1 represents the lagged level of the three-month T-bill rate.

We reproduce the results of Engle and Patton in Table 9; observe that the

ARCH parameter is significant. Interestingly, while the coefficient of the

Table 9. Normal GARCH(1,1)-X: Dow Jones and T-bill Rate.

GARCH (1,1)-X Model

GARCH t-stat

c0 0.060 (1.818)
o �0.001 (0.625)

â1 0.044� (5.5)

ĝ1 0.938 (0.1612)

j 0.003� (72.15)

Note: The numbers in the brackets refer to t-statistics.
�Rejection of the null hypothesis at 5% level of significance.
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T- bill rate is small (0.003), it is quite significant. Engle and Patton claim

that the ‘‘positive sign suggests that high interest rates are generally

associated with higher levels of equity return volatility’’. This result was

documented earlier by Glosten et al. (1993) who also find that the T-bill rate

is positively related to equity return volatility.

It is interesting to note, however, that the above GARCH specification is

restrictive in the sense that it does not allow for lags of the dependent

variable (Dow Jones returns) or the exogenous variable (T-bill) rate in the

conditional mean specification. Dynamics are only captured through the

conditional volatility equation. In contrast, the St t-DLR results suggest

that the current T-bill rate is significant in both the conditional mean and

the conditional variance equation as shown in Table 8. Furthermore,

the cross products of the T-bill rate with its lags are also significant in the

conditional variance equation. These results raise some questions about

the appropriateness of augmenting the GARCH model to allow for the

effects of other exogenous variables on the volatility equation while ignoring

them in the returns equation.

5. CONCLUSION

This paper followed the PR approach to propose the St-DLR model for

capturing univariate volatility. The St-DLR model, although specified in

terms of statistical information, can easily accommodate economic theory

information. The statistical information takes the form of the three

reduction assumptions (i) Student’s t, (ii) Markov (p), and (iii) Second-

Order Stationarity (SS), whereas economic theory information comes in the

form of other exogenous variables that may contain information to account

for the volatility of some series.

The PR gives rise to a statistical model that is defined in terms of

observable random variables and their lags, and not the errors, as is the case

with the GARCH-type formulations. This provides a richer framework

since it allows us to examine the impact of relevant exogenous variables and

their lags on the returns as well as the volatility of the returns. The use of the

multivariate Student’s t distribution leads to a specification for

the conditional variance that is heteroskedastic. This allows us to model

the conditional mean and variance parameters jointly leading to gains in

efficiency. Moreover, it gives rise to an internally consistent model, which

does not require any positivity restrictions on the coefficients or any

additional memory assumptions for the stability of the conditional variance.
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Empirical results of this paper suggest that the St-DLR model provides a

promising way of modeling volatility. The fact that the contemporaneous

T-bill rate is significant in the conditional mean and variance equations raises

some questions regarding the appropriateness of the existing GARCH

specifications, which model volatility through the error term and only allow

for exogenous variable in the conditional variance equation. Moreover, the

very different estimation results from the GARCH-type models and the

St-DLR illustrate the importance of appropriate model choice and indicate

the need for formal misspecification tests to check the validity of

each specification. Finally, the St-DLR can be seen as an intermediate step

to the multivariate framework which takes into account the effect of other

variables.

NOTES

1. Volatility clustering refers to the tendency for large (small) price changes to be
followed by other large (small) price changes and had been documented as early as
Mandelbrot (1963) and Fama (1965).
2. Glosten et al. (1993) also find evidence that indicator variables can help to

explain dynamic conditional volatility of equity returns.
3. Rob Engle (2002) is reported to have coined the acronym YAARCH, which

stands for Yet Another ARCH model.
4. The inconsistency arises because, in this model, the linearity and hetero-

skedasticity assumptions contradict the conditional Normality.
5. The d-method is a convenient technique for approximating the distribution of

an arbitrary function of a random variable, when the distribution of that variable is
known. This method is useful for finding estimates and their approximate standard
errors when the estimable model cannot be expressed in term of the parameters of
interest. For more details on this see Oehlert (1992).
6. A commutation matrix K consists of re-arranged rows of an identity matrix,

such that vecX ¼ KmnvecX
0; for any matrix X of dimensionality (m� n). For details

see Magnus and Neudecker (1999).
7. Note that the misspecification tests for the St-AR model are based on the

weighted residuals instead, proposed by Spanos (1990b). The weighted residuals are
defined as ût=ôt � ôt�t; where ût ¼ yt � b̂0 þ S

p
i¼1 b̂iyt�i; and �t � Stð0; 1; nÞ is a

simulated standard i.i.d. Student’s t series. These residuals are a modification of the
usual (Pearson) residuals, where the additional term purports to account for the non-
linear effects of the conditional variance on yt.
8. It should not be surprising that the Engle’s (1982) ARCH test fails to find any

significant effects in the GARCH-type models since these models incorporate
dynamic heteroskedasticity. For the St-AR model, however, the ARCH test for
dynamic heteroskedasticity represents a modification of Engle’s ARCH test (1982)
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which includes the squares and cross-products of the regressors under the null. This is
consistent with the type of heteroskedasticity implied by the Student’s t distribution.
9. The full table is available from the authors upon request.
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APPENDIX: FIRST DERIVATIVES OF THE

LOG-LIKELIHOOD FUNCTION

The Log-Likelihood Function (LLF) is:

lnL y;Z1;Z2; . . . ZT

� �
¼ T lnG 1

2
nþmþ 1ð Þ

� �

� T ln pnð Þ

�TG 1
2
nð Þ

� �

þ 1
2
T lnðdet L>L

� �

� 1
2
T lnðs2Þ � 1

2
nþmþ 1ð Þ

P

T

t¼2

ln detðgtÞ

(A1)

where

gt ¼ 1þ 1
n
ðXn

t �Mn

t Þ
>S�1

22 ðXn

t �Mn

t Þ þ 1
ns2
ðyt � c0 � b>0 xt � a>yt�p � b>Xt�p

h i

yt�p ¼ ðyt�1; . . . yt�pÞ>;Xt�p :¼ ðxt�1; . . . xt�pÞ>

and

L>L ¼ S�1
22

To obtain the derivatives we replace c0 with my � b>0 mx � amy � b>mx:
Differentiating the LLF with respect to b>0 ; a;b

>; my;mx; s; and L we derive
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the following first order conditions:

1: @LLF
@b0

¼ nþmþ1
n

P

T

t¼1

1
gt

ut
s2

xt � mx
� �>

2: @LLF
@b ¼ nþmþ1

n

PT

t¼1

1
gt

ut
s2

xt�p � mx
� �>

3: @LLF
@a ¼ nþmþ1

n

PT

t¼1

1
gt

ut
s2

yt�p � my

	 
>

4: @LLF
@my

¼ nþmþ1
n

PT

t¼1

1
gt
ðXn

t �Mn

t Þ
0L>L iYð Þ þ ut

s2
1� að Þ>

� �

5: @LLF
@mx

¼ nþmþ1
n

P

T

t¼1

1
gt

X�
t �Mn

t

� �>
L>L iXð Þ þ ut

s2
b>0 þ b>
� �

h i

6: @LLF
@s ¼ �T

s
þ nþmþ1

n
1
s3

P

T

t¼1

1
gt
u2t

7: @LLF
@vechL

¼
T vec L>L

� ��1
h i>

GH L> � Im
� �

G

�nþmþ1
n

P

T

t¼1

1
gt
Xn

t �Mn

t

� �> � Xn

t �Mn

t

� �>
GH L> � Im

� �

G

where H is a selector matrix transforming vecðL0LÞ into vechðL>LÞ: The
reverse operation is performed by the selector matrix G; and Im a m�mð Þ
identity matrix. The matrix iY is an indicator matrix that assigns the value

of zero to all other variables in matrix Mn

t apart from my: Similarly, iX is

doing the same thing for mx:
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ABSTRACT

We develop a theoretical model to compare forecast uncertainty estimated

from time-series models to those available from survey density forecasts.

The sum of the average variance of individual densities and the

disagreement is shown to approximate the predictive uncertainty from

well-specified time-series models when the variance of the aggregate

shocks is relatively small compared to that of the idiosyncratic shocks.

Due to grouping error problems and compositional heterogeneity in the

panel, individual densities are used to estimate aggregate forecast

uncertainty. During periods of regime change and structural break,

ARCH estimates tend to diverge from survey measures.
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1. INTRODUCTION

Macroeconomic uncertainty as characterized by aggregate forecast density

or intervals has long been recognized as an important factor in determining

economic outcomes.1 Friedman (1977), in his Nobel lecture, conjectured

that high inflation causes high-inflation uncertainty, and that high

uncertainty in turn causes inefficiencies in the economy. The 2003 economics

Nobel laureate Engle (1983) wrote while introducing his celebrated

autoregressive conditional heteroscedastic (ARCH) model,

When inflation is unpredictable, risk averse economic agents will incur loss, even if prices

and quantities are perfectly flexible in all markets. Inflation is a measure of the relative

price of goods today and goods tomorrow; thus, uncertainty in tomorrow’s price impairs

the efficiency of today’s allocation decisions.

Not surprisingly, these developments have triggered much research studying

the effects of inflation uncertainty on savings, interest rates, investment, and

other variables. More recently, the introduction of inflation targeting

regimes in UK, Canada, Sweden, and many other countries during the 1990s

has rekindled an enormous interest in generating credible inflation forecasts

and the uncertainty associated with the forecasts.2

In order to deal with the causes and consequences of forecast uncertainty

in a convincing way, it has to be measured correctly. This is particularly

important for predictive uncertainty because, unlike forecasts, variance of

predictive errors generated by macro time-series models is always

unobserved, and hence, can never be evaluated against subsequently

observed realizations. During the last 20 years, the most popular approach

to estimate forecast uncertainty has been the univariate or multivariate

ARCH models initiated by Engle (1982, 1983), who modeled the conditional

variance of inflation forecast error as an ARCH process. Bollerslev (1986),

Nelson (1991), Glosten, Jagannathan, and Runkle (1993) and others have

generalized the basic ARCH model in various directions, and have found

many applications in finance and economics.

There are, however, several possible reasons why ARCH-type models

may not produce a reliable proxy for inflation uncertainty. First, the

reliability of this measure depends on the reliability of the conditional mean

and variance functions. This is why Engle (1982, 1983) had emphasized the

need for various specification tests in these models. More generally, Rich

and Tracy (2003) have questioned the use of conditional variance of a series,

which is essentially related to its ex post predictability as a measure of

forecast uncertainty, which is related to ex ante confidence of a prediction.
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Second, most ARCH-type models assume that the regime characterizing

inflation and inflation uncertainty is invariant over time. This assumption

may not be true due to structural breaks. Although some researchers have

tried to rectify this deficiency (see, for example, Evans, 1991; Evans &

Wachtel, 1993), the success of these efforts relies on correctly specifying the

structural break itself. Third, as noted by Bomberger (1996) and McNees

(1989), forecasters use different models. Thus, uncertainty regarding the

model that generates inflation may be a large part of inflation forecast

uncertainty. Conditional variance generated by a single model cannot

capture this important feature. Finally, Zarnowitz and Lambros (1987)

observed that forecast uncertainty depends not only on past forecast errors

but also on many future-oriented factors, such as policy changes, macro

shocks, data revisions, and many others including purely subjective factors.

ARCH-type models ignore this forward-looking behavior of forecasters and

other relevant factors that are not included in the time-series specification.3

In the US, research on the measurement of forecast uncertainty was

facilitated by the foresight of Victor Zarnowitz who under the aegis of

American Statistical Association and the National Bureau of Economic

Research pioneered a survey in 1968 in which, apart from other point

forecasts, subjective density forecasts of real GDP and inflation were elicited

from the survey respondents.4 The average variance of the individual

probability distributions can then be directly used as a time-series measure

of forecast uncertainty. Studies that used this measure include, among

others, Zarnowitz and Lambros (1987), Lahiri and Teigland (1987), Lahiri,

Teigland, and Zaporowski (1988), and Batchelor and Dua (1993). This

measure is attractive because the variance associated with the density

forecast truly represents the uncertainty perceived by an individual

forecaster. Batchelor and Dua (1995) and Giordani and Soderlind (2003)

argued that this measure reflects the uncertainty a reader of survey forecasts

faces if he randomly picks and trusts one of the point forecasts. One

question here is whether we should also include forecast disagreement across

individuals as a component of aggregate uncertainty. Since forecast

disagreement reflects people’s uncertainty about models, arguably it should

be a part of the aggregate forecast uncertainty.

Due to its ready availability, the variance of the point forecasts (or

disagreement) of the survey respondents has been widely used as a proxy for

inflation uncertainty. Cukierman and Wachtel (1979, 1982) investigated the

relationship between inflation uncertainty and inflation level as well as the

variance of the change of relative prices. Although forecast disagreement is

easy to compute, its disadvantages are obvious. First, individual biases may
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be part of forecast disagreement and not necessarily reflect forecast

uncertainty. Second, as noted by Zarnowitz and Lambros (1987), it is

possible that individual forecasters are extremely certain about their own

forecasts, yet the forecasts themselves are substantially dispersed. Con-

versely, the uncertainty of individual forecasts may be high but point

forecasts may be close. Disagreement would then overstate uncertainty in

the former case, and understate it in the latter.

There is rather a large literature comparing these three measures of

predictive confidence. Engle (1983) was the first to discuss the relationship

between the forecast uncertainty derived from the ARCH model and from

survey data. He showed that the conditional variance is approximately equal

to the average individual forecast error variance. Zarnowitz and Lambros

(1987) found that although the average forecast error variance and forecast

disagreement were positively correlated, the latter tends to be smaller than

the former. Batchelor and Dua (1993, 1996) compared the average

individual forecast error variance with a number of proxies including

forecast standard deviations from ARIMA, ARCH and structural models

of inflation. They found that these proxies are not significantly correlated

with the average individual forecast error variance. Other related works

include Bomberger (1996), Evans (1991), and Giordani and Soderlind

(2003). However, one drawback common to most of these studies is that

when comparing different measures of inflation uncertainty the supporting

information sets were often not exactly the same. For example, forecasters

in a survey often have more information than historical data. They have

partial information about current period when making forecasts. So a direct

comparison of forecast disagreement or average individual forecast variance

with a time-series measure may not be appropriate. Second, due to

heterogeneity in forecasts, survey measures often have individual biases.

When comparing survey measures with time-series estimates, we should first

correct for these compositional effects in the panel. Finally, most existing

studies are empirical. We need a theoretical framework to compare

estimates of uncertainty based on aggregate time series and survey data

on forecast densities.

In this paper, we propose a simple model to characterize the data

generating process in Survey of Professional Forecasters (SPF). We argue

that the estimated variance of the aggregate density as proposed by Diebold,

Tay, and Wallis (1999) and Wallis (2004) gives a reasonably close lower

bound on the forecast uncertainty imbedded in a well-specified time-series

model. Since the former variance is simply the sum of average variance of

the individual densities and the forecast disagreement (cf. Lahiri et al.,
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1988), our model presents a way of justifying the use of disagreement as a

component of macroeconomic uncertainty.5 Considering that time-series

models often have misspecification problems, the sum of forecast disagree-

ment and average individual forecast error variance from surveys may

provide a dependable proxy for the aggregate forecast uncertainty over

diverse periods. Our empirical analysis shows that the time series and survey

measures are remarkably similar during periods of low and stable inflation.

But during periods of high and unpredictable inflation, the two tend to

diverge.

The remainder of the paper is organized as follows. In Section 2, we

introduce our theoretical model to compare time series and survey measures

of inflation uncertainty. In Section 3, we show how to extract the measure of

forecast uncertainty from the SPF data as defined in Section 2. Sections 4

and 5 describe the SPF forecast density data, and present estimates of

inflation forecast uncertainty defined as the sum of average individual

forecast error variance and forecast disagreement. In Sections 6 and 7, we

empirically compare the survey measures estimated in Section 5 with those

estimated from some popular ARCH models. Section 8 concludes the paper.

2. THE MODEL

In this section, we propose a model to study the relationship between

measures of forecast uncertainty based on survey data and time-series

models. Giordani and Soderlind (2003) and Wallis (2004) have discussed

how a panel of density forecasts should be used to generate forecast

uncertainty representing the entire economy. However, they did not try to

find the relationship between survey and time-series measures of forecast

uncertainty.

Consider the prediction of the log of current general price level, pt, the

actual of which is available only in period t+1. Suppose the information set

of forecaster z is It(z). Then the prediction of pt made by forecaster z can be

expressed as EðptjI tðzÞÞ: In period t, individual forecasters can obtain

information from two sources. First, they have knowledge of the past

history of the economy in terms of its macroeconomic aggregates. This

aggregate information may, for instance, be collected from government

publications. Often macro forecasts are generated and made publicly

available by government agencies and also by private companies. We

assume that this information is common to all forecasters as public

information.6 Although public information does not permit exact inference
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of pt, it does determine a ‘‘prior’’ distribution of pt, common to all

forecasters. We assume the distribution of pt conditional on the public

information is pt � Nðp̄t;s
2Þ: Second, since SPF forecasters usually make

forecasts in the middle of each quarter for the current and the next year,

they will invariably have some private information about pt. Thus, while

reporting the density forecasts, they have partial information about the first

half of period t although official report of pt would still not be available.

This private information may take the form of data on relevant variables

that are available at higher frequencies (e.g., Consumer Price Index (CPI),

unemployment, Blue Chip monthly forecasts, etc.) that individual fore-

casters may use and interpret at their discretions. More importantly, it will

be conditioned by individual forecasters’ experience and expertise in specific

markets. A key feature of this private information is that it is a mixture of

useful information about pt and some other idiosyncratic information that is

orthogonal to pt.
7 If we use pt(z) to denote the private information of

forecaster z about pt, then pt(z) will be a function of pt and the idiosyncratic

factor denoted also by z with z � Nð0; t2zÞ: For simplicity, we assume

ptðzÞ ¼ pt þ z (2.1)

By definition, z is distributed independent of pt and individual-specific

information of other forecasters. Although forecaster z knows pt(z), he is

not sure about the relative size of pt and z. The problem for the individual is

how to infer about pt from the public information and the private

information, pt(z). This is a typical signal extraction problem.8

Using (2.1) it is easy to show that the distribution of pt conditional on

both the public and private information is normal with mean

E ptjI t zð Þ
� �

¼ E ptjptðzÞ; p̄t
� �

¼ 1� yzð Þpt zð Þ þ yzp̄t (2.2)

and variance yzs
2; where yz ¼ t2z=ðt

2
z þ s2Þ:

Consider an outside observer (or a central policy maker) who is to

forecast the aggregate price level. The information available to him is only

public information. He has no private information about period t that can

help him to better infer about pt. However, an unbiased point forecast of pt
can be made with available public information. Under mean squared error

loss function, the optimal point forecast should be p̄t; with forecast

uncertainty being s2: Note that this is just the forecast and forecast

uncertainty from aggregate time-series models if the mean and the variance

equations were correctly specified.

The situation facing forecaster z is different. He has both the public and

private information. Given the information set It(z), his point forecast of pt
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is given in (2.2) with the associated forecast uncertainty yzs
2: Following

Wallis (2004), we can ‘‘mix’’ the individual distributions to obtain an

aggregate forecast distribution and its variance. Or equivalently we can

calculate the variance as the sum of average individual forecast error

variance and forecast disagreement.9 This can be done more easily in the

current context. Using previous notations, we obtain the average of

individual forecast uncertainties of pt as

Var ¼ 1

N

X

z

var ptjI t zð Þ
� �

¼ 1

N

X

z

yzs
2 ¼ ȳs2 (2.3)

where N is the number of forecasters.

Since forecasters observe different pt(z), they will make different point

forecasts. The forecast disagreement defined as the variance of point

forecasts across individuals is 10

Disag ¼ 1
N

P

z

E ptjI t zð Þ
� �

� 1
N

P

z

E ptjI t zð Þ
� �

� �2

�!
p

1
N

P

z

Ez E ptjI t zð Þ
� �

� Ez E ptjI t zð Þ
� �� �� �2

¼ 1
N

P

z

varz E ptjI t zð Þ
� �� �

(2.4)

By (2.2)

varz E ptjI t zð Þ
� �� �

¼ varz 1� yzð Þpt þ 1� yzð Þzþ yzp̄t
� �

¼ 1� yzð Þ2t2z (2.5)

So, the forecast disagreement can be approximated by 1
N
Szð1� yzÞ

2t2z and

the sum of average individual forecast uncertainty and forecast disagree-

ment is approximately equal to

VarþDisag ¼
1

N

X

z

yzs
2 þ 1� yzð Þ2t2z

� �

¼
1

N

X

z

t2zs
2

s2 þ t2z
þ

s4t2z

s2 þ t2z
� �2

 !

¼
1

N

X

z

2t2zs
4 þ t4zs

2

s2 þ t2z
� �2

¼ s2
1

N

X

z

1� 1� yzð Þ2
� �

� s2 ð2:6Þ

since 0 � yz � 1:
Eq. (2.6) shows the relationship of the sum of the average individual

forecast error variance and the forecast disagreement with the forecast
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uncertainty estimated from a well-specified time-series model. What we

show is that typically the former is expected to be less than the latter.11

However, we can establish an upper bound on the difference between the

two measures empirically based on the findings of previous studies.

Cukierman and Wachtel (1979) found that s2=t2z ; the ratio of the variance

of the general price level to the variance of relative prices, was always less

than unity during the sample period 1948–1974 and, except for five years, it

was less than 0.15. Thus, we see that a value of s2=t2zo1 would imply

VarþDisag to be at least 0:75s2: In fact, VarþDisag will be larger than

0:98s2 if s2=t2zo0:15: We also computed s2=t2z with the annual Producer

Price Index (PPI) data during 1948–1989 from Ball and Mankiw (1995).

These authors calculated PPI inflation and weighted standard deviation of

relative price change for each year. We calculated s as the standard error

from an AR(1) regression of PPI inflation. We found that during this period

s2=t2z is equal to 0.42 on the average, which implies that VarþDisag ¼
0:91s2:

Fig. 1 shows the extent of underestimation of the time series uncertainty

by VarþDisag as a function of s2=t2z : As expected, the smaller this ratio,

the closer will be VarþDisag to s2: For example, if s2=t2z is less than 0.1,

VarþDisag40:99s2: Intuitively, the higher the variance of individual-

specific shocks relative to that of the general price level, the lower is the

value of pt(z) in predicting pt. This is because it is harder for individuals to

extract information about pt from the strong background noise of

individual-specific shocks. Eq. (2.2) shows that, under this situation,

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
22 / zτσ

Fig. 1. The Lower Bound for the Sum of Average Individual Uncertainty and

Forecast Disagreement.
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individuals will rely more heavily on p̄t to form their forecasts. If yz ¼ 1 in

(2.2), pt(z) provides no information about pt, and individual forecasters will

just report p̄t as their point forecasts. Then VarþDisag will be exactly equal

to s2:
Under the assumption that the variances of individual-specific shocks are

the same, i.e., t21 ¼ t22 ¼ � � � ¼ t2N ¼ t2; we can establish the lower bound of

VarþDisag in another way. First note that if the variances of individual-

specific shocks are identical, (2.3), (2.4), and (2.6) can be simplified as Var ¼
ys2; Disag ¼ ð1� yÞ2t2; VarþDisag ¼ ð1� ð1� yÞ2Þs2; where y ¼ t2=ðt2 þ
s2Þ: After litter algebra, we can get

VarþDisag ¼ ð1� ðDisag
	

VarÞ2Þs2 (2.7)

In Section 5, we have estimated the average Disag
	

Var to be 0.27 for the

SPF data during the sample period 1968Q4–2003Q4. Substituting this

number into (2.7), we get VarþDisag to be approximately 0:92s2: From all

these analysis using both time series and survey data evidence, we may safely

conclude that VarþDisag is usually between 90% and 100% of the time-

series measures of forecast uncertainty. Therefore, when comparing survey

and time-series measures of forecast uncertainty, we should include both the

average individual forecast uncertainty and forecast disagreement as a

measure of collective forecast uncertainty for the economy. This amounts to

the use of variance of the aggregate forecast density as advocated by

Diebold et al. (1999) and Wallis (2004), see also Giordani and Söderlind

(2005).

The model we have just discussed mimics the SPF data set. The survey is

mailed four times a year, on the day after the first (preliminary) release of

the National Income and Product Accounts (NIPA) data for previous

quarter. Forecasters are asked to return the survey before the middle of each

forecasting quarter. Therefore, even though forecasters share common

information about previous quarters, they also have some private

information gathered during the forecasting quarter. During the 45–60

days from the end of previous quarter to when they actually report their

forecasts, respondents can obtain partial information about current quarter

from many objective sources. Forecasts may also reflect individual

experiences in specific markets and forecasters’ beliefs regarding the effects

of current ‘‘news’’ on future inflation.12 Thus, the data generating process of

SPF is consistent with the simple model we have suggested. This framework

provides a guide to compare survey measures from SPF data and time-series

measures of forecast uncertainty.
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We have assumed that the specification of the time-series model is correct,

and that forecast failure does not happen due to structural breaks and policy

changes. In reality, however, time-series data-generating processes are

subject to breaks and model uncertainty. These possibilities will complicate

the simple correspondence between survey and time-series measures of

forecast uncertainty. However, our analysis suggests that individually neither

the average variance of the individual forecast densities nor the variance of

the point forecasts, but their sum, should be used to approximate the forecast

uncertainty generated from a correctly specified time-series model.

3. ECONOMETRIC FRAMEWORK

In the previous section, we showed that the forecast uncertainty of an

outside observer might be approximated by the sum of average forecast

error variance and forecast disagreement, VarþDisag: In this section, we

outline how to calculate VarþDisag from SPF data. This issue is not as

simple as one might think since the survey respondents are often asked to

assign a probability of outcome to various intervals rather than to produce a

continuous density function. Thus, how to extract the correct information

from the density forecasts data is a problem. The standard approach to

calculate the mean and variance from individual density forecasts is as

follows (see, for instance, Lahiri & Teigland, 1987; Lahiri et al., 1988).

EðF Þ ¼
X

J

j¼1

F jPrðjÞ and VarðF Þ ¼
X

J

j¼1

½F j � EðF Þ�2PrðjÞ

where Fj and Pr(j) are the midpoint and probability of interval j,

respectively. The lowest and highest intervals, which are open, are typically

taken to be closed intervals of the same width as the interior intervals.

This approach implicitly assumes that all probability mass is concentrated

at the interval midpoints. However, it will lead to the so-called ‘‘grouping

data error’’. The standard approach to correcting for grouping data error is

‘‘Sheppard’s correction’’ (Stuart & Ord, 1994), which gives the corrected

mean the same as the uncorrected mean, but the corrected variance as the

uncorrected variance minus 1/12 of the squared bin width. Though popular,

there are problems with the Sheppard’s correction when applied to SPF

data.13 An alternative proposed by Giordani and Soderlind (2003) is to fit

normal distributions to each histogram, and the mean and variance are

estimated by minimizing the sum of the squared difference between the
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survey probabilities and the probabilities for the same intervals implied by

the normal distribution. We will follow their approach in this paper.14

To obtain an appropriate measure of inflation forecast uncertainty, we

need to correct for not only the grouping error, but also the errors due to

systematic individual biases in forecast densities. In recent years, the

individual heterogeneity in economic forecasts has been increasingly

emphasized. For example, Lahiri and Ivanova (1998) and Souleles (2004)

use data from the Michigan Index of Consumer Sentiment, and document

differences across demographic and other groups in their expectations.

Mankiw, Reis, and Wolfers (2003) also document substantial disagreement

among economic agents about expected future inflation using survey data

from different sources. Mankiw and Reis (2002) propose a ‘‘sticky-

information’’ model to explain the variation of disagreement over time.

A similar model by Carroll (2003) emphasizes the differential effect of

macroeconomic news on household expectations. Disagreement results from

the differences across demographic groups in their propensity to pay

attention to news reports.

Although the literature has focused mostly on the heterogeneity in point

forecasts, some authors have raised the issue of heterogeneity in forecast

uncertainty also. For example, Davies and Lahiri (1995, 1999) decompose

the variance of forecast errors into variances of individual-specific forecast

errors and aggregate shocks. They found significant heterogeneity in the

former. Rich and Tracy (2003) also found evidence of statistically significant

forecaster fixed effects in SPF density forecasts data. They took this as

evidence that forecasters who have access to superior information, or

possess a superior ability to process information are more confident in their

point forecasts. Ericsson (2003) studies the determinants of forecast

uncertainty systematically. He points out that forecast uncertainty depends

upon the variable being forecast, the type of model used for forecasting, the

economic process actually determining the variable being forecast, the

information available, and the forecast horizon. If different forecasters have

different information sets and use different forecast models, the anticipated

forecast uncertainties will be different across forecasters even if agents are

forecasting the same variable at the same forecast horizon. In the following

part of this section, we extend the framework of Davies and Lahiri (1995,

1999) to illustrate how to correct for heterogeneity in forecasts.

Let t denote the target period of forecast, h the forecast horizon, or the

time left between the time the forecast was made and t, and i the forecaster.

Let At be the realized value, or the actual, of the forecasted variable, and let

Ath be the latest realization known to forecasters at the time of forecast. Let
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gth denote the expected change in the actual over the forecast period, and

F ith denote the point forecast made by forecaster i at time t�h about the

inflation rate in period t. Because we can expect errors in information

collection, judgment, calculation, transcription, etc. as well as private

information, not all forecasts will be identical. Let us call these differences as

‘‘idiosyncratic’’ error and let mith be individual i’s idiosyncratic error

associated with his forecast for target t made at horizon h. Finally, let fi be

forecaster i’s overall average bias. Using these notations, the individual

point forecast can be expressed as:

F ith ¼ Ath þ gth þ mith þ fi (3.1)

Note that the presence of systematic bias fi does not necessarily imply that

forecasters are irrational. The reasons of systematic forecast bias may

include asymmetric loss function used by forecasters (see Zellner, 1986;

Christofferson & Diebold, 1997), or the propensity of forecasters to achieve

publicity for extreme opinions (Laster, Bennett, & Geoum, 1999).

Using (3.1), the disagreement among forecasters at time t�h is then

1

N

X

N

i¼1

F ith � F̄ th

� �2
¼

1

N

X

N

i¼1

fi � f̄þ mith � m̄th
� �2

¼ s2f þ s2mth (3.2)

where F̄ th ¼
1
N
SN
i¼1F ith; f̄ ¼ 1

N
SN
i¼1fi; m̄th ¼

1
N
SN
i¼1mith: In (3.2), s2f reflects

the dispersion of systematic forecast biases across forecasters and is

unrelated to the forecast target and forecast horizon. So it does not reflect

the differences in forecasters’ views about how price level will change in h

periods from now. Only s2mth should be included in the calculation of forecast

disagreement for it reflects forecasters’ disagreement because of differential

information sets (or different forecasting models).

Assuming rationality, and in the absence of aggregate shocks, the actual

at the end of period t will be the actual at the end of period t�h (Ath) plus the

full information anticipated change in the actual from the end of period t�h

to the end of period t (gth). Let the cumulative aggregate shocks occurring

from the end of period t�h to the end of period t be represented by lth: By
definition, lth is the component of the actual that is not anticipated by any

forecaster. Then, the actual inflation of period t can be expressed as

At ¼ Ath þ gth þ lth (3.3)

Note that the aggregate shocks from the end of t�h to the end of t (lth) are

comprised of two components: changes in the actual that occurred but were

not anticipated, and changes in the actual that were anticipated but did not

occur.
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Subtracting (3.1) from (3.3) yields an expression for forecast error where

forecasts differ from actuals due to individual biases, cumulative aggregate

shocks, and idiosyncratic errors.

eith ¼ At � F ith ¼ fi þ lth þ mith (3.4)

Then the individual forecast error variance (V ith) can be expressed as

V ith ¼ Vari eithð Þ ¼ Vari fi þ lth þ mith
� �

¼ Vari lthð Þ þ Vari mith
� �

(3.5)

The first term VariðlthÞ measures the perceived uncertainty of aggregate

shocks. We allow them to be different across individuals. This is consistent

with the model in the previous section in which individuals have different

probability forecasts for the aggregate price level due to heterogeneity in

information and other reasons. As for the variance of idiosyncratic forecast

errors, we assume it is constant over t and h but varies across i. More

specifically, we assume mith � Nð0;s2i Þ: This term captures the fixed effects in

the individual forecast error variances. From (3.5), only VariðlthÞ should be

included in the measure of inflation forecast uncertainty. s2i is unrelated to

the target itself and should be excluded from the aggregate measure of

inflation uncertainty in order to control for compositional effects in the

variances, (see Rich & Tracy, 2003).

As showed in the previous section, the average individual forecast error

variance should be included in the measure of aggregate inflation forecast

uncertainty. Based on (3.5), it can be calculated as

1

N

X

i

V ith ¼
1

N

X

i

VariðlthÞ þ
1

N

X

i

s2i (3.6)

As discussed above, an accurate measure of uncertainty should include only

s2lth ¼
1
N
SiVariðlthÞ: Thus the measure of forecast uncertainty calculated as

VarþDisag is

U th ¼ s2lth þ s2mth (3.7)

4. DATA

We apply the model developed in the previous section to SPF data set. As

noted before, SPF was started in the fourth quarter of 1968 by American

Statistical Association and National Bureau of Economic Research and

taken over by the Federal Reserve Bank of Philadelphia in June 1990. The

respondents are professional forecasters from academia, government, and
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business. The survey is mailed four times a year, the day after the first

release of the NIPA data for the preceding quarter. Most of the questions

ask for the point forecasts on a large number of variables for different

forecast horizons. A unique feature of SPF data set is that forecasters are

also asked to provide density forecasts for aggregate output and inflation. In

this study, we will focus on the latter. Before we use this data, we need first

to consider several issues, including:

(1) The number of respondents has changed over time. It was about 60 at

first and decreased in mid-1970s and mid-1980s. In recent years, the

number of forecasters was around 30. So, we have an incomplete panel

data.

(2) The number of intervals or bins and their length has changed over time.

During 1968Q4–1981Q2 there were 15 intervals, during 1981Q3–1991Q4

there were six intervals, and from 1992Q1 onward there are 10 intervals.

The length of each interval was 1 percentage point prior to 1981Q3,

then 2 percentage points from 1981Q3 to 1991Q4, and subsequently

1 percentage point again.

(3) The definition of inflation in the survey has changed over time. It was

defined as annual growth rate in GNP implicit price deflator (IPD) from

1968Q4 to1991Q4. From 1992Q1 to 1995Q4, it was defined as annual

growth rate in GDP IPD. Presently it is defined as annual growth rate of

chain-type GDP price index.

(4) Following NIPA, the base year for price index has changed over our

sample period. It was 1958 during 1968Q4–1975Q4, 1972 during

1976Q1–1985Q4, 1982 during 1986Q1–1991Q4, 1987 during 1992Q1–

1995Q4, 1992 during 1996Q1–1999Q3, 1996 during 1999Q4–2003Q4,

and finally 2000 from 2004Q1 onward.

(5) The forecast horizon in SPF has changed over time. Prior to 1981Q3, the

SPF asked about the annual growth rate of IPD only in the current year.

Subsequently, it asked the annual growth rate of IPD in both the current

and following year. However, there are some exceptions. In certain

surveys before 1981Q3, the density forecasts referred to the annual

growth rate of IPD in the following year, rather than the current year.15

Moreover, the Federal Reserve Bank of Philadelphia is uncertain about

the target years in the surveys of 1985Q1 and 1986Q1. Therefore, even

though for most target years, we have eight forecasts with horizons

varying from approximately 1/2 to 71/2 quarters,16 for some target years,

the number of forecasts is less than eight.
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Problems (2)–(4) can be handled by using appropriate actual values and

intervals although they may cause the estimation procedure a little more

complicated. Following Zarnowitz and Lambros (1987), we focus on the

density forecasts for the change from year t-1 to year t that were issued in

the four consecutive surveys from the last quarter of year t-1 through the

third quarter of year t. The actual horizons for these four forecasts are

approximately 41/2, 31/2, 21/2, and 11/2 quarters but we shall refer to them

simply as horizons 4,y , 1. Problems (1) and (5) imply that we will have a

lot missing values.

After eliminating observations with missing data, we obtained a total of

4,942 observations over the sample period from 1968Q4 to 2004Q3. For

purpose of estimation, we need to eliminate observations for infrequent

respondents. Following Zarnowitz and Lambros (1987), we focus on the

‘‘regular’’ respondents who participated in at least 12 surveys during the

sample period. This subsample has 4,215 observations in total.

To estimate the model, we also need data on the actual, or realized values

of IPD inflation (At as in previous section). Since the NIPA data often goes

through serious revisions, we need to select the appropriate data for the

actual. Obviously, the most recent revision is not a good choice because

forecasters cannot forecast revisions occurring many years later. Especially,

the benchmark revision often involved adjustment of definitions and

classifications, which is beyond the expectation of forecasters. Thus, we

choose the first July revisions of the annual IPD data to compute At. For

example, we compute inflation rate from 1968 to 1969 as

At ¼ 100�
IPDJ

1969;1 þ IPDJ
1969;2 þ IPDJ

1969;3 þ IPDJ
1969;4

IPDJ
1968;1 þ IPDJ

1968;2 þ IPDJ
1968;3 þ IPDJ

1968;4

� 1

 !

where IPDJ
1969;q is the IPD level in the qth quarter of year 1969 released in

July 1970 and IPDJ
1968;q is the IPD level in the qth quarter of year 1968

released in July 1969. These are the real-time data available from the Federal

Reserve Bank of Philadelphia. See Section 6 for more detailed description of

this data set.

5. ESTIMATION

In this section, we describe how to extract inflation forecast uncertainty as

defined in Section 3 from SPF data set. By (3.4), forecast error can be
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decomposed into three parts:

eith ¼ At � F ith ¼ lth þ fi þ mith

Note that, mith is uncorrelated over i, t, h, and lth is uncorrelated over t. In

addition, they both have zero mean and are uncorrelated with each other

under the assumption of rational expectation. Following Davies and Lahiri

(1999), an estimate of systematic forecast bias can then be derived as

follows:

f̂i ¼
1

TH

X

t

X

h

At � F ithð Þ (5.1)

The mean bias across all forecasters is then

^̄f ¼
1

N

X

i

f̂i (5.2)

and the variance of individual bias across forecasters is

ŝ2f ¼
1

N � 1

X

i

f̂i �
^̄f


 �2

(5.3)

Note that, the composition of forecasters varies over both t and h, which

implies that s2f also changes over t and h.

Using (3.2), we can obtain estimates of inflation forecast disagreement as

ŝ2mth ¼
1

N

XN

i¼1
F ith � F̄ th

� �2
� ŝ2f (5.4)

Note that (5.4) is computed over the subsample of ‘‘regular’’ respondents.

So, we implicitly assume that including infrequent respondents will not

change the estimate of forecast disagreement appreciably.

Next we consider the estimation of the average individual forecast error

variance as defined in Section 3. From (3.5), we have

V ith ¼ VariðlthÞ þ s2i (5.5)

As argued in previous section, s2i should not be included in the aggregate

measure of forecast uncertainty. The distribution of forecasters over time is

not random. Some forecasters participated only in the early period of the

survey, others participated only in the later period. Following Rich and

Tracy (2003), we regress the variances of individual densities on a set of year

dummy variables and a set of individual dummy variables for each forecast

horizon. The estimated respondent fixed effects reflect the extent to which a

particular respondent’s inflation uncertainty systematically differs from the
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average adjusting for the years that the respondent participated in the survey.

By subtracting out these fixed-effect estimates from the respondent’s inflation

uncertainty estimates, we can control for the changes in the composition of

the survey. Then by applying (3.6), we obtain the average individual forecast

error variance corrected for the ‘‘composition’’ effect, i.e. ŝ2lth :
Given the estimates of forecast disagreement and average individual

forecast error variance, we could compute the inflation forecast uncertainty

based on (3.7) as

Û th ¼ ŝ2lth þ ŝ2mth (5.6)

However, when plotting inflation forecast uncertainty and its two

components with different horizons pooled together, one more adjustment

seems reasonable. There is a possibility that the same shocks occurring at

two different horizons relative to the same target will have different effects

on forecaster’s confidence about his forecast. Forecasters may be more

uncertain about the effect of a shock when the horizon is long. This type of

‘‘horizon effects’’ should be removed when we want to examine how forecast

uncertainty varies over time continuously over quarters. To remove the

horizon effects, we regressed VariðlthÞ on horizon dummies. More

specifically,

VariðlthÞ ¼ ai þD1di1 þD2di2 þD3di3 þ nith (5.7)

where Dh ¼
1 if observation is for horizon h; h ¼ 1; 2; 3:

0 otherwise

�

Note that dih measures the difference between forecast error variance with

horizon of four quarters and those with others. This implies that forecasts

with horizon of four quarters are the benchmark for comparison. We

converted forecasts with horizons less than four quarters to forecasts with

4-quarter horizon. Since we are only interested in the average horizon

effects, we formulate (5.7) as a random coefficients model. Specifically, we

assume that

ðai; di2; di3; di4Þ ¼ ða; d2; d3; d4Þ þ ni with E við Þ ¼ 0 E viv
0
i

� �

¼ G (5.8)

Models (5.7) and (5.8) can be estimated17 using the method formulated in

Greene (2000). Then the estimated average 4-quarter equivalent individual

forecast error variance and inflation forecast uncertainty are ŝ2lth � d̂h and

ŝ2lth � d̂h þ ŝ2mth respectively.
18

Figs. 2a and b present the estimated uncertainty (Û th � d̂h) and its two

components, the average variance (ŝ2lth � d̂h) and the disagreement (ŝ2mth ),
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from 1968Q4 to 2003Q4.19 First, we see that the inflation forecast

uncertainty as measured by Û th � d̂h was low before 1973 and after 1992.

This is consistent with previous studies. A similar pattern persists for its two

components also. This roughly confirms Friedman’s (1977) conjecture that

greater inflation uncertainty is associated with higher level of inflation.

Second, the forecast disagreement on the average over the whole sample

period is lower (0.38) than the average of individual forecast uncertainty

(0.70) over the sample period. This is consistent with the empirical findings

in previous studies such as Zarnowitz and Lambros (1987). Third, forecast

disagreement increased significantly in mid-1970s and early 1980s. In mid-

1970s, the U.S. economy was hit by the first oil shock. Such an event raises

people’s uncertainty about future change in the inflation regime. But it had

interestingly only a slight effect on the average variance of inflation, ŝ2lth � d̂h:
The late 1970s and early 1980s witnessed similar episodes when the economy
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Fig. 2. (a) Inflation Forecast Uncertainty Based on Survey Data (Horizon

Adjusted); (b) Two Components of Inflation Forecast Uncertainty.
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was hit by the second oil shock and a sudden change in monetary policy

regime from the interest rate targeting to the money supply.20 Fourth, the

sample variance of forecast disagreement is 0.19 over the sample period while

that for the average individual forecast uncertainty is 0.11. This is consistent

with Lahiri et al. (1988)’s finding that forecast disagreement tend to be more

volatile than the average individual forecast uncertainty. Fifth, the

correlation coefficient of the overall measure of uncertainty (Û th � d̂h) with

average variance (ŝ2lth � d̂h) and forecast disagreement (ŝ2mth) are 0.72 and

0.85 respectively. This result implies that forecast disagreement is a good

proxy for uncertainty. Almost all studies in this area have reached this

conclusion. Finally, note from Table 1 that there are significant horizon

effects. Interestingly, we find that forecast uncertainty, on the average, falls

significantly from two-to one-quarter-ahead forecasts.

6. GARCH MODEL OF UNCERTAINTY

In Section 2, we argued that the sum of the forecast disagreement and the

average individual forecast error variance approximates the time-series

measure of uncertainty fairly well. In this section, we test how well this

argument is valid by comparing these two measures empirically. The most

popular time-series models for estimating forecast uncertainty are ARCH

and its various extensions. In these models, the forecast uncertainty is

measured as the time-varying conditional variance of innovations.21

Following Engle and Kraft (1983), we model quarterly inflation pt as an

AR(4) process

pt ¼ b0 þ b1pt�1 þ b2pt�2 þ b3pt�3 þ b4pt�4 þ �t (6.1)

To test for the presence of conditional heteroscedasticity in the form of

ARCH/GARCH process, we estimated (6.1) by OLS on quarterly inflation

data from 1955Q2 to 2004Q2 released in 2004Q3. The squared residuals are

then regressed on its own lags up to 20. The w2 test statistic was significant at

Table 1. Estimates of Average Horizon Effects in Forecast Uncertainty.

Variable Coefficient Std. Error p-Value

Intercept 0.6676 0.029 0.000

3Q ahead dummy �0.0006 0.023 0.980

2Q ahead dummy �0.0929 0.019 0.000

1Q ahead dummy �0.1959 0.018 0.000
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the significance level of 5%, suggesting that ARCH/GARCH effect is

presented.22

To capture the ARCH/GARCH (generalized autoregressive conditional

heteroscedastic) effect, we tried three formulations for the con-

ditional variance of �t: the popular GARCH(1,1) model in which the

conditional variance of inflation is formulated as

GARCH(1,1):

ht ¼ Eð�2t jct�1Þ ¼ a0 þ a1�
2
t�1 þ a2ht�1 (6.2)

where a040; a1 � 0; a2 � 0; a1 þ a2o1;23 and ct�1 ¼ pt�1; ht�1; �t�1 . . .f g is

the information set at date t�1.

ARCH(4):

ht ¼ Eð�2t jct�1Þ ¼ a0 þ a1�
2
t�1 þ a2�

2
t�2 þ a3�

2
t�3 þ a4�

2
t�4 (6.3)

where a040; a1 � 0; a2 � 0;
P4

i¼1aio1:

GJR–GARCH(1,1):

ht ¼ Eð�2t jct�1Þ ¼ a0 þ a1�
2
t�1 þ a2ht�1 þ a3Dt�1�

2
t�1 (6.4)

where a040; a1 � 0; a2 � 0; a1 þ a2 þ 0:5a3o1; and Dt ¼
1 if �to0

0 otherwise

�

Table 2 shows the estimates of the three models over the same sample. Values

of log likelihood, AIC and SC reveal that GJR–GARCH(1,1) model

provides the best fit among the three models. This result is meaningful since it

is well known that an unpredicted fall in inflation produces less uncertainty

than an unpredicted rise in inflation (Giordani & Soderlind, 2003). One

explanation may be that during a period of unexpected high inflation, people

are uncertain about whether or not the monetary authorities will adopt a

disinflationary policy at the potential cost of higher unemployment or lower

growth rate of output. However, if there is unexpected low inflation, people

believe that the monetary authorities will seek to maintain the low inflation,

so inflation forecast uncertainty would be low. Ball (1992) used this argument

to explain why higher inflation leads to higher inflation uncertainty.

To make the time-series results comparable to the survey measure, we

estimated the model with real-time macro data available from the Federal

Reserve Bank of Philadelphia.24 This data set includes data as they existed

in the middle of each quarter, from November 1965 to the present. For each
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vintage date, the observations are identical to those one would have

observed at that time. To estimate our models, we make use of only the data

for Output Price Index.25 (It was first GNP IPD, then GDP IPD and finally

Chain-weighted price index for real GDP since 1996, see Section 4 for

detailed discussion). The quarterly inflation rate is defined as log difference

Table 2. Estimates of Univariate ARCH models.

Variable GARCH(1,1) ARCH(4) GJR–GARCH(1,1)

Mean equation

Constant 0.0510� 0.0567 0.0567��

(0.0288) (0.0374) (0.0273)

pt�1 0.4708��� 0.4372��� 0.5018���

(0.0767) (0.0746) (0.0820)

pt�2 0.1780�� 0.2252� 0.1621�

(0.0811) (0.1171) (0.0854)

pt�3 0.0393 0.0325 0.0195

(0.0826) (0.1058) (0.0817)

pt�4 0.2301��� 0.2147��� 0.2454���

(0.0712) (0.0762) (0.069)

Variance equation

Constant 0.0018 0.0185��� 0.0020

(0.0013) (0.0067) (0.0013)

�2t�1
0.1278��� 0.2038 0.2127��

(0.0482) (0.1393) (0.0869)

�2t�2
0.1482

(0.1341)

�2t�3
0.1547�

(0.0852)

�2t�4
0.2677��

(0.1242)

Dt�1�
2
t�1

�0.2127���

(0.0831)

ht�1 0.8439��� 0.8546���

(0.0535) (0.0746)

R2 0.807 0.795 0.810

Log-L 5.005 2.341 10.614

AIC 0.000 0.027 �0.058

SC 0.084 0.111 0.026

Note: Standard errors are given in parentheses.
���Significant at 1% level.
��Significant at 5% level.
�Significant at 10% level.
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of quarterly price index. Specifically, pt ¼ 100� ðlnðptÞ � lnðpt�1ÞÞ; where pt
denotes the price level at date t.

The estimation and forecast procedure is as follows. First, the above models

are estimated using the quarterly inflation data available at a particular point

of time starting from 1955Q1 and ending at the last quarter before the

forecasting date. This construction is intended to reproduce the information

sets of forecasters in real time. Then the estimated model is used to forecast

the inflation forecast uncertainty. Since the survey measure reports uncertainty

associated with the forecast of annual inflation rate in the target year made in

different quarters before the end of that year, we cannot just compare the

conditional variance of quarterly inflation forecasts with the survey measure

directly. Previous studies have not been sufficiently clear about this important

issue. Based on the models for quarterly inflation, however, we could derive a

measure of forecast uncertainty comparable to the survey measure. For that

purpose, we should first make some changes to the previous notations.

Let pt denote annual inflation rate for year t, pt;i denote quarterly

inflation rate in the ith quarter of year t, and pt;i denote the price index for

the ith quarter of year t. Consider the forecast for annual inflation rate in

year t made in the first quarter of that year.26 By definition, the annual

inflation rate in year t can be expressed as the sum of quarterly inflation rate

in each quarter of that year.

pt ¼ 100� ðlnðpt;4Þ � lnðpt�1;4ÞÞ

¼ 100� ðlnðpt;4Þ � lnðpt;3Þ þ lnðpt;3Þ

� lnðpt;2Þ þ lnðpt;2Þ � lnðpt;1Þ

þ lnðpt;1Þ � lnðpt�1;4ÞÞ

¼ pt;4 þ pt;3 þ pt;2 þ pt;1 ð6:5Þ

The forecast for pt in the first quarter of that year is as follows:

p
f
t ¼ 100� ðlnðp

f
t;4Þ � lnðpt�1;4ÞÞ

¼ 100� ðlnðp
f
t;4Þ � lnðp

f
t;3Þ þ lnðp

f
t;3Þ

� lnðp
f
t;2Þ þ lnðp

f
t;2Þ � lnðp

f
t;1Þ

þ lnðp
f
t;1Þ � lnðpt�1;4ÞÞ

¼ p
f
t;4 þ p

f
t;3 þ p

f
t;2 þ p

f
t;1 ð6:6Þ

where X f denotes the forecast for the variable X made in the first quarter27

of the year considered. The error with annual inflation forecast made in the
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first quarter of year t is the difference between pt and p
f
t :

et ¼ pt � p
f
t

¼ pt;4 þ pt;3 þ pt;2 þ pt;1
� �

� p
f
t;4 þ p

f
t;3 þ p

f
t;2 þ p

f
t;1


 �

¼ et;4 þ et;3 þ et;2 þ et;1 ð6:7Þ

where et;i is the error in forecasting the ith quarterly inflation of year t made

in the first quarter of the same year. As before, the quarterly inflation is

modeled as AR(4). So, the forecast for quarterly inflation rate of the fourth

quarter of year t is based on the regression

pt;4 ¼ b0 þ b1pt;3 þ b2pt;2 þ b3pt;1 þ b4pt�1;4 þ �t;4 (6.8)

where �t;4 is the innovation in the fourth quarter of year t which is assumed

to be normally distributed with zero mean and a time-varying conditional

variance. Note that

p
f
t;4 ¼ b0 þ b1p

f
t;3 þ b2p

f
t;2 þ b3p

f
t;1 þ b4pt�1;4 (6.9)

where all forecasts are made in the first quarter of year t. Note also that

pt�1;4 is known to forecasters at that time. Based on above assumptions, we

have

et;4 ¼ pt;4 � p
f
t;4 ¼ b1et;3 þ b2et;2 þ b3et;1 þ �t;4 (6.10)

Similarly, we have

et;3 ¼ pt;3 � p
f
t;3 ¼ b1et;2 þ b2et;1 þ �t;3 (6.11)

et;2 ¼ pt;2 � p
f
t;2 ¼ b1et;1 þ �t;2 (6.12)

et;1 ¼ pt;1 � p
f
t;1 ¼ �t;1 (6.13)

By successive substitution, we have

et;i ¼
Xi

j¼1
bj�1�t;i�jþ1 (6.14)

where bj ¼ b1bj�1 þ . . . þ b4bj�4; b0 ¼ 1; and bj ¼ 0 for jo0:
So, the forecast uncertainty conditional on information set in the first

quarter of year t is

W t3 ¼ var etjct;1

� �

¼ var et;4 þ et;3 þ et;2 þ et;1jct;1

� �

¼
X4

k¼1

X4�k

j¼0
bj


 �2

E �2t;kjct;1


 �
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More generally, we have

W th ¼

Phþ1
k¼1

Phþ1�k
j¼0 bj


 �2

E �2t;3�hþkjct;4�h


 �

if h ¼ 1; 2; 3:

P4
k¼1

P4�k
j¼0 bj


 �2

E �2t;kjct�1;4


 �

þ
P4

j¼1bj


 �2

E �2t�1;4jct�1;4


 �

if h ¼ 4:

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

(6.15)

where ct;i denotes the information set in the ith quarter of year t.28 W th

denotes the forecast uncertainty for annual inflation rate in year t with

horizon of h quarters. It is comparable to Û th in (5.6), the survey forecast

uncertainty for annual inflation in year t with horizon of h quarters.

Figs. 3a–d compare the survey forecast uncertainty Û th
29 with time-series

uncertainty W th for different forecast horizons.30 The time profiles and the

levels are quite similar after late 1980s. The correlations between these two

series are very high after 1984 (for all forecast horizons, the correlation

coefficients are above 0.8). During this period, the inflation rate is relatively

low and stable. However, the correlation coefficients are quite low before

1984, (see Table 4). This period is notable for high and volatile inflation. It

seems that the two measures give similar results when the inflation process is

stable. On the other hand, they diverge when there are structural breaks in

the inflation process. This is understandable since ARCH-type models

assume that the regime for inflation and inflation uncertainty is invariant

over time while survey forecasters surely try to anticipate structural breaks

when they make forecasts.31 Although these two measures have very low

correlation in the earlier period, both of them were sensitive to the effects of

the first oil shock in 1973–1974, and the second oil shock and the change in

the monetary rule in 1979–1980 and 1981–1982, respectively. During these

periods, both measures reported big surges. For the survey measure, by

looking at Fig. 2b, we find that the increase is mostly due to the increase in

the forecast disagreement. This again justifies the inclusion of the forecast

disagreement into inflation uncertainty. As Kurz (2002) has argued, when

important policies are enacted, heterogeneity in beliefs creates disagreement

in forecasts that in turn contributes to the overall economic uncertainty.

To better understand the divergence between the survey measure and time-

series measures, we examined the point forecasts produced by the SPF data32

and GARCH(1,1). We found that before 1984, the point forecasts estimated

by the two approaches were much more different than those after 1984. On

average, the sum of absolute value of the difference between these two
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estimates is 100% larger before 1984 compared to the post-1984 period.

During mid-1970s to early 1980s, the GARCH point forecasts missed the

actual inflation rates substantially. The average absolute forecast errors for the

AR (4) model was calculated to be 1.21 during 1968-1983 (1.41 during 1973–

1983) but only 0.39 during 1984–2003.33 The same for the survey measure is

1.0 during 1968–1983 (1.11 during 1973–1983) and 0.51 during 1984–2003.

Thus, it seems that when there are structural breaks, the survey measure does

better than the time-series models in forecasting inflation while during a period

of low and stable inflation, the latter does better. Since uncertainties based on

ARCH-type models are functions of forecast errors, it is not surprising to find

that ARCH-type uncertainties are bigger than the survey measure during mid-

1970s and early 1980s in Figs. 3a–d. This may also explain why the survey

measure of uncertainty is bigger than ARCH-type uncertainties from mid-

1980s to early 1990s for two- and one-quarter-ahead forecasts.

Another undesirable feature of Figs. 3a–d is that the GARCH(1,1)

measure has big spikes in 1975 and 1976. This problem is especially serious

for four-quarter-ahead forecasts. This may be due to the interaction between

forecast errors and model parameters. Notice that due to the effect of the

first oil shock, GARCH(1,1) reports big forecast errors in 1974 and 1975.

Actually the two largest forecast errors for the whole sample period

occurred in these two years.34 Consequently, as a result of the GARCH

specification big forecast errors will show up as big forecast uncertainty in

the following years. That is why we have big forecast uncertainty in 1975

and 1976. One simple way to correct this problem is just to dummy out the

several quarters that have large forecast errors. Actually, just dummying out

the first and second quarters of 1975 will reduce the spike in 1976

significantly. But this is only an ex post solution. Another explanation for

the spikes in 1975 and 1976 is that GARCH(1,1) exaggerates people’s

responses to past forecast errors. Considering this, we modified the standard

GARCH(1,1) model by formulating the conditional variance as a function

of lagged conditional variance and absolute forecast error (instead of

squared forecast error).35 This method worked very well to reduce the spikes

in 1975 and 1976, especially for long horizon forecast uncertainty. Figs. 4a–d

report forecast uncertainty estimated with this modified GARCH(1,1)

model and it is obvious that the big spike in 1976 is reduced by more than

50% for four-quarter-ahead forecasts. We also examined the correlation

between the survey measure and the measure based on this modified

GARCH(1,1). Although it is still much smaller during 1968–1983 than

during 1984–2003, there is significant improvement over the standard

GARCH(1,1), especially for the earlier period. Actually, as showed in
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Table 4, this model performs better than other models in the sense of

reproducing the survey measure.

Above analysis implies that a time-series model that takes account of

structural breaks may match the survey measure better if the structural

breaks are correctly specified. One possible candidate is a model proposed by

Evans (1991),36 in which the parameters in the mean equation of the ARCH

models are allowed to vary over time. Evans proposed three measures of

inflation forecast uncertainty, one of which is the sum of conditional variance

of innovation to inflation process and the parameter uncertainty. To see if

this formulation helps to match the survey and times series measures of

inflation forecast uncertainty, we estimated the model and obtained forecasts

using real time data recursively. Specifically, the model can be written as:

ptþ1 ¼ xtbtþ1 þ �tþ1; �tþ1 � N 0; htþ1ð Þ (6.16)

and

xt ¼ ½1;pt�1;pt�2; pt�3;pt�4�; btþ1 ¼ bt þ V tþ1; V tþ1 � N 0;Qð Þ

where V tþ1 is a vector of normally distributed shocks to the parameter vector

btþ1 with a homoskedastic diagonal covariance matrix Q. For the theoretical

and empirical arguments for the random walk formulation, see Evans (1991)

and Engle and Watson (1985). This model can be written in state space form

and estimated with the Kalman Filter.

Observation equation:

ptþ1 ¼ xt 1
� �

btþ1

�tþ1

 !

þ otþ1

where otþ1 ¼ 0

State equation:

btþ1

�tþ1

 !

¼
I 0

0 0

� 

bt

�t

 !

þ
V tþ1

�tþ1

 !

The above model is actually a special case of the unobserved component

time-series model with ARCH disturbances discussed in Harvey, Ruiz, and

Sentana (1992). As pointed out by these authors, with time-varying

parameters, past forecast errors, and conditional variances are no longer in

the information sets of forecasters and must be inferred from the estimation

of the state. They suggested a way to deal with this problem. Following their
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method, we estimated the above model using real-time quarterly inflation

data recursively.37 The result is shown in Fig. 5 for current quarter forecasts.

We find that the estimated inflation forecast uncertainty from a time-varying

parameter GARCH model is smaller than that estimated from the ordinary

GARCH model during the mid-1970s. This result suggests that the

divergence between time-series measures and survey measures may be

resolved to a great extent by generalizing the time-series models that take

into account explicitly the structural breaks and parameter drift.

7. INFLATION UNCERTAINTY USING VAR-ARCH

MODELS

Univariate ARCH model and its extensions formulate inflation as a

function only of its own past values. This assumption ignores the

interactions between inflation and other variables that can be used to

forecast inflation. However, as Stock and Watson (1999) have demon-

strated, some macroeconomic variables can help improve inflation forecast.

Among these variables, they find that inflation forecasts produced by the

Phillips curve generally have been more accurate than forecasts based on

other macroeconomic variables, such as interest rates, money supply, and

commodity prices. In this section, we investigate if other macroeconomic

variables help to match the survey measure and time-series measures of
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inflation forecast uncertainty. Considering the availability of real-time data,

we will use the traditional Phillips curve based on unemployment.38 The

forecasting model of inflation then becomes

pt ¼ b0 þ b1pt�1 þ b2pt�2 þ b3pt�3 þ b4pt�4 þ d1ut�1 þ d2ut�2

þ d3ut�3 þ d4ut�4 þ �t ð7:1Þ

where, pt, ut, and their lags are quarterly inflation and unemployment rates.

To test for the presence of conditional heteroscedasticity in the form of

ARCH/GARCH process, we estimated (7.1) by OLS over the sample period

from 1955Q2 to 2004Q2 released in 2004Q3. The squared residuals were

then regressed on it’s own lags up to 20. The w2 test found a significant

ARCH/GARCH effect at the 1% level.39 One problem with forecasting

inflation by (7.1) is that we need to first forecast unemployment rate when

the forecast horizon is more than one period. This problem can be solved by

modeling unemployment also as an AR(4) process:

ut ¼ g0 þ g1ut�1 þ g2ut�2 þ g3ut�3 þ g4ut�4 þ ut (7.2)

Putting (7.1) and (7.2) together, we model inflation and unemployment as

VAR-(G)ARCH processes.

pt

ut

 !

¼
b0

g0

 !

þ
b1 d1

0 g1

 !

pt�1

ut�1

 !

þ � � � þ
b4 d4

0 g4

 !

pt�4

ut�4

 !

þ
�t

ut

 !

(7.3)

or compactly

Zt ¼ A0 þ A1Zt�1 þ . . .þ A4Zt�4 þ mt

where

Zt ¼
pt

ut

 !

; mt ¼
�t

ut

 !

Innovations in the inflation equation are assumed to have a time varying

conditional variance. Specifically, we assume

Eðmtjct�1Þ ¼ 0 and varðmtjct�1Þ ¼ H t ¼
s2t r�usust

r�usust s2u

 !

where

s2t ¼ Eð�2t jct�1Þ ¼ hð�t�1; . . . ;s
2
t�1; . . . Þ; s

2
u ¼ Eðu2t jct�1Þ ¼ Eðu2t Þ
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and
Eð�tutjct�1Þ ¼ s�ut ¼ r�usust

Following Bollerslev (1990), we assume constant conditional correlation

coefficient to simplify Maximum Likelihood estimation. Assuming condi-

tional normality, the model can be estimated as described in that paper.

Table 3 shows the estimates of VAR–ARCH(1) and VAR–GARCH(1,1)

over the same sample as before.

As in the previous section, if the target variable is annual inflation rate

forecasted at different horizons, the forecast error is the sum of

corresponding forecast errors for the quarterly variables. Consider the

forecast made in the first quarter of year t. The forecast errors for the vector

of quarterly inflation and quarterly unemployment rate in the four quarters

of year t are et;1 ¼ mt;1; et;2 ¼ A1et;1 þ mt;2; et;3 ¼ A1et;2 þ A2et;1 þ mt;3; and
et;4 ¼ A1et;3 þ A2et;2 þ A3et;1 þ mt;4; where X t;i denotes the value of X in the

ith quarter of year t.

By successive substitution, we have

et;i ¼
X

i

j¼1

Bj�1mt;i�jþ1 (7.4)

where Bj ¼ A1Bj�1 þ . . . þ A4Bj�4;B0 ¼ I ;Bj ¼ 0 for jo0:
After some tedious algebra, it can be shown that the forecast error for

quarterly inflation in the ith quarter of year t is

ept;i ¼
X

i

j¼1

bj�1�t;i�jþ1 þ
X

i

j¼1

lj�1ut;i�jþ1 (7.5)

where bj is defined as in (6.14) and lj ¼ S3
k¼0dkbj�k; dk ¼ d1ck�1 þ . . . þ

d4ck�4 with d0 ¼ 0; and cj ¼ g1cj�1 þ . . . þ g4cj�4 with c0 ¼ 1 and cj ¼ 0 for

jo0:
So, the forecast uncertainty of annual inflation conditional on the

information set in the first quarter of year t is40

W t3 ¼ varðept jct;1Þ

¼ varðept;4 þ ept;3 þ ept;2 þ ept;1jct;1Þ

¼
X

4

k¼1

X

4�k

j¼0

bj

 !2

Eð�2t;kjct;1Þ þ
X

4

k¼1

X

4�k

j¼0

lj

 !2

Eðu2t;kjct;1Þ

þ 2r�u

X

4

k¼1

X

4�k

j¼0

lj

 !

X

4�k

j¼0

bj

 !

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Eð�2t;kjct;1ÞEðu
2
t;kjct;1Þ

q
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Table 3. Estimates of Multivariate Models.

Variable VAR–ARCH(1) VAR–GARCH(1,1)

Inflation equation pt

Constant 0.2422��� 0.2288���

(0.0705) (0.066)

pt�1 0.4430��� 0.3888���

(0.1027) (0.0769)

pt�2 0.1580�� 0.2044���

(0.0758) (0.0783)

pt�3 0.0991 0.0774

(0.0785) (0.0781)

pt�4 0.2933��� 0.3067���

(0.0805) (0.0698)

ut�1 �0.2967��� �0.2568���

(0.0591) (0.0599)

ut�2 0.2922�� 0.2245��

(0.1325) (0.1105)

ut�3 �0.1066� 0.0222

(0.1535) (0.1093)

ut�4 0.0691 �0.0291

(0.0719) (0.0569)

Unemployment equation ut

Constant 0.2588��� 0.2585���

(0.0863) (0.0863)

ut�1 1.6232��� 1.6219���

(0.0713) (0.0703)

ut�2 �0.7117��� �0.71���

(0.1352) (0.1264)

ut�3 �0.0285 �0.0299

(0.1359) (0.1163)

ut�4 0.0737 0.0747

(0.0719) (0.0633)

Variance equation

Constant 0.0368��� 0.0021

(0.0056) (0.0017)

�2t�1
0.4271��� 0.1627��

(0.1376) (0.0723)

s2t�1
0.8008���

(0.0852)

r�u �0.0361 �0.026

(0.0757) (0.0751)

su 0.273��� 0.273���

(0.0139) (0.0139)

Note: Standard errors are given in parentheses.
�Significant at 10% level.
��Significant at 5% level.
���Significant at 1% level.
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More generally, we have

W th ¼
X

hþ1

k¼1

X

hþ1�k

j¼0

bj

 !2

Eð�2t;3�hþkjct;4�hÞ

þ
X

hþ1

k¼1

X

hþ1�k

j¼0

lj

 !2

Eðu2t;3�hþkjct;4�hÞ

þ 2r�u

X

hþ1

k¼1

X

hþ1�k

j¼0

lj

 !

X

hþ1�k

j¼0

bj

 !

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Eð�2t;3�hþkjct;4�hÞEðv
2
t;3�hþkjct;4�hÞ

q

if h ¼ 1; 2; 3

W th ¼
X

4

k¼1

X

4�k

j¼0

bj

 !2

Eð�2t;kjct�1;4Þ þ
X

4

k¼1

X

4�k

j¼0

lj

 !2

Eðu2t;kjct�1;4Þ

þ 2r�u

X

4

k¼1

X

4�k

j¼0

bj

 !

X

4�k

j¼0

lj

 !

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Eð�2t;kjct�1;4ÞEðv
2
t;kjct�1;4Þ

q

þ
X

4

j¼1

bj

 !2

Eð�2t�1;4jct�1;4Þ þ
X

4

j¼1

lj

 !2

Eðu2t�1;4jct�1;4Þ

þ 2r�u

X

4

j¼1

bj

 !

X

4

j�1

lj

 !

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Eð�2t�1;4jct�1;4ÞEðu
2
t�1;4jct�1;4Þ

q

if h ¼ 4 ð7:6Þ

where ct;i denotes the information set in the ith quarter of year t. Wth denotes

the forecast uncertainty for annual inflation rate in year t with horizon of h

quarters.

Table 4 shows the simple correlation of the survey measure with different

time-series measures. Some interesting conclusions may be drawn from this

table. First, on average GARCH models simulate the survey measure better

than ARCH models. The average correlations over different forecast

horizons are 0.354 and 0.322 for VAR–ARCH(1) and ARCH(4),

respectively, much lower than the correlations for corresponding VAR–

GARCH(1,1) and GARCH(1,1) models, which were 0.465 and 0.447,

respectively. It confirms the finding in the literature that changes in the
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Table 4. Correlations of Time Series and Survey Measures of Uncertainty.

VAR–

GARCH(1,1)

VAR–

ARCH(1)

GJR–

GARCH(1,1)

GARCH(1,1) Modified

GARCH(1,1)

ARCH(4)

4Q-Ahead

Forecast

Whole sample 0.642� 0.297 0.384 0.427 0.530 0.317

1968–1983 0.474� 0.137 0.118 0.224 0.244 0.166

1984–2001 0.875 0.895 0.918� 0.910 0.873 0.886

3Q-Ahead

Forecast

Whole sample 0.528 0.566 0.690 0.584 0.701� 0.429

1968–1983 0.385 0.569� 0.569� 0.369 0.542 0.187

1984–2001 0.905� 0.802 0.794 0.886 0.843 0.749

2Q-Ahead

Forecast

Whole sample 0.294 0.255 0.338 0.294 0.459� 0.176

1968–1983 0.039 0.139� 0.065 �0.037 0.087 �0.081

1984-2001 0.858 0.744 0.874 0.861 0.877� 0.747

1Q-Ahead

Forecast

Whole sample 0.396 0.296 0.464 0.481 0.565� 0.366

1968-1983 0.087 �0.016 0.265 0.401� 0.376 0.318

1984-2001 0.887 0.801 0.922� 0.870 0.840 0.750

Average across

horzions

Whole sample 0.465 0.354 0.469 0.447 0.564� 0.322

1968-1983 0.246 0.207 0.254 0.240 0.312� 0.148

1984-2001 0.881 0.811 0.877 0.882� 0.858 0.783

�Values are the highest correlation coefficients among all the six time-series models considered.
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conditional variance of inflation persist over time. Actually, one motivation

of developing GARCH model is to provide a better formulation to capture

this feature of inflation data (Bollerslev, 1986). Second, univariate models

perform as well as bivariate models in simulating the survey measure of

uncertainty. This may be quite surprising at first glance since it is well

documented that the Phillips curve provides a better point forecast of

inflation than autoregressive models of inflation. Ericsson (2003) discusses

various determinants of forecast uncertainty. He points out that forecast

uncertainty depends upon the variable being forecast, the type of model

used for forecasting, the economic process actually determining the variable

being forecast, the information available, and the forecast horizon. Ericsson

also differentiates between actual forecast uncertainty and anticipated

forecast uncertainty, which is model dependent. In our case, the difference

between forecast uncertainty from univariate models and that from

multivariate models lies only in the difference in model specification since

they have the same target variable, same data generating process,

information set, and forecast horizon. Thus, it is not surprising that

different models will produce different anticipated forecast uncertainty.

Third, models that allow for asymmetric effects of positive and negative

innovations came closer to the survey measure compared to models that do

not. Actually, among the six models we report, GJR–GARCH(1,1) has the

second highest average correlation with the survey measure of uncertainty.

Fourth, our modified GARCH(1,1) model is the best in terms of correlation

with the survey measure. As discussed in Section 6, this is because it modifies

the GARCH specification by replacing squared-past errors with absolute

errors. Finally, for all models, the correlation of uncertainty of the two

approaches is quite high for the period 1984–2003, a period with low and

stable inflation, but low for the period 1969–1983, a period notable for high

and unstable inflation. Actually, the relative performance of different

models in simulating the survey measure depends on how well it can

simulate the survey measure during 1968–1983. For example, the correlation

with the survey measure is relatively high for GJR–GARCH(1,1) and

modified GARCH(1,1) in this period. As discussed in Section 5, our

empirical estimate of the sum of the forecast disagreement and the average

individual forecast uncertainty indirectly captures model uncertainty by

incorporating the forecast disagreement. But the time series models

discussed in this paper are based on an invariant model to produce forecast

uncertainty for all periods. This may explain the big divergence of these two

types of measures during periods with high model uncertainty.
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8. CONCLUSIONS

In this paper, we develop a theoretical model to study the relationship

between different measures of inflation forecast uncertainty based on survey

data and aggregate time-series models. We found that the sum of the

average variance of the individual densities and the disagreement slightly

underestimates forecast uncertainty based on aggregate time-series data, and

this underestimation is a function of the ratio of the variance of aggregate

shocks to that of the idiosyncratic shocks. Given the existing empirical

estimates of the ratio, we expect the underestimation to be minimal.

Even though the sum of the average variance and the disagreement is

simply the variance of the average density, we cannot directly use the

variance of the aggregate distribution to measure the aggregate forecast

uncertainty due to grouping data problems, and compositional hetero-

geneity in the panel. In this paper we lay out a tedious procedure to extract

the conceptually correct measure of aggregate uncertainty from the panel of

density forecasts.

The SPF density forecast data have an accordion structure where each

respondent forecasts year-over-year inflation rate every quarter in the

current and the last year. In order to compare the forecast uncertainty from

the surveys with those from the quarterly time-series data at various

horizons, we developed the appropriate multi-period forecast variance

formulas for multi-variate ARCH-type models. During the relatively stable

years in our sample (viz., 1984–2002), the survey uncertainty and the

ARCH-based time-series uncertainty were remarkably similar in their

average values, correlations and temporal movements. Another finding of

our analysis is that the univariate asymmetric GARCH model did as well as

the bivariate GARCH model with Phillips curve.

During periods of rapid structural change (like the oil crises or Fed’s new

operating policies of early 1980s), we found that the two approaches could

yield quite different estimates of uncertainty. Since these periods are

characterized by larger forecast errors in time-series models than in survey

data, the time-series uncertainty shoots up much more than the survey

measure. During periods of rapid change, it is the disagreement component

of uncertainty and not the average variance of the densities that responds,

but not by as much as the time-series uncertainty. We found a simple way to

make the time-series estimates robust to exceptionally large forecast errors,

the trick is to model the conditional variance not as a function of squared

forecast errors, but as a function of its absolute value.
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Another fruitful approach is to model the time-series ARCH model as a

time-varying parameter model. We found that this approach also helps in

robustifying ARCH uncertainty estimates to abrupt structural breaks. Even

then, the survey uncertainty tends to respond more prospectively than time-

series models. Thus, during periods of structural breaks and regime changes

which often elude forecasters, survey measure of uncertainty, when

available, can be a very dependable ‘reality-check’ against which standard

time-series measures can be evaluated. This reminds us of the sentiment

Manski (2004) expressed when he wrote, ‘‘Economists have long been

hostile to subjective data. Caution is prudent but hostility is not warranted.’’

Our analysis shows that by carefully utilizing the SPF density forecasts data,

we can garner substantial knowledge about the temporal pattern of

aggregate uncertainty of forecasts, particularly when time series models

could be failing. There remains much unexploited potential in the use of this

subjective database.

NOTES

1. Interval and probability forecasts have a longer track record in weather
forecasts and sports picks.
2. See, for instance, Sims (2002), Šmidková (2003), Cogley, Morozov, and Sargent

(2003), and Garratt, Lee, Pesaran, and Shin (2003).
3. Sims (2002) discusses the current state and limitations of models generating

macro forecasts and their uncertainty. Lahiri and Liu (2005) have examined the
validity of the ARCH-type specifications using data on density forecasts.
4. Since 1990 the Federal Reserve Bank of Philadelphia manages the survey, now

called the SPF.
5. In recent research, forecast heterogeneity has appeared prominently as a

component of overall macroeconomic uncertainty. See, for instance, Kurz (2002),
Carroll (2003), Mankiw, Reis, and Wolfers (2003), Souleles (2004), and Giordani and
Söderlind (2005).
6. For example, it is commonly believed that the USDA forecasts for agricultural

prices are used as ‘benchmark’ by many private and public forecasters, see Irwin,
Gerlow, and Liu (1994) and Kastens, Schroeder, and Plain (1998).
7. Our formulation is also consistent with the evidence presented by Fuhrer (1988)

that survey data contain useful information not present in the standard
macroeconomic database.
8. In Lucas’ (1972, 1973), signal extraction model, this private information is

assumed to be the price in market z. Kurz and Motolese (2001) use a similar
decomposition.
9. The decomposition of the variance of the aggregate distribution as the sum of

average individual forecast error variance and forecast disagreement is discussed in
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Lahiri et al. (1988) and Wallis (2004). Giordani and Söderlind (2003) provided an
alternative justification for the decomposition, which is based on integrating out
private information to get the aggregate distribution of inflation. As pointed out by
Wallis (2004), this is an inappropriate approach because ‘‘aggregating forecasts is not
the same as aggregating information sets’’.
10. Sample variance will converge in probability to the average of population

variance. See Greene (2000, p. 504).
11. It is interesting to note that the so-called fan charts depicting multi-period

forecast uncertainty as generated by Bank of England and Riksbank are very similar
in spirit to the variance of the aggregate density from SPF. Starting from a base line
model predictions that all share, bank economists and forecasting experts
subjectively generate these charts incorporating their individual beliefs and
specialized knowledge. In a recent paper, Cogley et al. (2003) show that the
predictive intervals estimated from a Bayesian VAR that incorporate diverse
statistical sources of uncertainty including model uncertainty, policy drift, structural
shifts, and other shocks are more diffuse than the Bank of England’s fan charts. This
result is consistent with our Eq. (2.6). See Garratt et al. (2003) for a similar
forecasting model generating uncertainty.
12. In addition to informational difference, use of different forecasting models,

different beliefs, and subjective factors may be other reasons for the diversity of
forecasts, (see Kurz & Motolese, 2001). Bomberger (1996) has emphasized the role of
different models in generating disagreement.
13. For example, in the first quarter of 1985, many forecasters put most of the

probability mass in the open lower interval.
14. We are grateful to Paolo Giordani and Paul Söderlind for kindly providing

their programs.
15. The surveys for which this is true are 1968Q4, 1969Q4, 1970Q4, 1971Q4,

1972Q3 and Q4, 1973Q4, 1975Q4, 1976Q4, 1977Q4, 1978Q4, and 1979Q2–Q4.
16. Forecasts are made around the middle of each quarter.
17. (5.7) and (5.8) are estimated for forecasters who participated in the survey for

28 or more times to ensure that each forecaster reports at least one observation for
each forecast horizon.
18. We should point out that these adjustments for horizons were done solely for

presenting the uncertainty as a quarterly series in Figs. 2a and b. All other analysis
was conducted with horizon effects left in.
19. It is necessary to explain the meaning of numbers in Figs 2a and b. Taking

uncertainty in 1972 as an example, it is about 1, which means that the standard
deviation is also 1. So, a 90% confidence band constructed from a normal
distribution would have been71.6% around the point forecast in 1972. It would be
(2.4%, 5.6%) if the point forecast is 4%.
20. Evans and Wachtel (1993) found that forecast disagreement is more closely

associated with regime uncertainty than the uncertainty with a given inflation
structure. Since everyone knew about the change in monetary policy, the abrupt shift
in disagreement in the early 1980s had to be due to different beliefs and models
rather than due to different information sets, see Fulford (2002) and Kurz (2002).
21. See Engle (1982, 1983), Bollerslev (1986), Nelson (1991), and Glosten et al. (1993)

and surveys by Bollerslev, Chou, and Kroner (1992) and Bera and Higgins (1993).
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22. The value of the test statistic TR2 was equal to 36.81. The critical value for w2

test with 20 degrees of freedom is 31.4 at significance level of 5%.
23. These conditions are sufficient but not necessary to ensure stationarity and

nonnegativity of ht.
24. A description of this data set can be found in Croushore and Stark (2001).
25. The data is seasonally adjusted. For the vintage of 1996Q1, the observation

for 1995Q4 is missing because of a delay in the release of statistical data caused by
the Federal government shutdown. For most vintages, the data start from 1947Q1.
For some vintages, data may start at a different date. So, the number of observations
for estimation varies across vintages not only because more observations are
included over time, but also because the changes of starting date. But this only occurs
for 1992Q1–1992Q4, 1999Q4–2000Q1 (starting date is 1959Q1) and 1996Q1–1997Q2
(starting date is 1959Q3) with a total of 12 among 143 vintages.
26. This forecast actually has a horizon of 31/2 quarters because forecasts are

made at the middle of each quarter. As pointed out before, we refer to this forecast
horizon as three quarters.
27. With real-time data, it is around February 15.
28. Baillie and Bollerslev (1992) derived the formula for calculating Eð�2t;kjct;iÞ

for GARCH models. Similar formula for ARCH(4) and GJR–GARCH(1,1)
can be found in Engle and Kraft (1983) and Blair, Poon, and Taylor (2001),
respectively.
29. As noted before, we keep horizon effects when we compare survey measure

with time series measure.
30. Time series measures of uncertainty in Figs. 3a–d is estimated and forecasted

with GARCH(1,1) model. Although GJR–GARCH(1,1) model has a slightly better
fit to the most recent data as found in Table 4, the profile of uncertainty over time are
quite similar for these two models.
31. With a Markov-switching model, Evans and Wachtel (1993) estimated the

regime uncertainty. According to their finding, regime uncertainty was low and
stable after 1984, but high and volatile during 1968–1983. Although they use in-
sample forecast based on revised data, their finding shows that the divergence
between survey measures and ARCH-type measures is due to the omission of regime
uncertainty from the latter.
32. This is the consensus forecast of our sample of regular forecasters who

participated at least 12 surveys.
33. The quarters for which the survey measure is missing are not included when

calculating the average of absolute forecast errors for GARCH(1,1).
34. Four-quarter-ahead forecast for annual inflation in 1974 and three-quarter-

ahead forecast for annual inflation in 1975.
35. Taylor (1986) and Schwert (1989a, b) modeled conditional standard deviation

as a distributed lag of absolute residuals. However, we found that their models could
not reduce the spikes in 1975 and 1976.
36. As pointed out by Evans and Wachtel (1993), this model still fails to

account for the effect of anticipated future shifts in inflation regime. They suggest a
Markov-switching model to explain the structural break in inflation process caused
by changing regimes. One direction for future research is to generalize their model to
multi-period real-time forecasts.
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37. Kim and Nelson (1998) provide a GAUSS program for estimating this model.
We adapt their program to get one-period-ahead forecasts.
38. This is the only variable available in real-time data set at the Federal Reserve

bank of Philadelphia web site as a measure of output gap.
39. The value of test statistic TR2 was 38.52. The critical value for w2 test with 20

degrees of freedom is 31.4 at significance level 1%.
40. Hlouskova, Schmidheiny, and Wagner (2004) derived the general formula for

the multi-step minimum mean squared error (MSE) prediction of the conditional
means, variances and covariances for multivariate GARCH models with an
application in portfolio management.
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ABSTRACT

A univariate GARCH(p,q) process is quickly transformed to a univariate

autoregressive moving-average process in squares of an underlying var-

iable. For positive integer m, eigenvalue restrictions have been proposed

as necessary and sufficient restrictions for existence of a unique mth

moment of the output of a univariate GARCH process or, equivalently,

the 2mth moment of the underlying variable. However, proofs in the lit-

erature that an eigenvalue restriction is necessary and sufficient for ex-

istence of unique 4th or higher even moments of the underlying variable,

are either incorrect, incomplete, or unnecessarily long. Thus, the paper

contains a short and general proof that an eigenvalue restriction is
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necessary and sufficient for existence of a unique 4th moment of the

underlying variable of a univariate GARCH process. The paper also de-

rives an expression for computing the 4th moment in terms of the

GARCH parameters, which immediately implies a necessary and suffi-

cient inequality restriction for existence of the 4th moment. Because the

inequality restriction is easily computed in a finite number of basic arith-

metic operations on the GARCH parameters and does not require com-

puting eigenvalues, it provides an easy means for computing ‘‘by hand’’

the 4th moment and for checking its existence for low-dimensional

GARCH processes. Finally, the paper illustrates the computations with

some GARCH(1,1) processes reported in the literature.

1. INTRODUCTION

A univariate generalized autoregressive conditional heteroskedasticity or

GARCH(p,q) process (Engle, 1982; Bollerslev, 1986) is quickly transformed

to a univariate autoregressive moving-average (ARMA) process in squares

of an underlying variable. Henceforth, for brevity, unless otherwise qual-

ified, we indicate ‘‘GARCH(p,q)’’ by ‘‘GARCH.’’ GARCH processes and

their generalizations (Mittnik, Paolella, & Rachev, 2002) have been used to

model volatilities or time-varying variances of underlying variables, usually

financial-asset returns or residuals from estimated time-series models.

GARCH processes are usually considered to have Gaussian or normally

distributed disturbances, however, because asset returns can have large vol-

atilities, such as the unexpected large drop in the U.S. stock market in

October 1987, their distributions are often ascribed ‘‘heavier’’ tails than

implied by the Gaussian distribution. Thus, Mandelbrot (1963a,b) studied

asset-return distributions using stable-Paretian distributions. More recently,

McCulloch (1997), Rachev and Mittnik (2000), and others studied time

series of asset returns using GARCH and other processes driven by stable-

Paretian and other heavy-tailed disturbances. Thus, it is useful to have a

method for easily computing the 4th moment of an underlying variable of a

univariate GARCH process, to check whether it exists and, if so, whether it

indicates heavier than Gaussian tails. All the moments considered here are

unconditional.

For positive integer m, eigenvalue restrictions have been proposed as

necessary and sufficient conditions for existence of a unique 2mth moment

of the underlying variable of a univariate GARCH process. Proofs in the
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literature that an eigenvalue restriction is necessary and sufficient for ex-

istence of unique 4th or higher even moments of the underlying variable of a

GARCH process are either incorrect, incomplete, or unnecessarily long.

Before detailing the present paper’s contribution to this literature, we clarify

our use of the term ‘‘4th moment.’’ A GARCH process is a type of ARMA

process that linearly transforms squared disturbances, �2t ; to squared var-

iables, y2t ; so that the process nonlinearly transforms unsquared or under-

lying disturbances, et, to unsquared or underlying variables, yt. Thus, the

‘‘2mth moment of the underlying variable of a GARCH process’’ is the

2mth moment of yt and is equivalent to the mth moment of y2t : In this

regard, a GARCH process is (covariance) stationary if and only if the un-

derlying variable, yt, has a 2nd moment. Thus, unless otherwise qualified,

‘‘4th moment’’ means the 4th moment of yt.

The paper contains a short and general proof that an eigenvalue restric-

tion is necessary and sufficient for existence of the unique 4th moment of the

underlying variable of a univariate GARCH process. The paper derives an

expression for computing the 4th moment in terms of the GARCH param-

eters, which immediately implies a necessary and sufficient inequality re-

striction for checking the moment’s existence. Because the eigenvalue and

inequality restrictions are separately necessary and sufficient for the mo-

ment’s existence, they are equivalent. Because the inequality restriction is

easily computed in a finite number of basic arithmetic operations on the

GARCH parameters and does not require computing eigenvalues, it pro-

vides an easy means for computing ‘‘by hand’’ the 4th moment and for

checking its existence for low-dimensional GARCH processes.

The recent literature contains the following related results. In the following,

all statements of ‘‘necessity’’ and ‘‘sufficiency’’ refer to the existence of the 4th

moment of the underlying variable of a general univariate GARCH process.

He and Terasvirta (1999) stated an inequality restriction (Theorem 1,

p. 827) on a univariate GARCH process, which they claim (pp. 833–840) is

necessary and sufficient. Ling and McAleer (2002) question (pp. 724–728,

note 1) whether He and Terasvirta’s necessity proof is complete. In any case,

because they do not use a state-space representation, He and Terasvirta’s

discussion is unnecessarily long. Karanasos (1999) stated (Theorem 3.1,

p. 66) an inequality restriction and proved (pp. 73–74), its necessity, but, as

Ling and McAleer noted (pp. 723–724), he did not prove its sufficiency. Ling

(1999) stated and proved (Theorem 6.2, p. 702) an eigenvalue restriction’s

sufficiency.

Ling and McAleer (2002) stated (Theorem 2.1, pp. 723–724) an eigenvalue

restriction and purportedly proved (pp. 726–727) its necessity. However,
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they actually proved necessity only for the special case a140. Their proof

works if and only if (iff) a140 or b140, but not if a1 ¼ b1 ¼ 0: Ling and

McAleer claim (p. 727) their proof still works if a1 ¼ b1 ¼ 0; but as written
it does not because it requires a vector R to have all positive elements after a

certain number of repeated steps and this is not the case if a1 ¼ b1 ¼ 0: By
contrast, the proof given here holds for any univariate GARCH process.

A stationary GARCH process has an equivalent infinite Volterra-type

representation called an ARCH(N) representation. Giraitis and Surgailis

(2002, theorem 3.1) and Kazakevicius, Leipus, and Viano (2004, theorem

2.1) derived equivalent inequality restrictions on an ARCH(N) represen-

tation of a univariate GARCH process which are necessary and sufficient

for existence of a unique 4th moment of the underlying variable of the

process and which may be compared with the present inequality restriction.

See also Giraitis, Leipus, and Surgailis (2005, section 2).

Eigenvalue restrictions require computing eigenvalues, which can gener-

ally be done analytically ‘‘by hand’’ only for matrices no larger than three

dimensional, hence, for GARCH processes with no more than three lags.

Thus, generally, eigenvalue restrictions can be checked only numerically on

a computer. By contrast, as illustrated in Section 4, the present necessary

and sufficient inequality restriction for the 4th moment’s existence is easily

checked ‘‘by hand’’ in a finite number of basic arithmetic operations.

The remainder of the paper is organized as follows. Section 2 states a

univariate GARCH process in state-space form in order to derive the 4th-

moment inequality restriction. Section 3 proves that the inequality restriction

is necessary and sufficient for existence of a unique 4th moment of the un-

derlying variable of a univariate GARCH process of any degree. Section 3

also proves that the 4th-moment inequality restriction is equivalent to an

eigenvalue restriction. Section 4 numerically illustrates the 4th-moment

inequality restriction with six GARCH(1,1) processes from the literature.

Section 5 contains concluding remarks.

2. STATE-SPACE FORM OF A GARCH(P,Q) PROCESS

For discrete-time periods t, let y2t ¼ �2t ht denote the square of the underlying
variable in the process, where ht is generated by the univariate GARCH(p,q)

process

ht ¼ a0 þ
X

n

i¼1

ai�
2
t�iht�i þ

X

n

i¼1

biht�i (2.1)
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ai and bi are constant parameters, n ¼ maxðp; qÞ; ai ¼ 0 for i4p if pon;
bi ¼ 0 for i4q if qon; and et is a disturbance. Although the aim is to verify

necessary and sufficient restrictions on the GARCH(p,q) parameters for

existence of the 4th moment of the underlying variable, Ey4t ¼ E �4t h
2
t

� �

; be-
cause we assume the disturbance’s 4th moment, E�4t ; exists, we concentrate

on restrictions for existence of Eh2t :
Notation is simplified but no generality is lost when process (2.1) is writ-

ten as a GARCH(n,n) process. The proofs in Section 3 do not depend on the

presence of the second summation in (2.1),
Pn

i¼1 biht�i; hence, on whether

q � 1 or q � 0: The following GARCH assumptions allow q � 0; but require
p � 1:

We assume the following for GARCH process (2.1): (i) n ¼ max(p,q), for

p � 1 and q � 0; (ii) a040, (iii) aiZ0 and biZ 0, for i ¼ 1; . . . ; n; (iv) ai40,

for one or more i ¼ 1; . . . ; n; (v) an40 or bn40, or both; and (vi) et is

distributed identically, independently, with zero mean, Eet ¼ 0, finite positive

variance, s2� ¼ E�2t40; and finite positive 4th moment, s4� ¼ E�4t40 which is

the central and noncentral 4th moment of et because Eet ¼ 0. As usual,

without loss of generality, we set s2� ¼ 1 and, thus, effectively merge s2� into ai.

Assumption (v) is convenient but unnecessary, because if an ¼ bn ¼ 0;
then, assumption (iv) guarantees that we can reduce n until ai40 for some

i ¼ 1, y, n�1. We take ‘‘et is distributed independently’’ to mean that et is

distributed independently not just of past values of itself but also of past

values of ht. We do not need any particular distributional assumption such

as Gaussianity.

Finally, we assume GARCH process (2.1) is stationary. Throughout, by

‘‘stationarity’’ we mean weak or covariance stationarity. By contrast, for

example, Nelson (1990) considers strong stationarity of GARCH(1,1) proc-

esses. Following Milhoj (1985), Bollerslev (1986) proved that, for aiZ0 and

biZ0, process (2.1) is stationary iff (vii)
Pn

i¼1 f io1 where f i ¼ ai þ bi: Al-

though the final Theorem 4 here proves that GARCH process (2.1) is sta-

tionary if Eh2t exists, we assume stationarity in order to simplify the

discussion.

In sum, we assume (i)–(vii) for GARCH process (2.1) and call these ‘‘the

GARCH assumptions.’’

If GARCH process (2.1) is stationary, then, its mean, Eht ¼ m, exists, is

positive, and is given by

m ¼ a0= 1�
X

n

i¼1

f i

 !

(2.2)
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Let a tilde denote a mean-adjusted variable, so that ~ht ¼ ht � m and ~�2t ¼
�2t � s2� ¼ �2t � 1: Then, we write the mean-adjusted form of GARCH proc-

ess (2.1) in the ARMA form

~ht ¼
X

n

i¼1

f i
~ht�i þ

X

n

i¼1

gixt�i (2.3)

where xt ¼ ~�2t ht; f i ¼ ai þ bi; and gi ¼ ai.

A state-space form of an ARMA process comprises an observation equa-

tion and a state equation in terms of a state vector. Let xt ¼ (x1,t, y , xn,t)
T

denote an n� 1 state vector, where superscript T denotes transposition. Then,

following Ansley and Kohn (1983), we can write ARMA Eq. (2.3) in state-

space form, with observation equation ~ht ¼ eT1xt; where e1 ¼ (1, 0, y 0)T

is the n� 1 vector with first element 1 and all other elements 0, and state

equation

xt ¼ Fxt�1 þ gxt�1; F ¼

f 1 1 0 : : : 0

f 2 0 1 : :

: : : : : :

: : : : : :

: : : : 0

: : : 1

f n 0 : : : : 0

2

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

5

; g ¼

g1

:

:

:

:

:

gn

2

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

5

(2.4)

Observation equation ~ht ¼ eT1 xt implies ~ht is the first element of xt. Because F

is a companion matrix, its eigenvalues are identical to the roots of the char-

acteristic equation ln � f 1l
n�1 � . . . � f n�1l� f n ¼ 0 (Anderson, 1958,

p. 177), so that stationarity condition
Pn

i¼1 f io1 is equivalent to rðF Þo1;
where r(F) denotes the spectral radius or maximal absolute eigenvalue of F.

We say that the state Eq. (2.4) is stationary and the state-transition matrix F

is stable iff r(F)o1.

3. 4TH-MOMENT INEQUALITY AND EIGENVALUE

RESTRICTIONS

We are interested in proving that derived restrictions for existence of Ey4t ¼
E �4t h

2
t

� �

are necessary and sufficient. However, we assume that E�4t exists;

Eh2t and E ~h
2

t are linked by Eh2t ¼ E ~h
2

t þ m2;E ~h
2

t and V are linked by E ~h
2

t ¼
v11 ¼ eT1 Ve1; and, Theorem 2 proves that v11 exists iff V exists, where v11 and
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V are defined two paragraphs below. Thus, proving that restrictions for

existence of Ey4t are necessary and sufficient reduces to proving such re-

strictions for V.

We shall generally maintain two terminological conventions. First, when

we write an inequality such as ‘‘x � 0’’ we shall mean not only that the

inequality holds but also that the variable in it exists and, hence, is finite.

Second, as noted before, we refer to assumptions (i)–(vii) on GARCH

process (2.1) as ‘‘the GARCH assumptions.’’

Post-multiplying Eq. (2.4) by its transpose, taking unconditional expec-

tation, E, of the result, and apply independence assumption (vi), so that

Extx
T
t ¼ 0n�1; the n� 1 zero vector, implies the Lyapunov equation V ¼

FVFT þ Ex2t
� �

ggT; where V ¼ Extx
T
t : Then,

Ex2t ¼ E ~�2t
� �2

E ~h
2

t þ 2E ~htmþ m2
� �

¼ E ~�2t
� �2

E ~h
2

t

� �
þ m2

because ~�t and ~ht are stochastically independent and E ~ht ¼ 0: In particular,
~h
2

t depends only on constant parameters and variables dated before period t.

Thus, the Lyapunov equation is equivalent to

V ¼ FVFT þ ygeT1Ve1g
T þ m2yggT (3.1)

where y ¼ Eð~�2t Þ
2 ¼ E�4t � ðE�2t Þ

2 ¼ s4� � ðs2� Þ
2 ¼ s4� � 140 (e.g., by Jensen’s

inequality). When et is Gaussian, s4� ¼ 3; so that y ¼ 2.

Using vec(ABC) ¼ [CT�A]vec(B), for matrices A, B, and C conformable

to the product ABC (Magnus & Neudecker, 1988, p. 30), where vec( � )

denotes the column vectorization of a matrix (column 1 on top of column 2,

etc.) and � denotes the Kronecker product. We state Eq. (3.1) equivalently

as

w ¼ Awþ m2y g� gð Þ (3.2)

where w ¼ vec(V) and A ¼ F � F þ yðg� gÞðe1 � e1Þ
T:

Gantmacher (1959, pp. 50–57) discusses the following implications of

irreducibility. A matrix or vector, M, is nonnegative ðM � 0Þ or positive

ðM40Þ iff all of its elements are nonnegative or positive. A real, n� n; and
nonnegative matrix, M, is irreducible iff it has no invariant coordinate sub-

space with dimension less than n. A theorem by Frobenius says that ifM is a

real, n� n; nonnegative, and irreducible matrix, then, M has an eigenvalue,

l, and associated left or right eigenvector, z, such that l is real, positive, and

equal to the maximal absolute eigenvalue of M or l ¼ r(M), and z is real

and positive. We need the following lemma.
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Lemma 1. Assume that GARCH assumptions (i)–(vii) hold. Then, ma-

trices F � 0 and A ¼ F � F þ yðg� gÞðe1 � e1Þ
T � 0 are irreducible.

Proof of Lemma 1. Let ei denote the n� 1 elementary vector i, with one in

position i and zeroes elsewhere. The n-dimensional real vector space is

spanned by e1, y, en. Consider f 1 ¼ 0; . . . ; f n�1 ¼ 0 and n successive

mappings with F starting from en: Fen ¼ en�1, F2en ¼ en�2, y,

F n�1en ¼ e1, and Fnen ¼ f nen: The first n�1 mapped vectors are equal

to the first n�1 elementary vectors, e1, y, en�1; because f n40; the last

mapped vector lies in the space spanned by the last elementary vector, en.

Thus, starting from en and successively mapping n times with F, the

mapped vectors span the n-dimensional real vector space. The same con-

clusion holds if we start the mappings from any other elementary vector

and if f 1 � 0; . . . ; f n�1 � 0: Thus, F is irreducible. F � F � 0 and, by a

similar argument in n� n-block form, is irreducible. Because F�F Z 0

and 6¼ 0, y40, and (g�g) (e1�e1)
T
Z 0, adding y(g�g) (e1�e1)

T
Z 0 to

F�F cannot decrease the nonnegative elements of the first block-column

of F�F and does not change its irreducibility. Thus, A ¼ F � Fþ

yðg� gÞðe1 � e1Þ
T is irreducible and Lemma 1 is proved.

The proof of Lemma 1 depends on f n40; so that if f n ¼ 0 because

an ¼ bn ¼ 0, maintaining the lemma requires reducing n until f n40:

3.1. Necessary and Sufficient Inequality Restriction

Stationarity or r(F)o1 implies that B ¼
P1

i¼0 F
iggTðFTÞi � 0 exists

(Wilkinson, 1965, p. 59), so that Eq (3.1) can be stated equivalently as

V ¼ v11 þ m2
� �

yB (3.3)

where v11 ¼ eT1Ve1; the (1,1) element of V. Pre-multiplying Eq. (3.3) by eT1 ;
post-multiplying the result by e1, and rearranging, leads to Eq. (3.4), where

b11 ¼ eT1Be1; the (1,1) element of B. Thus, we have Theorem 1, which states

the necessary and sufficient restriction 0oyb11o1 for existence of E ~h
2

t ¼

v1140:

Theorem 1. Assume that GARCH assumptions (i)–(vii) hold. Then,

v11 ¼ m2
yb11

1� yb11

� �

40 (3.4)

exists iff, in addition, 0oyb11o1.
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Proof of Theorem 1. The GARCH assumptions imply that m40 and y40

exist. In particular, stationarity implies that B � 0 exists. Because F � 0

and is irreducible (Lemma 1) and g � 0 and 6¼ 0, b11 ¼ eT1Be1 �

eT1F
jggT FT

� �j
e140; for some positive integer j. Thus, m2yb1140 and Eq.

(3.4) implies that v1140 exists iff, in addition, yb11o1 and Theorem 1 is

proved.

Next, Eq. (3.3) implies Theorem 2, which links the existence of V with the

existence of v11.

Theorem 2. Assume that GARCH assumptions (i)–(vii) hold. Then, V �

0 exists iff v1140 exists.

Proof of Theorem 2. Suppose that V � 0 exists. Then, v11 ¼ eT1Ve1 � 0

exists. The GARCH assumptions imply that m40 and y40 exist, that F is

stable, nonnegative, and irreducible, and that g � 0 and 6¼ 0. These

properties imply that B � 0 and b1140 exist. Thus, Eq. (3.3) implies that

v11 ¼ ðv11 þ m2Þyb11 � m2yb1140 and necessity is proved. Suppose that

v1140 exists. The GARCH assumptions imply that m40; y40; and B � 0

exist. Thus, Eq. (3.3) implies that V � 0 exists and sufficiency and The-

orem 2 are proved.

3.2. Necessary and Sufficient Eigenvalue Restriction

Eq. (3.2) has the unique solution w ¼ m2yðIn2 � AÞ�1ðg� gÞ iff ðIn2 � AÞ is

nonsingular, where In2 denotes the n2 � n2 identity matrix, and this occurs

iff A has no eigenvalue equal to one, because each eigenvalue of ðIn2 � AÞ is

one minus an eigenvalue of A. Theorem 3 tells us that v1140 only if r(A)o1,

because otherwise w might have unacceptable negative values.

Theorem 3. Assume that GARCH assumptions (i)–(vii) hold. Then, w ¼

vecðV Þ � 0 and v11 ¼ w140 exist, where w1 denotes the first element of w,

iff, in addition, r(A)o1.

Proof of Theorem 3. Suppose that r(A)o1. Then, r In2 � Að Þo1; so that

w ¼ m2yðIn2 � AÞ�1ðg� gÞ uniquely solves Eq. (3.2). The GARCH as-

sumptions imply that y40 and m40 exist. The solution w ¼ m2yðIn2 �

AÞ�1ðg� gÞ implies that w ¼ m2yðIn2 þ Aþ A2 þ . . . Þðg� gÞ: The irre-

ducibility of A implies that ðe1 � e1Þ
TAjðg� gÞ40; for some positive in-

teger j. See the proof of Lemma 1. Thus, v11 ¼ w140 and sufficiency is

proved. Suppose that dxT ¼ xTA; where d is a maximal eigenvalue of A,

so that jdj ¼ r Að Þ; and x is an associated left eigenvector of A. Because A
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is real, nonnegative, and irreducible, Frobenius’s theorem (Gantmacher,

1959, pp. 50–57) implies that d and x are real and positive. Pre-multi-

plying Eq. (3.2) by xT implies that

1� dð ÞxTw ¼ m2yxT g� gð Þ (3.5)

However, x40; w � 0; w140; and g� g � 0 and 6¼ 0 imply that xTw40

and xTðg� gÞ40: Thus, m2y40 implies that ð1� dÞ ¼ m2yxTðg�

gÞ=xTw40; so that Eq. (3.5) implies that d ¼ r Að Þo1 and necessity and

Theorem 3 are proved.

Putting together Theorems 1–3 implies that yb11o1 and r(A)o1 are

equivalent necessary and sufficient restrictions for existence of the 4th mo-

ment of the underlying variable of GARCH process (2.1). We state this

conclusion formally as Corollary 1.

Corollary 1. Assume that GARCH assumptions (i)–(viii) hold. Then,

yb11o1 iff r(A)o1.

Statistics tells us that a 4th moment exists only if the corresponding 2nd

moment exists. Here, this means that r(A)o1 only if r(F)o1. Theorem 4

specializes this result and shows that 4th-moment existence implies stronger

restrictions than stationarity or 2nd-moment existence. For example, under

the GARCH assumptions, stationarity occurs iff B � 0 and b1140 exist, but

4th-moment existence occurs iff, in addition, yb11o1.

Theorem 4. r(F)2or(A), where A ¼ F � F þ y g� gð Þ e1 � e1ð ÞT

Proof of Theorem 4. Let l2 z� zð ÞT ¼ z� zð ÞT F � Fð Þ and dx ¼ Ax,

where l and d are maximal eigenvalues of F and A, so that |l| ¼ r(F)

and |d| ¼ r(A), and z and x are associated left and right eigenvalues of F

and A. The GARCH assumptions and Frobenius’s theorem imply that l,

d, z, and x are real and positive. Pre-multiplying dx ¼ Ax by z� zð ÞT and

rearranging implies that

d� l2
� �

z� zð ÞTx ¼ y zTg
� �2

x1 (3.6)

where x1 denotes the first element of x. However, y40, z40; x40; g � 0;
and ga0; imply that ðz� zÞTx40; zTg40; and x140; so that Eq. (3.6)

implies that ðd� l2Þ ¼ yðzTgÞ2x1=ðz� zÞTx40 and Theorem 4 is proved.
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4. ILLUSTRATION OF THE 4TH-MOMENT

INEQUALITY RESTRICTION

We now illustrate Eq. (3.4) in Table 1 with six GARCH(1,1) processes from

the literature. To do this, we first write b11 in terms of a finite number of

basic arithmetic operations on fi and gi. Pre-multiplying

B ¼
X1

i¼0
F iggTðFTÞi

by F, post-multiplying the result by FT, subtracting the result from the initial

equation for B, and rearranging, implies that

B ¼ FBFT þ ggT (3.7)

which is a Lyapunov equation, linear in B.

The companion form of F suggests that Eq. (3.7) can be solved for b11 by

eliminating elements of B from ‘‘back to front’’ until only b11 remains.

Although such an approach might generally be overly complex and im-

practical, it is easily applied when n ¼ 2: We consider n ¼ 2 in part because

it includes nearly all the GARCH processes we have seen in the empirical

literature. For n ¼ 2; Eq. (3.7) implies that

b11 ¼
1� f 2
� �

g21 þ g21
� �

þ 2f 1g1g2

1� f 2
� �

1� f 21 � f 22
� �

� 2f 21f 2
(3.8)

The GARCH nonegativity assumptions f i � 0 and gi � 0 and the station-

arity assumption
Pn

i¼1 f io1 imply that the numerator and denominator in

Eq. (3.8) are both positive.

Although a GARCH process linearly transforms squared disturbances, �2t ;
into squared variables, y2t ; it nonlinearly transforms et to yt, so that yt is non-

Gaussian even when et is Gaussian. We may consider this nonpreservation

Table 1. Examples of yb11 and ky/ke for GARCH(1,1) Processes and

y ¼ 2.

Case Authors a1 b1 f1 yb11 ky/ke

1 Engle (1982) 0.955 0.000 0.955 20.6 N

2 Bollerslev (1986) 0.135 0.829 0.964 0.516 2.07

3 Baillie–Bollerslev (1989) 0.061 0.910 0.971 0.130 1.15

4 Bollerslev (1987) 0.057 0.921 0.978 0.149 1.18

5 Drost–Klaassen (1997) 0.052 0.932 0.984 0.170 1.21

6 Hsieh (1989) 0.191 0.806 0.997 12.2 N
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of Gaussianity in terms of kurtosis, by considering Eq. (3.4) as

ky

ke
¼ yb11

1� yb11
þ 1 (3.9)

where ky ¼ Ey4t =ðEy2t Þ
2 and k� ¼ E�4t =ðE�2t Þ

2 are the kurtoses of yt and et. Eq.

(3.9) implies that a GARCH transformation always increases kurtosis.

Table 1 considers only the case of n ¼ 1 or GARCH(1,1) processes, which

covers most of the empirical literature. Some exceptions are Engle (1982)

and Geweke (1988) who consider nonstationary GARCH(0,4) and

GARCH(0,2) processes which we exclude because they do not have 4th

moments. In Table 1, we assume that et�N(0,1) (Gaussian, zero mean, unit

variance) even though Bollerslev, Drost, and Klaassen, and Hsieh assume

that et is non-Gaussian. The cases in Table 1 are ordered by increasing

f1 ¼ a1+b1 and, for n ¼ 1; s2� ¼ 1; and y ¼ 2, Eqs. (3.8) and (3.9) reduce to

b11 ¼
g21

1� f 21
¼ a21

1� a1 þ b1
� �2

(3.10)

ky

k�
¼ 1� f 21

1� f 21 � 2g21
¼

1� a1 þ b1
� �2

1� a1 þ b1
� �2 � 2a21

(3.11)

Table 1 contains values of yb11 and ky/ke, for y ¼ 2, according to Eqs. (3.10)

and (3.11) for six GARCH(1,1) processes from the literature.

Table 1 depicts small a1 (cases 2–5) associated with small yb11o1, for

y ¼ 2, and finite ky/ke, larger and large a1 (cases 6 and 1) associated with

large yb1141 and infinite ky/ke, and, this pattern appears to be independent

of the value of b1 and to depend more on the value of a1 (compare cases 1

and 6 with cases 2–5). The pattern is confirmed in Fig. 1, which depicts the

feasible area of a1 and b1 in which the underlying variable in a scalar

GARCH(1,1) process with et� N(0,1) has 2nd and 4th moments. The fea-

sible area for stationarity or 2nd-moment existence is between the horizon-

tal-a1 axis, the vertical-b1 axis, and the straight line b1 ¼ 1�a1; the feasible

subarea for 4th-moment existence is between the axes and the curved line

b1 ¼ �a1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2a21

q

: Evidently, 4th-moment existence restricts both a1

and b1, but restricts a1 more: if a univariate GARCH(1,1) process is sta-

tionary and its underlying variable has a 4th moment, then, a minimum

a1 ¼ 0 implies a maximum b1 ¼ 1, but a minimum b1 ¼ 0 implies a max-

imum a1 ¼ 1=
ffiffiffi

3
p

~¼0:5773; because b1 is either real and negative or complex

with a negative real part when 1=
ffiffiffi

3
p

oa1o1: Adding 4th-moment existence
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to 2nd-moment existence, reduces the feasible area of a1 and b1 by about one

third. Adding more GARCH lags ðn41Þ or higher even-moment existence

further reduces the feasible area of a1 and b1.

Eqs. (3.8)–(3.11), Table 1, and Fig. 1 illustrate an important advantage of

inequality restriction yb11o1 over eigenvalue restriction r(A)o1. For n ¼ 2;
Eq. (3.8) states yb11o1 in terms of a finite number of basic arithmetic

operations on the GARCH parameters, and, for n ¼ 1, Table 1 evaluates

and Fig. 1 depicts this inequality. In principle, this could be done for any n,

but, when n is large enough, algebraic detail becomes overwhelming. By

contrast, generally, an eigenvalue restriction can be written out explicitly in

terms of the GARCH parameters only when n � 3: When n43; this can be

done only in unlikely cases in which the characteristic polynomial of A ¼
F � F þ yðg� gÞðe1 � e1Þ

T factors into polynomials of degree r3.

5. CONCLUSION

Either Eq. (3.4) or (3.9) indicate that the underlying variable, yt, of un-

ivariate GARCH process (2.1) has a 4th moment iff 0oyb11o1 exists. Non-

Gaussian disturbances without 4th moments, in particular, stable Paretian

disturbances, have been considered (McCulloch, 1997; Rachev & Mittnik,

2000). Whether or not a disturbance has a 4th moment, in practice we would

like to know whether an estimated GARCH process preserves existence of a

* * *
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Fig. 1. Parameter Regions for 2nd- and 4th-Moment Existence.
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disturbance’s 4th moment. This would involve developing a statistical test of

yb11o1 which accounts for the sampling variability of an estimated yb11,

based on the estimated GARCH parameters. Ideally, this would be an easily

formed test, based on standard parameter estimates, along the lines of

Dickey and Fuller’s (1979) test of unit-root nonstationarity of an autore-

gressive linear time-series process.

Various papers in the literature claim to prove necessity and sufficiency of

restrictions for 4th-moment existence in univariate GARCH processes, but

most do not discuss any sort of nonnegativity (e.g., Hafner, 2003). Here, we

see the crucial role of nonnegativity in the necessity proofs. Nonnegativity

also figures crucially in existence proofs of stationarity of GARCH proc-

esses, but there nonnegativity occurs more simply, as is seen in Eq. (2.2).

Bougerol and Picard (1992) and Ling and McAleer (2002) are exceptions in

the literature for discussing nonnegativity in their respective existence proofs

for 2nd and 4th moments of GARCH processes.

The state-space form of a GARCH process used here is simpler than the

forms used by Bougerol and Picard (1992), Ling and McAleer (2002), and

Mittnik et al. (2002), because the transition matrix F is nonstochastic. Thus,

the proofs here are based on more elementary concepts and are simpler. For

example, there is no need to consider a stochastic Lyapunov exponent and

to verify its convergence, as in Bougerol and Picard (1992).

Finally, for any positive integer m, it would be interesting to generalize

present restrictions to necessary and sufficient restrictions for existence of

unique 2mth-moments of the underlying variable of a univariate GARCH

process (cf., Ling & McAleer, 2002).
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